

Final Drainage Report

TO 30 - Concrete Panel Replacement - Coast Boulevard

Prepared For: City of San Diego

Prepared By:

Christopher T. Leary Michael Baker International 5050 Avenida Encinas, Suite 260 Carlsbad, CA 92008-4386 (760)476-9193

which In

Date: January 14, 2020

> MBI JN: 175050

TABLE OF CONTENTS

1	Proj	ect Description	L
	-		
	1.1	Project Data	L
	1.2	Description of Project	L
	1.3	Existing Condition	2
	1.4	Proposed Condition	<u>)</u>
	1.5	Location	3
2	Stuc	ly Objectives	1
3	Met	hodology	5
	3.1	Hydrology	
	3.2	Hydraulics	5
4	Resi	ults	7
	4.1	Hydrology	7
	4.2	Hydraulics	
5	Con	clusions and Recommendations	3
6	Pofe	erences	c
0	nele		9

LIST OF FIGURES

LIST OF TABLES

Table 5-1- Hydrology Summary 50 & 100 Year Peak Flow Rate	7
Table 5-2- Inlet Length Summary	7

APPENDICES

Attachment A. FEMA FIRM Panel and FIRMette Attachment B. Soils Exhibit & Excerpts from SD-DDM Attachment C. Hydrology Exhibit & Calculations Attachment D. Hydraulics & Inlet Sizing Attachment E. Plan Sheets

PROJECT DESCRIPTION

1.1 PROJECT DATA

1

Project Owner:	City of San Diego Public Works Department Louis Schultz
Project Site Address:	Coast Boulevard & Cave St, San Diego, CA 92037
Project Location:	Latitude: 32.849059 Longitude: -117.270445
Watershed Area:	15.92 Acres
Adjacent Areas:	North: La Jolla Cove West: Prospect St South: Prospect Pl East: Coast Walk Trail
Adjacent Land Uses:	North: Caves & Cliffs South: Residential & Business East: Residential & Business West: Business

1.2 DESCRIPTION OF PROJECT

The City of San Diego recently undertook an emergency project to stabilize a portion of Coast Boulevard. Following this emergency project, the City has elected to replace in kind the entire concrete roadway along Coast Boulevard on both sides of the emergency project limits (from Prospect Place down to the life guard station).

This report will focus on the hydrology and hydraulics of the proposed storm drain improvements.

1.3 EXISTING CONDITION

The easterly drainage areas consist of businesses, local restaurants, and residences, that discharge runoff into Coast Boulevard. This storm water is collected in three existing grate inlets, located in Coast Boulevard and within the Cave Store parking lot. It is then discharged over the sea bluff and into the Pacific Ocean. Additional runoff is collected on Prospect Place and piped within a 12" RCP that connects to the existing grate inlet in the Cave store parking lot. There is noticeable erosion at 12" RCP outfall location on the sea bluff.

Drainage along the westerly extents of the projects flows down Coast Boulevard to an existing inlet located next to the lifeguard station. This inlet discharges to the Pacific Ocean.

The emergency project was located between the easterly and westerly portions of the Coast Boulevard Project and included the replacement of the concrete road and the existing 24" outfall.

1.4 PROPOSED CONDITION

The project proposes to replace the concrete road in kind; minor grading will occur, but it is not expected to change the pattern of surface flows. The existing parking lot, next to the Cave Store, will be redesigned and impervious area will be reduced, with the addition of landscaped areas.

The project proposes to install a 24" RCP from the upstream limits of Coast Boulevard and connect into the existing 24" RCP located within the emergency project. The existing 12" RCP and outfall will be replaced/abandoned per the Grading Plans. The three existing grate inlets within the project limits will be removed and replaced with three curb inlets. The two existing 12" RCPs that collect water from Prospect Place will connect to the proposed 24" RCP system that is being installed within Coast Boulevard.

No drainage improvements are proposed on the westerly portion of the site. Storm water will flow down Coast Boulevard in the same manner as the existing condition. No further analysis was performed for this project area.

1.5 LOCATION

The location of the site is along La Jolla Coast Boulevard in the La Jolla Neighborhood of the City of San Diego. The approximate location of the project area can be seen on Figure 1 - Vicinity Map.

FIGURE 1 - VICINITY MAP (N.T.S.)

2 STUDY OBJECTIVES

The purpose of this report is to analyze the existing and proposed drainage and provide design backup for proposed improvements, with specific objectives as follows:

- Document the tributary drainage area associated with the project site;
- Develop hydrologic parameters and calculate 50-year and 100-year flow rates per the City of San Diego Drainage Design Manual;
- Design a new pipe system with curb inlets to convey and redirect flow north-west to an existing 24" HDPE outfall.

3 METHODOLOGY

3.1 HYDROLOGY

This project is replacing the existing impervious area in kind and only minor grading is proposed. Therefore, the rational method is presented under this cover to generate peak flow rates per tributary area to size the proposed inlets.

Hydrologic parameters have been developed using the Rational Method procedures according to Appendix A of The City of San Diego Drainage Design Manual (SD-DDM):

$$Q = CIA$$

Where:

Q = flow rate, cubic feet per second (cfs);

C = Coefficient of runoff (unitless) Per Table A-1. Runoff Coefficients for Rational Method;

I = intensity of rainfall based on the time of concentration and the 100-year & 50-year precipitation, inches per hours (in/hr) per SD-DDM Figure A-1, Intensity-Duration-Frequency Design Chart, this figure can be viewed in Attachment B; and

A = Area of the basin, acres (ac).

Calculations have been performed utilizing these parameters within a standard excel spreadsheet.

- Federal Emergency Management Agency (FEMA) Panels have been reviewed for the site. Neither the site, nor surrounding area is located within a floodplain. The FIRM and FIRMette for the site can be found in Attachment A.
- Runoff coefficients were determined from public domain aerial photography and land-use determinations per Table A-1 of the SD-DDM. This table can be viewed in Attachment B.
- A conservative 5-minute time of concentration was used for smaller drainage areas per Figure A-1 of the SD-DDM. This figure can be viewed in Attachment B.
- The drainage area (A) was determined based on available topographic information from SANGIS. A site inspection was conducted to verify the potential presence of physical drainage features too insignificant to be identified as part of an area-wide aerial topographic survey, but capable of impacting flow paths. The drainage area delineation can be found on the Hydrology Exhibit in Attachment C.

3.2 HYDRAULICS

Storm Drain Sizing

Storm drain sizing and design for the proposed system within Coast Boulevard was conducted using Hydraflow Storm Sewers Extension. This program is a full-featured application designed primarily for hydrologic and hydraulic analysis of storm sewer networks. Hydrology parameters from the rational method (time of concentration, tributary area, and run-off coefficient) were inputted into the Hydraflow model to generate peak flow rates through the system. These peak flow rates from this analysis are presented on the plans and can be viewed in Attachment D.

The proposed system will connect into the existing emergency project storm drain system located in the middle of the Coast Boulevard project. This system discharges to the Pacific Ocean through a 24" HDPE pipe. This pipe functions under inlet control and Figure 5-1: Inlet Control Nomograph, found in Appendix D, was used to confirm that the required head over the orifice would have to be a maximum of 5.8' in order to discharge the 50-year peak flow rate without surcharging. The results of both analyses can be viewed in Attachment D.

Inlet Sizing

Three curb inlets are being located and designed per Chapter 3 of the SD-DDM. The inlet in the Cave Store parking lot will be designed in sag and the remaining two inlets along Coast Boulevard will be designed on-grade. The inlet capacity calculations can be viewed in Attachment D.

4 RESULTS

4.1 HYDROLOGY

The summary of peak flow rates for the 50 and 100-year event are summarized in Table 5-1 below. The calculations themselves can be reviewed in Attachment C.

					Q50	Q	100
Drainage Areas	Area (ac)	с	Tc (min)*	Intensity	Discharge (CFS)	Intensity	Discharge (CFS)
1	0.26	0.95	1.14	4.20	1.0	4.40	1.1
2	1.08	0.95	2.54	4.20	4.3	4.40	4.5
3	0.36	0.85	2.41	4.20	1.3	4.40	1.3
4	0.85	0.85	2.57	4.20	3.0	4.40	3.2
5	2.31	0.70	12.81	3.00	4.9	3.20	5.2
6	11.06	0.70	13.50	2.90	22.5	3.10	24.0

TABLE 5-1- HYDROLOGY SUMMARY 50 & 100 YEAR PEAK FLOW RATE

• A minimum of 5-minute Tc is used for all intensity calculations. Per Figure A-4

4.2 HYDRAULICS

Proposed Storm Drain

The inlet control nomograph results show that a 24" pipe with grooved ends can convey 35cfs with 5 feet of head. The existing box is 5.8 feet deep and the proposed peak flow rate through the outfall is 33.6 cfs.

The results of the Hydraflow Storm Sewer analysis show that the proposed pipe can convey the 50-year peak flow rate of 30 cfs from the upstream tributary areas to the existing 24" outfall without surcharging.

Inlet Sizing and Flooded Width

Inlet calculations provided in Attachment D show that the three proposed inlets area sized correctly to capture the entirety of the 50-year peak flow rate from their respective basins. The Inlet length opening are summarized in Table 5-2 below.

Inlet ID	Condition	Q50 Flow Rate (cfs)	Required Inlet Length (ft)	Proposed Inlet Length (ft)
1	Sag	1.30	1.3	4
2	On-Grade	3.00	6.9	7
3	On-Grade	4.90	11.2	11.5

TABLE 5-2- INLET LENGTH SUMMARY

5 CONCLUSIONS AND RECOMMENDATIONS

Hydrology

The project is proposing to replace the existing road, parking lot, and sidewalk in kind (no added impervious area). In total the project will be a minor loss of impervious area due to the addition of planter areas in the cave store parking lot. Additionally, the minor grading will not change the slope or flow path of the project site. The hydrology study was conducted to determine project site peak flow rates to design the proposed storm drain system.

Storm Drain Pipe Sizing

The project proposes to abandon an existing 12" RCP outfall and pipe system that is undersized and eroding the coastal bluff. Installing a larger pipe in the same location as the existing 12" pipe is considered infeasible due to construction constraints and sea bluff erosion issues. Instead a 24" RCP will be installed under Coast Boulevard to redirect and convey this flow westward towards an existing 24" HDPE outfall. Utilizing the inlet control nomograph from Figure 5-1 of the SD-DDM, it was determined that the existing 24" outfall has sufficient head to convey and discharge the redirected peak 50-year flow rate under an inlet control condition.

The proposed storm drain pipes have been sized to convey the peak 50-year flow rate to the existing outfall without surcharging.

Proposed Curb Inlet Sizing

The proposed inlets have been sized and located to capture and convey the peak 50-year flow rate to the existing outfall.

6 REFERENCES

City of San Diego Drainage Design Manual (June 2017).

FEMA. (1997). Flood Insurance Rate Map. San Diego.

List of Referenced Tables and Figures (SDDDM, 2017)

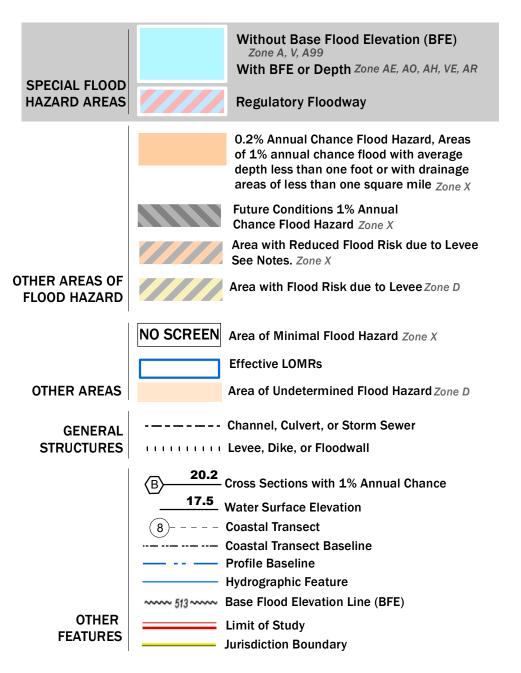
Runoff Coefficients for Rational Method, Table A-1

Intensity Duration Frequency Design Chart, Figure A-1

Overland Time of Flow Nomograph, Figure A-4

Inlet Control Nomograph, Figure 5-1

Michael Baker


Attachment A. FEMA FIRM Panel and FIRMette

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

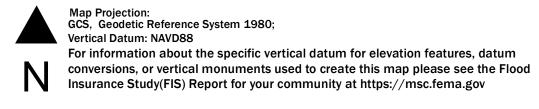
NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM, including historic versions, the current map date for each FIRM panel, how to order products, or the National Flood Insurance Program (NFIP) in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can beordered or obtained directly from the website.

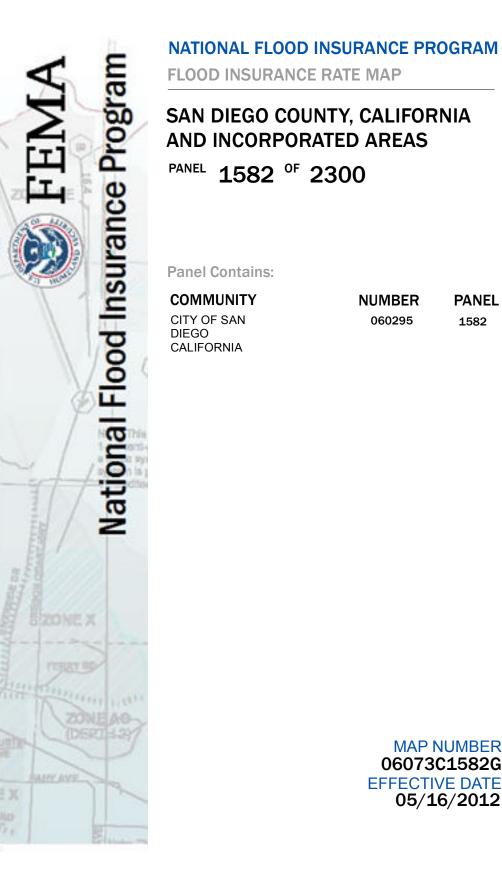
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates refer to the Flood Insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.


Basemap information shown on this FIRM was provided in digital format by USDA, Farm Service Agency (FSA). This information was derived from NAIP, dated April 11, 2018.

This map was exported from FEMA's National Flood Hazard Layer (NFHL) on 10/15/2019 5:16:42 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. For additional information, please see the Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

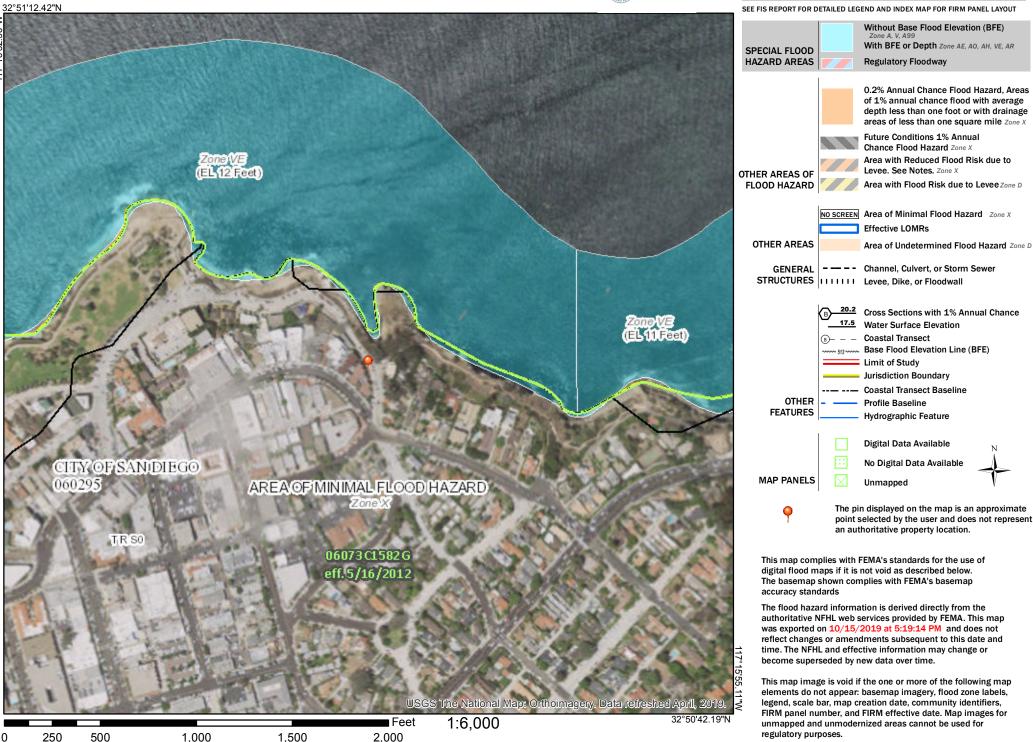
1	inch =	500 feet		1:6,00	00
0	250	500	1,000	1,500	2,000 Feet
0	50 100) 200	300	Meters 400	

MAP NUMBER 06073C1582G

EFFECTIVE DATE 05/16/2012

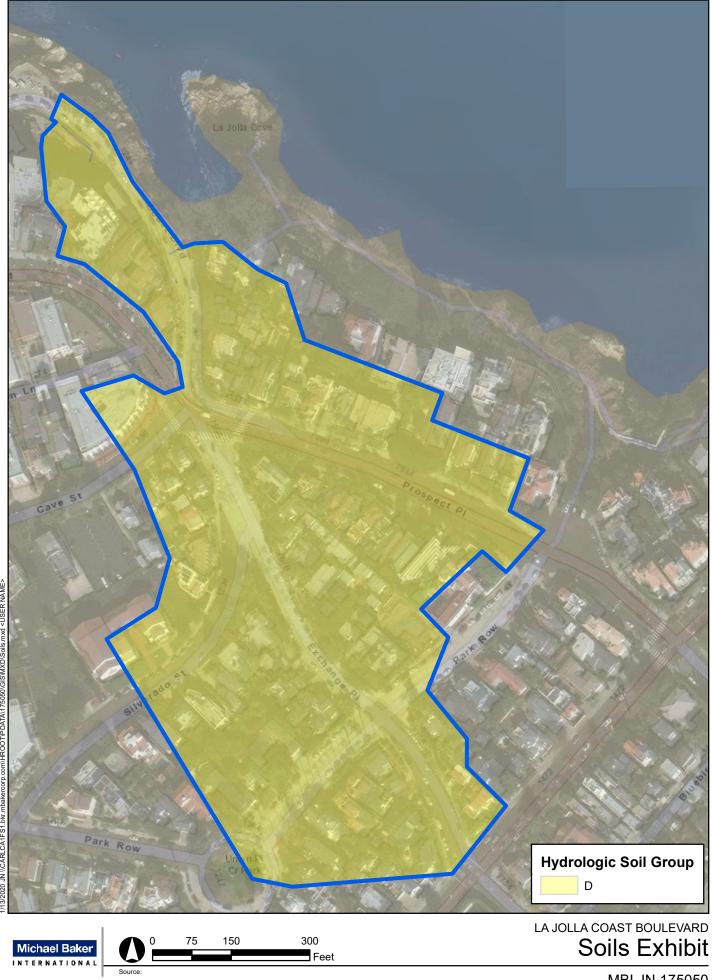
PANEL

1582


NUMBER

060295

National Flood Hazard Layer FIRMette



Legend

Michael Baker

Attachment B. Soils Exhibit & Excerpts from SD-DDM

nHROOT/PDATA/175050/GIS/MXD/Soils.mxd <USER NAME> 3/2020 JN \\CARLCA1FS1.bkr.

MBI JN 175050

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

Land Use	Runoff Coefficient (C)
Lanu Use	Soil Type (1)
Residential:	
Single Family	0.55
Multi-Units	0.70
Mobile Homes	0.65
Rural (lots greater than $\frac{1}{2}$ acre)	0.45
Commercial ⁽²⁾	
80% Impervious	0.85
Industrial ⁽²⁾	
90% Impervious	0.95

Table A-1. Runoff Coefficients for Rational Method

Note:

⁽¹⁾ Type D soil to be used for all areas.

⁽²⁾ Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual imperviousness	=	50%
Tabulated imperviousness	=	80%
Revised C = $(50/80) \times 0.85$	=	0.53

The values in Table A–1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A.1.3. Rainfall Intensity

The rainfall intensity (I) is the rainfall in inches per hour (in/hr.) for a duration equal to the T_c for a selected storm frequency. Once a particular storm frequency has been selected for design and a T_c calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration-Frequency Design Chart (Figure A-1).

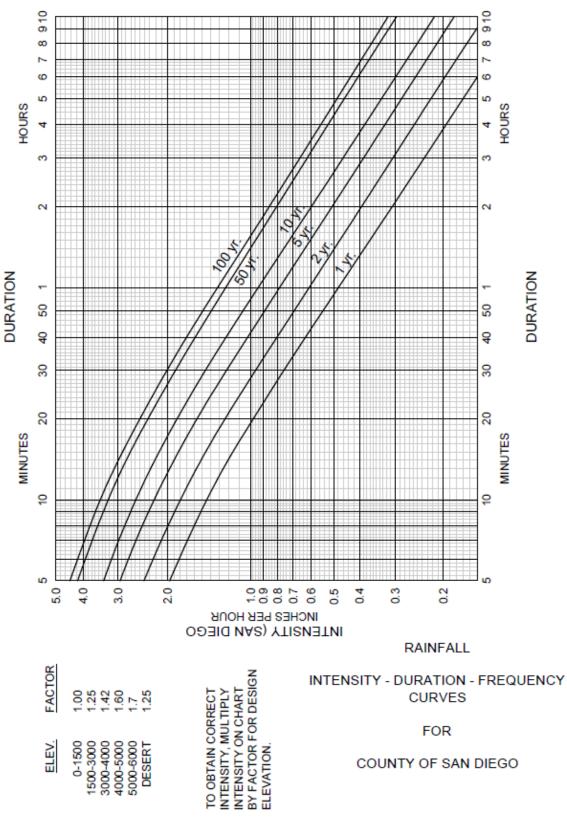
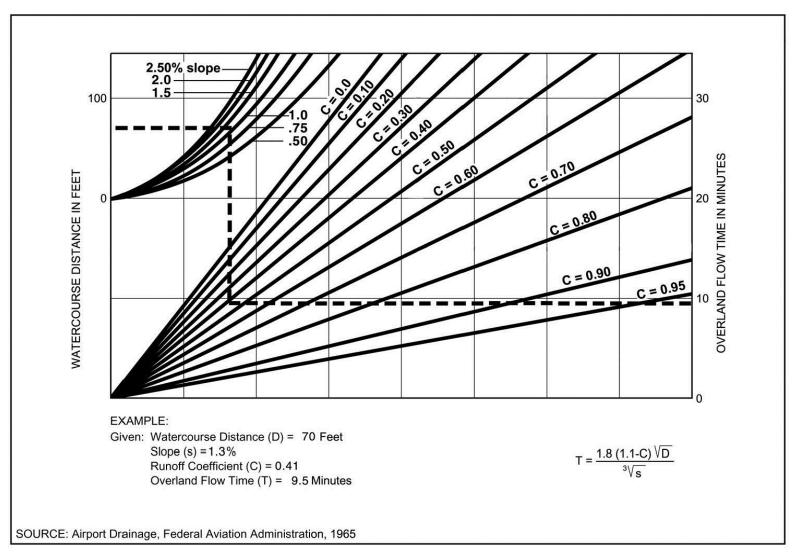



Figure A-1. Intensity-Duration-Frequency Design Chart

Figure A-4. Rational Formula - Overland Time of Flow Nomograph

<u>Note</u>: Use formula for watercourse distances in excess of 100 feet.

Michael Baker

Attachment C. Hydrology Exhibit & Calculations

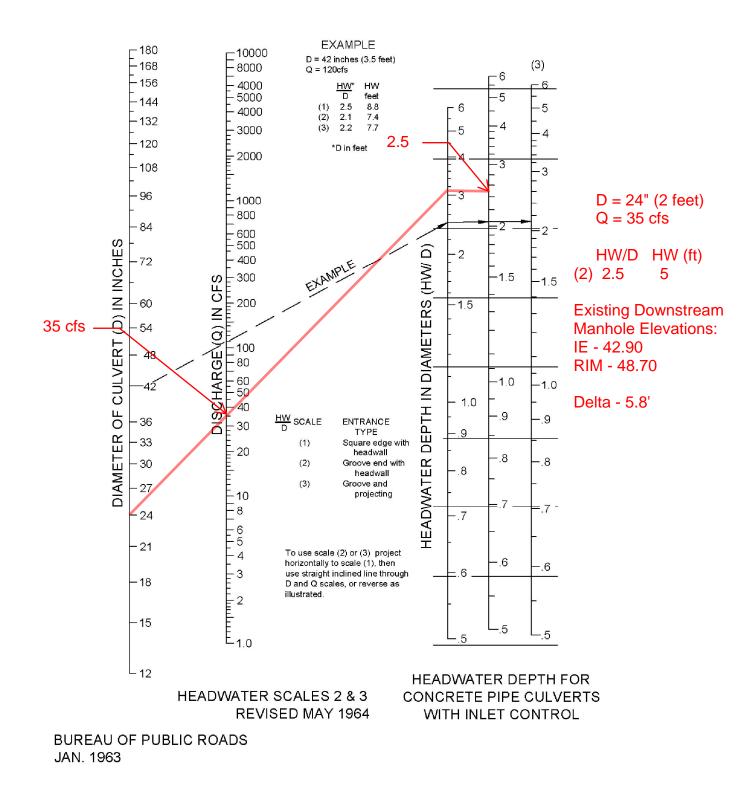
	Rational Method Calculations per Appendix A of the City of San Diego Drainage Design Manual														
Drainage Area ID 1 - Emergency South 2 - Emergency North 3 - PR. Inlet 1 4 - PR. Inlet 2 5 - PR. Inlet 3 6 - Prospect Inlets	u/s elev	d/s elev	Avg Slope (ft/ft)	Flow Path (ft)	T (min) ¹	Runoff Coefficient C ²	Intensity (in/hr) 100 yr storm ³	Intensity (in/hr) 50 yr storm ³	Drainage Area (Acre)	Discharge (cfs) Q100	Discharge (cfs) Q50				
1 - Emergency South	112	50	34	185	1.14	0.95	4.40	4.20	0.26	1.1	1.0				
2 - Emergency North	116	52	13	490	2.54	0.95	4.40	4.20	1.08	4.5	4.3				
3 - PR. Inlet 1	118	81	19	200	2.41	0.85	4.40	4.20	0.36	1.3	1.3				
4 - PR. Inlet 2	114	89	14	185	2.57	0.85	4.40	4.20	0.85	3.2	3.0				
5 - PR. Inlet 3	137	114	3	700	12.81	0.7	3.20	3.00	2.31	5.2	4.9				
6 - Prospect Inlets	170	122	5	1,000	13.50	0.7	3.10	2.90	11.06	24.0	22.5				

Rational Method Calculations per Appendix A of the City of San Diego Drainage Design Manual

1. Figure A-4. Rational Formula - Overland Time of Flow Nomograph: A minimum of 5 minute T is used for all intensity calculations

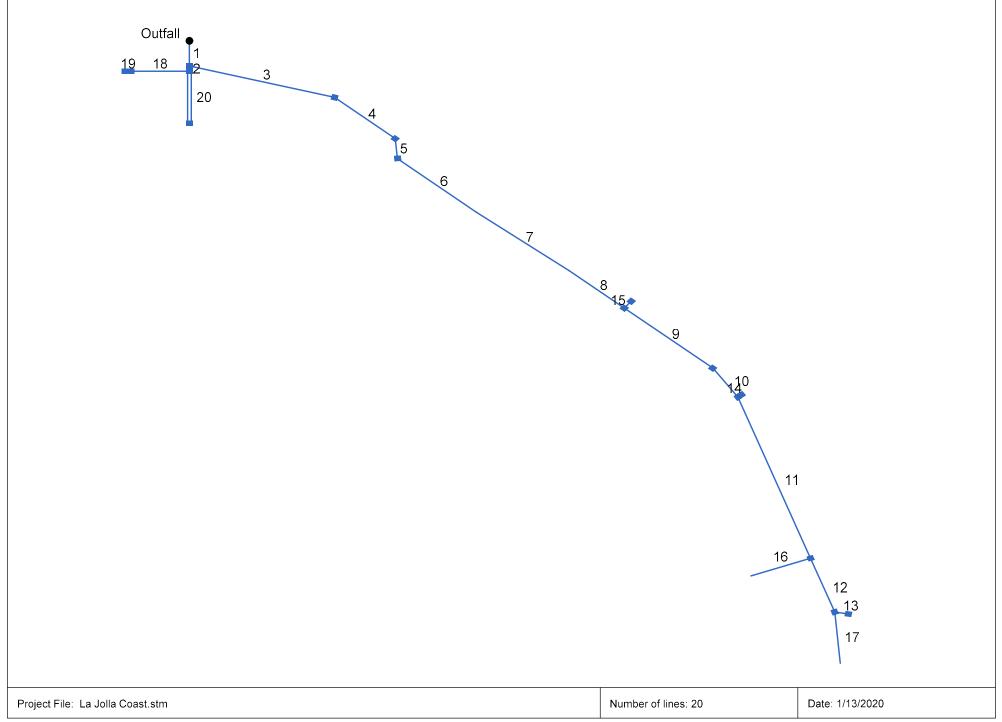
2. Per Table A-1. Runoff Coefficients for Rational Method

3. Figure A-1. Intensity-Duration-Frequency Design Chart


Feet

MBI JN 175050

Michael Baker


Attachment D. Hydraulics & Inlet Sizing

CHAPTER 5: CULVERTS AND LOW WATER CROSSINGS

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Summary Report

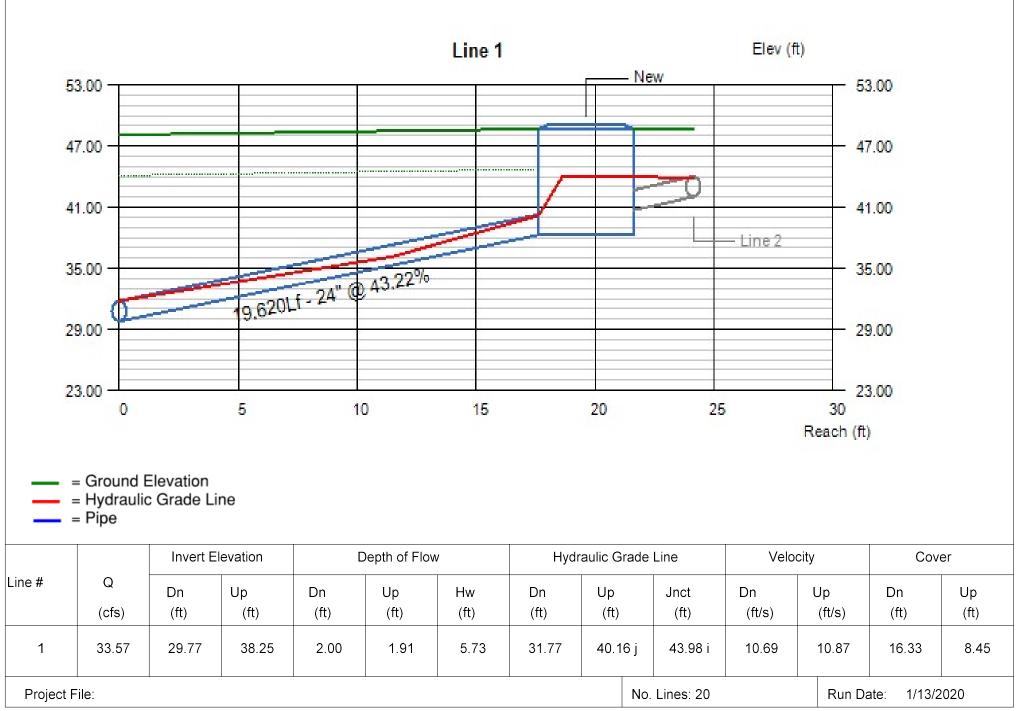
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1		33.57	24	Cir	19.620	29.77	38.25	43.221	31.77	40.16	n/a	43.98 i	End	Manhole
2		5.34	24	Cir	4.140	40.69	42.90	53.382	43.98	43.80	n/a	43.97 i	1	Manhole
3		29.91	24	Cir	94.950	40.55	55.15	15.377	43.98	57.01	n/a	59.98 i	1	Manhole
4		29.91	24	Cir	50.160	55.25	61.63	12.719	59.98	63.49	n/a	66.46 i	3	Manhole
5		29.91	24	Cir	15.780	61.73	61.89	1.014	66.46*	66.74*	0.00	66.74	4	Manhole
6		29.91	24	Cir	65.350	61.99	67.94	9.105	66.74	69.80	n/a	69.80 j	5	None
7		29.91	24	Cir	74.120	67.94	69.61	2.253	69.80	71.47	n/a	71.47	6	None
8		29.91	24	Cir	45.580	69.61	72.00	5.244	71.47	73.86	n/a	76.83 i	7	Manhole
9		29.03	24	Cir	73.130	72.10	77.04	6.755	76.83	78.89	n/a	81.67 i	8	Manhole
10		29.03	24	Cir	27.610	77.14	80.14	10.866	81.67	82.08	n/a	84.63 i	9	Manhole
11		26.95	24	Cir	134.380	80.24	100.13	14.801	84.63	101.94	n/a	104.33 i	10	Manhole
12		15.80	24	Cir	44.710	100.49	107.41	15.478	104.33	108.84	n/a	109.87 i	11	Manhole
13		4.77	18	Cir	8.820	107.51	107.61	1.134	109.87*	109.89*	0.00	109.89	12	Curb-Horiz
14		3.03	18	Cir	2.910	80.24	80.60	12.371	84.63*	84.63*	0.00	84.63	10	Curb-Horiz
15		1.28	18	Cir	6.910	72.60	73.51	13.169	76.83*	76.83*	0.00	76.83	8	Curb-Horiz
16		11.15	12	Cir	40.000	102.55	120.00	43.625	104.33	121.00	n/a	121.00 j	11	None
17		11.15	12	Cir	40.000	109.00	120.00	27.500	109.87	121.00	0.00	121.00	12	None
18		4.30	18	Cir	36.820	43.00	43.37	1.005	43.97	44.16	n/a	44.60 i	2	Manhole
19		4.30	18	Cir	4.000	43.47	43.51	1.000	44.60	44.30	n/a	44.74 i	18	Curb-Horiz
20		1.04	12	Cir(2b)	40.610	45.64	47.13	3.669	45.80	47.38	n/a	47.72 i	2	Grate
Project	l File: La Jolla Coast.stm				<u> </u>	1			Number c	f lines: 20	1	Run [Date: 1/13	/2020
NOTES	: Return period = 50 Yrs. ; *Surcl	narged (HG	L above crown). ; i - Inlet	control.;	j - Line cont	ains hyd. jur	np.						

Line	Area	Area	Вур	Coeff	Coeff	Coeff	Capac	Crit	Cross	Cross	Curb	Defl	Depth	Depth	DnStm	Drng	Easting	EGL	EGL	Energy	
No.	Dn	Up	Ln No	C1	C2	C3	Full	Depth	SI, Sw	SI, Sx	Len	Ang	Dn	Up	Ln No	Area	X	Dn	Up	Loss	1
	(sqft)	(sqft)		(C)	(C)	(C)	(cfs)	(ft)	(ft/ft)	(ft/ft)	(ft)	(Deg)	(ft)	(ft)		(ac)	(ft)	(ft)	(ft)	(ft)	
1	3.09	3.09	n/a	0.20	0.50	0.90	148.70	1.91				90.000	2.00	1.91**	Outfall	0.00	465.92	33.55	43.98 i	10.437	1
2	3.14	1.37	n/a	0.20	0.50	0.90	165.25	0.81				0.000	2.00	0.90	1	0.00	465.92	44.03	43.97 i	-0.063	1
3	3.05	3.05	n/a	0.20	0.50	0.90	88.69	1.86				-75.000	2.00	1.86**	1	0.00	557.64	45.39	59.98 i	14.589	
4	3.05	3.05	n/a	0.20	0.50	0.90	80.66	1.86			••••	25.000	2.00	1.86**	3	0.00	596.06	61.39	66.46 i	5.070	
5	3.14	3.14	n/a	0.20	0.50	0.90	22.77	1.86			••••	45.000	2.00	2.00	4	0.00	597.44	67.87	68.15	0.276	
6	3.05	3.05	n/a	0.20	0.50	0.90	68.25	1.86			••••	-45.000	2.00	1.86**	5	0.00	647.50	68.15	71.30	1.066	
7	3.05	3.05	n/a	0.20	0.50	0.90	33.95	1.86				-2.000	1.86	1.86**	6	0.00	705.91	71.30	72.97	0.000	
8	3.05	3.05	n/a	0.20	0.50	0.90	51.79	1.86				2.000	1.86	1.86**	7	0.00	740.82	72.97	76.83 i	3.862	1
9	3.03	3.03	n/a	0.20	0.50	0.90	58.78	1.85			••••	0.000	2.00	1.85**	8	0.00	796.84	78.16	81.67 i	3.515	
10	3.14	3.11	n/a	0.20	0.50	0.90	74.56	1.85			••••	15.000	2.00	1.94	9	0.00	812.68	83.00	84.63 i	1.623	1
11	2.99	2.99	n/a	0.20	0.50	0.90	87.02	1.81			••••	15.000	2.00	1.81**	10	0.00	858.64	85.77	104.33 i	18.558	
12	2.41	2.41	n/a	0.20	0.50	0.90	88.98	1.43				0.000	2.00	1.43**	11	0.00	873.93	104.72	109.87 i	5.147	
13	1.77	1.77	Sag	0.20	0.50	0.90	11.18	0.84	0.050	0.020	4.00	-60.000	1.50	1.50	12	2.31	882.62	109.98	110.00	0.018	
14	1.77	1.77	Sag	0.20	0.50	0.90	36.94	0.66	0.050	0.020	4.00	-90.000	1.50	1.50	10	0.85	815.06	84.67	84.67	0.002	
15	1.77	1.77	Sag	0.20	0.50	0.90	38.11	0.42	0.050	0.020	4.00	-90.000	1.50	1.50	8	0.36	745.26	76.84	76.84	0.001	1
16	0.79	0.79	n/a	0.20	0.50	0.90	23.52	1.00				90.000	1.00	1.00**	11	5.53	821.05	107.46	124.13	3.818	1
17	0.72	0.79	n/a	0.20	0.50	0.90	18.68	1.00			••••	15.000	0.87	1.00**	12	5.53	877.42	113.00	124.13	0.000	1
18	0.95	0.95	n/a	0.20	0.50	0.90	10.53	0.79				90.000	0.97	0.79**	2	0.00	429.10	44.28	44.60 i	0.312	
19	0.95	0.95	Sag	0.20	0.50	0.90	10.50	0.79	0.050	0.020	4.00	0.000	1.13	0.79**	18	1.08	425.10	44.91	44.74 i	-0.178	
20	0.17	0.31	Sag	0.20	0.50	0.90	17.74	0.25	0.050	0.020		0.000	0.16	0.25**	2	0.26	465.92	45.98	47.72 i	1.735	1
																					1
																					1
																					1
Projec	t File: La	Jolla Co	ast.stm										Nun	hber of line	es: 20		Da	te: 1/13/20)20		
NOTE	S: i Inlet	control [.]	** Critical	depth																	

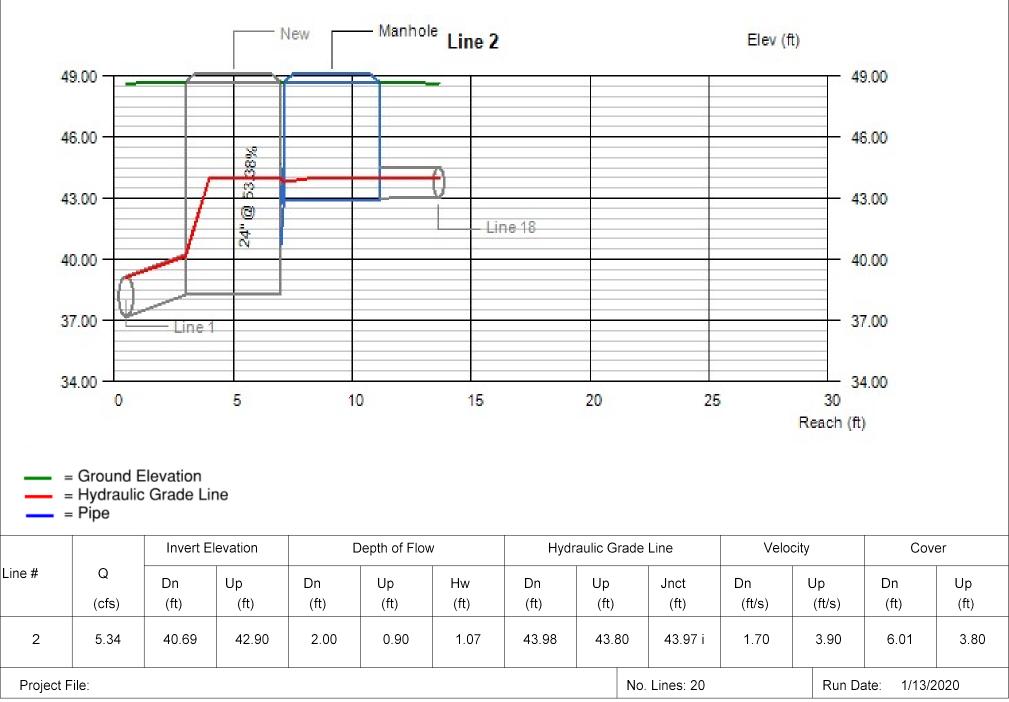
Storm Sewers

Flow Rate	Sf Ave	Sf Dn	Grate Area	Grate Len	Grate Width	Gnd/Rim El Dn	Gnd/Rim El Up	Gutter Depth	Gutter Slope	Gutter Spread	Gutter Width	HGL Dn	HGL Up	HGL Jnct	HGL Jmp Dn	HGL Jmp Up	Incr CxA	Incr Q	Inlet Depth	Inlet Eff		
(cfs)	(ft/ft)	(ft/ft)	(sqft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(cfs)	(ft)	(%)		
33.57	n/a	n/a				48.10	48.70					31.77	40.16 j	43.98 i	32.52	36.15	0.00	0.00				
5.34	n/a	n/a				48.70	48.70					43.98	43.80	43.97 i			0.00	0.00				
29.91	n/a	n/a				48.70	60.89					43.98	57.01 j	59.98 i	45.33	45.99	0.00	0.00				
29.91	n/a	n/a				60.89	67.89					59.98	63.49 j	66.46 i	59.16	59.46	0.00	0.00				
29.91	1.749	1.749				67.89	69.19					66.46	66.74	66.74			0.00	0.00				
29.91	1.631	1.749				69.19	73.00					66.74	69.80 j	69.80	66.97	67.01	0.00	0.00				
29.91	0.000	0.000				73.00	76.00					69.80	71.47	71.47			0.00	0.00				
29.91	n/a	n/a				76.00	78.59					71.47	73.86	76.83 i			0.00	0.00				
29.03	n/a	n/a				78.59	83.46					76.83	78.89 j	81.67 i	77.56	77.50	0.00	0.00				
29.03	n/a	n/a				83.46	86.63					81.67	82.08	84.63 i			0.00	0.00				
26.95	n/a	n/a				86.63	107.03					84.63	101.94 j	104.33 i	86.02	86.52	0.00	0.00				
15.80	n/a	n/a				107.03	113.59					104.33	108.84 j	109.87 i	103.87	104.07	0.00	0.00				
4.77	0.206	0.207				113.59	114.73	0.52	Sag	22.76	2.00	109.87	109.89	109.89			1.62	4.77	0.52	100		
3.03	0.083	0.083				86.63	86.50	0.37	Sag	15.53	2.00	84.63	84.63	84.63			0.72	3.03	0.37	100		
1.28	0.015	0.015				78.59	78.50	0.24	Sag	8.76	2.00	76.83	76.83	76.83			0.31	1.28	0.24	100		
11.15	9.545	9.800				107.03	124.00					104.33	121.00 j	121.00	105.29	107.23	3.87	11.15				
11.15	0.000	0.000				113.59	124.00					109.87	121.00	121.00			3.87	11.15				
4.30	n/a	n/a				48.70	47.50					43.97	44.16 j	44.60 i	43.91	43.85	0.00	0.00				
4.30	n/a	n/a				47.50	48.00	0.46	Sag	19.78	2.00	44.60	44.30	44.74 i			1.03	4.30	0.46	100		
1.04	n/a	n/a	2.00	2.00	2.00	48.70	49.10	0.20	Sag	6.95	2.00	45.80	47.38	47.72 i			0.25	1.04	0.20	100		
Project	File: La Jo	olla Coast	.stm										Number of line	s: 20		Date:	Date: 1/13/2020					
NOTES	: i Inlet co	ntrol; ** 0	Critical de	epth								I				1						

Inlet ID	Inlet Loc		Inlet Time	i Sys	i Inlet	Invert Dn	Invert Up	Jump Loc	Jump Len	Vel Hd Jmp Dn	Vel Hd Jmp Up	J-Loss Coeff		Known Q	Cost RCP	Cost CMP	Cost PVC	Line ID			
		(ft)	(min)	(in/hr)	(in/hr)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)							
New	Sag		0.0	2.88	0.00	29.77	38.25	1.96	9.53	1.84	3.14	0.00	MH	0.00	1,578	1,420	1,341				
	Sag		0.0	4.19	0.00	40.69	42.90			0.00	0.00	0.00	МН	0.00	324	292	275				
	Sag		0.0	2.88	0.00	40.55	55.15	18.99	9.30	1.50	4.55	0.00	МН	0.00	4,998	4,498	4,248				
	Sag		0.0	2.88	0.00	55.25	61.63	15.05	10.00	1.41	5.30	0.00	МН	0.00	2,498	2,248	2,123				
	Sag		0.0	2.88	0.00	61.73	61.89			0.00	0.00	0.00	MH	0.00	936	842	796				
	Sag		0.0	2.88	0.00	61.99	67.94	32.68	10.00	1.41	4.12	0.00 z	None	0.00	3,272	2,945	2,781				
	Sag		0.0	2.88	0.00	67.94	69.61			0.00	0.00	0.00 z	None	0.00	3,562	3,206	3,028				
	Sag		0.0	2.88	0.00	69.61	72.00			0.00	0.00	0.00	MH	0.00	2,496	2,246	2,122				
	Sag		0.0	2.88	0.00	72.10	77.04	51.19	10.00	1.33	2.95	0.00	MH	0.00	3,926	3,533	3,337				
	Sag		0.0	2.88	0.00	77.14	80.14			0.00	0.00	0.00	MH	0.00	1,560	1,404	1,326				
New	Sag		0.0	2.88	0.00	80.24	100.13	26.88	9.03	1.27	5.02	0.00	MH	0.00	7,098	6,388	6,033				
	Sag		0.0	2.88	0.00	100.49	107.41	8.94	10.00	0.39	5.02	0.00	MH	0.00	2,444	2,200	2,077				
	Sag		12.8	2.95	2.95	107.51	107.61			0.00	0.00	0.00	Curb	0.00	513	461	436				
	Sag		5.0	4.19	4.19	80.24	80.60			0.00	0.00	0.00	Curb	0.00	230	207	196				
	Sag		5.0	4.19	4.19	72.60	73.51			0.00	0.00	0.00	Curb	0.00	380	342	323				
	Sag		13.5	2.88	2.88	102.55	120.00	4.00	4.98	3.13	4.70	0.00 z	None	0.00	1,299	1,169	1,104				
	Sag		13.5	2.88	2.88	109.00	120.00			0.00	0.00	0.00 z	None	0.00	1,299	1,169	1,104				
	Sag		0.0	4.19	0.00	43.00	43.37	11.05	3.99	0.31	0.45	0.00	MH	0.00	1,580	1,422	1,343				
	Sag		5.0	4.19	4.19	43.47	43.51			0.00	0.00	0.00		0.00	280	252	238				
	Sag		5.0	4.19	4.19	45.64	47.13			0.00	0.00	0.00	Grate	0.00	1,234	1,111	1,049				
Project Fi	le: La Jolla Co	past.stm							<u> </u>			<u> </u>	lumber of lines	: 20		Date	Date: 1/13/2020				
NOTES: I	ntensity = 24.4	12 / (Inlet	time + 7	.10) ^ 0.7	71 Ret	urn period :	= 50 Yrs. ;	i Inlet co	ntrol; **	Critical de	pth	I									


Line Length	Line Size	Line Slope	Line Type	Local Depr	n-val Gutter	n-val Pipe	Minor Loss	Northing Y	Pipe Travel	Q Byp	Q Capt	Q Carry	Line Rise	Runoff Coeff	Line Span	Area A1	Area A2	Area A3	Тс	Throat Ht	Total Area	Total CxA		
(ft)	(in)	(%)		(in)			(ft)	(ft)	(min)	(cfs)	(cfs)	(cfs)	(in)	(C)	(in)	(ac)	(ac)	(ac)	(min)	(in)	(ac)			
19.620	24	43.22	Cir			0.013	n/a	-159.10	0.00				24	0.00	24	0.00	0.00	0.00	13.5		15.92	11.66		
4.140	24	53.38	Cir			0.013	n/a	-163.24	0.00				24	0.00	24	0.00	0.00	0.00	5.0		1.34	1.27		
94.950	24	15.38	Cir			0.013	n/a	-183.67	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
50.160	24	12.72	Cir			0.013	n/a	-215.92	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
15.780	24	1.01	Cir			0.013	0.00	-231.64	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
65.350	24	9.10	Cir			0.013	n/a	-273.64	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
74.120	24	2.25	Cir			0.013	n/a	-319.27	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
45.580	24	5.24	Cir			0.013	n/a	-348.57	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.58	10.39		
73.130	24	6.76	Cir			0.013	n/a	-395.58	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.22	10.08		
27.610	24	10.87	Cir			0.013	n/a	-418.20	0.00				24	0.00	24	0.00	0.00	0.00	13.5		14.22	10.08		
134.380	24	14.80	Cir			0.013	n/a	-544.47	0.00				24	0.00	24	0.00	0.00	0.00	13.5		13.37	9.36		
44.710	24	15.48	Cir			0.013	n/a	-586.49	0.00				24	0.00	24	0.00	0.00	0.00	13.5		7.84	5.49		
8.820	18	1.13	Cir	0.0		0.013	0.00	-588.02	0.00	0.00	4.77	0.00	18	0.70	18	0.00	0.00	0.00	12.8	4.0	2.31	1.62		
2.910	18	12.37	Cir	0.0		0.013	0.00	-416.53	0.00	0.00	3.03	0.00	18	0.85	18	0.00	0.00	0.00	5.0	4.0	0.85	0.72		
6.910	18	13.17	Cir	0.0		0.013	0.00	-343.28	0.00	0.00	1.28	0.00	18	0.85	18	0.00	0.00	0.00	5.0	4.0	0.36	0.31		
40.000	12	43.62	Cir			0.013	n/a	-558.15	0.00				12	0.70	12	0.00	0.00	0.00	13.5		5.53	3.87		
40.000	12	27.50	Cir			0.013	0.00	-626.33	0.00				12	0.70	12	0.00	0.00	0.00	13.5		5.53	3.87		
36.820	18	1.00 1.00	Cir Cir			0.013 0.013	n/a	-163.24	0.00		 4.30	 0.00	18 18	0.00 0.95	18	0.00	0.00	0.00	5.0		1.08	1.03 1.03		
4.000	18 12(2b)	3.67	Cir	0.0 0.0		0.013	n/a n/a	-163.24 -203.85	0.00	0.00 0.00	4.30	0.00	10	0.95	18 12	0.00	0.00 0.00	0.00	5.0 5.0	4.0	1.08 0.26	0.25		
40.010	12(20)	5.07		0.0		0.010	n/a	-203.05	0.00	0.00	1.04	0.00	12	0.95	12	0.00	0.00	0.00	5.0		0.20	0.25		
Project Fi	ile: La Joll	a Coast.:	stm										Nu	Imber of li	nes: 20			Date	Date: 1/13/2020					
NOTES:	i Inlet con	trol; ** C	ritical de	pth									I											

Page 4


otal unoff	Vel Ave	Vel Dn	Vel Hd Dn	Vel Hd Up	Vel Up	Cover Dn	Cover Up	Storage
(cfs)	(ft/s)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(cft)
33.57	10.78	10.69	1.78	1.84	10.87	16.33	8.45	61.21
5.34	2.80	1.70	0.04	0.24	3.90	6.01	3.80	11.78
29.91	9.67	9.52	1.41	1.50	9.82	6.15	3.74	296.71
29.91	9.67	9.52	1.41	1.50	9.82	3.64	4.26	156.74
29.91	9.52	9.52	1.41	1.41	9.52	4.16	5.30	49.56
29.91	9.67	9.52	1.41	1.50	9.82	5.20	3.06	204.21
29.91	9.82	9.82	1.50	1.50	9.82	3.06	4.39	225.69
29.91	9.82	9.82	1.50	1.50	9.82	4.39	4.59	138.79
29.03	9.41	9.24	1.33	1.43	9.58	4.49	4.42	228.34
29.03		9.24		1.35	9.32	4.32	4.49	86.59
26.95		8.58			9.03		4.90	418.59
15.80		5.03			6.56		4.18	134.96
4.77		2.70		0.11	2.70		5.62	15.58
3.03		1.71	0.05		1.71	4.89	4.40	5.14
1.28		0.73		0.01	0.73		3.49	12.21
11.15		14.19					3.00	31.41
11.15		15.38					3.00	30.40
4.30		3.58			4.53		2.63	39.66
4.30		3.02			4.53		2.99	4.77
1.04	4.77	6.16	0.18	0.18	3.38	2.06	0.97	9.57
	1		'		1	'	1	
			'		'	'	'	
	1		'		1	'	1	
Project	File: La	Jolla Co	ast.stm		. <u> </u>			
NOTES	S: i Inlet c	control;	** Critica	al depth				

Hydraulic Grade Line Computations

Line Siz	Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	gy s	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy Ioss (ft)		loss (ft)
1	24	33.57	29.77	31.77	2.00	3.09	10.69	1.78	33.55	n/a	19.620	38.25	40.16 j	1.91**	3.09	10.87	1.84	41.99i	n/a	n/a	n/a	0.00	n/a
2	24	5.34	40.69	43.98	2.00	3.14	1.70	0.04	44.03	n/a	4.140	42.90	43.80	0.90	1.37	3.90	0.24	44.04i	n/a	n/a	-0.230	0.00	n/a
3	24	29.91	40.55	43.98	2.00	3.05	9.52	1.41	45.39	n/a	94.950	55.15	57.01 j	1.86**	3.05	9.82	1.50	58.51i	n/a	n/a	n/a	0.00	n/a
4	24	29.91	55.25	59.98	2.00	3.05	9.52	1.41	61.39	n/a	50.160	61.63	63.49 j	1.86**	3.05	9.82	1.50	64.99i	n/a	n/a	n/a	0.00	n/a
5	24	29.91	61.73	66.46	2.00	3.14	9.52	1.41	67.87	1.749	15.780	61.89	66.74	2.00	3.14	9.52	1.41	68.15	1.749	1.749	0.276	0.00	0.00
6	24	29.91	61.99	66.74	2.00	3.05	9.52	1.41	68.15	1.749	65.350	67.94	69.80 j	1.86**	3.05	9.82	1.50	71.30	1.513	1.631	n/a	0.00	n/a
7	24	29.91	67.94	69.80	1.86*	3.05	9.82	1.50	71.30	0.000	74.120	69.61	71.47	1.86**	3.05	9.82	1.50	72.97	0.000	0.000	n/a	0.00	n/a
8	24	29.91	69.61	71.47	1.86*	3.05	9.82	1.50	72.97	n/a	45.580	72.00	73.86	1.86**	3.05	9.82	1.50	75.36i	n/a	n/a	n/a	0.00	n/a
9	24	29.03	72.10	76.83	2.00	3.03	9.24	1.33	78.16	n/a	73.130	77.04	78.89 j	1.85**	3.03	9.58	1.43	80.31i	n/a	n/a	n/a	0.00	n/a
10	24	29.03	77.14	81.67	2.00	3.14	9.24	1.33	83.00	n/a	27.610	80.14	82.08	1.94	3.11	9.32	1.35	83.43i	n/a	n/a	-0.924	0.00	n/a
11	24	26.95	80.24	84.63	2.00	2.99	8.58	1.14	85.77	n/a	134.38	0100.13	101.94 j	1.81**	2.99	9.03	1.27	103.20i	n/a	n/a	n/a	0.00	n/a
12	24	15.80	100.49	104.33	2.00	2.41	5.03	0.39	104.72	n/a	44.710	107.41	108.84 j	1.43**	2.41	6.56	0.67	109.51i	n/a	n/a	n/a	0.00	n/a
13	18	4.77	107.51	109.87	1.50	1.77	2.70	0.11	109.98	0.207	8.820	107.61	109.89	1.50	1.77	2.70	0.11	110.00	0.206	0.206	0.018	0.00	0.00
14	18	3.03	80.24	84.63	1.50	1.77	1.71	0.05	84.67	0.083	2.910	80.60	84.63	1.50	1.77	1.71	0.05	84.67	0.083	0.083	0.002	0.00	0.00
15	18	1.28	72.60	76.83	1.50	1.77	0.73	0.01	76.84	0.015	6.910	73.51	76.83	1.50	1.77	0.73	0.01	76.84	0.015	0.015	0.001	0.00	0.00
16 17	12 12	11.15	102.55	104.33	1.00	0.79	14.19	3.13	107.46	9.800	40.000		121.00 j	1.00**	0.79	14.20	3.13	124.13	9.290	9.545	n/a	0.00	0.00
17	18	4.30	109.00 43.00	109.87 43.97	0.87	0.72	15.38 3.58	3.13 0.32	113.00 44.28	0.000 n/a	36.820	120.00	121.00 44.16 j	0.79**	0.79	14.20 4.53	3.13 0.32	124.13 44.48i	0.000 n/a	0.000 n/a	n/a n/a	0.00	0.00 n/a
10	18	4.30	43.47	44.60	1.13	0.95	3.02	0.32	44.91	n/a	4.000	43.51	44.30	0.79**	0.95	4.53	0.32	44.62i	n/a	n/a	n/a	0.00	n/a
20	12(2b)	1.04	45.64	45.80	0.16*	0.17	6.16	0.18	45.98	n/a	40.610		47.38	0.25**	0.31	3.38	0.18	47.56i	n/a	n/a	n/a	0.00	n/a
Proje	ect File: L	.a Jolla C	Coast.stm											 N	umber o	f lines: 2	0		Rur	Date: 1	1/13/2020))	

Line Profile (Line 2)

Line Profile (Line 3)

3

Project File:

29.91

40.55

55.15

2.00

1.86

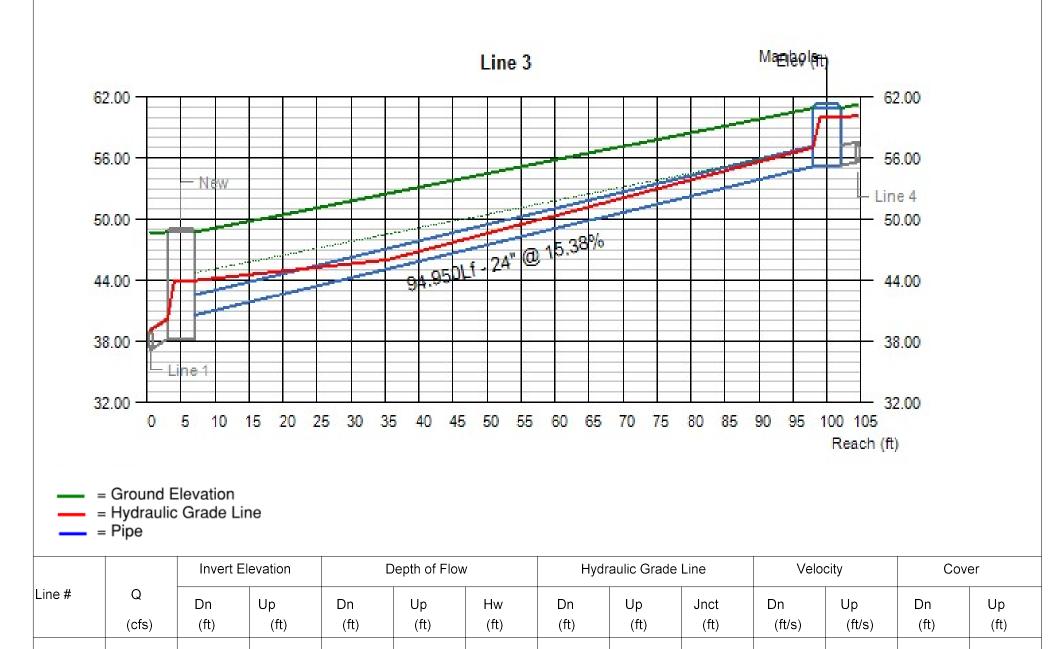
4.83

43.98

57.01 j

59.98 i

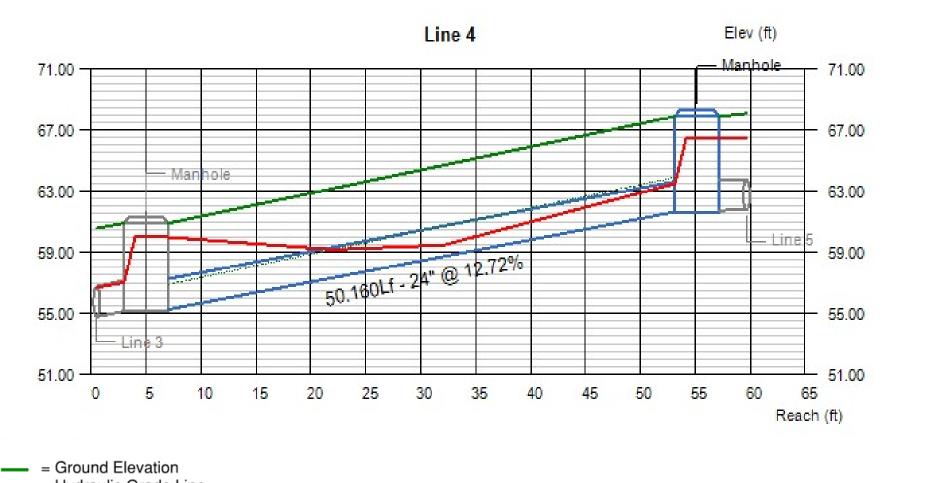
No. Lines: 20


9.52

9.82

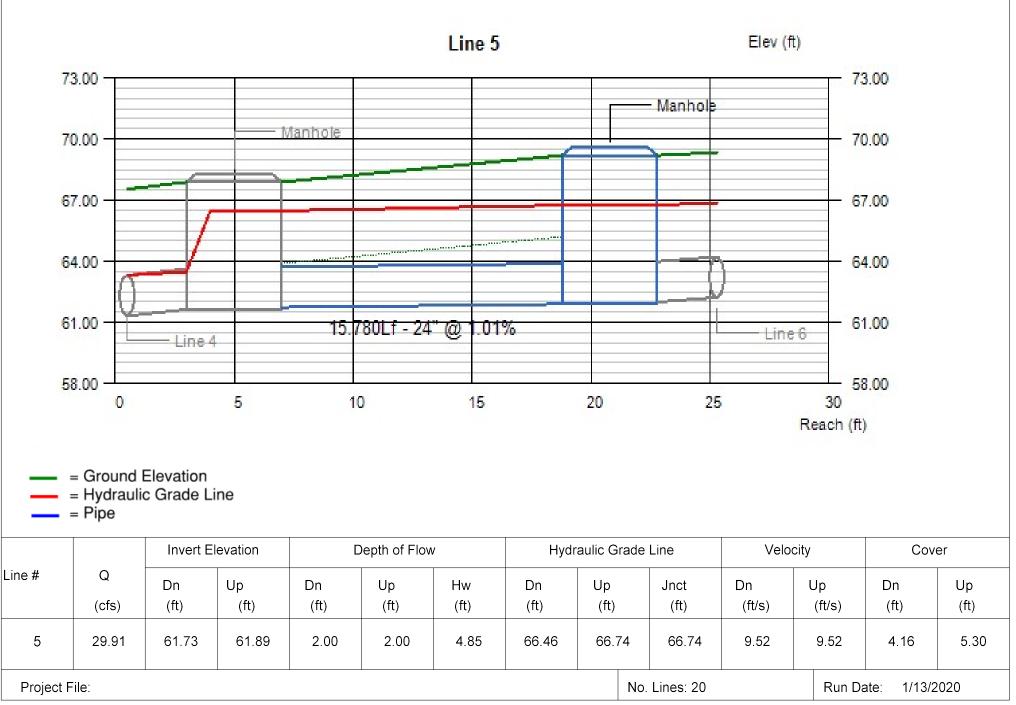
Run Date:

6.15

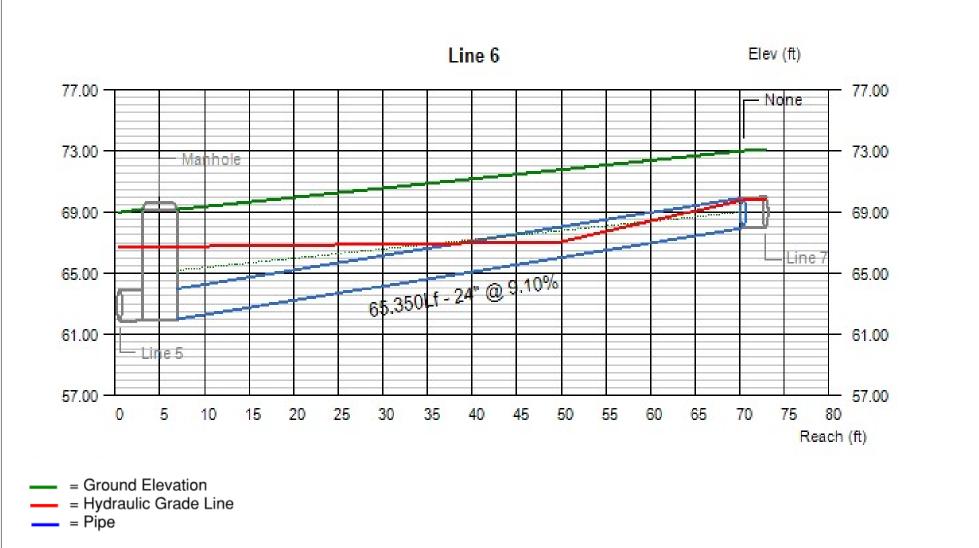

1/13/2020

Storm Sewers

3.74

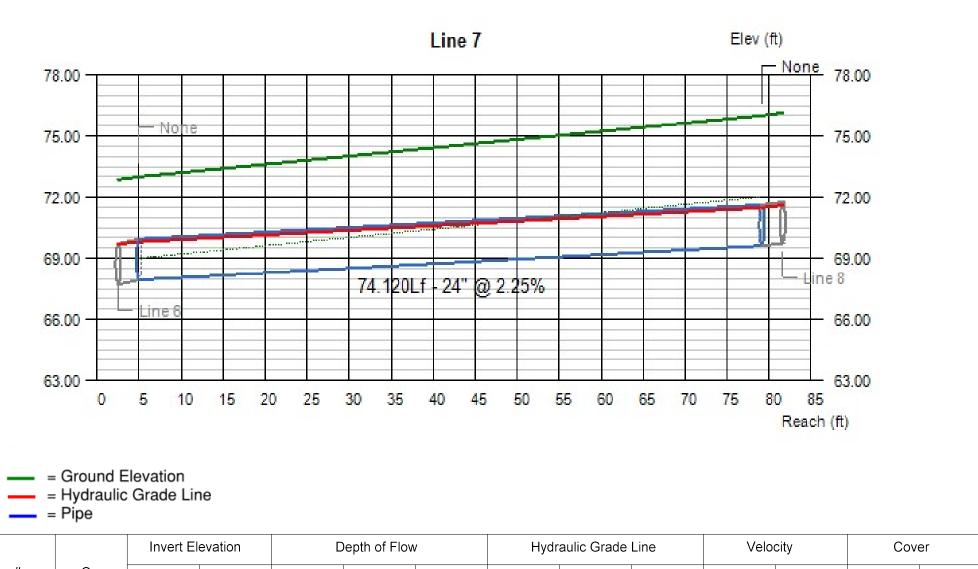

Line Profile (Line 4)

- = Hydraulic Grade Line = Pipe

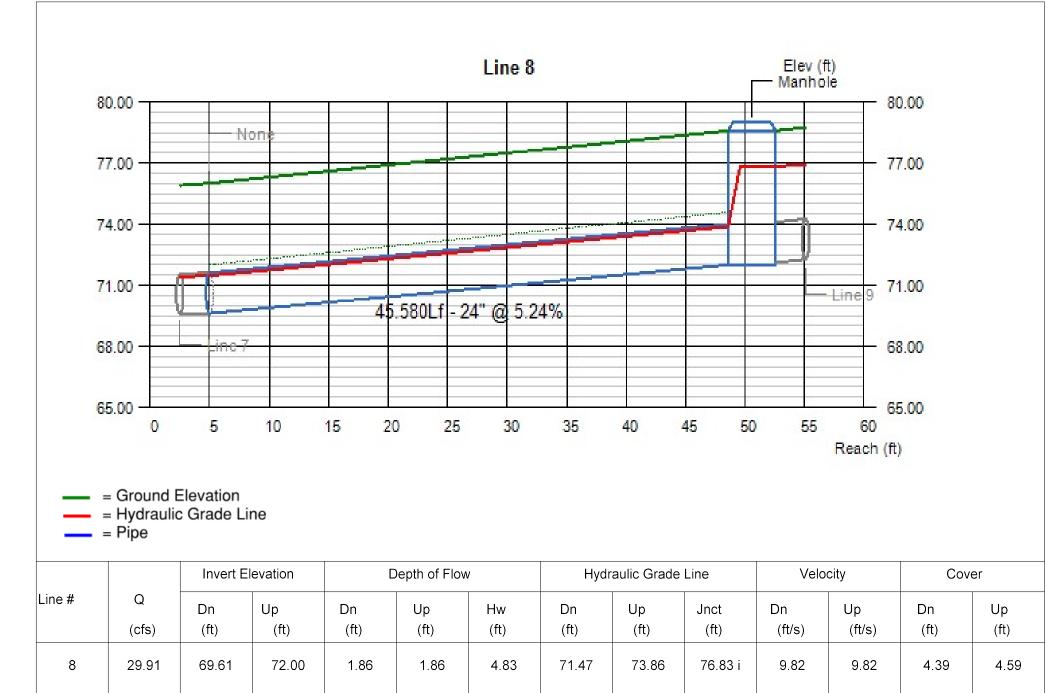

	Invert Elevation		C	epth of Flov	V	Hydr	aulic G	rade	Line	Velocity		Cover		
Line #	Q	Dn	Up	Dn	Up	Hw	Dn	Up		Jnct	Dn	Up	Dn	Up
	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft/s)	(ft/s)	(ft)	(ft)
4	29.91	55.25	61.63	2.00	1.86	4.83	59.98	63.4	9 j	66.46 i	9.52	9.82	3.64	4.26
Project File: No. Lines: 20 R							Run Da	ate: 1/13/2	020					

Line Profile (Line 5)

Page 1 of 1


Line Profile (Line 6)

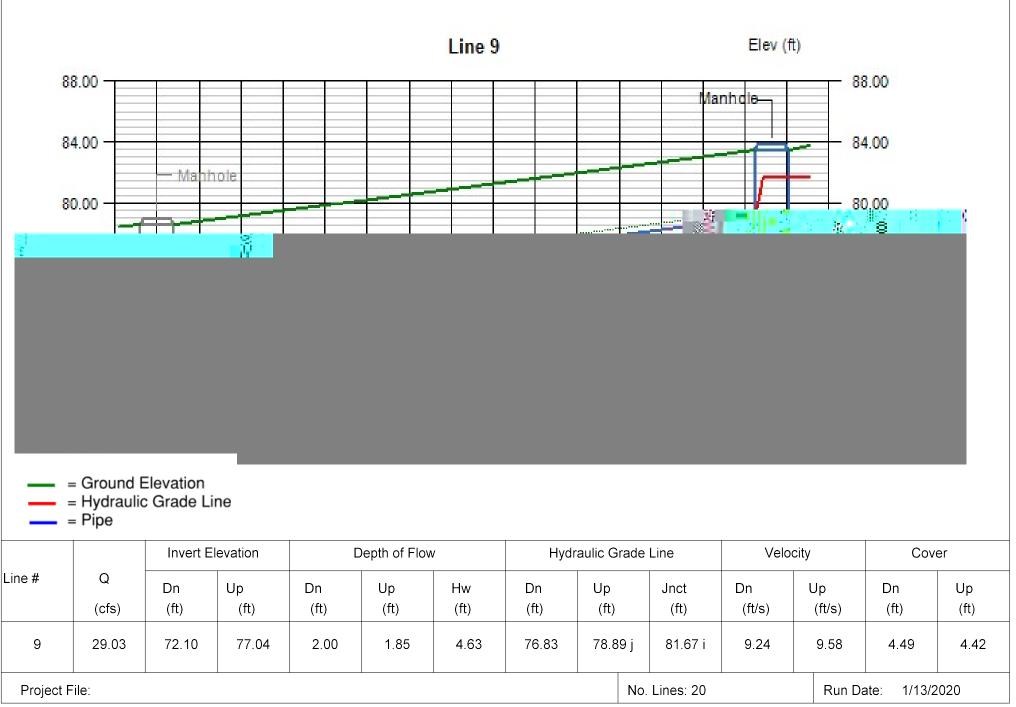
	Invert Elevation		C	epth of Flow	1	Hydr	aulic Gr	ade	Line	Velocity		Cover		
Line #	Q	Dn	Up	Dn	Up	Hw	Dn	Up		Jnct	Dn	Up	Dn	Up
	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft/s)	(ft/s)	(ft)	(ft)
6	29.91	61.99	67.94	2.00	1.86	1.86	66.74	69.80	Эj	69.80	9.52	9.82	5.20	3.06
Project I	Project File:						1		No.	Lines: 20		Run Da	ate: 1/13/2	020


Storm Sewers

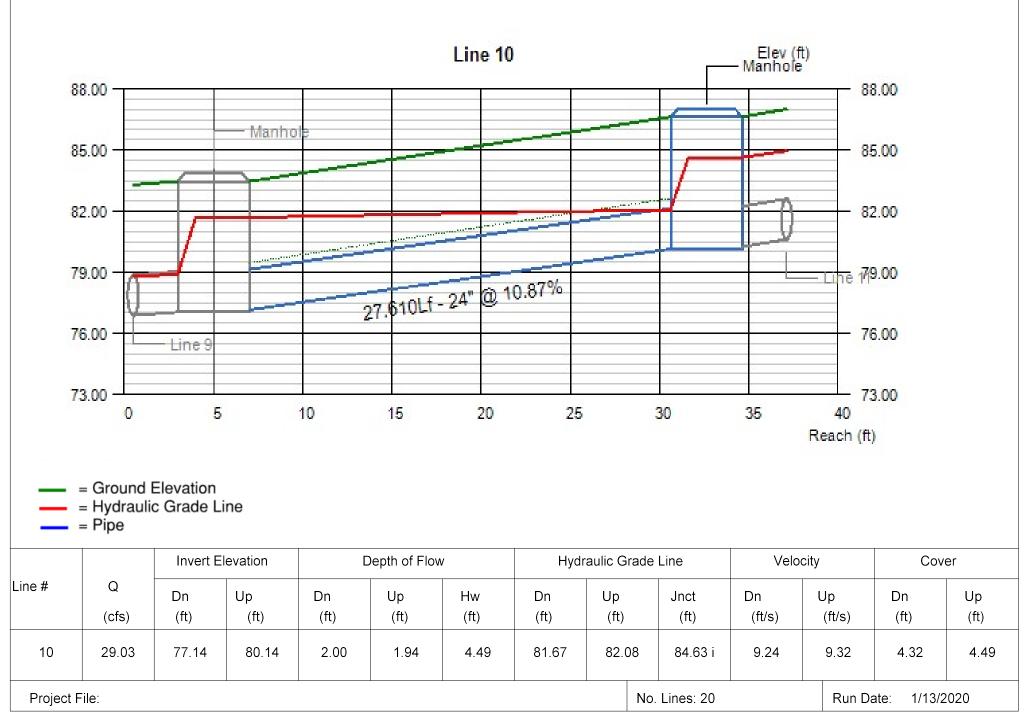
Line Profile (Line 7)

	Invert Elevation		levation	Depth of Flow			Hydraulic Grade Line			Line	Velocity		Cover	
Line #	Q	Dn	Up	Dn	Up	Hw	Dn	Up		Jnct	Dn	Up	Dn	Up
	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft/s)	(ft/s)	(ft)	(ft)
7	29.91	67.94	69.61	1.86	1.86	1.86	69.80	71.4	17	71.47	9.82	9.82	3.06	4.39
Project File: No. Lines: 20						Run Da	ate: 1/13/2	020						

Line Profile (Line 8)


No. Lines: 20

Storm Sewers


1/13/2020

Run Date:

Line Profile (Line 9)

Line Profile (Line 10)

	Invert Elevation		evation	Depth of Flow			Hydr	aulic Gr	ade	Line	Velocity		Cover	
Line #	Q	Dn	Up	Dn	Up	Hw	Dn	Up		Jnct	Dn	Up	Dn	Up
	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft/s)	(ft/s)	(ft)	(ft)
11	26.95	80.24	100.13	2.00	1.81	4.20	84.63	101.9	94 j	104.33 i	8.58	9.03	4.39	4.90
Project File: No. Lines: 20					Run Da	ate: 1/13/2	020							

Page 1 of 1

12

Project File:

15.80

100.49

107.41

2.00

1.43

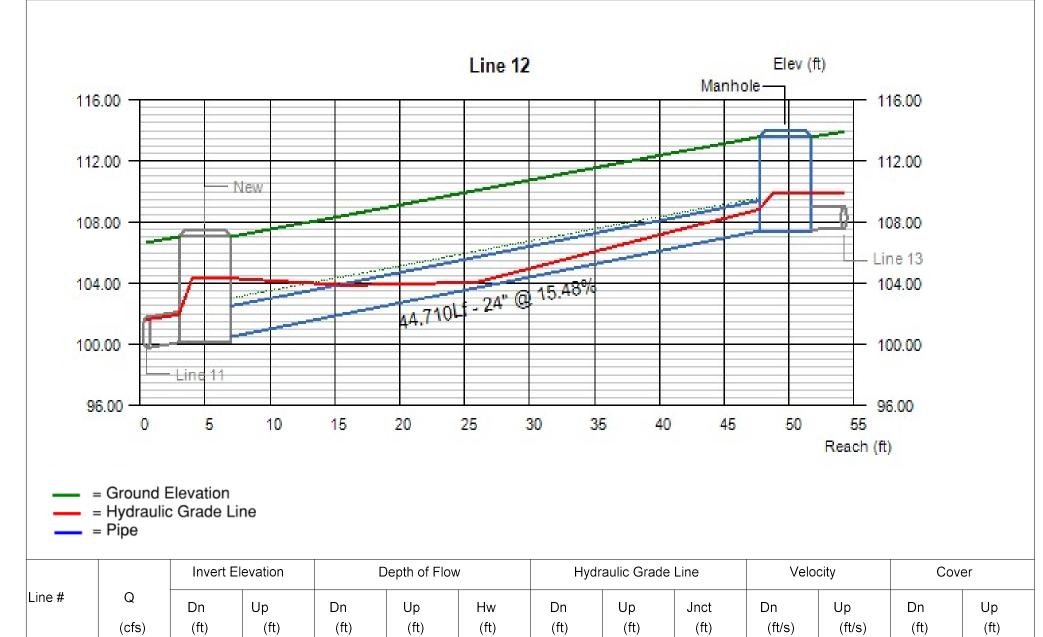
2.46

104.33

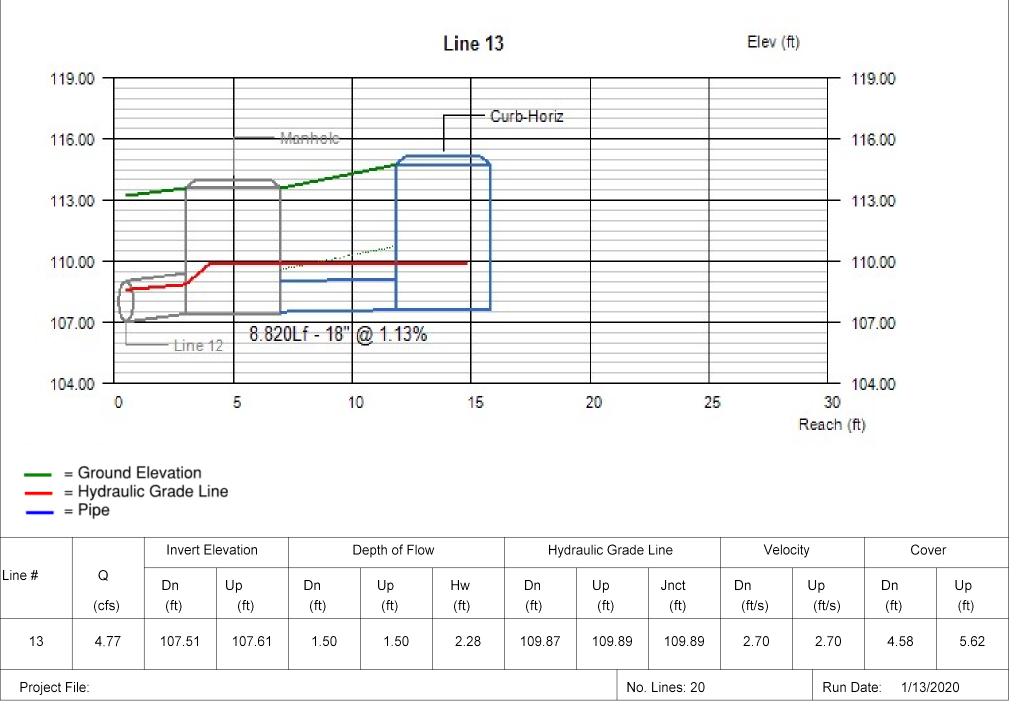
108.84 j

109.87 i

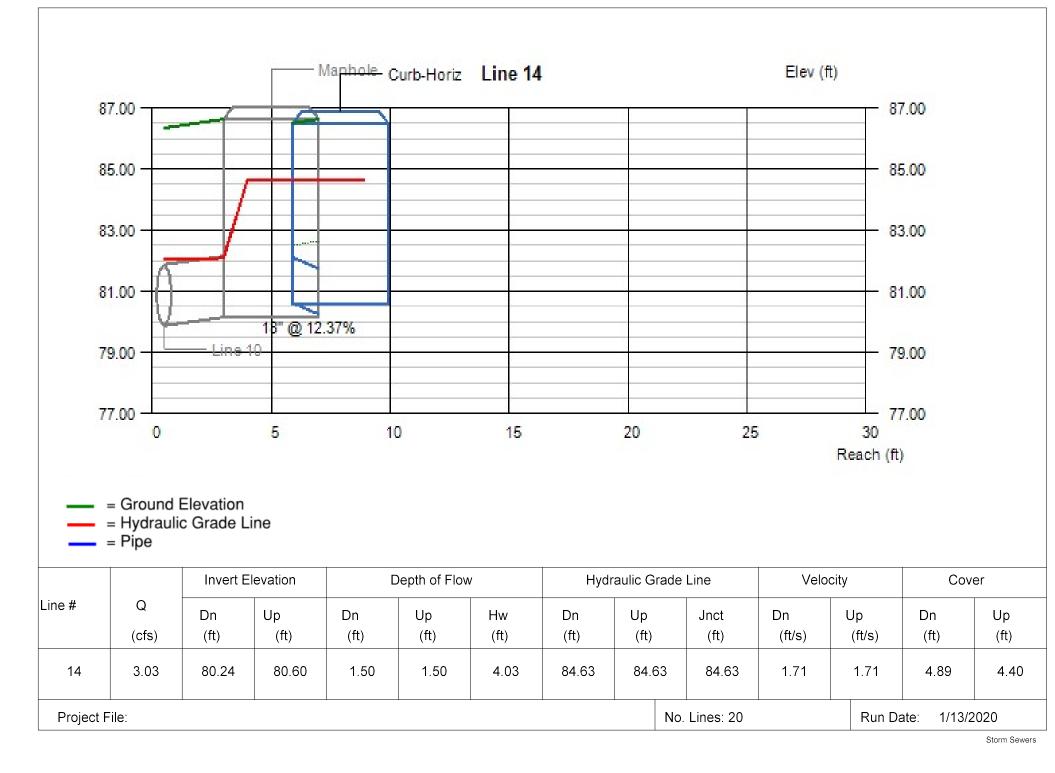
No. Lines: 20

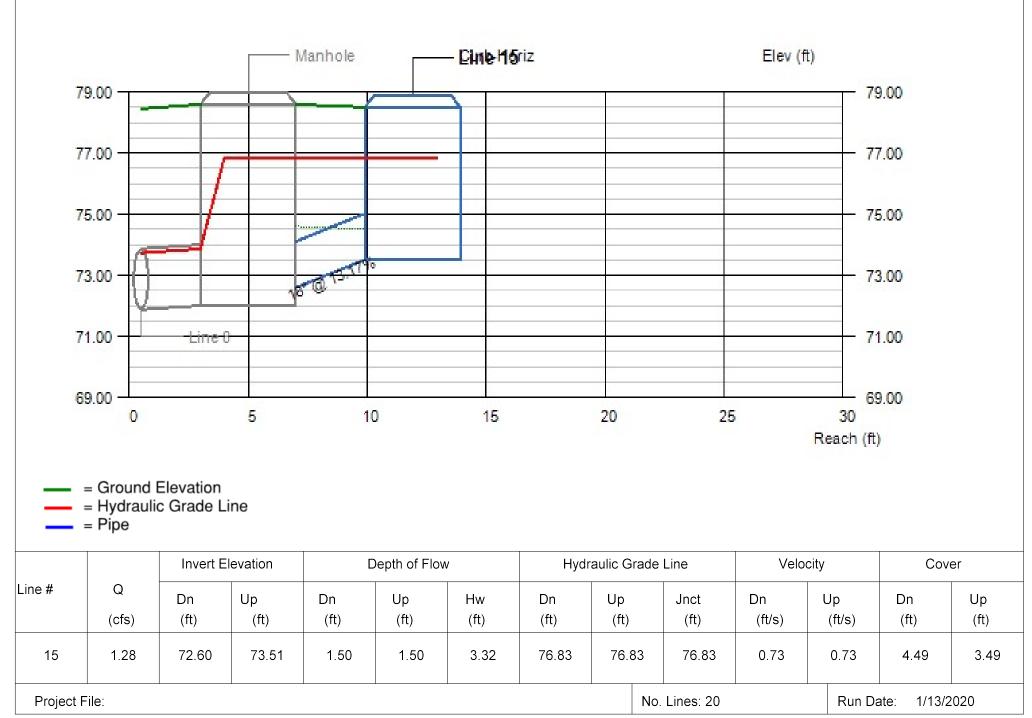

5.03

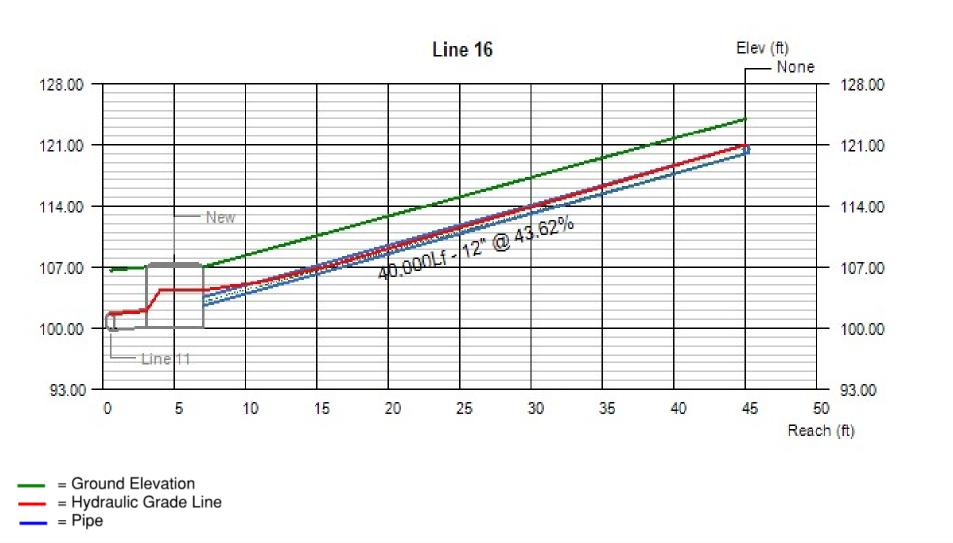
6.56


Run Date:

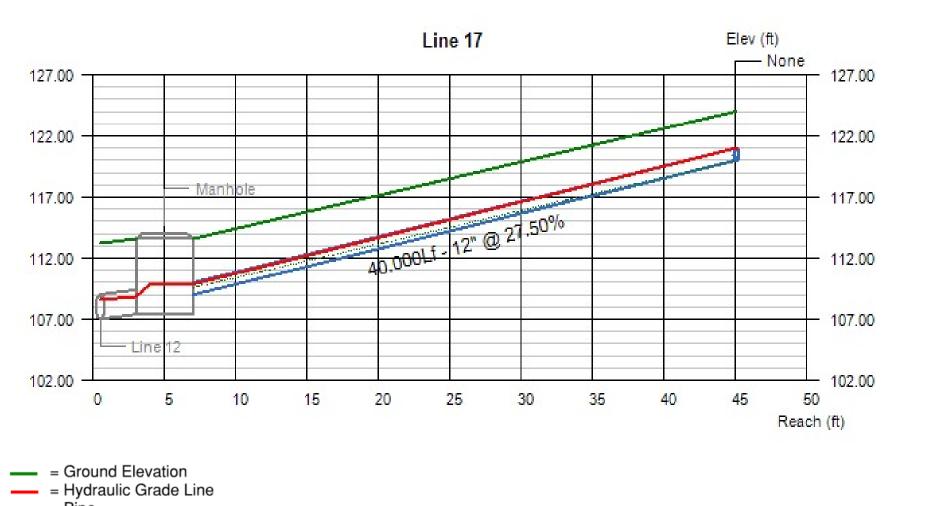
4.54


1/13/2020

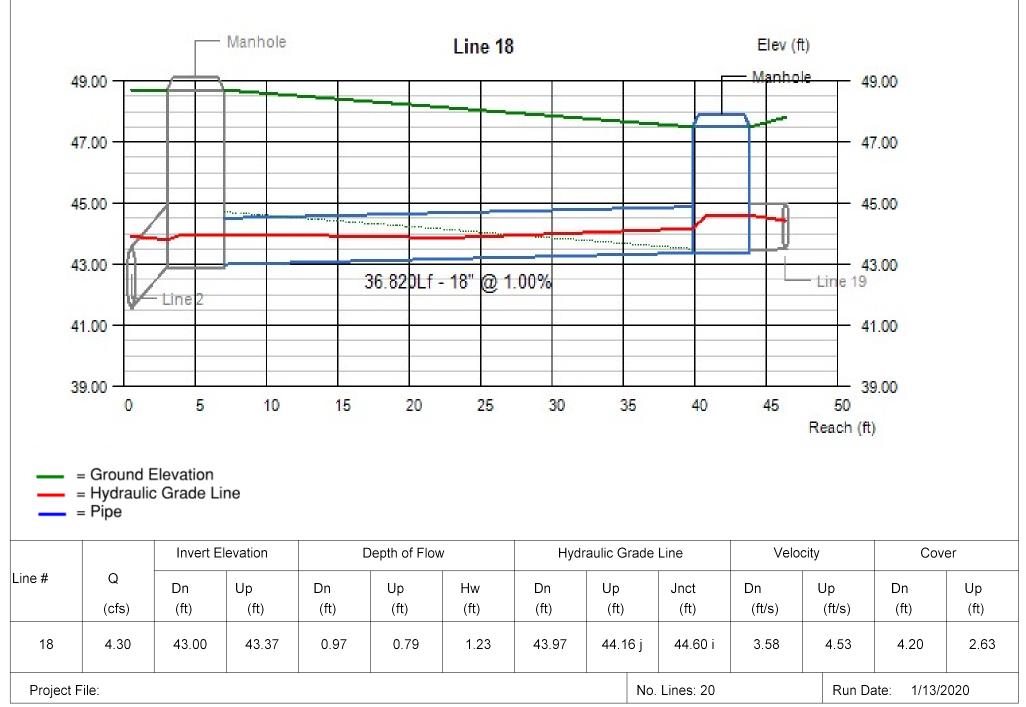

4.18

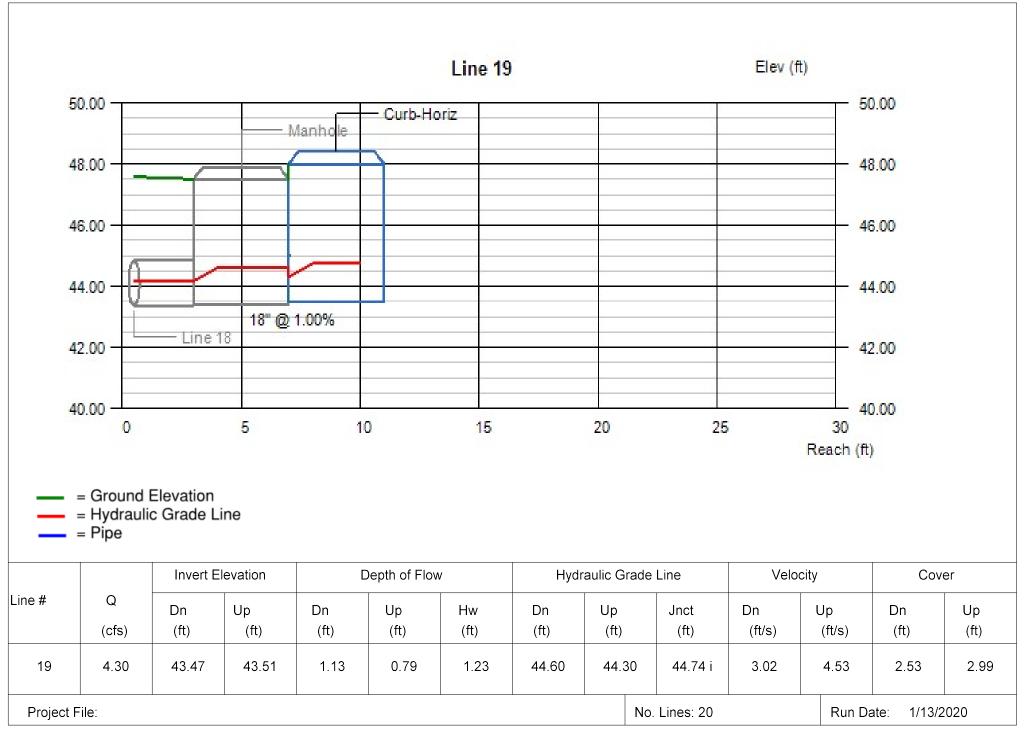


Storm Sewers



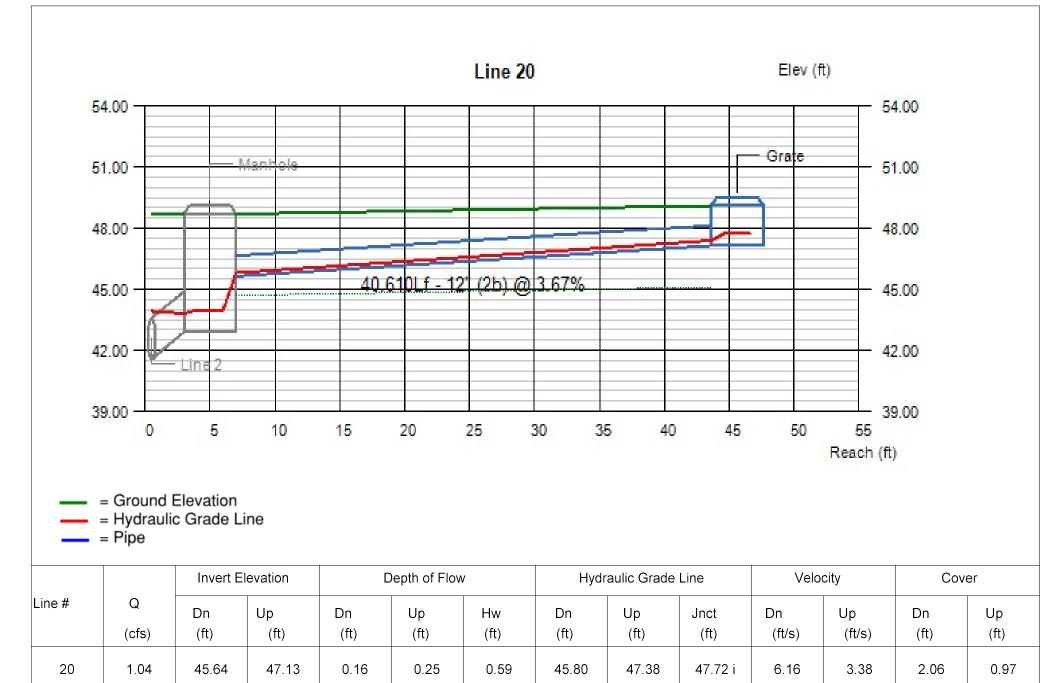
Line Profile (Line 15)


		Invert Elevation		Depth of Flow		Hydraulic Grade Line			Velocity		Cover			
Line #	Q	Dn	Up	Dn	Up	Hw	Dn	Up		Jnct	Dn	Up	Dn	Up
	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft/s)	(ft/s)	(ft)	(ft)
16	11.15	102.55	120.00	1.00	1.00	1.00	104.33	121.0)0 j	121.00	14.19	14.20	3.48	3.00
Project F	Project File:				•		•		No.	Lines: 20		Run Da	ate: 1/13/2	020



= Pipe

		Invert El	t Elevation Depth of Flow			/	Hydraulic Grade Line				Velocity		Cover	
Line #	Q (cfs)	Dn (ft)	Up (ft)	Dn (ft)	Up (ft)	Hw (ft)	Dn (ft)	Up (ft)		Jnct (ft)	Dn (ft/s)	Up (ft/s)	Dn (ft)	Up (ft)
		(11)		(11)	(11)	(11)	(11)	(11)		(11)	(103)	(103)	(11)	(11)
17	11.15	109.00	120.00	0.87	1.00	1.00	109.87	121.	00	121.00	15.38	14.20	3.59	3.00
Project I	- ile:					•	•		No.	Lines: 20		Run Da	ate: 1/13/2	2020


Line Profile (Line 18)

Line Profile (Line 20)

Project File:

No. Lines: 20

1/13/2020

Run Date:

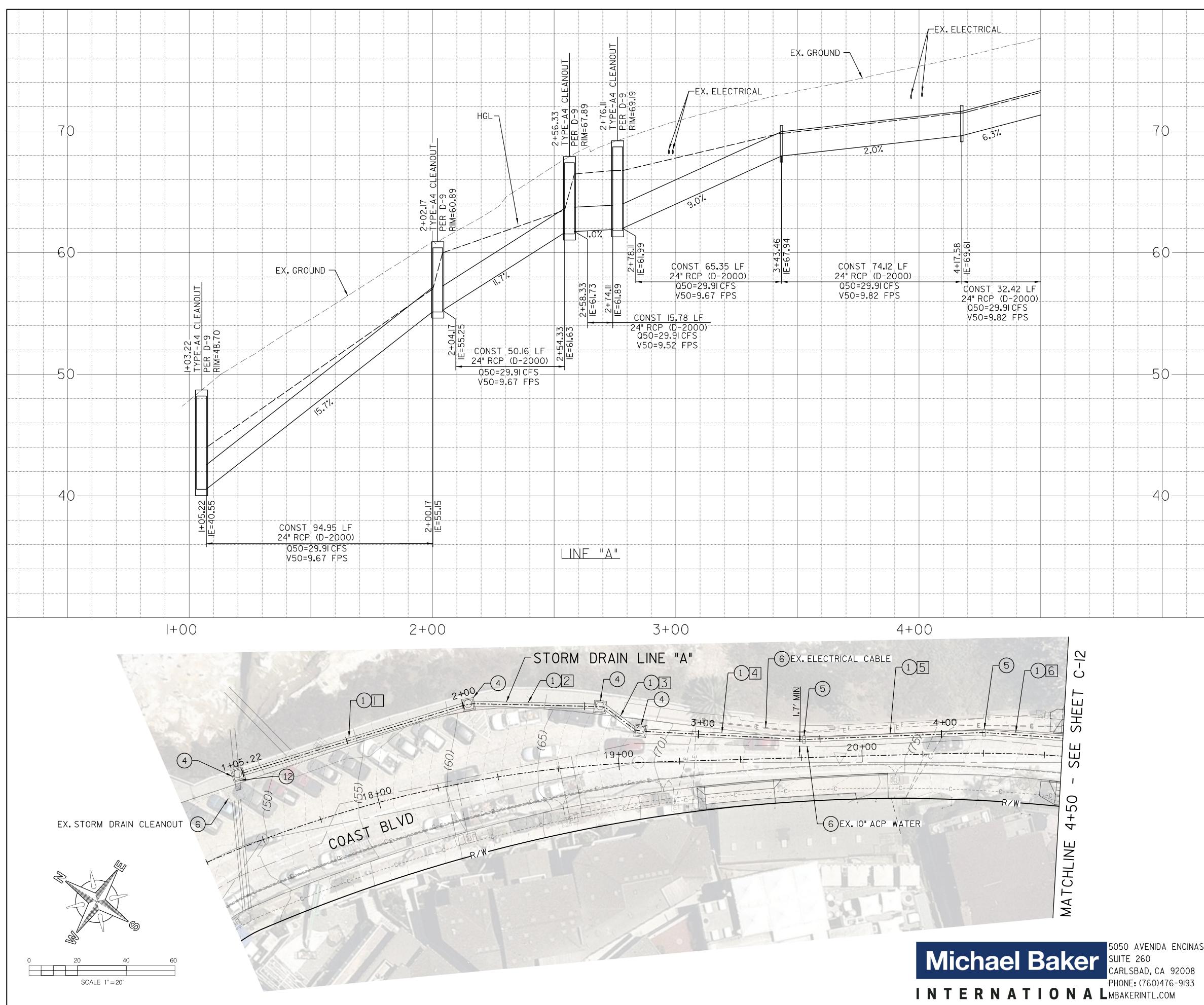
MBI JN 175050

Proposed Inlet Sizes

Curb Inlet in Sag										
Inlet #	Q ₅₀ (cfs)		Depth of	Required Inlet	Proposed Opening					
		y+a	d _o	Opening Length ² (ft)	Length (ft)					
PR 1 - Northwest Side of Parking Lot	1.30	0.73	0.47	1.3	4					

	Curb Inlet on Grade										
Inlet #	Q ₅₀ (cfs)	On-Grade (a	Coefficient ³	Required Inlet Opening Length ³ (ft)	Proposed Opening Length (ft)						
PR 2 - Southeast Side of Parking Lot	3.00	0.33	0.4	6.9	7						
PR 3 - Coast Blvd. Near Prospect	4.90	0.33	0.4	11.2	11.5						

¹Using Equation 3-5 from the City of SD DDM

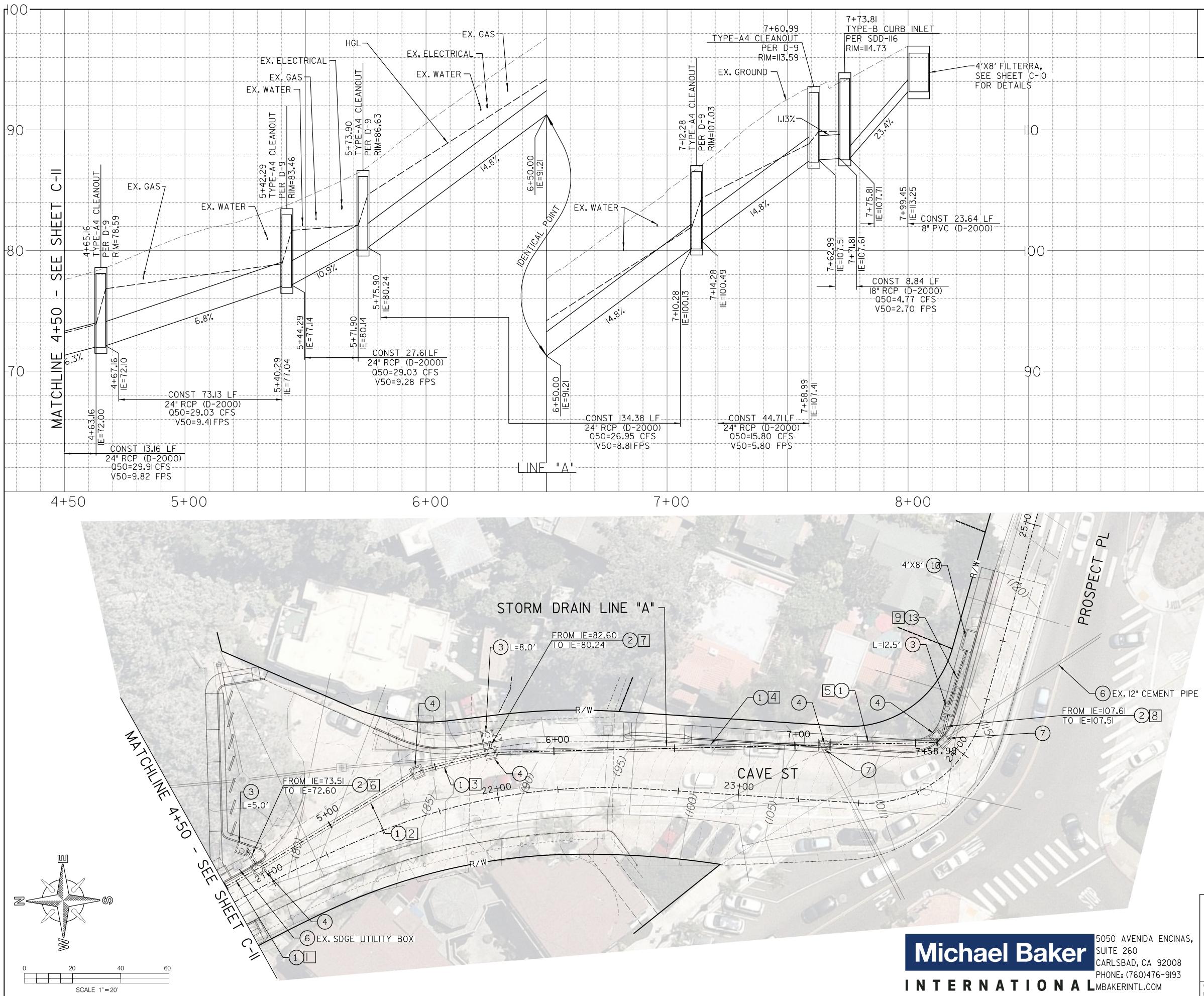

²Using Equation 3-3 from the City of SD DDM

³Using Equation 3-2 from the City of SD DDM

Sized per 50-year storm event as the storm frequeny for the pipes is to convey the 50-year. Section 3.1.2.2 of CSDDDM The basic criteria for storm drain inlet design shall be that any inlet will be sized to accept one hundred percent (100%) of the drainage received without bypass for the design storm frequency required for the system.

Michael Baker

Attachment E. Plan Sheets



H:\PDATA\175050\CADD\Land\Dlv\175050-PLANS.dgn

 SCALE I"=20' HORIZ. I"=4' VERT.	CONSTRUCTION NOTES:
	 INSTALL 24" RCP WITH WATER TIGHT JOINTS CONSTRUCT TYPE-A4 STORM DRAIN CLEANOUT PER D-9 CONSTRUCT PIPE COLLAR PER D-62 PROTECT IN PLACE CONNECT EXISTING STORM DRAIN PIPE TO PROPOSED TYPE A-4 STORM DRAIN CLEANOUT. EXTEND OR REMOVE CONFLICT PORTION WHEN NECESARY CONNECT PROP. 24" RCP TO EX. STORM DRAIN CLEANOUT
	EXISTING UTILITY LATERAL ELEVATIONS ARE PER AS-BUILT PLANS. CONTRACTOR TO FIELD VERIFY ELEVATION OF EXISTING LATERALS PRIOR TO PIPE INSTALLATION. THE ENGINEER SHALL BE NOTIFIED IF THERE ARE ANY DISCREPANCIES.
	PROPOSED STORM DRAIN DATA TABLE NO. △/BEARING LENGTH D-LOAD NOTE □ S50° 09'14"E 94.95' D-2000 24" RCP 2 S31° 46'38"E 50.16' D-2000 24" RCP 3 S03° 51'35"W 15.78' D-2000 24" RCP 4 S30° 11'04"E 65.35' D-2000 24" RCP 5 S35° 17'53"E 74.12' D-2000 24" RCP 6 S28° 53'05"E 32.42' D-2000 24" RCP
	C–11 PLANS FOR THE CONSTRUCTION OF CONCRETE PANEL REPLACEMENT-COAST BLVD

		D	RAIN	IAGE PLA	AN A	ND P	ROFILE
		CITY (PUBLIC	N DIEGO, CA WORKS DEPARTI 13 OF 27 SHE	MENT	NIA	WBS <u>B-20046</u>
	PROFESS/01/4	APPROVED: FOR CITY ENG	INEER		DATE		SHAWN KRAUSE PROJECT MANAGER
	S No. 60755 S No. 60755 Fyn 12/31/20	PRINT DCE NAI	ME	R	CE#		CHECKED BY:
۸C	図 ^{No. 60755} 一百	DESCRIPTION	BY	APPROVED	DATE	FILMED	PROJECT ENGINEER
AS,							
	CIVIL NT						CCS27 COORDINATE
	CIVIL CIVIL FFC OF CALIFORNIT						
							CCS83 COORDINATE
	CONTRACTOR			DATE START	ED	· · · · · · · · · · · · · · · · · · ·	XXXXX–13–X
	INSPECTOR			DATE COMPL	ETED		$ \land \land \land \land \land \land \neg $

95% DRAINAGE PLAN AND PROFILE

H:\PDATA\175050\CADD\Land\Dlv\175050-PLANS.dgn

1	
 SCALE I"=20' HORIZ.	CONSTRUCTION NOTES:
I"=4' VERT.	1 INSTALL 24" RCP WITH WATER TIGHT JOINTS
	2 INSTALL 18" RCP WITH WATER TIGHT JOINTS
	3 CONSTRUCT TYPE-B CURB INLET PER SDD-116
	4 CONSTRUCT TYPE-A4 STORM DRAIN CLEANOUT PER D-9
	6 PROTECT IN PLACE
	CONNECT EXISTING STORM DRAIN PIPE TO PROPOSED TYPE A-4 STORM DRAIN CLEANOUT.EXTEND OR REMOVE CONFLICT PORTION WHEN NECESARY
	10 INSTALL 4'X8' FILTERRA PLANTER BOX PER DETAIL F ON SHEET C-IO
	13 INSTALL 8" PVC
	-
	FOR EXISTING STORM DRAIN DEMOLITION
	NOTES, SEE DEMOLITION PLANS, SHEET C-2.
	EXISTING UTILITY LATERAL ELEVATIONS ARE PER AS-BUILT PLANS. CONTRACTOR TO FIELD VERIFY
	ELEVATION OF EXISTING LATERALS PRIOR TO PIPE INSTALLATION. THE ENGINEER SHALL BE NOTIFIED IF THERE ARE ANY DISCREPANCIES.

	PROPOSED STO	RM DRAIN	DATA TA	BLE
NO.	\triangle / BEARING	LENGTH	D-LOAD	NOTE
	S28°53′05"E	13.16′	D-2000	24" RCP
2	S30°52′44"E	73.13′	D-2000	24" RCP
3	SI3° 59′56"E	27 . 6ľ	D-2000	24" RCP
4	SO0° 44′45"E	134.38′	D-2000	24" RCP
5	SO0°44′45"E	44.71′	D-2000	24" RCP
6	S57°10′37"W	6.91′	D-2000	18" RCP
7	S78°56′33"W	2.91′	D-2000	18" RCP
8	N76°20′22"W	8.84′	D-2000	18" RCP
9	N71°10′27"W	23.64′	D-2000	8" PVC
	N71° 10′27"W	23.64′	D-2000	8" PVC

C–12

PLANS	FOR	THE	CONST	FRUCTIO	N	OF
CONCRETE	PANE	EL RE	PLACEN	IENT-CO	AST	BLVD

		DRAINAGE PLAN AND PROFILE								
		CITY (WBS <u>B-20046</u>							
	PROFESSIONAL SCH C. STORAL SCH C. STORAL SCH C. STORAL SNO. 60755 Exp. 12/31/20 CIVIL CIVIL CIVIL CIVIL	APPROVED: FOR CITY ENG		DATE	SHAWN KRAUSE PROJECT MANAGER					
s,		PRINT DCE NAME RCE#					CHECKED BY:			
		DESCRIPTION	BY	APPROVED	DATE	FILMED	PROJECT ENGINEER			
							CCS27 COORDINATE			
	OF CALIFORT									
							CCS83 COORDINATE			
	CONTRACTOR		XXXXX—14—X							
	INSPECTOR	PECTOR DATE COMPLETED								