Appendix G: Noise Supporting Information

		426.0020	1			Sheet / c	of <u>2</u>
est Perso	onnel: Vio	romia Chui	75		_		
			J				
12.24	17900			e project so		I A	196
(45.27)	y speak	Noise	e Mea	surement S	urvey	2	
ite Num	ber: <u>ST-1</u>	Date: 12/1	2/18	Time:	From 2: 21 pm	To <u>2:3</u>	mad
ite Loca	tion:	la mari	na A	martmen	t- Darking	10t.10	cate
20 4	+ from	western	wa	ll and 3	to parking	orpun	wa
					nen operazionen dint to an	hing on	1
Ieasure	ment Resu			ved Noise Sour		A LUNGLIC SAN	1D.A
[00	dB	-	Time		se Source/Event		dBA
_eq	60.1		2:22	-Industral	hanler back	MP	64
_max	72.				l hander back		58
min 5	54		2:30	heavy mac	hirem operat		40
10			2:30	neliapter	(an stant)		18-70
250							
<u> </u>		*					
Ldn							
CNEL							
<u> </u>							
ommen	ts: The	OCCASION	al a	ar drive	-by		
					. 7		
		. W					
quipme ettings:	nt: fac A-Weighte	sun Danis (d ☑ Other□	(K-2	Measu:	red Difference:). 0¶dBandscreen⊠	A
tmoonl	neric Cond	itions:					
	um Wind	Average Win	d		Relative		
	ty (mph)	Velocity (mpl		emperature (F)	Humidity (%)		
9.	* ` ` ` `	0.7	-/ 1	64°	21011111111 (70)		
Commercia	mta.	m' 1	1015	1 (
Comme	nts:	Slighth	Win	dy Condi	nen		

2012

Photos Taken:

Photo Number	Location/Description	
St-1 N	East of the project site, facing N towards LST.	
ST-15	" facing & towards Mossst. " facing & towards Broadway " facing W towards Industrial	
ST-1 2	4 facing 2 towards Broadway	•
57-1 W	" facing W towards Industries	And
PM = 1.35.		

Traffic Description:

Roadway	# Lanes	Posted Speed	Average Speed	NB/EB Counts	SB/WB Counts
	many and			3-3-2	
	marine T. F.	A CHE TO LESS	200	War and the second	
				The state of the s	
				the state of the	

Diagram/Further Comments:	- Lake the self-time program
Andrew Andrew Control of the Control	
The same of the sa	
many properties and and a support of the	
and the second of the second o	
STATE OF THE STATE	
graph winds and the continue	

Project Number: <u>39</u> Project Name: <u>01</u> Test Personnel: <u>177</u>	rula Vista		World's Appointed	Sheet	of 2
onine de Mari	Noise M	easu	rement Survey		5.T&
Site Number: <u>ST-2</u>	Date: 12/12/18	18	Time: From /:52 pn	то 2:0	8 pm
, , , , ,			e & Moss St., West		
Signal lig	hor & bells.		Semis of mosso	7. / 200	
Measurement Resu			Noise Sources/Events Noise Source/Event	Custon C	dBA
Leq 70.1 Lmax 92.3 Lmin 58.2	/: 5 /: 5	12 th	rain (houns & belle) ruck having equip rain crossing belle rain greenly)	79 61-69
L10 L50 L90 Ldn	2:0 2:0 2:0	7 87 2 R	nall tenker legular trulk expan	ust	92
COMMENTS: Prior Start appr Heavy trap Equipment: Jans Settings: A-Weighte	on Davis Lx-		Measured Difference:	0.01 dindscreen	BA
Atmospheric Cond	itions: Average Wind		Relative		

Temperature (F)

Humidity (%)

Velocity (mph)

1.4

Velocity (mph)

2.3

Comments:

Photos Taken:

Photo Number	Location/Description
ST-2 N	South of the projectoil, facing N towards Mosest.
ST-2 S	facings trusted parking lot
ST-22	" facing & towards Polocado St.
51-2 W	"facing & towards Colorado St. "facing w towards Industrial Block
L. C. L. Conner.	

Traffic Description:

Roadway	# Lanes	Posted Speed	Average Speed	NB/EB Counts	SB/WB Counts
The second second	\$ 1 × 1 × 1	with house and and a	-3-17		
					and the sail has
A 150.5.	A STATE		a statement	E TIME TO SERVE	- 102 - 12 T
There is a second		Section of the second			

	er Comments:			
2.1.		- ATO 1		
	The topper & act the	11:52		
the state of	the and property of the		7.4	
		7		
F	Emil Frances			
135	Sugar Sure Sulming	San		
	Marie and Country		and interest	
- 13. 				

Project Number: 3426.0	024	c	Sheet lof 2
Project Number: Chula l	lista		neet01
Test Personnel: Victoria	Chung		
17 (1	2.46 /34		NOUNTOURIE
towards Mars St	Noise Measuren	nent Survey	2 8 7
Site Number: T3 Date: _	12/12/18	Time: From 1:05 pm T	ο 1:33 pm
Site Location:		1 1 1/6	^
In COI marine fence, left from	Nach par	irking Lot. 4++	from West
final OFF Trom	N-SICE SNED	my fina,	
Primary Noise Sources: fr from Industrial light rail (train	eeway (I-5) Hand Blvd. +	trapic, heavy to	rapic
Measurement Results	Observed No	ise Sources/Events	Discount/Ferring
dBA	Time	Noise Source/Event	dBA
Leq 69.6 Lmax 91.6	1.05 larg	e semi truck	
		n (belle & horn)	
Lmin 62.2		belle & hopen	
L10		n lance sien	
L50		in (belis & horn)	
L90		d vehicle exhaus	1
Ldn	1:25 dist	ant plane	
CNEL	1:3-0 +ran	n (huan & bella)	
Comments: Rail was	crossing lie	min signal by	egna in
Two trains pas	sed going sou	In bound two tra	ins parted
going nonth bone	nd (Light rai	I San Diego MTJ)	
A. A.	2000 / 100 = 2		011 -
1 1	anic Lx-2	Measured Difference:	
Settings: A-Weighted Other		Slow ☐ Fast ☐ Wind	dscreen
Atmospheric Conditions:			

Atmospheric Conditions.							
Maximum Wind	Average Wind		Relative				
Velocity (mph)	Velocity (mph)	Temperature (F)	Humidity (%)				
6,4	2.7	70°					
Comments:	Slightly	windy cond	itions				

20 J2

Photos Taken:

Photo Number	Location/Description
ST-7 N	West of priect side, facing N towards LS+
ST-3 S	" facines towards moss st
ST-3 2	" facing E toward Broadway
ST-3 W	" facing w fowards Industrial Blo
The second second	

Traffic Description:

Roadway	# Lanes	Posted Speed	Average Speed	NB/EB Counts	SB/WB Counts
		Aura - Francis	The same	The roll has the	An Indian
N. Park	Secretary.	Contraction des	1	Land State Comment	1. A. S. C. W. V.
To the Art of	A Track		a big the	The state of the state of	
				Colore Til	A Transfer

	r Comments:	A REPORT OF THE START OF THE
	was it was a	
	The second secon	
	house the house is in	
	The same of the same of the same	
	the state of the s	
the state of		The state of the s
andred "	The state of the s	74 30 mile 15 4 Che
25 De C	The said some stage he to	my and some with the sail
25 De C	The second secon	The said of the said of the said
25 De C	The second secon	April 1 Sept 1 S
25 De C	The second secon	All and the second of the seco

TABLE Existing-01 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - L Street to I-5

interchange

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 9900 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

RISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 64.99

DISTANCE	(FEET) FROM	ROADWAY CENTERI	LINE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	61.9	131.3	281.9

TABLE Existing-02 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - I-5 interchange to Moss

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 10100 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	TIGHT TC	DIDIKIDOITON	LUICUIVITAGUD	
	DAY	EVENING	NIGHT	
AUTOS				
	75.51	12.57	9.34	
M-TRUCE	KS			
	1.56	0.09	0.19	
H-TRUCE	KS			
	0.64	0.02	0.08	

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 65.66

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	61.9	132.7	285.7

TABLE Existing-03 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - Moss Street to Naples

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5500 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS.		
	1.56	0.09	0.19
H-TRUC	KS.		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 63.02

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL
70 CNEL 65 CNEL 60 CNEL 55 CNEL
----- 0.0 0.0 88.7 190.6

TABLE Existing-04 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Industrial Boulevard to Colorado

Avenue

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5500 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRU	CKS		
	1.56	0.09	0.19
H-TRU	CKS		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 59.99

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	55.9	119.8

TABLE Existing-05 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Colorado Avenue to Woodlawn Avenue NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5100 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUCI	KS		
	1.56	0.09	0.19
H-TRUCI	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 6	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 59.66

DISTANCE	(FEET) FROM	ROADWAY CENTERI	LINE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	53.2	114.0

TABLE Existing-06 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Interstate 5 - north of Palomar Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 158000 SPEED (MPH): 65 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUCK	ζS		
	1.56	0.09	0.19
H-TRUCK	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 48	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 80.12

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL ------ 406.7 871.1 1874.2 4035.9

TABLE Existing + Project-01 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - L Street to I-5

interchange

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 10300 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 12	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 65.16

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	63.5	134.8	289.5

TABLE Existing + Project-02 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - I-5 interchange to Moss

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 10700 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT		
AUTOS					
	75.51	12.57	9.34		
M-TRUC	KS				
	1.56	0.09	0.19		
H-TRUC	KS				
	0.64	0.02	0.08		
ACTIVE	HALF-WIDTH	(FT): 6	SITE CHARA	ACTERISTICS:	SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 65.91

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNE
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	64.3	137.9	296.9

8

TABLE Existing + Project-03 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - Moss Street to Naples

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5600 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT		
AUTOS					
	75.51	12.57	9.34		
M-TRUC	CKS				
	1.56	0.09	0.19		
H-TRUCKS					
	0.64	0.02	0.08		

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 63.10

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEI
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	89.7	192.9

TABLE Existing + Project-04 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Industrial Boulevard to Colorado

Avenue

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5500 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT.
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 59.99

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL
70 CNEL 65 CNEL 60 CNEL 55 CNEL
----- 0.0 0.0 55.9 119.8

TABLE Existing + Project-05 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Colorado Avenue to Woodlawn Avenue NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5100 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 6	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 59.66

DISTANCE	(FEET) FROM	ROADWAY CENTERI	LINE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	53.2	114.0

TABLE Existing + Project-06 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Interstate 5 - north of Palomar Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Existing + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 158000 SPEED (MPH): 65 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 48	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 80.12

DISTANCE	(FEET) FROM	ROADWAY CENTERLI	NE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
406.7	871.1	1874.2	4035.9

TABLE Year 2045 Without Project-01 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - L Street to I-5

interchange

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 12800 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 12	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 66.10

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	73.0	155.7	334.5

TABLE Year 2045 Without Project-02 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - I-5 interchange to Moss

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 22700 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT	
AUTOS				
	75.51	12.57	9.34	
M-TRUC	KS			
	1.56	0.09	0.19	
H-TRUC	KS			
	0.64	0.02	0.08	
ACTIVE	HALF-WIDTH	(FT): 6	SITE CHARACTERISTICS:	SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 69.17

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEI
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	105.8	227.6	490.1

14

TABLE Year 2045 Without Project-03 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - Moss Street to Naples

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 11400 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NTGHT.
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 66.18

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL
70 CNEL 65 CNEL 60 CNEL 55 CNEL
----- 0.0 67.0 143.9 309.7

TABLE Year 2045 Without Project-04 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Industrial Boulevard to Colorado

Avenue

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 6000 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	CKS		
	1.56	0.09	0.19
H-TRUC	CKS		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 60.37

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL
70 CNEL 65 CNEL 60 CNEL 55 CNEL
----- 0.0 0.0 59.2 127.0

TABLE Year 2045 Without Project-05 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Colorado Avenue to Woodlawn Avenue NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5600 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
7 (m + 17 m	IIATE MIDEII	(mm) •	

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 60.07

DISTANCE	(FEET) FROM	ROADWAY CENTERLI	NE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	56.5	121.3

TABLE Year 2045 Without Project-06 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Interstate 5 - north of Palomar Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 Without Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 178000 SPEED (MPH): 65 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUCK	ζS		
	1.56	0.09	0.19
H-TRUCK	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 48	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 80.64

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
439.8	943.0	2029.1	4369.6

TABLE Year 2045 + Project-01 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - L Street to I-5

interchange

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 13200 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 12	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 66.24

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	74.5	158.9	341.4

TABLE Year 2045 + Project-02 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - I-5 interchange to Moss

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 23400 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

		DIBITUIDOTION	1 11011111010	
	DAY	EVENING	NIGHT	
AUTOS				
	75.51	12.57	9.34	
M-TRUCE	ζS			
	1.56	0.09	0.19	
H-TRUCE	ζS			
	0.64	0.02	0.08	

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 69.31

DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL

50.4 107.9 232.2 500.1

20

TABLE Year 2045 + Project-03 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Industrial Boulevard - Moss Street to Naples

Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 11500 SPEED (MPH): 40 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

D	AY	EVENING	NIGHT
_			
AUTOS			
7	5.51	12.57	9.34
M-TRUCKS			
	1.56	0.09	0.19
H-TRUCKS			
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 66.22

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	67.4	144.7	311.5

TABLE Year 2045 + Project-04 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Industrial Boulevard to Colorado

Avenue

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 6000 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08

ACTIVE HALF-WIDTH (FT): 6 SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 60.37

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	59.2	127.0

TABLE Year 2045 + Project-05 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Moss Street - Colorado Avenue to Woodlawn Avenue NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 5600 SPEED (MPH): 30 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 6	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 60.07

DISTANCE	(FEET) FROM	ROADWAY CENTERI	LINE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
0.0	0.0	56.5	121.3

TABLE Year 2045 + Project-06 FHWA ROADWAY NOISE LEVEL ANALYSIS

RUN DATE: 08/12/2019

ROADWAY SEGMENT: Interstate 5 - north of Palomar Street

NOTES: Chula Vista Moss Street & Industrial Boulevard Residential

Project - Year 2045 + Project

* * ASSUMPTIONS * *

AVERAGE DAILY TRAFFIC: 178000 SPEED (MPH): 65 GRADE: .5

TRAFFIC DISTRIBUTION PERCENTAGES

	DAY	EVENING	NIGHT
AUTOS			
	75.51	12.57	9.34
M-TRUC	KS		
	1.56	0.09	0.19
H-TRUC	KS		
	0.64	0.02	0.08
ACTIVE	HALF-WIDTH	(FT): 48	SITE CHARACTERISTICS: SOFT

* * CALCULATED NOISE LEVELS * *

CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 80.64

DISTANCE	(FEET) FROM	ROADWAY CENTERL	INE TO CNEL
70 CNEL	65 CNEL	60 CNEL	55 CNEL
439.8	943.0	2029.1	4369.6

Noise Model Based on Federal Transit Adminstration General Transit Noise Assessment Developed for Chicago Create Project Copyright 2006, HMMH Inc.

Case:

Chula Vista - Moss Street Project

RESULTS			
Noise Source	Ldn (dB)	Leq - daytime (dB)	Leq - nighttime (dB)
All Sources	67	62	61
Source 1	60	62	33
Source 2	67	41	61
Source 3	0	0	0
Source 4	0	0	0
Source 5	0	0	0
Source 6	0	0	0
Source 7	0	0	0
Source 8	0	0	0

Enter noise receiver land use category below.

LAND USE CATEGORY	
Noise receiver land use category (1, 2 or 3)	2

Enter data for up to 8 noise sources below - see reference list for source numbers.

Enter data for up to 8 noise source	s below - see reference list for source	numbers.				
NOISE SOURCE PARAMETERS						
Parameter	Source 1	Source 1		Source 2		
Source Num.	Commuter Electric Locomotive	1	Freight Locomotive	9		
Distance (source to receiver)	distance (ft)	55	distance (ft)	55		
Daytime Hours	speed (mph)	40	speed (mph)	40		
(7 AM - 10 PM)	trains/hour	8	trains/hour	0		
	locos/train	1	locos/train	0		
Nighttime Hours	speed (mph)	40	speed (mph)	40		
(10 PM - 7 AM)	trains/hour	0	trains/hour	1		
	locos/train	0	locos/train	1		
Wheel Flats?		N		N		
Jointed Track?	Y/N	N	Y/N	N		
Embedded Track?	Y/N	N	Y/N	N		
Aerial Structure?	Y/N	N	Y/N	N		
Barrier Present?	Y/N	N	Y/N	N		
Intervening Rows of of Buildings	number of rows	0	number of rows	0		

SOURCE REFERENCE LIST	
Source	Number
Commuter Electric Locomotive	1
Commuter Diesel Locomotive	2
Commuter Rail Cars	3
RRT/LRT	4
AGT, Steel Wheel	5
AGT, Rubber Tire	6
Monorail	7
Maglev	8
Freight Locomotive	9
Freight Cars	10
Hopper Cars (empty)	11
Hopper Cars (full)	12
Crossover	13
Automobiles	14
City Buses	15
Commuter Buses	16
Rail Yard or Shop	17
Layover Tracks	18
Bus Storage Yard	19
Bus Op. Facility	20
Bus Transit Center	21
Parking Garage	22
Park & Ride Lot	23

Train Horn CNEL Calculation

FTA Transit Noise and Vibration Impact Assessment Manual, September 2018. According to Table 4-21 of the FTA Manual:

Formula for Locomotive Warning Horns Leq(1hr) at 50 feet from centerline LeqLHorns(1hr) = SELref + 10log(V) - 35.6

V = average hourly volume of train traffic, trains per hour

SELref = 113 - 3 x (Dp/660) (According to Table 4-20 of the FTA Manual)

Dp = distance from grade crossing parallel to tracks

Project Calculations:

Dp = 350 feet (nearest project façade to rail line is 350' from the grade crossing)

V = 4/24 (4 freight trains per day) = 0.166667

SELref = 113 - 3 x (350/660) = 111.4091

LeqLHorns(1hr) = 111.4 + 10log(0.167) - 35.6 = 68.01849

CNEL Cald	culations				
	Time	Hourly Leq	Leq'	0.1*Leq	antiLog
Night	12:00 AM	68.0	78.0	7.802	63386971
	1:00 AM	68.0	78.0	7.802	63386971
	2:00 AM	68.0	78.0	7.802	63386971
	3:00 AM	68.0	78.0	7.802	63386971
	4:00 AM	68.0	78.0	7.802	63386971
	5:00 AM	68.0	78.0	7.802	63386971
	6:00 AM	68.0	78.0	7.802	63386971
Day	7:00 AM	68.0	68.0	6.802	6338697
	8:00 AM	68.0	68.0	6.802	6338697
	9:00 AM	68.0	68.0	6.802	6338697
	10:00 AM	68.0	68.0	6.802	6338697
	11:00 AM	68.0	68.0	6.802	6338697
	12:00 PM	68.0	68.0	6.802	6338697
	1:00 PM	68.0	68.0	6.802	6338697
	2:00 PM	68.0	68.0	6.802	6338697
	3:00 PM	68.0	68.0	6.802	6338697
	4:00 PM	68.0	68.0	6.802	6338697
	5:00 PM	68.0	68.0	6.802	6338697
	6:00 PM	68.0	68.0	6.802	6338697
Evening	7:00 PM	68.0	73.0	7.302	20044720
	8:00 PM	68.0	73.0	7.302	20044720
	9:00 PM	68.0	73.0	7.302	20044720
Night	10:00 PM	68.0	78.0	7.802	63386971
	11:00 PM	68.0	78.0	7.802	63386971
			Sum		7.07E+08
			Sum/24		29445053
			Log10(Sum/24)		7.469012
			10*Log10(\$	Sum/24)	74.69012

Calculated Horn Noise CNEL at 50' from tracks =	74.7 dBA CNEL (No shielding assume	ed)
Calculated Horn Noise CNEL at nearest Façade =	73.9 dBA CNEL (No shielding assume	:d)

(Nearest façade is approximately 55 feet from centerline of tracks where freight trains would pass. Distance attenuation at 55' compared to 50' is -0.8 dB.)

(It should be noted that this calculation is conservative as it does not account for the fact that there is an existing structure that would provide shielding from trains approaching the crossing from the south. In addition, the project will include a soundwall.)

24 Hour CNEL

(distance from track to closes + facade)

Transit Noise and Vibration impact assessment manual $L_v = 92.28 + 14.81 \log (55) - 14.17 \log (55^2) + 1.65 \log (55^3) = (77.3)$

Table 6-10 Generalized Ground Surface Vibration Equations

Curve	Equation	
Locomotive Powered Passenger or Freight Curve	$L_{\nu} = 92.28 + 14.81 \log(D) - 14.17 \log(D)^{2} + 1.65 \log(D)^{3}$	Eq. 6-1
Rapid Transit or Light Rail Vehicles Curve	$L_{\nu} = 85.88 - 1.06 \log(D) - 2.32 \log(D)^{2}$ $-0.87 \log(D)^{3}$	Eq. 6-2
Rubber-Tired Vehicles Curve	$L_{\nu} = 66.08 + 34.28 \log(D) - 30.25 \log(D)^{2} +5.40 \log(D)^{3}$	Eq. 6-3
L_v = velocity level, VdB D = distance, ft		

Considerations for selecting a base curve for different transit modes include:

Intercity passenger trains – Although intercity passenger trains can be an important source of environmental vibration, it is rare that they are considered for FTA-funded projects unless a new transit mode uses an existing rail alignment. When a new transit line uses an existing rail alignment, changes in the intercity passenger traffic can result in either positive or negative impacts. Use the locomotive-powered passenger or freight curve for intercity passenger trains unless there are specific data available on the ground-borne vibration created by the new train operations.

curre)

- (adjust for coupling

to ballbody

Foundation for =

Locomotive-powered commuter rail – Use the locomotive-powered passenger or freight curve for all commuter rail system powered by either diesel or electric locomotives.

- Electric multiple unit (EMU) Use the rapid transit or light rail vehicles curve for self-powered electric commuter rail trains.
- Diesel multiple unit (DMU) Self-powered DMUs create vibration levels somewhere between rapid transit vehicles and locomotivepowered passenger trains. A vibration curve for DMUs can be estimated by lowering the locomotive-powered passenger or freight curve by 5 dB.
- Subway heavy rail or light rail Use the rapid transit or light rail vehicles curve for subway heavy rail and subway light rail. Although vibrations from subway and at-grade tracks have very different characteristics, the overall vibration velocity levels are comparable. When applied to subways, the rapid transit or light rail vehicles curve assumes a relatively lightweight bored concrete tunnel in soil. The vibration levels will be lower for heavier subway structures such as cutand-cover box structures and stations.
- At-grade heavy rail or light rail Use the rapid transit or light rail vehicles curve for at-grade heavy rail or light rail. Heavy rail and LRT vehicles have similar suspension systems and axle loads and create similar levels of ground-borne vibration.

mitigation measures because they are based on typical vibration spectra. However, these adjustments are not adequate for detailed evaluations of impact of vibration-sensitive buildings or for detailed specification of mitigation measures.

2a. Apply source adjustments to the base curve using Table 6-11 and the descriptions below to account for the project-specific source characteristics.

Table 6-11 Source Adjustment Factors for Generalized Predictions of GB Vibration and Noise

Source	Adjustment to			Comment		
Factor	Propagation Curve		Curve			
Speed	Vehicle Speed 60 mph 50 mph 40 mph 30 mph	Reference 50 mph +1.6 dB 0.0 dB -1.9 dB -4.4 dB	e Speed 30 mph +6.0 dB +4.4 dB +2.5 dB 0.0 dB	Vibration level is approximately proportional to 20log(speed/speed _{ref}), see Eq. 6-4.		
	20 mph	-8.0 dB	-3.5 dB			
Vehicle Parameters (not additive, apply greatest value only)						
Vehicle with stiff primary suspension		+8 dB		Transit vehicles with stiff primary suspensions have been shown to create high vibration levels. Include this adjustment when the primary suspension has a vertical resonance frequency greater than 15 Hz.		
Resilient Wheels	0 dB			Resilient wheels do not generally affect ground-borne vibration except at frequencies greater than about 80 Hz.		
Worn Wheels or Wheels with Flats	+10 dB			Wheel flats or wheels that are unevenly worn can cause high vibration levels.		
Track Condition	ns (not a	dditive, ap	ply greate			
Worn or Corrugated Track	+10 dB			Corrugated track is a common problem. Mill scale* on new rail can cause higher vibration levels until the rail has been in use for some time. If there are adjustments for vehicle parameters and the track is worn or corrugated, only include one adjustment.		
Special Trackwork within 200 ft	+10 dB (within 100 ft) +5 dB (between 100 and 200 ft)			Wheel impacts at special trackwork will greatly increase vibration levels. The increase will be less at greater distances from the track. Do not include an adjustment for special trackwork more than 200 ft away.		
Jointed Track	+5 dB			Jointed track can cause higher vibration levels than welded track.		
Uneven Road Surfaces	+5 dB			Rough roads or expansion joints are sources of increased vibration for rubber-tire transit.		
Track Treatments (not additive, apply greatest value only)						
Floating Slab Trackbed	-15 dB			The reduction achieved with a floating slab trackbed is strongly dependent on the frequency characteristics of the vibration.		
Ballast Mats	-10 dB			Actual reduction is strongly dependent on frequency of vibration.		
High-Resilience Fasteners	-5 dB			Slab track with track fasteners that are very compliant in the vertical direction can reduce vibration at frequencies greater than 40 Hz.		

Table 6-12 Path Adjustment Factors for Generalized Predictions of GB Vibration and Noise

Path Factor	Adjustment	to Propagat	on Curve	Comment
Resiliently Supported Ties (Low- Vibration Track, LVT)		-10 dB		Resiliently supported tie systems have been found to provide very effective control of low-frequency vibration.
Track Structur				nly)
Type of	Relative to at-8 Eleva Relative to bor	ted structure Open cut	-10 dB 0 dB	In general, the heavier the structure, the lower the vibration levels. Putting the track
Structure	C	Station out and cover Rock-based	-5 dB -3 dB -15 dB	in cut may reduce the vibration levels slightly. Rock-based subways generate higher-frequency vibration.
Ground-borne	Propagation	Effects		in and a second
Geologic	Efficient propagation in soil		+10 dB	Refer to the text for guidance on identifying areas where efficient propagation is possible.
conditions that promote efficient vibration propagation	Propagation in rock layer	<u>Dist.</u> 50 ft 100 ft 150 ft 200 ft	<u>Adjust.</u> +2 dB +4 dB +6 dB +9 dB	The positive adjustment accounts for the lower attenuation of vibration in rock compared to soil. It is generally more difficult to excite vibrations in rock than in soil at the source.
		rame Houses	-5 dB	
Coupling to building foundation	2-45 Large Mas	tory Masonry tory Masonry onry on Piles nry on Spread Footings	-7 dB -10 dB -10 dB -13 dB	In general, the heavier the building construction, the greater the coupling loss
	Found	ation in Rock	0 dB	

In addition to the comments in Table 6-12, use the following guidelines to select the appropriate adjustment factors.

Track Structure – The weight and size of a transit structure affects the vibration radiated by that structure. In general, vibration levels are lower for heavier transit structures. Therefore, the vibration levels from a cut-and-cover concrete double-box subway can be assumed to be lower than the vibration from a lightweight concrete-lined bored tunnel.

The vibration from elevated structures is lower than from at-grade track because of the mass and damping of the structure and the extra distance that the vibration must travel before it reaches the receiver. Elevated structures in AGT applications are sometimes designed to bear on building elements. This is a special case and may require detailed design considerations.

The adjustments in this category are not additive; apply the greatest applicable value only.

Railroad info

Light rail – blue line, runs every 15 minutes (https://www.sdmts.com/schedules-real-time-maps-and-routes/trolley), therefore assume 4 trains per hour each direction, so 8 train passings per hour.