

PRELIMINARY HYDROLOGY CALCULATIONS

FOR

PEN19-0193/LST20-0008 MORENO VALLEY TRADE CENTER OPTION 2-E COMMERCE/FULFILLMENT CENTER SITE PLAN EUCALYPTUS AVENUE AND REDLANDS BLVD. MORENO VALLEY, CALIFORNIA

PREPARED FOR

HILLWOOD INVESTMENTS 901 VIA PIEMONTE, STE 1775 ONTARIO, CA 91764

PHONE: (909) 382-0033

JANUARY 24, 2020 REVISED: JULY 17, 2020 REVISED: OCTOBER 27, 2020 REVISED MARCH 24, 2021

JOB NO. 3828

PREPARED BY

THIENES ENGINEERING 14349 FIRESTONE BLVD. LA MIRADA, CALIFORNIA 90638 (714) 521-4811

PRELIMINARY HYDROLOGY CALCULATIONS

FOR PEN19-0193/LST20-0008 MORENO VALLEY TRADE CENTER OPTION 2-E COMMERCE/FULFILLMENT CENTER SITE PLAN

PREPARED UNDER THE SUPERVISION OF:

REINHARD STENZEL DATE: R.C.E. 56155 EXP. 12/31/2020

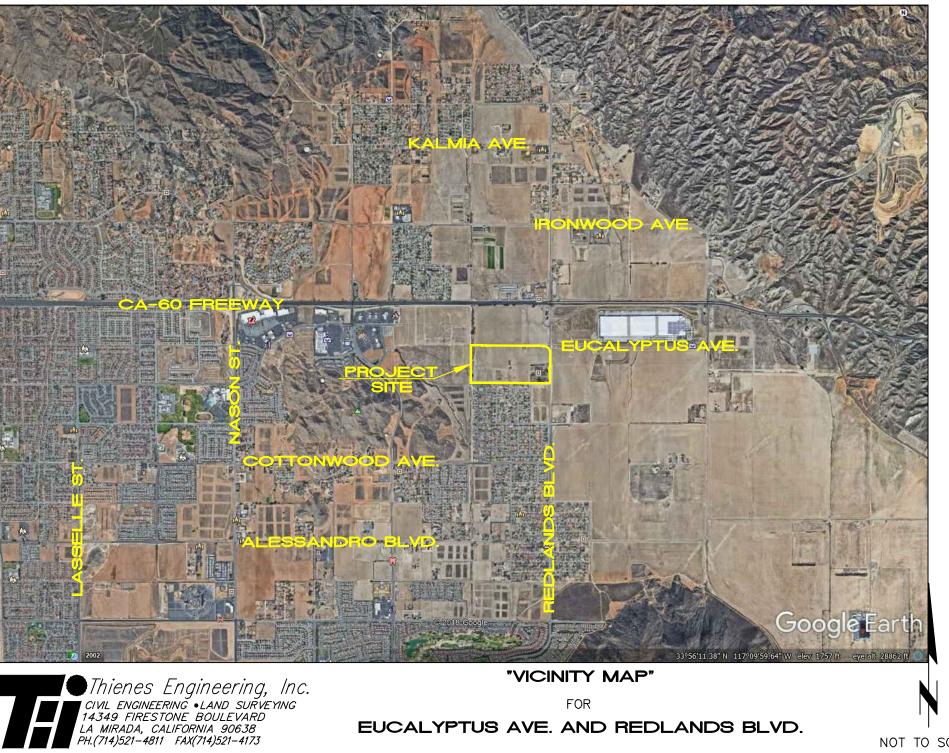
TABLE OF CONTENTS

INTRODUCTION	. 1
VICINITY MAP	. 2
MASTER DRAINAGE PLAN	. 3
EXISTING CONDITION	. 4
PROPOSED CONDITION HYDROLOGY	. 4
DETENTION	. 6
METHODOLOGY	. 8
SUMMARY	. 8

INTRODUCTION

A: PROJECT LOCATION

The project site is located at southwest corner of Eucalyptus Avenue and Redlands Boulevard in the City of Moreno Valley. Encelia Avenue is adjacent to the southerly property line. Please see the next page for vicinity map.


B: STUDY PURPOSE

The purpose of this study is to determine the existing and proposed condition peak flow rates for various storm events for the site. Discharge from the project site ultimately drains to an existing storm drain in Redlands Boulevard.

C: PROJECT STAFF:

Thienes Engineering staff involved in this study include:

Reinhard Stenzel Kristie Ferronato Brian Weil

NOT TO SCALE

3828VICMAP.dw

_ast Update:11,

ö

DISCUSSION

The project site encompasses approximately 72.73 acres. However, several acres along the westerly property line are within an existing drainage channel (Quincy Wash) and will not be disturbed. Here, sheet piles will be constructed within the property site to protect the site from the Wash. Proposed improvements include one warehouse type building with approximately 1,328,853 square feet. There are truck yard areas on the northerly and southerly sides of the building. Vehicle parking is primarily on the easterly side of the property with some additional parking areas along the westerly drive aisle. There is a water quality/detention basin located along the southerly side of the side adjacent to Encelia Avenue. Additional landscaped areas are located adjacent to the streets and smaller areas throughout the project site.

Master Plan of Drainage

The project site is tabled to a storm drain system in Redlands Boulevard (Moreno MDP Line F-2). At this time, only portions of the Master Plan Storm Drain system are constructed. Recent improvements to the north of the project site (Aldi Foods) constructed a portion of the ultimate storm drain in Redlands Boulevard. This is a 60"-72" storm drain (plans prepared by Huitt-Zollars) that connects to an existing 51" storm drain in Redlands Boulevard approximately 200' north of Eucalyptus Avenue and continues approximately 350' south of Eucalyptus Avenue to where it daylights into an existing unimproved earthen channel. This storm drain and channel is located at the easterly portion of the project site.

Runoff continues southerly in the unimproved earthen channel to an existing headwall located northerly of Dracaea Avenue. This is the upstream portion of Riverside County Flood Control and Water Conservation District storm drain Line "F-2". This is an existing 42" storm drain system that does not appear to be adequately sized for the peak flow rates specified in the recently constructed upstream storm drain system. The existing storm drain continues southerly past Brodiaea Avenue and discharges into an existing earthen channel (Line "F").

The Master Drainage Plan indicates a storm drain system in Eucalyptus Avenue (Lateral F-16). The necessary portions of this storm drain system was constructed with the Aldi Foods development to the north. In a memo dated December 23, 2020, Riverside County Flood Control and Water Conservation District (R.C.F.C.& W.C.D.) acknowledges that the "existing facility is functionally equivalent to Line F-16, and the remaining unconstructed portion is not necessary to provide flood protection." See Appendix "A" for a copy of this memo.

The Master Drainage Plan also indicates a storm drain system in Encelia Avenue (Lateral F-17) ranging from 42" to 60". The development of the project site will utilize a detention basin and onsite storm drain systems that will greatly reduce flow to Encelia Avenue such

that only a shorter and smaller storm drain will be necessary in the street. In the same memo, R.C.F.C.& W.C.D. states "Since these facilities together collect and convey the same area that was tabled to Line F-17, it is our opinion that the existing facility is functionally equivalent to Line F-17".

See Appendix "A" for reference existing storm drain plans and a portion of the Master Drainage Plan.

Existing Condition

The project site is generally a vacant lot with natural grasses and weeds. The southeasterly portion of the site is an existing plant nursery. The nursery has a few small structures and appears unpaved. The westerly portion of the property is an unimproved drainage channel (Quincy Wash) and is not tributary to the project site.

Runoff from the site generally drains from north to south to Encelia Avenue at several locations (nodes 103, 105, 106, and 107 on existing condition hydrology map). Encelia Avenue drains from west to east to Redlands Boulevard ultimately to the existing channel adjacent to Redlands Boulevard.

Runoff from Redlands Boulevard flows southerly towards the intersection with Encilia Avenue and node 107. The 100-year Rational Method peak flow rate from the project site and adjacent streets approximately 109.2 cfs.

Runoff in Eucalyptus flows west to east and is intercepted by several riser inlet structures (nodes 112, 121, and 131). The respective 100-year Rational Method flow rates to each risers are approximately 4.2 cfs, 1.6 cfs, and 0.90 cfs.

See Appendix "B" for existing condition Rational Method calculations and Appendix "D" for existing condition hydrology map.

Existing condition hydrographs were established for various storm events. These peak flow rates and volumes are summarized below in the Detention discussion.

Proposed Condition Hydrology

Runoff from the westerly drive isle and auto parking area (nodes 100-112) is collected in a catch basin in the drive isle and conveyed south in a private storm drain to the series of detention basins. The auto parking lot adjacent to the building (nodes 110-111) drains to a catch basin and into a storm drain system that travels south and east through the truck yard to the catch basins at node 112. The roof drains for the southwesterly portion of the building will be hard-lined to the storm drain system at node 112 and the combined flow will discharge to Basin 1. Basin 1 does not have sufficient volume to detain peak flows, so

runoff will pond to a certain height then overflow into Basin 2. The peak 100-year flow rate to Basin 1 is approximately 17.9 cfs.

The majority of the southern truck yard and southerly portion of the building (nodes 200-222) will drain southerly to a series of catch basins and flow through a short storm drain into detention Basin 2. Overall, the total 100-year Rational Method peak flow rate to the detention area is approximately 56.0 cfs.

Runoff from the northerly half of the proposed building and the northerly truck yard (nodes 300-309 on hydrology map) will drain to a series of catch basins located in the truck yard area. A proposed storm drain will convey runoff easterly around the building then southerly to the Basin 3. Basin 3 does not have sufficient volume to detain peak flows, so a portion of the runoff to the basin will be detained in an underground storage system. The peak 100-year flow rate to Basin 3 is approximately 58.0 cfs.

The easterly portion of the site consisting of a portion of the truck yard and roof, auto parking, and a drive isle will drain southerly to Basin 4 (nodes 400-432). Runoff will enter the storm drain via catch basins in each parking lot and discharge into the basin. This basin does not have sufficient storage to detain peak flow, so a majority of high-flows will flow into the underground storage system. The 100-year peak flow rate to Basin 4 is approximately 50.1 cfs.

Discharge from the above and below ground storage basins will be conveyed easterly through the project site in a proposed storm drain and connect to the proposed extension of the public storm drain system in Redlands Boulevard. This will eliminate runoff to Encelia Avenue as well as the need for Master Drainage Plan Lateral "F-17", as previously mentioned in R.C.F.C.& W.C.D. memo dated December 23, 2020. The proposed public storm drain will be sized to include the ultimate peak flow rates upstream as well as the discharge from the detention basin. Final design will dictate exact pipe sizes. The public storm drain will continue south in place of the open earth channel to the existing 42" storm drain near Dracaea Avenue. The existing headwall will be removed and the proposed drain will connect to the existing system.

The existing 42" downstream storm drain system does not have the same capacity as the proposed 78" storm drain system. To avoid overburdening the existing 42" storm drain, a relief system will be designed to ensure that flow not allowed into the existing facility can discharge to the street. This will emulate existing conditions where runoff that is not currently allowed into the storm drain (via existing headwall adjacent to the Redlands Avenue) can then drain to the street. Regardless of how the storm drain systems connect, runoff exceeding the capacity of the 42" storm drain system remains on westerly surface of Redlands Avenue. The final design shall be to the satisfaction of the City Manager or City Engineer.

The landscaped areas adjacent to Encelia Avenue will sheet flow to the street and join the street runoff flowing easterly towards the intersection with Redlands Boulevard (nodes 600-603). The runoff will be intercepted by a catch basin in Encilia Avenue and will enter

the proposed public storm drain in Redlands Boulevard. The 100-year Rational Method peak runoff from these areas is approximately 6.1 cfs. With the proposed onsite improvements, this is the only drainage system required in Encilia Avenue.

The landscaped frontage along Eucalyptus Avenue will also drain to the street. Catch Basins at nodes 502 and 511 will intercept street and landscape runoff and convey it to the existing 54" storm drain in Eucalyptus Avenue. The 100-year Rational Method peak runoff to these nodes will be approximately 4.4 cfs and 2.8 cfs respectively.

Runoff from Redlands Boulevard and the adjacent project frontage will flow southerly within Redlands Boulevard to a catch basin near the intersection with Encilia Avenue (nodes 520-522). The 100-year Rational Method peak runoff to node 522 will be approximately 4.9 cfs.

Approximately 2.80 acres of area adjacent to the Quincy Wash at the westerly portion of the site will remain undisturbed. Landscaped areas adjacent to Redlands Boulevard and Encelia Avenue will sheet flow to the respective streets.

See Appendix "B" for proposed condition hydrology calculations and Appendix "D" for proposed condition hydrology map.

Detention

Since downstream facilities do not appear to have capacity for the increase in peak flow and volume from the proposed commercial project, detention will be required to limit runoff to no more than that under existing conditions. Detention analysis is considered for the 2-, 5-, 10- and 100-year storm events. Riverside County allows "preliminary sizing of the increased runoff basin may be based on the difference in volume between the developed condition and the pre-developed condition for the 24-hour duration event for the 10-year return frequency."

1-, 3-, 6-, and 24-hour hydrographs were established for all areas tributary to the detention basin for the 2-, 5-, 10- and 100-year events for both existing (undeveloped) and proposed conditions. For existing conditions, the land use is considered "open brush, poor cover". Proposed conditions assume all commercial development. Rainfall values are taken from the Riverside County Hydrology Manual. For the 2- and 5-year events, the loss rate is determined using an AMC I condition. For the 10-year event, AMC II was used and for the 100-year event AMC III was used.

The following table summarizes existing and proposed condition peak flow rates and volumes associated with the area to the detention basins. From the table, the largest difference in volume is approximately 12.71 acre-feet (10-year 24-hour event). This volume corresponds to the Riverside County's preliminary sizing difference stated above. The largest difference in peak flow rate is about 48.1 cfs (5-year 1-hour event).

There are four distinct detention basins. They are located on the southerly side of the site adjacent to Encelia Avenue. The two westerly basins will be connected and the two easterly basins will be connected to work together. To determine the required volumes at each detention area, the largest difference in volume will be prorated based on the tributary area to each detention basin. The westerly two basins will receive approximately 28.8 acres of tributary area (41.3% of the project site) while the easterly two basins basin will receive approximately 39.3 acres of tributary area (56.4% of the project site). The remaining 1.55 acres (2.3%) is generally landscaping and driveways that surface drain to the adjacent streets.

Based on the prorated volumes, the westerly basins required volume is approximately 5.25 acre-feet (41.3% of 12.71 acre-feet) and the easterly basins required volume is approximately 7.17 acre-feet (56.4% of 12.71 acre-feet). The available volume in the westerlyz and easterlyz basins is approximately 11.10 acre-feet and 3.62 acre-feet respectively. Additional storage is necessary for the easterly portion of the site. Here, additional volume is provided in underground pipe system located in the truck yard. A minimum of 3.55 acre-feet is required (7.17 - 3.62). The basins also meet the surface area and volume requirements necessary for water quality purposes per separate Water Quality Management Plan.

Final design will dictate the outlet features that will limit runoff from all of the above events to less than existing conditions. The landscaped areas tributary to the street would yield peak flow rates similar to existing condition and are not included in the hydrographs.

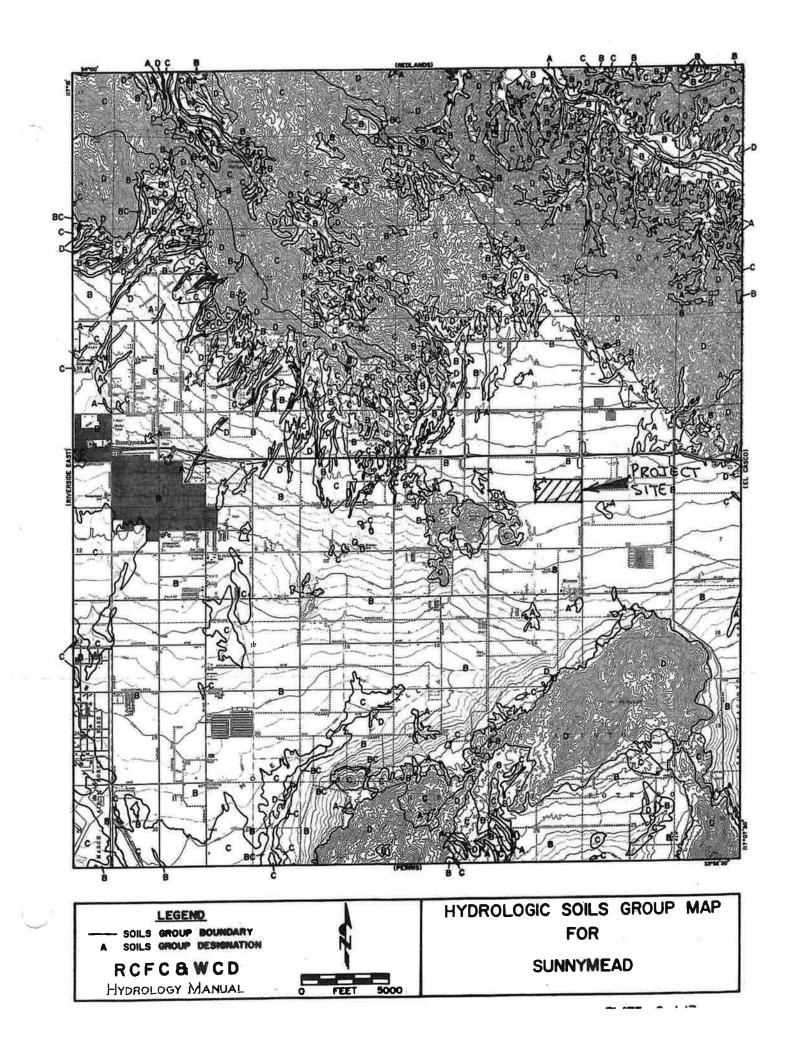
Saa Annondia	"C" for	aviating and	nronocod	aandition	hudrographa
See Appendix	C 101	existing and	proposed	condition	nyurographs.

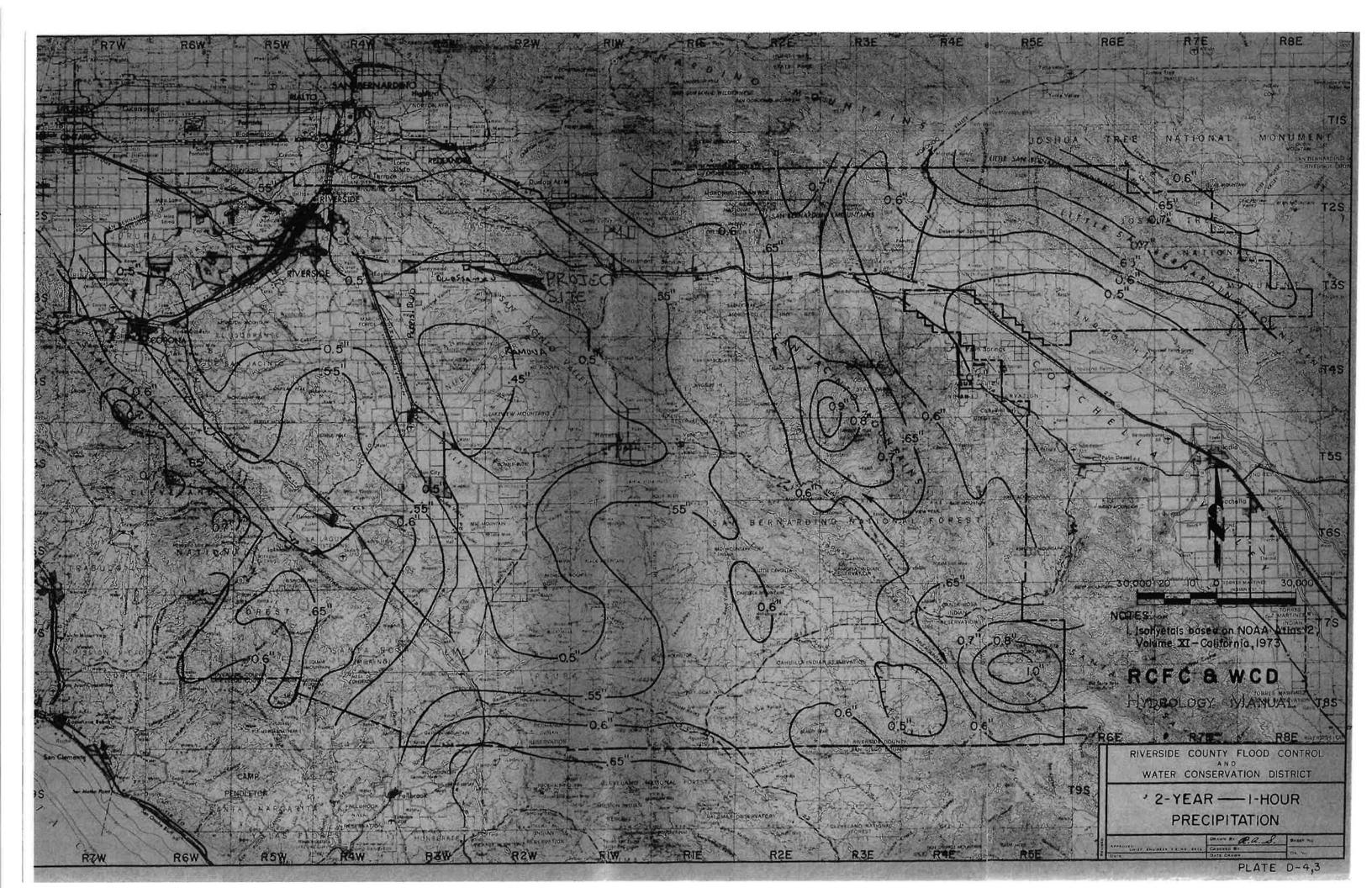
BASIN SUMMARY TABLE							
Return	Storm	Existi	ng Total	Proposed Total		Peak Flow	Volume
Event	Duration	Flow	Volume	Flow	Volume	Difference	Difference
(year)	(hour)	(cfs)	(ac-ft)	(cfs)	(ac-ft)	(cfs)	(ac-ft)
100	1	131.5	5.89	177.0	6.38	45.5	0.49
100	3	88.3	7.96	103.5	9.62	15.2	1.66
100	6	77.8	9.16	89.8	12.81	12.0	3.65
100	24	31.9	12.27	37.9	22.68	6.0	10.41
10	1	73.5	2.78	113.0	4.06	39.5	1.28
10	3	45.5	2.67	65.2	6.24	19.7	3.57
10	6	40.1	2.93	57.8	8.59	17.7	5.66
10	24	8.8	2.25	23.8	14.50	15.0	12.25
5	1	47.0	1.38	93.3	3.38	46.3	2.00
5	3	23.8	1.20	54.5	5.27	30.7	4.07
5	6	19.9	1.31	49.5	7.38	29.6	6.07
5	24	2.2	1.34	19.7	12.05	17.5	10.71
2	1	29.8	0.87	69.2	2.53	39.4	1.66
2	3	12.1	0.67	41.6	4.02	29.5	3.35
2	6	10.1	0.80	38.8	5.79	28.7	4.99
2	24	1.6	0.98	14.4	8.81	12.8	7.83

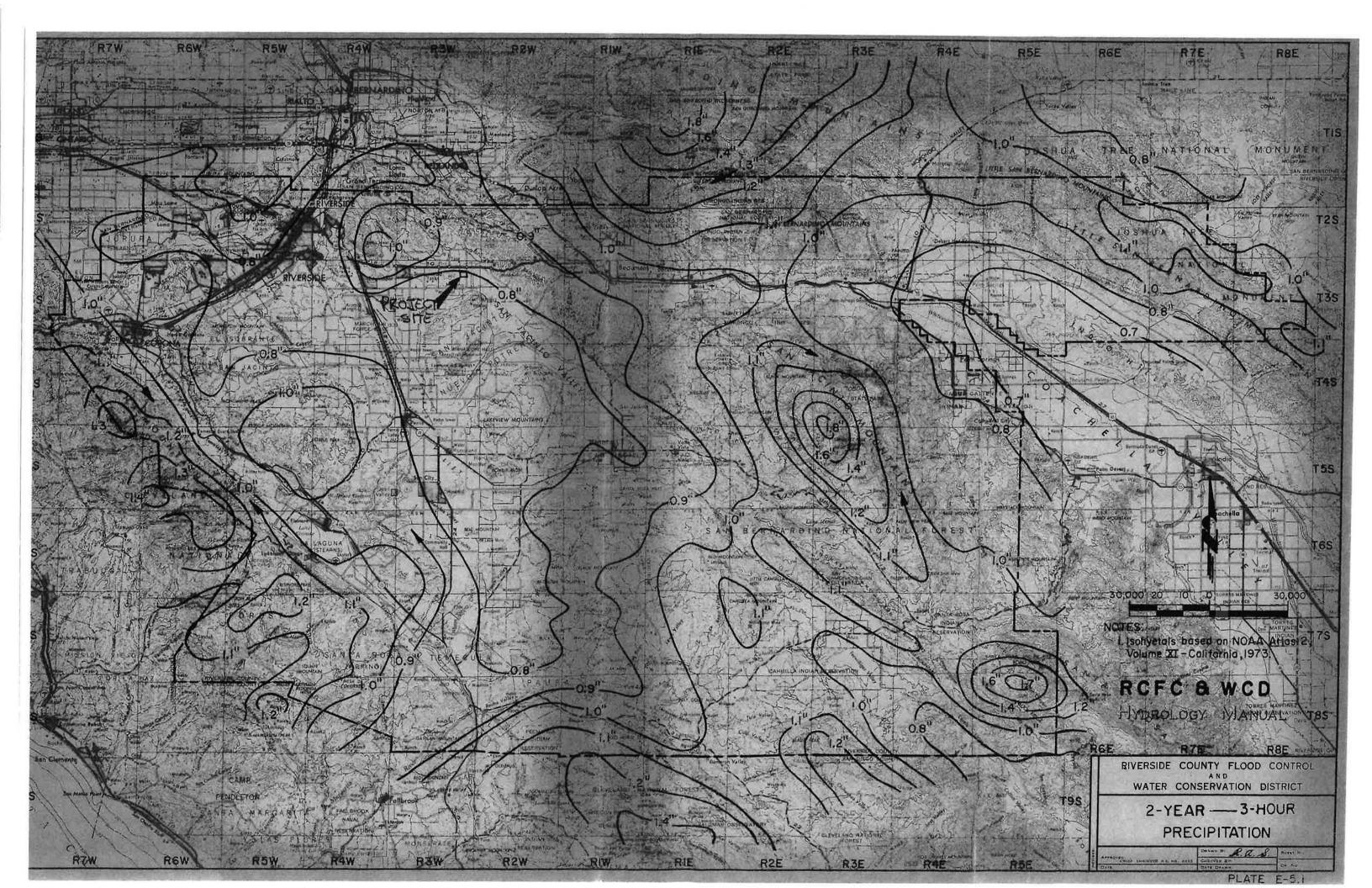
Methodology

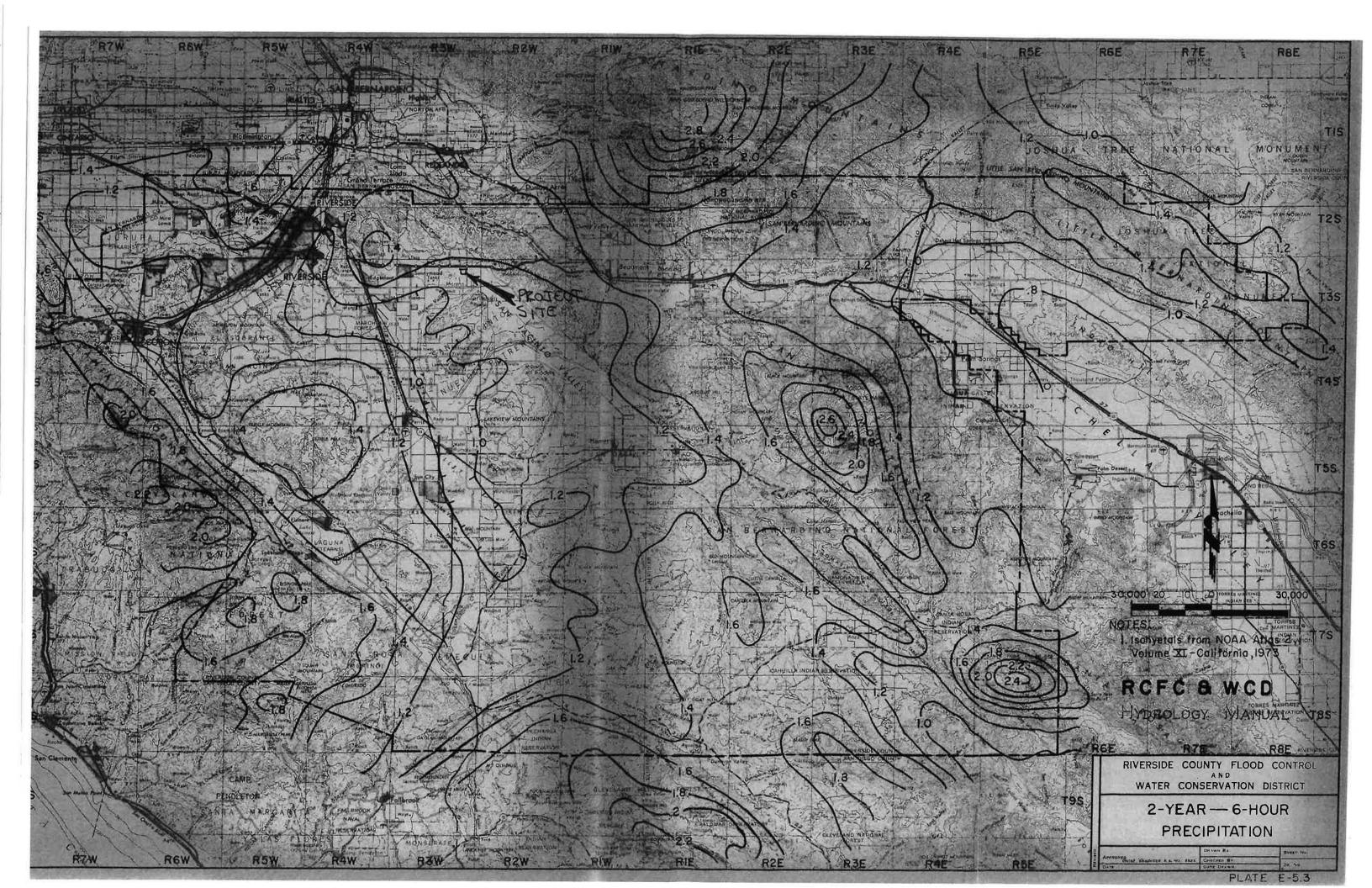
Hydrology calculations were computed using Riverside County Rational Method program (by AES software). Hydrograph were computed using CIVILD software. The soil type is "B" per Riverside County Hydrology Manual. See Appendix "A" for reference material from the Riverside County Hydrology Manual.

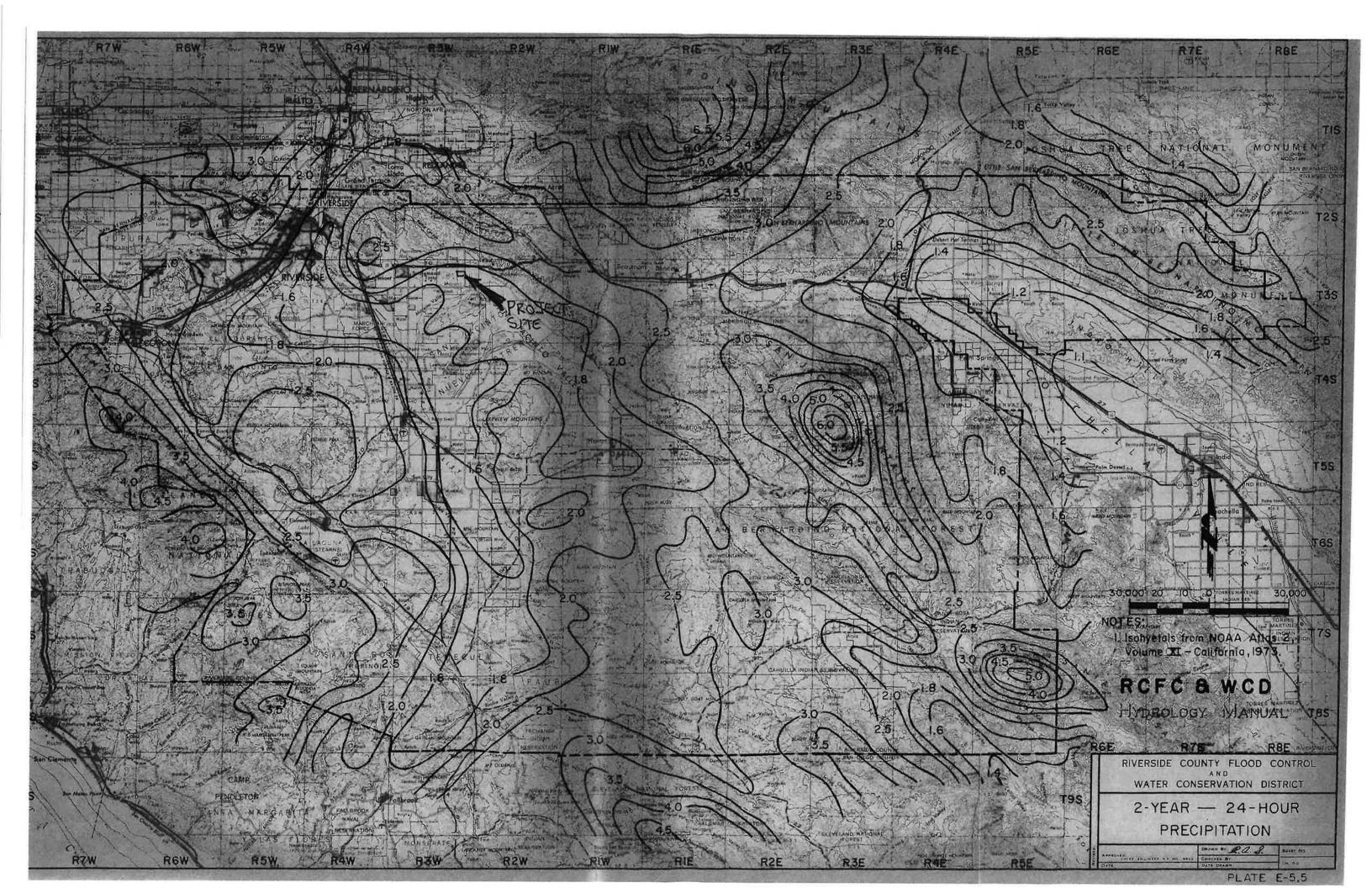
Summary

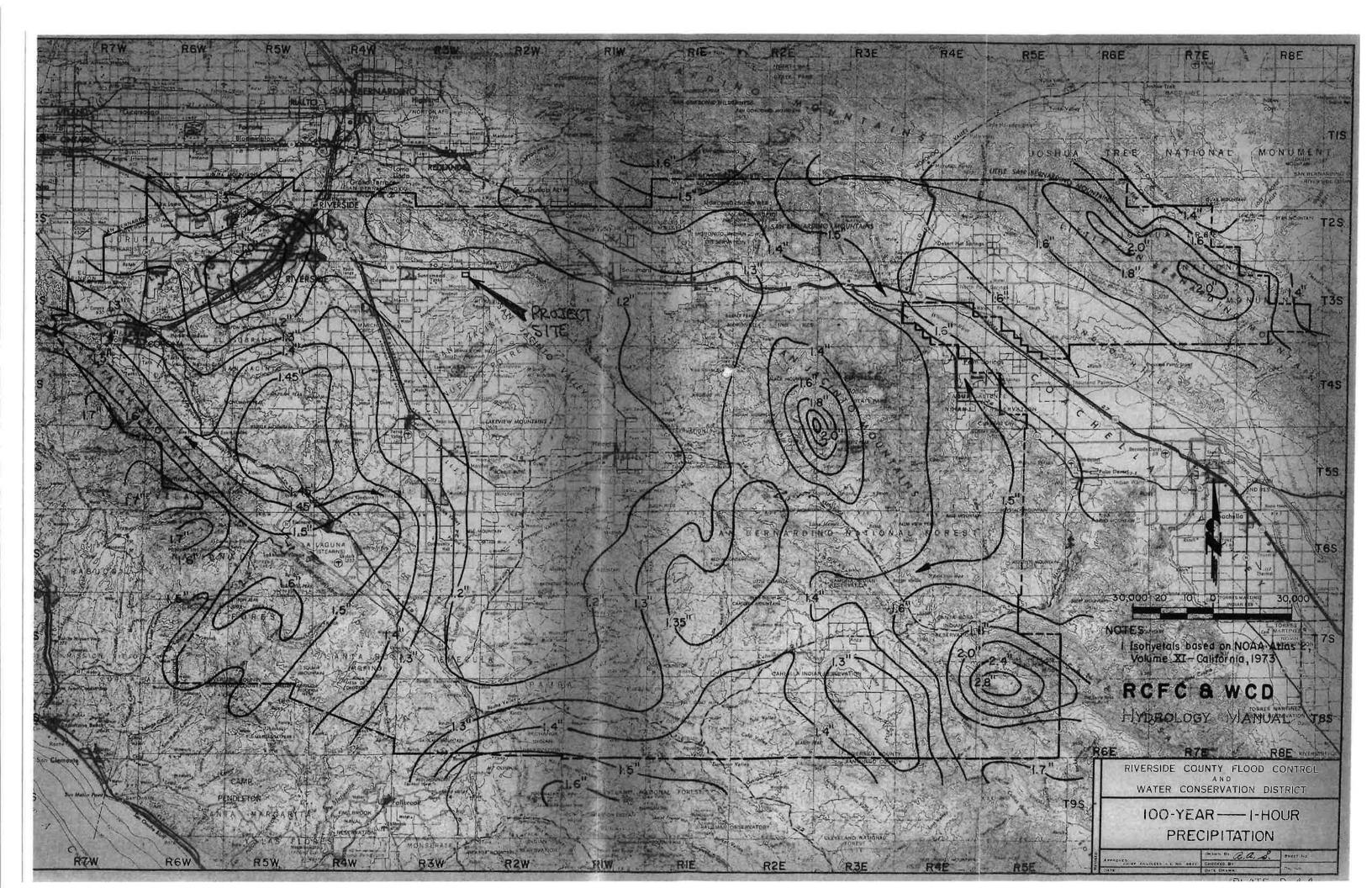

The project site will utilize onsite detention to reduce flow from the above mentioned storm events to less than or equal to existing conditions. The Master Drainage Plan facility in Eucalyptus Avenue was constructed with the project site to the north. The design of the project site will eliminate almost all runoff to Encilia Avenue, thus not requiring the 42"-60" Master Drainage Plan facility at this location. However, a storm drain system is proposed to intercept what runoff does drain to Encilia Avenue. Quincy Wash is an existing earthen channel at the westerly portion of the property. The Quincy Wash will remain natural and sheet piles will be constructed within the property site to protect the site from flow in the Wash.

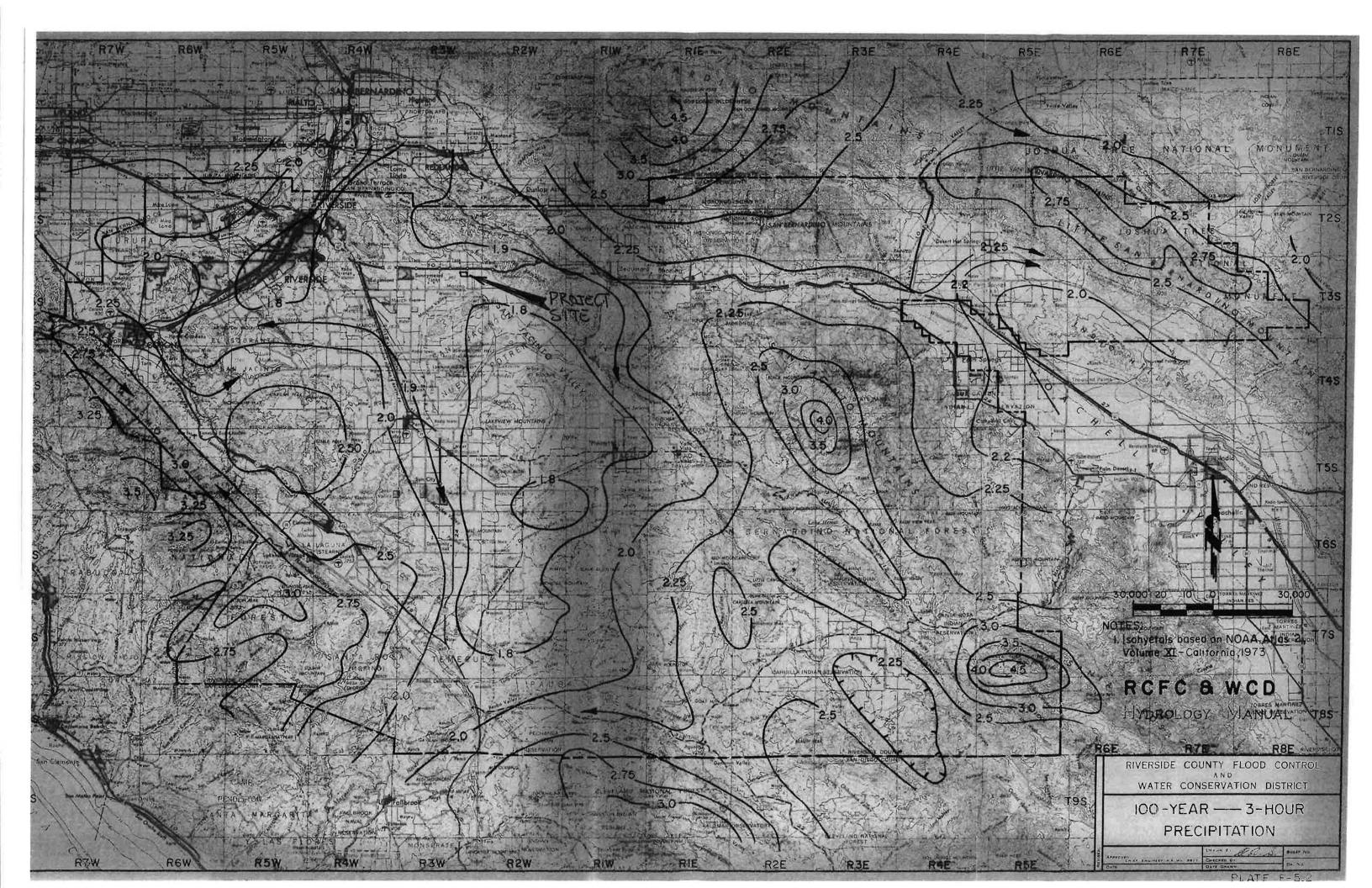

All onsite and public storm drain facilities will be sized with precise grading plans. Final hydrology study will include basin routing and hydraulic calculations to support basin and storm drain sizing.

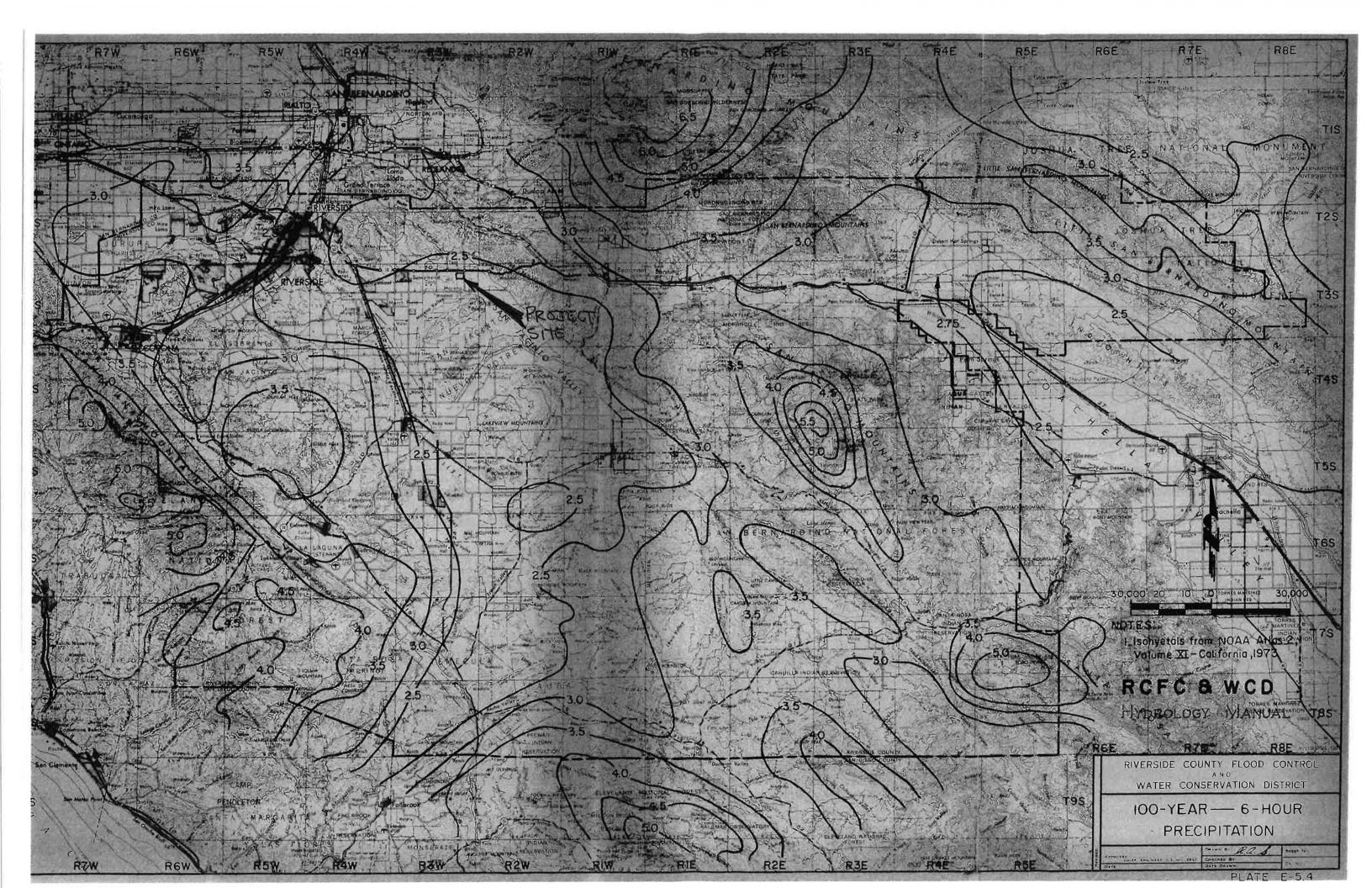

APPENDIX	TITLE
Α	REFERENCE MATERIALS
В	HYDROLOGY CALCULATIONS
С	DETENTION CALCULATIONS
D	HYDROLOGY MAP

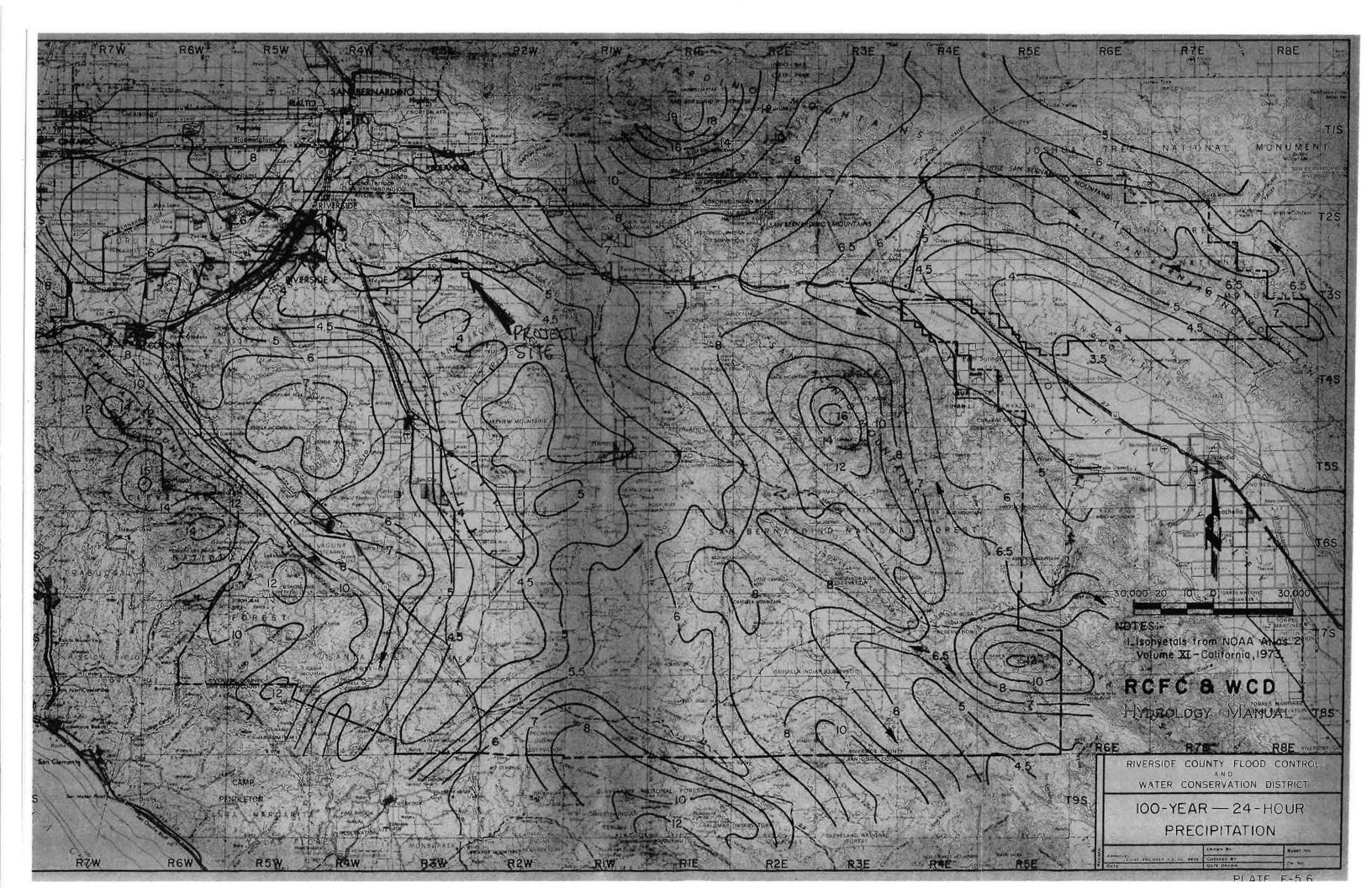

APPENDIX A

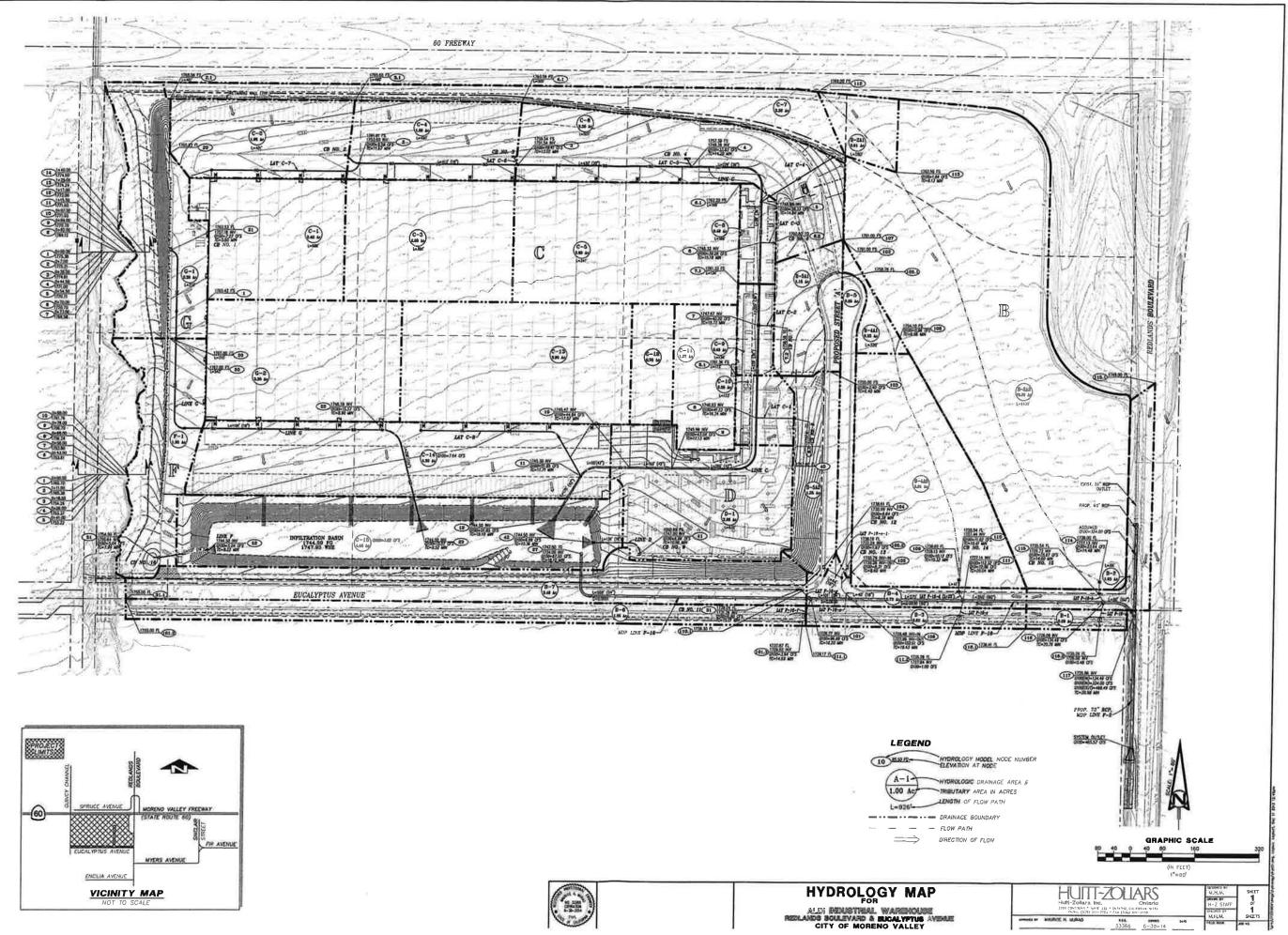

REFERENCE MATERIAL

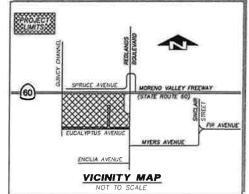


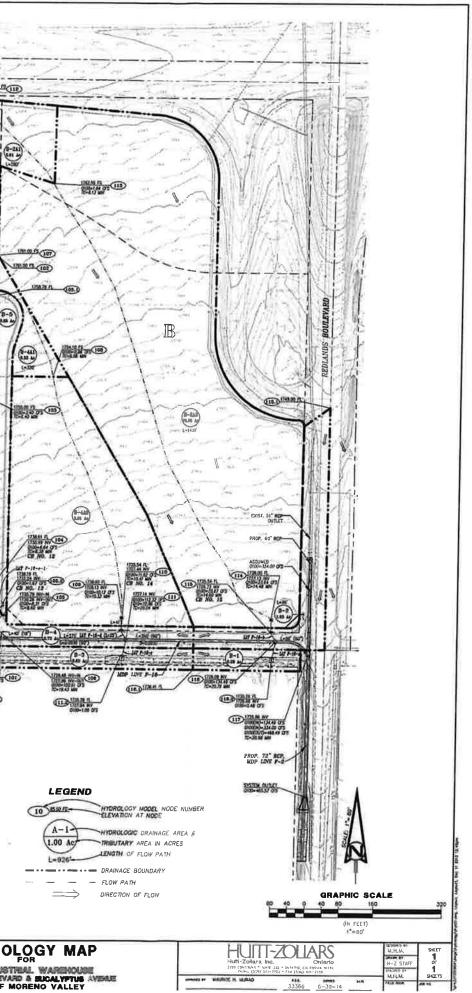


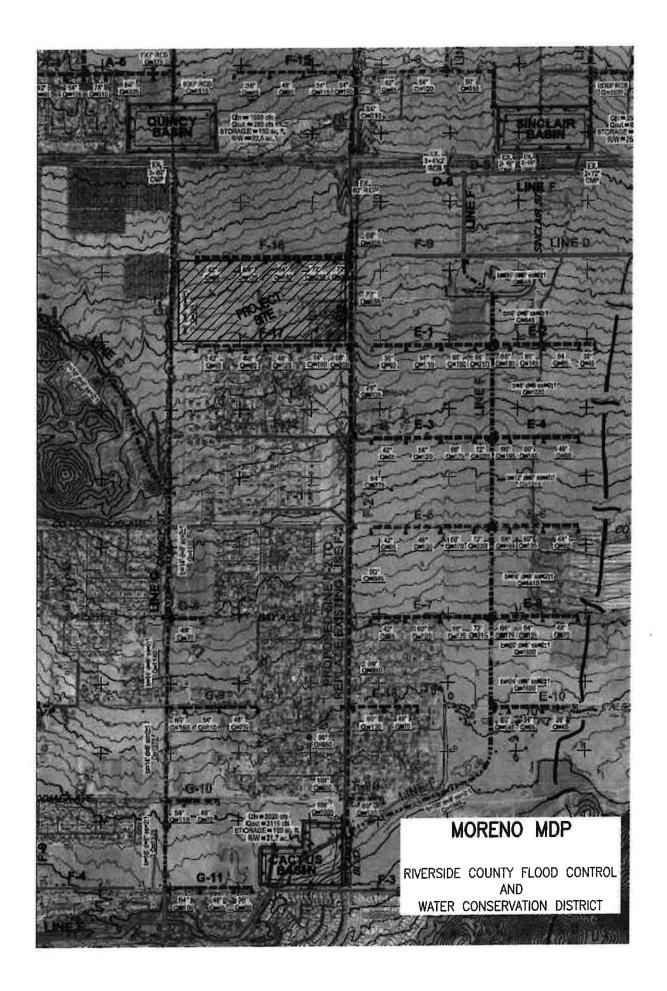


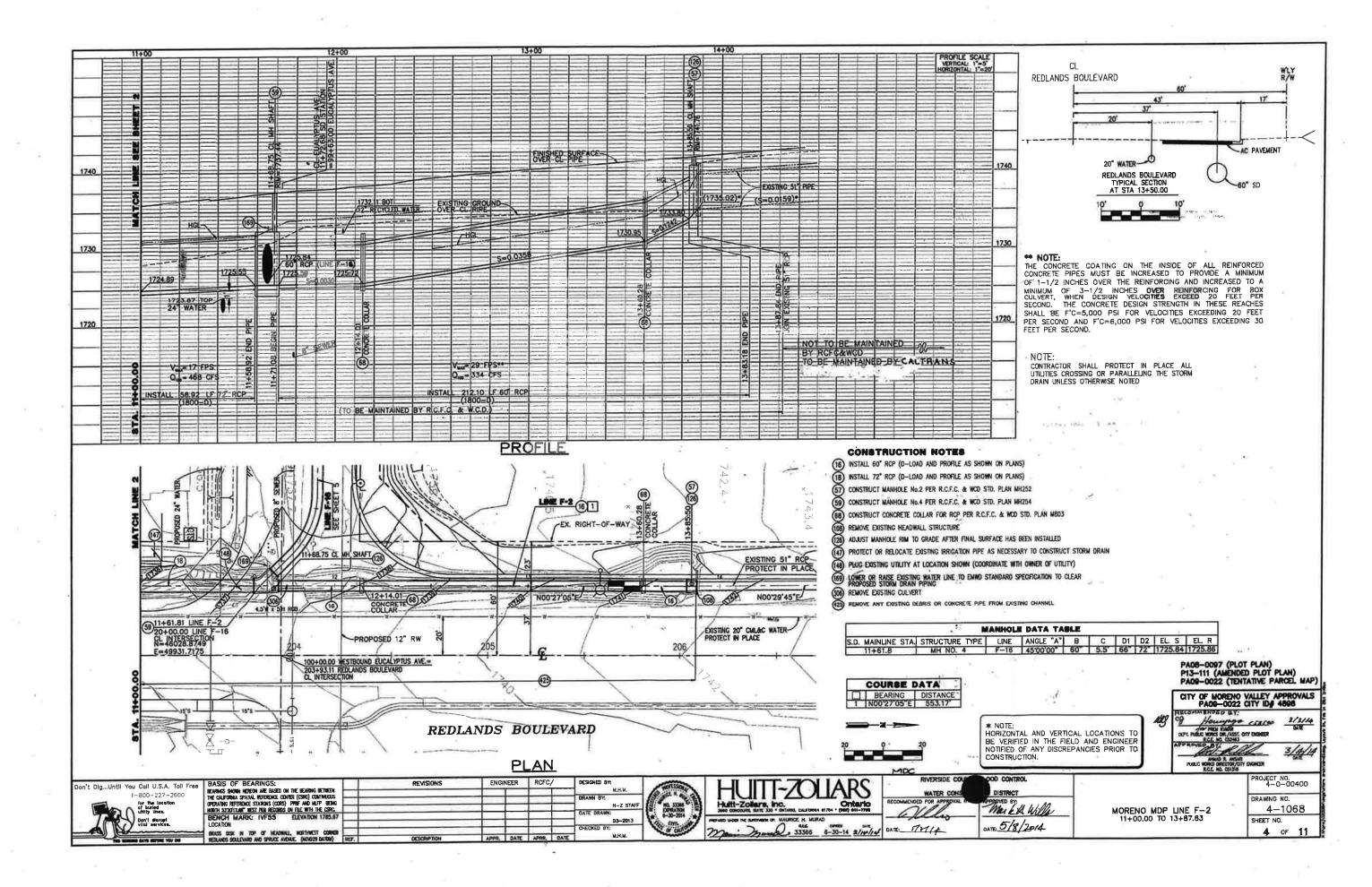


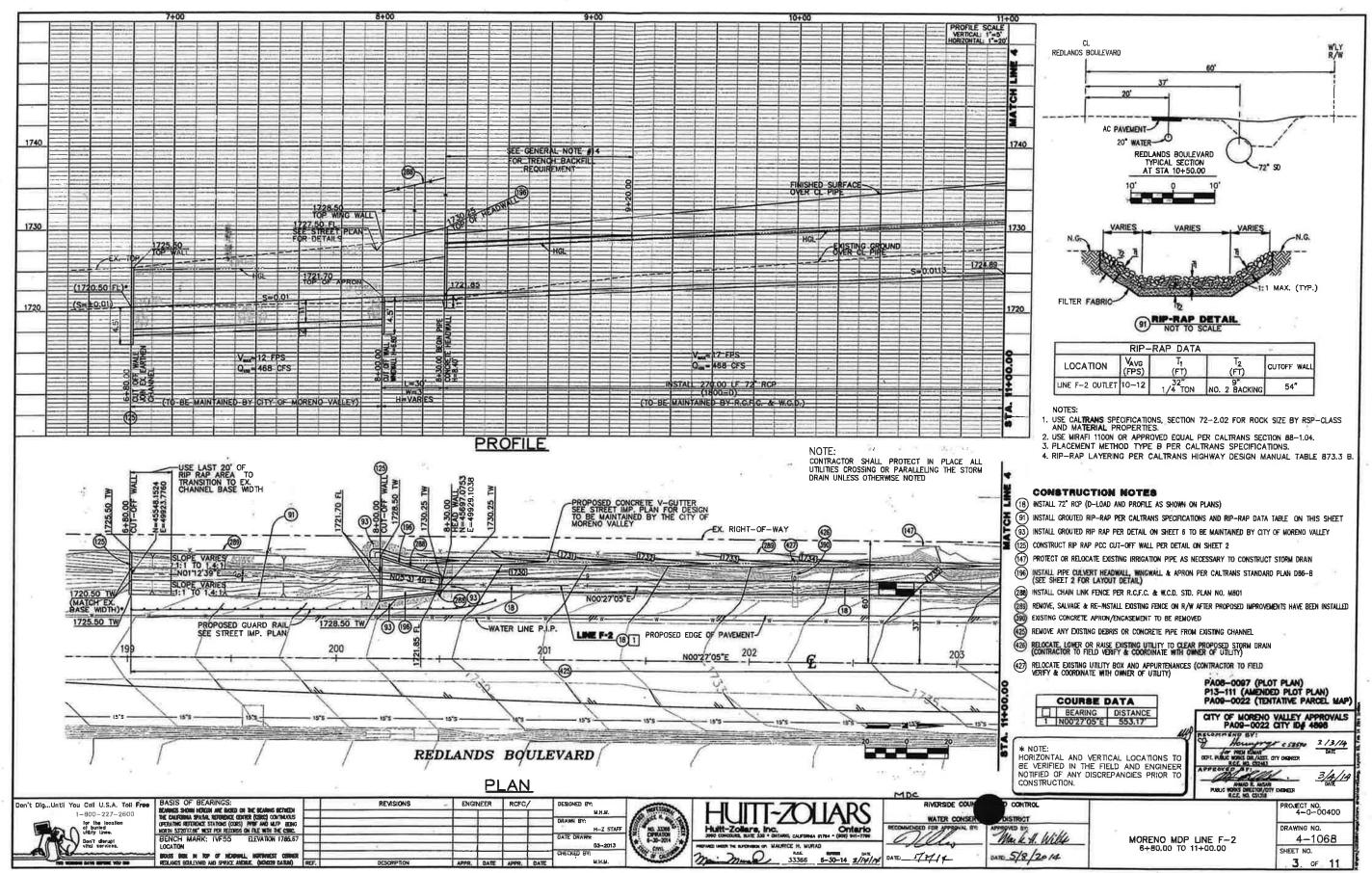


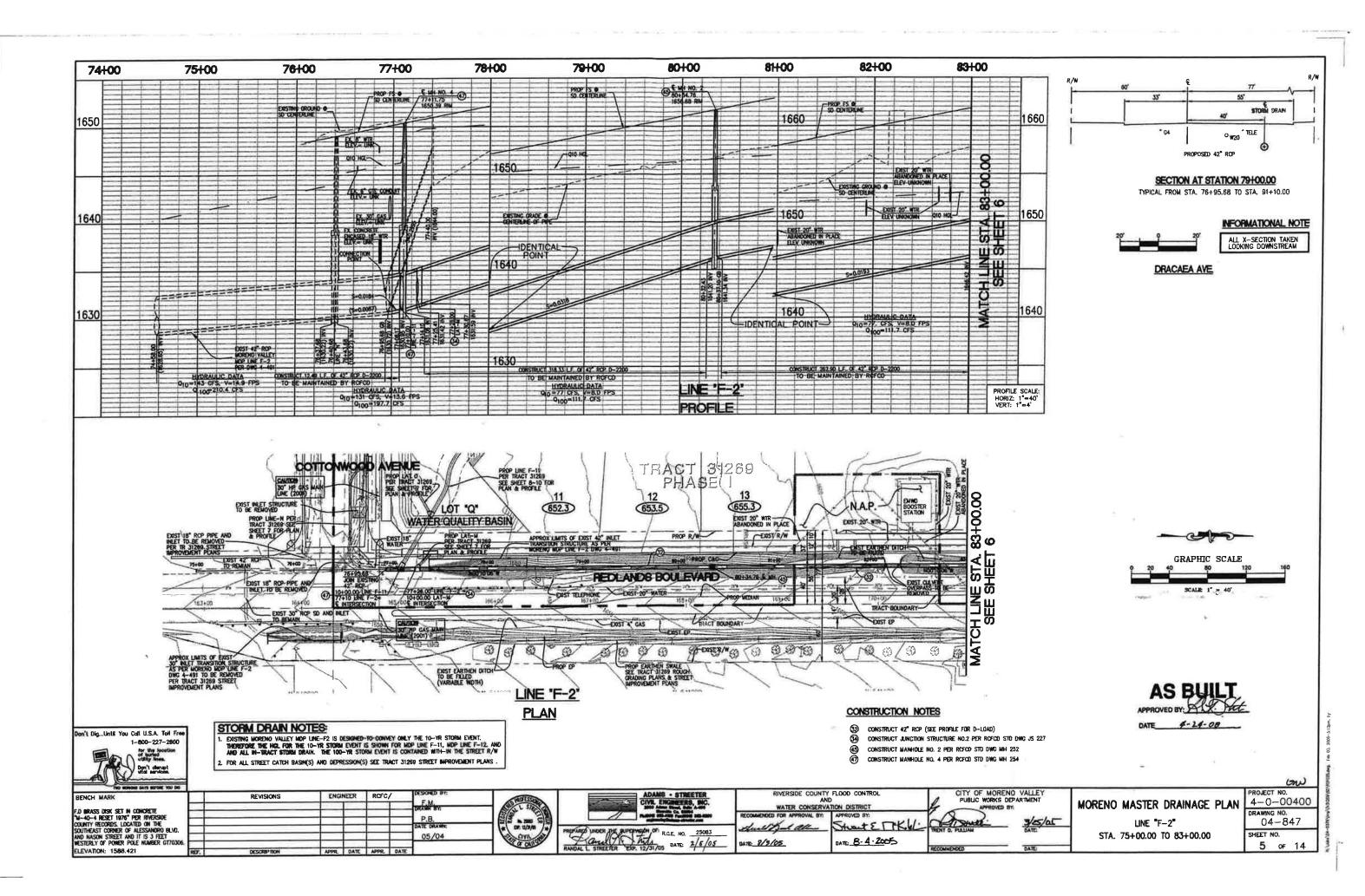


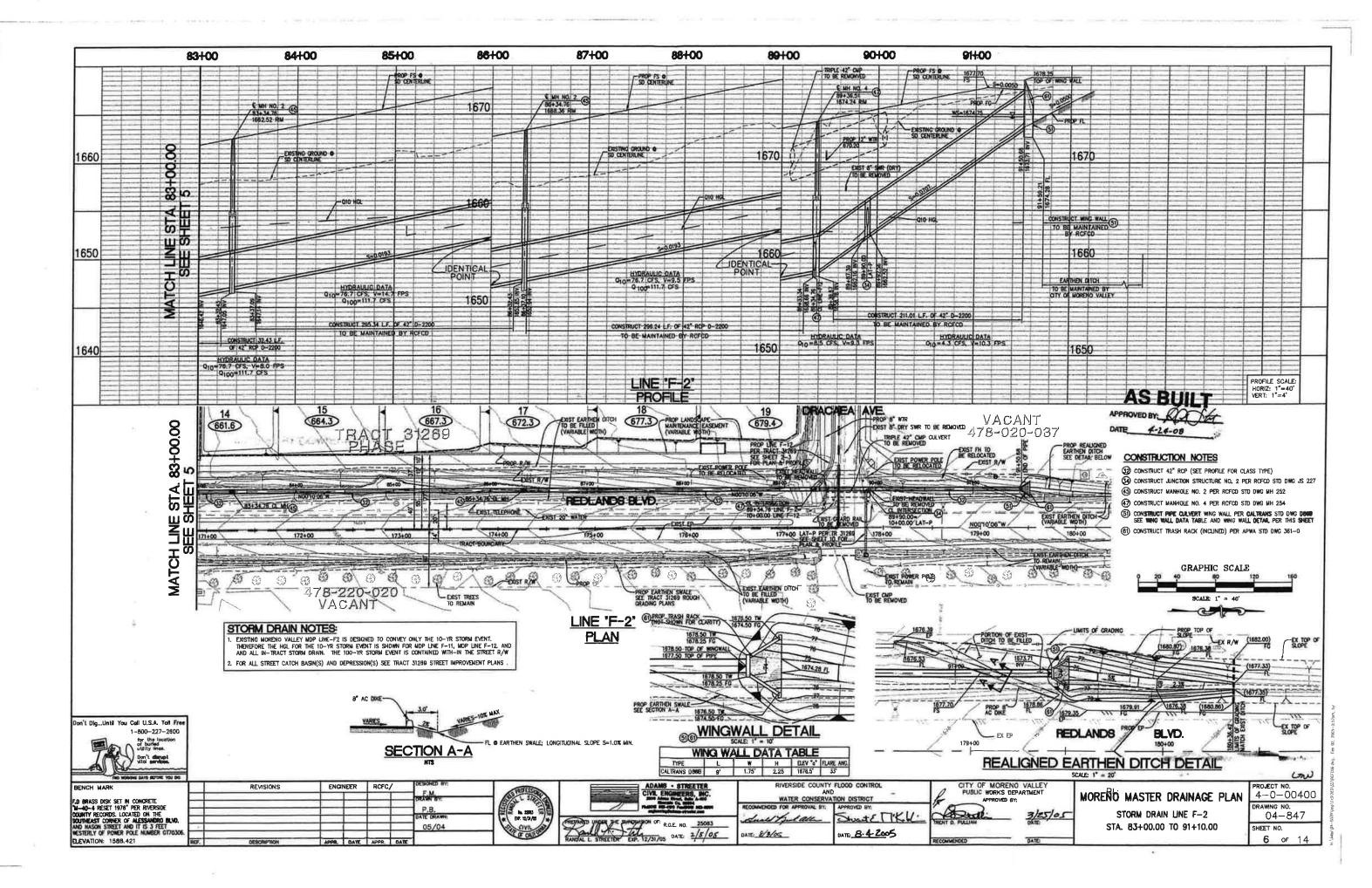












JASON E. UHLEY General Manager-Chief Engineer

1995 MARKET STREET RIVERSIDE, CA 92501 951.955.1200 951.788.9965 FAX www.rcflood.org

RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT December 23, 2020

Mr. Michael D Lloyd Assistant City Engineer Engineering Division City of Moreno Valley 14177 Frederick Street Moreno Valley, CA 92552-0805

Dear Mr. Lloyd:

Re: Thienes Engineering PEN 19-0193 Account No. 137-0-3-75325

As requested by the City of Moreno Valley (City), the Riverside County Flood Control District (District) received the following for review on December 1, 2020:

- 1. Letter from Moreno Valley, dated November 12, 2020
- 2. Preliminary Hydrology Calculations, dated October 27, 2020
- 3. Preliminary Grading Plan (13 sheets, with different dates)
- 4. PWQMP Report, dated March 5, 2020

The District has reviewed these documents as requested in the City's letter, and has also tried to identify potential areas of concern, and has the following comments:

Line-16

The City stated in their request that the developer wished to "eliminate the proposed westerly portion of Moreno Master Drainage Plan (MMDP) Line F-16 based on the premise that it is unnecessary to construct due to the existing development to the north of the MMDP line." The existing development (PM36207 on APN 488-330-040) constructed a basin which outlets to a pipe in Eucalyptus Avenue which connect to Line F-2 in Redland Boulevard. The pipe was previously accepted for maintenance by the District. Since the pipe and basin together collect and convey the same area that was tabled to Line F-16, it is our opinion that, so long as the basin is in place, the existing facility is functionally equivalent to Line F-16, and the remaining unconstructed portion is not necessary to provide flood protection.

Line F-17

The City stated in their request that the developer wished to "eliminate the proposed MMDP Line F-17, based on the premise that it is unnecessary to construct due to the proposed developer's water quality and detention facilities." The Moreno MDP proposed Line F-17 as a 42 to 60 inch RCP conveying 200 cfs to Line F-2. The developer proposed an onsite basin and a 42" HDPE within the development conveying on site flows to Line F-2, and a catch basin in Encelia conveying street runoff to Line F-2. Since these facilities together collect and convey the same area that was tabled to Line F-17, it is our opinion that the existing facility is functionally equivalent to Line F-17.

It should be noted that since the proposed pipe is within private right of way and is proposed as HDPE, the District will not maintain it. The basin and storm drain facility will be developer maintained. However, if the design is modified to meet District standards, a public agency could maintain the storm drain and/or basin. At a minimum, the storm drain would need to be moved to the street and constructing with RCP instead of HDPE, and the basin would need to handle water quality and the 100-year route down separately and otherwise be designed to meet out meet District requirements for Operation and Maintenance. See increased runoff criteria and the LID BMP handbook for basin design requirements. Link: <u>http://rcflood.org/npdes/LIDBMP.aspx</u>

- 2 -

235845

Also note that Line F-17 is not part of the Moreno Area Drainage Plan (ADP) and therefore is not eligible for ADP credit.

Line F-2

The developer is proposing to build a portion of Line F-2 in Redlands Avenue. The MMDP proposed Line F-2 between Eucalyptus and Encelia as a 72" RCP conveying 100-year flowrate of 535 cfs. The developer's plans don't provide details for their proposed segment of Line F-2, or even the limits of what they will be constructing, but the hydrology map identifies it as a 72" RCP. The District has not received enough information to comment on this facility. It should be noted that the existing portion of Line F-2 downstream of this project is not sized to convey the 100 year flowrate, and the MMDP proposes that it will be improved or replaced in the future to increase the current 10-year capacity to the 100 year storm.

Quincy Channel / Line G-7

The developer is proposing vinyl sheetpile along the natural Quincy wash, which the MMDP proposes as a trapezoidal channel called Line G-7. The sheetpile is proposed some distance outside of the limits of the MMDP proposed channel. While the sheetpile may protect the site from erosion, the capacity of the existing wash is unknown. The site may not be protected from the 100-year storm until the ultimate channel is constructed or erosion occurs, and therefore may not be functionally equivalent in the interim. Additionally, it should be noted that the District will not maintain the proposed sheet piles.

Hydrology Report

The City should be aware of the following District comments on the developer's hydrology study dated October 27, 2020.

- 1. The rainfall used should be consistent with those used in the Moreno MDP, which were based on the version of NOAA Atlas 14 that was available when the MMDP was updated. The MMDP report provides a table of rainfall values used.
- 2. The cover type used for node 200-204 "proposed" hydrology should be commercial cover or some other type with a high impervious percentage, since this area is proposed as a street.
- 3. AMC 3 was used for the 100-year basin hydrology. This is not typically recommended per the District's hydrology manual. This should be explained or corrected.

Any questions pertaining to this project may be directed to Kelly O'Sullivan of this office at 951-955-8851 or kosulliv@rivco.org.

Very truly yours,

Schorah de Chambeau

DEBORAH DE CHAMBEAU Engineering Project Manager

cc: Kelly O'Sullivan, RCFC&WCD Duke Aghaian, Thienes Engineering

APPENDIX B

HYDROLOGY CALCULATIONS

EXISTING CONDITION

100XX

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435 Analysis prepared by: THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811 * TEI JOB 3828 100-YEAR STORM EVENT * EXISTING CONDITION (NODES 100-107) ****** FILE NAME: W:\3828\100XX.DAT TIME/DATE OF STUDY: 08:36 03/25/2021 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) NO. (n) --- ---- ----- ------ ------ -----1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INTITAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 410.00 UPSTREAM ELEVATION(FEET) = 1752.00 DOWNSTREAM ELEVATION(FEET) = 1741.50 ELEVATION DIFFERENCE(FEET) = 10.50 TC = 0.533*[(410.00**3)/(10.50)]**.2 = 12.298 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.651 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6451 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 4.87 2.85 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.87 ************* FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51

```
100XX
```

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ------ELEVATION DATA: UPSTREAM(FEET) = 1741.50 DOWNSTREAM(FEET) = 1732.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0237 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.186 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6085 SOIL CLASSIFICATION IS "B" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.84 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.15 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 5.78 Tc(MIN.) = 18.08 4.40 7.2 SUBAREA AREA(ACRES) = SUBAREA RUNOFF(CFS) = 5.85 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 10.73 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.36 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =810.00 FEET. FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 1732.00 DOWNSTREAM(FEET) = 1722.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 410.00 CHANNEL SLOPE = 0.0229 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 99.900 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.957 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5862 SOIL CLASSIFICATION IS "B" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.52 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 4.50 Tc(MIN.) = 22.57SUBAREA RUNOFF(CFS) = 10.61 SUBAREA AREA(ACRES) = 9.25 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 16.5 21.34 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 1.63 103.00 = LONGEST FLOWPATH FROM NODE 100.00 TO NODE 1220.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 61 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STANDARD CURB SECTION USED)<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 1723.00 DOWNSTREAM ELEVATION(FEET) = 1722.00 STREET LENGTH(FEET) = 275.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 16.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.87 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.73HALFSTREET FLOOD WIDTH(FEET) = 28.63 AVERAGE FLOW WEDCITY(FEET/SEC.) = 2.61 PRODUCT OF DEPTH&VELOCITY(FEET/SEC.) = 1.91 STREET FLOW TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 24.33 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.885 CONTRACTION OF DUPONT CONTENT A 270 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8678 SOIL CLASSIFICATION IS "B"

100XX SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 1.06 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 22.40 17.1 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 28.87 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93 100.00 TO NODE 104.00 = 1495.00 FEET. LONGEST FLOWPATH FROM NODE FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 61 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STANDARD CURB SECTION USED)<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 1722.00 DOWNSTREAM ELEVATION(FEET) = 1715.80 STREET LENGTH(FEET) = 755.00 STREET HALFWIDTH(FEET) = 32.00 CURB HEIGHT(INCHES) = 8.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 16.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.66HALFSTREET FLOOD WIDTH(FEET) = 24.94 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.58 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.35 STREET FLOW TRAVEL TIME(MIN.) = 3.52 TC(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.762 27.85 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8664 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = SUBAREA AREA(ACRES) = 0.70 1.07 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 17.9 23.47 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 25.12 FLOW VELOCITY(FEET/SEC.) = 3.61 DEPTH*VELOCITY(FT*FT/SEC.) = 2.39 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 =2250.00 FEET. FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ----->>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.762 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8664 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 17.25 SUBAREA RUNOFF(CFS) = 26.33 35.1 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 49.80 TC(MIN.) = 27.85 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 61 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STANDARD CURB SECTION USED)<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 1715.80 DOWNSTREAM ELEVATION(FEET) = 1709.80 STREET LENGTH(FEET) = 620.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 16.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 50.24 ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = 0.80 FLOOD WIDTH(FEET) = 32.00 FULL HALF-STREET VELOCITY(FEET/SEC.) = 4.58 SPLIT DEPTH(FEET) = 0.35 SPLIT FLOOD WIDTH(FEET) = 9.53 Page 3

100XX SPLIT FLOW(CFS) = 2.48 SPLIT VELOCITY(FEET/SEC.) = 2.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 32.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.58 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.65 STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) = 30.10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.694 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8656 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 35.7 PEAK FLOW RATE(CFS) = 50.68 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 32.00 FLOW VELOCITY(FEET/SEC.) = 4.58 DEPTH*VELOCITY(FT*FT/SEC.) = 3.65 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2870.00 FE 2870.00 FEET. FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.694 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8656 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) =21.50SUBAREA RUNOFF(CFS) =31.53TOTAL AREA(ACRES) =57.2TOTAL RUNOFF(CFS) =82.1 82.21 TC(MIN.) = 30.10FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 61 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STANDARD CURB SECTION USED)<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 1709.80 DOWNSTREAM ELEVATION(FEET) = 1706.00 STREET LENGTH(FEET) = 445.00 STREET HALFWIDTH(FEET) = 32.00 CURB HEIGHT(INCHES) = 8.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 16.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 82.64 ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = 0.80 FLOOD WIDTH(FEET) = 32.00 FULL HALF-STREET VELOCITY(FEET/SEC.) = 4.30 SPLIT DEPTH(FEET) = 0.76 SPLIT FLOOD WIDTH(FEET) = 29.98 SPLIT FLOW(CFS) = 37.78 SPLIT VELOCITY(FEET/SEC.) = 4.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 32.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.30 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.43 STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 31.83 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.648 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8650 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 0.86 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 83.06 57.8 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 32.00 FLOW VELOCITY(FEET/SEC.) = 4.30 DEPTH*VELOCITY(FT*FT/SEC.) = 3.43 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 3315.00 FEET.

```
100XX
```

```
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
 -----
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.648
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8650
 SOIL CLASSIFICATION IS "B"
 SUBAREA AREA(ACRES) =16.00SUBAREA RUNOFF(CFS) =22.80TOTAL AREA(ACRES) =73.8TOTAL RUNOFF(CFS) =105.33
                                   105.87
 TC(MIN.) =
        31.83
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
    -----
- - -
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.648
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8650
 SOIL CLASSIFICATION IS "B"
 SUBAREA AREA(ACRES) =1.80SUBAREA RUNOFF(CFS) =TOTAL AREA(ACRES) =75.6TOTAL RUNOFF(CFS) =
                                  2.57
                                   108.43
 TC(MIN.) = 31.83
------
 END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 75.6
PEAK FLOW RATE(CFS) = 108.43
                   75.6 TC(MIN.) =
                               31.83
_____
 END OF RATIONAL METHOD ANALYSIS
```

♠

110XX

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0)
Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD
LA MIRADA, CA 90638
714-521-4811
********************************* DESCRIPTION OF STUDY **************************
* TEI JOB 3828 *
* 100-YEAR STORM EVENT * * EXISTING CONDITION (NODES 110-112) *
EAISTING CONDITION (NODES IIE-IIE)
FILE NAME: W:\3828\110XX.DAT
TIME/DATE OF STUDY: 09:40 03/25/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200
SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
FOR ALL DOWNSTREAM ANALYSES
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (T) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
<pre>2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)</pre>
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
ok egoke to the oforkear herborakt file.

FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 875.00 UPSTREAM ELEVATION(FEET) = 1755.15
DOWNSTREAM ELEVATION(FEET) = 1747.00
ELEVATION DIFFERENCE(FEET) = 8.15 TC = 0.303*[(875.00**3)/(8.15)]**.2 = 11.603
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.729
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8750
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 2.39 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.39

Page 1
rage 1

```
110XX
```

```
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>(STANDARD CURB SECTION USED)<<<<<</pre>
------
 UPSTREAM ELEVATION(FEET) = 1747.00 DOWNSTREAM ELEVATION(FEET) = 1737.88
 STREET LENGTH(FEET) = 875.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 38.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 19.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       3.31
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
HALFSTREET FLOOD WIDTH(FEET) = 10.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.49
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.92
 STREET FLOW TRAVEL TIME(MIN.) = 5.86 Tc(MIN.) = 17.47
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.224
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8712
 SOIL CLASSIFICATION IS "B"
 SUBAREA AREA(ACRES) = 0.95
                                 SUBAREA RUNOFF(CFS) = 1.84
 TOTAL AREA(ACRES) =
                          2.0
                                    PEAK FLOW RATE(CFS) =
                                                            4.23
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 11.95
 FLOW VELOCITY(FEET/SEC.) = 2.61 DEPTH*VELOCITY(FT*FT/SEC.) = 1.04
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1750.00 FEET.
          -----
 ......
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
PEAK FLOW RATE(CFS) =
                            2.0 TC(MIN.) =
                                              17.47
                          4.23
------
_____
```

```
END OF RATIONAL METHOD ANALYSIS
```

120XX

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes)
(Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811

* TEI JOB 3828 * * 100-YEAR STORM EVENT *
* EXISTING CONDITION (NODES 120-121) *
FILE NAME: W:\3828\120XX.DAT TIME/DATE OF STUDY: 10:39 03/25/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 390.00
UPSTREAM ELEVATION(FEET) = 1740.00
DOWNSTREAM ELEVATION(FEET) = 1734.82 ELEVATION DIFFERENCE(FEET) = 5.18
TC = 0.303*[(390.00**3)/(5.18)]**.2 = 7.823
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.324 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8784
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 1.61 TOTAL AREA(ACRES) = 0.55 TOTAL RUNOFF(CFS) = 1.61
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = $0.6 \text{ TC}(\text{MIN.}) = 7.82$
Page 1

END OF RATIONAL METHOD ANALYSIS

♠

130XX

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811
**************************** DESCRIPTION OF STUDY *******************************
* TEI JOB 3828 * * 100-YEAR STORM EVENT * * EXISTING CONDITION (NODES 130-131) *
FILE NAME: W:\3828\130XX.DAT TIME/DATE OF STUDY: 11:50 03/25/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY DATAI: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) ====================================
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 175.00 UPSTREAM ELEVATION(FEET) = 1737.80 DOWNSTREAM ELEVATION(FEET) = 1734.83 ELEVATION DIFFERENCE(FEET) = 2.97 TC = 0.303*[(175.00**3)/(2.97)]**.2 = 5.406 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.999 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8813 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) = 0.88
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.2 TC(MIN.) = 5.41 Page 1

PEAK FLOW RATE(CFS) = 0.88 -----

END OF RATIONAL METHOD ANALYSIS

PROPOSED CONDITION

100P2.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435

Analysis prepared by:

* TEI 3828 - OPTION 2 * 100-YEAR STORM EVENT 100-YEAR SIOKM EVENT PROPOSED CONDITION NODES 100-112 * * FILE NAME: W:\3828\100P2.DAT TIME/DATE OF STUDY: 08:55 11/17/2020 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001361 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS EOP ALL DOWNETREAM ANALYSES FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER-GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) HALF- CROWN TO STREET-CROSSFALL: WIDTH CROSSFALL IN- / OUT-/PARK-(FT) (FT) SIDE / SIDE/ WAY NO. ====== ===== 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 30.0 20.0 1 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 -----_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1755.00 DOWNSTREAM ELEVATION(FEET) = 1730.50 ELEVATION DIFFERENCE(FEET) = 24.50 TC = 0.303*[(1000.00**3)/(24.50)]**.2 = 10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.927 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8763 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 4.62 ASSUMED INITIAL SUBAREA UNIFORM 10.087 SUBAREA RUNOFF(CFS) = 4.62 1.80 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.62 FLOW PROCESS FROM NODE 101.00 TO NODE 112.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ====== ELEVATION DATA: UPSTREAM(FEET) = 1730.50 DOWNSTREAM(FEET) = 1726.00CHANNEL LENGTH THRU SUBAREA(FEET) = 345.00 CHANNEL SLOPE = 0.0130 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.012 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.590

Page 1

100P2.RES 1.70 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 2.5 6.32 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 2.05 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 112.00 = 100.00 TO NODE 112.00 = 1345.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.88 RAINFALL INTENSITY(INCH/HR) = 2.59 TOTAL STREAM AREA(ACRES) = 2.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.32 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ______ ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 UPSTREAM ELEVATION(FEET) = 1735.20 DOWNSTREAM ELEVATION(FEET) = 1732.75 ELEVATION DIFFERENCE(FEET) = 2.45 TC = 0.303*[(300.00**3)/(2.45)]**.2 = 7 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.337 COMMERCIAL DEVELOPMENT BUNGEC CONFECTENT = 8728 7.763 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8785 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 10.85 TOTAL AREA(ACRES) = 3.70 TOTAL RUNOFF(CFS) = 10.85 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1729.75 DOWNSTREAM(FEET) = 1722.25FLOW LENGTH(FEET) = 990.00 MANNING'S N = 0.012DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.64ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1PIPE-FLOW(CFS) = 10.85PIPE TRAVEL TIME(MIN.) = 2.49 Tc(MIN.) = 10.25LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1290.00 FEE 1290.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ------_____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.25 RAINFALL INTENSITY(INCH/HR) = 2.90 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.85 ** CONFLUENCE DATA ** RUNOFF (CFS) 6.32 TC (MIN.) 12.88 STREAM INTENSITY AREA (INCH/HOUR) 2.590 2.904 NUMBER (ACRE) 2.55 1 10.85 10.25 3.70 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF ТС INTENSITY (MIN.) 10.25 (INCH/HOUR) 2.904 2.500 (CFS) 15.87 NUMBER 1 2 15.99 12.88 2.590

Page 2

100P2.RES

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.99 Tc(MIN.) = 12.88 TOTAL AREA(ACRES) = 6.2 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 112.00 = 1345.00 FEET.
FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.590 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4298 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 6.9 TOTAL RUNOFF(CFS) = 16.71 TC(MIN.) = 12.88 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC NUMBER (CFS) (MIN.) 1 16.73 10.25 2 16.71 12.88 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 16.73 TC(MIN.) = 10.25
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.9 TC(MIN.) = 10.25 PEAK FLOW RATE(CFS) = 16.73 *** PEAK FLOW RATE TABLE *** Q(CFS) TC(MIN.) 1 16.73 10.25 2 16.71 12.88

END OF RATIONAL METHOD ANALYSIS

우

200P2.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435

Analysis prepared by:

* TEI JOB 3828 - OPTION 2 * 100-YEAR STORM CONDITION ж. * PROPOSED CONDITION NODES 200-222 * FILE NAME: W:\3828\200P2.DAT TIME/DATE OF STUDY: 11:49 11/17/2020 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001361 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS EOP ALL DOWNETREAM ANALYSES FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER-GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) CROWN TO STREET-CROSSFALL: CROSSFALL IN- / OUT-/PARK-(FT) SIDE / SIDE/ WAY HALF-MANNING WIDTH NO. (FT) ====== ===== 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 30.0 20.0 1 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ------_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBARLA UNLT ON DEVELOPMENT IS COMMERCIAL TC = K[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00 INITIAL SUBAREA FLOW-LENGIH(FEET) = 340.00UPSTREAM ELEVATION(FEET) = 1731.46DOWNSTREAM ELEVATION(FEET) = 1725.97ELEVATION DIFFERENCE(FEET) = 5.49TC = 0.303*[(340.00**3)/(5.49)]**.2 = 7100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.484COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8792SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CES) = 10.727.121 SUBAREA RUNOFF(CFS) = 10.72 3.50 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 10.72 FLOW PROCESS FROM NODE 201.00 TO NODE 211.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1722.97 DOWNSTREAM(FEET) = 1720.97 FLOW LENGTH (FEET) = 440.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.34 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1Page 1

200P2.RES PIPE-FLOW(CFS) = 10.72 PIPE TRAVEL TIME(MIN.) = 1.37 TC(MIN.) = LONGEST FLOWPATH FROM NODE 200.00 TO NODE 8.49 780.00 FEET. 211.00 =FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.49 RAINFALL INTENSITY(INCH/HR) = 3.19 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.72 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ______ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 480.00 UPSTREAM ELEVATION(FEET) = 1731.46 DOWNSTREAM ELEVATION(FEET) = 1725.21 ELEVATION DIFFERENCE(FEET) = 6.25 TC = 0.303*[(480.00**3)/(6.25)]**.2 = 8 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.183 COMMERCIAL DEVELOPMENT DUDGES CONFERENT 8.534 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8777 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 23.05 TOTAL AREA(ACRES) = 8.25 TOTAL RUNOFF(CFS) = 23.05 FLOW PROCESS FROM NODE 211.00 TO NODE 211.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.53 RAINFALL INTENSITY(INCH/HR) = 3.18 TOTAL STREAM AREA(ACRES) = 8.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.05 ** CONFLUENCE DATA **
 NCE DATA

 RUNOFF
 TC
 INTENSITY

 (CFS)
 (MIN.)
 (INCH/HOUR)

 10.72
 8.49
 3.190

 22.05
 8.53
 3.183
 STREAM AREA NUMBER (ACRE) 1 3.50 8.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** JW RATE TABLERUNOFFTCINTENSITY(CFS)33.668.493.19033.63 STREAM NUMBER 1 2 780.00 FEET. FLOW PROCESS FROM NODE 211.00 TO NODE 222.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 1722.97 DOWNSTREAM(FEET) = 1709.50FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.012DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 29.91ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1PIPE-FLOW(CFS) = 33.74PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 8.57LONGEST FLOWPATH FROM NODE 200.00 TO NODE 222.00 = 849.00 FEE 849.00 FFFT. FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 1

Page 2

```
200P2.RES
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
  TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.57
RAINFALL INTENSITY(INCH/HR) = 3.18
TOTAL STREAM AREA(ACRES) = 11.75
  PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                                   33.74
FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
                                                         _____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
______
          ASSUMED INITIAL SUBAREA UNIFORM
 ASSUMED INITIAL SUBAREA UNIFORM

DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) = 560.00

UPSTREAM ELEVATION(FEET) = 1731.93

DOWNSTREAM ELEVATION(FEET) = 1725.21

ELEVATION DIFFERENCE(FEET) = 6.72

TC = 0.303*[( 560.00**3)/( 6.72)]**.2 = 5

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.061

COMMERCIAL DEVELOPMENT DUNCET CONFERENT = 9771
                                                             9.226
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8771
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 20.80
TOTAL AREA(ACRES) = 7.75 TOTAL RUNOFF(CFS) =
                                                                       20.80
FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
 ELEVATION DATA: UPSTREAM(FEET) = 1722.21 DOWNSTREAM(FEET) = 1709.50
FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.012
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 29.36
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 20.80
PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 9.25
LONGEST FLOWMATH FROM NODE
  PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) =
LONGEST FLOWPATH FROM NODE 220.00 TO NODE
                                                             222.00 =
                                                                             610.00 FEET.
FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 1
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<<
  >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
_____
  TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
  TIME OF CONCENTRATION(MIN.) = 9.25
RAINFALL INTENSITY(INCH/HR) = 3.06
TOTAL STREAM AREA(ACRES) = 7.75
  PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                                   20.80
  ** CONFLUENCE DATA **
  STREAM
               RUNOFF
                                         INTENSITY
                               ΤС
                                                            AREA
                (CFS)
33.66
                             (MIN.)
                                        (INCH/HOUR)
  NUMBER
                                                           (ACRE)
                             8.53
                                            3.183
                                                             11.75
11.75
      1
                 33.74
                             8.57
                                            3.175
       1
       2
                 20.80
                             9.25
                                            3.056
                                                               7.75
  RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
  CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **
  STREAM
               RUNOFF
                              тс
                                        INTENSITY
                            (MIN.)
                 (CFS)
  NUMBER
                                       (INCH/HOUR)
                             8.53
8.57
                 52.84
53.01
                                       3.183
3.175
       1
       2
       3
                 53.28
                             9.25
                                           3.056
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 53.28 TC(MIN.) =
TOTAL AREA(ACRES) = 19.5
                                                              9.25
  LONGEST FLOWPATH FROM NODE
                                      200.00 TO NODE 222.00 =
                                                                             849.00 FEET.
FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
   100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.056
  UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6702
  SOIL CLASSIFICATION IS "B"
```

200P2.RES SUBAREA AREA(ACRES) = 2.45 SUBAREA RUNOFF(CFS) = 5.0 TOTAL AREA(ACRES) = 22.0 TOTAL RUNOFF(CFS) = 58 TC(MIN.) = 9.25	
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 22.0 TC(MIN.) = 9.25 PEAK FLOW RATE(CFS) = 58.30 *** PEAK FLOW RATE TABLE *** Q(CFS) TC(MIN.) 1 58.12 8.53 2 58.28 8.57 3 58.30 9.25	

END OF RATIONAL METHOD ANALYSIS

우

300P2.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435

Analysis prepared by:

* TEI 3828 - OPTION 2 * 100-YEAR STORM EVENT * PROPOSED CONDITION NODES 300-309 * FILE NAME: W:\3828\300P2.DAT TIME/DATE OF STUDY: 09:32 11/17/2020 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001361 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS EOP ALL DOWNETREAM ANALYSES FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER-GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) CROWN TO STREET-CROSSFALL: CROSSFALL IN- / OUT-/PARK-(FT) SIDE / SIDE/ WAY HALF-MANNING WIDTH NO. (FT) ====== ===== 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 30.0 20.0 1 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ------_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBARLA UNIT ON DEVELOPMENT IS COMMERCIAL TC = K[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 471.0 471.00 INITIAL SUBAREA FLOW-LENGIH(FEET) = 4/1.00 UPSTREAM ELEVATION(FEET) = 1748.97 DOWNSTREAM ELEVATION(FEET) = 1730.73 ELEVATION DIFFERENCE(FEET) = 18.24 TC = 0.303*[(471.00**3)/(18.24)]**.2 = 6 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.563 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8795 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CES) = 18.02 6.811 SUBAREA RUNOFF(CFS) = 18.02 5.75 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 18.02 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1726.07 DOWNSTREAM(FEET) = 1725.05 FLOW LENGTH (FEET) = 204.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.43 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1Page 1

300P2.RES 675.00 FFFT. FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.432 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8790 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.95 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 7.7 TOTAL RUNOFF(CFS) = 5.88 23.90 TC(MIN.) =FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1725.05 DOWNSTREAM(FEET) = 1724.17FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.90ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1PIPE-FLOW(CFS) = 23.90PIPE TRAVEL TIME(MIN.) = 0.43 TC(MIN.) = 7.76LONCEST FLOWMATH FROM NODE 0.200 00 TO NODE 302.00 = 851.00 FET Tc(MIN.) = PIPE TRAVEL TIME(MIN.) = 0.43 TC(MIN.) = LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 851.00 FFFT. FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ___ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.337 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8785 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.95 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 9.6 TOTAL RUNOFF(CFS) = 5.72 29.62 TC(MIN.) =7.76 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 1724.17 DOWNSTREAM(FEET) = 1723.29FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.11ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1PIPE-FLOW(CFS) = 29.62PIPE-FLOW(CFS) = 29.62 PIPE TRAVEL TIME(MIN.) = 0.41 LONGEST FLOWPATH FROM NODE 30 TC(MIN.) =8.18 300.00 TO NODE 304.00 =1027.00 FFFT. FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.251 100 YEAR KAINFALL INICISITI (INCH/HOUR) - 3.231COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8781SOIL CLASSIFICATION IS "B"SUBAREA AREA(ACRES) = 2.30SUBAREA AREA(ACRES) = 11.9TOTAL AREA(ACRES) = 11.9TOTAL RUNOFF(CFS) = 6.57 36.18 TC(MIN.) =8.18 FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 1723.29 DOWNSTREAM(FEET) = 1722.41 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.54 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.18 DIDE TAN/EL TIME(INCH) = 0.20 _____ PIPE-FLOW(CFS) = 36.18 PIPE TRAVEL TIME(MIN.) = 0.39 TC(MIN.) = LONGEST FLOWPATH FROM NODE 300.00 TO NODE 8.57 305.00 =1203.00 FEET.

Page 2

S00P2.RES FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.177 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8777 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) =1.60SUBAREA RUNOFF(CFS) =TOTAL AREA(ACRES) =13.6TOTAL RUNOFF(CFS) = 4.46 TOTAL AREA(ACRES) = 40.64 TC(MIN.) =8.57 FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ======== ELEVATION DATA: UPSTREAM(FEET) = 1722.41 DOWNSTREAM(FEET) = 1721.53FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.85ESTIMATED PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW(CFS) = 40.64 NUMBER OF PIPES = 1PIPE TRAVEL TIME(MIN.) = (LONGEST FLOWPATH FROM NODE 30 TC(MIN.) =8.94 300.00 TO NODE 306.00 =1379.00 FEET. FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.109 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8773 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.30 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 15.9 TOTAL RUNOFF(CFS) = 6.27 46.92 TC(MIN.) =FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 1721.53 DOWNSTREAM(FEET) = 1720.65 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.01 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 46.92 PIPE TRAVEL TIME(MIN.) = 0.37 TC(MIN.) = LONGEST FLOWPATH FROM NODE 300.00 TO NODE 9.31 307.00 =1555.00 FEET. FLOW PROCESS FROM NODE 307.00 TO NODE 307.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.048 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8770 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.95 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 17.8 TOTAL RUNOFF(CFS) = 5.21 52.13 TC(MIN.) =9.31 FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1720.65 DOWNSTREAM(FEET) = 1719.77 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.33 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 52.13 PIPE TRAVEL TIME(MIN.) = 0.35 TC(MIN.) = 9.66 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 308.00 = 1731.00 FEE 1731.00 FEET. FLOW PROCESS FROM NODE 308.00 TO NODE 308.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.992

Page 3

300P2.RES COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8767 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1 1.95 SUBAREA RUNOFF(CFS) = 5.11 19.8 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 57.24 TC(MIN.) = 9.66 FLOW PROCESS FROM NODE 308.00 TO NODE 309.00 IS CODE = 31 ------_____ _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1719.77 DOWNSTREAM(FEET) = 1709.50 FLOW LENGTH(FEET) = 1885.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.77 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 57.24 PIPE TRAVEL TIME(MIN.) = 3.58 TC(MIN.) = 13.24 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 309.00 = 3616.00 FEE 3616.00 FEET. FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 81 ------>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.555 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6383 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.85 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 21.6 TOTAL RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = TC(MIN.) = 13.24 60.26 _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 21.6 TC(MIN.) = 13.24 60.26 _____ END OF RATIONAL METHOD ANALYSIS

우

400P2.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435

Analysis prepared by:

* TEI 3828 - OPTION 2 * 100-YEAR STORM EVENT * PROPOSED CONDITION NODES 400-432 * FILE NAME: W:\3828\400P2.DAT TIME/DATE OF STUDY: 11:52 11/17/2020 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001361 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS EOP ALL DOWNETREAM ANALYSES FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* CURB GUTTER-GEOMETRIES: MANNING HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) (FT) (FT) (n) CROWN TO STREET-CROSSFALL: CROSSFALL IN- / OUT-/PARK-(FT) SIDE / SIDE/ WAY HALF-MANNING WIDTH NO. (FT) ====== ===== 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 30.0 20.0 1 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 -----_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBARLA UNATION DEVELOPMENT IS COMMERCIAL TC = K[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 INITIAL SUBAREA FLOW-LENGIH(FEET) = 230.00UPSTREAM ELEVATION(FEET) = 1734.97DOWNSTREAM ELEVATION(FEET) = 1730.74ELEVATION DIFFERENCE(FEET) = 4.23TC = 0.303*[(230.00**3)/(4.23)]**.2 = 5100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.817COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8806SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CES) = 12.605.934 SUBAREA RUNOFF(CFS) = 12.60 3.75 TOTAL RUNOFF(CFS) = TOTAL AREA(ACRES) = 12.60 FLOW PROCESS FROM NODE 401.00 TO NODE 412.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1730.74 DOWNSTREAM(FEET) = 1724.80 FLOW LENGTH (FEET) = 710.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.11 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1Page 1

400P2.RES 940.00 FEET. FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.60 RAINFALL INTENSITY(INCH/HR) = 3.37 TOTAL STREAM AREA(ACRES) = 3.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.60 FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ______ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 329.00UPSTREAM ELEVATION(FEET) = 1732.60DOWNSTREAM ELEVATION(FEET) = 1727.21ELEVATION DIFFERENCE(FEET) = 5.39TC = 0.303*[(329.00*3)/(5.39)]**.2 = 7.008100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.512COMMERCIAL DEVELOPMENT DUDGES CONFECTENT. COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8793 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 5.25 TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) = 5.25 FLOW PROCESS FROM NODE 411.00 TO NODE 412.00 IS CODE = 31 ---->>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1723.21 DOWNSTREAM(FEET) = 1723.04 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.93 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.25 DIDE TAMEL THE (ALL) = 0.00 TE (ALL) = 100 PIPE-FLOW(CFS) = 5.25 PIPE TRAVEL TIME(MIN.) = 0.09 LONGEST FLOWPATH FROM NODE 410 Tc(MIN.) =7.10 410.00 TO NODE 412.00 =357.00 FEET. FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ========= TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.10 RAINFALL INTENSITY(INCH/HR) = 3.49 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.25 ** CONFLUENCE DATA ** RUNOFF STREAM тс INTENSITY AREA (MIN.) (INCH/HOUR) 7.60 3.373 7.10 3.489 (CFS) 12.60 NUMBER (ACRE) 3.75 1 2 5.25 1.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR $\ 2$ STREAMS. ** PEAK FLOW RATE TABLE **
 RUNOFF
 TC

 (CFS)
 (MIN.)

 17.03
 7.10

 17.68
 7.60
 STREAM INTENSITY (INCH/HOUR) NUMBER 3.489 1 2 3.373 7.60 412.00 =940.00 FFFT. FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 81 _____

400P2.RES >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.373 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8787 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 6.1 TOTAL RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 19.61 TC(MIN.) =7.60 FLOW PROCESS FROM NODE 412.00 TO NODE 422.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1723.04 DOWNSTREAM(FEET) = 1716.80 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.87 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.61 PIPE TIME(MIN) = 105 TE(MIN) = 105 PIPE-FLOW(CFS) = 19.61 PIPE TRAVEL TIME(MIN.) = 1.05 TC(MIN.) = LONGEST FLOWPATH FROM NODE 400.00 TO NODE 8.65 422.00 = 1500.00 FFFT. FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 1 ------>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< ____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.65 RAINFALL INTENSITY(INCH/HR) = 3.16 TOTAL STREAM AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.61 FLOW PROCESS FROM NODE 420.00 TO NODE 421.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 620.00 UPSTREAM ELEVATION(FEET) = 1729.28 DOWNSTREAM ELEVATION(FEET) = 1720.29 ELEVATION DIFFERENCE(FEET) = 8.99 TC = 0.303*[(620.00**3)/(8.99)]**.2 = ELEVATION DIFFERENCE(FEET) = 8.99TC = 0.303*[(620.00**3)/(8.99)]**.2 = 9.25100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.056COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8770SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 6.03TOTAL AREA(ACRES) = 2.25 TOTAL RUNOFF(CFS) = 9.253 6.03 FLOW PROCESS FROM NODE 421.00 TO NODE 422.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1717.00 DOWNSTREAM(FEET) = 1716.80 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.48 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW(CFS) = 6.03 PIPE TRAVEL TIME(MIN.) = 0.09 TC(M LONGEST FLOWPATH FROM NODE 420.00 TC NUMBER OF PIPES = 1 Tc(MIN.) = 9.34 420.00 TO NODE 422.00 = 650.00 FEET. FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.34 RAINFALL INTENSITY(INCH/HR) = 3.04 TOTAL STREAM AREA(ACRES) = 2.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.03 ** CONFLUENCE DATA ** RUNOFF STREAM тс INTENSITY AREA (MIN.) (INCH/HOUR) NUMBER (CFS) (ACRE) Page 3

1 19.03 8.16 3.255 6.10 8.65 9.34 6.10 19.61 1 3.1612 2.25 6.03 3.041 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF тс INTENSITY (CFS) 24.29 NUMBER (MIN.) (INCH/HOUR) 3.255 3.161 8.16 8.65 1 2 25.19 3 24.90 9.34 3.041 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.19 TC(MIN.) = TOTAL AREA(ACRES) = 8.4 8.65 8.4 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 422.00 = 1500.00 FEET. FLOW PROCESS FROM NODE 422.00 TO NODE 423.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1716.80 DOWNSTREAM(FEET) = 1716.70 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 33.0 INCH PIPE IS 21.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.01 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.19 DIDE TAME(INT) = 0.02 TE(UTV) = 2.72 PIPE-FLOW(CFS) = 25.19 PIPE TRAVEL TIME(MIN.) = 0.08 LONGEST FLOWPATH FROM NODE 40 Tc(MIN.) =8.73 400.00 TO NODE 423.00 =1530.00 FEET. FLOW PROCESS FROM NODE 423.00 TO NODE 423.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.146 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8775 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 9.4 TOTAL RUNOFF(CFS) = 2.90 28.09 TC(MIN.) =8 73 FLOW PROCESS FROM NODE 423.00 TO NODE 424.00 IS CODE = 31 _____ ------>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< == ELEVATION DATA: UPSTREAM(FEET) = 1716.70 DOWNSTREAM(FEET) = 1716.00 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.66 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.09 PIPE TRAVEL TIME(MIN.) = 0.40 LONGEST FLOWPATH FROM NODE 400 TC(MIN.) = 9.13 400.00 TO NODE 424.00 =1690.00 FEET. FLOW PROCESS FROM NODE 424.00 TO NODE 424.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.076COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8771 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 10.4 TOTAL RUNOFF(CFS) = 2.70 TOTAL AREA(ACRES) = 30.79 TC(MIN.) =9.13 FLOW PROCESS FROM NODE 424.00 TO NODE 432.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1716.00 DOWNSTREAM(FEET) = 1715.00 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.0 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.05 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER PIPE-FLOW(CFS) = 30.79 MANNING'S N = 0.012NUMBER OF PIPES = 1 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) =9.17

400P2.RES

LONGEST FLOWPATH FROM NODE 400.00 TO NODE 432.00 = 1720.00 FEET. FLOW PROCESS FROM NODE 432.00 TO NODE 432.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< ______ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MN.) = 9.17 RAINFALL INTENSITY(INCH/HR) = 3.07 TOTAL STREAM AREA(ACRES) = 10.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30 79 FLOW PROCESS FROM NODE 430.00 TO NODE 431.00 IS CODE = 21 ----->>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH*3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 325.00 UPSTREAM ELEVATION(FEET) = 1731.44 DOWNSTREAM ELEVATION(FEET) = 1725.22 ELEVATION DIFFERENCE(FEET) = 6.22 TC = 0.303*[(325.00*3)/(6.22)]**.2 = 6 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.576 COMMERCIAL DEVELOPMENT DUDGES CONFERENT 6.760 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8796 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 17.30 TOTAL AREA(ACRES) = 5.50 TOTAL RUNOFF(CFS) = 17.30 FLOW PROCESS FROM NODE 431.00 TO NODE 432.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1722.22 DOWNSTREAM(FEET) = 1715.66 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.03 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.30 PIPE-FLOW(CFS) = 17.30 ______ PIPE-FLOW(CFS) = 17.30 PIPE TRAVEL TIME(MIN.) = 0.19 TC(MIN.) = LONGEST FLOWPATH FROM NODE 430.00 TO NODE 6.95 432.00 =485 00 FFFT FLOW PROCESS FROM NODE 432.00 TO NODE 432.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.527 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8794 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 6.1 TOTAL RUNOFF(CFS) = 1.86 19.16 6.95 TC(MIN.) =FLOW PROCESS FROM NODE 432.00 TO NODE 432.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.95 RAINFALL INTENSITY(INCH/HR) = 3.53 TOTAL STREAM AREA(ACRES) = 6.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.16 ** CONFLUENCE DATA ** STREAM RUNOFF INTENSITY тс AREA (CFS) 30.05 (MIN.) NUMBER (INCH/HOUR) (ACRE) 8.68 9.17 3.155 10.40 1 3.071 1 30.79 10.40 2.960 3.527 1 30.28 9.87 10.40 2 6.95 19.16 6.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF INTENSITY ТС

400P2.RES

400P2.RES (CFS) 43.22 47.19 NUMBER (MIN.) (INCH/HOUR) 6.95 8.68 3.527 3.155 1 2 9.17 9.87 3.071 2.960 3 47.47 4 46.36 1720.00 FEET. FLOW PROCESS FROM NODE 432.00 TO NODE 432.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.071 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6711 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 17.8 TOTAL RUNOFF(CFS) = 2.68 50.15 TOTAL AREA(ACRES) = TC(MIN.) = 9.17 _____ END OF STUDY SUMMARY:

 PEAK FLOW RATE(CFS) =
 17.8

 *** PEAK FLOW RATE TABLE
 50.15

 Q(CFS)
 TC(MIN.)

 1
 46.40

 17.8 TC(MIN.) = 9.17 6.95 8.68 1 2 49.97 3 50.15 9.17 4 48.92 9.87 ______

END OF RATIONAL METHOD ANALYSIS

የ

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811

FILE NAME: W:\3828\500P.DAT TIME/DATE OF STUDY: 08:59 03/22/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n) ====================================

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 860.00 UPSTREAM ELEVATION(FEET) = 1754.80 DOWNSTREAM ELEVATION(FEET) = 1749.00 ELEVATION DIFFERENCE(FEET) = 5.80 TC = 0.303*[(860.00*3)/(5.80)]**.2 = 12.291 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.652 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8745 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 2.43 TOTAL AREA(ACRES) = 1.05 TOTAL RUNOFF(CFS) = 2.43
FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 61 Page 1
Page 1

```
500P
```

```
_____
                                                            -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>(STANDARD CURB SECTION USED)<<<<<</pre>
------
 UPSTREAM ELEVATION(FEET) = 1748.80 DOWNSTREAM ELEVATION(FEET) = 1739.70
 STREET LENGTH(FEET) = 885.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 38.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       3.43
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.38
HALFSTREET FLOOD WIDTH(FEET) = 10.89
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.49
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.94
 STREET FLOW TRAVEL TIME(MIN.) = 5.92 Tc(MIN.) = 18.21
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.179
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8708
 SOIL CLASSIFICATION IS "B"
 SUBAREA AREA(ACRES) = 1.05
                                 SUBAREA RUNOFF(CFS) = 1.99
 TOTAL AREA(ACRES) =
                          2.1
                                    PEAK FLOW RATE(CFS) =
                                                            4.43
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 12.23
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 1745.00 FEET.
             -----
 _____
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
PEAK FLOW RATE(CFS) =
                             2.1 TC(MIN.) =
                                               18.21
                          4.43
------
_____
```

```
END OF RATIONAL METHOD ANALYSIS
```

♠

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD
LA MIRADA, CA 90638 714-521-4811

* 100-YEAR STORM EVENT *
* STREET FLOW (NODES 510-511) * **********************************
FILE NAME: W:\3828\510P.DAT TIME/DATE OF STUDY: 09:09 03/22/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161
COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200
SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
 Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
<pre>2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN</pre>
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
FLOW PROCESS FROM NODE 510.00 TO NODE 511.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 395.00
UPSTREAM ELEVATION(FEET) = 1740.00 DOWNSTREAM ELEVATION(FEET) = 1736.25
ELEVATION DIFFERENCE(FEET) = 3.75 TC = 0.303*[(395.00**3)/(3.75)]**.2 = 8.409
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.206 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8778
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 2.81 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.81
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 8.41
Page 1

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435
Analysis prepared by:
THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811

FILE NAME: W:\3828\520P.DAT TIME/DATE OF STUDY: 09:29 03/22/2021
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n) ====================================

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 755.00 UPSTREAM ELEVATION(FEET) = 1737.10 DOWNSTREAM ELEVATION(FEET) = 1724.20 ELEVATION DIFFERENCE(FEET) = 12.90 TC = 0.303*[(755.00**3)/(12.90)]**.2 = 9.688 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.987 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8766 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 2.49 TOTAL AREA(ACRES) = 0.95 TOTAL RUNOFF(CFS) = 2.49

Page 1

```
520P
```

```
_____
                                                            -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>(STANDARD CURB SECTION USED)<<<<<</pre>
------
 UPSTREAM ELEVATION(FEET) = 1724.20 DOWNSTREAM ELEVATION(FEET) = 1696.30
 STREET LENGTH(FEET) = 755.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 43.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       3.69
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
                                  8.37
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.14
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.35
 STREET FLOW TRAVEL TIME(MIN.) = 3.04 Tc(MIN.) = 12.72
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.606
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8742
 SOIL CLASSIFICATION IS "B"
 SUBAREA AREA(ACRES) = 1.05
                                 SUBAREA RUNOFF(CFS) = 2.39
 TOTAL AREA(ACRES) =
                          2.0
                                    PEAK FLOW RATE(CFS) =
                                                             4.88
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 9.57
 FLOW VELOCITY(FEET/SEC.) = 4.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.54
LONGEST FLOWPATH FROM NODE 520.00 TO NODE 522.00 = 1510.00 FEET.
             ......
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
PEAK FLOW RATE(CFS) =
                             2.0 TC(MIN.) =
                                              12.72
                          4.88
------
_____
```

```
END OF RATIONAL METHOD ANALYSIS
```

```
600P2
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0) Release Date: 07/01/2016 License ID 1435 Analysis prepared by: THIENES ENGINEERING, INC. 14349 FIRESTONE BLVD LA MIRADA, CA 90638 714-521-4811 * TEI JOB 3828 100-YEAR STORM EVENT * PROPOSED CONDITION (NODES 600-603) ****** FILE NAME: W:\3828\600P2.DAT TIME/DATE OF STUDY: 11:29 03/23/2021 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.010 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.820 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.940 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.200 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5003939 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5001161 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.200 SLOPE OF INTENSITY DURATION CURVE = 0.5001 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) NO. (n) --- ---- ----- ------ ------ -----1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INTITAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 975.00 UPSTREAM ELEVATION(FEET) = 1731.20 DOWNSTREAM ELEVATION(FEET) = 1718.00 ELEVATION DIFFERENCE(FEET) = 13.20 TC = 0.303*[(975.00**3)/(13.20)]**.2 = 11.243 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.773 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8753 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 2.31 TOTAL AREA(ACRES) = 0.95 TOTAL RUNOFF(CFS) = 2.31 FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 61

```
600P2
```

```
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>(STANDARD CURB SECTION USED)<<<<<</pre>
------
 UPSTREAM ELEVATION(FEET) = 1718.00 DOWNSTREAM ELEVATION(FEET) = 1712.50
 STREET LENGTH(FEET) = 840.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 32.00
  DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
  Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         3.02
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 11.40
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.78
 STREET FLOW TRAVEL TIME(MIN.) = 6.91 Tc(MIN.) = 18.15
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.182
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8708
  SOIL CLASSIFICATION IS "B"
  SUBAREA AREA(ACRES) = 0.75
                                   SUBAREA RUNOFF(CFS) = 1.43
  TOTAL AREA(ACRES) =
                           1.7
                                     PEAK FLOW RATE(CFS) =
                                                               3.73
  END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 12.52
 FLOW VELOCITY(FEET/SEC.) = 2.12 DEPTH*VELOCITY(FT*FT/SEC.) = 0.87
LONGEST FLOWPATH FROM NODE 600.00 TO NODE 602.00 = 1815.00 FE
                                                         1815.00 FEET.
FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 81
                   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.182
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8708
  SOIL CLASSIFICATION IS "B"

    SUBAREA AREA(ACRES) =
    0.55
    SUBAREA RUNOFF(CFS) =

    TOTAL AREA(ACRES) =
    2.2
    TOTAL RUNOFF(CFS) =

                                                      1.05
                                                         4.78
  TC(MIN.) = 18.15
FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 61
  _____
  >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>(STANDARD CURB SECTION USED)<<<<<</pre>
          _____
 UPSTREAM ELEVATION(FEET) = 1712.50 DOWNSTREAM ELEVATION(FEET) = 1706.00
 STREET LENGTH(FEET) = 840.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 32.00
  DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
  Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0149
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                          5.44
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 14.16
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09
STREET FLOW TRAVEL TIME(MIN.) = 5.65 Tc(MIN.) = 23.80
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.906
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8681
  SOIL CLASSIFICATION IS "B"
                                  SUBAREA RUNOFF(CFS) = 1.32
  SUBAREA AREA(ACRES) = 0.80
                                     PEAK FLOW RATE(CFS) =
  TOTAL AREA(ACRES) =
                           3.0
                                                               6.10
  END OF SUBAREA STREET FLOW HYDRAULICS:
  DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 14.86
```

```
Page 2
```

	600P2 2.54 DEPTH*VELOCITY(FT*FT/SEC.) = 1.16 600.00 TO NODE 603.00 = 2655.00 FEET.
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) =	3.0 TC(MIN.) = 23.80 6.10

END OF RATIONAL METHOD ANALYSIS

APPENDIX C

DETENTION CALCULATIONS

	Volume	Difference	(ac-ft)	0.51	1.73	3.79	10.81	1.33	3.70	5.87	12.71	2.08	4.23	6.30	11.11	1.73	3.48	5.18	8.12
	Peak Flow	Difference	(cfs)	47.2	15.9	12.5	6.2	41.0	20.4	18.4	15.6	48.1	31.9	30.6	18.3	40.8	30.7	29.8	13.4
	Proposed Total	Volume	(ac-ft)	6.62	9.99	13.30	23.54	4.21	6.47	8.91	15.05	3.51	5.47	7.66	12.50	2.63	4.18	6.01	9.14
BASIN SUMMARY TABLE	Propose	Flow	(cfs)	183.7	107.5	93.2	39.3	117.3	67.7	60.0	24.7	96.9	56.6	51.3	20.5	71.8	43.2	40.3	15.0
BASIN SUMP	Existing Total	Volume	(ac-ft)	6.11	8.26	9.51	12.73	2.88	2.77	3.04	2.34	1.43	1.24	1.36	1.39	06.0	0.70	0.83	1.02
	Existin	Flow	(cfs)	136.5	91.6	80.7	33.1	76.3	47.3	41.6	9.1	48.8	24.7	20.7	2.2	31.0	12.5	10.5	1.6
	Storm	Duration	(hour)	-1	3	9	24	ст Г	£	9	24	1	£	9	24	1	ß	9	24
	Return	Event	(year)	100	100	100	100	10	10	10	10	5	5	5	5	2	2	2	2

щ
_
œ.
<
F
~
-
<u> </u>
\triangleleft
-
2
Ę
~
_
10
• •
~
~
~

EXISTING CONDITION

```
Unit Hydrograph Analysis
         Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
Study date 02/12/20 File: 3828EX212.out
_____
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
       _____
 English (in-1b) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
_____
 Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area = 69.65(Ac.) = 0.100 =
Drainage Area for Depth-Area Areal Adjustment = 3400.00(Ft.)
                                           0.109 Sq. Mi.
                                                           69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse = 3400.00 (Ft.)
Length along longest watercourse measured to centroid = 1280.00 (Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
25% of lag time = 2.39 Min.

25% of lag time = 2.39 Min.

Unit time = 5.00 Min.

Duration of storm = 1 Hour(s)

User Entered Base Flow = 0.0
                                0.00 (CFS)
2 YEAR Area rainfall data:
                 Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                          0.50
                                                    34.83
       69.65
100 YEAR Area rainfall data:
               Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                      1.20
      69.65
STORM EVENT (YEAR) = 2.00
STORM EVENT (YEAR) = 2.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall =
                                          1.200(In)
Point rain (area averaged) = 0.500(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 0.500(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-1
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        58.2
        0.488
        0.000
        0.488
        1.000
        0.488

        Sum
        (F)
        =
        0.488
        1.000
        0.488

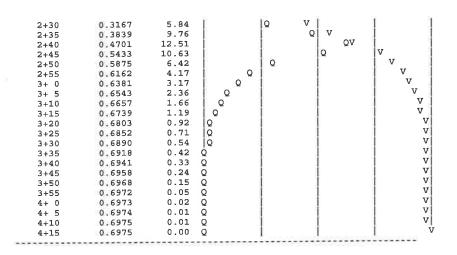
Area averaged mean soil loss (F) (In/Hr) = 0.488
Minimum soil loss rate ((In/Hr)) = 0.244
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                                 .....
Slope of intensity-duration curve for a 1 hour storm =0.5000
                  Unit Hydrograph
VALLEY S-Curve
 ____
                                            Unit Hydrograph Data
Unit time period Time % of lag Distribution Unit Hydrograph
                   Graph %
                                                             (CFS)
   (hrs)
                                                              -----
    6.571
                                                                 4.612
                                                               19.712
                                                             20.039
                                                               8.549
                                                                4.629
                                                                3.221
                                                               2.314
1.728
```

```
1.086
Page 1
```

10

1.261

11	0.917	575.380	1.191		0.836
12	1.000	627.687	0.940		0.660
13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
10			Sum = 100.000	Sum=	70.194


Unit	t Time	Pattern	Storm Rain	n Loss	rate(In./Hr)	Effective	
	(Hr.)	Percent	(In/Hr)	Max	1	Low	(In/Hr)	
1	0.08	4.20	0.252	(0.	488)	0.227	0.025	
2	0.17	4.30	0.258	(0.	488)	0.232	0.026	
3	0.25	5.00	0.300	(0.	488)	0.270	0.030	
4	0.33	5.00	0.300	(0.	488)	0.270	0.030	
5	0.42	5,80	0.348	(0.	488)	0.313	0.035	
6	0.50		0.390		488)	0.351	0.039	
7	0.58		0.444		488)	0.399	0.044	
			0.516	(0.	488)	0.464	0.052	
9	0.75	8.60 12.30	0.738		488	(0.664)	0.249	
10	0.83	29.10	1.745	0.	488	(1.570)	1,257	
11	0.92	6.80	0.408	(0.	488)	0.367	0.041	
12	1.00	5.00	0.300		488)	0.270	0.030	
12	1.00		Rate Not Us					
	Sum =	100 0				Sum =	1.9	
	Flood	Luciume -	Effective 1	rainfall	0.	15(In)		
	FIOOD	vorume -	69.7(Ac.)	$\frac{1}{1}$	+)] ≖	0.9	(Ac.Ft)	
	ULINE Total	s area	- 0.3	$A(T_{n})$	C./] -	015	(1101107)	
	Total	. soil loss	= 0.1)2 (Da FF)				
	Total	. SOII IOSS	= 2.00) / Tm				
			= 0.3 = 2.00 = 0.50		Foot			
	F.1000	l volume =	= 87	7.5 CUDIC	ic Fee	F		
	Total	SOIL LOSS	= 8.	/207.7 Cuu	IC ree	L		
	Peak	flow rate	of this hy	drograph	=	30.958 (CF3)		
								* * *
	+++++	****	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++		+++++++++++++++++++++++++++++++++++++++	
			_ т-н	OUR	510	K M		
			Runofí	с ну	aro	grapn		1000
		Hyd	rograph in	5 Min	ute in	tervals (((FS))	
						and a control of the Annual Annual States		
m i							30.0	40.0
Time	e(h+m) V	Volume Ac.F	L O(CFS)	0	10.0	20.0	30.0	40.0
	e(h+m) V	Volume Ac.F	t Q(CFS)	0	10.0	20.0	30.0 I	40.0
	e(h+m) V 	701ume Ac.F 0.0008	t Q(CFS) 0.12 (0	10.0	20.0	30.0	40.0
 0- 0-	e(h+m) V + 5 +10	701ume Ac.F 0.0008 0.0050	0.12 (0.62 (0 2 2	10.0	20.0	30.0	40.0
 0- 0-	e(h+m) V + 5 +10 +15	701ume Ac.F 0.0008 0.0050 0.0130	0.12 (0.62 (1.15)	0 2 2 2	10.0	20.0	30.0	40.0
0- 0- 0- 0-	e(h+m) V + 5 +10 +15 +20	701ume Ac.F 0.0008 0.0050 0.0130 0.0230	0.12 (0.62 (1.15) 1.46	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e(h+m) V + 5 +10 +15 +20 +25	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347	C Q(CFS) 0.12 (0.62 (1.15 (1.46 1.69	0 2 2 7 2 7 0 2 0 2 0 2	10.0	20.0	30.0	40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30	701ume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479	0.12 (0.62 (1.15) 1.46 1.69 1.92	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631	0.12 (0.62 (1.15) 1.46 1.69 1.92	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e(h+m) V + 5 +10 +15 +20 +25 +30 +35 +40	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806	C Q (CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e(h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067	CCFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e(h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50	701ume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935	<pre>Pt Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60</pre>	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0	30.0	40.0
	e(h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067	C Q (CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +25 +30 +35 +40 +45 +55 + 0	0.0008 0.0008 0.0130 0.0230 0.0347 0.0479 0.631 0.0806 0.1067 0.1935 0.4067 0.6058	C Q (CFS) 0.12 (0.62 (1.15) 1.46 1.92 2.21 2.53 3.79 12.60 30.96 28.91	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0 V	 	40.0
	e(h+m) V + 5 +10 +25 +30 +35 +40 +45 +50 +55 + 0 + 5	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.658 0.7007	<pre>Pt Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78</pre>	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0 V	 	40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 + 5 +10	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552	<pre>ct Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92</pre>	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0 V		40.0
	e(h+m) V + 5 +10 +25 +30 +35 +40 +45 +50 +55 + 0 + 5	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552 0.7920	<pre>Pt Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34</pre>	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 + 5 +10	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552	<pre>ct Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82</pre>		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 + 5 +10 +15	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552 0.7920	<pre>ct Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84</pre>		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +25 +30 +35 +40 +45 +55 + 0 +55 +10 +15 +20	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552 0.7920 0.8183	Pt Q (CFS) 0.12 0 0.62 0 1.15 1 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 12		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 +0 +5 +10 +15 +20 +25	70lume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.1935 0.4067 0.1935 0.4067 0.7552 0.7920 0.6183 0.8379	t Q(CFS) 0.12 (0.62 (1.15 (1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.77		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +30 +35 +40 +45 +50 +55 +10 +15 +10 +15 +20 +25 +30	Tolume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.4067 0.6058 0.7007 0.7552 0.7920 0.8183 0.8379 0.8525	<pre>ct Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.77 1.37</pre>		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 +0 +55 +0 +10 +15 +20 +25 +30 +25 +30 +25 +30 +25 +30 +25 +30 +25 +20 +20 +25 +20 +25 +20 +25 +20 +25 +20 +25 +20 +25 +20 +25 +20 +25 +20 +20 +25 +20 +25 +20 +20 +25 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20	Tolume Ac.F 0.0008 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552 0.7920 0.8183 0.8379 0.8525 0.8647	<pre>ct Q(CFS) 0.12 (0.62 (1.15) 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.77 1.37</pre>		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 +55 +55 +55 +10 +15 +20 +25 +30 +25 +35 +40	Tolume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.4067 0.7552 0.7007 0.7552 0.7920 0.8183 0.8379 0.8525 0.8647 0.8741	L Q (CFS) 0.12 0 0.62 0 1.15 1 1.69 1 1.92 2.1 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.77 1.37 1.07		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +0 +55 +10 +15 +20 +25 +30 +35 +40 +15 +20 +25 +30 +35 +45 +50 +35 +45 +45 +45 +45 +45 +45 +25 +45 +26 +45 +26 +25 +46 +25 +40 +25 +40 +25 +40 +25 +40 +40 +40 +40 +40 +40 +40 +40 +40 +40	Tolume Ac.F 0.0008 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.1935 0.4067 0.7552 0.7920 0.6183 0.8379 0.8525 0.8647 0.8741 0.8815	L Q (CFS) 0.12 0 0.62 0 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 2.82 2.84 2.12 1.77 1.37 1.07 0.82 0		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +35 +40 +45 +50 +55 +10 +55 +10 +55 +10 +25 +10 +25 +30 +25 +30 +25 +30 +25 +30 +25 +35 +40 +55	Tolume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.6058 0.7007 0.7552 0.7920 0.8183 0.8379 0.8525 0.8647 0.8741 0.8815 0.8871 0.8914	L Q (CFS) 0.12 0 0.62 0 1.15 1 1.69 1 2.21 2 2.53 79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.77 1.37 1.07 0.82 0 0.63 0		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 + 0 +55 +10 +15 +20 +25 +30 +35 +40 +45 +55 +55 +0 +0 +25 +55 +0	Tolume Ac.F 0.0008 0.0050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.1935 0.4067 0.1935 0.4067 0.7552 0.7007 0.7552 0.8183 0.8379 0.8525 0.8647 0.8741 0.8815 0.8871 0.8914 0.8953	L Q (CFS) 0.12 0 0.62 0 1.15 1 1.46 1 1.92 2.1 2.53 3.79 12.60 30.96 28.91 13.78 7.92 5.34 3.82 2.84 2.12 1.37 1.37 1.07 0.82 0 0.63 0 0.57 0		10.0	20.0 V		40.0
	e (h+m) V + 5 +10 +15 +20 +30 +35 +40 +55 +50 +55 +10 +15 +20 +25 +30 +35 +35 +40 +45 +55 +55 +0 +55 +0 +55 +55 +0 +55	Tolume Ac.F 0.0008 0.0230 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.1935 0.4067 0.7552 0.7920 0.6183 0.8379 0.8525 0.8647 0.8741 0.8815 0.8871 0.8914 0.8953 0.8980	L Q (CFS) 0.12 0 0.62 0 1.15 1 1.46 1 1.92 2.21 2.53 3.79 12.60 30.96 28.91 3.78 7.92 5.34 2.84 2.12 1.77 1.37 1.07 0.82 0.63 0.57 0.39 0		10.0	20.0 V		40.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +0 +10 +15 +20 +55 +10 +15 +20 +55 +20 +55 +20 +55 +30 +35 +25 +25 +25 +25 +25 +25 +25 +25 +25 +2	Nolume Ac.F 0.0008 0.050 0.0130 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.4057 0.6058 0.7007 0.7552 0.7920 0.8183 0.8379 0.8525 0.8647 0.8815 0.8815 0.8815 0.8914 0.8953 0.8980 0.8980 0.8982	Pt Q (CFS) 0.12 0 0.62 0 1.46 1.69 1.92 2.21 2.53 3.79 2.60 30.96 28.91 13.78 7.92 5.34 2.12 1.77 1.37 1.07 0.82 0 0.53 0 0.53 0 0.53 0 0.39 0		10.0	20.0 V		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e (h+m) V + 5 +10 +15 +20 +30 +35 +40 +55 +50 +55 +10 +15 +20 +25 +30 +35 +35 +40 +45 +55 +55 +0 +55 +0 +55 +55 +0 +55	Tolume Ac.F 0.0008 0.0230 0.0230 0.0347 0.0479 0.0631 0.0806 0.1067 0.1935 0.4067 0.1935 0.4067 0.7552 0.7920 0.6183 0.8379 0.8525 0.8647 0.8741 0.8815 0.8871 0.8914 0.8953 0.8980	Pt Q (CFS) 0.12 0 0.62 0 1.46 1.69 1.92 2.21 2.53 3.79 12.60 30.96 28.91 3.78 7.92 5.34 2.82 2.84 2.12 1.77 1.371 1.07 0.82 0 0.57 0 0.57 0 0.39 0 0.02 0		10.0	20.0 V		

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX232.out _____ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 _____ English (in-1b) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format _____ 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0 00 (CES) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 69.65 0.80 55.72 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 1.86 129.55 129.55 1.86 STORM EVENT (YEAR) = 2.00 Area Averaged 2-Year Rainfall = 0.800(In) Area Averaged 100-Year Rainfall = 1.860(I 1.860(In) Point rain (area averaged) = 0.800(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 0.800(In) Sub-Area Data: Area (Ac.)Runoff Index Impervious %69.65076.000.000Total Area Entered =69.65 (Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC-1 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 76.0 58.2 0.488 0.000 0.488 1.000 0.488 Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244 (for 24 hour storm duration) (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 10 0.836 11

12

13	1.083	679.994		0.721		0.506
14	1.167	732,301		0.542		0.381
15	1.250	784,608		0.523		0.367
16	1.333	836,916		0.415		0.292
10	1.000		um =	100.000	Sum=	70.194

1 0.08 2 0.17 3 0.25 4 0.33 5 0.42 6 0.50 7 0.58 8 0.67 9 0.75 10 0.83 11 0.92 12 1.00 13 1.08 14 1.17 15 1.25 16 1.33 17 1.42 18 1.50 19 1.58 20 1.67 21 1.75 22 1.83 23 1.92 24 2.00 25 2.08 26 2.17 27 2.25 28 2.33 29 2.42 30 2.50 31 2.58 32 2.42 30 2.50 31 2.58 32 2.92 36 3.00 Sum = Floor Tota Tota Tota Tota	1.30 1.30 1.30 1.50 1.50 1.50 1.80 1.50 1.80 1.50 1.60 1.80 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 3.00 3.10 4.20 5.00 3.10 4.20 5.00 3.50 6.80 7.30 8.20 5.90 2.00 1.80 1.80 0.50 1.60 1.80 2.90 3.00 3.10 4.20 5.00 3.50 6.80 7.30 8.20 5.90 2.00 1.80 1.80 1.80 1.80 1.60 1.80 1.50 1.60 1.80 2.20 2.40 3.10 4.20 5.90 2.00 1.80 0.60 (Loss 100.0 1.80 1.055 10.00 1.80 1.055 1.00 1.80 1.055 1.00 1.80 1.055 1.00 1.80 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00 1.055 1.00	0.125 0.125 0.126 0.144 0.173 0.144 0.173 0.173 0.173 0.173 0.144 0.154 0.154 0.173 0.211 0.211 0.211 0.221 0.250 0.259 0.250 0.259 0.250 0.259 0.230 0.259 0.230 0.288 0.298 0.288 0.298 0.288 0.298 0.288 0.298 0.298 0.298 0.403 0.403 0.480 0.336 0.653 0.701 0.787 0.566 0.192 0.173 0.566 0.192 0.173 0.568 Rate Not Used Effective rai: 69.7 (Ac.) / [5 = 0.80(I: 30381.8	<pre>(0.488) (0.488) (0.489) (0.489) (0.489) (0.489) (0.488) (0.288) (0.488) (0.288) (0.288) (0.288) (0.288) (0.288) (0.288) (0.488) (0.288) (0.288</pre>	0.112 0.112 0.095 0.130 0.130 0.155 0.155 0.155 0.130 0.155 0.155 0.190 0.190 0.190 0.190 0.190 0.190 0.225 0.233 0.207 0.233 0.207 0.233 0.265 0.268 0.268 0.268 0.268 0.363 0.432 0.302 (0.587) (0.631) (0.708) (0.510) 0.155 0.155 0.155 0.127 0.27 0.27 0.27 0.28 0.268 0.363 0.432 0.302 (0.587) (0.510) 0.155 0.155 0.155 0.155 0.173 0.275 0.268 0.363 0.432 0.302 (0.587) (0.510) 0.155 0.155 0.155 0.173 0.275 0.268 0.363 0.432 0.302 (0.587) (0.510) 0.155 0.155 0.157 0.268 0.302 (0.510) 0.155 0.155 0.157 0.268 0.302 (0.510) 0.173 0.155 0.155 0.173 0.275 0.268 0.302 (0.587) (0.708) (0.510) 0.155 0.155 0.155 0.155 0.173 0.275 0.268 0.302 (0.510) 0.175 0.155 0.155 0.155 0.173 0.275 0.268 0.302 (0.510) 0.175 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.052 Sum = 122(In)	0.012 0.012 0.011 0.014 0.017 0.014 0.017 0.014 0.017 0.014 0.015 0.017 0.021 0.021 0.021 0.022 0.025 0.026 0.023 0.026 0.023 0.026 0.023 0.026 0.023 0.028 0.029 0.030 0.028 0.029 0.030 0.040 0.040 0.048 0.034 0.034 0.164 0.212 0.299 0.034 0.016 1.4
		Runoff lrograph in			
Time(h+m)	Volume Ac.I	Tt Q(CFS) 0	5.0	10.0	15.0 20.0
0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+10 2+55 2+10 2+15 2+20 2+25		$ \begin{array}{c cccc} 0.06 & Q \\ 0.30 & Q \\ 0.54 & VQ \\ 0.63 & VQ \\ 0.73 & VQ \\ 0.94 & Q \\ 0.94 & Q \\ 1.03 & Q \\ 1.03 & Q \\ 1.03 & Q \\ 1.07 & Q \\ 1.06 & Q \\ 1.13 & Q \\ 1.38 & Q \\ 1.35 & Q \\ 1.35 & Q \\ 1.38 & Q \\ 1.40 & Q \\ 1.40 & Q \\ 1.40 & Q \\ 1.40 & Q \\ 1.49 & Q \\ 1.61 & 1 \\ 1.61 & 1 \\ 1.61 & 1 \\ 1.61 & 1 \\ 1.96 & 1 \\ 1.95 & 0 \end{array} $			

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX262.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -----69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. Lag time = 5.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.15 80.10 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 2.50 174.13 STORM EVENT (YEAR) = 2.00 Area Averaged 2-Year Rainfall = 1.150(In) Area Averaged 100-Year Rainfall = 2.500(I 2.500(In) Point rain (area averaged) = 1.150(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 1.150(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 58.2
 0.488
 0.000
 0.488
 1.000
 0.488

 Sum
 (F)
 =
 0.488
 1.000
 0.488
 Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 _____ Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) $\begin{array}{c} 1 & 0\,.083 & 52\,.30^{\prime\prime} & 6\,.571 \\ 2 & 0\,.167 & 104\,.614 & 28\,.083 \\ 3 & 0\,.250 & 156\,.922 & 28\,.549 \\ 4 & 0\,.333 & 209\,.229 & 12\,.179 \\ 5 & 0\,.417 & 261\,.536 & 6\,.595 \\ 6 & 0\,.500 & 313\,.843 & 4\,.589 \\ 7 & 0\,.583 & 366\,.151 & 3\,.296 \\ 8 & 0\,.667 & 418\,.458 & 2\,.462 \\ 9 & 0\,.750 & 470\,.765 & 1\,.797 \\ 10 & 0\,.833 & 523\,.072 & 1\,.548 \\ 11 & 0\,.917 & 575\,.380 & 1\,.191 \\ 12 & 1\,.000 & 627\,.687 & 0\,.940 \\ \end{array}$ 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 0.836 0.660

13	1,083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836,916	0.415		0.292
10	2.000		Sum = 100.000	Sum=	70.194

				-		
Uni	t Time	Pattern	Storm Rain	Loss rate(Effective
	(Hr.)	Percent	(In/Hr)	Max	Low	(In/Hr)
1	0.08	0.50	0.069	(0.488)	0.062	0.007 0.008
2	0.17	0.60	0.083	(0.488)	0.075	0.008
3	0.25	0.60	0.083	(0.488) (0.488)	0.075	0.008
4	0.33	0.60	0.083 0.083	(0.488)	0.075	0.008
5 6	0.42	0.60 0.70	0.097	(0.488)	0.087	0.010
7	0.50	0.70	0.097	(0.488)	0.087	0.010
8	0.50	0.70	0.097	(0.488)	0.087	0.010
9	0.75	0.70	0.097	(0.488)	0.087	0.010
10	0.83	0.70	0.097	(0.488)	0.087	0.010
11	0.92	0.70	0.097	(0.488)	0.087	0.010
12	1.00	0.80	0.110	(0.488)	0.099	0.011
13	1.08	0.80	0.110	(0.488)	0.099	0.011
14	1.17	0.80	0.110	(0.488)	0.099	0.011
15	1.25	0.80	0.110	(0.488)	0.099	0.011
16	1.33	0.80	0.110	(0.488)	0.099	0.011
17	1.42	0.80	0.110	(0.488)	0.099	0.011
18	1.50	0.80	0.110	(0.488)	0.099	0.011
19	1.58	0.80	0.110	(0.488)	0.099	0.011
20	1.67	0.80	0.110	(0.488)	0.099	0.011
21	1.75	0.80	0.110	(0.488)	0.099	0.011
22	1.83	0.80	0.110	(0.488)	0.099	0.011 0.011
23	1.92	0.80	0.110	(0.488)	0.099	0.012
24	2.00	0.90	0.124	(0.488) (0.488)	0.099	0.011
25	2.08	0.80	0.110 0.124	(0.488)	0.112	0.012
26	2.17	0.90	0.124	(0.488)	0.112	0.012
27 28	2.25	0.90	0.124	(0.488)	0.112	0.012
29	2.42	0.90	0.124	(0.488)	0.112	0.012
30	2.50	0.90	0.124	(0.488)	0.112	0.012
31	2.58	0.90	0.124	(0.488)	0.112	0.012
32	2.67	0.90	0.124	(0.488)	0.112	0.012
33	2.75	1.00	0.138	(0.488)	0.124	0.014
34	2.83	1.00	0.138	(0.488)	0.124	0.014
35	2.92	1.00	0.138	(0.488)	0.124	0.014
36	3.00	1.00	0.138	(0.488)	0.124	0.014
37	3.08	1.00	0.138	(0.488)	0.124	0.014
38	3.17	1.10	0.152	(0.488)	0.137	0.015
39	3.25	1.10	0.152	(0.488)	0.137	0.015
40	3.33	1.10	0.152	(0.488)	0.137	0.015
41	3.42	1.20	0.166	(0.488)	0.149	0.017
42	3.50	1.30	0.179	(0.488)	0.161 0.174	0.018 0.019
43	3.58	1.40	0.193	(0.488) (0.488)	0.174	0.019
44	3.67	1.40	0.193	(0.488) (0.488)	0.186	0.021
45	3.75	1.50	0.207 0.207	(0.488)	0.186	0.021
46 47	3.83 3.92	1.50 1.60	0.221	(0.488)	0.199	0.022
48	4.00	1.60	0.221	(0.488)	0.199	0.022
49	4.08	1.70	0.235	(0.488)	0.211	0.023
50	4.17	1.80	0.248	(0.488)	0.224	0.025
51	4.25	1.90	0.262	(0.488)	0.236	0.026
52	4.33	2.00	0.276	(0.488)	0.248	0.028
53	4.42	2.10	0.290	(0.488)	0.261	0.029
54	4.50	2.10	0.290	(0.488)	0.261	0.029
55	4.58	2.20	0.304	(0.488)	0.273	0.030
56	4.67	2.30	0.317	(0.488)	0.286	0.032
57	4.75	2.40	0.331	(0.488)	0.298	0.033
58	4.83	2.40	0.331	(0.488)	0.298	0.033
59	4.92	2.50	0.345	(0.488)	0.310	0.034
60	5.00	2.60	0.359	(0.488)	0.323	0.036 0.043
61	5.08	3.10	0.428	(0.488)	0.385	0.043
62	5.17	3.60	0.497	(0.488) (0.488)	0.447	0.054
63	5.25	3.90	0.538	0.488	(0.522)	0.091
64	5.33	4.20	0.579 0.648	0.488	(0.584)	0.160
65 66	5.42	4.70 5.60	0.773	0.488	(0.695)	0.284
67	5.58	1.90	0.262	(0.488)	0.236	0.026
68	5.67	0.90	0.124	(0.488)	0.112	0.012
69	5.75	0.60	0.083	(0.488)	0.075	0.008
70	5.83	0.50	0.069	(0.488)	0.062	0.007
71	5.92	0.30	0.041	(0.488)	0.037	0.004
72	6.00	0.20	0.028	(0.488)	0.025	0.003
		(Loss	Rate Not Use	d)		
	Sum =	100.0			Sum =	1.7
				infall 0		(a Et)
		s area		[(In)/(Ft.)] :	= 0.8(7	AC.FC)
		soil los				
		soil los		(Ac.Ft)		
			= 1.15(TTT)		
	Total	rainfall		9 Cubic Feet		
	Total Flood	volume =	36134.	8 Cubic Feet 49.5 Cubic Fee	et	
	Total Flood Total	volume = soil los	36134. s = 2545	49.5 Cubic Fee		
	Total Flood Total	volume = soil los	36134. s = 2545	49.5 Cubic Fee		
	Total Flood Total Peak	volume = soil los flow rat	36134. s = 2545 e of this hyd	49.5 Cubic Fee rograph =	10.460(CFS)	
	Total Flood Total Peak	volume = soil los flow rat	36134. s = 2545 e of this hyd	49.5 Cubic Fee rograph =	10.460(CFS)	

				ervals ((C		
Cime(h+m)	Volume Ac.Ft		5.0	10.0	15.0	20
0+ 5 0+10 0+15	0.0002 0.0014 0.0038	0.03 Q 0.17 Q 0.34 Q				
0+15	0.0067	0.43 Q	1	i	1	1
0+25	0.0099	0.47 Q	i	1	1	1
0+30	0.0134	0.51 VQ	1	1	1	1
0+35	0.0172	0.55 VQ	1		1	
0+40 0+45	0.0213	0.60 Q 0.62 Q	÷			
0+50	0.0299	0.63 Q	i i	1	1	
0+55	0.0344	0.65 Q	1	1		
1+ 0	0.0390	0.66 Q			3	
1+ 5 1+10	0.0437	0.70 QV 0.73 QV				
1+15	0.0539	0.74 QV		1		1
1+20	0.0591	0.75 QV	1		1	1
1+25	0.0643	0.76 Q V	1	-		
1+30	0.0696	0.76 QV 0.77 QV			8	2
1+35 1+40	0.0748	0.77 Q V		i i	1	- i
1+45	0.0855	0.77 Q V	i	1	l	1
1+50	0.0908	0.77 Q V	1			
1+55	0.0961	0.77 Q V 0.78 O V		4		
2+ 0 2+ 5	0.1015	0.78 Q V 0.80 Q V				
2+10	0.1126	0.81 Q V	1	1	1	
2+15	0.1182	0.82 Q V	1	1		
2+20	0.1240	0.84 Q V 0.85 Q V				
2+25 2+30	0.1299 0.1358	0.85 Q V 0.86 Q V				- 1
2+30	0.1417	0.86 Q V	1		1	
2+40	0.1477	0.86 Q V				
2+45	0.1537	0.87 Q V				
2+50	0.1599 0.1663	0.90 Q V 0.93 Q	v			
2+55 3+ 0	0.1728		v	1	i	- i
3+ 5	0.1793	0.95 Q	v	1	1	- 0
3+10	0.1859	0.96 Q	V			
3+15	0.1928 0.1998	0.99 Q 1.02 Q	V V			
3+20 3+25	0.2070	1.04 Q	v	1		
3+30	0.2145	1.08 Q	v	1		il.
3+35	0.2224	1.15 Q	V			1
3+40	0.2308	1.22 Q 1.28 Q	v v			
3+45 3+50	0.2396	1.33 Q	v			
3+55	0.2583	1.38 Q	v	1		
4+ 0	0.2681	1.43 Q	V V			
4+ 5	0.2783	1.48 Q 1.53 Q	v v			
4+10 4+15	0.2889 0.2999	1.61 Q	l v			
4+20	0.3116	1.69 Q	l v		1	1
4+25	0.3239	1.78 Q				
4+30	0.3367	1.87 Q 1.93 Q	V			(† 1
4+35 4+40	0.3500 0.3638	1.93 Q 2.00 Q	ľ	v		1
4+45	0.3781	a a a 1 a		v	1	
4+50	0,3930	2.16 Q	ļ	v		
4+55	0.4083	2.22 Q		v v		1
5+ 0 5+ 5	0.4240 0.4405	2.08 Q 2.16 Q 2.22 Q 2.29 Q 2.39 Q 2.62 Q 2.94 Q 3.41 Q 4.65		v		
5+10	0.4585	2.62 Q	1	v		
5+15	0.4788	2.94 Q	1	V		
5+20	0.5023	3.41 Q		v v v		
5+25 5+30	0.5343 0.5855	4.65 7.43	QQ		v	
5+35	0.6576	10.46		ò	v	
5+40	0.7168	8.61		Q	v,	.
5+45	0.7490	4.68	Q		1	v
5+50 5+55	0.7698 0.7851	3.02 Q 2.23 Q				v
5+55 6+ 0	0.7967	1.68 Q	1	i	1	vl
6+ 5	0.8054	1.26 Q				V
6+10	0.8118	0.93 Q				v v
6+15	0.8167	0.71 Q				v
6+20 6+25	0.8205 0.8233	0.54 Q 0.41 Q	4			v
6+25	0.8255	0.31 Q		i		v
6+35	0.8271	0.24 Q		ļ		v
6+40	0.8284	0.19 Q				v v
6+45	0.8292	0.11 Q 0.02 Q				v
6+50 6+55	0.8293 0.8294	0.02 Q 0.01 Q				v
7+ 0	0.8295	0.01 Q	1	i		v
7+ 5	0.8295	0.00 Q	1			V
	0.8295	0.00 Q		1		v
7+10 7+15	0.8295	0.00 Q		i		v

Page 3

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX2242.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = Drainage Area = 05.05(AC.) = 0.105 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.75 69.65 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1*2] 69.65 4.50 313.43 313.43 STORM EVENT (YEAR) = 2.00 Area Averaged 2-Year Rainfall = 1.750(In) Area Averaged 100-Year Rainfall = 4.500(In) Point rain (area averaged) = 1.750(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 1.750(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj. Infil. Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 58.2
 0.488
 0.000
 0.488
 1.000
 0.488

 Sum
 (F)
 =
 0.488
 Sum
 (F)
 =
 0.488
 Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244(for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data ----Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) -----6.571 4.612 19.712 20.039 4.629 3.221 2.314 1.728 1.261 1.086 0.836

Unit Hydrograph Analysis

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
	-88-		Sum = 100.000	Sum=	70.194

	Debter	Chaum Dada	Tonn mato/	In (Hr)	Effective
Unit Time (Hr.)	Pattern Percent	Storm Rain (In/Hr)	Loss rate(Max	Low	(In/Hr)
1 0.08	0.07	0.014	(0.866)	0.013	0.001
2 0.17	0.07	0.014	(0.862)	0.013	0.001
3 0.25	0.07	0.014	(0.859)	0.013	0.001
4 0.33	0.10	0.021	(0.856)	0.019	0.002
5 0.42	0.10	0.021	(0.852)	0.019	0.002
6 0.50	0.10	0.021	(0.849)	0.019	0.002
7 0.58	0.10	0.021	(0.846)	0.019	0.002
8 0.67	0.10	0.021	(0.842)	0.019	0.002
9 0.75	0.10	0.021	(0.839)	0.019	0.002
10 0.83	0.13	0.028	(0.836)	0.025	0.003
11 0.92	0.13	0.028	(0.833)	0.025	0.003
12 1.00	0.13	0.028	(0.829) (0.826)	0.025	0.002
13 1.08	0.10	0.021 0.021	(0.826) (0.823)	0.019	0.002
14 1.17 15 1.25	0.10	0.021	(0.819)	0.019	0.002
15 1.25 16 1.33	0.10	0.021	(0.816)	0.019	0.002
17 1.42	0.10	0.021	(0.813)	0.019	0.002
18 1.50	0.10	0.021	(0.810)	0.019	0.002
19 1.58	0.10	0.021	(0.806)	0.019	0.002
20 1.67	0.10	0.021	(0.803)	0.019	0.002
21 1.75	0.10	0.021	(0.800)	0.019	0.002
22 1.83	0.13	0.028	(0.797)	0.025	0.003
23 1.92	0.13	0.028	(0.794)	0.025	0.003
24 2.00	0.13	0.028	(0.790)	0.025	0.003
25 2.08	0.13	0.028	(0.787)	0.025	0.003
26 2.17	0.13	0.028	(0.784)	0.025	0.003
27 2.25	0.13	0.028	(0.781)	0.025	0.003
28 2.33	0.13	0.028	(0.778) (0.774)	0.025	0.003
29 2.42	0.13	0.028 0.028	(0.771)	0.025	0.003
30 2.50 31 2.58	0.13	0.028	(0.768)	0.031	0.003
31 2.58 32 2.67	0.17 0.17	0.035	(0.765)	0.031	0.003
33 2.75	0.17	0.035	(0.762)	0.031	0.003
34 2.83	0.17	0.035	(0.759)	0.031	0.003
35 2.92	0.17	0.035	(0.756)	0.031	0.003
36 3.00	0.17	0.035	(0.752)	0.031	0.003
37 3.08	0.17	0.035	(0.749)	0.031	0.003
38 3.17	0.17	0.035	(0.746)	0.031	0.003
39 3.25	0.17	0.035	(0.743)	0.031	0.003
40 3.33	0.17	0.035	(0.740)	0.031	0.003
41 3.42	0.17	0.035	(0.737)	0.031	0.003
42 3.50	0.17	0.035	(0.734)	0.031	0.003
43 3.58	0.17	0.035	(0.731)	0.031	0.003
44 3.67	0.17	0.035	(0.728)	0.031	0.003
45 3.75	0.17	0.035	(0.725)	0.031	0.003
46 3.83	0.20	0.042	(0.722)	0.038	0.004
47 3.92	0.20	0.042	(0.719) (0.715)	0.038	0.004
48 4.00	0.20	0.042 0.042	(0.712)	0.038	0.004
49 4.08 50 4.17	0.20	0.042	(0.709)	0.038	0.004
50 4.17 51 4.25	0.20	0.042	(0.706)	0.038	0.004
52 4.33	0.23	0.049	(0,703)	0.044	0.005
53 4.42	0.23	0.049	(0.700)	0.044	0.005
54 4.50	0.23	0.049	(0.697)	0.044	0.005
55 4.58	0.23	0.049	(0.694)	0.044	0.005
56 4.67	0.23	0.049	(0.691)	0.044	0.005
57 4.75	0.23	0.049	(0.688)	0.044	0.005
58 4.83	0.27	0.056	(0.685)	0.050	0.006
59 4.92	0.27	0.056	(0.683)	0.050	0.006
60 5.00	0.27	0.056	(0.680)	0.050	0.006
61 5.08	0.20	0.042	(0.677)	0.038	0.004
62 5.17	0.20	0.042	(0.674)	0.038	0.004
63 5.25	0.20	0.042	(0.671)	0.038	0.004
64 5.33	0.23	0.049	(0.668)	0.044	0.005
65 5.42	0.23	0.049 0.049	(0.665) (0.662)	0.044	0.005
66 5.50 67 5.58	0.23	0.049	(0.659)	0.050	0.006
67 5.58 68 5.67	0.27 0.27	0.056	(0.656)	0.050	0.006
69 5.75	0.27	0.056	(0.653)	0.050	0.006
70 5.83	0.27	0.056	(0.650)	0.050	0.006
71 5.92	0.27	0.056	(0.647)	0.050	0.006
72 6.00	0.27	0.056	(0.645)	0.050	0.006
73 6.08	0.30	0.063	(0.642)	0.057	0.006
74 6.17	0.30	0.063	(0.639)	0.057	0.006
75 6.25	0.30	0.063	(0.636)	0.057	0.006
76 6.33	0.30	0.063	(0.633)	0.057	0.006
77 6.42	0.30	0.063	(0.630)	0.057	0.006
78 6.50	0.30	0.063	(0.628)	0.057	0.006
79 6.58	0.33	0.070	0.625)	0.063	0.007
80 6.67	0.33	0.070	(0.622)	0.063	0.007
81 6.75	0.33	0.070	(0.619)	0.063	0.007
82 6.83	0.33	0.070	(0.616) (0.614)	0.063	0.007
83 6.92 84 7.00	0.33	0.070 0.070	(0.614) (0.611)	0.063	0.007
84 7.00 85 7.08	0.33	0.070	(0.608)	0.063	0.007
86 7.17		0.070	(0.605)	0.063	0.007
	0.00				Dago 2

87	7.25	0.33	0.070	(0.602)	0.063	0.007
88	7.33	0.37	0.077	(0.600)	0.069	0.008
89	7,42	0.37	0.077	(0.597)	0.069	0.008
90	7.50	0.37	0.077	(0.594)	0.069	0.008
91	7.58	0.40	0.084	(0.591)	0.076	0.008
92	7.67	0.40	0.084	(0.589)	0.076	0.008
93	7.75	0.40	0.084	(0.586)	0.076	0.008
		0.43	0.091	(0.583)	0.082	0.009
94	7.83		0.091	(0.581)	0.082	0.009
95	7.92	0.43		(0.578)	0.082	0.009
96	8.00	0.43	0.091		0.094	0.010
97	8.08	0.50	0.105	(0.575)		0.010
98	8.17	0.50	0.105	(0.573)	0.094	
99	8.25	0.50	0.105	(0.570)	0.094	0.010
100	8.33	0.50	0.105	(0.567)	0.094	0.010
101	8.42	0.50	0.105	(0.565)	0.094	0.010
102	8.50	0.50	0.105	(0.562)	0.094	0.010
103	8.58	0.53	0.112	(0.559)	0.101	0.011
104	8.67	0.53	0.112	(0.557)	0.101	0.011
105	8.75	0.53	0.112	(0.554)	0.101	0.011
106	8.83	0.57	0.119	(0.551)	0.107	0.012
107	8.92	0.57	0.119	(0.549)	0.107	0.012
108	9.00	0.57	0.119	(0.546)	0.107	0.012
109	9.08	0.63	0.133	(0.544)	0.120	0.013
		0.63	0.133	(0.541)	0.120	0.013
110	9.17	0.63	0.133	(0.539)	0.120	0.013
111	9.25		0.140	(0.536)	0.126	0.014
112	9.33	0.67		(0.533)	0.126	0.014
113	9.42	0.67	0.140	(0.531)	0.126	0.014
114	9.50	0.67	0.140	N 1999 10	0.132	0.015
115	9.58	0.70	0.147	(0.528)		0.015
116	9.67	0.70	0.147	(0.526)	0.132	0.015
117	9.75	0.70	0.147	(0.523)	0.132	
118	9.83	0.73	0.154	(0.521)	0.139	0.015
119	9.92	0.73	0.154	(0.518)	0.139	0.015
120	10.00	0.73	0.154	(0.516)	0.139	0.015
121	10.08	0.50	0.105	(0.513)	0.094	0.010
122	10.17	0.50	0.105	(0.511)	0.094	0.010
123	10.25	0.50	0.105	(0.508)	0.094	0.010
124	10.33	0.50	0.105	(0.506)	0.094	0.010
125	10.42	0.50	0.105	(0.503)	0.094	0.010
126	10.50	0.50	0.105	(0.501)	0.094	0.010
127	10.58	0.67	0.140	(0.498)	0.126	0.014
128	10.67	0.67	0.140	(0.496)	0.126	0.014
129	10.75	0.67	0.140	(0.494)	0.126	0.014
130	10.83	0.67	0.140	(0.491)	0.126	0.014
			0.140	(0.489)	0.126	0.014
131	10.92	0.67		(0.486)	0.126	0.014
132	11.00	0.67	0.140	(0.484)	0.120	0.013
133	11.08	0.63	0.133	Q4 C1	0.120	0.013
134	11.17	0.63	0.133	(0.482) (0.479)	0.120	0.013
135	11.25	0.63	0.133			0.013
136	11.33	0.63	0.133	(0.477)	0.120	
137	11.42	0.63	0.133	(0.474)	0.120	0.013
138	11.50	0.63	0.133	(0.472)	0.120	0.013
139	11.58	0.57	0.119	(0.470)	0.107	0.012
140	11.67	0.57	0.119	(0.467)	0.107	0.012
141	11.75	0.57	0.119	(0.465)	0.107	0.012
142	11.83	0.60	0.126	(0.463)	0.113	0.013
143	11.92	0.60	0.126	(0.460)	0.113	0.013
144	12.00	0.60	0.126	(0.458)	0.113	0.013
145	12.08	0.83	0.175	(0.456)	0.157	0.017
146	12.17	0.83	0.175	(0.454)	0.157	0.017
147	12.25	0.83	0.175	(0.451)	0.157	0.017
148	12.33	0.87	0.182	(0.449)	0.164	0.018
149	12.42	0.87	0.182	(0.447)	0.164	0.018
150	12.50	0.87	0.182	(0.445)	0.164	0.018
151	12.58	0.93	0.196	(0.442)	0.176	0.020
152	12.67	0.93	0.196	(0.440)	0.176	0.020
153	12.75	0.93	0.196	(0.438)	0.176	0.020
154	12.83	0.97	0.203	(0.436)	0.183	0.020
154	12.83	0.97	0.203	(0.433)	0.183	0.020
			0.203	(0.431)	0.183	0.020
156 157	$13.00 \\ 13.08$	0.97 1.13	0.238	(0.429)	0.214	0.024
	13.08 13.17	1.13	0.238	(0.427)	0.214	0.024
158		1.13	0.238	(0.425)	0.214	0.024
159	13.25 13.33	1.13	0.238	(0.423)	0.214	0.024
160	13.33 13.42	1.13	0.238	(0.420)	0.214	0.024
161			0.238	(0.418)	0.214	0.024
162	13.50	1.13		(0.416)	0.145	0.016
163	13.58	0.77	0.161		0.145	0.016
164	13.67	0.77	0.161			0.016
165	13.75	0.77	0.161	(0.412) (0.410)	0.145 0.145	0.016
166	13.83	0.77	0.161			
167	13.92	0.77	0.161	(0.408)	0.145	0.016
168	14.00	0.77	0.161	(0.406)	0.145	0.016
169	14.08	0.90	0.189	(0.404)	0.170	0.019
170	14.17	0.90	0.189	(0.402)	0.170	0.019
171	14.25	0.90	0.189	(0.399)	0.170	0.019
172	14.33	0.87	0.182	(0.397)	0.164	0.018
173	14.42	0.87	0.182	(0.395)	0.164	0.018
174	14.50	0.87	0,182	(0.393)	0.164	0.018
175	14.58	0.87	0.182	(0.391)	0.164	0.018
176	14.67	0.87	0.182	(0.389)	0.164	0.018
177	14.75	0.87	0.182	(0.387)	0.164	0.018
178	14.83	0.83	0.175	(0.385)	0.157	0.017
179	14.92	0.83	0.175	(0.383)	0.157	0.017
180	15.00	0.83	0.175	(0.381)	0.157	0.017
181	15.08	0.80	0.168	(0.379)	0.151	0.017
182	15.17	0.80	0.168	(0.378)	0.151	0.017
183	15.25	0.80	0.168	(0.376)	0.151	0.017
184	15.33	0.77	0.161	(0.374)	0.145	0.016
185	15.42	0.77	0.161	(0.372)	0.145	0.016

100	15 50	0 77	0.161	(0.370)	0.145	0.016
186 187	15.50 15.58	0.77	0.133	(0.368)	0.120	0.013
188	15.67	0.63	0.133	(0.366)	0.120	0.013
189	15.75	0.63	0.133	(0.364)	0.120	0.013
190	15.83	0.63	0.133	(0.362)	0.120	0.013
191	15.92	0.63	0.133	(0.360)	0.120	0.013
192	16.00	0.63	0.133	(0.359)	0.120	0.013
193	16.08	0.13	0.028	(0.357)	0.025	0.003
194	16.17	0.13	0.028	(0.355)	0.025	0,003
195	16.25	0.13	0.028	(0.353)	0.025	0.003
196	16.33	0.13	0.028	(0.351)	0.025	0.003
197	16.42	0.13	0.028	(0.350)	0.025	0.003
198	16.50	0.13	0.028	(0.348)	0.025	0.003
199	16.58	0.10	0.021	(0.346)	0.019	0.002
200	16.67	0.10	0.021	(0.344)	0.019	0.002
201	16.75	0.10	0.021	(0.343)	0.019	0.002
202	16.83	0.10	0.021	(0.341)	0.019	0.002
203	16.92	0.10	0.021	(0.339)	0.019	0.002
204	17.00	0.10	0.021	(0.337)	0.019	0.002
205	17.08	0.17	0.035	(0.336)	0.031	0.003
206	17.17	0.17	0.035	(0.334)	0.031	0.003
207	17.25	0.17	0.035	(0.332)	0.031	0.003
208	17.33	0.17	0.035	(0.331)	0.031	0.003
209	17.42	0.17	0.035	(0.329)	0.031	0.003
210	17.50	0.17	0.035	(0.327)	0.031	0.003
211	17.58	0.17	0.035	(0.326)	0.031	0.003
212	17.67	0.17	0.035	(0.324)	0.031	0.003
213	17.75	0.17	0.035	(0.322)	0.031	0.003
214	17.83	0.13	0.028	(0.321)	0.025	0.003
215	17.92	0.13	0.028	(0.319)	0.025	0.003
216	18.00	0.13	0.028	(0.318)	0.025	0.003
217	18.08	0.13	0.028	(0.316)	0.025	0.003
218	18.17	0.13	0.028	(0.315)	0.025	0.003
219	18.25	0.13	0.028	(0.313)	0.025	0.003
220	18.33	0.13	0.028	(0.311)	0.025	0.003
221	18.42	0.13	0.028	(0.310)	0.025	0.003
222	18.50	0.13	0.028	(0.308)	0.025	0.003
223	18.58	0.10	0.021	(0.307)	0.019	0.002
224	18.67	0.10	0.021	(0.305)	0.019	0.002
225	18.75	0.10	0.021	(0.304)	0.019	0.002
226	18.83	0.07	0.014	(0.303)	0.013	0.001
227	18.92	0.07	0.014	(0.301)	0.013	0.001
228	19.00	0.07	0.014	(0.300)	0.013	0.001
229	19.08	0.10	0.021	(0.298)	0.019	0.002
230	19.17	0.10	0.021	(0.297)	0.019	0.002
231	19.25	0.10	0.021	(0.295)	0.019	0.002
232	19.33	0.13	0.028	(0.294)	0.025	0.003
233	19.42	0.13	0.028	(0.293)	0.025	0.003
234	19.50	0.13	0.028	(0.291)	0.025	0.002
235	19.58	0.10	0.021	(0.290)	0.019 0.019	0.002
236	19.67	0.10	0.021	(0.289) (0.287)	0.019	0.002
237	19.75	0.10	0.021		0.013	0.001
238	19.83	0.07	0.014	(0.286)	0.013	0.001
239	19.92	0.07	0.014	(0.285)	0.013	0.001
240	20.00	0.07	0.014	(0.284)		0.002
241	20.08	0.10	0.021	(0.282)	0.019 0.019	0.002
242	20.17	0.10	0.021	(0.281) (0.280)	0.019	0.002
243	20,25	0.10		(0.279)	0.019	0.002
244	20.33	0.10	0.021	(0.277)	0.019	0.002
245	20.42	0.10	0.021	(0.276)	0.019	0.002
246 247	20.50 20.58	0.10	0.021	(0.275)	0.019	0.002
247	20.58	0.10	0.021	(0.274)	0.019	0.002
240	20.87	0.10	0.021	(0.273)	0.019	0.002
249	20.83	0.07	0.014	(0.272)	0.013	0.001
251	20.92	0.07	0.014	(0.271)	0.013	0.001
252	21.00	0.07	0.014	(0.270)	0.013	0.001
253	21.08	0.10	0.021	(0.268)	0.019	0.002
254	21.17	0.10	0.021	(0.267)	0.019	0.002
255	21.25	0.10	0.021	(0.266)	0.019	0.002
256	21.33	0.07	0.014	(0.265)	0.013	0.001
257	21.42	0.07	0.014	(0.264)	0.013	0.001
258	21.50	0.07	0.014	(0.263)	0.013	0.001
259	21.58	0.10	0.021	(0.262)	0.019	0.002
260	21.67	0.10	0.021	(0.261)	0.019	0.002
261	21.75	0.10	0.021	(0.261)	0.019	0.002
262	21.83	0.07	0.014	(0.260)	0.013	0.001
263	21.92	0.07	0.014	(0.259)	0.013	0.001
264	22.00	0.07	0.014	(0.258)	0.013	0.001
265	22.08	0.10	0.021	(0.257)	0.019	0.002
266	22.17	0.10	0.021	(0.256)	0.019	0.002
267	22.25	0.10	0.021	(0.255)	0.019	0.002
268	22.33	0.07	0.014	(0.255)	0.013	0.001
269	22.42	0.07	0.014	(0.254)	0.013	0.001
270	22.50	0.07	0.014	(0.253)	0.013	0.001
271	22.58	0.07	0.014	(0.252)	0.013	0.001
272	22.67	0.07	0.014	(0.252)	0.013	0.001
273	22.75	0.07	0.014	(0.251)	0.013	0.001
274	22.83	0.07	0.014	(0.250)	0.013	0.001
275	22.92	0.07	0.014	(0.250)	0.013	0.001
276	23.00	0.07	0.014	(0.249)	0.013	0.001
277	23.08	0.07	0.014	(0.248)	0.013	0.001
278	23.17	0.07	0.014	(0.248)	0.013	0.001
279	23.25	0.07	0.014	(0.247)	0.013	0.001
280	23.33	0.07	0.014	(0.247)	0.013	0.001 0.001
281	23.42	0.07	0.014	(0.246) (0.246)	0.013 0.013	0.001
282	23.50	0.07	0.014	(0.246)	0.013	0.001
283	23.58	0.07	0.014	(0.246)	0.013	0.001
284	23.67	0.07	0.014	N V:443/	0.010	
						Page 4

285 23.75 286 23.83 287 23.92 288 24.00	0.07 0.07 0.07 0.07		(0.245) (0.245) (0.244) (0.244)	0.013 0.013 0.013 0.013	0.001 0.001 0.001 0.001
Cum -	(LOSS Rat	te Not Used)		Sum =	2.1
time	s area 🛛 🤅	59.7(Ac.)/[(I	all 0.17(n)/(Ft.)] =	1.0 (Ac.Ft	:)
Total	soil loss =	1.57(In	.)		
Total	rainfall =	9.140(Ac 1.75(In)			
Flood	volume =	44239.1 C 398152.			
Peak	flow rate of	E this hydrog	raph = 1.	633 (CFS)	
		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++	
	R	1 n o f f	IR STORI Hydrog	raph	
			Minute inter		
Time (b+m) V	olume Ac Et	O(CES) 0	2.5	5.0 7	.5 10.0
0+ 5 0+10	0.0000	0.01 Q 0.03 Q	ł		
0+15	0.0007	0.06 Q		1 1	
0+20 0+25	0.0012 0.0019 0.0027	0.08 Q 0.10 Q		1 1	
		0.12 Q		1 1	
	0.0036 0.0045	0.13 Q 0.13 Q		1 1	
0+45 0+50	0.0045 0.0054 0.0064	0.14 Q 0.14 Q			
0+55	0.0075	0.16 Q	Ì	1 1	-
1+ 0 1+ 5	0.0087	0.17 Q 0.18 Q		1 1	
1+10	0.0110	0.17 Q			1
1+15 1+20	0.0121 0.0132	0.16 Q 0.15 Q			
1+25	0.0142	0.15 Q 0.15 Q			
1+30 1+35	0.0153 0.0163	0.15 Q		1 1	i i
1+40	0.0173	0.15 Q 0.15 Q			
1+45 1+50	0.0194	0.15 Q	1	1 1	
1+55 2+ 0	0.0206	0.17 Q 0.18 Q			
2+ 5	0.0231	0.19 Q		1 1	1
2+10 2+15	0.0244	0.19 Q 0.19 QV			
2+20	0.0270	0.19 QV		1 1	
2+25 2+30	0.0297	0.19 QV 0.19 QV 0.20 QV			1
2+35 2+40	0.0310	0.20 QV 0.21 QV			
2+45	0.0340	0.23 QV	1		1
2+50 2+55	0.0356	0.23 QV 0.24 QV			i
3+ 0	0.0389	0.24 QV 0.24 QV			
3+ 5 3+10	0.0406	0.24 QV		1	1
3+15 3+20	0.0439	0.24 QV 0.24 QV			
3+25	0.0473	0.24 QV			
3+30 3+35	0.0490	0.24 QV 0.25 QV			
3+40 3+45	0.0523	0.25 Q V 0.25 Q V			
3+50	0.0557	0.25 Q V	4		
3+55 4+ 0	0.0576	0.26 QV 0.28 QV			
4+ 5	0.0614	0.28 QV			
4+10 4+15	0.0634 0.0654	0.29 QV 0.29 QV			
4+20 4+25	0.0674	0.29 QV 0.31 QV			
4+30	0.0717	0.32 QV			
4+35 4+40	0.0740 0.0763	0.33 QV 0.33 Q V		i i	
4+45	0.0786	0.34 Q V			
4+50 4+55	0.0810	0.34 Q V 0.36 Q V			
5+ 0 5+ 5	0.0860	0.37 Q V 0.37 Q V			
5+10	0.0910	0.35 Q V			
5+15 5+20	0.0932	0.32 Q V 0.32 Q V			
5+25	0.0976	0.33 Q V			1
5+30 5+35	0.0999 0.1023	0.34 Q V 0.34 Q V			
5+40	0.1048	0.36 Q 1	び び		
5+45 5+50	0.1073 0.1099	0.38 Q 1	v	1	
5+55 6+ 0	0.1126 0.1152		V V		
6+ 5	0.1179	0.39 Q 1	v		
6+10	0.1207	0.41 Q	v	1	age 5
				P	19C J

$\begin{array}{l} 6+15\\ 6+225\\ 6+35\\ 6+405\\ 6+450\\ 6+55\\ 7+1\\ 7+15\\ 7+25\\ 7+35\\ 7+15\\ 7+25\\ 7+35\\ 8+10\\ 8+225\\ 8+105\\ 8+25\\ 8+105\\ 8+25\\ $	0.1236 0.1266 0.1295 0.1325 0.1356 0.1387 0.1419 0.1452 0.1485 0.1512 0.1586 0.1619 0.1653 0.1688 0.1724 0.1798 0.1837 0.1877 0.1877 0.1817 0.1837 0.1877 0.1918 0.1960 0.2003 0.2049 0.2040 0.2037 0.2617 0.2800 0.2039 0.3132 0.3202 0.3759 0.3631 0.3759 0.3651 0.3759 0.3651 0.3759 0.3651 0.3759 0.3651 0.3759 0.3651 0.3759 0.3651 0.4010 0.4076 0.4222 0.4337 0.4401 0.4466 0.4529 0.4529 0.4552 0.4010 0.4466 0.4529 0.4552 0.4371 0.4832 0.4894 0.4964 0.5639 0.55439 0.	0.42 0.43 0.43 0.43 0.44 0.46 0.47 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.52 0.55 0.56 0.66 0.66 0.71 0.73 0.77 0.77 0.77 0.77 0.77 0.77 0.77	000000 ⁰ 0000 ⁰ 0000000000000000000000	y y v v v v v v v v v v v v v		
14+ 0	0.7024	1.20	Q		v	

14+30 14+35 14+40	0.7547 0.7635 0.7723	1.28 Q 1.28 Q 1.28 Q		v v v
14+45	0.7811	1.28 Q	1 1	v
14+50	0.7898	1.27 Q		V
14+55 15+ 0	0.7985	1.26 Q 1.25 Q		V
15+5	0.8156	1.24 Q	1	v
15+10	0.8240	1.22 Q		VV
15+15 15+20	0.8323	1.20 Q 1.19 Q		v
15+25	0.8486	1.18 Q	1 1	v
15+30	0.8566	1.16 0		V V
15+35 15+40	0.8644 0.8719	1.14 Q 1.08 Q		v
15+45	0.8789	1.02 Q		v
15+50 15+55	0.8857	0.99 Q 0.98 Q		V V
16+ 0	0.8924	0.96 Q		v
16+ 5	0.9053	0.91 Q		V
16+10 16+15	0.9101 0.9134	0.70 Q 0.48 Q		V V
16+20	0.9161	0.39 Q	1 1	v
16+25	0.9184	0.34 Q		V V
16+30 16+35	0.9204 0.9223	0.30 Q 0.27 Q		v
16+40	0.9240	0.24 Q	1	v
16+45	0.9254	0.21 Q		v v
16+50 16+55	0.9267	0.19 Q 0.18 Q		v
17+ 0	0.9291	0.17 Q		v
17+ 5	0.9303	0.17 Q 0.19 Q		v v
17+10 17+15	0.9316 0.9331	0.19 Q 0.22 Q		v
17+20	0.9346	0.22 Q		V
17+25 17+30	0.9362	0.23 Q 0.23 Q		v v
17+35	0.9395	0.24 Q		v
17+40	0.9411	0.24 Q		V V
17+45 17+50	0.9428 0.9444	0.24 Q 0.24 Q		v
17+55	0.9460	0.23 Q	1	v
18+ 0	0.9474	0.21 Q 0.21 Q		V V
18+ 5 18+10	0.9488 0.9503	0.21 Q 0.20 Q		v
18+15	0.9517	0.20 Q		
18+20 18+25	0.9530 0.9544	0.20 Q 0.20 Q		v
18+30	0.9558	0.20 Q		v
18+35	0.9571	0.20 Q		V V
18+40 18+45	0.9584	0.18 Q 0.17 Q		v
18+50	0.9606	0.16 Q		V
18+55 19+ 0	0.9616	0.14 Q 0.12 Q		
19+5	0.9632	0.12 Q	1	v
19+10	0.9641	0.13 Q		v v
19+15 19+20	0.9651 0.9661	0.14 Q 0.15 Q		v
19+25	0.9672	0.16 Q		v
19+30 19+35	0.9684	0.18 Q 0.18 Q		v v
19+35	0.9708	0.17 Q		v
19+45	0.9719	0.16 Q		
19+50 19+55	0.9729	0.15 Q 0.13 Q		v
20+ 0	0.9747	0.12 Q		v
20+ 5	0.9755	0.12 Q 0.13 O		
20+10 20+15	0.9763 0.9773	0.13 Q 0.14 Q		v
20+20	0.9783	0.14 Q		v
20+25 20+30	0.9792	0.14 Q 0.14 Q		V V
20+35	0.9812	0.15 Q		v
20+40	0.9822	0.15 Q		
20+45 20+50	0.9832	0.15 Q 0.14 Q		v
20+55	0.9851	0.13 Q	1 1	v
21+ 0	0.9859	0.12 Q		V V
21+ 5 21+10	0.9867	0.11 Q 0.12 Q		v
21+15	0.9885	0.14 Q		V
21+20 21+25	0.9894	0.14 Q 0.13 Q		
21+25	0.9911	0.11 Q		v
21+35	0.9918	0.11 Q		
21+40 21+45	0.9927	0.12 Q 0.13 Q		v
21+50	0.9945	0.14 Q		v
21+55	0.9954	0.12 Q		V V
22+ 0 22+ 5	0.9962	0.11 Q 0.11 Q		v
22+10	0.9977	0.12 Q		V
22+15 22+20	0.9987	0.13 Q 0.14 Q		
22+25	1.0005	0.12 Q		v
22+30	1.0012 1.0020	0.11 Q 0.11 Q		v v
22+35 22+40	1.0020	0.11 Q		v
22+40	1.0027	0.10 Q	1 1	V Page 7

22+45	1.0034	0.10	Q	1 1 1	v
22+50	1.0041	0.10	Q		v
22+55	1.0048	0.10	Q		V
23+ 0	1.0055	0.10	Q		V
23+ 5	1.0062	0.10	Q		V
23+10	1.0069	0.10	Q		v
23+15	1.0075	0.10	Q		V
23+20	1.0082	0.10	Q		v
23+25	1.0089	0.10	Q		v
23+30	1.0096	0.10	Q		v
23+35	1.0103	0.10	Q	1 1 1	v
23+40	1.0109	0.10	Q		v
23+45	1.0116	0.10	Q		v
23+50	1.0123	0.10	Q		v
23+55	1.0130	0.10	Q		v
24+ 0	1.0136	0.10	Q		v
24+ 5	1.0143	0.09	Q		v
24+10	1.0147	0.06	Q		V
24+15	1.0150	0.04	Q		v
24+20	1.0151	0.02	Q		v
24+25	1.0153	0.02	Q		v
24+30	1.0153	0.01	Q		v
24+35	1.0154	0.01	Q		V
24+40	1.0155	0.01	Q		v
24+45	1.0155	0.01	Q		V
24+50	1.0155	0.00	Q		V
24+55	1.0156	0.00	Q		v
25+ 0	1.0156	0.00	Q		v
25+ 5	1,0156	0.00	Q		V
25+10	1.0156	0.00	Q		v
25+15	1.0156	0.00	Q		v

```
Unit Hydrograph Analysis
         Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
Study date 02/12/20 File: 3828EX515.out
_____
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
       _____
 English (in-lb) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) =
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
                                             0.109 Sq. Mi.
                                                              69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
25% of lag time = 2.39 Min.
40% of lag time = 3.82 Min.
Unit time = 5.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow =
                                 0.00 (CFS)
2 YEAR Area rainfall data:
                Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                           0.50
                                                       34.83
        69.65
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 1.20 83.58
                          1.20
       69.65
STORM EVENT (YEAR) = 5.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall =
                                           1.200(In)
Point rain (area averaged) = 0.664(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 0.664(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj. Infil. Rate
        Area%
        F

        AMC2
        AMC-1
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        58.2
        0.488
        0.000
        0.488
        1.000
        0.488

        Sum
        (F)
        =
        0.488
        (In/Hr)
        (In/Hr)
        (In/Hr)

Area averaged mean soil loss (F) (In/Hr) = 0.488
Minimum soil loss rate ((In/Hr)) = 0.244
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                                 .....
                                              Slope of intensity-duration curve for a 1 hour storm =0.5000
                  Unit Hydrograph
VALLEY S-Curve
 _____
                                             ------
                  Unit Hydrograph Data
                            .....
Unit time period Time % of lag Distribution Unit Hydrograph
                        Graph % (CFS)
   (hrs)
                                                                 .....
    6.571
                                                                    4.612
                                                                19.712
20.039
                                                                 8.549
                                                                   4.629
                                                                   3.221
                                                                  2.314
1.728
```

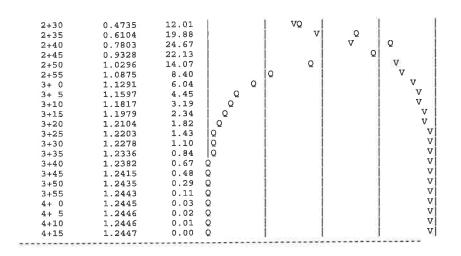
10

```
1.086
Page 1
```

1,261

11	0.917	575 380	1,191		0.836
12	1.000	627.687	0.940		0.660
13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836,916	0.415		0.292
		2	sum = 100.000	Sum=	70.194

Jnit Time	Pattern	Storm Rain (In/Hr)	Lc M	iss rate	e(In./Hr) Low		fective [n/Hr]	
1 0.08	1.20	(In/Hr) 0.334 0.342 0.398	1	0.488)	0.		0.0	33
1 0.08	4.20	0.343	2	0.488)	0.	308	0.0	
2 0.17	4.30	0.342		0.400)	0.	358	0.0	
3 0.25	5.00	0.398	\$	0.488)				
4 0.33	5.00 5.80 6.50 7.40 8.60 12.30	0.398	(0.488)	0. 0. (0.5 (0.6 (0.8 (2.0 0. 0.	358	0.0	
5 0.42	5.80	0.462	<	0.488)	0.	416	0.0	
6 0.50	6.50	0.518	(0.488)	0.	466	0.0	52
7 0.58	7.40	0.589		0.488	(0.5	30)	0.1	01
8 0.67	8 60	0.685		0.488	1 0.6	16)	0.1	96
9 0.75	12 20	0.979		0 488	1 0 8	81)	0.4	91
9 0.75	12,30	2.317		0.490	2 0	95)	1.8	
LO 0.83		(E) (E)		0.400	2.0	407		
L1 0.92 L2 1.00	6.80	0.541 0.398	6	0.488)	0.	487	0.0	
L2 1.00			20 A	0.488)	0.	358	0.0	40
	(Loss	Rate Not Use	ed)					
Sum =	100.0				S	um =	3.0	
Floo	od volume =	Effective ra	infall		0.25(In)	/ -		
tin	les area	69.7(Ac.)/	[(In)/	(Ft.)]	=	1.4 (Ac	.Ft)	
Tota	al soil loss	= 0.42	2(In)					
Tota	al soil loss	39.7(AC.7) = 0.42 = 2.421 = 0.66 62284. = 1054	(Ac.Ft	.)				
Tota	l rainfall	= 0.660	(In)					
Floo	d volume =	62284.	7 Cubi	c Feet				
Tota	l soil loss	- 1054	77 2 0	ubic F	eet			
IULA	II SOII IOSS							
Des	k flow rate	of this hyd	rogran	h =	48.767(CFS)		
++++	****	+++++++++++++++++++++++++++++++++++++++	++ ++ +	+++++	+++++++++	++++++	+++++++	+++++
		1 - H C						
		Runoff						
	Нус	rograph in	5 M	linute				
Time(h+m)	Hyd Volume Ac.F	t Q(CFS)	5 M 0	linute				50
Time(h+m)	Hyd Volume Ac.F		5 M 0	linute				50
Time(h+m) 0+ 5	Hyd Volume Ac.F 0.0011	't Q(CFS)	5 M 0	linute				50
Cime(h+m) 0+ 5 0+10	Hyd Volume Ac.F 0.0011 0.0067	Ct Q(CFS) 0.15 Q 0.82 Q	5 M 0	linute				50
Time(h+m) 0+ 5 0+10 0+15	Hyd Volume Ac.F 0.0011 0.0067 0.0172	Ct Q(CFS) 0.15 Q 0.82 Q 1.53 VC	5 M 0	linute				50
Time(h+m) 0+ 5 0+10 0+15 0+20	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306	0.15 Q 0.15 Q 0.82 Q 1.53 VQ 1.94 VQ	5 M 0 2 2	linute				50
Cime(h+m) 0+ 5 0+10 0+15 0+20 0+25	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461	Ct Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 JC	5 M 0 2 2 2	linute				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636	Ct Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 JC	5 M 0 2 2 2 7 2 7 2	linute				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852	Ct Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 JC	5 M 0 2 2 2	linute				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181	Ct Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 JC	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852	0.15 Q 0.82 Q 1.53 VQ 1.94 VQ 2.24 Q 2.55 V 3.12 4.78 9.14	5 M 0 2 2 2 7 2 7 2	12.5				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810	0.15 Q 0.82 Q 1.53 VQ 1.94 VQ 2.24 Q 2.55 V 3.12 4.78 9.14	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5				50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432	D:t Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 2.3.55 48.77 48.77	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	25.			50
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791	D:t Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 2.3.55 48.77 48.77	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	25.		37.5	
Cime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800	D:t Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 2.3.55 48.77 48.77	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	25. Q V	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+45 0+55 1+ 0 1+ 5	Hyd Volume Ac.F 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241	D:t Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 2.3.55 48.77 48.77	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	25.	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077	vt Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 C 3.12 I 4.78 9.14 23.55 I 48.77 I 43.70 20.92 12.15 I		12.5	25. Q V	0	37.5	
Cime(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646	vt Q(CFS) 0.15 Q 0.53 VQ 1.53 VQ 2.24 Q 3.12 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 42.75	5 M 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	25. Q V	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054	D:t Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93		12.5	25. Q V	0	37.5	0
Cime(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646	vt Q(CFS) 0.15 Q 0.53 VQ 1.53 VQ 2.24 Q 3.12 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 42.75		12.5	25. Q V	0	37.5	Q
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054	Pt Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43		12.5	25. Q V	0	37.5	Q V V
Fime (h+m) 0+ 5 0+10 0+15 0+20 0+30 0+35 0+40 0+55 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589	bt Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 1.94 VQ 2.24 Q 3.12 4 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33		12.5	25. Q V	0	37.5	Q
Time (h+m) 0+ 5 0+10 0+15 0+20 0+35 0+30 0+40 0+45 0+50 0+55 1+ 0 1+10 1+15 1+20 1+25 1+30 1+35	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3559 1.3589 1.3589	vt Q(CFS) 0.15 Q 1.53 VC 1.94 VC 2.24 Q 3.12 4.78 9.14 2.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 1		12.5	25. Q V	0	37.5	Q V V
Fime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+25 1+30 1+35 1+40	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589 1.3779 1.3926	Pt Q(CFS) 0.15 Q 0.82 Q 1.53 VQ 2.24 Q 2.55 V 3.12 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 2.13		12.5	25. Q V	0	37.5	Q V V V V V V
Fime (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+15 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	Hyd Volume Ac.E 0.0017 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589 1.3779 1.3926 1.4041	Pt Q(CFS) 0.15 Q 1.53 VQ 1.53 VQ 2.24 Q 2.55 V 3.12 4 4.78 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 2.13 Q 1.67 Q		12.5	25. Q V	0	37.5	
Fime (h+m) 0+ 5 0+10 0+15 0+20 0+30 0+35 0+40 0+35 0+50 0+55 1+ 0 1+5 1+10 1+15 1+20 1+35 1+40 1+35 1+40 1+45 1+50	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3359 1.3589 1.3779 1.3926 1.4041 1.4130	bt Q(CFS) 0.15 Q 1.53 VQ 1.94 VQ 2.24 Q 3.12 4.78 9.14 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 2.13 Q 1.28 Q		12.5	25. Q V	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+ 0 1+55 1+10 1+15 1+20 1+25 1+35 1+40 1+45 1+55 1+55	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3559 1.3589 1.3589 1.359 1.359 1.3589 1.3779 1.3926 1.4041 1.4130	bt Q(CFS) 0.15 Q 0.82 Q 1.53 VC 1.94 VC 2.24 Q 3.12 4 4.78 9 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 2.13 2.13 Q 1.28 Q		12.5	25. Q V	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+15 1+20 1+25 1+30 1+45 1+40 1+45 1+55 2+ 0	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0452 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589 1.3589 1.379 1.3926 1.4041 1.4130 1.4198 1.4257	Pt Q(CFS) 0.15 Q 1.53 VQ 1.53 VQ 2.24 Q 0.15 Q 3.12 X 4.78 Y 9.14 Y 9.14 Y 20.92 Y 12.15 S.255 5.93 Y 4.43 X 3.33 Y 2.13 Q 1.67 Q 0.99 Q 0.82 Y		12.5	25. Q V	0	37.5	Q V V V V V V V V V V V V V
Time (h+m) 0+ 5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+ 0 1+55 1+10 1+15 1+20 1+25 1+35 1+40 1+45 1+55 1+55	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3559 1.3589 1.3589 1.359 1.359 1.3589 1.3779 1.3926 1.4041 1.4130	Pt Q(CFS) 0.15 Q 1.53 VQ 1.53 VQ 2.24 Q 0.15 Q 3.12 X 4.78 Y 9.14 Y 9.14 Y 20.92 Y 12.15 S.255 5.93 Y 4.43 X 3.33 Y 2.13 Q 1.67 Q 0.99 Q 0.82 Y		12.5	25. Q V	0	37.5	
Time (h+m) 0+ 5 0+10 0+15 0+20 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+15 1+20 1+25 1+30 1+45 1+40 1+45 1+55 2+ 0	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0452 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589 1.3589 1.379 1.3926 1.4041 1.4130 1.4198 1.4257	Pt Q(CFS) 0.15 Q 1.53 VQ 1.53 VQ 2.24 Q 0.15 Q 3.12 Image: Comparison of the system 9.14 Image: Comparison of the system 12.15 8.255 5.93 Image: Comparison of the system 1.67 Image: Comparison of the system 1.67 Image: Comparison of the system 0.99 Q 0.86 Q		12.5	25. Q V	0	37.5	v v v v v v v v v v v v v v v v
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+55 1+0 1+5 1+10 1+15 1+20 1+45 1+35 1+40 1+45 1+55 2+5 2+5 5 2+5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hyd Volume Ac.E 0.0011 0.0067 0.0172 0.0306 0.0461 0.0636 0.0852 0.1181 0.1810 0.3432 0.6791 0.9800 1.1241 1.2077 1.2646 1.3054 1.3359 1.3589 1.3589 1.3779 1.3926 1.4041 1.4130 1.4198 1.4257 1.4296	Pt Q(CFS) 0.15 Q 1.53 VQ 1.53 VQ 2.24 Q 0.15 VQ 2.24 Q 3.12 I 4.78 9 9.14 23.55 48.77 43.70 20.92 12.15 8.25 5.93 4.43 3.33 2.76 Q 1.28 Q 0.99 Q.86 Q 0.86 Q 0.86		12.5	25. Q V	0	37.5	


Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX535.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 _____ English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format (Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. 69.65(Ac.) = Drainage Area = Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 1.86 129.55 STORM EVENT (YEAR) = 5.00 Area Averaged 2-Year Rainfall = 0.800(In) Area Averaged 100-Year Rainfall = 1.860(I 1.860(In) Point rain (area averaged) = 1.048(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 1.048(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 69.650 76.00 0 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 58.2
 0.488
 0.000
 0.488
 1.000
 0.488
 Sum (F) = 0.488Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244 (for 24 hour storm duration) (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data -----Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 0.836 0.660

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836,916	0.415		0.292
10	1.000	13 1 1 1	Sum = 100.000	Sum=	70.194

rate subtrac					
Unit Time	Pattern	Storm Rain	Loss rate(1	In./Hr)	Effective
(Hr.)	Percent	(In/Hr)	Max	LOW	(ln/Hr)
1 0.08	1.30	0.163	(0.488)	0.147 0.147	0.016
2 0.17	1.30	0.163 0.138 0.189	(0.488)		
3 0.25	1.10	0.138	(0.488)	0.124	
4 0.33	1.50		(0.488)	0.170 0.170	0.019 0.019
5 0,42	1.50	0.189	(0.488) (0.488)	0.204	0.023
6 0.50	1.80 1.50	0.226	(0.488)	0 170	0.019
7 0.58 8 0.67	1.80	0.226 0.189 0.226 0.226	(0.488) (0.488)	0.204	0.023
9 0.75	1.80	0.226	(0.488)	0.204	0.023
10 0.83		0 100	172	0.170	
11 0.92		0.201	(0.488)	0.181	
12 1.00		0.201 0.226	(0.488)	0.204 0.249	0.023
13 1.08	2.20		(0,488)		
14 1.17	2.20	0.277 0.277 0.277 0.252	(0.488)	0.249	
15 1.25	2.20	0.277	(0.488)	0.249	
16 1.33		0.252	(0.488)	0.226 0.294	0.033
17 1.42	2.60	0.327	(0.488) (0.488)	0.306	
18 1.50	2.70	0.327 0.340 0.302 0.340	(0.488) (0.488)	0.272	
19 1.58	2.40	0.302	(0.488)	0.306	
20 1.67 21 1.75	2.70	0.415	(0.488)	0.373	
22 1.83	3.10	0.415 0.390 0.365 0.377	(0.488)	0.351	
23 1.92	2.90	0.365	(0.488) (0.488) (0.488)	0.328	
24 2.00	3.00	0.377	(0.488)	0.340	
25 2.08	3.10	0.390	(0.488)	0.351	
26 2.17	4.20	0.528	(0.488)	0.475	0.053
27 2.25	5.00	0.629	0.488	(0.566)	0.140
28 2.33	3.50	0.440	(0.488)	0.396	0.044
29 2.42	6.80	0.855	0.488	0.7701	0.367 0.430
30 2.50	7.30	0.377 0.390 0.528 0.629 0.440 0.855 0.918 1.031 0.742 0.252	(0.488) 0.488 (0.488) 0.488 0.488 0.488 0.488 (0.488) (0.488) (0.488)	0.820/	0.543
31 2.58	8.20	1.031	0.488	0 668)	0.254
32 2.67	5.90	0.252	0.488)	0.226	0.025
33 2.75 34 2.83	2.00	0.232	(0.488)	0.204	0.023
35 2.92	1.80 1.80	0.226		0.204	0.023
36 3.00	0.60	0.075	(0.488)	0.068	0.008
		Rate Not Used			
Sum =	100.0			Sum =	2.6
Floo	d volume =	Effective rai	nfall 0.2	21(In) 1 2/	
tim	es area	69.7(AC.)/1	(In)/(Ft.)] =	1.4(AC.FU/
Tota	I SOIT TOS	S = 0.830	(III)		
Tota Tota	l soil los	s = 0.83 s = 4.838	Ac.Ft)		
Tota Tota Tota	l soil los l soil los l rainfall	s = 0.83 s = 4.838 = 1.05(I 54217	Ac.Ft) (Ac.Ft) (n)		
Tota Tota Tota Floo	l soil los l soil los l rainfall d volume =	s = 0.83 s = 4.838 = 1.05(1) 54217.4 s = 21073	AC.Ft) AC.Ft) AC.Ft) Cubic Feet A.4 Cubic Feet	E	
Tota Tota Tota Floo Tota	l soil los l soil los l rainfall d volume = l soil los	s = 0.83 s = 4.838 = 1.05(1) 54217.4 s = 21073	(In) Ac.Ft) In) Cubic Feet 57.4 Cubic Feet	t	
Dea	k flow rat	e of this hydr	ograph =	24.672 (CFS)	
Pea	k flow rat	e of this hydr	ograph =	24.672 (CFS)	
Pea	k flow rat	e of this hydr	ograph = :	24.672(CFS) +++++++++	
Pea	k flow rat	e of this hydr	ograph =	24.672(CFS) +++++++++ R M	
Pea	k flow rat	e of this hydr ++++++++++++++++++++++++++++++++++++	drograph = 2	24.672(CFS) +++++++++ R M g r a p h	
Pea	k flow rat	e of this hydr ++++++++++++++++++++++++++++++++++++	rograph = ; +++++++++++++ UR STOL Hydro	24.672(CFS) +++++++++ R M g r a p h	
Pea	k flow rat	e of this hydr ++++++++++++++++++++++++++++++++++++	drograph = 2	24.672(CFS) +++++++++ R M g r a p h	
 Pea 	k flow rat +++++++ Hy	e of this hydr +++++++++++++ 3 - H O R u n o f f drograph in	rograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	++++++++++++++++++++++++++++++++++++++
Pea ++++	k flow rat +++++++++ Hy	e of this hydr ++++++++++++ 3 - H O R u n o f f drograph in	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++	k flow rat +++++++++ Hy	e of this hydr ++++++++++++ 3 - H O R u n o f f drograph in	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
 Pea ++++ Time (h+m)	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++++++++++++++++++++++++++	ograph = UR STON Hydro 5 Minute in	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++	k flow rat +++++++++++ Hy Volume Ac. 0.0005	e of this hydr ++++++++++++ 3 - H O R u n o f f drograph in	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++ Time(h+m) 0+ 5	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) (0.08 Q	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0003	e of this hydr 	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
 Pea ++++ Time(h+m) 0+ 5 0+10 0+15	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082	e of this hydr ++++++++++++++++++++++++++++++++++++	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time(h+m) 0+ 5 0+10 0+15 0+25 0+30	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280	e of this hydr ************************************	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0365	e of this hydr ************************************	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40	k flow rat +++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0365 0.0454	e of this hydr ++++++++++++++++++++++++++++++++++++	Tograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10 0+25 0+30 0+35 0+40 0+45	k flow rat +++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0286 0.0454 0.0547	e of this hydr ************************************	ograph = : UR STON Hydro 5 Minute in) 7.5	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time(h+m) 0+ 5 0+10 0+25 0+30 0+35 0+40 0+45 0+50	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0280 0.0365 0.0454 0.0547 0.0644	e of this hydr ************************************	rograph = : UR STON Hydro 5 Minute in) 7.5	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time(h+m) Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0365 0.0454 0.0547 0.0644 0.0741	e of this hydr ************************************	ograph = : UR STON Hydro 5 Minute in 0 7.5	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0	k flow rat +++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0365 0.0454 0.0547 0.0644 0.0547 0.0645	e of this hydr ************************************	Tograph = :: U R S T O T H y d r O 5 Minute in 0 7.5	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0280 0.0280 0.0284 0.0547 0.0644 0.0741 0.0644 0.0741 0.0836 0.0938	e of this hydr ************************************	v v v v v v v v v v v v v v v v v v v	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0	k flow rat +++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0365 0.0454 0.0547 0.0644 0.0547 0.0645	e of this hydr ************************************	Tograph = :: U R S T O T H y d r O 5 Minute in 0 7.5	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++++++++++++++++++++++++++	-ograph = : 	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) Time (h+m) Time (h+m) 0+5 0+10 0+5 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15	k flow rat +++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0365 0.0454 0.0547 0.0644 0.0547 0.0644 0.0541 0.0543 0.0938 0.0938 0.1050 0.1172	e of this hydr ************************************	-ograph = :: U R S T O Y H y d r o 5 Minute in 0 7.5 // // // // // // // // // /	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) 0+ 5 0+10 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ************************************	ograph = :: U R S T O N H y d r o 5 Minute in 0 7.5 // // // // // // // // // /	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Time (h+m) Time (h+m) 0+ 5 0+10 0+ 5 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++++++++++++++++++++++++++	ograph = : 	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0284 0.0284 0.0284 0.0284 0.0454 0.0454 0.0454 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0836 0.0938 0.1050 0.1172 0.1296	e of this hydr ++++++++++++++++++++++++++++++++++++	ograph = : H y d r o y F y d r o y 5 Minute in 0 7.5 0 7.5 0 7.5 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ************************************	rograph = : H y d r o 5 Minute in 0 7.5 // // // // // // // // // /	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Pea 	k flow rat ++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0365 0.0454 0.0547 0.0644 0.0547 0.0644 0.0547 0.0645 0.0938 0.1050 0.1172 0.1296 0.1172 0.1292 0.1557 0.1703 0.1850 0.2003 0.2171	e of this hydr ++++++++++++++++++++++++++++++++++++	ograph = : 	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Pea 	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++++++++++++++++++++++++++	ograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+55 2+ 0	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0280 0.0280 0.0454 0.0547 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0743 0.1050 0.1170 0.1296 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2257 0.2244 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2554 0.2554 0.2554 0.2254 0.25555 0.2555 0.25555 0.255555 0.2555555 0.255555555555	e of this hydr ++++++++++++++++++++++++++++++++++++	cograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea ++++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+50 1+55 2+ 0 2+ 5	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr ++++++++++++++++++++++++++++++++++++	cograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+55 2+ 0	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0082 0.0139 0.0204 0.0280 0.0280 0.0280 0.0280 0.0454 0.0547 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0644 0.0741 0.0743 0.1050 0.1170 0.1296 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 0.2257 0.2244 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2254 0.2554 0.2554 0.2554 0.2254 0.25555 0.2555 0.25555 0.255555 0.2555555 0.255555555555	e of this hydr ************************************	cograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Pea 	k flow rat +++++++++++ Hy Volume Ac. 0.0005 0.0033 0.0139 0.0204 0.0280 0.0365 0.0454 0.0547 0.0644 0.0547 0.0644 0.0547 0.0644 0.0547 0.0645 0.0938 0.1050 0.1172 0.1296 0.1422 0.1557 0.1703 0.1850 0.2003 0.2171 0.2348 0.2524 0.2700 0.2855	e of this hydr ++++++++++++++++++++++++++++++++++++	Cograph = :: H y d r o 5 Minute in 0 7.5 // // // // // // // // // /	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0
Pea Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+0 2+15 2+10 2+15	k flow rat ++++++++++++++++++++++++++++++++++++	e of this hydr +++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) (0.08 Q 0.40 Q 0.71 Q 0.83 VQ 0.95 VQ 1.10 VQ 1.23 Q 1.29 Q 1.29 Q 1.35 Q 1.42 Q 1.42 Q 1.42 Q 1.43 Q 1.47 Q 1.63 (1.76 (1.81 (1.83 (1.96 (2.11 (2.14 (2.14 (2.14 (2.56 (2.56 (2.68 (3.40 ())))))))))))))))))))))))))))))))))))	ograph =	24.672(CFS) ++++++++++ R M g r a p h tervals ((C	22.5 30.0

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX565.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = 59.65(AC.) = 0.109 Sq. M1. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Drainage Area = Length along longest watercourse measured to centroid = 0.242 Mi. Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Onit time = 5.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 80.10 1.15 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 2.50 174.13 5.00 STORM EVENT (YEAR) = Area Averaged 2-Year Rainfall = 1.150(In) Area Averaged 100-Year Rainfall = 2.500(I 2.500(In) Point rain (area averaged) = 1.466(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 1.466(In) Area(Ac.) Runoff Index Impervious % 69.650 76.00 69.650 76.00 0 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 58.2
 0.488
 0.000
 0.488
 1.000
 0.488

 Sum
 (F)
 =
 0.488
 Sum
 (F)
 =
 0.488
 Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244 (for 24 hour storm duration) \LOF 24 nour storm duration)
Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve -----_____ Unit Hydrograph Data
 Unit time period (hrs)
 Time % of lag Graph %
 Distribution (CFS)
 Unit Hydrograph (CFS)

 1
 0.083
 52.307
 6.571
 4.612

 2
 0.167
 104.614
 28.083
 19.712

 3
 0.250
 156.922
 28.549
 20.039

 4
 0.333
 209.229
 12.179
 8.549

 5
 0.417
 261.536
 6.595
 4.629

 6
 0.500
 313.843
 4.589
 3.221

 7
 0.583
 366.151
 3.296
 2.314

 8
 0.667
 418.458
 2.462
 1.728

 9
 0.750
 470.765
 1.797
 1.261

 10
 0.833
 523.072
 1.548
 1.086

 11
 0.917
 575.380
 1.191
 0.836

 12
 1.000
 627.687
 0.940
 0.660

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
10	1.000		Sum = 100.000	Sum=	70.194

TUCC	Duperaci			1			
Uni	t Time	Pattern	Storm Rain		ss rate	(In./Hr) Low	Effective (In/Hr)
1	(Hr.) 0.08	Percent 0.50	(In/Hr) 0.088	(lax 0.488)	0.079	0.009
1 2	0.08	0.60	0.106	i	0.488)	0.095	0.011
3	0.25	0.60	0.106	(0.488)	0.095	0.011
4	0.33	0.60	0.106	(0.488)	0.095	0.011
5	0.42	0.60	0.106	(0.488)	0.095	0.011 0.012
6	0.50	0.70	0.123	2	0.488) 0.488)	0.111 0.111	0.012
7	0.58	0.70 0.70	0.123	2	0.488)	0.111	0.012
8 9	0.67 0.75	0.70	0.123	ì	0.488)	0.111	0.012
10	0.83	0.70	0.123	i	0.488)	0.111	0.012
11	0.92	0.70	0.123	(0.488)	0.111	0.012
12	1.00	0.80	0.141	(0.488)	0.127	0.014
13	1.08	0.80	0.141	ç	0.488)	0.127	0.014 0.014
14	1.17	0.80	0.141	ć	0.488) 0.488)	0.127 0.127	0.014
15 16	1.25 1.33	0.80	0.141	ì	0.488)	0.127	0.014
17	1.42	0.80	0.141	ċ	0.488)	0.127	0.014
18	1.50	0.80	0.141	(0.488)	0.127	0.014
19	1.58	0.80	0.141	(0.488)	0.127	0.014
20	1.67	0.80	0.141	5	0.488)	0.127	0.014 0.014
21	1.75	0.80	0.141	2	0.488) 0.488)	0.127 0.127	0,014
22 23	1.83 1.92	0.80 0.80	0.141 0.141	i	0.488)	0.127	0.014
23	2.00	0.90	0.158	i	0.488)	0.142	0.016
25	2.08	0.80	0.141	(0.488)	0.127	0.014
26	2.17	0.90	0.158	(0.488)	0.142	0.016
27	2.25	0.90	0.158	(0.488)	0.142	0.016
28	2.33	0.90	0.158	5	0.488)	0.142	0.016 0.016
29	2.42	0.90	0.158	ć	0.488) 0.488)	0.142	0.016
30 31	2.50 2.58	0.90 0.90	0.158	ć	0.488)	0.142	0.016
32	2.58	0.90	0.158	i	0.488)	0.142	0.016
33	2.75	1.00	0.176	(0.488)	0.158	0.018
34	2.83	1.00	0,176	(0.488)	0.158	0.018
35	2.92	1.00	0.176	5	0.488)	0.158	0.018 0.018
36	3.00	1.00	0.176	(0.488) 0.488)	0.158 0.158	0.018
37	3.08 3.17	1.00 1.10	0.176 0.193	ì	0.488)	0.174	0.019
38 39	3.25	1.10	0.193	ć	0.488)	0.174	0.019
40	3.33	1.10	0.193	è	0.488)	0.174	0.019
41	3.42	1.20	0.211	(0.488)	0.190	0.021
42	3.50	1.30	0.229	0	0.488)	0.206	0.023
43	3.58	1.40	0.246	ç	0.488)	0.222	0.025
44	3.67	1.40	0.246	{	0.488) 0.488)	0.222 0.237	0.025 0.026
45	3.75	1.50 1.50	0.264	5	0.488)	0.237	0.026
46 47	3.83 3.92	1.60	0.281	ć	0.488)	0.253	0.028
48	4.00	1.60	0.281	ć	0.488)	0.253	0.028
49	4.08	1.70	0.299	(0.488)	0.269	0.030
50	4.17	1.80	0.317	(0.488)	0.285	0.032
51	4.25	1.90	0.334	\$	0.488)	0.301	0.033 0.035
52	4.33	2.00	0.352	8	0.488) 0.488)	0.317 0.332	0.035
53 54	4.42 4.50	2.10 2.10	0.369	ì	0.488)	0.332	0.037
55	4.58	2.20	0.387	i	0.488)	0.348	0.039
56	4.67	2.30	0.405	(0.488)	0.364	0.040
57	4.75	2.40	0.422	(0.488)	0.380	0.042
58	4.83	2.40	0.422		0.488)	0.380	0.042 0.044
59	4.92 5.00	2.50	0.440	ć	0.488) 0.488)	0.396 0.412	0.046
60 61	5.00	2.60 3.10	0.545		0.488	(0.491)	0.057
62	5.17	3.60	0.633		0.488	(0.570)	0.145
63	5.25	3.90	0.686		0.488	(0.617)	0.198
64	5.33	4.20	0.739		0.488	(0.665)	0.250
65	5.42	4.70	0.827		0.488	(0.744) (0.887)	0.338 0.497
66	5.50 5.58	5.60 1.90	0.985	1	0.488 0.488)	0.301	0.033
67 68	5.67	0.90	0.158	ì	0.488)	0.142	0.016
69	5,75	0.60	0.106	(0.488)	0.095	0.011
70	5.83	0.50	0.088	(0.488)	0.079	0.009
71	5.92	0.30	0.053	(0.488)	0.047	0.005
72	6.00	0.20	0.035	a) (0.488)	0.032	0.004
	Sum =	(Loss) 100.0	Rate Not Use	4)		Sum =	= 2.8
			Effective ra:	infal	1 0	.23(In)	
			69.7(Ac.)/				(Ac.Ft)
	Total	soil los	s = 1.23	(In)			
		soil los			t)		
		rainfall			ic Foot		
		volume = soil los			ic Feet Cubic Fe	et	
	Peak	flow rat	e of this hyd:	rograj	ph =	20.691 (CFS)	
	++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++ 6 – Н О			++++++++++++++++++++++++++++++++++++++	****
			0 - n U	0 1	0 1 0		

							22.5	
11me(n+m)	Volume Ac.Ft	Q(CFS)						
0+ 5	0.0003	0.04	Q	1		1	1	1
0+10	0.0018	0.22		1		1	1	. I
0+15	0.0048	0.43	Q	1		1	1	
0+20	0.0085	0.54	Q	1		1	1	
0+25	0.0127	0.60	Q				1	
0+30	0.0171	0.64	Q			1	1	
0+35	0.0220	0.70	Q			1	1	1
0+40	0.0272	0.76	VQ			1		
0+45	0.0326	0.79	VQ	1				
0+50	0.0382	0.81	Q					
0+55	0.0439	0.82 0.84	Q	1		1	1	
1+ 0 1+ 5	0.0558	0.89	Q			1	1	i i
1+10	0.0622	0.93	lõ	1		í	i	i
1+15	0.0687	0.95	lov	f		i	i	1
1+20	0.0753	0.96	QV	1		1	1	1
1+25	0.0820	0.97	QV	1		1	1	1
1+30	0.0887	0.97	QV	1		1	1	1
1+35	0.0954	0.98	QV	1		1	1	1
1+40	0.1022	0.98	QV	- E		1	1	1
1+45	0.1089	0.98	QV	Į.		1		
1+50	0.1157	0.98	QV					
1+55	0.1225	0.99	QV	1		1		
2+ 0 2+ 5	0.1294 0.1364	0.99 1.02	Q V Q V					
2+ 5 2+10	0.1435	1.02	Q V			1	1	1
2+15	0.1507	1.05	Q V	Î		i i		i.
2+20	0.1581	1.07	Q V	1		1		
2+25	0.1656	1.09	Q V	1		1	1	1
2+30	0.1731	1.09	Q V	1		1	1	1
2+35	0.1807	1.10	Q V			1		1
2+40	0.1883	1.10	Q V			1	1	
2+45	0.1959	1.11	QV	1		1	1	
2+50	0.2039	1.15	Q V					
2+55	0.2120	1.19				1		
3+ 0	0.2203	1.20						
3+ 5	0.2286 0.2371	1.21 1.23	Q V Q V					6
3+10 3+15	0.2458	1.27	ų v					
3+20	0.2548	1.30	Q V				1	1
3+25	0.2639	1.33	Q V	- 1		1	1	1
3+30	0.2734	1.38		v		1		
3+35	0.2835	1.47		v		1	1	1
3+40	0.2943	1.56	Q	v		1		
3+45	0.3055	1.63	Q	v				
3+50	0.3172	1.69	Q	V			3	
3+55	0.3293	1.76	Q	V				4
4+ 0	0.3418	1.82 1.88	2	v v				
4+ 5	0.3548 0.3683	1.96	Q	v				1
4+10 4+15	0.3824	2.05	ŏ	ĺv		1	1	
4+20	0.3973	2.16		v		i	1	- i
4+25	0.4129	2.27	Q	i v		1	1	i
4+30	0.4293	2.38	Q	v		1	1	1
4+35	0.4463	2.46	Q	l v		1		1
4+40	0.4638	2.54	Q	l v		1		
4+45	0.4820	2.65	Q	V		1	1	
4+50	0.5010	2.75	Q	V		1	1	
4+55	0.5205	2.83	Q		v v	1		
5+0 5+5	0.5406 0.5617	2.92 3.06	Q	1	v	1		1
5+ 5 5+10	0.5876	3.76	Γ Q	1	v	1	i	1
5+15	0.6289	6.00		Q	v	1	1	i
5+20	0.6921	9.17	1	Î Q		v	1	1
5+25	0.7782	12.50	1	1	Q	l v	1	1
5+30	0.8947	16.93	1	1		JQ V		1
5+35	1.0372	20.69	1	1			Q V	1
5+40	1.1477	16.04	1			Q	V	
5+45	1.2070	8.61		Q		1	V V	,
5+50	1.2452	5.54				1	7	v
5+55	1.2732	4.07	Q			1		v
6+ 0 6+ 5	1.2943	3.06 2.32	Q			1		v
6+ 5 6+10	1.3103 1.3223	2.32 1.74	Q			1		v
6+10	1.3223	1.35	Q			1		v
6+20	1.3388	1.04	Q	1		1	1	v
6+25	1.3443	0.81	Q	1		1		v
6+30	1.3485	0.61	Q	1		1	1	v
6+35	1.3515	0.44	õ	1				v
6+40	1.3538	0.33	Q	1		1	0	vl
6+45	1.3550	0.18	Q	1		1	1	V
6+50	1.3553	0.03	Q	1		1		V
6+55	1.3554	0.02	Q	1		1		V
7+ 0	1.3554	0.01	Q	1		1	1	V
7+ 5	1.3555	0.01	Q	1		1		V
7+10	1.3555	0.00	Q	1		1	1	V

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX5245.out ********* Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format 0.109 Sq. Mi. 69.65(Ac.) = Drainage Area = 69.65(AC.) = 0.109 Sq. Ml. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Difference in clause a course measured to centroid = 0.242 Mi. Drainage Area = Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.0 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 121.89 1.75 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 4.50 313.43 STORM EVENT (YEAR) = 5.00 Area Averaged 2-Year Rainfall = 1.750(In) Area Averaged 100-Year Rainfall = 4.500(I 4.500(In) Point rain (area averaged) = 2.394(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 2.394(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 69.650 76.00 0.000 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 58.2
 0.488
 0.000
 0.488
 1.000
 0.488

 Sum
 (F)
 =
 0.488
 1.000
 0.488
 Area averaged mean soil loss (F) (In/Hr) = 0.488 Minimum soil loss rate ((In/Hr)) = 0.244 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve _____ Unit Hydrograph Data 0470 vlasjoču ----Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS)
 1
 0.083
 52.307
 6.571

 2
 0.167
 104.614
 28.083

 3
 0.250
 156.922
 28.549

 4
 0.333
 209.229
 12.179

 5
 0.417
 261.536
 6.595

 6
 0.500
 313.843
 4.589

 7
 0.583
 366.151
 3.296

 8
 0.667
 418.458
 2.462

 9
 0.750
 470.765
 1.797

 10
 0.833
 523.072
 1.548

 11
 0.917
 575.380
 1.191

 12
 1.000
 627.687
 0.940
 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 0.836

13	1,083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
10	1.333		Sum = 100.000	Sum=	70.194

Lace	Subcrac	LEG IIOM			(77)	DEFection
Unit	Time	Pattern	Storm Rain	Loss rate(In Max L	./Hr) ow	Effective (In/Hr)
1	(Hr.) 0.08	Percent 0.07	(In/Hr) 0.019	(0.866)	0.017	0.002
2	0.17	0.07	0.019	(0.862)	0.017	0.002
3	0.25	0.07	0.019	(0.859)	0.017	0.002
4	0.33	0.10	0.029	(0.856)	0.026	0.003
5	0.42	0.10	0.029	(0.852) (0.849)	0.026	0.003
6 7	0.50 0.58	0.10	0.029 0.029	(0.846)	0.026	0.003
8	0.58	0.10	0.029	(0.842)	0.026	0.003
9	0.75	0.10	0.029	(0.839)	0.026	0.003
10	0.83	0.13	0.038	(0.836)	0.034	0.004
11	0.92	0.13	0.038	(0.833)	0.034	0.004 0.004
12	1.00	0.13	0.038	(0.829) (0.826)	0.034 0.026	0.004
13	1.08	0.10 0.10	0.029 0.029	(0.823)	0.026	0.003
14 15	1.17 1.25	0.10	0.029	(0.819)	0.026	0.003
16	1.33	0.10	0.029	(0.816)	0.026	0.003
17	1.42	0.10	0.029	(0.813)	0.026	0.003
18	1.50	0.10	0.029	(0.810)	0.026	0.003
19	1.58	0.10	0.029	(0.806) (0.803)	0.026	0.003
20 21	1.67 1.75	0.10 0.10	0.029 0.029	(0.800)	0.026	0.003
22	1.83	0.13	0.038	(0.797)	0.034	0.004
23	1.92	0.13	0.038	(0.794)	0.034	0.004
24	2.00	0.13	0.038	(0.790)	0.034	0.004
25	2.08	0.13	0.038	(0.787)	0.034	0.004
26	2.17	0.13	0.038	(0.784)	0.034 0.034	0.004 0.004
27	2.25	0.13	0.038	(0.781) (0.778)	0.034	0.004
28 29	2.33 2.42	0.13	0.038 0.038	(0.774)	0.034	0.004
30	2.42	0.13	0.038	(0.771)	0.034	0.004
31	2.58	0.17	0.048	(0.768)	0.043	0.005
32	2.67	0.17	0.048	(0.765)	0.043	0.005
33	2.75	0.17	0.048	(0.762)	0.043	0.005
34	2.83	0.17	0.048	(0.759)	0.043	0.005
35	2.92	0.17	0.048 0.048	(0.756) (0.752)	0.043	0.005
36 37	3.00 3.08	0.17 0.17	0.048	(0.749)	0.043	0.005
38	3.17	0.17	0.048	(0.746)	0.043	0.005
39	3.25	0.17	0.048	(0.743)	0.043	0.005
40	3.33	0.17	0.048	(0.740)	0.043	0.005
41	3.42	0.17	0.048	(0.737)	0.043	0.005
42	3.50	0.17	0.048 0.048	(0.734) (0.731)	0.043	0.005
43 44	3.58 3.67	0.17 0.17	0.048	(0.728)	0.043	0.005
44	3.75	0.17	0.048	(0.725)	0.043	0.005
46	3.83	0.20	0.057	(0.722)	0.052	0.006
47	3.92	0.20	0.057	(0.719)	0.052	0.006
48	4.00	0.20	0.057	0.715)	0.052	0.006
49	4.08	0.20	0.057 0.057	(0.712) (0.709)	0.052	0.006
50 51	4.17 4.25	0.20	0.057	(0.706)	0.052	0.006
52	4.33	0.23	0.067	(0.703)	0.060	0.007
53	4.42	0.23	0.067	(0.700)	0.060	0.007
54	4.50	0.23	0.067	(0.697)	0.060	0.007
55	4.58	0.23	0.067	(0.694) (0.691)	0.060 0.060	0.007
56	4.67	0.23	0.067 0.067	(0.688)	0.060	0.007
57 58	4.75 4.83	0.23 0.27	0.077	(0.685)	0.069	0.008
59	4.92	0.27	0.077	(0.683)	0.069	0.008
60	5.00	0.27	0.077	(0.680)	0.069	0.008
61	5.08	0.20	0.057	(0.677)	0.052	0.006 0.006
62	5.17	0.20	0.057	(0.674) (0.671)	0.052 0.052	0.006
63	5.25 5.33	0.20 0.23	0.057 0.067	(0.668)	0.060	0.007
64 65	5.42	0.23	0.067	(0,665)	0.060	0.007
66	5.50	0.23	0.067	(0.662)	0.060	0.007
67	5.58	0.27	0.077	(0.659)	0.069	0.008
68	5.67	0.27	0.077	(0.656)	0.069	0.008
69	5.75	0.27	0.077	(0.653)	0.069	0.008 0.008
70	5.83	0.27	0.077	(0.650) (0.647)	0.069 0.069	0.008
71 72	5.92 6.00	0.27 0.27	0.077 0.077	(0.645)	0.069	0.008
73	6.08	0.30	0.086	(0.642)	0.078	0.009
74	6.17	0.30	0.086	(0.639)	0.078	0.009
75	6.25	0.30	0.086	(0.636)	0.078	0.009
76	6.33	0.30	0.086	(0.633)	0.078	0.009 0.009
77	6.42	0.30	0.086	(0.630) (0.628)	0.078 0.078	0.009
78 79	6.50 6.58	0.30 0.33	0.086 0.096	(0.625)	0.086	0.010
80	6.50	0.33	0.096	(0.622)	0.086	0.010
81	6.75	0.33	0.096	(0.619)	0.086	0.010
82	6.83	0.33	0.096	(0.616)	0.086	0.010
83	6.92	0.33	0.096	(0.614)	0.086	0.010 0.010
84	7.00	0.33	0.096 0.096	(0.611) (0.608)	0.086 0.086	0.010
85 86	7.08 7.17	0.33 0.33	0.096	(0.605)	0.086	0.010
55		5.55		27		Page 2

				(0.096	0.010
87	7.25	0.33	0.096	(0.602)	0.086	0.011
88	7.33	0.37	0.105	(0.600)	0.095	
89	7.42	0.37	0.105	(0.597)	0.095	0.011
90	7.50	0.37	0.105	(0.594)	0.095	0.011
91	7.58	0.40	0.115	(0.591)	0.103	0.011
92	7.67	0.40	0.115	(0.589)	0.103	0.011
93	7.75	0.40	0.115	(0.586)	0.103	0.011
		0.43	0.124	(0.583)	0.112	0.012
94	7.83			2001 - 2041° "	0.112	0.012
95	7.92	0.43	0.124		0.112	0.012
96	в.00	0.43	0.124	(0.578)		
97	8.08	0.50	0.144	(0.575)	0.129	0.014
98	8.17	0.50	0.144	(0.573)	0.129	0.014
99	8.25	0.50	0.144	(0.570)	0.129	0.014
100	8.33	0.50	0.144	(0.567)	0.129	0.014
101	8.42	0.50	0.144	(0.565)	0.129	0.014
102	8.50	0.50	0.144	(0.562)	0.129	0.014
			0.153	(0.559)	0.138	0.015
103	8.58	0.53			0.138	0.015
104	8.67	0.53	0.153	24 SQL	0.138	0.015
105	8.75	0.53	0.153	(0.554)		
106	8.83	0.57	0.163	(0.551)	0.147	0.016
107	8.92	0.57	0.163	(0.549)	0.147	0.016
108	9.00	0.57	0.163	(0.546)	0.147	0.016
109	9.08	0.63	0.182	(0.544)	0.164	0.018
110	9.17	0.63	0.182	(0.541)	0.164	0.018
111	9.25	0.63	0.182	(0.539)	0.164	0.018
		0.67	0.192	(0.536)	0.172	0.019
112	9.33		0.192	(0.533)	0.172	0.019
113	9.42	0.67	0.192	(0.531)	0.172	0.019
114	9.50	0.67			0.181	0.020
115	9.58	0.70	0.201	(0.528)		
116	9.67	0.70	0.201	(0.526)	0.181	0.020
117	9.75	0.70	0.201	(0.523)	0.181	0.020
118	9.83	0.73	0.211	(0.521)	0.190	0.021
119	9.92	0.73	0.211	(0.518)	0.190	0.021
120	10.00	0.73	0.211	(0.516)	0.190	0.021
121	10.08	0.50	0.144	(0.513)	0.129	0.014
			0.144	(0.511)	0.129	0.014
122	10.17	0.50	0.144	(0.508)	0.129	0.014
123	10.25	0.50		(0.506)	0.129	0.014
124	10.33	0.50	0.144	100 m m		0.014
125	10.42	0.50	0.144	(0.503)	0.129	
126	10.50	0.50	0.144	(0.501)	0.129	0.014
127	10.58	0.67	0.192	(0.498)	0.172	0.019
128	10.67	0.67	0.192	(0.496)	0.172	0.019
129	10.75	0.67	0.192	(0.494)	0.172	0.019
130	10.83	0.67	0.192	(0.491)	0.172	0.019
131	10.00	0.67	0.192	(0.489)	0.172	0.019
			0.192	(0.486)	0.172	0.019
132	11.00	0.67		(0.484)	0.164	0.018
133	11.08	0.63	0.182	6 C.S.	0.164	0.018
134	11.17	0.63	0.182		0.164	0.018
135	11.25	0.63	0.182	(0.479)		
136	11.33	0.63	0.182	(0.477)	0.164	0.018
137	11.42	0.63	0.182	(0.474)	0.164	0.018
138	11.50	0.63	0.182	(0.472)	0.164	0.018
139	11.58	0.57	0.163	(0.470)	0.147	0.016
140	11.67	0.57	0.163	(0.467)	0.147	0.016
141	11.75	0.57	0.163	(0.465)	0.147	0.016
		0.60	0.172	(0.463)	0.155	0.017
142	11.83		0.172	(0.460)	0.155	0.017
143	11.92	0.60		(0.458)	0.155	0.017
144	12.00	0.60	0.172		0.215	0.024
145	12.08	0.83	0.239	(0.456)		0.024
146	12.17	0.83	0.239	(0.454)	0.215	
147	12.25	0.83	0.239	(0.451)	0.215	0.024
148	12.33	0.87	0.249	(0.449)	0.224	0.025
149	12.42	0.87	0.249	(0.447)	0.224	0.025
150	12.50	0.87	0.249	(0.445)	0.224	0.025
151	12.58	0.93	0.268	(0.442)	0.241	0.027
152	12.67	0.93	0.268	(0.440)	0.241	0.027
153	12.75	0.93	0.268	(0.438)	0.241	0.027
	12.83	0.97	0.278	(0.436)	0.250	0.028
154		0.97	0.278	(0.433)	0.250	0.028
155	12.92			(0.431)	0.250	0.028
156	13.00	0.97	0.278	(0.429)	0.293	0.033
157	13.08	1.13	0.326	(0.429)	0.293	0.033
158	13.17	1.13	0.326			0.033
159	13.25	1.13	0.326	(0.425)	0.293	0.033
160	13.33	1.13	0.326	(0.423)	0.293	
161	13.42	1.13	0.326	(0.420)	0.293	0.033
162	13.50	1.13	0.326	(0.418)	0.293	0.033
163	13.58	0.77	0.220	(0.416)	0.198	0.022
164	13.67	0.77	0.220	(0.414)	0.198	0.022
165	13.75	0.77	0.220	(0.412)	0.198	0.022
	13.83	0.77	0.220	(0.410)	0.198	0.022
166			0.220	(0.408)	0.198	0.022
167	13.92	0.77		(0.406)	0.198	0.022
168	14.00	0.77	0.220		0.233	0.026
169	14.08	0.90	0.259	(0.404)		0.026
170	14.17	0.90	0.259	(0.402)	0.233	
171	14.25	0.90	0.259	(0.399)	0.233	0.026
172	14.33	0.87	0.249	(0.397)	0.224	0.025
173	14.42	0.87	0.249	(0.395)	0.224	0.025
174	14.50	0.87	0.249	(0.393)	0.224	0.025
175	14.58	0.87	0.249	(0.391)	0.224	0.025
	14.58 14.67	0.87	0.249	(0.389)	0.224	0.025
176			0.249	(0.387)	0.224	0.025
177	14.75	0.87	0.239	(0.385)	0.215	0.024
178	14.83	0.83		(0.383)	0.215	0.024
179	14.92	0.83	0.239			0.024
180	15.00	0.83	0.239	(0.381)	0.215	
161	15.08	0.80	0.230	(0.379)	0.207	0.023
182	15.17	0.80	0.230	(0.378)	0.207	0.023
183	15.25	0.80	0.230	(0.376)	0.207	0.023
184	15.33	0.77	0.220	(0.374)	0.198	0.022
185	15.42	0.77	0.220	(0.372)	0.198	0.022
						_

100	15 50		0 000	(0.370)	0.198	0.022
186	15.50	0.77	0.220		0.164	0.018
187	15.58	0.63	0.182	(0.368)		0.018
188	15.67	0.63	0.182	(0.366)	0.164	
189	15.75	0.63	0.182	(0.364)	0.164	0.018
190	15.83	0.63	0.182	(0.362)	0.164	0.018
191	15.92	0.63	0.182	(0.360)	0.164	0.018
192	16.00	0.63	0.182	(0.359)	0.164	0.018
193	16.08	0.13	0.038	(0.357)	0.034	0.004
194	16.17	0.13	0.038	(0.355)	0.034	0.004
195	16.25	0.13	0.038	(0.353)	0.034	0.004
196	16.33	0.13	0.038	(0.351)	0.034	0.004
	16.42	0.13	0.038	(0.350)	0.034	0.004
197			0.038	(0.348)	0.034	0.004
198	16.50	0.13			0.026	0.003
199	16.58	0.10	0.029	(0.346)		
200	16.67	0.10	0.029	(0.344)	0.026	0.003
201	16.75	0.10	0.029	(0.343)	0.026	0.003
202	16.83	0.10	0.029	(0.341)	0.026	0.003
203	16.92	0.10	0.029	(0.339)	0.026	0.003
204	17.00	0.10	0.029	(0.337)	0.026	0.003
205	17.08	0.17	0.048	(0.336)	0.043	0.005
206	17.17	0.17	0.048	(0.334)	0.043	0.005
		0.17	0.048	(0.332)	0.043	0.005
207	17.25			(0.331)	0.043	0.005
208	17.33	0.17	0.048		0.043	0.005
209	17.42	0.17	0.048	(0.329)		
210	17.50	0.17	0.048	(0.327)	0.043	0.005
211	17.58	0.17	0.048	(0.326)	0.043	0.005
212	17.67	0.17	0.048	(0.324)	0.043	0.005
213	17.75	0.17	0.048	(0.322)	0.043	0.005
214	17.83	0.13	0.038	(0.321)	0.034	0.004
215	17.92	0.13	0.038	(0.319)	0.034	0.004
216	18.00	0.13	0.038	(0.318)	0.034	0.004
217	18.08	0.13	0.038	(0.316)	0.034	0.004
		0.13	0.038	(0.315)	0.034	0.004
218	18.17			(0.313)	0.034	0.004
219	18.25	0.13	0.038	2,000		0.004
220	18.33	0.13	0.038	(0.311)	0.034	
221	18.42	0.13	0.038	(0.310)	0.034	0.004
222	18.50	0.13	0.038	(0.308)	0.034	0.004
223	18.58	0.10	0.029	(0.307)	0.026	0.003
224	18.67	0.10	0.029	(0.305)	0.026	0.003
225	18.75	0.10	0.029	(0.304)	0.026	0.003
226	18.83	0.07	0.019	(0.303)	0.017	0.002
227	18.92	0.07	0.019	(0.301)	0.017	0.002
		0.07	0.019	(0.300)	0.017	0.002
228	19.00			(0.298)	0.026	0.003
229	19.08	0.10	0.029			0.003
230	19.17	0.10	0.029	(0.297)	0.026	
231	19.25	0.10	0.029	(0.295)	0.026	0.003
232	19.33	0.13	0.038	(0.294)	0.034	0.004
233	19.42	0.13	0.038	(0.293)	0.034	0.004
234	19.50	0.13	0.038	(0.291)	0.034	0.004
235	19.58	0.10	0.029	(0.290)	0.026	0.003
236	19.67	0.10	0.029	(0.289)	0.026	0.003
237	19.75	0.10	0.029	(0.287)	0.026	0.003
238	19.83	0.07	0.019	(0.286)	0.017	0.002
	19.92	0.07	0.019	(0.285)	0.017	0.002
239				(0.284)	0.017	0.002
240	20.00	0.07	0.019			0.003
241	20.08	0.10	0.029	(0.282)	0.026	
242	20.17	0.10	0.029	(0.281)	0.026	0.003
243	20.25	0.10	0.029	(0.280)	0.026	0.003
244	20.33	0.10	0.029	(0.279)	0.026	0.003
245	20.42	0.10	0.029	(0.277)	0.026	0.003
246	20.50	0.10	0.029	(0.276)	0.026	0.003
247	20.58	0.10	0.029	(0.275)	0.026	0.003
248	20.67	0.10	0.029	(0.274)	0.026	0.003
249	20.75	0.10	0.029	(0.273)	0.026	0.003
250	20.83	0.07	0.019	(0.272)	0.017	0.002
		0.07	0.019	(0.271)	0.017	0.002
251	20.92			(0.270)	0.017	0.002
252	21.00	0.07	0.019		0.026	0.003
253	21.08	0.10	0.029			
254	21.17	0.10	0.029	(0.267)	0.026	0.003
255	21.25	0.10	0.029	(0.266)	0.026	0.003
256	21.33	0.07	0.019	(0.265)	0.017	0.002
257	21.42	0.07	0.019	(0.264)	0.017	0.002
258	21.50	0.07	0.019	(0.263)	0.017	0.002
259	21.58	0.10	0.029	(0.262)	0.026	0.003
260	21.67	0.10	0.029	(0.261)	0.026	0.003
261	21.75	0.10	0.029	(0.261)	0.026	0.003
262	21.83	0.07	0.019	(0.260)	0.017	0.002
			0.019	(0.259)	0.017	0.002
263	21.92	0.07		(0.258)	0.017	0.002
264	22.00	0.07	0.019		0.026	0.002
265	22.08	0.10	0.029	(0.257)		0.003
266	22.17	0.10	0.029	(0.256)	0.026	
267	22.25	0.10	0.029	(0.255)	0.026	0.003
268	22.33	0.07	0.019	(0.255)	0.017	0.002
269	22.42	0.07	0.019	(0.254)	0.017	0.002
270	22.50	0.07	0.019	(0.253)	0.017	0.002
271	22.58	0.07	0.019	(0.252)	0.017	0.002
272	22.67	0.07	0.019	(0.252)	0.017	0.002
		0.07	0.019	(0.251)	0.017	0.002
273	22.75			(0.250)	0.017	0.002
274	22.83	0.07	0.019			0.002
275	22.92	0.07	0.019	(0.250)	0.017	0.002
276	23.00	0.07	0.019	(0.249)	0.017	
277		0.07	0.019	(0.248)	0.017	0.002
	23.08		0 010	(0.248)	0.017	0.002
278	23.17	0.07	0.019			
	23.17 23.25	0.07	0.019	(0.247)	0.017	0.002
278	23.17	0.07	0.019 0.019	(0.247)	0.017	0.002
278 279	23.17 23.25	0.07	0.019 0.019 0.019	(0.247) (0.246)	0.017 0.017 0.017	0.002 0.002 0.002
278 279 280	23.17 23.25 23.33	0.07	0.019 0.019	(0.247) (0.246) (0.246)	0.017 0.017 0.017 0.017	0.002 0.002 0.002 0.002
278 279 280 281	23.17 23.25 23.33 23.42	0.07 0.07 0.07	0.019 0.019 0.019	(0.247) (0.246)	0.017 0.017 0.017	0.002 0.002 0.002 0.002 0.002
278 279 280 281 282	23.17 23.25 23.33 23.42 23.50	0.07 0.07 0.07 0.07	0.019 0.019 0.019 0.019	(0.247) (0.246) (0.246)	0.017 0.017 0.017 0.017	0.002 0.002 0.002 0.002

Sum = Flood time Total Total Flood Total Peak	<pre>d volume = Ef s area . soil loss = . soil loss = . rainfall = d volume = . soil loss = . soil loss = . flow rate o</pre>	fective r 69.7 (Ac.) 2.1 12.50 2.39 60522 544 f this hy ++++++++ 24 - H	ainfall /[(In), 5(In) 5(Ac.Ft (In) .1 Cubi 698.9 (drograg	(0.2. ((Ft.)] = :) ic Feet Cubic Feet ch = : 	Sum = 4(In) 1.4(Ad 2.234(CFS)	2.9
					ervals ((CF	S))
Time (hum) 3	Clume Ac Et	O(CES)	0	2.5	5.0	7.5 10.0
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	0.0001 0.0004 0.0017 0.0026 0.0037 0.0049 0.0061 0.0074 0.0087 0.0102 0.0135 0.0135 0.0151 0.0166 0.0180 0.0195 0.0209 0.0223 0.0223 0.02251 0.0266 0.0281 0.0298 0.0316 0.0333 0.0351 0.0369 0.0369 0.0326 0.0369 0.0326 0.0326 0.0369 0.0326 0.0369 0.0326 0.0326 0.0369 0.0326 0.0326 0.0369 0.0326 0.0326 0.0369 0.0326 0.0326 0.0326 0.0369 0.0326 0.0326 0.0369 0.0326 0.0326 0.0326 0.0369 0.0326 0.0326 0.0326 0.0369 0.0326 0.0326 0.0326 0.0326 0.0369 0.0326 0.0326 0.0326 0.0327 0.0369 0.0326 0.0369 0.0326 0.0327 0.0326 0.0424 0.0424 0.0444	0.01 0 0.05 0 0.09 0 0.13 0 0.16 0 0.17 0 0.18 0 0.18 0 0.22 0 0.24 0 0.24 0 0.22 0 0.24 0 0.22 0 0.24 0 0.21 0 0.22 0				
						Page 5

			ю. — ч	n a		
6+15	0.1691	0.58	QV	[]		
6+20	0.1731	0.58	QV OV			
6+25	0.1772	0.59	Q V Q V			
6+30 6+35	0.1813	0.60	ō v			
6+40	0.1897	0.62	Q V			
6+45	0.1942	0.64	QV			
6+50	0.1987	0.65	QV			
6+55	0.2032	0.66	QV			
7+ 0	0.2078	0.66	Q V Q V			
7+ 5 7+10	0.2123	0.67	Q V			
7+15	0.2215	0.67	Q V	i i	1	
7+20	0.2262	0.67	QV			
7+25	0.2310	0.69	QV	(I		
7+30	0.2359	0.71	QV			
7+35	0.2409	0.73	Q V Q V			
7+40 7+45	0.2460	0.77	Q V			
7+50	0.2568	0.79	Q V			
7+55	0.2624	0.81	QV			
8+ 0	0.2681	0.84	QV			
8+ 5	0.2740	0.86	Q V			
8+10	0.2803	0.90	Q V Q V			
8+15 8+20	0.2868	0.94	Q V		1	
8+25	0.3001	0.98	Q V			í —
8+30	0.3069	0.98	Q V		1 1	Ĺ
8+35	0.3138	1.00	Q V			
8+40	0.3208	1.02	Q V			
8+45	0.3280	1.04				
8+50 8+55	0.3352 0.3427	1.08	Q V Q V			
9+ 0	0.3503	1.11	Q V			1
9+ 5	0.3581	1.13	Q V	J	1	
9+10	0.3661	1.17	V Q V	J		
9+15	0.3745	1.21		J 17		
9+20	0.3830	1.24	Q	v v		
9+25 9+30	0.3918	1.27	QQ	v		
9+35	0.4098	1.32	Q	v	1	l
9+40	0.4190	1.34	Q	v	1 1	l.
9+45	0.4284	1.37	Q	v		
9+50	0.4380	1.39	Q	V		
9+55	0.4477	1.41	Q	v v		
10+ 0	0.4576 0.4674	1.44	Q	v		
10+ 5 10+10	0.4763	1.30	Q	v		
10+15	0.4844	1.17	Q	v	1	
10+20	0.4920	1.11	Q	v	1	
10+25	0.4995	1.09	Q	v		
10+30	0.5069	1.07	Q	V V		
10+35 10+40	0.5143	1.07	000000000	v		
10+45	0.5308	1.25	ŏ	v	1	
10+50	0.5397	1.28	Q	v		l .
10+55	0.5486	1.30	Q	v		
11+ 0	0.5576	1.31	Q	v v		
11+ 5	0.5667	1.31	Q	v		
11+10 11+15	0.5845	1.30	Q	v	1	
11+20	0.5933	1.28	Q	v	i i	l
11+25	0.6021	1.28	I Q	v	1	1
11+30	0.6109	1.28	Q	v		
11+35	0.6197	1.27	Q	v v		
11+40 11+45	0.6282	1.23	Q	v		
11+45 11+50	0.6384	1.18	Q	v		
11+55	0.6528	1.19	Q	v		
12+ 0	0.6611	1.21	00000	V		
12+ 5	0.6696	1.24	Q I	v v		
12+10 12+15	0.6790	1.37	Q	v v		
12+15	0.7002	1.51	Q		v	
12+25	0.7114	1.62	Q	i .	v	1
12+30	0.7228	1.66	Q Q Q		V	
12+35	0.7345	1.69	Q	1	v v	
12+40	0.7465	1.75	Q		v	
12+45 12+50	0.7588 0.7714	1.80	Q	1	v	1
12+55	0.7842	1.86	1 Q	1	v	
13+ 0	0.7973	1.89	Q Q		V	
13+ 5	0.8106	1.93	Q		V	
13+10	0.8246	2.04	0		v v	
13+15 13+20	0.8394 0.8545	2.14 2.19	QQ		v	
13+20	0.8545	2.22	l Q		v	
13+30	0.8851	2.23	Q Q		v	
13+35	0.9002	2.20	Q Q		v	
13+40	0.9140	2.00	Q		V	
13+45	0.9264	1.80	Q		v v	
13+50 13+55	0.9382 0.9497	1.67	Q	1	v	l
13+55 14+ 0	0.9497	1.64		1	v	İ
14+ 5	0.9722	1.63		1	l v	
14+10	0.9839	1.69	Q		V	
14+15	0.9960	1.76	Q		v v	
14+20 14+25	1.0082 1.0204	1.78			v v	
L L T BU	1,0101		× •			Page 6

14+30 14+35 14+40	1.0325 1.0445 1.0566	1.75 1.75 1.75			V V V
14+45	1.0686	1.74	Q Q		v Iv
14+50 14+55	1.0806 1.0924	1.72	Q	1	v
15+ 0 15+ 5	1.1042 1.1158	1.70 1.69	Q		v
15+10	1.1273	1.67	Q		V
15+15 15+20	1.1387 1.1499	1.65			v
15+25	1.1610	1.61	0		v
15+30 15+35	1.1719 1.1826	1.58	õ		v
15+40 15+45	1.1928 1.2023	1.47	Q Q		v v
15+50	1.2117	1.35	Q		v v
15+55 16+ 0	1.2209 1.2299	1.33	Q		v
16+ 5	1.2385	1.24	Q		v v
16+10 16+15	1.2451 1.2496	0.66 Q	2	1	v
16+20 16+25	1.2532 1.2564	0.53 Q 0.46 Q			v v
16+30	1.2592	0.41 Q			V V
16+35 16+40	1.2618 1.2640	0.37 Q 0.33 Q	1		v
16+45 16+50	1.2660 1.2678	0.29 Q 0.26 Q	1	1	v v
16+55	1.2695	0.25 Q	1		v v
17+ 0 17+ 5	1.2711 1.2727	0.23 Q 0.23 Q			v
17+10	1.2745	0.26 Q 0.29 Q			V V
17+15 17+20	1.2765 1.2787	0.31 Q			v
17+25 17+30	1.2808 1.2830	0.31 Q 0.32 Q			v v
17+35	1.2852	0.32 Q		1	v v
17+40 17+45	1.2875 1.2898	0.33 Q 0.33 Q	1		v
17+50 17+55	1.2920 1.2941	0.33 Q 0.31 Q		1	v v
18+ 0	1.2961	0.29 Q		i	v
18+ 5 18+10	1.2981 1.3000	0.28 Q 0.28 Q			v v
18+15	1.3019	0.28 Q			v v
18+20 18+25	1.3038 1.3057	0.28 Q 0.27 Q			v
18+30 18+35	1.3076	0.27 Q 0.27 Q			v v
18+40	1.3111	0.25 Q			V V
18+45 18+50	1.3127 1.3142	0.23 Q 0.21 Q			v
18+55 19+ 0	1.3155	0.19 Q 0.17 Q			v v
19+ 5	1.3178	0.16 Q			v l
19+10 19+15	1.3190	0.18 Q 0.19 Q			v
19+20	1.3217	0.20 Q 0.22 Q			V V
19+25 19+30	1.3248	0.24 Q			v
19+35 19+40	1.3265	0.25 Q 0.23 Q			v v
19+45	1.3296	0.22 Q		1	V V
19+50 19+55	1.3310 1.3323	0.18 Q			v
20+ 0 20+ 5	1.3334 1.3345	0.16 Q 0.16 Q		1	v v v
20+10	1.3357	0.17 Q 0.19 Q			V V
20+15 20+20	1.3383	0.19 Q			v
20+25 20+30	1.3397 1.3410	0.20 Q 0.20 Q		1	v v
20+35	1.3424 1.3438	0.20 Q 0.20 Q		-	v v v
20+40 20+45	1.3451	0.20 Q			v
20+50 20+55	1.3465 1.3477	0.20 Q 0.18 Q			v v
21+ 0	1.3488	0.16 Q		1	v v v
21+ 5 21+10	1.3499 1.3510	0.15 Q 0.17 Q			v
21+15 21+20	1.3523 1.3536	0.19 Q 0.19 Q			v v
21+25	1.3548	0.17 Q			V V
21+30 21+35	1.3558 1.3569	0.15 Q 0.15 Q			v
21+40 21+45	1.3580 1.3593	0.17 Q 0.18 Q			
21+50	1.3606	0.19 Q			v
21+55 22+ 0	1.3618 1.3628	0.17 Q 0.15 Q	ł		v
22+ 5	1.3638	0.15 Q	1		v v
22+10 22+15	1.3650 1.3662	0.17 Q 0.18 Q	Ť.		v
22+20 22+25	1.3675 1.3687	0.19 Q 0.17 Q			v v
22+30	1.3698	0.15 Q 0.15 Q			v v
22+35 22+40	1.3708 1.3717	0.14 Q			v
					Page 7

00.45	1.7505	0.14	0	1 I I
22+45	1.3727	0.14	Q I	
22+50	1.3737	-		
22+55	1.3746	0.14	Q	
23+ 0	1.3756	0.14	Q	
23+ 5	1.3765	0.14	Q	
23+10	1.3774	0.14	Q	
23+15	1.3784	0.14	Q	
23+20	1.3793	0.14	Q	
23+25	1,3802	0,14	0	
23+30	1.3812	0.13	0	
23+35	1.3821	0.13	Q	
23+40	1.3830	0.13	Q	
23+45	1.3840	0.13	Q	
23+50	1.3849	0.13	Q	
23+55	1,3858	0.13	Q	
24+ 0	1.3867	0.13	Q	
24+ 5	1.3876	0.13	Q	
24+10	1.3882	0.09	Q	
24+15	1.3885	0.05	Q	
24+20	1,3888	0,03	Q	
24+25	1.3889	0.02	Q	
24+30	1.3891	0.02	Q	
24+35	1.3892	0.01	Q	
24+40	1.3892	0.01	Q	1 1 7
24+45	1,3893	0.01	Q	1 1 1
24+50	1.3893	0.01	0	1 1
24+55	1.3893	0.00	Q	1 1 7
25+ 0	1.3894	0.00	Q I	7
25+ 5	1.3894	0.00	õ l	7 1
25+10	1.3894	0.00	õ	7
25+15	1.3894	0.00	ō	1 1

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                     Study date 02/12/20 File: 3828EX10110.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
 English (in-lb) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
_____
 Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area =
Drainage Area for Depth-Area Areal Adjustment =
                                                                     69.65(Ac.) =
                                                                                                0.109 Sq. Mi.
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Average Maining S N = 0.050
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
25% of lag time = 2.39 Min.
40% of lag time = 3.82 Min.
Unit time = 5.00 Min.
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
                  Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
         69.65
100 YEAR Area rainfall data:
                  Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                              1.20
         69.65
STORM EVENT (YEAR) = 10.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall = 1.200(In)
                                                 1.200(In)
Point rain (area averaged) = 0.788(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 0.787(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
 69.650 76.00 0
Total Area Entered = 69.65(Ac.)

      RI
      RI
      Infil. Rate
      Impervious
      Adj. Infil. Rate
      Area%
      F

      AMC2
      AMC-2
      (In/Hr)
      (Dec.%)
      (In/Hr)
      (Dec.)
      (In/Hr)

      76.0
      76.0
      0.291
      0.000
      0.291
      1.000
      0.291

      Area
      averaged mean soil loss (F)
      (In/Hr) = 0.291
      Sum (F) =
      0.291

      Minimum soil loss rate ((In/Hr)) = 0.146
      (for 24 hour storm duration)
      (In/Hr)
      1.46

(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                        ................
                                                  Slope of intensity-duration curve for a 1 hour storm =0.5000
                     Unit Hydrograph
                               VALLEY S-Curve
 ......
                                                  Unit Hydrograph Data
Unit time period<br/>(hrs)Time % of lag<br/>Graph %Distribution<br/>Graph %Unit Hydrograph<br/>(CFS)10.08352.3076.5714.61220.167104.61428.08319.71230.250156.92228.54920.03940.333209.22912.1798.54950.417261.5366.5954.62960.500313.8434.5893.22170.583366.1513.2962.31480.667418.4582.4621.72890.750470.7651.7971.261100.833523.0721.5481.086
```

Page 1

11	0.917	575.380	1,191		0.836
12	1.000	627.687	0.940		0.660
13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
			Sum = 100.000	Sum=	70.194

Unit Tim (Hr	e Pattern .) Percent	Storm Rain (In/Hr)		E(In./Hr) Low	Effective (In/Hr)
1 0.0		0.397	0.291	(0.357)	0.106
2 0.1		0.406	0,291	(0,366)	
3 0.2		0.472	0.291	(0.425)	0.181
4 0.3		0.472	0.291	(0.425)	0.181
5 0.4		0.548	0.291	(0.493)	0.257
6 0.5		0.614	0.291	(0.553)	0.323
7 0.5		0.699	0.291	(0.629)	0.408
8 0.6	7 8.60	0.813	0.291 0.291	(0.731)	0.521
9 0.7	5 12,30	1.162	0.291	(1.046)	0.871
10 0.8	3 29.10	2.750	0.291	(2.475)	2,459
11 0.9	2 6.80	0.643	0.291	(0.578)	0.351
L2 1.0	0 5.00	0.472	0.291	(0.425)	0.181
	(Loss	Rate Not Us	ed)		
Sum =	100.0			Sum	= 6.0
			ainfall		(3 - 7+)
t	imes area	69.7(Ac.)	/[(In)/(Ft.)]	= 2.9	(Ac.Ft)
То	tal soil los	s = 0.2 s = 1.69 = 0.79	9(In)		
То	tal soil los	s = 1.69	0 (Ac.Ft)		
То	tal rainfall	= 0.79	(In)		
Fl	ood volume =	125476	0(Ac.Ft) (In) .3 Cubic Feet 624.0 Cubic Fe		
Р	eak flow rat	e of this hy	drograph =	76.322(CFS)
					++++++++++++++++++++++++++++++++++++++
	********		OUR STO		
			Hydr		
			5 Minute		CFS))
	Hy) Volume Ac.	drograph in Ft Q(CFS)	5 Minute : 0 20.0	intervals ((40.0	60.0 80
	Hy) Volume Ac. 0.0034	drograph in Ft Q(CFS) 0.49 Q	5 Minute : 0 20.0	intervals ((
0+ 5 0+10	Hy) Volume Ac. 0.0034 0.0214	drograph in Ft Q(CFS) 0.49 Q 2.62 V	5 Minute : 0 20.0	intervals ((40.0	60.0 80
0+ 5 0+10 0+15	Hy) Volume Ac. 0.0034 0.0214 0.0574	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V	5 Minute : 0 20.0 0 20.0	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62	5 Minute : 0 20.0	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87	5 Minute : 0 20.0 0 20.0 0 20.0 V Q 20.0	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25 0+30	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 V 9.87 12.62	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	Hy) Volume Ac. 0.0034 0.0214 0.1099 0.1779 0.2648 0.3778	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	intervals ((40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0	60.0 80
0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	Hy) Volume Ac. 0.0034 0.0214 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 V 9.87 12.62 16.41 21.00 27.78 45.79	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0	60.0 80
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55	Hy) Volume Ac. 0.0034 0.0214 0.1099 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0	60.0 80
0+5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+0	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0 7 Q V	60.0 ВО
0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 V 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0 40.0	60.0 ВО V Q
0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10	Hy Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15	Hy) Volume Ac. 0.0034 0.0214 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0 7 Q V	60.0 80 V Q V V Q V V V V
0+5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+0 1+5 1+10 1+15 1+20	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0 7 Q V	60.0 ВО V Q Q V V V V V V V V
$0+5 \\ 0+10 \\ 0+15 \\ 0+20 \\ 0+30 \\ 0+35 \\ 0+40 \\ 0+55 \\ 0+55 \\ 1+0 \\ 1+5 \\ 1+10 \\ 1+15 \\ 1+20 \\ 1+25 \\ 1+2$	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 V 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17	5 Minute : 0 20.0 Q V QV QV QV QV QV QV $QQQQQQQQ$	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30	Hy Volume Ac. 0.0034 0.0214 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+45 0+55 1+0 1+55 1+10 1+15 1+20 1+25 1+30 1+35	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7846	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98	5 Minute : 0 20.0 0 20.0 0 V Q V Q V Q V Q V Q V Q V Q V Q	40.0 40.0 7 Q V	60.0 80
$0+5 \\ 0+10 \\ 0+15 \\ 0+20 \\ 0+30 \\ 0+35 \\ 0+40 \\ 0+55 \\ 0+45 \\ 0+55 \\ 1+0 \\ 1+5 \\ 1+10 \\ 1+15 \\ 1+20 \\ 1+25 \\ 1+30 \\ 1+35 \\ 1+40 \\ 1+40 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+5 \\ 1+40 \\ 1+5 \\ 1+5 \\ 1+40 \\ 1+5 \\$	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5805 2.7118 2.7543 2.7886 2.8151	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 V 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86	5 Minute : 0 20.0 Q V V V V Q V V Q V Q V Q Q Q Q Q Q Q Q	40.0 40.0 7 Q V	60.0 B0
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	Hy) Volume Ac. 0.0034 0.0214 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7846 2.8151 2.8358	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+50	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7886 2.8151 2.8358 2.8514	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00 2.27	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+55 1+10 1+25 1+20 1+25 1+30 1+35 1+40 1+45 1+55	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7543 2.7586 2.8151 2.8358 2.8514 2.8632	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00 2.7 1.71 Q	5 Minute : 0 20.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.0 40.0 7 Q V	60.0 80
$0+5 \\ 0+10 \\ 0+15 \\ 0+20 \\ 0+30 \\ 0+35 \\ 0+40 \\ 0+55 \\ 0+55 \\ 1+0 \\ 1+5 \\ 1+10 \\ 1+15 \\ 1+20 \\ 1+25 \\ 1+30 \\ 1+40 \\ 1+45 \\ 1+55 \\ 2+0 \\ 0$	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7854 2.8514 2.8358 2.8514 2.8522 2.8727	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 1 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00 2.27 1.71 Q 1.38 Q	5 Minute : 0 20.0 0 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 40.0 7 Q V	60.0 80
0+5 0+10 0+15 0+20 0+35 0+30 0+35 0+40 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+45 1+45 1+45 1+45 1+55 2+5 2+5	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7886 2.8151 2.8358 2.8514 2.8358 2.8514 2.8358 2.8514 2.8358 2.8514	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 9 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00 2.27 1.71 Q 1.38 Q 0.92 Q	5 Minute :	40.0 40.0 7 Q V	60.0 80
$0+5 \\ 0+10 \\ 0+15 \\ 0+20 \\ 0+30 \\ 0+35 \\ 0+40 \\ 0+55 \\ 0+55 \\ 1+0 \\ 1+5 \\ 1+10 \\ 1+15 \\ 1+20 \\ 1+25 \\ 1+30 \\ 1+40 \\ 1+45 \\ 1+55 \\ 2+0 \\ 0$	Hy) Volume Ac. 0.0034 0.0214 0.0574 0.1099 0.1779 0.2648 0.3778 0.5224 0.3778 0.5224 0.7137 1.0291 1.5547 2.0370 2.3102 2.4742 2.5802 2.6556 2.7118 2.7543 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7843 2.7854 2.8514 2.8358 2.8514 2.8522 2.8727	drograph in Ft Q(CFS) 0.49 Q 2.62 V 5.23 V 7.62 1 9.87 12.62 16.41 21.00 27.78 45.79 76.32 70.03 39.67 23.80 15.39 10.95 8.17 6.16 4.98 3.86 3.00 2.27 1.71 Q 1.38 Q	5 Minute :	40.0 40.0 7 Q V	60.0 80

```
Unit Hydrograph Analysis
         Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                   Study date 02/12/20 File: 3828EX10310.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
_____
 English (in-1b) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
_____
 Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area =
                                                              69.65(Ac_{,}) = 0.109 \, Sq. \, Mi_{,}
Drainage Area for Depth-Area Areal Adjustment =
Drainage Area for Depth-Area Areal Adjustment = 69.65(AC.) =
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
Lag time =9.36 Min.25% of lag time =2.39 Min.40% of lag time =3.82 Min.Unit time =5.00 Min.Duration of storm =3 Hour(s)User Entered Base Flow =0.
                                 0.00 (CFS)
2 YEAR Area rainfall data:
                Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                            0.80
                                                       55.72
        69.65
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 1.86 129.55
69.65 1.86
STORM EVENT (YEAR) = 10.00
Area Averaged 2-Year Rainfall = 0.800(In)
Area Averaged 100-Year Rainfall = 1.860(II)
                                               129.55
                                           1.860(In)
Point rain (area averaged) = 1.2
Areal adjustment factor = 99.97 %
                                     1.236(In)
Adjusted average point rain = 1.236(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-2
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        76.0
        0.291
        0.000
        0.291
        1.000
        0.291

        Sum
        (F)
        =
        0.291
        1.000
        0.291

Area averaged mean soil loss (F) (In/Hr) = 0.291 Minimum soil loss rate ((In/Hr)) = 0.146 \,
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                                               .....
                 Unit Hydrograph
VALLEY S-Curve
VALUE 3-CUIVE
                                                 ......
                 Unit Hydrograph Data
 Unit time period Time % of lag Distribution Unit Hydrograph
     (hrs)
                                         Graph %
                                                                 (CFS)
 _____
   4.612
                                                                  19.712
                                                                20.039
                                                                  8.549
                                                                    4.629
                                                                    3.221
                                                                   2.314
                                                                   1.728
                                                                   1,261
                                                                   1.086
                                                                   0.836
                                                                  0.660
```

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1,250	784,608	0.523		0.367
16	1.333	836.916	0.415		0.292
	555	S	um = 100.000	Sum=	70.194

Unit Time	Pattern	Storm Rain	Loss ra	te(In./Hr)	Effective
		(In/Hr)	Max		(In/Hr)
1 0.08		0.193	(0.291	0.173	0.019
2 0.17	1.30	0.193 0.193	(0.291		
	1.30	0.163	(0.291		
3 0.25	1.10	0.100	0.291		
4 0.33	1.50	0.222	0.201	0.200	
5 0.42	1.50	0.222	(0.291) 0.240	0.027
6 0.50	1.80	0.193 0.163 0.222 0.222 0.267 0.222	0.291	0.240	
7 0.58		0.222	(0.291) 0.200	
8 0.67		0.267	(0.291	0.240	
9 0.75	1.80 1.50	0.267 0.222	(0.291 (0.291) 0.240	0.027
10 0.83	1.50	0.222	(0.291	0.200	0.022
11 0.92		0.237	(0.291) 0.214	0.024
12 1.00		0.267	(0.291	0.240	0.027
13 1.08		0.326	0.291	(0.294)	0.035
14 1.17	2 20	0 326	0.291	(0.294)	0.035
	2.20	0.226	0.291	0 294)	0.035
	2.20	0.326 0.297 0.386 0.400 0.356	0.201) 0.240 (0.294) (0.294) (0.294)) 0.267 (0.347) (0.360) (0.320) (0.320)	0.030
16 1.33	2.00	0.297	0.291	/ 0.20/	0.094
17 1.42	2.60	0.386	0.291	0.3477	0.094
18 1.50	2,70	0.400	0.291	(0.360)	0.109
19 1.58	2.40	0.356	0.291	0.320)	0.065
20 1.67	2.70	0.400	0.291	(0,360)	0.109
21 1.75	3.30	0.489	0.291	(0.360) (0.440) (0.414) (0.387)	0.198
22 1.83	3.10	0.460	0.291	(0.414)	0.168
23 1.92	2,90	0.430	0.291	(0.387)	0.139
24 2.00	3.00	0.445	0.291 0.291 0.291 0.291 0.291	(0.400)	0.154
25 2.08	3 10	0 460	0.291	(0.414)	
26 2.17	4 20	0.623	0 291	(0.561)	
20 2.17	4.20	0.025	0.291	0.667)	
27 2.25	5.00	0.741	0.201	0.007)	0.228
28 2.33	3.50	0.519	0.291	0.407/	0.717
29 2.42	6.80	0.400 0.356 0.400 0.489 0.460 0.430 0.445 0.460 0.623 0.741 0.519 1.008 1.082 1.216 0.875	0.291	(0.667) (0.467) (0.908) (0.974) (1.094) (0.787)	0.717
30 2.50	7.30	1.082	0,291	(0.974)	0.791
31 2.58	8.20	1.216	0.291	(1.094)	0.925
32 2.67	5.90	0.875	0.291	(0.787)	0.584
33 2.75	8.20 5.90 2.00 1.80 1.80	0.297	(0.291	(0.787)) 0.267) 0.240) 0.240	0.030
34 2.83	1.80	0.267	(0.291) 0.240	0.027
35 2.92	1 80	0.267	(0.291) 0.240	0.027
36 3.00	0.60	0.089	(0.291) 0.080	0.009
50 5.00	(Loss	Rate Not Used)		
S11m =	100 0			Sum :	= 5.7
171.0	ad welves	Effective rai	nfall	$0.48(T_{\rm T})$	
FIU	ou vorume =	BILECCIVE IAL	(T=) / (D+)	1 2 0	(Act RE)
C11	mes area	69.7(Ac.)/[(III)/(FU.)] = 2.0	(AC.FC)
Tota	al soil loss	B = 0.76(lu)		
Tota	al soil loss	3 = 4.400(Ac.Ft)		
Tot: Tot:	al soil loss al rainfall	s = 4.400(= 1.24(I	Ac.Ft) n)		
Tota Tota Floa	al soil loss al rainfall od volume =	a = 0.76(a = 4.400(= 1.24(I) 120778.3	Ac.Ft) n) Cubic Fee	t	
FLO	od volume =	120778.3	CUDIC Fee	t Feet	
Flor Tota	od volume = al soil loss	120778.3 3 = 19164	7.1 Cubic	Feet	
Flo Tot	od volume = al soil loss	120778.3 s = 19164	7.1 Cubic	Feet	
Flo Tot: Pe:	od volume = al soil loss ak flow rate	3 = 19164 s of this hydr	7.1 Cubic	47.260 (CFS)
Floo Tota Pea	od volume = al soil loss ak flow rate	3 = 19164 of this hydr	ograph =	Feet 47.260 (CFS)
Floo Tota Pea	od volume = al soil loss ak flow rate	<pre>120778.3 s = 19164 e of this hydr ++++++++++++++++++++++++++++++++++++</pre>	7.1 Cubic ograph =	47.260 (CFS)
Floo Tota Pea	od volume = al soil loss ak flow rate	120778.3 = 19164 e of this hydr ++++++++++++++++++++++++++++++++++++	Cubic Fee 7.1 Cubic ograph = ++++++++++ U R S T	47.260 (CFS)) ++++++ ++ ++++++++++++++++++++++
Floo Tota Pea	od volume = al soil loss ak flow rate	2017/8.3 = 19164 e of this hydr +++++++++++++++ 3 - H O R u D O f	rograph = ++++++++++ U R S T H v d	47.260(CFS 0 R M r o g r a p h) +++++++++++++++++++++++++++++++++++++
Floo Tota Pea	al soil loss ak flow rate	1207/8.3 = 19164 e of this hydr +++++++++++ 3 - H O R u n o f f	7.1 Cubic ograph = ++++++++++ UR ST Hyd	Feet 47.260(CFS +++++++++++++ ORM rograph) +++++++++++++++++++++++++++++++++++++
Floo Tota Pea	al soil loss ak flow rate	2017/8.3 = 19164 e of this hydr +++++++++++++++ 3 - H O R u D O f	7.1 Cubic ograph = ++++++++++ UR ST Hyd	Feet 47.260(CFS +++++++++++++ ORM rograph) +++++++++++++++++++++++++++++++++++++
Fio Tot: Pe: +++	al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++	20778.3 = 19164 e of this hydr +++++++++++ 3 - H O R u n o f f drograph in	7.1 Cubic Tograph = ++++++++++ U R S T H y d 5 Minute	Feet 47.260(CFS +++++++++++++ 0 R M r o g r a p h intervals ((f) ++++++++++++++++++++++++++++++++++++
Fio Tot: Pe: +++	al soil loss ak flow rate ************	120778.3 = 19164 e of this hydr ++++++++++++++++++++++++++++++++++++	7.1 Cubic ograph = ++++++++++ U R S T H y d 5 Minute	47.260(CFS +++++++++++++++ O R M r o g r a p h intervals (()) ++++++++++++++++++++++++++++++++++++
Fio Tot: Pe. +++ Time (h+m)	od volume = al soil loss ak flow rate Hyd Volume Ac.1	a of this hydr a of this hydr $a - H O$ $R u n o f f$ $drograph in$ $Ft Q(CFS) 0$	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	47.260 (CFS)
Fio Tot: Pe: +++ Time(h+m)	od volume = al soil loss ak flow rate 	120778.3 = 19164 e of this hydr ++++++++++ 3 - H O R u n o f f Hrograph in Ft Q(CFS) 0	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS +++++++++++++ O R M r o g r a p h intervals ((5 25.0)
Fio Tot: Pe: +++ Time (h+m) 0+ 5	od volume = al soil loss ak flow rate +++++++++++ Hyo Volume Ac.1 0.0006	1207/8.3 = 19164 = of this hydr ++++++++++++ 3 - H O R u n o f f Hrograph in Ft Q(CFS) 0 0.09 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS +++++++++++++ O R M r o g r a p h intervals ((5 25.0)
Fio Tot: Pe: +++ Time(h+m)	od volume = al soil loss ak flow rate Hyd Volume Ac.1 0.0006 0.0038	1207/8.3 = 19164 e of this hydr ++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS +++++++++++++ O R M r o g r a p h intervals ((5 25.0)
Fio Tot: Pe: +++ Time (h+m) 0+ 5	od volume = al soil loss ak flow rate +++++++++++ Hyo Volume Ac.1 0.0006	1207/8.3 = 19164 a of this hydr ++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q 0.84 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS +++++++++++++ O R M r o g r a p h intervals ((5 25.0)
Fio Tot: Pe: Time(h+m) 0+ 5 0+10	od volume = al soil loss ak flow rate Hyd Volume Ac.1 0.0006 0.0038	1207/8.3 = 19164 e of this hydr ++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS +++++++++++++ O R M r o g r a p h intervals ((5 25.0)
Fio Tot: Pe. +++ Time(h+m) 0+ 5 0+10 0+15	od volume = al soil loss ak flow rate 	1207/8.3 = 19164 a of this hydr ++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q 0.84 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25	<pre>od volume = al soil loss ak flow rate</pre>	1207/8.3 = 19164 = of this hydr ++++++++++++++++++++++++++++++++++++	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	<pre>1207/8.3 s = 19164 a of this hydr</pre>	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++- Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35	<pre>od volume = al soil loss ak flow rate</pre>	<pre>1207/8.3 a = 19164 a of this hydr</pre>	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+30 0+35 0+40	A volume = al soil loss ak flow rate Hyr Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0535	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f irograph in Ft Q(CFS) 0.09 0 0.47 0 0.84 0 0.84 0 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45	<pre>od volume = al soil loss ak flow rate</pre>	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.59 VQ	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++ Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55	A volume = al soil loss ak flow rate Hyro Volume Ac.1 0.0006 0.0036 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873	$\begin{array}{cccc} 1207/8.3\\ & = & 19164\\ \hline \\ e \ of \ this \ hydr\\ & & & & & \\ 3 \ - \ H \ O\\ R \ u \ n \ o \ f \ f\\ \hline \\ hrograph \ in\\ \hline \\ Ft \ Q \ (CFS) \ 0\\ \hline \\ 0.99 \ Q\\ 0.47 \ Q\\ 0.84 \ Q\\ 0.98 \ Q\\ 1.12 \ Q\\ 1.30 \ VQ\\ 1.45 \ VQ\\ 1.52 \ VQ\\ 1.59 \ VQ\\ 1.67 \ Q\\ 1.65 \ Q\\ \end{array}$	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++: Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+30 0+35 0+40 0+45 0+55 1+ 0	A volume = al soil loss ak flow rate Hyr Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f irograph in Pt Q(CFS) 0.09 Q 0.47 Q 0.84 Q 0.84 Q 1.12 Q 1.30 VQ 1.52 VQ 1.52 VQ 1.65 Q 1.64 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe. +++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+30 0+45 0+55 0+55 1+ 0 1+ 5	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in frograph in color 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.59 VQ 1.67 Q 1.64 Q 1.75 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++ Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in Ft Q(CFS) 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.67 Q 1.65 Q 1.64 Q 1.75 Q 1.98 Q	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++. Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15	A volume = al soil loss ak flow rate treations Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986 0.1107 0.1243 0.1394	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in Ft Q(CFS) 0 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.65 Q 1.65 Q 1.64 Q 1.75 Q 1.98 Q 2.19 QV	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+30 0+35 0+40 0+45 0+55 1+0 1+ 5 1+10 1+15 1+20	A volume = al soil loss ak flow rate Hyr Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986 0.1107 0.1243 0.1394 0.1549	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f irograph in Pt Q(CFS) 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.65 Q 1.64 Q 1.75 Q 1.98 Q 2.19 QV	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++. Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+30 0+35 0+40 0+45 0+55 1+0 1+ 5 1+10 1+15 1+20	A volume = al soil loss ak flow rate Hyr Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986 0.1107 0.1243 0.1394 0.1549	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in 5 Grad 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.59 VQ 1.67 Q 1.65 Q 1.64 Q 1.75 Q 1.98 Q 2.19 QV 2.71 QV 3.77 V	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++ Time(h+m) 0+5 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	<pre>od volume = al soil loss ak flow rate</pre>	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in 5 Grad 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.45 VQ 1.52 VQ 1.59 VQ 1.67 Q 1.65 Q 1.64 Q 1.75 Q 1.98 Q 2.19 QV 2.71 QV 3.77 V	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++. Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	A volume = al soil loss ak flow rate treations Wolume Ac.I 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.0430 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986 0.1107 0.1243 0.1394 0.1549 0.1721 0.1900 0.2333	$\begin{array}{c} 1207/8.3\\ s = 19164\\ s of this hydr\\ s - 19164\\ s of this hydr\\ s - 19164\\ s - 191644\\ s - 191644\\ s - $	7.1 Cubic ograph = 	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fio Tot: Pe: +++ Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	A volume = al soil loss ak flow rate t+t+t+t+t+t+t Volume Ac.1 0.0006 0.0038 0.0096 0.0164 0.0241 0.0330 0.04300 0.04300 0.04300 0.0430000000000	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in regraph in Trograph in 0.09 Q 0.47 Q 0.84 Q 0.98 Q 1.12 Q 1.30 VQ 1.52 VQ 1.52 VQ 1.67 Q 1.65 Q 1.67 Q 1.68 Q 2.19 QV 2.75 QV 3.77 V 5.30 6 6.12	7.1 Cubic ograph = 	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: ++++ Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+50	A volume = al soil loss ak flow rate Hyre Volume Ac.1 0.0006 0.0036 0.0036 0.0036 0.00430 0.0453 0.0420 0.1243 0.2233 0.26698 0.3120 0.3707	$\begin{array}{c} 1207/8.3\\ s = 19164\\ s of this hydr\\ s - 19164\\ s of this hydr\\ s - 19164\\ s - 191644\\ s - 191644\\ s - $	7.1 Cubic ograph = ++++++++ U R S T H y d 5 Minute 12.	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+50 1+55	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 a of this hydr a of this hydr 3 - H O R u n o f f drograph in regraph in	VQ VQ VQ VQ VQ VQ VQ	Feet 47.260(CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++: Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+35 1+40 1+45 1+55 2+ 0	A volume = al soil loss ak flow rate the volume Ac.l volume Ac.l v	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12. 12. 12. VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: ++++ Time(h+m) 0+5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+25 1+30 1+35 1+40 1+45 1+55 2+0 2+5	<pre>od volume = al soil loss ak flow rate</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = 	Feet 47.260 (CFS ++++++++++++++ O R M r o g r a p h intervals ((1) 5 25.0)
Fior Tot: Pe: +++- Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+15 1+20 1+15 1+20 1+35 1+40 1+35 1+50 1+55 2+ 0 2+ 5 2+10	A volume = al soil loss ak flow rate with the the the the volume Ac.1 0.0006 0.0036 0.0036 0.0046 0.0036 0.0164 0.0241 0.0330 0.0430 0.0430 0.0430 0.0430 0.0430 0.0535 0.0645 0.0760 0.0873 0.0986 0.1107 0.1243 0.1394 0.1549 0.1721 0.1900 0.2333 0.2698 0.3120 0.3707 0.4393 0.5750 0.6524	$\begin{array}{c} 1207/8.3\\ s = 19164\\ s of this hydr++++++++++++++++++++++++++++++++++++$	7.1 Cubic ograph = 	Feet 47.260 (CFS ++++++++++++ o R M r o g r a p h intervals ((19 5 25.0)
Fio Tot: Pe: +++. Time (h+m) Time (h+m) Time (h+m) Time (h+m) Time (h+m) t+t t+t t+t t+t t+t t+t t+t t+t t+	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12. 12. VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ	Feet 47.260 (CFS ++++++++++++ o R M r o g r a p h intervals ((1 5 25.0)
Fior Tot: Pe: +++: Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0 2+ 5 2+10 2+15 2+20	A volume = al soil loss ak flow rate 	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = 	<pre>Feet 47.260(CFS to g r a p h intervals (()</pre>)
Fio Tot: Pe: +++. Time (h+m) Time (h+m) Time (h+m) Time (h+m) Time (h+m) t+t t+t t+t t+t t+t t+t t+t t+t t+	<pre>od volume = al soil loss ak flow rate ++++++++++++++++++++++++++++++++++++</pre>	1207/8.3 = 19164 a of this hydr 	7.1 Cubic ograph = +++++++++ U R S T H y d 5 Minute 12. 12. VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ VQ	Feet 47.260 (CFS ++++++++++++ o R M r o g r a p h intervals ((1 5 25.0)

2+30	1.2551	29.56	I.	1		v	Q		1
2+35	1.5356	40.72		1			l v		Q
2+40	1.8611	47.26	1	- 1			1	v	4
2+45	2.1602	43.43		- 1			1		V Q
2+50	2.3575	28.64	1	1			0		V I
2+55	2.4713	16.53			Q		1		v I
3+ 0	2.5507	11.53	10	Q			1		l v
3+ 5	2.6090	8.46	1 4	2 1			1		1 .
3+10	2.6515	6.17	Q	1			I .		1
3+15	2.6832	4.60	Q	t			1		1 C
3+20	2.7078	3.58	Q	1			t		1
3+25	2.7272	2.82	Q	1			1		1
3+30	2.7418	2.12	Q	1			1		1
3+35	2.7527	1.59	Q				1		1
3+40	2.7612	1.23	Q	1			ł.		1
3+45	2.7671	0.86	Q	1			l I		1
3+50	2.7708	0.53	Q	1			1		1
3+55	2.7722	0.21	Q	1			1		1
4+ 0	2.7725	0.03	Q				1		1
4+ 5	2.7726	0.02	Q	1			1		1
4+10	2.7727	0.01	Q	- 1			1		1
4+15	2.7727	0.00	Q	1			1		1

```
Unit Hydrograph Analysis
          Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                   Study date 02/12/20 File: 3828EX10610.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
            English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
 English Units used in output format
_____
Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
Lag time =9.56 Min.25% of lag time =2.39 Min.40% of lag time =3.82 Min.Unit time =5.00 Min.Duration of storm =6 Hour(s)User Entered Base Flow =0.
                                   0.00(CFS)
2 YEAR Area rainfall data:
                Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                                                         80.10
                             1.15
        69.65
100 YEAR Area rainfall data:
       c.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 2.50
Area(Ac.)[1]
                                                174.13
STORM EVENT (YEAR) = 10.00
Area Averaged 2-Year Rainfall = 1.150(In)
Area Averaged 100-Year Rainfall = 2.500(Ir
                                             2.500(In)
Point rain (area averaged) = 1.705(In)
Areal adjustment factor = 99.98 %
Adjusted average point rain = 1.705(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-2
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        76.0
        0.291
        0.000
        0.291
        1.000
        0.291

        Sum
        (F)
        =
        0.291
        1.000
        0.291

Area averaged mean soil loss (F) (In/Hr) = 0.291
Minimum soil loss rate ((In/Hr)) = 0.146
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                                               ......
Unit Hydrograph
VALLEY S-Curve
 -----
                                                     Unit Hydrograph Data
 ......
Unit time period Time % of lag Distribution Unit Hydrograph
                                           Graph %
                                                                    (CFS)
     (hrs)
 6.571
28.083
                                                                      4.612
                                                                     19.712
                                                                  20.039
8.549
                                                                      4.629
                                                                      3.221
                                                                      2.314
                                                                      1.728
                                                                     1.261
                                                                     1.086
                                                                     0.836
```

```
0.660
Page 1
```

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
	181,020	S	um = 100.000	Sum=	70.194

					-		
Unit	Time	Pattern	Storm Rain		CONTRACTOR INC.	e(In./Hr)	Effective
	(Hr.)	Percent	(In/Hr)		Max	Low	(In/Hr)
1	0.08	0.50	0.102	5	0.291)	0.092	0.010 0.012
2 3	0.17	0.60	0.123	5	0.291)	0.110	0.012
د 4	0.25	0.60	0.123 0.123	6	0.291)	0.110	0.012
5	0.42	0.60	0.123	i	0.291)	0.110	0.012
6	0.50	0.70	0.143	i	0.291)	0.129	0.014
7	0.58	0.70	0.143	i	0.291)	0.129	0.014
8	0.67	0.70	0.143	- č	0.291)	0.129	0.014
9	0.75	0.70	0.143	è	0.291)	0.129	0.014
10	0.83	0.70	0.143	Č.	0.291)	0.129	0.014
11	0.92	0.70	0.143	(0.291)	0.129	0.014
12	1.00	0.80	0.164	(0.291)	0.147	0.016
13	1.08	0.80	0.164	(0.291)	0.147	0.016
14	1.17	0.80	0.164	(0.291)	0.147	0.016
15	1.25	0.80	0.164	0	0.291)	0.147	0.016
16	1.33	0,80	0.164	5	0.291)	0.147	0.016
17	1.42	0.80	0.164	5	0.291)	0.147	0.016
18	1.50	0.80	0.164	(0.291)	0.147	0.016
19	1.58	0.80	0.164	5	0.291)	0.147	0.016 0.016
20	1.67	0.80	0.164	6	0.291)	0.147 0.147	0.016
21 22	1.75	0.80	0.164 0.164	i	0.291)	0.147	0.016
23	1.92	0.80	0.164	i	0.291)	0.147	0.016
23 24	2.00	0.90	0.184	i	0.291)	0.166	0.018
24	2.08	0.80	0.164	i	0.291)	0.147	0.016
26	2.17	0.90	0.184	č	0.291)	0.166	0.018
27	2.25	0.90	0.184	i	0.291)	0.166	0.018
28	2.33	0.90	0.184	i	0.291)	0.166	0.018
29	2.42	0.90	0.184	- C	0.291)	0.166	0.018
30	2.50	0.90	0.184	(0.291)	0.166	0.018
31	2.58	0.90	0.184	<	0.291)	0.166	0.018
32	2.67	0.90	0.184	(0.291)	0.166	0.018
33	2.75	1.00	0.205	<	0.291)	0.184	0.020
34	2.83	1.00	0.205	(0.291)	0.184	0.020
35	2.92	1.00	0.205	(0.291)	0.184	0.020
36	3.00	1.00	0.205	(0.291)	0.184	0.020
37	3.08	1.00	0.205	5	0.291)	0.184	0.020
38	3.17	1.10	0.225	5	0.291)	0.203	0.023
39	3.25	1,10	0.225	5	0.291)	0.203	0.023 0.023
40	3.33	1.10	0.225	(0.291)	0.203	0.025
41	3.42	1.20	0.246 0.266	è	0.291)	0.239	0.023
42 43	3.50	1,30	0.286	ì	0.291)	0.258	0.029
43	3.67	1.40	0.286	i	0.291)	0.258	0.029
45	3.75	1.50	0.307	ć	0.291)	0.276	0.031
46	3.83	1.50	0.307	i	0.291)	0.276	0.031
47	3.92	1.60	0.327		0.291	(0.295)	0.036
48	4.00	1.60	0.327		0.291	(0.295)	0.036
49	4.08	1.70	0.348		0.291	(0.313)	0.057
50	4.17	1.80	0.368		0.291	(0.331)	0.077
51	4.25	1.90	0.389		0.291	(0.350)	0.098
52	4.33	2.00	0.409		0.291	(0.368)	0.118
53	4.42	2.10	0.430		0.291	(0.387)	0.138
54	4.50	2.10	0.430		0.291	(0.387)	0.138
55	4.58	2.20	0.450		0.291	(0.405)	0.159
56	4.67	2.30	0.471		0.291	(0.424)	0.179 0.200
57	4.75	2.40	0.491		0.291	(0.442) (0.442)	0.200
58	4.83	2.40	0.491		0.291		0.220
59 60	4.92	2.50	0.511 0.532		0.291	(0.460) (0.479)	0.241
61	5.08	3.10	0.634		0.291	(0.571)	0.343
62	5.17	3.60	0.737		0.291	0.663)	0.445
63	5.25	3.90	0.798		0.291	(0.718)	0.507
64	5.33	4.20	0.859		0.291	(0.773)	0.568
65		4.70	0.962		0.291	(0.865)	0.670
	5.42		1.146		0.291	(1.031)	0.855
66	5.42	5.60			0 001	1 0 2501	0.098
		5.60 1.90	0.389		0,291	(0.350)	
66 67 68	5.50 5.58 5.67	1.90 0.90	0.389 0.184	1.12.5	0.291)	0.166	0.018
66 67 68 69	5.50 5.58 5.67 5.75	1.90 0.90 0.60	0.389 0.184 0.123	(0.291) 0.291)	0.166 0.110	0.018 0.012
66 67 68 69 70	5.50 5.58 5.67 5.75 5.83	1.90 0.90 0.60 0.50	0.389 0.184 0.123 0.102	:	0.291) 0.291) 0.291)	0.166 0.110 0.092	0.018 0.012 0.010
66 67 68 69 70 71	5.50 5.58 5.67 5.75 5.83 5.92	1.90 0.90 0.60 0.50 0.30	0.389 0.184 0.123 0.102 0.061	(())	0.291) 0.291) 0.291) 0.291)	0.166 0.110 0.092 0.055	0.018 0.012 0.010 0.006
66 67 68 69 70	5.50 5.58 5.67 5.75 5.83	1.90 0.90 0.60 0.50 0.30 0.20	0.389 0.184 0.123 0.102 0.061 0.041	~~~~	0.291) 0.291) 0.291)	0.166 0.110 0.092	0.018 0.012 0.010
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00	1.90 0.90 0.60 0.50 0.30 0.20 (Loss	0.389 0.184 0.123 0.102 0.061	~~~~	0.291) 0.291) 0.291) 0.291)	0.166 0.110 0.092 0.055 0.037	0.018 0.012 0.010 0.006 0.004
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00	1.90 0.90 0.60 0.50 0.30 0.20 (LOSS 100.0	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used	((((0.291) 0.291) 0.291) 0.291) 0.291) 0.291)	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 Sum = Flood	1.90 0.90 0.60 0.50 0.20 (Loss 100.0	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai	(((()	0.291) 0.291) 0.291) 0.291) 0.291) 0.291)	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 Sum = Flood time	1.90 0.90 0.60 0.50 0.20 (Loss 100.0 l volume = s area	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[(((1) nfal	0.291) 0.291) 0.291) 0.291) 0.291) 0.291)	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 5um = Flood time Total	1.90 0.90 0.60 0.50 0.20 (Loss 100.0	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(((() nfal (In) In)	0.291) 0.291) 0.291) 0.291) 0.291) 0.291) 1 0 /(Ft.)]	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 5um = Flood time Total Total	1.90 0.90 0.50 0.30 0.20 (Loss 100.0 Volume = s area soil loss	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859((((() nfal (In) Ac.F	0.291) 0.291) 0.291) 0.291) 0.291) 0.291) 1 0 /(Ft.)]	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 5um = Flood time Total Total Total	1.90 0.90 0.60 0.50 0.20 (Loss 100.0 volume = s area soil loss soil loss	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(I	(((((In) Ac.F (n)	0.291) 0.291) 0.291) 0.291) 0.291) 0.291) 1 0 /(Ft.)]	0.166 0.110 0.092 0.055 0.037 Sum =	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 Flood time Total Total Total Flood	1.90 0.90 0.60 0.50 (Loss 100.0 volume = s area soil loss rainfall volume = soil loss	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(I 132301.8 s = 29877	(((((In) In) Ac.F (n) Cub	0.291) 0.291) 0.291) 0.291) 0.291) 1 00 /(Ft.)] t) ic Feet Cubic Feet	0.166 0.110 0.092 0.055 0.037 Sum = 0.52(In) = 3.0(2	0.018 0.012 0.010 0.006 0.004 6.3 Ac.Ft)
66 67 68 69 70 71 72	5.50 5.58 5.75 5.75 5.83 5.92 6.00 5.00 Flood time Total Total Total	1.90 0.90 0.60 0.50 (Loss 100.0 volume = s area soil loss rainfall volume = soil loss	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(I 132301.8 s = 29877	(((((In) Ac.F (n) Cub 0.7	0.291) 0.291) 0.291) 0.291) 0.291) 1 00 /(Ft.)] t) ic Feet Cubic Feet	0.166 0.110 0.092 0.055 0.037 Sum = 0.52(In) = 3.0(2)	0.018 0.012 0.010 0.006 0.004 6.3
66 67 68 69 70 71 72	5.50 5.58 5.67 5.75 5.83 5.92 6.00 time Total Total Total Total Flood Total	1,90 0,90 0.60 0.50 0.30 0.20 (Loss 100.0 volume = s area soil loss rainfall volume = s toil loss frainfall	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(T 132301.8 s = 29877 e of this hydr	(((((()) ((In) Ac.F (n) Cub (0.7 	0.291) 0.291) 0.291) 0.291) 0.291) 1 0 /(Ft.)] t) ic Feet Cubic Feet 	0.166 0.110 0.092 0.055 0.037 Sum = 0.52(In) = 3.0(2) eet 41.597(CFS)	0.018 0.012 0.010 0.006 0.004 6.3 Ac.Ft)
66 67 68 69 70 71 72	5.50 5.58 5.75 5.75 5.92 6.00 #um = Flood time Total Total Total Total Flood	1.90 0.90 0.60 0.50 0.20 (Loss 100.0 volume = soil loss rainfall volume = soil loss trainfall	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(I 132301.8 s = 29877 e of this hydr	(((((In) In) Ac.F n) Cub 0.7	0.291) 0.291) 0.291) 0.291) 0.291) 1 0 /(Ft.)] t) ic Feet Cubic Fe 	0.166 0.110 0.092 0.055 0.037 Sum = 0.52(In) = 3.0(2) eet 41.597(CFS)	0.018 0.012 0.010 0.006 0.004 6.3 Ac.Ft)
66 67 68 69 70 71 72	5.50 5.58 5.75 5.75 5.92 6.00 #um = Flood time Total Total Total Total Flood	1.90 0.90 0.60 0.50 0.20 (Loss 100.0 volume = soil loss rainfall volume = soil loss trainfall	0.389 0.184 0.123 0.102 0.061 0.041 Rate Not Used Effective rai 69.7(Ac.)/[s = 1.18(s = 6.859(= 1.70(I 132301.8 s = 29877 e of this hydr	((((((In) Ac.F n) Cub 0.7 ogra ++++	0.291) 0.291) 0.291) 0.291) 0.291) 1 00 /(Ft.)] t) ic Feet Cubic Fee 	0.166 0.110 0.092 0.055 0.037 Sum = 0.52(In) = 3.0(2 41.597(CFS)	0.018 0.012 0.010 0.006 0.004 6.3 Ac.Ft)

0.3-2								
Time(h+m)	Volume Ac.Ft	Q(CFS)	0	12.5	25.0)	37.5	50
0+ 5	0.0003	0.05	Q	1	1		1	1
0+10	0.0021	0.26	-		1		1	
0+15	0.0056	0.50 0.63		÷				
0+20 0+25	0.0099 0.0147		Q	1				
0+30	0.0199		Q	- fr	1		1	1
0+35	0.0255	0.82	0	i i	1		1	
0+40	0.0316	0.88						
0+45	0.0379	0.92		1				-
0+50	0.0444	0.94 0.96						
0+55 1+ 0	0.0510	0.98		ł.			1	1
1+ 5	0.0649	1.03		i i	1		i -	i
1+10	0.0723	1.08	Q	1	1		1	1
1+15	0.0799	1.10 1.12 1.13	QV		1		1	
1+20	0.0876	1.12	QV					
1+25	0.0954	1.13	QV QV					
1+30 1+35	0.1032	1 14	ov					
1+40	0.1188	1.14	ov	ł.				
1+45	0.1267	1.14	QV	1	i		1	1
1+50	0.1346	1.15	QV	1	1		1	
1+55	0.1425	1.13 1.13 1.14 1.14 1.14 1.15 1.15 1.16 1.19 1.20 1.22	QV		1			
2+ 0	0.1505	1.10	QV Q V					
2+ 5 2+10	0.1587	1 20	õ v	1	1		1	1
2+15	0.1753	1.22	õ v	1			1	i
2+20	0.1839	1.22 1.25 1.26	QV	1	1		1	1
2+25	0.1926		QV	1	1			
2+30	0.2014	1.27	QV		1			
2+35	0.2102	1.28	QV					
2+40 2+45	0.2190	1.28 1.29	lo v					
2+50	0.2371	1.34		1	1		1	1
2+55	0.2466	1 39	IO V	i	i		1	1
3+ 0	0.2562	1.40	QV	1	1		1	1
3+ 5	0.2659	1.41	QV	1	1		1	
3+10	0.2758	1.43	QV				1	
3+15	0.2859	$1.47 \\ 1.52$	QV QV					
3+20 3+25	0.3070	1.55	Q V		1		1	1
3+30	0.3181	1.61	Q V	i	Î.		1	
3+35	0.3298	1.71	QV				1	1
3+40	0.3423	1.81	Q V					
3+45	0.3553	1.89	Q V Q V					
3+50 3+55	0.3689	1.97 2.06	Q V				8	
4+ 0	0.3983	2.20	Q V	1	1		1	i
4+ 5	0.4150	2.43	Q V	1	1		1	1
4+10	0.4356	2.99	Q V	1	1		1	1
4+15	0.4627	3.94		1	1		1	1
4+20	0.4975	5.05						
4+25 4+30	0.5405 0.5915	6.24 7.41	Q V Q V					
4+35	0.6487	8.31		v			1	
4+40	0.7123	9.23	ĨQ	v	i		1	1
4+45	0.7840	10.42		2 V G	1			
4+50	0.8640	11.61	1	QV				
4+55	0.9503	12.53	1	Q V Q V				1
5+ 0 5+ 5	1.0431 1.1469	13.48 15.07	1	ĬQ̈́V	1		1	1
5+10	1.2734	18.36	1	Q I	v		1	1
5+15	1.4328	23.15	1		Q		1	1
5+20	1.6247	27.86	1		VQ		1	1
5+25	1.8474	32.33	Į.	1		VQ V	1	-
5+30	2.1085	37.92				v		
5+35 5+40	2.3950 2.6144	41.60 31.85		-		Q	v	
5+40 5+45	2.7372	17.84	1	Q	1	*	7	7
5+50	2.8156	11.37	1	Q	1		1	v I
5+55	2.8724	8.26	Q	1	1			v
6+ 0	2,9151	6.19	Q					V
6+ 5	2.9474	4.70	Q	1				v
6+10	2.9719	3.56	Q				1	v
6+15 6+20	2.9910 3.0056	2.77 2.11	Q				1	v
6+20	3.0166	1.60	Q	1	1		1	v
6+30	3.0246	1.17	Q	1	1		1	v
6+35	3.0304	0.84	Q	1	1		1	v
6+40	3.0344	0.58	Q	1			1	V
6+45	3.0366	0.31	Q	-				V
6+50	3.0369	0.05	Q					v v
6+55 7+ 0	3.0371	0.02	Q					v
7+ 0 7+ 5	3.0372 3.0372	0.01	Q Q	-				v
7+10	3.0372	0.00	Q	1			1	v
	3.0372	0.00	Q	1.0				v

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX102410.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -----Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. 69.65 (Ac.) = 0.109 Sg. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Drainage Area for Depth-Area Areal Adjustment = Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.75 69.65 100 YEAR Area rainfall data: c.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 4.50
 Kalmrail(in) [2]
 Weigh

 69.65
 4.50

 STORM EVENT (YEAR) =
 10.00

 Area Averaged 2-Year Rainfall =
 1.750(In)

 Area Averaged 100-Year Rainfall =
 4.500(In)
 Area(Ac.)[1] 313.43 4.500(In) Point rain (area averaged) = 2.881(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 2.881(In) Area(Ac.) Runoff Index Impervious % 69.650 76.00 0 000 Sub-Area Data: 69.650 76.00 0.000 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj. Infil. Rate
 Area%
 F

 AMC2
 AMC-2
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 0.291
 0.000
 0.291
 1.000
 0.291

 Sum
 (F)
 =
 0.291
 1.000
 0.291
 Area averaged mean soil loss (F) (In/Hr) = 0.291 Minimum soil loss rate ((In/Hr)) = 0.146 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve -----Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph Graph % (CFS) (hrs) -----
 1
 0.083
 52.307
 6.571

 2
 0.167
 104.614
 28.083

 3
 0.250
 156.922
 28.549

 4
 0.333
 209.229
 12.179

 5
 0.417
 261.536
 6.595

 6
 0.500
 313.843
 4.569

 7
 0.583
 366.151
 3.296

 8
 0.667
 418.458
 2.462

 9
 0.750
 470.765
 1.797

 10
 0.833
 523.072
 1.548

 11
 0.917
 575.380
 1.191

 12
 1.000
 627.687
 0.940
 _____ 4.612 19.712 20.039 8:549 4.629 3.221 2.314 1.728 1.261 1.086 0.836 0.660

13	1.083	679.994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
			Sum = 100.000	Sum=	70.194

1000 00001					
Unit Time	e Pattern	Storm Rain	Loss rate (Effective
(Hr.		(In/Hr)	Max	Low	(In/Hr)
1 0.08		0.023	(0.516) (0.514)	0.021	0.002
2 0.17		0.023	(0.514) (0.512)	0.021	0.002
3 0.25 4 0.33		0.023 0.035	(0.510)	0.031	0.003
		0.035	(0.508)	0.031	0.003
		0.035	(0.506)	0.031	0.003
		0.035	(0.504)	0.031	0.003
		0.035	(0.502)	0.031	0.003
		0.035	(0.500)	0.031	0.003
		0.046	(0.498)	0.041	0.005
10 0.83		0.046	(0.496)	0.041	0.005
11 0.92 12 1.00		0.046	(0.494)	0.041	0.005
13 1.08		0.035	(0.493)	0.031	0.003
14 1.17		0.035	(0.491)	0.031	0.003
15 1.25		0.035	(0.489)	0.031	0.003
16 1.33		0.035	(0.487)	0.031	0.003
17 1.42		0.035	(0.485)	0.031	0.003
18 1.50		0.035	(0.483)	0.031	0.003
19 1.58		0.035	(0.481)	0.031	0.003
20 1.67		0.035	(0.479)	0.031	0.003
21 1.75		0.035	(0.477)	0.031	0.003
22 1.83		0.046	(0.475)	0.041	0.005
23 1.92		0.046	(0.473)	0.041	0.005
24 2.00		0.046	(0.471)	0.041	0.005
25 2.08	25 1 2.25	0.046	(0.469)	0.041	0.005
26 2.17		0.046	(0.467)	0.041	0.005
27 2.25		0.046	(0.466)	0.041	0.005
28 2.33		0.046	(0.464)	0.041	0.005
29 2.42		0.046	(0.462)	0.041	0.005
30 2.50		0.046	(0.460)	0.041	0.005
31 2.58		0.058	(0.458)	0.052	0.006
32 2.67		0.058	(0.456)	0.052	0.006
33 2.75		0.058	(0.454)	0.052	0.006
34 2.83		0.058	(0.452)	0.052	0.006
35 2.92		0.058	(0.451)	0.052	0.006
36 3.00	0.17	0.058	(0.449)	0.052	0.006
37 3.08	0.17	0.058	(0.447)	0.052	0.006
38 3.11	0.17	0.058	(0.445)	0.052	0.006
39 3.25	0.17	0.058	(0.443)	0.052	0.006
40 3.33	0.17	0.058	(0.441)	0.052	0.006
41 3.42	0.17	0.058	(0.439)	0.052	0.006
42 3.50	0.17	0.058	(0,438)	0.052	0.006
43 3.58	0.17	0.058	(0.436)	0.052	0.006
44 3.67	0.17	0.058	(0.434)	0.052	0.006
45 3.75	0.17	0.058	(0.432)	0.052	0.006
46 3.83	0.20	0.069	(0.430)	0.062	0.007
47 3.92	0.20	0.069	(0.428)	0.062	0.007
48 4.00	0.20	0.069	(0.427)	0.062	0.007
49 4.08	0.20	0.069	(0.425)	0.062	0.007
50 4.1		0.069	(0.423)	0.062	0.007
51 4.25		0.069	(0.421)	0.062	0.007
52 4.33		0.081	(0.419)	0.073	0.008
53 4.42		0.081	(0.418)	0.073	0.008
54 4.50		0.081	(0.416)	0.073	0.008
55 4.58		0.081	(0.414)	0.073	0.008
56 4.6		0.081	(0.412)	0.073	0.008
57 4.75		0.081	(0.411)	0.073	0.008
58 4.83		0.092	(0.409)	0.083	0.009 0.009
59 4.92 60 5.00		0.092 0.092	(0.407) (0.405)	0.083	0.009
61 5.08		0.069	(0.403)	0.062	0.007
62 5.1		0.069	(0.402)	0.062	0.007
63 5.25		0.069	(0.400)	0.062	0.007
64 5.33		0.081	(0.398)	0.073	0.008
65 5.42		0.081	(0.396)	0.073	0.008
66 5.50		0.081	(0.395)	0.073	0.008
67 5.58		0.092	(0.393)	0.083	0.009
68 5.6		0.092	(0.391)	0.083	0.009
69 5.75		0.092	(0.390)	0.083	0.009
70 5.8		0.092	(0.388)	0.083	0.009
71 5.93		0.092	(0.386)	0.083	0.009
72 6.00		0.092	(0.384)	0.083	0.009
73 6.01		0.104	(0.383)	0.093	0.010
74 6.1		0.104	(0.381)	0.093	0.010
75 6.2		0.104	(0.379)	0.093	0.010
76 6.3		0.104	(0.378)	0.093	0.010
77 6.43		0.104	(0.376)	0.093	0.010
78 6.50		0.104	(0.374)	0.093	0.010
79 6.58		0.115	(0.373)	0.104	0.012
80 6.6		0.115	(0.371)	0.104	0.012
81 6.7		0.115	(0.369)	0.104	0.012
82 6.83		0.115	(0.368)	0.104	0.012
83 6.93		0.115	(0.366)	0.104	0.012
84 7.00		0.115	(0.364)	0.104	0.012
85 7.01		0.115	(0.363)	0.104	0.012
86 7.1	7 0.33	0.115	(0.361)	0.104	0.012
					Page 2

07	7 25	0.33	0.115	(0.359)	0.104	0.012
87	7.25				0.358)	0.114	0.013
88	7.33	0.37	0.127	ç			0.013
89	7.42	0.37	0.127	(0.356)	0.114	0.013
90	7.50	0.37	0.127	(0.354)	0.114	
91	7.58	0.40	0.138	(0.353)	0.124	0.014
92	7.67	0.40	0.138	(0.351)	0.124	0.014
93	7, 75	0.40	0.138	(0.349)	0.124	0.014
94	7.83	0.43	0.150	(0.348)	0.135	0.015
95	7.92	0.43	0.150	(0.346)	0.135	0.015
96	8.00	0.43	0.150	(0.345)	0.135	0.015
97	8.08	0.50	0.173	i	0.343)	0.156	0.017
98	8.17	0.50	0.173	i	0.341)	0.156	0.017
					0.340)	0.156	0.017
99	8.25	0.50	0.173	(0.156	0.017
100	8.33	0.50	0.173	(0.338)		
101	8.42	0.50	0.173	(0.337)	0.156	0.017
102	8.50	0.50	0.173	(0.335)	0.156	0.017
103	8.58	0.53	0.184	(0.334)	0.166	0.018
104	8.67	0.53	0.184	(0.332)	0.166	0.018
105	8.75	0.53	0.184	(0.330)	0.166	0.018
106	8.83	0.57	0.196	(0.329)	0.176	0.020
107	8.92	0.57	0.196	(0.327)	0.176	0.020
108	9.00	0.57	0.196	(0.326)	0.176	0.020
109	9.08	0.63	0.219	i	0.324)	0.197	0.022
				ì	0.323)	0.197	0.022
110	9.17	0.63	0.219		0.321)	0.197	0.022
111	9.25	0.63	0.219	Ş		0.207	0.023
112	9.33	0.67	0.230	5	0.320)		
113	9.42	0.67	0.230	(0.318)	0.207	0.023
114	9.50	0.67	0.230	(0.317)	0.207	0.023
115	9.58	0.70	0.242	(0.315)	0.218	0.024
116	9.67	0.70	0.242	(0.314)	0.218	0.024
117	9.75	0.70	0.242	(0.312)	0.218	0.024
118	9.83	0.73	0.254	(0.310)	0.228	0.025
119	9.92	0.73	0.254	(0.309)	0.228	0.025
120	10.00	0.73	0.254	(0.308)	0.228	0.025
	10.08	0.50	0.173	i	0.306)	0.156	0.017
121					0.305)	0.156	0.017
122	10.17	0.50	0.173	(0.017
123	10.25	0.50	0.173	6	0.303)	0.156	
124	10.33	0.50	0.173	(0.302)	0.156	0.017
125	10.42	0.50	0.173	(0.300)	0.156	0.017
126	10.50	0.50	0.173	(0.299)	0.156	0.017
127	10.58	0.67	0.230	(0.297)	0.207	0.023
128	10.67	0.67	0.230	(0.296)	0.207	0.023
129	10.75	0.67	0.230	(0.294)	0.207	0.023
130	10.83	0.67	0.230	(0.293)	0.207	0.023
131	10.92	0.67	0.230	i	0.291)	0.207	0.023
132	11.00	0.67	0.230	i	0.290)	0.207	0.023
			0.219	ć	0.289)	0.197	0.022
133	11.08	0.63				0.197	0.022
134	11.17	0.63	0.219	ç	0.287)		0.022
135	11.25	0.63	0.219	(0.286)	0.197	
136	11.33	0.63	0.219	(0.284)	0.197	0.022
137	11.42	0.63	0.219	(0.283)	0.197	0.022
138	11.50	0.63	0.219	(0.281)	0.197	0.022
139	11.58	0.57	0.196	(0.280)	0,176	0.020
140	11.67	0.57	0.196	(0.279)	0.176	0.020
141	11.75	0.57	0.196	(0.277)	0.176	0.020
142	11.83	0.60	0.207	6	0.276)	0.187	0.021
143	11,92	0.60	0.207	(0.275)	0.187	0.021
144	12,00	0.60	0.207	i	0.273)	0.187	0.021
		0.83	0.288	i	0,272)	0.259	0.029
145	12.08	0.83	0.288	i	0.270)	0.259	0.029
146	12.17			è	0.269)	0.259	0.029
147	12.25	0.83	0.288				0.032
148	12.33	0.87	0.300		0.268		0.033
149	12.42	0.87	0.300		0.266	(0.270)	
150	12.50	0.87	0.300		0.265	(0.270)	0.035
151	12.58	0.93	0.323		0.264	(0.290)	0.059
152	12.67	0.93	0.323		0.262	(0.290)	0.060
153	12.75	0.93	0.323		0.261	(0.290)	0.062
154	12.83	0.97	0.334		0.260	(0.301)	0.074
155	12.92	0.97	0.334		0.258	(0.301)	0.076
156	13.00	0.97	0.334		0.257	(0.301)	0.077
157	13.08	1.13	0.392		0.256	(0.353)	0.136
158	13.17	1.13	0.392		0.255	(0.353)	0.137
159	13.25	1.13	0.392		0.253	(0.353)	0.139
160	13.33	1.13	0.392		0.252	(0.353)	0.140
161	13.42	1.13	0.392		0.251	(0.353)	0.141
162	13.50	1.13	0.392		0.249	(0.353)	0.142
		0.77	0.392	(0.249	0.239	0.027
163	13.58						0.027
164	13.67	0.77	0.265	5	0.247)	0.239	
165	13.75	0.77	0.265	\$	0.246)	0.239	0.027
166	13.83	0.77	0.265	(0.244)	0.239	0.027
167	13.92	0.77	0.265	(0.243)	0.239	0.027
168	14.00	0.77	0.265	(0.242)	0.239	0.027
169	14.08	0.90	0.311		0.241	(0.280)	0.070
170	14.17	0.90	0.311		0.239	(0.280)	0.072
171	14.25	0.90	0.311		0.238	(0.280)	0.073
172	14.33	0.87	0.300		0.237	(0.270)	0.063
173	14.42	0.87	0.300		0.236	(0.270)	0.064
174	14.50	0.87	0.300		0.235	(0.270)	0.065
		0.87	0.300		0.233	(0.270)	0.066
175	14.58				0.232	(0.270)	0.067
176	14.67	0.87	0.300			(0.270)	0.069
177	14.75	0.87	0.300		0.231		
178	14.83	0.83	0.288		0.230	(0.259)	0.058
179	14.92	0.83	0.288		0.229	(0.259)	0.059
180	15.00	0.83	0.288		0.227	(0.259)	0.061
181	15.08	0.80	0.277		0.226	(0.249)	0.050
182	15.17	0.80	0.277		0.225	(0.249)	0.051
183	15.25	0.80	0.277		0.224	(0.249)	0.053
184	15.33	0.77	0.265		0.223	(0.239)	0.042
185	15.42	0.77	0.265		0.222	(0.239)	0.043

186	15.50	0.77	0.265	0.221	(0.239)	0.045
187	15.58	0.63	0.219	(0.219)	0.197	0.022
188	15.67	0.63	0.219	(0.218)	0.197	0.022
189	15.75	0.63	0.219	(0.217)	0.197	0.022
190	15.83	0.63	0.219	(0.216)	0.197	0.022
191	15.92	0.63	0.219	(0.215)	0.197	0.022
192	16.00	0.63	0.219	(0.214)	0.197	0.022
193	16.08	0.13	0.046	(0.213)	0.041	0.005
194	16.17	0,13	0.046	(0.212)	0.041	0.005
195	16.25	0.13	0.046	(0.211)	0.041	0.005
196	16.33	0.13	0.046	(0.210)	0.041	0.005
197	16.42	0.13	0.046	(0.208)	0.041	0.005
198	16.50	0.13	0.046	(0.207)	0.041	0.005
199	16.58	0.10	0.035	(0.206)	0.031	0.003
200	16.67	0.10	0.035	(0.205)	0.031	0.003
201	16.75	0.10	0.035	(0.204)	0.031 0.031	0.003
202	16.83	0.10	0.035	C	0.031	0.003
203	16.92	0.10	0.035	(0.202) (0.201)	0.031	0.003
204	17.00	0.10 0.17	0.035	(0.200)	0.052	0.006
205	17.08	0.17	0.058	(0.199)	0.052	0.006
206 207	17.17 17.25	0.17	0.058	(0.198)	0.052	0.006
208	17.33	0.17	0.058	(0.197)	0.052	0.006
208	17.42	0.17	0.058	(0.196)	0.052	0.006
210	17.50	0.17	0.058	(0.195)	0.052	0.006
211	17.58	0.17	0.058	(0.194)	0.052	0.006
212	17.67	0.17	0.058	(0.193)	0.052	0.006
213	17.75	0.17	0.058	(0.192)	0.052	0.006
214	17.83	0.13	0.046	(0.191)	0.041	0.005
215	17.92	0.13	0.046	(0.190)	0.041	0.005
216	18.00	0.13	0.046	(0.189)	0.041	0.005
217	18.08	0.13	0.046	(0.188)	0.041	0.005
218	18.17	0.13	0.046	(0.188)	0.041	0.005
219	18.25	0.13	0.046	(0.187)	0.041	0.005
220	18.33	0.13	0.046	(0.186)	0.041	0.005
221	18.42	0.13	0.046	(0.185)	0.041	0.005
222	18.50	0.13	0.046	(0.184)	0.041	0.005
223	18.58	0.10	0.035	(0.183)	0.031	0.003
224	18.67	0.10	0.035	(0.182)	0.031	0.003
225	18.75	0.10	0.035	(0.181)	0.031	0.003
226	18.83	0.07	0.023	(0.180)	0.021	0.002
227	18.92	0.07	0.023	(0.180)	0.021	0.002
228	19.00	0.07	0.023	(0.179)	0.021	0.002
229	19.08	0.10	0.035	(0.178)	0.031	0.003
230	19.17	0.10	0.035	(0.177)	0.031	0.003
231	19.25	0.10	0.035	(0.176)	0.031 0.041	0.005
232	19.33	0.13	0.046	(0.175) (0.175)	0.041	0.005
233	19.42	0.13	0.046	(0.175) (0.174)	0.041	0.005
234	19.50	0.13 0.10	0.046	(0.173)	0.031	0.003
235 236	19.58 19.67	0.10	0.035	(0.172)	0.031	0.003
	19.87	0.10	0.035	(0.171)	0.031	0.003
237 238	19.83	0.07	0.023	(0.171)	0.021	0.002
239	19.92	0.07	0.023	(0.170)	0.021	0.002
240	20.00	0.07	0.023	(0.169)	0.021	0.002
241	20.08	0.10	0.035	(0.168)	0.031	0.003
242	20.17	0.10	0.035	(0.168)	0.031	0.003
243	20.25	0.10	0.035	(0.167)	0.031	0.003
244	20.33	0.10	0.035	(0.166)	0.031	0.003
245	20.42	0.10	0.035	(0.165)	0.031	0.003
246	20.50	0.10	0.035	(0.165)	0.031	0.003
247	20.58	0.10	0.035	(0.164)	0.031	0.003
248	20.67	0.10	0.035	(0.163)	0.031	0.003
249	20.75	0.10	0.035	(0.163)	0.031	0.003
250	20.83	0.07	0.023	(0.162)	0.021	0.002
251	20.92	0.07	0.023	(0.161)	0.021	0.002
252	21.00	0.07	0.023	(0.161)	0.021 0.031	0.002
253	21.08	0.10	0.035	(0.160) (0.159)	0.031	0.003
254	21.17 21.25	0.10 0.10	0.035	(0.159)	0.031	0.003
255 256	21.23	0.07	0.023	(0.158)	0.021	0.002
	21.42	0.07	0.023	(0.158)	0.021	0.002
257 258	21.42	0.07	0.023	(0.157)	0.021	0.002
259	21.58	0.10	0.035	(0.156)	0.031	0.003
260	21.67	0.10	0.035	(0.156)	0.031	0.003
261	21.75	0.10	0.035	(0.155)	0.031	0.003
262	21.83	0.07	0.023	(0.155)	0.021	0.002
263	21.92	0.07	0.023	(0.154)	0.021	0.002
264	22.00	0.07	0.023	(0.154)	0.021	0.002
265	22.08	0.10	0.035	(0.153)	0.031	0.003
266	22.17	0.10	0.035	(0.153)	0.031	0.003
267	22.25	0.10	0.035	(0.152)	0.031	0.003
268	22.33	0.07	0.023	(0.152)	0.021	0.002
269	22.42	0.07	0.023	(0.151)	0.021	0.002
270	22.50	0.07	0.023	(0.151)	0.021	0.002
271	22.58	0.07	0.023	(0.150)	0.021	0.002
272	22.67	0.07	0.023	(0.150)	0.021	0.002
273	22.75	0.07	0.023	(0.150) (0.149)	0.021 0.021	0.002
274	22.83	0.07	0.023		0.021	0.002
275	22.92	0.07	0.023	(0.149) (0.148)	0.021	0.002
276 277	23.00 23.08	0.07	0.023	(0.148)	0.021	0.002
278	23.17	0.07	0.023	(0.148)	0.021	0.002
279	23.25	0.07	0.023	(0.147)	0.021	0.002
280	23.33	0.07	0.023	(0.147)	0.021	0.002
281	23.42	0.07	0.023	0.147)	0.021	0.002
282	23.50	0.07	0.023	(0.147)	0.021	0.002
283	23.58	0.07	0.023	(0.146)	0.021	0.002
284	23.67	0.07	0.023	(0.146)	0.021	0.002
						Page 4

285 23.75 286 23.83	0.07 0.07 0.07 0.07	0.023	(0)	.146) .146)	0.021 0.021	0.002 0.002 0.002
287 23.92 288 24.00	0.07	0.023	(0	.146)	0.021	0.002
G	(Loss Ra	ite Not Used	1)		S11m =	4.8
Floo	d volume = Ei es area	fective rai 69.7(Ac.)/	nfall (In)/()	0.40(I Ft.)] =	n) 2.3(Ac.)	Ft)
Tota	l soil loss = l soil loss =	2.48	In)			
Tota Tota	l soil ioss = l rainfall = d volume =	= 14.38/(2.88(I	n)			
Floo	d volume = 1 soil loss =	101719.9	Cubic	Feet bic Feet		
	k flow rate (
++++	*+++*	+++++++++++ 24 - H C	++++++ UR	++++++++++ S T O R M	+++++++++++++++++++++++++++++++++++++++	*****
	R	unoff	H	ydrogr	aph	
		ograph in				
Time(h+m)	Volume Ac.Ft	Q(CFS) C)	2.5	5.0	7.5 10.0
0+ 5	0.0001	0.01 Q		1	1	
0+10 0+15	0.0005	0.06 Q 0.10 Q				
0+20 0+25	0.0012 0.0020 0.0031	0.13 Q 0.16 Q				
0+30	0.0045	0.19 Q		1		
0+35 0+40	0.0059	0.21 Q 0.22 Q				
0+45	0.0089	0.22 Q 0.22 Q 0.23 Q				
0+50 0+55	0.0123	0.26 VO				
1+ 0 1+ 5	0.0143 0.0163 0.0182	0.29 VQ 0.29 VO				
1+10	0.0182	0.28 VQ				
1+15 1+20	0.0200	0.26 VQ 0.25 VQ				
1+25 1+30	0.0234	0.25 VQ 0.25 Q			1	
1+35	0.0269	0.25 Q			1	
1+40 1+45	0.0286	0.25 Q 0.25 Q				
1+50	0.0320	0.25 VQ 0.27 VQ			1	
1+55 2+ 0	0.0339	0.30 VQ				
2+ 5 2+10	0.0380	0.31 VQ 0.31 VQ				
2+15	0.0423	0.31 VQ				
2+20 2+25	0.0444 0.0466	0.32 VQ 0.32 VQ				
2+30 2+35	0.0488	0.32 VQ 0.32 VQ 0.33 VQ				
2+40		0.35 VQ		į		
2+45 2+50	0.0561 0.0587	0.35 VQ 0.37 VQ 0.38 Q				
2+55 3+ 0	0.0614	0.39 Q 0.39 Q				
3+ 5	0.0668	0.40 Q				
3+10 3+15	0.0696	0.40 Q 0.40 Q				
3+20 3+25	0.0751	0.40 Q 0.40 Q				
3+30	0.0806	0.40 Q				
3+35 3+40	0.0834 0.0862	0.40 Q 0.40 Q				1
3+45 3+50	0.0890	0.40 Q 0.41 Q				
3+55	0.0948	0.43 Q				
4+ 0 4+ 5	0.0979	0.46 Q 0.47 Q				
4+10 4+15	0.1044	0.47 Q 0.47 Q				
4+20	0.1110	0.48 Q	<u>_</u>			
4+25 4+30	0.1144 0.1181	0.51 V(0.53 (2 2			
4+35 4+40	0.1218		2 2			
4+45	0.1294	0.55	2			
4+50 4+55	0.1333 0.1374	0.59	2			
5+ 0 5+ 5	0.1416 0.1458		2			
5+10	0.1498	0.57	2			
5+15 5+20	0.1534 0.1570		2	i i		
5+25 5+30	0.1607	0.54	2			
5+35	0.1684	0.56	2			
5+40 5+45	0.1725		2 QV			
5+50	0.1810	0.63	$\tilde{2}v$			
5+55 6+ 0	0.1854 0.1897	0.64	QV			
6+ 5 6+10	0.1942 0.1988		QV QV			
	2012			1	117	Page 5

$\begin{array}{l} 6+15\\ 6+20\\ 6+20\\ 6+25\\ 6+30\\ 6+45\\ 6+50\\ 5+1\\ 7+5\\ 7+15\\ 7+20\\ 7+25\\ 7+50\\ 7+55\\ 8+10\\ 8+15\\ 8+25\\ 8+10\\ 8+15\\ 8+25\\ 8+30\\ 8+55\\ 8+50\\ 8+55\\ 9+5\\ 9+15\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 9+25\\ 10+0\\ 10+25\\ 10+20\\ 10+25\\ 10+20\\ 10+25\\ 10+25\\ 11+5\\ 11+10\\ 11+25\\ 11+55\\ 12+10\\ 11+55\\ 12+10\\ 11+55\\ 12+10\\ 11+55\\ 12+10\\ 12+55\\ 12+10\\ 12+55\\ 13+10\\ 13+25\\ 13+10\\ 13+10\\ 13+25\\ 13+10\\ 13+25\\ 13+10\\ 13+10\\ 13+25\\ 13+10\\ 13+10\\ 13+25\\ 13+10\\ 13+10\\ 13+25\\ 13+10\\ 1$	0.2035 0.2084 0.2133 0.2182 0.2232 0.2234 0.2337 0.2391 0.2446 0.2500 0.2556 0.2611 0.2666 0.2722 0.2780 0.2839 0.2839 0.2839 0.2839 0.3025 0.3021 0.3228 0.3021 0.3237 0.3238 0.3237 0.3298 0.3277 0.3298 0.3298 0.3373 0.3451 0.3612 0.3694 0.3776 0.3861 0.3861 0.3947 0.4035 0.44035 0.44035 0.44035 0.44035 0.4507 0.4507 0.4610 0.5156 0.5733 0.5508 0.5508 0.5508 0.5508 0.5733 0.5508 0.5508 0.5733 0.5508 0.5508 0.5733 0.5508 0.5733 0.5508 0.5733 0.5508 0.5733 0.5733 0.5508 0.5733 0.5742 0.6012 0.6100 0.6128 0.5750 0.7850 0.6389 0.6495 0.6389 0.6495 0.6389 0.6492 0.7456 0.7956 0.7956 0.7956 0.7957 0.7856 0.8072 0.9071 1.572 1.2091 1.2091 1.2291 1.2291 1.2291 1.2291 1.2325 1.4395 1.4395 1.4395 1.4395 1.4395 1.6077 1.6723 1	0.69 0.70 0.71 0.72 0.75 0.77 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.85 1.03 1.08 1.10 1.225 1.23 1.36 1.41 1.12 1.225 1.33 1.41 1.12 1.58 1.55 1.55 1.55 1.55 1.55 1.55 1.55	v v v v v v v v v v v v v v v v v v v	Q	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
13+4513+5013+5514+ 014+ 514+1014+1514+20	1.4705 1.4954 1.5171 1.5366 1.5559 1.5801 1.6097 1.6412	4.51 3.62 3.15 2.83 2.81 3.51 4.30 4.57				

14+30 14+35	1.7028 1.7334	4.43 4.45			Q Q		v v
14+40	1.7644	4.50			Q	1	v v
14+45 14+50	1.7958 1.8272	4.56 4.57			QQ		v
14+55	1.8578	4.44			Q	1	v
15+ 0	1.8874	4.30			Q		
15+ 5 15+10	1.9167	4.24 4.05			Q		v
15+15	1.9712	3.87	İ.		Q		V
15+20 15+25	1.9972 2.0217	3.78 3.56			Q		v v
15+30	2.0448	3.35			Q	1	v
15+35	2.0667	3.18 2.71		C	Q	1	
15+40 15+45	2.0854 2.1007	2.22	1	Q		1	V I
15+50	2.1145	2.00		Q		1	v v
15+55 16+ 0	2.1274 2.1398	1.88 1.79	ł	Q			v
16+ 5	2.1511	1.65		Q		1	
16+10 16+15	2.1597 2.1658	1.26 0.88		Q			v
16+20	2.1706	0.70	ĮQ			1	v
16+25 16+30	2.1747 2.1783	0.60 0.52	Q				
16+35	2.1815	0.46	Q				v
16+40	2.1842	0.40 0.35	Q				
16+45 16+50	2.1867 2.1888	0.32	Q			1	v
16+55	2.1909	0.30	0				
17+ 0 17+ 5	2.1928 2.1947	0.28 0.28	Q Q			1	v
17+10	2.1969	0.32	Q			1	
17+15 17+20	2.1993 2.2019	0.35 0.37	Q			1	v
17+25	2.2045	0.38	Q			1	v v
17+30 17+35	2.2071 2.2098	0.38	Q Q				vv
17+40	2.2125	0.39	Q			1	v
17+45	2.2153 2.2180	0.40	Q Q				v v
17+50 17+55	2.2205	0.37	Q				v
18+ 0	2.2229	0.35 0.34					v v
18+ 5 18+10	2.2253 2.2276	0.34	Įõ			1	v
18+15	2.2299	0.33				1	v v
18+20 18+25	2.2322 2.2344	0.33	Q				v
18+30	2.2367	0.33	0				v v
18+35 18+40	2.2389 2.2410	0.32	Q			1	v
18+45	2.2429	0.27	0				v v
18+50 18+55	2.2447 2.2462	0.26 0.23	Q Q				v
19+ 0	2.2476	0.20	Q		ĺ		v v
19+ 5 19+10	2.2490 2.2504	0.20 0.21	Q Q				v
19+15	2.2520	0.23	Q			1	v v
19+20 19+25	2.2537	0.24 0.27	Q Q				v
19+30	2.2575	0.29	Q				V
19+35 19+40	2.2595 2.2614	0.29 0.28	Q				v v
19+45	2.2632	0.26	Q				v
19+50 19+55	2,2649 2,2664	0.25	Q Q				v v
20+0	2.2678	0.20	Q			1	v
20+ 5 20+10	2.2691 2.2705	0.19 0.21	Q Q				v v
20+15	2.2721	0.23	Q				v
20+20 20+25	2.2737 2.2753	0.23 0.24	Q Q				v v
20+20	2.2770	0.24	Q				v
20+35 20+40	2.2786	0.24 0.24	Q Q				v v
20+40	2.2819	0.24	Q		l	1	v
20+50	2.2835 2.2850	0.24 0.21	Q Q		1		v v
20+55 21+ 0	2.2850	0.19	Q				v
21+ 5	2.2876	0.19	Q				V V
21+10 21+15	2.2890 2.2905	0.20	Q Q			1	v
21+20	2.2921	0.23	Q				v v
21+25 21+30	2.2935 2.2948	0.21 0.19	Q Q				v
21+35	2.2960	0.18	Q				v v
21+40 21+45	2.2974 2.2990	0.20 0.22	Q Q		1		v
21+50	2.3005	0.22	Q				v v
21+55 22+ 0	2.3019 2.3032	0.20	Q Q		1		v
22+ 5	2.3044	0.18	Q		ļ		v
22+10 22+15	2.3058 2.3073	0.20 0.22	Q Q				v v
22+20	2.3089	0.22	Q				v
22+25 22+30	2.3103 2.3115	0.20 0.18	Q				v v
22+35	2.3127	0.18	Q		ļ		v v
22+40	2.3139	0.17	Q		I	ų.	Page 7

Page 7

22+45	2.3151	0.17	Q	1	1	1
22+50	2.3162	0.17	Q	1	4	1
22+55	2.3174	0.17	Q	1	1	
23+ 0	2.3185	0.17	Q	1	1	1
23+ 5	2.3197	0.16	Q	1	1	1
23+10	2.3208	0.16	Q	1	1	1
23+15	2.3219	0.16	Q	1	1	1
23+20	2.3230	0.16	Q	1		1
23+25	2.3242	0.16	Q	1	1	
23+30	2.3253	0.16	Q	1	1	1
23+35	2.3264	0.16	Q	1	1	
23+40	2.3275	0.16	Q	1	1	
23+45	2.3286	0.16	Q	1	1	1
23+50	2.3297	0.16	Q	1	1	
23+55	2.3308	0.16	Q	1	1	
24+ 0	2.3320	0.16	Q	1	1	1
24+ 5	2.3330	0.15	Q	1	1	1
24+10	2.3337	0.11	Q	1	1	1
24+15	2.3341	0.06	Q	1	1	1
24+20	2.3344	0.04	Q	1	1	1
24+25	2.3346	0.03	Q	1	1	1
24+30	2.3348	0.02	Q	1	1	1
24+35	2.3349	0.02	Q	1	1	1
24+40	2.3350	0.01	Q	1	1	1
24+45	2.3350	0.01	Q	1	1	1
24+50	2.3351	0.01	Q	1	1	1
24+55	2.3351	0.01	Q	1	1	1
25+ 0	2.3351	0.00	Q	1	1	1
25+ 5	2.3352	0.00	Q	1	1	1
25+10	2.3352	0.00	Q	f f		1
25+15	2.3352	0.00	Q	1	1	

```
Unit Hydrograph Analysis
       Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                Study date 02/12/20 File: 3828EX1001100.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
                           .....
                 ____
English (in-1b) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
_____
_____
Length along longest watercourse = 3400.00 (Ft.)
Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00 (Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.030
Lag time = 0.159 Hr.
Lag time = 9.56 Min.
Lag time = 9.56 Min.

25% of lag time = 2.39 Min.

40% of lag time = 3.82 Min.

Unit time = 5.00 Min.

Duration of storm = 1 Hour(s)
                             0.00 (CFS)
User Entered Base Flow =
2 YEAR Area rainfall data:
              Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                       0.50
       69.65
100 YEAR Area rainfall data:
             Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                      1.20
       69.65
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall = 1.200(In
                                     1.200(In)
Point rain (area averaged) = 1.200(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 1.199(In)
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
 69.650 76.00 0
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-3
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        88.6
        0.146
        0.000
        0.146
        1.000
        0.146

                                                  Sum(F) = 0.146
Area averaged mean soil loss (F) (In/Hr) = 0.146
Minimum soil loss rate ((In/Hr)) = 0.073
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                              ----
                                          _____
                                                             ----
Slope of intensity-duration curve for a 1 hour storm =0.5000
                        _____
                Unit Hydrograph
                       VALLEY S-Curve
                                      .....
               Unit Hydrograph Data
  ......
Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
   6.571
                                                         4,612
                                                        19.712
                                                        20.039
                                                         8.549
                                                         4.629
                                                         3.221
                                                         2,314
                                                         1,728
                                                         1.261
1.086
```

11	0.917	575.380	1,191		0.836
12	1.000	627.687	0.940		0,660
13	1.083	679,994	0.721		0.506
14	1.167	732.301	0.542		0.381
15	1.250	784,608	0.523		0.367
16	1.333	836,916	0,415		0.292
		Su	m = 100.000	Sum=	70.194

Unit Time	Pattern	Storm Rain	Loss rate (In./Hr) Effective	
(Hr.)	Percent	(In/Hr)	Max Low (In/Hr)	
1 0.08		0.604	0.146 (0.544) 0.458	
2 0.17	4,30	0.619	0.146 (0.557) 0.473	
3 0.25	5.00	0.720	0.146 (0.648) 0.574	
4 0.33	5 00	0.720	0.146 (0.648) 0.574	
5 0.42	5.80 6.50 7.40 8.60 12.30	0.835	0.146 (0.751) 0.689	
6 0.50	6.50	0.935	0.146 (0.842) 0.789	
7 0.58	7.40	1.065	0.146 (0.958) 0.919	
8 0.67	8.60	1.238	0.146 (1.114) 1.092	
9 0.75	12 30	1.770	0.146 (1.593) 1.624	
10 0.83	29.10	4.188	0.146 (3.769) 4.042	
11 0.92	6.80	0.979	0.146 (0.881) 0.833	
12 1.00		0.720	0.146 (0.648) 0.574	
12 1.00	/Logg	Rate Not Used)		
Sum -	100 0		Sum = 12.6	
Bull =	d wolume -	Effective rain	ifall 1.05(In)	
r 100		69 7/Ac)/[(In)/(Ft.)] = 6.1(Ac.Ft)	
	es area	05.7(AC.)/[(III)/(FC:/) = 0.1(A0.10)	
TOLA	i soit loss			
Tota	1 SOII IOSS	= 0.15(1) $ = 0.847(2) $ $ = 1.20(1) $ $ = 266300.9$	AC.FL/	
Tota	I raintail	= 1.20(11	Cubic Reat	
F100	d volume =	266300.9	Cubic Feet	
Tota	l soil loss	= 36903	Cubic Feet	
				-
Pea	k flow rate	of this hydro	ograph = 136.465(CFS)	
				-
++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+
		1 - НОТ	JR STORM	
		Runoff	Hydrograph	
				-
	Hyd	lrograph in S	Minute intervals ((CFS))	
Time(h+m)	Volume Ac.F	t Q(CFS) 0	50.0 100.0 150.0 200	. 0
Time(h+m)	Volume Ac.F	t Q(CFS) 0	50.0 100.0 150.0 200	. 0
Time(h+m) 	Volume Ac.F 0.0146	't Q(CFS) 0 2.12 Q	50.0 100.0 150.0 200	. 0
Time(h+m) 0+ 5 0+10	Volume Ac.F 0.0146 0.0919	rt Q(CFS) 0 2.12 Q 11.22 V Q	50.0 100.0 150.0 200	.0
Time(h+m) 0+ 5 0+10 0+15	Volume Ac.F 0.0146 0.0919 0.2376	Ct Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V	50.0 100.0 150.0 200 Q	. 0
Time(h+m) 0+ 5 0+10 0+15 0+20	Volume Ac.F 0.0146 0.0919 0.2376 0.4261	2.12 Q 11.22 V Q 21.16 V 27.36 V	50.0 100.0 150.0 200 Q	. 0
Time(h+m) 0+ 5 0+10 0+15 0+20 0+25	Volume Ac.F 0.0146 0.0919 0.2376 0.4261	2.12 Q 11.22 V Q 21.16 V 27.36 V	50.0 100.0 150.0 200 Q	. 0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	Volume Ac.F 0.0146 0.0919 0.2376 0.4261	2.12 Q 11.22 V Q 21.16 V 27.36 V	50.0 100.0 150.0 200 Q	. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261	2.12 Q 11.22 V Q 21.16 V 27.36 V	50.0 100.0 150.0 200 Q	. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V 21.16 V 27.36 V 32.16 37.30 43.77 51.27	50.0 100.0 150.0 200 Q Q Q Q V Q Q Q V Q Q Q V Q Q Q	. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	50.0 100.0 150.0 200 Q Q Q V Q V Q V Q V Q V Q Q Q Q Q Q Q Q Q Q Q Q Q	. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+0 1+5 1+10 1+15	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735	Pt Q(CFS) 0 2.12 Q 11.22 V 2.16 V 32.16 J 37.30 43.77 51.27 61.96 89.72 J 136.47 J 127.08 79.63 49.71 31.05 21.81	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V 27.36 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71 131.05 21.81 16.21 (((((($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.7851 5.8691	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Y 27.36 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 16.21 (12.19 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359	Pt Q(CFS) 0 2.12 Q 11.22 V 21.16 V 32.16 V 32.16 V 32.16 V 32.16 V 32.16 V 32.16 V 31.07 S 136.47 1 127.08 79.63 49.71 31.05 21.81 16.21 16.21 Q 9.70 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874	Pt Q(CFS) 0 2.12 Q 11.22 V 21.16 V 37.36 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 (12.19 Q 9.70 Q 7.48 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+35 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.7851 5.8691 5.9359 5.9874 6.0273	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Q 32.16 V Q 32.16 V Q 31.01 V Q 43.77 S Q 51.27 6 1.96 63.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 (12.19 Q 9.70 Q 7.48 Q 5.79 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
Time (h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+35 0+50 0+55 1+0 1+5 1+10 1+15 1+20 1+35 1+40 1+45 1+50	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874 6.0273 6.0573	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Y 21.16 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 16.21 Q 9.70 9.70 Q 7.48 9.79 Q 4.36	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
Time (h+m) 0+ 5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.7851 5.8691 5.9359 5.9874 6.0273	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Q 32.16 V Q 32.16 V Q 31.01 V Q 43.77 S Q 51.27 6 1.96 63.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 (12.19 Q 9.70 Q 7.48 Q 5.79 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+35 1+40 1+45 1+55 2+ 0	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874 6.0273 6.0573	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Y 21.16 V 32.16 37.30 43.77 51.27 61.96 89.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 16.21 Q 9.70 9.70 Q 7.48 9.79 Q 4.36	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+5 0+10 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+45 1+50 1+55	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874 6.0273 6.0573 6.0797	Pt Q(CFS) 0 2.12 Q 11.22 V 21.16 V 32.16 V 32.16 V 32.16 V 32.16 V 31.05 21.81 16.21 Q 9.70 Q 9.70 Q 7.48 Q 5.79 Q 3.25 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874 6.0273 6.0797 6.0974	Pt Q(CFS) 0 2.12 Q 11.22 V 21.16 V 27.36 V 32.16 V 31.05 136.47 12.7.08 79.63 49.71 31.05 21.81 (16.21 (12.19 Q 9.70 Q 7.48 Q 3.25 Q 2.57 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.7851 5.8691 5.9359 5.9874 6.0273 6.0573 6.0797 6.0974 6.1092	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Q 32.16 V Q 32.16 V Q 32.16 V Q 32.16 V Q 31.05 L Q 136.47 L Q 127.08 79.63 49.71 31.05 L.81 L 16.21 Q 9.70 Q 7.48 Q 5.79 Q 4.36 Q 3.25 Q 2.57 Q 1.70 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0 2+ 5 2+10	Volume Ac.F 0.0146 0.0919 0.2376 0.4261 0.6476 0.9044 1.2059 1.5590 1.9857 2.6037 3.5435 4.4187 4.9671 5.3094 5.5232 5.6735 5.7851 5.8691 5.9359 5.9874 6.0273 6.0573 6.0797 6.0974 6.1092 6.1123	Pt Q(CFS) 0 2.12 Q 11.22 V Q 21.16 V Q 32.16 V 32.16 37.30 43.77 S1.27 61.96 89.72 136.47 127.08 79.63 49.71 31.05 21.81 16.21 16.21.9 Q 9.70 Q 7.48 Q 5.79 Q 4.36 Q 3.25 Q 2.57 Q 1.70 Q 0.45 Q 1.70 Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0

```
Unit Hydrograph Analysis
         Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                  Study date 02/12/20 File: 3828EX1003100.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
                    _____
 English (in-lb) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
......
 _____
Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Difference in elevation = 44.00(Ft.)

Slope along watercourse = 68.3294 Ft./Mi.

Average Manning's 'N' = 0.030

Lag time = 0.159 Hr.

Lag time = 9.56 Min.
Lag time =9.56 Min.25% of lag time =2.39 Min.40% of lag time =3.82 Min.Unit time =5.00 Min.Duration of storm =3 Hour(s)User Entered Base Flow =0.00(CFS)
2 YEAR Area rainfall data:
               Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                          0.80
        69.65
100 YEAR Area rainfall data:
               Rainfall(In)[2] Weighting[1*2]
Area(Ac.) [1]
                         1.86
                                                 129.55
       69.65
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.800(In)
Area Averaged 100-Year Rainfall = 1.860(I
                                         1.860(In)
Point rain (area averaged) = 1,860(In)
Areal adjustment factor = 99.97 %
Adjusted average point rain = 1.859(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 76.00 0.000
Total Area Entered = 69.65(Ac.)

        RI
        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-3
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        76.0
        88.6
        0.146
        0.000
        0.146
        1.000
        0.146

                                                        Sum (F) = 0.146
Area averaged mean soil loss (F) (In/Hr) = 0.146
Minimum soil loss rate ((In/Hr)) = 0.073
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
                                           -----
                                . . . . . .
                 Unit Hydrograph
VALLEY S-Curve
 -----
                             Unit Hydrograph Data
 _____
Unit time period Time % of lag Distribution Unit Hydrograph
                                                              (CFS)
                                       Graph %
    (hrs)
 ......
   _____
                                                                4.612
                                                               19.712
                                                            20.039
                                                               8.549
                                                                4.629
                                                                3.221
                                                                2.314
                                                                1.728
                                                               1.261
                                                               1.086
                                                                0.836
                                                                0.660
```

```
Page 1
```

13	1.083	679.994		0.721		0.506
14	1.167	732.301		0.542		0.381
15	1.250	784.608		0.523		0.367
16	1.333	836.916		0.415		0.292
			Sum =	100.000	Sum=	70.194

en la miliera					Effective Rain Val
	Pattern	Storm Rain	Loss rate	(In./Hr)	Effective
	Percent		Max		(In/Hr)
1 0.08	1.30	0.290	0.146	(0.261)	
2 0.17	1.30	0.290	0.146	(0.261)	
3 0.25		0.245	0.146	(0.221)	
4 0.33	1.50	0.335	0.146	(0.301) (0.301)	0.189 0.189
5 0.42		0.335	0.146 0.146	(0.361)	
6 0.50		0.402	0.146	(0.301)	
7 0.58 8 0.67		0.402	0.146	0.361)	
9 0.75	1.80	0.402	0.146	(0.361)	
10 0.83	1.50	0.335	0.146	(0.301)	
11 0.92	1.60	0.357	0.146	(0.321)	0.211
12 1.00	1.80	0.402	0.146	(0.361)	
13 1.08	2.20	0.491	0.146	(0.442)	
14 1.17	2.20	0.491	0.146	(0.442)	
15 1.25	2.20	0.491	0.146	(0.442)	
16 1.33	2.00	0.446	0.146	(0.402) (0.522)	
17 1.42	2.60	0.580 0.602	0.146 0.146	(0.542)	
18 1.50		0.536	0.146	(0.482)	
19 1.58 20 1.67	2.40	0.602	0.146	0.542)	
21 1.75	3.30	0.736	0.146	0.663)	
22 1.83	3.10	0.692	0.146	(0.623)	
23 1.92	2 90	0.647	0.146	(0.582)	0.501
24 2.00	3.00	0.669	0.146	(0.602)	
25 2.08	3.10	0.692	0.146	(0.623)	
26 2.17	4.20	0.937	0.146	(0.843)	
27 2.25	5.00	1.116	0.146	(1.004)	
28 2.33	3.50	0.781	0.146	(0.703)	
29 2.42	6.80	1,517	0.146	(1.366)	
30 2.50	7.30	1,629	0.146 0.146	(1.466) (1.647)	
31 2.58	8.20	1 830 1 316	0 1/6	/ 1 195)	1 171
32 2.67 33 2.75	5.90 2.00	0.446	0.146	(0.402)	0.300
34 2.83	1 80	0.402	0.146	(0.361)	0.256
35 2.92	1.80 1.80	0.402	0.146	(0.361)	0.256
36 3.00	0.60	0.134	0.146 0.146 0.146 0.146 (0.146)	0.120	0.013
	(Loss	Rate Not Used	1)		
Sum =	100.0			Sum	= 17.1
Floo	d volume =	Effective rai	nfall 1	.42(ln)	
tim	es area	69.7(Ac.)/	(In)/(Ft.)]	= 8.3	(AC.FC)
Tota	I soil los	S = 0.440	ln)		
Tota	l soll los:	S = 2.5231	AC.FL)		
TOLA	d volumo -	B = 0.44 B = 2.529 = 1.86(1 359947.2	 Cubic Feet		
Tota	l coil log	333341.2			
1000		3 = 11017	2.4 Cubic Fe	et	
	.1 SOII 108	5 = 11017	2.4 Cubic Fe	et	
Pea	k flow rate	s = 11017 e of this hydr	2.4 Cubic Fe	91.637(CFS	 }
Pea	k flow rate	s = 11017 e of this hydr	2.4 Cubic Fe	91.637(CFS)
Pea	k flow rate	s = 11017 e of this hydr	2.4 Cubic Fe ograph = +++++++++++++++	91.637(CFS)
Pea	k flow rate	s = 11017 e of this hydr	22.4 Cubic Fe Tograph = ++++++++++++++++++++++++++++++++++++	91.637(CFS) +++++++++++++++++++++++++++++++
Pea	k flow rat	s = 11017 e of this hydr +++++++++++++++++ 3 - H O R u n o f f	22.4 Cubic Fe cograph = ++++++++++++++++ U R S T C H y d r	91.637(CFS +++++++++++ R M ograph)
Pea	k flow rat(s = 11017 e of this hydr +++++++++++++++++ 3 - H O R u n o f f	2.4 Cubic Fe rograph = UR STC Hydr	91.637(CFS +++++++++++ R M ograph)
Pea +++++	k flow rate +++++++ Hye	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe Tograph = UR STC Hydr 5 Minute i	91.637(CFS +++++++++++ R M o g r a p h ntervals (() +++++++++++++++++ CFS))
Pea ++++	k flow rate +++++++++++ Hyw	<pre>s = 11017 e of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe ograph = UR STC Hydr 5 Minute i	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals (() ++++++++++++++++++ CFS))
Pea ++++	k flow rate +++++++++++ Hyw Volume Ac.	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++	k flow rate +++++++++++ Hyw Volume Ac.	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0) ++++++++++++++++++ CFS))
Pea ++++	k flow rate +++++++++++ Hyw Volume Ac.	s = 11017 ⇒ of this hydr +++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) (0.67 Q	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10	k flow rate ++++++++++++++++++++++++++++++++++++	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = UR STC Hydr 5 Minute i 0 25.0	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15	k flow rate ++++++++++ Hyn Volume Ac 0.0046 0.0287 0.0714	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20	k flow rath ++++++++++ Volume Ac.: 0.0046 0.0287 0.0714 0.1193	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25	k flow rat ++++++++++++++++++++++++++++++++++++	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = UR STC Hydr 5 Minute i 0 25.0 2 2 2	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	k flow rate ++++++++++ Hyn Volume Ac 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = UR STC H y d r 5 Minute i 0 25.0 Q Q Q	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	k flow rate +++++++++ Hyn Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+30 0+35 0+40	k flow rath ++++++++++ Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45	k flow rath	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50	k flow rate ++++++++++ Hyn Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe cograph = 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45	k flow rath	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe cograph = ////////////////////////////////////</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55	k flow rath ++++++++++ Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe cograph = ////////////////////////////////////</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10	k flow rat(++++++++++ Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781	<pre>s = 11017 s of this hydr t++++++++++++++++++++++++++++++++++++</pre>	2.4 Cubic Fe 	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15	k flow rath ++++++++++ Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232	<pre>s = 11017 s = 11017 s of this hydr t++++++++++</pre>	<pre>2.4 Cubic Fe </pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20	k flow rath ++++++++++++++++++++++++++++++++++++	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe cograph = /************************************</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+45 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25	k flow rate ++++++++++ Hyn Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph = ////////////////////////////////////</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	k flow rath ++++++++++ Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph = ////////////////////////////////////</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	k flow rath ++++++++++ Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	k flow rate +++++++++++ Hyn Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	k flow rath +++++++++++ Hyn Volume Ac 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS +++++++++++ 0 R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	k flow rate +++++++++++ Hyn Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph = ////////////////////////////////////</pre>	91.637(CFS ++++++++++ R M o g r a p h ntervals ((50.0)
Pea ++++ Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0	k flow rath +++++++++++ Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 0.2751 2.5021	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe cograph = /************************************</pre>	91.637(CFS)
Pea ++++ Time(h+m) 0+ 5 0+10 0+25 0+20 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+55 1+30 1+35 1+40 1+45 1+55 2+0 2+5	k flow rath +++++++++++ Hyn Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751 2.5021 2.7448 2.9864 3.2292	<pre>s = 11017 s = 11017 s of this hydr t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+35 1+40 1+35 1+50 1+55 2+ 0 2+ 5 2+10	k flow rath +++++++++++ Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751 2.5021 2.7448 2.9864 3.2292 3.4864	<pre>s = 11017 s = 11017 s of this hydr t++++++++++ 3 - H O R u n o f f drograph in Ft Q(CFS) (</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637 (CFS +++++++++++ P R M o g r a p h ntervals ((50.0)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0 2+ 5 2+10 2+15	k flow rate +++++++++++ Hyn Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751 2.5021 2.7448 2.9864 3.2292 3.4864 3.7880	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS ++++++++++++++++++++++++++++++++++++)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+0 2+5 2+10 2+15 2+20	k flow rath +++++++++++ Hyn Volume Ac.: 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751 2.5021 2.7448 2.9864 3.2292 3.4864 3.7880 4.1398	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637 (CFS ++++++++++++++++++++++++++++++++++++)
Pea ++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0 2+ 5 2+10 2+15	k flow rate +++++++++++ Hyn Volume Ac. 0.0046 0.0287 0.0714 0.1193 0.1777 0.2512 0.3378 0.4302 0.5290 0.6350 0.7374 0.8379 0.9485 1.0781 1.2232 1.3740 1.5269 1.6954 1.8827 2.0740 2.2751 2.5021 2.7448 2.9864 3.2292 3.4864 3.7880	<pre>s = 11017 a of this hydr t++++++++++++++++++++++++++++++++++++</pre>	<pre>/2.4 Cubic Fe orgraph =</pre>	91.637(CFS ++++++++++++++++++++++++++++++++++++)

2+30	4.9580	64.99		1			VQ	1.000
2+35	5.5214	81.79		1		1	v	Q
2+40	6.1525	91.64		- 1		1	v	Q
2+45	6.7427	85.71		1		1		VQ
2+50	7.1735	62.55		1		1	Q	v
2+55	7.4683	42.80		1		Q		v
3+ 0	7.6967	33.16		1	Q	1		l v
3+ 5	7.8604	23.78	1	2		1		V V
3+10	7.9686	15.71		Q		- 1		l v
3+15	8.0463	11.29	Q	1				l v
3+20	8.1055	8.59	Q	1		1		I
3+25	8.1512	6.64	Q	1				1
3+30	8.1857	5.00	Q	1		1		1
3+35	8.2115	3.75	Q	1		1		1
3+40	8.2314	2.89	Q	1		1		1
3+45	8.2455	2.05	Q					1
3+50	8.2548	1.35	Q	1		1		
3+55	8.2595	0.69	Q	1		1		
4+ 0	8.2615	0.29	Q	1		1		1
4+ 5	8.2627	0.17	Q	1		1		
4+10	8.2632	0.08	Q			- 1		1
4+15	8.2633	0.00	Q	1				k

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX1006100.out _____ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 -----English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format _____ Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. Lag time =9.56 Min.25% of lag time =2.39 Min.40% of lag time =3.82 Min.Unit time =5.00 Min.Duration of storm =6 Hour(s)User Entered Base Flow =0.0 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.15 80.10 69.65 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] 2 50 Area(Ac.)[1] 174.13 2.50 69.65 STORM EVENT (YEAR) = 100.00 Area Averaged 2-Year Rainfall = 1.150(In) Area Averaged 100-Year Rainfall = 2.500(I: 2.500(In) Point rain (area averaged) = 2.500(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 2.499(In) Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 69.650 76.00 0 Total Area Entered = 69.65(Ac.)
 RI
 RI
 Infil. Rate
 Impervious
 Adj. Infil. Rate
 Area%
 F

 AMC2
 AMC-3
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 88.6
 0.146
 0.000
 0.146
 1.000
 0.146
 Sum (F) = 0.146Area averaged mean soil loss (F) (In/Hr) = 0.146 Minimum soil loss rate ((In/Hr)) = 0.073 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve ---------..... Unit Hydrograph Data ------_____ Unit time period Time % of lag Distribution Unit Hydrograph (CFS) (hrs) Graph % 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 0.836 0.660

13 14	1.083	679.994 732.301		0.721		0.506 0.381 0.367
15 16	1.250 1.333	784.608 836.916		0.523 0.415		0.292
			Sum =	100.000	Sum=	70.194

1400				-	- ()	
Unit	: Time	Pattern	Storm Rain	Loss rate() Max	In./Hr) Low	Effective (In/Hr)
1	(Hr.) 0.08	Percent 0.50	(In/Hr) 0.150	(0.146)	0.135	0.015
2	0.17	0.60	0.180	0.146	(0.162)	0.034
3	0.25	0.60	0,180	0.146	(0.162)	0.034
4	0.33	0.60	0.180	0.146	(0.162)	0.034
5	0.42	0.60	0.180	0.146	(0.162)	0.034 0.064
6	0.50	0.70	0.210	0.146	(0.189) (0.189)	0.064
7	0.58	0.70 0.70	0.210 0.210	0.146	(0.189)	0.064
8 9	0.67 0.75	0.70	0.210	0.146	(0.189)	0.064
10	0.83	0.70	0.210	0.146	(0.189)	0.064
11	0.92	0.70	0.210	0.146	(0.189)	0.064
12	1.00	0.80	0.240	0.146	(0.216)	0.094
13	1.08	0.80	0.240	0.146	(0.216)	0.094
14	1.17	0.80	0.240	0.146	(0.216) (0.216)	0.094 0.094
15	1.25	0.80	0.240	0.146	(0.216)	0.094
16 17	1.33 1.42	0.80 0.80	0.240	0.146	(0.216)	0.094
18	1.50	0.80	0.240	0.146	(0.216)	0.094
19	1,58	0.80	0.240	0.146	(0.216)	0.094
20	1.67	0.80	0.240	0.146	(0.216)	0.094
21	1.75	0.80	0.240	0.146	(0.216)	0.094 0.094
22	1.83	0.80	0.240	0.146	(0.216) (0.216)	0.094
23	1.92 2.00	0.80	0.240 0.270	0.146	(0.243)	0.124
24 25	2.08	0.80	0.240	0.146	(0.216)	0.094
26	2.17	0.90	0.270	0.146	(0.243)	0.124
27	2.25	0.90	0.270	0.146	(0.243)	0.124
28	2.33	0.90	0.270	0.146	(0.243)	0.124
29	2.42	0.90	0.270	0.146	(0.243)	0.124 0.124
30	2.50	0.90	0.270	0.146	(0.243) (0.243)	0.124
31 32	2.58 2.67	0.90 0.90	0.270 0.270	0.146	0.243)	0.124
33	2.75	1.00	0.300	0.146	(0.270)	0.154
34	2.83	1.00	0.300	0.146	(0.270)	0.154
35	2.92	1.00	0.300	0.146	(0.270)	0.154
36	3.00	1.00	0.300	0.146	(0.270)	0.154
37	3.08	1.00	0.300	0.146	(0.270) (0.297)	0.154 0.184
38	3.17	1.10	0.330	0.146	(0.297)	0.184
39 40	3.25 3.33	1.10	0.330 0.330	0.146	(0.297)	0.184
41	3.42	1.20	0.360	0.146	(0.324)	0.214
42	3.50	1.30	0.390	0.146	(0.351)	0.244
43	3.58	1.40	0.420	0.146	(0.378)	0.274
44	3.67	1.40	0.420	0.146	(0.378)	0.274
45	3.75	1.50	0.450	0.146	(0.405) (0.405)	0.304 0.304
46	3.83	1.50	0.450	0.146	(0.403)	0.334
47 48	3.92 4.00	1.60 1.60	0.480 0.480	0.146	(0.432)	0.334
49	4.08	1.70	0.510	0.146	(0.459)	0.364
50	4.17	1.80	0.540	0.146	(0.486)	0.394
51	4.25	1.90	0.570	0.146	(0.513)	0.424
52	4.33	2.00	0.600	0.146	(0.540)	0.454
53	4.42	2.10	0.630	0.146	(0.567) (0.567)	0.484 0.484
54	4.50	2.10	0.630 0.660	0.146	(0.594)	0.514
55 56	4.58 4.67	2.20 2.30	0.690	0.146	(0.621)	0.544
57	4.75	2.40	0.720	0.146	(0.648)	0.574
58	4.83	2.40	0.720	0.146	(0.648)	0.574
59	4.92	2.50	0.750	0.146	(0.675)	0.604
60	5.00	2.60	0.780	0.146	(0.702)	0.634
61	5.08	3.10	0.930	0.146 0.146	(0.837) (0.972)	0.784 0.934
62 63	5.17 5.25	3.60 3.90	1.080 1.170	0.146	(1.053)	1.024
64	5.33	4.20	1.260	0.146	(1.134)	1.114
65	5.42	4.70	1.410	0.146	(1.269)	1.264
66	5.50	5.60	1.680	0.146	(1.512)	1.534
67	5.58	1.90	0.570	0.146	(0.513)	0.424
68	5.67	0.90	0.270	0.146	(0.243) (0.162)	0.124 0.034
69	5.75	0.60	0.180 0.150	(0.146)	0.135	0.015
70 71	5,83 5,92	0.50	0.090	(0.146)	0.081	0.009
72	6.00	0.20	0.060	(0.146)	0.054	0.006
			Rate Not Use			
	Sum =	100.0			Sum =	= 19.7
	Flood	volume =	Effective ra		64(In)	(Na Et)
				/[(In)/(Ft.)] =	9.50	(Ac.Ft)
		soil los soil los	s = 0.86 s = 4.99	7 (Ac.Ft)		
		rainfall				
		l volume =		.5 Cubic Feet		
	Total	. soil los	s = 2176	547.9 Cubic Fee	et	
	Peak	. ELOW TAT	e or this hyd	drograph =	55.707(CFB)	
	+++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++	*+++++
			6 - H (DUR STO	RM	

	нуатс	ograph in					
Time (h+m)	Volume Ac.Ft	Q(CFS)	0	22.5	45.0	67.5	90
0+ 5	0.0005	0.07 0		1	1	1	1
0+10	0.0036	0.45 🤉	2	1	1	1	
0+15	0.0114	1.13	2	1.	1	1	1
0+20	0.0226	1.64 🤉	2	1	1	1	
0+25	0.0355	1.87 Ç	2	1	1	1	
0+30	0.0503	2.14 🤇	2	1	1	1	
0+35	0.0698	2.83 V 3.50 V	7Q	6	1		
0+40	0.0939	3.50 \	7Q	E.	1	1	
0+45	0.1201	3.81 \			1	1	1
0+50	0.1476	3.99 \	7Q		1	1	1
0+55	0.1760	4.12	7Q	1	1	1	1
1+ 0	0.2060		70	1	i	1	- 1
1+ 5	0.2405	5.02	VQ	1	1	1	- 1
1+10	0.2796	5.67	VQ	1	1	1	1
1+15	0.3207	5.97	VQ	1	1	1	- 1
1+20	0.3631	6.15	VQ	t	1	1	1
1+25	0.4063	6.27	VQ	1	1	1	1
1+30	0.4501	6.36	VQ	T .	1	1	1
1+35	0.4943	6.42	Q	1	1	1	1
1+40	0.5388	6.47	Q	Ť.	1		- 1
1+45	0.5836	6.51	Q		1	1	
1+50	0.6286	6.53	Q		1	1	-
1+55	0.6738	6.55	Q		1		
2+ 0	0.7200	6.71	QV	1	1		1
2+ 5	0.7694	7.17	Q	1	1	1	1
2+10	0.8199	7.33	Q	1	1	1	-
2+15	0.8721	7.59	Q	1	1	1	1
2+20	0.9277	8.07	Q	1	1	1	
2+25	0.9848	8.28	QV	1	1	1	1
2+30	1.0426	8.40	QV	1	1	1	1
2+35	1,1010	8.48	QV	1	1	1	1
2+40	1.1597	8.53	QV	1	1	1	- 1
2+45	1.2197	8.72	QV	1	1	1	1
2+50	1.2840	9.34	QV	1	1	1	1
2+55	1.3527	9.97	QV	Í	1	1	1
3+ 0	1.4232	10.24	QV	Í	1		1
3+ 5	1.4949	10.40	QV	Í			
3+10	1.5682	10.65	QV		1	1	
3+15	1.5682 1.6461 1.7286	11.32	QV	1	1		
3+20	1.7286	11.97	QV	1			
3+25	1.8141	12.42	QV				
3+30	1.9058	13.32	QV				
3+35	2.0076	14.77	QV				
3+40	2.1199	16.31	QV			4	-
3+45	2.2405	17.51	Q				-
3+50	2.3689	18.64		2V			
3+55	2,5048	19.73		2 V			
4+ 0	2.6482	20.83		QV	1		
4+ 5	2.7990	21.89		QV			
4+10	2.9582	23.11		ĨQĬV			
4+15	3.1287	24.76 26.58		Q V	1		
4+20	3.3117	28.48		Įov			
4+25	3.5079	30.30		vv			1
4+30	3.7166 3.9349	31.70		QV			1
4+35 4+40	4.1631	33.13			v	1	1
4+45	4.4036	34.92		Q	v	1	1
4+50	4.6563	36.69		Q	v	1	1
4+55	4.9185	38.07		1 0	v		1
5+ 0	5.1904	39.48		1	Q V	1	1
5+ 5	5.4783	41.81	i i	i i	Q V	1	1
5+10	5.7996	46.65		1	o v	1	1
5+15	6.1692	53.67	i i	i	ĨΩV	i	1
5+20	6.5864	60.57	i	i		v	1
5+25	7.0487	67.13		1	1 ~	0	
5+25	7.5674	75.31		i i	i	V O	
5+35	8.1232	80.71	i	1			
5+40	8.5748	65.57	i i	1	1	Q V	7
5+45	8.8574	41.03	i	1	Q		v
5+50	9.0378	26.19		Q			v
5+55	9.1625	18.11			1	I	v
6+ 0	9.2536	13.22	Q				v
6+ 5	9.3219	9.92	Q				v
6+10	9.3735	7.49	Q		1	1	v
6+15	9.4133	5.78	Q	1			v
6+20	9.4437	4.41	Q	1			v
6+20	9.4665	3.32	Q	1	1	1	v
6+25 6+30	9,4833		Q	1	i	1	v
6+30	9.4833		0	1	1	1	v
			Q Q	1		1	v
6+40 6+45	9.5036 9.5084		Q			1	v
6+45			Q			1	v
6+50	9.5097						v
6+55	9.5102		Q				v
7+ 0 7+ 5	9.5103		Q Q				v
	9.5104	11.UI					× 1
7+ 5	9.5104		Q				v

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/12/20 File: 3828EX10024100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-1b) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format _____ Length along longest watercourse = 3400.00 (Ft.) Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.030 Lag time = 0.159 Hr. Lag time = 9.56 Min. Lag time = 9.56 Min. 25% of lag time = 2.39 Min. 40% of lag time = 3.82 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.75 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 4.50 313.43 4.50 STORM EVENT (YEAR) = 100.00 Area Averaged 2-Year Rainfall = 1.750(In) Area Averaged 100-Year Rainfall = 4.500(I 4.500(In) Point rain (area averaged) = 4.500(In) Areal adjustment factor = 99,99 % Adjusted average point rain = 4.499(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 76.00 0.000 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-3
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 76.0
 88.6
 0.146
 0.000
 0.146
 1.000
 0.146

 Sum
 (F)
 =
 0.146
 (F)
 1.166
 Area averaged mean soil loss (F) (In/Hr) = 0.146Minimum soil loss rate ((In/Hr)) = 0.073 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS)
 1
 0.083
 52.307
 6.571

 2
 0.167
 104.614
 28.083

 3
 0.250
 156.922
 28.549

 4
 0.333
 209.229
 12.179

 5
 0.417
 261.536
 6.595

 6
 0.500
 313.843
 4.589

 7
 0.583
 366.151
 3.296

 8
 0.667
 418.458
 2.462

 9
 0.750
 470.765
 1.797

 10
 0.833
 523.072
 1.548

 11
 0.917
 575.380
 1.191

 12
 1.000
 627.687
 0.940
 4.612 19.712 20.039 8.549 4.629 3.221 2.314 1.728 1.261 1.086 10 0.836 11 0.660 12

13	1.083	679,994	0.721		0.506
14	1.167	732,301	0.542		0.381
15	1.250	784.608	0.523		0.367
16	1.333	836.916	0.415		0.292
			Sum = 100.000	Sum=	70.194

						(
Unit	Time	Pattern	Storm Rain		Loss rate	Low	Effective (In/Hr)
1	(Hr.) 0.08	Percent 0.07	(In/Hr) 0.036	(Max 0.259)	0.032	0.004
2	0.17	0.07	0.036	č		0.032	0.004
3	0.25	0.07	0.036	Ċ		0.032	0.004
4	0.33	0.10	0.054	(0.049	0.005
5	0.42	0.10	0.054	(0.049	0.005
6	0.50	0.10	0.054	9		0.049	0.005
7	0.58	0.10	0.054	9		0.049	0.005
8 9	0.67	0.10	0.054	6		0.049 0.049	0.005
10	0.83	0.13	0.072	- 6		0.065	0.007
11	0.92	0.13	0.072	i		0.065	0.007
12	1.00	0.13	0.072	i		0.065	0.007
13	1.08	0.10	0.054	(0.247)	0.049	0.005
14	1.17	0.10	0.054	(0.049	0.005
15	1.25	0.10	0.054	(0.049	0.005
16	1.33	0.10	0.054	9		0.049	0.005
17	1.42	0.10	0.054	9		0.049 0.049	0.005
18 19	1.50	0.10	0.054	0		0.049	0.005
20	1.50	0.10	0.054	- 6		0.049	0.005
21	1.75	0.10	0.054	0		0.049	0.005
22	1.83	0.13	0.072	(0.238)	0.065	0.007
23	1.92	0.13	0.072	(0.237)	0.065	0.007
24	2.00	0.13	0.072	(·	0.065	0.007
25	2.08	0.13	0.072	(0.235)	0.065	0.007
26	2.17	0.13	0.072	- 3	0.234)	0.065	0.007
27	2.25	0.13	0.072		0.233)	0.065 0.065	0.007
28	2.33	0.13	0.072	(0.232)	0.065	0.007 0.007
29 30	2.42	0.13 0.13	0.072	1	0.231)	0.065	0.007
31	2.58	0.13	0.090	- 2	0.230)	0.081	0.009
32	2.67	0.17	0.090	(0.081	0.009
33	2.75	0.17	0.090	(0.081	0.009
34	2.83	0.17	0.090	(0.227)	0.081	0.009
35	2.92	0.17	0.090	(0.081	0.009
36	3.00	0.17	0.090	9		0.081	0.009
37	3.08	0.17	0.090	5	N - NNYAY	0,081	0.009
38	3.17 3.25	0.17	0.090	0	1 D. E. C.	0.081 0.081	0.009
39 40	3.33	0.17 0.17	0.090	i		0.081	0.009
41	3.42	0.17	0.090	i		0.081	0.009
42	3.50	0.17	0.090	(0.081	0.009
43	3.58	0.17	0.090	(0.081	0.009
44	3.67	0.17	0.090	(0.081	0.009
45	3.75	0.17	0.090	(0.081	0.009
46	3.83	0.20	0.108	5	VI 80200	0.097	0.011
47	3.92	0.20	0.108	0	N 1282 Q	0.097 0.097	0.011 0.011
48 49	4.00	0.20	0.108	ć		0.097	0.011
50	4.17	0.20	0.108	i		0.097	0.011
51	4.25	0.20	0.108	(0.211)	0.097	0.011
52	4.33	0.23	0.126	(0,210)	0.113	0.013
53	4.42	0.23	0.126	(0.209)	0,113	0.013
54	4.50	0.23	0.126	(0.208)	0,113	0.013
55	4.58	0.23	0.126	- 5	0.208)	0.113	0.013
56	4.67	0.23	0.126	1	0.207)	0.113 0.113	0.013 0.013
57 58	4.83	0.23	0.126 0.144	č	0 0.5010 520	0.130	0.014
59	4.92	0.27	0.144	i		0.130	0.014
60	5.00	0.27	0.144	(0.130	0.014
61	5.08	0.20	0.108	(0.202)	0.097	0.011
62	5.17	0.20	0.108	(0.201)	0.097	0.011
63	5.25	0.20	0.108	(0.097	0.011
64	5.33	0.23	0.126	5		0.113	0.013
65 66	5.42 5.50	0.23	0.126	(0.113 0.113	0.013 0.013
67	5.50	0.23	0.144	i		0.130	0.014
68	5.67	0.27	0.144	i		0.130	0.014
69	5.75	0.27	0.144	(0.130	0.014
70	5.83	0.27	0.144	(0.194)	0.130	0.014
71	5.92	0.27	0.144	(0.130	0.014
72	6.00	0.27	0.144	5		0.130	0.014
73	6.08	0.30	0.162	5		0.146	0.016
74	6.17	0.30	0.162	2		0.146 0.146	0.016 0.016
75 76	6.25 6.33	0.30	0.162	ì		0.146	0.016
77	6.42	0.30	0.162	ć		0.146	0.016
78	6.50	0.30	0.162	i		0.146	0.016
79	6.58	0.33	0.180	(0.187)	0.162	0.018
80	6.67	0.33	0.180	(0.162	0.018
81	6.75	0.33	0.180	4		0.162	0.018
82	6.83	0.33	0.180	2	0.184)	0.162	0.018
83 84	6.92 7.00	0.33 0.33	0.180 0.180	2		0.162 0.162	0.018 0.018
85	7.08	0.33	0.180	i		0.162	0.018
86	7.17	0.33	0.180	i		0.162	0.018
							Page 2

87	7.25	0.33	0.180	(0.180)	0.162	0.018
88	7.33	0.37	0.198	i	0.179)	0.178	0.020
89	7.42	0.37	0.198	i	0.178)	0.178	0.020
90	7.50	0.37	0.198		0.178	(0.178)	0.020
	7.58		0.216		0.177	(0.194)	0.039
91		0.40	0.216		0.176	(0.194)	0.040
92	7.67	0.40	0.216		0.175	(0.194)	0.041
93	7.75	0.40			0.174	(0.211)	0.060
94	7.83	0.43	0.234		0.174	(0.211)	0.060
95	7.92	0.43	0.234			0.211)	0.061
96	8.00	0.43	0.234		0.173	15 DF 11 DF	0.098
97	8.08	0.50	0.270		0.172		0.099
98	8.17	0.50	0.270		0.171	(0.243)	
99	8.25	0.50	0.270		0.170	(0.243)	0.100
100	8.33	0.50	0.270		0.170	(0.243)	0.100
101	8.42	0.50	0.270		0.169	(0.243)	0.101
102	8.50	0.50	0.270		0.168	(0.243)	0.102
103	8.58	0.53	0.288		0.167	(0.259)	0.121
104	8.67	0.53	0.288		0.166	(0.259)	0.122
105	8.75	0.53	0.288		0.166	(0.259)	0.122
106	8.83	0.57	0.306		0.165	(0.275)	0.141
107	8.92	0.57	0.306		0.164	(0.275)	0.142
108	9.00	0.57	0.306		0.163	(0.275)	0.143
109	9.08	0.63	0.342		0.162	(0.308)	0.179
110	9.17	0.63	0.342		0.162	(0.308)	0.180
111	9.25	0.63	0.342		0.161	(0.308)	0.181
112	9.33	0.67	0.360		0.160	(0.324)	0.200
113	9.42	0.67	0.360		0.159	(0.324)	0.201
114	9.50	0.67	0.360		0.159	(0.324)	0.201
115	9.58	0.70	0.378		0.158	(0.340)	0.220
116	9.67	0.70	0.378		0.157	(0.340)	0.221
117	9.75	0.70	0.378		0.156	(0.340)	0.222
118	9.83	0.73	0.396		0.156	(0.356)	0.240
119	9.92	0.73	0.396		0.155	(0.356)	0.241
120	10.00	0.73	0.396		0.154	(0.356)	0.242
121	10.08	0.50	0.270		0.153	(0.243)	0.117
122	10.17	0.50	0.270		0.153	(0.243)	0.117
123	10.25	0.50	0.270		0.152	(0.243)	0.118
124	10.33	0.50	0.270		0.151	(0.243)	0.119
125	10.42	0.50	0.270		0.150	(0.243)	0.120
126	10.50	0.50	0.270		0.150	(0.243)	0.120
127	10.58	0.67	0.360		0.149	(0.324)	0.211
128	10.55	0.67	0.360		0.148	(0.324)	0.212
		0.67	0.360		0.148	(0.324)	0.212
129	10.75		0.360		0.147	(0.324)	0.213
130	10.83	0.67	0.360			(0.324)	0.214
131	10.92	0.67			0.146	(0.324)	0.215
132	11.00	0.67	0.360		0.145	0.308)	0.197
133	11.08	0.63	0.342				0.198
134	11.17	0.63	0.342		0.144	(0.308)	
135	11.25	0.63	0.342		0.143	(0.308)	0.199
136	11.33	0.63	0.342		0.143	(0.308)	0.199
137	11.42	0.63	0.342		0.142	(0.308)	0.200
138	11.50	0.63	0.342		0.141	(0.308)	0.201
139	11.58	0.57	0.306		0.140	(0.275)	0.166
140	11.67	0.57	0.306		0.140	(0.275)	0.166
141	11.75	0.57	0.306		0.139	(0.275)	0.167
142	11.83	0.60	0.324		0.138	(0.292)	0.186
143	11.92	0.60	0.324		0.138	(0.292)	0.186
144	12.00	0.60	0.324		0.137	(0.292)	0.187
145	12.08	0.83	0.450		0.136	(0.405)	0.314
146	12.17	0.83	0.450		0.136	(0.405)	0.314
147	12.25	0.83	0.450		0.135	(0.405)	0.315
148	12.33	0.87	0.468		0.134	(0.421)	0.334
149	12.42	0.87	0.468		0.134	(0.421)	0.334
150	12.50	0.87	0.468		0.133	(0.421)	0.335
151	12.58	0.93	0.504		0.132	(0.454)	0.372
152	12.67	0.93	0.504		0.132	(0.454)	0.372
153	12.75	0.93	0.504		0.131	(0.454)	0.373
154	12.83	0.97	0.522		0.130	(0.470)	0.392
155	12.92	0.97	0.522		0.130	(0.470)	0.392
156	13.00	0.97	0.522		0.129	(0.470)	0.393
157	13.08	1.13	0.612		0.128	(0.551)	0.484
158	13.17	1.13	0.612		0.128	(0.551)	0.484
159	13.25	1.13	0.612		0.127	(0.551)	0.485
160	13.33	1.13	0.612		0.126	(0.551)	0.486
161	13.42	1.13	0.612		0.126	(0.551)	0.486
162	13.50	1.13	0.612		0.125	(0.551)	0.487
163	13.58	0.77	0.414		0.124	(0.373)	0.290
164	13.67	0.77	0.414		0.124	(0.373)	0.290
165	13.75	0.77	0.414		0.123	(0.373)	0.291
166	13.83	0.77	0.414		0.122	(0.373)	0.291
167	13.92	0.77	0.414		0.122	(0.373)	0.292
168	14.00	0.77	0.414		0.121	(0.373)	0.293
169	14.08	0.90	0.486		0.121	(0.437)	0.365
170	14.17	0.90	0.486		0.120	(0.437)	0.366
171	14.25	0.90	0.486		0.119	(0.437)	0.367
172	14.33	0.87	0.468		0.119	(0.421)	0.349
173	14.42	0.87	0.468		0.118	(0.421)	0.350
174	14.50	0.87	0.468		0.118	(0.421)	0.350
175	14.58	0.87	0.468		0.117	(0.421)	0.351
176	14.67	0.87	0.468		0.116	(0.421)	0.352
177	14.75	0.87	0.468		0.116	(0.421)	0.352
178	14.83	0.83	0.450		0.115	(0.405)	0.335
179	14.92	0.83	0.450		0.115	(0.405)	0.335
180	15.00	0.83	0.450		0.114	(0.405)	0.336
181	15.08	0.80	0.432		0.113	(0.389)	0.319
182	15.17	0.80	0.432		0.113	(0.389)	0.319
183	15.25	0.80	0.432		0.112	(0.389)	0.320
184	15.33	0.77	0.414		0.112	(0.373)	0.302
185	15.42	0.77	0.414		0.111	(0.373)	0.303
							Page 3
							* ~ A C - 1

186	15.50	0.77	0.414	0.111	(0.373)	0.303
187	15.58	0.63	0.342	0.110	(0.308)	0.232
188	15.67	0.63	0.342	0.109	(0.308)	0.233
189	15.75	0.63	0.342	0.109	(0.308)	0.233
190	15.83	0.63	0.342	0.108	(0.308)	0.234
191	15.92	0.63	0.342	0.108	(0.308)	0.234
192	16.00	0.63	0.342	0.107	(0.308)	0.235
193	16.08	0.13	0.072	(0.107)	0.065	0.007
194	16.17	0.13	0.072	(0.106)	0.065	0.007
195	16.25	0.13	0.072	(0.106)	0.065	0.007
196	16.33	0.13	0.072	(0.105)	0.065	0.007
197	16.42	0.13	0.072	(0.104)	0.065	0.007
198	16.50	0.13	0.072	(0.104)	0.065	0.007
199	16.58	0.10	0.054	(0.103)	0.049	0.005
200	16.67	0.10	0.054	(0.103)	0.049	0.005
201	16.75	0.10	0.054	(0.102)	0.049	0.005
202	16.83	0.10	0.054	(0.102)	0.049	0.005
203	16.92	0.10	0.054	(0.101)	0.049	0.005
204	17.00	0.10	0.054	(0.101)	0.049	0.005
205	17.08	0.17	0.090	(0.100)	0.081	0.009
206	17.17	0.17	0.090	(0.100)	0.081	0.009
207	17.25	0.17	0.090	(0.099)	0.081	0.009
208	17.33	0.17	0.090	(0.099)	0.081	0.009
209	17.42	0.17	0.090	(0.098)	0.081	0.009
210	17.50	0.17	0.090	(0.098)	0.081	0.009
211	17.58	0.17	0.090	(0.097)	0.081	0.009
212	17.67	0.17	0.090	(0.097)	0.081	0.009
213	17.75	0.17	0.090	(0.096)	0.081	0.009
214	17.83	0.13	0.072	(0.096)	0.065	0.007
215	17.92	0.13	0.072	(0.095)	0.065	0.007
216	18.00	0.13	0.072	(0.095)	0.065	0.007
217	18.08	0.13	0.072	(0.094)	0.065	0.007 0.007
218	18.17	0.13	0.072	(0.094)	0.065	0.007
219	18.25	0.13	0.072	(0.094)	0.065	
220	18.33	0.13	0.072	(0.093)	0.065	0.007
221	18.42	0.13	0.072	(0.093)	0.065	0.007 0.007
222	18.50	0.13	0.072	(0.092)	0.065	
223	18.58	0.10	0.054	(0.092)	0.049	0.005
224	18.67	0.10	0.054	(0.091)	0.049	0.005
225	18.75	0.10	0.054	(0.091)		0.004
226	18.83	0.07	0.036	(0.090)	0.032	0.004
227	18.92	0.07	0.036	(0.090)	0.032	0.004
228	19.00	0.07	0.036	(0.089)	0.049	0.005
229	19.08	0.10	0.054 0.054	(0.089)	0.049	0.005
230	19.17 19.25	0.10	0.054	(0.088)	0.049	0.005
231 232	19.25	0.13	0.072	(0.088)	0.065	0.007
233	19.42	0.13	0.072	(0.087)	0.065	0.007
234	19.50	0.13	0.072	(0.087)	0.065	0.007
235	19.58	0.10	0.054	(0.087)	0.049	0.005
236	19.67	0.10	0.054	(0.086)	0.049	0.005
237	19.75	0.10	0.054	(0.086)	0.049	0.005
238	19.83	0.07	0.036	(0.086)	0.032	0.004
239	19.92	0.07	0.036	(0.085)	0.032	0.004
240	20.00	0.07	0.036	(0.085)	0.032	0.004
241	20.08	0.10	0.054	(0.084)	0.049	0.005
242	20.17	0.10	0.054	(0.084)	0.049	0.005
243	20.25	0.10	0.054	(0.084)	0.049	0.005
244	20.33	0.10	0.054	(0.083)	0.049	0.005
245	20.42	0.10	0.054	(0.083)	0.049	0.005
246	20.50	0.10	0.054	(0.083)	0.049	0.005
247	20.58	0.10	0.054	(0.082)	0.049	0.005
248	20.67	0.10	0.054	(0.082)	0.049	0.005
249	20.75	0.10	0.054	(0.082)	0.049	0.005
250	20.83	0.07	0.036	(0.081)	0.032	0.004
251	20.92	0.07	0.036	(0.081)	0.032	0.004
252	21.00	0.07	0.036	(0.081)	0.032	0.004
253	21.08	0.10	0.054	(0.080)	0.049	0.005
254	21.17	0.10	0.054	(0.080)	0.049	0.005 0.005
255	21.25	0.10	0.054	(0.080) (0.079)	0.049	0.005
256	21.33 21.42	0.07	0.036 0.036	(0.079) (0.079)	0.032	0.004
257			0.036	(0.079)	0.032	0.004
258 259	21.50 21.58	0.07	0.038	(0.078)	0.049	0.005
			0.054	(0.078)	0.049	0.005
260 261	21.67 21.75	0.10	0.054	(0.078)	0.049	0.005
262	21.83	0.07	0.036	(0.078)	0.032	0.004
263	21.83	0.07	0.036	(0.077)	0.032	0.004
264	22.00	0.07	0.036	(0.077)	0.032	0.004
265	22.08	0.10	0.054	(0.077)	0.049	0.005
266	22.17	0.10	0.054	(0.077)	0.049	0.005
267	22.25	0.10	0.054	(0.076)	0.049	0.005
268	22.33	0.07	0.036	(0.076)	0.032	0.004
269	22.42	0.07	0.036	(0.076)	0.032	0.004
270	22.50	0.07	0.036	(0.076)	0.032	0.004
271	22.58	0.07	0.036	(0.075)	0.032	0.004
272	22.67	0.07	0.036	(0.075)	0.032	0.004
273	22.75	0.07	0.036	(0.075)	0.032	0.004
274	22.83	0.07	0.036	(0.075)	0.032	0.004
275	22.92	0.07	0.036	(0.075)	0.032	0.004
276	23.00	0.07	0.036	(0.074)	0.032	0.004
277	23.08	0.07	0.036	(0.074)	0.032	0.004
278	23.17	0.07	0.036	(0.074)	0.032	0.004
279	23.25	0.07	0.036	(0.074)	0.032	0.004
280	23.33	0.07	0.036	(0.074)	0.032	0.004
281	23.42	0.07	0.036	(0.074)	0.032	0.004
282	23.50	0.07	0.036	(0.074)	0.032	$0.004 \\ 0.004$
283	23.58	0.07	0.036	(0.073) (0.073)	0.032	0.004
284	23.67	0.07	0.036	v.v/3/	W. 032	0.004

<pre>285 23.75 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 287 23.92 0.07 0.036 (0.073) 0.032 0.004 297 23.92 0.07 0.036 (0.073) 0.032 0.004 297 23.92 0.07 0.036 (0.073) 0.032 0.004 297 23.92 0.07 0.036 (0.073) 0.032 0.004 297 23.92 0.07 0.036 (0.073) 0.032 0.004 297 24.3 Fload volume = Effective reinfall 2.910 Fload volume = 55609 (0.041 Pert Total rainfall = 1.338 (CH) Total rainfall = 5609 (0.041 Pert Total rainfall = 3.5609 (0.041 Pert Total rainfall = 5.000 (0.050 (0</pre>	285 286	23.75 23.83	0.07	0.036	(0.073) (0.073) (0.073) (0.073)	0.032 0.032 0.032 0.032	0.004	
Bun = 1010 ¹⁰⁰⁰ MAG 8002 (C) ([[In]/(PL.)] = 12.7(Ac.FL) times area 69.7(Ac./[[[In]/(PL.)] = 12.7(Ac.FL) Total soil loss = 2.31(In) Total soil loss = 2.31(In) Total soil loss = 55469.0 (C) Cubr Pet Total soil loss = 51469.0 (C) Cubr Pet Hydrograph in 5 Minute intervals ((CPS)) Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 10.0 20.0 30.0 40.0 Total soil loss = 0 (C) Cubr Pet Time (h-m) Volume Ac.FL 0 (CPS) 0 (C) 20.0 10.0 20.0 10.0 Total soil loss = 0 (C) 20.0 10.0 20.0 10.0 20.0 10.0 Total soil loss = 0 (C) 20.0 10.0 1	287 288	23.92 24.00	0.07	0.036	(0.073)	0.032	0.004	
<pre>times area 65.7(&c.1/{(In/(FE.)] = 12.7(Ac.FE) Total soil loss = 2.31(In/ Total soil loss = 35469.0 Ouble Pet Total soil loss = 55469.0 Ouble Pet Total soil loss = 55469.0 Ouble Pet Total soil loss = 52265.0 Cubic Pet Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS) Total soil loss = 7.7(C.1/(In/(FE.)] = 33.00/(CFS)) Total soil loss = 7.7(C.1/(In/(FE.)] = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(C.1/(In/(FE.)] = 7.7(CFS)) Total soil loss = 7.7(C.1/(In/(FE.)] = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS) = 7.7(CFS)) Total soil loss = 7.7(CFS)) Total soil loss = 7.7(CFS)) Total soil loss = 7</pre>		Sum =	100.0	e Not Used)		Sum =	26.3	
Total soil loss - 59399-0 Cubic Peet Pack Llow rates of this hydrograph - 33.080 (CPS) 		times	area 6	9.7(Ac.)/[(In)/(Ft.) =		c.Ft)	
Total soil loss - 59399-0 Cubic Peet Pack Llow rates of this hydrograph - 33.080 (CPS) 		Total Total	soil loss = soil loss =	2.31(I 13.383(A	n) c.Ft)			
Total soil loss - 09299-0 Cubic Peet Peak flow rate of this hydrograph - 33.080 (CFS) Term Peak flow rate of this hydrograph - 33.080 (CFS) Term Peak flow rate of this hydrograph - 30.080 (CFS) Turn of f Hydrograph i 5 Minute intervals ((CFS)) Time (hen) Volume Ac.Pt 0(CFS) 0 10.0 20.0 30.0 40.0 04.5 0.0001 0.02 0 04.5 0.0001 0.02 0 04.5 0.0002 0.22 0 04.5 0.0002 0.22 0 04.5 0.0002 0.22 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.23 0 04.5 0.0002 0.41 0 14.5 0.0254 0.46 0 14.5 0.0254 0.46 0 14.5 0.0036 0.39 0 14.5 0.0036 0.39 0 14.5 0.0049 0.25 0 14.5 0.0056 0.39 0 14.5 0.0056 0.39 0 14.5 0.0056 0.39 0 14.6 0.0419 0.39 0 14.6 0.0419 0.39 0 14.6 0.0427 0.38 0 14.6 0.0427 0.38 0 14.6 0.0427 0.38 0 14.6 0.0428 0 24.10 0.0627 0.48 0 24.10 0.0627 0.48 0 24.10 0.0627 0.48 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0.49 0 24.15 0.0660 0 14.15 0.0661 0 14.15 0.0660 0 14.15 0		Total	rainfall =	4.50(In) Cubic Feet			
Peak flow rate of this hydrograph - 33.080(CFS) Time transmission of the theory of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of tra		Total	soil loss =	582969	.0 Cubic Feet			
24 - H O UR STORM Run of f Hydrograph Time (h+m) Volume Ac.Pt O(CCS) 0 10.0 20.0 30.0 40.0 Time (h+m) Volume Ac.Pt O(CCS) 0 10.0 20.0 30.0 40.0 O(CCS) 0 10.0 20.0 40.0 O(CCS) 0 10.0 30.0 40.0 0 0 20.0 40.0 0 0 0 0 0 0 0 20.0 30.0 0 0 0 0 0 0 0 20.0 0 0 0 0 <th 2"2"2"2"2"<="" colspa="2" td=""><td></td><td>Peak</td><td>flow rate of</td><td>this hydro</td><td>graph = 3</td><td>3.080 (CFS)</td><td></td></th>	<td></td> <td>Peak</td> <td>flow rate of</td> <td>this hydro</td> <td>graph = 3</td> <td>3.080 (CFS)</td> <td></td>		Peak	flow rate of	this hydro	graph = 3	3.080 (CFS)	
Runoff Hydrographin 5 Minute intervals (CES) Time (h=m) Volume Ac.Ft Q(CSS) 0 10.0 20.0 30.0 40.0 0+5 0.0001 0.02 0 0 0 0 0 0 0+5 0.0018 0.16 0 0 0 0 0 0 0 0+10 0.0020 0.32.0 <			+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		
Hydrograph in 5 Minute intervals (CES) Time (h+m) Volume Ac.Ft Q(CS) 0 10.6 20.0 30.0 40.0 0+15 0.0007 0.09 0 10.6 20.0 30.0 40.0 0+15 0.0013 0.20 0 0 0 0 0 0 0+20 0.0033 0.20 0 0 0 0 0 0 0 0+40 0.0133 0.35 0			Ru	noff	Hydro	graph		
Time (hem) Volume Ac. FL Q(CRS) 0 10.0 20.0 30.0 40.0 4-5 0.0001 0.02 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
0+5 0.0001 0.02 0 0+15 0.0018 0.16 0 0+25 0.0023 0.20 0 0+25 0.0049 0.25 0 0+30 0.0072 0.32 0 0+430 0.0072 0.32 0 0+440 0.1154 0.35 0 0+440 0.0123 0.45 0 0+455 0.1223 0.45 0 0+55 0.1223 0.46 0 1+15 0.0224 0.43 0 1+15 0.333 0.40 0 1+20 0.333 0.39 0 1+30 0.333 0.39 0 1+430 0.333 0.39 0 1+430 0.439 0 1 1+45 0.6660 0.49 0 2+10 0.6660 0.49 0 2+20 0.6728 0.450 0 2+45		e(h+m) Vo	lume Ac.Ft	Q(CFS) 0	10.0	20.0	30.0 40.0	
0-20 0.0032 0.20 0 0-25 0.0032 0.25 0 0-30 0.0070 0.30 0 0-435 0.0032 0.32 0 0-446 0.0113 0.35 0 0-455 0.0192 0.41 0 1+0 0.0254 0.46 0 1+10 0.0254 0.46 0 1+20 0.0312 0.440 0 1+20 0.0323 0.43 0 1+20 0.0366 0.39 0 1+30 0.0419 0.39 0 1+40 0.4429 0.33 0 1+40 0.4429 0.43 0 1+40 0.4429 0.43 0 1+50 0.0627 0.48 0 2+5 0.0560 0.449 0 2+40 0.663 0.55 0 2+40 0.663 0.55 0 2+40 0.693 0.65 0 2+40 0.693 0.63	0		0 0001	0.02 Q	1			
0-20 0.0032 0.20 0 0-25 0.0032 0.25 0 0-30 0.0070 0.30 0 0-435 0.0032 0.32 0 0-446 0.0113 0.35 0 0-455 0.0192 0.41 0 1+0 0.0254 0.46 0 1+10 0.0254 0.46 0 1+20 0.0312 0.440 0 1+20 0.0323 0.43 0 1+20 0.0366 0.39 0 1+30 0.0419 0.39 0 1+40 0.4429 0.33 0 1+40 0.4429 0.43 0 1+40 0.4429 0.43 0 1+50 0.0627 0.48 0 2+5 0.0560 0.449 0 2+40 0.663 0.55 0 2+40 0.663 0.55 0 2+40 0.693 0.65 0 2+40 0.693 0.63	0	+10 +15	0.0007 0.0018	0.09 Q 0.16 Q	÷			
0+50 0.1164 0.36 0 1+5 0.0123 0.41 0 1+5 0.0223 0.45 0 1+10 0.0224 0.46 0 1+15 0.0324 0.40 0 1+20 0.0339 0.40 0 1+20 0.0339 0.40 0 1+20 0.0339 0.39 0 1+35 0.0449 0.39 0 1+45 0.0446 0.38 0 1+45 0.0560 0.48 0 2+5 0.05529*///0.43 0 1 2+5 0.0560 0.49 0 2+20 0.6644 0.49 1 2+30 0.6664 0.49 1 2+40 0.6935 0.58 0 2+40 0.8935 0.58 1 2+40 0.8936 0.61 0 3+45 0.1001 0.62 0 3+45 <td>0</td> <td>+20</td> <td>0.0032</td> <td>0.20 Q</td> <td>1</td> <td>1</td> <td></td>	0	+20	0.0032	0.20 Q	1	1		
0+50 0.1164 0.36 0 1+5 0.0123 0.41 0 1+5 0.0223 0.45 0 1+10 0.0224 0.46 0 1+10 0.0224 0.46 0 1+20 0.0339 0.40 0 1+20 0.0339 0.40 0 1+20 0.0339 0.40 0 1+35 0.0449 0.39 0 1+45 0.0446 0.38 0 1+45 0.0429 0.39 0 2+5 0.0560 0.48 0 2+5 0.0562 0.48 0 2+10 0.6627 0.48 0 2+30 0.6788 0.50 0 2+30 0.7628 0.50 0 2+40 0.895 0.55 0 2+40 0.8958 0.61 0 3+4 0.1001 0.62 0 3+40	0	+25 +30	0.0049	0.30 O				
0+50 0.1164 0.36 0 1+5 0.0123 0.41 0 1+5 0.0223 0.45 0 1+10 0.0224 0.46 0 1+10 0.0224 0.46 0 1+20 0.0339 0.40 0 1+20 0.0339 0.40 0 1+20 0.0339 0.40 0 1+35 0.0449 0.39 0 1+45 0.0446 0.38 0 1+45 0.0429 0.39 0 2+5 0.0560 0.48 0 2+5 0.0562 0.48 0 2+10 0.6627 0.48 0 2+30 0.6788 0.50 0 2+30 0.7628 0.50 0 2+40 0.895 0.55 0 2+40 0.8958 0.61 0 3+4 0.1001 0.62 0 3+40	0	+35	0.0092			1	1 1	
0+850 0.0164 0.36 0 1+ 0 0.0223 0.441 0 1+ 0 0.0224 0.446 0 1+10 0.0284 0.446 0 1+120 0.0339 0.40 0 1+220 0.0336 0.40 0 1+220 0.0336 0.39 0 1+30 0.0419 0.38 0 1+40 0.0446 0.38 0 1+45 0.06627 0.48 0 2+5 0.06627 0.48 0 2+40 0.06627 0.48 0 2+40 0.06627 0.48 0 2+40 0.0673 0.50 0 2+40 0.0674 0.49 0 2+40 0.0675 0.58 0 2+40 0.0875 0.58 0 2+45 0.0958 0.61 0 3+5 0.1043 0.62 0 <td>0</td> <td></td> <td></td> <td>200 m l</td> <td></td> <td></td> <td></td>	0			200 m l				
1+10 0.0234 0.42 0 1+20 0.0339 0.44 0 1+20 0.0336 0.33 0 1+21 0.0346 0.33 0 1+30 0.0349 0.33 0 1+45 0.0449 0.33 0 1+45 0.0472 0.38 0 1+45 0.0499 0.33 0 1+55 0.0560 0.449 0 2+ 5 0.0560 0.449 0 2+15 0.0694 0.49 0 2+20 0.0763 0.50 0 2+30 0.0763 0.50 0 2+40 0.0835 0.55 0 2+43 0.0917 0.60 0 2+44 0.0935 0.61 0 3+5 0.1001 0.61 0 3+5 0.10129 0.62 0 3+40 0.1229 0.63 0 3+50 0.1433 0.64 0 3+55 0.1433 0.64	0	+50	0.0164					
1+10 0.0234 0.42 0 1+20 0.0339 0.44 0 1+20 0.0336 0.33 0 1+21 0.0346 0.33 0 1+30 0.0349 0.33 0 1+45 0.0449 0.33 0 1+45 0.0472 0.38 0 1+45 0.0499 0.33 0 1+55 0.0560 0.449 0 2+ 5 0.0560 0.449 0 2+15 0.0694 0.49 0 2+20 0.0763 0.50 0 2+30 0.0763 0.50 0 2+40 0.0835 0.55 0 2+43 0.0917 0.60 0 2+44 0.0935 0.61 0 3+5 0.1001 0.61 0 3+5 0.10129 0.62 0 3+40 0.1229 0.63 0 3+50 0.1433 0.64 0 3+55 0.1433 0.64	1	+55 + 0	0.0223		1	1		
1+20 0.0339 0.40 0 1+25 0.0366 0.39 0 1+30 0.0393 0.39 0 1+41 0.0446 0.38 0 1+45 0.0472 0.38 0 1+45 0.0472 0.38 0 1+55 0.0529 0.43 0 2+5 0.0560 0.449 0 2+5 0.0560 0.449 0 2+5 0.0560 0.49 0 2+25 0.0763 0.50 0 2+30 0.0763 0.50 0 2+40 0.0835 0.55 0 2+45 0.0917 0.60 0.42 2+45 0.0917 0.60 0.2 2+45 0.1001 0.61 0 3+5 0.1021 0.63 0 3+20 0.1172 0.63 0 3+30 0.1259 0.63 0 3+40 0.1346 0.64 0 3+45 0.1343 0.64	1	+ 5	0.0254		1			
1+20 0.0339 0.40 0 1+25 0.0366 0.39 0 1+30 0.0393 0.39 0 1+41 0.0446 0.38 0 1+45 0.0472 0.38 0 1+45 0.0472 0.38 0 1+55 0.0529 0.43 0 2+5 0.0560 0.449 0 2+5 0.0560 0.449 0 2+5 0.0560 0.49 0 2+25 0.0763 0.50 0 2+30 0.0763 0.50 0 2+40 0.0835 0.55 0 2+45 0.0917 0.60 0.42 2+45 0.0917 0.60 0.2 2+45 0.1001 0.61 0 3+5 0.1021 0.63 0 3+20 0.1172 0.63 0 3+30 0.1259 0.63 0 3+40 0.1346 0.64 0 3+45 0.1343 0.64	1	+10 +15	0.0312	53/04	1	1		
1+30 0.339 0.39 0 1+35 0.0419 0.39 0 1+46 0.0442 0.38 0 1+50 0.0472 0.38 0 1+55 0.0529 0.43 0 2+5 0.0560 0.44 0 2+5 0.0593 0.48 0 2+5 0.0593 0.48 0 2+10 0.0627 0.48 0 2+20 0.0763 0.50 0 2+35 0.0763 0.50 0 2+40 0.0835 0.55 0 2+40 0.0835 0.55 0 2+40 0.0835 0.55 0 2+45 0.0917 0.60 0 2+45 0.1035 0.55 0 2+45 0.1043 0.62 0 3+10 0.1046 0.63 0 3+20 0.1129 0.63 0 3+30 0.1400 0.64 0 3+45 0.1302 0.63 <	1	+20	0.0339			ł		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	+30	0.0393	0.39 Q	ł.			
1+45 0.0472 0.38 0 $1+55$ 0.0529 0.43 0 $2+$ 0 0.0550 0.44 0 $2+10$ 0.0627 0.48 0 0 $2+15$ 0.0660 0.49 0 0 $2+22$ 0.0728 0.50 0 0 $2+25$ 0.0728 0.50 0 0 $2+25$ 0.0763 0.55 0 0 $2+40$ 0.0835 0.55 0 0 $2+46$ 0.0917 0.60 0 0 $2+55$ 0.0917 0.60 0 0 $3+5$ 0.1001 0.61 0 0 $3+50$ 0.1172 0.63 0 0 $3+50$ 0.1172 0.63 0 0 $3+20$ 0.1125 0.63 0 0 $3+40$ 0.1346 0.63 0 0 $3+40$ 0.1346 0.63 <td></td> <td>+35</td> <td>0.0419</td> <td></td> <td></td> <td></td> <td></td>		+35	0.0419					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.0472	0.38 Q		1		
2+5 0.0593 0.48 Q 2+15 0.0660 0.49 Q 2+25 0.0728 0.50 Q 2+30 0.0694 0.49 Q 2+35 0.0728 0.50 Q 2+35 0.0798 0.51 Q 2+35 0.0798 0.51 Q 2+440 0.0835 0.55 Q 2+45 0.0917 0.60 Q 2+55 0.0958 0.61 Q 3+5 0.1001 0.61 Q 3+5 0.1026 0.62 Q 3+10 0.1086 0.62 Q 3+25 0.1259 0.63 Q 3+35 0.1329 0.63 Q 3+40 0.1346 0.63 Q 3+40 0.1329 0.63 Q 3+40 0.1329 0.63 Q 3+40 0.1329 0.73 Q 4+40 0.1529 0.71 Q 4+5 0.1733 0.75								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2			0.46 Q				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0593					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	+15	0.0660	0.49 Q				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1500				
2+40 0.0835 0.55 Q 2+45 0.0917 0.60 Q 2+55 0.0958 0.61 Q 2+55 0.0958 0.61 Q 3+ 0 0.1001 0.61 Q 3+10 0.1086 0.62 Q 3+15 0.1172 0.63 Q 3+20 0.1172 0.63 Q 3+35 0.1302 0.63 Q 3+30 0.1259 0.63 Q 3+40 0.1346 0.63 Q 3+45 0.1302 0.63 Q 3+45 0.1389 0.63 Q 3+45 0.1389 0.63 Q 3+55 0.1480 0.68 Q 4+ 0 0.1529 0.71 Q 4+ 5 0.1579 0.73 Q 4+10 0.1681 0.74 Q 4+20 0.1733 0.75 Q 4+30 0.1845 0.83 Q 4+40 0.1962 0.88	2	+30	0.0763	0.50 Q		1		
2+45 0.0875 0.58 Q 2+50 0.0917 0.60 Q 2+55 0.0958 0.61 Q 3+ 0 1.001 0.61 Q 3+ 0 1.043 0.62 Q 3+10 0.1086 0.62 Q Image: Constraint of the state of the st		+35 +40	0.0798 0.0835		ł			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				55 Y	ł	1		
3+10 0.1086 0.62 0 $3+15$ 0.1129 0.62 0 $3+20$ 0.1172 0.63 0 $3+25$ 0.1216 0.63 0 $3+35$ 0.1329 0.63 0 $3+40$ 0.1346 0.63 0 $3+440$ 0.1346 0.63 0 $3+440$ 0.1346 0.63 0 $3+45$ 0.1389 0.63 0 $3+55$ 0.1433 0.64 0 $3+55$ 0.1430 0.68 0 $4+0$ 0.1529 0.71 0 $4+5$ 0.1579 0.73 0 $4+10$ 0.1681 0.74 0 $4+20$ 0.1787 0.79 0 $4+20$ 0.1787 0.79 0 $4+35$ 0.2022 0.88 0 $4+45$ 0.2022 0.88 0 $5+10$ 0.2339 0.90 0					ļ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
3+35 0.1302 0.63 Q 3+40 0.1346 0.63 Q 3+45 0.1389 0.63 Q 3+50 0.1433 0.64 Q 3+55 0.1480 0.68 Q 4+ 0 0.1529 0.71 Q 4+ 0 0.1630 0.74 Q 4+10 0.1630 0.74 Q 4+12 0.1733 0.75 Q 4+20 0.1733 0.75 Q 4+30 0.1845 0.83 Q 4+30 0.1845 0.83 Q 4+35 0.1903 0.85 Q 4+45 0.2022 0.86 Q 4+50 0.2022 0.87 Q 5+10 0.2211 0.96 Q 5+15 0.2277 0.96 Q 5+10 0.2396 0.83 Q 5+20 0.2510 0.84 Q 5+35 0.2694 0.92 Q 5+35 0.263	3	+25	0.1216	0.63 Q				
3+40 0.1346 0.63 Q 3+45 0.1389 0.63 Q 3+50 0.1433 0.64 Q 3+55 0.1480 0.68 Q 4+ 0 0.1529 0.71 Q 4+ 0 0.1630 0.74 Q 4+10 0.1630 0.74 Q 4+15 0.1681 0.74 Q 4+20 0.1733 0.75 Q 4+25 0.1787 0.79 Q 4+30 0.1845 0.83 Q 4+30 0.1845 0.87 Q 4+45 0.2022 0.87 Q 4+45 0.2022 0.87 Q 4+50 0.2022 0.87 Q 5+10 0.2211 0.96 Q 5+10 0.2221 0.87 Q 5+10 0.2339 0.90 Q 5+10 0.2396 0.83 Q 5+20 0.2510 0.84 Q 5+35 0.263								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	+40	0.1346	0.63 Q				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	+55	0.1480	0.68 Q				
4+15 0.1681 0.74 Q 4+20 0.1733 0.75 Q 4+25 0.1787 0.79 Q 4+30 0.1845 0.83 Q 4+35 0.1903 0.85 Q 4+40 0.1962 0.86 Q 4+45 0.2022 0.87 Q 4+50 0.2082 0.88 Q 4+55 0.2145 0.92 Q 5+0 0.2211 0.96 Q 5+10 0.2339 0.90 Q 5+10 0.2339 0.90 Q 5+10 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+40 0.2630 0.92 Q 5+45 0.2760 0.96 Q 5+45 0.2827 0.98 Q 5+50 0.2827 0.98 Q 5+50 0.2895 0.99 Q 6+10 0.3032 1.00	4	+ 5	0.1579	0.73 Q				
4+20 0.1733 0.75 Q 4+25 0.1787 0.79 Q 4+30 0.1845 0.83 Q 4+35 0.1903 0.85 Q 4+40 0.1962 0.86 Q 4+45 0.2022 0.87 Q 4+55 0.2145 0.92 Q 5+0 0.2211 0.96 Q 5+5 0.2277 0.96 Q 5+10 0.2339 0.90 Q 5+15 0.2396 0.83 Q 5+20 0.2452 0.81 Q 5+15 0.2396 0.83 Q 5+25 0.2510 0.84 Q 5+35 0.2630 0.88 Q 5+40 0.2570 0.86 Q 5+45 0.2760 0.96 Q 5+45 0.2827 0.98 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+10 0.3032 1.00						1		
4+30 0.1845 0.83 Q 4+35 0.1903 0.85 Q 4+40 0.1962 0.86 Q 4+40 0.2022 0.87 Q 4+45 0.2022 0.87 Q 4+50 0.2082 0.88 Q 4+55 0.2145 0.92 Q 5+0 0.2211 0.96 Q 5+5 0.2217 0.96 Q 5+10 0.2339 0.90 Q 5+110 0.2339 0.90 Q 5+20 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+44 0.2630 0.92 Q 5+45 0.2827 0.98 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+10 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ	4	+20	0.1733	0.75 Q			1 1	
4+35 0.1903 0.85 Q 4+40 0.1962 0.86 Q 4+45 0.2022 0.87 Q 4+50 0.2082 0.88 Q 4+55 0.2145 0.92 Q 5+0 0.2211 0.96 Q 5+5 0.2277 0.96 Q 5+10 0.2339 0.90 Q 5+15 0.2396 0.83 Q 5+15 0.2396 0.83 Q 5+20 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+40 0.2630 0.92 Q 5+45 0.2760 0.96 Q 5+45 0.2827 0.98 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+10 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ								
4+45 0.2022 0.87 Q 4+50 0.2082 0.88 Q 4+55 0.2145 0.92 Q 5+ 0 0.2211 0.96 Q 5+ 0 0.2217 0.96 Q 5+10 0.2339 0.90 Q 5+110 0.2339 0.90 Q 5+120 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+35 0.2630 0.88 Q 5+45 0.2760 0.96 Q 5+45 0.2760 0.96 Q 5+55 0.2827 0.98 Q 5+55 0.2827 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ	4	+35	0.1903	0.85 Q				
4+50 0.2082 0.88 Q 4+55 0.2145 0.92 Q 5+0 0.2211 0.96 Q 5+5 0.2277 0.96 Q 5+10 0.2339 0.90 Q 5+15 0.2339 0.90 Q 5+20 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+40 0.2630 0.92 Q 5+45 0.2760 0.96 Q 5+45 0.2760 0.98 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	+50	0.2082	0.88 Q		1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10				
5+15 0.2396 0.83 Q 5+20 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+35 0.2630 0.88 Q 5+440 0.2694 0.92 Q 5+45 0.2760 0.96 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+ 0 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ 100	5	+ 5	0.2277	0.96 Q				
5+20 0.2452 0.81 Q 5+25 0.2510 0.84 Q 5+30 0.2570 0.86 Q 5+35 0.2630 0.88 Q 5+40 0.2694 0.92 Q 5+45 0.2760 0.96 Q 5+50 0.2827 0.98 Q 5+55 0.2827 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ				2013				
5+30 0.2570 0.86 Q 5+35 0.2630 0.88 Q 5+40 0.2694 0.92 Q 5+45 0.2760 0.96 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+ 0 0.2963 0.99 Q 6+ 5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ	5	+20	0.2452	0.81 Q				
5+35 0.2630 0.88 Q 5+40 0.2694 0.92 Q 5+45 0.2760 0.96 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ								
5+45 0.2760 0.96 Q 5+50 0.2827 0.98 Q 5+55 0.2895 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ	5	+35	0.2630	0.88 Q				
5+55 0.2895 0.99 Q 6+0 0.2963 0.99 Q 6+5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ	5	+45	0.2760	0.96 Q				
6+ 0 0.2963 0.99 Q 6+ 5 0.3032 1.00 VQ 6+10 0.3104 1.04 VQ								
6+10 0.3104 1.04 VQ	6	+ 0	0.2963	0.99 Q				
	5			1940			Page 5	

6+15 6+20 6+25 6+30 6+40 6+45 6+55 7+0 7+15 7+20 7+20 7+20 7+20 7+55 8+0 7+55 8+10 8+15 8+25 8+30 8+25 8+30 8+25 8+35 8+45 8+35 8+45 8+25 8+35 8+45 8+25 8+35 8+45 8+25 8+35 8+45 8+25 8+35 8+45 8+25 8+35 8+45 8+25 9+55 9+55 9+25 9+25 9+25 9+25 9+25 9+25 9+25 9+25 10+0 10+15 10+20 10+45 10+25 10+45 10+45 10+45 10+45 10+25 10+45 10+45 10+45 10+25 10+45 10+25 10+45 10+2	0.3179 0.3255 0.3331 0.3408 0.3566 0.3566 0.3650 0.3734 0.3819 0.3905 0.3991 0.4077 0.4164 0.4251 0.4341 0.4434 0.4534 0.4622 0.4817 0.4993 0.5202 0.5444 0.5715 0.6046 0.6436 0.6436 0.6436 0.6436 0.6436 0.6435 0.7292 0.7744 0.8213 0.8717 0.9253 0.9813 1.0410 1.1041 1.1703 1.2426 1.3209 1.4028 1.4889 1.5790 1.6718 1.7686 1.8691 1.9722 2.0792 2.1898 2.2904 2.3913 2.4678 2.5378 2.6046 2.6692 2.7352 2.9015 2.9954 3.0918 3.3868 3.4829 3.5786 3.6746 3.7710 3.2891 3.3868 3.4829 3.5786 3.6746 3.7710 3.2891 3.3868 3.4776 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.2891 3.3868 3.5786 3.6746 3.7710 3.5202 3.5786 3.6746 3.7710 3.5786 3.6746 3.7710 3.5866 3.9577 4.0442 4.2052 4.2164 4.3054 5.2164 5.	$\begin{array}{c} 1.08\\ 1.10\\ 1.11\\ 1.12\\ 1.13\\ 1.24\\ 1.25\\ 1.26\\ 1.27\\ 1.24\\ 1.25\\ 1.26\\ 1.27\\ 1.34\\ 1.46\\ 1.85\\ 2.55\\ 3.04\\ 1.46\\ 1.85\\ 2.55\\ 3.04\\ 1.46\\ 1.85\\ 2.55\\ 3.04\\ 1.46\\ 1.85\\ 2.55\\ 3.04\\ 1.46\\ 1.85\\ 2.55\\ 1.26\\ 1.37\\ 1.89\\ 1.251\\ 1.3.48\\ 1.11\\ 10.50\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.606\\ 1.5.77\\ 1.89\\ 1.251\\ 1.3.48\\ 1.554\\ 1.606\\ 1.5.77\\ 1.89\\ 1.251\\ 1.3.48\\ 1.11\\ 10.17\\ 9.38\\ 1.251\\ 1.3.48\\ 1.11\\ 10.17\\ 9.38\\ 1.251\\ 1.2.56\\ 1.2.59\\ 1.2.23\\ 1.2.56\\ 1.2.59\\ 1.2.25\\ 1.2.59\\ 1.2.25\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ 1.2.56\\ 1.2.59\\ $	V V V V V V V V V V V V V V V V V V V			
11+45 11+50 11+55 12+ 0 12+ 5 12+10 12+15 12+20 12+25	4.0442 4.1295 4.2164 4.3052 4.3988 4.5100 4.6389 4.7761 4.9201	12.56 12.39 12.62 12.90 13.59 16.14 18.72 19.92 20.91			Q Q Q Q Q	

15+30 11.3712 21.91 Q 15+35 11.5185 21.39 Q 15+40 11.6554 19.88 Q 15+45 11.7821 18.39 Q 15+50 11.9043 17.74 Q 15+55 12.0241 17.40 Q 16+ 12.1423 17.16 Q 16+ 12.302 11.34 Q 16+10 12.302 11.34 Q 16+20 12.4083 4.65 Q 16+25 12.4226 3.54 Q 16+30 12.4516 2.76 Q 16+45 12.4666 2.18 Q 16+45 12.4895 1.73 Q 16+45 12.4956 1.10 Q 16+45 12.5018 0.90 Q 17+ 0 12.5070 0.75 Q 17+15 12.5200 0.61 Q 17+20 12.5220 0.63 Q 17+35 12.5480 0.62 Q	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
15+10 10.7517 23.34 $\ensuremath{\mathbb{Q}}$	
15+15 10.9099 22.98 Q Q Q 15+20 11.0666 22.75 Q Q Q 15+21 11.203 22.31 Q Q Q 15+35 11.3712 21.91 Q Q Q 15+45 11.6554 19.86 Q Q Q 15+45 11.7821 18.39 Q Q Q 15+50 11.9043 17.74 Q Q Q 16+ 12.1423 17.16 Q Q Q 16+ 12.3302 11.34 Q Q Q Q 16+20 12.4083 4.65 Q	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
15+30 11.3712 21.91 Q 15+35 11.5185 21.39 Q 15+40 11.6554 19.88 Q 15+45 11.7821 18.39 Q 15+50 11.9043 17.74 Q 15+55 12.0241 17.40 Q 16+ 12.1423 17.16 Q 16+ 12.302 11.34 Q 16+10 12.302 11.34 Q 16+20 12.4083 4.65 Q 16+25 12.4226 3.54 Q 16+30 12.4516 2.76 Q 16+45 12.4666 2.18 Q 16+45 12.4895 1.73 Q 16+45 12.4956 1.10 Q 16+45 12.5018 0.90 Q 17+ 0 12.5070 0.75 Q 17+15 12.5200 0.61 Q 17+20 12.5220 0.63 Q 17+35 12.5480 0.62 Q	37
15+40 11.6554 19.88 Q $15+45$ 11.7021 18.39 Q $15+55$ 12.0241 17.74 Q $15+55$ 12.0241 17.40 Q $16+0$ 12.1423 17.16 Q $16+16$ 12.3302 11.34 Q $16+15$ 12.3762 6.68 Q $16+20$ 12.4083 4.65 Q $16+20$ 12.4326 3.54 Q $16+35$ 12.4516 2.76 Q $16+35$ 12.44266 2.18 Q $16+40$ 12.4785 1.73 Q $16+40$ 12.4785 1.73 Q $16+55$ 12.5070 0.75 Q $17+6$ 12.5070 0.75 Q $17+10$ 12.5114 0.64 Q $17+20$ 12.5220 0.61 Q $17+35$ 12.52405 0.61 Q $17+35$ 12.5448 0.62	v
15+40 11.6554 19.88 Q $15+45$ 11.7021 18.39 Q $15+55$ 12.0241 17.74 Q $15+55$ 12.0241 17.40 Q $16+0$ 12.1423 17.16 Q $16+16$ 12.3302 11.34 Q $16+15$ 12.3762 6.68 Q $16+20$ 12.4083 4.65 Q $16+20$ 12.4326 3.54 Q $16+35$ 12.4516 2.76 Q $16+35$ 12.44266 2.18 Q $16+40$ 12.4785 1.73 Q $16+40$ 12.4785 1.73 Q $16+55$ 12.5070 0.75 Q $17+6$ 12.5070 0.75 Q $17+10$ 12.5114 0.64 Q $17+20$ 12.5220 0.61 Q $17+35$ 12.52405 0.61 Q $17+35$ 12.5448 0.62	v v
15+50 11.9043 17.74 Q 15+55 12.0241 17.40 Q 16+ 12.1423 17.16 Q 16+ 12.302 11.34 Q 16+15 12.302 11.34 Q 16+15 12.302 11.34 Q 16+15 12.302 11.34 Q 16+25 12.4983 4.65 Q 16+30 12.4516 2.76 Q 16+45 12.4985 1.73 Q 16+45 12.4956 1.10 Q 16+45 12.4956 1.10 Q 16+45 12.4956 1.10 Q 16+55 12.5018 0.90 Q 17+5 12.5070 0.75 Q 17+10 12.5157 0.63 Q 17+20 12.5220 0.61 Q 17+35 12.5240 0.61 Q 17+35 12.5426 0.61 Q 17+40 12.5420 0.61 Q 17+55	v v
16+ 12.2521 15.95 Q 16+10 12.3302 11.34 Q 16+10 12.3302 11.34 Q 16+15 12.3762 6.68 Q 16+25 12.4083 4.65 Q 16+25 12.4326 3.54 Q 16+30 12.4516 2.76 Q 16+45 12.4666 2.18 Q 16+45 12.4666 1.8 Q 16+45 12.4956 1.00 Q 16+45 12.5018 0.90 Q 17+ 12.5070 0.75 Q 17+15 12.5070 0.75 Q 17+15 12.5200 0.61 Q 17+15 12.5200 0.61 Q 17+20 12.5230 0.59 Q 17+35 12.5280 0.59 Q 17+35 12.5363 0.61 Q 17+40 12.5480 0.62 Q 17+55 12.5490 0.53 Q 18+0	v
16+ 12.2521 15.95 Q 16+10 12.3302 11.34 Q 16+10 12.3302 11.34 Q 16+15 12.3762 6.68 Q 16+25 12.4083 4.65 Q 16+25 12.4326 3.54 Q 16+30 12.4516 2.76 Q 16+45 12.4666 2.18 Q 16+45 12.4666 1.8 Q 16+45 12.4956 1.00 Q 16+45 12.5018 0.90 Q 17+ 12.5070 0.75 Q 17+15 12.5070 0.75 Q 17+15 12.5200 0.61 Q 17+15 12.5200 0.61 Q 17+20 12.5230 0.59 Q 17+35 12.5280 0.59 Q 17+35 12.5363 0.61 Q 17+40 12.5480 0.62 Q 17+55 12.5490 0.53 Q 18+0	v
16+10 12.3302 11.34 Q 16+15 12.3762 6.68 Q 16+15 12.4762 6.68 Q 16+20 12.4083 4.65 Q 16+30 12.4516 2.76 Q 16+35 12.4516 2.76 Q 16+35 12.4666 2.18 Q 16+40 12.4785 1.73 Q 16+45 12.4956 1.10 Q 16+55 12.5018 0.90 Q 16+55 12.5070 0.75 Q 17+ 0 12.5070 0.63 Q 17+15 12.5200 0.61 Q 17+20 12.5239 0.58 Q 17+35 12.5230 0.61 Q 17+30 12.5321 0.60 Q 17+40 12.5405 0.61 Q 17+45 12.5428 0.62 Q 17+55 12.5508 0.55 Q 18+0 12.5568 0.55 Q 18+10	v v
16+15 12.3762 6.68 Q $16+20$ 12.4083 4.65 Q $16+20$ 12.4083 4.65 Q $16+25$ 12.4326 3.54 Q $16+30$ 12.42516 2.76 Q $16+35$ 12.4666 2.18 Q $16+40$ 12.4785 1.73 Q $16+45$ 12.4956 1.10 Q $16+55$ 12.4956 1.10 Q $16+55$ 12.5018 0.90 Q $17+7$ 12.5177 0.63 Q $17+10$ 12.5157 0.63 Q $17+15$ 12.5230 0.61 Q $17+20$ 12.5239 0.59 Q $17+30$ 12.5321 0.60 Q $17+35$ 12.5363 0.61 Q $17+40$ 12.5405 0.61 Q $17+50$ 12.5448 0.52 Q $18+0$ 12.5568 0.55 Q $18+10$ 12.5564 0.53 Q $18+15$ 12.6677 0.52 Q $18+25$ 12.5748 0.52 Q	v
16+20 12.4083 4.65 Q $16+25$ 12.4326 3.54 Q $16+36$ 12.4316 2.76 Q $16+35$ 12.4666 2.18 Q $16+40$ 12.4785 1.73 Q $16+45$ 12.4980 1.38 Q $16+55$ 12.4956 1.10 Q $16+55$ 12.5018 0.90 Q $17+0$ 12.5070 0.75 Q $17+5$ 12.5114 0.64 Q $17+15$ 12.5200 0.61 Q $17+20$ 12.5230 0.59 Q $17+35$ 12.5321 0.60 Q $17+35$ 12.5363 0.61 Q $17+40$ 12.5448 0.62 Q $17+55$ 12.5568 0.55 Q $18+0$ 12.5568 0.53 Q $18+10$ 12.5641 0.53 Q $18+25$ 12.5748 0.52 Q	v
16+3012.45162.76Q16+3512.46662.18Q16+4012.47851.73Q16+4512.49801.38Q16+5512.49561.10Q16+5512.50180.90Q17+ 012.50700.75Q17+ 512.51140.64Q17+1012.51570.63Q17+2012.52390.58Q17+3512.52300.61Q17+3512.53630.61Q17+4512.54050.61Q17+5012.54480.62Q17+5512.55680.55Q18+ 012.55680.55Q18+1012.55640.53Q18+1512.56770.52Q18+2512.57480.52Q	v v
16+35 12.4666 2.18 Q $16+40$ 12.4785 1.73 Q $16+45$ 12.4880 1.38 Q $16+55$ 12.4956 1.10 Q $16+55$ 12.5018 0.90 Q $17+0$ 12.5070 0.75 Q $17+5$ 12.5114 0.64 Q $17+10$ 12.5157 0.63 Q $17+15$ 12.5230 0.61 Q $17+20$ 12.5239 0.59 Q $17+30$ 12.5321 0.60 Q $17+35$ 12.5363 0.61 Q $17+40$ 12.54405 0.62 Q $17+50$ 12.5568 0.55 Q $18+0$ 12.5568 0.55 Q $18+10$ 12.5641 0.53 Q $18+15$ 12.5677 0.52 Q $18+25$ 12.5748 0.52 Q	v
16+40 12.4785 1.73 Q $16+45$ 12.4880 1.38 Q $16+55$ 12.4956 1.10 Q $16+55$ 12.5018 0.90 Q $17+0$ 12.5070 0.75 Q $17+15$ 12.5114 0.64 Q $17+10$ 12.5157 0.63 Q $17+15$ 12.5200 0.61 Q $17+20$ 12.5239 0.58 Q $17+25$ 12.5230 0.59 Q $17+35$ 12.5363 0.61 Q $17+40$ 12.5405 0.62 Q $17+50$ 12.5480 0.52 Q $17+55$ 12.5568 0.55 Q $18+0$ 12.5568 0.53 Q $18+10$ 12.5641 0.53 Q $18+15$ 12.5677 0.52 Q $18+25$ 12.5748 0.52 Q	v
16+50 12.4956 1.10 Q $16+55$ 12.5018 0.90 Q $17+$ 12.5070 0.75 Q $17+$ 12.5114 0.64 Q $17+10$ 12.517 0.63 Q $17+15$ 12.5200 0.61 Q $17+20$ 12.5239 0.58 Q $17+25$ 12.5230 0.59 Q $17+30$ 12.5321 0.60 Q $17+35$ 12.5363 0.61 Q $17+40$ 12.5405 0.61 Q $17+50$ 12.5448 0.62 Q $17+55$ 12.5568 0.55 Q $18+0$ 12.5568 0.55 Q $18+10$ 12.55641 0.53 Q $18+10$ 12.5641 0.53 Q $18+25$ 12.5748 0.52 Q $18+25$ 12.5748 0.52 Q	v v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v v
17+20 12.5239 0.58 Q 17+25 12.5280 0.59 Q 17+30 12.5321 0.60 Q 17+35 12.5363 0.61 Q 17+40 12.5405 0.61 Q 17+45 12.5448 0.62 Q 17+55 12.5530 0.58 Q 17+55 12.5568 0.55 Q 18+0 12.5564 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.65677 0.52 Q 18+20 12.5748 0.52 Q	v
17+25 12.5280 0.59 Q 17+30 12.5321 0.60 Q 17+35 12.5363 0.61 Q 17+45 12.5405 0.61 Q 17+45 12.5448 0.62 Q 17+50 12.5530 0.61 Q 17+55 12.5568 0.55 Q 18+0 12.5564 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.65677 0.52 Q 18+20 12.5748 0.52 Q	v
17+35 12.5363 0.61 Q 17+40 12.5405 0.61 Q 17+45 12.5448 0.62 Q 17+50 12.5490 0.61 Q 17+55 12.5530 0.58 Q 18+0 12.5568 0.55 Q 18+10 12.5604 0.53 Q 18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v v
17+40 12.5405 0.61 Q 17+45 12.5448 0.62 Q 17+50 12.5540 0.61 Q 17+55 12.5530 0.58 Q 18+0 12.5568 0.55 Q 18+5 12.5604 0.53 Q 18+10 12.5561 0.52 Q 18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v
17+50 12.5490 0.61 Q 17+55 12.5530 0.58 Q 18+0 12.5568 0.55 Q 18+5 12.5604 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.6677 0.52 Q 18+25 12.5748 0.52 Q	v
17+55 12.5530 0.58 Q 18+0 12.5568 0.55 Q 18+5 12.5604 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v v
18+ 0 12.5568 0.55 Q 18+ 5 12.5604 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v
18+5 12.5604 0.53 Q 18+10 12.5641 0.53 Q 18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v
18+15 12.5677 0.52 Q 18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v v
18+20 12.5712 0.52 Q 18+25 12.5748 0.52 Q	v
18+25 12.5748 0.52 Q	v
10.30 13 5793 0 51 0	v
18+30 12.5783 0.51 Q	v v
18+35 12.5818 0.50 Q 18+40 12.5850 0.47 Q	v
18+45 12.5879 0.43 Q	v
18+50 12.5907 0.40 Q	v v
18+55 12.5932 0.36 Q 19+ 0 12.5954 0.32 Q	v
19+ 5 12.5975 0.31 Q	v
19+10 12.5997 0.33 Q	v v
19+15 12.6022 0.36 Q 19+20 12.6048 0.37 Q	v
19+25 12.6076 0.41 Q	v
19+30 12.6107 0.45 Q	v v
19+35 12.6139 0.46 Q 19+40 12.6169 0.43 Q	v
19+45 12.6197 0.40 Q	v
19+50 12.6223 0.39 Q	v v
19+55 12.6247 0.35 Q 20+ 0 12.6268 0.31 Q	v
20+ 0 12.6268 0.31 Q 20+ 5 12.6289 0.30 Q	v
20+10 12.6311 0.32 Q	V
20+15 12.6336 0.35 Q 20+20 12.6361 0.36 Q	v v
20+20 12.6361 0.36 Q 20+25 12.6386 0.37 Q	v
20+30 12.6412 0.37 Q	V
20+35 12.6437 0.37 Q	v v
20+40 12.6463 0.37 Q 20+45 12.6489 0.38 Q	v
20+50 12.6514 0.37 Q	v
20+55 12.6537 0.33 Q	v v
21+ 0 12.6558 0.30 Q 21+ 5 12.6578 0.29 Q	v
21+10 12.6600 0.32 Q	v
21+15 12.6624 0.35 Q	v v
21+20 12.6648 0.35 Q 21+25 12.6670 0.32 Q	v
21+25 12.6670 0.32 Q 21+30 12.6690 0.29 Q	v
21+35 12.6710 0.28 Q	v v
21+40 12.6731 0.31 Q 21+45 12.6755 0.35 Q	v v
21+45 12.6755 0.35 Q 21+50 12.6779 0.35 Q	v
21+55 12.6801 0.32 Q	v
22+ 0 12.6821 0.29 Q	v v
22+ 5 12.6840 0.28 Q 22+10 12.6862 0.31 Q	v
22+10 12.6886 0.34 Q	v
22+20 12.6910 0.35 Q	v v
22+25 12.6932 0.32 Q 22+30 12.6951 0.29 Q	V
22+30 12.6951 0.29 Q 22+35 12.6970 0.27 Q	v
22+40 12.6989 0.27 Q	v

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
22+55 12.7043 0.26 Q V $23+0$ 12.7061 0.26 Q V $23+10$ 12.7078 0.26 Q V $23+10$ 12.7078 0.26 Q V $23+10$ 12.7078 0.26 Q V $23+15$ 12.7114 0.26 Q V $23+20$ 12.7114 0.25 Q V $23+25$ 12.7149 0.25 Q V $23+35$ 12.7184 0.25 Q V $23+45$ 12.7218 0.25 Q V $23+55$ 12.7218 0.25 Q V $23+55$ 12.7271 0.25 Q V $24+10$ 12.72771 0.25 Q V $24+10$ 12.77316 0.25 Q V $24+10$ 12.77312 0.05 Q V $24+10$ 12.77314 0.03 Q V $24+20$ 12.7314	22+45	12,7007	0,26	Q	1	1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22+50	12.7025	0.26	Q	1		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22+55	12.7043	0.26	Q	1		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+ 0	12,7061	0.26	Q	1	1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12.7078	0.26	Q	1		1	
23+20 12.7131 0.25 Q V 23+25 12.7149 0.25 Q V 23+30 12.7166 0.25 Q V 23+40 12.7201 0.25 Q V 23+45 12.7218 0.25 Q V 23+50 12.7236 0.25 Q V 23+55 12.7253 0.25 Q V 23+55 12.7271 0.25 Q V 24+0 12.7271 0.25 Q V 24+10 12.7287 0.24 V V 24+10 12.7305 0.09 Q V 24+10 12.7305 0.09 V V 24+20 12.7312 0.05 V V 24+30 12.7316 0.03 V V 24+40 12.7317 0.02 V V 24+45 12.7319 0.01 V V 24+45 12.7319 0.01 V V 24+55 12.732	23+10	12.7096	0.26	Q	1	1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+15	12.7114	0.26	Q	1	1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+20	12.7131	0.25	Q	1		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+25	12.7149	0.25	Q	1	1	1	v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+30	12.7166	0.25	Q	1		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23+35	12.7184	0.25	Q	1	1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+40	12.7201	0,25	Q	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23+45	12.7218	0,25	Q	1			
24+0 12.7271 0.25 Q V 24+5 12.7287 0.24 Q V 24+10 12.7298 0.17 Q V 24+15 12.7309 0.06 Q V 24+20 12.7312 0.05 Q V 24+30 12.7316 0.03 Q V 24+40 12.7317 0.02 V V 24+45 12.7319 0.01 Q V 24+45 12.7319 0.01 V V 24+55 12.7320 0.00 V V 25+0 12.7320 0.00 V V 25+10 12.7321 0.00 V V	23+50	12.7236	0,25	Q	1			
24+ 5 12.7287 0.24 Q V 24+10 12.7298 0.17 Q V 24+15 12.7305 0.09 Q V 24+20 12.7309 0.06 Q V 24+25 12.7312 0.05 Q V 24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+50 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+10 12.7321 0.00 Q V	23+55	12.7253	0.25	Q	1	1		
24+10 12.7298 0.17 Q V 24+15 12.7305 0.09 Q V 24+20 12.7309 0.06 Q V 24+25 12.7312 0.05 Q V 24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 V V 24+45 12.7319 0.01 Q V 24+55 12.7320 0.01 V V 24+55 12.7320 0.01 V V 24+55 12.7320 0.01 V V 25+0 12.7320 0.00 V V 25+10 12.7321 0.00 V V	24+ 0	12.7271	0,25	Q	4	1		
24+15 12.7305 0.09 Q V 24+20 12.7309 0.06 Q V 24+25 12.7312 0.05 Q V 24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 V V 24+55 12.7320 0.00 V V 25+0 12.7320 0.00 V V 25+10 12.7321 0.00 V V	24+ 5	12.7287	0,24	Q	1	1	1	
24+20 12.7309 0.06 Q V 24+25 12.7312 0.05 Q V 24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+40 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+10 12.7321 0.00 Q V	24+10	12.7298	0.17	Q	1			
24+25 12.7312 0.05 Q V 24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.00 Q V 25+10 12.7321 0.00 V V	24+15	12.7305	0.09	Q	1			
24+30 12.7314 0.03 Q V 24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+45 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+20	12.7309	0.06	Q	1	1		
24+35 12.7316 0.03 Q V 24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+10 12.7321 0.00 Q V	24+25	12.7312	0.05	Q	1	1	1	
24+40 12.7317 0.02 Q V 24+45 12.7319 0.01 Q V 24+50 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+30	12.7314	0.03	Q	1	1	1	
24+45 12.7319 0.01 Q V 24+50 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+35	12.7316	0.03	Q	1	1	1	
24+50 12.7319 0.01 Q V 24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+40	12.7317	0.02	Q	1	1	1	
24+55 12.7320 0.01 Q V 25+0 12.7320 0.01 Q V 25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+45	12,7319	0.01	Q	1	1	1	
25+0 12.7320 0.01 Q V 25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+50	12.7319	0.01	Q	1	1		
25+5 12.7320 0.00 Q V 25+10 12.7321 0.00 Q V	24+55	12.7320	0.01	Q	1	1	1	
25+10 12.7321 0.00 Q V	25+ 0	12.7320	0.01	Q	1			
	25+ 5	12.7320	0.00	Q	1			
25+15 12.7321 0.00 Q V	25+10	12.7321	0.00	Q	1	1		
	25+15	12.7321	0.00	Q	1			v

PROPOSED CONDITION

```
Unit Hydrograph Analysis
           Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                      Study date 02/13/20 File: 3828PR212.out
_____
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
               .....
 English (in-1b) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
-----
 Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area =
Drainage Area for Depth-Area Areal Adjustment =
                                                                           69.65(Ac.) =
                                                                                                      0.109 Sq. Mi.
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
Lag time = 0.080 Hr.
Lag time = 4.78 Min.
25% of lag time = 1.19 Min.

25% of lag time = 1.91 Min.

Unit time = 5.00 Min.

Duration of storm = 1 Hour(s)

User Entered Base Flow = 0.
                                        0 00 (CES)
2 YEAR Area rainfall data:
                      Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
          69.65
                                 0.50
                                                                 34.83
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
                                1.20
                                                         83.58
          69.65
STORM EVENT (YEAR) = 2.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall = 1.200(I
                                                   1.200(In)
Point rain (area averaged) = 0.500(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 0.500(In)
Sub-Area Data:

        Area(Ac.)
        Runoff Index
        Impervious %

        69.650
        56.00
        0.900

 69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area* F

AMC2 AMC-1 (In/Hr) (Dec.*) (In/Hr) (Dec.) (In/Hr)

56.0 36.0 0.706 0.900 0.134 1.000 0.134

Area averaged mean soil loss (F) (In/Hr) = 0.134

Minimum soil loss rate ((In/Hr)) = 0.067

(for 24 hour storm duration)
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.100
                     Slope of intensity-duration curve for a 1 hour storm =0.5000
                      Unit Hydrograph
                                 VALLEY S-Curve
 ................................
                     Unit Hydrograph Data
 Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)

        1
        0.083
        104.614
        20.612
        14.469

        2
        0.167
        209.229
        48.679
        34.170

        3
        0.250
        313.843
        14.978
        10.514

        4
        0.333
        418.458
        6.821
        4.788

        5
        0.417
        523.072
        3.802
        2.669

        6
        0.500
        627.687
        2.435
        1.709

        7
        0.583
        732.301
        1.462
        1.026

        8
        0.667
        836.916
        1.210
        0.849

        Sum = 100.000
        Sum=
        70.194
```

.....

Page 1

t To To To	4.20 7 4.30 5 5.00 3 5.00 2 5.80 0 6.50 9 7.40 7 8.60 5 12.30 3 29.10 2 6.80 0 5.00 (Loss R 100.0 bod volume = E imes area cal soil loss cal soil loss cal soil loss cal aninfall =	69.7(Ac.)/[(= 0.05(I = 0.271(A 0.50(In	<pre>(0.134) (0.134)</pre>	Low 0.025 0.026 0.030 0.030 0.035 0.039 0.044 0.052 0.074 (0.174) 0.041 0.030 Sum = 5 (In)	0.46 0.66 1.61 0.36 0.27 5.4	2 0 3 1 9 4 4 1 7
	ood volume = cal soil loss	= 11783	.4 Cubic Feet			
	are flow rate		graph = 7			
	Bak IIOW IACE					
	R Hydr	l-HOU unoff	H Y d r O Minute int	M graph		
	Volume Ac.Ft	Q(CFS) 0	20.0	40.0	60.0	80.0
0+ 5	0.0226					80.0

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR232.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 _____ English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format 0.109 Sq. Mi. 69.65(Ac.) = Drainage Area = 67.65(AC.) = 0.109 Sq. M1. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] 0.80 55 72 Area(Ac.)[1] 55.72 0.80 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 1.86 129.55 STORM EVENT (YEAR) = 2.00 Area Averaged 2-Year Rainfall = 0.800(In) Area Averaged 100-Year Rainfall = 1.860(In) Point rain (area averaged) = 0.800(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 0.800(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 56.0
 36.0
 0.706
 0.900
 0.134
 1.000
 0.134

 Sum
 (F)
 =
 0.134
 Sum
 (F)
 =
 0.134
 Area averaged mean soil loss (F) (In/Hr) = 0.134 Minimum soil loss rate ((In/Hr)) = 0.067 Soil low loss rate (decimal) = 0.100 (for 24 hour storm duration) Unit Hydrograph VALLEY S-Curve -----Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) _____

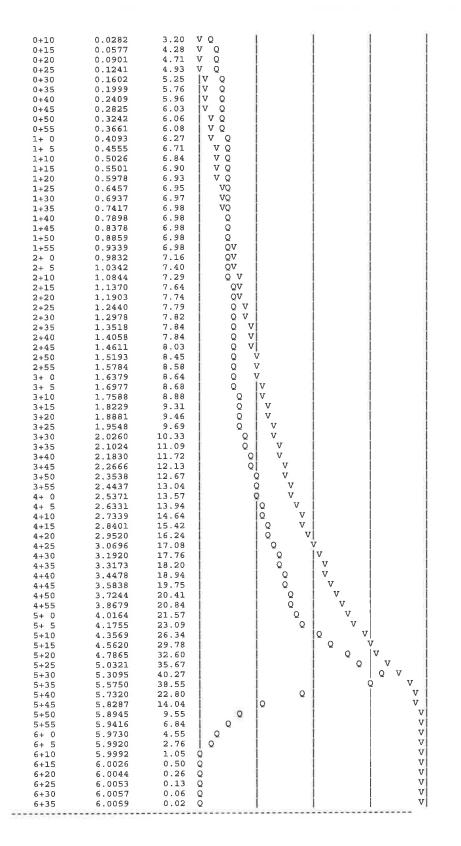
Tate Subti	accou rrom	CHE BCOIM RAIN	to product		
Unit Time	Pattern	Storm Rain		te(In./Hr)	Effective
) Percent		Max		(In/Hr) 0.112
1 0.08 2 0.17		0.125 0.125	(0.134) (0.134		0.112
3 0.25		0.106 0.144 0.144	(0.134		
4 0.33	1.50	0.144	(0.134		
5 0.42 6 0.50	1.50 1.80		(0.134 (0.134		
7 0.58	1.50	0.144	(0,134	0.014	0.130
8 0.67	1.80	0.144	(0.134	0.017	0.155
9 0.75 10 0.83	1.80	0.173	(0.134		
10 0.83 11 0.92	1.50	0.144	(0.134 (0.134		
12 1.00	1.60 1.80	0.154 0.173	(0.134		
13 1.08	2,20	0.211	(0.134	0.021	
14 1.17 15 1.25	2.20	0.211 0.211	(0.134 (0.134		0.190 0.190
15 1.25 16 1.33		0.192	(0.134		
17 1.42	2.60	0.192	(0.134) 0.025	
18 1.50	2.70 2.40 2.70	0.259	(0.134		
19 1.58 20 1.67	2.40	0.230	(0.134		
21 1.75	1 3 30	0.259	(0.134		
22 1.83	3.10 2.90 3.00 3.10	0.298	(0.134		
23 1.92	2.90	0.278	(0.134 (0.134		
24 2.00 25 2.08	3.10	0.288 0.298	(0.134) 0.030	0.268
26 2.17	4.20	0.403	(0.134	0.040	0.363
27 2.25	4.20 5.00 3.50 6.80	0.480	(0.134		
28 2.33 29 2.42	3.50	0.336 0.653	(0.134 (0.134) 0.034) 0.065	
30 2.50	7.30	0 701	(0.134	0.070	
31 2.58	8.20	0.787	(0.134	0.079	
32 2.67	7.30 8.20 5.90 2.00	0.566	(0.134 (0.134 (0.134) 0.057) 0.019	
33 2.75 34 2.83	1.80	0.192	(0.134) 0.015	
35 2.92	1.80	0.173	(0.134	0.017	0.155
36 3.00			(0.134	0.006	0.052
Sum =		s Rate Not Üsed	.)	S11m =	8.6
Flo	od volume =	= Effective rai	nfall		
ti	mes area	69.7(Ac.)/[(In)/(Ft.))] = 4.2(Ac.Ft)
Tot	al soil los	35 = 0.08 (In)		
Tot	al soll los al rainfal	SS ⇔ 0.464(I = 0.80/T	n)		
Flo	od volume :		Cubic Fee	t	
		2022	0.2 Cubic 1	reet	
'I'ot	al soll los	ss = 2022			
Tot	ai soil los				
Tot Pe	al soll los ak flow rat	te of this hydr	ograph =	43.183(CFS)	
Tot Pe	al soll los ak flow rat	ce of this hydr	ograph =	43.183(CFS)	
Tot Pe	al soll los ak flow rat	te of this hydr	ograph = +++++++++++ U R S T	43.183(CFS)	
Tot Pe	ai soil los ak flow rat	ce of this hydr	ograph = ++++++++++ U R S T H y d :	43.183(CFS) ++++++++++++++++++++++++++++++++++++	
Tot Pe	ai soll los eak flow rat	te of this hydr ++++++++++++++++++++++++++++++++++++	ograph = +++++++++++ U R S T H y d :	43.183(CFS) +++++++++ O R M r o g r a p h	
Tot Pe +++	al soil los eak flow rat	te of this hydr 3 - H O R u n o f f ydrograph in	ograph = ++++++++++ U R S T H y d : 5 Minute	43.183(CFS) ORM rograph intervals ((C	
Tot +++	al soil los ak flow ral ++++++++++++ Hy	te of this hydr 3 - H O R u n o f f ydrograph in	ograph = +++++++++ U R S T H y d : 5 Minute	43.183(CFS) ORM rograph intervals ((C	
Tot Pe +++	al soil los ak flow rat ++++++++++++ Hy Volume Ac	te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0	ograph = +++++++++ U R S T H y d 5 Minute 	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Tot Pe +++ Time(h+m) 0+ 5	al soil los ak flow rat ++++++++++++ Hy Volume Ac 0.0112	te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ	ograph = +++++++++ U R S T H y d : 5 Minute 12.!	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10	al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V	ograph = +++++++++ U R S T H y d : 5 Minute 12.: Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Tot Pe +++ Time(h+m) 0+ 5	al soil los ak flow rat ++++++++++++ Hy Volume Ac 0.0112	te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ	ograph = +++++++++ U R S T H y d : 5 Minute 12.: Q Q Q Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+15 0+25	Al soil loi ak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961	te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 8.14 V	ograph = +++++++++ U R S T H y d : 5 Minute 12.: Q Q Q Q Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+30	Al soil loi ak flow rat 	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V	ograph = ++++++++++ U R S T H y d : 5 Minute 12.: Q Q Q Q Q Q Q Q Q Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	Al soil loi eak flow rat ++++++++++++++++++++++++++++++++++++	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74	ograph = ++++++++++ U R S T H y d : 5 Minute 12.1 Q Q Q Q Q Q Q Q V Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+30	Al soil loi ak flow rat 	te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74	ograph = ++++++++++ U R S T H y d : 5 Minute 12.: Q Q Q Q Q Q Q Q Q Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+30 0+35 0+40 0+45 0+50	Al soil low tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1400 0.1961 0.2580 0.3250 0.3250 0.3250 0.3250 0.3253	The of this hydr 3 - H O R u n o f f ydrograph in Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30	ograph = ++++++++++ U R S T H y d: 5 Minute 2 Q Q Q Q Q Q Q Q Q Q Q Q Q V Q V Q V Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+35 0+40 0+45 0+55	Al soil loi tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3255 0.4634 0.5343 0.6009	ce of this hydr 3 - H O R u n o f f ydrograph in FFL Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 8.99 V 9.74 V 9.66 10.43 10.30 9.67	ograph = ++++++++++ U R S T H y d: 5 Minute 12.1 Q Q Q Q Q Q Q Q Q Q V Q V Q V Q V Q V	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0	Al soil low tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3250 0.3915 0.4634 0.5343 0.6009 0.6697	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) O 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99	ograph = ++++++++++ U R S T H y d: 5 Minute 12.: Q Q Q Q Q Q Q Q Q V V V V V V V V V V V V V	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+35 0+40 0+45 0+55	Al soil loi tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3255 0.4634 0.5343 0.6009	ce of this hydr 3 - H O R u n o f f ydrograph in FFL Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 8.99 V 9.74 V 9.66 10.43 10.30 9.67	ograph = +++++++++++ U R S T H y d : 5 Minute 2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q V Q V	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15	Al soil loi tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3250 0.3250 0.3250 0.4634 0.5343 0.6009 0.6697 0.7460 0.8316 0.9203	<pre>te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 12.87</pre>	ograph = +++++++++ U R S T H y d: 5 Minute 12.! Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q V Q V Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+25 0+30 0+45 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20	Al soil low rates and solve the second secon	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 V 9.66 10.43 10.30 9 9.79 1 1.63 2.87 1 12.82	ograph = ++++++++++ U R S T H y d : 5 Minute 12.: Q Q Q Q Q Q Q Q Q Q Q Q V V Q V V V V V V V V V V V V V	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 	Al soil loi tak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3250 0.3250 0.3250 0.4634 0.5343 0.6009 0.6697 0.7460 0.8316 0.9203	<pre>te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 12.87</pre>	ograph = +++++++++ U R S T H y d: 5 Minute 12.! Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q V Q V Q	43.183(CFS) +++++++++++++++ O R M r o g r a p h intervals ((C 5 25.0	:+
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+25 0+30 0+45 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20	Al soil lo: ak flow rat ++++++++++++++++++++++++++++++++++++	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.84 V 8.99 V 9.74 V 8.99 V 9.74 9 9.66 10.43 10.30 9 9.77 9 11.09 1 12.43 12.87 1 12.82 1 3.09 1 4.89 1 5.32	ograph = ++++++++++ U R S T H y d: 5 Minute 12.1 Q Q Q Q Q Q Q Q Q V Q Q Q Q Q	43.183(CFS)	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+45 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	Al soil low rates flow	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 V 9.66 10.43 10.30 9 6.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.13	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) ++++++++++++++++++++++++++++++++++++	:+
Time (h+m) 0+ 5 0+10 0+25 0+25 0+35 0+40 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	Al soil loi ak flow rat ++++++++++++++++++++++++++++++++++++	ce of this hydr 3 - H O R u n o f f ydrograph in Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.77 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+45 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	Al soil low rates flow	ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 V 9.66 10.43 10.30 9 6.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.13	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+45 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+55 2+0	Al soil low rates and the second seco	<pre>te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 10.30 9.67 9.99 11.09 12.43 12.87 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) ++++++++++++++++++++++++++++++++++++	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15 1+20 1+35 1+40 1+45 1+55 2+ 0 2+ 5	Al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	ce of this hydr 3 - H O R u n o f f ydrograph in Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90 18.22	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	:+
Time (h+m) 0+ 5 0+10 0+25 0+30 0+25 0+30 0+45 0+40 0+45 0+55 1+0 1+15 1+20 1+15 1+20 1+35 1+40 1+35 1+40 1+55 2+0 2+5 2+10	Al soil los ak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.4634 0.5203 1.0086 1.0086 1.0087 1.2013 1.3068 1.4111 1.5257 1.6525 1.7780 1.9013 2.0269 2.1642	<pre>te of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 10.30 9.67 9.99 11.09 12.43 12.87 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+15 1+20 1+35 1+40 1+45 1+55 2+ 0 2+ 5	Al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.40 V 8.14 V 8.99 V 9.74 V 9.66 10.43 10.30 9.67 9.99 11.09 12.43 10.30 9.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90 18.22 19.95 24.33 25.88</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) 0 R M r o g r a p h intervals ((C 5 25.0 5 25.0 5 25.0 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	:+
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+55 1+20 1+25 1+30 1+35 1+40 1+55 1+55 2+0 2+5 2+10 2+55 2+20 2+25	Al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.22 19.95 24.33 25.88 26.76</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) ++++++++++++++++++++++++++++++++++++	EFS))
Time (h+m) 0+ 5 0+10 0+25 0+30 0+25 0+30 0+25 0+30 0+45 0+40 0+45 0+55 1+0 1+55 1+20 1+25 1+35 1+40 1+45 1+55 2+0 2+5 2+10 2+15 2+20 2+25 2+30	Al soil low rat ak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3250 0.3250 0.3250 0.4634 0.5343 0.6697 0.7460 0.8316 0.9203 1.0086 1.0987 1.2013 1.3068 1.4111 1.5257 1.6525 1.7780 1.9013 2.0269 2.1642 2.3318 2.5100 0.6943 2.9447	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 10.30 9.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90 18.22 19.95 24.33 25.88 26.76 36.36</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) 0 R M r o g r a p h intervals ((C 5 25.0 5 25.0 5 25.0 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	VQ
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+55 1+20 1+25 1+30 1+35 1+40 1+55 1+55 2+0 2+5 2+10 2+55 2+20 2+25	Al soil low rates and the second seco	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9.66 10.43 10.30 9.67 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.22 19.95 24.33 25.88 26.76</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS) 0 R M r o g r a p h intervals ((C 5 25.0 5 25.0 5 25.0 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	VQ VQ VQ VQ VQ VQ
Time (h+m) 0+ 5 0+10 0+25 0+25 0+30 0+25 0+30 0+45 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+25 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+ 0 2+ 15 2+20 2+15 2+20 2+35	Al soil los ak flow rat Hy Volume Ac 0.0112 0.0488 0.0929 0.1400 0.1961 0.2580 0.3250 0.3250 0.3250 0.3250 0.3250 0.4634 0.5343 0.6099 0.6697 0.7460 0.8316 0.9203 1.0086 1.0987 1.2013 1.3068 1.4111 1.5257 1.6525 1.7780 1.9013 2.0269 2.1642 2.3318 2.5100 2.6943 2.9447 3.2320 3.5294 3.7582	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.84 V 8.14 V 8.99 V 9.74 9 9.66 10.43 10.30 9 9.74 9 9.66 10.43 10.30 9 9.74 1 9.66 10.43 10.30 9 9.74 1 9.66 10.43 10.30 9 9.74 1 9.66 10.43 10.30 9 9.74 1 9.99 1 1.09 1 12.43 12.87 12.82 13.09 1 14.89 15.32 1 5.13 1 6.65 1 8.41 1 8.23 1 7.90 1 18.22 1 9.95 1 24.33 25.88 2 26.76 3 6.36 4 1.70 4 3.18 3 3.23</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	TFS))
Time (h+m) 0+ 5 0+ 10 0+ 5 0+ 20 0+ 25 0+ 30 0+ 25 0+ 30 0+ 40 0+ 45 0+ 50 0+ 55 1+ 0 1+ 55 1+ 0 1+ 15 1+ 20 1+ 25 1+ 30 1+ 35 1+ 40 1+ 45 1+ 55 2+ 10 2+ 15 2+ 20 2+ 25 2+ 30 2+ 35 2+ 40 2+ 45 2+ 50 2+ Al soil low rat the soil low	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9 9.66 1 10.43 1 0.30 9 9.74 9 9.66 1 10.43 1 0.30 9 9.74 1 9.66 1 10.43 1 10.30 9 9.67 9 9.99 1 1.09 1 2.43 1 2.87 1 2.82 1 3.09 1 4.89 1 5.32 1 5.13 1 6.65 1 8.41 1 8.23 1 7.90 1 8.22 1 9.95 2 4.33 2 25.88 2 6.76 3 6.36 4 41.70 4 3.18 3 3.23 2 20.28 1</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	VQ Q VQ	
Time (h+m) 0+ 5 0+10 0+25 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+5 1+10 1+25 1+20 1+25 1+30 1+35 1+40 1+45 1+55 2+0 2+55 2+10 2+35 2+40 2+55 2+55	Al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	<pre>ce of this hydr</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	TFS))
Time (h+m) 0+ 5 0+ 10 0+ 5 0+ 20 0+ 25 0+ 30 0+ 25 0+ 30 0+ 40 0+ 45 0+ 50 0+ 55 1+ 0 1+ 55 1+ 0 1+ 15 1+ 20 1+ 25 1+ 30 1+ 35 1+ 40 1+ 45 1+ 55 2+ 10 2+ 15 2+ 20 2+ 25 2+ 30 2+ 35 2+ 40 2+ 45 2+ 50 2+ Al soil low rat the soil low	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9 9.66 1 10.43 1 0.30 9 9.74 9 9.66 1 10.43 1 0.30 9 9.74 1 9.66 1 10.43 1 10.30 9 9.67 9 9.99 1 1.09 1 2.43 1 2.87 1 2.82 1 3.09 1 4.89 1 5.32 1 5.13 1 6.65 1 8.41 1 8.23 1 7.90 1 8.22 1 9.95 2 4.33 2 25.88 2 6.76 3 6.36 4 41.70 4 3.18 3 3.23 2 20.28 1</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	2FS))	
Time (h+m) 0+ 5 0+10 0+ 5 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+55 1+20 1+25 1+30 1+35 1+40 1+55 1+40 1+55 2+50 2+25 2+30 2+35 2+40 2+55 3+ 0	Al soil los ak flow rat ++++++++++++++++++++++++++++++++++++	<pre>ce of this hydr 3 - H O R u n o f f ydrograph in .Ft Q(CFS) 0 1.63 VQ 5.46 V 6.40 V 6.84 V 8.14 V 8.99 V 9.74 9 9.66 10.43 10.30 9 9.74 9 9.66 10.43 10.30 9 9.67 9 9.99 11.09 12.43 12.87 12.82 13.09 14.89 15.32 15.13 16.65 18.41 18.23 17.90 18.22 19.95 24.33 25.88 26.76 36.36 41.70 43.18 33.23 20.28 12.25</pre>	ograph = ++++++++++++++++++++++++++++++++++++	43.183(CFS)	EFS))

3+10	4.1580	3.13	Q	1	1	1	V
3+15	4.1686	1.54	Q	1	1	1	V
3+20	4.1735	0.71	ģ	1	1	1	V
3+25	4.1761	0.38	Q	1	1	1	V
3+30	4.1774	0.19	Q	1	1	1	V
3+35	4.1777	0.04	Q	1	*		V

```
Unit Hydrograph Analysis
                 Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
Study date 02/13/20 File: 3828PR262.out
        Riverside County Synthetic Unit Hydrology Method
        RCFC & WCD Manual date - April 1978
        Program License Serial Number 6400
                    _____
         English (in-1b) Input Units Used
         English Rainfall Data (Inches) Input Values Used
         English Units used in output format
        .....
                              69.65 (Ac.) =
                                                 0.109 Sq. Mi.
        Drainage Area =
        Drainage Area for Depth-Area Areal Adjustment =
                                                                   69.65(Ac.) =
                                                                                        0.109 Sq. Mi.
        Length along longest watercourse = 3400.00 (Ft.)
Length along longest watercourse measured to centroid = 1280.00 (Ft.)
        Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
        Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
        Lag time = 0.080 Hr.
Lag time = 4.78 Min.
        25% of lag time = 1.19 Min.
40% of lag time = 1.91 Min.
Unit time = 5.00 Min.
        User Entered Base Flow = 0.00(CFS)
        2 YEAR Area rainfall data:
                         Rainfall(In)[2] Weighting[1*2]
        Area(Ac.)[1]
                                                           80.10
               69.65
                                  1.15
        100 YEAR Area rainfall data:
        Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 2.50 174.13
                                                    174.13
                                 2.50
               69.65
        STORM EVENT (YEAR) = 2.00
Area Averaged 2-Year Rainfall = 1.150(In)
Area Averaged 100-Year Rainfall = 2.500(In)
        Point rain (area averaged) = 1.150(In)
Areal adjustment factor = 99.98 %
        Adjusted average point rain = 1.150(In)
        Sub-Area Data:
        Area (Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

      RI
      Infil. Rate
      Impervious
      Adj.
      Infil.
      Rate
      Area%
      F

      AMC2
      AMC-1
      (In/Hr)
      (Dec.%)
      (In/Hr)
      (Dec.)
      (In/Hr)


      56.0
      36.0
      0.706
      0.900
      0.134
      1.000
      0.134

      Area
      averaged mean soil loss (F)
      (In/Hr)
      =
      0.134

      Minimum soil locs
      rate
      (In/Hr)
      =
      0.267

        Minimum soil loss rate ((In/Hr)) = 0.067
        (for 24 hour storm duration)
Soil low loss rate (decimal) = 0.100
                                                   Unit Hydrograph
VALLEY S-Curve
        Unit Hydrograph Data
                                                               ------
         .....
                                       Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
           _____
```

Tare	BUDCIAC	Let IIom	Che peora nam	to produce		
Uni	t Time	Pattern	Storm Rain	Loss rate		Effective
	(Hr.)	Percent	(In/Hr) 0.069	Max (0.134)	Low 0.007	(In/Hr) 0.062
1 2	0.08	0.50	0.083	(0.134)	0.008	0.075
3	0.25	0.60	0.083	(0.134)	0.008	0.075
4	0.33	0.60	0.083	(0.134)	0.008	0.075
5	0.42	0.60	0.083	(0.134)	0.008	0.075
6	0.50	0.70	0.097	(0.134)	0.010	0.087
7	0.58	0.70	0.097	(0.134)	0.010	0.087
8	0.67	0.70	0.097	(0.134) (0.134)	0.010 0.010	0.087 0.087
9	0.75	0.70 0.70	0.097	(0.134) (0.134)	0.010	0.087
10 11	0.83	0.70	0.097	(0.134)	0.010	0.087
12	1.00	0.80	0.110	(0.134)	0.011	0.099
13	1.08	0.80	0.110	(0.134)	0.011	0.099
14	1.17	0.80	0.110	(0.134)	0.011	0.099
15	1.25	0.80	0.110	(0.134)	0.011	0.099
16	1.33	0.80	0.110	(0.134)	0.011	0.099
17	1.42	0.80	0.110	(0.134)	0.011	0.099
18	1.50	0.80	0.110	(0.134)	0.011	0.099
19	1.58	0.80	0.110	(0.134) (0.134)	0.011 0.011	0.099 0.099
20	1.67	0.80	0.110	(0.134) (0.134)	0.011	0.099
21 22	1.75 1.83	0.80 0.80	0.110	(0.134)	0.011	0.099
23	1.92	0.80	0.110	(0.134)	0.011	0.099
24	2.00	0.90	0.124	(0.134)	0.012	0.112
25	2.08	0.80	0.110	(0.134)	0.011	0.099
26	2.17	0.90	0.124	(0.134)	0.012	0.112
27	2.25	0.90	0.124	(0.134)	0.012	0.112
28	2.33	0.90	0.124	(0.134)	0.012	0.112
29	2.42	0.90	0.124	(0.134)	0.012	0.112
30	2.50	0.90	0.124	(0.134)	0.012	0.112 0.112
31	2.58	0.90	0.124	(0.134) (0.134)	0.012 0.012	0.112
32 33	2.67	0.90	0.124 0.138	(0.134)	0.012	0.124
34	2.83	1.00	0.138	(0.134)	0.014	0.124
35	2.92	1.00	0.138	(0.134)	0.014	0.124
36	3.00	1.00	0.138	(0.134)	0.014	0.124
37	3.08	1.00	0.138	(0.134)	0.014	0.124
38	3.17	1.10	0.152	(0.134)	0.015	0.137
39	3.25	1.10	0.152	(0.134)	0.015	0.137
40	3,33	1.10	0.152	(0.134)	0.015	0.137
41	3.42	1.20	0.166	(0.134)	0.017	0.149
42	3.50	1.30	0.179	(0.134) (0.134)	0.018 0.019	0.161 0.174
43	3.58	1.40 1.40	0.193 0.193	(0.134)	0.019	0.174
44 45	3.67 3.75	1.40	0.207	(0.134)	0.021	0.186
45	3.83	1.50	0.207	(0.134)	0.021	0.186
47	3.92	1.60	0.221	(0.134)	0.022	0.199
48	4.00	1.60	0.221	(0.134)	0.022	0.199
49	4.08	1.70	0.235	(0.134)	0.023	0.211
50	4.17	1.80	0.248	(0.134)	0.025	0.224
51	4.25	1.90	0.262	(0.134)	0.026	0.236
52	4.33	2.00	0.276	(0.134)	0.028	0.248
53	4.42	2.10	0.290	(0.134)	0.029	0.261
54	4.50	2.10	0.290	(0.134)	0.029 0.030	0.261 0.273
55 56	4.58	2.20	0.304 0.317	(0.134) (0.134)	0.032	0.286
57	4.75	2.30 2.40	0.331	(0.134)	0.033	0.298
58		2.40	0.331	(0.134)	0.033	0.298
59	4.92			(0.134)	0.034	0.310
60	5.00	2.60	0.359	(0.134)	0.036	0.323
61	5.08	3.10 3.60 3.90	0.428	(0.134)		0.385
62	5.17	3.60	0.497	(0.134)		
63	5.25	3.90	0.538	(0.134)		
64	5.33	4.20	0.579	(0.134)		0.522 0.584
65	E EO	F (0	0.648	(0.134) (0.134)		
66 67	5.50	4.20 4.70 5.60 1.90	0.773 0.262	(0.134)		
68	5.67	0.90	0.124	(0.134)		0.112
69	5.75	5.60 1.90 0.90 0.60 0.50 0.30 0.20	0.083	(0.134)	0.008	0.075
70	5.83	0.50	0.069	(0.134)	0.007	0.062
71	5.92	0.30	0.041	(0.134)	0.004	0.037
			0.028	(0.134)	0.003	0.025
72	6.00	0.20	69.63			
		(Los:	s Rate Not Used	1)	0	10.4
	Sum =	(Los: 100.0	s Rate Not Used		Sum =	12.4
	Sum = Flood	(Los) 100.0 1 volume :	s Rate Not Used = Effective rai	nfall 1	.03(In)	
	Sum = Flood time	(Los) 100.0 1 volume es area	s Rate Not Used = Effective rai 69.7(Ac.)/[nfall 1 (In)/(Ft.)]	.03(In)	
	Sum = Flood time Total Total	(Los: 100.0 volume s area soil lo: soil lo:	s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(nfall 1 (In)/(Ft.)] In) Ac.Ft)	.03(In) = 6.0(#	
	Sum = Flood time Total Total	(Los: 100.0 volume s area soil lo: soil lo:	s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(nfall 1 (In)/(Ft.)] In) Ac.Ft)	.03(In) = 6.0(#	
	Sum = Flood time Total Total	(Los: 100.0 volume s area soil lo: soil lo:	s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(nfall 1 (In)/(Ft.)] In) Ac.Ft)	.03(In) = 6.0(#	
	Sum = Flood Total Total Total Flood Total	(Los: 100.0 l volume s area l soil lo: l soil lo: l rainfal d volume soil lo:	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(I = 261615.9 ss = 2906</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet	.03(In) = 6.0(#	LC.Ft)
	Sum = Flood Total Total Total Flood Total	(Los: 100.0 d volume es area l soil lo: l soil lo: d rainfal d volume l soil lo:	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 ((In)/(Ft.)) In) Ac.Ft) n) Cubic Feet 8.4 Cubic Fee	.03(In) = 6.0(<i>I</i> et	
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 I volume es area I soil los I soil los I rainfal I volume I soil los C flow rai	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(T = 261615.9 ss = 2906 te of this hydr</pre>	nfall 1 ((In)/(Ft.)) In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet ograph =	.03(In) = 5.0(<i>I</i> et -40.271(CFS)	.c.Ft)
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 l volume es area l soil lo: l soil lo: l rainfal l volume l soil lo: c flow rai	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet cograph =	.03(In) = 6.0(<i>I</i> et 40.271(CFS)	.c.Ft)
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 l volume es area l soil lo: l soil lo: l rainfal l volume l soil lo: c flow rai	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Fee ograph =	.03(In) = 6.0(<i>I</i> et 	.c.Ft)
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 l volume es area l soil lo: l soil lo: l rainfal l volume l soil lo: c flow rai	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(I = 261615.9 ss = 2906 te of this hydr ++++++++++++++ 6 - H 0</pre>	nfall 1 ((n)/(Ft.)); 1n) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 98.4 Cubic Feet ograph = 	.03(In) = 6.0(<i>I</i> et 	.c.Ft)
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 l volume es area l soil lo: l soil lo: d volume l soil lo c flow rat	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet cograph = 	.03(In) = 6.0(<i>I</i> et 	.c.Ft)
	Sum = Flood Total Total Total Flood Total Peak	(Los: 100.0 l volume s area l soil lo: l soil lo: l rainfal d volume l soil lo: c flow rai	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 9.4 Cu	.03(In) = 6.0(<i>I</i> et 40.271(CFS) ++++++++++ R M ograph	.c.Ft)
	Sum = Flood time Total Total Flood Total Peak 	(Loss) 100.0 1 volume 2s area 1 soil lo: 1 soil lo: 1 soil lo: 1 soil lo: 2 soil lo: 4 volume 5 flow rai 5 flow rai	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(T = 261615.9 ss = 2906 te of this hydr ++++++++++++++++++++++++++++++++++++</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 9.4 Cubic Feet 9.5 Cu	.03(In) = 5.0(<i>I</i> et 40.271(CFS) +++++++++ R mograph ntervals((CF	xc.Ft)
	Sum = Flood time Total Total Flood Total Peak	(Los: 100.0 l volume es area l soil lo: l soil lo: l rainfal d volume t soil lo: c flow rai	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] In) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 9.4 Cubic Feet 9.4 Cubic Feet 9.4 Cubic Feet 9.5 Cu	.03(In) = 5.0(<i>I</i> et 40.271(CFS) ++++++++++ R M ograph ntervals((CF	xc.Ft) ++++++++++++++++++++++++++++++++++++
Tim	Sum = Flood time Total Total Flood Total Peak ++++4	(Loss) 100.0 1 volume s area 1 soil lo: 1 soil lo: 1 soil lo: 1 soil lo: 1 soil lo: 2 soil lo: 4 volume a 5 flow rai H: Yolume Ac	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 (In)/(Ft.)] Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 9.4 Cubic	.03 (In) = 6.0 (I et 40.271 (CFS) +++++++++ R M o g r a p h ntervals ((CF 25.0	xc.Ft)
Tim	Sum = Flood time Total Total Flood Total Peak +++++	(Loss) 100.0 d volume es area l soil lo: l soil lo: l soil lo: c flow rai c flow rai H; H; /olume Ac	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(T = 261615.9 ss = 2906 te of this hydr t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+</pre>	nfall 1 ((In)/(Ft.)) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 0 Graph = 	.03(In) = 6.0(<i>I</i> et 40.271(CFS) ++++++++++ R M ograph ntervals((CF 25.0	xc.Ft)
Tim	Sum = Flood time Total Total Flood Total Peak ++++4	(Loss) 100.0 d volume es area l soil lo: l soil lo: l soil lo: c flow rai c flow rai H; H; /olume Ac	<pre>s Rate Not Used = Effective rai</pre>	nfall 1 ((In)/(Ft.)) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 0 Graph = 	.03 (In) = 6.0 (I et 40.271 (CFS) +++++++++ R M o g r a p h ntervals ((CF 25.0	xc.Ft)
Tim	Sum = Flood time Total Total Flood Total Peak +++++	(Loss) 100.0 d volume es area l soil lo: l soil lo: l soil lo: c flow rai c flow rai H; H; /olume Ac	<pre>s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.11(ss = 0.667(l = 1.15(T = 261615.9 ss = 2906 te of this hydr t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+</pre>	nfall 1 ((In)/(Ft.)) Ac.Ft) n) Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 8.4 Cubic Feet 0 Graph = 	.03(In) = 6.0(<i>I</i> et 40.271(CFS) ++++++++++ R M ograph ntervals((CF 25.0	xc.Ft)


```
Unit Hydrograph Analysis
                       Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                                   Study date 02/13/20 File: 3828PR2242.out
           Riverside County Synthetic Unit Hydrology Method
           RCFC & WCD Manual date - April 1978
           Program License Serial Number 6400
                                                    -----
            English (in-lb) Input Units Used
            English Rainfall Data (Inches) Input Values Used
            English Units used in output format
           _____
           _____
           Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
          Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse measured to centroid = 0.242 Mi.
           Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
          Average Manning's 'N' = 0.015
Lag time = 0.080 Hr.
Lag time = 4.78 Min.
25% of lag time = 1.19 Min.
40% of lag time = 1.91 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
           2 YEAR Area rainfall data:
                                Rainfall(In)[2] Weighting[1*2]
           Area(Ac.)[1]
                                          1.75
                     69.65
           100 YEAR Area rainfall data:
                               Rainfall(In)[2] Weighting[1*2]
4.50
           Area(Ac.)[1]
           69.65 4.50
STORM EVENT (YEAR) = 2.00
           Area Averaged 2-Year Rainfall = 1.750(In)
Area Averaged 100-Year Rainfall = 4.500(I
                                                                    4.500(In)
           Point rain (area averaged) = 1.7
Areal adjustment factor = 99.99 %
                                                            1.750(In)
           Adjusted average point rain = 1.750(In)
           Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-1
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        36.0
        0.706
        0.900
        0.134
        1.000
        0.134

                                                                                        1.000 	0.134
Sum (F) = 0.134
           Area averaged mean soil loss (F) (In/Hr) = 0.134
Minimum soil loss rate ((In/Hr)) = 0.067
           (for 24 hour storm duration)
           Soil low loss rate (decimal) = 0.100
                                                                         _____
                                   Unit Hydrograph
                                               VALLEY S-Curve
                                                                                      ......
           -------
                               Unit Hydrograph Data
                                                          .....
           Unit time period Time % of lag Distribution Unit Hydrograph

        nit time period
(hrs)
        Time % of lag
Graph %
        Distribution
(CFS)
        Unit Hydrogra
(CFS)

        1
        0.083
        104.614
        20.612
        14.469

        2
        0.167
        209.229
        48.679
        34.170

        3
        0.250
        313.843
        14.978
        10.514

        4
        0.333
        418.458
        6.821
        4.788

        5
        0.417
        523.072
        3.802
        2.669

        6
        0.500
        627.687
        2.435
        1.709

        7
        0.583
        732.301
        1.462
        1.026

        8
        0.667
        836.916
        1.210
        0.849

        Sum = 100.000
        Sum = 70.194
        50.190
        50.190

                                                        Sum = 100.000 Sum=
                                                                                                  70.194
```

Page 1

TImi +	Time	Dattorn	Storm Rain	Loss rate	(Tp /Hr)	Effective
UIIIC	(Hr.)	Pattern Percent	(In/Hr)	Max	Low	(In/Hr)
1	0.08	0.07	0.014	(0.238)	0.001 0.001	0.013 0.013
2 3	0.17 0.25	0.07 0.07	0.014	(0.237) (0.236)	0.001	0.013
4	0.33	0.10	0.021	(0.235)	0.002	0.019
5	0.42	0.10	0.021	(0.234) (0.233)	0.002 0.002	0.019 0.019
6 7	0.50	0.10	0.021	(0.233) (0.232)	0.002	0.019
8	0.67	0.10	0.021	(0.231)	0.002	0.019
9	0.75	0.10	0.021	(0.230)	0.002	0.019 0.025
10 11	0.83 0.92	0.13	0.028	(0.229)	0.003	0.025
12	1.00	0.13	0.028	(0.228)	0.003	0.025
13 14	1.08 1.17	0.10	0.021	(0.227) (0.226)	0.002	0.019 0.019
15	1.25	0.10	0.021	(0.225)	0.002	0.019
16	1.33	0.10	0.021	(0.224)	0.002	0.019
17 18	1.42 1.50	0.10	0.021	(0.223) (0.222)	0.002	0.019 0.019
19	1.58	0.10	0.021	(0.222)	0.002	0.019
20	1.67	0.10	0.021	(0.221)	0.002	0.019
21 22	1.75 1.83	0.10	0.021	(0.220) (0.219)	0.002	0.019 0.025
23	1.92	0.13	0.028	(0.218)	0.003	0.025
24	2.00	0.13	0.028	(0.217)	0.003	0.025
25 26	2.08 2.17	0.13	0.028	(0.216) (0.215)	0.003	0.025 0.025
27	2.25	0.13	0.028	(0.214)	0.003	0.025
28	2.33	0.13	0.028	(0.214)	0.003	0.025
29 30	2.42 2.50	0.13	0.028	(0.213) (0.212)	0.003 0.003	0.025 0.025
31	2.58	0.13	0.035	(0.211)	0.003	0.031
32	2.67	0.17	0.035	(0.210)	0.003	0.031
33 34	2.75 2.83	0.17 0.17	0.035	(0.209) (0.208)	0.003 0.003	0.031 0.031
35	2.92	0.17	0.035	(0.208)	0.003	0.031
36	3.00	0.17	0.035	(0.207)	0.003	0.031
37 38	3.08 3.17	0.17 0.17	0.035	(0.206) (0.205)	0.003 0.003	0.031 0.031
39	3.25	0.17	0.035	(0.204)	0.003	0.031
40	3.33	0.17	0.035	(0.203)	0.003	0.031 0.031
41 42	3.42 3.50	0.17 0.17	0.035	(0.202)	0.003 0.003	0.031
43	3.58	0.17	0.035	(0.201)	0.003	0.031
44	3.67	0.17	0.035	(0.200) (0.199)	0.003	0.031 0.031
45 46	3.75 3.83	0.17 0.20	0.035	(0.198)	0.004	0.038
47	3.92	0.20	0.042	(0.197)	0.004	0.038
48 49	4.00	0.20	0.042	(0.197) (0.196)	0.004 0.004	0.038 0.038
49 50	4.08 4.17	0.20	0.042	(0.195)	0.004	0.038
51	4.25	0.20	0.042	(0.194)	0.004	0.038
52 53	4.33 4.42	0.23	0.049	(0.193) (0.192)	0.005	$0.044 \\ 0.044$
54	4.50	0.23	0.049	(0.192)	0.005	0.044
55	4.58	0.23	0.049	(0.191)	0.005	0.044
56 57	4.67 4.75	0.23	0.049	(0.190) (0.189)	0.005	$0.044 \\ 0.044$
58	4.83	0.27	0.056	(0.188)	0.006	0.050
59	4.92	0.27	0.056	(0.187)	0.006	0.050 0.050
60 61	5.00 5.08	0.27 0.20	0.056	(0.187) (0.186)	0.004	0.038
62	5.17	0.20	0.042	(0.185)	0.004	0.038
63	5.25	0.20	0.042	(0.184) (0.183)	0.004	0.038 0.044
64 65	5.33 5.42	0.23	0.049	(0.183)	0.005	0.044
66	5.50	0.23	0.049	(0.182)	0.005	0.044
67 68	5.58 5.67	0.27 0.27	0.056	(0.181) (0.180)	0.006	0.050 0.050
69	5.75	0.27	0.056	(0.179)	0.006	0.050
70	5.83	0.27	0.056	(0.179)	0.006	0.050
71 72	5.92 6.00	0.27 0.27	0.056	(0.178) (0.177)	0.006 0.006	0.050 0.050
73	6.08	0.30	0.063	(0.176)	0.006	0.057
74	6.17	0.30	0.063	(0.175)	0.006	0.057
75 76	6.25 6.33	0.30	0.063	(0.175) (0.174)	0.006	0.057 0.057
77	6.42	0.30	0.063	(0.173)	0.006	0.057
78	6.50	0.30	0.063	(0.172)	0.006	0.057
79 80	6.58 6.67	0.33 0.33	0.070	(0.172) (0.171)	0.007 0.007	0.063 0.063
81	6.75	0.33	0.070	(0.170)	0.007	0.063
82	6.83	0.33	0.070	(0.169)	0.007	0.063
83 84	6.92 7.00	0.33 0.33	0.070	(0.169) (0.168)	0.007 0.007	0.063 0.063
85	7.08	0.33	0.070	(0.167)	0.007	0.063
86	7.17	0.33	0.070	(0.166)	0.007	0.063
87 88	7.25 7.33	0.33 0.37	0.070	(0.165) (0.165)	0.007 0.008	0.063 0.069
89	7.42	0.37	0.077	(0.164)	0.008	0.069
90 91	7.50	0.37	0.077	(0.163) (0.162)	0.008	0.069 0.076
91 92	7.58 7.67	0.40	0.084	(0.162)	0.008	0.076
93	7.75	0.40	0.084	(0.161)	0.008	0.076
94	7.83	0.43	0.091	(0.160)	0.009	0.082
						Page 2

95	7.92	0.43	0.091	(().159)	0.009	0.082
96	8.00	0.43	0.091		0.159)	0.009	0.082
97	8.08	0.50	0.105	(().158)	0.010	0.094
98	8.17	0.50	0,105		0.157)	0.010	0.094
99	8.25	0.50	0.105		0.157)	0.010	0.094
100	8.33	0.50	0.105		0.156)	0.010	0.094 0.094
101	8.42	0.50	0.105),155)	0.010 0.010	0.094
102	8.50	0.50	0.105 0.112		0.154) 0.154)	0.011	0.101
103	8.58	0.53 0.53	0.112		0.153)	0.011	0.101
104 105	8.67 8.75	0.53	0.112		0.152)	0.011	0.101
106	8.83	0.57	0.119		0.151)	0.012	0.107
107	8.92	0.57	0.119		0.151)	0.012	0.107
108	9.00	0.57	0.119	((0,150)	0.012	0.107
109	9.08	0.63	0.133		0.149)	0.013	0.120
110	9.17	0.63	0.133		0.149)	0.013	0.120
111	9.25	0.63	0.133		0.148)	0.013	0.120
112	9.33	0.67	0.140		0.147)	0.014	0.126 0.126
113	9.42	0.67	0.140		0.147) 0.146)	0.014 0.014	0.126
114	9.50	0.67 0.70	0.140 0.147		0.145)	0.015	0.132
115	9.58	0.70	0.147		0.144)	0.015	0.132
$116 \\ 117$	9.67 9.75	0.70	0.147		0.144)	0.015	0.132
118	9.83	0.73	0.154		0.143)	0.015	0.139
119	9.92	0.73	0.154		0.142)	0.015	0.139
120	10.00	0.73	0.154	((0.142)	0.015	0.139
121	10.08	0.50	0.105	()	0.141)	0.010	0.094
122	10.17	0.50	0.105		0.140)	0.010	0.094
123	10.25	0.50	0.105		0.140)	0.010	0.094
124	10.33	0.50	0.105		0.139)	0.010	0.094
125	10.42	0.50	0.105		0.138)	0.010 0.010	0.094 0.094
126	10.50	0.50	0.105		0.138) 0.137)	0.014	0.126
127	10.58	0.67 0.67	0.140 0.140		0.136)	0.014	0.126
128 129	10.67 10.75	0.67	0.140		0.136)	0.014	0.126
130	10.83	0.67	0.140		0.135)	0.014	0.126
131	10.92	0.67	0.140		0.134)	0.014	0.126
132	11.00	0.67	0.140		0.134)	0.014	0.126
133	11.08	0.63	0.133	(0.133)	0.013	0.120
134	11.17	0.63	0.133		0.132)	0.013	0.120
135	11.25	0.63	0.133		0.132)	0.013	0.120
136	11.33	0.63	0.133		0.131)	0.013	0.120
137	11.42	0.63	0.133		0.130)	0.013	0.120 0.120
138	11.50	0.63	0.133		0.130) 0.129)	0.013 0.012	0.120
139	11.58	0.57	0.119 0.119		0.128)	0.012	0.107
140 141	11.67 11.75	0.57 0.57	0.119		0.128)	0.012	0.107
141	11.83	0.60	0.126		0.127)	0.013	0.113
143	11.92	0.60	0.126		0.126)	0.013	0.113
144	12.00	0.60	0.126	(0.126)	0.013	0.113
145	12.08	0.83	0.175		0.125)	0.017	0.157
146	12.17	0.83	0.175		0.125)	0.017	0.157
147	12.25	0.83	0.175		0.124)	0.017	0.157
148	12.33	0.87	0.182		0.123)	0.018 0.018	0.164 0.164
149	12.42	0.87	0.182		0.123) 0.122)	0.018	0.164
150	12.50 12.58	0.87 0.93	0.182 0.196		0.121)	0.020	0.176
151 152	12.50	0.93	0.196		0.121)	0.020	0.176
153	12.75	0.93	0.196		0.120)	0.020	0.176
154	12.83	0.97	0.203	(0.120)	0.020	0.183
155	12.92	0.97	0.203		0.119)	0.020	0.183
156	13.00	0.97	0.203		0.118)	0.020	0.183
157	13.08	1.13	0.238		0.118) 0.117)	0.024 0.024	0.214 0.214
158	13.17	1.13	0.238 0.238		0.117)	0.024	0.214
159 160	13.25 13.33	1.13 1.13	0.238		0.116)	0.024	0.214
161	13.42	1.13	0.238		0.115)	0.024	0.214
162	13.50	1.13	0.238		0.115)	0.024	0.214
163	13.58	0.77	0.161		0.114)	0.016	0.145
164	13.67	0.77	0.161		0.114)	0.016	0.145
165	13.75	0.77	0.161		0.113)	0.016	0.145 0.145
166	13.83	0.77	0.161		0.113)	0.016 0.016	0.145
167	13.92	0.77 0.77	0.161		0.112) 0.111)	0.016	0.145
168	14.00	0.90	0.161 0.189		0.111)	0.019	0.170
169 170	$14.08 \\ 14.17$	0.90	0.189		0.110)	0.019	0.170
171	14.25	0.90	0.189		0.110)	0.019	0.170
172	14.33	0.87	0.182		0.109)	0.018	0.164
173	14.42	0.87	0.182		0.109)	0.018	0.164
174	14.50	0.87	0.182	1	0.108)	0.018	0.164
175	14.58	0.87	0.182		0.107)	0.018	0.164
176	14.67	0.87	0.182		0.107)	0.018	0.164
177	14.75	0.87	0.182		0.106)	0.018 0.017	0.164 0.157
178	14.83	0.83	0.175		0.106) 0.105)	0.017	0.157
179	14.92	0.83	0.175 0.175		0.105)	0.017	0.157
180 181	15.00 15.08	0.83 0.80	0.168		0.104)	0.017	0.151
181	15.08	0.80	0.168		0.104)	0.017	0.151
183	15.25	0.80	0.168		0.103)	0.017	0.151
184	15.33	0.77	0.161	(0.103)	0.016	0.145
185	15.42	0.77	0.161		0.102)	0.016	0.145
186	15.50	0.77	0.161		0.102)	0.016	0.145
187	15.58	0.63	0.133		0.101)	0.013	0.120 0.120
188	15.67	0.63	0.133		0.101) 0.100)	0.013 0.013	0.120
189	15.75	0.63	0.133 0.133		0.100)	0.013	0.120
190 191	15.83 15.92	0.63	0.133		0.099)	0.013	0.120
191	16.00	0.63	0.133		0.099)	0.013	0.120
193	16.08	0.13	0.028	(0.098)	0.003	0.025

				(A) (A) (A)	0.000	0 005
	6.17 6.25	0.13	0.028	0.098) 0.097)	0.003 0.003	0.025
		0.13	0.028		0.003	0.025
197 l	6.42	0.13	0.028		0.003	0.025
	6.50	0.13	0.028		0.003 0.002	0.025 0.019
	6.58 6.67	0.10	0.021		0.002	0.019
	6.75	0.10	0.021		0.002	0.019
	6.83	0.10	0.021		0.002	0.019 0.019
	6.92	0.10	0.021		0.002	0.019
	7.08	0.17	0.035		0.003	0.031
	7.17	0.17	0.035		0.003	0.031 0.031
	7.25	0.17	0.035		0.003	0.031
		0.17	0.035	0.090)	0.003	0.031
	7.50	0.17	0.035		0.003 0.003	0.031 0.031
	7.58	0.17	0.035	0.25,37253	0.003	0.031
	7.75	0.17	0.035	0.089)	0.003	0.031
	7.83	0.13	0.028		0.003 0.003	0.025 0.025
	7.92	0.13	0.028		0.003	0.025
217 1	8.08	0.13	0.028		0.003	0.025
	8.17 8.25	0.13	0.028		0.003	0.025
	8.33	0.13	0.028		0.003	0.025
221 1	8.42	0.13	0.028		0.003	0.025
	8.50	0.13	0.028		0.003	0.025
	8,58	0.10	0.021		0.002	0.019
	8.75	0.10	0.021		0.002	0.019
	.8.83	0.07	0.014		0.001	0.013
	.8.92	0.07	0.014	2/1 (F1A()***	0.001	0.013
	9.08	0.10	0.021	0.082)	0.002	0.019
	9.17	0.10	0.021 0.021		0.002	0.019 0.019
	.9.25 .9.33	0.10		0.081)	0.003	0.025
233 1	9.42	0.13	0.028	(0.080)	0.003	0.025
	.9.50	0.13	0.028 0.021	(0.080) (0.080)	0.003	0.025 0.019
	.9.58 .9.67	0.10		0.079)	0.002	0.019
237 1	9.75	0.10	0.021	(0.079)	0.002	0.019
	.9.83	0.07		(0.079) (0.078)	0.001 0.001	0.013
	.9.92 20.00	0.07		(0.078)	0.001	0.013
241 2	20.08	0.10	0.021	(0.078)	0.002	0.019
	20.17	0.10		(0.077) (0.077)	0.002	0.019 0.019
	20.25	0.10		0.077)	0.002	0.019
	20.42	0.10	0.021	(0.076)	0.002	0.019
	20.50	0.10		(0.076) (0.076)	0.002	0.019 0.019
	20.58 20.67	0.10 0.10		(0.075)	0.002	0.019
249 2	20.75	0.10		(0.075)	0.002	0.019
	20.83	0.07		(0.075) (0.074)	0.001	0.013
	20.92 21.00	0.07		(0.074)	0.001	0.013
253 2	21.08	0.10		(0.074)	0.002	0.019
	21.17 21.25	0.10	0.021	(0.073) (0.073)	0.002	0.019 0.019
	21.33	0.07		(0.073)	0.001	0.013
257 2	21.42	0.07		(0.073)	0.001	0.013
	21.50 21.58	0.07		(0.072) (0.072)	0.001 0.002	0.013
	21.67	0.10		(0.072)	0.002	0.019
261 2	21.75	0.10		(0.072)	0.002	0.019 0.013
	21.83 21.92	0.07		(0.071) (0.071)	0.001 0.001	0.013
264 2	22.00	0.07	0.014	(0.071)	0.001	0.013
265 2	22.08	0.10	••••==	(0.071)	0.002	0.019 0.019
	22.17 22.25	0.10	0.021 0.021	(0.070) (0.070)	0.002	0.019
	22.33	0.07	0.014	(0.070)	0.001	0.013
	22.42	0.07	0.014	(0.070) (0.069)	0.001 0.001	0.013 0.013
	22.50 22.58	0.07	0.014 0.014	(0.069)	0.001	0.013
	22.67	0.07	0.014	(0.069)	0.001	0.013
	22.75	0.07	0.014	(0.069)	0.001	0.013
	22.83 22.92	0.07	0.014 0.014	(0.069) (0.069)	0.001 0.001	0.013
276 2	23.00	0.07	0.014	(0.068)	0.001	0.013
	23.08	0.07	0.014 0.014	(0.068) (0.068)	0.001 0.001	0.013 0.013
	23.17 23.25	0.07		(0.068)	0.001	0.013
280 2	23.33	0.07	0.014	(0.068)	0.001	0.013
	23.42 23.50	0.07		(0.068) (0.068)	0.001 0.001	0.013 0.013
	23.50	0.07	0.014	(0.067)	0.001	0.013
284 2	23.67	0.07	0.014	(0.067)	0.001	0.013
	23.75 23.83	0.07		(0.067) (0.067)	0.001	0.013 0.013
	23.83 23.92	0.07	0.014	(0.067)	0.001	0.013
	24.00	0.07	0.014	(0.067)	0.001	0.013
C1		(Loss 100.0	Rate Not Used)		Sum =	18.9
31			Effective rainfa	all 1.57((In)	
	times a		69.7(Ac.)/[(I	n)/(Ft.)] =	9.1(Ac	.Ft)
						Page 4

	Total soil loss = Total soil loss = Total rainfall = Flood volume = Total soil loss =	1.7 39815 4	2.3 Cubic 1 4239.1 Cub	ic Feet		
	Peak flow rate of	this h	ydrograph	= 14.982(C	FS)	
	******	+++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++++ S T O R M	+++++++++++++++++++++++++++++++++++++++	
			********	drograp		
	Hyarog:			ite intervals		
Time(h	+m) Volume Ac.Ft	O(CFS)	0	5.0 10.0	15.0	20.0
0+ 5	0.0013	0.18	Q		1	1
0+10	0.0013 0.0055 0.0106	0.81	VQ			1
0+20 0+25		0.90 1.15 1.23				
0+30	0 0332	1.23	VQ			
0+35 0+40	0.0420 0.0510	1.28	VQ VQ		1	
0+45 0+50	0.0600 0.0698	1.28 1.30 1.32 1.41	VQ			
0+50	0.0810	1.63	VQ		1	
1+ 0 1+ 5	0.0927	1.70 1.64	V Q V O			
1+10	0.1040 0.1139	1.64	VQ			1
1+15 1+20	0.1235 0.1328	1.38	V Q V Q		1	1
1+25 1+30	0.1421 0.1514	1.35 1.34	V Q V O			
1+35	0,1605	1.33	VQ			
1+40 1+45	0.1697	1.33 1.33	V Q V Q			
1+50 1+55	0.1886 0.1998	1.33 1.42	V Q V O		1	
2+ 0	0.2115	1.63 1.70	V Q		1	
2+ 5 2+10	0.2235 0.2355	1.73	V Q IV Q			
2+15	0.2476	1.70	IV Q		1	
2+20 2+25	0.2719	1.76 1.77	VQ			
2+30 2+35		1.77 1.86				
2+40	0.3112	2.08	V Q			
2+45 2+50		$2.14 \\ 2.17$				
2+55 3+ 0	0.3560	2.19 2.20				
3+ 5	0.3864	2.21	VQ		1	
3+10 3+15		2.21 2.21				
3+20 3+25		2.21 2.21				
3+30	0.4625	2.21	VQ		1	
3+35 3+40		2.21 2.21	VQ VQ			
3+45	0.5082	2.21 2.30	V Q V Q			
3+50 3+55	0.5415	2.52	VQ			
4+ 0 4+ 5		2.58 2.61	V Q V Q			
4+10	0.5954	2.63	V Q V Q			
4+15 4+20	0.6325	2.74	VQ			
4+25 4+30		2.96 3.03	V Q V Q			
4+35 4+40	0.6948	3.06	V Q V Q			
4+45	0.7372	3.08	VQ			
4+50 4+55		3.18 3.40	V Q V Q			
5+ 0 5+ 5	0.8064	3.47 3.32	V Q V Q			
5+10	0.8493	2.90	VQ			
5+15 5+20		2.78 2.82				
5+25	0,9085	3.01				
5+30 5+35	0.9513	3.16	VQ			
5+40 5+45		3.38 3.46	V Q V Q			
5+50	1.0225	3.49 3.52	V Q V Q			
5+55 6+ 0	1.0710	3.53	VQ		1	
6+ 5 6+10		3.62 3.85				
6+15	1.1494	3.91	V Q			
6+20 6+25		3.94 3.96				
6+30 6+35	1.2311	3.97	V Q			
6+40	1.2887	4.29	VQ			
6+45 6+50		4.35 4.38	V Q V Q			
0450						

6+55 7+ 0	1.3792	4.40 4.41	
7+ 5	1.4400	4.42	VQ
7+10 7+15	1.4705 1.5009	4.42 4.42	
7+20	1.5320	4.52	V Q
7+25 7+30	1.5646	4.73 4.80	
7+35	1.6315	4.92	VQ
7+40 7+45	1.6670 1.7030	5.15 5.23	
7+50	1.7399	5.36	V Q
7+55 8+ 0	1.7784 1.8174	5.59 5.67	V Q V Q
8+ 5	1.8580	5.89 6.34	
8+10 8+15	1.9463	6.48	V Q
8+20 8+25	1.9914 2.0368	6.55 6.59	
8+30	2.0824	6.61	VQ
8+35 8+40	2.1286 2.1764	6.72 6.94	V Q V Q
8+45	2.2247	7.01	V Q
8+50 8+55	2.2738 2.3245	7.13 7.36	
9+ 0 9+ 5	2.3757 2.4285	7.44 7.66	
9+10	2.4844	8.11	V Q
9+15 9+20	2.5412 2.5991	8.25 8.41	V Q V Q
9+25	2.6588	8.67	
9+30 9+35	2.7191 2.7803	8.75 8.89	v Q
9+40 9+45	2.8432 2.9066	9.13 9.21	
9+50	2.9710	9.34	V Q
9+55 10+ 0	3.0369 3.1034	9.57 9.65	
10+ 5	3.1657	9.05	V Q
10+10 10+15	3.2178 3.2668	7.56 7.11	
10+20	3.3143	6.91 6.79	QV QV
10+25 10+30	3.3611 3.4074	6.72	QV
10+35 10+40	3.4565 3.5127	7.13 8.17	
10+45	3.5713	8.50	VQ
10+50 10+55	3.6309 3.6910	8.65 8.73	
11+ 0	3.7515	8.79 8.73	VQ
11+ 5 11+10	3.8117 3.8705	8.73	
11+15 11+20	3.9289 3.9870	8.48 8.44	QV QV
11+25	4.0451	8.43	QV
11+30 11+35	4.1030 4.1597	8.42 8.23	QV Q V
11+40 11+45	4.2134	7.79	
11+50	4.2661 4.3191	7.66 7.69	
11+55 12+ 0	4.3733 4.4278	7.87 7.92	
12+ 5	4.4869	8.57	QV
12+10 12+15	4.5563 4.6291	10.09 10.56	VQ VQ
12+20 12+25	4.7039 4.7811	10.87 11.21	
12+30	4.8593	11.35	VQ VQ
12+35 12+40	4.9392 5.0225	11.61 12.09	
12+45	5.1068	12.24	
12+50 12+55	5.1921 5.2792	12.39 12.65	V Q
13+ 0 13+ 5	5.3670 5.4581	$12.74 \\ 13.24$	
13+10	5.5569	14.34	V Q
13+15 13+20	5.6580 5.7602	14.68 14.84	
13+25	5.8630	14.93 14.98	
13+30 13+35	5.9662 6.0627	14.98	
13+40 13+45	6.1430 6.2184	11.67 10.94	
13+50	6.2914	10.61	Q V
13+55 14+ 0	6.3632 6.4342	10.42 10.31	
14+ 5	6.5072	10.60	Q V
14+10 14+15	6.5857 6.6661	11.40 11.67	Q V
14+20 14+25	6.7466 6.8261	11.70 11.55	
14+30	6,9055	11.52	Q V
14+35 14+40	6.9849 7.0642	11.52 11.52	
14+45	7.1435	11.51	Q V
14+50 14+55	7.2221 7.2993	11.42 11.20	
15+ 0 15+ 5	7.3759 7.4517	11.13 11.01	
	08-2-1		Page 6

15+10 15+15 15+20 15+25 15+30 15+35 15+40 15+50 15+55 16+0 16+15 16+10 16+15 16+20 16+25 16+30 16+35 16+40 16+45 16+55 17+0 17+5 17+10 17+15 17+20	7.5259 7.6724 7.7436 7.8142 7.9439 8.0038 8.0628 8.1213 8.1213 8.12795 8.2281 8.2543 8.2737 8.2900 8.3045 8.3179 8.33045 8.3401 8.3497 8.3497 8.3591 8.3684 8.3776 8.3881 8.4014 8.4157 8.4304	$\begin{array}{c} 10.78\\ 10.70\\ 10.57\\ 10.33\\ 10.26\\ 9.86\\ 8.97\\ 8.57\\ 8.57\\ 8.57\\ 8.57\\ 8.50\\ 8.45\\ 7.06\\ 3.81\\ 2.81\\ 2.36\\ 2.11\\ 1.95\\ 1.76\\ 1.46\\ 1.40\\ 1.37\\ 1.35\\ 1.34\\ 1.51\\ 1.94\\ 2.07\\ 2.13\\ \end{array}$	00000000000000000000000000000000000000	000 000 00 00 00 00 00	V V V V V V V V V V V V V V V V V V V
17+35 17+40 17+45 17+50 17+55 18+0 18+5 18+10 18+15 18+20 18+25 18+20 18+25 18+35 18+35 18+40	8.4756 8.4908 8.5060 8.5206 8.5338 8.5464 8.5589 8.5712 8.5835 8.5957 8.6079 8.6201 8.6316 8.6417	2.20 2.21 2.21 1.91 1.84 1.79 1.78 1.77 1.77 1.77 1.68 1.46	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		V V V V V V V V V V V V V V V V V
18+45 18+50 18+55 19+0 19+5 19+10 19+15 19+20 19+25 19+30 19+35 19+40 19+45	8.6513 8.6601 8.6673 8.6740 8.6810 8.6894 8.6981 8.7076 8.7187 8.7304 8.7416 8.7515 8.7611	1.40 1.28 1.04 0.97 1.02 1.21 1.27 1.38 1.61 1.69 1.63 1.44 1.38	a a a _a a a a a a a a a a a a a a a a		V V V V V V V V V V V V V V V V
19+50 19+55 20+ 0 20+ 5 20+10 20+15 20+20 20+25 20+30 20+25 20+30 20+45 20+45	8.7698 8.7770 8.7836 8.7907 8.8078 8.8167 8.8257 8.8257 8.8347 8.8438 8.8530 8.8621 8.8706	1.27 1.04 0.97 1.02 1.21 1.27 1.29 1.30 1.32 1.32 1.33 1.33 1.24			V V V V V V V V V V V V V V V V
20+55 21+ 0 21+ 5 21+10 21+15 21+20 21+25 21+30 21+35 21+40 21+45 21+50	8.8777 8.8842 8.8912 8.8996 8.9083 8.9166 8.9235 8.9300 8.9369 8.9453 8.9540 8.9523	1.02 0.95 1.02 1.21 1.20 1.00 0.94 1.01 1.21 1.27 1.20			V V V V V V V V V V V V V V
21+55 22+ 0 22+ 5 22+10 22+15 22+20 22+25 22+30 22+35 22+40 22+45 22+50	8.9692 8.9757 8.9826 8.9910 9.0080 9.0149 9.0214 9.0214 9.0277 9.0339 9.0401 9.0463	1.00 0.94 1.01 1.21 1.20 1.00 0.94 0.92 0.91 0.90 0.89			V V V V V V V V V V V V V V V
22+55 23+ 0 23+ 5 23+10 23+15 23+20	9.0523 9.0584 9.0645 9.0706 9.0767 9.0828	0.88 0.88 0.88 0.88 0.88 0.88 0.88	1000000 10000000		V V V V V V V V V V

v	ľ	10 1	0.88	9.0889	23+25
v		lõ	0.88	9.0950	23+30
V		0	0.88	9.1011	23+35
V V		0	0.88	9.1072	23+40
V V		lõ l	0.88	9.1133	23+45
V		lo l	0.88	9.1194	23+50
I V		Q	0.88	9.1255	23+55
V V	i i	0	0.88	9.1316	24+ 0
l V		0	0.70	9.1364	24+ 5
l V	l l	2	0.27	9,1383	24+10
1 V	1	0	0.14	9.1392	24+15
I V	i i	2		9.1398	24+20
V	i i	0		9.1401	24+25
V		0	0.02	9.1402	24+30
l V		ō	0.01	9.1403	24+35

```
Unit Hydrograph Analysis
                Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                         Study date 02/13/20 File: 3828PR515.out
        **********************
                              Riverside County Synthetic Unit Hydrology Method
       RCFC & WCD Manual date - April 1978
        Program License Serial Number 6400
                                                 .....
        English (in-1b) Input Units Used
        English Rainfall Data (Inches) Input Values Used
        English Units used in output format
         .....
         .....
                          69.65(Ac.) = 0.109 Sq. Mi.
        Drainage Area =
                                                                69.65(Ac.) = 0.109 Sq. Mi.
       Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) =
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
        Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
       Difference in elevation = 44.00 (Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
        Average Manning's 'N' = 0.015
       Lag time = 0.080 Hr.
Lag time = 4.78 Min.
       25% of lag time = 1.19 Min.

25% of lag time = 1.91 Min.

40% of lag time = 1.91 Min.

Unit time = 5.00 Min.

Duration of storm = 1 Hour(s)

User Entered Base Flow = 0.00 (CFS)
        2 YEAR Area rainfall data:
                        Rainfall(In)[2] Weighting[1*2]
        Area(Ac.)[1]
                                 0.50
                                                            34.83
               69.65
        100 YEAR Area rainfall data:
        Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 1.20 83.58
                             1.20
               69.65
        STORM EVENT (YEAR) = 5.00
       Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall = 1.200(I
                                                1.200(In)
        Point rain (area averaged) = 0.664(In)
Areal adjustment factor = 99.94 %
        Adjusted average point rain = 0.664(In)
        Sub-Area Data:
        Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-1
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        36.0
        0.706
        0.900
        0.134
        1.000
        0.134

        Sum
        (F)
        =
        0.134
        1.000
        0.134

        Area averaged mean soil loss (F) (In/Hr) = 0.134
        Minimum soil loss rate ((In/Hr)) = 0.067
(for 24 hour storm duration)
        Soil low loss rate (decimal) = 0.100
                                       ----
                                                       -----
        Slope of intensity-duration curve for a 1 hour storm =0.5000
                              ......................
                         Unit Hydrograph
                                VALLEY S-Curve
        .....
                                               Unit Hydrograph Data
           .....
        Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
```

(Hr 1 0.0 2 0.1 3 0.2 4 0.3 5 0.4 6 0.5 7 0.5 8 0.6 9 0.7 10 0.8 11 0.9	3 4.20 7 4.30 5 5.00 3 5.00 2 5.80 0 6.50 3 7.40 7 8.60 5 12.30 3 29.10 2 6.80	<pre>(In/Hr) 0.334 0.342 0.398 0.398 0.462 0.518 0.589 0.685 0.979 2.317 0.541</pre>	Max (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1) (0.1)	L. 34) 34) 34) 34) 34) 34) 34) 34)	$\begin{array}{c} 0.033\\ 0.034\\ 0.040\\ 0.040\\ 0.046\\ 0.052\\ 0.059\\ 0.068\\ 0.098\\ 0.232)\\ 0.054\end{array}$	0.616 0.881 2.183 0.487
12 1.0		0.398 ate Not Used)	(0.1	.34)	0.040	0.358
t To To F1 To P	bod volume = E: imes area cal soil loss : cal soil loss : cal rainfall = bod volume = tal soil loss eak flow rate o	69.7(Ac.)/[(= 0.06(] = 0.338(Z 0.66(Ir 153041.4 = 14720 of this hydro	(In)/(Ft In) AC.Ft) 1) Cubic I 0.5 Cub: ograph =	Feet CFeet 96	(In) 3.5(. .852(CFS)	Ac.Ft)
	R Hydr	1 - HOU unoff ographin 5	JR S Hy 5 Minu	GTOR drog ite inte	M raph rvals ((C	FS))
) Volume Ac.Ft			25.0	50.0	75.0 100.0
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	0.0300 0.1316 0.2617 0.4140 0.5815 0.7728 0.9896 1.2381 1.5411 2.0465 2.7135 3.0745 3.2961 3.3962 3.4525 3.4854 3.5059 3.5113 3.5133	4.36 VQ 14.75 V 18.89 V 22.12 V 24.32 V 27.78 4.3 31.48 6.08 43.99 73.39 96.85 52.42 32.18 14.52	Q	Q VQ Q Q	Q	

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR535.out ****** Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -----Area = 69.65(Ac.) = 0.109 Sq. Mi. 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = Drainage Area = 07.05(AC.) = 0.105 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. Lag time = 4.70 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) 0.00(CFS) User Entered Base Flow = 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 0.80 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 1.86 129.55 1.86 STORM EVENT (YEAR) = 5.00 Area Averaged 2-Year Rainfall = 0.800(In) Area Averaged 100-Year Rainfall = 1.860(In) Point rain (area averaged) = 1.048(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 1.048(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 56.0
 36.0
 0.706
 0.900
 0.134
 1.000
 0.134
 Sum (F) = 0.134Area averaged mean soil loss (F) (In/Hr) = 0.134Minimum soil loss rate ((In/Hr)) = 0.067 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS)
 1
 0.083
 104.614
 20.612
 14.469

 2
 0.167
 209.229
 48.679
 34.170

 3
 0.250
 313.843
 14.978
 10.514

 4
 0.333
 418.458
 6.821
 4.788

 5
 0.417
 523.072
 3.802
 2.669

 6
 0.500
 627.687
 2.435
 1.709

 7
 0.583
 732.301
 1.462
 1.026

 8
 0.667
 836.916
 1.210
 0.849

 Sum = 100.000
 Sum=
 70.194

rate subtracted	ITOM the St	orm Rain co	produce che "	WATHAN DIEGO	
Unit Time Pat	tern Stor	m Rain I	Loss rate(In./	(Hr) Effe	ective
(Hr.) Per	rcent (In/	Hr)	Max LOW	/ (11)/	'HI')
1 0.08 1	L.30 0.		0,134)	0.016 0.016	0.147 0.147
2 0.17 1 3 0.25 1	L.30 0. L.10 0. L.50 0.	138 (0.134)	0.014	0.124
/ 033 1	L.50 0.	189 (0.134)	0.019 0.019 0.023	0.170
5 0.42 1		189 (0.134)	0.019	0.170
6 0.50 1	L.80 0.	226 (0.134)	0.023	0.204
7 0.58]	L.50 0. L.80 0.		0.134) 0.134)	0.019 0.023	0.170 0.204
8 0.67 1 9 0.75 1	L.BO 0.		0.134)	0.023	0.204
9 0.75 1 10 0.83 1			0.134)	0.019	0.170
11 0.92 1	L.60 0. L.80 0.		0.134)	0.020	0.181
12 1.00 1	1.80 0.		0.134)	0.023	0.204
			0.134)	0.028 0.028	0.249 0.249
14 1.17 2	2.20 0.	277 (0.134) 0.134)	0.028	0.249
15 1.25 2 16 1.33 2	2.20 0. 2.00 0.	252	0.134)	0.025	0.226
17 1.42 2	D C D D	227 (0.134)	0.033	0.294
17 1.42 2 18 1.50 2	2.60 0. 2.70 0. 2.40 0. 2.70 0. 3.30 0.	340 (0.134)	0.034	0.306
19 1.58 2	2.40 0.	302	0.134)	0.030	0.272 0.306
		340 (0.134) 0.134)	0.034 0.041	0.373
21 1.75 3 22 1.83 3 23 1.92 3 24 2.00 3	3.30 0.	390		0.039	0.351
23 1.92 2	2.90 0.	365 (0 134)	0.036	0.328
24 2.00	3.00 0.	377 (0.134) 0.134)	0.038	0.340
25 2.08 2 26 2.17 4	3 10 O	390 (0.039	0.351 0.475
26 2.17 4	4.20 0.	528 (0.134)	0.053 0.063	0.475
26 2.17 27 2.25 28 2.33	5.00 U	440	0.134)	0.044	0.396
28 2.55 2	4.20 0. 5.00 0. 3.50 0. 6.80 0.	855	0.134) 0.134)	0.086	0.770
30 2.50	7.30 0.	918 (0.134)	0.092	0.826
31 2.58	8.20 1.	031 (0.134)	0.103	0.928
32 2.67 5	7.30 0. 8.20 1. 5.90 0. 2.00 0.	742 (0 134) 0 134) 0 134) 0 134)	0.074 0.025	0.668
29 2.42 6 30 2.50 7 31 2.58 6 32 2.67 5 33 2.75 2	2.00 0. 1.80 0.		0.134)	0.025	0.226 0.204
34 2.83	1.80 0.		0.134) 0.134)	0.023	0.204
36 3.00 (0.60 0.	075		0.008	0.068
50 5.00	(Loss Rate	Not Used)			
Sum = 10	00.0			Sum = 1	11.3
Flood vol	lume = Effec	tive rainfa.	11 0.94()		-)
times an	rea 69.	/(AC.)/[(III. 0 10(Tn))/(Ft.)] =	5.5 (AC. F	-1
Total so. Total so	11 1088 =	0 608 (Ac.)	Ft.)		
Total ra:	il loss = il loss = infall = lume =	1.05(In)	/		
Flood vol	lume =	238459.3 Cul	oic Feet		
Total so:	il loss =	26495.5	Cubic Feet		
		his huden and	anh EC I	DE (CEC)	
Peak flo	ow rate of t	his hydrogra	aph = 56.5	585 (CFS)	
Peak flo	ow rate of t	his hydrogra	aph = 56.5	585 (CFS)	
Peak flo	ow rate of t +++++++++++++++	his hydrogra	aph = 56.5	585 (CFS)	****
Peak flo	ow rate of t +++++++++++++++	his hydrogra	aph = 56.5	585 (CFS)	****
Peak flo	ow rate of t +++++++++++++ R u n	his hydrogra +++++++++++ 3 - H O U R o f f	aph = 56.9 +++++++++++++ STORM Hydrogo	585(CFS) ++++++++++++++ r a p h	****
Peak flo	ow rate of t +++++++++++++ R u n	his hydrogra +++++++++++ 3 - H O U R o f f	aph = 56.5	585(CFS) ++++++++++++++ r a p h	****
Peak flo	ow rate of t ++++++ R u n Hydrogra	his hydrogra ++++++++++++ 3 - H O U R o f f ph in 5	aph = 56.5 storm STORM Hydrogo Minute inter	585(CFS) 	
Peak flo	w rate of t R u n Hydrogra	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5	aph = 56.5 ++++++++++++++++ S T O R M H y d r o g y Minute inter	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue	w rate of t R u n Hydrogra me Ac.Ft Q	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0	aph = 56.5 ++++++++++++++++ S T O R M H y d r o g y Minute inter	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0	w rate of t R u n Hydrogra me Ac.Ft Q .0147 2	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ	aph = 56.5 ++++++++++++++++ S T O R M H y d r o g y Minute inter	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0	ow rate of t 	his hydrogra 	aph = 56.5 ++++++++++++++++ S T O R M H y d r o g y Minute inter	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0 0+15 0	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q	aph = 56.5 S T O R M H y d r o g n Minute inter 15.0	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .13 VQ .16 V Q .38 V Q	aph = 56.5 S T O R M H y d r o g n Minute inter 15.0	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .97 V Q .67 V .78 V	aph = 56.5 S T O R M H y d r o g n Minute interv 15.0 Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0	me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 5 T O R M H y d r o g y Minute intern 15.0 Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+25 0 0+30 0 0+35 0 0+40 0	w rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12	his hydrogra +++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .38 V Q .38 V Q .67 V .78 V .76 V .65 V	aph = 56.5 5 T O R M H y d r o g J Minute interv 15.0 Q Q Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Voluu 0+ 5 0 0+10 0 0+15 0 0+25 0 0+25 0 0+30 0 0+35 0 0+35 0 0+45 0	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .97 V Q .97 V Q .67 V .78 V .76 V .65 V .67 V	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Voluu 0+ 5 0 0+10 0 0+15 0 0+25 0 0+25 0 0+30 0 0+35 0 0+45 0 0+50 0	w rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13	his hydrogra +++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .38 V Q .38 V Q .67 V .78 V .76 V .65 V	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+25 0 0+35 0 0+35 0 0+40 0 0+50 0 0+55 0	w rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7071 13 .7874 12	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .38 V Q .38 V Q .38 V Q .38 V Q .67 V .78 V .78 V .76 V .65 V .65 V .49 V .66 V	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Voluu 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+55 0 0+55 0 1+ 0 0	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13 .7874 12 .8775 13	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 -13 VQ .13 VQ .16 V Q .38 V Q .97 V Q .97 V Q .97 V Q .97 V Q .67 V .78 V .78 V .76 V .65 V .65 V .66 V .99 V .66 V .99 V .53	aph = 56.5 S T O R M H y d r o g D Minute interv 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0 0+15 0 0+25 0 0+25 0 0+25 0 0+35 0 0+45 0 0+45 0 0+45 0 0+55 0 1+ 0 0 1+ 5 0 1+10 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 2 .6072 13 .7001 13 .7874 12 .8775 13 .9776 14 .0897 16	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+25 0 0+30 0 0+35 0 0+40 0 0+55 0 1+ 0 0 1+ 5 0 1+ 10 1 1+15 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7001 13 .7071 13 .7874 12 .8775 13 .9776 14 .0897 16 .2059 16	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 -13 VQ .16 V Q .38 V Q .38 V Q .38 V Q .38 V Q .38 V Q .67 V .78 V .67 V .65 V .65 V .65 V .65 V .65 V .65 V .65 V .65 V .65 Z .87 V	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+55 0 1+ 0 0 1+ 5 0 1+10 1 1+15 1 1+20 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7071 13 .7874 12 .8775 12 .9776 14 .0897 16 .2059 16 .3216 16	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .97 V Q .97 V Q .97 V Q .67 V .78 V .76 V .65 V .67 V .65 V .67 V .65 V .67 V .66 V .66 V .66 V .66 V .67 S .87 S .80	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13 .7874 12 .8775 13 .9776 14 .0897 16 .2059 16 .3216 16 .3215 16	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 -13 VQ .13 VQ .16 V Q .38 V Q .97 V Q .97 V Q .97 V Q .67 V .78 V .78 V .78 V .78 V .65 V .65 V .65 V .65 V .66 V .99 S .28 .87 .80 .15	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+55 0 1+ 0 0 1+ 5 0 1+ 0 0 1+ 5 1 1+20 1 1+25 1 1+30 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2559 10 .3381 11 .4259 12 .5130 12 .6072 13 .7874 12 .8775 13 .9776 14 .0837 16 .2059 16 .3216 16 .4397 17 .5741 19	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .97 V Q .97 V Q .97 V Q .67 V .78 V .76 V .65 V .67 V .65 V .67 V .65 V .67 V .66 V .66 V .66 V .66 V .67 S .87 S .80	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+25 0 0+30 0 0+45 0 0+45 0 0+45 0 0+55 0 1+0 0 1+5 0 1+15 1 1+25 1 1+25 1 1+35 1 1+40 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7071 13 .7874 12 .8775 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .78 V .76 V .67 V .78 V .78 V .76 V .65 V .67 V .65 V .67 V .65 V .65 V .67 V .80 V .15 . .83	aph = 56.5 S T O R M H y d r o g J Minute interv 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+25 0 0+25 0 0+30 0 0+35 0 0+40 0 0+35 0 0+40 0 0+55 0 1+ 0 0 1+5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+35 1 1+40 1 1+45 1	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0147 1 .0147 his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 S T O R M H y d r o g y Minute intern 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++ 	
Peak fld ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+55 0 1+ 0 0 1+5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+35 1 1+40 1 1+45 2 2	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7001 13 .7076 14 .0897 16 .2059 16 .32059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19 .9992 21 .1654 24	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+55 0 1+0 0 1+5 0 1+10 1 1+25 1 1+30 1 1+35 1 1+40 1 1+50 2 1+55 2	ow rate of t R u n Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7001 13 .7874 12 .6072 13 .7874 12 .6072 13 .7875 13 .9776 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19 .9992 21 .1654 24 .3299 23	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak flo ++++++++ Time(h+m) Volue 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+20 0 0+25 0 0+30 0 0+40 0 0+45 0 0+40 0 0+45 0 0+55 0 1+0 0 1+5 0 1+25 1 1+30 1 1+35 1 1+40 1 1+45 1 1+55 2 2+5 2 2+0 2	ow rate of t R u n Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7001 13 .7071 13 .7071 13 .7071 13 .7076 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 29 .124 20 .8490 19 .9992 21 .1654 24 .329 23 .4914 23	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 S T O R M H y d r o g y Minute intern 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q	585(CFS) r a p h rals ((CFS)) 30.0 45	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+45 0 0+55 0 1+ 0 0 1+5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+35 1 1+40 1 1+45 1 1+50 2 2+5 2 2+ 0 2 2+ 5 2	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7874 12 .8775 13 .9776 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .84390 19 .99992 21 .1654 24 .3299 23 .4914 23 .4914 23 .4914 23 .4959 23	his hydrogra ++++++++++ 3 - H O U R o f f ph in 5 (CFS) 0 .13 VQ .16 V Q .38 V Q .76 V .67 V .78 V .78 V .76 V .65 V .67 V .65 V .67 V .65 V .67 V .65 V .65 V .67 V .80 . .15 . .80 . .83 . .82 . .88 . .46	aph = 56.5 S T O R M H y d r o g y Minute intern 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q	585 (CFS) r a p h vals ((CFS)) 30.0 4! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	++++++++++
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+45 0 0+55 0 1+0 0 1+5 0 1+10 1 1+15 1 1+25 1 1+25 1 1+30 1 1+35 1 1+40 1 1+55 2 2+10 2 2+15 2 2+10 2 2+15 3	ow rate of t R u n Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7001 13 .7076 14 .0897 12 .6072 13 .7076 14 .0897 14 .2059 16 .3216 16 .4397 17 .5741 19 .5741 19 .7124 20 .8490 19 .9922 21 .1654 24 .3299 23 .4914 23 .6559 26 .8359 26	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 ************************************	585 (CFS) r a p h rals ((CFS)) 30.0 4! 100	++++++++++
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+25 0 0+25 0 0+35 0 0+35 0 0+40 0 0+35 0 0+40 0 0+55 0 1+ 0 0 1+5 0 0+55 0 1+ 0 0 1+5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+30 1 1+35 1 1+45 1 1+45 1 1+5 2 2+ 0 2 2+ 5 2 2+10 2 2+15 3 2+20 3	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0147 1 .0147 2 .0147 1 .0147 his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 ************************************	585 (CFS) r a p h rals ((CFS)) 30.0 4! 1000	++++++++++ 	
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+35 0 0+40 0 0+55 0 1+ 0 0 1+5 0 0+55 0 1+ 0 0 1+10 1 1+25 1 1+20 1 1+25 1 1+35 1 1+40 1 1+45 1 1+45 2 1+55 2 2+5 2 2+10 2 2+15 3 2+25 3 2+25 3	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13 .7071 13 .7074 12 .8775 13 .9776 13 .9776 13 .9776 14 .2059 16 .32059 16 .3216 16 .4397 16 .4397 16 .2059 16 .3216 16 .4397 16 .3205 16 .3255 23 .8359 26 .5555 31 .2890 33 .5305 35	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 ************************************	585 (CFS)	5.0 60.0
Peak fld ++++++++ Time(h+m) Volua 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+45 0 0+55 0 1+ 0 0 1+5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+25 1 1+40 1 1+35 1 1+40 1 1+45 2 2+5 2 2+10 2 2+15 3 2+20 3 2+30 3	ow rate of t R u n Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .1834 8 .2569 10 .3381 21 .12530 12 .6072 13 .7001 13 .7076 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19 .9992 21 .1654 24 .3299 23 .4914 23 .8359 26 .0555 31 .2890 33 .5305 35 .5305 355	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 ************************************	585 (CFS) r a p h rals ((CFS)) 30.0 4! 1000	2
Peak fld ++++++++ Time(h+m) Volum 0+ 5 0 0+10 0 0+15 0 0+20 0 0+20 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+45 0 0+55 0 1+0 0 1+5 0 1+10 1 1+25 1 1+25 1 1+25 1 1+40 1 1+25 1 1+40 1 1+5 2 2+5 2 2+5 2 2+15 3 2+20 3 2+35 4	ow rate of t R u n Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7071 13 .7874 23 .6072 13 .7071 13 .7874 13 .9776 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19 .9992 21 .6559 23 .4914 23 .8359 26 .8359 26 .8355 31 .2890 33 .5305 35 .54	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 ************************************	585 (CFS)	5.0 60.0
Peak fld +++++++++	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7874 12 .8775 13 .9776 13 .7874 12 .8775 13 .9775 13 .9775 13 .9775 13 .9775 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8490 19 .99992 21 .1654 24 .3299 23 .8359 26 .0555 23 .8359 26 .0555 35 .8586 47 .2350 54	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	585 (CFS)	5.0 60.0
Peak fld ++++++++ Time(h+m) Volut 0+ 5 0 0+10 0 0+15 0 0+20 0 0+25 0 0+30 0 0+25 0 0+30 0 0+35 0 0+40 0 0+45 0 0+45 0 0+55 0 1+ 0 0 1+ 5 0 1+10 1 1+15 1 1+20 1 1+25 1 1+35 1 1+40 1 1+45 1 1+45 1 1+45 2 2+10 2 2+15 3 2+20 3 2+25 3 2+30 3 2+35 4 2+40 4 2+45 4 2+50 5	ow rate of t R u n Hydrogra Hydrogra Me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .6072 13 .7076 14 .0837 17 .7874 12 .6072 13 .9776 14 .08397 16 .2059 16 .3216 16 .4397 17 .5741 19 .9922 23 .4914 23 .6559 26 .8359 26 .9922 23 .4914 23 .5305 35 .5856 47 .2350 54 .6247 56 .9246 43	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	S85 (CFS) r a p h rals ((CFS)) 30.0 4! 30.0 4! V V V V V V V V V V V V V	5.0 60.0
Peak fld ++++++++++++++++++++++++++++++++++++	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0147 2 .0147 2 .0147 2 .0147 2 .0147 2 .0147 2 .01381 11 .4259 12 .5130 12 .6072 13 .7874 12 .8775 13 .9775 14 .0897 16 .2059 16 .3216 16 .4397 17 .5741 19 .7124 20 .8359 23 .4914 23 .6559 23 .8359 26 .0555 31 .2890 33 .5305 35 .5386 47 .6247 56 .9246 43	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5 S T O R M H y d r o g y Minute intern 15.0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	S85 (CFS) r a p h rals ((CFS)) 30.0 4! 30.0 4! V V V V V V V V V V V V V	2 0 60.0
Peak fld ++++++++++++++++++++++++++++++++++++	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13 .7071 13 .7071 12 .7775 13 .9776 13 .9776 13 .9775 13 .9775 13 .9775 13 .9775 13 .9775 13 .9776 14 .2059 16 .32059 16 .3216 16 .4397 16 .2059 16 .3216 16 .4397 16 .3299 23 .6655 31 .8359 26 .6555 33 .8359 26 .0555 35 .8359 26 .5305 35 .8586 47 .2350 54 .2488 20 .3594 16	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	S85 (CFS) r a p h rals ((CFS)) 30.0 4! 30.0 4! V V V V V V V V V V V V V	2 0 60.0
Peak fld ++++++++++++++++++++++++++++++++++++	ow rate of t R u n Hydrogra me Ac.Ft Q .0147 2 .0640 7 .1217 8 .1834 8 .2569 10 .3381 11 .4259 12 .5130 12 .6072 13 .7001 13 .7071 13 .7071 13 .7775 13 .9776 13 .9776 13 .9776 14 .2059 16 .3216 16 .4397 16 .2059 16 .3216 16 .4397 16 .2059 16 .3216 16 .4397 16 .5741 19 .7124 20 .8490 19 .9992 21 .1654 24 .3299 23 .8359 26 .0555 31 .8359 26 .0555 35 .8358 47 .2350 54 .2494 43 .1076 26 .2488 20	his hydrogra ++++++++++++++++++++++++++++++++++++	aph = 56.5	S85 (CFS) r a p h rals ((CFS)) 30.0 4! 30.0 4! V V V V V V V V V V V V V	2 0 60.0

3+10	5.4485	4.10	Q I	
3+15	5.4624	2.02	Q	
3+20	5.4688	0.93	Q	
3+25	5.4722	0.50	Q	
3+30	5.4739	0.24	Q	1 1
3+35	5,4743	0.06	0	1 1

14

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR565.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) 69.65 (Ac.) = Drainage Area = Length along longest watercourse measured to a Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. Lag time = 4.78 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0. 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 80.10 1.15 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 2.50 174.13 STORM EVENT (YEAR) = 5.00 Area Averaged 2-Year Rainfall = 1.150(In) Area Averaged 100-Year Rainfall = 2.500(In) 5.00 Point rain (area averaged) = 1.466(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 1.466(In) 1,466(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil. Rate
 Area%
 F

 AMC2
 AMC-1
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

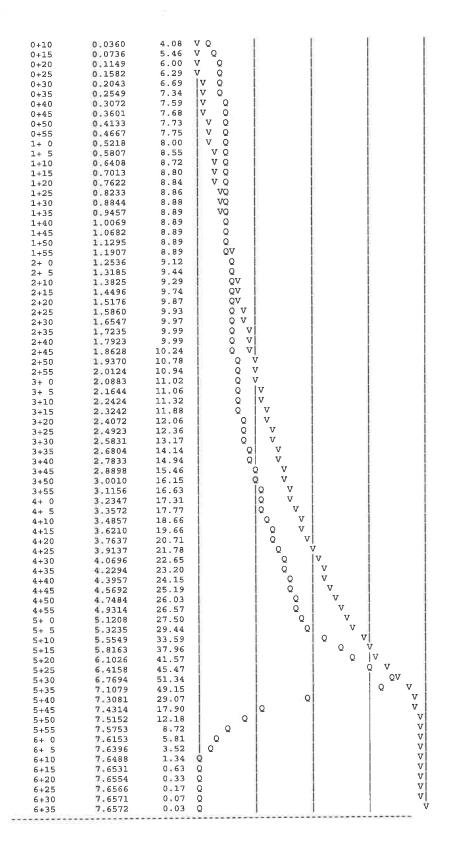
 56.0
 36.0
 0.706
 0.900
 0.134
 1.000
 0.134
 Sum(F) = 0.134Area averaged mean soil loss (F) (In/Hr) = 0.134 Minimum soil loss rate ((In/Hr)) = 0.067 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 _____ Unit Hydrograph VALLEY S-Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph Graph % (CFS) (hrs) Graph % (CFS)
 1
 0.083
 104.614
 20.612
 14.469

 2
 0.167
 209.229
 48.679
 34.170

 3
 0.250
 313.843
 14.978
 10.514

 4
 0.333
 418.458
 6.821
 4.788

 5
 0.417
 523.072
 3.802
 2.669


 6
 0.500
 627.687
 2.435
 1.709

 7
 0.583
 732.301
 1.462
 1.026

 8
 0.667
 836.916
 1.210
 0.849

 Sum = 100.000
 Sum= 70.194

Lace	Duberao			-		
Unit	: Time	Pattern	Storm Rain	Loss rate(I		Effective
	(Hr.)	Percent	(In/Hr)		Low	(In/Hr)
1	0.08	0.50	0.088	(0.134)	0.009	0.079 0.095
2	0.17	0.60	0.106	(0.134) (0.134)	0.011 0.011	0.095
3 4	0.25	0.60 0.60	0.106 0.106	(0.134)	0.011	0.095
5	0.42	0.60	0.106	(0.134)	0.011	0.095
6	0.50	0.70	0.123	(0.134)	0.012	0.111
7	0.58	0.70	0.123	(0.134)	0.012	0.111
8	0.67	0.70	0.123	(0.134)	0.012	0.111
9	0.75	0.70	0.123	(0.134)	0.012	0.111
10	0.83	0.70	0.123	(0.134)	0.012	0.111
11	0.92	0.70	0.123	(0.134)	0.012	0.111
12	1.00	0.80	0.141	(0.134)	0.014	0.127
13	1.08	0.80	0.141	(0.134)	0.014	0.127
14	1.17	0.80	0.141	(0.134)	0.014	0.127 0.127
15	1.25	0.80	0.141	(0.134) (0.134)	0.014 0.014	0.127
16	1.33	0.80	0.141 0.141	(0.134)	0.014	0.127
17 18	1.42	0.80 0.80	0.141	(0.134)	0.014	0.127
19	1.50	0.80	0.141	(0.134)	0.014	0.127
20	1.67	0.80	0.141	(0.134)	0.014	0.127
21	1.75	0.80	0.141	(0.134)	0.014	0.127
22	1.83	0.80	0.141	(0.134)	0.014	0.127
23	1.92	0.80	0.141	(0.134)	0.014	0.127
24	2.00	0.90	0.158	(0.134)	0.016	0.142
25	2.08	0.80	0.141	(0.134)	0.014	0.127
26	2.17	0.90	0.158	(0.134)	0.016	0.142
27	2.25	0.90	0.158	(0.134)	0.016	0.142
28	2.33	0.90	0.158	(0.134)	0.016	0.142
29	2.42	0.90	0.158	(0.134)	0.016	0.142
30	2.50	0.90	0.158	(0.134)	0.016	0.142 0.142
31	2.58	0.90	0.158	(0.134) (0.134)	0.016 0.016	0.142
32	2.67	0.90	0.158	(0.134)	0.018	0.158
33	2.75	1.00	0.176 0.176	(0.134)	0.018	0.158
34 35	2.83	1.00 1.00	0.176	(0.134)	0.018	0.158
36	3.00	1.00	0.176	(0.134)	0.018	0.158
37	3.08	1.00	0.176	(0.134)	0.018	0.158
38	3.17	1.10	0.193	(0.134)	0.019	0.174
39	3.25	1.10	0.193	(0.134)	0.019	0.174
40	3.33	1.10	0.193	(0.134)	0.019	0.174
41	3.42	1.20	0.211	(0.134)	0.021	0.190
42	3.50	1.30	0.229	(0.134)	0.023	0.206
43	3.58	1.40	0.246	(0.134)	0.025	0.222
44	3.67	1.40	0.246	(0.134)	0.025	0.222
45	3.75	1.50	0.264	(0.134)	0.026	0.237
46	3.83	1.50	0.264	(0.134)	0.026	0.237 0.253
47	3.92	1.60	0.281	(0.134)	0.028 0.028	0.253
48	4.00	1.60	0.281	(0.134) (0.134)	0.020	0.269
49	4.08	1.70	0.299 0.317	(0.134)	0.032	0.285
50	4.17	1.80	0.334	(0.134)	0.033	0.301
51 52	4.33	2.00	0.352	(0.134)	0.035	0.317
53	4.42	2.10	0.369	(0.134)	0.037	0.332
54	4.50	2.10	0.369	(0.134)	0.037	0.332
55	4.58	2,20	0.387	(0.134)	0.039	0.348
56	4.67	2.30	0.405	(0.134)	0.040	0.364
57	4.75	2.40	0.422	(0.134)	0.042	0.380
58	4.83	2.40	0.422	(0.134)	0.042	0.380
59	4.92	2.50	0.440	(0.134)	0.044	0.396
60	5.00	2.60	0.457	(0.134)	0.046	
61	5.08	3.10	0.545	(0.134)	0.055 0.063	
62	5.17		0.633 0.686	(0.134) (0.134)	0.069	
63	5.25	3.90	0.739	(0.134)	0.074	
64 65	5 42	4.20	0.757			
66			0.827	(0.134)	0.083	0.744
	5.50	5.60	0.827 0.985	(0.134) (0.134)	0.099	0.887
67	5.50	5.60 1.90	0.827 0.985 0.334	(0.134) (0.134)	0.099	0.887
67 68	5.50 5.58 5.67	5.60 1.90 0.90	0.827 0.985 0.334 0.158	(0.134) (0.134) (0.134)	0.099 0.033 0.016	0.887 0.301 0.142
67 68	5.50 5.58 5.67 5.75	4.20 4.70 5.60 1.90 0.90 0.60	0.827 0.985 0.334 0.158 0.106	(0.134) (0.134) (0.134) (0.134)	0.099 0.033 0.016 0.011	0.887 0.301 0.142 0.095
67 68	5.50 5.58 5.67 5.75 5.83	5.60 1.90 0.90 0.60 0.50	0.827 0.985 0.334 0.158 0.106 0.088	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134)	0.099 0.033 0.016 0.011 0.009	0.887 0.301 0.142 0.095 0.079
67 68 69 70 71	5.75 5.83 5.92	0.60 0.50 0.30	0.106 0.088 0.053	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134)	0.099 0.033 0.016 0.011 0.009	0.887 0.301 0.142 0.095 0.079
67 68	5.50 5.58 5.67 5.75 5.83 5.92 6.00	0.60 0.50 0.30 0.20	0.106 0.088 0.053 0.035	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)	0.099 0.033 0.016 0.011 0.009	0.887 0.301 0.142 0.095 0.079
67 68 69 70 71 72	5.75 5.83 5.92 6.00	0.60 0.50 0.30 0.20 (Loss	0.106 0.088 0.053	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)	0.099 0.033 0.016 0.011 0.009 0.005 0.004	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00	0.60 0.50 0.30 0.20 (Loss	0.106 0.088 0.053 0.035 Rate Not Used	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134))	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum =	0.887 0.301 0.142 0.095 0.079
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood	0.60 0.50 0.30 0.20 (Loss 100.0 1 volume =	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (Tp)/(Ft)] =	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(1)	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood	0.60 0.50 0.30 0.20 (Loss 100.0 1 volume =	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (Tp)/(Ft)] =	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(1)	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood	0.60 0.50 0.30 0.20 (Loss 100.0 1 volume =	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (Tp)/(Ft)] =	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(1)	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood	0.60 0.50 0.30 0.20 (Loss 100.0 1 volume =	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (Tp)/(Ft)] =	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(1)	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood	0.60 0.50 0.30 0.20 (Loss 100.0 1 volume =	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai	(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (Tp)/(Ft)] =	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(1)	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Total	0.60 0.50 0.30 (Loss 100.0 1 volume = 2s area . soil los . soil los . soil los . rainfall i volume =	0.106 0.088 0.053 0.035 8 Rate Not Used = Effective rai 69.7(Ac.)/[85 = 0.15(1.5 = 0.851(1.5 = 1.47(I = 333549.5 3706	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood Total Total Total Flood Total	0.60 0.50 0.20 (Loss 100.0 volume = s area soil los soil los rainfall volume = soil los	0.106 0.088 0.053 0.035 Rate Not Used Effective rai 69.7(Ac.)/[SS = 0.15(SS = 0.851(- 1.47(I - 333549.5 SS = 3706	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2	0.887 0.301 0.142 0.095 0.079 0.047 0.032
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total	0.60 0.50 0.30 (Loss 100.0 d volume = s area soil los rainfall d volume = t soil los	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai 69.7(Ac.)/[SS = 0.15(SS = 0.851(- 1.47(I - 333549.5 SS = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet </pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Peak	0.60 0.50 0.30 (Loss 100.0 d volume = s area soil los soil los rainfall d volume = t soil los	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai 69.7(Ac.)/[SS = 0.15(SS = 0.851(= 1.47(I = 333549.5 SS = 3706 = 0f this hydr	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet ograph = 5</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS)	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Peak	0.60 0.50 0.30 (Loss 100.0 d volume = s area soil los soil los rainfall d volume = t soil los	0.106 0.088 0.053 0.035 s Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.15(1.5 = 0.851(.= 1.47(I = 333549.5 ss = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet </pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS)	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Flood	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los soil los rainfall volume = t soil los c flow rat	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.15(ss = 0.851(= 1.47(I = 333549.5 ss = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet cupic Feet 1.1 Cubic Feet </pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS)	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Flood	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los soil los rainfall volume = t soil los c flow rat	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.15(ss = 0.851(= 1.47(I = 333549.5 ss = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet cupic Feet 1.1 Cubic Feet </pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS)	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Flood	0.60 0.50 0.30 (Loss 100.0 volume = sarea soil los soil los rainfall volume = soil los foil los foil los	0.106 0.088 0.053 0.035 Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.15(ss = 0.851(= 1.47(I = 333549.5 ss = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet UR STOR H ydro</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS) +++++++++ M g r a p h	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Flood	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los rainfall volume = i soil los rainfall t volume = t soil los rainfall Hy	0.106 0.088 0.053 0.035 5 Rate Not Used = Effective rai 69.7(Ac.)/[55 = 0.15(55 = 0.851(- 1.47(II - 333549.5 55 = 3706 - HO R u n o f f rdrograph in	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet 0graph = 5 </pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 2(In) 7.7(2 1.344(CFS) +++++++++ M graph ervals((C	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Flood Total Peak	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los rainfall volume = i soil los c flow rat ++++++++	0.106 0.088 0.053 0.035 5 Rate Not Used = Effective rai 69.7(Ac.)/[55 = 0.15(55 = 0.851(- 1.47(I - 333549.5 55 = 3706 - e of this hydr ++++++++++++ 6 - H O R u n o f f 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet Set H y d r o S Minute int</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 2(In) 7.7(2 1.344(CFS) ++++++++ M g r a p h ervals ((C	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft)
67 68 69 70 71 72 Tim	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Total Flood Total Flood Total	0.60 0.50 0.30 (Loss 100.0 volume = sarea soil los rainfall volume = t soil los rainfall volume = Hy Hy	0.106 0.088 0.053 0.035 5 Rate Not Used Effective rai 69.7(Ac.)/[55 = 0.15(1.5 = 0.851(1.5 = 0.851(1.5 = 1.47(I 53.3549.5 55 = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet UR STOR H y dr o 5 Minute int 15.0</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS) +++++++++ M g r a p h ervals ((C 30.0	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft) ++++++++++++++++++++++++++++++++++++
67 68 69 70 71 72 Tim	5.75 5.83 5.92 6.00 Sum = Flood Total Total Total Total Total Total Flood Total Peak 	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los rainfall 1 volume = t soil los c flow rat Hy Hy	0.106 0.088 0.053 0.035 5 Rate Not Used = Effective rai 69.7(Ac.)/[ss = 0.851(= 1.47(I = 333549.5 ss = 3706 = 0.651 (- H O R u n o f f rdrograph in Ft Q(CFS) 0	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet UR S TOR H y d r o 5 Minute int 15.0</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 2(In) 7.7(2 1.344(CFS) +++++++++ M g r a p h ervals ((C 30.0	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft) FS)) 45.0 60.0
67 68 69 70 71 72 Tim	5.75 5.83 5.92 6.00 Sum = Flood time Total Total Total Total Flood Total Flood Total	0.60 0.50 0.30 (Loss 100.0 1 volume = s area soil los rainfall 1 volume = t soil los c flow rat Hy Hy	0.106 0.088 0.053 0.035 5 Rate Not Used Effective rai 69.7(Ac.)/[55 = 0.15(1.5 = 0.851(1.5 = 0.851(1.5 = 1.47(I 53.3549.5 55 = 3706 	<pre>(0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134) (0.134)) nfall 1.3 (In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet 1.1 Cubic Feet 1.1 Cubic Feet UR S TOR H y d r o 5 Minute int 15.0</pre>	0.099 0.033 0.016 0.011 0.009 0.005 0.004 Sum = 2(In) 7.7(2 1.344(CFS) +++++++++ M g r a p h ervals ((C 30.0	0.887 0.301 0.142 0.095 0.079 0.047 0.032 15.8 Ac.Ft) ++++++++++++++++++++++++++++++++++++


```
Unit Hydrograph Analysis
                   Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                             Study date 02/13/20 File: 3828PR5245.out
        Riverside County Synthetic Unit Hydrology Method
        RCFC & WCD Manual date - April 1978
        Program License Serial Number 6400
                                               English (in-1b) Input Units Used
          English Rainfall Data (Inches) Input Values Used
          English Units used in output format
          .....
          .....
        Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.

Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) =

Length along longest watercourse = 3400.00(Ft.)

Length along longest watercourse measured to centroid = 1280.00(Ft.

Length along longest watercourse measured to centroid = 0.242 Mi.

Difference in elevation = 44.00(Ft.)
                                                                            69.65(Ac.) =
                                                                                                        0.109 Sg. Mi.
                                                                                    1280.00(Ft.)
        Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
         Average Manning's 'N' = 0.015
        Lag time = 0.080 Hr.
Lag time = 4.78 Min.
        Lag time = 4.78 Min.

25% of lag time = 1.19 Min.

40% of lag time = 1.91 Min.

Unit time = 5.00 Min.

Duration of storm = 24 Hour(s)
         User Entered Base Flow =
                                              0.00 (CFS)
        2 YEAR Area rainfall data:
                           Rainfall(In)[2] Weighting[1*2]
1.75 121.89
        Area(Ac.)[1]
                                  1.75
                                                                     121.89
                  69.65
        100 YEAR Area rainfall data:
        Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 4.50 313.43
STORM EVENT (YEAR) = 5.00
         Area Averaged 2-Year Rainfall = 1.750(In)
Area Averaged 100-Year Rainfall = 4.500(I
                                                         4.500(Tn)
         Point rain (area averaged) = 2.394(In)
Areal adjustment factor = 99.99 %
         Adjusted average point rain = 2.394(In)
         Sub-Area Data:
         Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-1
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        36.0
        0.706
        0.900
        0.134
        1.000
        0.134

                                                                          Sum (F) = 0.134
         Area averaged mean soil loss (F) (In/Hr) = 0.134
         Minimum soil loss rate ((In/Hr)) = 0.067
         (for 24 hour storm duration)
Soil low loss rate (decimal) = 0.100
                                                             _____
                              Unit Hydrograph
                                        VALLEY S-Curve
         Unit Hydrograph Data
                                                                            _____
         Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) (CFS)
            it time period Time % of lag Distribution Unit Hydrogram

(hrs) Graph % (CFS)

1 0.083 104.614 20.612 14.469

2 0.167 209.229 48.679 34.170

3 0.250 313.843 14.978 10.514

4 0.333 418.458 6.821 4.788

5 0.417 523.072 3.802 2.669

6 0.500 627.687 2.435 1.709

7 0.583 732.301 1.462 1.026

8 0.667 836.916 1.210 0.849

Sum = 100.000 Sum= 70.194
```

Tate	Bubciac	LEG LIOM	che beern nari		- (12.)	
Unit	Time	Pattern	Storm Rain (In/Hr)	Loss rate(Max	In./Hr) Low	Effective (In/Hr)
1	(Hr.) 0.08	Percent 0.07	0.019	(0.238)	0.002	0.017
2	0.17	0.07	0.019	(0.237)	0.002	0.017
3	0.25	0.07	0.019	(0.236) (0.235)	0.002 0.003	0.017 0.026
4 5	0.33 0.42	0.10 0.10	0.029	(0.234)	0.003	0.026
6	0.50	0.10	0.029	(0.233)	0.003	0.026
7	0.58	0.10	0.029	(0.232)	0.003	0.026
8	0.67	0.10	0.029	(0.231) (0.230)	0.003	0.026 0.026
9 10	0.75 0.83	0.10	0.029	(0.230)	0.004	0.034
11	0.92	0.13	0.038	(0.229)	0.004	0.034
12	1.00	0.13	0.038	(0.228)	0.004	0.034
13	1.08	0.10	0.029	(0.227) (0.226)	0.003 0.003	0.026
14 15	1.17 1.25	0.10 0.10	0.029	(0.225)	0.003	0.026
16	1.33	0.10	0.029	(0.224)	0.003	0.026
17	1.42	0.10	0.029	(0.223)	0.003	0.026
18	1.50	0.10	0.029	(0.222)	0.003 0.003	0.026 0.026
19 20	1.58 1.67	0.10	0.029	(0.221)	0.003	0.026
21	1.75	0.10	0.029	(0.220)	0.003	0.026
22	1.83	0.13	0.038	(0.219)	0.004	0.034 0.034
23 24	1.92 2.00	0.13 0.13	0.038	(0.218) (0.217)	0.004	0.034
24	2.08	0.13	0.038	(0.216)	0.004	0.034
26	2.17	0.13	0.038	(0.215)	0.004	0.034
27	2.25	0.13	0.038	(0.214)	0.004	0.034 0.034
28 29	2.33 2.42	0.13	0.038	(0.214) (0.213)	0.004	0.034
30	2.42	0.13	0.038	(0.212)	0.004	0.034
31	2.58	0.17	0.048	(0.211)	0.005	0.043
32	2.67	0.17	0.048	(0.210)	0.005	0.043 0.043
33 34	2.75 2.83	0.17 0.17	0.048	(0.209) (0.208)	0.005	0.043
35	2.92	0.17	0.048	(0.208)	0.005	0.043
36	3.00	0.17	0.048	(0.207)	0.005	0.043
37	3.08	0.17	0.048	(0.206)	0.005	0.043
38 39	3.17 3.25	0.17 0.17	0.048	(0.205) (0.204)	0.005	0.043
40	3.33	0.17	0.048	(0.203)	0.005	0.043
41	3,42	0.17	0.048	(0.202)	0.005	0.043
42	3.50	0.17	0.048	(0.202)	0.005	0.043
43 44	3.58 3.67	0.17 0.17	0.048	(0.201) (0.200)	0.005	0.043
44	3.75	0.17	0.048	(0.199)	0.005	0.043
46	3.83	0.20	0.057	(0.198)	0.006	0.052
47	3.92	0.20	0.057	(0.197) (0.197)	0.006	0.052 0.052
48 49	4.00 4.08	0.20	0.057	(0.196)	0.006	0.052
50	4.17	0.20	0.057	(0.195)	0.006	0.052
51	4.25	0.20	0.057	(0.194)	0.006	0.052
52	4.33	0.23	0.067	(0.193) (0.192)	0.007	0.060
53 54	4.42 4.50	0.23	0.067	(0.192)	0.007	0.060
55	4.58	0.23	0.067	(0.191)	0.007	0.060
56	4.67	0.23	0.067	(0.190)	0.007	0.060
57	4.75 4.83	0.23	0.067	(0.189) (0.188)	0.007	0.060 0.069
58 59	4.83	0.27	0.077	(0.187)	0.008	0.069
60	5.00	0.27	0.077	(0.187)	0.008	0.069
61	5.08	0.20	0.057	(0.186) (0.185)	0.006	0.052 0.052
62 63	5.17 5.25	0.20 0.20	0.057	(0.185) (0.184)	0.006	0.052
64	5.33	0.23	0.067	(0.183)	0.007	0.060
65	5.42	0.23	0.067	(0.183)	0.007	0.060
66	5.50	0.23	0.067	(0.182) (0.181)	0.007	0.060 0.069
67 68	5.58 5.67	0.27 0.27	0.077	(0.180)	0.008	0.069
69	5.75	0.27	0.077	(0.179)	0.008	0.069
70	5.83	0.27	0.077	(0.179)	0.008	0.069
71	5.92	0.27 0.27	0.077	(0.178) (0.177)	0.008	0.069 0.069
72 73	6.00 6.08	0.27	0.086	(0.176)	0.009	0.078
74	6.17	0.30	0.086	(0.175)	0.009	0.078
75	6.25	0.30	0.086	(0.175)	0.009	0.078
76	6.33	0.30	0.086	(0.174) (0.173)	0.009	0.078 0.078
77 78	6.42 6.50	0.30	0.086	(0.172)	0.009	0.078
79	6.58	0.33	0.096	(0.172)	0.010	0.086
80	6.67	0.33	0.096	(0.171)	0.010	0.086 0.086
81 82	6.75 6.83	0.33 0,33	0.096	(0.170) (0.169)	0.010	0.086
82 83	6.92	0,33	0.096	(0.169)	0.010	0.086
84	7.00	0.33	0.096	(0.168)	0.010	0.086
85	7.08	0.33	0.096	(0.167)	0.010	0.086 0.086
86 87	7.17 7.25	0.33 0.33	0.096	(0.166) (0.165)	0.010 0.010	0.086
88	7.33	0.33	0.105	(0.165)	0.011	0.095
89	7.42	0.37	0.105	(0.164)	0.011	0.095
90	7.50	0.37	0.105	(0.163) (0.162)	0.011 0.011	0.095 0.103
91 92	7.58 7.67	0.40 0.40	0.115	(0.162)	0.011	0.103
93	7.75	0.40	0.115	(0.161)	0.011	0.103
94	7.83	0.43	0.124	(0,160)	0.012	0.112
						Page 2

_			0 104	(0.159)	0.012	0.112
95	7.92	0.43	0.124	(0.159) (0.159)	0.012	0.112
96	8.00	0.43	0.124 0.144	(0.158)	0.014	0.129
97	8.08	0.50	0.144	(0.157)	0.014	0.129
98	8.17	0.50	0.144	(0.157)	0.014	0.129
99	8.25		0.144	(0.156)	0.014	0.129
100	8.33	0.50	0.144	(0.155)	0.014	0.129
101	8.42		0.144	(0.154)	0.014	0.129
102	8.50	0.50	0.153	(0.154)	0.015	0.138
103	8.58	0.53	0.153	(0.153)	0.015	0.138
104	8.67	0.53	0.153	(0.152)	0.015	0.138
105	8.75	0.53	0.163	(0.151)	0.016	0.147
106	8.83	0.57	0.163	(0.151)	0.016	0.147
107	8.92	0.57	0.163	(0.150)	0.016	0.147
108	9.00	0.57	0.182	(0.149)	0.018	0.164
109	9.08	0.63	0.182	(0.149)	0.018	0.164
110	9.17	0.63	0.182	(0.148)	0.018	0.164
111	9.25	0.63	0.192	(0.147)	0.019	0.172
112	9.33	0.67		(0.147)	0.019	0.172
113	9.42	0.67	0.192	(0.146)	0.019	0.172
114	9.50	0.67	0.192	(0.145)	0.020	0.181
115	9.58	0.70	0.201	(0.144)	0.020	0.181
116	9.67	0.70	0.201	(0.144)	0.020	0.181
117	9.75	0.70	0.201		0.020	0.190
118	9.83	0.73	0.211	(0.143) (0.142)	0.021	0.190
119	9.92	0.73	0.211		0.021	0.190
120	10.00	0.73	0.211	0. 0.200 St	0.014	0.129
121	10.08	0.50	0.144	(0.141) (0.140)	0.014	0.129
122	10.17	0.50	0.144	(0.140)	0.014	0.129
123	10.25	0.50	0.144	(0.139)	0.014	0.129
124	10.33	0.50	0.144 0.144	(0.138)	0.014	0.129
125	10.42	0.50	0.144	(0.138)	0.014	0.129
126	10.50	0.50	0.192	(0.137)	0.019	0.172
127	10.58	0.67	0.192	(0.136)	0.019	0.172
128	10.67	0.67	0.192	(0.136)	0.019	0.172
129	10.75	0.67		(0.135)	0.019	0.172
130	10.83	0.67	0.192 0.192	(0.134)	0.019	0.172
131	10.92	0.67	0.192	(0.134)	0.019	0.172
132	11.00	0.67	0.182	(0.133)	0.018	0.164
133	11.08	0.63	0.182	(0.132)	0.018	0.164
134	11.17	0.63	0.182	(0.132)	0.018	0.164
135	11.25	0.63	0.182	(0.131)	0.018	0.164
136	11.33	0.63	0.182	(0.130)	0.018	0.164
137	11.42	0.63	0.182	(0.130)	0.018	0.164
138	11.50	0.63	0.163	(0.129)	0.016	0.147
139	11.58	0.57 0.57	0.163	(0.128)	0.016	0.147
140	11.67		0.163	(0.128)	0.016	0.147
141	11.75	0.57 0.60	0.172	(0.127)	0.017	0.155
142	11.83	0.60	0.172	(0.126)	0.017	0.155
143	11.92	0.60	0.172	(0.126)	0.017	0.155
144	12.00	0.83	0.239	(0.125)	0.024	0.215
145	12.08 12.17	0.83	0.239	(0.125)	0.024	0.215
146	12.25	0.83	0.239	(0.124)	0.024	0.215
$147 \\ 148$	12.33	0.87	0.249	(0.123)	0.025	0.224
149	12.33	0.87	0.249	(0.123)	0.025	0.224
149	12.50	0.87	0.249	(0.122)	0.025	0.224
151	12.58	0.93	0.268	(0.121)	0.027	0.241
152	12.67	0.93	0.268	(0.121)	0.027	0.241
153	12.75	0.93	0.268	(0.120)	0.027	0.241
154	12.83	0.97	0.278	(0.120)	0.028	0.250
155	12.92	0.97	0.278	(0.119)	0.028	0.250
156	13.00	0.97	0.278	(0.118)	0.028	0.250
157	13.08	1.13	0.326	(0.118)	0.033	0.293
158	13.17	1.13	0.326	(0.117)	0.033	0.293
159	13.25	1.13	0.326	(0.117)	0.033	0.293
160	13.33	1.13	0.326	(0.116)	0.033	0.293
161	13.42	1.13	0.326	(0.115)	0.033	0.293
162	13.50	1.13	0.326	(0.115)	0.033	0.293
163	13.58	0.77	0.220	(0.114)	0.022	0.198
164	13.67	0.77	0.220	(0.114)	0.022	0.198
165	13.75	0.77	0.220	(0.113)	0.022	0.198
166	13.83	0.77	0.220	(0.113)	0.022	0.198
167	13.92	0.77	0.220	(0.112)	0.022	0.198
168	14.00	0.77	0.220	(0.111)	0.022	0.198
169	14.08	0.90	0.259	(0.111)	0.026	0.233
170	14.17	0.90	0.259	(0.110)	0.026	0.233
171	14.25	0.90	0.259	(0.110)	0.026	0.233
172	14.33	0.87	0.249	(0.109)	0.025	0.224
173	14.42	0.87	0.249	(0.109)	0.025	0.224
174	14.50	0.87	0.249	(0.108)	0.025	0.224
175	14.58	0.87	0.249	(0.107)	0.025	0.224
176	14.67	0.87	0.249	(0.107)	0.025	0.224
177	14.75	0.87	0.249	(0.106)	0.025 0.024	0.215
178	14.83	0.83	0.239	(0.106)	0.024	0.215
179	14.92	0.83	0.239	(0.105)	0.024	0.215
180	15.00	0.83	0.239	(0.105)	0.024	0,215
181	15.08	0.80	0.230	(0.104)	0.023	0.207
182	15.17	0.80	0.230	(0.104)		0.207
183	15.25	0.80	0.230	(0.103)	0.023	0.198
184	15.33	0.77	0.220	(0.103)	0.022	0.198
185	15.42	0.77	0.220	(0.102) (0.102)	0.022	0.198
186	15.50	0.77	0.220		0.022	0.164
187	15.58	0.63	0.182	(0.101) (0.101)	0.018	0.164
188	15.67	0.63	0.182	(0.101)	0.018	0.164
189	15.75	0.63	0.182 0.182	(0.100)	0.018	0.164
190	15.83	0.63	0.182	(0.099)	0.018	0,164
191 192	15.92 16.00	0.63	0.182	(0.099)	0.018	0.164
192	16.00	0.83	0.038	(0.098)	0.004	0.034
200	20.00	0.10				

194	16.17	0.13	0.038	(0.098)	0.004	0.034
195	16.25	0.13	0.038	(0.097)	0.004	0.034
196	16.33	0.13	0.038	(0.097)	0.004	0.034
			0.038	(0.096)	0.004	0.034
197	16.42	0.13			0.004	0.034
198	16.50	0.13	0.038	(0.096)		
199	16.58	0.10	0.029	(0.095)	0.003	0.026
200	16.67	0.10	0.029	(0.095)	0.003	0.026
201	16.75	0.10	0.029	(0.094)	0.003	0.026
202	16.83	0.10	0.029	(0.094)	0.003	0.026
203	16.92	0.10	0.029	(0.093)	0.003	0.026
204	17.00	0.10	0.029	(0.093)	0.003	0.026
		0.17	0.048	(0.092)	0.005	0.043
205	17.08			(0.092)	0.005	0.043
206	17.17	0.17	0.048	- (ACC)	0.005	0.043
207	17.25	0.17	0.048	(0.091)		
208	17.33	0.17	0.048	(0.091)	0.005	0.043
209	17.42	0.17	0.048	(0.090)	0.005	0.043
210	17.50	0.17	0.048	(0.090)	0.005	0.043
211	17.58	0.17	0.048	(0.089)	0.005	0.043
212	17.67	0.17	0.048	(0.089)	0.005	0.043
213	17.75	0.17	0.048	(0.089)	0.005	0.043
215	17.83	0.13	0.038	(0.088)	0.004	0.034
		0.13	0.038	(0.088)	0.004	0.034
215	17.92			(0.087)	0.004	0.034
216	18.00	0.13	0.038			0.034
217	18.08	0.13	0.038	(0.087)	0.004	
218	18.17	0.13	0.038	(0.086)	0.004	0.034
219	18.25	0.13	0.038	(0.086)	0.004	0.034
220	18.33	0.13	0.038	(0.086)	0.004	0.034
221	18.42	0.13	0.038	(0.085)	0.004	0.034
222	18.50	0.13	0.038	(0.085)	0.004	0.034
223	18.58	0.10	0.029	(0.084)	0.003	0.026
		0.10	0.029	(0.084)	0.003	0.026
224	18.67				0.003	0.026
225	18.75	0.10	0.029			0.017
226	18.83	0.07	0.019	(0.083)	0.002	
227	18.92	0.07	0.019	(0.083)	0.002	0.017
228	19.00	0.07	0.019	(0.082)	0.002	0.017
229	19.08	0.10	0.029	(0.082)	0.003	0.026
230	19.17	0.10	0.029	(0.082)	0.003	0.026
231	19.25	0.10	0.029	(0.081)	0.003	0.026
232	19.33	0.13	0.038	(0.081)	0.004	0.034
			0.038	(0.080)	0.004	0.034
233	19.42	0.13			0.004	0.034
234	19.50	0.13	0.038	(0.080)		0.026
235	19.58	0.10	0.029	(0.080)	0.003	
236	19.67	0.10	0.029	(0.079)	0.003	0.026
237	19.75	0.10	0.029	(0.079)	0.003	0.026
238	19.83	0.07	0.019	(0.079)	0.002	0.017
239	19.92	0.07	0.019	(0.078)	0.002	0.017
240	20.00	0.07	0.019	(0.078)	0.002	0.017
241	20.08	0.10	0.029	(0.078)	0.003	0.026
		0.10	0.029	(0.077)	0.003	0.026
242	20.17		0.029	(0.077)	0.003	0.026
243	20.25	0.10			0.003	0.026
244	20.33	0.10	0.029	(0.077)		
245	20.42	0.10	0.029	(0.076)	0.003	0.026
246	20.50	0.10	0.029	(0.076)	0.003	0.026
247	20.58	0.10	0.029	(0.076)	0.003	0.026
248	20.67	0.10	0.029	(0.075)	0.003	0.026
249	20.75	0.10	0.029	(0.075)	0.003	0.026
250	20.83	0.07	0.019	(0.075)	0.002	0.017
251	20.03	0.07	0.019	(0.074)	0.002	0.017
			0.019	(0.074)	0.002	0.017
252	21.00	0.07		(0.074)	0.003	0.026
253	21.08	0.10	0.029		0.003	0.026
254	21.17	0.10	0.029	(0.073)	0.003	0.026
255	21.25	0.10	0.029	(0.073)		
256	21.33	0.07	0.019	(0.073)	0.002	0.017
257	21.42	0.07	0.019	(0.073)	0.002	0.017
258	21.50	0.07	0.019	(0.072)	0.002	0.017
259	21.58	0.10	0.029	(0.072)	0.003	0.026
260	21.67	0.10	0.029	(0.072)	0.003	0.026
261	21.75	0.10	0.029	(0.072)	0.003	0.026
262	21.83	0.07	0.019	(0.071)	0.002	0.017
	21.92	0.07	0.019	(0.071)	0.002	0.017
263	21.92	0.07	0.019	(0.071)	0.002	0.017
264		0.10	0.029	(0.071)	0.003	0.026
265	22.08			(0.070)	0.003	0.026
266	22.17	0.10	0.029	(0.070)	0.003	0.026
267	22.25	0.10	0.029		0.002	0.017
268	22.33	0.07	0.019	(0.070)		
269	22.42	0.07	0.019	(0.070)	0.002	0.017
270	22.50	0.07	0.019	(0.069)	0.002	0.017
271	22.58	0.07	0.019	(0.069)	0.002	0.017
272	22.67	0.07	0.019	(0.069)	0.002	0.017
273	22.75	0.07	0.019	(0.069)	0.002	0.017
274	22.83	0.07	0.019	(0.069)	0.002	0.017
274	22.92	0.07	0.019	(0.069)	0.002	0.017
			0.019	(0.068)	0.002	0.017
276	23.00	0.07		(0.068)	0.002	0.017
277	23.08	0.07	0.019			
278	23.17	0.07	0.019	(0.068)	0.002	0.017
279	23.25	0.07	0.019	(0.068)	0.002	0.017
280	23.33	0.07	0.019	(0.068)	0.002	0.017
281	23.42	0.07	0.019	(0.068)	0.002	0.017
282	23.50	0.07	0.019	(0.068)	0.002	0.017
283	23.58	0.07	0.019	(0.067)	0.002	0.017
283	23.67	0.07	0.019	(0.067)	0.002	0.017
			0.019	(0.067)	0.002	0.017
285	23.75	0.07	0.019	(0.067)	0.002	0.017
286	23.83	0.07			0.002	0.017
287	23.92	0.07	0.019	(0.067)		
288	24.00	0.07	0.019	(0.067)	0.002	0.017
			Rate Not Used	1)	-	05 0
	Sum =	100.0			Sum =	25.9
	Flood	i volume =	Effective rai		5(In)	
		es area	69.7(Ac.)/	[(In)/(Ft.)] =	12.5(Ac	.Ft)
		-				Dage 1
			15			Page 4

Tota Pea ++++	Hydrog	6 this h +++++++ 24 - n o f raph in	0522.1 Cub ydrograph +++++++++ H O U R f H y 5 Min	10 Faet = 20.49 ++++++++++ S T O R M d r O g r ute interva	97(CFS) ++++++++++ a p h als ((CFS)		***
Time(h+m)	Volume Ac.Ft	Q(CFS)	0	7.5	15.0	22.5	30.0
0+ 5	0.0017 0.0075 0.0145 0.0230	0.25	Q			1	1
0+10 0+15	0.0075	0.84	VQ VO	1			
0+20	0.0230	1.23	VQ	1 i		1	
0+25	0.0338	1.57	VQ		l.		1
0+30	0.0454	1.69					1
0+35	0.0574	1.75 1.78	VQ	1		8	1
0+40 0+45		1.78 1.80 1.93	vo	1		1	i
0+50				i i	i	i	1
0+55	0.1108	2.24 2.33	VQ	1	Į.	1	1
1+ 0	0.1268	2.33	V Q		1		
1+ 5 1+10		2.24		1		1	
1+15				1		1	
1+20	0.1689 0.1817	1.89	VQ				
1+25	0.1944	1.85 1.83	VQ				
1+30 1+35				1	1		
1+40		1.82 1.82				1	
1+45	反応	1.82 1.94				1	4
1+50 1+55	0 2734	2.24	VO	1	1	i	
2+ 0	0.2894	2.33	VQ	1		1	1
2+ 5		2.37	V Q				
2+10 2+15	0.3222 0.3387	2.40	VQ	1 1		1	1
2+20	0.3553	2.41		1	1	1	
2+25 2+30		2.42				-	
2+30	0.4062	2.55	V O	i	1		
2+40	0.4258	2.84	VQ	1			
2+45 2+50		2.93			1		
2+50		3.00			ĺ	1	1
3+ 0	0.5078	3.01					
3+ 5		3.02		4			
3+10 3+15	0.5703	3.03	v õ		i	1	i
3+20	0.5911	3.03	V Q	1	1	1	
3+25		3.03	V Q		ł		
3+30 3+35	0.6328	3.03	võ	1	1	i	
3+40	0.6745	3.03	V Q		1	1	
3+45	0.6953	3.03	V Q V Q				
3+50 3+55	0.7170	3.45	võ				
4+ 0	0.7651	3.54	VQ	1	1		
4+ 5	0.7897 0.8145	3.58 3.60	V Q V Q				
4+10 4+15	0.8394	3.62	VQ				
4+20	0.8652	3.75	VQ			2	
4+25 4+30	0.8931 0.9217	4.05	V Q V Q				ii .
4+35	0.9505	4.18	VQ	1		1	
4+40	0.9794	4.21	V Q V Q				
4+45 4+50	1.0085 1.0385	4.35	VQ	1		1	
4+55	1,0706	4.66	VQ				
5+ 0 5+ 5	1.1032 1.1345	4.75	V Q V Q				
5+ 5 5+10	1.1619	3.97	VQ	1		1	
5+15	1.1881	3.81	VQ				
5+20 5+25	1.2146	3.86				1	
5+25	1.2717	4.17	VQ		1	1	
5+35	1.3015	4.32	VQ			2	
5+40 5+45	1.3333 1.3659	4.63	V Q V Q			1	
5+50	1.3988	4.78	V Q			1	1
5+55	1.4319	4.81	V Q			0.5	
6+ 0 6+ 5	1.4652 1.4993	4.83			1	1	
6+10	1.5356	5.26	v Q	1	1	1	1
6+15	1.5724	5.35	V Q		1		
6+20 6+25	1.6096 1.6469	5.39					
6+25	1.6843	5.43	VQ	1	1	1	
6+35	1.7226	5.56	VQ				
6+40 6+45	1.7630 1.8040	5.87					1
6+50	1.8453	6.00	VQ		1	1	1
						Page 5	

6+55	1.8868	6.02	VQ
7+0 7+5	1.9284 1.9700	6.04 6.04	
LŐ	2.0117	6.05	VQ
+15	2.0534	6.05	VQ
20 25	2.0959 2.1405	6.18 6.47	
30	2.1857	6.56	võ
5	2.2320	6.73	VQ
5	2.2805 2.3298	7.05 7.15	
	2.3802	7.33	VQ
	2.4329	7.65	V Q
	2.4864	7.76 8.06	V Q V Q
	2.5418 2.6016	8.68	V Q
	2.6627	8.87	V Q
	2.7244 2.7865	8.96 9.02	V Q V Q
	2.8488	9.05	VQ
	2.9121	9.19	VQ
	2,9775 3,0435	9.50 9.59	V Q V Q
	3.1107	9.75	V Q
	3.1801	10.07	V Q V Q
	3,2502 3,3223	10.18 10.48	V Q V Q
	3.3988	11.10	V Q
	3.4765	11.29	V Q
	3.5558 3.6374	11.51 11.86	V Q V Q
, 1	3.7199	11.98	V Q
	3.8037	12.16	
	3.8897 3.9765	12.49 12.60	VQ
5	4.0645	12.77	VQ
5 N	4.1547	13.10 13.20	
) 5	4.2456 4.3309	13.20	V Q
	4.4021	10.35	QV
	4.4691 4.5342	9.73 9.45	
	4.5982	9.29	Q V
	4.6615	9.19	QV
	4.7287 4.8057	9.75 11.18	
	4.8857	11.63	Q
	4.9672	11.83	
	5.0495 5.1324	11.95 12.02	QV Q
	5.2146	11.94	QV
	5.2951	11.69 11.59	
	5.3749 5.4545	11.59	QV
	5.5339	11.53	QV
	5.6132 5.6907	11.52 11.26	
	5.7642	10.66	QV
	5.8363	10.48	
	5.9088 5.9830	10.52 10.77	
5	6.0576	10.83	QV
)	6.1383	11.73 13.80	
	6.2334 6.3329	14.45	QV
	6.4353	14.87	QV
,	6.5409 6.6478	15.33 15.53	QV
D 5	6.7572	15.88	Q
5	6.8711	16.54	VQ
	6.9864 7.1032	16.74 16.96	
	7.2224	17.30	Q
0 5	7.3424	17.42 18.11	
)	7.4671 7.6022	19.11	V Q
5	7.7405	20.09	V Q
)	7.8803	20.30	
5 0	8.0210 8.1621	20.42 20.50	VQ
	8.2941	19.17	QV
	8.4041	15.96	
5	8.5072 8.6071	14.97 14.51	
5	8.7053	14.26	Q V
0 5	8.8024	14.10	
5)	8.9023 9.0097	14.50 15.60	
5	9.1196	15,96	Q V
20	9.2298	16.00 15 80	
25 30	9.3386 9.4472	15.80 15.77	
5	9.5557	15.76	Q V
)	9.6643	15.77	
5 0	9.7728 9.8804	15.75 15.62	Q V
5	9.9859	15.32	QV
	10.0907 10.1944	15.23 15.06	
5	TV - 1 7 + +		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15+10 15+15 15+20 15+25 15+30 15+40 15+45 15+40 15+45 15+50 16+51 16+15 16+25 16+25 16+30 16+15 16+25 16+30 16+35 16+40 16+55 16+40 16+55 17+50 17+50 17+55 17+10 17+25 17+30 17+25 17+30 17+55 17+40 17+55 17+40 17+55 17+40 17+55 18+0 18+55 18+20 18+55 18+20 18+25 18+30 18+35 18+40 18+35 18+40 18+55 18+10 18+55 18+40 18+55 18+10 18+55 18+40 18+55 18+40 18+55 18+25 18+30 18+55 19+0 19+15 19+20 19+25 19+40 19+450 19+4	10.2960 10.3968 10.4964 10.5937 10.6904 10.7832 10.8678 10.9497 11.0304 11.1105 11.1901 11.2566 11.2925 11.3190 11.3412 11.3611 11.3794 11.3960 11.4358 11.4486 11.4486 11.4486 11.4486 11.4538 11.4486 11.4538 11.5334 11.5538 11.5538 11.5538 11.5538 11.5538 11.6160 11.6368 11.6568 11.6568 11.6568 11.6747 11.6921 11.7091 11.7250 11.7428 11.7595 11.7762 11.7857 11.8876 11.8876 11.8876 11.8876 11.8876 11.8876 11.8927 11.9278 11.9437 11.9277 11.9857	$14.74 \\ 14.64 \\ 14.14 \\ 14.03 \\ 13.48 \\ 12.27 \\ 11.90 \\ 11.62 \\ 11.62 \\ 11.62 \\ 11.62 \\ 11.62 \\ 11.62 \\ 11.62 \\ 1.87 \\ 1.85 \\ 1.87 \\ 1.85 \\ 1.87 \\ 1.87 \\ 1.85 \\ 1.83 \\ 2.07 \\ 2.65 \\ 2.84 \\ 2.92 \\ 2.99 \\ 3.03 \\ 3.03 \\ 2.90 \\ 1.91 \\ 1.87 \\ 1.85 \\ 1.83 \\ 2.07 \\ 2.65 \\ 2.84 \\ 2.92 \\ 2.96 \\ 2.99 \\ 3.03 \\ 3.03 \\ 3.03 \\ 2.90 \\ 1.74 \\ 1.43 \\ 1.32 \\ 1.40 \\ 1.66 \\ 1.74 \\ 1.43 \\ 1.32 \\ 1.40 \\ 1.66 \\ 1.74 \\ 1.89 \\ 2.20 \\ 2.31 \\ 1.97 \\ 1.87 \\ $	a a a a a a a a a a a a a a a a a a a a		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+15 20+20 20+25 20+30	12.0496 12.0618 12.0741 12.0865	1.74 1.77 1.78 1.80			V V V V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+35 20+40	12.1115	1.82	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+50	12.1356	1.69	Q		v v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+ 0 21+ 5	12.1542 12.1638	1.31 1.39	Q Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+15	12.1872	1.74	Q		v v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+25	12.2079	1.37	Q Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+40	12.2377	1.66	Q		v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+50	12.2610	1.64	Q		v v
22+10 12.3023 1.74 Q V 22+15 12.3236 1.64 Q V 22+20 12.3236 1.64 Q V 22+25 12.3330 1.37 Q V 22+30 12.3418 1.29 Q V 22+40 12.3590 1.24 Q V 22+45 12.3675 1.23 Q V 22+40 12.3759 1.22 Q V 22+45 12.3675 1.22 Q V 22+51 12.3925 1.21 Q V 23+0 12.3925 1.21 Q V 23+10 12.4092 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	22+ 0 22+ 5	12.2888	1.38	Q		V
22+25 12.3330 1.37 Q V 22+30 12.3418 1.29 Q V 22+35 12.3505 1.26 Q V 22+40 12.3590 1.24 Q V 22+45 12.3675 1.23 Q V 22+45 12.3759 1.22 Q V 22+55 12.3842 1.21 Q V 23+0 12.3925 1.21 Q V 23+10 12.4099 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	22+15	12.3122	1.74	Q		v v
22+45 12.3595 1.24 Q V 22+45 12.3595 1.23 Q V 22+45 12.3675 1.23 Q V 22+55 12.3759 1.22 Q V 22+55 12.3925 1.21 Q V 23+ 0 12.4092 1.21 Q V 23+10 12.4092 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	22+25	12.3330	1.37 1.29	Q		V
22+45 12.3759 1.22 Q V 22+55 12.3842 1.21 Q V 23+ 0 12.3925 1.21 Q V 23+ 5 12.4009 1.21 Q V 23+10 12.4092 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	22+40	12.3590	1.24	Q		v
23+ 0 12.3925 1.21 Q V 23+ 5 12.4009 1.21 Q V 23+10 12.4092 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	22+50	12.3759	1.22	Q		v v
23+10 12.4072 1.21 Q V 23+15 12.4176 1.21 Q V 23+20 12.4259 1.21 Q V	23+ 0 23+ 5	12.3925 12.4009	1.21 1.21	Q Q		V
	23+15	12.4176	1.21	Q		v v

23+25	12.4342	1.21	10 1	1	V V
23+30	12.4426	1.21	0	1	v
23+35	12.4509	1.21	10		v
23+40	12,4592	1,21	0		v
23+45	12,4676	1.21	0	1	V
23+50	12,4759	1.21	Q		v v
23+55	12.4842	1.21	0		V V
24 + 0	12,4926	1.21		1	V V
24+ 5	12.4992	0.96			1 V
24 + 10	12.5018	0.37	ò I	1	1 V
24+15	12,5031	0.19	0	1	1 V
24+20	12.5038	0.11	ō I	1	l v
24+25	12.5042	0.06	0		l v
24+30	12,5045	0.03	0		l v
24+35	12.5046	0.01	0	1	V V

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR10110.out ******* Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 ------English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format age Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi Drainage Area = Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00 (Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. Lag time = 4.76 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 1 Hour(s) User Entered Base Flow = 0.0.00 (CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 69.65 0.50 100 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.20 69.65 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 0.500(In) Area Averaged 100-Year Rainfall = 1.200(I) 1.200(In) Point rain (area averaged) = 0.788(In) Areal adjustment factor = 99.94 % Adjusted average point rain = 0.787(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-2
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 56.0
 56.0
 0.511
 0.900
 0.097
 1.000
 0.097
 Sum (F) = 0.097Area averaged mean soil loss (F) (In/Hr) = 0.097Minimum soil loss rate ((In/Hr)) = 0.049 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 _____ Slope of intensity-duration curve for a 1 hour storm =0.5000 Unit Hydrograph VALLEY S-Curve -----____ Unit Hydrograph Data -----Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS)

.....

Page 1

(Hr 1 0.08 2 0.17 3 0.25 4 0.33 5 0.42 6 0.50 7 0.58 8 0.67 9 0.75 10 0.83 11 0.92 12 1.00 Sum = Floc Tot Tot Tot Floc Floc Floc	<pre>) Percent</pre>	69.7 (Ac.) / [= 0.06 (= 0.362 (0.79 (I 183343.4 = 1575 of this hydr	<pre>Max (0.(0.(0.(0.(0.(0.(0.(0.</pre>	<pre> </pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.040 .041 .047 .047 .061 .070 .061 116) 275) .064 .047 Sum = 4.2(.	2.653 0.578 0.425 8.7 Ac.Ft)
		Runoff rograph in	******				FS))
Time(h+m)	Volume Ac.F	: Q(CFS) 0		50.0	100).0	150.0 200.0
0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	0.0356 0.1562 0.3106 0.4914 0.9011 1.1745 1.4694 1.8309 2.4414 3.2491 3.6826 3.9481 4.0681 4.1359 4.1755 4.2001 4.2065 4.2090	5.17 VQ 17.51 VV		v v o	V Q	V Q	

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR10310.out *+*+++* Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 4.78 Min. ort of last birds Lag time = 4.78 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 55.72 69.65 0.80 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 1.86 129.55 129.55 1.86 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 0.800(In) Area Averaged 100-Year Rainfall = 1.860(In) Point rain (area averaged) = 1.236(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 1.236(In) Sub-Area Data: Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 RI
 Infil. Rate
 Impervious
 Adj. Infil. Rate
 Area%
 F

 AMC2
 AMC-2
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 56.0
 56.0
 0.511
 0.900
 0.097
 1.000
 0.097
 Sum(F) = 0.097Area averaged mean soil loss (F) (In/Hr) = 0.097 Minimum soil loss rate ((In/Hr)) = 0.049 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 -----------Unit Hydrograph VALLEY S-Curve -----Unit Hydrograph Data ------...... Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS)

10.00	Subtract	ceu riom (LITE DECTIM RELI		produce		
Unit	Time	Pattern	Storm Rain	1	loss rate	e(In./Hr)	Effective
0111		Percent	(Tn/Hr)		Max	Low	(In/Hr)
1	0.08	1.30	0.193		0.097)	0.019	
2	0.17	1.30	0.193	\$		0.019	
3 4	0.25	1.10 1.50	0.163	2	0.097) 0.097)		
4 5	0.33	1.50	0.222	2	0.097)		0.200
6	0.50	1 80	0.267	(0.097)	0.027	0.240
7	0.58	1.50	0.222		0.097)		
8	0.67	1.80	0.267		0.097)		7 0.240 7 0.240
9	0.75 0.83	1.80	0.267		0.097) 0.097)	0.022	0.240
10 11	0.83	1.50 1.60 1.80	0.222 0.237 0.267 0.326		0.097)		
12	1.00	1.80	0.267				
13	1.08	2.20	0.326	(0.097) 0.097)	0.033	
14	1.17	2.20	0.326		0.097)		
15	1.25	2.20	0.326 0.297	5	0.097)	0.033	
	1.33	2.20		2	0.097) 0.097)	0.030	
17 18	1 42 1 50	2.60	0.386 0.400		0.097)		
19	1.58	2.70 2.40	0.356	(0.097)	0.036	
20	1.67	2.70	0.400 0.356 0.400 0.489	(0.097) 0.097)	0.040	
21	1.75	3,30	0.489				
22	1.83	3.10	0.489 0.460 0.430 0.445 0.460 0.623		0.097) 0.097)		
23 24	1.92	2.90	0.430	2	0.097)		
25	2.00 2.08	3.10	0.460	i	0.097) 0.097)	0.046	
26	2.17	4.20	0.623	(0.097)	0.062	
27	2.25	5.00	0.623 0.741 0.519 1.008	(0.097)	0.074	
28	2.33	3.50	0.519	(0.097)	0.052	
	2.42	6.80	1.008		0.097	(0.101) (0.108)	0.911
30 31	2.50 2.58	7.30 P 20	1.082		0.097	0.122	1.119
32	2.50	5.90	0.875	(0.097)	0.08	0.787
33	2.75	5.90 2.00	1.216 0.875 0.297	(0.097)	(0.101) (0.108) (0.122) 0.08' 0.03(0.02'	0.267
34	2.83	1.80	0.267	(0.097)	0.02	7 0.240
35	2.92	1.80	0.267	1	0.097)	0.02	0.240
36	3.00	0.60	0.089		0.097)	0.005	0.080
	Sum =	(LOSS 100.0	Rate Not Use	eu)		Sum	= 13.4
-	Flood	volume =	Effective ra	ainfa	11	1.12(In)	
	timo	a 2702	69 7 (Ac)	/[(Tn)/(Ft.)]	= 6.5	5(Ac.Ft)
	Total	soil los	s = 0.12	2(In)			
	Total	soil los	s = 0.12 s = 0.693 = 1.24 282015	8 (Ac.	Ft)		
	Total	rainfall	= 1.24	(In)	hia Foet		
	Flood	l volume = . soil los	282015	.6 CU 409 9	Cubic F	eet	
	TOCAL	. BOII 108	5- 50				
	Peak	flow rat	e of this hyd	drogr	aph =	67.698 (CF	5)
	Peak	flow rat	e of this hyd	drogr	aph =	67.698 (CF	5)
	Peak	flow rat	e of this hyd	drogr +++++	aph = ++++++++	67.698(CF: ++++++++++++	5)
	Peak	flow rat	e of this hyd	drogr +++++ 0 U R	aph = ++++++++ S T	67.698 (CF: ++++++++++++++++++++++++++++++++++++	5) ++++++++++++++++++++++ n
	Peak	flow rat	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R	aph = +++++++++ S T H y d r	67.698(CF +++++++++++ ORM ograp]	5) ++++++++++++++++++++ n
	Peak	flow rat	e of this hyd	drogr +++++ 0 U R	aph = +++++++++ S T H y d r	67.698(CF +++++++++++ ORM ograp]	5) ++++++++++++++++++++ n
	Peak +++++	: flow rat ++++++++ Hy	e of this hyd ++++++++++++ 3 - H (R u n o f f drograph in	drogr +++++ 0 U R 5	aph = ++++++++ S T H y d r Minute	67.698(CF +++++++++++ O R M o g r a p 1 intervals (S) ++++++++++++++++++++ n (CFS))
	Peak +++++	: flow rat +++++++++ Hy	e of this hyd +++++++ 3 - H (R u n o f f drograph in	drogr +++++ 0 U R 5	aph = ++++++++ S T H y d r Minute	67.698(CF +++++++++++ O R M o g r a p 1 intervals (S) n (CFS))
Time	Peak +++++	: flow rat	e of this hyd ++++++++++++ 3 - H (R u n o f f drograph in	drogr +++++ 0 U R 5 	aph = +++++++ S T H y d r Minute	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0.000	Peak +++++ e (h+m) V	flow rat	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0	aph = ********* H y d r Minute 17.5	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	S) n (CFS))
0-	Peak +++++	: flow rat	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V	drogr +++++ 0 U R 5 0	aph = ********* H y d r Minute 17.5	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0-	Peak +++++ e(h+m) V + 5	: flow rat ++++++ Hy 701ume Ac. 0.0173 0.0754 0.1435	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0	aph = ********* H y d r Minute 17.5	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0- 0- 0-	Peak +++++ e(h+m) V + 5 +10 +15 +20	flow rat Hy 701ume Ac. 0.0173 0.0173 0.1435 0.2163	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57	drogr +++++ 0 U R 5 0	aph = +++++++++ S T H y d r Minute 17.5 Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0- 0- 0-	Peak +++++ e(h+m) V + 5 +10 +15 +20 +25	E flow rat Hy 70lume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2	aph = +++++++++ S T H y d r Minute 17.5 Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0- 0- 0- 0- 0-	Peak +++++ e (h+m) V + 5 +10 +15 +20 +25 +30	<pre>: flow rat</pre>	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	aph = +++++++++ S T H y d r Minute 17.5 Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0- 0- 0- 0- 0- 0- 0-	Peak +++++ e(h+m) V + 5 +10 +15 +20 +25	E flow rat Hy 70lume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aph = ********* H y d r Minute 17.5	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35	Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ o U R 5 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	aph = ++++++++ H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50	<pre>How rat Hy Hy Colume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256</pre>	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ o U R 5 	aph = 	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55	Hy Hy Hy Tolume Ac. 0.0173 0.0173 0.10754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = ++++++++ H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +20 +25 +30 +35 +40 +45 +55 + 0	<pre>Here File File File File File File File Fil</pre>	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 12.58 13.89 15.04 14.92 16.12 15.91 14.93 15.43	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = ++++++++ S T H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 + 0 + 5	Hy Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = ++++++++ H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +20 +25 +30 +35 +40 +45 +55 + 0	<pre>Here File File File File File File File Fil</pre>	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 12.58 13.89 15.04 14.92 16.12 15.91 14.93 15.43	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = ++++++++ S T H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +35 +40 +55 +5 +10	Hy Hy Tolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = ++++++++ S T H y d r 17.5 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: ++++++++++ O R M o g r a p l intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 +55 + 0 + 5 +10 +15 +20 +25	Hy Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +55 + 0 +55 + 0 +55 + 10 +15 +20 +55 + 10 +15 +20 +55 +30	Hy Hy Tolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.52849 1.4219 1.52849 1.4219 1.5584	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 VV 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +35 +40 +45 +55 + 0 +55 +10 +15 +20 +25 +30 +35 +30 +35 +30 +35	Hy Hy Yolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 + 0 + 5 +10 +55 + 10 +55 + 20 +25 +35 +40 +35 +40	Hy Folume Ac. Hy Tolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0577 1.527 1.5284 1.6977 1.5584 1.6977 1.8561 2.0192 2.1802	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 VV 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M 0 g r a p 1 intervals (35.0	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +35 +40 +45 +55 + 0 +55 +10 +15 +20 +25 +30 +35 +30 +35 +30 +35	Hy Hy Yolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +55 + 0 +55 + 10 +15 +25 +30 +55 + 10 +25 +30 +25 +30 +25 +30 +35 +40 +45	Hy rat Hy rat (1) Hy rolume Ac. (1) 173 (1) 175 (1) 17	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 VQ	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 +35 +40 +45 +50 +55 +10 +15 +20 +25 +30 +35 +40 +45 +55 +0	Hy Hy Volume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192 2.1802 2.3574 2.5533 2.7473 2.9378	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 VQ	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 +15 +25 +30 +35 +40 +45 +25 +30 +35 +40 +45 +50 +55 +40 +5 +50 +5 +50 +50 +50 +50 +50 +50 +50	Hyrref Flow rat Hyrref Hyrref	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 VQ Q VQ Q V Q V Q V Q V	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 + 0 +15 +20 +25 +30 +35 +40 +45 +55 +10 +25 +30 +35 +40 +25 +30 +35 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +15 +15 +15 +15 +15 +15 +15 +15 +15	Filow rat Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192 2.1802 2.3553 2.7473 2.9378 3.1317 3.3440	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.16 27.66 28.16 30.82	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698 (CF3 0 R M o g r a p 1 intervals (35.0 VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V	5) ++++++++++++++++++ (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 +55 +10 +15 +20 +25 +30 +35 +40 +45 +55 +10 +15 +20 +25 +30 +25 +10 +15 +15 +10 +15 +15 +15 +10 +15 +15 +15 +10 +15 +15 +15 +15 +10 +15 +15 +15 +15 +15 +15 +15 +15 +15 +15	<pre>How rat Hy Folume Ac. Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192 2.1802 2.3574 1.6977 3.3440 3.6029</pre>	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.16 27.66 28.16 30.82 37.59	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 2 2 2 2 2 2 2 2 2 2 2 2	5) (CFS)) 52.5 70.0
	Peak +++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 + 0 +15 +20 +25 +30 +35 +40 +45 +55 +10 +25 +30 +35 +40 +25 +30 +35 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +10 +15 +15 +15 +15 +15 +15 +15 +15 +15 +15	Filow rat Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.2849 1.4219 1.5584 1.6977 1.8561 2.0192 2.1802 2.3553 2.7473 2.9378 3.1317 3.3440	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.16 27.66 28.16 30.82	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0 2 VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q VQ Q V V Q V V Q V V Q V V Q V V V V V V V V V V V V V	5) (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +35 +40 +45 +50 +55 + 0 +15 +25 +30 +45 +50 +55 + 0 +35 +40 +45 +50 +55 +10 +15 +20 +35 +40 +45 +15 +20 +35 +40 +15 +25 +10 +15 +25 +10 +15 +15 +25 +10 +15 +15 +25 +10 +15 +15 +25 +10 +15 +15 +25 +10 +15 +15 +25 +10 +15 +15 +25 +10 +15 +15 +15 +15 +15 +15 +15 +15 +15 +15	Hy rat Hy rat (1) Hy rolume Ac. (1) 0.0173 (1) 0.754 (1) 0.173 (1) 0.754 (1) 0.1435 (1) 0.1455 (1) 0.1435 (1)	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 1 15.93 1 14.92 1 14.93 1 15.43 1 17.13 1 9.20 1 9.89 1 14.93 1 15.43 1 17.13 1 9.20 1 9.89 1 9.81 2 0.23 2 3.01 2 3.68 2 3.38 2 5.72 2 8.45 2 8.16 2 7.66 2 8.16 2 3.759 3 9.98 41.40 5 6.47	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 2 2 2 2 2 2 2 2 2 2 2 2	5) (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 + 0 +15 +20 +25 +30 +35 +40 +45 +50 +55 +10 +15 +20 +35 +40 +45 +25 +30 +35 +40 +45 +25 +30 +35 +40 +45 +25 +30 +35 +40 +45 +25 +40 +45 +25 +20 +25 +25 +20 +25 +25 +20 +20 +25 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20	Hy rat Hy rat (1) Hy rolume Ac. (1) 1435 (1) 143	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 2 2 2 2 2 2 2 2 2 2 2 2	5) (CFS)) 52.5 70.0 V V Q V V Q
	Peak ++++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +50 +55 + 0 +15 +25 +30 +35 +40 +45 +50 +55 + 10 +15 +20 +35 +40 +35 +40 +15 +20 +35 +40 +35 +40 +35 +40 +35 +40 +35 +40 +35 +40 +35 +40 +35 +40 +45 +45 +40 +40 +45 +40 +40 +40 +40 +40 +40 +40 +40 +40 +40	<pre>How rat Hy Hy 7olume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.2849 1.4219 1.5584 2.0192 2.1802 2.3574 2.5533 2.7473 2.9378 3.1317 3.3440 3.6029 3.8783 4.1634 4.5524 5.54677</pre>	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 2 2 2 2 2 2 2 2 2 2 2 2	5) (CFS)) 52.5 70.0 V V Q V Q V V Q V Q
	Peak ++++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 + 0 +15 +55 +10 +15 +20 +25 +30 +35 +40 +25 +30 +35 +40 +25 +30 +35 +40 +45 +25 +30 +35 +40 +45 +25 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +40 +455 +40 +40 +40 +40 +40 +40 +40 +40 +40 +40	<pre>How rat Hy Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.88561 2.0192 2.1802 2.3574 2.5533 2.7473 2.9378 3.1317 3.3440 3.6029 3.8783 4.1634 4.5524 5.54677 5.8236</pre>	e of this hyd ++++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.16 27.66 28.16 30.82 37.59 39.98 41.40 56.47 65.22 67.70 51.67	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF3 0 R M o g r a p 1 intervals (35.0 2 VQ Q VQ Q VQ Q V	5) (CFS)) 52.5 70.0 V V Q V V Q
	Peak ++++++ e (h+m) V + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 + 0 + 5 +10 +15 +20 +25 +30 +35 +40 +45 +55 +0 +15 +20 +25 +30 +25 +30 +25 +30 +25 +30 +25 +30 +25 +30 +25 +25 +20 +25 +20 +25 +25 +20 +25 +25 +20 +25 +25 +20 +25 +25 +25 +20 +25 +25 +25 +20 +25 +25 +25 +25 +25 +25 +25 +25 +25 +25	<pre>How rat Hy rolume Ac. Hy rolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.527 1.2849 1.4219 1.5584 1.0347 1.5584 1.6977 1.8561 2.0192 2.1802 2.3574 1.6977 3.3440 3.6029 3.8783 3.1317 3.3440 3.6029 3.8783 4.1634 4.5524 5.0015 5.4677 5.8236 6.0404</pre>	e of this hyd +++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.45 28.16 27.66 28.16 30.82 37.59 39.98 41.40 56.47 65.22 67.70 51.67 31.48	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 5 5 6 7 4 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	5) (CFS)) 52.5 70.0 V V Q V Q V V Q V Q
	Peak ++++++ e (h+m) V + 5 +10 +25 +30 +25 +30 +35 +40 +45 +55 + 0 +15 +55 +10 +15 +20 +25 +30 +35 +40 +25 +30 +35 +40 +25 +30 +35 +40 +45 +25 +30 +35 +40 +45 +25 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +45 +55 +40 +40 +455 +40 +40 +40 +40 +40 +40 +40 +40 +40 +40	<pre>How rat Hy Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 1.0347 1.1527 1.2849 1.4219 1.5584 1.6977 1.88561 2.0192 2.1802 2.3574 2.5533 2.7473 2.9378 3.1317 3.3440 3.6029 3.8783 4.1634 4.5524 5.54677 5.8236</pre>	e of this hyd ++++++++++++ 3 - H (R u n o f f drograph in Ft Q(CFS) 2.51 W 8.44 V 9.88 V 10.57 1 12.58 1 13.89 15.04 14.92 16.12 15.91 14.93 15.43 17.13 19.20 19.89 19.81 20.23 23.01 23.68 23.38 25.72 28.45 28.16 27.66 28.16 30.82 37.59 39.98 41.40 56.47 65.22 67.70 51.67	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r Minute 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 5 5 6 7 4 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	5) (CFS)) 52.5 70.0
	Peak ++++++ e (h+m) V +20 +10 +15 +20 +35 +40 +55 +30 +55 +40 +45 +50 +55 +30 +35 +40 +45 +50 +55 +10 +15 +20 +35 +40 +55 +30 +55 +10 +25 +30 +55 +10 +25 +30 +55 +10 +25 +10 +25 +25 +10 +25 +25 +25 +25 +25 +25 +25 +25 +25 +25	Hy rat Hy rolume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.5584 2.0192 2.1802 2.3574 2.5533 2.7473 2.9378 3.1317 3.3440 0.36029 3.8783 4.1634 4.5524 5.54677 5.8236 6.0404 6.2076	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr +++++ 0 U R 5 0 2 0 2 V V V V V V V V V V V V V	aph = H y d r H y d r 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 5 5 6 7 4 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	5) (CFS)) 52.5 70.0 V V Q V V V V Q V V V V Q V V V V V V Q V V V V V V V V V V V V V V V V V V V
	Peak ++++++ e (h+m) V + 5 +10 +25 +30 +45 +40 +45 +55 + 0 +15 +20 +25 +30 +35 +40 +45 +55 + 0 +15 +20 +25 +30 +35 +40 +25 +30 +35 +40 +25 +30 +35 +40 +25 +30 +35 +40 +25 +30 +25 +20 +25 +30 +25 +30 +25 +25 +20 +20 +25 +20 +25 +20 +25 +20 +20 +25 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20	<pre>How rat Hy Hy Folume Ac. 0.0173 0.0754 0.1435 0.2163 0.3030 0.3986 0.5022 0.6050 0.7160 0.8256 0.9284 1.0347 1.1527 1.2849 1.4219 1.4529 1.4219 1.5584 1.0347 1.5584 1.6977 1.2849 1.4219 1.5584 1.6377 2.3573 2.3574 2.5533 2.7473 2.3574 2.5533 2.7473 2.3574 2.5533 2.7473 2.3574 2.5533 2.7473 3.3440 3.6029 3.8783 4.1634 4.5524 5.54677 5.8236 6.0404 6.2076 6.3383</pre>	e of this hyd ++++++++++++++++++++++++++++++++++++	drogr 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aph = H y d r H y d r 17.5 Q Q Q Q Q Q Q Q Q Q Q Q Q	67.698(CF: 0 R M o g r a p 1 intervals (35.0 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 5 5 6 7 4 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	5) (CFS)) 52.5 70.0

3+10	6.4438	4.85	Q	1	1	V
3+15	6.4601	2.38	Q	L	L.	v
3+20	6.4677	1.10	ģ	1	10	V V
3+25	6.4717	0.59	Q	1	1	v v
3+30	6.4737	0.29	Q	1	1	v v
3+35	6.4742	0.07	Q	li li		v v

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR10610.out ****** Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 English (in-1b) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ------..... Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Drainage Area = 69.65(AC.) = 0.109 Sq. M1. Drainage Area for Depth-Area Areal Adjustment = 69.6 Length along longest watercourse = 3400.00(Ft.) Length along longest watercourse measured to centroid = Length along longest watercourse = 0.644 Mi. 69.65(Ac.) = 0.109 Sq. Mi. 1280.00(Ft.) Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00(Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. Lag time = 4.78 Min. 25% of lag time = 1.19 Min. 40% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 69.65 1.15 80.10 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 2.50 174.13 STORM EVENT (YEAR) = 10.00 Area Averaged 2-Year Rainfall = 1.150(In) Area Averaged 100-Year Rainfall = 2.500(In) Point rain (area averaged) = 1.705(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 1.705(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-2
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

 56.0
 56.0
 0.511
 0.900
 0.097
 1.000
 0.097

 Sum (F)
 Area averaged mean soil loss (F) (In/Hr) = 0.097Minimum soil loss rate ((In/Hr)) = 0.049 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 _____ Unit Hydrograph VALLEY S-Curve -----Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) -----

Unit Time (Hr.) 1 0.08 2 0.17	Pattern Percent 0.50 0.60	Storm Rain (In/Hr) 0.102 0.123	Loss rate(Max (0.097) (0.097)	In./Hr) Low 0.010 0.012	Effective (In/Hr) 0.092 0.110	
3 0.25 4 0.33	0.60	0.123	(0.097) (0.097)	0.012	0.110	
5 0.42 6 0.50	0.60	0.123	(0.097) (0.097)	0.012	0.110	
7 0.58	0.70	0.143	(0.097)	0.014	0.129	
8 0.67 9 0.75	0.70	0.143 0.143	(0.097) (0.097)	0.014	0.129	
10 0.83 11 0.92	0.70	0.143 0.143	(0.097) (0.097)	0.014	0.129	
12 1.00 13 1.08	0.80	0.164 0.164	(0.097) (0.097)	0.016	0.147 0.147	
14 1.17 15 1.25	0.80	0.164 0.164	(0.097) (0.097)	0.016	0.147	
16 1.33 17 1.42	0.80	0.164 0.164	(0.097) (0.097)	0.016	0.147	
18 1.50 19 1.58	0.80	0.164 0.164	(0.097)	0.016	0.147	
20 1.67 21 1.75	0.80	0.164	(0.097) (0.097)	0.016	0.147	
22 1.83	0.80	0.164	(0.097)	0.016	0.147	
23 1.92 24 2.00	0.80	0.164 0.184	(0.097)	0.018	0.166	
25 2.08 26 2.17	0.80	0.164 0.184	(0.097) (0.097)	0.016	0.147	
27 2.25 28 2.33	0.90	0.184 0.184	(0.097) (0.097)	0.018	0.166	
29 2.42 30 2.50	0.90	0.184 0.184	(0.097) (0.097)	0.018	0.166	
31 2.58 32 2.67	0.90	0.184 0.184	(0.097) (0.097)	0.018	0.166	
33 2.75 34 2.83	1.00	0.205	(0.097) (0.097)	0.020	0.184	
35 2.92 36 3.00	1.00	0.205	(0.097)	0.020	0.184	
37 3.08 38 3.17	1.00	0.205	(0.097)	0.020	0.184	
39 3.25	1.10	0.225	(0.097)	0.023	0.203	
40 3.33 41 3.42	1.10	0.246	(0.097)	0.025	0.221	
42 3.50 43 3.58	1.30	0.266 0.286	(0.097) (0.097)	0.029	0.258	
44 3.67 45 3.75	1.40 1.50	0.286 0.307	(0.097) (0.097)	0.029	0.258	
46 3.83 47 3.92	1.50 1.60	0.307 0.327	(0.097) (0.097)	0.031	0.276	
48 4.00 49 4.08	1.60 1.70	0.327 0.348	(0.097) (0.097)	0.033	0.295	
50 4.17 51 4.25	1.80 1.90	0.368 0.389	(0.097) (0.097)	0.037	0.331 0.350	
52 4.33 53 4.42	2.00	0.409 0.430	(0.097) (0.097)	0.041	0.368	
54 4.50 55 4.58	2.10	0.430	(0.097) (0.097)	0.043	0.387	
56 4.67 57 4.75	2.30	0.471 0.491	(0.097) (0.097)	0.047	0.424	
58 4.83	2.40	0.491 0.511	(0.097)	0.049	0.442	
60 5.00	2.60	0.532	(0.097) (0.097)	0.053	0.479	
61 5.08 62 5.17	3.60	0.634	(0.097)	0.074	0.663	
63 5.25	3.90	0.798	(0.097) (0.097)	0.080 0.086	0.718	
65 5.42 66 5.50	4.20 4.70 5.60 1.90 0.90 0.60 0.50	0.962	(0.097) 0.097	0.096 (0.115)	0.865	
67 5.58 68 5.67	1.90 0.90	0.389 0.184	0.097 (0.097) (0.097) (0.097) (0.097)	0.039	0.350	
69 5.75 70 5.83	0.90 0.60 0.50 0.30	0.389 0.184 0.123 0.102	(0 097)	0 010	0.092	
71 5.92 72 6.00	0.30	0.061	(0.097) (0.097)	0.006	0.055	
sum =	(Loss) 100.0	Rate Not Use	d)	Sum =	18.4	
Flo	od volume =	69 7 (Ac.)/	infall 1. [(In)/(Ft.)] =	. 8.9(A	c.Ft)	
Tot	al soil los	s = 0.17 s = 0.981	(In) (Ac.Ft) In) 4 Cubic Feet 38.0 Cubic Fee			
Tot	al rainfall	= 1.70(388334.	In) 4 Cubic Feet			
Tot	al soil los	s = 427	38.0 Cubic Fee	t		
Pe	ak flow rat	e of this hyd	rograph =	59.974(CFS)		
		+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		
		Runoff	Hydro	ograph		
1000		drograph in	5 Minute in	tervals ((CF	S))	
Time(h+m)	Volume Ac.	Ft Q(CFS)	0 15.0	30.0	45.0	60.0
0+ 5		1.33 Q		1	1	1
			'n		Page 2	


```
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                  Study date 02/13/20 File: 3828PR102410.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
English (in-lb) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
.....
 .....
                      69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area =
Drainage Area for Depth-Area Areal Adjustment =
                                                              69.65(Ac.) = 0.109 Sq. Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Defigure along longest watercourse measured to a

Difference in elevation = 44.00(Ft.)

Slope along watercourse = 68.3294 Ft./Mi.

Average Manning's 'N' = 0.015

Lag time = 0.080 Hr.

Lag time = 4.78 Min.
Lag time = 4.78 Min.

25% of lag time = 1.19 Min.

40% of lag time = 1.91 Min.

Unit time = 5.00 Min.

Duration of storm = 24 Hour(s)

User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
                Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                                                    121.89
                          1.75
        69.65
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 4.50 313.43
                                               313.43
STORM EVENT (YEAR) = 10.00
Area Averaged 2-Year Rainfall = 1.750(In)
Area Averaged 100-Year Rainfall = 4.500(I
                                          4.500(In)
Point rain (area averaged) = 2.881(In)
Areal adjustment factor = 99.99 %
Adjusted average point rain = 2.881(In)
Sub-Area Data:
Area (Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

      RI
      RI
      Infil. Rate
      Impervious
      Adj. Infil. Rate
      Area%
      F

      AMC2
      AMC-2
      (In/Hr)
      (Dec.%)
      (In/Hr)
      (Dec.)
      (In/Hr)

      56.0
      56.0
      0.511
      0.900
      0.097
      1.000
      0.097

      Area
      averaged mean soil loss (F)
      (In/Hr)
      =
      0.097

      Mutual
      Area
      Area
      0.097
      0.097

Minimum soil loss rate ((In/Hr)) = 0.049
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.100
                                            ......
 Unit Hydrograph
                          VALLEY S-Curve
-----
                 Unit Hydrograph Data
 .....
                                   ------
Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
                                                               .....
```

Unit Hydrograph Analysis

Page 1

Unit Tim	e Pattern	Storm Rain	Loss rate	(In./Hr)	Effective
(H1	.) Percent	(In/Hr)	Max	Low	(In/Hr) 0.021
1 0.0		0.023 0.023	(0.172) (0.171)	0.002	0.021
3 0.2	5 0.07	0.023	(0.171)	0.002	0.021
4 0.3 5 0.4		0.035 0.035	(0.170) (0.169)	0.003	0.031
6 0.5	0 0.10	0.035	(0.169)	0.003	0.031
7 0.5		0.035 0.035	(0.168) (0.167)	0.003	0.031
9 0.7	5 0.10	0.035	(0.167)	0.003	0.031
10 0.8		0.046 0.046	(0.166) (0.165)	0.005 0.005	0.041
12 1.0	0 0.13	0.046	(0.165)	0.005	0.041
13 1.0 14 1.1		0.035 0.035	(0.164) (0.163)	0.003	0.031
15 1.2	5 0.10	0.035	(0.163)	0.003	0.031
16 1.3 17 1.4		0.035 0.035	(0.162) (0.162)	0.003	0.031
18 1.5		0.035	(0.161)	0.003	0.031
19 1.5 20 1.6		0.035 0.035	(0.160) (0.160)	0.003	0.031
21 1.7		0.035	(0.159)	0.003	0.031
22 1.8		0.046	(0.158) (0.158)	0.005 0.005	0.041
23 1.9 24 2.0		0.046 0.046	(0.157)	0.005	0.041
25 2.0 26 2.1		0.046 0.046	(0.156) (0.156)	0.005 0.005	0.041
26 2.1 27 2.2		0.048	(0.155)	0.005	0.041
28 2.3 29 2.4		0.046 0.046	(0.155) (0.154)	0.005	0.041
30 2.5		0.046	(0.153)	0.005	0.041
31 2.5		0.058	(0.153) (0.152)	0.006	0.052
32 2.6 33 2.1		0.058 0.058	(0.151)	0.006	0.052
34 2.8		0.058	(0.151)	0.006	0.052
35 2.9 36 3.0		0.058 0.058	(0.150) (0.150)	0.006 0.006	0.052
37 3.0	8 0.17	0.058	(0.149)	0.006	0.052
38 3.1 39 3.2		0.058 0.058	(0.148) (0.148)	0.006 0.006	0.052
40 3.3	3 0.17	0.058	(0.147)	0.006	0.052
41 3.4		0.058 0.058	(0.146) (0.146)	0.006 0.006	0.052
43 3.5	8 0.17	0.058	(0.145)	0.006	0.052
44 3.6		0.058 0.058	(0.145) (0.144)	0.006 0.006	0.052
46 3.8	3 0.20	0.069	(0.143)	0.007	0.062
47 3.9		0.069 0.069	(0.143) (0.142)	0.007	0.062
49 4.0	0.20	0.069	(0.142)	0.007	0.062
50 4.1 51 4.2		0.069 0.069	(0.141) (0.140)	0.007 0.007	0.062
52 4.3	0.23	0.081	(0.140)	0.008	0.073
53 4.4 54 4.5		0.081 0.081	(0.139) (0.139)	0.008	0.073
55 4.5	8 0.23	0.081	(0.138)	0.008	0.073
56 4.6 57 4.1		0.081 0.081	(0.137) (0.137)	0.008	0.073
58 4.8	0.27	0.092	(0.136)	0.009	0.083
59 4.9 60 5.0		0.092 0.092	(0.136) (0.135)	0.009	0.083
61 5.0 62 5.1		0.069	(0.134) (0.134)	0.007	0.062
62 5.1 63 5.2		0.069 0.069	(0.133)	0.007 0.007	0.062
64 5.3		0.081	(0.133) (0.132)	0.008	0.073
65 5.4 66 5.5		0.081 0.081	(0.132)	0.008	0.073
67 5.5 68 5.6		0.092	(0.131) (0.130)	0.009 0.009	0.083
68 5.0 69 5.1		0.092 0.092	(0.130)	0.009	0.083
70 5.8		0.092 0.092	(0.129) (0.129)	0.009	0.083
72 6.0		0.092	(0.128)	0.009	0.083
73 6.0	0.30	0.104 0.104	(0.128) (0.127)	0.010 0.010	0.093
75 6.2		0.104	(0.126)	0.010	0.093
76 6.3		0.104 0.104	(0.126) (0.125)	0.010 0.010	0.093
78 6.5	0.30	0.104	(0.125)	0.010	0.093
79 6.5	0.33	0.115	(0.124) (0.124)	0.012	0.104
80 6.6 81 6.1	0.33	0.115 0.115	(0.123)	0.012	0.104
82 6.8	0.33	0.115	(0.122) (0.122)	0.012	0.104
84 7.0	0.33	0.115 0.115	(0.121)	0.012	0.104
85 7.0	0.33	0.115	(0.121) (0.120)	0.012	0.104
86 7.1 87 7.2	0.33	0.115 0.115	(0.120)	0.012	0.104
88 7.3 89 7.4		0.127	(0.119) (0.119)	0.013	0.114
90 7.5	0.37	0.127 0.127	(0.118)	0.013	0.114
91 7.5 92 7.6	0.40	0.138 0.138	(0.118) (0.117)	0.014 0.014	0.124
93 7.1	0.40	0.138	(0.116)	0.014	0.124
94 7.8	0.43	0.150	(0.116)	0.015	0.135
					Dage 2

95	7.92	0.43	0.150	(0.115)	0.015	0.135
96	8.00	0.43	0.150	(0.115)	0.015	0.135
97	8.08	0.50	0.173	(0.114)	0.017	0.156
98	8.17		0.173	(0.114)	0.017	0.156
		0.50		(0.113)	0.017	0.156
99	8.25	0.50	0.173	050 SNR90	0.017	0.156
100	8.33	0.50	0.173	1511 (ST450	0.017	0.156
101	8.42	0.50	0.173	(0.112)		
102	8.50	0.50	0.173	(0.112)	0.017	0.156
103	8.58	0.53	0.184	(0.111)	0.018	0.166
104	8.67	0.53	0.184	(0.111)	0.018	0.166
105	8.75	0.53	0.184	(0.110)	0.018	0.166
106	8.83	0.57	0.196	(0.110)	0.020	0.176
107	8.92	0.57	0.196	(0.109)	0.020	0.176
108	9.00	0.57	0.196	(0.109)	0.020	0.176
109	9.08	0.63	0.219	(0.108)	0.022	0.197
110	9.17	0.63	0.219	(0.108)	0.022	0.197
111	9.25	0.63	0.219	(0.107)	0.022	0.197
112	9.33	0.67	0.230	(0.107)	0.023	0.207
		77 T 378 12		(0.106)	0.023	0.207
113	9.42	0.67	0.230		0.023	0.207
114	9.50	0.67	0.230	(0.105)		
115	9.58	0.70	0.242	(0.105)	0.024	0,218
116	9.67	0.70	0.242	(0.104)	0.024	0.218
117	9.75	0.70	0.242	(0.104)	0.024	0.218
118	9.83	0.73	0.254	(0.103)	0.025	0.228
119	9.92	0.73	0.254	(0.103)	0.025	0.228
120	10.00	0.73	0.254	(0.102)	0.025	0.228
121	10.08	0.50	0.173	(0.102)	0.017	0.156
122	10.17	0.50	0.173	(0.101)	0.017	0.156
123	10.25	0.50	0.173	(0.101)	0.017	0.156
124	10.33	0.50	0.173	(0.101)	0.017	0.156
125	10.42	0.50	0.173	(0.100)	0.017	0.156
126	10.50	0.50	0.173	(0.100)	0.017	0.156
			0.230	(0.099)	0.023	0.207
127	10.58	0.67			0.023	0.207
128	10.67	0.67	0.230	(0.099)		
129	10.75	0.67	0.230	(0.098)	0.023	0.207
130	10.83	0.67	0.230	(0.098)	0.023	0.207
131	10.92	0.67	0.230	(0.097)	0.023	0.207
132	11.00	0.67	0.230	(0.097)	0.023	0.207
133	11.08	0.63	0.219	(0.096)	0.022	0.197
134	11.17	0.63	0.219	(0.096)	0.022	0.197
135	11.25	0.63	0.219	(0.095)	0.022	0.197
136	11.33	0.63	0.219	(0.095)	0.022	0.197
137	11.42	0.63	0.219	(0.094)	0.022	0.197
138	11.50	0.63	0.219	(0.094)	0.022	0.197
139	11.58	0.57	0.196	(0.093)	0.020	0.176
140	11.58	0.57	0.196	(0.093)	0.020	0.176
					0.020	0.176
141	11.75	0.57	0.196		0.020	0.187
142	11.83	0.60	0.207	(0.092)		
143	11.92	0.60	0.207	(0.092)	0.021	0.187
144	12.00	0.60	0.207	(0.091)	0.021	0.187
145	12.08	0.83	0.288	(0.091)	0.029	0.259
146	12.17	0.83	0.288	(0.090)	0.029	0.259
147	12.25	0.83	0.288	(0.090)	0.029	0.259
148	12.33	0.87	0.300	(0.089)	0.030	0.270
149	12.42	0.87	0.300	(0.089)	0.030	0.270
150	12.50	0.87	0.300	(0.088)	0.030	0.270
151	12.58	0.93	0.323	(0.088)	0.032	0.290
152	12.67	0.93	0.323	(0.087)	0.032	0.290
153	12.75	0.93	0.323	(0.087)	0.032	0.290
154	12.83	0.97	0.334	(0.087)	0.033	0.301
155	12.92	0.97	0.334	(0.086)	0.033	0.301
156	13.00	0.97	0.334	(0.086)	0.033	0.301
	13.08	1.13	0.392	(0.085)	0.039	0.353
157				000	0.039	0.353
158	13.17	1.13	0.392	100 C 000 C	0.039	0.353
159	13.25	1.13	0.392	(0.084)		
160	13.33	1.13	0.392	(0.084)	0.039	0.353
161	13.42	1.13	0.392	(0.084)	0.039	0.353
162	13.50	1.13	0.392	(0.083)	0.039	0.353
163	13.58	0.77	0.265	(0.083)	0.027	0.239
164	13.67	0.77	0.265	(0.082)	0.027	0.239
165	13.75	0.77	0.265	(0.082)	0.027	0.239
166	13.83	0.77	0.265	(0.081)	0.027	0.239
167	13,92	0.77	0.265	(0.081)	0.027	0.239
168	14.00	0.77	0.265	(0.081)	0.027	0.239
169	14.08	0.90	0.311	(0.080)	0.031	0.280
170	14.17	0.90	0.311	(0.080)	0.031	0.280
171	14.25	0.90	0.311	(0.079)	0.031	0.280
172	14.33	0.87	0.300	(0.079)	0.030	0.270
173	14.42	0.87	0.300	(0.079)	0.030	0.270
174	14.50	0.87	0.300	(0.078)	0.030	0.270
175	14.50	0.87	0.300	(0.078)	0.030	0.270
				(0.077)	0.030	0.270
176	14.67	0.87	0.300			
177	14.75	0.87	0.300	(0.077)	0.030	0.270
178	14.83	0.83	0.288	(0.077)	0.029	0.259
179	14.92	0.83	0.288	(0.076)	0.029	0.259
180	15.00	0.83	0.288	(0.076)	0.029	0.259
181	15.08	0.80	0.277	(0.075)	0.028	0.249
182	15.17	0.80	0.277	(0.075)	0.028	0.249
183	15.25	0.80	0.277	(0.075)	0.028	0.249
184	15.33	0.77	0.265	(0.074)	0.027	0.239
185	15.42	0.77	0.265	(0.074)	0.027	0.239
186	15.50	0.77	0.265	(0.073)	0.027	0.239
187	15.58	0.63	0.219	(0.073)	0.022	0.197
168	15.50	0.63	0.219	(0.073)	0.022	0.197
189	15.87	0.63	0.219	(0.072)	0.022	0.197
			0.219	(0.072)	0.022	0.197
190	15.83	0.63	0.219	(0.072)	0.022	0.197
191	15.92		0.219	(0.071)	0.022	0.197
192	16.00	0.63		(0.071)	0.022	0.041
193	16.08	0.13	0.046	V V V / 1 /	0.005	A. 041

				at 522 T		
194	16.17	0.13	0.046	(0.071)	0.005	0.041
195 196	16.25 16.33	0.13	0.046	(0.070) (0.070)	0.005	0.041 0.041
197	16.33	0.13	0.046	(0.069)	0.005	0.041
198	16.50	0.13	0.046	(0.069)	0.005	0.041
199	16.58	0.10	0.035	(0.069)	0.003	0.031
200	16.67	0.10	0.035	(0.068)	0.003	0.031
201	16.75	0.10	0.035	(0.068)	0.003	0.031
202	16.83	0.10	0.035	(0.068)	0.003	0.031
203	16.92	0.10	0.035	(0.067)	0.003	0.031
204	17.00	0.10	0.035	(0.067)	0.003	0.031
205	17.08	0.17	0.058	(0.067)	0.006	0.052
206 207	17.17 17.25	0.17	0.058	(0.066) (0.066)	0.006	0.052 0.052
207	17.33	0.17	0.058	(0.066)	0.006	0.052
209	17.42	0.17	0.058	(0.065)	0.006	0.052
210	17.50	0.17	0.058	(0.065)	0.006	0.052
211	17.58	0.17	0.058	(0.065)	0.006	0.052
212	17.67	0.17	0.058	(0.064)	0.006	0.052
213	17.75	0.17	0.058	(0.064)	0.006	0.052
214	17.83	0.13	0.046	(0.064)	0.005	0.041
215	17.92	0.13	0.046	(0.063)	0.005	0.041 0.041
216 217	18.00 18.08	0.13	0.046	(0.063) (0.063)	0.005	0.041
218	18.08	0.13	0.046	(0.063)	0.005	0.041
219	18.25	0.13	0.046	(0.062)	0.005	0.041
220	18.33	0.13	0.046	(0.062)	0.005	0.041
221	18.42	0.13	0.046	(0.062)	0.005	0.041
222	18.50	0.13	0.046	(0.061)	0.005	0.041
223	18.58	0.10	0.035	(0.061)	0.003	0.031
224	18.67	0.10	0.035	(0.061)	0.003	0.031 0.031
225 226	18.75 18.83	0.10	0.035	(0.060)	0.003	0.031
220	18.92	0.07	0.023	(0.060)	0.002	0.021
228	19.00	0.07	0.023	(0.060)	0.002	0.021
229	19.08	0.10	0.035	(0.059)	0.003	0.031
230	19.17	0.10	0.035	(0.059)	0.003	0.031
231	19.25	0.10	0.035	(0.059)	0.003	0.031
232	19.33	0.13	0.046	(0.058)	0.005	0.041
233	19.42	0.13	0.046	(0.058)	0.005	0.041
234	19.50 19.58	0.13	0.046	(0.058) (0.058)	0.005	0.041 0.031
235 236	19.58	0.10	0.035	(0.057)	0.003	0.031
237	19.75	0.10	0.035	(0.057)	0.003	0.031
238	19.83	0.07	0.023	(0.057)	0.002	0.021
239	19.92	0.07	0.023	(0.057)	0.002	0.021
240	20.00	0.07	0.023	(0.056)	0.002	0.021
241	20.08	0.10	0.035	(0.056)	0.003	0.031
242	20.17	0.10	0.035	(0.056)	0.003	0.031
243 244	20.25 20.33	0.10	0.035	(0.056) (0.055)	0.003	0.031
244	20.33	0.10	0.035	(0.055)	0.003	0.031
246	20.50	0.10	0.035	(0.055)	0.003	0.031
247	20.58	0.10	0.035	(0.055)	0.003	0.031
248	20.67	0.10	0.035	(0.054)	0.003	0.031
249	20.75	0.10	0.035	(0.054)	0.003	0.031
250	20.83	0.07	0.023	(0.054)	0.002	0.021
251	20.92	0.07	0.023	(0.054)	0.002	0.021 0.021
252 253	21.00 21.08	0.07	0.023	(0.054)	0.002	0.021
254	21.17	0.10	0.035	(0.053)	0.003	0.031
255	21.25	0.10	0.035	(0.053)	0.003	0.031
256	21.33	0.07	0.023	(0.053)	0.002	0.021
257	21.42	0.07	0.023	(0.053)	0.002	0.021
258	21.50	0.07	0.023	(0.052)	0.002	0.021
259	21.58	0.10	0.035	(0.052)	0.003 0.003	0.031 0.031
260 261	21.67 21.75	0.10	0.035	(0.052)	0.003	0.031
261	21.83	0.07	0.023	(0.052)	0.002	0.021
263	21.92	0.07	0.023	(0.051)	0.002	0.021
264	22.00	0.07	0.023	(0.051)	0.002	0.021
265	22.08	0.10	0.035	(0.051)	0.003	0.031
266	22.17	0.10	0.035	(0.051)	0.003	0.031
267	22.25 22.33	0.10 0.07	0.035	(0.051) (0.051)	0.003 0.002	0.031 0.021
268 269	22.33	0.07	0.023	(0.050)	0.002	0.021
270	22.50	0.07	0.023	(0.050)	0.002	0.021
271	22.58	0.07	0.023	(0.050)	0.002	0.021
272	22.67	0.07	0.023	(0.050)	0.002	0.021
273	22.75	0.07	0.023	(0.050)	0.002	0.021
274	22.83	0.07	0.023	(0.050)	0.002	0.021
275	22.92	0.07	0.023	(0.050)	0.002	0.021
276 277	23.00 23.08	0.07	0.023	(0.049) (0.049)	0.002	0.021 0.021
278	23.08	0.07	0.023	(0.049)	0.002	0.021
279	23.25	0.07	0.023	(0.049)	0.002	0.021
280	23.33	0.07	0.023	(0.049)	0.002	0.021
281	23.42	0.07	0.023	(0.049)	0.002	0.021
282	23.50	0.07	0.023	(0.049)	0.002	0.021
283	23.58	0.07	0.023	(0.049)	0.002	0.021
284	23.67	0.07	0.023	(0.049) (0.049)	0.002	0.021 0.021
285 286	23.75 23.83	0.07	0.023	(0.049) (0.049)	0.002	0.021
287	23.83	0.07	0.023	(0.049)	0.002	0.021
288	24.00	0.07	0.023	(0.049)	0.002	0.021
		(Loss	Rate Not Use			
	Sum =	100.0			Sum =	31.1
			Effective ra			
	cime	s area	69.7(AC.)/	'[(In)/(Ft.)] =	15.0(Ac.)
						Page 4

T = = +		= 7 of this h +++++++++ 24 - u n o f	2839.7 Cubi hydrograph = ++++++++++ H O U R f H y	c Feet 24 ********* S T O R I d r o g	668 (CFS) +++++++++ M r a p h		+++++
	m) Volume Ac.Ft					22.5	30.0
0+ 5 0+10		0.30	vo				1
0 + 15	0.0175	1.23	VQ				
0+20	0.0276	1.48	VQ		+		
0+25 0+30	0.0406	1.48 1.89 2.03	V Q V O		-	1	
0+35	0.0691	2.10	V U I		1 I	i	1
0 + 40	0.0839	2.15	VQ		1	1	1
0+45		2.17	V Q V O			12	
0+50 0+55	0.1334	2.69	võ		1		1
1+ 0	102	2.80	V Q		1	1	1
1+ 5		2.70			1		- 1
1+10 1+15		2.37	V Q V Q				
1+20	0 2187	2.24			1		
1+25	0.2340	2.22					
1+30 1+35	0.2492	2.20					
1+35 1+40		2.19			1	1	1
1+45	0.2944	2.19	VQ				
1+50 1+55		2.34 2.69					
1+35 2+ 0		2.80			1	1	1
2+ 5	0.3679	2.85	VQ		1	1	
2+10 2+15		2.88			1		
2+13		2.90	1		1	1	
2+25		2.91	VQ				
2+30 2+35		2.91 3.06	V Q V Q		1		
2+40	0.5124	3.42	VQ				
2+45		3.53	V Q				
2+50 2+55		3.58 3.60	V Q V Q				
3+ 0		3.62	VQ		1		
3+ 5		3.63	V Q		1		
3+10 3+15		3.64	V Q V Q		1		
3+20		3.64	V Q		1	1	1
3+25	0.7365	3.64	VQ		1		
3+30 3+35	0.7616 0.7867	3.64	V Q V Q			1	
3+40	0.8117	3.64	VQ		1		
3+45	0.8368	3.64	VQ				
3+50 3+55	0.8629 0.8915	3.79 4.15	V Q V Q				
4+ 0	0.9208	4.26	VQ		1		
4+ 5	0.9505	4.31	V Q				
4+10 4+15	0.9803 1.0103	4.33	V Q V Q		1	1	1
4+20	1.0413	4.51	V Q		1		1
4+25	1.0749	4.88	V Q				
4+30 4+35	1.1092 1.1439	4.98	V Q V Q		1	1	
4+40	1.1788	5.06	VQ		1		1
4+45	1.2138	5.08	VQ				3
4+50 4+55	1.2498 1.2884	5.24	V Q V Q		-		
5+ 0	1.3278	5.71	V Q		1		
5+ 5	1.3654	5.46	V Q				
5+10 5+15	1.3983 1.4299	4.78	V Q V Q				
5+15	1.4618	4.64	V Q		1		
5+25	1.4959	4.95	VQ		1		
5+30	1.5305	5.02	V Q V Q				
5+35 5+40	1.5663 1.6047	5.20	V Q V Q		1	1	1
5+45	1.6439	5.69	V Q				
5+50	1.6835	5.75	V Q				
5+55 6+ 0	1.7234	5.79	V Q V Q				
6+ 0 6+ 5	1.7634 1.8045	5.81	V Q V Q		1	1	
6+10	1.8481	6.33	v Q		1	1	1
6+15	1.8924	6.44	VQ		1	1	1
6+20	1,9371	6.49					
6+25 6+30	1.9820 2.0271	6.52			1		
6+35	2.0732	6.70	V Q				
6+40	2.1218 2.1712	7.06	V Q		1		
6+45		7.17	V Q				

6+55	2.2708	7.25	V Q
7+ 0	2.3208	7.26	V Q
7+ 5	2.3709	7.28	V Q
7+10 7+15	2.4211 2.4713	7.28 7.28	
7+20	2.5225	7.43	V Q
7+25	2.5761	7.79	võ
7+30	2,6305	7.90	VQ
7+35	2,6863	8.10	VQ
7+40	2.7447	8.48	V Q
7+45	2.8039	8.61	
7+50 7+55	2.8647 2.9281	8.82 9.21	
8+ 0	2.9281	9.34	V Q
8+ 5	3.0592	9.70	V Q
8+10	3.1311	10.44	VQ
8+15	3.2046	10.68	V Q
8+20	3.2789	10.79	VQ
8+25	3.3536	10.85	
8+30 8+35	3.4286 3.5048	10.89 11.06	V Q V Q
8+40	3.5835	11.43	V Q
8+45	3.6630	11.54	v Q
8+50	3.7438	11,74	V Q V
8+55	3.8273	12.12	V Q
9+ 0	3.9117	12.25	V Q
9+ 5	3.9985	12.61	
9+10	4.0905 4.1841	13.35 13.59	v Q
9+15 9+20	4.2795	13.85	v Q
9+25	4.3778	14.27	V Q
9+30	4.4770	14.41	
9+35	4.5778	14.64	
9+40	4.6814	15.04	V Q
9+45	4.7858	15.16	V Q V Q
9+50 9+55	4.8917 5.0002	15.37 15.76	
10+ 0	5.1097	15.89	v Q
10+ 5	5.2123	14.90	V Q
10+10	5.2981	12.45	V Q I
10+15	5.3787	11.71	VQ
10+20	5.4570	11.37	VQ
10+25	5.5341	11.19	Q
10+30 10+35	5.6102 5.6911	11.06 11.74	Q
10+35	5.7837	13.45	νο
10+45	5.8801	14.00	VQ
10+50	5.9782	14.24	
10+55	6.0772	14.38	V Q
11+ 0	6.1769	14.47	V Q
11+5	6.2759	14.37	V Q
11+10 11+15	6.3728 6.4689	14.06 13.95	
11+20	6.5646	13.90	VQ
11+25	6.6602	13.88	vo
11+30	6.7556	13.86	VQ VQ
11+35	6.8489	13.55	Q
11+40	6.9373	12.83	QV
11+45 11+50	7.0242 7.1114	12.61 12.66	
11+55	7.2006	12.96	Q V
12+ 0	7.2904	13.04	õ v l
12+ 5	7.3876	14.11	
12+10	7.5020	16.61	V Q
12+15	7.6217	17.39	V Q V Q
12+20 12+25	7.7450 7.8721	$17.90 \\ 18.45$	1. I
12+30	8.0008	18.69	V Q
12+35	8.1324	19.11	V Q
12+40	8.2696	19.91	
12+45	8.4083	20.15	1 1 ~ 1
12+50 12+55	8.5488 8.6923	20.41 20.83	
13+ 0	8.8367	20.83	v Q
13+ 5	8.9868	21.79	V Q
13+10	9.1494	23.61	V Q
13+15	9.3159	24.17	
13+20	9.4841	24.43	
13+25 13+30	9.6534	24.58	
13+30 13+35	9.8233 9.9822	24.67 23.07	V Q
13+40	10.1145	19.21	QV
13+45	10.2386	18.01	QV
13+50	10.3589	17,47	QV
13+55	10.4771	17.16	Q V
14 + 0	10.5939	16.97	
14+ 5 14+10	10.7141	17.45 18.77	
14+10 14+15	10.8434 10.9757	19.21	
14+20	11.1083	19.26	Q V
14+25	11.2392	19.01	Q V
14+30	11.3699	18.98	Q V
14+35	11.5006	18.97	
14+40 14+45	11.6312	18.98 18.96	
14+45 14+50	11.7618 11.8913	18.96 18.80	
14+55	12.0182	18.43	QV
15+ 0	12.1444	18.32	QV
15+ 5	12.2692	18.12	V Q V
			Page 6

	15+10 15+15 15+20 15+25 15+30 15+35 15+40	12.3914 12.5127 12.6326 12.7498 12.8661 12.9778 13.0796	17.74 17.62 17.41 17.01 16.89 16.23 14.77			V V V V V V V
16. 0 13,4575 13,22 0 0 16. 5 13,5476 11,62 0 0 16.4,20 13,4596 6.27 0 0 16.4,22 13,4223 4.33 0 0 16.4,22 13,4733 3.47 0 0 16.4,20 13,4743 2.90 0 0 16.4,30 13,7478 2.90 0 0 16.4,40 13,7478 2.90 0 0 17.4 13,7938 2.20 0 0 17.4 13,829 3.19 0 0 17.4 13,829 3.19 0 0 17.4 13,829 3.19 0 0 17.4 13,855 3.41 0 0 17.4 13,855 3.42 0 0 17.4 13,855 3.42 0 0 17.4 13,855 3.42 0 0 17.4 13,856 3.42 0 0 17.4 13,856 3.42 0 0 17.4 13,856 3.44 0 0 17.4 13,856 3.44 0	15+50	13.2753	14.11		Q	v
16:10 13:5908 6:27 Q V 16:420 13:6227 4:63 Q V 16:420 13:6244 3:89 Q V 16:435 13:6914 3:20 Q V 16:435 13:7319 2:41 Q V 16:445 13:7478 2:30 Q V 16:455 13:7786 2:22 Q V V 16:455 13:7786 2:22 Q V V 17:4<0	16+ 0	13.4675	13.92		Q	v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16+10	13.5908	6.27		v	v i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16+20	13.6494	3.89	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16+30	13.6954	3.21	Q		v
16+50 13,7633 2.25 0 V 17+5 13,7786 2.22 0 V 17+5 13,8109 0 V 17+5 13,8109 0 V 17+15 13,8228 3.19 0 V 17+20 13,8056 3.51 0 V 17+45 13,9300 3.60 0 V 17+45 13,9500 3.62 0 V 17+45 14,052 3.64 0 V 17+45 14,052 3.64 0 V 17+45 14,052 2.98 0 V 17+55 14,052 2.98 0 V 18+5 14,022 2.93 0 V 18+5 14,022 2.91 0 V 18+20 14,1230 2.91 0 V 18+45 14,2246 2.41 0 V 18+45 14,2246 2.41 0 V 18+45 14,2244 2.00 V	16+40	13.7319	2.41	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16+50	13.7633	2.25	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17+ 0	13.7938	2.20	Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17+10	13.8329		Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17+45	14.0052	3.64	Q		v
18+5 14.0922 2.98 0 V 18+10 14.1127 2.93 0 V 18+25 14.1528 2.92 0 V 18+26 14.1528 2.92 0 V 18+30 14.1520 2.91 0 V 18+35 14.2200 2.76 0 V 18+35 14.2200 2.76 0 V 18+45 14.2244 2.30 0 V 18+45 14.2244 2.30 0 V 18+55 14.2707 1.72 Q V V 19+5 14.2932 1.68 Q V V 19+15 14.3214 2.09 Q V V 19+21 14.3554 2.65 Q V V 19+25 14.3554 2.69 Q V V 19+35 14.43930 2.99 Q V V 19+45 14.4251 2.28 Q V V 19+45 14.	17+55	14.0508	3.14	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18+ 5	14.0922	2.98	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18+15	14.1327	2.93	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18+25	14.1729	2.91	Q		v v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18+35	14.2120	2.76	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18+45	14.2444	2.30	Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14.2707		Q		1 V 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0		v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19+20	14.3371	2.28	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+30	14.3745	2.78	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+40	14.4094	2.37	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+50	14.4395	2.09	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+ 0	14.4623	1.59	Q		v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20+10	14.4876	2.00	Q		v v v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+20	14.5167	2.13	Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+30	14.5464	2.17	Q		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+55	14.6170	1.68	Q		v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+ 5	14.6394	1.67	Q		v v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+15	14.6675	2.09	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21+25	14.6925	1,64	Q		v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+35	14.7146	1.66	Q		v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+45	14.7428	2.09	Q		v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+55	14.7677	1.64	Q		v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22+20	14.8317	1.98	Q		v
22+40 14.8744 1.49 Q V 22+45 14.8845 1.48 Q V 22+50 14.8946 1.47 Q V 22+55 14.9047 1.46 Q V 23+0 14.9147 1.46 Q V 23+10 14.9247 1.46 Q V 23+15 14.9248 1.46 Q V 23+15 14.9548 1.46 Q V	22+30	14,8537	1.55	Q		v
22+50 14.8946 1.47 Q V 22+55 14.9047 1.46 Q V 23+0 14.9147 1.46 Q V 23+5 14.9247 1.46 Q V 23+10 14.9348 1.46 Q V 23+15 14.9448 1.46 Q V 23+20 14.9548 1.46 Q V	22+40	14.8744	1,49	Q		v
23+ 0 14.9147 1.46 Q V 23+ 5 14.9247 1.46 Q V 23+10 14.9348 1.46 Q V 23+15 14.9448 1.46 Q V 23+20 14.9548 1.46 Q V	22+50	14.8946	1.47	Q		v
23+10 14.9348 1.46 Q V 23+15 14.9448 1.46 Q V 23+20 14.9548 1.46 Q V	23+ 0	14.9147	1.46	0		v
23+20 14.9548 1.46 Q V	23+10	14.9348	1.46	Q		v
						v

1	1	Q	1.46	14.9649	23+25
1	1	0	1.46	14.9749	23+30
1	1	Q 1	1.46	14.9849	23+35
1	1	Q	1.46	14.9950	23+40
	1	Q	1.46	15.0050	23+45
1 1	1	0	1.46	15.0150	23+50
1 1	1	Q	1.46	15.0251	23+55
1	1	0	1.46	15.0351	24+ 0
1		Q	1.16	15.0431	24+ 5
1		Q I	0.45	15.0461	24+10
1 1	1	Q I	0.23	15.0477	24+15
1	1	Q I	0.13	15.0486	24+20
1 1	1	Q I	0.07	15.0491	24+25
1 1	1	Q	0.04	15.0494	24+30
1	1	Q	0.02	15.0495	24+35

```
Unit Hydrograph Analysis
             Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                           Study date 02/13/20 File: 3828PR1001100.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6400
         _____
 English (in-1b) Input Units Used
 English Rainfall Data (Inches) Input Values Used
 English Units used in output format
nage Area = 69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area =
                                                                                          69.65(Ac.) = 0.109 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 69.65(Ac.) =
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in elevation = 44.00/Ft.
Drainage Area for Depth-Area Areal Adjustment =
Difference in elevation = 44.00 (Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
Lag time = 0.080 Hr.
Lag time = 4.78 Min.
25% of lag time = 1.19 Min.

25% of lag time = 1.91 Min.

Unit time = 5.00 Min.

Duration of storm = 1 Hour(s)

User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
                         Rainfall(In)[2] Weighting[1*2]
Area(Ac.)[1]
                                        0.50
                                                                               34.83
            69.65
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 1.20 83.58
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.500(In)
Area Averaged 100-Year Rainfall = 1.200(I
                                                               1.200(In)
Point rain (area averaged) = 1.200(In)
Areal adjustment factor = 99.94 %
Adjusted average point rain = 1.199(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-3
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        74.8
        0.305
        0.900
        0.058
        1.000
        0.058

        Sum
        (F)
        =
        0.058
        1.000
        0.058

Area averaged mean soil loss (F) (In/Hr) = 0.058
Minimum soil loss rate ((In/Hr)) = 0.029
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.100
Slope of intensity-duration curve for a 1 hour storm =0.5000
                           Unit Hydrograph
VALLEY S-Curve
 _____
                                                            Unit Hydrograph Data
 -----
                                                              Unit time period Time % of lag Distribution Unit Hydrograph (Drs) (CFS)
   (hrs) Graph % (CFS)

        1
        0.083
        104.614
        20.612
        14.469

        2
        0.167
        209.229
        48.679
        34.170

        3
        0.250
        313.843
        14.978
        10.514

        4
        0.333
        418.458
        6.821
        4.788

        5
        0.417
        523.072
        3.802
        2.669

        6
        0.500
        627.687
        2.435
        1.709

        7
        0.583
        732.301
        1.462
        1.026

        8
        0.667
        836.916
        1.210
        0.849

        Sum = 100.000
        Sum=
        70.194
```

......

Unit	Time	Pattern Percent			rate(In./Hr) LOW	Effectiv (In/Hr)	re
-								546
1	0.08	4,20	0.604		058	(0.060)		546
2	0.17	4.30	0.619		058	(0.062)		561
3	0.25	5.00	0.720	0.	058	(0.072)		662
4	0.33	5.00	0.720	0.0	058	(0.072)	0.	662
5	0.42	5.80	0.835	0.4	058	(0.083)	0.	777
6	0.50	6.50	0.935	0.0	058	(0.094)	0.	877
7	0.58	7.40	1,065	0.1	058	(0.106)	1.	007
8	0.67	8.60	1.238		058	(0.124)		180
	0.75	12.30	1.770		058	(0.177)		712
-	0.83	29.10	4.188		058	(0.419)		130
								921
11	0.92	6.80	0,979		058	(0.098)		
12	1.00	5.00	0.720		058	(0.072)	0.	662
			Rate Not Use	d)				
Su	1m =	100.0					= 13.7	
			Effective ra					
	time	s area	69.7(Ac.)/	[(In)/(F	t.)] =	6.6	(Ac.Ft)	
			= 0.06					
	Total	soil loss	= 0.337	(Ac.Ft)				
		rainfall		In)				
			288535.		Feet			
		soil loss		68.8 Cub		+		
			= T40					
			of this hyd					
		*****	+++++++++++++ 1 - H O R u n o f f	UR H Y	+++++ 5 T O	++++++++++ R M	******	+++++++
		**********	++++++++++++++++++++++++++++++++++++++	UR Hy	++++++ 5 T O d r o	++++++++++ R M g r a p h	**********	+++++++
	+++++ (h+m) V	++++++++ Hyd olume Ac.F	1 - H O R u n o f f rograph in t Q(CFS)	UR 2 UR 2 5 Minu 0 2	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
	+++++ (h+m) V	+++++++++ Hyd olume Ac.F	1 - H O R u n o f f rograph in t Q(CFS)	UR 2 UR 2 5 Minu 0 2	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((CFS)) 150.0	200.
0+	+++++ (h+m) V 5	+++++++++ Hyd olume Ac.F 0.0545	1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ	U R 4 H y 5 Min 0 9	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1	++++++ (h+m) V 5 L0	+++++++++ Hyd olume Ac.F 0.0545 0.2390	1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V	0	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+1	++++++ (h+m) V 5 L0 L5	+++++++++ Hyd olume Ac.F 0.0545 0.2390 0.4766	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 </pre>	UR Hy 5 Minu 0 9 V Q	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+1 0+2	+++++ (h+m) V 5 LO L5 20	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570	+++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 V 40.71	UR Hy 5 Min 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+1 0+2 0+2	++++++ (h+m) V 5 L0 L5 20 25	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666	<pre>++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 40.71 44.96 </pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+1 0+2 0+2 0+3	++++++ (h+m) V 5 10 15 20 25 30	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235	<pre>++++++++++++++++++++++++++++++++++++</pre>	UR Hy 5 Min 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+++++++ S T O d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+1 0+2 0+2 0+3 0+3	++++++ (h+m) V 5 L0 L5 20 25 30 35	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312	<pre>++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 V 40.71 V 44.96 51.81 V 59.20 V</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r o ute in 50.0	++++++++++ R M g r a p h tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4	++++++ (h+m) V 5 L0 L5 20 22 30 35 10	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022	<pre>++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 40.71 44.96 51.81 59.20 68.39</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	tervals ((CFS)) 150.0	200.
0+ 0+1 0+1 0+2 0+2 0+3 0+3	++++++ (h+m) V 5 L0 L5 20 22 30 35 10	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 [V 34.50 40.71 44.96 51.81 59.20 68.39 84.27</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	graph tervals ((100.0	CFS)) 150.0	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4	++++++ (h+m) V 5 L0 L5 20 25 30 35 40 45	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022	<pre>++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 40.71 44.96 51.81 59.20 68.39</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	tervals ((CFS))	200.
0+ 0+1 0+2 0+2 0+2 0+3 0+3 0+4 0+4	++++++ (h+m) V 5 L0 L5 20 25 30 35 40 45 50	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 [V 34.50 40.71 44.96 51.81 59.20 68.39 84.27</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	graph tervals ((100.0	CFS))	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+4 0+4	++++++ (h+m) V 5 10 15 20 25 30 35 10 15 50 55	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 [V 34.50 [40.71] 44.96 51.81 [59.20 [68.39] 84.27] 140.46 [</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	graph tervals ((100.0	CFS))	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+4 0+4 0+5 0+5	++++++ (h+m) V 5 L0 L5 20 25 30 35 40 45 55 0	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152	<pre>++++++++++++++++++++++++++++++++++++</pre>	UR HY 5 Min 0 2 VQ VQ VQ VQ	+++++++ s T 0 d r 0 ute in 50.0	QV V	CFS)) 150.0	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+4 0+4 0+5 0+5 1+ 1+	++++++ (h+m) V 5 L0 L5 20 25 30 35 5 5 5 5 5 5 5 5 5 5	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142	<pre>++++++++++++++++++++++++++++++++++++</pre>	V Q V Q V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+4 0+5 0+5 1+ 1+ 1+1	++++++ (h+m) V 5 10 25 20 25 30 35 50 55 0 5 5 10 0 5 5 10	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142 6.4028	<pre>++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 4 40.71 4 44.96 51.81 59.20 6 68.39 84.27 140.46 183.72 99.12 60.45 27.39</pre>	V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200.
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+5 0+5 1+ 1+ 1+1 1+1	++++++ (h+m) V 5 10 15 20 25 30 35 10 15 55 0 55 10 15 55 10 15 55 10 15 55 10 15 55 10 15 55 10 15 55 10 15 55 10 15 55 10 15 15 15 15 15 15 15 15 15 15 15 15 15	Hyd Hyd 0lume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142 6.4028 6.5092	<pre>++++++++++ 1 - H C R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 V 34.50 4 40.71 44.96 51.81 59.20 68.39 84.27 140.46 183.72 99.12 60.45 27.39 15.45</pre>	V Q V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200. 200. V V V V
0+ 0+1 0+2 0+2 0+3 0+3 0+4 0+4 0+5 0+5 1+ 1+ 1+1 1+1 1+2	++++++ (h+m) V 5 L0 L5 20 25 30 35 40 45 55 0 55 0 55 20 25 25 20 25 20 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142 6.4028 6.5092 6.5715	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 [V 34.50 40.71 44.96 51.81 59.20 68.39 84.27 140.46 183.72 99.12 60.45 27.39 15.45 9.04 [Q</pre>	V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200. 200. V V V V
0+ 0+1 0+2 0+2 0+3 0+3 0+3 0+4 0+5 0+5 1+ 1+ 1+1 1+1 1+2 1+2	++++++ (h+m) V 5 L0 L5 225 300 35 5 5 5 5 5 5 10 25 5 10 25 20 25	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142 6.4028 6.5092 6.5715 6.6099	<pre>++++++++++++++++++++++++++++++++++++</pre>	V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200. 200. V V V V V
0+ 0+1 0+2 0+2 0+3 0+3 0+3 0+4 0+4 0+5 0+5 1+ 1+ 1+1 1+1 1+2	++++++ (h+m) V 5 10 15 20 25 30 35 40 45 50 55 10 15 20 25 20 25 20 25 20	Hyd olume Ac.F 0.0545 0.2390 0.4766 0.7570 1.0666 1.4235 1.8312 2.3022 2.8825 3.8499 5.1152 5.7978 6.2142 6.4028 6.5092 6.5715	<pre>+++++++++++ 1 - H O R u n o f f rograph in t Q(CFS) 7.91 VQ 26.80 [V 34.50 40.71 44.96 51.81 59.20 68.39 84.27 140.46 183.72 99.12 60.45 27.39 15.45 9.04 [Q</pre>	V Q V Q V Q V Q V Q V Q V Q	2 Q Q Q	QV V	CFS)) 150.0	200. 200. V V V V

```
Unit Hydrograph Analysis
                      Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                                  Study date 02/13/20 File: 3828PR1003100.out
           Riverside County Synthetic Unit Hydrology Method
           RCFC & WCD Manual date - April 1978
           Program License Serial Number 6400
                                    .....
            English (in-1b) Input Units Used
            English Rainfall Data (Inches) Input Values Used
            English Units used in output format
           _____
            Drainage Area =
                                    69.65(Ac.) = 0.109 Sq. Mi.
                                                                                        69.65(Ac.) = 0.109 Sq. Mi.
           Drainage Area for Depth-Area Areal Adjustment =
          Liainage Area for Depth-Area Area Adjustment = 69.65(AC.) =
Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse measured to centroid = 0.242 Mi.
           Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
          Average Manning's 'N' = 0.015
Lag time = 0.080 Hr.
Lag time = 4.78 Min.
25% of lag time = 1.19 Min.
40% of lag time = 1.91 Min.
Unit time = 5.00 Min.
           Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
           2 YEAR Area rainfall data:
                                 Rainfall(In)[2] Weighting[1*2]
           Area(Ac.)[1]
                                                                                 55.72
                     69.65
                                              0.80
           100 YEAR Area rainfall data:
           Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 1.86 129.55
                                                                           129.55
                                     1.86
           STORM EVENT (YEAR) = 100.00
           Area Averaged 2-Year Rainfall = 0.800(In)
Area Averaged 100-Year Rainfall = 1.860(I
                                                                 1.860(In)
           Point rain (area averaged) = 1.860(In)
Areal adjustment factor = 99.97 %
           Adjusted average point rain = 1.859(In)
           Sub-Area Data:
           Area (Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F

        AMC2
        AMC-3
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        74.8
        0.305
        0.900
        0.058
        1.000
        0.058

                                                                                     Sum (F) = 0.058
           Area averaged mean soil loss (F) (In/Hr) = 0.058 Minimum soil loss rate ((In/Hr)) = 0.029
           (for 24 hour storm duration)
           Soil low loss rate (decimal) = 0.100
                                                                      _____
                                  Unit Hydrograph
VALLEY S-Curve
           Unit Hydrograph Data
                                                         -----
             ------
           Unit time period Time % of lag Distribution Unit Hydrograph

        Jnit time period
(hrs)
        Time % of lag
Graph %
        Distribution
Graph %
        Unit Hydrograph
(CFS)

        1
        0.083
        104.614
        20.612
        14.469

        2
        0.167
        209.229
        48.679
        34.170

        3
        0.250
        313.843
        14.978
        10.514

        4
        0.333
        418.458
        6.821
        4.788

        5
        0.417
        523.072
        3.802
        2.669

        6
        0.500
        627.687
        2.435
        1.709

        7
        0.583
        732.301
        1.462
        1.026

        8
        0.667
        836.916
        1.210
        0.849

        Sum = 100.000
        Sum = 70.194
        50.90
        50.90

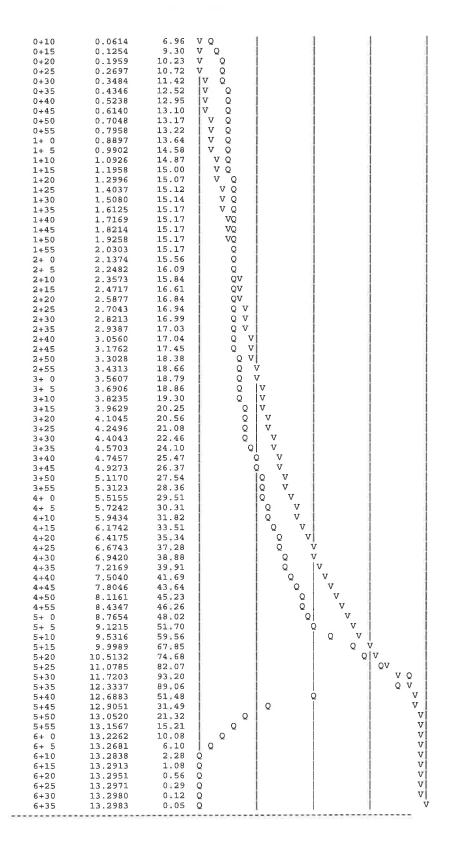
_____
```

rate	subtrac	Led LIOM I	Line Storin Ra	1111 L	o pro	uuce	CHE	Maximum	FILECCIVE KAIN VAL
Unit	. Time	Pattern	Storm Rain	1	Loss	rate	e(In.	/Hr)	Effective
	(Hr.)	Percent	(In/Hr)		Max	- H	LC	W	(In/Hr)
1	0.08	1.30	0.290		(0.			0.029	
2 3	0.17	1.30 1.10	0.290 0.245 0.335		(0.	1.5		0.025	
4	0.33	1.50	0.335		(0.			0.033	0.301
5	0.42	1.50	0.335		(0.	058)		0.033	
6	0.50	1.80	0.402			058)		0.040	
7	0.58	1.80 1.50 1.80	0.335		(0.			0.033	0,301
8 9	0.67	1.80	0.402		(0. (0.			0.040	
10	0.75 0.83	1.00	0.335		ί ο.			0.033	
11	0.92	1.60	0 357		(O.			0.036	0.321
12	1.00	1.80	0.402		(0.	058)		0.040	0.361
13	1.08	2.20	0.491		(0.			0.049	0.442
14	1.17	2.20	0.491		(0.			0.049	
15 16	1.25 1.33	2.20 2.00	0.491 0.446		0.	058)		0.049	
17	1.42	2.60	0.580		(0.	058)		0.045	
18	1.50	2.70	0 602		0.	058	(0.060)	
19	1.50 1.58	2.40	0.536		0.	058)		0.054	0.482
20			0.602				(0.060)	0.544
21	1.75	3.30	0.736			058		0.074)	
22 23	1.83	3.10 2.90 3.00	0.692 0.647			058 058		0.069)	
24	2.00	3.00	0.669			058		0.067)	0.611
0.5			0.692			058		0.069)	0.634
26	2.17	4.20	0.937		Ο.	058	(0.094)	0.879
27	2.25	5.00	1.116			058		0.112)	
28	2.33	4.20 5.00 3.50 6.80	1.116 0.781 1.517			058		0.078)	0.723
29	2.42	6.80	1.517		0.	058	- 5	0.152)	1.459 1.571
30 31	2.50	7.30 B 20	1 930		0.	058	ì	0.183)	1.772
32	2.67	5.90	1.316		0.	058	ì	0.132)	1,258
33	2.75	2.00	1.316 0.446		(0.	058)	27	0.163) 0.183) 0.132) 0.045	0,402
34	2.83	7.30 8.20 5.90 2.00 1.80 1.80			(0.	058)		0.040	0.361
		1.80	0.402		(0.			0.010	0.001
36	3.00		0.134		(0.	058)		0.013	0.120
c	um =	100.0	Rate Not Us	ieu)				S11m =	20.6
			Effective 1	ainfa	all	1	. 72 (
	time	s area	69.7(Ac.)	/[(I	1)/(F				Ac.Ft)
	Total	soil loss	5 = 0.1	.4 (In	,				
	Total	soil loss	s = 0.1 s = 0.80 = 1.86	6 (Ac	.Ft)				
	Total	raintall	= 1.86	(In)					
	Flood	101000	425000		ubia (Foot			
	Flood	volume =	435000		ubic		et		
	Flood Total	volume = soil loss	435000 5 = 35	119.3	ubic L Cub	ic Fe			
	Flood Total Peak	<pre>volume = soil loss flow rate</pre>	435000 s = 35 e of this hy	drog:	ubic L Cub raph	ic Fe 	107.	482 (CFS)	
	Flood Total Peak	volume = soil loss flow rate	435000 s = 35 e of this hy	vdrog	ubic L Cub raph	ic Fe =	107.	482 (CFS)	
	Flood Total Peak	volume = soil loss flow rate	435000 5 = 35 e of this hy	119. vdrog:	ubic L Cub raph	ic Fe = +++++	107.	482 (CFS) +++++++	
	Flood Total Peak	volume = soil loss flow rate	435000 5 = 35 e of this hy ++++++++++ 3 - H	0 U 1	ubic L Cub raph +++++	ic Fe = +++++ S T C	107. ++++ R M	482 (CFS)	
	Flood Total Peak	volume = soil loss flow rate	435000 s = 35 e of this hy ++++++++++ 3 - H Runof f	vdrog: +++++ 0 U 1	ubic L Cub caph +++++ R H y	ic Fe = +++++ S T C d r	107. ++++ R M o g	482(CFS) ++++++++ r a p h	
	Flood Total Peak	volume = soil loss flow rate	435000 s = 35 e of this hy ++++++++++ 3 - H R u n o f f	vdrog: +++++ 0 U 1	ubic L Cub caph +++++ R H y	ic Fe = +++++ S T C d r	107. ++++ R M o g	482(CFS) ++++++++ r a p h	
	Flood Total Peak	volume = soil loss flow rate	435000 s = 35 e of this hy ++++++++++ 3 - H R u n o f f irograph in	119. vdrog: +++++ 0 U I 5	ubic L Cub caph +++++ R H y Min	ic Fe = +++++ S T C d r ute i	107. ++++ R M O g nter	482(CFS) ++++++++ r a p h vals ((C	++++++++++++++++++++++++++++++++++++++
Time	Flood Total Peak	<pre>volume = soil loss flow rate</pre>	435000 s = 35 e of this hy +++++++++++ 3 - H R u n o f f drograph in	3119. vdrog: ++++ 0 U 1 5	abic L Cub raph H++++ H y Min	ic Fe = +++++ S T C d r ute i	107. ++++ 0 R M 0 g .nter	482(CFS) ++++++++ r a p h vals ((C	++++++++++++++++++++++++++++++++++++++
	Flood Total Peak +++++	volume = soil loss flow rate ++++++++ Hyo plume Ac.H	435000 s = 35 e of this hy H R u n o f f drograph in Pt Q(CFS)	119. vdrog: ++++ 0 U 1 5 5	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
	Flood Total Peak +++++	volume = soil loss flow rate 	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f drograph in Ft Q(CFS)	119. vdrog: 0 U 1 5 0	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	++++++++++++++++++++++++++++++++++++++
0+	Flood Total Peak +++++	volume = soil loss flow rate ++++++++ Hyo plume Ac.H	435000 s = 35 e of this hy ++++++++++ 3 - H R u n o f f drograph in 7t Q(CFS) 3.78 Q	119. vdrog: 0 U 1 5 0	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+	Flood Total 	<pre>volume = soil loss flow rate ++++++++ Hyc clume Ac.H 0.0260 0.1135 0.2159</pre>	435000 S = 35 e of this hy H R u n o f f drograph in Pt Q(CFS) 3.78 (12.70 (14.87 ()	119.: vdrog: ++++ 0 U U 5 5 0 7 0 7 Q 7 Q	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+	Flood Total Peak +++++ 5 10 15 20	volume = soil loss flow rate Hype blume Ac.H 0.0260 0.1135 0.2159 0.3255	435000 s = 35 e of this hy H+++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 (12.70 14.87 \ 15.91	119.: vdrog: ++++ 0 U) 5 0 7 7 7 7 7 7 7 7 7 7 7 7 7	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ (h+m) Vo 5 10 15 20 25	<pre>volume = soil loss flow rate +++++++++ Hyd olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559</pre>	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f drograph in Ft Q(CFS) 3.78 Q 12.70 V 15.91 18.93	119.: 'drog: -++++ 0 U 1 	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ (h+m) Vo 5 10 15 20 25 30	<pre>volume = soil loss flow rate ++++++++ Hyd olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998</pre>	435000 s = 35 e of this hy r+++++++++ 3 - H R u n o f f drograph in Ft Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90	119.: 'drog: -++++ 0 U) 	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak ++++++ 5 10 15 20 25 30 35	volume = soil loss flow rate ++++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f drograph in Ft Q(CFS) 3.78 (C 12.70 (C 14.87 (C) 14.87 (C) 14.93 (C) 15.91 18.93 20.90 22.63	119.: rdrog: ++++ 0 U 1 5 0 7 Q V Q V Q V Q V Q V Q V Q V Q	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ (h+m) Vo 5 10 15 20 25 30	<pre>volume = soil loss flow rate ++++++++ Hyd olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998</pre>	435000 s = 35 e of this hy r+++++++++ 3 - H R u n o f f drograph in rt Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90	119.: 'drog: -++++ 0 U) 	ubic Cub raph H++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ 5 10 15 20 25 30 35 40	volume = soil loss flow rate Hyre olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103	435000 s = 35 e of this hy r+++++++++ 3 - H R u n o f f drograph in rt Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94	119. drog: 0 U 1 5 0 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q 7 Q	Abic L Cub caph H +++++ H Y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++) R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ 5 10 5 20 25 30 35 40 45 550	volume = soil loss flow rate Hyre olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970	435000 s = 35 e of this hy H+++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 (12.70 (14.87 V 14.87 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47	7 4 rog: +++++ 0 U 1 5 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	bic L Cub raph H +++++ H y Min	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	Flood Total Peak +++++ (h+m) Vo 5 10 15 20 25 30 35 40 45 50 55 0	volume = soil loss flow rate Hyd olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f lrograph in Pt Q(CFS) 3.78 (12.70 \ 14.87 \ 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23	<pre>i119. i119. idrog;</pre>	ubic Cub raph ++++++ N Min Min V V	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+	Flood Total Peak +++++ (h+m) V 5 5 10 15 20 25 30 35 40 45 55 5 0 55 5 0 55 5 0	<pre>volume = soil loss flow rate +++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345</pre>	435000 s = 35 e of this hy r++++++++++ 3 - H R u n o f f drograph in rt Q(CFS) 3.78 (12.70 \ 14.87 \ 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 2 7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	L Cub raph H y Min V V 2V	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+	Flood Total Peak ++++++ 5 10 5 15 20 25 30 35 40 45 50 55 0 5 5 10	volume = soil loss flow rate ++++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 C 12.70 C 14.87 V 14.87 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph t+++++ H y Min V V V V V V V	ic Fe = ++++++ S T C d r ute i 50.0	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+	Flood Total Peak +++++ (h+m) V 5 5 10 15 20 25 30 35 40 45 55 5 0 55 5 0 55 5 0	<pre>volume = soil loss flow rate +++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345</pre>	435000 s = 35 e of this hy r++++++++++ 3 - H R u n o f f drograph in rt Q(CFS) 3.78 (12.70 \ 14.87 \ 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	L Cub caph t+++++ H y Min V V V V V V V	<pre>ic Fe =</pre>	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+	Flood Total Peak +++++ 5 10 55 20 25 30 35 40 45 55 55 0 55 50 55 50 55 10 15	<pre>volume = soil loss flow rate +++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.5978 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546</pre>	435000 s = 35 e of this hy r++++++++++ 3 - H R u n o f f drograph in rt Q(CFS) 3.78 (12.70 \ 14.87 \ 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.81 30.44	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	L Cub caph t+++++ H y Min V V V V V V V	<pre>ic Fe =</pre>	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+	Flood Total Peak +++++ 5 10 5 20 25 30 35 40 45 55 50 55 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30	volume = soil loss flow rate Hyro olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.3970 1.5570 1.5570 1.9335 2.1396 2.3449 2.5546 2.7932	435000 s = 35 e of this hy H++++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 Q 12.70 X 14.87 X 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.81 30.44 34.65	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	L Cub caph t+++++ H y Min V V V V V V V	<pre>ic Fe =</pre>	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+	Flood Total Peak +++++ 	volume = soil loss flow rate Hyro olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f lrograph in Pt Q(CFS) 3.78 (12.70 (12.70 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.81 30.44 34.65 35.70	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	Ibic Cub raph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe =</pre>	107. +++++ N R M o g nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+	Flood Total Peak +++++ 	volume = soil loss flow rate Hyd olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.31074 1.2423 0.3970 1.5570 1.7345 2.1396 2.3449 2.5546	435000 s = 35 e of this hy r+++++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 (12.70 (14.87 (15.91 (18.93) 20.90 (22.63) 22.45 (24.26 (23.94 (23.23) 25.78 (28.89 (29.93) 29.81 (30.44 (30.44 (35.70 (35.24 ())))	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2	Ibic Cub raph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe =</pre>	107. +++++ N R M o g nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+	Flood Total Peak +++++ 	volume = soil loss flow rate Hyro olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f lrograph in Pt Q(CFS) 3.78 (12.70 (12.70 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.81 30.44 34.65 35.70	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	ic Fe = dr dr dr 50.0 	107. +++++ N R M o g nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+	Flood Total Peak ++++++ 5 (h+m) Va 5 5 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 5 5 10 15 20 25 30 35 40 45	volume = soil loss flow rata t+++++++++ Hyc olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.45598 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 (12.70 (12.70 (14.87 (15.91 (18.93 (22.45 (24.26 (23.94 (22.45 (24.26 (23.94 (22.45 (24.26 (23.94 (23.23 (25.78 (28.89 (29.93 (29.93 (29.93 (29.93 (29.93 (29.93 (29.93 (30.44 (30.44 (30.44 (30.42 (30.5 (35.70 (35.24 (39.02 (43.53 (43.03 (35.23 (35.3 (35.3 (35.3 (35.3 (35.3 (35.3 (35.3 (35.3 (35.3 (35.2 (35.3 (35.3 (35.2 (35.3 (iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	ic Fe = dr dr dr 50.0 	107. +++++ N R M o g nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+	Flood Total Peak +++++ 	volume = soil loss flow rate Hyd Dlume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.3910 3.2818 3.5506 3.8504 4.1467 4.4373	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f irograph in 7t Q(CFS) 3.78 C 12.70 V 14.87 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	ic Fe = dr dr dr 50.0 	107. +++++ R M o g nter 	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+	Flood Total Peak ++++++ 5 10 5 20 25 30 35 40 45 50 55 0 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 55	volume = soil loss flow rata Hyro olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3355 0.449 0.25816 0.32818 0.35506 0.38504 0.4497 0.4497 0.4497 0.4473 0.4467 0.44730.4473 0.4473 0.4473 0.44730.4473 0.4473 0.4473 0.44730000000000000000000000000000000000	435000 s = 35 e of this hy H++++++++ 3 - H R u n o f f irograph in R u n o f f 2.70 (CFS) 3.78 (12.70 (CFS) 3.78 (14.87 (14.87 (15.91 (14.87 (15.91 (14.87 (15.91 (14.87 (12.70 (22.63 (22.45 (23.23 (22.45 (23.24 (23.23 (23.23 (25.78 (28.89 (29.93 (29.93 (29.81 (30.44 (34.65 (35.70 (35.24 (39.02 (43.53 (42.19 (43.01 (19.01	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	ic Fe = dr dr dr 50.0 	107. +++++ R M o g .nter	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+	Flood Total Peak +++++ 5 10 5 5 10 15 20 25 30 35 40 45 50 55 5 0 55 10 15 20 25 30 35 40 45 50 55 5 0 5 5 10 15 20 25 30 35 40 45 5 5 10 15 20 25 30 35 40 45 5 5 10 15 20 25 30 35 40 45 5 5 10 10 15 20 25 30 35 40 40 45 5 5 10 10 15 20 25 30 35 40 40 45 5 5 10 10 15 20 25 30 35 40 40 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	volume = soil loss flow rate Hyre olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 5.0604	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	Jbic Cub Faph H y H y Min V 2V 2V 2V 2 V 2 V 2 V 2 V 2 V 2 V 2 V	ic Fe	107. +++++ R M o g nter 	482 (CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+ 2+	Flood Total Peak +++++ 	volume = soil loss flow rate Hyro olume Ac.F 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 4.7335 5.0604 5.4652	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. +++++ R M o g nter 	482(CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+ 2+ 2+	Flood Total Peak +++++ 5 10 5 5 10 15 20 25 30 35 40 45 50 55 5 0 55 10 15 20 25 30 35 40 45 50 55 5 0 5 5 10 15 20 25 30 35 40 45 5 5 10 15 20 25 30 35 40 45 5 5 10 15 20 25 30 35 40 45 5 5 10 10 15 20 25 30 35 40 40 45 5 5 10 10 15 20 25 30 35 40 40 45 5 5 10 10 15 20 25 30 35 40 40 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 15 20 25 30 35 40 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	volume = soil loss flow rate Hyre olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 5.0604	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	ic Fe	107. +++++ R M o g nter 	482 (CFS) ++++++++ r a p h vals ((C 100.0	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	Flood Total Peak ++++++ 5 (h+m) Va 5 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 55 5 10 15 20 25 30 35 40 45 55 5 10 15 20 25 30 35 40 45 5 5 10 15 5 20 25 30 35 40 45 5 5 10 15 5 5 10 15 5 5 10 15 5 5 10 15 5 5 10 15 5 5 10 15 5 5 5	volume = soil loss flow rata t+++++++++ Hyr olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.5978 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 4.7335 5.0604 5.4652 5.8975	435000 s = 35 e of this hy +++++++++ 3 - H R u n o f f irograph in Ft Q(CFS) 3.78 C 12.70 C 14.87 V 14.87 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. +++++ R M o g nter 	482 (CFS) ++++++++ r a p h vals ((C 100.0 100.0 V V V V V V V V V V V V V V V	150.0 200.0
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	Flood Total Peak ++++++ 5 10 55 10 25 30 35 40 45 55 55 0 55 10 15 20 25 30 35 40 45 55 55 0 55 10 15 20 25 30 35 40 45 55 50 55 10 15 20 25 25	volume = soil loss flow rata flow rata Hyr olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.5570 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 4.7335 5.0604 5.4652 5.8975 6.3455	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in rt Q(CFS) 3.78 (12.70 (14.87 V 14.87 V 14.87 V 15.91 (14.87 V 14.87 V 15.91 (14.87 V 15.91 (15.91 (14.87 V) 12.63 (22.63 (22.45 (23.94 (22.47 (23.23 (24.26 (23.94 (22.47 (23.23 (29.93 (30.44 (34.65 (35.70 (35.24 (39.02 (43.53 (43.01 (47.46 (58.78 (62.77 (65.06 ())))))))))))))))))))))))))))))))))))	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. ++++ R M o g nter 	482 (CFS)	FS))
0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	Flood Total Peak ++++++ 5 10 5 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40	volume = soil loss flow rata t+++++++++ Hyr olume Ac.H 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.3455 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 4.7335 5.0604 4.1467 5.8975 6.3455 6.9644 7.6783 8.4186	435000 s = 35 e of this hy r+++++++++ 3 - H R u n o f f irograph in rc Q(CFS) 3.78 Q 14.87 V 14.87 V 14.87 V 14.87 V 14.87 V 14.87 V 14.87 V 14.87 V 15.91 1 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77 65.06 89.86 107.48	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub caph H y Min V V V V V V V V V V V V V V V V V V V	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. The R M o g nter v v v v v v v v	482 (CFS) ++++++++ r a p h vals ((C 100.0 100.0 V V V V V V V V	V V V V V
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	Flood Total Peak ++++++ 5 10 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5	volume = soil loss flow rata flow rata Hyr olume Ac.F 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 5.0604 5.4652 5.8975 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455 6.3455	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in R u n o f f 2.70 V 15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77 65.06 89.86 103.66 107.48 81.97	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	L Cub raph H +++++ H y Min Min 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. ++++ R M o g nter 	482 (CFS)	V V V V
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	Flood Total Peak +++++ e(h+m) Va 	volume = soil loss flow rate Hyro 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 0.79103 1.0774 1.2423 1.3970 1.5570 1.7345 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 5.0604 5.4652 5.8975 6.3455 6.9644 7.6783 8.4186 8.9831 9.3207	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.93 29.81 30.44 34.65 35.70 35.24 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77 65.06 89.86 103.66 107.48 81.97 49.02	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	A provide the second se	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. The R M o g nter v v v v v v v v	482 (CFS)	V V V V V V V
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	Flood Total Peak ++++++ 5 10 5 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 5 10 55 5 5 5 5 5 5 5 5 5 5 5 5	volume = soil loss flow rata flow rata Hyr 0.0260 0.1135 0.2159 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.3255 0.4559 0.5978 0.7557 0.9103 1.0774 1.2423 1.3970 1.5570 1.7345 1.9335 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 4.7335 5.0604 5.8954 5.8975 6.3455 5.8975 6.3455 5.9644 7.6783 8.4186 8.9831 9.3207 9.5781	435000 s = 3 e of this hy ++++++++++ 3 - H R u n o f f irograph in R u n o f f 2.70 (CFS) 3.78 (C 12.70 (CFS) 3.78 (C 14.87 (C 14.87 (C) 14.87 (C) 14.87 (C) 14.87 (C) 14.87 (C) 14.87 (C) 23.94 22.43 25.78 28.89 29.93 29.81 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77 65.06 89.86 103.66 107.48 81.97 49.02 37.37	119. drog: 5 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7	Jbic Cub Faph H y H y Win Min Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. The R M o g nter v v v v v v v v	482 (CFS)	V V V V
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	Flood Total Peak +++++ e(h+m) Va 	volume = soil loss flow rate Hyro 0.0260 0.1135 0.2159 0.3255 0.4559 0.5998 0.7557 0.9103 1.0774 1.2423 0.79103 1.0774 1.2423 1.3970 1.5570 1.7345 2.1396 2.3449 2.5546 2.7932 3.0391 3.2818 3.5506 3.8504 4.1467 4.4373 5.0604 5.4652 5.8975 6.3455 6.9644 7.6783 8.4186 8.9831 9.3207	435000 s = 35 e of this hy r++++++++ 3 - H R u n o f f irograph in Pt Q(CFS) 3.78 (12.70 (14.87 (15.91 18.93 20.90 22.63 22.45 24.26 23.94 22.47 23.23 25.78 28.89 29.93 29.93 29.93 29.81 30.44 34.65 35.70 35.24 30.44 34.65 35.70 35.24 39.02 43.53 43.03 42.19 43.01 47.46 58.78 62.77 65.06 89.86 103.66 107.48 81.97 49.02	iiii9. rdrogg; state 5 0 7 0 7 0 7 0 7 0 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2	Jbic Cub Faph H y H y Win Min Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	<pre>ic Fe = dr dr dr 50.0 50.0 V V V V V V V V V V V V V</pre>	107. The R M o g nter v v v v v v v v	482 (CFS)	FS))

1 V	1	1	Q	7.45	9.9400	3+10
l v	1	1	Q	3.64	9.9651	3+15
V	1	Ť	Q	1.65	9.9765	3+20
V V	1	1	Q	0.88	9.9826	3+25
V V		1	Q	0.43	9.9855	3+30
	1	1	Q	0.10	9,9862	3+35

```
Unit Hydrograph Analysis
                  Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
                            Study date 02/13/20 File: 3828PR1006100.out
         ****
         Riverside County Synthetic Unit Hydrology Method
         RCFC & WCD Manual date - April 1978
         Program License Serial Number 6400
                        .....
          English (in-1b) Input Units Used
          English Rainfall Data (Inches) Input Values Used
          English Units used in output format
         Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi.
         Drainage Area =
                                                                          69.65(Ac.) = 0.109 Sq. Mi.
        Length along longest watercourse = 3400.00(Ft.)
Length along longest watercourse = 0.644 Mi.
Length along longest watercourse measured to centroid = 1280.00(Ft.)
Length along longest watercourse measured to centroid = 0.242 Mi.
Difference in electrics = 0.644 Mi.
         Drainage Area for Depth-Area Areal Adjustment =
        Difference in elevation = 44.00(Ft.)
Slope along watercourse = 68.3294 Ft./Mi.
Average Manning's 'N' = 0.015
Lag time = 0.080 Hr.
Lag time = 4.78 Min.
        Lag time =4.76 Min.25% of lag time =1.19 Min.40% of lag time =1.91 Min.Unit time =5.00 Min.Duration of storm =6 Hour(s)User Entered Base Flow =0.00 (CFS)
         2 YEAR Area rainfall data:
                          Rainfall(In)[2] Weighting[1*2]
        Area(Ac.)[1]
                                     1.15
                                                                   80.10
                 69.65
         100 YEAR Area rainfall data:
         Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
69.65 2.50 174.13
                               2.50
                                                         174.13
         STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 1.150(In)
Area Averaged 100-Year Rainfall = 2.500(I
                                                      2.500(In)
         Point rain (area averaged) = 2.500(In)
Areal adjustment factor = 99.98 %
         Adjusted average point rain = 2.499(In)
         Sub-Area Data:
         Area(Ac.) Runoff Index Impervious %
69.650 56.00 0.900
Total Area Entered = 69.65(Ac.)

        RI
        Infil. Rate
        Impervious
        Adj.
        Infil.
        Rate
        Area%
        F


        AMC2
        AMC-3
        (In/Hr)
        (Dec.%)
        (In/Hr)
        (Dec.)
        (In/Hr)

        56.0
        74.8
        0.305
        0.900
        0.058
        1.000
        0.058

        Sum
        (F)
        =
        0.058
        1.000
        0.058

         Area averaged mean soil loss (F) (In/Hr) = 0.058
Minimum soil loss rate ((In/Hr)) = 0.029
(for 24 hour storm duration)
         Soil low loss rate (decimal) = 0.100
                                                          ......
                           Unit Hydrograph
VALLEY S-Curve
         .....
                                                               ......
                                        .........
                            Unit Hydrograph Data
          Unit time period Time % of lag Distribution Unit Hydrograph
                                                                            (CFS)
                                                    Graph %
              (hrs)
            ------
......
```

Floo	2.50 2.60 3.10 3.60 3.90 4.20 4.70 5.60 1.90 0.60 0.50 0.30 0.20 (Loss 100.0 d volume =	0.570 0.270 0.180 0.150 0.090 0.060 Rate Not Used Effective rai	0.058 0.058 0.058 0.058 0.058 (0.058) (Low 0.015 0.018 0.018 0.018 0.018 0.018 0.018 0.021 0.021 0.021 0.021 0.021 0.024 0.027 0.	0.872 1.022 1.112 1.202 1.352 1.622 0.513 0.243 0.162 0.135 0.081 0.054 27.5
tim Tota Tota Tota Floo	es area l soil los l soil los l rainfall d volume =	69.7 (Ac.) / [g = 0.21 (s = 1.209 (= 2.50 (I 579273.1 5.264	((In)/(Ft.)] = In) Ac.Ft) n) Cubic Feet	- 13.3 (<i>I</i>	
 Pea	k flow rat	e of this hydr	ograph =	93.198(CFS)	
	*********				·
		++++++++++++++ 6 - H O R u n o f f	UR STO	RM	
	Hy	drograph in	5 Minute in	tervals ((CI	rs))
Time(h+m)	Volume Ac.	Ft Q(CFS) 0	25.0	50.0	75.0 100.0
0+ 5		1.95 Q			
UT D	0.0133	T.22 Å	4	1	Page 2
					raye 2

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 02/13/20 File: 3828PR10024100.out _____ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6400 -----English (in-1b) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Length along longest watercourse = 3400.00(Ft.) Drainage Area = 69.65(Ac.) = 0.109 Sq. Mi. Length along longest watercourse measured to centroid = 1280.00(Ft.) Length along longest watercourse = 0.644 Mi. Length along longest watercourse measured to centroid = 0.242 Mi. Difference in elevation = 44.00 (Ft.) Slope along watercourse = 68.3294 Ft./Mi. Average Manning's 'N' = 0.015 Lag time = 0.080 Hr. Lag time = 4.78 Min. 25% of lag time = 1.19 Min. 25% of lag time = 1.91 Min. Unit time = 5.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0. 0.00 (CFS) 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1*2] Area(Ac.)[1] 1.75 69.65 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 69.65 4.50 313.43 4.50 STORM EVENT (YEAR) = 100.00 Area Averaged 2-Year Rainfall = 1.750(In) Area Averaged 100-Year Rainfall = 4.500(I 4.500(In) Point rain (area averaged) = 4.500(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 4.499(In) Sub-Area Data: Area(Ac.) Runoff Index Impervious % 69.650 56.00 0.900 Total Area Entered = 69.65(Ac.)
 RI
 Infil. Rate
 Impervious
 Adj.
 Infil.
 Rate
 Area%
 F

 AMC2
 AMC-3
 (In/Hr)
 (Dec.%)
 (In/Hr)
 (Dec.)
 (In/Hr)

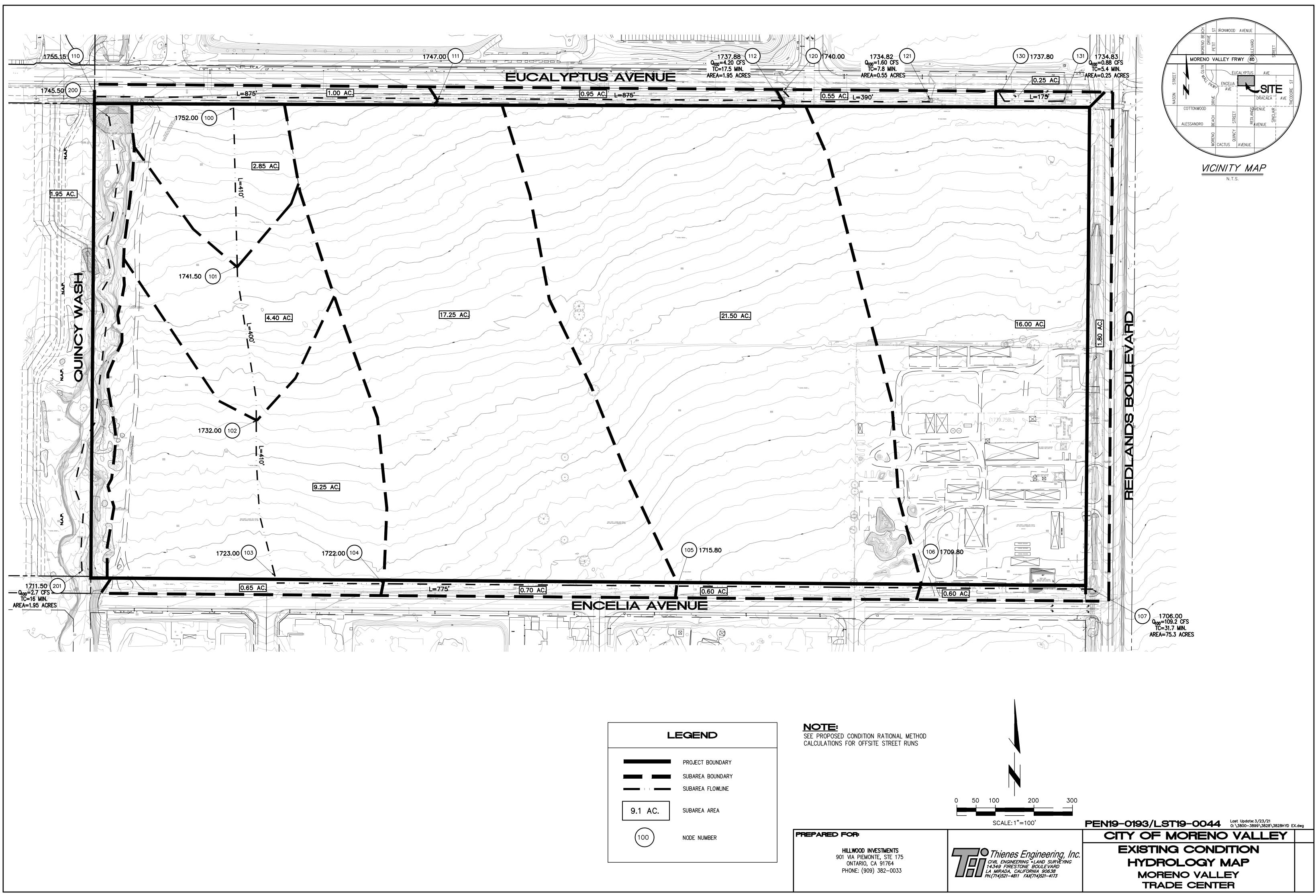
 56.0
 74.8
 0.305
 0.900
 0.058
 1.000
 0.058
 Sum (F) = 0.058 Area averaged mean soil loss (F) (In/Hr) = 0.058 Minimum soil loss rate ((In/Hr)) = 0.029 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.100 Unit Hydrograph VALLEY S-Curve -----Unit Hydrograph Data ------Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) _____

Unit	Time	Pattern	Storm Rain	Loss rate(In./Hr)	Effective
	(Hr.)	Percent	(In/Hr) 0.036	Max (0.103)	Low 0.004	(In/Hr) 0.032
1 2	0.08	0.07 0.07	0.036	(0.102)	0.004	0.032
3	0.25	0.07	0.036	(0.102)	0.004	0.032
4 5	0.33	0.10	0.054 0.054	(0.102)	0.005	0.049 0.049
6	0.50	0.10	0.054	(0.101)	0.005	0.049
7	0.58	0.10	0.054	(0.100)	0.005	0.049 0.049
8 9	0.67 0.75	0.10	0.054 0.054	(0.100)	0.005	0.049
10	0.83	0.13	0.072	(0.099)	0.007	0.065
11	0.92	0.13	0.072	(0.099) (0.099)	0.007 0.007	0.065 0.065
12 13	1.00	0.13 0.10	0.072 0.054	(0.098)	0.005	0.049
14	1.17	0.10	0.054	(0.098)	0.005	0.049
15 16	1.25	0.10	0.054 0.054	(0.097) (0.097)	0.005	0.049 0.049
17	1.42	0.10	0.054	(0.097)	0.005	0.049
18	1.50	0.10	0.054	(0.096)	0.005	0.049 0.049
19 20	1.58 1.67	0.10	0.054 0.054	(0.096) (0.095)	0.005	0.049
21	1.75	0.10	0.054	(0.095)	0.005	0.049
22 23	1.83 1.92	0.13	0.072 0.072	(0.095) (0.094)	0.007 0.007	0.065 0.065
24	2.00	0.13	0.072	(0.094)	0.007	0,065
25	2.08	0.13	0.072	(0.094)	0.007	0.065 0.065
26 27	2.17 2.25	0.13 0.13	0.072 0.072	(0.093) (0.093)	0.007 0.007	0.065
28	2.33	0.13	0.072	(0.092)	0.007	0.065
29	2.42	0.13	0.072	(0.092) (0.092)	0.007 0.007	0.065 0.065
30 31	2.50 2.58	0.13 0.17	0.072 0.090	(0.092) (0.091)	0.009	0.081
32	2.67	0.17	0.090	(0.091)	0.009	0.081
33	2.75	0.17	0.090	(0.091) (0.090)	0.009 0.009	0.081 0.081
34 35	2.83 2.92	0.17 0.17	0.090 0.090	(0.090)	0.009	0.081
36	3.00	0.17	0.090	(0.089)	0.009	0.081
37 38	3.08 3.17	0.17 0.17	0.090 0.090	(0.089) (0.089)	0.009 0.009	0.081 0.081
38 39	3.25	0.17	0.090	(0.088)	0.009	0.081
40	3.33	0.17	0.090	(0.088)	0.009	0.081
41 42	3.42 3.50	$0.17 \\ 0.17$	0.090 0.090	(0.088) (0.087)	0.009	0.081 0.081
43	3.58	0.17	0.090	(0.087)	0.009	0.081
44	3.67	0.17	0.090	(0.086)	0.009 0.009	0.081 0.081
45 46	3.75 3.83	0.17 0.20	0.090 0.108	(0.086) (0.086)	0.011	0.097
47	3.92	0.20	0.108	(0.085)	0.011	0.097
48	4.00 4.08	0.20 0.20	0.108 0.108	(0.085) (0.085)	0.011 0.011	0.097 0.097
49 50	4.08	0.20	0.108	(0.084)	0.011	0.097
51	4.25	0.20	0.108	(0.084)	0.011 0.013	0.097 0.113
52 53	4.33 4.42	0.23	0.126 0.126	(0.084) (0.083)	0.013	0.113
54	4.50	0.23	0.126	(0.083)	0.013	0.113
55	4.58	0.23	0.126 0.126	(0.082) (0.082)	0.013	0.113 0.113
56 57	4.67 4.75	0.23	0.126	(0.082)	0.013	0.113
58	4.83	0.27	0.144	(0.081)	0.014	0.130
59 60	4.92 5.00	0.27 0.27	0.144 0.144	(0.081) (0.081)	$0.014 \\ 0.014$	0.130 0.130
61	5.08	0.20	0.108	(0.080)	0.011	0.097
62	5.17	0.20	0.108 0.108	(0.080)	0.011	0.097 0.097
63 64	5.25 5.33	0.20	0.126	(0.079)	0.013	0.113
65	5.42	0.23	0.126	(0.079)	0.013	0.113 0.113
66 67	5.50 5.58	0.23	0.126 0.144	(0.079) (0.078)	$0.013 \\ 0.014$	0.130
68	5.67	0.27	0.144	(0.078)	0.014	0.130
69	5.75	0.27	$0.144 \\ 0.144$	(0.078) (0.077)	0.014	0.130 0.130
70 71	5.83 5.92	0.27 0.27	0.144	(0.077)	0.014	0.130
72	6.00	0.27	0.144	(0.077)	0.014	0.130 0.146
73 74	6.08 6.17	0.30	0.162 0.162	(0.076) (0.076)	0.016 0.016	0.146
75	6.25	0.30	0.162	(0.076)	0.016	0.146
76	6.33	0.30	0.162	(0.075)	0.016 0.016	0.146 0.146
77 78	6.42 6.50	0.30	0.162 0.162	(0.075) (0.075)	0.016	0,146
79	6.58	0.33	0.180	(0.074)	0.018	0.162
80	6.67	0.33	0.180 0.180	(0.074) (0.074)	0.018	0.162 0.162
81 82	6.75 6.83	0.33	0.180	(0.073)	0.018	0,162
83	6.92	0.33	0.180	(0.073)	0.018	0.162
84 85	7.00 7.08	0.33	0.180 0.180	(0.073) (0.072)	0.018	0.162 0.162
86	7.17	0.33	0.180	(0.072)	0.018	0.162
87	7.25	0.33	0.180 0.198	(0.072) (0.071)	0.018	0.162 0.178
88 89	$7.33 \\ 7.42$	0.37 0.37	0.198	(0.071)	0.020	0.178
90	7.50	0.37	0.198	(0.071)	0.020	0.178
91 92	7.58 7.67	0.40	0.216 0.216	(0.070) (0.070)	0.022	0.194 0.194
93	7.75	0.40	0,216	(0.070)	0.022	0.194
94	7.83	0.43	0.234	(0.069)	0.023	0.211 Page 2

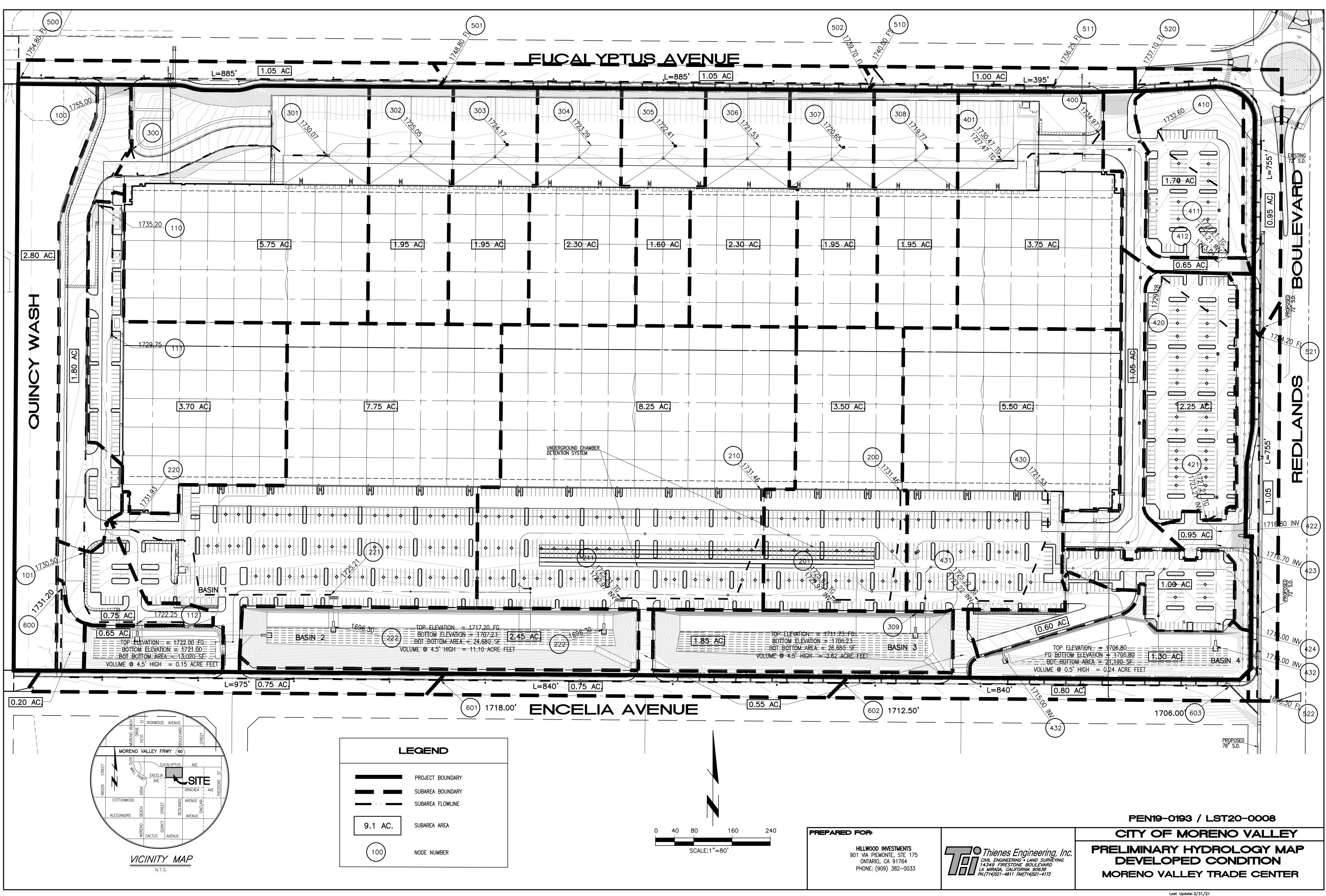
95	7.92	0.43	0.234	(0.069)		0.023	0.211
96	8.00	0.43	0.234	(0.069)		0.023	0.211
97	8.08	0.50	0.270	(0.068)		0.027	0.243
98	8.17	0.50	0.270	(0.068)		0.027	0.243
99 100	8.25 8.33	0.50	0.270 0.270	(0.068)		0.027	0.243
101	8.42	0.50	0.270	i	0.067)		0.027	0.243
102	8.50	0.50	0.270	i	0.067)		0.027	0.243
103	8.58	0.53	0.288	(0.066)		0.029	0.259
104	8.67	0.53	0.288	(0.066)		0.029	0.259
105	8.75	0.53	0.288	(0.066)		0.029	0.259
106	8.83	0.57	0.306	(0.066)		0.031	0.275
107 108	8.92	0.57	0.306	(0.065)		0.031 0.031	0.275
108	9.00 9.08	0.57	0.306 0.342	ć	0.065)		0.031	0.308
110	9.17	0.63	0.342	č	0.064)		0.034	0.308
111	9.25	0.63	0.342	i	0.064)		0.034	0.308
112	9.33	0.67	0.360	(0.064)		0.036	0.324
113	9.42	0.67	0.360	(0.063)		0.036	0.324
114	9.50	0.67	0.360	(0.063)		0.036	0.324
115	9.58	0.70	0.378	ç	0.063)		0.038	0.340
116 117	9.67 9.75	0.70	0.378 0.378	ć	0.062)		0.038	0.340
118	9.83	0.73	0.396	i	0.062)		0.040	0.356
119	9.92	0.73	0.396	i	0.062)		0.040	0.356
120	10.00	0.73	0.396	(0.061)		0.040	0.356
121	10.08	0.50	0.270	(0.061)		0.027	0.243
122	10.17	0.50	0.270	(0.061)		0.027	0.243
123	10.25	0.50	0.270	5	0.060)		0.027	0.243
124	10.33	0.50	0.270 0.270	6	0.060)		0.027 0.027	0.243
125 126	10.42 10.50	0.50	0.270	i	0.060)		0.027	0.243
127	10.58	0.67	0.360	i	0.059)		0.036	0.324
128	10.67	0.67	0.360	ć	0.059)		0.036	0.324
129	10.75	0.67	0.360	(0.059)		0.036	0.324
130	10.83	0.67	0.360	(0.058)		0.036	0.324
131	10.92	0.67	0.360	5	0.058)		0.036	0.324
132	11.00	0.67	0.360	5	0.058)		0.036 0.034	0.324
$133 \\ 134$	$11.08 \\ 11.17$	0.63	0.342 0.342	5	0.057) 0.057)		0.034	0.308
134	11.25	0.63	0.342	2	0.057)		0.034	0.308
136	11.33	0.63	0.342	i	0.057)		0.034	0.308
137	11.42	0.63	0.342	(0.056)		0.034	0.308
138	11.50	0.63	0.342	(0.056)		0.034	0.308
139	11.58	0.57	0.306	(0.056)		0.031	0.275
140	11.67	0.57	0.306	5	0.056)		0.031	0.275
$\frac{141}{142}$	11.75 11.83	0.57	0.306 0.324	2	0.055)		0.031 0.032	0.275
143	11.92	0.60	0.324	i	0.055)		0.032	0.292
144	12.00	0.60	0.324	i	0.054)		0.032	0.292
145	12.08	0.83	0.450	(0.054)		0.045	0.405
146	12.17	0.83	0.450	(0.054)		0.045	0.405
147	12.25	0.83	0.450	ç	0.054)		0.045	0.405
148	12.33	0.87	0.468	5	0.053)		0.047	0.421
149 150	12.42 12.50	0.87	0.468 0.468	2	0.053)		0.047 0.047	0.421
151	12.50	0.93	0.504	ì	0.053)		0.050	0.454
152	12.67	0.93	0.504	i	0.052)		0.050	0.454
153	12.75	0.93	0.504	(0.052)		0.050	0.454
154	12.83	0.97	0.522		0.052	(0.052)	0.470
155	12,92	0.97	0.522		0.051	\$	0.052)	0.470
156 157	13.00	0.97 1.13	0.522 0.612		0.051	6	0.052) 0.061)	0.471 0.561
158	13.08 13.17	1.13	0.612		0.051	è	0.061)	0.561
159	13.25	1.13	0.612		0.050	C	0.061)	0.561
160	13.33	1.13	0.612		0.050	(0.061)	0.562
161	13.42	1.13	0.612		0.050	(0.061)	0.562
162	13.50	1.13	0.612	2	0.050	(0.061)	0.562
163 164	13.58 13.67	0.77 0.77	0.414 0.414	(0.049)		0.041 0.041	0.373
165	13.75	0.77	0.414	i	0.049)		0.041	0.373
166	13.83	0.77	0.414	i	0.049)		0.041	0.373
167	13.92	0.77	0.414	(0.048)		0.041	0.373
168	14.00	0.77	0.414	(0.048)	1100	0.041	0.373
169	14.08	0.90	0.486		0.048	ć	0.049) 0.049)	0.438 0.438
170 171	$14.17 \\ 14.25$	0.90	0.486 0.486		0.048	ì	0.049)	0.438
172	14.25	0.87	0.468	(0.047)	1	0.047	0.421
173	14.42	0.87	0.468	ì	0.047)		0.047	0.421
174	14.50	0.87	0.468		0.047	(0.047)	0.421
175	14.58	0.87	0.468		0.046	(0.047)	0.421
176	14.67	0.87	0.468		0.046	(0.047)	0.422
177	14.75	0.87	0.468		0.046	1	0.047)	0.422
178 179	14.83 14.92	0.83	0.450 0.450	2	0.046)		0.045	0.405
180	14.92	0.83	0.450	ì	0.045)		0.045	0.405
181	15.08	0.80	0.432	ì	0.045)		0.043	0.389
182	15.17	0.80	0.432	i	0,045)		0.043	0.389
183	15.25	0.80	0.432	(0.045)		0.043	0.389
184	15.33	0.77	0.414	C	0.044)		0.041	0.373
185	15.42	0.77	0.414	5	0.044)		0.041	0.373
186 187	15.50 15.58	0.77 0.63	0.414 0.342	ć	0.044)		0.041 0.034	0.373
188	15.58	0.63	0.342	ì	0.044)		0.034	0.308
189	15.75	0.63	0.342	ì	0.043)		0.034	0.308
190	15.83	0.63	0.342	(0.043)		0.034	0.308
191	15.92	0.63	0.342	ç	0.043)		0.034	0.308
192	16.00	0.63	0.342	8	0.043)		0.034	0.308
193	16.08	0.13	0.072	1	0.042)		0.007	0.065
								Page 3

194	16.17	0.13	0.072	0.042)	0.007	0.065
195	16.25	0.13	0.072		0.007	0.065
196	16.33	0.13	0.072		0.007	0.065
197	16.42	0.13	0.072		0.007	0.065
198	16.50	0.13	0.072		0.007	0.065
199	16.58	0.10	0.054	0.041)	0.005	0.049
200	16.67	0.10	0.054	0.041)	0.005	0.049
201	16.75	0.10	0.054		0.005	0.049
202	16.83	0.10	0.054		0.005	0.049
203	16.92	0.10	0.054	2000	0.005	0.049
204	17.00	0.10	0.054		0.005	0.049
205	17.08	0.17	0.090		0.009	0.081
206	17.17	0.17	0.090		0.009	0.081
207	17.25	0.17	0.090		0.009	0.081 0.081
208	17.33	0.17	0.090		0.009 0.009	0.081
209	17.42	0.17	0.090		0.009	0.081
210	17.50	0.17	0.090		0.009	0.081
211	17.58	0.17		6916	0.009	0.081
212	17.67	0.17	0.090	1928 °	0.009	0.081
213	17.75	0.17	0.090		0.007	0.065
214	17.83 17.92	0.13	0.072		0.007	0.065
215 216	18.00	0.13	0.072		0.007	0.065
210	18.08	0.13	0.072	1960.eth	0.007	0.065
218	18.17	0.13	0.072	13400-5	0.007	0.065
219	18.25	0.13	0.072		0.007	0.065
220	18.33	0.13	0.072		0.007	0.065
221	18.42	0.13	0.072	0.037)	0.007	0.065
222	18.50	0.13	0.072	0.037)	0.007	0.065
223	18.58	0.10	0.054		0.005	0.049
224	18.67	0.10	0.054	3707.000	0.005	0.049
225	18.75	0.10	0.054	0.036)	0.005	0.049
226	18.83	0.07	0.036	0.036)	0.004	0.032
227	18.92	0.07	0.036	- 076	0.004	0.032
228	19.00	0.07	0.036	1175	0.004	0.032
229	19.08	0.10	(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	0.035)	0.005	0.049
230	19.17	0.10		0.035)	0.005	0.049
231	19.25	0.10		0.035)	0.005	0.049
232	19.33	0.13	0.072	(0.035)	0.007	0.065 0.065
233	19.42	0.13	0.072	(0.035)	0.007	0.065
234	19.50	0.13	C. C. C. C. C. C. C. C. C. C. C. C. C. C	(0.035)	0.007	0.049
235	19.58	0.10	200	(0.034) (0.034)	0.005	0.049
236	19.67	0.10	0.054	(0.034)	0.005	0.049
237	19.75	0.10	0.036	(0.034)	0.004	0.032
238 239	19.83 19.92	0.07		(0.034)	0.004	0.032
240	20.00	0.07		(0.034)	0.004	0.032
240	20.00	0.10		(0.034)	0.005	0.049
241	20.03	0.10		(0.033)	0.005	0.049
243	20.25	0.10		(0.033)	0.005	0.049
244	20.33	0.10		(0.033)	0.005	0.049
245	20.42	0.10		(0.033)	0.005	0.049
246	20.50	0.10	0.054	(0.033)	0.005	0.049
247	20.58	0.10	0.054	(0.033)	0.005	0.049
248	20.67	0.10	0.054	(0.033)	0.005	0.049
249	20.75	0.10	0.054	(0.032)	0.005	0.049
250	20.83	0.07	0.036	(0.032)	0.004	0.032
251	20.92	0.07		(0.032)	0.004	0.032
252	21.00	0.07		(0.032)	0.004	0.032
253	21.08	0.10		(0.032)	0.005	0.049
254	21.17	0.10		(0.032)	0.005	0.049
255	21.25	0.10		(0.032)		0.049 0.032
256	21.33	0.07		(0.032) (0.031)	0.004 0.004	0.032
257	21.42	0.07		(0.031) (0.031)	0.004	0.032
258 259	21.50 21.58	0.07		(0.031)	0.005	0.049
260	21.58	0.10		(0.031)	0.005	0.049
260	21.75	0.10		(0.031)	0.005	0.049
262	21.83	0.07		(0.031)	0.004	0.032
263	21.92	0.07		(0.031)	0.004	0.032
264	22.00	0.07		(0.031)	0.004	0.032
265	22.08	0.10		(0.031)	0.005	0.049
266	22.17	0.10	0.054	(0.030)	0.005	0.049
267	22.25	0.10		(0.030)	0.005	0.049
268	22.33	0.07	0.036		0.004	0.032
269	22.42	0.07	0.036		0.004	0.032
270	22.50	0.07	0.036		0.004	0.032
271	22.58	0.07	0.036		0.004	0.032
272	22.67	0.07		(0.030)	0.004 0.004	0.032 0.032
273	22.75	0.07		(0.030) (0.030)	0.004	0.032
274	22.83	0.07		(0.030) (0.030)	0.004	0.032
275	22.92	0.07		(0.030)	0.004	0.032
276 277	23.00 23.08	0.07		(0.030)	0.004	0.032
277	23.08	0.07		(0.029)	0.004	0.032
278	23.25	0.07		(0.029)	0.004	0.032
280	23.33	0.07		(0.029)	0.004	0.032
281	23.42	0.07		(0.029)	0.004	0.032
282	23.50	0.07		(0.029)	0.004	0.032
283	23.58	0.07		(0.029)	0.004	0.032
284	23.67	0.07	132 G	(0.029)	0.004	0.032
285	23.75	0.07		(0.029)	0.004	0.032
286	23.83	0.07	0755	(0.029)	0.004	0.032
287	23,92	0.07		(0.029)	0.004	0.032
288	24.00	0.07		(0.029)	0.004	0.032
			Rate Not Used)		-	40 5
	a -	100.0			Sum =	48.7
	Sum =				C (T-)	
	Flood	volume =	Effective rainfa		6(In)	E+)
	Flood		Effective rainfa 69.7(Ac.)/[(In		6 (In) 23.5 (Ac	.Ft)

	Total s Total s	oil loss oil loss	= 0.4	4(In) 77(Ac.Ft)				
	Total r Flood v	olume =	= 4.50 1025328 = 112	1.6 Cubic	Feet ic Feet			
	Peak f	low rate	of this hy	/drograph	= 39.2	291 (CFS)		
			*****	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	
		1	Runoff	HOUR Hy	drog:	raph		
			rograph in))	
					10.0	20.0	30.0	
						20.0		40.0
0+ 5 0+10)	0.0032	0.47 (1.58 \					
0+15 0+20		0.0273	1.92 N 2.31 N					
0+25	5	0.0635	2.95 1	7 Q		1		
0+30 0+35		0.0853	3.17 N 3.28 N					
0+40)	0.1310	3.35 1	7 Q	i.			
0+45 0+50		0.1543	3.38 N 3.63 N		1			1
0+55		0.2083	4.20 N 4.37 N				1	1
1+ (1+ 5		0.2384	4.21 \	7 Q				
1+10 1+15		0.2929	3.70 N 3.56 N					1
1+20)	0.3416	3.50 \	7 Q				1
1+25		0.3655	3.47 N 3.44 N					1
1+35	5	0.4128	3.43 1	7 Q				1
1+40 1+45		0.4363	3.41 V 3.41 V	7 Q 7 Q			1	1
1+50		0.4849	3.65 N 4.20 N				1	
1+55 2+ (0.5138	4.37	1 0				1
2+ 5 2+10		0.5746	4.45 V 4.49	VQ VQ				
2+15	5 (0.6367	4.52	VQ		1		1
2+20 2+25		0.6679		V Q V Q	5			1
2+30) 🦿	0.7306	4.55	VQ				
2+35 2+4(0.7635		vo				
2+45		0.8382	5.51 5.59	V Q V Q				1
2+55		0.9155	5.63	VQ				1
3+ (3+ 5		0.9545		V Q V Q				
3+10)	1.0327	5.69	V Q	l			1
3+15 3+20		1.0719 1.1110		V Q V Q	l			1
3+25 3+3(1.1502 1.1894		V Q V Q	1			1
3+35		1.2286	5.69	VQ				
3+4(3+45		1.2677 1.3069	5.69 5.69	V Q V Q				
3+50	0	1.3477	5.92	VQ	i i			1
3+55 4+ (1.3923 1.4381	6.48 6.65	V Q V Q				1
4+ 5	5	1.4844	6.72 6.77	V Q V Q				
4+10 4+15		1.5310 1.5778	6.80	VQ		1		
4+20 4+25		1.6263 1.6788	7.05 7.61	V Q V Q				
4+30	C	1.7324	7.78	VQ		1	1	1
4+35 4+4(1.7865 1.8410	7.86 7.90	V Q V Q		1	1	ţ
4+45	5	1.8956 1.9519	7.93 8.18	V Q V Q		1	1	1
4+55		2.0122	8.75	V Q	Ì	1		1
5+ (5+ \$		2.0737 2.1324	8.92 8.53	V Q V Q				
5+10	D	2.1838	7.47	VQ	İ	1		1
5+19 5+20		2.2331 2.2830	7.15 7.25	V Q V Q				
5+25		2.3362	7.73 7.84	V Q V Q		1		
5+3(5+3)	5	2.3903 2.4462	8.12	V Q		1	1	
5+4(5+4!		2.5061 2.5673	8.69 8.89	V Q V Q			1	
5+50	0	2.6292	8.99	V Q]	1	1	1
5+5 6+ (2.6915 2.7540	9.04 9.07			1		1
6+ 5	5	2,8182	9.32	V Q		1	1	1
6+10 6+19		2.8863 2.9555	9.89 10.06		Q	1	1	1
6+20 6+2	0	3.0254 3.0955	10.14 10.18	v	Q Q	1	1	1
6+30	0	3.1658	10.21	v	Q	1	t	1
6+3! 6+4(3.2378 3.3137	10.46 11.03	v v	Q Q		1	1
6+4	5	3.3908	11.20 11.27	v v	Q	1	1	
6+51	v	3.4685	11.21	I V	1.2	æ	I Page 5	


6+55	3.5464	11.32	V Q
7+ 0	3.6246	11.35	V Q
7+ 5	3.7028	11.36	V Q
7+10	3.7812	11.38	V Q I I
7+15	3.8595	11,38	V Q
7+20	3,9395	11.61	V Q
7+25	4.0233	12.16	V Q
7+30	4.1082	12.33	V Q
7+35	4.1953	12.65	VQ
7+40	4.2865	13.24	V Q
7+45	4.3791	13.44	V Q
7+50	4.4739	13.77	
7+55 8+ 0	4.5730	14.38	V Q
8+ 0 8+ 5	4.6734	14.58 15.14	vo
8+10	4.7777	16.31	
8+15	5.0048	16.68	v Q
8+20	5.1208	16.85	V Q
8+25	5.2376	16.95	
8+30	5.3547	17.00	
8+35	5.4736	17.27	
8+40	5.5965	17.85	
8+45	5.7207	18.02	V Q
8+50	5.8469	18.33	V Q
8+55	5.9773	18.93	V Q
9+ 0	6.1091	19.13	
9+ 5	6.2447	19.69	v Q
9+10 9+15	6.3883 6.5345	20.86 21.23	
9+20	6.6835	21.63	V Q
9+25	6.8370	22.29	V Q
9+30	6.9920	22.51	V Q
9+35	7.1494	22.86	V Q I
9+40	7.3112	23.48	V Q
9+45	7.4742	23.68	
9+50	7.6396	24.01	
9+55	7.8091	24.62	
10+ 0	7,9801	24.82	
10+ 5	8,1403	23.27	
10+10	8.2743	19.45	
10+15 10+20	8.4002 8.5225	18.29 17.76	V Q
10+25	8.6428	17.47	VQ
10+30	8.7618	17.28	VQ
10+35	8.8881	18.33	VQ
10+40	9.0328	21.00	V Q
10+45	9.1833	21.86	V Q
10+50	9.3365	22.24	Q V
10+55	9.4912	22.46	V Q
11+ 0	9.6468	22.60	V Q
11+ 5	9.8014	22.45	
11+10 11+15	9.9527 10.1028	21.96 21.79	V Q V Q
11+10 11+20	10.2523	21.72	V Q
11+25	10.4016	21.67	V Q
11+30	10.5506	21.64	
11+35	10.6964	21.16	
11+40	10.8344	20.04	VQ
11+45	10.9700	19.70	VQ
11+50	11.1062	19.78	
11+55	11.2456	20.24 20.36	VQ
12+ 0 12+ 5	11.3858 11.5377	22.04	V Q
12+10	11.7163	25.94	
12+15	11.9033	27.16	v Q
12+20	12.0958	27.95	V Q
12+25	12.2943	28.82	
12+30	12.4953	29.19	
12+35	12.7009	29.85	V Q
12+40	12.9150	31.10	
12+45 12+50	13.1317 13.3513	31.46 31.88	V Q
12+50	13.5754	32.55	V Q
13+ 0	13.8013	32.79	V Q
13+ 5	14.0370	34.22	V Q
13+10	14.2945	37.39	V Q
13+15	14.5588	38.38	V Q
13+20	14.8263	38.85	Q V Q
13+25	15.0957	39.12	V Q
13+30	15.3663	39.29	
13+35	15.6188	36.65	
13+40 13+45	15.8271 16.0217	30.25 28.26	vo
13+45 13+50	16.2100	27.35	Q
13+55	16.3949	26.84	QV
14+ 0	16.5776	26.52	QV
14+ 5	16.7654	27.27	QV
14+10	16.9675	29.35	VQ
14+15	17.1745	30.05	VQ
14+20	17.3820	30.13	VQ
14+25	17.5866	29.71	
14+30 14+35	17.7908 17.9949	29.64 29.63	QV
14+35 14+40	18.1991	29.63	QV
14+45	18.4033	29.64	QV
14+50	18.6057	29.39	QV
14+55	18.8040	28.80	QV
15+ 0	19.0012	28.62	
15+ 5	19.1962	28.31	
			Page 6

$\begin{array}{c} 15+10\\ 15+15\\ 15+20\\ 15+25\\ 15+30\\ 15+35\\ 15+45\\ 15+50\\ 15+55\\ 16+10\\ 16+25\\ 16+20\\ 16+25\\ 16+20\\ 16+25\\ 16+20\\ 16+25\\ 16+30\\ 16+25\\ 16+40\\ 16+45\\ 16+55\\ 17+0\\ 17+15\\ 17+20\\ 17+15\\ 17+20\\ 17+15\\ 17+20\\ 17+15\\ 17+20\\ 17+55\\ 17+40\\ 17+55\\ 17+40\\ 17+55\\ 17+40\\ 17+55\\ 17+50\\ 17+55\\ 18+10\\ 18+15\\ 18+20\\ 18+55\\ 19+10\\ 18+55\\ 19+15\\ 19+20\\ 19+25\\ 19+30\\ 19+25\\ 19+30\\ 19+45\\ 19+55\\ 20+0\\ \end{array}$	$19.3870 \\ 19.5765 \\ 19.7637 \\ 19.9467 \\ 20.1283 \\ 20.3029 \\ 20.4617 \\ 20.6157 \\ 20.7675 \\ 20.9179 \\ 21.0676 \\ 21.1926 \\ 21.2601 \\ 21.3517 \\ 21.3890 \\ 21.4235 \\ 21.4547 \\ 21.4806 \\ 21.5534 \\ 21.5534 \\ 21.5534 \\ 21.5534 \\ 21.5771 \\ 21.6040 \\ 21.6383 \\ 21.6750 \\ 21.7128 \\ 21.7512 \\ 21.7899 \\ 21.8289 \\ 21.8289 \\ 21.8681 \\ 21.9073 \\ 21.9448 \\ 21.9786 \\ 22.0111 \\ 22.0432 \\ 22.0749 \\ 22.1065 \\ 22.1065 \\ 22.1379 \\ 22.1692 \\ 22.2006 \\ 22.2303 \\ 22.20749 \\ 22.1065 \\ 22.3035 \\ 22.20749 \\ 22.1065 \\ 22.3035 \\ 22.3035 \\ 22.3035 \\ 22.3391 \\ 22.3572 \\ 22.3787 \\ 22.4542 \\ 22.4841 \\ 22.5385 \\ 22.5856 \\ 22.5631 \\ 2.5856 \\ 22.6040 \\ 22.6040 \\ 22.6211 \\ 22.6040 \\ 22.6211 \\ 22.6040 \\ 22.6211 \\ 22.6040 \\ 22.6211 \\ 22.6010 \\ 22.6211 \\ 22.$	27.71 27.51 26.37 25.34 23.07 22.03 21.85 21.85 19.79 7.23 3.51 19.79 3.51 19.79 3.51 19.79 3.51 19.79 3.51 3.51 3.44 3.90 5.421 3.55 5.669 5.661 4.555 5.662 4.555 5.661 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.288 4.555 3.268 4.326 4.340 3.556 4.326 3.268 4.326 4.340 3.556 4.326 4.555 3.268 4.326 3.527 3.566 4.555 3.268 4.566 4.565 3.268 4.566 4.565 3.268 4.566 4.565 3.266 4.566 3.266 4.566 3.276 3.267 3.268 4.566 3.276 3.268 4.566 3.276 3.268 4.566 3.276 3.268 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 3.266 4.326 4.326 4.326 3.266 4.326 4.326 4.566 4.565 5.669 3.266 4.566 4.565 3.266 4.566 4.566 4.566 4.565 3.266 4.566 4.566 3.266 4.566 4.566 3.266 4.566	00000000000000000000000000000000000000	Q	V V V V V V V V V V V V V V V V V V V
		2.48 2.62 3.12 3.26 3.33 3.35 3.38 3.40 3.41 3.18 2.62 2.45 2.61 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.09 2.57 2.42 2.60 3.12 3.26 3.26 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.22	00 ⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰		V V V V


23+25	23.4061	2.28	Q	1 1	V
23+30	23.4218	2.28	Q	1 1	v
23+35	23.4374	2.28	0	1 1	v
23+40	23,4531	2.28		1 1	v
23+45	23.4688	2.28		1 1	v
23+50	23.4844	2.28		1 1	v
23+55	23.5001	2.28		1 1	v
24+ 0	23.5158	2.28	9	1 1	v
24+ 5	23.5282	1.81		1 1	v
24+10	23.5330	0.70	ġ I	1 1	v
24+15	23.5355	0.36	0	1 1	v
24+20	23.5369	0.20	Q	1 1	v
24+25	23.5377	0.12	Q	1 1	v
24+30	23,5381	0.06	0	1 1	V
24+35	23.5383	0.03	0	1 1	v

APPENDIX D

HYDROLOGY MAP

L	EGEND	NOTE: SEE PROPOSED CONDITION RATIONAL CALCULATIONS FOR OFFSITE STREET F
	PROJECT BOUNDARY	
	SUBAREA BOUNDARY	
	SUBAREA FLOWLINE	
9.1 AC.	SUBAREA AREA	
(100)	NODE NUMBER	PREPARED FOR:
		HILLWOOD INVESTMENTS 901 VIA PIEMONTE, STE 175 ONTARIO, CA 91764 PHONE: (909) 382-0033

Last Update: 3/31/21 0:\3800-3899\3828\CGP-0PT-2\3828HYD - prelim 2.dwg