Appendix A

Air Quality and GHG Emission Calculations

SMWD Las Flores Recycled Water Pipeline Project - Orange County, Summer

SMWD Las Flores Recycled Water Pipeline Project Orange County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	70.00	1000sqft	1.61	70,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2022
Utility Company	San Diego Gas & Electr	ic			
CO2 Intensity (Ib/MWhr)	448.3	CH4 Intensity (Ib/MWhr)	0.018	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted GHG intensity factors based on 2017 Power Content Label for SDG&E

Land Use - Per SMWD, approximately 40,200 SF would be graded/disturbed for pipe trenching, and 70,000 SF area would be paved

Construction Phase - Adjusted construction phases and duration based on input from SMWD

Off-road Equipment - Revised equipment list based on input from SMWD

Trips and VMT - Revised construction trips based on input from SMWD

Grading - Approximately 7,500 CY of soils to be exported

Area Coating - No operational architectural coatings

Energy Use -

Construction Off-road Equipment Mitigation - Water Exposed Area, Frequency: 2 times per day. Unpaved Road Mitigation, Vehicle Speed: 15 mph.

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Parking	4200	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	2.00	18.00
tblConstructionPhase	NumDays	4.00	173.00
tblConstructionPhase	NumDays	200.00	130.00
tblConstructionPhase	NumDays	10.00	6.00
tblConstructionPhase	NumDays	200.00	5.00
tblGrading	AcresOfGrading	0.00	1.60
tblGrading	MaterialExported	0.00	7,500.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	P ^{6.00} Page 2 of 23	0.00

tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	6.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.018
tblProjectCharacteristics	CO2IntensityFactor	720.49	448.3
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblTripsAndVMT	HaulingTripNumber	0.00	72.00
tblTripsAndVMT	HaulingTripNumber	0.00	24.00
tblTripsAndVMT	HaulingTripNumber	0.00	20.00
tblTripsAndVMT	VendorTripNumber	0.00	4.00
tblTripsAndVMT	VendorTripNumber	0.00	8.00
tblTripsAndVMT	VendorTripNumber	11.00	12.00
tblTripsAndVMT	VendorTripNumber	0.00	10.00
tblTripsAndVMT	VendorTripNumber	11.00	2.00
tblTripsAndVMT	WorkerTripNumber	5.00	8.00
tblTripsAndVMT	WorkerTripNumber	10.00	8.00
tblTripsAndVMT	WorkerTripNumber	29.00	6.00
tblTripsAndVMT	WorkerTripNumber	29.00	8.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/o	day							lb/c	lay		
2020	1.1918	13.6216	12.3294	0.0280	0.4565	0.6605	1.0762	0.1217	0.6083	0.7197	0.0000	2,860.861 5	2,860.861 5	0.6173	0.0000	2,876.293 5
2021	1.6417	12.4357	10.9280	0.0241	0.6242	0.5748	1.1990	0.1626	0.5292	0.6917	0.0000	2,463.099 9	2,463.099 9	0.5200	0.0000	2,476.100 5
Maximum	1.6417	13.6216	12.3294	0.0280	0.6242	0.6605	1.1990	0.1626	0.6083	0.7197	0.0000	2,860.861 5	2,860.861 5	0.6173	0.0000	2,876.293 5

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	2 Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/e	day		
2020	1.1918	13.6216	12.3294	0.0280	0.4485	0.6605	1.0681	0.1207	0.6083	0.7187	0.0000	2,860.861 5	2,860.861 5	0.6173	0.0000	2,876.293 5
2021	1.6417	12.4357	10.9280	0.0241	0.6161	0.5748	1.1909	0.1616	0.5292	0.6907	0.0000	2,463.099 9	2,463.099 9	0.5200	0.0000	2,476.100 5
Maximum	1.6417	13.6216	12.3294	0.0280	0.6161	0.6605	1.1909	0.1616	0.6083	0.7187	0.0000	2,860.861 5	2,860.861 5	0.6173	0.0000	2,876.293 5
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	1.50	0.00	0.71	0.70	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Area	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005	0.0000	0.0163

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-	CO2 NBio	- CO2 ⁻	Total CO2	CH4	N2O	CO2e
Category					lb/	day								lb/c	lay		
Area	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e 005	-	0.0	153	0.0153	4.0000e- 005		0.0163
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0	000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0	000	0.0000	0.0000		0.0000
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.0000e- 005	· 3.0000e 005	-	0.0	153	0.0153	4.0000e- 005	0.0000	0.0163
	ROG	N	IOx C	o s	-	· .			•		M2.5 Total	Bio- CO2	NBio-C	:02 Tot CC		H4 Ni	20 C
Percent Reduction	0.00	0	.00 0.	00 0	.00 0.	.00 0	.00 0	.00 0	0.00	0.00	0.00	0.00	0.00	0.0	0 0.0	00 0.	00 0

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/7/2020	7/1/2020	5	18	
2	Pipeline Trenching/Grading	Grading	7/1/2020	2/26/2021	5	173).
3	Conversion of Lift Station	Building Construction	11/1/2020	5/1/2021	5	130	
4	Paving	Paving	3/1/2021	3/8/2021	5	6	
5	Demobilization	Building Construction	4/24/2021	4/30/2021	5	5	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 1.61

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Excavators	1	6.00	158	0.38
Site Preparation	Graders	0	0.00	187	0.41
Site Preparation	Rough Terrain Forklifts	1	6.00	100	0.40
Site Preparation	Rubber Tired Dozers	0	0.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Excavators	1	6.00	158	0.38
Pipeline Trenching/Grading	Graders	0	0.00	187	0.41
Pipeline Trenching/Grading	Rough Terrain Forklifts	1	6.00	100	0.40
Pipeline Trenching/Grading	Rubber Tired Dozers	0	0.00	247	0.40
Pipeline Trenching/Grading	Sweepers/Scrubbers	1	2.00	64	0.46
Pipeline Trenching/Grading	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Trenchers	1	6.00	78	0.50
Conversion of Lift Station	Cranes	0	0.00	231	0.29
Conversion of Lift Station	Forklifts	0	0.00	89	0.20
	***************************************	F	age 6 of 23		

Conversion of Lift Station	Generator Sets	0	0.00	84	0.74
Conversion of Lift Station	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Conversion of Lift Station	Trenchers	1	4.00	78	0.50
Conversion of Lift Station	Welders	0	0.00	46	0.45
Paving	Cement and Mortar Mixers	0	0.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	0	0.00	132	0.36
Paving	Rollers	2	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Cranes	0	0.00	231	0.29
Demobilization	Excavators	1	6.00	158	0.38
Demobilization	Forklifts	1	6.00	89	0.20
Demobilization	Generator Sets	0	0.00	84	0.74
Demobilization	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Welders	0	0.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	2	8.00	4.00	72.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Pipeline Trenching/Grading	4	8.00	8.00	938.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Conversion of Lift	2	6.00	12.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	3	8.00	10.00	24.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demobilization	2	8.00	2.00	20.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2020

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.2839	3.1070	4.1735	6.4600e- 003		0.1419	0.1419		0.1306	0.1306		625.3492	625.3492	0.2023		630.4055
Total	0.2839	3.1070	4.1735	6.4600e- 003	0.0000	0.1419	0.1419	0.0000	0.1306	0.1306		625.3492	625.3492	0.2023		630.4055

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0302	1.0999	0.2779	3.0600e- 003	0.0697	3.5600e- 003	0.0732	0.0191	3.4100e- 003	0.0225		341.2232	341.2232	0.0354		342.1074
Vendor	0.0128	0.4167	0.1100	1.0000e- 003	0.0256	2.1700e- 003	0.0277	7.3500e- 003	2.0800e- 003	9.4300e- 003		108.4516	108.4516	8.7700e- 003		108.6709
Worker	0.0307	0.0194	0.2619	8.7000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		87.2035	87.2035	1.9900e- 003		87.2532
Total	0.0737	1.5360	0.6498	4.9300e- 003	0.1846	6.3200e- 003	0.1910	0.0501	6.0300e- 003	0.0562		536.8782	536.8782	0.0461		538.0315

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000 മത്രലം എംഇ	0.0000 23			0.0000			0.0000

Off-Road	0.2839	3.1070	4.1735	6.4600e- 003		0.1419	0.1419		0.1306	0.1306	0.0000	625.3492	625.3492		630.4055
Total	0.2839	3.1070	4.1735	6.4600e- 003	0.0000	0.1419	0.1419	0.0000	0.1306	0.1306	0.0000	625.3492	625.3492	0.2023	630.4055

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0302	1.0999	0.2779	3.0600e- 003	0.0697	3.5600e- 003	0.0732	0.0191	3.4100e- 003	0.0225		341.2232	341.2232	0.0354		342.1074
Vendor	0.0128	0.4167	0.1100	1.0000e- 003	0.0256	2.1700e- 003	0.0277	7.3500e- 003	2.0800e- 003	9.4300e- 003		108.4516	108.4516	8.7700e- 003		108.6709
Worker	0.0307	0.0194	0.2619	8.7000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		87.2035	87.2035	1.9900e- 003		87.2532
Total	0.0737	1.5360	0.6498	4.9300e- 003	0.1846	6.3200e- 003	0.1910	0.0501	6.0300e- 003	0.0562		536.8782	536.8782	0.0461		538.0315

3.3 Pipeline Trenching/Grading - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0147	0.0000	0.0147	1.8000e- 003	0.0000	1.8000e- 003			0.0000			0.0000
Off-Road	0.6662	6.5362	6.6476	9.6200e- 003		0.4018	0.4018		0.3697	0.3697		932.0024	932.0024			939.5381
Total	0.6662	6.5362	6.6476	9.6200e- 003	0.0147	0.4018	0.4166	1.8000e- 003	0.3697	0.3715		932.0024	932.0024	0.3014		939.5381

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0409	1.4909	0.3767	4.1500e- 003	0.1167	4.8300e- 003	0.1215	0.0313	4.6200e- 003	0.0359		462.5250	462.5250	0.0479		463.7236
Vendor	0.0256	0.8334	0.2200	1.9900e- 003	0.0511	4.3500e- 003	0.0555	0.0147	4.1600e- 003	0.0189		216.9032	216.9032	0.0175		217.3417
Worker	0.0307	0.0194	0.2619	8.7000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		87.2035	87.2035	1.9900e- 003		87.2532
Total	0.0972	2.3437	0.8585	7.0100e- 003	0.2572	9.7700e- 003	0.2670	0.0697	9.3200e- 003	0.0791		766.6317	766.6317	0.0675		768.3185

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6200e- 003	0.0000	6.6200e- 003	8.1000e- 004	0.0000	8.1000e- 004			0.0000			0.0000
Off-Road	0.6662	6.5362	6.6476	9.6200e- 003		0.4018	0.4018		0.3697	0.3697	0.0000	932.0024	932.0024			939.5381
Total	0.6662	6.5362	6.6476	9.6200e- 003	6.6200e- 003	0.4018	0.4085	8.1000e- 004	0.3697	0.3705	0.0000	932.0024	932.0024	0.3014		939.5381

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	day							lb/c	ay		
Hauling	0.0409	1.4909	0.3767	4.1500e- 003	0.1167	4.8300e- 003	0.1215	0.0313	4.6200e- 003 age:10-0	0.0359 6-9-Q		462.5250	462.5250			463.7236

Vendor	0.0256	0.8334	0.2200	1.9900e-	0.0511	4.3500e-	0.0555	0.0147	4.1600e-	0.0189	216.9032	216.9032	0.0175	217.3417
				003		003			003					
Worker	0.0307	0.0194	0.2619	8.7000e-	0.0894	5.9000e-	0.0900	0.0237	5.4000e-	0.0243	87.2035	87.2035	1.9900e-	87.2532
				004		004			004				003	
Total	0.0972	2.3437	0.8585	7.0100e-	0.2572	9.7700e-	0.2670	0.0697	9.3200e-	0.0791	766.6317	766.6317	0.0675	768.3185
				003		003			003					

3.3 Pipeline Trenching/Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0147	0.0000	0.0147	1.8000e- 003	0.0000	1.8000e- 003			0.0000			0.0000
Off-Road	0.6083	5.9726	6.6170	9.6300e- 003		0.3543	0.3543		0.3259	0.3259		932.2069	932.2069	0.3015		939.7443
Total	0.6083	5.9726	6.6170	9.6300e- 003	0.0147	0.3543	0.3690	1.8000e- 003	0.3259	0.3277		932.2069	932.2069	0.3015		939.7443

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0391	1.3783	0.3787	4.0900e- 003	0.3252	4.3300e- 003	0.3295	0.0825	4.1400e- 003	0.0866		456.8645	456.8645	0.0474		458.0486
Vendor	0.0214	0.7505	0.2035	1.9700e- 003	0.0511	1.5600e- 003	0.0527	0.0147	1.4900e- 003	0.0162		215.0340	215.0340	0.0169		215.4555
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		84.1755	84.1755	1.8000e- 003		84.2206
Total	0.0893	2.1463	0.8252	6.9000e- 003	0.4657	6.4700e- 003	0.4722	0.1209	6.1600e- 003	0.1271		756.0740	756.0740	0.0660		757.7248

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6200e- 003	0.0000	6.6200e- 003	8.1000e- 004	0.0000	8.1000e- 004			0.0000			0.0000
Off-Road	0.6083	5.9726	6.6170	9.6300e- 003		0.3543	0.3543		0.3259	0.3259	0.0000	932.2069	932.2069	0.3015		939.7443
Total	0.6083	5.9726	6.6170	9.6300e- 003	6.6200e- 003	0.3543	0.3609	8.1000e- 004	0.3259	0.3267	0.0000	932.2069	932.2069	0.3015		939.7443

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0391	1.3783	0.3787	4.0900e- 003	0.3252	4.3300e- 003	0.3295	0.0825	4.1400e- 003	0.0866		456.8645	456.8645	0.0474		458.0486
Vendor	0.0214	0.7505	0.2035	1.9700e- 003	0.0511	1.5600e- 003	0.0527	0.0147	1.4900e- 003	0.0162		215.0340	215.0340	0.0169		215.4555
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		84.1755	84.1755	1.8000e- 003		84.2206
Total	0.0893	2.1463	0.8252	6.9000e- 003	0.4657	6.4700e- 003	0.4722	0.1209	6.1600e- 003	0.1271		756.0740	756.0740	0.0660		757.7248

3.4 Conversion of Lift Station - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	ay		
Off-Road	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226 age 12 o	0.2226 ഹ്രേഹ്രംബംബം		388.9824	388.9824	0.1258		392.1275

Total	0.3670	3.4771	3.0279	4.0100e-	0.2420	0.2420	0.2226	0.2226	388.9824	388.9824	0.1258	392.1275
				003								

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0383	1.2501	0.3300	2.9900e- 003	0.0767	6.5200e- 003	0.0832	0.0221	6.2400e- 003	0.0283		325.3547	325.3547	0.0263		326.0126
Worker	0.0231	0.0145	0.1964	6.6000e- 004	0.0671	4.4000e- 004	0.0675	0.0178	4.1000e- 004	0.0182		65.4026	65.4026	1.4900e- 003		65.4399
Total	0.0614	1.2647	0.5264	3.6500e- 003	0.1437	6.9600e- 003	0.1507	0.0399	6.6500e- 003	0.0465		390.7573	390.7573	0.0278		391.4525

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226	0.2226	0.0000	388.9824	388.9824	0.1258		392.1275
Total	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226	0.2226	0.0000	388.9824	388.9824	0.1258		392.1275

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0383	1.2501	0.3300	2.9900e- 003	0.0767	6.5200e- 003	0.0832	0.0221	6.2400e- 003	0.0283		325.3547	325.3547	0.0263		326.0126
Worker	0.0231	0.0145	0.1964	6.6000e- 004	0.0671	4.4000e- 004	0.0675	0.0178	4.1000e- 004	0.0182		65.4026	65.4026	1.4900e- 003		65.4399
Total	0.0614	1.2647	0.5264	3.6500e- 003	0.1437	6.9600e- 003	0.1507	0.0399	6.6500e- 003	0.0465		390.7573	390.7573	0.0278		391.4525

3.4 Conversion of Lift Station - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944		389.1363	389.1363	0.1259		392.2827
Total	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944		389.1363	389.1363	0.1259		392.2827

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 age 14 o	0.0000 ഹ്രേഹം		0.0000	0.0000	0.0000		0.0000

Vendor	0.0320	1.1258	0.3053	2.9600e- 003	0.0767	2.3400e- 003	0.0790	0.0221	2.2400e- 003	0.0243	322.5510	322.5510	0.0253	323.1833
Worker	0.0217	0.0131	0.1822	6.3000e-	0.0671	4.3000e-	0.0675	0.0178	4.0000e-	0.0182	63.1317	63.1317	1.3500e-	 63.1655
				004		004			004				003	
Total	0.0537	1.1389	0.4876	3.5900e- 003	0.1437	2.7700e- 003	0.1465	0.0399	2.6400e- 003	0.0425	385.6827	385.6827	0.0266	386.3488

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944	0.0000	389.1363	389.1363	0.1259		392.2827
Total	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944	0.0000	389.1363	389.1363	0.1259		392.2827

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0320	1.1258	0.3053	2.9600e- 003	0.0767	2.3400e- 003	0.0790	0.0221	2.2400e- 003	0.0243		322.5510	322.5510	0.0253		323.1833
Worker	0.0217	0.0131	0.1822	6.3000e- 004	0.0671	4.3000e- 004	0.0675	0.0178	4.0000e- 004	0.0182		63.1317	63.1317	1.3500e- 003		63.1655
Total	0.0537	1.1389	0.4876	3.5900e- 003	0.1437	2.7700e- 003	0.1465	0.0399	2.6400e- 003	0.0425		385.6827	385.6827	0.0266		386.3488

3.5 Paving - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	0.4689	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489	0.2489		722.4290	722.4290			728.2702
Paving	0.7030					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.1720	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489	0.2489		722.4290	722.4290	0.2337		728.2702

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0288	1.0169	0.2794	3.0200e- 003	0.0696	3.1900e- 003	0.0728	0.0191	3.0600e- 003	0.0221		337.0471	337.0471	0.0349		337.9207
Vendor	0.0267	0.9381	0.2544	2.4700e- 003	0.0639	1.9500e- 003	0.0658	0.0184	1.8600e- 003	0.0203		268.7925	268.7925	0.0211		269.3194
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		84.1755	84.1755	1.8000e- 003		84.2206
Total	0.0844	1.9725	0.7768	6.3300e- 003	0.2230	5.7200e- 003	0.2287	0.0612	5.4500e- 003	0.0666		690.0152	690.0152	0.0578		691.4608

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	ay		
Off-Road	0.4689	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489 എന്നുമ ം എ റ്റെഎ	0.2489 f 23	0.0000	722.4290	722.4290	0.2337		728.2702

Paving	0.7030				0.0000	0.0000	0.0000	0.0000			0.0000		0.0000
Total	1.1720	4.8326	4.9992	7.4600e- 003	0.2705	0.2705	0.2489	0.2489	0.0000	722.4290	722.4290	0.2337	728.2702

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0288	1.0169	0.2794	3.0200e- 003	0.0696	3.1900e- 003	0.0728	0.0191	3.0600e- 003	0.0221		337.0471	337.0471	0.0349		337.9207
Vendor	0.0267	0.9381	0.2544	2.4700e- 003	0.0639	1.9500e- 003	0.0658	0.0184	1.8600e- 003	0.0203		268.7925	268.7925	0.0211		269.3194
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		84.1755	84.1755	1.8000e- 003		84.2206
Total	0.0844	1.9725	0.7768	6.3300e- 003	0.2230	5.7200e- 003	0.2287	0.0612	5.4500e- 003	0.0666		690.0152	690.0152	0.0578		691.4608

3.6 Demobilization - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			lb/d	lay						-	lb/c	ay		
Off-Road	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298		486.1671	486.1671	0.1572		490.0980
Total	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298		486.1671	486.1671	0.1572		490.0980

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0288	1.0169	0.2794	3.0200e- 003	0.0696	3.1900e- 003	0.0728	0.0191	3.0600e- 003	0.0221		337.0471	337.0471	0.0349		337.9207
Vendor	5.3400e- 003	0.1876	0.0509	4.9000e- 004	0.0128	3.9000e- 004	0.0132	3.6800e- 003	3.7000e- 004	4.0500e- 003		53.7585	53.7585	4.2200e- 003		53.8639
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		84.1755	84.1755	1.8000e- 003		84.2206
Total	0.0630	1.2220	0.5732	4.3500e- 003	0.1718	4.1600e- 003	0.1760	0.0465	3.9600e- 003	0.0504		474.9812	474.9812	0.0410		476.0052

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298	0.0000	486.1671	486.1671	0.1572		490.0980
Total	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298	0.0000	486.1671	486.1671	0.1572		490.0980

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day				lb/c	ay					
Hauling	0.0288	1.0169	0.2794	3.0200e- 003	0.0696	3.1900e- 003	0.0728	0.0191	3.0600e- 003 age -18- 0	0.0221 ᲠᲔႭ		337.0471	337.0471	0.0349		337.9207

Vendor	5.3400e- 003	0.1876	0.0509	4.9000e- 004	0.0128	3.9000e- 004	0.0132	3.6800e- 003	3.7000e- 004	4.0500e- 003	53.7585	53.7585	4.2200e- 003	53.8639
Worker	0.0289	0.0175	0.2430	8.4000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243	84.1755	84.1755	1.8000e- 003	84.2206
Total	0.0630	1.2220	0.5732	4.3500e- 003	0.1718	4.1600e- 003	0.1760	0.0465	3.9600e- 003	0.0504	474.9812	474.9812	0.0410	476.0052

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-W or C-W H-S or C-C H-O or C-NW			H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.561378	0.043284	0.209473	0.111826	0.015545	0.005795	0.025829	0.017125	0.001747	0.001542	0.004926	0.000594	0.000934

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/d	day		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Unmitigated	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0248					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	6.7000e- 004	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0248					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	6.7000e- 004	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

SMWD Las Flores Recycled Water Pipeline Project - Orange County, Winter

SMWD Las Flores Recycled Water Pipeline Project Orange County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	70.00	1000sqft	1.61	70,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2022
Utility Company	San Diego Gas & Electr	ic			
CO2 Intensity (Ib/MWhr)	448.3	CH4 Intensity (Ib/MWhr)	0.018	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted GHG intensity factors based on 2017 Power Content Label for SDG&E

Land Use - Per SMWD, approximately 40,200 SF would be graded/disturbed for pipe trenching, and 70,000 SF area would be paved

Construction Phase - Adjusted construction phases and duration based on input from SMWD

Off-road Equipment - Revised equipment list based on input from SMWD

Trips and VMT - Revised construction trips based on input from SMWD

Grading - Approximately 7,500 CY of soils to be exported

Area Coating - No operational architectural coatings

Energy Use -

Construction Off-road Equipment Mitigation - Water Exposed Area, Frequency: 2 times per day. Unpaved Road Mitigation, Vehicle Speed: 15 mph.

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Parking	4200	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	2.00	18.00
tblConstructionPhase	NumDays	4.00	173.00
tblConstructionPhase	NumDays	200.00	130.00
tblConstructionPhase	NumDays	10.00	6.00
tblConstructionPhase	NumDays	200.00	5.00
tblGrading	AcresOfGrading	0.00	1.60
tblGrading	MaterialExported	0.00	7,500.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00

tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	6.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.018
tblProjectCharacteristics	CO2IntensityFactor	720.49	448.3
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblTripsAndVMT	HaulingTripNumber	0.00	72.00
tblTripsAndVMT	HaulingTripNumber	0.00	24.00
tblTripsAndVMT	HaulingTripNumber	0.00	20.00
tblTripsAndVMT	VendorTripNumber	0.00	4.00
tblTripsAndVMT	VendorTripNumber	0.00	8.00
tblTripsAndVMT	VendorTripNumber	11.00	12.00
tblTripsAndVMT	VendorTripNumber	0.00	10.00
tblTripsAndVMT	VendorTripNumber	11.00	2.00
tblTripsAndVMT	WorkerTripNumber	5.00	8.00
tblTripsAndVMT	WorkerTripNumber	10.00	8.00
tblTripsAndVMT	WorkerTripNumber	29.00	6.00
tblTripsAndVMT	WorkerTripNumber	29.00	8.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2020	1.2026	13.6431	12.3560	0.0278	0.4565	0.6608	1.0765	0.1217	0.6085	0.7199	0.0000	2,831.384 8	2,831.384 8	0.6204	0.0000	2,846.894 4
2021	1.6520	12.4506	10.9634	0.0239	0.6242	0.5751	1.1992	0.1626	0.5294	0.6919	0.0000	2,435.079 7	2,435.079 7	0.5230	0.0000	2,448.154 1
Maximum	1.6520	13.6431	12.3560	0.0278	0.6242	0.6608	1.1992	0.1626	0.6085	0.7199	0.0000	2,831.384 8	2,831.384 8	0.6204	0.0000	2,846.894 4

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/	day		
2020	1.2026	13.6431	12.3560	0.0278	0.4485	0.6608	1.0684	0.1207	0.6085	0.7189	0.0000	2,831.384 8	2,831.384 8	0.6204	0.0000	2,846.894 4
2021	1.6520	12.4506	10.9634	0.0239	0.6161	0.5751	1.1912	0.1616	0.5294	0.6910	0.0000	2,435.079 7	2,435.079 7	0.5230	0.0000	2,448.154 1
Maximum	1.6520	13.6431	12.3560	0.0278	0.6161	0.6608	1.1912	0.1616	0.6085	0.7189	0.0000	2,831.384 8	2,831.384 8	0.6204	0.0000	2,846.894 4
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	1.50	0.00	0.71	0.70	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Area	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005	0.0000	0.0163

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10		PM10 Total	Fugitive PM2.5			PM2.5 Total	Bio- C	O2 NBio	- CO2 To	otal CO2	CH4	N2	0 0	CO2e
Category					I	b/day									lb/d	lay			
Area	0.0255	7.0000e 005	· 7.1600e· 003	0.0000		3.0000e- 005	3.0000e- 005		3.000 00		3.0000e- 005		0.0	153 (0.0153	4.0000e 005	-	0.	.0163
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.00	000	0.0000		0.0	000 (0.0000	0.0000	0.00	00 0	.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	000	0.0000		0.0	000 (0.0000	0.0000		0.	.0000
Total	0.0255	7.0000e 005	7.1600e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.000 00		3.0000e- 005		0.0	153 (0.0153	4.0000e 005	- 0.00	00 0.	.0163
	ROG	j	NOx	со					ugitive PM2.5	Exhau PM2.		-	io- CO2	NBio-CO	02 Tot CO		CH4	N20	CO2
Percent Reduction	0.00		0.00).00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00	0.00	0.00	0.0	0 0	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/7/2020	7/1/2020	5	18	
2	Pipeline Trenching/Grading	Grading	7/1/2020	2/26/2021	5	173	
3	Conversion of Lift Station	Building Construction	11/1/2020	5/1/2021	5	130	
4	Paving	Paving	3/1/2021	3/8/2021	5	6	
5	Demobilization	Building Construction	4/24/2021	4/30/2021	5	5	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 1.61

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Excavators	1	6.00	158	0.38
Site Preparation	Graders	0	0.00	187	0.41
Site Preparation	Rough Terrain Forklifts	1	6.00	100	0.40
Site Preparation	Rubber Tired Dozers	0	0.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Excavators	1	6.00	158	0.38
Pipeline Trenching/Grading	Graders	0	0.00	187	0.41
Pipeline Trenching/Grading	Rough Terrain Forklifts	1	6.00	100	0.40
Pipeline Trenching/Grading	Rubber Tired Dozers	0	0.00	247	0.40
Pipeline Trenching/Grading	Sweepers/Scrubbers	1	2.00	64	0.46
Pipeline Trenching/Grading	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Trenchers	1	6.00	78	0.50
Conversion of Lift Station	Cranes	0	0.00	231	0.29
Conversion of Lift Station	Forklifts	0	0.00	89	0.20

Conversion of Lift Station	Generator Sets	0	0.00	84	0.74
Conversion of Lift Station	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Conversion of Lift Station	Trenchers	1	4.00	78	0.50
Conversion of Lift Station	Welders	0	0.00	46	0.45
Paving	Cement and Mortar Mixers	0	0.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	0	0.00	132	0.36
Paving	Rollers	2	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Cranes	0	0.00	231	0.29
Demobilization	Excavators	1	6.00	158	0.38
Demobilization	Forklifts	1	6.00	89	0.20
Demobilization	Generator Sets	0	0.00	84	0.74
Demobilization	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Welders	0	0.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	2	8.00	4.00	72.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Pipeline Trepching/Grading	4	8.00	8.00	938.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Conversion of Lift	2	6.00	12.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	3	8.00	10.00	24.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demobilization	2	8.00	2.00	20.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2020 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	0.2839	3.1070	4.1735	6.4600e- 003		0.1419	0.1419		0.1306	0.1306		625.3492	625.3492	0.2023		630.4055
Total	0.2839	3.1070	4.1735	6.4600e- 003	0.0000	0.1419	0.1419	0.0000	0.1306	0.1306		625.3492	625.3492	0.2023		630.4055

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0310	1.1137	0.2926	3.0200e- 003	0.0697	3.6300e- 003	0.0733	0.0191	3.4700e- 003	0.0225		336.0720	336.0720	0.0362		336.9773
Vendor	0.0133	0.4166	0.1206	9.7000e- 004	0.0256	2.2100e- 003	0.0278	7.3500e- 003	2.1200e- 003	9.4700e- 003		105.7864	105.7864	9.2100e- 003		106.0168
Worker	0.0347	0.0213	0.2420	8.3000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		82.5297	82.5297	1.8800e- 003		82.5768
Total	0.0790	1.5516	0.6552	4.8200e- 003	0.1846	6.4300e- 003	0.1911	0.0501	6.1300e- 003	0.0563		524.3881	524.3881	0.0473		525.5708

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000

Off-Road	0.2839	3.1070	4.1735	6.4600e- 003		0.1419	0.1419		0.1306	0.1306	0.0000		625.3492	0.2023	630.4055
Total	0.2839	3.1070	4.1735	6.4600e- 003	0.0000	0.1419	0.1419	0.0000	0.1306	0.1306	0.0000	625.3492	625.3492	0.2023	630.4055

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0310	1.1137	0.2926	3.0200e- 003	0.0697	3.6300e- 003	0.0733	0.0191	3.4700e- 003	0.0225		336.0720	336.0720	0.0362		336.9773
Vendor	0.0133	0.4166	0.1206	9.7000e- 004	0.0256	2.2100e- 003	0.0278	7.3500e- 003	2.1200e- 003	9.4700e- 003		105.7864	105.7864	9.2100e- 003		106.0168
Worker	0.0347	0.0213	0.2420	8.3000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		82.5297	82.5297	1.8800e- 003		82.5768
Total	0.0790	1.5516	0.6552	4.8200e- 003	0.1846	6.4300e- 003	0.1911	0.0501	6.1300e- 003	0.0563		524.3881	524.3881	0.0473		525.5708

3.3 Pipeline Trenching/Grading - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0147	0.0000	0.0147	1.8000e- 003	0.0000	1.8000e- 003			0.0000			0.0000
Off-Road	0.6662	6.5362	6.6476	9.6200e- 003		0.4018	0.4018		0.3697	0.3697		932.0024	932.0024	0.3014		939.5381
Total	0.6662	6.5362	6.6476	9.6200e- 003	0.0147	0.4018	0.4166	1.8000e- 003	0.3697	0.3715		932.0024	932.0024	0.3014		939.5381

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0420	1.5096	0.3966	4.0900e- 003	0.1167	4.9200e- 003	0.1216	0.0313	4.7000e- 003	0.0360		455.5426	455.5426	0.0491		456.7697
Vendor	0.0267	0.8331	0.2411	1.9400e- 003	0.0511	4.4200e- 003	0.0555	0.0147	4.2300e- 003	0.0189		211.5728	211.5728	0.0184		212.0335
Worker	0.0347	0.0213	0.2420	8.3000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243		82.5297	82.5297	1.8800e- 003		82.5768
Total	0.1034	2.3641	0.8798	6.8600e- 003	0.2572	9.9300e- 003	0.2671	0.0697	9.4700e- 003	0.0792		749.6452	749.6452	0.0694		751.3800

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6200e- 003	0.0000	6.6200e- 003	8.1000e- 004	0.0000	8.1000e- 004			0.0000			0.0000
Off-Road	0.6662	6.5362	6.6476	9.6200e- 003		0.4018	0.4018		0.3697	0.3697	0.0000	932.0024	932.0024			939.5381
Total	0.6662	6.5362	6.6476	9.6200e- 003	6.6200e- 003	0.4018	0.4085	8.1000e- 004	0.3697	0.3705	0.0000	932.0024	932.0024	0.3014		939.5381

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0420	1.5096	0.3966	4.0900e- 003	0.1167	4.9200e- 003	0.1216	0.0313	4.7000e- 003	0.0360		455.5426	455.5426			456.7697

Vendor	0.0267	0.8331	0.2411	1.9400e-	0.0511	4.4200e-	0.0555	0.0147	4.2300e-	0.0189	211.5728	211.5728	0.0184	212.0335
				003		003			003					
Worker	0.0347	0.0213	0.2420	8.3000e- 004	0.0894	5.9000e- 004	0.0900	0.0237	5.4000e- 004	0.0243	82.5297	82.5297	1.8800e- 003	82.5768
Total	0.1034	2.3641	0.8798	6.8600e- 003	0.2572	9.9300e- 003	0.2671	0.0697	9.4700e- 003	0.0792	749.6452	749.6452	0.0694	751.3800

3.3 Pipeline Trenching/Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0147	0.0000	0.0147	1.8000e- 003	0.0000	1.8000e- 003			0.0000			0.0000
Off-Road	0.6083	5.9726	6.6170	9.6300e- 003		0.3543	0.3543		0.3259	0.3259		932.2069	932.2069	0.3015		939.7443
Total	0.6083	5.9726	6.6170	9.6300e- 003	0.0147	0.3543	0.3690	1.8000e- 003	0.3259	0.3277		932.2069	932.2069	0.3015		939.7443

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0400	1.3946	0.3975	4.0300e- 003	0.3252	4.4100e- 003	0.3296	0.0825	4.2200e- 003	0.0867		449.9420	449.9420	0.0484		451.1526
Vendor	0.0224	0.7488	0.2233	1.9300e- 003	0.0511	1.6200e- 003	0.0527	0.0147	1.5500e- 003	0.0163		209.7512	209.7512	0.0177		210.1934
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		79.6666	79.6666	1.7100e- 003		79.7092
Total	0.0951	2.1626	0.8450	6.7600e- 003	0.4657	6.6100e- 003	0.4723	0.1209	6.3000e- 003	0.1272		739.3598	739.3598	0.0678		741.0552

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6200e- 003	0.0000	6.6200e- 003	8.1000e- 004	0.0000	8.1000e- 004			0.0000			0.0000
Off-Road	0.6083	5.9726	6.6170	9.6300e- 003		0.3543	0.3543		0.3259	0.3259	0.0000	932.2069	932.2069	0.3015		939.7443
Total	0.6083	5.9726	6.6170	9.6300e- 003	6.6200e- 003	0.3543	0.3609	8.1000e- 004	0.3259	0.3267	0.0000	932.2069	932.2069	0.3015		939.7443

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0400	1.3946	0.3975	4.0300e- 003	0.3252	4.4100e- 003	0.3296	0.0825	4.2200e- 003	0.0867		449.9420	449.9420	0.0484		451.1526
Vendor	0.0224	0.7488	0.2233	1.9300e- 003	0.0511	1.6200e- 003	0.0527	0.0147	1.5500e- 003	0.0163		209.7512	209.7512	0.0177		210.1934
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		79.6666	79.6666	1.7100e- 003		79.7092
Total	0.0951	2.1626	0.8450	6.7600e- 003	0.4657	6.6100e- 003	0.4723	0.1209	6.3000e- 003	0.1272		739.3598	739.3598	0.0678		741.0552

3.4 Conversion of Lift Station - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226	0.2226		388.9824		0.1258		392.1275

Total	0.3670	3.4771	3.0279	4.0100e-	0.2420	0.2420	0.2226	0.2226	388.9824	388.9824	0.1258	392.1275
				003								

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0400	1.2497	0.3617	2.9200e- 003	0.0767	6.6300e- 003	0.0833	0.0221	6.3500e- 003	0.0284		317.3593	317.3593	0.0276		318.0503
Worker	0.0261	0.0160	0.1815	6.2000e- 004	0.0671	4.4000e- 004	0.0675	0.0178	4.1000e- 004	0.0182		61.8973	61.8973	1.4100e- 003		61.9326
Total	0.0661	1.2657	0.5432	3.5400e- 003	0.1437	7.0700e- 003	0.1508	0.0399	6.7600e- 003	0.0466		379.2565	379.2565	0.0291		379.9829

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226	0.2226	0.0000	388.9824	388.9824	0.1258		392.1275
Total	0.3670	3.4771	3.0279	4.0100e- 003		0.2420	0.2420		0.2226	0.2226	0.0000	388.9824	388.9824	0.1258		392.1275

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0400	1.2497	0.3617	2.9200e- 003	0.0767	6.6300e- 003	0.0833	0.0221	6.3500e- 003	0.0284		317.3593	317.3593	0.0276		318.0503
Worker	0.0261	0.0160	0.1815	6.2000e- 004	0.0671	4.4000e- 004	0.0675	0.0178	4.1000e- 004	0.0182		61.8973	61.8973	1.4100e- 003		61.9326
Total	0.0661	1.2657	0.5432	3.5400e- 003	0.1437	7.0700e- 003	0.1508	0.0399	6.7600e- 003	0.0466		379.2565	379.2565	0.0291		379.9829

3.4 Conversion of Lift Station - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944		389.1363	389.1363	0.1259		392.2827
Total	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944		389.1363	389.1363	0.1259		392.2827

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

Vendor	0.0336	1.1231	0.3350	2.8900e- 003	0.0767	2.4300e- 003	0.0791	0.0221	2.3200e- 003	0.0244	314.6268	314.6268	0.0265	315.2900
Worker	0.0245	0.0144	0.1682	6.0000e- 004	0.0671	4.3000e- 004	0.0675	0.0178	4.0000e- 004	0.0182	59.7499	59.7499	1.2800e- 003	59.7819
Total	0.0581	1.1375	0.5031	3.4900e- 003	0.1437	2.8600e- 003	0.1466	0.0399	2.7200e- 003	0.0426	374.3767	374.3767	0.0278	375.0720

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	ay		
Off-Road	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944	0.0000	389.1363	389.1363	0.1259		392.2827
Total	0.3317	3.1779	2.9983	4.0200e- 003		0.2113	0.2113		0.1944	0.1944	0.0000	389.1363	389.1363	0.1259		392.2827

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0336	1.1231	0.3350	2.8900e- 003	0.0767	2.4300e- 003	0.0791	0.0221	2.3200e- 003	0.0244		314.6268	314.6268	0.0265		315.2900
Worker	0.0245	0.0144	0.1682	6.0000e- 004	0.0671	4.3000e- 004	0.0675	0.0178	4.0000e- 004	0.0182		59.7499	59.7499	1.2800e- 003		59.7819
Total	0.0581	1.1375	0.5031	3.4900e- 003	0.1437	2.8600e- 003	0.1466	0.0399	2.7200e- 003	0.0426		374.3767	374.3767	0.0278		375.0720

3.5 Paving - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	0.4689	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489	0.2489		722.4290	722.4290			728.2702
Paving	0.7030					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.1720	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489	0.2489		722.4290	722.4290	0.2337		728.2702

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0295	1.0289	0.2933	2.9700e- 003	0.0696	3.2500e- 003	0.0729	0.0191	3.1100e- 003	0.0222		331.9401	331.9401	0.0357		332.8333
Vendor	0.0280	0.9359	0.2791	2.4100e- 003	0.0639	2.0200e- 003	0.0659	0.0184	1.9300e- 003	0.0203		262.1890	262.1890	0.0221		262.7417
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		79.6666	79.6666	1.7100e- 003		79.7092
Total	0.0902	1.9840	0.7966	6.1800e- 003	0.2230	5.8500e- 003	0.2288	0.0612	5.5700e- 003	0.0668		673.7957	673.7957	0.0596		675.2842

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.4689	4.8326	4.9992	7.4600e- 003		0.2705	0.2705		0.2489	0.2489	0.0000	722.4290	722.4290			728.2702

Paving	0.7030				0.0000	0.0000	0.0000	0.0000			0.0000		0.0000
Total	1.1720	4.8326	4.9992	7.4600e- 003	0.2705	0.2705	0.2489	0.2489	0.0000	722.4290	722.4290	0.2337	728.2702

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0295	1.0289	0.2933	2.9700e- 003	0.0696	3.2500e- 003	0.0729	0.0191	3.1100e- 003	0.0222		331.9401	331.9401	0.0357		332.8333
Vendor	0.0280	0.9359	0.2791	2.4100e- 003	0.0639	2.0200e- 003	0.0659	0.0184	1.9300e- 003	0.0203		262.1890	262.1890	0.0221		262.7417
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		79.6666	79.6666	1.7100e- 003		79.7092
Total	0.0902	1.9840	0.7966	6.1800e- 003	0.2230	5.8500e- 003	0.2288	0.0612	5.5700e- 003	0.0668		673.7957	673.7957	0.0596		675.2842

3.6 Demobilization - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298		486.1671	486.1671	0.1572		490.0980
Total	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298		486.1671	486.1671	0.1572		490.0980

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0295	1.0289	0.2933	2.9700e- 003	0.0696	3.2500e- 003	0.0729	0.0191	3.1100e- 003	0.0222		331.9401	331.9401	0.0357		332.8333
Vendor	5.6000e- 003	0.1872	0.0558	4.8000e- 004	0.0128	4.0000e- 004	0.0132	3.6800e- 003	3.9000e- 004	4.0600e- 003		52.4378	52.4378	4.4200e- 003		52.5483
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243		79.6666	79.6666	1.7100e- 003		79.7092
Total	0.0678	1.2353	0.5733	4.2500e- 003	0.1718	4.2300e- 003	0.1761	0.0465	4.0300e- 003	0.0505		464.0445	464.0445	0.0419		465.0909

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298	0.0000	486.1671	486.1671	0.1572		490.0980
Total	0.2689	2.4994	3.3297	5.0200e- 003		0.1411	0.1411		0.1298	0.1298	0.0000	486.1671	486.1671	0.1572		490.0980

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0295	1.0289	0.2933	2.9700e- 003	0.0696	3.2500e- 003	0.0729	0.0191	3.1100e- 003	0.0222		331.9401	331.9401			332.8333

Vendor	5.6000e- 003	0.1872	0.0558	4.8000e- 004	0.0128	4.0000e- 004	0.0132	3.6800e- 003	3.9000e- 004	4.0600e- 003	52.4378	52.4378	4.4200e- 003	52.5483
Worker	0.0327	0.0192	0.2242	8.0000e- 004	0.0894	5.8000e- 004	0.0900	0.0237	5.3000e- 004	0.0243	 79.6666	79.6666	1.7100e- 003	 79.7092
Total	0.0678	1.2353	0.5733	4.2500e-	0.1718	4.2300e-	0.1761	0.0465	4.0300e-	0.0505	464.0445	464.0445	0.0419	465.0909
				003		003			003					

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.561378	0.043284	0.209473	0.111826	0.015545	0.005795	0.025829	0.017125	0.001747	0.001542	0.004926	0.000594	0.000934

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/d	day		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Mitigated	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Unmitigated	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0248					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	6.7000e- 004	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0248					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	6.7000e- 004	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163
Total	0.0255	7.0000e- 005	7.1600e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0153	0.0153	4.0000e- 005		0.0163

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hours/Day	Days/Year Horse Power Load Factor Fuel Type
---------------------------------	---

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

SMWD Las Flores Recycled Water Pipeline Project - Orange County, Annual

SMWD Las Flores Recycled Water Pipeline Project Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	70.00	1000sqft	1.61	70,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)) 30
Climate Zone	8			Operational Year	2022
Utility Company	San Diego Gas & Elect	ric			
CO2 Intensity (Ib/MWhr)	448.3	CH4 Intensity (Ib/MWhr)	0.018	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted GHG intensity factors based on 2017 Power Content Label for SDG&E

Land Use - Per SMWD, approximately 40,200 SF would be graded/disturbed for pipe trenching, and 70,000 SF area would be paved

Construction Phase - Adjusted construction phases and duration based on input from SMWD

Off-road Equipment - Revised equipment list based on input from SMWD

Trips and VMT - Revised construction trips based on input from SMWD

Grading - Approximately 7,500 CY of soils to be exported

Area Coating - No operational architectural coatings

Energy Use -

Construction Off-road Equipment Mitigation - Water Exposed Area, Frequency: 2 times per day. Unpaved Road Mitigation, Vehicle Speed: 15 mph.

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Parking	4200	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	2.00	18.00
tblConstructionPhase	NumDays	4.00	173.00
tblConstructionPhase	NumDays	200.00	130.00
tblConstructionPhase	NumDays	10.00	6.00
tblConstructionPhase	NumDays	200.00	5.00
tblGrading	AcresOfGrading	0.00	1.60
tblGrading	MaterialExported	0.00	7,500.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	Page 2 of 26	0.00

tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	6.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.018
tblProjectCharacteristics	CO2IntensityFactor	720.49	448.3
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblTripsAndVMT	HaulingTripNumber	0.00	72.00
tblTripsAndVMT	HaulingTripNumber	0.00	24.00
tblTripsAndVMT	HaulingTripNumber	0.00	20.00
tblTripsAndVMT	VendorTripNumber	0.00	4.00
tblTripsAndVMT	VendorTripNumber	0.00	8.00
tblTripsAndVMT	VendorTripNumber	11.00	12.00
tblTripsAndVMT	VendorTripNumber	0.00	10.00
tblTripsAndVMT	VendorTripNumber	11.00	2.00
tblTripsAndVMT	WorkerTripNumber	5.00	8.00
tblTripsAndVMT	WorkerTripNumber	10.00	8.00
tblTripsAndVMT	WorkerTripNumber	29.00	6.00
tblTripsAndVMT	WorkerTripNumber	29.00	8.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2020	0.0632	0.7374	0.6175	1.3600e- 003	0.0227	0.0340	0.0567	6.0000e- 003	0.0313	0.0373	0.0000	126.0688	126.0688	0.0272	0.0000	126.7499
2021	0.0356	0.3840	0.3299	7.3000e- 004	0.0178	0.0178	0.0356	4.5800e- 003	0.0164	0.0210	0.0000	67.2275	67.2275	0.0141	0.0000	67.5791
Maximum	0.0632	0.7374	0.6175	1.3600e- 003	0.0227	0.0340	0.0567	6.0000e- 003	0.0313	0.0373	0.0000	126.0688	126.0688	0.0272	0.0000	126.7499

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	2 Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							M	Г/yr		
2020	0.0632	0.7374	0.6175	1.3600e- 003	0.0220	0.0340	0.0560	5.9100e- 003	0.0313	0.0372	0.0000	126.0687	126.0687	0.0272	0.0000	126.7499
2021	0.0356	0.3840	0.3299	7.3000e- 004	0.0171	0.0178	0.0349	4.4900e- 003	0.0164	0.0209	0.0000	67.2275	67.2275	0.0141	0.0000	67.5790
Maximum	0.0632	0.7374	0.6175	1.3600e- 003	0.0220	0.0340	0.0560	5.9100e- 003	0.0313	0.0372	0.0000	126.0687	126.0687	0.0272	0.0000	126.7499
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	3.46	0.00	1.52	1.70	0.00	0.29	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	Sta	art Date	End	d Date	Maximu	m Unmitiga	ated ROG	+ NOX (tons	/quarter)	Maxin	num Mitigat	ed ROG + I	NOX (tons/q	uarter)		_
1	6-	7-2020	9-6	-2020			0.2788					0.2788				
2	9-	7-2020	12-0	6-2020			0.3806					0.3806				
3	12	-7-2020	3-6	-2021			0.4390					0.4390				
4	3-	7-2021	6-6	-2021			0.1100					0.1100				
			Hi	ghest			0.4390					0.4390				

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaus PM2.5			Bio- CO2 NE	Bio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr								MT	/yr		
Area	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000				.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.000			0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000) (0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.000) (0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.000) (0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	D	0.0000 1	.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003
	ROG	N	Ox C	;o s						xhaust PM2.5	PM2.5 Total		2 NBio-	CO2 To CC		H4 N	20 C
Percent Reduction	0.00	0	.00 0.	.00 0	.00 0	.00 0	.00 0	.00	0.00	0.00	0.00	0.00	0.0	0 0.0	0 0.	.00 0.	00 0

3.0 Construction Detail

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/7/2020	7/1/2020	5	18	
2	Pipeline Trenching/Grading	Grading	7/1/2020	2/26/2021	5	173	***************************************
3	Conversion of Lift Station	Building Construction	11/1/2020	5/1/2021	5	130	
4	Paving	Paving	3/1/2021	3/8/2021	5	6	
5	Demobilization	Building Construction	4/24/2021	4/30/2021	5	5	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 1.61

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Excavators	1	6.00	158	0.38
Site Preparation	Graders	0	0.00	187	0.41
Site Preparation	Rough Terrain Forklifts	1	6.00	100	0.40
Site Preparation	Rubber Tired Dozers	0	0.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Excavators	1	6.00	158	0.38
Pipeline Trenching/Grading	Graders	0	0.00	187	0.41
Pipeline Trenching/Grading	Rough Terrain Forklifts	1	6.00	100	0.40
Pipeline Trenching/Grading	Rubber Tired Dozers	0	0.00	247	0.40
Pipeline Trenching/Grading	Sweepers/Scrubbers	1	2.00	64	0.46
Pipeline Trenching/Grading	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Pipeline Trenching/Grading	Trenchers	1	6.00	78	0.50
Conversion of Lift Station	Cranes	0	0.00	231	0.29
Conversion of Lift Station	Forklifts	0	0.00	89	0.20
Conversion of Lift Station	Generator Sets	0	0.00	84	0.74
Conversion of Lift Station	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Conversion of Lift Station	Trenchers	1	Page 6 of 26	78	0.50

Conversion of Lift Station	Welders	0	0.00	46	0.45
Paving	Cement and Mortar Mixers	0	0.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	0	0.00	132	0.36
Paving	Rollers	2	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Cranes	0	0.00	231	0.29
Demobilization	Excavators	1	6.00	158	0.38
Demobilization	Forklifts	1	6.00	89	0.20
Demobilization	Generator Sets	0	0.00	84	0.74
Demobilization	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demobilization	Welders	0	0.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	2	8.00	4.00	72.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Pipeline Trepching/Grading	4	8.00	8.00	938.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Conversion of Lift	2	6.00	12.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	3	8.00	10.00	24.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demobilization	2	8.00	2.00	20.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2020

Unmitigated Construction On-Site

ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e

Category					ton	s/yr							MT	√yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.5500e- 003	0.0280	0.0376	6.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	5.1058	5.1058	1.6500e- 003	0.0000	5.1471
Total	2.5500e- 003	0.0280	0.0376	6.0000e- 005	0.0000	1.2800e- 003	1.2800e- 003	0.0000	1.1800e- 003	1.1800e- 003	0.0000	5.1058	5.1058	1.6500e- 003	0.0000	5.1471

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	2.7000e- 004	0.0102	2.5600e- 003	3.0000e- 005	6.2000e- 004	3.0000e- 005	6.5000e- 004	1.7000e- 004	3.0000e- 005	2.0000e- 004	0.0000	2.7683	2.7683	2.9000e- 004	0.0000	2.7756
Vendor	1.2000e- 004	3.8200e- 003	1.0400e- 003	1.0000e- 005	2.3000e- 004	2.0000e- 005	2.5000e- 004	7.0000e- 005	2.0000e- 005	8.0000e- 005	0.0000	0.8763	0.8763	7.0000e- 005	0.0000	0.8782
Worker	2.8000e- 004	2.0000e- 004	2.2300e- 003	1.0000e- 005	7.9000e- 004	1.0000e- 005	8.0000e- 004	2.1000e- 004	0.0000	2.1000e- 004	0.0000	0.6841	0.6841	2.0000e- 005	0.0000	0.6845
Total	6.7000e- 004	0.0142	5.8300e- 003	5.0000e- 005	1.6400e- 003	6.0000e- 005	1.7000e- 003	4.5000e- 004	5.0000e- 005	4.9000e- 004	0.0000	4.3288	4.3288	3.8000e- 004	0.0000	4.3383

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.5500e- 003	0.0280	0.0376	6.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	5.1058	5.1058	1.6500e- 003	0.0000	5.1470
Total	2.5500e- 003	0.0280	0.0376	6.0000e- 005	0.0000	1.2800e- 003	1.2800e- 003	0.0000	1.1800e- 003	1.1800e- 003	0.0000	5.1058	5.1058	1.6500e- 003	0.0000	5.1470

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	2.7000e- 004	0.0102	2.5600e- 003	3.0000e- 005	6.2000e- 004	3.0000e- 005	6.5000e- 004	1.7000e- 004	3.0000e- 005	2.0000e- 004	0.0000	2.7683	2.7683	2.9000e- 004	0.0000	2.7756
Vendor	1.2000e- 004	3.8200e- 003	1.0400e- 003	1.0000e- 005	2.3000e- 004	2.0000e- 005	2.5000e- 004	7.0000e- 005	2.0000e- 005	8.0000e- 005	0.0000	0.8763	0.8763	7.0000e- 005	0.0000	0.8782
Worker	2.8000e- 004	2.0000e- 004	2.2300e- 003	1.0000e- 005	7.9000e- 004	1.0000e- 005	8.0000e- 004	2.1000e- 004	0.0000	2.1000e- 004	0.0000	0.6841	0.6841	2.0000e- 005	0.0000	0.6845
Total	6.7000e- 004	0.0142	5.8300e- 003	5.0000e- 005	1.6400e- 003	6.0000e- 005	1.7000e- 003	4.5000e- 004	5.0000e- 005	4.9000e- 004	0.0000	4.3288	4.3288	3.8000e- 004	0.0000	4.3383

3.3 Pipeline Trenching/Grading - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					1.2700e- 003	0.0000	1.2700e- 003	1.6000e- 004	0.0000	1.6000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0440	0.4314	0.4387	6.4000e- 004		0.0265	0.0265		0.0244	0.0244	0.0000	55.8029	55.8029	0.0181	0.0000	56.2541
Total	0.0440	0.4314	0.4387	6.4000e- 004	1.2700e- 003	0.0265	0.0278	1.6000e- 004	0.0244	0.0246	0.0000	55.8029	55.8029	0.0181	0.0000	56.2541

Unmitigated Construction Off-Site

Γ	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
																1

Category					ton	s/yr							МТ	/yr		
Hauling	2.7300e- 003	0.1016	0.0254	2.7000e- 004	7.5700e- 003	3.2000e- 004	7.8900e- 003	2.0400e- 003	3.1000e- 004	2.3400e- 003	0.0000	27.5177	27.5177	2.9000e- 003	0.0000	27.5902
Vendor	1.7200e- 003	0.0560	0.0152	1.3000e- 004	3.3200e- 003	2.9000e- 004	3.6100e- 003	9.6000e- 004	2.8000e- 004	1.2400e- 003	0.0000	12.8529	12.8529	1.0700e- 003	0.0000	12.8797
Worker	2.0600e- 003	1.4400e- 003	0.0164	6.0000e- 005	5.8000e- 003	4.0000e- 005	5.8400e- 003	1.5400e- 003	4.0000e- 005	1.5800e- 003	0.0000	5.0169	5.0169	1.1000e- 004	0.0000	5.0197
Total	6.5100e- 003	0.1590	0.0570	4.6000e- 004	0.0167	6.5000e- 004	0.0173	4.5400e- 003	6.3000e- 004	5.1600e- 003	0.0000	45.3874	45.3874	4.0800e- 003	0.0000	45.4897

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					5.7000e- 004	0.0000	5.7000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0440	0.4314	0.4387	6.4000e- 004		0.0265	0.0265		0.0244	0.0244	0.0000	55.8028	55.8028	0.0181	0.0000	56.2540
Total	0.0440	0.4314	0.4387	6.4000e- 004	5.7000e- 004	0.0265	0.0271	7.0000e- 005	0.0244	0.0245	0.0000	55.8028	55.8028	0.0181	0.0000	56.2540

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	2.7300e- 003	0.1016	0.0254	2.7000e- 004	7.5700e- 003	3.2000e- 004	7.8900e- 003	2.0400e- 003	3.1000e- 004	2.3400e- 003	0.0000	27.5177	27.5177	2.9000e- 003	0.0000	27.5902
Vendor	1.7200e- 003	0.0560	0.0152	1.3000e- 004	3.3200e- 003	2.9000e- 004	3.6100e- 003	9.6000e- 004	2.8000e- 004	1.2400e- 003	0.0000	12.8529	12.8529	1.0700e- 003	0.0000	12.8797
Worker	2.0600e- 003	1.4400e- 003	0.0164	6.0000e- 005	5.8000e- 003	4.0000e- 005	5.8400e- 003	1.5400e- 003	4.0000e- 005	1.5800e- 003	0.0000	5.0169	5.0169	1.1000e- 004	0.0000	5.0197

Total	6.5100e-	0.1590	0.0570	4.6000e-	0.0167	6.5000e-	0.0173	4.5400e-	6.3000e-	5.1600e-	0.0000	45.3874	45.3874	4.0800e-	0.0000	45.4897
Total	0.01000	0.1000	0.007.0	4100000	0.0101	0.00000	0.0110	-10-1000	0.00000	0.10000	0.0000	40.0014		4.00000	0.0000	40.4007
	003			004		004		003	004	003				003		1 1
	005			004		004		005	004	005				005		

3.3 Pipeline Trenching/Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					1.2700e- 003	0.0000	1.2700e- 003	1.6000e- 004	0.0000	1.6000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0125	0.1224	0.1357	2.0000e- 004		7.2600e- 003	7.2600e- 003		6.6800e- 003	6.6800e- 003	0.0000	17.3365	17.3365	5.6100e- 003	0.0000	17.4767
Total	0.0125	0.1224	0.1357	2.0000e- 004	1.2700e- 003	7.2600e- 003	8.5300e- 003	1.6000e- 004	6.6800e- 003	6.8400e- 003	0.0000	17.3365	17.3365	5.6100e- 003	0.0000	17.4767

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	8.1000e- 004	0.0291	7.9300e- 003	8.0000e- 005	6.5400e- 003	9.0000e- 005	6.6300e- 003	1.6600e- 003	9.0000e- 005	1.7500e- 003	0.0000	8.4424	8.4424	8.9000e- 004	0.0000	8.4646
Vendor	4.5000e- 004	0.0156	4.3800e- 003	4.0000e- 005	1.0300e- 003	3.0000e- 005	1.0600e- 003	3.0000e- 004	3.0000e- 005	3.3000e- 004	0.0000	3.9578	3.9578	3.2000e- 004	0.0000	3.9658
Worker	6.0000e- 004	4.0000e- 004	4.7100e- 003	2.0000e- 005	1.8000e- 003	1.0000e- 005	1.8100e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.5042	1.5042	3.0000e- 005	0.0000	1.5050
Total	1.8600e- 003	0.0452	0.0170	1.4000e- 004	9.3700e- 003	1.3000e- 004	9.5000e- 003	2.4400e- 003	1.3000e- 004	2.5700e- 003	0.0000	13.9044	13.9044	1.2400e- 003	0.0000	13.9354

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					5.7000e- 004	0.0000	5.7000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0125	0.1224	0.1357	2.0000e- 004		7.2600e- 003	7.2600e- 003		6.6800e- 003	6.6800e- 003	0.0000	17.3365	17.3365	5.6100e- 003	0.0000	17.4767
Total	0.0125	0.1224	0.1357	2.0000e- 004	5.7000e- 004	7.2600e- 003	7.8300e- 003	7.0000e- 005	6.6800e- 003	6.7500e- 003	0.0000	17.3365	17.3365	5.6100e- 003	0.0000	17.4767

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	8.1000e- 004	0.0291	7.9300e- 003	8.0000e- 005	6.5400e- 003	9.0000e- 005	6.6300e- 003	1.6600e- 003	9.0000e- 005	1.7500e- 003	0.0000	8.4424	8.4424	8.9000e- 004	0.0000	8.4646
Vendor	4.5000e- 004	0.0156	4.3800e- 003	4.0000e- 005	1.0300e- 003	3.0000e- 005	1.0600e- 003	3.0000e- 004	3.0000e- 005	3.3000e- 004	0.0000	3.9578	3.9578	3.2000e- 004	0.0000	3.9658
Worker	6.0000e- 004	4.0000e- 004	4.7100e- 003	2.0000e- 005	1.8000e- 003	1.0000e- 005	1.8100e- 003	4.8000e- 004	1.0000e- 005	4.9000e- 004	0.0000	1.5042	1.5042	3.0000e- 005	0.0000	1.5050
Total	1.8600e- 003	0.0452	0.0170	1.4000e- 004	9.3700e- 003	1.3000e- 004	9.5000e- 003	2.4400e- 003	1.3000e- 004	2.5700e- 003	0.0000	13.9044	13.9044	1.2400e- 003	0.0000	13.9354

3.4 Conversion of Lift Station - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	8.0700e- 003	0.0765	0.0666	9.0000e- 005		5.3200e- 003	5.3200e- 003		4.9000e- 003	4.9000e- 003	0.0000	7.7633	7.7633	2.5100e- 003	0.0000	7.8261
Total	8.0700e- 003	0.0765	0.0666	9.0000e- 005		5.3200e- 003	5.3200e- 003		4.9000e- 003	4.9000e- 003	0.0000	7.7633	7.7633	2.5100e- 003	0.0000	7.8261

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	8.6000e- 004	0.0280	7.6100e- 003	7.0000e- 005	1.6600e- 003	1.4000e- 004	1.8100e- 003	4.8000e- 004	1.4000e- 004	6.2000e- 004	0.0000	6.4264	6.4264	5.4000e- 004	0.0000	6.4399
Worker	5.1000e- 004	3.6000e- 004	4.0900e- 003	1.0000e- 005	1.4500e- 003	1.0000e- 005	1.4600e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.2542	1.2542	3.0000e- 005	0.0000	1.2549
Total	1.3700e- 003	0.0284	0.0117	8.0000e- 005	3.1100e- 003	1.5000e- 004	3.2700e- 003	8.6000e- 004	1.5000e- 004	1.0100e- 003	0.0000	7.6806	7.6806	5.7000e- 004	0.0000	7.6948

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	8.0700e- 003	0.0765	0.0666	9.0000e- 005		5.3200e- 003	5.3200e- 003		4.9000e- 003	4.9000e- 003	0.0000	7.7633	7.7633	2.5100e- 003	0.0000	7.8261
Total	8.0700e- 003	0.0765	0.0666	9.0000e- 005		5.3200e- 003	5.3200e- 003		4.9000e- 003	4.9000e- 003	0.0000	7.7633	7.7633	2.5100e- 003	0.0000	7.8261

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	8.6000e- 004	0.0280	7.6100e- 003	7.0000e- 005	1.6600e- 003	1.4000e- 004	1.8100e- 003	4.8000e- 004	1.4000e- 004	6.2000e- 004	0.0000	6.4264	6.4264	5.4000e- 004	0.0000	6.4399
Worker	5.1000e- 004	3.6000e- 004	4.0900e- 003	1.0000e- 005	1.4500e- 003	1.0000e- 005	1.4600e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.2542	1.2542	3.0000e- 005	0.0000	1.2549
Total	1.3700e- 003	0.0284	0.0117	8.0000e- 005	3.1100e- 003	1.5000e- 004	3.2700e- 003	8.6000e- 004	1.5000e- 004	1.0100e- 003	0.0000	7.6806	7.6806	5.7000e- 004	0.0000	7.6948

3.4 Conversion of Lift Station - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0143	0.1367	0.1289	1.7000e- 004		9.0900e- 003	9.0900e- 003		8.3600e- 003	8.3600e- 003	0.0000	15.1798	15.1798	4.9100e- 003	0.0000	15.3025
Total	0.0143	0.1367	0.1289	1.7000e- 004		9.0900e- 003	9.0900e- 003		8.3600e- 003	8.3600e- 003	0.0000	15.1798	15.1798	4.9100e- 003	0.0000	15.3025

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.4100e- 003	0.0492	0.0138	1.3000e- 004	3.2500e- 003	1.0000e- 004	3.3500e- 003	9.4000e- 004	1.0000e- 004	1.0300e- 003	0.0000	12.4526	12.4526	1.0100e- 003	0.0000	12.4778

Worker	9.5000e- 004	6.4000e- 004		3.0000e- 005	2.8300e- 003	2.0000e- 005		7.5000e- 004	2.0000e- 005	7.7000e- 004	0.0000	2.3664	2.3664	5.0000e- 005	0.0000	2.3676
Total	2.3600e- 003	0.0498	0.0212	1.6000e- 004	6.0800e- 003	1.2000e- 004	6.2000e- 003	1.6900e- 003	1.2000e- 004	1.8000e- 003	0.0000	14.8189	14.8189	1.0600e- 003	0.0000	14.8454

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0143	0.1367	0.1289	1.7000e- 004		9.0900e- 003	9.0900e- 003		8.3600e- 003	8.3600e- 003	0.0000	15.1798	15.1798	4.9100e- 003	0.0000	15.3025
Total	0.0143	0.1367	0.1289	1.7000e- 004		9.0900e- 003	9.0900e- 003		8.3600e- 003	8.3600e- 003	0.0000	15.1798	15.1798	4.9100e- 003	0.0000	15.3025

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.4100e- 003	0.0492	0.0138	1.3000e- 004	3.2500e- 003	1.0000e- 004	3.3500e- 003	9.4000e- 004	1.0000e- 004	1.0300e- 003	0.0000	12.4526	12.4526	1.0100e- 003	0.0000	12.4778
Worker	9.5000e- 004	6.4000e- 004	7.4100e- 003	3.0000e- 005	2.8300e- 003	2.0000e- 005	2.8500e- 003	7.5000e- 004	2.0000e- 005	7.7000e- 004	0.0000	2.3664	2.3664	5.0000e- 005	0.0000	2.3676
Total	2.3600e- 003	0.0498	0.0212	1.6000e- 004	6.0800e- 003	1.2000e- 004	6.2000e- 003	1.6900e- 003	1.2000e- 004	1.8000e- 003	0.0000	14.8189	14.8189	1.0600e- 003	0.0000	14.8454

3.5 Paving - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	1.4100e- 003	0.0145	0.0150	2.0000e- 005		8.1000e- 004	8.1000e- 004		7.5000e- 004	7.5000e- 004	0.0000	1.9661	1.9661	6.4000e- 004	0.0000	1.9820
Paving	2.1100e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.5200e- 003	0.0145	0.0150	2.0000e- 005		8.1000e- 004	8.1000e- 004		7.5000e- 004	7.5000e- 004	0.0000	1.9661	1.9661	6.4000e- 004	0.0000	1.9820

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	9.0000e- 005	3.1500e- 003	8.6000e- 004	1.0000e- 005	2.1000e- 004	1.0000e- 005	2.2000e- 004	6.0000e- 005	1.0000e- 005	7.0000e- 005	0.0000	0.9115	0.9115	1.0000e- 004	0.0000	0.9139
Vendor	8.0000e- 005	2.8600e- 003	8.0000e- 004	1.0000e- 005	1.9000e- 004	1.0000e- 005	1.9000e- 004	5.0000e- 005	1.0000e- 005	6.0000e- 005	0.0000	0.7240	0.7240	6.0000e- 005	0.0000	0.7255
Worker	9.0000e- 005	6.0000e- 005	6.9000e- 004	0.0000	2.6000e- 004	0.0000	2.7000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2201	0.2201	0.0000	0.0000	0.2202
Total	2.6000e- 004	6.0700e- 003	2.3500e- 003	2.0000e- 005	6.6000e- 004	2.0000e- 005	6.8000e- 004	1.8000e- 004	2.0000e- 005	2.0000e- 004	0.0000	1.8556	1.8556	1.6000e- 004	0.0000	1.8596

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	1.4100e- 003	0.0145	0.0150	2.0000e- 005		8.1000e- 004	8.1000e- 004		7.5000e- 004 age 10 (7.5000e- 004 എറ്റെപ്പംപം	0.0000	1.9661	1.9661	6.4000e- 004	0.0000	1.9820

Paving	2.1100e- 003				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.5200e- 003	0.0145	0.0150	2.0000e- 005	8.1000e- 004	8.1000e- 004	7.5000e- 004	7.5000e- 004	0.0000	1.9661	1.9661	6.4000e- 004	0.0000	1.9820

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	9.0000e- 005	3.1500e- 003	8.6000e- 004	1.0000e- 005	2.1000e- 004	1.0000e- 005	2.2000e- 004	6.0000e- 005	1.0000e- 005	7.0000e- 005	0.0000	0.9115	0.9115	1.0000e- 004	0.0000	0.9139
Vendor	8.0000e- 005	2.8600e- 003	8.0000e- 004	1.0000e- 005	1.9000e- 004	1.0000e- 005	1.9000e- 004	5.0000e- 005	1.0000e- 005	6.0000e- 005	0.0000	0.7240	0.7240	6.0000e- 005	0.0000	0.7255
Worker	9.0000e- 005	6.0000e- 005	6.9000e- 004	0.0000	2.6000e- 004	0.0000	2.7000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2201	0.2201	0.0000	0.0000	0.2202
Total	2.6000e- 004	6.0700e- 003	2.3500e- 003	2.0000e- 005	6.6000e- 004	2.0000e- 005	6.8000e- 004	1.8000e- 004	2.0000e- 005	2.0000e- 004	0.0000	1.8556	1.8556	1.6000e- 004	0.0000	1.8596

3.6 Demobilization - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	6.7000e- 004	6.2500e- 003	8.3200e- 003	1.0000e- 005		3.5000e- 004	3.5000e- 004		3.2000e- 004	3.2000e- 004	0.0000	1.1026	1.1026	3.6000e- 004	0.0000	1.1115
Total	6.7000e- 004	6.2500e- 003	8.3200e- 003	1.0000e- 005		3.5000e- 004	3.5000e- 004		3.2000e- 004	3.2000e- 004	0.0000	1.1026	1.1026	3.6000e- 004	0.0000	1.1115

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	7.0000e- 005	2.6200e- 003	7.1000e- 004	1.0000e- 005	1.7000e- 004	1.0000e- 005	1.8000e- 004	5.0000e- 005	1.0000e- 005	5.0000e- 005	0.0000	0.7596	0.7596	8.0000e- 005	0.0000	0.7616
Vendor	1.0000e- 005	4.8000e- 004	1.3000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.1207	0.1207	1.0000e- 005	0.0000	0.1209
Worker	7.0000e- 005	5.0000e- 005	5.7000e- 004	0.0000	2.2000e- 004	0.0000	2.2000e- 004	6.0000e- 005	0.0000	6.0000e- 005	0.0000	0.1834	0.1834	0.0000	0.0000	0.1835
Total	1.5000e- 004	3.1500e- 003	1.4100e- 003	1.0000e- 005	4.2000e- 004	1.0000e- 005	4.3000e- 004	1.2000e- 004	1.0000e- 005	1.2000e- 004	0.0000	1.0637	1.0637	9.0000e- 005	0.0000	1.0660

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-	<u>.</u>		tons	s/yr				-			MT	/yr		
Off-Road	6.7000e- 004	6.2500e- 003	8.3200e- 003	1.0000e- 005		3.5000e- 004	3.5000e- 004		3.2000e- 004	3.2000e- 004	0.0000	1.1026	1.1026	3.6000e- 004	0.0000	1.1115
Total	6.7000e- 004	6.2500e- 003	8.3200e- 003	1.0000e- 005		3.5000e- 004	3.5000e- 004		3.2000e- 004	3.2000e- 004	0.0000	1.1026	1.1026	3.6000e- 004	0.0000	1.1115

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr					MT	/yr				
Hauling	7.0000e- 005	2.6200e- 003	7.1000e- 004	1.0000e- 005	1.7000e- 004	1.0000e- 005	1.8000e- 004	5.0000e- 005	1.0000e- 005 എഎല ിറ്റെ	5.0000e- 005)f 20	0.0000	0.7596	0.7596	8.0000e- 005	0.0000	0.7616

Vendor	1.0000e- 005	4.8000e- 004	1.3000e- 004	0.0000	3.0000e- 005	0.0000	3.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.1207	0.1207	1.0000e- 005	0.0000	0.1209
Worker	7.0000e- 005	5.0000e- 005	5.7000e- 004	0.0000	2.2000e- 004	0.0000	2.2000e- 004	6.0000e- 005	0.0000	6.0000e- 005	0.0000	0.1834	0.1834	0.0000	0.0000	0.1835
Total	1.5000e- 004	3.1500e- 003	1.4100e- 003	1.0000e- 005	4.2000e- 004	1.0000e- 005	4.3000e- 004	1.2000e- 004	1.0000e- 005	1.2000e- 004	0.0000	1.0637	1.0637	9.0000e- 005	0.0000	1.0660

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip I	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.561378	0.043284	0.209473	0.111826	0.015545	0.005795	0.025829	0.017125	0.001747	0.001542	0.004926	0.000594	0.000934

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/yr	

Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003
Unmitigated	4.6100e- 003	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.5200e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	8.0000e- 005	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003

Total	4.6000e-	1 0000-	8.9000e-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1 7400-	1 7400-	0.0000	0.0000	1.8500e-
Total	4.6000e-	1.0000e-	o.9000e-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7400e-	1.7400e-	0.0000	0.0000	1.00006-
	003	005	004							003	003			003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr												MT	/yr		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.5200e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	8.0000e- 005	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003
Total	4.6000e- 003	1.0000e- 005	8.9000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.7400e- 003	1.7400e- 003	0.0000	0.0000	1.8500e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	ſ/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		Π	⁻/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	MT/yr									
Mitigated	0.0000	0.0000	0.0000	0.0000						
Unmitigated	0.0000	0.0000	0.0000	0.0000						

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e		
Land Use	tons	MT/yr					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		
Total		0.0000	0.0000	0.0000	0.0000		

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e		
Land Use	tons	MT/yr					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		
Total		0.0000	0.0000	0.0000	0.0000		

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

CalEEMod Version: CalEEMod.2016.3.2

SMWD Las Flores Recycled Water Pipeline Project

Orange County, Mitigation Report

Construction Mitigation Summary

Phase	ROG	NOx	CO	SO2 Percent R	Exhaust PM10 teduction	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Conversion of Lift Station	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Demobilization	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pipeline Trenching/Grading	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Site Preparation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

OFFROAD Equipment Mitigation

Equipment Type	Fuel Type	Tier	Number Mitigated	Total Number of Equipment	DPF	Oxidation Catalyst
Cement and Mortar Mixers	Diesel	No Change	0	0	No Change	0.00
Cranes	Diesel	No Change	0	0	No Change	0.00
Excavators	Diesel	No Change	0	3	No Change	0.00
Forklifts	Diesel	No Change	0	, 	No Change	0.00
Generator Sets	Diesel	No Change	0	0	No Change	0.00
Graders	Diesel	No Change	0	0	No Change	0.00
Pavers	Diesel	No Change	0	, 	No Change	0.00
Paving Equipment	Diesel	No Change	0	0	No Change	0.00
Rollers	Diesel	No Change	0		No Change	0.00

Rough Terrain Forklifts	Diesel	No Change	0	2	No Change	0.00
Rubber Tired Dozers	Diesel	No Change	0	0	No Change	0.00
Sweepers/Scrubbers	Diesel	No Change	0	1	No Change	0.00
Tractors/Loaders/Backhoes	Diesel	No Change	0	1	No Change	0.00
Trenchers	Diesel	No Change	0	2	No Change	0.00
Welders	Diesel	No Change	0	0	No Change	0.00

Equipment Type	ROG	NOx	CO	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
		U	nmitigated tons/yr						Unmitigat	ed mt/yr		
Cement and Mortar Mixers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Cranes	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Excavators	1.77300E-002	1.72860E-001	2.40250E-001	3.80000E-004	8.38000E-003	7.71000E-003	0.00000E+000	3.33481E+001	3.33481E+001	1.07900E-002	0.00000E+000	3.36177E+001
Forklifts	2.40000E-004	2.21000E-003	2.19000E-003	0.00000E+000	1.60000E-004	1.40000E-004	0.00000E+000	2.51800E-001	2.51800E-001	8.00000E-005	0.00000E+000	2.53830E-001
Generator Sets	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Graders	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Pavers	5.50000E-004	5.84000E-003	6.54000E-003	1.00000E-005	2.80000E-004	2.60000E-004	0.00000E+000	9.28850E-001	9.28850E-001	3.00000E-004	0.00000E+000	9.36360E-001
Paving Equipment	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Rollers	8.50000E-004	8.66000E-003	8.46000E-003	1.00000E-005	5.30000E-004	4.90000E-004	0.00000E+000	1.03728E+000	1.03728E+000	3.40000E-004	0.00000E+000	1.04566E+000
Rough Terrain Forklifts	9.40000E-003	1.22100E-001	1.64470E-001	2.50000E-004	5.03000E-003	4.63000E-003	0.00000E+000	2.16828E+001	2.16828E+001	7.01000E-003	0.00000E+000	2.18582E+001
Rubber Tired Dozers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Sweepers/Scrubbe	5.63000E-003	4.89400E-002	4.27900E-002	5.00000E-005	3.86000E-003	3.55000E-003	0.00000E+000	4.82946E+000	4.82946E+000	1.56000E-003	0.00000E+000	4.86851E+000
Tractors/Loaders/B ackhoes	9.50000E-003	9.58700E-002	1.10510E-001	1.50000E-004	5.80000E-003	5.34000E-003	0.00000E+000	1.33054E+001	1.33054E+001	4.30000E-003	0.00000E+000	1.34130E+001
Trenchers	3.95000E-002	3.59200E-001	2.55600E-001	3.30000E-004	2.66000E-002	2.44700E-002	0.00000E+000	2.88733E+001	2.88733E+001	9.34000E-003	0.00000E+000	2.91068E+001
Welders	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000

Equipment Type	ROG	NOx	со	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
	Mitigated tons/yr						Mitigated mt/yr					
Cement and Mortar Mixers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000 Page 2 of 8	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000

Cranes	0.00000E+000											
Excavators	1.77300E-002	1.72860E-001	2.40250E-001	3.80000E-004	8.38000E-003	7.71000E-003	0.00000E+000	3.33481E+001	3.33481E+001	1.07900E-002	0.00000E+000	3.36177E+001
Forklifts	2.40000E-004	2.21000E-003	2.19000E-003	0.00000E+000	1.60000E-004	1.40000E-004	0.00000E+000	2.51800E-001	2.51800E-001	8.00000E-005	0.00000E+000	2.53830E-001
Generator Sets	0.00000E+000											
Graders	0.00000E+000											
Pavers	5.50000E-004	5.84000E-003	6.54000E-003	1.00000E-005	2.80000E-004	2.60000E-004	0.00000E+000	9.28850E-001	9.28850E-001	3.00000E-004	0.00000E+000	9.36360E-001
Paving Equipment	0.00000E+000											
Rollers	8.50000E-004	8.66000E-003	8.46000E-003	1.00000E-005	5.30000E-004	4.90000E-004	0.00000E+000	1.03727E+000	1.03727E+000	3.40000E-004	0.00000E+000	1.04566E+000
Rough Terrain Forklifts	9.40000E-003	1.22100E-001	1.64470E-001	2.50000E-004	5.03000E-003	4.63000E-003	0.00000E+000	2.16828E+001	2.16828E+001	7.01000E-003	0.00000E+000	2.18581E+001
Rubber Tired Dozers	0.00000E+000											
Sweepers/Scrubbers	5.63000E-003	4.89400E-002	4.27900E-002	5.00000E-005	3.86000E-003	3.55000E-003	0.00000E+000	4.82945E+000	4.82945E+000	1.56000E-003	0.00000E+000	4.86850E+000
Tractors/Loaders/Bac khoes	9.50000E-003	9.58700E-002	1.10510E-001	1.50000E-004	5.80000E-003	5.34000E-003	0.00000E+000	1.33054E+001	1.33054E+001	4.30000E-003	0.00000E+000	1.34130E+001
Trenchers	3.95000E-002	3.59200E-001	2.55600E-001	3.30000E-004	2.66000E-002	2.44700E-002	0.00000E+000	2.88733E+001	2.88733E+001	9.34000E-003	0.00000E+000	2.91068E+001
Welders	0.00000E+000											

Equipment Type	ROG	NOx	CO	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					Per	cent Reduction						
Cement and Mortar Mixers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Cranes	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Excavators	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	1.19947E-006	1.19947E-006	0.00000E+000	0.00000E+000	1.18985E-006
Forklifts	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Generator Sets	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Graders	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Pavers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Paving Equipment	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000
Rollers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	9.64060E-006	9.64060E-006	0.00000E+000	0.00000E+000	0.00000E+000
Rough Terrain Forklifts	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	9.22389E-007	9.22389E-007	0.00000E+000	0.00000E+000	1.37249E-006
Rubber Tired Dozers	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000 Pape 3 of 8	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000	0.00000E+000

| Sweepers/Scrubbers | 0.00000E+000 | 2.07062E-006 | 2.07062E-006 | 0.00000E+000 | 0.00000E+000 | 2.05402E-006 |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Tractors/Loaders/Bac
khoes | 0.00000E+000 | 7.51574E-007 | 7.51574E-007 | 0.00000E+000 | 0.00000E+000 | 7.45546E-007 |
| Trenchers | 0.00000E+000 | 1.03902E-006 | 1.03902E-006 | 0.00000E+000 | 0.00000E+000 | 1.37425E-006 |
| Welders | 0.00000E+000 |

Fugitive Dust Mitigation

Yes/No	Mitigation Measure	Mitigation Input		Mitigation Input		Mitigation Input	
No	Soil Stabilizer for unpaved Roads	PM10 Reduction	0.00	PM2.5 Reduction	0.00		
No	Replace Ground Cover of Area Disturbed	PM10 Reduction	0.00	PM2.5 Reduction	0.00		
Yes	Water Exposed Area	PM10 Reduction	55.00	PM2.5 Reduction		Frequency (per day)	2.00
No	Unpaved Road Mitigation	Moisture Content %	0.00	Vehicle Speed (mph)	15.00		
No	Clean Paved Road	% PM Reduction	0.00				

		Unr	nitigated	Mitig	gated	Percent Reduction		
Phase	Source	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5	
Conversion of Lift Station	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Conversion of Lift Station	Roads	0.01	0.00	0.01	0.00	0.00	0.00	
Demobilization	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Demobilization	Roads	0.00	0.00	0.00	0.00	0.00	0.00	
Paving	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Paving	Roads	0.00	0.00	0.00	0.00	0.00	0.00	
Pipeline Trenching/Grading	Fugitive Dust	0.00	0.00	0.00	0.00	0.55	0.55	
Pipeline Trenching/Grading	Roads	0.03	0.01	0.03	0.01	0.00	0.00	
Site Preparation	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	
Site Preparation	Roads	0.00	0.00	0.00	0.00	0.00	0.00	

Operational Percent Reduction Summary

Category	ROG	NOx	со	SO2	Exhaust PM10	Exhaust PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
			Percent	Reduction								
Architectural Coating	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Consumer Products	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricity	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hearth	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Landscaping	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Natural Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water Indoor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water Outdoor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Operational Mobile Mitigation

Project Setting:

Mitigation	Category	Measure	% Reduction	Input Value 1	Input Value 2	Input Value 3
No	Land Use	Increase Density	0.00			
No	Land Use	Increase Diversity	0.00	0.15		
No	Land Use	Improve Walkability Design	0.00			
No	Land Use	Improve Destination Accessibility	0.00			
No	Land Use	Increase Transit Accessibility	0.25			
No	Land Use	Integrate Below Market Rate Housing	0.00			
	Land Use	Land Use SubTotal	0.00			
No	Neighborhood Enhancements	Improve Pedestrian Network				
No	Neighborhood Enhancements	Provide Traffic Calming Measures				

No	Neighborhood Enhancements	Implement NEV Network	0.00	
	Neighborhood Enhancements	Neighborhood Enhancements Subtotal	0.00	
No	Parking Policy Pricing	Limit Parking Supply	0.00	
No	Parking Policy Pricing	Unbundle Parking Costs	0.00	
No	Parking Policy Pricing	On-street Market Pricing	0.00	
	Parking Policy Pricing	Parking Policy Pricing Subtotal	0.00	
No	Transit Improvements	Provide BRT System	0.00	
No	Transit Improvements	Expand Transit Network	0.00	
No	Transit Improvements	Increase Transit Frequency	0.00	
	Transit Improvements	Transit Improvements Subtotal	0.00	
		Land Use and Site Enhancement Subtotal	0.00	
No	Commute	Implement Trip Reduction Program		
No	Commute	Transit Subsidy		
No	Commute	Implement Employee Parking "Cash Out"		
No	Commute	Workplace Parking Charge		
No	Commute	Encourage Telecommuting and Alternative Work Schedules	0.00	
No	Commute	Market Commute Trip Reduction Option	0.00	
No	Commute	Employee Vanpool/Shuttle	0.00	2.00
No	Commute	Provide Ride Sharing Program		
	Commute	Commute Subtotal	0.00	
No	School Trip	Implement School Bus Program	0.00	
		Total VMT Reduction	0.00	

Area Mitigation

Measure Implemented	Mitigation Measure	Input Value
No	Only Natural Gas Hearth	
No	No Hearth	Page 6 of 8

No	Use Low VOC Cleaning Supplies	
No	Use Low VOC Paint (Residential Interior)	50.00
No	Use Low VOC Paint (Residential Exterior)	50.00
No	Use Low VOC Paint (Non-residential Interior)	100.00
No	Use Low VOC Paint (Non-residential Exterior)	100.00
No	Use Low VOC Paint (Parking)	100.00
No	% Electric Lawnmower	
No	% Electric Leafblower	
No	% Electric Chainsaw	

Energy Mitigation Measures

Measure Implemented	Mitigation Measure	Input Value 1	Input Value 2
No	Exceed Title 24		
No	Install High Efficiency Lighting		
No	On-site Renewable		

Appliance Type	Land Use Subtype	% Improvement
ClothWasher		30.00
DishWasher		15.00
Fan		50.00
Refrigerator		15.00

Water Mitigation Measures

Measure Implemented	Mitigation Measure	Input Value 1	Input Value 2
No	Apply Water Conservation on Strategy		
No	Use Reclaimed Water		
No	Use Grey Water	4	
No	Install low-flow bathroom faucet	32.00	
		Page 7 of 8	******

No	Install low-flow Kitchen faucet	18.00	
No	Install low-flow Toilet	20.00	
No	Install low-flow Shower	20.00	
No	Turf Reduction		
No	Use Water Efficient Irrigation Systems	6.10	
No	Water Efficient Landscape		

Solid Waste Mitigation

Mitigation Measures	Input Value
Institute Recycling and Composting Services Percent Reduction in Waste Disposed	

SMWD Las Flores Recycled Water Pipeline Project

Project Construction Energy Demand

Construction Worker Gasoline Demand

Phase	Trips	Vehicle CO ₂ (MT)	Kg CO2/Gallon	Gallons
Site Preparation	144	0.68	8.78	77.92
Pipeline Trenching/Grading	1,384	6.52	8.78	742.72
Conversion of Lift Station	780	3.62	8.78	412.37
Paving	48	0.22	8.78	25.07
Demobilization	40	0.18	8.78	20.89
Total				1,278.96

Construction Vendor Diesel Demand

Phase	Trips	Vehicle CO ₂ (MT)	Kg CO2/Gallon	Gallons
Site Preparation	72	0.88	10.21	85.83
Pipeline Trenching/Grading	1,384	16.81	10.21	1,646.49
Conversion of Lift Station	1,560	18.88	10.21	1,849.07
Paving	60	0.72	10.21	70.91
Demobilization	10	0.12	10.21	11.82
Total				3,664.12

Construction Haul Diesel Demand

Phase	Trips	Vehicle CO ₂ (MT)	Kg CO2/Gallon	Gallons
Site Preparation	72	2.77	10.21	271.14
Pipeline Trenching/Grading	938	35.96	10.21	3,522.05
Conversion of Lift Station	0	0.00	10.21	0.00
Paving	24	0.91	10.21	89.28
Demobilization	20	0.76	10.21	74.40
Total				3,956.86

Construction Equipment Diesel Demand

		Equipment CO ₂		
Phase	Pieces of Equipment	(MT)	Kg CO2/Gallon	Gallons
Site Preparation	2	5.11	10.21	500.08
Pipeline Trenching/Grading	4	73.14	10.21	7,163.51
Conversion of Lift Station	2	22.94	10.21	2,247.12
Paving	3	1.97	10.21	192.57
Demobilization	2	1.10	10.21	107.99
Total				10,211.26

Construction Equipment Usage

Phase	Hours of Use
Site Preparation	216
Pipeline Trenching/Grading	3,460
Conversion of Lift Station	1,300
Paving	108
Demobilization	60
Total	5,144

Project Construction Assumptions

PhaseName	OffRoadEquipmentType	OffRoadEquipmentUI UsageHours	Days	То	tal Hours	Pieces of Equi E	quip Hours	PhaseName
Site Preparation	Excavators	1	6	18	108	2	216	Site Preparat
Site Preparation	Rough Terrain Forklifts	1	6	18	108			Pipeline Tren
Pipeline Trenching/Grading	Excavators	1	6	173	1038	4	3,460	Conversion o
Pipeline Trenching/Grading	Rough Terrain Forklifts	1	6	173	1038			Paving
Pipeline Trenching/Grading	Sweepers/Scrubbers	1	2	173	346			Demobilizati
Pipeline Trenching/Grading	Trenchers	1	6	173	1038			
Conversion of Lift Station	Tractors/Loaders/Backhoes	1	6	130	780	2	1,300	PhaseName
Conversion of Lift Station	Trenchers	1	4	130	520			Site Preparat
Paving	Pavers	1	6	6	36	3	108	Pipeline Tren
Paving	Rollers	2	6	6	72			Conversion o
Demobilization	Excavators	1	6	5	30	2	60	Paving
Demobilization	Forklifts	1	6	5	30			Demobilizati
					-	Total	5,144	

Equi Eq	uip Hours	PhaseName	PhaseType	PhaseStartDate	PhaseEndDate	NumDaysV	NumDays		
2	216	Site Preparation	Site Preparation	2020/06/07	2020/07/01	5	18		
		Pipeline Trenching/Grading	Grading	2020/07/01	2021/02/26	5	173		
4	3,460	Conversion of Lift Station	Building Construction	2020/11/01	2021/05/01	5	130		
		Paving	Paving	2021/03/01	2021/03/08	5	6		
		Demobilization	Building Construction	2021/04/24	2021/04/30	5	5	_	
2	1,300	PhaseName	WorkerTripNumber	VendorTripNumber	HaulingTripNumber	Days	Worker Trips	Vendor Tri _l H	auling Trips
		Site Preparation	8	8 4	1 72	2 18	144	72	72
3	108	Pipeline Trenching/Grading	8	8 8	938	3 173	1,384	1,384	938
		Conversion of Lift Station	(5 12	2 () 130	780	1,560	0
2	60	Paving	8	8 10) 24	і 6	48	60	24
		Demobilization	8	8 2	2 20) 5	40	10	20

Appendix B

Biological Resources Attachments

California Natural Diversity Database

Query Criteria: Quad IS (San Juan Capistrano (3311756) OR Canada Gobernadora (3311755) OR Laguna Beach (3311757) OR Dana Point (3311746) OR San Clemente (3311745) OR Santiago Peak (3311765) OR El Toro (3311766) OR Tustin (3311767))

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Accipiter cooperii	ABNKC12040	None	None	G5	S4	WL
Cooper's hawk						
Agelaius tricolor	ABPBXB0020	None	Threatened	G2G3	S1S2	SSC
tricolored blackbird						
Aimophila ruficeps canescens	ABPBX91091	None	None	G5T3	S3	WL
southern California rufous-crowned sparrow						
Ammodramus savannarum	ABPBXA0020	None	None	G5	S3	SSC
grasshopper sparrow						
Anaxyrus californicus	AAABB01230	Endangered	None	G2G3	S2S3	SSC
arroyo toad						
Anniella stebbinsi	ARACC01060	None	None	G3	S3	SSC
southern California legless lizard						
Antrozous pallidus	AMACC10010	None	None	G5	S3	SSC
pallid bat						
Aphanisma blitoides	PDCHE02010	None	None	G3G4	S2	1B.2
aphanisma						
Aquila chrysaetos	ABNKC22010	None	None	G5	S3	FP
golden eagle						
Arizona elegans occidentalis	ARADB01017	None	None	G5T2	S2	SSC
California glossy snake						
Asio otus	ABNSB13010	None	None	G5	S3?	SSC
long-eared owl						
Aspidoscelis hyperythra	ARACJ02060	None	None	G5	S2S3	WL
orange-throated whiptail						
Aspidoscelis tigris stejnegeri	ARACJ02143	None	None	G5T5	S3	SSC
coastal whiptail						
Athene cunicularia	ABNSB10010	None	None	G4	S3	SSC
burrowing owl						
Atriplex coulteri	PDCHE040E0	None	None	G3	S1S2	1B.2
Coulter's saltbush						
Atriplex pacifica	PDCHE041C0	None	None	G4	S2	1B.2
south coast saltscale						
Atriplex parishii	PDCHE041D0	None	None	G1G2	S1	1B.1
Parish's brittlescale						
Atriplex serenana var. davidsonii	PDCHE041T1	None	None	G5T1	S1	1B.2
Davidson's saltscale						
Bombus crotchii	IIHYM24480	None	Candidate	G3G4	S1S2	
Crotch bumble bee			Endangered			

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Branchinecta sandiegonensis	ICBRA03060	Endangered	None	G2	S2	
San Diego fairy shrimp						
Brodiaea filifolia	PMLIL0C050	Threatened	Endangered	G2	S2	1B.1
thread-leaved brodiaea						
Buteo regalis	ABNKC19120	None	None	G4	S3S4	WL
ferruginous hawk						
Calochortus weedii var. intermedius intermediate mariposa-lily	PMLIL0D1J1	None	None	G3G4T2	S2	1B.2
Campylorhynchus brunneicapillus sandiegensis coastal cactus wren	ABPBG02095	None	None	G5T3Q	S3	SSC
Canyon Live Oak Ravine Forest	CTT61350CA	None	None	G3	S3.3	
Canyon Live Oak Ravine Forest						
Centromadia parryi ssp. australis southern tarplant	PDAST4R0P4	None	None	G3T2	S2	1B.1
Chaenactis glabriuscula var. orcuttiana	PDAST20095	None	None	G5T1T2	S1	1B.1
Orcutt's pincushion		News	Nexa	0570	00	000
Chaetodipus californicus femoralis Dulzura pocket mouse	AMAFD05021	None	None	G5T3	S3	SSC
Chaetodipus fallax fallax	AMAFD05031	None	None	G5T3T4	S3S4	SSC
northwestern San Diego pocket mouse						
Choeronycteris mexicana	AMACB02010	None	None	G4	S1	SSC
Mexican long-tongued bat						
Chorizanthe polygonoides var. longispina	PDPGN040K1	None	None	G5T3	S3	1B.2
long-spined spineflower						
Circus hudsonius	ABNKC11011	None	None	G5	S3	SSC
northern harrier						
Clinopodium chandleri	PDLAM08030	None	None	G3	S2	1B.2
San Miguel savory						
Coccyzus americanus occidentalis western yellow-billed cuckoo	ABNRB02022	Threatened	Endangered	G5T2T3	S1	
Coelus globosus	IICOL4A010	None	None	G1G2	S1S2	
globose dune beetle						
Comarostaphylis diversifolia ssp. diversifolia summer holly	PDERI0B011	None	None	G3T2	S2	1B.2
Coturnicops noveboracensis yellow rail	ABNME01010	None	None	G4	S1S2	SSC
Crotalus ruber	ARADE02090	None	None	G4	S3	SSC
red-diamond rattlesnake						
Danaus plexippus pop. 1	IILEPP2012	None	None	G4T2T3	S2S3	
monarch - California overwintering population						
Dipodomys stephensi Stephens' kangaroo rat	AMAFD03100	Endangered	Threatened	G2	S2	

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Dudleya blochmaniae ssp. blochmaniae	PDCRA04051	None	None	G3T2	S2	1B.1
Blochman's dudleya						
Dudleya multicaulis	PDCRA040H0	None	None	G2	S2	1B.2
many-stemmed dudleya						
Dudleya stolonifera	PDCRA040P0	Threatened	Threatened	G1	S1	1B.1
Laguna Beach dudleya						
Dudleya viscida	PDCRA040T0	None	None	G2	S2	1B.2
sticky dudleya						
Elanus leucurus	ABNKC06010	None	None	G5	S3S4	FP
white-tailed kite						
Empidonax traillii extimus	ABPAE33043	Endangered	Endangered	G5T2	S1	
southwestern willow flycatcher						
Emys marmorata	ARAAD02030	None	None	G3G4	S3	SSC
western pond turtle						
Eremophila alpestris actia	ABPAT02011	None	None	G5T4Q	S4	WL
California horned lark						
Eryngium pendletonense	PDAPI0Z120	None	None	G1	S1	1B.1
Pendleton button-celery						
Eucyclogobius newberryi	AFCQN04010	Endangered	None	G3	S3	SSC
tidewater goby						
<i>Eumops perotis californicus</i> western mastiff bat	AMACD02011	None	None	G5T4	S3S4	SSC
Euphorbia misera	PDEUP0Q1B0	None	None	G5	S2	2B.2
cliff spurge						
Gila orcuttii	AFCJB13120	None	None	G2	S2	SSC
arroyo chub						
Harpagonella palmeri	PDBOR0H010	None	None	G4	S3	4.2
Palmer's grapplinghook						
Helianthus nuttallii ssp. parishii	PDAST4N102	None	None	G5TH	SH	1A
Los Angeles sunflower						
Hesperocyparis forbesii	PGCUP040C0	None	None	G2	S2	1B.1
Tecate cypress						
Horkelia cuneata var. puberula mesa horkelia	PDROS0W045	None	None	G4T1	S1	1B.1
Icteria virens	ABPBX24010	None	None	G5	S3	SSC
yellow-breasted chat						
Imperata brevifolia	PMPOA3D020	None	None	G4	S3	2B.1
California satintail			-			
Isocoma menziesii var. decumbens	PDAST57091	None	None	G3G5T2T3	S2	1B.2
decumbent goldenbush					-	
Lasiurus blossevillii western red bat	AMACC05060	None	None	G5	S3	SSC

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Lasthenia glabrata ssp. coulteri	PDAST5L0A1	None	None	G4T2	S2	1B.1
Coulter's goldfields						
Laterallus jamaicensis coturniculus California black rail	ABNME03041	None	Threatened	G3G4T1	S1	FP
Lepechinia cardiophylla heart-leaved pitcher sage	PDLAM0V020	None	None	G3	S2S3	1B.2
Lepidium virginicum var. robinsonii Robinson's pepper-grass	PDBRA1M114	None	None	G5T3	S3	4.3
Lycium brevipes var. hassei Santa Catalina Island desert-thorn	PDSOL0G0N0	None	None	G5T1Q	S1	3.1
Monardella hypoleuca ssp. intermedia intermediate monardella	PDLAM180A4	None	None	G4T2?	S2?	1B.3
Monardella macrantha ssp. hallii Hall's monardella	PDLAM180E1	None	None	G5T3	S3	1B.3
Myosurus minimus ssp. apus little mousetail	PDRAN0H031	None	None	G5T2Q	S2	3.1
<i>Myotis yumanensis</i> Yuma myotis	AMACC01020	None	None	G5	S4	
Nama stenocarpa	PDHYD0A0H0	None	None	G4G5	S1S2	2B.2
mud nama						
Nasturtium gambelii Gambel's water cress	PDBRA270V0	Endangered	Threatened	G1	S1	1B.1
Navarretia prostrata prostrate vernal pool navarretia	PDPLM0C0Q0	None	None	G2	S2	1B.2
Neotoma lepida intermedia San Diego desert woodrat	AMAFF08041	None	None	G5T3T4	S3S4	SSC
Nolina cismontana chaparral nolina	PMAGA080E0	None	None	G3	S3	1B.2
Nyctinomops femorosaccus pocketed free-tailed bat	AMACD04010	None	None	G4	S3	SSC
Nyctinomops macrotis big free-tailed bat	AMACD04020	None	None	G5	S3	SSC
Oncorhynchus mykiss irideus pop. 10 steelhead - southern California DPS	AFCHA0209J	Endangered	None	G5T1Q	S1	
Onychomys torridus ramona southern grasshopper mouse	AMAFF06022	None	None	G5T3	S3	SSC
Passerculus sandwichensis beldingi Belding's savannah sparrow	ABPBX99015	None	Endangered	G5T3	S3	
Pentachaeta aurea ssp. allenii Allen's pentachaeta	PDAST6X021	None	None	G4T1	S1	1B.1
Perognathus longimembris pacificus Pacific pocket mouse	AMAFD01042	Endangered	None	G5T1	S1	SSC

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Phacelia keckii	PDHYD0C4G1	None	None	G1	S1	1B.3
Santiago Peak phacelia						
Phrynosoma blainvillii	ARACF12100	None	None	G3G4	S3S4	SSC
coast horned lizard						
Plestiodon skiltonianus interparietalis Coronado skink	ARACH01114	None	None	G5T5	S2S3	WL
Polioptila californica californica coastal California gnatcatcher	ABPBJ08081	Threatened	None	G4G5T2Q	S2	SSC
Pseudognaphalium leucocephalum white rabbit-tobacco	PDAST440C0	None	None	G4	S2	2B.2
Quercus dumosa	PDFAG050D0	None	None	G3	S3	1B.1
Nuttall's scrub oak						
Rallus obsoletus levipes light-footed Ridgway's rail	ABNME05014	Endangered	Endangered	G5T1T2	S1	FP
Rhinichthys osculus ssp. 3 Santa Ana speckled dace	AFCJB3705K	None	None	G5T1	S1	SSC
Salvadora hexalepis virgultea	ARADB30033	None	None	G5T4	S2S3	SSC
coast patch-nosed snake						
Senecio aphanactis	PDAST8H060	None	None	G3	S2	2B.2
chaparral ragwort						
Setophaga petechia	ABPBX03010	None	None	G5	S3S4	SSC
yellow warbler						
Sidalcea neomexicana	PDMAL110J0	None	None	G4	S2	2B.2
salt spring checkerbloom						
Sorex ornatus salicornicus	AMABA01104	None	None	G5T1?	S1	SSC
southern California saltmarsh shrew						
Southern Coast Live Oak Riparian Forest Southern Coast Live Oak Riparian Forest	CTT61310CA	None	None	G4	S4	
Southern Coastal Salt Marsh Southern Coastal Salt Marsh	CTT52120CA	None	None	G2	S2.1	
Southern Cottonwood Willow Riparian Forest Southern Cottonwood Willow Riparian Forest	CTT61330CA	None	None	G3	S3.2	
Southern Dune Scrub Southern Dune Scrub	CTT21330CA	None	None	G1	S1.1	
Southern Foredunes Southern Foredunes	CTT21230CA	None	None	G2	S2.1	
Southern Mixed Riparian Forest Southern Mixed Riparian Forest	CTT61340CA	None	None	G2	S2.1	
Southern Riparian Scrub Southern Riparian Scrub	CTT63300CA	None	None	G3	\$3.2	
Southern Sycamore Alder Riparian Woodland Southern Sycamore Alder Riparian Woodland	CTT62400CA	None	None	G4	S4	

Federal Status None Endangered	State Status None	Global Rank G3	State Rank	SSC or FP
	None	GS		
Endangered			00	SSC
5.00	Endangered	G4T2T3Q	S2	FP
Endangered	None	G1G2	S1S2	
None	None	G3	S2	1B.2
None	None	G2	S2	1B.2
None	None	G4	S4	SSC
None	None	G5	S3	SSC
None	None	G4	S3S4	SSC
None	None	G2	S2	
None	None	G3	S3.1	
Threatened	Threatened	G1G2	S1	1B.1
Endangered	Endangered	G5T2	S2	
	None None None None None None Threatened	EndangeredNone	EndangeredNoneG1G2NoneNoneG3NoneNoneG2NoneNoneG4NoneNoneG5NoneNoneG4NoneNoneG2NoneNoneG3NoneNoneG3NoneNoneG3NoneNoneG3NoneNoneG3ThreatenedThreatenedG1G2	EndangeredNoneG1G2S1S2NoneNoneG3S2NoneNoneG2S2NoneNoneG4S4NoneNoneG5S3NoneNoneG4S3S4NoneNoneG3S2NoneNoneG3S3NoneNoneG3S3NoneNoneG3S3NoneNoneG3S3.1ThreatenedThreatenedG1G2S1

Record Count: 115

*The database used to provide updates to the Online Inventory is under construction. <u>View updates and changes made since May 2019 here</u>.

Plant List

70 matches found. Click on scientific name for details

Search Criteria

Found in Quads 3311767, 3311766, 3311765, 3311757, 3311756, 3311755 3311746 and 3311745;

Q Modify Search Criteria Second to Excel Modify Columns 2 Modify Sort Display Photos

Scientific Name	Common Name	Family	Lifeform	Blooming Period	CA Rare Plant Rank	State Rank	Global Rank
<u>Aphanisma blitoides</u>	aphanisma	Chenopodiaceae	annual herb	Feb-Jun	1B.2	S2	G3G4
<u>Artemisia palmeri</u>	San Diego sagewort	Asteraceae	perennial deciduous shrub	(Feb)May-Sep	4.2	S3?	G3?
Asplenium vespertinum	western spleenwort	Aspleniaceae	perennial rhizomatous herb	Feb-Jun	4.2	S4	G4
<u>Atriplex coulteri</u>	Coulter's saltbush	Chenopodiaceae	perennial herb	Mar-Oct	1B.2	S1S2	G3
Atriplex pacifica	South Coast saltscale	Chenopodiaceae	annual herb	Mar-Oct	1B.2	S2	G4
<u>Atriplex parishii</u>	Parish's brittlescale	Chenopodiaceae	annual herb	Jun-Oct	1B.1	S1	G1G2
<u>Atriplex serenana var.</u> <u>davidsonii</u>	Davidson's saltscale	Chenopodiaceae	annual herb	Apr-Oct	1B.2	S1	G5T1
<u>Brodiaea filifolia</u>	thread-leaved brodiaea	Themidaceae	perennial bulbiferous herb	Mar-Jun	1B.1	S2	G2
Calochortus catalinae	Catalina mariposa lily	Liliaceae	perennial bulbiferous herb	(Feb)Mar-Jun	4.2	S3S4	G3G4
<u>Calochortus weedii var.</u> intermedius	intermediate mariposa lily	Liliaceae	perennial bulbiferous herb	May-Jul	1B.2	S2	G3G4T2
<u>Camissoniopsis lewisii</u>	Lewis' evening- primrose	Onagraceae	annual herb	Mar-May(Jun)	3	S4	G4
Caulanthus simulans	Payson's jewelflower	Brassicaceae	annual herb	(Feb)Mar-May(Jun)	4.2	S4	G4
<u>Centromadia parryi ssp.</u> <u>australis</u>	southern tarplant	Asteraceae	annual herb	May-Nov	1B.1	S2	G3T2
<u>Chaenactis glabriuscula</u> <u>var. orcuttiana</u>	Orcutt's pincushion	Asteraceae	annual herb	Jan-Aug	1B.1	S1	G5T1T2

3/12/2020		CNF	PS Inventory Result	ls			
Chorizanthe leptotheca	Peninsular spineflower	Polygonaceae	annual herb	May-Aug	4.2	S3	G3
<u>Chorizanthe</u> polygonoides var. longispina	long-spined spineflower	Polygonaceae	annual herb	Apr-Jul	1B.2	S3	G5T3
Cistanthe maritima	seaside cistanthe	Montiaceae	annual herb	(Feb)Mar-Jun(Aug)	4.2	S3	G3G4
<u>Clinopodium chandleri</u>	San Miguel savory	Lamiaceae	perennial shrub	Mar-Jul	1B.2	S2	G3
<u>Comarostaphylis</u> <u>diversifolia ssp.</u> <u>diversifolia</u>	summer holly	Ericaceae	perennial evergreen shrub	Apr-Jun	1B.2	S2	G3T2
<u>Convolvulus simulans</u>	small-flowered morning-glory	Convolvulaceae	annual herb	Mar-Jul	4.2	S4	G4
<u>Deinandra paniculata</u>	paniculate tarplant	Asteraceae	annual herb	(Mar)Apr-Nov(Dec)	4.2	S4	G4
Dichondra occidentalis	western dichondra	Convolvulaceae	perennial rhizomatous herb	(Jan)Mar-Jul	4.2	S3S4	G3G4
Diplacus clevelandii	Cleveland's bush monkeyflower	Phrymaceae	perennial rhizomatous herb	Apr-Jul	4.2	S4	G4
Dodecahema leptoceras	slender-horned spineflower	Polygonaceae	annual herb	Apr-Jun	1B.1	S1	G1
<u>Dudleya blochmaniae</u> <u>ssp. blochmaniae</u>	Blochman's dudleya	Crassulaceae	perennial herb	Apr-Jun	1B.1	S2	G3T2
<u>Dudleya cymosa ssp.</u> <u>ovatifolia</u>	Santa Monica dudleya	Crassulaceae	perennial herb	Mar-Jun	1B.1	S1	G5T1
<u>Dudleya multicaulis</u>	many-stemmed dudleya	Crassulaceae	perennial herb	Apr-Jul	1B.2	S2	G2
<u>Dudleya stolonifera</u>	Laguna Beach dudleya	Crassulaceae	perennial stoloniferous herb	May-Jul	1B.1	S1	G1
<u>Dudleya viscida</u>	sticky dudleya	Crassulaceae	perennial herb	May-Jun	1B.2	S2	G2
<u>Eryngium pendletonense</u>	Pendleton button- celery	Apiaceae	perennial herb	Apr-Jun(Jul)	1B.1	S1	G1
<u>Erythranthe diffusa</u>	Palomar monkeyflower	Phrymaceae	annual herb	Apr-Jun	4.3	S3	G4
Euphorbia misera	cliff spurge	Euphorbiaceae	perennial shrub	Dec-Aug(Oct)	2B.2	S2	G5
<u>Harpagonella palmeri</u>	Palmer's grapplinghook	Boraginaceae	annual herb	Mar-May	4.2	S3	G4
<u>Hesperocyparis forbesii</u>	Tecate cypress	Cupressaceae	perennial evergreen tree		1B.1	S2	G2
Hordeum intercedens	vernal barley	Poaceae	annual herb	Mar-Jun	3.2	S3S4	G3G4
<u>Horkelia cuneata var.</u> <u>puberula</u>	mesa horkelia	Rosaceae	perennial herb	Feb-Jul(Sep)	1B.1	S1	G4T1
Imperata brevifolia	California satintail	Poaceae	perennial rhizomatous herb	Sep-May	2B.1	S3	G4
<u>lsocoma menziesii var.</u> <u>decumbens</u>	decumbent goldenbush	Asteraceae	perennial shrub	Apr-Nov	1B.2	S2	G3G5T2T3
<u>Lasthenia glabrata ssp.</u> <u>coulteri</u>	Coulter's goldfields	Asteraceae	annual herb	Feb-Jun	1B.1	S2	G4T2

3/12/2020		CNF	S Inventory Result	S			
Lepechinia cardiophylla	heart-leaved pitcher sage	Lamiaceae	perennial shrub	Apr-Jul	1B.2	S2S3	G3
<u>Lepidium virginicum var.</u> <u>robinsonii</u>	Robinson's pepper- grass	Brassicaceae	annual herb	Jan-Jul	4.3	S3	G5T3
<u>Lycium brevipes var.</u> <u>hassei</u>	Santa Catalina Island desert-thorn	Solanaceae	perennial deciduous shrub	Jun(Aug)	3.1	S1	G5T1Q
Lycium californicum	California box- thorn	Solanaceae	perennial shrub	(Dec)Mar,Jun,Jul,Aug	4.2	S4	G4
<u>Malacothrix saxatilis var.</u> <u>saxatilis</u>	cliff malacothrix	Asteraceae	perennial rhizomatous herb	Mar-Sep	4.2	S4	G5T4
<u>Microseris douglasii ssp.</u> <u>platycarpha</u>	small-flowered microseris	Asteraceae	annual herb	Mar-May	4.2	S4	G4T4
<u>Monardella hypoleuca</u> <u>ssp. intermedia</u>	intermediate monardella	Lamiaceae	perennial rhizomatous herb	Apr-Sep	1B.3	S2?	G4T2?
<u>Monardella hypoleuca</u> <u>ssp. lanata</u>	felt-leaved monardella	Lamiaceae	perennial rhizomatous herb	Jun-Aug	1B.2	S3	G4T3
<u>Monardella macrantha</u> <u>ssp. hallii</u>	Hall's monardella	Lamiaceae	perennial rhizomatous herb	Jun-Oct	1B.3	S3	G5T3
<u>Myosurus minimus ssp.</u> <u>apus</u>	little mousetail	Ranunculaceae	annual herb	Mar-Jun	3.1	S2	G5T2Q
<u>Nama stenocarpa</u>	mud nama	Namaceae	annual / perennial herb	Jan-Jul	2B.2	S1S2	G4G5
<u>Nasturtium gambelii</u>	Gambel's water cress	Brassicaceae	perennial rhizomatous herb	Apr-Oct	1B.1	S1	G1
<u>Navarretia prostrata</u>	prostrate vernal pool navarretia	Polemoniaceae	annual herb	Apr-Jul	1B.1	S2	G2
<u>Nolina cismontana</u>	chaparral nolina	Ruscaceae	perennial evergreen shrub	(Mar)May-Jul	1B.2	S3	G3
<u>Pentachaeta aurea ssp.</u> <u>allenii</u>	Allen's pentachaeta	Asteraceae	annual herb	Mar-Jun	1B.1	S1	G4T1
<u>Phacelia keckii</u>	Santiago Peak phacelia	Hydrophyllaceae	annual herb	May-Jun	1B.3	S1	G1
<u>Phacelia ramosissima</u> var. austrolitoralis	south coast branching phacelia	Hydrophyllaceae	perennial herb	Mar-Aug	3.2	S3	G5?T3Q
<u>Piperia cooperi</u>	chaparral rein orchid	Orchidaceae	perennial herb	Mar-Jun	4.2	S3S4	G3G4
<u>Piperia leptopetala</u>	narrow-petaled rein orchid	Orchidaceae	perennial herb	May-Jul	4.3	S4	G4
<u>Polygala cornuta var.</u> <u>fishiae</u>	Fish's milkwort	Polygalaceae	perennial deciduous shrub	May-Aug	4.3	S4	G5T4
<u>Pseudognaphalium</u> leucocephalum	white rabbit- tobacco	Asteraceae	perennial herb	(Jul)Aug-Nov(Dec)	2B.2	S2	G4
Quercus dumosa	Nuttall's scrub oak	Fagaceae	perennial evergreen shrub	Feb-Apr(May-Aug)	1B.1	S3	G3
<u>Romneya coulteri</u>	Coulter's matilija poppy	Papaveraceae	perennial rhizomatous	Mar-Jul(Aug)	4.2	S4	G4

3/12/2020 CNP			PS Inventory Results					
			herb					
Senecio aphanactis	chaparral ragwort	Asteraceae	annual herb	Jan-Apr(May)	2B.2	S2	G3	
Sidalcea neomexicana	salt spring checkerbloom	Malvaceae	perennial herb	Mar-Jun	2B.2	S2	G4	
<u>Suaeda esteroa</u>	estuary seablite	Chenopodiaceae	perennial herb	(May)Jul-Oct(Jan)	1B.2	S2	G3	
Suaeda taxifolia	woolly seablite	Chenopodiaceae	perennial evergreen shrub	Jan-Dec	4.2	S4	G4	
<u>Symphyotrichum</u> <u>defoliatum</u>	San Bernardino aster	Asteraceae	perennial rhizomatous herb	Jul-Nov(Dec)	1B.2	S2	G2	
<u>Tetracoccus dioicus</u>	Parry's tetracoccus	Picrodendraceae	perennial deciduous shrub	Apr-May	1B.2	S2	G2G3	
Verbesina dissita	big-leaved crownbeard	Asteraceae	perennial herb	(Mar)Apr-Jul	1B.1	S1	G1G2	
<u>Viguiera laciniata</u>	San Diego County viguiera	Asteraceae	perennial shrub	Feb-Jun(Aug)	4.3	S4	G4	

Suggested Citation

California Native Plant Society, Rare Plant Program. 2020. Inventory of Rare and Endangered Plants of California (online edition, v8-03 0.39). Website http://www.rareplants.cnps.org [accessed 12 March 2020].

Search the Inventory Simple Search Advanced Search Glossary Information About the Inventory About the Rare Plant Program CNPS Home Page About CNPS Join CNPS

Contributors

<u>The California Database</u> <u>The California Lichen Society</u> <u>California Natural Diversity Database</u> <u>The Jepson Flora Project</u> <u>The Consortium of California Herbaria</u> <u>CalPhotos</u>

Questions and Comments

rareplants@cnps.org

© Copyright 2010-2018 California Native Plant Society. All rights reserved.

Appendix C

Cultural Resources Inventory Report

CULTURAL RESOURCES INVENTORY REPORT FOR THE LAS FLORES ENHANCED WATER RELIABILITY PROJECT, ORANGE COUNTY, CALIFORNIA

Prepared for:

Santa Margarita Water District

26111 Antonio Parkway Rancho Santa Margarita, California 92688 Contact: Mr. Don Bunts, Chief Engineer

Prepared by:

DUDEK

605 Third Street Encinitas, California 92024 Michael Williams, PhD Adam Giacinto, MA, RPA Micah Hale, PhD, RPA

MAY 2020

Printed on 30% post-consumer recycled material

NATIONAL ARCHAEOLOGICAL DATABASE (NADB) INFORMATION

Authors:	Michael Williams, PhD; Adam Giacinto, MA, RPA; Micah Hale, PhD, RPA
Firm:	Dudek
Project Proponent:	Santa Margarita Water District
Report Date:	May 5, 2020
Report Title:	Cultural Resources Inventory Report for the Las Flores Enhanced Water Reliability Project, Orange County, California
Type of Study:	Cultural Resources Inventory
New Resources:	None
Updated Sites:	None
USGS Quads:	San Juan Capistrano and Canada Gobernadora, California1:24,000 (1996)
Acreage:	Approximately 13,840 linear feet
Permit Numbers:	Permitting pending
Key Words:	Negative results; pedestrian survey; CA-LAN-899/H; CA-LAN-36/H

INTENTIONALLY LEFT BLANK

DUDEK

Cultural Resources Inventory Report for the Las Flores Enhanced Water Reliability Project, Orange County, California

TABLE OF CONTENTS

Section

Page No.

NATIC	DNAL /	ARCHAEOLOGICAL DATABASE (NADB) INFORMATION	Ш
MANA	GEM	ENT SUMMARY	/II
1	INTR	ODUCTION	1
	1.1	Project Location and Present Use	
	1.2	Project Description	
	1.3	Regulatory Context	2
		1.3.1 Federal Cultural Resources Regulations	2
		1.3.2 State of California	7
2	PROJ	ECT CONTEXT	.15
	2.1	Environmental Context	
	2.2	Cultural Context	15
		2.2.1 Paleoindian (pre-5500 BC)	
		2.2.2 Archaic (8000 BC–AD 500)	
		2.2.3 Late Prehistoric (AD 500–1750)	
		2.2.4 Ethnohistoric (post-AD 1750)	
		2.2.5 The Historic Period (post-AD 1542)	22
3	METH	IODS	
	3.1	Intensive Pedestrian Survey	
	3.2	Disturbances	25
4	RESU	LTS	.27
	4.1	Previous Cultural Resource Investigations	27
		4.1.1 Cultural Resources	27
		4.1.2 Previous Technical Studies	
	4.2	NAHC Search and Tribal Coordination	
	4.3	Pedestrian Survey	
	4.4	Tribal Coordination	
	4.5	Geomorphology	
		4.5.1 Archaeological Sensitivity	39
5	SUMN	ARY AND MANAGEMENT CONSIDERATIONS	
	5.1	Impact Analysis	
	5.2	Recommendations	41
6	REFE	RENCES	.45

Cultural Resources Inventory Report for the Las Flores Enhanced Water Reliability Project, Orange County, California

APPENDICES

А	Confidentia	1 SCC	CIC Rec	ords	Search Results	
D		1 7	1 0		1	1

B NAHC Sacred Lands Search and Tribal Correspondence

FIGURES

1	Project Location Map	3
2	Area of Potential Effects Map	
3	Photograph showing paved street at western beginning of 10-inch pipeline	
	along Oso Parkway. View to the east.	
4	Photograph at western terminus of 8-inch pipeline showing development	
	within Site 899. View to the west	35
5	Photograph of southern terminus of 16-inch pipeline within Site 36. View to	
	the northwest	37

TABLES

1	Cultural Resources in Relation to the APE	.27
2	Previous Studies That Have Included the Project Alignment	.29

MANAGEMENT SUMMARY

This report presents the results of Dudek's Phase I resources Inventory for the Santa Margarita Water District (SMWD) Las Flores Water Reliability Project (Project), located in the community of Las Flores, Orange County, California. The Project proposes approximately 13,840 linear feet of 8-inch, 10-inch, and 16-inch recycled water pipeline within existing SMWD easements and within existing road rights-of-way throughout the community. The Project site is situated in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5-minute topographic maps, respectively.

SMWD is the lead agency for compliance with the California Environmental Quality Act (CEQA). As it is anticipated that the Project will be subject to review by the Bureau of Reclamation (USBR), all work has additionally been completed in compliance with Section 106 of the National Historic Preservation Act (NHPA).

The Area of Potential Effects (APE) is anticipated to include the entire 13,840 linear feet of the utility rights-of-way (ROW), although a portion of the work would be completed through trenchless construction. Trenching is anticipated to include 40,200 square feet (0.92 acres) of earth disturbance within previously disturbed utility easements. Trenches would be no more than 3 feet wide and 5.5 feet in depth, this depth representing the vertical APE.

Two cultural resources have been previously identified within the APE (CA-LAN-899/H and CA-LAN-36/H). CA-LAN-899/H consists of a scatter of prehistoric, protohistoric, and historic-era artifacts that was recorded within an area that has since been developed. CA-LAN-36/H, last documented in 1949, is reported to be an ethnohistoric Native American encampment dating between 1862 and 1867 along the historical route to Rancho Trabuco. Nine sites with prehistoric resources, three sites with historic resources, and one site with unknown resources have been recorded within the surrounding one-half mile records search area.

Based on the results of Phase I Survey, there is a low potential for the inadvertent discovery of intact cultural deposits associated with CA-LAN-899/H and a moderate potential for the inadvertent discovery of intact cultural deposits associated with CA-LAN-36/H during construction activities that will be employed to install the proposed pipelines. The NAHC Sacred Lands File search did not indicate that cultural resources are in the project area; however, Native American outreach suggests that the area is of high cultural value to the Juaneno Band of Mission Indians community.

Cultural Resources Inventory Report for the Las Flores Enhanced Water Reliability Project, Orange County, California

It is evident that the existing easement/ROW) has been subject to an extended history of disturbance. However, in consideration of the high density of significant (culturally and scientifically) archaeological sites and the obscured nature of the area along the Project alignment, there is still a possibility of unanticipated impacts to cultural resources during ground-disturbing construction activities within the unpaved portions of the Project alignment. Impacts may be appropriately addressed, or otherwise reduced to a less-than-significant level, through implementation of an archaeological and Native American construction monitoring program and post-construction reporting.

1 INTRODUCTION

This report presents the results of Dudek's Phase I resources Inventory for the Santa Margarita Water District (SMWD) Las Flores Water Reliability Project (Project). SMWD is the lead agency for compliance with the California Environmental Quality Act (CEQA). As it is anticipated that the Project will be subject to review by the Bureau of Reclamation (USBR), all work has additionally been completed in compliance with Section 106 of the National Historic Preservation Act (NHPA).

1.1 **Project Location and Present Use**

The Project is located in the unincorporated community of Las Flores, in Orange County, California (Figure 1). The Project site is situated in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5-minute topographic maps, respectively. The Project consists of approximately 13,840 linear feet of 8-inch, 10-inch, and 16-inch recycled water pipeline within existing SMWD easements and within existing road rights-of-way throughout the community (Figure 2). Specifically, the Project would be located within Oso Parkway, Meandering Trail Road, a portion of Antonio Parkway, and in a SMWD access road located behind the residential neighborhood located at the northwest corner of Oso Parkway and Antonio Parkway. The Project also involves the replacement of the existing Las Flores Lift Station, which is located approximately 800 feet west of the intersection of Oso Parkway and Antonio Parkway. Regional access to the Project site is provided via Interstate 5 and State Route 241.

1.2 **Project Description**

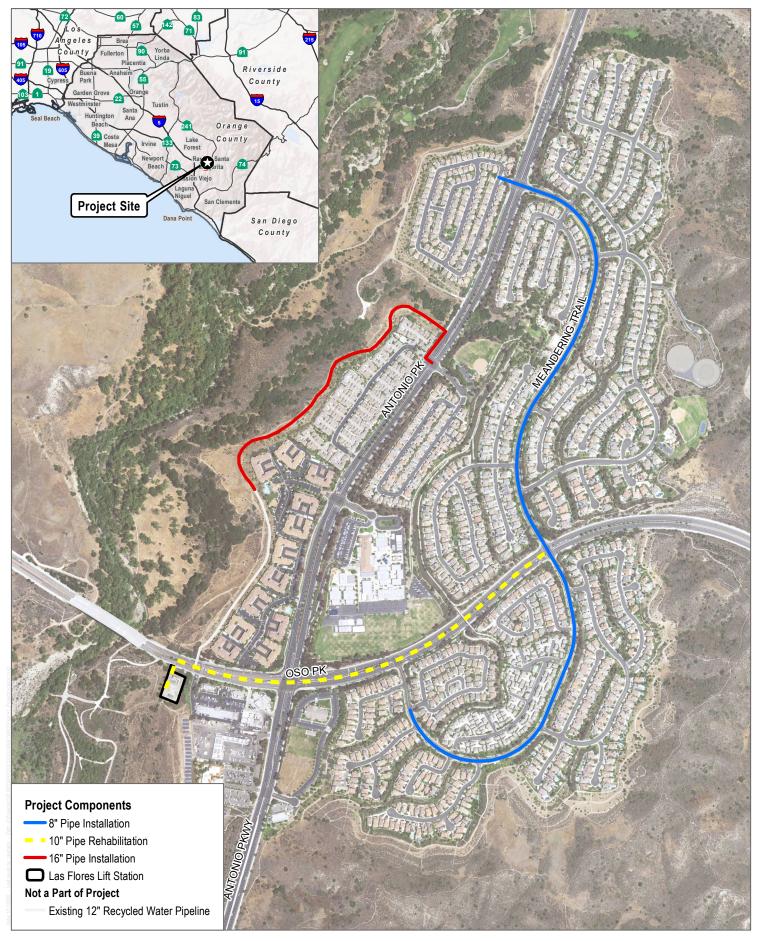
The Project includes installation of approximately 3,800 linear feet of 16-inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space. The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650-foot-long 10-inch existing force main in the right-of-way (ROW) within Antonio Parkway. Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing force main for structural reinforcement. Two access points at existing manholes within Antonio Parkway are necessary for proper installation of the liner.

The Area of Potential Effects (APE) is anticipated to include the entire 13,840 linear feet of the utility rights-of-way (ROW), although a portion of the work would be completed through trenchless construction. Trenching is anticipated to include 40,200 square feet (0.92 acres) of earth

Cultural Resources Inventory Report for the Las Flores Enhanced Water Reliability Project, Orange County, California

disturbance within previously disturbed utility easements. Trenches would be no more than 3 feet wide and 5.5 feet in depth, this depth representing the vertical APE.

1.3 Regulatory Context


As currently planned, the Project is subject to federal, state, and local regulatory conditions and all work has been conducted in compliance with federal regulations. Applicable regulations are provided below

1.3.1 Federal Cultural Resources Regulations

1.3.1.1 National Historic Preservation Act

The NHPA established the National Register of Historic Places (NRHP) and the President's Advisory Council on Historic Preservation, and provided that states may establish State Historic Preservation Officers to carry out some of the functions of the NHPA. Most significantly for federal agencies responsible for managing cultural resources, Section 106 of the NHPA directs that "[t]he head of any Federal agency having direct or indirect jurisdiction over a proposed Federal or federally assisted undertaking in any State and the head of any Federal department or independent agency having authority to license any undertaking shall, prior to the approval of the expenditure of any Federal funds on the undertaking or prior to the issuance of any license, as the case may be, take into account the effect of the undertaking on any district, site, building, structure, or object that is included in or eligible for inclusion in the NRHP." Section 106 also affords the President's Advisory Council on Historic Preservation a reasonable opportunity to comment on the undertaking (16 USC 470f).

Part 800 of Title 36 of the Code of Federal Regulations implements Section 106 of the NHPA. It defines the steps necessary to identify historic properties (those cultural resources listed in or eligible for listing in the NRHP), including consultation with federally recognized Native American tribes to identify resources with important cultural values; to determine whether or not they may be adversely affected by a proposed undertaking; and the process for eliminating, reducing, or mitigating the adverse effects.

SOURCE: NAIP 2016; Orange County 2018

400

800 Beet

FIGURE 1 Project Location Las Flores Enhanced Water Reliability Project

INTENTIONALLY LEFT BLANK

DUDEK &

590 Beet

140 Meters

295

70

1:6,952

FIGURE 2 APE Map Las Flores Enhanced Water Reliability Project

The content of Section 60.4 of Title 36 of the Code of Federal Regulations defines criteria for determining eligibility for listing in the NRHP. The significance of cultural resources identified during an inventory must be formally evaluated for historic significance in consultation with the California State Historic Preservation Officer to determine if the resources are eligible for inclusion in the NRHP. Cultural resources may be considered eligible for listing if they possess integrity of location, design, setting, materials, workmanship, feeling, and association. The criteria for determining eligibility are essentially the same in content and order as those outlined under CEQA, but the criteria under NHPA are labeled A through D (rather than 1–4 under CEQA).

Regarding criteria A through D of Section 106, the quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, cultural resources, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and that:

- A. are associated with events that have made a significant contribution to the broad patterns of our history; or
- B. are associated with the lives of persons significant in our past; or
- C. embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
- D. have yielded or may be likely to yield, information important in prehistory or history (36 CFR 60.4).

The current cultural resources inventory is not designed to generate enough data to make eligibility recommendations on previously recorded cultural resources that are outside of the Project area, or newly discovered cultural resources; such determinations are typically made during a subsequent evaluation phase (e.g., excavations at prehistoric sites). However, the survey was designed to generate enough information to provide informal assessments of eligibility to help guide management considerations.

1.3.2 State of California

1.3.2.1 The California Register of Historical Resources

In California, the term "historical resource" includes "any object, building, structure, site, area, place, record, or manuscript which is historically or archaeologically significant, or is significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political,

military, or cultural annals of California" (Public Resources Code (PRC) Section 5020.1(j)). In 1992, the California legislature established the California Register of Historical Resources (CRHR) "to be used by state and local agencies, private groups, and citizens to identify the state's historical resources and to indicate what properties are to be protected, to the extent prudent and feasible, from substantial adverse change" (PRC Section 5024.1(a)). The criteria for listing resources on the CRHR, enumerated in the following text, were developed to be in accordance with previously established criteria developed for listing in the NRHP. According to PRC Section 5024.1(c)(1–4), a resource is considered historically significant if it (i) retains "substantial integrity," and (ii) meets at least one of the following criteria:

- (1) Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage
- (2) Is associated with the lives of persons important in our past
- (3) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values
- (4) Has yielded, or may be likely to yield, information important in prehistory or history

To understand the historic importance of a resource, sufficient time must have passed to obtain a scholarly perspective on the events or individuals associated with the resource. A resource less than 50 years old may be considered for listing in the CRHR if it can be demonstrated that sufficient time has passed to understand its historical importance (see 14 CCR 4852(d)(2)).

The CRHR protects cultural resources by requiring evaluations of the significance of prehistoric and historic resources. The criteria for the CRHR are nearly identical to those for the NRHP, and properties listed or formally designated as eligible for listing in the NRHP are automatically listed in the CRHR, as are state landmarks and points of interest. The CRHR also includes properties designated under local ordinances or identified through local historical resource surveys.

1.3.2.2 California Environmental Quality Act

As described further in the following text, the following CEQA statutes and CEQA Guidelines are of relevance to the analysis of archaeological, historic, and tribal cultural resources:

• California Public Resources Code Section 21083.2(g) defines "unique archaeological resource."

- California Public Resources Code Section 21084.1 and CEQA Guidelines Section 15064.5(a) define "historical resources." In addition, CEQA Guidelines Section 15064.5(b) defines the phrase "substantial adverse change in the significance of an historical resource." It also defines the circumstances when a project would materially impair the significance of a historical resource.
- California Public Resources Code Section 21074(a) defines "tribal cultural resources."
- California Public Resources Code Section 5097.98 and CEQA Guidelines Section 15064.5(e) set forth standards and steps to be employed following the accidental discovery of human remains in any location other than a dedicated ceremony.

The NAHC is to resolve disputes regarding the disposition of such remains. In addition, the Native American Historic Resource Protection Act makes it a misdemeanor, punishable by up to 1 year in jail, to deface or destroy a Native American historic or cultural site that is listed or may be eligible for listing in the CRHR.

1.3.2.3 California Health and Safety Code Section 7050.5

California law protects Native American burials, skeletal remains, and associated grave goods, regardless of their antiquity, and provides for the sensitive treatment and disposition of those remains. California Health and Safety Code Section 7050.5 requires that if human remains are discovered in any place other than a dedicated cemetery, no further disturbance or excavation of the site or nearby area reasonably suspected to contain human remains can occur until the county coroner has examined the remains (California Health and Safety Code Section 7050.5[b]). California Public Resources Code Section 5097.98 also outlines the process to be followed in the event that remains are discovered. If the county coroner determines or has reason to believe the remains are those of a Native American, the coroner must contact the California NAHC within 24 hours (California Health and Safety Code Section 7050.5[c]). The NAHC will notify the most likely descendant. With the permission of the landowner, the most likely descendant may inspect the site of discovery. The inspection must be completed within 48 hours of notification of the most likely descendant by the NAHC. The most likely descendant may recommend means of treating or disposing of, with appropriate dignity, the human remains and items associated with Native Americans. California Public Resources Code Sections 21083.2(b)–(c) and CEQA Guidelines Section 15126.4 provide information regarding the mitigation framework for archaeological and historic resources, including examples of preservation-in-place mitigation measures; preservation-in-place is the preferred manner of mitigating impacts to significant archaeological sites because it maintains the relationship between artifacts and the archaeological context, and may also help avoid conflict with religious or cultural values of groups associated with the archaeological site(s).

Under CEQA, a project may have a significant effect on the environment if it may cause "a substantial adverse change in the significance of an historical resource" (California Public Resources Code Section 21084.1; CEQA Guidelines Section 15064.5[b]). If a site is either listed or eligible for listing in the CRHR, or if it is included in a local register of historic resources, or identified as significant in a historical resources survey (meeting the requirements of California Public Resources Code Section 5024.1[q]), it is a "historical resource" and is presumed to be historically or culturally significant for purposes of CEQA (California Public Resources Code Section 21084.1; CEQA Guidelines Section 15064.5[a]). The lead agency is not precluded from determining that a resource is a historical resource, even if it does not fall within this presumption (California Public Resources Code Section 21084.1; CEQA Guidelines Section 21084.1; CEQA Guidelines Section 15064.5[a]).

A "substantial adverse change in the significance of an historical resource" reflecting a significant effect under CEQA means "physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired" (CEQA Guidelines Section 15064.5[b][1]; California Public Resources Code Section 5020.1[(q]). In turn, the significance of a historical resource is materially impaired when a project does any of the following:

- (1) Demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for, inclusion in the California Register; or
- (2) Demolishes or materially alters in an adverse manner those physical characteristics that account for its inclusion in a local register of historical resources pursuant to Section 5020.1(k) of the California Public Resources Code or its identification in an historical resources survey meeting the requirements of Section 5024.1(g) of the California Public Resources Code, unless the public agency reviewing the effects of the project establishes by a preponderance of evidence that the resource is not historically or culturally significant; or
- (3) Demolishes or materially alters in an adverse manner those physical characteristics of a historical resource that convey its historical significance and that justify its eligibility for inclusion in the California Register as determined by a lead agency for purposes of CEQA (CEQA Guidelines Section 15064.5[b][2]).

Pursuant to these sections, the CEQA inquiry begins with evaluating whether a project site contains any "historical resources," then evaluates whether that project will cause a substantial adverse change in the significance of a historical resource such that the resource's historical significance is materially impaired.

If it can be demonstrated that a project will cause damage to a unique archaeological resource, the lead agency may require reasonable efforts be made to permit any or all of these resources to be preserved in place or left in an undisturbed state. To the extent that they cannot be left undisturbed, mitigation measures are required (California Public Resources Code Section 21083.2[a]–[c]).

California Public Resources Code Section 21083.2(g) defines a unique archaeological resource as an archaeological artifact, object, or site about which it can be clearly demonstrated that without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

- (1) Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information
- (2) Has a special and particular quality such as being the oldest of its type or the best available example of its type
- (3) Is directly associated with a scientifically recognized important prehistoric or historic event or person

Impacts to nonunique archaeological resources are generally not considered a significant environmental impact (California Public Resources Code Section 21083.2[a]; CEQA Guidelines Section 15064.5[c][4]). However, if a nonunique archaeological resource qualifies as tribal cultural resource (California Public Resources Code 21074[c]; 21083.2[h]), further consideration of significant impacts is required.

CEQA Guidelines Section 15064.5 assigns special importance to human remains and specifies procedures to be used when Native American remains are discovered. As described in the following text, these procedures are detailed in California Public Resources Code Section 5097.98.

1.3.2.4 California State Assembly Bill 52

AB 52 of 2014 amended California Public Resources Code Section 5097.94 and added California Public Resources Code Sections 21073, 21074, 21080.3.1, 21080.3.2, 21082.3, 21083.09, 21084.2, and 21084.3. AB 52 established that tribal cultural resources must be considered under CEQA and also provided for additional Native American consultation requirements for the lead agency. Section 21074 describes a tribal cultural resource as a site, feature, place, cultural landscape, sacred place, or object that is considered of cultural value to a California Native American Tribe. A tribal cultural resource is either:

• On the California Register of Historical Resources or a local historic register; Eligible for the California Register of Historical Resources or a local historic register; or

• A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Section 5024.1.

AB 52 formalizes the lead agency–tribal consultation process, requiring the lead agency to initiate consultation with California Native American groups that are traditionally and culturally affiliated with the project, including tribes that may not be federally recognized. Lead agencies are required to begin consultation prior to the release of a negative declaration, mitigated negative declaration, or environmental impact report.

Section 1 (a)(9) of AB 52 establishes that "a substantial adverse change to a tribal cultural resource has a significant effect on the environment." Effects on tribal cultural resources should be considered under CEQA. Section 6 of AB 52 adds Section 21080.3.2 to the California Public Resources Code, which states that parties may propose mitigation measures "capable of avoiding or substantially lessening potential significant impacts to a tribal cultural resource or alternatives that would avoid significant impacts to a tribal cultural resource." Further, if a California Native American tribe requests consultation regarding project alternatives, mitigation measures, or significant effects to tribal cultural resources, the consultation shall include those topics (California Public Resources Code Section 21080.3.2[a]). The environmental document and the mitigation monitoring and reporting program (where applicable) shall include any mitigation measures that are adopted (California Public Resources Code Section 21082.3[a]).

1.3.2.5 Native American Human Remains

State law (California Public Resources Code Section 5097 et seq.) addresses the disposition of Native American burials in archaeological sites and protects such remains from disturbance, vandalism, or inadvertent destruction; establishes procedures to be implemented if Native American skeletal remains are discovered during construction of a project; and established the NAHC.

In the event that Native American human remains or related cultural material are encountered, Section 15064.5(e) of the CEQA Guidelines (as incorporated from California Public Resources Code Section 5097.98) and California Health and Safety Code Section 7050.5 define the subsequent protocol. In the event of the accidental discovery or recognition of any human remains, excavation or other disturbances shall be suspended of the site or any nearby area reasonably suspected to overlie adjacent human remains or related material. Protocol requires that a countyapproved coroner be contacted in order to determine if the remains are of Native American origin. Should the coroner determine the remains to be Native American, the coroner must contact the NAHC within 24 hours. The most likely descendant may make recommendations to the landowner or the person responsible for the excavation work, for means of treating, with appropriate dignity,

the human remains and any associated grave goods as provided in California Public Resources Code Section 5097.98 (14 CCR 15064.5[e]).

2 PROJECT CONTEXT

2.1 Environmental Context

The Project alignment is separated into three segments as seen in Figure 1: 10-inch pipeline rehabilitation, 8-inch pipe installation, and 16-inch pipe installation. The 10-inch pipeline rehabilitation and 8-inch pipe installation segments are situated within heavily disturbed, existing road rights-of-ways through residential neighborhoods and commercial, and educational developments, surrounded by undeveloped open space. The 16-inch pipeline is situated along a SMWD access road located behind a residential neighborhood. Arroyo Trabuco is located to the west of the study area that contains flowing water, associated riparian habitat. Vegetation communities within the area include coastal sage scrub (Artemisia californica-Eriogonum fasciculatum alliance), coast live oak woodland (Quercus agrifolia association), non-native grassland (red brome-mixed herbs semi-natural stands), parks and ornamental plantings, disturbed habitat, and urban/developed land. Elevation of the Study Area ranges from approximately 550 to 750 feet above mean sea level (AMSL). Surficial geological mapping of Morton and Miller (2006) indicates the project site is underlain by Middle to early Pleistocene (~126,000-2.58 million years ago [mya]) very old axial channel deposits, Late Miocene (~12 mya–5.33 mya) Monterey Formation, Oligocene (~34 mya-23 mya) San Onofre Breccia, and Late Eocene to Early Miocene (~ 38 mya–23 mya) Sespe Formation.

2.2 Cultural Context

Evidence for continuous human occupation in the region spans the last 10,000 years. Various attempts to parse out variability in archaeological assemblages over this broad time frame have led to the development of several cultural chronologies; some of these are based on geologic time, most are based on temporal trends in archaeological assemblages, and others are interpretive reconstructions. Each of these reconstructions describes essentially similar trends in assemblage composition in more or less detail. This research employs a common set of generalized terms used to describe chronological trends in assemblage composition: Paleoindian (pre-5500 BC), Archaic (8000 BC–AD 500), Late Prehistoric (AD 500–1750), and Ethnohistoric (post-AD 1750).

2.2.1 Paleoindian (pre-5500 BC)

Evidence for Paleoindian occupation in the region is tenuous; the knowledge of associated cultural pattern(s) is informed by a relatively sparse body of data that has been collected from within an area extending from coastal San Diego through the Mojave Desert and beyond. One of the earliest dated archaeological assemblages in this area (excluding the Channel Islands) derives from SDI-4669/W-12, in La Jolla, San Diego County. A human burial from SDI-4669 was radiocarbon dated

to 9,590–9,920 years before present (95.4% probability) (Hector 2006). The burial is part of a larger site complex that contained more than 29 human burials associated with an assemblage that fits the Archaic profile (i.e., large amounts of groundstone, battered cobbles, and expedient flake tools). In contrast, typical Paleoindian assemblages include large stemmed projectile points, high proportions of formal lithic tools, bifacial lithic reduction strategies, and relatively small proportions of groundstone tools. Prime examples of this pattern are sites that were studied by Emma Lou Davis (1978) on China Lake Naval Air Weapons Station near Ridgecrest, California. These sites contained fluted and unfluted stemmed points and large numbers of formal flake tools (e.g., shaped scrapers, blades). Other typical Paleoindian sites include the Komodo site (MNO-679), a multicomponent fluted point site, and MNO-680, a single component Great Basined stemmed point site (Basgall et al. 2002). At MNO-679 and MNO-680, groundstone tools were rare, while finely made projectile points were common.

Warren et al. (2004) claimed that a biface manufacturing tradition present at the Harris site complex (SDI-149) is representative of typical Paleoindian occupation in the Southern California region that possibly dates between 10,365 and 8200 BC (Warren et al. 2004, p. 26). Termed San Dieguito (Rogers 1945), assemblages at the Harris site, located in the area now occupied by City of Escondido, are qualitatively distinct from most others in the region because the site has large numbers of finely made bifaces (including projectile points), formal flake tools, a biface reduction trajectory, and relatively small amounts of processing tools (Warren 1964, 1968). Despite the unique assemblage composition, the definition of San Dieguito as a separate cultural tradition is debated. Gallegos (1987) suggested that the San Dieguito pattern is simply an inland manifestation of a broader economic pattern. Gallegos' interpretation of San Dieguito has been widely accepted in recent years, in part because of the difficulty in distinguishing San Dieguito as a distinct socioeconomic pattern than it is to draw it out of mixed assemblages.

The large number of finished bifaces (i.e., projectile points and non-projectile blades), along with large numbers of formal flake tools at the Harris site complex, is very different than nearly all other assemblages throughout the region, regardless of age. Warren et al. (2004) made this point, tabulating basic assemblage constituents for key early Holocene sites. Producing finely made bifaces and formal flake tools implies that relatively large amounts of time were spent for tool manufacture. Such a strategy contrasts with the expedient flake-based tools and cobble-core reduction strategy that typifies non-San Dieguito Archaic sites. It can be inferred from the uniquely high degree of San Dieguito assemblage formality that the Harris site complex represents a distinct economic strategy from non-San Dieguito assemblages.

If San Dieguito truly represents a distinct socioeconomic strategy from the non-San Dieguito Archaic processing regime, its rarity implies that it was not only short-lived, but that it was not as

economically successful as the Archaic strategy. Such a conclusion would fit with the general trends in Southern California deserts, wherein hunting-related tools are replaced by processing tools during the early Holocene (Basgall and Hall 1990).

2.2.2 Archaic (8000 BC–AD 500)

The more than 1500-year overlap between the presumed age of Paleoindian occupations and the Archaic period highlights the difficulty in defining a cultural chronology in the region. If San Dieguito is the only recognized Paleoindian component in the region, then the dominance of hunting tools implies that it derives from Great Basin adaptive strategies and is not necessarily a local adaptation. Warren et al. (2004) admitted as much, citing strong desert connections with San Dieguito. Thus, the Archaic pattern is the earliest local socioeconomic adaptation in the region (Hale 2001, 2009).

The Archaic pattern is relatively easy to define with assemblages that consist primarily of processing tools: millingstones, handstones, battered cobbles, heavy crude scrapers, incipient flake-based tools, and cobble-core reduction. These assemblages occur in all environments across the region, with little variability in tool composition. Low assemblage variability over time and space among Archaic sites has been equated with cultural conservatism (Byrd and Reddy 2002; Warren 1968; Warren et al. 2004). Despite enormous amounts of archaeological work at Archaic sites, little change in assemblage composition occurs until the bow and arrow is adopted at around AD 500, as well as ceramics at approximately the same time (Griset 1996; Hale 2009). Even then, assemblage formality remains low. After the bow is adopted, small arrow points appear in large quantities, and already low amounts of formal flake tools are replaced by increasing amounts of expedient flake tools. Similarly, shaped millingstones and handstones decrease in proportion relative to expedient, unshaped groundstone tools (Hale 2009). Thus, the terminus of the Archaic period is equally as hard to define as its beginning because basic assemblage constituents and patterns of manufacturing investment remain stable, complimented only by the addition of the bow and ceramics.

2.2.3 Late Prehistoric (AD 500–1750)

The period of time following the Archaic and prior to Ethnohistoric times (AD 1750) is commonly referred to as the Late Prehistoric (Rogers 1945; Wallace 1955; Warren et al. 2004). However, several other subdivisions continue to be used to describe various shifts in assemblage composition, including the addition of ceramics and cremation practices. The post-AD 1450 period is called the San Luis Rey Complex (Meighan and True 1977). Rogers (1929) also subdivided the last 1,000 years into the Yuman II and III cultures, based on the distribution of ceramics. Despite these regional complexes, each is defined by the addition of arrow points and ceramics and the widespread use of

bedrock mortars. Vagaries in the appearance of the bow and arrow and ceramics make the temporal resolution of the San Luis Rey complex difficult. For this reason, the term Late Prehistoric is well-suited to describe the last 1,500 years of prehistory in the region.

Temporal trends in socioeconomic adaptations during the Late Prehistoric period are poorly understood. This is partly due to the fact that the fundamental Late Prehistoric assemblage is very similar to the Archaic pattern but includes arrow points and large quantities of fine debitage from producing arrow points, ceramics, and cremations. While steatite was commonly the material of choice for vessel production, it was generally replaced near the time of missionization by locally procured clay to produce ceramic vessels. The appearance of mortars and pestles is difficult to place in time because most mortars are on bedrock. Some argue that the Ethnohistoric intensive acorn economy extends as far back as AD 500 (Bean and Shipek 1978). However, there is no substantial evidence that reliance on acorns, and the accompanying use of mortars and pestles, occurred prior to AD 1400. True (1980) argued that acorn processing and ceramic use in the region did not occur until the San Luis Rey pattern emerged after approximately AD 1450.

2.2.4 Ethnohistoric (post-AD 1750)

The history of the Native American communities prior to the mid-1700s has largely been reconstructed through later mission-period and early ethnographic accounts. The first records of the Native American inhabitants of the region come predominantly from European merchants, missionaries, military personnel, and explorers. These brief, and generally peripheral, accounts were prepared with the intent of furthering respective colonial and economic aims and were combined with observations of the landscape. They were not intended to be unbiased accounts regarding the cultural structures and community practices of the newly encountered cultural groups. The establishment of the missions in the region brought more extensive documentation of Native American communities, though these groups did not become the focus of formal and in-depth ethnographic study until the early twentieth century (Bean and Shipek 1978; Boscana 1846; Fages 1937; Geiger and Meighan 1976; Harrington 1934; Laylander 2000; White 1963). The principal intent of these researchers was to record the precontact, culturally specific practices, ideologies, and languages that had survived the destabilizing effects of missionization and colonialism. This research, often understood as "salvage ethnography," was driven by the understanding that traditional knowledge was being lost due to the impacts of modernization and cultural assimilation. Alfred Kroeber applied his "memory culture" approach (Lightfoot 2005, p. 32) by recording languages and oral histories within the region. Ethnographic research by Dubois, Kroeber, Harrington, Spier, and others during the early twentieth century seemed to indicate that traditional cultural practices and beliefs survived among local Native American communities.

It is important to note that even though there were many informants for these early ethnographies who were able to provide information from personal experiences about Native American life before European immigration, a significantly large proportion of these informants were born after 1850; therefore, the documentation of pre-contact, aboriginal culture was being increasingly supplied by individuals born in California after considerable contact with Europeans. This is an important issue to note when examining these ethnographies, since considerable culture change had undoubtedly occurred by 1850 among the Native American survivors of California.

Based on ethnographic information, it is believed that at least 88 different languages were spoken from Baja California Sur to the southern Oregon state border at the time of Spanish contact (Johnson and Lorenz 2006, p. 34). The distribution of recorded Native American languages has been dispersed as a geographic mosaic across California through six primary language families (Golla 2007, p. 71). Victor Golla has contended that one can interpret the amount of variability within specific language groups as being associated with the relative "time depth" of the speaking populations (Golla 2007, p. 80) A large amount of variation within the language of a group represents a greater time depth than a group's language with less internal diversity. One method that he has employed is by drawing comparisons with historically documented changes in Germanic and Romantic language groups. Golla has observed that the "absolute chronology of the internal diversification within a language family" can be correlated with archaeological dates (2007, p. 71). This type of interpretation is modeled on concepts of genetic drift and gene flows that are associated with migration and population isolation in the biological sciences.

The Native American inhabitants of the region would have generally spoken Juaneño (Acjachemen) and Gabrielino (or Tongva) varieties of Takic, which may be assigned to the larger Uto-Aztecan family (Golla 2007, p. 74). Golla has interpreted the amount of internal diversity within these language-speaking communities to reflect a time depth of approximately 2,000 years. Other researchers have contended that Takic may have diverged from Uto-Aztecan ca. 2600 BC–AD 1, which was later followed by the diversification within the Takic speaking tribes, occurring approximately 1500 BC–AD 1000 (Laylander 2010). The Juaneño (Acjachemen) and Gabrielino (or Tongva) represent the descendants of local Late Prehistoric populations. They are generally considered to have migrated into the area from the Mojave Desert, possibly displacing the prehistoric ancestors of the Yuman-speaking Kumeyaay (Ipai-Tipai) that lived to the south during Ethnohistoric times. The Luiseño-Juaneño shared boundaries with the Gabrieleño and Serrano to the west and northwest, the Cahuilla to the east, the Cupeño to the southeast, and the Kumeyaay to the south (Bean and Shipek 1978; Kroeber 1925). Southern Native American tribal groups of the San Diego and southern Imperial region have traditionally spoken Yuman languages, a subgroup of the Hokan Phylum.

The Uto-Aztecan inhabitants of the region were called Juaneño and Gabrielino or Gabrieleño) by Franciscan friars who established the Missions San Juan Capistrano and San Gabriel Arcángel the traditional territory of these two respective tribes. The project area is east of Aliso Creek, which is considered by Kroeber (1925) to be the ethnographic boundary marker between the Gabrieleño (or Tongva) (west of the Aliso Creek) and Juaneño (east of the Aliso Creek). A brief description of both ethnographic groups is provided in the following text.

The Gabrieleño may have numbered as many as 5,000 people during their peak in the pre-contact period; however, population estimates are difficult due to the gradual process of missionization (Kroeber 1925). The Gabrieleño territory included the Los Angeles Basin, the coast of Aliso Creek in Orange County to the south, and Topanga Canyon in the north, the four southern Channel Islands, and watersheds of the Los Angeles, San Gabriel, and Santa Ana Rivers. At the time of European contact, the Gabrieleño were actively involved in trade using shell and beads as currency. The Gabrieleño produced pipes, ornaments, cooking implements, inlay work, and basketry. Dwellings were constructed of tule mats on a framework of poles, but size and shape have not been recorded (Kroeber 1925). Basketry and steatite vessels were used rather than ceramics until near the end of the mission period in the nineteenth century (Garcia et al. 2011).

The Juaneño, or Acjachemen, territory was bounded to the north by Aliso Creek, the east by the crest of the Santa Ana Mountains, the south by San Onofre Creek, and west by the Pacific Ocean (Kroeber 1925:636). Ethnographic, linguistic, and archaeological evidence indicate that Juaneño and Luiseño are one cultural/tribal group. There is no existing record of the Juaneño population during the pre-contact period. Records indicated that approximately 1,300 individuals culturally affiliated with the Juaneño resided at Mission San Juan Capistrano in the year 1800 (Engelhardt 1922). The mission death register shows as many as 4,000 native burials in the mission cemetery (White 1963). It is clear from that arrival of the Spanish decimated Native peoples through disease and changed living conditions (Bean and Shipek 1978).

The tribes of the region were organized into patrilineal clans or bands centered on a chief, composed of 25–30 people (Kroeber 1925), each of which had their own territorial land or range where food and other resources were collected at different locations throughout the year (Sparkman 1908). The title of chief was heritable along family lines. Inter-band conflict was most common over trespassing. Sparkman observed that "when questioned as to when or how the land was divided and subdivided, the Indians say they cannot tell, that their fathers told them that it had always been thus" (1908). Place names were assigned to each territory, often reflecting common animals, plants, physical landmarks, or cosmological elements that were understood as being related to that location. Marriages were generally arranged by parents or guardians. Free and widowed women had the option to choose their partner. Polygamy occurred though was a major

component in tribal life. The physical body and its components was thought to be related to the power of an individual, and wastes such as fluids, hair, and nails were discarded with intent. Hair, once cut, was often carefully collected and buried to avoid being affected negatively or controlled by someone who wishes them harm. Some locations and natural resources were of cultural significance. Springs and other water-related features were thought to be related with spirits. These resources, often a component of origin stories, had power that came with a variety of risks and properties to those who became affected. Puberty ceremonies for both boys and girls were complex and rigorous. Mourning ceremonies were similar throughout the region, generally involving cutting of the hair, burning the deceased's clothes a year after death, and redistributing personal items to individuals outside of the immediate tribal group (Sparkman 1908; Kroeber 1925). The center of the Juaneño and Gabrielino religion was Chinigchinich, the last of a series of heroic mythological figures. The heroes were originally from the stars and the sagas told of them formed the Juaneño religious beliefs. The most obvious expression of the religion was the Wankech, a brush enclosed area where religious observances were performed. The Wankech contained an inner enclosure housing a representation of *Chinigchinich*, a coyote skin stuffed with feathers, claws, beaks, and arrows.

The staple food of the Native American inhabitants of this region during the ethnohistoric period was acorns (Sparkman 1908). Of the six or more oak species within this traditional territory, the most desirable of these was the black oak (*Quercus kelloggii*) due to its ease of processing, protein content, and digestibility. Acorns were stored in granaries to be removed and used as needed. The acorns were generally processed into flour using a mortar and pestle. The meal was most commonly leached with hot water and the use of a rush basket; however, there are also accounts of placing meal into excavated sand and gravel pits to allow the water to drain naturally. The acorn was then prepared in a variety of ways, though often with the use of an earthen vessel (Sparkman 1908). Other edible and medicinal plants of common use included wild plums, choke cherries, Christmas berry, gooseberry, elderberry, willow, Juncus, buckwheat, lemonade berry, sugar bush, sage scrub, currents, wild grapes, prickly pear, watercress, wild oats and other plants. More arid plants such as Yucca, Agave, mesquite, chia, bird-claw fern, Datura, yerba santa, Ephedra, and cholla were also of common use by some Juaneño and Gabrielino populations. A number of mammals were commonly eaten. Game animals included black-tailed deer, antelope, rabbits, hares, birds, ground squirrels, woodrats, bears, mountain lions, bobcats, covotes, and others. In lesser numbers, reptiles and amphibians may have been consumed. Fish and marine resources provided some portion of many tribal communities, though most notably those nearest the coast. Shellfish would have been procured and transported inland from three primary environments, including the sandy open coast, bay and lagoon, and rocky open coast. The availability of these marine resources changed with the rising sea levels, siltation of lagoon and bay environments, changing climatic conditions, and intensity of use by humans and animals.

Areas or regions, identified by known physical landmarks, could be recognized as band-specific territories that might be violently defended. Other areas or resources, such as water sources and other locations that were rich in natural resources, were generally understood as communal land to be shared. The coastal Juaneño and Gabrieleño exchanged a number of local goods, such as seafood, coastal plants, and various types of shell, for items including acorns, agave, mesquite beans, gourds, and other more interior plants of use (Luomala 1978). Shellfish would have been procured from three primary environments, including the sandy open coast, bay and lagoon, and rocky open coast. The availability of these marine resources changed with the rising sea levels, siltation of lagoon and bay environments, changing climatic conditions, and intensity of use by humans and animals (Gallegos and Kyle 1988; Pigniolo 2005; Warren 1964). Shellfish from sandy environments included Donax, Saxidomas, Tivela, and others. Rocky coast shellfish dietary contributions consisted of Pseudochama, Megastraea, Saxidomus, Protothaca, Megathura, Mytolis, and others. Lastly, the bay environment would have provided Argopecten, Chione, Ostrea, Neverita, Macoma, Tagelus, and others. While marine resources were obviously consumed, terrestrial animals and other resources likely provided a large portion of sustenance. Game animals consisted of rabbits, hares (Leporidae), birds, ground squirrels, woodrats (Neotoma), deer, bears, mountain lions (Puma concolor), bobcats (Lynx rufus), coyotes (Canus latrans), and others. In lesser numbers, reptiles and amphibians may have been consumed.

A number of local plants were used for food and medicine. These were exploited seasonally, and were both traded between regional groups and gathered as a single triblet moved between habitation areas. Some of the more common of these that might have been procured locally, or as higher elevation varieties, would have included buckwheat (*Eriogonum fasciculatum*), *Agave*, *Yucca*, lemonade berry (*Rhus integrifolia*), sugar brush (*Rhus ovata*), sage scrub (*Artemisia californica*), yerba santa (*Eriodictyon*), sage (*Salvia*), *Ephedra*, prickly pear (*Opuntia*), mulefat (*Baccharis salicifolia*), chamise (*Adenostoma fasciculatum*), elderberry (*Sambucus nigra*), oak (*Quercus*), willow (Salix), and *Juncus* grass, among many others (Wilken 2012).

2.2.5 The Historic Period (post-AD 1542)

European activity in the region began as early as AD 1542, when Juan Rodríguez Cabrillo landed in San Diego Bay. Sebastián Vizcaíno returned in 1602, and it is possible that there were subsequent contacts that went unrecorded. These brief encounters made the local native people aware of the existence of other cultures that were technologically more complex than their own. Epidemic diseases may also have been introduced into the region at an early date, either by direct contacts with the infrequent European visitors or through waves of diffusion emanating from native peoples farther to the east or south. Father Juan Crespí, a member of the 1769 Spanish Portolà expedition, authored the first written account of interaction between Europeans and the indigenous population in the region that makes up Orange County today. It is possible, but as yet

unproven, that the precipitous demographic decline of native peoples had already begun prior to the arrival of Gaspar de Portolá and Junípero Serra in 1769.

Spanish colonial settlement was initiated in 1769, when multiple expeditions arrived in San Diego by land and sea, and then continued northward through the coastal plain toward Monterey. A military presidio and a mission were soon firmly established at San Diego, despite violent resistance to them from a coalition of native communities in 1776. Mission San Juan Capistrano was established this same year, on November 1st. Private ranchos subsequently established by Spanish and Mexican soldiers, as well as other non-natives, appropriated much of the remaining coastal or near-coastal locations (Pourade 1960–1967).

Mexico's separation from the Spanish empire in 1821 and the secularization of the California missions in the 1830s caused further disruptions to native populations. Some former mission neophytes were absorbed into the work forces on the ranchos, while others drifted toward the urban centers at San Diego and Los Angeles or moved to the eastern portions of the county where they were able to join still largely autonomous native communities. United States conquest and annexation, together with the gold rush in Northern California, brought many additional outsiders into the region. Development during the following decades was fitful, undergoing cycles of boom and bust. With rising populations in the nineteenth century throughout the Southern California region, there were increased demands for important commodities such as salt.

The Project location falls at the western limits of Rancho Trabuco, which was bordered to the west by Rancho Cañada de Los Alisos. This rancho was granted by the Mexican Government to Santiago Argüello in 1841, with additional acreage provided to John Forster in 1846. The area included nearly 22,000 acres east of Trabuco Canyon (Garcia et al. 2011).

3 METHODS

3.1 Intensive Pedestrian Survey

Dudek cross-trained paleontologist and archaeologist, Michael Williams, Ph.D., under the direction of Adam Giacinto, MA, RPA and Micah Hale, Ph.D., RPA, inspected all areas of the planned alignment on February 18, 2020. Much of the area is covered with roads, although the open space area north of Oso Pkwy consists of open space. This area was subject to intensive-level survey spaced no more than 10 meters apart. Archaeological survey exceeded the applicable Secretary of Interior Professional Qualifications Standards for archaeological survey and evaluation. Survey crew was equipped with a Global Positioning System (GPS) receiver with sub-meter accuracy. Location-specific photographs were taken. Evidence for buried cultural deposits was opportunistically sought through inspection of natural or artificial erosion exposures and the spoils from rodent burrows. No artifacts were identified nor collected during the survey.

3.2 Disturbances

Disturbances to the Project AP have included a number of development-related impacts. Evident surface and subsurface disturbances have been caused through construction of paved and gravel roads, installation of existing water lines, and residential and commercial developments. Dudek reviewed historical aerials (available since 1938) and topographic maps (available since 1949) (NETR 2020a, 2020b). These maps and aerial photographs did not indicate the presence of historical built-environment resources within the APE.

4 RESULTS

4.1 **Previous Cultural Resource Investigations**

A records search of the APE and the surrounding one-half mile was completed by SCCIC staff on January 23, 2020 (Confidential Appendix A). This search included their collection of mapped prehistoric, historical and built-environment resources, Department of Parks and Recreation (DPR) Site Records, technical reports, archival resources, and ethnographic references. Additional consulted sources included the NRHP, California Inventory of Historical Resources/CRHR and listed OHP Archaeological Determinations of Eligibility, California Points of Historical Interest, California Historical Landmarks, and California Department of Transportation Bridge Survey information.

4.1.1 Cultural Resources

Two cultural resources have been previously identified within the APE (CA-LAN-899/H and CA-LAN-36/H). CA-LAN-899/H consists of prehistoric, protohistoric, and historic artifacts; and CA-LAN-36H consists of prehistoric and historic artifacts. Nine sites with prehistoric resources, three sites with historic resources, and one site with unknown resources have been recorded within the surrounding one-half mile records search area (Table 1) (Confidential Appendix A).

Primary	Trinomial	Age	Description	Relation to APE
P-19-000036	CA-LAN-000036/H	Prehistoric, Protohistoric, and Historic	Ceramic Scatter, Caches, Rock Shelter/Cave	Inside
P-19-000470	CA-LAN-000470	Prehistoric	Rock Shelter/Cave and Habitation Debris	Outside
P-19-000784	CA-LAN-000784	Prehistoric	Lithic Scatter, Rock Shelter/Cave, and Habitation Debris	Outside
P-19-000785	CA-LAN-000785	Prehistoric	Bedrock Milling Feature, Petroglyphs, and Pictographs	Outside
P-19-000895	CA-LAN-000895	Prehistoric	Lithic Scatter, Hearth/Pits, and Habitation Debris	Outside
P-19-000896	CA-LAN-000896	Prehistoric	Lithic Scatter and Habitation Debris	Outside
P-19-000897	CA-LAN-000897	Prehistoric	Lithic Scatter	Outside
P-19-000898	CA-LAN-000898	Prehistoric	Lithic Scatter and Quarry	Outside
P-19-000899	CA-LAN-000899/H	Prehistoric and Historic	Foundations/Structure Pads. Lithic Scatter, and Adobe Building/Structure	Inside

Table 1.Cultural Resources in Relation to the APE

Primary	Trinomial	Age	Description	Relation to APE
P-19-000900	CA-LAN-000900H	Historic	Foundations/Structure Pads, Privies/Dumps/Trash Scatters, and Adobe Building/Structure	Outside
P-19-000901	CA-LAN-000901	Unknown	Petroglyphs	Outside
P-19-100318	—	Historic	Privies/Dumps/Trash Scatters	Outside
P-19-100319	_	Historic	Privies/Dumps/Trash Scatters	Outside
P-19-100320	—	Prehistoric	Lithic Scatter	Outside
P-19-100321	—	Prehistoric	Lithic Scatter	Outside

4.1.1.1 P-19-000036 (CA-LAN-36/H)

CA-LAN-36/H, located inside the APE, was recorded in 1949 by the University of California, Los Angeles. Records on file with the SCCIC indicate the resource is documented to include a historicera ceramic scatter, artifact caches, rock shelter, and habitation debris. No midden or subsurface deposits of cultural material were noted. The site record described CA-LAN-36/H as an encampment along the route to Rancho Trabuco that was occupied until 1867 by Native Americans that had survived the smallpox epidemic of 1862.

4.1.1.2 P-19-000899 (CA-LAN-899/H)

CA-LAN-899/H, located inside the APE, was recorded in 1980 by T. Cooley. The site was observed to include "a thin scatter of milling stone assemblage artifacts over a large area" according to the DPR site record. No specification regarding the age of the artifacts were noted on the site record, and no midden or subsurface deposits of cultural material were noted. The SCCIC records search indicated the site contained foundations/structure pads and adobe building/structures; however, these were not observed in the historical aerial images reviewed. Cooley observed that the site was likely disturbed by previous brush clearing and grading. The portion of the site within the Project APE has been destroyed by housing development. Historical aerial imagery (from 1994 and 1997) indicate the site was developed between those years.

4.1.2 Previous Technical Studies

SCCIC records indicate that 25 previous cultural resources technical investigations have been conducted within a one-half-mile radius of the Project alignment. Of these, 2 studies (Del Chario and Demcak 1989; Julian and Demcak 1993) are known to have directly included portions of the current APE, and 1 is a paleontological resources study (Table 1).

Table 2.
Previous Studies That Have Included the Project Alignment

Author	Year	Company	Title
Bean, Lowell	1979	Cultural Systems Research, Inc.	Cultural Resources and the High Voltage Transmission Line From San Onofre to Santiago and Black Star Canyon
Cottrell, Marie G.	1977	Archaeological Research, Inc.	Report of Archaeological Investigations Conducted at CA-ORA-470 Planning Area 8, Mission Viejo
Cottrell, Marie G.	1980	Archaeological Research, Inc.	Archaeological Resources Assessment Conducted for the Trabuco Land and Cattle Company and the Plano Trabuco Properties in the Trabuco Area of Orange County
Anonymous	1980	Not Listed	Archaeological Resources Assessment Conducted for 7,000 Acres in South Orange County Referred to As the Horno Parcel
Cottrell, Marie G.	1984	Not Listed	Archaeological Investigations of CA-ORA-896, Trabuco Area of Orange County, California
Bissell, Ronald M.	1989	RMW Paleo Associates, Inc.	Cultural Resources Management Plan for O'Neill Regional Park Orange County, California
Del Chario, Kathleen C. and Carol R. Demcak	1989	Archaeological Resource Management Corporation	Preliminary Report of Test-level Investigations Conducted at CA-ORA-899, -36, and -895, Las Flores Village Project, Rancho Santa Margarita, Orange County, California
Demcak, Carol R.	1991	Archaeological Resource Management Corporation	Cultural Resources Assessment for the Santa Margarita Water District (SMWD) Emergency Operational Storage Reservoir Alternative, South Orange County, California
Julien, Melissa R. and Carol R. Demcak	1993	Archaeological Resource Management Corporation	Archaeological Monitoring Report for Contract 1485 and Contract 1485a, South County Pipeline Project, Orange County, California
Padon, Beth and Fran Govean	1993	Petra Resources Inc.	An Archaeological and Paleontological Resource Assessment of the Proposed High School Site, Chiquita Canyon, Orange County
Demcak, Carol R.	1994	Archaeological Resource Management Corporation	Report of Cultural Resources Assessment for Antonio Parkway Alignment From Oso Parkway to La Pata Drive, South Orange County, California
McCoy, Lesley C. and Philips Roxana	1980	Westec Services, Inc.	National register Assessment Program of Cultural Resources for the 230 kV Transmission Line Rights- of-Way from San Onofre Nuclear Generating Station to Black Star Canyon and Santiago Substation and to Encina and Mission Valley Substation
Carleton, Jones S., Sue A. Wade, Kathleen C. Allen, and Carol R. Demcak	1995	Archaeological Resource Management Corporation	Report of Archaeological Test and Salvage Investigations at the Golf Course Village Sites, Plano Trabuco, Orange County, California

Author	Year	Company	Title
Demcak, Carol R. and Milos Velechovsky	1996	Archaeological Resource Management Corporation	Archaeological Investigations for the Antonio Parkway Extension, Oso Parkway to Ortega Highway, South Orange County, California
Lapin, Philippe	2000	LSA Associates, Inc.	Cultural Resource Assessment for Pacific Bell Wireless Facility CM 371-01, County of Orange, California
Demcak, Carol R.	1999	Archaeological Resource Management Corporation	Report of Cultural Resources Records Search for Project 2000, Rancho Mission Viejo, Orange County
Demcak, Carol R.	2000	Archaeological Resource Management Corporation	Report of Archaeological Resources Survey for Rancho Mission Viejo, Project 2000, South Orange County
Evans, Nancy H.	2000	Archaeological Resource Management Corporation	Rancho Mission Viejo: An Ethnohistory
Bonner, Wayne H.	2005	Michael Brandman Associates	Cultural Resources Records Search and Site Visit for Cingular Wireless Oc-024-01 (SMWD Pump Station), 29634 Oso Parkway, Trabuco Canyon, Orange County, California
Demcak, Carol R. and Stephen R. Van Wormer	2003	Archaeological Resource Management Corp.	Report of Archaeological Testing for the Project 2000, Phase II-b, Rancho Mission Viejo, South Orange County, California
Velechovsky, Milos	2000	Archaeological Resource Management Corporation	Report of Paleontological Resources Survey for the Ranch Plan, Rancho Mission Viejo, South Orange County, California
Demcak, Carol R.	2002	Archaeological Resource Management Corporation	Report of Archaeological Testing for the Ranch Plan, Phase II-A, Rancho Mission Viejo, South Orange County, California
Evans, Nancy H.	2000	Archaeological Resource Management Corporation	(duplicate of OR-2394) Rancho Mission Viejo: An Ethnohistory
Demcak, Carol R. and Stephen R. Van Wormer	2003	Archaeological Resource Management Corporation	Report of Archaeological Testing for the Ranch Plan, Phase II-B, Rancho Mission Viejo, South Orange County, California
Deering, Mark and Mason, Roger D.	2011	ECORP Consulting, Inc	Cultural Resources Documentation and Monitoring of Southern California Edison Access Roads During Maintenance by the Orange County Fire Authority, 2010 Orange County, California

4.2 NAHC Search and Tribal Coordination

Dudek requested a NAHC search of the Sacred Lands File for the Project site, and the NAHC provided results on February 20, 2020. This search indicated the presence of Native American resources listed in the Sacred Lands File within the Project site or the surrounding one-half-mile buffer (Confidential Appendix B). The NAHC additionally provided a list of Native American tribes and individuals/organizations that might have knowledge of cultural resources in this area.

4.3 Pedestrian Survey

An intensive pedestrian survey was conducted of the area of potential effects, consisting of the Project alignment, by Dudek cross-trained paleontologist and archaeologist, Michael Williams, on February 18, 2020. No archaeological or historic-era built-environment artifacts or features were identified. The majority of the Project alignment is within paved road rights-of-way through residential neighborhoods. The area of the Project not within residential areas is the 16-inch pipeline on the west side of the Project alignment along the SMWD access road behind a residential area. With the exception of portions of the alignment along the SMWD access road, all areas of the APE appeared to have been previously disturbed through paving for roads and water pump stations (Figures 3 - 5). The SMWD access road is heavily traveled and portions appear to have been overlain with gravel.

Figure 3. Photograph showing paved street at western beginning of 10-inch pipeline along Oso Parkway. View to the east.

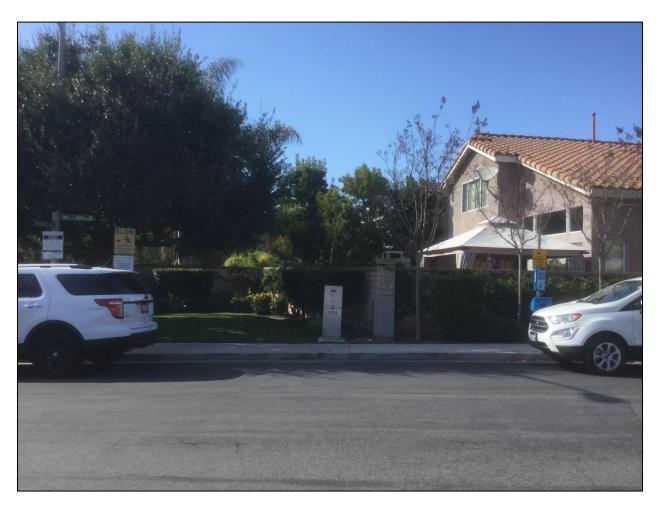


Figure 4. Photograph at western terminus of 8-inch pipeline showing development within Site 899. View to the west.

Figure 5. Photograph of southern terminus of 16-inch pipeline within Site 36. View to the northwest.

4.4 Tribal Coordination

Following the NAHC response, letters were sent on March 3 and 4, 2020, to the listed tribal representatives with the intent of requesting information, opinions or concerns relating to the Project impacts (Confidential Appendix B). These letters contained a brief description of the planned Project, reference maps, and a summary of the NAHC Sacred Lands File search results.

To date, the Agua Caliente Band of Cahuilla Indians, Pala Band of Mission Indians, Juaneño Band of Mission Indians, and Rincon Band of Luiseño Indians have responded to our tribal inquiries. The Agua Caliente Band of Cahuilla Indians, Pala Band of Mission Indians, and Rincon Band of Luiseño Indians indicated the Project is not located within their traditional use area and deferred to tribes that are located closer to the Project. The Juaneño Band of Mission Indians stated they wanted to consult on the Project and requested that Native American and archaeological monitors be present during all ground disturbing activities, (Confidential Appendix B).

The Project is subject to compliance with AB 52 (California Public Resources Code Section 21074), which requires consideration of impacts to "tribal cultural resources" as part of the CEQA process, and requires the CEQA lead agency to notify any groups (who have requested notification) of the proposed project who are traditionally or culturally affiliated with the geographic area of the project. SMWD sent AB 52 notification letters to tribal representatives in early March. Because AB 52 is a government-to-government process, all records of correspondence related to AB 52 notification and any subsequent consultation are on file with SMWD.

4.5 Geomorphology

4.5.1 Archaeological Sensitivity

The potential for yet-identified cultural resources in the vicinity was reviewed against geologic and topographic geographic information system (GIS) data for the area and information from other nearby projects. The "archaeological sensitivity," or potential to support the presence of buried prehistoric archaeological deposits, is generally interpreted based on geologic landform and environmental parameters (i.e., distance to water and landform slope). The Project alignment is underlain by the following geological units from youngest to oldest:

- Middle to early Pleistocene (~ 126,000–2.58 million years ago [mya]) very old axial channel deposits (map unit Qvoaa)
- Late Miocene (~12 mya–5.33 mya) Monterey Formation (map unit Tm)

• Late Eocene to early Miocene (~ 38 mya–23 mya) Sespe Formation (map unit Ts)

These soils predate human occupation of the region and, as such, the formation of cultural deposits is relatively unlikely. However, given that the APE is located along areas of relatively low slope, it should be assumed that there has been some Holocene-era soil accumulation and, as such, there is potential for archaeological resources to persist, if present, in areas where disturbances have been limited. Some areas of the APE run along existing paved roads; subsurface soils in these areas are likely highly disturbed.

Based on the process of soil formation and the level of previous disturbance, the likelihood for significant unanticipated prehistoric archaeological deposits to be present within the APE is considered low to moderate. Given the presence of permanent water (Tijeras Creek) and other previously recorded prehistoric resources within and near the APE, there is potential for prehistoric archaeological resources to be present. The potential for small historic-period sites such as trash scatters and water-related features within the Project site is considered low to moderate, because such sites would likely been observable during archaeological survey.

5 SUMMARY AND MANAGEMENT CONSIDERATIONS

5.1 Impact Analysis

Two previously recorded archaeological resources (CA-LAN-36/H and CA-LAN-899/H) were identified within SCCIC records to fall within the Project APE, and a number of additional sites are recorded in the surrounding vicinity. CA-LAN-36/H, an ethnohistoric Native American encampment dating between 1862 and 1867 along the road to Rancho Trabuco, was last documented in 1949. CA-LAN-899/H, a prehistoric lithic scatter, was last documented in 1980 and was noted to be at risk of destruction. These resources were not identified within the APE during archaeological survey, and have likely been destroyed where they intersect the Project. Based on geomorphological evidence and the level of previous disturbance, areas within existing roads have a low potential to contain unanticipated cultural resources. The portion of the APE that includes the unpaved access road north of Oso Parkway has a moderate potential to contain unanticipated cultural deposits. The NAHC Sacred Lands File search did not indicate that cultural resources are in the project area; however, Native American outreach for the Project suggests that the area is of high cultural value to Juaneño Band of Mission Indians community. Management recommendations to reduce potential impacts to unanticipated archaeological resources and human remains during Project construction activities are provided as follows.

5.2 Recommendations

A qualified archaeologist (project archaeologist), as defined by CEQA, should be retained to manage the implementation of the cultural resources mitigation program as outlined below. Prior to the initiation of ground-disturbing work, construction crews will be made aware of the potential to encounter cultural resources and the requirement for cultural monitors to be present during these activities. Areas observed to have potential to contain yet-identified subsurface cultural material or deposits are located within portions of the APE along the unpaved access road north of Oso Parkway. Other areas within the APE are not recommended to require archaeological monitoring, as any potential resources have likely been destroyed through previous road and utility construction. Archaeological monitoring may be adjusted at the recommendation of the qualified archaeological principal investigator, and in consultation with SMWD, based on inspection of exposed subsurface soils and their observed potential to contain intact cultural deposits or material.

CUL-1:

- A. Prior to beginning construction activities, the project archaeologist will attend any pertinent preconstruction meetings with the construction manager and/or pipeline contractor in order to provide recommendations and answer questions relating to the archaeological monitoring program. The Project archaeologist will be familiar with the cultural inventory conducted for the current Project and prepared to introduce any pertinent information concerning expectations and probabilities of discovery during ground disturbing activities.
- B. A qualified archaeological monitor will be present full time during the initial disturbances of soil with potential to contain cultural deposits, which includes the unpaved access road north of Oso Parkway. Archaeological monitoring of initial ground disturbance will not exceed a depth of 5.5 feet unless cultural resources are identified. Cultural monitoring will not be required within paved roads or for demolition of existing buildings, nor for subsurface soils currently beneath these structures. With consultation of the SMWD, Cultural resources monitoring may be reduced from initial full-time monitoring to periodic spot checks, or discontinued if appropriate, once the project archaeologist determines that there is little or no risk to encounter cultural material.
- C. Daily archaeological monitoring logs will be prepared. Logs will include monitor names and affiliations, a description of general activities observed, and cultural discoveries, as well as comments or concerns as applicable.
- D. In the event that archaeological resources (e.g., sites, features, or artifacts) are exposed during construction activities for the Project, all construction work occurring within 100 feet of the find shall immediately stop until the qualified archaeological principal investigator, meeting the Secretary of the Interior's Professional Qualification Standards, can evaluate the significance of the find and determine whether additional study is warranted. If there is any indication that the find could be of interest of Native Americans, the archaeological principal investigator shall notify a representative from the Juaneño Band of Mission Indians, Acjachemen Nation of the find. Should it be required, temporary flagging may be installed around this resource in order to avoid any disturbances from construction equipment. Depending upon the significance of the find under CEQA (14 CCR 15064.5[f]; California Public Resources Code Section

21082), the archaeological monitor in correspondence with the qualified archaeological principal investigator may simply record the find to appropriate standards (thereby addressing any data potential) and allow work to continue. If the qualified archaeological principal investigator, in consultation with the Native American representative (if applicable), observes the discovery to be potentially significant under CEQA or Section 106 of the NHPA, additional efforts (such as preparation of an archaeological treatment plan, testing, and/or data recovery) may be warranted prior to allowing construction to proceed in this area. The feasibility for avoidance will also be discussed with SMWD, the Native American representative (if applicable), and other appropriate parties prior to any investigation that may result in disturbance to archaeological resources.

- E. The project archaeologist will be responsible for ensuring that all cultural materials collected will be cleaned, catalogued, and permanently curated with an appropriate institution; that a letter of acceptance from the curation institution has been submitted to the lead agency; that all artifacts are analyzed to identify function and chronology as they relate to the history of the area; that faunal material will be identified as to species; and specialty studies are completed, as appropriate.
- F. All construction crew members should be alerted to the potential to encounter archaeological material. In the event that cultural resources (e.g., sites, features, artifacts, or fossilized material) are exposed during construction activities for the Project, all construction work occurring within 100 feet of the find shall immediately stop until a qualified specialist, meeting the Secretary of the Interior's Professional Qualification Standards, can evaluate the significance of the find and determine whether additional study is warranted. Prehistoric archaeological deposits may be indicated by the presence of discolored or dark soil, fire-affected material, concentrations of fragmented or whole freshwater bivalve shell, burned or complete bone, non-local lithic materials, or the characteristic observed to be atypical of the surrounding area. Common prehistoric artifacts may include modified or battered lithic materials; lithic or bone tools that appear to have been used for chopping, drilling, or grinding; projectile points; fired clay ceramics or non-functional items; and other items. Historic-age deposits are often indicated by the presence of glass bottles and shards, ceramic material, building or domestic refuse, ferrous metal, or old features such as concrete foundations or privies. Depending upon the

significance of the find under CEQA (14 CCR 15064.5[f]; California Public Resources Code Section 21082), the archaeologist may simply record the find and allow work to continue. If the discovery proves significant under CEQA, additional work, such as preparation of an archaeological treatment plan, testing, or data recovery may be warranted.

- G. In accordance with Section 7050.5 of the California Health and Safety Code, if human remains are found, the county coroner shall be immediately notified of the discovery. No further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains shall occur until the county coroner has determined, within 2 working days of notification of the discovery, the appropriate treatment and disposition of the human remains. If the county coroner determines that the remains are, or are believed to be, Native American, the coroner shall notify the NAHC in Sacramento within 24 hours. In accordance with California Public Resources Code, Section 5097.98, the NAHC must immediately notify those persons it believes to be the most likely descendant from the deceased Native American. The most likely descendant shall inspect the remains within 48 hours of being granted access to the site. The designated Native American representative would then determine, in consultation with the property owner, the disposition of the human remains.
- H. Within 3 months following the completion of monitoring, two copies of a monitoring results report (even if negative) and/or evaluation report, if applicable, that describes the results, analysis, and conclusions of the archaeological monitoring program (with appropriate graphics) will be submitted to the lead agency. It is recommended that the lead agency consult directly with the State Historic Preservation Office on the findings of this report.
- I. The archaeologist will be responsible for recording (on the appropriate California Department of Parks and Recreation forms—DPR 523 A and B) any significant or potentially significant resources encountered during the archaeological monitoring program in accordance with the California Environmental Quality Act Cultural Resources Guidelines, and submitting such forms to the South Central Coast Information Center at California State University, Fullerton, with the final monitoring results report.

6 **REFERENCES**

- 14 CCR 15000–15387 and Appendices A–L. Guidelines for Implementation of the California Environmental Quality Act, as amended.
- 14 CCR 4852. Types of Historical Resources and Criteria for Listing in the California Register of Historical Resources.
- 48 FR 44720–44726. "The Secretary of the Interior's Standards and Guidelines for Federal Agency Historic Preservation Programs Pursuant to the National Historic Preservation Act." April 24, 1998.
- Basgall, M. E., L. Johnson, and M. Hale. 2002. "An Evaluation of Four Archaeological Sites in the Lead Mountain Training Area, Marine Corps Air Ground Combat Center, Twentynine Palms, California." Submitted to U.S. Army Corps of Engineers, Fort Worth, Texas.
- Basgall, M.E., and M. Hall. 1990. "Adaptive Variation in the North-Central Mojave Desert." Paper presented at the 55th Annual Meeting of the Society for American Archaeology, Las Vegas, Nevada.
- Bean, L.J., and F.C. Shipek. 1978. "Luiseño." In *Handbook of North American Indians*, Vol. 8, *California*, edited by Robert F. Heizer550–563. Washington, D.C.: Smithsonian Institution.
- Boscana, G. 1846. "Chinigchinich; A Historical Account of the Origin, Customs, and Traditions of the Indians at the Missionary Establishment of St. Juan Capistrano, Alta California." In *Life in California*, by Alfred Robinson, 227–341. New York, New York: Wiley & Putnam.
- Byrd, B.F., and S.N. Reddy. 2002. "Late Holocene Adaptations along the Northern San Diego Coastline: New Perspectives on Old Paradigms." In *Cultural Complexity on the California Coast: Late Holocene Archaeological and Environmental Records*, edited by J.M. Erlandson and T.L. Jones, 41–62. Los Angeles, California: University of California– Los Angeles Press.
- California Health and Safety Code, Sections 7050.5–7055. Division 7: Dead Bodies; Part 1: General Provisions; Chapter 2: General Provisions.

- California Public Resources Code, Sections 21000–21177. California Environmental Quality Act (CEQA), as amended. California Public Resources Code, Sections 5020–5029.6. Division 5: Parks And Monuments; Chapter 1: State Parks and Monuments; Article 2: Historical Resources.
- California Public Resources Code, Sections 5097.9–5097.991. Chapter 1.75: Native American Historical, Cultural, And Sacred Sites.
- Davis, E.L. 1978. *The Ancient Californians: Rancholabrean Hunters of the Mojave Lakes Country*. Los Angeles, California: Natural History Museum of Los Angeles County.
- Del Chario, K.C. and C.R. Demcak. 1989. Preliminary Report of Test-level Investigations Conducted at CA-ORA-899, -36, and -895, Las Flores Village Project, Rancho Santa Margarita, Orange County, California. Prepared by Archaeological Resource Management Corporation.
- Engelhardt, Zephyrin. 1922. The San Juan Capistrano Mission. Zephyrin Englehardt, Los Angeles.
- Fages, P. 1937. *A Historical, Political, and Natural Description of California* (1775). Translated by Herbert Ingram Priestly. Berkeley, California: University of California Press.
- Gallegos, D., and C. Kyle. 1988. Five Thousand Years of Maritime Subsistence at Ballast Point Prehistoric Site SDI-48 (W-164), San Diego, California. San Diego, California: WESTEC Services.
- Gallegos, D.R. 1987. "San Dieguito-La Jolla: Chronology and Controversy." San Diego County Archaeological Society, Research Paper No. 1.
- Garcia, Kyle, Mathew Gonzalez and Jon Wilson. 2011. Phase I Cultural and Paleontological Resources Assessment for the Proposed Sky Ridge Project, Orange County, California. Prepared for Vandermost Consulting Services Inc.
- Geiger, M. and C.W. Meighan. 1976. As the Padres Saw Them: California Indian Life and Customs as Reported by the Franciscan Missionaries, 1813–1815. Santa Barbara Mission Archive Library, Santa Barbara, California.
- Golla, V. 2007. "Linguistic Prehistory." In *California Prehistory: Colonization, Culture, and Complexity,* edited by T.L. Jones and K.A. Klar, 71–82. New York, New York: Altamira Press.

- Griset, S. 1996. "Southern California Brown Ware." Unpublished PhD dissertation; University of California, Riverside.
- Hale, M. 2001. "Technological Organization of the Millingstone Pattern in Southern California." Master's thesis; California State University, Sacramento.
- Hale, M. 2009. "San Diego and Santa Barbara: Socioeconomic Divergence in Southern California." PhD dissertation; University of California, Davis.
- Harrington, J.P. 1934. "A New Original Version of Boscana's Historical Account of the San Juan Capistrano Indians of Southern California." *Smithsonian Miscellaneous Collections* 92(4).
- Hector, S.M. 2006. Cultural Resources Study for the Maintenance of Old Mission Dam, Mission Trails Regional Park, San Diego, California. Prepared for the City of San Diego.
- Johnson, J.R., and J.G. Lorenz. 2006. "Genetics, Linguistics, and Prehistoric Migrations: An Analysis of California Indian Mitochondrial DNA Lineages." *Journal of California and Great Basin Anthropology* 26:33–64.
- Julien, M.R. and C.R. Demcak. 1993. Archaeological Monitoring Report for Contract 1485 and Contract 1485a, South County Pipeline Project, Orange County, California. Prepared by Archaeological Resource Management Corporation.
- Kroeber, A. 1925. *Handbook of the Indians of California*. Washington DC: Smithsonian Institution.
- Laylander, D. 2000. *Early Ethnography of the Californias, 1533–1825.* Salinas, California: Coyote Press Archives of California Prehistory.
- Laylander, D. 2010. "Linguistic Prehistory." Research Issues in San Diego Prehistory. Accessed August 31, 2012. http://www.sandiegoarchaeology.org/Laylander/Issues /index.htm.
- Lightfoot, Kent J. 2005. Indians, Missionaries, and Merchants. Berkeley: University of California Press.
- Luomala, K. 1978. "Tipai and Ipai." In *California*, edited by Robert F. Heizer, 592–609.
 Handbook of the North American Indians, Vol. 8, William C. Sturtevant, general editor.
 Washington, DC: Smithsonian Institution.
- Meighan, C.W. and D.L. True. 1977. Additional Comments on Molpa Archaeological Site. The Journal of California Anthropology, 4(2).

DUDEK

- Morton, D.M., and Miller, F.K., 2006a. Geologic map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California: U.S. Geological Survey, Open-File Report OF-2006-1217, scale 1:100,000.
- NETR (Nationwide Environmental Title Research LLC). 2020a. Historic Topographic Maps: 1938, 1946, 1952, 1967, 1980, 1981, 1994, 1997, 2002, 2004, 2005, 2009, 2010, 2012, 2014, and 2016. Accessed March 2, 2020. https://www.historicaerials.com/viewer.
- NETR. 2020b. Historic Aerial Photographs: 1938, 1948, 1959, 1966, 1980, 1994, 2002, 2005, 2009, 2010, 2012, and 2014. Accessed March 2, 2020. https://www.historicaerials.com/viewer.
- Office of Historic Preservation. 1995. "Instructions for Recording Historical Resources." California State Parks, Office of Historic Preservation. March 1995. http://ohp.parks.ca.gov/ pages/1054/files/manual95.pdf.
- Pigniolo, A.R. 2005. "Subsistence, Settlement, and Environmental Change at San Diego Bay." Proceedings of the Society for California Archaeology 18:255–259.
- Pourade, R.F. 1960–1967. *The History of San Diego*. 6 vols. San Diego, California: Union-Tribune Publishing Company.
- Rogers, M.J. 1929. "The Stone Art of the San Dieguito Plateau." *American Anthropologist* 31:454–467.
- Rogers, M.J. 1945. "An Outline of Yuman Pehistory." *Southwestern Journal of Anthropology* 1:167–198.
- True, D.L. 1980. "The Pauma Complex in Northern San Diego County: 1978." *Journal of New World Archaeology* 3(4):1–39.
- Wallace, W.J. 1955. "A Suggested Chronology for Southern California Coastal Archaeology." *Southwestern Journal of Anthropology* 11:214–230.
- Warren, C.N. 1964. "Cultural Change and Continuity on the San Diego Coast." Unpublished PhD dissertation; University of California, Los Angeles.
- Warren, C.N. 1968. "Cultural Tradition and Ecological Adaptation on the Southern California Coast." In Archaic Prehistory in the Western United States, edited by C. Irwin-Williams, 1–14. Portales, New Mexico: Eastern New Mexico University Contributions in Anthropology.

DUDEK

- Warren, C.N., G. Siegler, and F. Dittmer. 2004. "Paleoindian and Early Archaic Periods." In Prehistoric and Historic Archaeology of Metropolitan San Diego: A Historic Properties Background Study. Prepared for the Metropolitan Wastewater Department, City of San Diego. Encinitas, California: ASM Affiliates.
- White, Raymond C. 1963. Luiseno Social Organization. University of California Publications in American Archaeology and Ethnology 48(2): 91–194. Berkeley, California: University of California.
- Wilken, M. 2012. "An Ethnobotany of Baja California's Kumeyaay Indians." Master's thesis; San Diego State University.

INTENTIONALLY LEFT BLANK

APPENDIX A (CONFIDENTIAL) SCCIC Records Search Results

INTENTIONALLY LEFT BLANK

APPENDIX B

NAHC Sacred Lands Search and Tribal Coordination

INTENTIONALLY LEFT BLANK

CHAIRPERSON Laura Miranda Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

SECRETARY **Merri Lopez-Keifer** Luiseño

Parliamentarian **Russell Attebery** Karuk

COMMISSIONER Marshall McKay Wintun

COMMISSIONER William Mungary Paiute/White Mountain Apache

Commissioner Joseph Myers Pomo

COMMISSIONER Julie Tumamait-Stenslie Chumash

Commissioner [**Vacant**]

EXECUTIVE SECRETARY Christina Snider Pomo

NAHC HEADQUARTERS

1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 nahc@nahc.ca.gov NAHC.ca.gov STATE OF CALIFORNIA

NATIVE AMERICAN HERITAGE COMMISSION

Gavin Newsom, Governor

February 20, 2020

Ted Roberts Dudek

Via Email to: troberts@dudek.com

Re: 12318 Las Flores Enhanced Water Reliability Project, Orange County

Dear Mr. Roberts:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File (SLF) was completed for the information you have submitted for the above referenced project. The results were <u>positive</u>. Please contact the Juaneno Band of Mission Indians – Acjachemen Nation on the attached list for more information. Other sources of cultural resources should also be contacted for information regarding known and recorded sites.

Attached is a list of Native American tribes who may also have knowledge of cultural resources in the project area. This list should provide a starting place in locating areas of potential adverse impact within the proposed project area. I suggest you contact all of those indicated; if they cannot supply information, they might recommend others with specific knowledge. By contacting all those listed, your organization will be better able to respond to claims of failure to consult with the appropriate tribe. If a response has not been received within two weeks of notification, the Commission requests that you follow-up with a telephone call or email to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance, we can assure that our lists contain current information.

If you have any questions or need additional information, please contact me at my email address: steven.quinn@nahc.ca.gov

Sincerely,

terren Zuin

Steven Quinn Cultural Resources Analyst

Attachment

Native American Heritage Commission Native American Contact List Orange County 2/20/2020

Agua Caliente Band of Cahuilla Indians

Jeff Grubbe, Chairperson 5401 Dinah Shore Drive Palm Springs, CA, 92264 Phone: (760) 699 - 6800 Fax: (760) 699-6919

Cahuilla

Agua Caliente Band of Cahuilla Indians

Patricia Garcia-Plotkin, Director 5401 Dinah Shore Drive Cahuilla Palm Springs, CA, 92264 Phone: (760) 699 - 6907 Fax: (760) 699-6924 ACBCI-THPO@aguacaliente.net

Juaneno Band of Mission Indians

Sonia Johnston, Chairperson P.O. Box 25628 Juaneno Santa Ana, CA, 92799 sonia.johnston@sbcglobal.net

Juaneno Band of Mission Indians Acjachemen Nation -Belardes

Joyce Perry, Tribal Manager 4955 Paseo Segovia Juaneno Irvine, CA, 92603 Phone: (949) 293 - 8522 kaamalam@gmail.com

Juaneno Band of Mission Indians Acjachemen Nation -Belardes

Matias Belardes, Chairperson 32161 Avenida Los Amigos Juaneno San Juan Capisttrano, CA, 92675 Phone: (949) 293 - 8522 kaamalam@gmail.com

Juaneno Band of Mission Indians Acjachemen Nation -Romero

Teresa Romero, Chairperson 31411-A La Matanza Street Juaneno San Juan Capistrano, CA, 92675 Phone: (949) 488 - 3484 Fax: (949) 488-3294 tromero@juaneno.com

La Jolla Band of Luiseno Indians

Fred Nelson, Chairperson 22000 Highway 76 Pauma Valley, CA, 92061 Phone: (760) 742 - 3771

Luiseno

Pala Band of Mission Indians

Shasta Gaughen, Tribal Historic Preservation Officer PMB 50, 35008 Pala Temecula Rd. Pala, CA, 92059 Phone: (760) 891 - 3515 Fax: (760) 742-3189 sgaughen@palatribe.com

Pauma Band of Luiseno Indians

Temet Aguilar, Chairperson P.O. Box 369 Luiseno Pauma Valley, CA, 92061 Phone: (760) 742 - 1289 Fax: (760) 742-3422 bennaecalac@aol.com

Pechanga Band of Luiseno Indians

Paul Macarro, Cultural Resources Coordinator P.O. Box 1477 Luiseno Temecula, CA, 92593 Phone: (951) 770 - 6306 Fax: (951) 506-9491 pmacarro@pechanga-nsn.gov

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resource Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed 12318 Las Flores Enhanced Water Reliability Project, Orange County.

Native American Heritage Commission Native American Contact List Orange County 2/20/2020

Pechanga Band of Luiseno Indians

Mark Macarro, Chairperson P.O. Box 1477 Luiseno Temecula, CA, 92593 Phone: (951) 770 - 6000 Fax: (951) 695-1778 epreston@pechanga-nsn.gov

Rincon Band of Luiseno Indians

Cheryl Madrigal, Tribal Historic **Preservation Officer** One Government Center Lane Luiseno Valley Center, CA, 92082 Phone: (760) 297 - 2635 crd@rincon-nsn.gov

Rincon Band of Luiseno Indians

Bo Mazzetti, Chairperson One Government Center Lane Luiseno Valley Center, CA, 92082 Phone: (760) 749 - 1051 Fax: (760) 749-5144 bomazzetti@aol.com

San Luis Rey Band of Mission Indians

San Luis Rey, Tribal Council 1889 Sunset Drive Luiseno Vista, CA, 92081 Phone: (760) 724 - 8505 Fax: (760) 724-2172 cimojado@slrmissionindians.org

San Luis Rev Band of Mission

Indians 1889 Sunset Drive Luiseno Vista, CA, 92081 Phone: (760) 724 - 8505 Fax: (760) 724-2172 cjmojado@slrmissionindians.org

Soboba Band of Luiseno Indians

Scott Cozart, Chairperson P. O. Box 487 San Jacinto, CA, 92583 Phone: (951) 654 - 2765 Fax: (951) 654-4198 jontiveros@soboba-nsn.gov

Cahuilla Luiseno

Soboba Band of Luiseno

Indians Joseph Ontiveros, Cultural **Resource Department** P.O. BOX 487 San Jacinto, CA, 92581 Phone: (951) 663 - 5279 Fax: (951) 654-4198 jontiveros@soboba-nsn.gov

Cahuilla Luiseno

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resources Code.

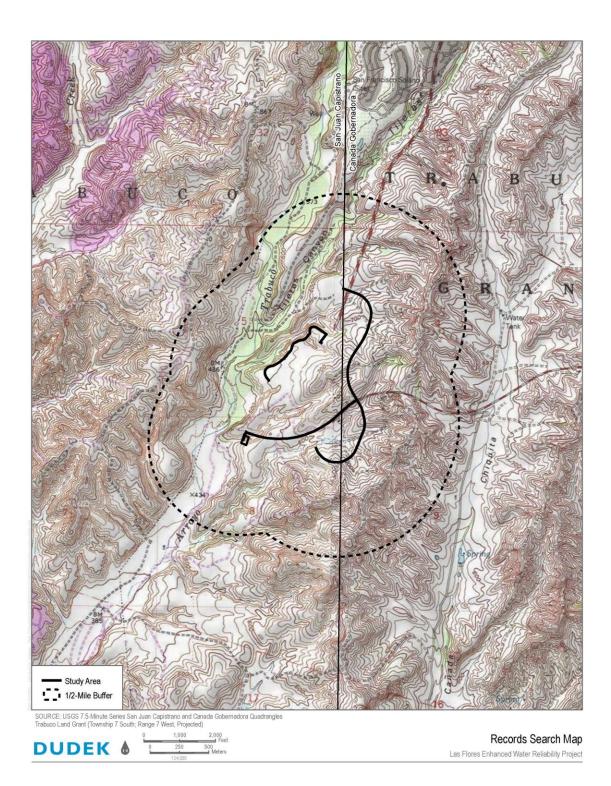
This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed 12318 Las Flores Enhanced Water Reliability Project, Orange County.

March 03, 2020

Mr. Temet Aguilar, Chairperson Pauma & Yuima Reservation P.O. Box 369 Pauma Valley, CA 92061

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Aguilar,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

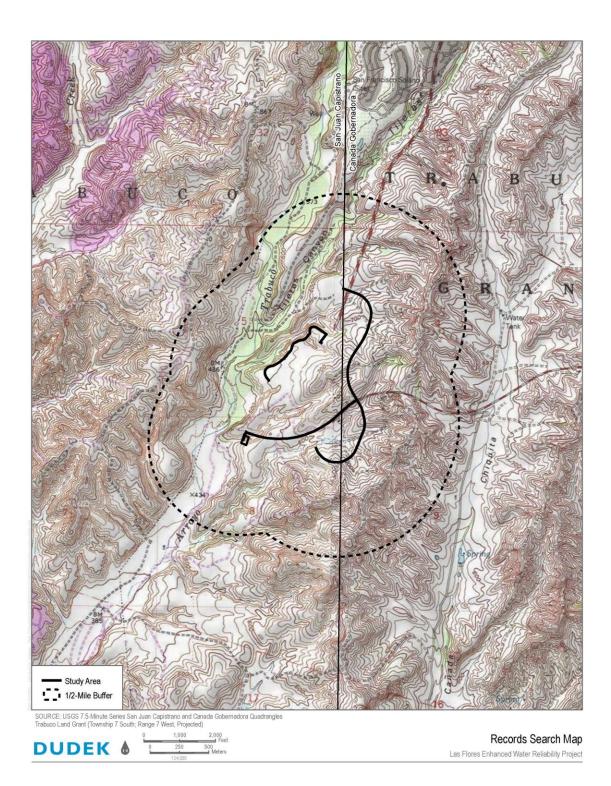
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 03, 2020

Mr. Matias Belardes, Chairperson Juaneno Band of Mission Indians Acjachemen Nation 32161 Avenida Los Amigos San Juan Capistrano, CA 92675

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Belardes,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

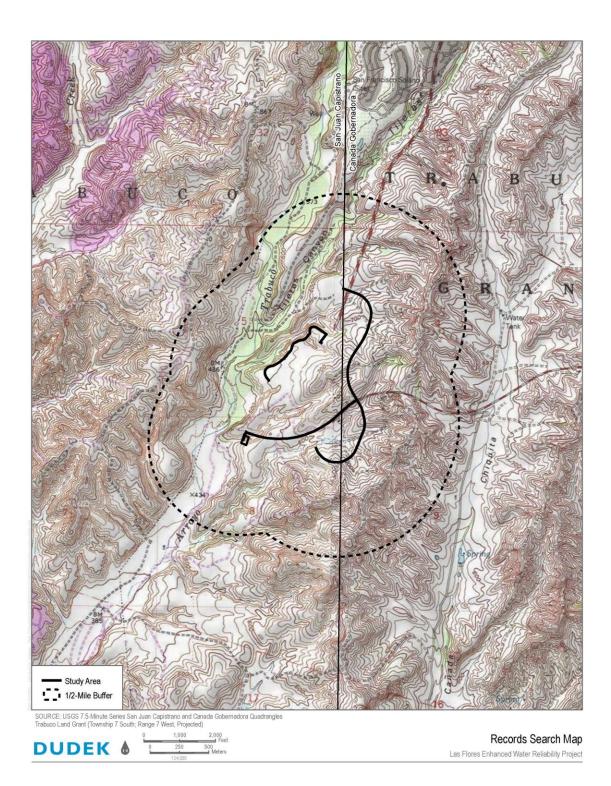
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Scott Cozart, Chairperson Soboba Band of Luiseno Indians P.O. Box 487 San Jacinto, CA 92583

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Cozart,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

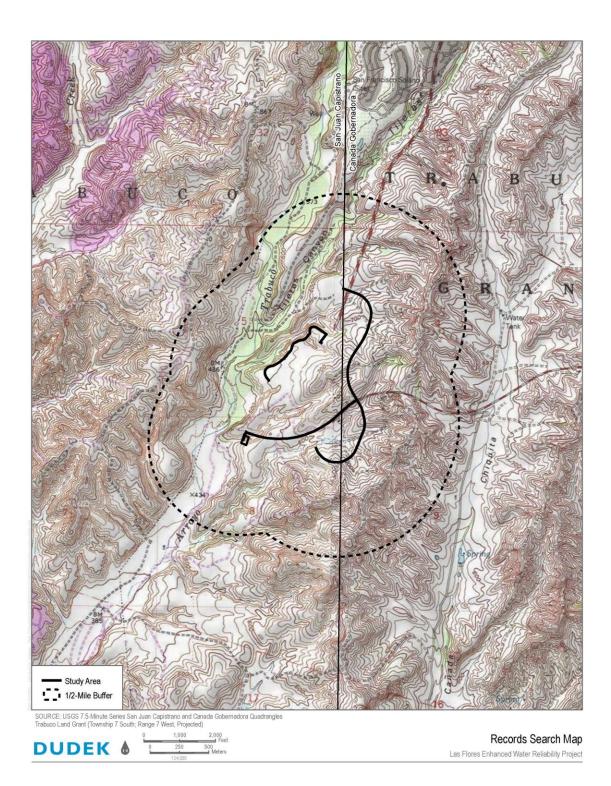
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Patricia Garcia-Plotkin, Tribal Historic Preservation Officer Agua Caliente Band of Cahuilla Indians 5401 Dinah Shore Drive Palm Springs, CA 92262

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Garcia-Plotkin,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

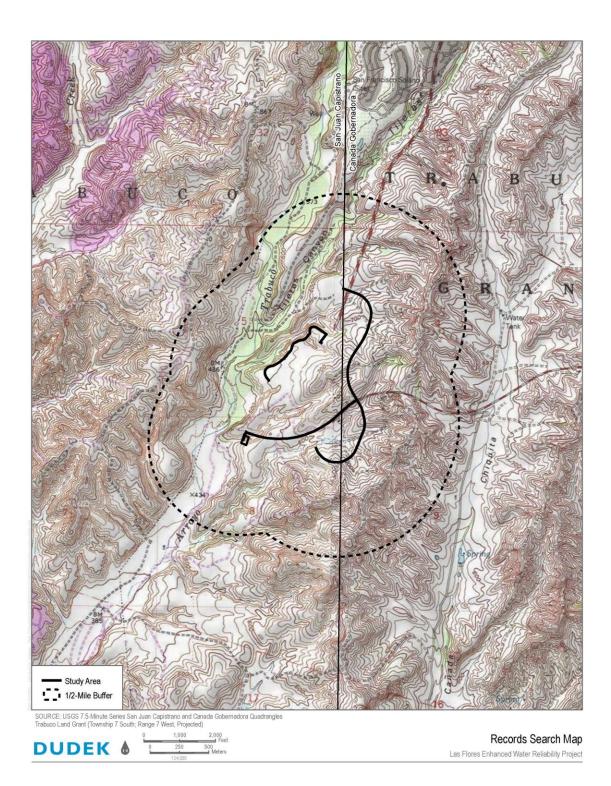
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Shasta Gaughen, Assistant Director Kupa Cultural Center 35008 Pala Temecula Rd. Pala, CA 92059

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Gaughen,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

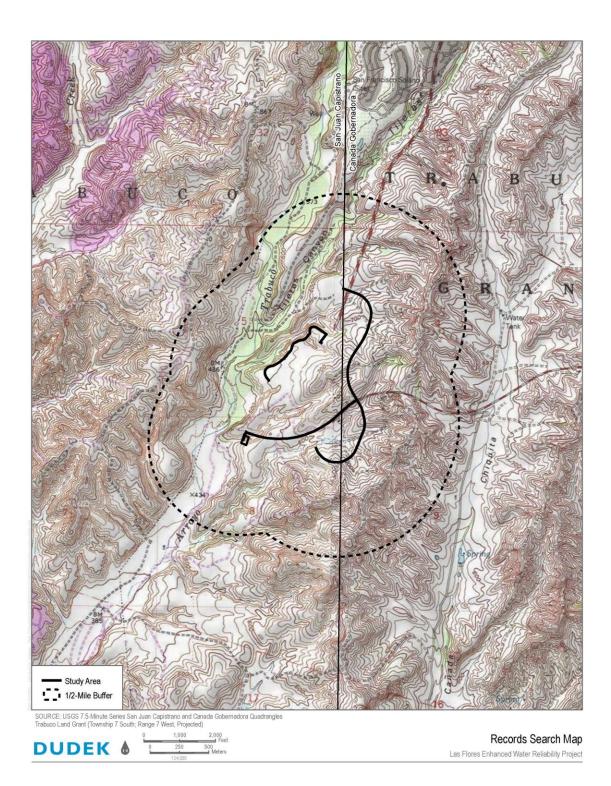
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Jeff Grubbe, Chairperson Agua Caliente Band of Cahuilla Indians 5401 Dinah Shore Drive Palm Springs, CA 92262

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Grubbe,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

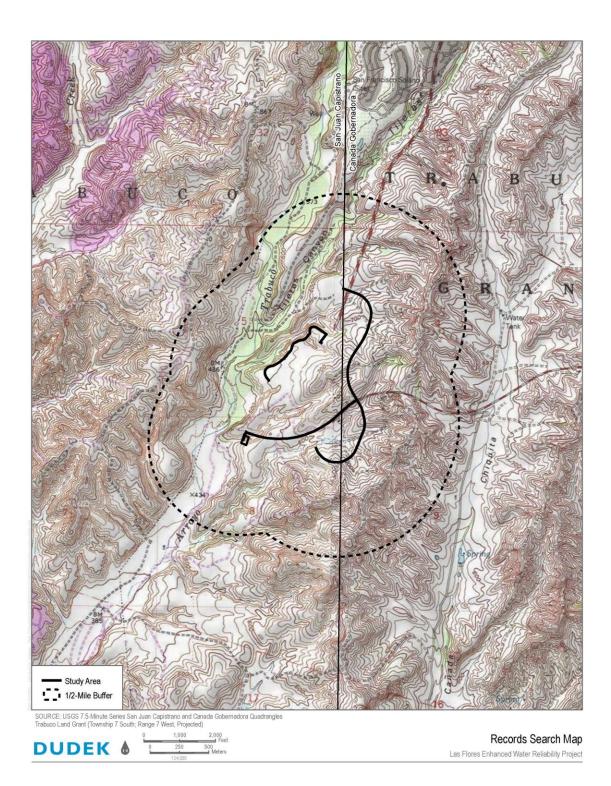
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Sonia Johnston, Tribal Chairperson Juaneno Band of Mission Indians P.O. Box 25628 Santa Ana, CA 92799

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Johnston,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

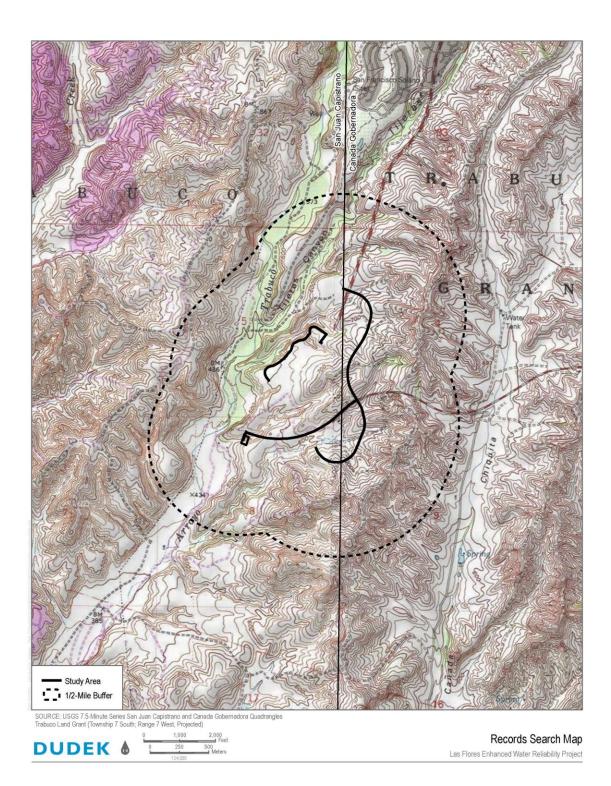
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Mark Macarro, Chairperson Pechanga Band of Mission Indians P.O. Box 1477 Temecula, CA 92593

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Macarro,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

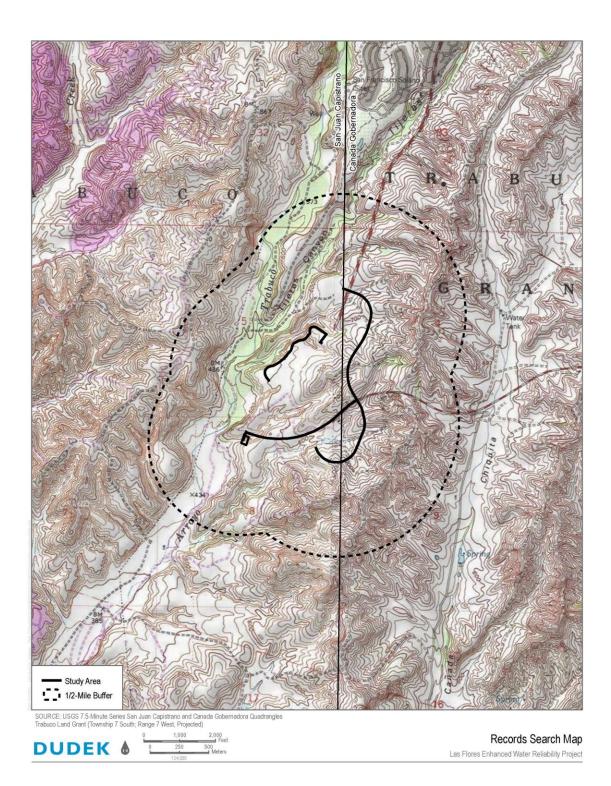
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Cheryl Madrigal, Tribal Historic Preservation Officer Rincon Band of Mission Indians One Governement Center Lane Valley Center, CA 92082

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Madrigal,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

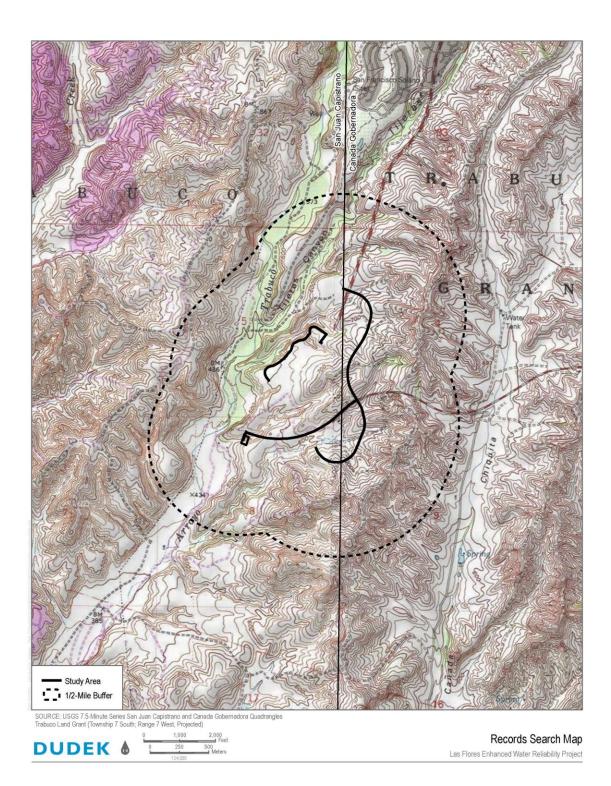
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Bo Mazzetti, Tribal Chairman Rincon Band of Mission Indians 1 W. Tribal Road Valley Center, CA 92082

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Mazzetti,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

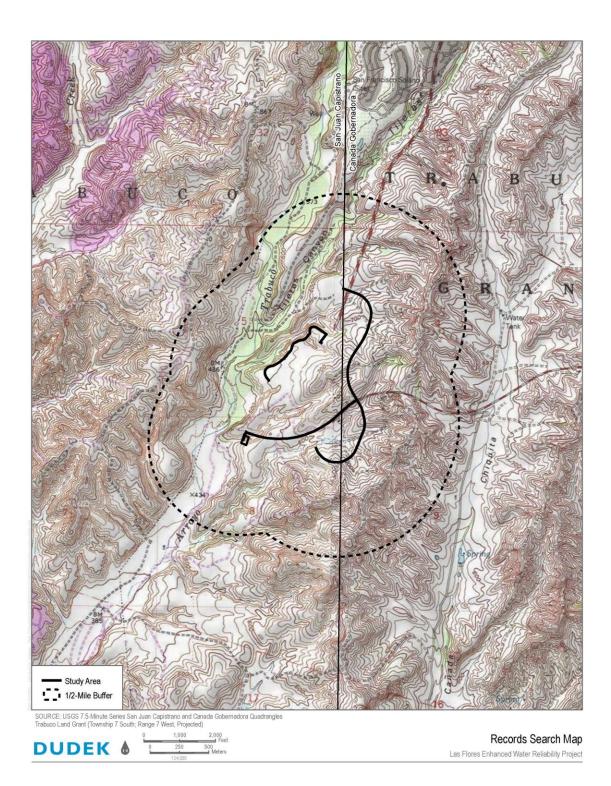
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Fred Nelson, Chairperson La Jolla Band of Mission Indians 22000 Highway 76 Pauma Valley, CA 92061

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Nelson,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

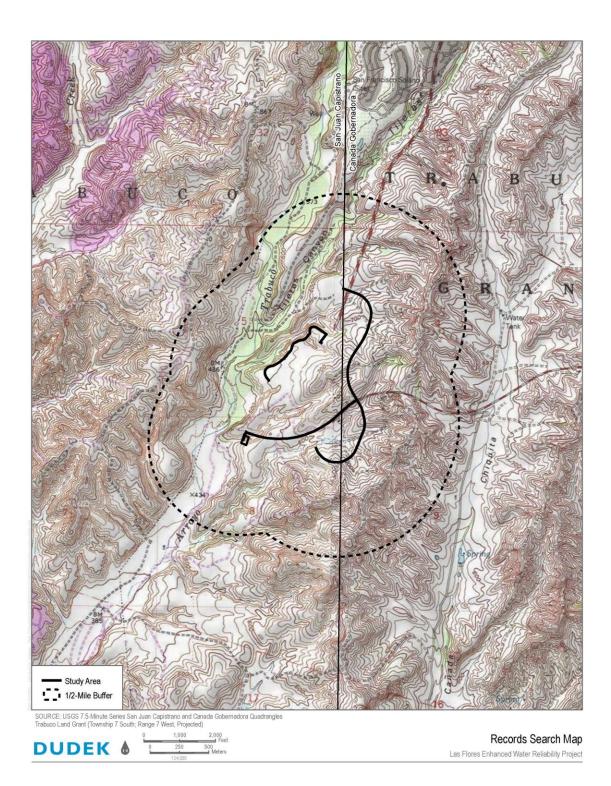
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Joseph Ontiveros, Cultural Resource Department Soboba Band of Luiseno Indians P.O. Box 487 San Jacinto, CA 92581

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Ontiveros,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

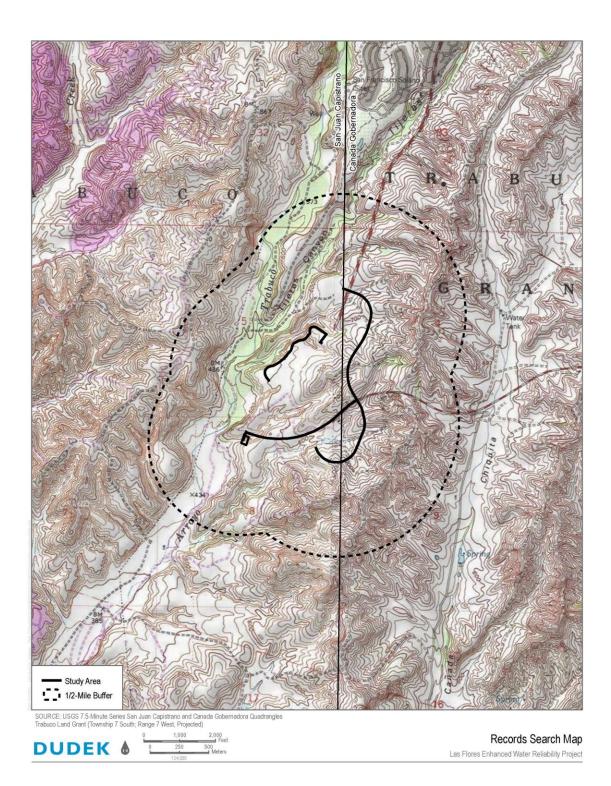
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Joyce Perry, Representing Tribal Chairperson Juaneno Band of Mission Indians Acjachemen Nation 4955 Paseo Segovia Irvine, CA 92612

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Perry,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

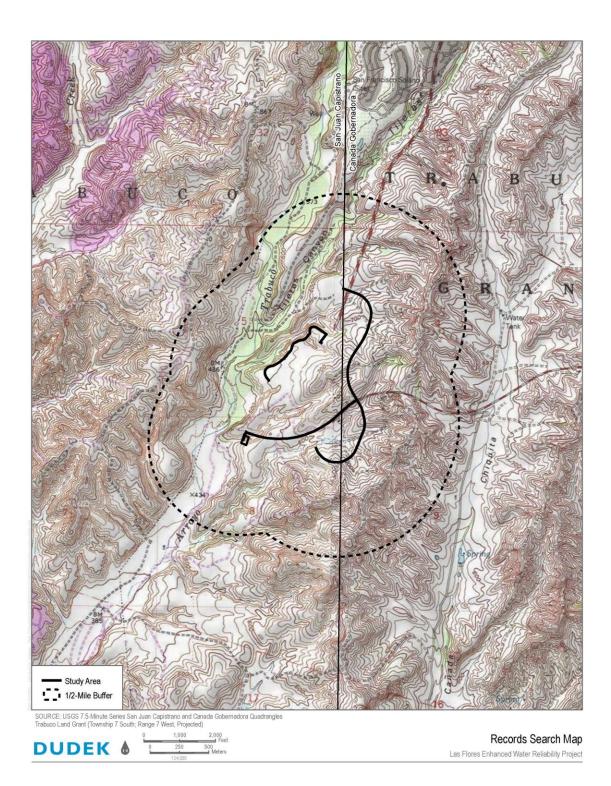
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Mr. Paul Macarro, Cultural Resources Coordinator Pechanga Band of Mission Indians P.O. Box 1477 Temecula, CA 92593

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Mr. Macarro,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

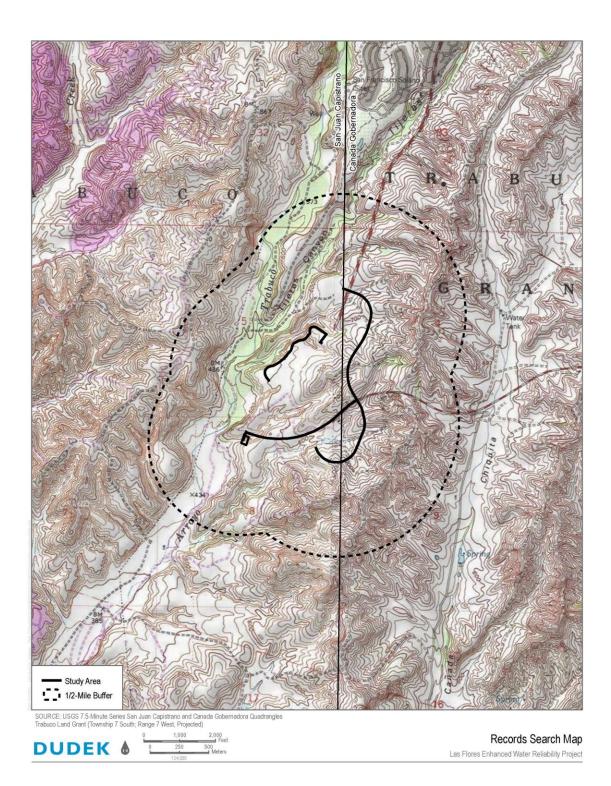
Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

Ms. Teresa Romero, Chairwoman Juaneno Band of Mission Indians Acjachemen Nation 31411-A La Matanza Street San Juan Capistrano, CA 92675

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

Dear Ms. Romero,


The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Respectfully,

Alm Gent

Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

March 04, 2020

San Luis Rey Band of Mission Indians 1889 Sunset Drive Vista, CA, 92081

Subject: Information Request for the Las Flores Enhanced Water Reliability Project, Orange County, California

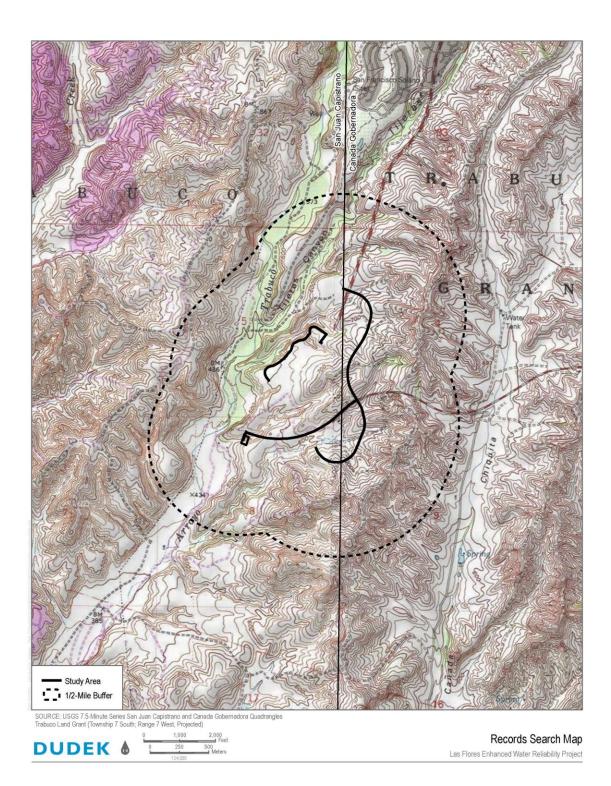
To Whom It May Concern:

The Santa Margarita Water District is planning the installation of approximately 3,800 linear feet of 16inch pipe and 6,390 linear feet of 8-inch pipe in residential streets and easements through previously disturbed open space (Figure 1). The Project also involves the conversion of the Las Flores Lift Station, currently out of service, to a recycled water booster pump station, and the rehabilitation of an approximately 3,650 foot long 10-inch existing force main in the right-of-way within Antonio Parkway (Figure 1). Rehabilitation of the 10-inch force main would be performed using a trenchless rehabilitation method where a liner would be inserted within the existing forcemain for structural reinforcement. The area is currently comprised of paved roads and a gravel access road on an undeveloped parcel of land. This project is located in Sections 5 and 8, Township 7 South, Range 7 West and Sections 4 and 9, Township 7 South Range 7 West of the San Juan Capistrano and Canada Gobernadora U.S. Geological Survey 7.5' topographic maps, respectively.

The Native American Heritage Commission conducted a Sacred Lands file search, and indicated that Native American cultural resources were identified within a one-half mile distance of the proposed project area. A SCCIC records search indicated previously-identified cultural resources that intersected the project APE. A pedestrian survey did not identify any cultural resources that would be disturbed by the proposed project activities. I am writing as part of the Inventory process in order to find out if you, or your tribal community, have any knowledge of cultural resources or places that may be impacted by the proposed project. Any consultation relating to AB 52 should be directed to the lead agency:

Mrs. Karla Houlihan Santa Margarita Water District 26111 Antonio Parkway Rancho Santa Margarita, CA 92688

If you have any information or concerns pertaining to such information, please contact me by phone or email.


Respectfully,

m Gont

Adam Giacinto, M.A., RPA Archaeologist **DUDEK** Phone: (760) 942-4252 Email: agiacinto@dudek.com

Attachments: Figure 1. Records Search Map

DUDEK

Appendix D

Noise Data Sheets and Modeling

APPENDIX D-1

Field Noise Data Sheets

DUDEK

....

FIELD NOISE MEASUREMENT DATA

SITE ID SITE ADDRESS START DATE 2/13/20 END DATE 2/ START TIME END TIME				and the second secon
START DATE 2/13/20 END DATE 2			Contration	
		OBSERVER(S) /	ETE VITAR	
	13/20		1	*
	/			
METEOROLOGICAL CONDITIONS)	WIND CALM	LIGHT MODERATE	
	SES SW W NW		STEADY GUSTY	•
	TLY CLDY FOG	RAIN	310AD1 30311	
SKY (SUNNY) (LEAR) OVRCAST PR		Nº411	~"'	-
ACOUSTIC MEASUREMENTS		•	-	4
MEAS. INSTRUMENT PICCULO SLA	1-3	TYPE 1 2		10317064
CALIBRATOR REWACA	74		SERIAL #	
CALIBRATION CHECK -PRE-TEST	dBA SPL	POST-TEST	dBA SPL WINDSCRN	YES
	*			
SETTINGS A-WTD (SLOW) FAST	FRONTAL RANDOM	ANSI OTHER:		
REC.# BEGIN END Leg Lm	ax Lmin L90	150 L10	OTHER (SPECIFY METR	
$1 \ge 18^{-1}$ 10:61 10:16 64.7 71.			ALIER PLEASE MELV	
			• • • • • • • • • • • • • • • • • • •	
		· · · · · · · · · · · · · · · · · · ·		
READILY TATE AT S	Tel Curron OI	E OPALLAR	- RUMAN	
1201-1275 SABLE :	PRIMORE AL	USE SOURCE	IC TOACEL	4
USO PARKNAF TO THE SOM		VIR SUVILLE	15 JANFIC	
PRIMARY NOISE SOURCE (RAFI ROADWAY TYPE: 75PHACT TRAFFIC COUNT DURATION: MIN		INDUSTRIAL RDWNC/LOR EOP: AA	OTHER: <u> </u>	toso Priv
DIRECTION NB/EB SB/WB NB/		NB/EB		SB/WB
2 2 MED TRKS	DIRECTIONS			-
MED TRKS	AS ONE, CHECK HERE	COUNT 2 (OR RDWY 2)		
0 BUSES		0°ē	<u> </u>	
MOTROLS				
SPEEDS ESTIMATED BY: RADAR / DRIVING THE PACE	-			52
POSTED SPEED LIMIT SIGNS SAY:	÷	,	1	2
OTHER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT	RUSTLING LEAVES DIST.	ARKING DOGS BIRDS	DIST. INDUSTRIAL	
DIST. KIDS PLAYING DIST. CONVRSTNS/Y				G NOISE
OTHER:				
DESCRIPTION / SKETCH			<i></i> `	
DESCRIPTION / SKETCH TERRAIN HARD SOFT MIXED FLAT O	31; 7232; 72	33; 7234;		
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72		, , , , , , , , , , , , , , , , , , , ,		
TERRAIN HARD SOFT MIXED FLAT O				
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72		· 		
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72				
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72				· ·
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72				
TERRAIN HARD SOFT MIXED FLAT OF PHOTOS 7228; 7229; 7230; 72				

DUDEK

.....

÷.,

FIELD NOISE MEASUREMENT DATA

ROJECT	SMW	ND L	AS FL	unes			PROJECT					\neg
SITE ADDRESS	5 /						OBSERVE	R(S) /	ETE	VIJAN	2	
START DATE		10	END DATE	2/3	120							1
START TIME			END TIME	, ,								
METEOROLO TEMP	1 1	F	HUMIDITY	. 46	% R.H.		WIND	CALM	UGHT	MODERAT	FF	
WINDSPD	-3-	MPH				W.NW	VV11412		E STEADY	GUSTY		1
SKY (SUNNY) (CLEAR	OVRCAST	PRTLY		FOG	RAIN					
		\bigcirc										
ACOUSTIC N		ENTS DI	(Lulo	Cin	2			••			11.2	
MEAS. INST			WA C	and the second se	2	·····	TYPE 1	. 2			14031706 480151	4
CALIBRATIO			-PRE-TEST	1 117	dBA SPL		POST-TES	π	dBA SPL			
			\sim		-				-			
SETTINGS		A-WTD	SLOW	FAST	FRONTAL	RANDOM	ANSI	OTHER:				
DEC #	BEGIN			•								1.
D 20-21	10:37	END 10:52	Leq 2 53.7	Lmax 66 - 1	Lmin 48.0	190	150	- L10	OTHER (S	SPECIFY MET	RIC	
								• •••••••				
								·	-			
	<u> </u>							-				
COMMENTS	5		÷		-				-			1
	DING Y	ANE	4 AT	SW	CURN	a of	RESI	DENTI	Y BUI	IONG	AT	
		UNYAT				NUISE				K FAC		
ANJUN	- Fili	ntivat	the second s	HE E	NJJ; I	ow HI	IM OF	- NEA	rbf p	POUL P	UMP,	
SOURCE INF	the party is not the other data to the party of the party	the state of the s	MTS	NUTAL	DISLE	OVERT	MAFER	NUIS	EONI	A TUNI	o ptut)	
	PRIMARY		URCE	TRAFFIC	AIRCRAFT	RAIL	INDU	STRIAL	OTHER:		:	
	ROADWAY	colored to the state of the state	ASPHM	a design of the second seco		DIST. TO R	DWYCIL	REOP: A	PX 420'	YO CIL	C.J. ANTO	wio
TRAFFIC COU			MIN	SPE			Ŭ		_ MIN	SPEE		PA
a	DIRECTION	NB/EB	SB/WB	NB/EB	SB/WB	IF COUNTING	2)	NB/EB	SB/WB	NB/EB	SB/WB	· [
	MED TRKS			_	-	BOTH	¥12		-			
COUNT 3 OR RDWY 1	HVY TRKS					AS ONE, CHECK HERE	COUNT 2 OR RDWY 2)		\sim			{
<u> </u>	BUSES		\sim				ΟŌ		\sim			
SPEEDS ESTIN	MOTRCLS	2.03	VING THE PA	CE ·						-	,	
POSTED SPEE												1.
OTHER NOISE												
	OTHER:	PLATING L	DIST. CONVRS	INS / TELLI		AFFIC (UST H	DWA2 RED		GARDENER	S/LANDSCAPI	ng noise	
						· · · · · · · · · · · · · · · · · · ·		· · ·		******		
DESCRIPTION			MIXED FI	AT OTHE	D .							
			3: 72 39			7242	7143	72.44	: 7245			
	MMENTS /				7-12-21				7	1		
					ļ							
			1 -	L.,	<u> </u>			ļ	+		+	-
	<u> </u>		1					1	1	1	1 1	
	·		1		 			1		T	tt-	-
	· 											- - -
					· · · · ·					•	·	
										 	· · · · ·	

P	ROJECT	SM	WD	LAS FI	unes		and the second s	PROJECT	₽ 123	18		
	ITE ID								· · /)		
S	TE ADDRE	SS ./ .						OBSERVE	r(s) /	ETE	VITAI	<u>e</u>
S	TART DATE	2/13/4	10	END DATE	2/13/	120		_				
S	TART TIME			END TIME								
n	AFTEODOL	OGICAL CON	DITIONE									
	EMP	64	F	HUMIDITY	43	% R.H.		WIND	CALM	UGHT	MODERA	TF
	NINDSPD	5	MPH		NE S SE	•	W .NW	VVIIVL	OF CONCLUSION	E STEADY	GUSTY	
s	SKY	SUNNY	CLEAR)	OVRCAST	PRTLY	•	FOG	RAIN	07 H U/ U/ U/	ų 9 10101		
			\bigcirc					10411				
A	ACOUSTIC N	MEASUREM	ENTS O		-							
	MEAS. INST			(Lulo		3		TYPE 1	2			140317064
	ALIBRATO		RC	WA CI	A 114			-				480151
-	CALIBRATIC	IN CHECK		-PRE-TEST	-	dBA SPL		POST-TES	r	dba spl	WINDSCI	WYES
S	ETTINGS		A-WTD	(SLOW)	FAST	EDONITAL	BANDON	A 33C1	OTUED.			
			~~~~	JUN	TASI	FRUNIAL	RANDOM	ANSI	OTHER:			
F	RE <b>C. #</b>	BEGIN	END	Lea	Lmax	Lmin	190	150	- 110	OTHER (S	SPÉCIFY ME	TRIC
)	22-23	<u> </u>	11:26	64.1	73.0	50.0		~~~		Quinen le		
									. <u></u>	-		
							. <u></u>			-		
							:			-		
C	COMMENT	5		÷						-		
	DEAN	1/ A	her A	T SUV	TH Prol	ENTH	- DOUNON	1- NF	MA 11.	MAA	+9	SUMMIT.
	1-0104	NU IITI	(- U						110 -11/			
s	PLINT	O AND TRA PRIMARY ROADWAY	LFFIC COU NOISE SO	NTS		AIRCRAFT	RAII	D Prw	STRIAL	OTHEP.	SOUT	
T S P	FRAFFIC COL TRAFFIC COL TI ANDU NO SPEEDS ESTIM	O AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS HVY TRKS BUSES MOTRCLS AATED BY: R D LIMIT SIGN	ADAR / DRI	NTS URCE 95 PM-() MIN SB/WB SB/WB	TRAFFIC SPEE NB/EB	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
S P O	COURCE INF	O AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARL	ADAR / DRI ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	CO AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARE 72 47;	ADAR / DRI SAY: ACKGROUI	NTS URCE AS (MAC) MIN SB/WB SB/WB	TRAFFIC SPEE NB/EB	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	O AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARL	ADAR / DRI SAY: ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	CO AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARE 72 47;	ADAR / DRI SAY: ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	CO AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARE 72 47;	ADAR / DRI SAY: ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	CO AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARE 72 47;	ADAR / DRI SAY: ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /
T S P O	COURCE INF	CO AND TRA PRIMARY ROADWAY UNT DURAT DIRECTION AUTOS MED TRKS BUSES MOTRCLS MOTRCLS MATED BY: R D LIMIT SIGN SOURCES (B DIST. KIDS I OTHER: N / SKETCH HARE 72 47;	ADAR / DRI SAY: ACKGROUI	MIN SB/WB WING THE PAG	TRAFFIC SPEE NB/EB CE RCRAFT RU	AIRCRAFT	RAIL DIST. TO F BOTH DIRECTIONS AS ONE, CHECK HERE	D P / K	STRIAL STRIAL DR EOP: A NB/EB	OTHER: PL 200 MIN SB/WB	SOUTH SPE NB/EB	<u>0./ 05</u> 0 /

E ADDRESS       OBSERVEN(S)       PETE V/TA R         ART DATE       2/18/20       END DATE       2/18/20         ART TAME       END TIME       END TIME         TECOROLOGICAL CONDITIONS       MUNIDITY       Y       SERVEN(S)       MODERATE         VALUADEL       MARE DATE       VALUADEL       SERVEN(S)       MODERATE         VALUADEL       STECOROLOGICAL CONDITIONS       MUNIDITY       Y       SERVEN(S)       MODERATE         VALUADEL       MARE DATE       ORRCAST       PRITY CLDY       FOG       RAIN         COUSTIC MEASUREMENTS       DIR. IN NE S SE SS W W. NW       WIND       CALM       WALABLE STEADY GUSTY         DOUSTIC MEASUREMENTS       DIR. N. NE S SE SS W W. NW       WIND       CALM       SERVEN(S)         DOUSTIC MEASUREMENTS       DICULO       SCM-3       TYPE 1       SERVEN(S)       SERVEN(S)         DOUSTIC MEASUREMENTS       DICULO       SCM-3       TYPE 1       CBR SERVEN(S)       SERVEN(S)       SERVEN(S)       SERVEN(S)         CC-8       BEERIN       END       Leg       Linin       190       LS0       LL0       OTHER (SPÉCIPY METRIC         CC-8       BEERIN       END       Leg       Leg       Leg       LG       LG		SMWD	LAS FLUR	ES	PROJECT # 123	318		_ ]
ART DATE 2/18/20       END DATE 2/18/20         ART TIME       END TIME         ETECROLOGICAL CONDITIONS       MP         MP $\mathcal{G}$ F         HUMIDITY       Y         SUNNY       CEAR         V       SUNNY       CEAR         SUNNY       CEAR       OVRCAST         PRIL       DIR. N       N NE         SUNNY       CEAR       OVRCAST         PRIL       CLUS       SUNNY         COUSTIC MEASUREMENTS $fl(UULO SLM-2$ TYPE         SUNNY       TEAR       OVRCAST         PRE-TEST       dBA SPL       POST-TEST         dBA SPL       MINDSCRN YES         LUBRATION CHECK       FRONTAL RANDOM ANSI       OTHER:         SC.#       SEGIN       END       Leq       Lipsx         LUBRATION       END       Leq       Lipsx       Linin       190       LSO       LIO       OTHER (SPÉCIFY METRIC         24/2.5       LIPSX       MONACTAT       SEGIN       END       Leq       Lipsx       Linin       LIO       OTHER (SPÉCIFY METRIC         24/2.5       LIPSX       MONACTAT       SEGINT       ANT MALE       SEGINT ANT MALE       SEGINT	ITE ID					Drac		
ART TIME       END TIME         ETECROLOGICAL CONDITIONS       HUMIDITY 44 SER.H.       WIND       CALM       LIGHT       MODERATE         MISSPD       MPH       GL       MPH       F       HUMIDITY 44 SER.H.       WIND       CALM       LIGHT       MODERATE         MISSPD       MPH       OVRCAST       PRILY CLDY       FOG       RAIN       SERIAL # 14/0317064         SCUSTIC MEASUREMENTS       P/(CULO_SLM-3)       TYPE 1       2       SERIAL # 14/0317064         COUSTIC MEASUREMENTS       P/(CULO_SLM-3)       TYPE 1       2       SERIAL # 14/0317064         COUSTIC MEASUREMENT       P/(CULO_SLM-3)       TYPE 1       2       SERIAL # 14/0317064         COUSTIC MEASUREMENTS       P/(CULO_SLM-3)       TYPE 1       2       SERIAL # 14/0317064         LIBRATION CHECK       PRETEST       dBA SPL       POST-TEST       dBA SPL       WINDOCRN YES         LIBRATION CHECK       PRETEST       dBA SPL       POST-TEST       dBA SPL       WINDOCRN YES         LIBRATION CHECK       PRETEST       dBA SPL       POST-TEST       dBA SPL       WINDOCRN YES         LIBRATION CHECK       SCOW       FAST       FRONTAL RANDOM ANSI       OTHER:       SCOW         LIBRATION CHECK       SCOW<					OBSERVER(S)	EJE	MAR	-
ETECROLOGICAL CONDITIONS       WIND       CALM       UGAT       MODERATE         MINDS       MARE       MIND       CALM       UGAT       MODERATE         MINDS       MEA       DIR. N. N. E.S. SE.S. SW. W. NW       VARIABLE STEADY       GUSTY         Y       GUNNY, DEAR       OVRCAST       PRILY CLDY       FOG       RAIN         SOUSTIC MEASUREMENTS $P/(CULO_SCM-3)$ TYPE 1       2       SERIAL # '1307/06'4         SERIALSATOR $ITCULO_SCM-3$ TYPE 1       2       SERIAL # '1307/06'4         LIBRATION CHECK $RCWA CA_TTH       dBA SPL       MONDSCRNY'ES       dBA SPL         JIBRATION CHECK       ROW       FAST       FRONTAL RANDOM ANSI       OTHER:         SCL#       SEGIN       END       Leg       Lipax       Linin       LSO       LIO       OTHER (SPECIPY METRIC         R4-2.S       II'4'3       II'S S       60-3       75-9       SI.3      $				12/20				
MNP       G4       F       HUMIDITY       Y4       SR.H.       WIND CALM       WENTY       MODERATE         NINDSPD       JIR, H       N N       N S SE S SW       W. NW       VARIABLE STEADY       GUSTY         V       SUNNY       GEAR       DVR.CAST       PRITYCLDY       FOG       RAIN         V       SUNNY       GEAR       PRETEST       dBA SPL       POST-TEST       dBA SPL       WINDSCRN YES         LIBRATOR       FIGS       A-WTD       GUOW       FAST       FRONTAL RANDOM ANSI       OTHER:         SCL *       BEGIN       END       Lag       Libra       Ling       Ling       GUOW       FAST       FRONTAL RANDOM ANSI       OTHER:         SCL *       SEGUN       END       Lag       Ling       Ling       Ling       Ling       Ling	TARTTIME	,	ENDTIME					
COUSTIC MEASUREMENTS       D/ (LULO SLM-3       TYPE 1 2       SERIAL # (40'3) 706'4         SERIAL # TOTAL # TOTA	METEOROLI TEMP WINDSPD	GY F MPH	HUMIDITY 4 DIR. N NE	S SE S SW W NW	VARIABI			
EAS. INSTRUMENT $\frac{D/CUCO}{RCWAC}$ TYPE 1 2 SERIAL # 140 31 7 06.4 SERIAL # 7807(7) SERIAL # 7807(7					<b>NAUN</b>		** .	[
A-WID       SLOW       FAST       FRONTAL RANDOM ANSI       OTHER:         EE.#       BEGIN       END       Leq       Linax       Linax       Lina       OTHER:         EE.#       BEGIN       END       Leq       Linax       Linax       Lina       OTHER:         EE.#       BEGIN       END       Leq       Linax       Linax       Lina       OTHER:         SHALE       Linax       Linax       Linax       Linax       Linax       OTHER:         SHALE       Linax       Linax       Linax       Linax       OTHER:       OTHER:         SHALE       Linax       Linax       Linax       Linax       Control       OTHER:         SHALE       Linax       Linax       Linax       Linax       Linax       Linax         SHALE       Linax       Linax       Linax       Linax       Linax       Linax         SHALE       Linax       Linax       Linax       Linax       Linax       Linax       Linax         SHALE       Linax	Meas. Inst Calibratø		WA CA	[]4		40 A 501	SERIAL # 780151	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $			$\overline{\bigcirc}$		F031-1631		WINDSCHI <u>FCS</u>	- {
ALY-2S       11:43       11:58       60:3       75:9       51:3       Contract of the product of the	ETTINGS	A-WTD	SLOW FAS	FRONTAL RANDO	OM ANSI OTHER:			_
HERSTAL TOKEN, AT SW COMEND OF PWEATL AT 164 BLOWMFIEU         LANE (LESIDENTAL), AT THE ME COMMEND OF BLOWMFIED LANEL         MURAMANE TRAICI, INPUMAR NUISE SOURCE IS TRAFFIC ON MORNING TRAFF.         SECUNDANI- 18 DAY DISTANT TRAFFIC (NULL ON OSO PHAT; SUTE TRAFFIC ON BUILDISTURE INPO AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIRECTION NB/EB         DIRECTION NB/EB         SB/WB         NB/EB         DIRECTION NB/EB         SB/WB         TATOS         BOTH         TATOS <t< td=""><td><u>R4-2</u>5</td><td></td><td>Leg 11 3 60.3 7</td><td>niax Lmin 190 5.9 <u>51.3</u></td><td>) 150 110</td><td>OTHER (SI</td><td>PECIFY METRIC</td><td>-</td></t<>	<u>R4-2</u> 5		Leg 11 3 60.3 7	niax Lmin 190 5.9 <u>51.3</u>	) 150 110	OTHER (SI	PECIFY METRIC	-
HERSTAL TOKEN, AT SW COMEND OF PWEATL AT 164 BLOWMFIEU         LANE (LESIDENTAL), AT THE ME COMMEND OF BLOWMFIED LANEL         MURAMANE TRAICI, INPUMAR NUISE SOURCE IS TRAFFIC ON MORNING TRAFF.         SECUNDANI- 18 DAY DISTANT TRAFFIC (NULL ON OSO PHAT; SUTE TRAFFIC ON BUILDISTURE INPO AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIRECTION NB/EB         DIRECTION NB/EB         SB/WB         NB/EB         DIRECTION NB/EB         SB/WB         TATOS         BOTH         TATOS <t< td=""><td><del></del></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>21</td></t<>	<del></del>					-		21
HERSTAL TOKEN, AT SW COMEND OF PWEATL AT 164 BLOWMFIEU         LANE (LESIDENTAL), AT THE ME COMMEND OF BLOWMFIED LANEL         MURAMANE TRAICI, INPUMAR NUISE SOURCE IS TRAFFIC ON MORNING TRAFF.         SECUNDANI- 18 DAY DISTANT TRAFFIC (NULL ON OSO PHAT; SUTE TRAFFIC ON BUILDISTURE INPO AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIST. TO ROWN CLORE EOP: AND TRAFFIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASPECD         DIRECTION NB/EB         DIRECTION NB/EB         SB/WB         NB/EB         DIRECTION NB/EB         SB/WB         TATOS         BOTH         TATOS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-  </td></t<>								-
Image: Contract of the second seco	OMMENT	5				-		- 1
M.M.E. (1451) UANTA(), AT THE MIF COUNDAL OF BLOWFIED UNEE         MORNWE TRAIC;         SECUNDANT TRAIC;         SECUNDANT TRAIC;         SECUNDANT TRAIC;         SECUNDANT TRAIC;         SECUNDANT TRAIL         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASFRIC COUNTS         PRIMARY NOISE SOURCE         ROADWAY TYPE:         ASFRIC COUNTS         DIRECTION NB/EB         DIRECTION NB/EB         SB/WB         NECTION         NED TRKS         DIRECTION NB/EB         SB/WB         DIRECTION <td< td=""><td>Res</td><td>anc tak</td><td>FX.AT</td><td>SW CORNER</td><td>OF PRUENTH</td><td>ATI</td><td>64 BLOOME</td><td>IGIN</td></td<>	Res	anc tak	FX.AT	SW CORNER	OF PRUENTH	ATI	64 BLOOME	IGIN
SECUNDAN- 15 DIAL DISTONT MARFIC (NULLE ON OSO PROF; SURE TRAFFIC ON BL         PRIMARY NOISE SOURCE       TRAFFIC AIRCRAFT         ROADWAY TYPE:       ASPEED         DIST. TO ROWP (LOR EOP: AN SOFT OF TRAFFIC ON THER: ROADWAY TYPE:       MIN         SPEED       DIST. TO ROWP (LOR EOP: AN SOFT OF TRAFFIC ON THER: DIST. TO ROWP (LOR EOP: AN SOFT OF TRAFFIC ON THER: DIST. TO ROWP (LOR EOP: AN SOFT OF TRAFFIC ON THE PROFEDENCE)         DIRECTION NB/EB       SB/WB         BOTH       NB/EB         SB/WB       NB/EB         BOTH       NB/EB         SB/WB       NB/EB         SB/WB       NB/EB         SB/WB       NB/EB         SB/WB       NB/EB         SB/WB       SB/WB         S	UNNE	E (RESIDENT		THE NE CU	WON OF BLU	UMFIEU		
DURCE INFO AND TRAFFIC COUNTS       TRAFFIC AIRCRAFT       RAIL       INDUISTRIAL       OTHER:         ROADWAY TYPE:       AS PUTCF       DIST. TO ROWP (/L OR EOP: A/K 30' yo (LOOM/FIEC LAV C)         AFFIC COUNT DURATION:       MIN       SPEED       MIN       SPEED         DIRECTION       NB/EB       SB/WB       NB/EB       SB/WB       NB/EB       SB/WB         T       T       AUTOS       MIN       SPEED       NB/EB       SB/WB       NB/EB       SB/WB         T       T       AUTOS       BOTH       TO       NB/EB       SB/WB       NB/EB       SB/WB         T       T       AUTOS       SB/WB       NB/EB       SB/WB       NB/EB       SB/WB         T       T       AUTOS       SB/WB       NB/EB       SB/WB       NB/EB       SB/WB         BOTH       T       AUTOS       SB/WB       NB/EB       SB/WB       NB/EB       SB/WB         BOTH       TKS       OTHER:       DIRECTIONS       X       SANR, SORE       SB/WB       SB/WB       SB/WB         BOTH       TKS       OTHER:       OTHER       SORE       SB/WB       SD/WB       SD/WB       SD/WB       SD/WB       SD/WB       SD/WB       SD/WB </td <td>MOR</td> <td></td> <td></td> <td></td> <td></td> <td>10 0/1</td> <td></td> <td></td>	MOR					10 0/1		
PRIMARY NOISE SOURCE TRAFFIC AIRCRAFT RAIL INDUSTRIAL OTHER: ROADWAY TYPE: AS PUTCE DIST. TO ROWN C/L OR EOP: AN 30' 70 (2000/FF/FC LW C DIRECTION NB/EB SB/WB NB/EB SB/WB T AUTOS AUTOS AUTOS BIDRECTION NB/EB SB/WB NB/EB SB/WB THE AUTOS BUSES MOTRCLS STED SPEED LIMIT SIGNS SAY: HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS (BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVERTNS / YELLING (DIST. TRAFFIC (LIST ROWNS BELOW)) DIST. AIRCRAFT RUSTLING DIST. TRAFFIC (LIST ROWNS BELOW)) DIST. AIRCRAFT RUSTLING DIST. TRAFFIC (LIST ROWNS BELOW)) DIST. AIRCRAFT RUSTLING DIST. TRAFFIC (LIST ROWNS BELOW)) SCRIPTION / SKETCH TERRAIN HARD SOFT (MIXED FLAT OTHER: PHOTOS 72 S1; 72 S7; 72 S3; 72 S3; 72 S3; 72 S3; 72 S3; 72 S3; 72 S4; 72 S5;			INTS	MUATTIC NOLLE	WOJO PRUP	SOTE	TRAFFIC ON	BLa
AFFIC COUNT DURATION:MIN SPEED DIRECTION NB/EB SB/WB NB/EB SB/WB T AUTOSBOWB NB/EB SB/WB MED TRKSBOWB NB/EB SB/WB HVY TRKSBOWB NB/EB SB/WB BOTH ST SAMEBOWB NB/EB SB/WB HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOWF) DISTD GARDENERS/LANDSCAPING NOISE OTHER:DISTANT		PRIMARY NOISE SC		FFIC AIRCRAFT RAI	INDUSTRIAL	OTHER:		
ATHIC COUNT DURATION: MIN SPEED MIN			and the state of the second		ORDWARCILOREOP: A	Px 30' 4	D GLOOMFIELL	NX1
Image: State of the second state of	RAFFIC CO					_	SPEED	- 7
MED TRKS       DIRECTIONS       DIRECTIONS       DIRECTIONS         O'O'O' BUSES       AS ONE,       DIRECTIONS       DIRECTIONS         MOTRCLS       CHECK HERE       D'O'O'       DIRECTIONS       D'O'O'         MOTRCLS       CHECK HERE       D'O'O'       D'O'O'       D'O'O'O'         MOTRCLS       CHECK HERE       D'O'O'       D'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O	Ĥ	STARSHING STARS	SB/WB N	IFCOUN		SB/WB	NB/EB SB/WB	. •
MOTRCLS EEDS ESTIMATED BY: RADAR / DRIVING THE PACE ISTED SPEED LIMIT SIGNS SAY: HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. TAFFIC (LIST RDWYS BELOW) DIST. TRAFFIC (LIST RDWYS BELOW)	-					-		- 1
MOTRCLS EEDS ESTIMATED BY: RADAR / DRIVING THE PACE ISTED SPEED LIMIT SIGNS SAY: HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. TAFFIC (LIST RDWYS BELOW) DIST. TRAFFIC (LIST RDWYS BELOW)	E A	NA PERIOD IN THE REPORT OF AN ADDRESS		AS ON		$\geq$		• {
EEDS ESTIMATED BY: RADAR / DRIVING THE PACE ISTED SPEED LIMIT SIGNS SAY: HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DIST. TRAFFIC (LIST RDWYS DIST. TRAFFIC (LIST RDWYS DIST. TRAFFIC (LIST RDWYS DIST. TRAFFIC (LIST RDW	NUC	HVY TRKS						
STED SPEED LIMIT SIGNS SAY: HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DIST. THERE ESCRIPTION / SKETCH TERRAIN HARD SOFT MIXED FLAT OTHER: PHOTOS 72.56; 72.57; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.65; 72.6	COUNT:	BUSES			-	/		
HER NOISE SOURCES (BACKGROUND): DIST. AIRCRAFT RUSTLING LEAVES DIST. BARKING DOGS BIRDS DIST. INDUSTRIAL DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTD GARDENERS/LANDSCAPING NOISE OTHER: DISTART GRAFTIC NULLE FLAT OF		BUSES		· · · · · · · · · · · · · · · · · · ·			<u> </u>	. 1
DIST. KIDS PLAYING DIST. CONVRSTNS / YELLING DIST. TRAFFIC (LIST RDWYS BELOW) DISTO GARDENERS/LANDSCAPING NOISE OTHER: DISTAT TRAFFIC NULLE FLATMOSD PHWT; ESCRIPTION / SKETCH TERRAIN HARD SOFT MIXED FLAT OTHER: PHOTOS 7256; 7257; 7258; 7259; 7260; 7261; 7262; 7263; 7264; 7265	PEEDS ESTU	BUSES MOTRCLS	LIVING THE PACE				<u> </u>	•
OTHER: <u>DISTAT TRAFFIC NULLE FROM OSU PHUT</u> ESCRIPTION/SKETCH TERRAIN HARD SOFT MIXED FLAT OTHER: PHOTOS 7256; 7257; 7258; 7259; 7260; 7261; 7262; 7263; 7264; 7265	PEEDS ESTU	BUSES MOTRCLS	LIVING THE PACE					
ESCRIPTION / SKETCH TERRAIN HARD SOFT MIXED FLAT OTHER: PHOTOS 7256; 7257; 7258; 7259; 7260; 7261; 7262; 7263; 7264; 7265	PEEDS ESTIN OSTED SPEE	BUSES MOTRCLS MATED BY: RADAR / DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU	ND): DIST. AIRCRAI					
TERRAIN HARD SOFT (MIXED FLAT OTHER: PHOTOS 7256; 7257; 7258; 7259; 7260; 7261; 7262; 7263; 7264; 7265	PEEDS ESTIN OSTED SPEE	BUSES MOTRCLS MATED BY: RADAR / DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST, KIDS PLAYING	ND): DIST. AIRCRAI DIST. CONVRSTNS /	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST			
TERRAIN HARD SOFT (MIXED FLAT OTHER: PHOTOS 7256; 7257; 7258; 7259; 7260; 7261; 7262; 7263; 7264; 7265	PEEDS ESTIN OSTED SPEE	BUSES MOTRCLS MATED BY: RADAR / DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST, KIDS PLAYING	ND): DIST. AIRCRAI DIST. CONVRSTNS /	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST			-
	PEEDS ESTIN OSTED SPEE	BUSES MOTRCLS MATED BY: RADAR / DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST, KIDS PLAYING	ND): DIST. AIRCRAI DIST. CONVRSTNS /	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST			-
	PEEDS ESTIM OSTED SPEE THER NOISE DESCRIPTIO TERRAIN PHOTOS	BUSES MOTRCLS MATED BY: RADAR/DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST. KIDS PLAYING OTHER:/S OTHER:/S DN / SKETCH HARD SOFT 72 S6; 72 S	ND): DIST. AIRCRAI DIST. CONVRSTNS / TANT TRAF	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST		LANDSCAPING NOISE	
	PEEDS ESTIM OSTED SPEE THER NOISH DESCRIPTIO TERRAIN PHOTOS	BUSES MOTRCLS MATED BY: RADAR/DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST. KIDS PLAYING OTHER:/S OTHER:/S DN / SKETCH HARD SOFT 72 S6; 72 S	ND): DIST. AIRCRAI DIST. CONVRSTNS / TANT TRAF	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST		LANDSCAPING NOISE	
	PEEDS ESTIM OSTED SPEE THER NOISH DESCRIPTIO TERRAIN PHOTOS	BUSES MOTRCLS MATED BY: RADAR/DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST. KIDS PLAYING OTHER:/S OTHER:/S DN / SKETCH HARD SOFT 72 S6; 72 S	ND): DIST. AIRCRAI DIST. CONVRSTNS / TANT TRAF	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST		LANDSCAPING NOISE	
	PEEDS ESTIM OSTED SPEE THER NOISH DESCRIPTIO TERRAIN PHOTOS	BUSES MOTRCLS MATED BY: RADAR/DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST. KIDS PLAYING OTHER:/S OTHER:/S DN / SKETCH HARD SOFT 72 S6; 72 S	ND): DIST. AIRCRAI DIST. CONVRSTNS / TANT TRAF	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST		LANDSCAPING NOISE	
	EEDS ESTIM DSTED SPEE THER NOISE ESCRIPTIO TERRAIN PHOTOS	BUSES MOTRCLS MATED BY: RADAR/DF ED LIMIT SIGNS SAY: E SOURCES (BACKGROU DIST. KIDS PLAYING OTHER:/S OTHER:/S DN / SKETCH HARD SOFT 72 S6; 72 S	ND): DIST. AIRCRAI DIST. CONVRSTNS / TANT TRAF	YELLING DIST. TRAFFIC (L	ST ROWYS BELOW DIST		LANDSCAPING NOISE	

7 7.

## **APPENDIX D-2**

Construction Noise Modeling Input and Output

Report date: Case Description:	2/26/202 SMWD Las Flore	0 s - Site Preparatio	on					
Description Nearest Resi - Nearest	Land Use Residential	Baselines (dBA Daytime Eve 65	.) ening 60	Recepto Night 55	or #1			
Description Excavator Man Lift		Impact Device Us No No	age(%) 40 20	Equipment Spec Lmax (dBA)	Actual Lmax (dBA) 80.7 74.7			
Equipment Excavator Man Lift	Total	Calculated (dB *Lmax Leo 81.6 74.7 81.6 *Calculated Ln	A) 77.6 67.7 78.1	N/A	Noise Limit Leq N/A N/A N/A		Leq N/A N/A N/A	Ū
Description Nearest Resi - Typical	Land Use Residential	Baselines (dBA		Recepto Night	or #2			
Description Excavator Man Lift		Impact Device Us No No	age(%) 40 20	Spec Lmax (dBA)	Actual Lmax (dBA) 80.7 74.7			
Equipment Excavator Man Lift	Total	Calculated (dB *Lmax Leo 68.7 62.7 68.7 *Calculated Ln	q 64.7 55.7 65.2	-	Noise Limit Leq N/A N/A N/A alue.	s (dBA) Evening Lmax N/A N/A N/A N/A	Leq N/A N/A N/A	

Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

2/26/2020 SMWD Las Flores - Pipeline Trenching/ Grading

				Re	ceptor
		Baselines			
Description	Land Use	Daytime	Evening	g Night	
Nearest Resi - Nearest	Residential	6	5	60	55

- Receptor #1 ----

					Equipment	t			
					Spec	Actual	Recepto	r Estir	nated
		Impact			Lmax	Lmax	Distance		lding
Description		Device	Usage	e(%)	(dBA)	(dBA)	(feet)	(dBA	•
Excavator		No	0305	40	. ,	80.	. ,	45	0
Man Lift		No		20		74.		50	0
Vacuum Street Sweeper		No		10		81.		55	0
Slurry Trenching Machine		No		50		80.		60	0
		110		50		00.	•		0
					Results				
		Calculated	d (dBA)			Noise Lim	its (dBA)		
					Day		Evening		
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq	
Excavator		81.6	6	77.6	N/A	N/A	N/A	N/A	
Man Lift		74.	7	67.7	N/A	N/A	N/A	N/A	
Vacuum Street Sweeper		80.8	8	70.8	N/A	N/A	N/A	N/A	
Slurry Trenching Machine		78.8	8	75.8	N/A	N/A	N/A	N/A	
	Total	81.	6	80.6	N/A	N/A	N/A	N/A	
		*Calculate	ed Lmax	k is th	e Loudest v	alue.			
			( 15 4)		Recept	or #2			
		Baselines	• •		<b>N</b> 12 <b>1 1</b>				
Description	Land Use	Daytime	Eveni	•	Night				
Nearest Resi - Typical	Residential	6	5	60	55	)			
					Equipment	+			
					Spec	Actual	Recepto	r Estin	nated
		Impact			Lmax	Lmax	Distance		lding
Description		Device	Usage	e(%)	(dBA)	(dBA)	(feet)	(dBA	•
Excavator		No	0000	40	· /	80.	. ,	00	., 0
Man Lift		No		20		74.		00	0
Vacuum Street Sweeper		No		10		81.		00	0
Slurry Trenching Machine		No		50		80.		00	0
					Results				
		Calculated	d (dBA)			Noise Lim	its (dBA)		
					Day		Evening		
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq	
Excavator		68.		64.7	N/A	N/A	N/A	N/A	
Man Lift		62.		55.7	N/A	N/A	N/A	N/A	
Vacuum Street Sweeper		69.		59.5	N/A	N/A	N/A	N/A	
Slurry Trenching Machine		68.3			N/A	N/A	N/A	N/A	
	Total	69.			N/A	N/A	N/A	N/A	
		*Calculate	ed Lmax	k is th	e Loudest v	alue.			

Report date: Case Description: 2/26/2020 SMWD Las Flores - Paving

---- Receptor #1 ----Baselines (dBA) Land Use Daytime Evening Night Residential 65 60 55

Description Nearest Resi - Nearest

Equipment

Description Paver Roller Roller		Impact Device No No No	Usag	e(%) 50 20 20		Actual Lmax (dBA) 77. 8 8	0	e	Estimate Shieldin (dBA)	
					Results					
		Calculate	d (dBA)			Noise Lim	• •			
					Day		Evening	5		
Equipment		*Lmax	Leq		Lmax	Leq	Lmax		Leq	
Paver		78			N/A	N/A	N/A		N/A	
Roller			80		N/A	N/A	N/A		N/A	
Roller	<b>-</b>	79			N/A	N/A	N/A		N/A	
	Total		80 		N/A	N/A	N/A		N/A	
		Calculat	ed Lma	x is th	e Loudest v	/aiue.				
					Recep	tor #2				
		Baselines	(dBA)							
Description	Land Use	Daytime	Even	ing	Night					
Nearest Resi - Typical	Residential	e	55	60	5	5				
					Equipmer	nt				
					Spec	Actual	Recepto	or	Estimate	ed
		Impact			Lmax	Lmax	Distanc		Shieldin	
Description		Device	Usag	e(%)	(dBA)	(dBA)	(feet)		(dBA)	0
Paver		No	0	50	. ,	77.	2 2	200	. ,	0
Roller		No		20		8	0 2	200		0
Roller		No		20		8	0 2	200		0
					Results					
		Calculate	d (dBA)			Noise Lim	its (dBA)			
			- (- )		Day		Evening	Į		
Equipment		*Lmax	Leq		Lmax	Leq	Lmax		Leq	
Paver		65		62.2	N/A	N/A	N/A		N/A	
Roller		e	58	61	N/A	N/A	N/A		N/A	
Roller		e	58	61	N/A	N/A	N/A		N/A	
	Total	e	58	66.2	N/A	N/A	N/A		N/A	
		*Calculat	ed Lma	x is th	e Loudest v	value.				

Report date: Case Description:	2/26/2020 SMWD Las Flores		zation				
				Rece	ptor #1		
		Baselines	(dBA)				
Description	Land Use	Daytime	Evening	Night			
Nearest Resi - Nearest	Residential	6	5 60	)	55		
				Equipme	ent		
				Spec	Actual	Receptor	Estimated
		Impact		Lmax	Lmax	Distance	Shielding
Description		Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Excavator		No	40	)	80.7	45	0
Man Lift		No	20	)	74.7	50	0

		Calcula	ated	(dBA)			Nois	e Limi	ts (dBA	.)		
						Day			Eveni	ng		
Equipment		*Lmax		Leq		Lmax	Leq		Lmax		Leq	
Excavator		:	81.6		77.6	N/A	N/A		N/A		N/A	
Man Lift			74.7		67.7	N/A	N/A		N/A		N/A	
	Total	:	81.6		78.1	N/A	N/A		N/A		N/A	
		*Calcu	lated	l Lmax	is the	e Loudest	value.					
						Rece	ntor #2					
		Baselir	nes (c	BA)			pt01 #2					
Description	Land Use	Daytim	•	Eveni	ng	Night						
Nearest Resi - Typical	Residential	,	65		60	0	55					
						Equipme	nt					
						Spec	Actu	al	Recep	otor	Estima	ted
		Impact				Lmax	Lmax	(	Distar	nce	Shieldi	ng
Description		Device		Usage	:(%)	(dBA)	(dBA	.)	(feet)		(dBA)	
Excavator		No			40			80.7		200	)	0
Man Lift		No			20			74.7	,	200	)	0
						Results						
		Calcula	ated	(dBA)			Nois	e Limi [.]	ts (dBA	.)		
						Day			Eveni	ng		
Equipment		*Lmax		Leq		Lmax	Leq		Lmax		Leq	
Excavator			68.7		64.7	N/A	N/A		N/A		N/A	
Man Lift			62.7		55.7	N/A	N/A		N/A		N/A	
	Total		68.7		65.2	N/A	N/A		N/A		N/A	
		*Calcu	lated	l Lmax	is the	e Loudest	value.					

---- Receptor #2 ----

Report date: 2/27/2020 Case Description: SMWD Las Flores - Conversion of Lift Station ---- Receptor #1 ----Baselines (dBA) Description Land Use Daytime Evening Night Nearest Resi - Nearest Residential 65 60 55 Equipment

			Spec	Actual	Receptor	Estimated	
	Impact		Lmax	Lmax	Distance	Shielding	
Description	Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)	
Backhoe	No	40	)	77.6	5 360	) 0	
Slurry Trenching Machine	No	50	)	80.4	l 370	) 0	

			Results			
		Calculated (dBA)	)	Noise Lim	its (dBA)	
			Day		Evening	
Equipment		*Lmax Leq	Lmax	Leq	Lmax	Leq
Backhoe		60.4	56.4 N/A	N/A	N/A	N/A
Slurry Trenching Machine		63	60 N/A	N/A	N/A	N/A
	Total	63	61.6 N/A	N/A	N/A	N/A
		*Calculated Lma	ax is the Loudest	value.		

Baselines (dBA) Description Land Use Daytime Evening Night

Nearest Resi - Typical	Residential	6	5	60	55			
			Equipment					
				Spec	Actual	Recepto	r Estimated	
		Impact		Lmax	Lmax	Distance	Shielding	
Description		Device	Usage(%	6) (dBA)	(dBA)	(feet)	(dBA)	
Backhoe		No	40		7	7.6 5	0 00	
Slurry Trenching Machine		No	50		8	0.4 5	0 00	
		Results						
		Calculated (dBA) Day			Noise Li	Noise Limits (dBA)		
						Evening		
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq	
Backhoe		57.	6 5	3.6 N/A	N/A	N/A	N/A	
Slurry Trenching Machine		60.	4 5	7.3 N/A	N/A	N/A	N/A	
	Total	60.	4 5	8.9 N/A	N/A	N/A	N/A	
	*Calculated Lmax is the Loudest value.							