Appendix G

Noise Data

Construction Source Noise Prediction Model: Hourly Average for Asphalt Removal

			Reference Emission		
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
Threshold		none	Concrete Saw	90	0.4
Cypress Point Court Residences	180	75 3	Front End Loader	80	0.4

Ground Type	HARD
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³			
Concrete Saw	86.0			
Front End Loader	76.0			

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

Sources:

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

D = Distance from source to receiver.

86.4

¹Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

Distance Propagation Calculations for Stationary Sources of Ground Vibration

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

Table A. Propagation of vibration decibels (VdB) with distance

Noise Source/ID	Refere	Reference Noise Level		
	vibration level		distance	
	(VdB)	@	(ft)	
Loaded trucks	86.0	@	25	

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

Table B. Propagation of peak particle velocity (PPV) with distance

Noise Source/ID	Reference Noise Level		
	vibration level	vibration level	
	(PPV)	@	(ft)
Loaded trucks	0.076	@	25

STEP 3A: Select the distance to the receiver.

Attenuated Noise Level at Receptor			
vibration level		distance	
(VdB)	@	(ft)	
79.9	@	40	

STEP 3B: Select the distance to the receiver.

Attenuated Noise Level at Receptor			
vibration level		distance	
(PPV)	@	(ft)	
0.181	@	14	

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 12-11 of FTA 2006. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf. Accessed: September 24, 2010.