

605 THIRD STREET ENCINITAS, CALIFORNIA 92024 T 760.942.5147 F 760.632.0164

MEMORANDUM

То:	H. P. Kang, MBA
	City of Hemet
	445 E Florida Ave
	Hemet, CA 92543
From:	Mark Storm, INCE Bd. Cert.
Subject:	Noise Analysis for the Stetson Corner Project
Date:	October 19, 2020
Attachment(s):	A: MD Acoustics 2017 Noise Report
	B: Acoustic Terminology and Definitions
	C: Traffic Noise Model (v. 2.5) Input and Output
	D: Operation Noise Model Input and Output Data

Dudek is pleased to submit this noise impact assessment to assist the City of Hemet (City) with initial environmental planning requirements for the proposed Stetson Corner Project (Proposed Project).

This memorandum estimates potential noise and vibration impacts from operation of the Proposed Project in accordance with the California Environmental Quality Act (CEQA) Guidelines and reflecting an update to the Project layout of proposed facilities subsequent to the original project EIR.

The original 2017 MD Acoustics Noise Report (Attachment A) prepared for the earlier EIR for the Proposed Project concluded that there were no significant impacts related to exposing people residing or working in the Proposed Project vicinity to excessive noise levels as a result of short-term construction noise, groundborne vibration or groundborne noise levels. Additionally, the Proposed Project is not located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport or within the vicinity of a private airstrip. Therefore, and because changes to the Proposed Project would not alter these findings and their supporting analyses, these issues are not included as part of this noise assessment. As such, analysis provided in this noise assessment focuses on regulatory requirements and potential impacts related to implementation of the Proposed Amendment to the site plan as it relates to a substantial permanent increase in ambient noise levels in the Proposed Project.

The contents and organization of this memorandum are as follows: project description, environmental setting, regulatory setting, noise and vibration impacts assessment, conclusions, and references cited. Attachment B provides a glossary of common acoustical terms that should help acquaint the reader with metrics and descriptors used herein to present and discuss results of the noise impact assessment for the Proposed Project.

1 Project Description

The 8.7-acre project site is located in the City of Hemet (City), California. Specifically, the Proposed Project is located at the southeast corner of Sanderson and Stetson Avenues (Figure 1, Project Location). The Proposed Project intends to develop commercial uses including a 12-bay gas station with an approximately 4,088-square-foot convenience store (7-Eleven), an approximately 2,660-square-foot drive-thru fast food restaurant, and an approximately 3,590 square-foot car wash with 21 self-serve vacuum stations under a 3,096-square-foot canopy (Figure 2, Site Plan). For purposes of this noise analysis, it is assumed the car wash and associated customer vacuum units would only be allowed to operate within daytime hours (7:00 a.m. to 10:00 p.m.). At night, the gas station, convenience store, and fast-food restaurant may be open for some nighttime hours and with reduced onsite patronage (compared to daytime levels).

2 Environmental Setting

2.1 Noise Characteristics and Terminology

2.1.1 Fundamentals of Sound

Pressure fluctuations, traveling as waves through air from a source, exert a force perceived by the human ear as sound. Sound pressure level (often referred to generally as "sound level" or "noise level") is expressed by way of a logarithmic scale in decibels (dB) that represent magnitude of these air pressure waves with respect to the threshold of average human hearing. The human ear is more sensitive to middle and higher frequencies (those usually associated with speech) of the audible spectrum, especially when the noise levels are quieter; thus, to accommodate for this phenomenon, a decibel weighting system was developed to mimic this human hearing frequency response. The frequency weighting called the "A" scale is typically used for quantifying typical environmental sound levels that de-emphasizes the low frequency components of the sound in a manner similar to the response of an average healthy human ear. An A-weighted sound level is thus described in units of "dBA" and distinguishes the value from a "flat" or unweighted dB value. In a manner similar to the scaling of temperature on a thermometer, Table 1 provides examples of common indoor and outdoor sound sources having A-weighted levels that "line-up" with the listed dB values.

Table 1: Typical Sound Levels in the Environment and Industry

Common Outdoor Activities	Noise Level (dB)	Common Indoor Activities
_	110	Rock band
Jet flyover at 300 meters (1,000 feet)	100	-
Gas lawn mower at 1 meter (3 feet)	90	-
Diesel truck at 15 meters (50 feet), at 80 kph (50 mph)	80	Food blender at 1 meter (3 feet)
		Garbage disposal at 1 meter (3 feet)
Noisy urban area, daytime	70	Vacuum cleaner at 3
gas lawn mower at 30 meters (100 feet)		meters (10 feet)

Table 1: Typical Sound Levels in the Environment and Industry

Common Outdoor Activities	Noise Level (dB)	Common Indoor Activities
Commercial area	60	Normal speech at 1 meter
Heavy traffic at 90 meters (300 feet)		(J TEET)
Quiet urban daytime	50	Large business office
		Dishwasher, next room
Quiet urban nighttime	40	Theater, large conference room (background)
Quiet suburban nighttime	30	Library
Quiet rural night time	20	Bedroom at night, concert hall (background)
-	10	Broadcast/recording studio
Lowest threshold of human hearing	0	Lowest threshold of human hearing

Source: Caltrans 2013a.

Notes: kph = kilometers per hour; mph = miles per hour

The equivalent noise level L_{eq} , also referred to as the energy-average sound level, is a single number representing the fluctuating sound level in decibels (dB) over a specified period of time. It is a sound-energy average of the fluctuating level and is equal to a constant unchanging sound of that dB level. Community noise sources vary continuously, being the product of many noise sources at various distances, all of which in aggregate tend to constitute a relatively stable background sound environment. This background, added to perceptibly dominant acoustical contributors (i.e., those that are the loudest and/or closest to the listener position) makes the overall "ambient" sound that a sound level meter can detect with its microphone and quantify as a dB level.

Noise levels are generally higher during the daytime and early evening when traffic (including airplanes), commercial, and industrial activity is the greatest. However, noise sources experienced during nighttime hours when background levels are generally lower can be potentially more conspicuous and irritating to the receiver. In order to evaluate noise in a way that considers periodic fluctuations experienced throughout the day and night, a concept termed "community noise equivalent level" (CNEL) was developed. The CNEL scale represents a time-weighted 24-hour average noise level based on the A-weighted equivalent (L_{eq}) sound level. But more than merely a 24-hour L_{eq}, CNEL accounts for the increased noise sensitivity during the evening hours (7 p.m. to 10 p.m.) and nighttime hours (10 p.m. to 7 a.m.) by adding 5 dB to the hourly average sound levels occurring during the evening hours.

2.1.2 Exterior Noise Distance Attenuation

Noise sources are largely classified in two forms: 1) point sources, such as stationary equipment or a group of construction vehicles and equipment working within a spatially limited area at a given time; and 2) line sources, such as a roadway with a large number of pass-by sources (motor vehicles). Sound generated by a point source typically diminishes (attenuates) at a rate of 6.0 dBA for each doubling of distance from the source to the receptor at acoustically "hard" sites and at a rate of 7.5 dBA for each doubling of distance from source to receptor at acoustically "soft" sites. These attenuation rates would also be expected for sound propagation away from a

horizontal area source, which can be approximated as a single point such as the geographic center of the area. By comparison, sound generated by a line source (such as a roadway) typically attenuates at a rate of 3.0 dBA for each doubling of distance from the source to the receptor at acoustically "hard" sites and at a rate of 4.5 dBA for each doubling of distance from source to receptor at acoustically "soft" sites.

Sound levels can also be attenuated by man-made or natural barriers. For the purpose of a sound attenuation discussion, hard, smooth, or otherwise acoustically reflective surfaces do not provide any excess ground-effect attenuation and are characteristic of sealed asphalt roads, bodies of water, and hard-packed soils. An acoustically soft or absorptive surface, on the other hand, is exemplified by fresh-fallen snow, tilled soils, or thickly-vegetated ground cover.

2.1.3 Vibration

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration can be a serious concern, causing buildings to shake and rumbling sounds to be heard. In contrast to noise, vibration is not a common environmental problem. It is unusual for vibration from sources such as buses and trucks to be perceptible, even in locations close to major roads. Some common sources of vibration are trains, buses on rough roads, and construction activities, such as blasting, pile driving, and heavy earthmoving equipment.

Several different descriptors are used to quantify vibration. Peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. PPV is most frequently used to describe vibration impacts to buildings and is usually measured in inches per second (ips). The root mean square (RMS) amplitude is most frequently used to describe the effect of vibration on the human body and is defined as the average of the squared amplitude of the signal. Decibel notation (VdB) is commonly used to describe RMS amplitude with respect to a reference quantity. The decibel notation acts to compress, and thus make more convenient for presentation and discussion purposes, the range of numbers required to describe vibration.

High levels of vibration may cause risk of or actual damage to buildings. However, most people consider vibration to be an annoyance that can affect concentration or disturb sleep. In addition, high levels of vibration can interfere with processes or equipment that are highly sensitive to vibration (e.g., electron microscopes). Most perceptible indoor vibration is caused by sources within buildings, such as operation of mechanical equipment, movement of people, or slamming of doors. Typical outdoor sources of perceptible vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If the roadway is smooth, which means there are little or no bumps that could cause a slight wheel drop or other force impulse, the vibration from traffic is rarely perceptible.

2.1.4 Sensitive Receptors

Noise- and vibration-sensitive land uses are locations where people reside or where the presence of unwanted sound and/or vibration could adversely affect the use of the land. Residences, schools, hospitals, guest lodging, libraries, and some passive recreation areas would be considered noise and vibration sensitive and may warrant unique measures for protection from intruding noise.

Sensitive receptors near the project site include adjoining existing single-family residential uses to the south, and north of Stetson Avenue. The closest of the former are located approximately 15 feet from the Proposed Project

site boundary. These sensitive receptors represent the nearest residential land uses with the potential to be impacted by normal operation of the Proposed Project features. Additional sensitive receptors are located farther from the project site in the surrounding community and would be less impacted by noise and vibration levels than the above-listed sensitive receptors.

2.2 Existing Outdoor Ambient Sound Levels

The measurements of existing outdoor sound level in the vicinity of the Proposed Project as disclosed in Attachment A are still considered representative of the sound environment. Dominant acoustical contributors include regular volumes of roadway traffic associated with the intersection of Stetson Avenue and Sanderson Avenue.

SOURCE: Riverside County 2020; Bing Maps

FIGURE 1 Project Location Stetson Corner

DUDEK 🜢 느

2,000 Eeet

1,000

INTENTIONALLY LEFT BLANK

DUDEK

INTENTIONALLY LEFT BLANK

3 Regulatory Setting

Applicable policies and standards governing environmental noise in the City are set forth in the General Plan Public Safety Chapter. Table 6.5 from the City's General Plan 2030 outlines the acceptable daytime/nighttime noise performance standards for non-transportation noise sources and is detailed in Table 2 (below):

Table 2: Noise Level Performance Standards for Non-transportation Noise Sources

	Daytime	Nighttime
Noise Level Descriptor	7:00 am to 10:00 pm	10:00 pm to 7:00 am
Hourly Average Level (L _{eq})	60 dBA	45 dBA
Maximum Equivalent Levels (L _{max})	75 dBA	65 dBA

Source: City of Hemet 2030 General Plan, Public Safety Element, Table 6.5

Notes: Each of the noise levels specified shall be lowered by 5 decibels for simple tone noises, noises consisting primarily of speech or music, or for recurring impulsive noises. These noise level standards do not apply to residential units established in conjunction with industrial or commercial uses (e.g., caretaker dwellings). The noise standard is to be applied at the property lines of the affected land use.

The Proposed Project operations will occur during daytime hours; therefore, it must demonstrate compliance to the City's 60 dBA noise limit at the property line of nearby residential receptors. In addition to the noise standards, the City has outlined goals, policies and implementation measures to reduce potential noise impacts and are presented below:

Goals, Policies, and Implementation Measures

Policies and goals from the Safety and Noise Chapter that would mitigate potential impacts on noise include the following.

- **Goal PS-11** Manage noise levels through land use planning and development review.
 - **PS-11.1** Noise Standards. Enforce noise standards to maintain acceptable noise limits and protect existing areas with acceptable noise environments.
 - **PS-11.2 Design to Minimize Noise**. Encourage the use of siting and building design techniques as a means to minimize noise.
 - **PS-11.3 Evaluate Noise.** Evaluate potential noise conflicts for individual sites and projects, and require mitigation of all significant noise impacts (including construction and short- term noise impacts) as a condition of project approval.
 - **PS-11.4 Protect Noise-Sensitive Uses.** Protect noise-sensitive uses from new noise sources.
- **Goal PS-12** Minimize noise conflicts from transportation sources and airports.
 - **PS-12.1** Traffic Noise. Minimize noise conflicts between current and proposed land uses and the circulation network by encouraging compatible land uses around critical roadway segments with higher noise potential.

- Goal PS-13 Minimize noise conflicts with stationary noise generators.
 - **PS-13.2** New Sensitive Uses. Restrict the location of sensitive land uses near major noise sources to achieve the standards present in Table 6.4.
 - **PS-13.3 Prevent Encroachment.** Prevent the encroachment of noise sensitive land uses into areas designated for use by existing or future noise generators.

4 Thresholds of Significance

The following significance criteria are based on Appendix G of the California Environmental Quality Act Guidelines (14 CCR 15000 et seq.) and will be used to determine the significance of potential noise impacts. Impacts related to noise would be significant if the proposed project would result in the following:

- a. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- b. Generation of excessive groundborne vibration or groundborne noise levels; and,
- c. Expose people residing or working in the project area to excessive noise levels (for a project located within the vicinity of a private airstrip or an airport land use plan, or where such a plan has not been adopted, within 2 miles of a public airport or public use airport).

The following Section 5 considers only the first (a) of these three significance criteria, evaluating potential impacts with respect to relevant regulations, standards, and guidance that have been introduced in Section 3. Significance criteria (b) and (c) have already been adequately discussed for the assessment of construction noise and vibration impacts and aviation-related noise exposure, respectively.

5 Impact Discussion

a) Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Long-Term Operational

Increase of Off-Site Roadway Traffic Noise

The Proposed Project would result in the contribution of additional vehicle trips on local arterial roadways (i.e., Stetson Avenue and Sanderson Avenue), which could result in increased traffic noise levels at adjacent noisesensitive land uses. Attachment C, Traffic Noise Model (v. 2.5) Input and Output Data, contains a spreadsheet with traffic volume data (average daily trips, ADT) for Stetson Avenue and Sanderson Avenue based on the Traffic Impact Assessment prepared for the proposed project (Dudek 2020). In particular, the Proposed Project would generate 3,038 ADT along Stetson Avenue and Sanderson Avenue. Potential noise effects from vehicular traffic were assessed by comparing traffic volumes from the 2017 MD Acoustics Noise Report (Attachment A) with updated volumes in the 2020 traffic impact analysis. In addition to comparing traffic volumes, potential noise effects from vehicular traffic were assessed using the Federal Highway Administration's Traffic Noise Model (TNM) version 2.5 (FHWA 2004) to quantify estimated traffic noise levels, and eliminate discrepancies in ADT volumes found in the 2017 MD Acoustics Noise Report. Information used in the TNM model included the roadway geometry, posted traffic speeds, and traffic volumes for the following scenarios: existing (year 2020), existing plus project, cumulative (existing plus ambient without project), cumulative plus project, buildout (2023), and buildout plus project.

The predicted CNEL values for existing conditions shown in Table 3 are each within +/-.05 dB of the MD Acoustics 2017 Noise Report CNEL (approximated by the measured L_{eq} values) shown in Attachment A, which suggests good agreement since a 2-3 dB difference is barely perceptible. Validated by this value agreement, the same TNM-based model is used to predict the above scenario's traffic noise levels.

	Existing (2019) Noise Level	Existing (2019) Plus Project Noise Level	Opening Year (2023) Noise Ievel	Opening Year Plus Project Noise level	Cumulative (Existing + Ambient) Noise level	Cumulative Plus Project Noise Level	Maximum Project- Related Noise Level
Modeled Receiver Tag (Location Description)	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	(dBA CNEL)	Increase (dB)
M1 (Southwestern project boundary)	68.7	69	68.9	69.1	69.4	69.6	0.3
M2 (Northeastern project boundary)	68.9	69.5	69.1	69.7	69.9	70.4	0.6
M3 (Residence North of Stetson)	57.6	58.1	57.7	58.3	58.5	59	0.5
M4 (Residence North of Stetson)	57.9	58.5	58	58.6	58.9	59.4	0.6
M5 (Residence South of Stetson)	57.3	57.9	57.5	58.1	58.3	58.8	0.6
M6 (Residence South of Stetson)	61	61.3	61.2	61.4	61.7	61.9	0.3
M7 (Residence South of Stetson)	52.2	52.5	52.4	52.7	53	53.2	0.3
M8 (Residence South of Stetson)	48.5	48.9	48.6	49.1	49.3	49.7	0.5

Table 3. Off-site Roadway Traffic Noise Modeling Results

The City's Noise Element establishes a policy for exterior use areas of sensitive land uses to be protected from high noise levels. The Noise Element sets 65 dBA CNEL for the outdoor (i.e., exterior use) areas and 45 dBA CNEL for interior areas (e.g., residential indoor space) as the upper limit for normally acceptable levels. In addition, for the purposes of this noise analysis, traffic-related noise impacts are considered significant when they cause an increase

of 3 dB or more from existing noise levels. An increase or decrease in noise level of at least 3 dB is required before any noticeable change in community response would be expected (Caltrans 2013a).

Table 3 shows that at all listed receptor locations, the addition of proposed project traffic to the roadway network would result in a CNEL increase of less than 3 dB, which is below the discernible level of change for the average healthy human ear. Thus, a **less-than-significant impact** is expected for proposed project-related off-site traffic noise increases affecting existing residences in the vicinity.

Stationary Operations Noise

The Proposed Project is expected to feature "stationary" producers of noise associated with onsite operations that are distinct from the transportation noise studied in the preceding section. The assumed major onsite operating noise sources during daytime hours (7:00 a.m. to 10:00 p.m.) are as follows:

- The 4,088 square foot convenience store (e.g., 7-Eleven) and a 2,660 square foot drive-thru fast food
 restaurant would both likely feature a packaged air-conditioner on its roof, which we could assume would
 be something like a 5-ton (refrigeration) air-cooled condensing unit resembling a Carrier CA16NA 060 and
 thus having a reference sound power level of 78 dBA (or 76 dBA if equipped with a "sound shield" [Carrier
 2012]). These two rooftop HVAC units would also operate during some or all nighttime hours.
- An approximately 3,590 square-foot car wash with 21 operating self-serve vacuum stations under a 3,096-square-foot canopy. Sound sources include:
 - Each vacuum unit exhibiting 77 dBA sound power level; and,
 - Each of three car wash tunnel exit air dryers (blowers) exhibiting 104 dBA sound power level.
- Eleven (11) idling vehicles queued up for the car-wash and seven (7) idling vehicles in line for the fast food restaurant drive thru window for no more than five minutes in any hour (8.25% of the time), consistent with state law for trucks. Conservatively, a pick-up truck is considered idling with L_{max} = 71 dBA at 50 feet. Three (3) additional vehicles are idling in parking stalls near the proposed restaurant, and three are idling at parking stalls associated with the convenience store.
- An Idling recreational vehicle (RV) idling just before and after using the fuel pumps, up to one at a time during daytime and nighttime hours and idling for no more than five minutes in any hour (8.25% of the time), consistent with state law for trucks. Conservatively, a large RV is considered an idling bus with L_{max} = 72 dBA at 50 feet.
- Up to six (6) fuel pumps operate during the day for no more than 20 minutes in any hour (33% of the time), and each generates no more than 80 dBA sound power level.

The aggregate sound emission of these Proposed Project on-site noise-producing sources was predicted with CadnaA, a commercially available sound propagation modeling software program based on International Organization of Standardization (ISO) 9613-2 standards. Key modeling parameters and assumptions utilized by the software include the following:

• Ground effect acoustical absorption coefficient equal to 0.2, which intends to represent what will largely be a paved or concrete surface on the Proposed Project site;

- Reflection order of 1, which allows for a single reflection of sound paths on encountered structural surfaces such as the modeled facades of the Proposed Project fast-food restaurant, convenience store, and car wash operations building portion westerly adjacent to the car wash tunnel;
- Offsite residential structures and the commercial buildings of the easterly-adjoining site have not been rendered in the model
- Building facades are a combination of stucco/plaster, glazing, and diffractive surface features that yield an approximate net acoustical absorption coefficient of 0.2; and,
- Calm meteorological conditions (i.e., no wind) with 68 degrees Fahrenheit and 70% relative humidity.

Table 4 compares the predicted aggregate Proposed Project operation noise emission levels (i.e., at the modeled receptor locations appearing in Figure 3) and the applicable City of Hemet daytime noise thresholds. Figure 3 displays predicted levels from project stationary sources out to a modeled calculation boundary. Attachment D, Operational Noise Model Input and Output Data, provides details of the calculated values appearing in Table 4. Even under these conservative sound modeling conditions, such as all 21 vacuum stations in use by prospective customers of the car wash, no exceedances with respect to the municipal standards are expected; thus, operational noise impact from stationary sources during daytime hours should be **less than significant**.

	M1	M2	MЗ	M4	M5	M6	M7	M8	M9*
Receptor	(Southwestern project boundary)	(Northeastern project boundary)	(Residence North of Stetson)	(Residence North of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Industrial property to the east of project site)
Predicted Stationary Ops Noise Level (hourly L _{eq})	53	54	53	50	53	57	58	55	76
Hourly L _{eq} Limit (residential/industrial zone)	60	60	60	60	60	60	60	60	n/a
Exceedance?	no	no	no	no	no	no	no	no	n/a

Table 4. Predicted Project Daytime Stationary Operations Noise at Nearest Sensitive Receptors

* not a noise-sensitive receptor according to City of Hemet General Plan

Table 5 is similar to Table 4, but presents the predicted aggregate Proposed Project nighttime operation noise emission levels (i.e., at the modeled receptor locations appearing in Figure 4) and the applicable City of Hemet nighttime noise thresholds. Like Figure 3, Figure 4 displays predicted levels from project stationary sources out to a modeled calculation boundary. Attachment D, Operational Noise Model Input and Output Data, provides details of the calculated values appearing in Table 5. The differences between the daytime operation model and the nighttime operation model are as follows:

• The car wash, its idling vehicles, and customer vacuum stations are inoperative;

- Only three fuel pumps are operating;
- Only two idling vehicles at the convenience store and two at the fast-food restaurant parking lots; and,
- Only three vehicles idling at the fast-food restaurant drive-thru queue.

All other model inputs are the same as that of the daytime prediction model. No exceedances with respect to the municipal nighttime standards are expected; thus, operational noise impact from stationary sources during nighttime hours should be **less than significant**.

	M1	M2	MЗ	M4	M5	M6	M7	M8	M9*
Receptor	(Southwestern project boundary)	(Northeastern project boundary)	(Residence North of Stetson)	(Residence North of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Residence South of Stetson)	(Industrial property to the east of project site)
Predicted Stationary Ops Noise Level (hourly L _{eq})	41	42	40	38	37	45	45	41	59
Hourly L _{eq} Limit (residential/industrial zone)	45	45	45	45	45	45	45	45	n/a
Exceedance?	no	no	no	no	no	no	no	no	n/a

Table 5. Predicted Project Nighttime Stationary Operations Noise at Nearest Sensitive Receptors

* not a noise-sensitive receptor according to City of Hemet General Plan

SOURCE: Riverside County 2020; Bing Maps

FIGURE 3 ns - Daytime Measurements Stetson Corner

. . . .

DUDEK 🌢 🕒

150 300

Noise Modeling Receptor Locations - Daytime Measurements

INTENTIONALLY LEFT BLANK

SOURCE: Riverside County 2020; Bing Maps

FIGURE 4 Noise Modeling Receptor Locations - Nighttime Measurements Stetson Corner

DUDEK 🌢 느

150 300

INTENTIONALLY LEFT BLANK

5 Conclusions

Based upon the modeled traffic and stationary-source operational noise, predicted sound levels attributed to the Proposed Project are not in excess of City standards at the Project boundary with its neighbors.

We trust that this technical memorandum meets your Project needs with the City. Should you have any questions or require additional information, please do not hesitate to contact Mark Storm at (760) 479-4297, mstorm@dudek.com; or, Connor Burke at (760) 479-4272, cburke@dudek.com.

Sincerely,

Mark Storm, INCE Bd. Cert. Acoustic Services Manager

Buch

Connor Burke Environmental Analyst

Att. A: MD Acoustics 2017 Noise Report

- B: Acoustic Terminology and Definitions C: Traffic Noise Model (v. 2.5) Input and Output Data
- D: Operational Noise Model Input and Output Data

6 References

- Caltrans (California Department of Transportation). 2013a. *Technical Noise Supplement to the Traffic Noise Analysis Protocol*. September 2013.
- Caltrans. 2013b. *Transportation and Construction Vibration Guidance Manual*. Division of Environmental Analysis, Environmental Engineering, Hazardous Waste, Air, Noise, Paleontology Office. Sacramento, California. September 2013.
- Carrier Corporation. 2012. CA16NA 018-61 Single-Stage Air Conditioner with Puron Refrigerant Product Data. Catalog No. CA16NA-06PD. September.
- DOT (U.S. Department of Transportation). 2006. FHWA Roadway Construction Noise Model: User's Guide. Final Report. FHWA-HEP-06-015. DOT-VNTSC-FHWA-06-02. Cambridge, Massachusetts: DOT, Research and Innovative Technology Administration. August 2006.
- Dudek. 2020. Stetson Corner Traffic Impact Assessment.
- Federal Highway Administration (FHWA). 2016. Roadway Construction Noise Model (RCNM). Accessed May 2017 at: https://www.fhwa.dot.gov/Environment/noise/construction_noise/rcnm/.
- Federal Transit Administration (FTA). 2006. Transit Noise and Vibration Impact Assessment. Accessed May 2017 at: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/FTA_Noise_and_Vibration_Manual.pdf
- Hemet, City of. 2012. 2012 General Plan. Accessed April 2020 at: https://www.hemetca.gov/ DocumentCenter/View/5334/GP-Progress-Report51419?bidId=

Attachment A

MD Acoustics 2017 Noise Report

Attachment A

MD Acoustics 2017 Noise Report

McHolland Retail Noise Impact Study City of Hemet, CA

Prepared for:

Mr. Mark Cooper Rancho Empire, LLC 38011 Stone Meadow Dr. Murrieta, CA 92562

Prepared by:

MD Acoustics Mike Dickerson, INCE 1197 Los Angeles Ave, Ste C-256 Simi Valley, CA 93065

Date: 10/27/2017

Noise Study Reports | Vibration Studies | Air Quality | Greenhouse Gas | Health Risk Assessments

P) AZ - 602.774.1950 P) CA - 805.426.4477

www.mdacoustics.com info@mdacoustics.com

TABLE OF CONTENTS

1.0	Intro	duction	1
	1.1	Purpose of Analysis and Study Objectives	1
	1.2	Site Location and Study Area	1
	1.3	Proposed Project Description	1
2.0	Funda	amentals of Noise	4
	2.1	Sound, Noise and Acoustics	4
	2.2	Frequency and Hertz	4
	2.3	Sound Pressure Levels and Decibels	4
	2.4	Addition of Decibels	4
	2.5	Human Response to Changes in Noise Levels	5
	2.6	Noise Descriptors	5
	2.7	Traffic Noise Prediction	6
	2.8	Sound Propagation	7
3.0	Grou	nd-Borne Vibration Fundamentals	8
	3.1	Vibration Descriptors	8
	3.2	Vibration Perception	8
	3.3	Vibration Perception	8
4.0	Regul	atory Setting	
	4.1	Federal Regulations	10
	4.2	State Regulations	10
	4.3	City of Hemet Noise Regulations	11
5.0	Study	Method and Procedure	14
	5.1	Noise Measurement Procedure and Criteria	14
	5.2	Long-Term Noise Measurement Location	14
	5.3	FHWA Traffic Noise Prediction Model	14
	5.4	SoundPLAN Model	17
	5.5	FHWA Roadway Construction Noise Model	17
6.0	Existi	ng Noise Environment	19
	6.1	Long-Term Noise Measurement Results	19
	6.2	Short-Term Noise Measurement Results	20
7.0	Futur	e Noise Environment Impacts and Mitigation	
	7.1	Future Exterior Noise	21
		7.1.1 Noise Impacts to Off-Site Receptors Due to Project Generated	
		Traffic	21
		7.1.2 Noise Impacts to Off-Site Receptors Due to Stationary Sources	22
	7.2	Mitigation Measures	24
8.0	Const	ruction Noise Impact	
	8.1	Construction Noise	27

30
28

LIST OF APPENDICES

Appendix A:	Field Measurement Data	. 1
Appendix B:	Traffic FHWA Worksheets	. 2
Appendix C:	SoundPLAN Input and Output	. 3
Appendix D:	Construction Noise Modeling Output	. 4

LIST OF EXHIBITS

Exhibit A:	Location Map	2
Exhibit B:	Site Plan	3
Exhibit C:	Typical A-Weighted Noise Levels	4
Exhibit D:	Land Use Compatibility Guidelines1	1
Exhibit E:	Measurement Locations1	٤5
Exhibit F:	Operational Noise Levels	25
Exhibit G:	Operational Noise Contours	26

LIST OF TABLES

Table 1: Noise Level Performance Standards for Nontransportation Noise Sources ¹	12
Table 2: Roadway Parameters and Vehicle Distribution	16
Table 3: Long-Term Noise Measurement Data (dBA) ¹	19
Table 4: Short-Term Noise Measurement Data (dBA) ¹	20
Table 5: Existing Scenario – Noise Levels Along Roadways (dBA CNEL)	22
Table 6: Worst-case Predicted Operational Noise Levels (dBA)	23
Table 7: Typical Construction Noise Levels1	27
Table 8: Guideline Vibration Damage Potential Threshold Criteria	29
Table 9: Vibration Source Levels for Construction Equipment ¹	29

1.0 Introduction

1.1 Purpose of Analysis and Study Objectives

This noise assessment was prepared to evaluate the potential noise impacts for the project study area and to recommend noise mitigation measures, if necessary, to minimize the potential noise impacts. The assessment was conducted and compared to the noise standards set-forth by the Federal, State and Local agencies. Consistent with the City's Noise Guidelines, the project must demonstrate compliance to the applicable noise criterion as outlined within the City's Noise Element and Municipal Code.

The following is provided in this report:

- A description of the study area and the proposed project
- Information regarding the fundamentals of noise
- A description of the local noise guidelines and standards
- An analysis of traffic noise impacts to and from the project site
- An analysis of stationary noise impacts to and from the project site
- An analysis of construction noise impacts

1.2 Site Location and Study Area

The project site is located southeast corner Sanderson Avenue and Stetson Avenue, in the City of Hemet, California, as shown in Exhibit A. The site is currently zoned as Business Park. Land uses surrounding the site include residential to the north and south, industrial to the east and retail to the west.

1.3 Proposed Project Description

The project proposes to develop a convenience market with 12 vehicle fueling positions and an automatic car wash facility with approximately 21 vacuum bays.

This study assesses both the traffic and stationary noise to and from the project site and compares the results to the applicable City noise limits. The primary source of traffic noise propagates from Sanderson Avenue and Stetson Avenue. The primary source of stationary noise propagates from the on-site car wash blow dryer system, vacuums and convenience store operations. The site plan used for this is illustrated in Exhibit B.

Construction activities within the Project area will consist of on-site grading, building, paving, and architectural coating.

Introduction

Exhibit A Location Map

Exhibit **B** Site Plan

PIERCE

2.0 Fundamentals of Noise

This section of the report provides basic information about noise and presents some of the terms used within the report.

2.1 Sound, Noise and Acoustics

Sound is a disturbance created by a moving or vibrating source and is capable of being detected by the hearing organs. Sound may be thought of as mechanical energy of a moving object transmitted by pressure waves through a medium to a human ear. For traffic, or stationary noise, the medium of concern is air. *Noise* is defined as sound that is loud, unpleasant, unexpected, or unwanted.

Exhibit C:

2.2 Frequency and Hertz

A continuous sound is described by its *frequency* (pitch) and its *amplitude* (loudness). Frequency relates to the number of pressure oscillations per second. Low-frequency sounds are low in pitch (bass sounding) and high-frequency sounds are high in pitch (squeak). These oscillations per second (cycles) are commonly referred to as Hertz (Hz). The human ear can hear from the bass pitch starting out at 20 Hz all the way to the high pitch of 20,000 Hz.

2.3 Sound Pressure Levels and Decibels

The *amplitude* of a sound determines it loudness. The loudness of sound increases or decreases as the amplitude increases or decreases. Sound pressure amplitude is measure in units of micro-Newton per square inch meter (N/m2), also called micro-Pascal (μ Pa). One μ Pa is approximately one hundred billionths (0.0000000001) of normal atmospheric pressure. Sound pressure level (SPL or L_p) is used to describe in logarithmic units the ratio of actual sound pressures to a reference pressure squared.

Typical A-Weighted Noise Levels

These units are called decibels abbreviated dB. Exhibit C illustrates references sound levels for different noise sources.

2.4 Addition of Decibels

Because decibels are on a logarithmic scale, sound pressure levels cannot be added or subtracted by simple plus or minus addition. When two sounds or equal SPL are combined, they will produce an SPL 3 dB greater than the original single SPL. In other words, sound energy must be doubled to produce a 3 dB increase. If two sounds differ by approximately 10 dB, the higher sound level is the predominant sound.

2.5 Human Response to Changes in Noise Levels

In general, the healthy human ear is most sensitive to sounds between 1,000 Hz and 5,000 Hz, (Aweighted scale) and it perceives a sound within that range as being more intense than a sound with a higher or lower frequency with the same magnitude. For purposes of this report as well as with most environmental documents, the A-scale weighting is typically reported in terms of A-weighted decibel (dBA). Typically, the human ear can barely perceive the change in noise level of 3 dB. A change in 5 dB is readily perceptible, and a change in 10 dB is perceived as being twice or half as loud. As previously discussed, a doubling of sound energy results in a 3 dB increase in sound, which means that a doubling of sound energy (e.g. doubling the volume of traffic on a highway) would result in a barely perceptible change in sound level.

Changes in Intensity Level,	Changes in Apparent
dBA	Loudness
1	Not perceptible
3	Just perceptible
5	Clearly noticeable
10	Twice (or half) as loud
https://www.fhug.dot.gov/opvicent/option/convertings_and_guidence/activide/polguide/0.ofm	

 $https://www.fhwa.dot.gov/environMent/noise/regulations_and_guidance/polguide/polguide02.cfm$

2.6 Noise Descriptors

Noise in our daily environment fluctuates over time. Some noise levels occur in regular patterns, others are random. Some noise levels are constant while others are sporadic. Noise descriptors were created to describe the different time-varying noise levels.

<u>A-Weighted Sound Level</u>: The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the response of the human ear. A numerical method of rating human judgment of loudness.

<u>Ambient Noise Level</u>: The composite of noise from all sources, near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental noise at a given location.

<u>Community Noise Equivalent Level (CNEL)</u>: The average equivalent A-weighted sound level during a 24hour day, obtained after addition of five (5) decibels to sound levels in the evening from 7:00 to 10:00 PM and after addition of ten (10) decibels to sound levels in the night before 7:00 AM and after 10:00 PM.

Decibel (dB): A unit for measuring the amplitude of a sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micro-pascals.

dB(A): A-weighted sound level (see definition above).

Equivalent Sound Level (LEQ): The sound level corresponding to a steady noise level over a given sample period with the same amount of acoustic energy as the actual time varying noise level. The energy average noise level during the sample period.

Habitable Room: Any room meeting the requirements of the Uniform Building Code or other applicable regulations which is intended to be used for sleeping, living, cooking or dining purposes, excluding such enclosed spaces as closets, pantries, bath or toilet rooms, service rooms, connecting corridors, laundries, unfinished attics, foyers, storage spaces, cellars, utility rooms and similar spaces.

<u>L(n)</u>: The A-weighted sound level exceeded during a certain percentage of the sample time. For example, L10 in the sound level exceeded 10 percent of the sample time. Similarly L50, L90 and L99, etc.

Noise: Any unwanted sound or sound which is undesirable because it interferes with speech and hearing, or is intense enough to damage hearing, or is otherwise annoying. The State Noise Control Act defines noise as "...excessive undesirable sound...".

Outdoor Living Area: Outdoor spaces that are associated with residential land uses typically used for passive recreational activities or other noise-sensitive uses. Such spaces include patio areas, barbecue areas, jacuzzi areas, etc. associated with residential uses; outdoor patient recovery or resting areas associated with hospitals, convalescent hospitals, or rest homes; outdoor areas associated with places of worship which have a significant role in services or other noise-sensitive activities; and outdoor school facilities routinely used for educational purposes which may be adversely impacted by noise. Outdoor areas and storage areas associated with residential land uses; exterior areas at hospitals that are not used for patient activities; outdoor areas associated with places of worship and principally used for short-term social gatherings; and, outdoor areas associated with school facilities that are not typically associated with educational uses prone to adverse noise impacts (for example, school play yard areas).

Percent Noise Levels: See L(n).

Sound Level (Noise Level): The weighted sound pressure level obtained by use of a sound level meter having a standard frequency-filter for attenuating part of the sound spectrum.

Sound Level Meter: An instrument, including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement and determination of noise and sound levels.

<u>Single Event Noise Exposure Level (SENEL)</u>: The dB(A) level which, if it lasted for one second, would produce the same A-weighted sound energy as the actual event.

2.7 Traffic Noise Prediction

Noise levels associated with traffic depends on a variety of factors: (1) volume of traffic, (2) speed of traffic, (3) auto, medium truck (2–3 axle) and heavy truck percentage (4 axle and greater), and sound propagation. The greater the volume of traffic, higher speeds and truck percentages equate to a louder volume in noise. A doubling of the Average Daily Traffic (ADT) along a roadway will increase noise levels by approximately 3 dB; reasons for this are discussed in the sections above.

2.8 Sound Propagation

As sound propagates from a source it spreads geometrically. Sound from a small, localized source (i.e., a point source) radiates uniformly outward as it travels away from the source in a spherical pattern. The sound level attenuates at a rate of 6 dB per doubling of distance. The movement of vehicles down a roadway makes the source of the sound appear to propagate from a line (i.e., line source) rather than a point source. This line source results in the noise propagating from a roadway in a cylindrical spreading versus a spherical spreading that results from a point source. The sound level attenuates for a line source at a rate of 3 dB per doubling of distance.

As noise propagates from the source, it is affected by the ground and atmosphere. Noise models use hard site (reflective surfaces) and soft site (absorptive surfaces) to help calculate predicted noise levels. Hard site conditions assume no excessive ground absorption between the noise source and the receiver. Soft site conditions such as grass, soft dirt or landscaping attenuate noise at a rate of 1.5 dB per doubling of distance. When added to the geometric spreading, the excess ground attenuation results in an overall noise attenuation of 4.5 dB per doubling of distance for a line source and 7.5 dB per doubling of distance for a point source.

Research has demonstrated that atmospheric conditions can have a significant effect on noise levels when noise receivers are located 200 feet from a noise source. Wind, temperature, air humidity and turbulence can further impact have far sound can travel.
3.0 Ground-Borne Vibration Fundamentals

3.1 Vibration Descriptors

Ground-borne vibrations consist of rapidly fluctuating motions within the ground that have an average motion of zero. The effects of ground-borne vibrations typically only cause a nuisance to people, but at extreme vibration levels, damage to buildings may occur. Although ground-borne vibration can be felt outdoors, it is typically only an annoyance to people indoors where the associated effects of the shaking of a building can be notable. Ground-borne noise is an effect of ground-borne vibration and only exists indoors, since it is produced from noise radiated from the motion of the walls and floors of a room and may also consist of the rattling of windows or dishes on shelves.

Several different methods are used to quantify vibration amplitude.

PPV – Known as the peak particle velocity (PPV) which is the maximum instantaneous peak in vibration velocity, typically given in inches per second.

RMS - Known as root mean squared (RMS) can be used to denote vibration amplitude

VdB – A commonly used abbreviation to describe the vibration level (VdB) for a vibration source.

3.2 Vibration Perception

Typically, developed areas are continuously affected by vibration velocities of 50 VdB or lower. These continuous vibrations are not noticeable to humans whose threshold of perception is around 65 VdB. Outdoor sources that may produce perceptible vibrations are usually caused by construction equipment, steel-wheeled trains, and traffic on rough roads, while smooth roads rarely produce perceptible ground-borne noise or vibration. To counter the effects of ground-borne vibration, the Federal Transit Administration (FTA) has published guidance relative to vibration impacts. According to the FTA, fragile buildings can be exposed to ground-borne vibration levels of 0.3 inches per second without experiencing structural damage.

3.3 Vibration Perception

There are three main types of vibration propagation: surface, compression, and shear waves. Surface waves, or Rayleigh waves, travel along the ground's surface. These waves carry most of their energy along an expanding circular wave front, similar to ripples produced by throwing a rock into a pool of water. P-waves, or compression waves, are body waves that carry their energy along an expanding spherical wave front. The particle motion in these waves is longitudinal (i.e., in a "push-pull" fashion). P-waves are analogous to airborne sound waves. S-waves, or shear waves, are also body waves that carry energy along an expanding spherical wave front. However, unlike P-waves, the particle motion is transverse, or side-to-side and perpendicular to the direction of propagation.

As vibration waves propagate from a source, the vibration energy decreases in a logarithmic nature and the vibration levels typically decrease by 6 VdB per doubling of the distance from the vibration source. As stated above, this drop-off rate can vary greatly depending on the soil but has been shown to be effective enough for screening purposes, in order to identify potential vibration impacts that may need to be studied through actual field tests.

4.0 Regulatory Setting

The proposed project is located in the City of Hemet and noise regulations are addressed through the efforts of various federal, state and local government agencies. The agencies responsible for regulating noise are discussed below.

4.1 Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Publicize noise emission standards for interstate commerce
- Assist state and local abatement efforts
- Promote noise education and research

The Federal Office of Noise Abatement and Control (ONAC) originally was tasked with implementing the Noise Control Act. However, it was eventually eliminated leaving other federal agencies and committees to develop noise policies and programs. Some examples of these agencies are as follows: The Department of Transportation (DOT) assumed a significant role in noise control through its various agencies. The Federal Aviation Agency (FAA) is responsible to regulate noise from aircraft and airports. The Federal Highway Administration (FHWA) is responsible to regulate noise from the interstate highway system. The Occupational Safety and Health Administration (OSHA) is responsible for the prohibition of excessive noise exposure to workers.

The federal government advocates that local jurisdiction use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being constructed adjacent to a highway or, or alternatively that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Since the federal government has preempted the setting of standards for noise levels that can be emitted by the transportation source, the City is restricted to regulating the noise generated by the transportation system through nuisance abatement ordinances and land use planning.

4.2 State Regulations

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix." The matrix allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise.

The State of California has established noise insulation standards as outlined in Title 24 and the Uniform Building Code (UBC) which in some cases requires acoustical analyses to outline exterior noise levels and to ensure interior noise levels do not exceed the interior threshold. The State mandates that the legislative body of each county and city adopt a noise element as part of its comprehensive general plan.

The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The guidelines rank noise land use compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable as illustrated in Exhibit D.

Exhibit D: Land Use Compatibility Guidelines

4.3 City of Hemet Noise Regulations

The City of Hemet outlines their noise regulations and standards within the Noise Element from the General Plan and the Noise Ordinance from the Municipal Code.

Applicable policies and standards governing environmental noise in the City are set forth in the General Plan Public Safety Chapter. Table 6.5 from the City's General Plan 2030 outlines the acceptable daytime/nighttime noise performance standards for nontransportation noise sources and is detailed in Table 1 (below):

Naiss Louis Description	Daytime	Nighttime					
Noise Level Descriptor	7:00 am to 10:00 pm	10:00 pm to 7:00 am					
Hourly Average Level (Leq)	60 dBA	45 dBA					
Maximum Equivalent Levels (Lmax) 75 dBA 65 dBA							
Source: City of Hemet 2030 General Plan, Public Safety Element, Table 6.5							
Notes: Each of the noise levels specified shall be lowered by 5 decibels for simple tone noises, noises consisting primarily of speech or music, or for recurring impulsive noises. These noise level standards do not apply to residential units established in conjunction with industrial or commercial uses (e.g., caretaker dwellings). The noise standard is to be applied at the property lines of the affected land use.							

Table 1: Noise Level Performance Standards for Nontransportation Noise Sources¹

Project operations will occur during daytime hours. Therefore, the project must demonstrate compliance to the City's 60 dBA noise limit.

In addition to the noise standards, the City has outlined goals, policies and implementation measures to reduce potential noise impacts and are presented below:

Goals, Policies, and Implementation Measures

Policies and goals from the Safety and Noise Chapter that would mitigate potential impacts on noise include the following.

- **Goal PS-11** Manage noise levels through land use planning and development review.
 - PS-11.1 **Noise Standards.** Enforce noise standards to maintain acceptable noise limits and protect existing areas with acceptable noise environments.
 - PS-11.2 **Design to Minimize Noise.** Encourage the use of siting and building design techniques as a means to minimize noise.
 - PS-11.3 **Evaluate Noise.** Evaluate potential noise conflicts for individual sites and projects, and require mitigation of all significant noise impacts (including construction and short-term noise impacts) as a condition of project approval.
 - PS-11.4 **Protect Noise-Sensitive Uses.** Protect noise-sensitive uses from new noise sources.

Goal PS-12 Minimize noise conflicts from transportation sources and airports.

- PS-12.1 **Traffic Noise.** Minimize noise conflicts between current and proposed land uses and the circulation network by encouraging compatible land uses around critical roadway segments with higher noise potential.
- **Goal PS-13** Minimize noise conflicts with stationary noise generators.
 - PS-13.2 **New Sensitive Uses.** Restrict the location of sensitive land uses near major noise sources to achieve the standards present in Table 6.4.
 - PS-13.3 **Prevent Encroachment.** Prevent the encroachment of noise sensitive land uses into areas designated for use by existing or future noise generators.

Construction Noise Regulations

Section 30-32 [33] of the Municipal Code exempts construction noise that occurs between the hours of 6:00 a.m. and 6:00 p.m. during the months of June through September and between the hours of 7:00 a.m. and 6:00 p.m. during the months of October through May. The Code permits Saturday construction between the hours of 7:00 a.m. and 6:00 p.m. and prohibits Sunday construction.

Section 90-1048 (1) of the Municipal Code declares that no use, except a temporary construction operation, shall be permitted which creates noise of a maximum sound pressure level greater than the value established in the public safety element of the general plan, and adopted building codes, or as may be further determined by project specific mitigation measures. The general plan specifies land use compatibility standards to ensure that stationary noise sources (e.g., industrial uses) do not adversely affect noise-sensitive land uses and that community noise environments do not negatively affect land uses.

Vibration

Section 90-1048 (7) of the Municipal Code declares that no use, except a temporary construction operation, shall be permitted which creates vibration sufficient to cause a displacement of 0.003 inch beyond the boundaries of the site.

5.0 Study Method and Procedure

The following section describes the noise modeling procedures and assumptions used for this assessment.

5.1 Noise Measurement Procedure and Criteria

Noise measurements are taken to determine the existing noise levels. A noise receiver or receptor is any location in the noise analysis in which noise might produce an impact. The following criteria are used to select measurement locations and receptors:

- Locations expected to receive the highest noise impacts, such as first row of houses
- Locations that are acoustically representative and equivalent of the area of concern
- Human land usage
- Sites clear of major obstruction and contamination

MD conducted the sound level measurements in accordance to CalTrans technical noise specifications. All measurements equipment meets American National Standards Institute (ANSI) specifications for sound level meters (S1.4-1983 identified in Chapter 19.68.020.AA). The following gives a brief description of the Caltrans Technical Noise Supplement procedures for sound level measurements:

- Microphones for sound level meters were placed 5-feet above the ground for all measurements
- Sound level meters were calibrated (Larson Davis CAL 200) before and after each measurement
- Following the calibration of equipment, a wind screen was placed over the microphone
- Frequency weighting was set on "A" and slow response
- Results of the long-term noise measurements were recorded on field data sheets
- During any short-term noise measurements any noise contaminations such as barking dogs, local traffic, lawn mowers, or aircraft fly-overs were noted
- Temperature and sky conditions were observed and documented

5.2 Long-Term Noise Measurement Location

The noise monitoring location was selected based on the distance of the project's stationary noise sources to the nearest sensitive on-site receptors. The long-term noise measurement was conducted on the southern property line of the project site and represents ambient levels at the site. Appendix A includes photos, field sheet, and measured noise data. Exhibit E (next page) illustrates the location of the measurement.

5.3 FHWA Traffic Noise Prediction Model

Traffic noise from vehicular traffic was projected using a computer program that replicates the FHWA Traffic Noise Prediction Model (FHWA-RD-77-108). The FHWA model arrives at the predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). Roadway volumes were provided by Trames Solutions, Inc. The referenced traffic data was applied to the model and is in Appendix B. The following outlines the key adjustments made to the REMEL for the roadway inputs:

2

= 24-hour noise reading

Exhibit E Measurement Locations

= 10-min noise reading

- Roadway classification (e.g. freeway, major arterial, arterial, secondary, collector, etc),
- Roadway Active Width (distance between the center of the outer most travel lanes on each side of the roadway)
- Average Daily Traffic Volumes (ADT), Travel Speeds, Percentages of automobiles, medium trucks and heavy trucks
- Roadway grade and angle of view
- Site Conditions (e.g. soft vs. hard)
- Percentage of total ADT which flows each hour through-out a 24-hour period

Table 2 indicates the roadway parameters and vehicle distribution utilized for this study.

Roadway	Segment	Existing ADT	Existing Plus Project ADT	Speed (MPH)	Site Conditions		
Sanderson Avenue South of Stetson Avenue		24,600	28,900	40	Soft		
Sanderson Avenue	North of Stetson Avenue	17,700	20,600	40	Soft		
Stetson Avenue	Stetson Avenue East of Sanderson Avenue		13,600	40	Soft		
Stetson Avenue West of Sanderson Avenue		25,600	25,600 28,600		Soft		
Major Arterial Vehicle Distribution (Truck Mix) ²							
Motor-Vehicle Type		Daytime % (7AM to 7 PM)	Evening % (7 PM to 10 PM)	Night % (10 PM to 7 AM)	Total % of Traffic Flow		
Automobiles		75.5	14.0 10.4		92.00		
Medium Trucks		48.0	2.0 50.0		3.00		
Heavy Trucks		48.0	2.0	50.0	5.00		

Table 2: Roadway Parameters and Vehicle Distribution

Notes:

¹ Maximum two-way traffic volume (ADT) with Level of Service C (LOS C) conditions of a major arterial roadways as outlined in the Riverside County Office of Industrial Hygiene Acoustical Modeling Parameters.

² Vehicle distribution data is based on Riverside County Mix data for collectors and secondary roadways.

The following outlines key adjustments to the REMEL for project site parameter inputs:

- Vertical and horizontal distances (Sensitive receptor distance from noise source)
- Noise barrier vertical and horizontal distances (Noise barrier distance from sound source and receptor).
- Traffic noise source spectra
- Topography

MD projected the traffic noise levels to the on-site receptors. The project noise calculation worksheet outputs are located in Appendix B.

5.4 SoundPLAN Model

SoundPLAN (SP) acoustical modeling software was utilized to model traffic noise level projections and future worst-case project operational noise impacts (stationary noise sources) to the on-site and nearest off-site sensitive receptors.

SP is capable of evaluating multiple stationary noise sources at various receiver locations. SP's software utilizes algorithms (based on the inverse square law) to calculate noise level projections. The software allows the user to input specific noise sources, spectral content, sound barriers, building placement, topography, and sensitive receptor locations. MD has performed spectral noise measurements on car wash blower systems and has utilized that data as inputs for said project.

The future worst-case noise level projections associated with the automatic car wash were modeled using reference sound level data for the Sonny's enterprises BL1-45HP-1 blowers and Vacutec vacuums/turbines. The model assumes that the car wash tunnel is approximately 108 feet long, 16 to 18 feet tall with will have an approximate 10-foot-wide by 9-foot-tall exit opening. The blowers were modeled at 10 to 12 feet high with two (2) side blowers and one (1) central blower. The BL1-45HP-1 blowers will be located approximately 5 to 10 feet inside the exit of the tunnel. The car wash equipment was modeled as point sources with output noise levels reaching up to 82 dBA at the entrance of the tunnel and 92.5 dBA at the exit of the tunnel. The manufacturer's reference equipment sound level data is provided in Appendix B.

The SP model assumes a total of 21 vacuums and the dyer systems are operating simultaneously (wostcase), when in reality the noise will be intermittent and lower in level. The project proposes to house the two (2) vacuum turbine motors (FT-CO-T350HP4) inside a 4-sided enclosure.

All other noise producing equipment (e.g. compressors, pumps) will be housed within mechanical equipment rooms.

In addition, the parking lot was modeled as an area source based upon the number of parking spaces with an estimated 5 to 25% turnover rate during the peak hour (depending on location and parking lot). Noise associated with parking lots include but are not limited to idling cars, doors closing, and starting engine noise. Noise levels associated with parking lots can reach peak levels of 80 dBA.

Finally, the model is able to evaluate the noise attenuating effects of existing structures and existing property line walls. The existing property line wall separating the project site from the residences to the south and east varies between 15 feet tall (to the southwest of the site) to 6 feet tall (to the southeast and east of the site). Modeling input and output assumptions are indicated in Appendix C.

5.5 FHWA Roadway Construction Noise Model

The construction noise analysis utilizes the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RNCM), together with several key construction parameters. Key inputs include distance to the sensitive receiver, equipment usage, % usage factor, and baseline parameters for the project site.

The project was analyzed based on the different construction phases. Construction noise is expected to be loudest during the grading, concrete and building phases of construction. The construction noise calculation output worksheet is located in Appendix D. The following assumptions relevant to short-term construction noise impacts were used:

• It is estimated that construction will occur over a 6 month to 1-year time period. Construction noise is expected to be the loudest during the grading, concrete, and building phases.

6.0 Existing Noise Environment

An ambient noise measurement was conducted at the site to determine the existing baseline levels. Noise measurement data indicates that traffic noise propagating from Sanderson Avenue and Stetson Avenue are the primary sources of noise impacting the site and surrounding areas. In addition, some onsite generated noise from the existing industrial use produces intermittent noise.

6.1 Long-Term Noise Measurement Results

The results of the long-term noise data are presented in Table 3.

Data	Time	dB(A)							
Date	Time	L _{EQ}	L _{MAX}	L _{MIN}	L ₂	L ₈	L ₂₅	L ₅₀	L ₉₀
9/27/2017	12PM-1PM	64.8	88.0	48.8	70.0	66.5	63.7	61.1	55.5
9/27/2017	1PM-2PM	64.5	87.4	49.0	69.9	66.3	63.8	61.3	55.4
9/27/2017	2PM-3PM	63.4	78.6	49.4	69.5	66.5	64.0	61.9	56.4
9/27/2017	3PM-4PM	64.9	89.1	49.9	71.7	67.0	64.0	61.6	57.0
9/27/2017	4PM-5PM	64.3	86.1	49.1	70.1	67.2	64.6	62.3	55.9
9/27/2017	5PM-6PM	63.8	81.2	49.3	69.7	66.7	64.2	62.2	56.8
9/27/2017	6PM-7PM	63.5	81.8	46.2	69.4	66.6	64.2	61.9	55.8
9/27/2017	7PM-8PM	64.3	91.3	47.3	69.9	66.3	63.5	60.9	54.6
9/27/2017	8PM-9PM	63.7	89.2	46.3	68.8	66.3	63.3	60.2	53.4
9/27/2017	9PM-10PM	61.8	86.1	46.3	68.4	65.0	61.8	58.7	51.6
9/27/2017	10PM-11PM	59.4	73.3	42.8	66.3	63.6	60.3	56.3	48.6
9/27/2017	11PM-12AM	59.7	79.5	42.0	67.5	63.7	60.0	55.2	47.1
9/27/2017	12AM-1AM	57.2	70.6	38.6	65.1	62.2	57.5	52.3	45.8
9/28/2017	1AM-2AM	55.4	78.6	40.0	63.8	60.2	53.4	47.6	42.8
9/28/2017	2AM-3AM	55.4	77.7	39.1	64.2	59.9	53.5	48.8	43.1
9/28/2017	3AM-4AM	57.9	75.3	40.2	66.3	62.6	58.0	52.5	46.4
9/28/2017	4AM-5AM	61.9	80.2	45.3	69.3	65.9	62.0	57.5	49.8
9/28/2017	5AM-6AM	62.9	83.0	48.8	69.4	66.6	63.7	60.3	54.0
9/28/2017	6AM-7AM	64.3	75.9	50.1	70.5	68.1	65.3	62.6	56.1
9/28/2017	7AM-8AM	64.2	79.3	52.4	69.7	67.3	65.2	63.0	57.8
9/28/2017	8AM-9AM	63.8	80.2	48.5	69.5	66.8	64.4	62.2	56.2
9/28/2017	9AM-10AM	63.6	82.3	48.0	70.2	66.9	64.1	61.4	54.3
9/28/2017	10AM-11AM	62.4	77.6	48.1	68.4	66.0	63.4	60.9	54.1
9/28/2017	11AM-12PM	64.6	92.7	48.7	69.6	67.0	63.8	61.1	55.3
CNEL					67	7.9			

Table 3: Long-Term Noise Measurement Data (dBA)¹

Notes:

¹ Long-term noise monitoring location 1 (LT1) is illustrated in Exhibit E. The highest (loudest) hourly noise interval is highlighted in orange and the lowest (quietest) in blue during operational hours.

Noise data indicates the ambient noise levels ranged between 55.4 to 64.9 dBA Leq(h) near the southern property line of the project site. It is estimated that the noise level behind the 15-foot tall property line wall (directly to the south of the proposed car wash) is 12 dBA lower and therefore the noise levels would range between 43.4 to 52.9 dBA (based on insertion loss calculations from FTA manual). Where the wall

drops from 15-feet to 6-feet, the reduction provided by the wall would be 5 dBA. Maximum levels reached 89.1 dBA (77.1 dBA behind the 15-foot wall) as a result of pass-by traffic along Sanderson Avenue. Additional field notes and photographs are provided in Appendix A.

For this evaluation, MD utilized the quietest hourly level (during daytime/operable hours) and has compared the project's projected noise levels to the quietest hourly ambient (during daytime/operable hours). The quietest (lowest) daytime hourly level occurred between 10AM and 11AM (62.4 dBA, Leq(h)). When adding the 12 dBA reduction (from the 15-foot wall) the noise level would be 50.4 dBA, Leq(h). When adding the 5 dBA reduction (from the 6-foot wall) the noise level would be 57.4 dBA, Leq(h).

6.2 Short-Term Noise Measurement Results

In addition, MD conducted a short-term 10-minute measurement along the project site's eastern property line where a parking lot will be constructed. The results of the short-term measurement are presented in Table 4.

Location	Date	Start Time	Leq	Lmax	Lmin	L(2)	L(8)	L(25)	L(50)	L(90)
Site 1	1/29/2016	12:54 PM	65.1	75.4	50.5	71.4	69.0	66.3	63.6	55.2
Notes: ^{1.} Measurements were taken over a ten-minute interval. Measurement locations are indicated in Exhibit E.										

rapic + . Short-renni Noise Nicasurennent Data (uDA)	Table 4: Short-Term	Noise	Measurement	Data	(dBA) ¹
--	---------------------	-------	-------------	------	--------------------

The data provided indicates that the existing eastern property line experiences an average noise level of 65 dBA Leq with maximum levels reaching up to 75.4 dBA during the measurement.

7.0 Future Noise Environment Impacts and Mitigation

This assessment analyzes future noise impacts to and from the project compares the results to the City's Noise Standards. The analysis details the estimated exterior noise levels associated with traffic from adjacent roadways and from on-site stationary noise sources.

7.1 Future Exterior Noise

The following outlines the exterior noise levels associated with the proposed project.

7.1.1 Noise Impacts to Off-Site Receptors Due to Project Generated Traffic

Traffic noise along Sanderson Avenue and Stetson Avenue will be the main source of noise impacting the project site and the surrounding area.

A worst-case project generated traffic noise level was modeled utilizing the FHWA Traffic Noise Prediction Model - FHWA-RD-77-108. Traffic noise levels were calculated 50 feet from the centerline of the analyzed roadway. The modeling is theoretical and does not take into account any existing barriers, structures, and/or topographical features that may further reduce noise levels. Therefore, the levels are shown for comparative purposes only to show the difference in with and without project conditions. In addition, the noise contours for 60, 65 and 70 dBA CNEL were calculated. The potential off-site noise impacts caused by an increase of traffic from operation of the proposed project on the nearby roadways were calculated for the following scenarios:

Existing Year (without Project): This scenario refers to existing year traffic noise conditions.

Existing Year (Plus Project): This scenario refers to existing year + project traffic noise conditions.

Table 5 compares the without and with project scenario and shows the change in traffic noise levels as a result of the proposed project. It takes a change of 3 dB or more to hear a perceptible difference. As demonstrated in Table 5, the project is anticipated to change the noise 0.5 to 0.7 dBA CNEL. Although there is a nominal increase along these two roadways, the proposed increase would still be below the 65 dBA CNEL residential standard at any off-site receptors. As shown in Table 5, the Existing Plus Project 65 dBA contour would extend an additional 32 from the centerline for the Sanderson Avenue (South of Stetson Avenue segment). All existing residences are located behind existing barriers and/or are located outside the 65 dBA contour.

Although there is an increase in traffic noise levels the impact is considered less than significant as the noise levels at or near any existing proposed sensitive receptor would be 65 dBA CNEL or less and the change in noise level is less than 3 dBA. No further mitigation is required.

Table 5: Existing Scenario – No	se Levels Along Roadways	(dBA CNEL)
---------------------------------	--------------------------	------------

	CNEL		Distance to Contour (Ft)				
Roadway	Segment	at 50 Ft (dBA)	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL	55 dBA CNEL	
Sanderson Avenue	South of Stetson Avenue	76.6	135	291	626	1,349	
Sanderson Avenue	North of Stetson Avenue	75.2	108	233	503	1,083	
Stetson Avenue	East of Sanderson Avenue	73.5	83	179	386	831	
Stetson Avenue	West of Sanderson Avenue	76.8	138	298	643	1,385	

Existing With Project Exterior Noise Levels

		CNEL	Distance to Contour (Ft)			
Roadway	Segment	at 50 Ft (dBA)	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL	55 dBA CNEL
Sanderson Avenue	South of Stetson Avenue	77.3	150	323	697	1,502
Sanderson Avenue	North of Stetson Avenue	75.8	120	258	556	1,198
Stetson Avenue	East of Sanderson Avenue	74.0	91	196	422	908
Stetson Avenue	West of Sanderson Avenue	77.3	149	321	692	1,491

Change in Existing Noise Levels as a Result of Project

		CNEL at 50 Feet dBA ²				
Roadway ¹	Segment	Existing Without Project	Existing With Project	Change in Noise Level	Potential Significant Impact	
Sanderson Avenue	South of Stetson Avenue	76.6	77.3	0.7	No	
Sanderson Avenue	North of Stetson Avenue	75.2	75.8	0.6	No	
Stetson Avenue	East of Sanderson Avenue	73.5	74.0	0.5	No	
Stetson Avenue	West of Sanderson Avenue	76.8	77.3	0.5	No	
Notes: 1 ¹ Exterior noise levels calculated at 5 feet above ground level. ² Noise levels calculated from centerline of subject roadway.						

7.1.2 Noise Impacts to Off-Site Receptors Due to Stationary Sources

Sensitive receptors that may be affected by project operational noise include adjacent land uses to the immediate south, north, and east. The worst-case stationary noise was modeled using SoundPLAN acoustical modeling software. Worst-case assumes the blowers, vacuums, equipment and parking are always operational when in reality the noise will be intermittent and cycle on/off depending on the customer usage. Project car wash operations are assumed to occur within the City's allowable daytime (7 a.m. to 10 p.m.) hours, while the gas station will operate during nighttime hours as well.

A total of seventeen (17) receptors (R1 – R17) and one (1) building receptor (R18) were modeled to evaluate the proposed project's operational impact. A receptor is denoted by a yellow or green dot in Exhibit F. All yellow dots represent either a property line or a sensitive receptor such as an outdoor sensitive area (e.g. backyard, patio, common area).

This study compares the project's operational noise levels to two (2) different scenarios: 1) Project operational noise level projections and, 2) Project plus ambient noise level projections.

Project Operational Noise Levels

Exhibit F shows the project only operational noise levels at the property lines and/or sensitive receptor areas. Exhibit G illustrates the noise contours at the project site and illustrates how the noise will propagate at the site. Operational noise levels are anticipated to range between 42.8 to 57.1 dBA Leq(h) at the receptors R1 through R17. The noise projections to the residential backyards are below the City's 60 dBA limit as outlined within Table 6.4 of the City's General Plan 2030 Public Safety Chapter (Table 1 of this report).

Project Plus Ambient Operational Noise Levels

Table 6 demonstrates the project plus ambient (quietest measured hourly average level during proposed operable hours) noise levels. Project plus ambient noise level projections are anticipated to range between 42.8 to 58.1 dBA Leq(h) at the receptors R1 through R17 and 65.6 dBA Leq(h) at receptor R18 (on-site existing industrial warehouse). The noise projections to the residential backyards are below the City's 60 dBA limit.

Receptor ¹	Existing Ambient Noise Level (dBA, Leq(h)) ²	Project Noise Level (dBA, Leq(h)) ³	Total Combined Noise Level (dBA, Leq(h))	Daytime (7AM - 10PM) Stationary Noise Limit (dBA, Leq (h))	Change in Noise Level as Result of Project
1	50.4	57.1	57.9		7.5
2	50.4	52.4	54.5		4.1
3	50.4	49.2	52.8		2.5
4	50.4	46.2	51.8		1.4
5	50.4	44.1	51.3		0.9
6	50.4	42.8	51.1		0.7
7	50.4	43.3	51.2		0.8
8	57.4	48.9	58.0		0.6
9	57.4	50.0	58.1	60.0	0.7
10	57.4	50.5	58.2		0.8
11	57.4	50.2	58.2		0.8
12	57.4	49.6	58.1		0.7
13	57.4	48.1	57.9		0.5
14	57.4	49.0	58.0		0.6
15	57.4	50.3	58.2		0.8
16	57.4	50.3	58.2		0.8
17	57.4	45.8	57.7		0.3
18 - Onsite	62.4	62.7	65.6	N/A	3.2

Table 6: Worst-case Predicted Operational Noise Levels (dBA)

Notes:

 $^{\rm 1}$ Receptors 1 through 17 are residential areas and R18 is the on-site industrial use.

² The quietest hourly noise interval was selected (see Table 3, 62.4 dBA). A 12 dBA reduction was applied to the existing ambient level for Receptors 1 through 8 and to account for the existing 14 to 15ft tall property line wall and a 5 dB reduction was applied to the existing ambient level for Receptors 9 through 17. No reduction was taken for R18.

^{3.} See Exhibit F for the operational noise level projections at said receptors.

In addition, Table 6 provides the anticipated change in noise level as a result of the proposed project. As shown in Table 6, the operational noise levels will result in a change of 0.3 to 7.5 dBA at the various receptors. Depending on the receptor location, the change in the noise level has the potential to range from not perceptible to clearly noticeable. The change in noise level has the potential to be clearly noticeable at Receptors 1 and 2.

In both evaluated scenarios, the noise level projections are below the City's 60 dBA residential limit during daytime conditions at the sensitive receptors (R1 through R17). Receptor R18 is an industrial land use and typically has a 70 dBA limit. The project would not exceed the 70 dBA limit for industrial uses. As project operations are anticipated to occur during daytime hours, the project would comply with the City's noise limit and therefore the impact would be considered less than significant.

7.2 Mitigation Measures

In order to reduce the potential noise impact, the following mitigation measures are provided:

- **MM-1:** Project shall reduce/decrease the exit opening to approximately 9-foot by 10-foot opening such that the building shell design reduces visibility to the blowers.
- **MM-2:** Ensure vacuum turbines are enclosed with a roof and properly fitted with silencer attenuators.
- **MM-3:** The car wash portion of the project shall not operate past the allowable daytime hours (7 a.m. to 10 p.m.).
- MM-4: Mechanical equipment room shall be fitted with acoustic louver doors or equivalent.

Exhibit F Operational Noise Levels

Exhibit G Operational Noise Level Contours

8.0 Construction Noise Impact

The degree of construction noise may vary for different areas of the project site and also vary depending on the construction activities. Noise levels associated with the construction will vary with the different phases of construction.

8.1 Construction Noise

The Environmental Protection Agency (EPA) has compiled data regarding the noise generated characteristics of typical construction activities. The data is presented in Table 7.

Equipment Powered by Internal Combustion Engines						
Туре	Noise Levels (dBA) at 50 Feet					
Earth Moving						
Compactors (Rollers)	73 - 76					
Front Loaders	73 - 84					
Backhoes	73 - 92					
Tractors	75 - 95					
Scrapers, Graders	78 - 92					
Pavers	85 - 87					
Trucks	81 - 94					
Materials H	landling					
Concrete Mixers	72 - 87					
Concrete Pumps	81 - 83					
Cranes (Movable)	72 - 86					
Cranes (Derrick)	85 - 87					
Stati	onary					
Pumps	68 - 71					
Generators	71 - 83					
Compressors	75 - 86					

Table 7: Typical Construction Noise Levels¹

Impact Fouipment

·····•••••••••••••••••••••••••••••••••					
Туре	Noise Levels (dBA) at 50 Feet				
Saws	71 - 82				
Vibrators	68 - 82				
Notes: ¹ Referenced Noise Levels from the Environmental Protection Agency (EPA)					

Construction noise is considered a short-term impact and would be considered significant if construction activities are taken outside the allowable times as described in the City's Municipal Code (Section 30-32). Existing residences to the south and east may be temporarily affected by short-term noise impacts associated the transport of workers, the movement of construction materials to and from the project site, ground clearing, excavation, grading, and building activities. The noise analysis reviews the construction noise levels during the various phases of the project.

Project generated construction noise will vary depending on the construction process, type of equipment involved, location of the construction site with respect to sensitive receptors, the schedule proposed to carry out each task (e.g., hours and days of the week) and the duration of the construction work. Site grading is expected to produce the highest sustained construction noise levels. Typical noise sources and noise levels associated with the site grading phase of construction are shown in Table 7. Typical operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Noise levels will be loudest during grading phase. A likely worst-case construction noise scenario during grading assumes the use of a grader, a dozer and excavator and three (3) backhoes operating at 50 feet from the nearest sensitive receptor.

Assuming a usage factor of 40 percent for each piece of equipment, unmitigated noise levels at 50 feet have the potential to reach 88 dBA Leq and 90 dBA (Lmax) at the nearest sensitive receptors during grading. Noise levels for the other construction phases would be lower and range between 85 to 90 dBA. Output calculations are provided in Appendix D.

The project site has an approximate 15-foot tall wall along the southern property line and will attenuate noise levels by at least 15 dBA. Noise levels will range therefore between 71 to 75 dBA, depending on the construction phases.

Construction is anticipated to occur during the permissible hours according to the City's Municipal Code. Construction noise will have a temporary or periodic increase in the ambient noise level above the existing within the project vicinity. As stated earlier, any construction activities that occur outside the allowable time would be considered significant. Noise reduction measures are provided to further reduce construction noise (Section 8.3). The impact is considered less than significant.

8.2 Construction Vibration

Construction activities can produce vibration that may be felt by adjacent land uses. The construction of the proposed project would not require the use of equipment such as pile drivers, which are known to generate substantial construction vibration levels. The primary vibration source during construction may be from a bull dozer. A large bull dozer has a vibration impact of 0.089 inches per second peak particle velocity (PPV) at 25 feet which is perceptible but below any risk to architectural damage.

The fundamental equation used to calculate vibration propagation through average soil conditions and distance is as follows:

 $PPV_{equipment} = PPV_{ref} (100/D_{rec})^n$

Where: PPV_{ref} = reference PPV at 100ft. D_{rec} = distance from equipment to receiver in ft. n = 1.1 (the value related to the attenuation rate through ground) The thresholds from the Caltrans Transportation and Construction Induced Vibration Guidance Manual in Table 8 (below) provides general thresholds and guidelines as to the vibration damage potential from vibratory impacts.

	Maximu	n PPV (in/sec)
Structure and Condition	Transient Sources	Continuous/Frequent
Extremely fragile historic buildings, ruins, ancient monuments	0.12	0.08
Fragile buildings	0.2	0.1
Historic and some old buildings	0.5	0.25
Older residential structures	0.5	0.3
New residential structures	1.0	0.5
Modern industrial/commercial buildings	2.0	0.5
Source: Table 19, Transportation and Construction Vibration Guidance Manual, Caltrans, 1	Sept. 2013.	tormittant sources include

Table 8: Guideline Vibration Damage Potential Threshold Criteria

Note: Transient sources create a single isolated vibration event, such as blasting or drop balls. Continuous/frequent intermittent sources include impact pile drivers, pogo-stick compactors, crack-and-seat equipment, vibratory pile drivers, and vibratory compaction equipment.

Table 9 gives approximate vibration levels for particular construction activities. This data provides a reasonable estimate for a wide range of soil conditions.

Table 9: Vibration Source Levels for Construction Equipment¹

	Peak Particle Velocity	Approximate Vibration Level
Equipment	(inches/second) at 25 feet	LV (dVB) at 25 feet
Rile driver (impact)	1.518 (upper range)	112
	0.644 (typical)	104
Rile driver (senic)	0.734 upper range	105
	0.170 typical	93
Clam shovel drop (slurry wall)	0.202	94
Hydromill	0.008 in soil	66
(slurry wall)	0.017 in rock	75
Vibratory Roller	0.21	94
Hoe Ram	0.089	87
Large bulldozer	0.089	87
Caisson drill	0.089	87
Loaded trucks	0.076	86
Jackhammer	0.035	79
Small bulldozer	0.003	58
¹ Source: Transit Noise and Vibration Impact Assessment,	Federal Transit Administration, May 2006.	

At a distance of 20 feet, a large bull dozer would yield a worst-case 0.114 PPV (in/sec) which may be perceptible for short periods of time during grading along the southern property line of the project site, but is below any threshold of damage. The impact is less than significant and no mitigation is required.

8.3 Construction Noise Reduction Measures

Construction operations must follow the City's General Plan and the Noise Ordinance, which states that construction, repair or excavation work performed must occur within the permissible hours. To further ensure that construction activities do not disrupt the adjacent land uses, the following measures should be taken:

- 1. Construction should occur during the permissible hours as defined in Section 30-32 and 90-1048.
- 2. During construction, the contactor shall ensure all construction equipment is equipped with appropriate noise attenuating devices.
- 3. The contractor should locate equipment staging areas that will create the greatest distance between construction-related noise/vibration sources and sensitive receptors nearest the project site during all project construction.
- 4. Idling equipment should be turned off when not in use.
- 5. Equipment shall be maintained so that vehicles and their loads are secured from rattling and banging.

9.0 References

State of California General Plan Guidelines: 1998. Governor's Office of Planning and Research

City of Hemet: 2030 General Plan, 2012.

City of Hemet: City of Hemet Noise Ordinance. Oct, 2017.

Trames Solutions, Inc.: McHolland Retail Traffic Impact Study, October 13, 2017.

Appendix A:

Field Measurement Data

LONG-TERM NOISE MONITORING LOCATIONS

Project: McHolland Retail - Noise Impact Study - Hemet, CA

= Noise Monitoring Location

<u>= Project Boundary</u>

Date:	9/27/2017	- 9/28/201	7			Day:	1			
Sound Level N	Aeter:	Larson Davi	is 831			Setting(s):	A-weighted	l, slow, 1-hr	intervals	
Engineer:	Mike Dicke	rson, INCE		Location:	By southern	n property l	ine			
Notes:	Near noise	barrier wall	. Weather v	vas clear wit	th temps rai	nging betwe	en 98 to 72	degrees.		
_	Primarily tr	affic noise s	ource road	way noise fr	om Sanders	on Avenue	and Stetsor	n Avenue.		
Date	Start	Stop	Leq	Lmax	Lmin	L2	L8	L25	L50	L90
9/27/2017	12:00 PM	1:00 PM	64.8	88.0	48.8	70.0	66.5	63.7	61.1	55.5
9/27/2017	1:00 PM	2:00 PM	64.5	87.4	49.0	69.9	66.3	63.8	61.3	55.4
9/27/2017	2:00 PM	3:00 PM	63.4	78.6	49.4	69.5	66.5	64.0	61.9	56.4
9/27/2017	3:00 PM	4:00 PM	64.9	89.1	49.9	71.7	67.0	64.0	61.6	57.0
9/27/2017	4:00 PM	5:00 PM	64.3	86.1	49.1	70.1	67.2	64.6	62.3	55.9
9/27/2017	5:00 PM	6:00 PM	63.8	81.2	49.3	69.7	66.7	64.2	62.2	56.8
9/27/2017	6:00 PM	7:00 PM	63.5	81.8	46.2	69.4	66.6	64.2	61.9	55.8
9/27/2017	7:00 PM	8:00 PM	64.3	91.3	47.3	69.9	66.3	63.5	60.9	54.6
9/27/2017	8:00 PM	9:00 PM	63.7	89.2	46.3	68.8	66.3	63.3	60.2	53.4
9/27/2017	9:00 PM	10:00 PM	61.8	86.1	46.3	68.4	65.0	61.8	58.7	51.6
9/27/2017	10:00 PM	11:00 PM	59.4	73.3	42.8	66.3	63.6	60.3	56.3	48.6
9/27/2017	11:00 PM	12:00 AM	59.7	79.5	42.0	67.5	63.7	60.0	55.2	47.1
9/27/2017	12:00 AM	1:00 AM	57.2	70.6	38.6	65.1	62.2	57.5	52.3	45.8
9/28/2017	1:00 AM	2:00 AM	55.4	78.6	40.0	63.8	60.2	53.4	47.6	42.8
9/28/2017	2:00 AM	3:00 AM	55.4	77.7	39.1	64.2	59.9	53.5	48.8	43.1
9/28/2017	3:00 AM	4:00 AM	57.9	75.3	40.2	66.3	62.6	58.0	52.5	46.4
9/28/2017	4:00 AM	5:00 AM	61.9	80.2	45.3	69.3	65.9	62.0	57.5	49.8
9/28/2017	5:00 AM	6:00 AM	62.9	83.0	48.8	69.4	66.6	63.7	60.3	54.0
9/28/2017	6:00 AM	7:00 AM	64.3	75.9	50.1	70.5	68.1	65.3	62.6	56.1
9/28/2017	7:00 AM	8:00 AM	64.2	79.3	52.4	69.7	67.3	65.2	63.0	57.8
9/28/2017	8:00 AM	9:00 AM	63.8	80.2	48.5	69.5	66.8	64.4	62.2	56.2
9/28/2017	9:00 AM	10:00 AM	63.6	82.3	48.0	70.2	66.9	64.1	61.4	54.3
9/28/2017	10:00 AM	11:00 AM	62.4	77.6	48.1	68.4	66.0	63.4	60.9	54.1
9/28/2017	11:00 AM	12:00 PM	64.6	92.7	48.7	69.6	67.0	63.8	61.1	55.3

Project: McHolland Retail - Noise Impact Study - Hemet, CA

Measurement Address: W Stetson Ave/S Sanderson Ave, Hemet, CA 9/27/2017 - 9/28/2017 Date:

AVERAGED DAYTIME (7AM - 7PM) LEQ: AVERAGED EVENING TIME (7PM - 10PM) LEQ: AVERAGED NIGHTTIME (10PM - 7AM) LEQ:

92.7

38.6

CNEL: 67.9

64.0

63.4

60.4

LT1 HOURLY NOISE LEVELS, Leq (h)

Project: McHolland Retail - Noise Impact Study - Hemet, CA

Date: 9/27/2017 - 9/28/2017 Sound Level Meter: Larson Davis 831 Engineer: Mike Dickerson, INCE Day:1Setting(s):A-weighted, slow, 1-hr intervalsLocation:By southern property line

Project:	McHolland Retail - Noise Impact Study - Hemet, CA
Client:	Rancho Holland, LLC
Site Location:	W Stetson Ave/S Sanderson Ave, Hemet, CA
Date:	9/27/2017 - 9/28/2017
Engineer:	Mike Dickerson
Source/System:	Ambient Noise Conditions

Location	1
SLM:	NTi XL2, Type 1
Settings:	A-weighted, slow, 1-sec intervals, 1-min to 10-minute durations

Table 1: Summary of SLM Data (dBA)

Location	Start	Stop	Leq	Lmax	Lmin	L2	L8	L25	L50	L90
1	12:54 AM	1:04 PM	65.1	75.4	50.5	71.4	69.0	66.3	63.6	55.2

* Ambient noise consist of traffic along Sanderson Avenue.

Figure 1: Photo of Short-Term Location#1 - Looking West

Daytime Measurement Notes: Recording 1 Location - Near Sanderson Ave Start time - 12:54 PM Duration - 10 Min Notes: Ambient noise consist of pass-by traffic along Sanderson Avenue

Appendix B:

Traffic FHWA Worksheets

FIGURE 3-D **EXISTING (2017) TRAFFIC VOLUMES**

N

LOCATION: EXISTING - I	N AVENUE - SOUTH OF STETSO NOISE CONTOURS	Y N AVENUE							JOB #: 014 DATE: 25-(ENGINEER: M. I	Oct-17 DICKERSC
			NOISE IN	NPUT DAT	A					
	ROADWAY CONDITIONS			ł		RE	CEIVER INPL	JT DATA		
ADT =	24,600			RECEIVER D	ISTANCE =		50			
SPEED =	40			DIST C/L TO	WALL =		0			
PK HR % =	10			RECEIVER H	IEIGHT =		5.0			
NEAR LANE/FAR LANE DIST	65			WALL DIST		RECEIVER =	50			
GRADE =	0.0 %			ROADWAY	VIEW:	LF ANGLE=	-90			
PK HR VOL =	2,460			-		RT ANGLE=	90			
				<u> </u>		DF ANGLE=	180			
	SITE CONDITIONS			1		w	ALL INFORM	IATION		
AUTOMOBILES =	15 (10 - 114			HTH WALL=	0.0					
	15 (10 = HA	KD SITE, 15 = 5	OFT SITE)	ANNBIENT =	0.0	(0 - WALL	1 – BERM)			
	15			Dratate -	Ŭ	(0 - 00/122,	L - DEI(IVI)			
	VEHICLE MIX DATA					N	1ISC. VEHICL	E INFO		
			-							
VEHICLE TYPE DAT	Y EVENING NIGHT	DAILY			VEHICLE TY	PE	HEIGHT	SLE DISTANCE	GRADE ADJUS	STMENT
AUTOMOBILES 0.75	5 0.140 0.104	0.9200	_			LES	2.0	38.11		
HEAVY TRUCKS 0.48	0 0.020 0.500	0.0300				CKS	4.0	38.01	0.00	
		0.0300	J		HEAVY IRU	CKS	8.0	38.12	0.00	
		0.0500		JTPUT DA	TA		8.0	38.12	0.00	
	Λ 1.1.1 1.1.1	OISE IMPACTS	NOISE OU	ITPUT DA	TA	.DING)	8.0	38.12	0.00	
		OISE IMPACTS	NOISE OU	ITPUT DA	TA	.DING)	0.0	38.12		
	VEHICLE TYPE	OISE IMPACTS	NOISE OU	JTPUT DA	TA NIGHT LEQ	.DING)	CNEL	38.12		
	VEHICLE TYPE AUTOMOBILES	OISE IMPACTS PK HR LEQ 70.0	NOISE OU (WITHOUT DAY LEQ 68.0	ITPUT DA TOPO OR BA EVEN LEQ 66.7	TA RRIER SHIEL NIGHT LEQ 60.7	. <i>DING)</i> LDN 69.1	CNEL 69.7	36.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	OISE IMPACTS PK HR LEQ 70.0 64.2 64.2	NOISE OL 6 (WITHOUT 68.0 60.2	ITPUT DA TOPO OR B EVEN LEQ 66.7 52.4	NIGHT LEQ 60.7 61.6	LDN 69.1 67.8	CNEL 69.7 67.8	36.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	OISE IMPACTS 70.0 64.2 71.2	NOISE OL 6 (WITHOUT 0 DAY LEQ 68.0 60.2 67.2	EVEN LEQ 66.7 52.4 59.4	NIGHT LEQ 60.7 61.6 68.6	LDN 69.1 67.8 74.8	CNEL 69.7 67.8 74.8	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS 70.0 64.2 71.2 74.1	NOISE OL 6 (WITHOUT 6 8.0 60.2 67.2 71.0	ITPUT DA TOPO OR BA EVEN LEQ 666.7 59.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	DING)	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS 70.0 64.2 71.2 74.1	NOISE OL (WITHOUT 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	DING)	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1	NOISE OL (WITHOUT (MITHOUT 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1	NOISE OL (WITHOUT) DAY LEQ 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6	36.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACT	NOISE OL (WITHOUT (WITHOUT 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACT	NOISE OL (WITHOUT 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS 70.0 64.2 71.2 74.1	NOISE OL (WITHOUT (WITHOUT (MITHOUT	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACT PK HR LEQ	NOISE OL (WITHOUT (WITHOUT (MITHOUT (MITHOUT) (MITH TO) (MITH TO) (MITH TO)	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ	LDN 69.1 67.8 74.8 76.5 2//NG)	CNEL 69.7 67.8 74.8 76.6 CNEL	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACC PK HR LEQ 70.0	NOISE OL (WITHOUT (WITHOUT (WITHOUT (Baseling) (Constraint) (Constraint)	EVEN LEQ 66.7 59.4 67.6 PO AND BAR EVEN LEQ 66.7 59.4	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5 76.5 01NG)	CNEL 69.7 67.8 74.8 76.6 76.6 CNEL 69.7 67.9	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 74.1	NOISE OL (WITHOUT (WITHOUT (WITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITHOUT (MITH TO)	EVEN LEQ 66.7 59.4 67.6 PO AND BAR EVEN LEQ 66.7 52.4 59.4	NIGHT LEQ 60.7 61.6 68.6	LDN 69.1 67.8 74.8 76.5 76.5 01NG) LDN 69.1 67.8 74.8	CNEL 69.7 67.8 74.8 76.6 76.6 69.7 69.7 67.8 74.8	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1	NOISE OL (WITHOUT (WITHOUT (WITHOUT (Baseling) (Constraint) (Constraint)	EVEN LEQ 66.7 52.4 59.4 67.6 PO AND BAR EVEN LEQ 66.7 52.4 59.4	NIGHT LEQ 60.7 61.6 68.6	LDN 69.1 67.8 74.8 76.5 76.5 01NG) LDN 69.1 67.8 74.8	CNEL 69.7 67.8 74.8 76.6 76.6 CNEL 69.7 67.8 74.8	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 You on the second se	NOISE OL (WITHOUT 0 AY LEQ 68.0 60.2 67.2 71.0 75 (WITH TO 68.0 60.2 67.2 71.0	EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0 RRIER SHIELD NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5 0/NG) LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6 76.6 CNEL 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPAC PK HR LEQ 70.0 64.2 74.1 74.1 74.1 74.1	NOISE OL c (WITHOUT c (WITH TO	EVEN LEQ 66.7 52.4 59.4 67.6 PO AND BAR EVEN LEQ 66.7 52.4 59.4 67.6 PO AND BAR EVEN LEQ 66.7 52.4 59.4 67.6	NIGHT LEQ 60.7 61.6 68.6 70.0 RRIER SHIELD NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5 76.5 0/NG) LDN 69.1 67.8 74.8 76.5	CNEL 69.7 67.8 74.8 76.6 76.6 69.7 67.8 74.8 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	OISE IMPACTS PK HR LEQ 70.0 64.2 71.2 74.1 NOISE IMPACT PK HR LEQ 70.0 64.2 71.2 74.1 74.1 74.1	NOISE OL (WITHOUT (WITHOUT (WITHOUT (B.0) 60.2 67.2 71.0 (VITH TO (B.0) (B.0) (C)	EVEN LEQ 66.7 52.4 59.4 67.6 PO AND BAR 66.7 52.4 59.4 67.6 NTOUR (FT)	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5 2000 LDN 69.1 67.8 74.8 76.5 76.5	CNEL 69.7 67.8 74.8 76.6 69.7 67.8 76.6 76.6	38.12		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 70.0 64.2 71.2 74.1 74.1 74.1 PK HR LEQ 70.0 64.2 71.2 74.1 74.1	NOISE OL (WITHOUT (WITHOUT (WITHOUT (B.0 60.2 67.2 71.0 (Structure) (WITH TO) (B.0) 60.2 67.2 (T) (Structure)	EVEN LEQ 66.7 52.4 59.4 67.6 PO AND BAR 66.7 52.4 59.4 67.6 NTOUR (FT) 65 dBA	NIGHT LEQ 60.7 61.6 68.6 70.0	LDN 69.1 67.8 74.8 76.5 DING) LDN 69.1 67.8 76.5 76.5 76.5 55 dBA	CNEL 69.7 67.8 74.8 76.6 69.7 69.7 67.8 76.6	38.12		

PROJECT: MC ROADWAY: SA LOCATION: EX	CHOLLAND RETA NDERSON AVEN ISTING - NOISE C	IL NOISE IMPA UE - NORTH O ONTOURS	CT STUDY	AVENUE							JOB #: DATE: ENGINEEF	0144-15-170 25-Oct-17 R: M. DICKERS0
					NOISE IN	IPUT DAT	A					
	DOADIA		NC.					DE				
	KUADW	AY CONDITIO	NS			ł		KE	CEIVERINP	UTDATA		
ADT =	17,700)				RECEIVER D	ISTANCE =		50			
PK HR % =	40))				RECEIVER H	FIGHT =		50			
NEAR LANE/FAR LAN	E DIST 65	5				WALL DISTA	NCE FROM	RECEIVER =	50			
ROAD ELEVATION =	0.0)				PAD ELEVA	fion =		0.0			
GRADE =	0.0) %				ROADWAY	VIEW:	LF ANGLE=	-90			
PK HR VOL =	1,770)						RT ANGLE=	90 180			
						i		DIVINGEL	100			
	SITE	CONDITIONS						W	ALL INFORM	ΜΑΤΙΟΝ		
		_										
AUTOMOBILES =	1	5 5	(10 - HARC	SITE 15 - S	OFT SITE)	HTH WALL=	0.0					
HEAVY TRUCKS =	1	.5	(10 - HARL	. JIL, 1J – J	STI SITLJ	BARRIER =	0.0	(0 = WALL,	1 = BERM)			
						l		· · · · · · · · · · · · · · · · · · ·				
	VEHI	CLE MIX DATA	L			I		N	NISC. VEHIC	LE INFO		
VEHICLE TYPE	DAY	EVENING	NIGHT	DAILY	1		VEHICLE TY	PE	HEIGHT	SLE DISTANCE	GRADE	ADJUSTMENT
AUTOMOBILES	0.755	0.140	0.104	0.9200			AUTOMOBI	LES	2.0	38.11		
MEDIUM TRUCKS	0.480	0.020	0.500	0.0300	-		MEDIUM TR	RUCKS	4.0	38.01		
]							
							τ.					
						TFOT DA						
			NOI	SE IMPACTS	(WITHOUT	TOPO OR BA	RRIER SHIEL	.DING)				
		VEHICLE TY	PE	PK HR LEQ	DAY LEQ	EVEN LEQ	NIGHT LEQ	LDN	CNEL	1		
		AUTOMOBI	LES	68.6	66.6	65.3	59.2	67.7	68.3			
		MEDIUM TR		62.7	58.7	51.0	60.2	66.3	66.4			
		HEAVY TRU	LKS	69.8	65.8	58.0	67.2	/3.4	/3.4			
		NOISE LEVE	LS (dBA)	72.7	69.6	66.2	68.5	75.0	75.2	1		
										-		
			NO	DISE IMPACT	S (WITH TO	PO AND BAR	RIER SHIELD	DING)				
			PF	PK HR LEO	DAY LEO	EVEN LEO	NIGHT LEO	LDN	CNEL	1		
		VEHICLE TY		_		65.2	59.2	67.7	68.3			
		VEHICLE TY AUTOMOBI	LES	68.6	00.0	05.5	55.2	07.7				
		VEHICLE TY AUTOMOBI MEDIUM TF	LES RUCKS	68.6 62.7	58.7	51.0	60.2	66.3	66.4			
		AUTOMOBI MEDIUM TF HEAVY TRU	LES RUCKS CKS	68.6 62.7 69.8	58.7 65.8	51.0 58.0	60.2 67.2	66.3 73.4	66.4 73.4			
		AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	LES RUCKS CKS LS (dBA)	68.6 62.7 69.8 72.7	65.6 58.7 65.8 69.6	51.0 58.0 66.2	60.2 67.2 68.5	66.3 73.4 75.0	66.4 73.4 75.2			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	LES RUCKS CKS LS (dBA)	68.6 62.7 69.8 72.7	65.8 69.6	51.0 58.0 66.2	60.2 67.2 68.5	66.3 73.4 75.0	66.4 73.4 75.2			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	LES RUCKS CKS LS (dBA)	68.6 62.7 69.8 72.7	65.8 69.6	66.2	60.2 67.2 68.5	66.3 73.4 75.0	66.4 73.4 75.2			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	LES RUCKS CKS LS (dBA) NOISE LEV	68.6 62.7 69.8 72.7	65.6 58.7 65.8 69.6 NOISE CO	51.0 58.0 66.2 NTOUR (FT) 65 dBA	60.2 67.2 68.5 60 dBA	66.3 73.4 75.0 55 dBA	66.4 73.4 75.2			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	LES RUCKS CKS LS (dBA) NOISE LEV CNEL	68.6 62.7 69.8 72.7	00.0 58.7 65.8 69.6 NOISE CO 70 dBA	51.0 58.0 66.2 NTOUR (FT) 65 dBA 239	60.2 67.2 68.5 60 dBA 514	66.3 73.4 75.0 55 dBA 1108	66.4 73.4 75.2			

FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

ROADWAY: STETSON LOCATION: EXISTING	LAND RETAIL N AVENUE - E G - NOISE CO	NOISE IMPACT EAST OF SANDEF	STUDY RSON AVEI	NUE							JOB #: DATE: ENGINEER:	0144-15-1701 25-Oct-17 M. DICKERSON
					NOISE IN	IPUT DAT	A					
	ROADWA							RF	CEIVER INPI	ΙΤ ΠΑΤΑ		
	NOADWA											
ADT = SPEED = PK HR % = NEAR LANE/FAR LANE DIST ROAD ELEVATION = GRADE = PK HR VOL =	11,900 40 10 T 65 0.0 0.0 1,190	%				RECEIVER D DIST C/L TC RECEIVER H WALL DIST/ PAD ELEVA ROADWAY	DISTANCE = 0 WALL = 1EIGHT = ANCE FROM TION = VIEW:	RECEIVER = LF ANGLE= RT ANGLE= DF ANGLE=	50 0 5.0 50 0.0 -90 90 180			
	SITE O							10				
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	15 15 15	(10	0 = HARD S	SITE, 15 = S(OFT SITE)	HTH WALL= AMBIENT= BARRIER =	0.0 0.0 0	(0 = WALL, :	1 = BERM)			
	VEHICI	LE MIX DATA						N	1ISC. VEHICI	E INFO		
VEHICLE TYPE AUTOMOBILES 0 MEDIUM TRUCKS 0 HEAVY TRUCKS	DAY).755).480).480	EVENING 0.140 0.020 0.020	NIGHT 0.104 0.500 0.500	DAILY 0.9200 0.0300 0.0500			VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	PE LES RUCKS CKS	HEIGHT 2.0 4.0 8.0	SLE DISTANCE 38.11 38.01 38.12	GRADE AD	DJUSTMENT
			NOISE	E IMPACTS	NOISE OU (WITHOUT	ITPUT DA	TA ARRIER SHIEL	.DING)				
					DAVIEO	EVENTEO	NIGHTIEO	IDN	CNFI			
		VEHICLE TYPE AUTOMOBILES	5	PK HR LEQ 66.9	DAY LEQ 64.9	EVEN LEQ 63.6	NIGHT LEQ 57.5	LDN 66.0	CNEL 66.6			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC	G CKS	PK HR LEQ 66.9 61.0	DAY LEQ 64.9 57.0	EVEN LEQ 63.6 49.2	NIGHT LEQ 57.5 58.4	LDN 66.0 64.6	CNEL 66.6 64.6			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS	5 CKS 5	PK HR LEQ 66.9 61.0 68.0	DAY LEQ 64.9 57.0 64.1	EVEN LEQ 63.6 49.2 56.3	NIGHT LEQ 57.5 58.4 65.5	LDN 66.0 64.6 71.6	CNEL 66.6 64.6 71.7			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (CKS S (dBA)	PK HR LEQ 66.9 61.0 68.0 71.0	DAY LEQ 64.9 57.0 64.1 67.9	EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8	LDN 66.0 64.6 71.6 73.3	CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS ((dBA)	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT	DAY LEQ 64.9 57.0 64.1 67.9	EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8	LDN 66.0 64.6 71.6 73.3	CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS ((dBA)	PK HR LEQ 66.9 61.0 68.0 71.0 55 IMPACT	DAY LEQ 64.9 57.0 64.1 67.9 5 (WITH TO)	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD	LDN 66.0 64.6 71.6 73.3	CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (VEHICLE TYPE AUTOMOBILES	(dBA)	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT PK HR LEQ 66.9	DAY LEQ 64.9 57.0 64.1 67.9 5 (WITH TO DAY LEQ 64.9	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD NIGHT LEQ 57.5	LDN 66.0 64.6 71.6 73.3 73.3	CNEL 66.6 64.6 71.7 73.5 73.5 CNEL 66.6			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (VEHICLE TYPE AUTOMOBILES MEDIUM TRUC	(dBA) (NO): (KS) ((dBA) (NO):	PK HR LEQ 66.9 61.0 68.0 71.0 55 IMPACT 55 IMPACT 66.9 61.0 60.0	DAY LEQ 64.9 57.0 64.1 67.9 57.0 5 (WITH TO) DAY LEQ 64.9 57.0	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4	LDN 66.0 64.6 71.6 73.3 2//NG) LDN 66.0 64.6 1.5	CNEL 66.6 64.6 71.7 73.5 73.5 CNEL 66.6 64.6			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (NOISE LEVELS (VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	(dBA)	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT SE IMPACT 66.9 61.0 68.0	DAY LEQ 64.9 57.0 64.1 67.9 5 (WITH TO) 5 (WITH TO) DAY LEQ 64.9 57.0 64.1	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4 65.5	LDN 66.0 64.6 71.6 73.3 73.3 0////G) LDN 66.0 64.6 71.6	CNEL 66.6 71.7 73.5 73.5 CNEL 66.6 64.6 71.7			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (I S CKS S (dBA) NOI2 S CKS S CKS S CKS S CKS S CKS S CKS	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT PK HR LEQ 66.9 61.0 68.0 71.0	DAY LEQ 64.9 57.0 67.9 5(WITH TO 5(WITH TO DAY LEQ 64.9 57.0 64.1 -	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4 65.5 66.8	LDN 66.0 64.6 71.6 73.3 20/NG) LDN 66.0 64.6 71.6 73.3	CNEL 66.6 64.6 71.7 73.5 73.5 CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS NOISE LEVELS (NOISE LEVELS (AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (I S S (dBA) NOI: S CKS S CKS S (dBA)	PK HR LEQ 66.9 61.0 71.0 71.0 SE IMPACT 66.9 61.0 68.0 71.0	DAY LEQ 64.9 57.0 64.1 67.9 57.0 64.9 57.0 64.9 57.0 64.1 67.9	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4 65.5 66.8	LDN 66.0 64.6 71.6 73.3 0///// 0//// 66.0 64.6 71.6 73.3	CNEL 66.6 71.7 73.5 CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS NOISE LEVELS (VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS NOISE LEVELS (I S CKS S (dBA) I S S </td <td>PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT PK HR LEQ 66.9 61.0 68.0 71.0</td> <td>DAY LEQ 64.9 57.0 64.1 67.9 S (WITH TO) DAY LEQ 64.1 67.9 S (0.11) 67.9 NOISE COI 70.40</td> <td>EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3 64.5</td> <td>NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4 65.5 66.8</td> <td>LDN 66.0 64.6 71.6 73.3 DING LDN 66.0 64.6 71.6 73.3</td> <td>CNEL 66.6 71.7 73.5 73.5 CNEL 66.6 64.6 71.7 73.5</td> <td></td> <td></td> <td></td>	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT PK HR LEQ 66.9 61.0 68.0 71.0	DAY LEQ 64.9 57.0 64.1 67.9 S (WITH TO) DAY LEQ 64.1 67.9 S (0.11) 67.9 NOISE COI 70.40	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD 57.5 58.4 65.5 66.8	LDN 66.0 64.6 71.6 73.3 DING LDN 66.0 64.6 71.6 73.3	CNEL 66.6 71.7 73.5 73.5 CNEL 66.6 64.6 71.7 73.5			
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (VEHICLE TYPE AUTOMOBILES MEDIUM TRUC HEAVY TRUCKS NOISE LEVELS (NOISE LEVELS (I S CKS S (dBA) (dBA) NOI2 (dBA) S (dBA) DISE LEVEL	PK HR LEQ 66.9 61.0 68.0 71.0 SE IMPACT PK HR LEQ 66.9 61.0 68.0 71.0 5	DAY LEQ 64.9 57.0 67.9 5 (WITH TO 5 (WITH TO 0 57.0 64.1 67.9 64.1 67.9 77.0 64.1 70 dBA 85	EVEN LEQ 63.6 49.2 56.3 64.5 PO AND BAR EVEN LEQ 63.6 49.2 56.3 64.5	NIGHT LEQ 57.5 58.4 65.5 66.8 RIER SHIELD NIGHT LEQ 57.5 58.4 65.5 66.8 66.8	LDN 66.0 64.6 71.6 73.3 (N/NG) LDN 66.0 64.6 71.6 73.3 55 dBA 850	CNEL 66.6 71.7 73.5 73.5 CNEL 66.6 64.6 71.7 73.5			
ROADWAY: STETS LOCATION: EXISTI	OLLAND RETAIL ON AVENUE - V ING - NOISE CO	NOISE IMPACT STUDY WEST OF SANDERSON A NTOURS	VENUE							JOB #: DATE: ENGINEER:	0144-15-1701 25-Oct-17 M. DICKERSON	
---	--	--	---	---	--	--	---	--	---------	------------------------------	---	
				NOISE IN	NPUT DAT	A						
	ROADW/A						DE					
	KOADWA	CONDITIONS					KE	CEIVER INPU	JI DATA			
ADT = SPEED = PK HR % = NEAR LANE/FAR LANE D ROAD ELEVATION = GRADE = PK HR VOL =	25,600 40 10 VIST 65 0.0 0.0 2,560	%			RECEIVER D DIST C/L TO RECEIVER H WALL DISTA PAD ELEVA [*] ROADWAY	ISTANCE = WALL = EIGHT = MICE FROM FION = VIEW:	RECEIVER = LF ANGLE= RT ANGLE= DF ANGLE=	50 0 5.0 0.0 -90 90 180				
	SHEC	UNDITIONS			1		v	ALL INFORM	IATION			
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	15 15 15	(10 = HARI	D SITE, 15 = S	OFT SITE)	HTH WALL= AMBIENT= BARRIER =	0.0 0.0 0	(0 = WALL, :	1 = BERM)				
	VEHIC	LE MIX DATA					N	1ISC. VEHICL	E INFO			
	DAV		DAILY	1			DE	нысит		CRADE A	DUICTMENIT	
AUTOMOBILES	0.755	0.140 0.104	0.9200	1		AUTOMOBI	LES	2.0	38.11	GRADE A		
MEDIUM TRUCKS	0.480	0.020 0.500	0.0300			MEDIUM TR	RUCKS	4.0	38.01			
					ΠΡΟΙ DA	ΓΑ						
		NO	ISE IMPACTS	WITHOUT	TOPO OR BA	TA RRIER SHIEL	.DING)					
		NO	ISE IMPACTS	(WITHOUT	TOPO OR BA	TA RRIER SHIEL	.DING)					
		NO VEHICLE TYPE	ISE IMPACTS		TOPO OR BA	RRIER SHIEL	.DING) LDN	CNEI				
		<i>NO</i> VEHICLE TYPE AUTOMOBILES	ISE IMPACTS	(WITHOUT	TOPO OR BA	TA RRIER SHIEL NIGHT LEQ 60.8	.DING) LDN 69.3	CNEL 69.9				
		NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3	(WITHOUT (WITHOUT 68.2 60.3	EVEN LEQ 66.9 52.6	RRIER SHIEL NIGHT LEQ 60.8 61.8	LDNG) 69.3 67.9	CNEL 69.9 68.0				
		NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4	(WITHOUT 68.2 60.3 67.4	EVEN LEQ 66.9 52.6 59.6	RRIER SHIEL NIGHT LEQ 60.8 61.8 68.8	LDNG) 69.3 67.9 75.0	CNEL 69.9 68.0 75.0				
		NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3	(WITHOUT DAY LEQ 68.2 60.3 67.4 71.2	EVEN LEQ 66.9 52.6 59.6	RRIER SHIEL NIGHT LEQ 60.8 61.8 68.8 70.1	LDN 69.3 67.9 75.0	CNEL 69.9 68.0 75.0 76.8				
		NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3	(WITHOUT 68.2 60.3 67.4 71.2	EVEN LEQ 66.9 52.6 59.6 67.8	NIGHT LEQ 60.8 61.8 68.8 70.1	LDN 69.3 67.9 75.0 76.6	CNEL 69.9 68.0 75.0 76.8				
		NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 OISE IMPACT	(WITHOUT 68.2 60.3 67.4 71.2 5 (WITH TO	EVEN LEQ 66.9 52.6 59.6 67.8	RRIER SHIEL	LDN 69.3 67.9 75.0 76.6	CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 OISE IMPACT	DAY LEQ 68.2 60.3 67.4 71.2	EVEN LEQ 66.9 52.6 59.6 67.8	RRIER SHIEL	LDN 69.3 67.9 75.0 76.6	CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 0ISE IMPACT	DAY LEQ 68.2 60.3 67.4 71.2	EVEN LEQ 66.9 52.6 59.6 67.8	RRIER SHIEL NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEO	LDN 69.3 67.9 75.0 76.6	CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 0ISE IMPACT	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO DAY LEQ 68.2	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8	LDN 69.3 67.9 75.0 76.6 0////G)	CNEL 69.9 68.0 75.0 76.8 76.8 CNEL 69.9				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 0ISE IMPACT PK HR LEQ 70.2 64.3	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO DAY LEQ 68.2 60.3 67.4	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8	LDN 69.3 67.9 75.0 76.6 76.6	CNEL 69.9 68.0 75.0 76.8 76.8 69.9 69.9 68.0				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 0ISE IMPACT PK HR LEQ 70.2 64.3 71.4	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO DAY LEQ 68.2 60.3 67.4	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8 68.8	LDN 69.3 67.9 75.0 76.6 9/NG) LDN 69.3 67.9 75.0	CNEL 69.9 68.0 75.0 76.8 76.8 68.0 75.0				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS HEAVY TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 OISE IMPACT PK HR LEQ 70.2 64.3 71.4 74.3	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO DAY LEQ 68.2 60.3 67.4	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6 67.8	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8 68.8 70.1	LDN 69.3 67.9 75.0 76.6 0/NG) LDN 69.3 67.9 75.0 75.0	CNEL 69.9 68.0 75.0 76.8 76.8 CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 0ISE IMPACT PK HR LEQ 70.2 64.3 71.4 70.2 64.3 71.4 74.3	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO) DAY LEQ 68.2 60.3 67.4 71.2	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6 52.6 59.6 67.8	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8 68.8 70.1	LDN 69.3 67.9 75.0 76.6 DING) LDN 69.3 67.9 75.0 76.6	CNEL 69.9 68.0 75.0 76.8 CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 OISE IMPACT PK HR LEQ 70.2 64.3 71.4 74.3	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO) DAY LEQ 68.2 60.3 67.4 71.2 NOISE COI NOISE COI	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR 66.9 52.6 59.6 67.8 NTOUR (FT) 65 dBA	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8 68.8 70.1	LDN 69.3 67.9 75.0 76.6 DING) LDN 69.3 67.9 75.0 76.6 75.0	CNEL 69.9 68.0 75.0 76.8 CNEL 69.9 68.0 75.0 76.8				
		VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA)	ISE IMPACTS PK HR LEQ 70.2 64.3 71.4 74.3 OISE IMPACT PK HR LEQ 70.2 64.3 71.4 74.3 PK HR LEQ 70.2 64.3 71.4 74.3	DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO DAY LEQ 68.2 60.3 67.4 71.2 S (WITH TO PAY LEQ 68.2 60.3 67.4 71.2 NOISE CO 70 dBA 142	EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR EVEN LEQ 66.9 52.6 59.6 67.8 PO AND BAR 66.9 52.6 59.6 67.8 PO AND BAR 65.9 52.6 59.6 67.8 NTOUR (FT) 65 dBA 305	NIGHT LEQ 60.8 61.8 68.8 70.1 RIER SHIELD NIGHT LEQ 60.8 61.8 68.8 70.1 60.8 61.8 65.8	LDN 69.3 67.9 75.0 76.6 0////G) LDN 69.3 67.9 75.0 75.0 75.0 76.6 55 dBA 1417	CNEL 69.9 68.0 75.0 76.8 76.8 CNEL 69.9 68.0 75.0 76.8				

ROADWAY: SANDERSON LOCATION: EXISTING PL) RETAIL NOISE IMPACT STUDY I AVENUE - SOUTH OF STETSON / US PROJECT (E+P) - NOISE CONT	AVENUE OURS							JOB #: DATE: ENGINEER	0144-15-170 25-Oct-17 : M. DICKERSC
			NOISE IN	IPUT DAT	4					
R	CADWAY CONDITIONS			1		RE	CEIVER INP	JT DATA		
ADT =	28,900			RECEIVER D	ISTANCE =		50			
SPEED =	40			DIST C/L TO	WALL =		0			
PK HR % =	10			RECEIVER H	EIGHT =		5.0			
NEAR LANE/FAR LANE DIST	65			WALL DISTA	NCE FROM	RECEIVER =	50			
ROAD ELEVATION =	0.0			PAD ELEVAI	ION =		0.0			
GRADE = PK HR VOL =	2.890			KUADWAY	VIEVV:	RT ANGLE=	-90			
	2,000					DF ANGLE=	180			
				*·						
	SITE CONDITIONS					v	ALL INFORM	IATION		
AUTOMOBILES =	15		0.57 (175)	HTH WALL=	0.0					
MEDIUM TRUCKS =	15 (10 = HARL	0.511E, 15 = 5	OFT SITE)	AMBIENI=	0.0	(0 -) () (1 - DEDM)			
HEAVT TRUCKS -	15			DARNIER -	0	(0 – WALL,	I - BERIVI)			
	VEHICLE MIX DATA					Ν	AISC. VEHICI	e info		
		DAILY	1			DE	нысит		CRADE	
AUTOMOBILES 0.755	5 0.140 0.104	0.9200					2.0	38 11	GRADE	
MEDIUM TRUCKS 0.480	0.020 0.500	0.0300	-		MEDIUM TH	RUCKS	4.0	38.01		
HEAVY TRUCKS 0.480	0.020 0.500	0.0500			HEAVY TRU	CKS	8.0	38.12		0.00
	NO	ISE IMPACTS	WIIHOUT	TOPO OR BA	RRIER SHIEL	.DING)				
	NO	ISE IMPACTS	DAVISE	TOPO OR BA	RRIER SHIEL	DING)	0.5	1		
	VEHICLE TYPE	PK HR LEQ	DAY LEQ	EVEN LEQ	RRIER SHIEL	LDN	CNEL			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEQ 70.7 64.8	DAY LEQ 68.7 60 9	EVEN LEQ 67.4 53 1	NIGHT LEQ 61.4 62 3	LDN 69.8 68 5	CNEL 70.4 68 5			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEQ 70.7 64.8 71.9	DAY LEQ 68.7 60.9 67.9	EVEN LEQ 67.4 53.1 60.1	RRIER SHIEL NIGHT LEQ 61.4 62.3 69.3	LDN 69.8 68.5 75.5	CNEL 70.4 68.5 75.5			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEQ 70.7 64.8 71.9	DAY LEQ 68.7 60.9 67.9	EVEN LEQ 67.4 53.1 60.1	NIGHT LEQ 61.4 62.3 69.3	LDN 69.8 68.5 75.5	CNEL 70.4 68.5 75.5			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 0ISE IMPACTS	DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD	LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3			
	NO VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR	NIGHT LEQ 61.4 62.3 69.3 70.7 70.7	LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO DAY LEO	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEO	RRIER SHIEL NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELL NIGHT LEQ	LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3 77.3			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO) DAY LEQ 68.7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4	NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 77.2	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEQ 70.7 64.8 71.9 74.8 0ISE IMPACT PK HR LEQ 70.7	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.9	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3	LDN 69.8 68.5 75.5 77.2 1/NG) LDN 69.8 68.5	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO DAY LEQ 68.7 60.9 67.9	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3	LDN 69.8 68.5 75.5 77.2 (ING) LDN 69.8 68.5 75.5	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO 68.7 60.9 67.9 71 7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 //////////////////////////////////	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NU VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NU VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7 DAY LEQ 68.7 60.9 67.9 DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 77.2 (ING) LDN 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5 77.3			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR 68.3 68.3 0.1 68.3	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 1//// //// ///// 69.8 68.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5 77.3			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) N VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8 DISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.9 67.9 71.7	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR 60.1 68.3 O AND BAR 60.1 68.3 NTOUR (FT) 65 dBA	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 (ING) LDN 69.8 68.5 75.5 75.5 77.2	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5 77.3			
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) MEDIUM TRUCKS HEAVY TRUCKS MEDIUM TRUCKS HEAVY TRUCKS MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 70.7 64.8 71.9 74.8 OISE IMPACT PK HR LEQ 70.7 64.8 71.9 74.8 ELS	DAY LEQ 68.7 60.9 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.9 67.9 71.7 NOISE CO 70 dBA 154	EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.1 60.1 68.3 PO AND BAR 68.3 Image: State of the state o	NIGHT LEQ 61.4 62.3 69.3 70.7 RIER SHIELD NIGHT LEQ 61.4 62.3 69.3 70.7 70.7 61.4 62.3 69.3 70.7	LDN 69.8 68.5 75.5 77.2 77.2 (ING) LDN 69.8 68.5 75.5 77.2 77.2 55 dBA	CNEL 70.4 68.5 75.5 77.3 77.3 CNEL 70.4 68.5 75.5 77.3			

FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

ROADWAY: SANDERSO LOCATION: EXISTING P	ND RETAIL NOISE IMPA N AVENUE - NORTH O LUS PROJECT - NOISE (CT STUDY F STETSON AVENUI CONTOURS							JOB #: 0144-15- DATE: 25-Oct-17 ENGINEER: M. DICKE
			NOISE II	NPUT DAT	A				
	ROADWAY CONDITIO	INS				RE	CEIVER INPI	JT DATA	
ADT = SPEED = PK HR % = NEAR LANE/FAR LANE DIST ROAD ELEVATION = GRADE = PK HR VOL =	20,600 40 10 65 0.0 0.0 % 2,060			RECEIVER E DIST C/L TC RECEIVER H WALL DIST, PAD ELEVA ROADWAY	DISTANCE =) WALL = HEIGHT = ANCE FROM TION = VIEW:	RECEIVER = LF ANGLE= RT ANGLE= DF ANGLE=	50 0 5.0 50 0.0 -90 90 180		
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	15 15 15	(10 = HARD SITE, 1	5 = SOFT SITE)	HTH WALL= AMBIENT= BARRIER =	= 0.0 0.0 0	(0 = WALL, :	1 = BERM)		
	VEHICLE MIX DATA	١		1		N	IISC. VEHICI	e info	
VEHICLE TYPE DA AUTOMOBILES 0.75 MEDILIM TRUCKS 0.48	Y EVENING 55 0.140 30 0.020	NIGHT DA 0.104 0.92 0.500 0.03	LY 00		VEHICLE TY AUTOMOBI	PE LES RUCKS	HEIGHT 2.0	SLE DISTANCE 38.11 38.01	GRADE ADJUSTME
HEAVY TRUCKS 0.48	30 0.020	0.500 0.05	00		HEAVY TRU	СКЅ	8.0	38.12	0.00
		NOISE IMP	NOISE OU	UTPUT DA		DING)			
	VEHICLE TY	PE PK HF	LEQ DAY LEQ	EVEN LEQ	NIGHT LEQ	LDN	CNEL		
	VEHICLE TY AUTOMOBI	PE PK HF LES 69.	LEQ DAY LEQ 3 67.3	EVEN LEQ 66.0	NIGHT LEQ 59.9	LDN 68.3	CNEL 69.0		
	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU	PE PK HF LES 69. RUCKS 63. CKS 70.	LEQ DAY LEQ 3 67.3 4 59.4 4 66.4	EVEN LEQ 66.0 51.6	NIGHT LEQ 59.9 60.8 67.9	LDN 68.3 67.0 74.0	CNEL 69.0 67.0 74.1		
	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	PE PK HF LES 69. RUCKS 63. CKS 70.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4	EVEN LEQ 66.0 51.6 58.7	NIGHT LEQ 59.9 60.8 67.9	LDN 68.3 67.0 74.0	CNEL 69.0 67.0 74.1		
	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8	NIGHT LEQ 59.9 60.8 67.9 69.2	LDN 68.3 67.0 74.0 75.7	CNEL 69.0 67.0 74.1 75.8		
	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8	NIGHT LEQ 59.9 60.8 67.9 69.2	LDN 68.3 67.0 74.0 75.7	CNEL 69.0 67.0 74.1 75.8		
	VEHICLE TY AUTOMOBI MEDIUM TI HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LS C	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8 0PO AND BAR	NIGHT LEQ 59.9 60.8 67.9 69.2 RRIER SHIELD NIGHT LEQ	LDN 68.3 67.0 74.0 75.7 75.7	CNEL 69.0 67.0 74.1 75.8 CNEL		
	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TO SLEQ DAY LEQ 3 67.3 4 59.4	EVEN LEQ 66.0 51.6 58.7 66.8 0PO AND BAR EVEN LEQ 66.0 51.6	NIGHT LEQ 59.9 60.8 67.9 69.2 RRIER SHIELD NIGHT LEQ 59.9 60.8	LDN 68.3 67.0 74.0 75.7 75.7 <i>(ING)</i>	CNEL 69.0 67.0 75.8 75.8 CNEL 69.0 67.0		
	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63. CKS 70.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TO 8 LEQ DAY LEQ 3 67.3 4 59.4 4 66.4	EVEN LEQ 66.0 51.6 58.7 66.8 PPO AND BAR EVEN LEQ 66.0 51.6 58.7	NIGHT LEQ 59.9 60.8 67.9 69.2 RRIER SHIELD NIGHT LEQ 59.9 60.8 67.9	LDN 68.3 67.0 74.0 75.7 75.7 01NG) LDN 68.3 67.0 74.0	CNEL 69.0 74.1 75.8 CNEL 69.0 67.0 74.1		
	VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU	PE PK HF LES 69. RUCKS 63. CKS 70. IS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63. CKS 70.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TC) ALEQ DAY LEQ 3 67.3 4 59.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8 PPO AND BAR EVEN LEQ 66.0 51.6 58.7 66.8	NIGHT LEQ 59.9 60.8 67.9 69.2 RIER SHIELD NIGHT LEQ 59.9 60.8 67.9 69.2	LDN 68.3 67.0 74.0 75.7 (NG) LDN 68.3 67.0 74.0 75.7	CNEL 69.0 67.0 74.1 75.8 CNEL 69.0 67.0 74.1		
	VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73.	ELEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TO ELEQ DAY LEQ 3 67.3 4 59.4 4 66.4	EVEN LEQ 66.0 51.6 58.7 66.8 PO AND BAR EVEN LEQ 66.0 51.6 58.7	NIGHT LEQ 59.9 60.8 67.9 69.2 RRIER SHIELD NIGHT LEQ 59.9 60.8 67.9 69.2	LDN 68.3 67.0 74.0 75.7 DING) LDN 68.3 67.0 74.0 75.7	CNEL 69.0 67.0 74.1 75.8 CNEL 69.0 67.0 74.1 75.8		
	VEHICLE TY AUTOMOBI MEDIUM TI HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TC) CLEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 RLEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8 PPO AND BAR EVEN LEQ 66.0 51.6 58.7 66.8 PPO AND BAR 66.0 51.6 58.7 66.8 9000000000000000000000000000000000000	NIGHT LEQ 59.9 60.8 67.9 69.2 RRIER SHIELD NIGHT LEQ 59.9 60.8 67.9 69.2	LDN 68.3 67.0 74.0 75.7 (NG) LDN 68.3 67.0 74.0 75.7	CNEL 69.0 67.0 74.1 75.8 CNEL 69.0 67.0 74.1 75.8		
	VEHICLE TY AUTOMOBI MEDIUM TI HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73. NOISE IM PE PK HF LES 69. RUCKS 63. CKS 70. LS (dBA) 73.	ALEQ DAY LEQ 3 67.3 4 59.4 4 66.4 4 70.3 PACTS (WITH TC) ALEQ DAY LEQ 3 67.3 4 59.4 4 70.3	EVEN LEQ 66.0 51.6 58.7 66.8 PPO AND BAR 66.0 51.6 58.7 66.8 PPO AND BAR 66.0 51.6 58.7 66.8 NTOUR (FT) 65 dBA 264	NIGHT LEQ 59.9 60.8 67.9 69.2 RIER SHIELD NIGHT LEQ 59.9 60.8 67.9 69.2 60.8 67.9 60.8 57.9	LDN 68.3 67.0 74.0 75.7 (ING) LDN 68.3 67.0 74.0 75.7 55 dBA 1226	CNEL 69.0 67.0 74.1 75.8 CNEL 69.0 67.0 74.1 75.8		

FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

ROADWAY: STETSON AVER LOCATION: EXISTING PLUS	RETAIL NOISE IMPACT STUDY NUE - EAST OF SANDERSON A' S PROJECT (E+P) - NOISE CONT	VENUE TOURS							JOB #: 0144-15-170 DATE: 25-Oct-17 ENGINEER: M. DICKERSC
			NOISE IN	IPUT DAT	A				
PO						DE			
ĸ	ADWAY CONDITIONS					RE	CEIVER INPO	JI DATA	
ADT = 1: SPEED = PK HR % = NEAR LANE/FAR LANE DIST ROAD ELEVATION = GRADE = PK HR VOL =	3,600 40 10 65 0.0 0.0 % 1,360			RECEIVER L DIST C/L TC RECEIVER H WALL DIST, PAD ELEVA ROADWAY	DISTANCE = 0 WALL = IEIGHT = ANCE FROM I TION = VIEW:	RECEIVER = LF ANGLE= RT ANGLE= DF ANGLE=	50 0 5.0 0.0 -90 90 180		
						14			
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	15 15 (10 = HARI 15	D SITE, 15 = S	OFT SITE)	HTH WALL= AMBIENT= BARRIER =	= 0.0 0.0 0	(0 = WALL, :	1 = BERM)		
	VEHICLE MIX DATA					N	1ISC. VEHICL	E INFO	
VEHICLE TYPE DAY AUTOMOBILES 0.755 MEDIUM TRUCKS 0.480 UFANK TRUCKS 0.400	EVENING NIGHT 0.140 0.104 0.020 0.500 0.220 0.500	DAILY 0.9200 0.0300			VEHICLE TY AUTOMOBI MEDIUM TF	PE LES RUCKS	HEIGHT 2.0 4.0	SLE DISTANCE 38.11 38.01	GRADE ADJUSTMENT
	NO	ISE IMPACTS	NOISE OU (WITHOUT	ITPUT DA	TA ARRIER SHIEL	DING)			
			1						
							0.151		
		PK HR LEQ	65 5	EVEN LEQ	NIGHT LEQ	LDN	CNEL		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEQ 67.5 61.6	DAY LEQ 65.5 57.6	EVEN LEQ 64.2 49.8	NIGHT LEQ 58.1 59.0	LDN 66.5 65.2	CNEL 67.2 65.2		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEQ 67.5 61.6 68.6	DAY LEQ 65.5 57.6 64.6	EVEN LEQ 64.2 49.8 56.9	NIGHT LEQ 58.1 59.0 66.1	LDN 66.5 65.2 72.2	CNEL 67.2 65.2 72.3		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5	EVEN LEQ 64.2 49.8 56.9 65.0	NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 65.2 72.2 73.9	CNEL 67.2 65.2 72.3 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5	EVEN LEQ 64.2 49.8 56.9 65.0	NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 65.2 72.2 73.9	CNEL 67.2 65.2 72.3 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 S (WITH TO)	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR	NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 65.2 72.2 73.9	CNEL 67.2 65.2 72.3 74.0 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES	PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 57 68.5 50 0 0 0 65.5	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1	LDN 66.5 72.2 73.9 73.9	CNEL 67.2 65.2 72.3 74.0 74.0 CNEL 67.2		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 57 68.5 50 68.5 57 68.5 57 57 68.5	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8	NIGHT LEQ 58.1 59.0 66.1 67.4 RIER SHIELD NIGHT LEQ 58.1 59.0	LDN 66.5 65.2 73.9 73.9 0////G) LDN 66.5 65.2	CNEL 67.2 65.2 72.3 74.0 74.0 CNEL 67.2 65.2		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEQ 67.5 61.6 68.6 71.6 OISE IMPACT PK HR LEQ 67.5 61.6 68.6	DAY LEQ 65.5 57.6 64.6 68.5 S (WITH TO) DAY LEQ 65.5 57.6 64.6	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8 56.9	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1 59.0 66.1	LDN 66.5 65.2 72.2 73.9 73.9 (NG) LDN 66.5 65.2 72.2	CNEL 67.2 65.2 72.3 74.0 74.0 CNEL 67.2 65.2 72.3		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 OISE IMPACT PK HR LEQ 67.5 61.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 S (WITH TO) DAY LEQ 65.5 57.6 64.6 68.5	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8 56.9 65.0	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1 59.0 66.1	LDN 66.5 65.2 72.2 73.9 73.9 0/NG) LDN 66.5 65.2 72.2 73.9	CNEL 67.2 65.2 72.3 74.0 74.0 CNEL 67.2 65.2 72.3 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6 OISE IMPACT PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 S (WITH TO) DAY LEQ 65.5 57.6 64.6 68.5	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8 56.9 65.0	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 65.2 72.2 73.9 73.9 (ING) LDN 66.5 65.2 72.2 73.9	CNEL 67.2 65.2 72.3 74.0 74.0 CNEL 67.2 65.2 72.3 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6 OISE IMPACT PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 S (WITH TO) DAY LEQ 65.5 57.6 64.6 0.015E COI 70 dBA	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8 56.9 65.0 NTOUR (FT) 65 dBA	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 72.2 73.9 73.9 NNG) LDN 66.5 65.2 72.2 73.9 73.9	CNEL 67.2 72.3 74.0 74.0 CNEL 67.2 65.2 72.3 74.0		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 67.5 61.6 68.6 71.6 OISE IMPACT PK HR LEQ 67.5 61.6 68.6 71.6	DAY LEQ 65.5 57.6 64.6 68.5 5 (WITH TO) DAY LEQ 65.5 57.6 64.6 000000000000000000000000000000000000	EVEN LEQ 64.2 49.8 56.9 65.0 PO AND BAR EVEN LEQ 64.2 49.8 56.9 65.0 NTOUR (FT) 65 dBA 200	NIGHT LEQ 58.1 59.0 66.1 67.4 RRIER SHIELD NIGHT LEQ 58.1 59.0 66.1 67.4	LDN 66.5 72.2 73.9 73.9 2000 1	CNEL 67.2 65.2 72.3 74.0 74.0 67.2 65.2 72.3 74.0		

LOCATION: EXISTING	AVENUE - WEST OF SAN PLUS PROJECT - NOISE (IDERSON AVEN	IUE							DATE: 25-Oct-17 ENGINEER: M. DICKEF
				NOISE IN	IPUT DAT	A				
	ROADWAY CONDITIO	NS			ł		RE	CEIVER INP	JT DATA	
ADT =	28,600				RECEIVER D	ISTANCE =		50		
SPEED =	40				DIST C/L TO	WALL =		0		
PK HR % =	10				RECEIVER H	EIGHT =		5.0		
NEAR LANE/FAR LANE DIST	65				WALL DISTA	NCE FROM	RECEIVER =	50		
ROAD ELEVATION =	0.0				PAD ELEVA	TION =		0.0		
GRADE = PK HR VOL =	2 860				RUADWAY	VIEVV:	RT ANGLE=	-90		
	2,000						DF ANGLE=	180		
					<u></u>					
	SITE CONDITIONS						W	ALL INFORM	/IATION	
AUTOMOBILES =	15				HTH WALL=	0.0				
MEDIUM TRUCKS =	15	(10 = HARD SIT	$E, 15 = S_{1}$	OFT SITE)	AMBIENT=	0.0	(0 -) (0 -)	1 - DEDMA)		
HEAVY TRUCKS =	15				BARKIER =	0	(0 = WALL,	I = BERIVI)		
					 I					
	VEHICLE MIX DATA	l l					Ν	AISC. VEHICI	.E INFO	
		NIGHT		1			DF	HEIGHT	SI E DISTANCE	
AUTOMOBILES 0.7	755 0.140	0.104	0.9200			AUTOMOBI	LES	2.0	38.11	
MEDIUM TRUCKS 0.4	180 0.020	0.500	0.0300			MEDIUM TH	RUCKS	4.0	38.01	
HEAVY TRUCKS 0.4	480 0.020	0.500	0.0500		ITPUT DA	HEAVY TRU	CKS	8.0	38.12	0.00
HEAVY TRUCKS 0.4	180 0.020	0.500 (0.0500	NOISE OU (WITHOUT	TPUT DA	HEAVY TRU TA RRIER SHIEL	CKS .DING)	8.0	38.12	0.00
HEAVY TRUCKS 0.4	180 0.020	0.500	0.0500	NOISE OU (without	ITPUT DA	HEAVY TRU TA RRIER SHIEL	.DING)	8.0	38.12	0.00
HEAVY TRUCKS 0.4	180 0.020 VEHICLE TYI	0.500 (NOISE I PE PI	0.0500 IMPACTS K HR LEQ	NOISE OU (WITHOUT DAY LEQ	TPUT DA	HEAVY TRU TA RRIER SHIEL NIGHT LEQ	.DING)	8.0 CNEL	38.12	0.00
HEAVY TRUCKS 0.4	180 0.020 VEHICLE TY AUTOMOBIL	NOISE I PE PI LES PI	0.0500 IMPACTS K HR LEQ 70.7	NOISE OU (WITHOUT DAY LEQ 68.7	ITPUT DA TOPO OR BA EVEN LEQ 67.4	HEAVY TRU TA RRIER SHIEL NIGHT LEQ 61.3	. <i>DING)</i> LDN 69.8	8.0 CNEL 70.4	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR	NOISE I NOISE I LES ENUCKS	0.0500 IMPACTS K HR LEQ 70.7 64.8 71.0	DAY LEQ 68.7 60.8	EVEN LEQ 67.4 53.0	HEAVY TRU TA RRIER SHIEL 61.3 62.3 62.3	LDN 69.8 68.4	8.0 CNEL 70.4 68.4	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC	NOISE I NOISE I LES RUCKS CKS	0.0500 IMPACTS K HR LEQ 70.7 64.8 71.9	DAY LEQ 68.7 60.8 67.9	EVEN LEQ 67.4 53.0 60.1	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3	LDN 69.8 68.4 75.5	8.0 CNEL 70.4 68.4 75.5	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRU NOISE LEVEI	0.500 (NOISE I PE PI LES CKS LS (dBA)	0.0500 IMPACTS K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEL	0.500 (NOISE I PE PI LES L RUCKS C LS (dBA)	0.0500 IMPACTS K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRUC NOISE LEVEL	0.500 (NOISE I PE PI LES PI RUCKS CKS LS (dBA)	0.0500 MIPACTS K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7	TPUT DA TOPO OR BA 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEI	0.500 (NOISE I PE PI LES CKS CKS CKS CKS CKS CKS CKS CKS CKS CK	0.0500 IMPACTS (HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI LES C RUCKS C LS (dBA) NOISE	0.0500 IMPACTS K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 62.3 69.3 70.6 RIER SHIELD	LDING)	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEL	0.500 (NOISE I PE PI LES L LUCKS C LS (dBA) NOISE	0.0500 IMPACTS (HR LEQ 70.7 64.8 71.9 74.8	NOISE OU (WITHOUT 68.7 60.8 67.9 71.7 5 (WITH TOL	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 69.3 70.6 RIER SHIELD	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI RUCKS C LS (dBA) NOISE PE PI	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT K HR LEQ 70.7	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO)	EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 69.3 70.6 RIER SHIELL	LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN AUTOMOBII AUTOMOBII	0.500 (NOISE I PE PI LES LS (dBA) NOISE NOISE PE PI LS (dBA)	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT K HR LEQ 70.7 64.9	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 0.0	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4	HEAVY TRU TA RRIER SHIEL 61.3 69.3 70.6 RIER SHIELL NIGHT LEQ 61.3 62.2	LDN 69.8 68.4 75.5 77.1 9///G) LDN 69.8 69.8 69.4	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 69.4	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TYI AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN AUTOMOBII MEDIUM TR HEAVY TRU	0.500 (NOISE I PE PI LES LS (dBA) NOISE NOISE NOISE NOISE RUCKS RUCKS RUCKS RUCKS	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 061.3 69.3 70.6 RIER SHIELL 01.3 69.3 70.6 RIER SHIELL 01.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1 9///G) LDN 69.8 68.4 75.5	8.0 CNEL 70.4 68.4 75.5 77.3 77.3 CNEL 70.4 68.4 75.5	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUG NOISE LEVEN VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUG	0.500 (NOISE I PE PI LES LS (dBA) PE PI LES RUCKS RUCKS RUCKS	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1	HEAVY TRU TA RRIER SHIEL 061.3 69.3 70.6 RIER SHIELL 01.3 69.3 RIER SHIELL 01.3 62.3 62.3 69.3	LDN 69.8 68.4 75.5 77.1 01NG) LDN 69.8 68.4 68.4 75.5	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 68.4 75.5	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI LES CKS LS (dBA) NOISE PE PI LES LS (dBA)	0.0500 (MPACTS) (MPACTS) (4.8 71.9 74.8 (1.9 74.8 (1.9 74.8 71.9 74.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 01.3 62.3 69.3 70.6 RIER SHIELL 01.3 62.3 69.3 70.6 70.6	LDN 69.8 68.4 75.5 77.1 0///G) LDN 69.8 68.4 75.5 68.4 75.5	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI LES LS (dBA) NOISE	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 E IMPACT K HR LEQ 70.7 64.8 71.9 74.8	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9 71.7	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1 68.3	HEAVY TRU TA RRIER SHIEL 61.3 69.3 70.6 RIER SHIELD 61.3 69.3 70.6 1.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1 77.1 9///G) LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI LES RUCKS LS (dBA) NOISE PE PI RUCKS LS (dBA)	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 EIMPACT K HR LEQ 70.7 64.8 71.9 74.8 74.8	DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) PAY LEQ 68.7 60.8 67.9 71.7 NOISE COI	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1 68.3 66.1 68.3	HEAVY TRU TA RRIER SHIEL 061.3 69.3 70.6 RIER SHIELL 01.3 69.3 70.6 1.3 69.3 70.6 1.3 69.3 70.6	LDN 69.8 68.4 75.5 77.1 9///G) LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 68.4 75.5 77.3	38.12	0.00
HEAVY TRUCKS 0.4	VEHICLE TY AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN AUTOMOBII MEDIUM TR HEAVY TRUC NOISE LEVEN	0.500 (NOISE I PE PI LES CKS IS (dBA) NOISE LES CKS IS (dBA)	0.0500 MPACTS K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT K HR LEQ 70.7 64.8 71.9 74.8 FIMPACT 74.8	NOISE OU (WITHOUT DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9 71.7 S (WITH TO) DAY LEQ 68.7 60.8 67.9 71.7 NOISE COI 70 dBA 172	EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR EVEN LEQ 67.4 53.0 60.1 68.3 PO AND BAR 66.1 68.3 VTOUR (FT) 65 dBA 220	HEAVY TRU TA RRIER SHIEL 061.3 69.3 70.6 RIER SHIELL 01.3 69.3 70.6 70.6 70.6 70.6 70.6	LDN 69.8 68.4 75.5 77.1 01NG) LDN 69.8 68.4 75.5 77.1	8.0 CNEL 70.4 68.4 75.5 77.3 CNEL 70.4 68.4 75.5 77.3	38.12	

Appendix C: SoundPLAN Input and Output

Appendix F VACUTECH SOUND LEVEL METER READINGS MODEL: FT-CO-T350HP4 (50HP TURBINE COUPLED VACUUM PRODUCER) WITH EXHAUST SILENCER READING ONE: 61 DB-A, 3 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE. READING TWO: 62 DB-A, 5 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE. READING THREE: 59 DB-A, 10 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE. READING FOUR: 54 DB-A, 20 FEET FROM TURBINE @ 45° ANGLE AND NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE READINGS WERE TAKEN OUTSIDE, ON CONCRETE PAD WITH NO ENCLOSURE. NO BACKGROUND NOISE OR OUTSIDE INTERFERENCE WAS PRESENT DURING READINGS. SOUND LEVEL METER USED: SIMPSON MODEL #40003 - MSHA APPROVED.

Vacutech 1350 Hi-Tech Drive, Sheridan WY, 82801 PHONE: (800) 917-9444 FAX: (303) 675-1988 EMAIL: info@vacutechllc.com WEB SITE: www.vacutechllc.com

MEETS OSHA & WALSH-HEALY REQUIREMENTS FOR NOISE CONTROL. CONFORMS TO ANSI \$1.4-1983, IEC 651 SPECS FOR METER TYPE

Noise Emissions of Industry Sources

Source name R	Refe Jnit	Lev	vel	25											Fron		nev	ene	octru	ım l		(Δ)]												Cori	rect	ion
Source name R	Refe Jnit	Lev	vel	25												11.75	11																			
	Jnit	Le	ver	101	21	10	FC	62	00	100	1.24	160	204	2Ed	210	And	Fod	ead	and	1	1 2	16	2	2 5	2 2	1	E	6 2	0	10	12	16	201	البدرما	Cul	$\frown T$
	Jnit		JD /	20	31	40	50	03	00	100	120		200	250	515	400	500	034	000		1.3	1.0	2	2.0	3.Z	4	5	0.3	0		12.		201			
	Jnit		aB(HZ	HZ	HZ	HZ		HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	HZ	KH2	KH2	KHZ	KHZ	KHZ	KH2	KH2	KHZ	KHZ	KH:		KH2	KHZ	KH2	aB((JR(дВ(
	1.0.14	Leo	104	52.	57.	64	. 69	1.76	80.	76.	81.	86.	84.	84.	90.	99.	98.	94.	88.	90.	90.	90.	90.	91.	87.	85.	84.	81.	78	76.	71.	65.	54.	-	-	-
	Jnit	Lec	104	52.	57.	64	60	70	00.	76.	01.	00. 06	04. 01	04. 01	90.	99.	90.	94.	00.	90.	90.	90.	90.	91.	07.	00. 05	04. 01	01.	70	70.	71.	65	54. 54	-	-	-
DL1-43HF-1 (L	Init		7/	52.	30	35	109	50	51	10.	01. 10	00. 51	04. ⊿0	04. 52	90. 54	99. 50	90. 52	94. 53	00. 57	90. 58	90. 58	90. 64	90. 64	91. 64	07. 67	63. 67	04. 67	70	60	67	71.	60	54.	_	-	-
Vacutec?	Init		74.	_	30.	35	40	50	54	40.	4 <u>9</u> . 40	51.	49. 40	52	54	50	52	53	57	50. 58	58	64	64	64	67	67	67	70.	60	67	71	60. 60				
Vacutec3	Jnit	Leo	74	-	30	35	46	50	54	46	49	51.	49	52	54	50	52	53	57	58	58	64	64.	64	67	67.	67	70.	69	67	71	69	-	_	-	-
Vacutec4	Jnit	Leo	74.	-	30.	35.	46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67	71.	69.	-	-	-	-
Vacutec5 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec6 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec7 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec8 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec9	Jnit	Leo	74.	-	30.	35.	. 46	5.50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	<u>69.</u>	-	-	-	-
Vacutec10 L	Jnit	Leo	74. 74	-	30.	35	46	5.50	54.	46.	49.	51. 51	49.	52.	54.	50.	52.	53.	57.	58. 50	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec11	Jnit	Lec	74. 74	-	30.	35	40	50	54.	40.	49. 10	51. 51	49.	52.	54.	50.	52.	53. 53	57.	20. 59	50.	64.	64. 64	64.	07. 67	67. 67	67	70.	60	67	71.	69. 60	-	-	-	-
Vacutec12	Init		74.	-	30.	35	40	50	54.	40.	<u>49.</u> <u>4</u> 9	51.	49. 49	52	54.	50	52.	53	57	58. 58	58	64	64	64	67	67.	67	70.	69	67	71	69	_	-	_	_
Vacutec14	Jnit	Leo	74	-	30	35	46	50	54	46	49	51	49	52	54	50	52	53	57	58	58	64	64	64	67	67	67	70.	69	67	71	69	-	_	-	-
Vacutec15	Jnit	Leo	74	-	30.	35	46	5.50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67	71.	69.	-	-	-	-
Vacutec16 L	Jnit	Leo	74.	-	30.	35	46	5.50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec17 L	Jnit	Leo	74.	-	30.	35	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec18 L	Jnit	Leo	74.	-	30.	35.	46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec19 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec20 L	Jnit	Leo	74.	-	30.	35.	. 46	50	54.	46.	49.	51.	49.	52.	54.	50.	52.	53.	57.	58.	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	71.	69.	-	-	-	-
Vacutec21	Jnit	Leo	<u>74</u> .	-	30.	35	46	5. <u>50</u>	54.	46.	<u>49.</u>	<u>51.</u>	49.	52.	54.	50.	52.	53.	57.	<u>58</u> .	58.	64.	64.	64.	67.	67.	67.	70.	69	67.	/1.	<u>69.</u>	-	-	-	-
Vacutec Turbic	Jnit	Leo	60.	-	16.	21	.32	. 30	40.	32. 22	35.	37.	35.	37.	39.	30.	38.	39.	43. 12	44. 11	44.	49. 40	50.	50.	53.	53.	53.	50.	55	53.	57.	54.	-	-	-	-
							1																						100			1				

Noise Emissions of Parking Lot Traffic

		Low		Moveme		Separated	Level
Name	Parking lot type	noise	Size	per hou	Road surface	method	
		trolleys		Leq1			dB(A)
Parking Lot 1 - North	Visitors and staff	-	101 car places	5.000	Asphaltic lanes	no	88.0
Parking Lot 2 - South	Visitors and staff	-	119 car places	5.000	Asphaltic lanes	no	88.9
Store Lot 1	Visitors and staff	-	9 car places	9.000	Asphaltic lanes	no	72.5
Store Lot 2	Visitors and staff	-	5 car places	5.000	Asphaltic lanes	no	70.0
Store Lot 5	Visitors and staff	-	4 car places	4.000	Asphaltic lanes	no	69.0

	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
1 1.Fl	57.1 57.1	
BL1-45HP-1 (1)	54.2	54.2
BL1-45HP-1 (Z) RI 1_75HD_1 (3)	51.∠ 50.9	51.∠ 50.9
Parking Lot 1 - North	22.9	22.9
Parking Lot 2 - South	26.6	26.6
Store Lot 1	20.4	20.4
Store Lot 2	10.7	10.7
Store Lot 5	5.8	5.8
Vacutec1	8.1	8.1
Vacutec2	8.U 7 Q	8.U 7 9
Vacuteca	7.8	7.8
Vacutec5	7.7	7.7
Vacutec6	7.6	7.6
Vacutec7	5.3	5.3
Vacutec8	5.1	5.1
Vacutec9	1.9	1.9
Vacutec10	1.7	1.7
Vacutec12	3.3	3.3
Vacutec13	1.4	1.4
Vacutec14	8.4	8.4
Vacutec15	3.3	3.3
Vacutec16	2.9	2.9
Vacutec17	4.4	4.4
Vacutec18	4.2 3.9	4.2 3.9
Vacutec20	3.7	3.7
Vacutec21	3.6	3.6
Vacutec Turbine1	-10.9	-10.9
Vacutec Turbine2	-12.4	-12.4
2 1.FI	52.4 52.4	47.5
BL1-45HP-1 (1)	47.5	47.5
BL1-45HF-1 (2) RI 1.45HP-1 (3)	47.0	47.0
Parking Lot 1 - North	23.2	23.2
Parking Lot 2 - South	27.5	27.5
Store Lot 1	9.7	9.7
Store Lot 2	6.3	6.3
Store Lot 5	-U.4 2.2	-0.4
	2.2	2.2
Vacutec3	2.4	2.4
Vacutec4	2.5	2.5
Vacutec5	2.6	2.6
Vacutec6	2.7	2.7
Vacutec7	2.7	2.7
Vacutec8	2.ŏ 2.8	2.ŏ 2.8
Vacuted9	2.0	2.0
Vacutec11	2.7	2.7
Vacutec12	2.7	2.7
Vacutec13	2.7	2.7
Vacutec14	4.6	4.6
Vacutec15	4.7	4.7
Vacutec17	4.7 5.0	4.7 5.0
Vacutec18	6.1	6.1
Vacutec19	6.0	6.0
Vacutec20	5.9	5.9
Vacutec21	5.8	5.8
Vacutec Turbine1	-8.8	-8.8

	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec Turbine2	-11.0	-11.0
3 1.Fl	49.2 49.2	
BL1-45HP-1 (1)	44.4	44.4
BL1-45HP-1 (2)	44.4	44.4
BL1-45HP-1 (3)	44.4	44.4
Parking Lot 1 - North	23.0	23.6
Store Lot 1	9.8	9.8
Store Lot 2	14.8	14.8
Store Lot 5	3.7	3.7
Vacutec1	1.4	1.4
Vacutec2	1.6	1.6
Vacutec3	1.8 2.2	1.8
Vacutec5	2.4	2.4
Vacutec6	2.6	2.6
Vacutec7	2.8	2.8
Vacutec8	4.3	4.3
Vacutec9	4.5	4.5
Vacutec10	7.U 9.5	7.U 8.5
Vacutec11	o.o 8.1	0.0 8.1
Vacutec12 Vacutec13	8.2	8.2
Vacutec14	1.8	1.8
Vacutec15	2.2	2.2
Vacutec16	3.5	3.5
Vacutec17	3.9	3.9
Vacutec18	4.Z 6.5	4.Z 6.5
Vacuter20	6.7	6.7
Vacutec21	10.1	10.1
Vacutec Turbine1	-3.0	-3.0
Vacutec Turbine2	-5.3	-5.3
4 1.Fl	46.2 46.2	
BL1-45HP-1 (1)	41.3	41.3
BL1-45HP-1 (2)	41.3	41.3
BL1-45HP-1 (3) Parking Lot 1 - North	41.2 24.0	41.2 24.0
Parking Lot 2 - South	29.6	29.6
Store Lot 1	17.5	17.5
Store Lot 2	15.3	15.3
Store Lot 5	2.9	2.9
Vacutec1	0.9	0.9
Vacutec2	1.2	1.2
Vacutec4	3.1	3.1
Vacutec5	5.5	5.5
Vacutec6	5.7	5.7
Vacutec7	5.7	5.7
Vacutec8	5.9	5.9
Vacutecy	0.1 5.5	0.1 5.5
Vacutec10	5.5	5.7
Vacutec12	5.9	5.9
Vacutec13	6.1	6.1
Vacutec14	0.3	0.3
Vacutec15	0.6	0.6
Vacutec16	1.3	1.3
Vacutec18	5.2	5.2
Vacutec19	5.6	5.6
Vacutec20	6.1	6.1
Vacutec21	8.6	8.6

Level w/o NP Level w. NP Source name Leq1 Leq1 dB(A) dB(A) Vacutec Turbine1 -5.6 -5.6 Vacutec Turbine2 -7.4 -7.4 5 1.Fl 44.1 44.1 BL1-45HP-1 (1) 39.1 39.1 BL1-45HP-1 (2) 39.1 39.1 BL1-45HP-1 (3) 39.1 39.1 24.8 Parking Lot 1 - North 24.8 Parking Lot 2 - South 30.9 30.9 Store Lot 1 14.5 14.5 Store Lot 2 12.0 12.0 Store Lot 5 3.0 3.0 2.9 Vacutec1 2.9 Vacutec2 3.3 3.3 Vacutec3 3.4 3.4 Vacutec4 3.6 3.6 Vacutec5 3.8 3.8 Vacutec6 3.8 3.8 Vacutec7 4.0 4.0 Vacutec8 0.2 0.2 Vacutec9 0.3 0.3 Vacutec10 0.5 0.5 Vacutec11 0.6 0.6 Vacutec12 0.7 0.7 0.8 Vacutec13 0.8 Vacutec14 -3.8 -3.8 Vacutec15 1.2 1.2 Vacutec16 1.7 1.7 Vacutec17 2.1 2.1 2.4 Vacutec18 2.4 Vacutec19 2.8 2.8 Vacutec20 6.4 6.4 Vacutec21 6.6 6.6 Vacutec Turbine1 -7.5 -7.5 Vacutec Turbine2 -12.8 -12.8 1.Fl 42.8 42.8 6 37.6 BL1-45HP-1 (1) 37.6 BL1-45HP-1 (2) 37.6 37.6 BL1-45HP-1 (3) 37.5 37.5 Parking Lot 1 - North 25.5 25.5 Parking Lot 2 - South 32.2 32.2 Store Lot 1 12.7 12.7 Store Lot 2 10.2 10.2 Store Lot 5 2.4 2.4 Vacutec1 -1.1 -1.1 Vacutec2 -0.9 -0.9 Vacutec3 -0.8 -0.8 Vacutec4 -0.8 -0.8 Vacutec5 -0.6 -0.6 Vacutec6 -0.5 -0.5 Vacutec7 -1.1 -1.1 Vacutec8 -1.0 -1.0 -0.9 -0.9 Vacutec9 Vacutec10 -0.8 -0.8 Vacutec11 -0.6 -0.6 Vacutec12 -0.5 -0.5 Vacutec13 -0.4 -0.4 Vacutec14 -1.1 -1.1 -0.8 -0.8 Vacutec15 Vacutec16 -0.5 -0.5 Vacutec17 -0.2 -0.2 Vacutec18 0.2 0.2 Vacutec19 0.4 0.4 Vacutec20 0.5 0.5

Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec21	0.7	0.7
Vacutec Turbine1	-13.5	-13.5
Vacutec Turbine2	-14.1	-14.1
7 1.Fl	43.3 43.3	
	36.3	36.3
DL1-43NF-1 (1) DL4 /64D_4 (2)	30.5	30.5
	40.0	40.0
BL1-40HF-1 (3) Dertine Let 4 Morth	40.0 26 A	40.0 26 /
Parking Lot 1 - North	20.4 22.6	20.4
Parking Lot 2 - South	33.0 11 Ω	33.0 11 Q
	0.1	0.1
Store Lot 2	9.1	9.1
Store Lot 5	2.1	2.1
	-2.1	-2.1
	-2.0	-2.0
Vacutec3	-2.5	-2.5
Vacutec4	-2.4	-2.4
Vacutec5	-3.0	-3.0
Vacutec6	-2.9	-2.9
Vacutec7	-2.8	-2.8
Vacutec8	-2.7	-2.7
Vacutec9	-2.6	-2.6
Vacutec10	-2.5	-2.5
Vacutec11	-2.4	-2.4
Vacutec12	-2.3	-2.3
Vacutec13	-2.2	-2.2
Vacutec14	-2.7	-2.7
Vacutec15	-2.4	-2.4
Vacutec16	-2.2	-2.2
Vacutec17	-1.9	-1.9
Vacutec18	-1.3	-1.3
Vacutec19	-1.2	-1.2
Vacutec20	-1.0	-1.0
Vacutec21	-0.9	-0.9
Vacutec Turbine1	-15.1	-15.1
Vacutec Turbine2	-15.9	-15.9
8 1.Fl	48.9 48.9	
RI 1_//5HD_1 (1)	38.0	38.0
	37.6	37.6
	37.0 37.3	37.0
BL1-40HF-1 (3) Dertiine Let 4 Morth	37.3 27.5	37.3 27.5
Parking Lot 1 - North	57.5 A7 A	57.5 A7 A
Parking Lot 2 - South	47.4 0.1	47.4
	9.1 6.3	9.1 6.3
Store Lot 2	0.3	0.3
Store Lot 5	1.0	1.0
	-6.0	-0.0
	-5.9	-5.9
Vacutec3	-5.9	-5.9
Vacutec4	-5.9	-5.9
Vacutec5	-5.9	-5.9
Vacutec6	-5.8	-5.8
Vacutec7	-5.8	-5.8
Vacutec8	-5.8	-5.8
Vacutec9	-5./	-5.7
Vacutec10	-5.7	-5.7
Vacutec11	-5.6	-5.6
Vacutec12	-5.6	-5.6
Vacutec13	-5.6	-5.6
Vacutec14	-6.8	-6.8
Vacutec15	-8.5	-8.5
Vacutec16	-8.3	-8.3
Vacutec17	-4.6	-4.6
Vacutec18	-4.6	-4.6
Vacutec19	-4.6	-4.6

		· · · ·
	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec20	-4.6	-4.6
Vacutec21	-4.6	-4.6
Vacutec Turbine1	-18.8	-18.8
Vacutec Turbine2	-19.5	-19.5
9 1.Fl	50.0 50.0	
BL1-45HP-1 (1)	38.1	38.1
BL1-45HP-1 (2)	37.7	37.7
BL1-45HP-1 (3)	37.4	37.4
Parking Lot 1 - North	38.5	38.5
Parking Lot 2 - South	48.7	48.7
Store Lot 1	10.0	10.0
Store Lot 2	7.4	7.4
Store Lot 5	3.3	3.3
Vacutec1	-5.9	-5.9
Vacutec2	-6.0	-6.0
	-6.0	-6.0
	-5.9	-5.9
Vacuteco	-5.5	-5.5
	-4.7	-4.7
Vacuteck	-4.8	-4.8
Vacutec9	-4.8	-4.8
Vacutec10	-4.9	-4.9
Vacutec11	-4.9	-4.9
Vacutec12	-5.0	-5.0
Vacutec13	-5.1	-5.1
Vacutec14	-7.8	-7.8
Vacutec15	-9.1	-9.1
Vacutec16	-9.0	-9.0
Vacutec17	-4.8	-4.8
Vacutec18	-4.8	-4.8
Vacutec19	-4.9	-4.9
Vacutec20	-4.9	-4.9
Vacutec21	-4.9	-4.9
Vacutec Turbine1	-19.2	-19.2
	-19.1	-19.1
10 1.ri	50.5 50.5	
BL1-45HP-1 (1)	39.7	39.7
BL1-45HP-1 (2)	39.2	39.2
BL1-45HP-1 (3)	39.0	39.0
Parking Lot 1 - North	38.4	38.4
Storo Lot 1	49.0	49.0
Store Lot 2	5.7	5.7 7 2
Store Lot 5	4.5	4.5
Vacutec1	-4.9	-4.9
Vacutec2	-4.9	-4.9
Vacutec3	-5.0	-5.0
Vacutec4	-5.0	-5.0
Vacutec5	-5.1	-5.1
Vacutec6	-5.1	-5.1
Vacutec7	-5.2	-5.2
Vacutec8	-5.2	-5.2
Vacutec9	-5.3	-5.3
	-5.4	-5.4
Vacuted 1	-5.5	-5.5
Vacutee12	-5.0	-3.0 5 7
Vacuter14	-0./ _0./	-0.7 _0 /
Vacutec15	-9.4	-9.4
Vacutec16	-9.1	-9.1
Vacutec17	-3.7	-3.7
Vacutec18	-3.7	-3.7
		-

	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec19	-3.8	-3.8
Vacutec20	-3.9	-3.9
Vacutec Turbine1	-4.5	-4.5
Vacutec Turbine2	-19.7	-19.7
11 1.Fl	50.2 50.2	
BL1-45HP-1 (1)	39.5	39.5
BL1-45HP-1 (2)	39.2	39.2
BL1-45HP-1 (3)	38.9	38.9
Parking Lot 1 - North Parking Lot 2 South	38.1	38.1
Store L of 1	9.8	40.0
Store Lot 2	7.3	7.3
Store Lot 5	5.3	5.3
Vacutec1	-5.3	-5.3
Vacutec2	-5.3	-5.3
Vacutec4	-5.3	-5.3
Vacutec5	-5.3	-5.3
Vacutec6	-5.4	-5.4
Vacutec7	-5.4	-5.4
Vacutec8	-5.5	-5.5
Vacutec9	-5.5	-5.5
Vacutec10	-5.0	-5.7
Vacutec12	-5.8	-5.8
Vacutec13	-5.9	-5.9
Vacutec14	-10.0	-10.0
Vacutec15	-9.9	-9.9
Vacutec17	-4.8	-4.8 -4 7
Vacutec18	-4.8	-4.8
Vacutec19	-4.9	-4.9
Vacutec20	-5.1	-5.1
Vacutec21	-5.2	-5.2
Vacutec Turbine?	-19.5 -20.1	-19.5 -20.1
12 1.Fl	49.6 49.6	
BL1-45HP-1 (1)	42.4	42.4
BL1-45HP-1 (2)	38.3	38.3
BL1-45HP-1 (3)	35.7	35.7
Parking Lot 1 - North	37.9	37.9
Parking Lot 2 - South Store Lot 1	47.6	47.6
Store Lot 2	7.2	7.2
Store Lot 5	5.7	5.7
Vacutec1	-5.1	-5.1
Vacutec2	-5.1	-5.1
Vacutec3	-5.2	-5.2
Vacutec5	-5.2	-5.2
Vacutec6	-5.3	-5.3
Vacutec7	-5.4	-5.4
Vacutec8	-5.5	-5.5
Vacutec9	-5.6	-5.6
Vacutec10	-5.7 -5.8	-5.7 -5.8
Vacutec12	-5.9	-5.9
Vacutec13	-6.1	-6.1
Vacutec14	-10.4	-10.4
Vacutec15	-10.2	-10.2
Vacutec15	-5.0	-5.0
	-5.2	-9.2

	Level w/o NP	Level w NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec18	-5 3	-53
Vacutor10	5.0	5.5 F 4
Vacueta	-5.4	-5.4
Vacutec20	-5.6	-5.6
Vacutec21	-5.7	-5.7
Vacutec Turbine1	-20.0	-20.0
Vacutac Turbine 2	-20.3	-20.3
	-20.3	-20.5
13 1.Fl	48.1 48.1	
	40.7	42.7
	42.7	42.7
BL1-45HP-1 (2)	38.5	38.5
BL1-45HP-1 (3)	35.9	35.9
Parking Lot 1 - North	37.2	37.2
Parking Lot 2 - South	44.7	44.7
	44.7	44.7
Store Lot 1	9.7	9.7
Store Lot 2	7.1	7.1
Store Lot 5	5.7	5.7
Vacutec1	-5.0	-5.0
Vioutoo	5.0	5.5 F 1
Vaculecz	-5.1	-5.1
Vacutec3	-5.1	-5.1
Vacutec4	-5.2	-5.2
Vacutec5	-5.3	-5.3
Vacutec6	5.5 5 A	5.5 5 A
Vacueto	-5.4	-5.4
Vacutec7	-5.5	-5.5
Vacutec8	-5.6	-5.6
Vacutec9	-5.7	-5.7
Vacutac10	-5.8	-5.8
	-5.0	-5.0
Vacutec11	-6.0	-6.0
Vacutec12	-6.1	-6.1
Vacutec13	-6.3	-6.3
Vacutec14	-10.8	-10.8
	10.0	10.0
Vacutec15	-10.6	-10.6
Vacutec16	-5.1	-5.1
Vacutec17	-5.3	-5.3
Vacutec18	-5.4	-5.4
Vacutac10	-5.6	-5.6
	-5.0	-5.0
Vacutec20	-5.8	-5.8
Vacutec21	-5.9	-5.9
Vacutec Turbine1	-20.2	-20.2
Vacutec Turbine2	-20.5	-20.5
	40.0 40.0	
14 1.Γ1	49.0 49.0	
BL1-45HP-1 (1)	40.2	40.2
BI 1-45HP-1 (2)	39.0	39.0
	00.0	27.1
BLI-430F-1 (3)	27.1	27.1
Parking Lot 1 - North	38.5	38.5
Parking Lot 2 - South	47.3	47.3
Store Lot 1	9.7	9.7
Store Lot 2	7.5	75
	1.5	7.5
Stole Lot 5	0.7	0.7
Vacutec1	-5.0	-5.0
Vacutec2	-5.0	-5.0
Vacutec3	-5.1	-5.1
Vacutoci	5.1	5.1
	-5.1	-5.1
Vacutec5	-5.2	-5.2
Vacutec6	-5.3	-5.3
Vacutec7	-5.4	-5.4
Vacutec8	-5.5	-5.5
Vacutad	-5.5	-5.5
	-5.0	-0.0
Vacutec10	-5.8	-5.8
Vacutec11	-5.9	-5.9
Vacutec12	-6.1	-6.1
	6.2	6.7
	-0.2	-0.2
vacutec14	-5.2	-5.2
Vacutec15	-5.2	-5.2
Vacutec16	-5.3	-5.3

	Level w/o NP	Level w NP
-		
Source name	Leq1	Leq1
	dB(A)	dB(A)
N/		
Vacutec17	-5.4	-5.4
Vacutec18	-5.5	-5.5
Vacutec19	-5.7	-5.7
Vacutoc20	5.8	5.8
Vaculet20	-5.8	-5.0
Vacutec21	-5.9	-5.9
Vacutec Turbine1	-20.2	-20.2
Vacutec Turbine2	-20.5	-20.5
		20.0
15 I.Fl	50.3 50.3	
	20.7	20.7
	30.7	30.7
BL1-45HP-1 (2)	38.7	38.7
BL1-45HP-1 (3)	38.7	38.7
Parking Lot 1 - North	40.4	40.4
Parking Let 2 South	19.6	19.6
Paiking Lot 2 - South	40.0	40.0
Store Lot 1	10.2	10.2
Store Lot 2	8.4	8.4
Store Lot 5	7.8	7.8
Vacutaçã	1.0	1.0
	-4.9	-4.9
Vacutec2	-5.0	-5.0
Vacutec3	-5.1	-5.1
Vacutec4	_51	-51
	5.1	5.1
Vacutecs	-5.2	-5.2
Vacutec6	-4.7	-4.7
Vacutec7	-5.4	-5.4
Vacutoc	55	5.5
Vaculeco	-5.5	-5.5
Vacutec9	-5.6	-5.6
Vacutec10	-5.7	-5.7
Vacutec11	-5.8	-5.8
	6.0	6.0
Vacutec12	-6.0	-6.0
Vacutec13	-6.2	-6.2
Vacutec14	-5.1	-5.1
Vacutec15	-5.2	-5.2
	-5.2	-5.2
Vacutec16	-5.3	-5.3
Vacutec17	-5.4	-5.4
Vacutec18	-5.5	-5.5
Vacutoe10	5.5	5.5
Vacute 19	-5.0	-5.0
Vacutec20	-5.1	-5.1
Vacutec21	-5.2	-5.2
Vacutec Turbine1	-19.5	-19.5
	20.4	20.4
	-20.4	-20.4
16 1.Fl	50.3 50.3	
	00.7	00.7
BL1-45HP-1 (1)	38.7	38.7
BL1-45HP-1 (2)	38.7	38.7
BL1-45HP-1 (3)	38.7	38.7
Parking Lot 1 - North	12.2	12.2
Parking Lot 2 Couth	72.2	72.2
Parking Lot 2 - South	48.4	48.4
Store Lot 1	10.9	10.9
Store Lot 2	9.7	9.7
Store Lot 5	57	57
	5.1	5.1
vaculeut	-4.9	-4.9
Vacutec2	-5.0	-5.0
Vacutec3	-5.1	-5.1
Vacuter4	_51	-5 1
	-0.1	-5.1
Vacuieco	-5.2	-5.2
Vacutec6	-5.3	-5.3
Vacutec7	-5.4	-5.4
Vacutec8	_55	-5.5
	-5.5	-0.0
Vacutecy	-5.6	-5.6
Vacutec10	-5.7	-5.7
Vacutec11	-5.8	-5.8
Vacutoc12	6.0	6.0
	-0.0	-0.0
vacutec13	-6.1	-6.1
Vacutec14	-4.5	-4.5
Vacutec15	-4.5	-4.5

	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec16	-4.6	-4.6
Vacutoc17	1.0	1.0
Vacuted17	-4.7	-4.7
Vacutec18	-4.8	-4.8
Vacutec19	-4.9	-4.9
Vacutec20	-5.7	-5.7
Vacutec21	-5.9	-5.9
Vacutos Turbino1	20.1	20.1
	-20.1	-20.1
	-20.4	-20.4
17 1.Fl	45.8 45.8	
		0/ 0
BL1-45HP-1 (1)	31.2	31.2
BL1-45HP-1 (2)	31.3	31.3
BL1-45HP-1 (3)	31.4	31.4
Parking Lot 1 - North	43.9	43.9
Parking Lot 2 South	20.6	20.6
	55.0	59.0
Store Lot 1	14.7	14.7
Store Lot 2	16.8	16.8
Store Lot 5	15.9	15.9
Vacutec1	7.5	7.5
Vacutec2	65	65
	0.5	0.0
Vaculeos	6.0	6.U
Vacutec4	6.1	6.1
Vacutec5	6.3	6.3
Vacutec6	6.5	6.5
	6.6	6.6
	0.0	0.0
Vacutece	0.8	0.8
Vacutec9	6.9	6.9
Vacutec10	7.1	7.1
Vacutec11	7.3	7.3
Vacutoc12	7.5	75
	7.5	7.5
Vacutec13	7.6	7.6
Vacutec14	8.0	8.0
Vacutec15	8.2	8.2
Vacutec16	8.4	8.4
Vacutoc17	9.5	85
	0.5	8.5
Vacutec18	8.6	8.6
Vacutec19	7.0	7.0
Vacutec20	6.5	6.5
Vacutec21	6.7	6.7
Vacutes Turbine1	-7.2	-7.2
	1.2	7. <u>2</u>
Vacuted Turbinez	-0.5	-6.0
18 1.Fl	62.7 62.7	
	59 1	EQ 1
	00.1	56.1
BL1-45HP-1 (2)	57.5	57.5
BL1-45HP-1 (3)	58.1	58.1
Parking Lot 1 - North	19.3	19.3
Parking Lot 2 - South	20.4	20.4
Store Lot 1	20.5	20.5
Store Lot 1	23.5	29.5
Store Lot 2	29.0	29.0
Store Lot 5	15.7	15.7
Vacutec1	19.4	19.4
Vacutec2	19.8	19.8
Vacutec3	20.2	20.2
Vacutoca	20.2	20.2
	20.7	20.7
Vacutec5	21.2	21.2
Vacutec6	21.6	21.6
Vacutec7	21.1	21.1
Vacutec8	22 4	22 4
Vacutaa	22.4	22.4
	22.9	22.9
Vacutec10	23.5	23.5
Vacutec11	24.1	24.1
Vacutec12	24.8	24.8
Vacutec13	25.5	25.5
Vocutor 1	20.0	20.0
	I 20.4	∠∪.4

	Level w/o NP	Level w. NP
Source name	Leq1	Leq1
	dB(A)	dB(A)
Vacutec15	21.0	21.0
Vacutec16	21.7	21.7
Vacutec17	22.4	22.4
Vacutec18	23.1	23.1
Vacutec19	23.8	23.8
Vacutec20	24.7	24.7
Vacutec21	26.1	26.1
Vacutec Turbine1	12.6	12.6
Vacutec Turbine2	12.4	12.4

Appendix D:

Construction Noise Modeling Output

Activity	L _{eq} at 50 feet dBA	L _{Max} at 50 feet dBA	L _{eq} at 50 feet dBA (w/ Existing 15-ft Wall	L _{Max} at 50 feet dBA (w/ Existing 15-ft Wall)
Grading	88	89	73	74
Building Construction	85	87	71	72
Paving	87	90	72	75

Equipment Summary	50 ft Lmax
Rock Drills	96
Jack Hammers	82
Pneumatic Tools	85
Pumps	80
Dozers	85
Scrappers	87
Haul Trucks	88
Cranes	82
Portable Generators	80
Rollers	80
Tractors	80
Front-End Loaders	86
Hydraulic Excavators	86
Graders	86
Air Compressors	86
Trucks	86

Grading

Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements											
		Reference (dBA)		Usage	Receptor	Ground	Shielding	Calculat	ed (dBA)		
No.	Equipment Description	Effect	(dBA)	Lmax	Leq	Energy					
1	Grader	86	1	40	50	0.5	0	86.0	82.0	159242868	
2	Dozer	85	1	40	50	0.5	0	85.0	81.0	126491106	
3	Excavator	86	1	40	50	0.5	0	86.0	82.0	159242868	
4	Tractor/Backhoe	80	3	40	50	0.5	0	84.8	80.8	12000000	
Source: MD Acoustics, Oct 2017. Lmax* 89 Leq										88	
1- Percentage	of time that a piece of equipment	Lw	120	Lw	119						

dBA – A-weighted Decibels

Lmax- Maximum Level

Leq- Equivalent Level

			No	1 dBA	2 dBA	3 dBA	4 dBA	5 dBA	6 dBA	7 dBA	8 dBA	9 dBA	10 dBA	11 dBA	12 dBA	13 dBA	14 dBA	15 dBA
Fact	Motora	Cround Effort	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding Log dBA	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding	Shielding
reet 50	Meters 15.2	Ground Effect		Leq ubA	Leq ubA	Leq ubA 85	Leq ubA 84	Leq ubA	Leq ubA	Leq ubA 81		Leq ubA 70	Leq ubA	LецибА 77	Leq ubA	Leq ubA	Leq ubA 74	Leq ubA 73
50 60	13.2	0.5	86	85	00 84	83	04 82	81 81	80 80	01 70	00 78	רד דד	76	75	70 74	73	74	73
70	21.3	0.5	84	83	82	81	80	70	78	רד דד	76	75	70	73	74	73	72	60
70 80	21.3 24 A	0.5	82	81	80	79		77	76	75	70	73	74	73	72	69	70 68	67
90	24.4	0.5	81	80	79	78	70	76	75	73	74	73	72	70	70 69	68	67	66
100	30.5	0.5	80	79	78	70	76	75	74	73	72	71	70	69	68	67	66	65
110	33.5	0.5	79	78	70	76	75	74	73	73	71	70	69	68	67	66	65	64
120	36.6	0.5	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
130	39.6	0.5	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62
140	42.7	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
150	45.7	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
160	48.8	0.5	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60
170	51.8	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
180	54.9	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
190	57.9	0.5	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
200	61.0	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
210	64.0	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
220	67.1	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
230	70.1	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
240	73.1	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
250	76.2	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
260	79.2	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
270	82.3	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
280	85.3	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
290	88.4	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
300	91.4	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
310	94.5	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
320	97.5	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
330	100.6	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52 52
340	103.6	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
350	106.7	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
300	109.7	0.5	00	05	04 64	03	62 62	01	60 60	59	58	57	50 56	55 55	54	53	52	51
570	112.8	0.5	00	05	04	03	02	10	00	39	38	57			54		32	31

Building Construction

Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements											
					Distance to						
		Reference (dBA)		Usage	Receptor	Ground	Shielding	Calculat	ed (dBA)		
No.	Equipment Description	50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy	
1	Cranes	82	1	40	50	0.5	0	82.0	78.0	63395727.7	
2	Forklift/Tractor	80	3	40	50	0.5	0	84.8	80.8	12000000	
3	Generator	80	1	40	50	0.5	0	80.0	76.0	4000000	
4	Tractor/Backhoe	80	3	40	50	0.5	0	84.8	80.8	12000000	
Source: MD Acoustics, Oct 2017. Lmax* 87 Leq											
1- Percentage	of time that a piece of equipment	Lw	118	Lw	117						

1- Percentage of time that a piece of equipment is operating at full power. dBA - A-weighted Decibels

Lmax- Maximum Level

Leq-	Eq	uiva	lent	Leve]
------	----	------	------	------	---

			No	1 dBA	2 dBA	3 dBA	4 dBA	5 dBA	6 dBA	7 dBA	8 dBA	9 dBA	10 dBA	11 dBA	12 dBA	13 dBA	14 dBA	15 dBA
			Shielding															
Feet	Meters	Ground Effect	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA										
50	15.2	0.5	; 85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
60	18.3	0.5	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
70	21.3	0.5	i 82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
80	24.4	0.5	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
90	27.4	0.5	, 79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
100	30.5	0.5	5 78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
110	33.5	0.5	5 77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62
120	36.6	0.5	5 76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
130	39.6	0.5	5 75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60
140	42.7	0.5	; 74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
150	45.7	0.5	5 73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
160	48.8	0.5	5 73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
170	51.8	0.5	5 72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
180	54.9	0.5	5 71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
190	57.9	0.5	5 71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
200	61.0	0.5	5 70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
210	64.0	0.5	5 70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
220	67.1	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
230	70.1	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
240	73.1	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
250	76.2	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
260	79.2	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
270	82.3	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
280	85.3	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
290	88.4	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
300	91.4	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
310	94.5	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
320	97.5	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
330	100.6	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
340	103.6	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
350	106.7	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
360	109.7	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
370	112.8	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49

Paving

			Noise Level Calcul	ation Prior to	Implementat	Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements											
			Reference (dBA)		Usage	Receptor	Ground	Shielding	Calculat	ed (dBA)							
	No.	Equipment Description	50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy						
ſ	1	Pavers	86	2	40	50	0.5	0	89.0	85.0	318485736						
	2	Rollers	80	2	40	50	0.5	0	83.0	79.0	8000000						
	3	Paving Equipment	80	2	40	50	0.5	0	83.0	79.0	8000000						
	Source: MD	Acoustics, Oct 2017.	Lmax*	90	Leq	87											
	1- Percentage of time that a piece of equipment is operating at full power.								125	Lw	118						
	dBA – A-weighted Decibels																

Lmax- Maximum Level

Leq- Equivalent Level

			No	1 dBA	2 dBA	3 dBA	4 dBA	5 dBA	6 dBA	7 dBA	8 dBA	9 dBA	10 dBA	11 dBA	12 dBA	13 dBA	14 dBA	15 dBA
			Shielding															
Feet	Meters	Ground Effect	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA										
50	15.2	0.5	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72
60	18.3	0.5	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
70	21.3	0.5	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
80	24.4	0.5	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
90	27.4	0.5	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
100	30.5	0.5	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
110	33.5	0.5	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63
120	36.6	0.5	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62
130	39.6	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
140	42.7	0.5	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
150	45.7	0.5	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60
160	48.8	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
170	51.8	0.5	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
180	54.9	0.5	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58
190	57.9	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
200	61.0	0.5	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57
210	64.0	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
220	67.1	0.5	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56
230	70.1	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
240	73.1	0.5	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55
250	76.2	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
260	79.2	0.5	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
270	82.3	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
280	85.3	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
290	88.4	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
300	91.4	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
310	94.5	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
320	97.5	0.5	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52
330	100.6	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
340	103.6	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
350	106.7	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
360	109.7	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50
370	112.8	0.5	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50

Barrier insertion loss For Flat Ground

Receiver	- North P/L	

Enter variables here:											
Source Height H _s (ft)	8	8	8	8	8	8	8	8	8	8	8
Receiver Height H _R (ft)	5	5	5	5	5	5	5	5	5	5	5
Barrier Height H _B (ft)	15	16	17	18	19	20	21	22	23	24	25
Distance Source to barrier (ft)	50	50	50	50	50	50	50	50	50	50	50
Distance Receiver to Barrier (ft)	10	10	10	10	10	10	10	10	10	10	10
Soft Ground = 1; Hard Ground = 0	1	1	1	1	1	1	1	1	1	1	1

Calculations

	IL _{barrier}	14.8	14.8	14.8	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.6	14.6	14.6	14.6	14.6	14.6
A _{barrier}		19.578172	20.33913	21.02058882	21.636485	22.197526	22.712096	23.18687	23.62724	24.037608	24.421615	24.782298	25.122212	25.443529	25.748101	26.037525	26.313185
G _{NB}	(0.6339286	0.6339286	0.633928571	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286	0.6339286
G _B	(0.3660714	0.3482143	0.330357143	0.3125	0.2946429	0.2767857	0.2589286	0.2410714	0.2232143	0.2053571	0.1875	0.1696429	0.1517857	0.1339286	0.1160714	0.0982143
H _{eff} no barrier		6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
H _{eff} (with barrier)		21.5	22.5	23.5	24.5	25.5	26.5	27.5	28.5	29.5	30.5	31.5	32.5	33.5	34.5	35.5	36.5
Ground type H _{eff} (no barrier)		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Ground type H _{eff} (with barrier)		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Р	4	4.5548047	5.4270712	6.349089352	7.3164614	8.3254003	9.3726437	10.455374	11.57115	12.71784	13.893576	15.09671	16.325775	17.579455	18.856567	20.156034	21.476872
С	(60.074953	60.074953	60.07495318	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953	60.074953
В		14.142136	14.866069	15.62049935	16.401219	17.204651	18.027756	18.867962	19.723083	20.59126	21.470911	22.36068	23.259407	24.166092	25.079872	26	26.925824
Α	-	50.487622	50.635956	50.80354318	50.990195	51.195703	51.419841	51.662365	51.92302	52.201533	52.497619	52.810984	53.141321	53.488316	53.851648	54.230987	54.626001

Barrier Height (ft)	IL (dBA)
5	15
6	15
7	15
8	15
9	15
10	15
11	15
12	15
13	15
14	15
15	15
16	15
17	15
18	15
19	15
20	15

8	8	8	8	8
5	5	5	5	5
26	27	28	29	30
50	50	50	50	50
10	10	10	10	10
1	1	1	1	1

		VIBRATIO	ON LEVEL IMPACT
Project:	McHolland Retail		Date: 10/27/17
Source:	Large Bulldozer		
Scenario:	Unmitigated		
Location:	Project Site		
Address:			
PPV = PPVre	f(25/D)^n (in/sec)		
		D	ATA INPUT
Equipment =	2	Lorgo Dulldozor	INPUT SECTION IN BLUE
Туре	2	Large Bulluozer	
PPVref =	0.089	Reference PPV (in/sec	c) at 25 ft.
D =	20.00	Distance from Equipm	nent to Receiver (ft)
n =	1.10	Vibration attenuation	rate through the ground
Note: Based on	reference equations from Vik	pration Guidance Manual, Califo	rnia Department of Transportation, 2006, pgs 38-43.
		DATA	OUT RESULTS
PPV =	0.114	IN/SEC	OUTPUT IN RED

Attachment B

Acoustic Terminology and Definitions

ATTACHMENT B Acoustic Terminology and Definitions

Term	Definition
Ambient Noise Level	The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.
A-Weighted Sound Level (dBA)	The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear.
Community Equivalent Sound Level (CNEL)	CNEL is the A-weighted equivalent continuous sound pressure level for a 24-hour period with a 10 dB adjustment added to sound levels occurring during the nighttime hours (10 p.m. to 7 a.m.) and 5 dB added to the sound during the evening hours (7 p.m. to 10 p.m.).
Decibel (dB)	A unit for measuring sound pressure level, equal to 10 times the logarithm to the base 10 of the ratio of the measured sound pressure squared to a reference pressure, which is 20 micropascals.
Equivalent Sound Level	L_{eq} is the sound level corresponding to a steady state sound level and containing the same total energy as a time varying signal over a given sample period.

Attachment C

Traffic Noise Model (v. 2.5) Input and Output Data

INPU ⁻	T: ROA	DWAYS
-------------------	--------	-------

<Project Name?>

<organization?></organization?>					1 May 2020						
<analysis by?=""></analysis>					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S
PROJECT/CONTRACT:	<project< td=""><td>Name?></td><td></td><td></td><td></td><td></td><td>a State h</td><td>ighway agend</td><td>cy substant</td><td>iates the u</td><td>se</td></project<>	Name?>					a State h	ighway agend	cy substant	iates the u	se
RUN:	<run td="" titl<=""><td>e?></td><td></td><td></td><td></td><td></td><td>of a diffe</td><td>rent type with</td><td>the approv</td><td>val of FHW</td><td>A</td></run>	e?>					of a diffe	rent type with	the approv	val of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	itrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0	0.	00			Average	
		point7	7	1,639,963.6	12,243,909.0	0.	00				
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0	0.	00			Average	
		point9	9	1,638,656.9	12,243,437.0	0.	00			Average	
		point10	10	1,638,660.6	12,242,844.0	0.	00				

1

INPUT: TRAFFIC FOR LAeq1h Volumes						<p< th=""><th>Project Na</th><th>ame?></th><th></th><th></th><th></th><th></th></p<>	Project Na	ame?>				
<organization?></organization?>				1 May	2020							
<analysis by?=""></analysis>				TNM 2	.5	1	1	1				
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	<project nar<="" td=""><td>ne?></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></project>	ne?>	1	1	1							-
RUN:	<run title?=""></run>	>			_							
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks		HTrucks	;	Buses		Motorcycles	
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Stetson	point6	6	2314	40	122	40	122	40	0	0	0	0
	point7	7	,									
Sanderson	point8	8	2223	40	118	40	118	40	0	0	0	0
	point9	9	2223	40	118	40	118	40	0	0	0	0
	point10	10										1

INPUT: RECEIVERS					1			~	<project na<="" th=""><th>ame?></th><th>ĺ</th><th>1</th></project>	ame?>	ĺ	1
<organization?></organization?>						1 N	May 202	0				
<analysis by?=""></analysis>						TN	M 2.5					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	<pro< td=""><td>oject Nar</td><td>ne?></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pro<>	oject Nar	ne?>		1							
RUN:	<ru< td=""><td>n Title?></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ru<>	n Title?>	•									
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Не	ight	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	ab	ove	Existing	Impact Cr	iteria	NR	in
						Gr	ound	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft		dBA	dBA	dB	dB	
M1		1 1	1,638,748.8	3 12,243,530.0)	0.00	4.92	0.00	66	10.0	8.0	Y
M2		2 1	1,639,821.2	2 12,243,834.0		0.00	4.92	0.00	66	10.0	8.0	Y
M3		3 1	1,638,818.2	2 12,244,040.0		0.00	4.92	0.00	66	10.0	8.0	Y
M4		4 1	1,639,273.8	3 12,244,042.0		0.00	4.92	0.00	66	10.0	8.0	Y
M5		5 1	1,639,753.1	12,244,038.0		0.00	4.92	0.00	66	10.0	8.0	Y
M6		6 1	1,638,781.4	12,243,422.0		0.00	4.92	0.00	66	10.0	8.0	Y
M7		7 1	1,639,134.9	12,243,400.0		0.00	4.92	0.00	66	10.0	8.0	Y
M8		8 1	1,639,508.0) 12,243,383.0		0.00	4.92	0.00	66	10.0	8.0	Y

INPUT: BARRIERS

<Project Name?>

 <organization?></organization?> 					1 May 2	020													
<analysis by?=""></analysis>					TNM 2.	5			r										
INPUT: BARRIERS																			
PROJECT/CONTRACT:	<proj< td=""><td>ect Name</td><td>∋?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></proj<>	ect Name	∋?>																
RUN:	<run< td=""><td>Title?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></run<>	Title?>																	
Barrier									Points										
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent			
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			X	Y	Z	at	Seg H	t Pert	urbs	On	Important
				Unit	Unit	Width		Unit						Point	Incre-	#Up	#Dn	Struct?	Reflec-
				Area	Vol.			Length							ment				tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft				
Barrier3	W	0.00	99.99	0.00				0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0	()	
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00					
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0	()	
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00					
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0	()	
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00					

RESULTS: SOUND LEVELS				1		<	<project na<="" th=""><th>me?></th><th></th><th></th><th></th><th></th><th></th></project>	me?>					
<organization?></organization?>							1 May 202	0					
<analysis by?=""></analysis>							TNM 2.5	•					
								d with TNN	1 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		<proje< th=""><th>ct Name?></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></proje<>	ct Name?>										
RUN:		<run <sup="">-</run>	Title?>										
BARRIER DESIGN:		INPU	FHEIGHTS					Average	pavement type	shall be use	d unless		
								a State hi	ighway agency	y substantiate	es the use)	
ATMOSPHERICS:		68 de	g F, 50% RH					of a diffe	rent type with	approval of F	HWA.		
Receiver				<u> </u>								_	
Name	No.	#DUs	Existing	No Barrier					With Barrier		-		
			LAeq1h	LAeq1h		Increase over	rexisting	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate	d
							Sub'l Inc					minus	
											1	Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
M1	1		1 0.0	68.5	66	68.5	5 10	Snd Lvl	68.5	0.0)	8 -	-8.0
M2	2		1 0.0	69.1	66	69.1	1 10	Snd Lvl	69.1	0.0)	8 -	-8.0
M3	3		1 0.0	57.8	66	5 57.8	3 10		57.8	0.0)	8 -	-8.0
M4	4		1 0.0	58.2	2 66	5 58.2	2 10		58.2	. 0.0)	8 -	-8.0
M5	5		1 0.0	57.6	66	6 57.6	6 10		57.6	0.0	J	8 -	-8.0
M6	6		1 0.0	60.9	66	60.9	9 10		60.9	0.0)	8 -	-8.0
M7	7		1 0.0	52.2	2 66	5 52.2	2 10		52.2	.0.0)	8 -	-8.0
M8	8		1 0.0	48.6	66	6 48.6	6 10		48.6	0.0)	8 -	-8.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected			8 0.0	0.0	0.0	ס							
All Impacted			2 0.0	0.0	0.0)					1		
All that meet NR Goal			0.0	0.0	0.0	D					1		

INPUT: ROADWAYS

<Project Name?>

<organization?></organization?>					21 October 2	2020							
<analysis by?=""></analysis>					TNM 2.5								
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S		
PROJECT/CONTRACT: <project name?=""></project>						a State highway agency substantiates the use							
RUN:	2020 Existing						of a diffe	rent type with	the approv	al of FHW	A		
Roadway		Points	-							_			
Name	Width	Name	No.	Coordinates	(pavement)	Flow Cont		trol		Segment			
				Х	Y	Z	Control	Speed	Percent	Pvmt	On		
						Ì	Device	Constraint	Vehicles	Туре	Struct?		
									Affected				
	ft			ft	ft	ft		mph	%				
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0) C	.00			Average			
		point7	7	1,639,963.6	12,243,909.0	0 0	.00						
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0) C	.00			Average			
		point9	9	1,638,656.9	12,243,437.0	0 0	.00			Average			
		point10	10	1,638,660.6	12,242,844.0	0 0	.00						
INPUT: TRAFFIC FOR LAeq1h Volumes						<p< th=""><th>Project Na</th><th>ame?></th><th></th><th></th><th></th><th></th></p<>	Project Na	ame?>					
-----------------------------------	---	------	--------	--------	----------	---	------------	-------	--------	-----	---------	------	
<organization?></organization?>				21 Oct	ober 202	:0							
<analysis by?=""></analysis>				TNM 2	.5	1	1	1					
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT:	<project nan<="" td=""><td>ne?></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></project>	ne?>	1	1	1							-	
RUN:	2020 Existing	9			_								
Roadway	Points												
Name	Name	No.	Segmen	it									
			Autos		MTrucks	5	HTrucks	\$	Buses		Motorcy	cles	
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	
Stetson	point6	6	2773	40	120	40	120	40	0	0	0	0	
	point7	7	,										
Sanderson	point8	8	2746	40	119	40	119	40	0	0	0	0	
	point9	9	2746	40	119	40	119	40	0	0	0	0	
	point10	10										1	

INPUT: RECEIVERS

<Project Name?>

				-					-	-	
<organization?></organization?>						21 Octobe	er 2020				
<analysis by?=""></analysis>						TNM 2.5					
PROJECT/CONTRACT:	<proj< td=""><td>ect Nar</td><td>ne?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></proj<>	ect Nar	ne?>								
RUN:	2020	Existin	g								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M1	1	1	1,638,748.8	8 12,243,530.0	0.00	4.92	2 0.00	66	10.0	8.0) Y
M2	2	2 1	1,639,821.2	2 12,243,834.0	0.00	4.92	2 0.00	66	10.0	8.0) Y
M3	3	3 1	1,638,818.2	2 12,244,040.0	0.00	4.92	2 0.00	66	10.0	8.0) Y
M4	4	l 1	1,639,273.8	8 12,244,042.0	0.00	4.92	2 0.00	66	10.0	8.0) Y
M5	5	5 1	1,639,753.1	12,244,038.0	0.00	4.92	2 0.00	66	10.0	8.0) Y
M6	6	6 1	1,638,781.4	12,243,422.0	0.00	4.92	0.00	66	10.0	8.0) Y
M7	7	7 1	1,639,134.9	12,243,400.0	0.00	4.92	0.00	66	10.0	8.0) Y
M8	8	3 1	1,639,508.0	12,243,383.0	0.00	4.92	0.00	66	10.0	8.0) Y

RESULTS: SOUND LEVELS		r		1	[<	Project Na	me?>			1	
<organization?></organization?>							21 Octobe	er 2020				
<analysis by?=""></analysis>							TNM 2.5					
							Calculated	d with TNN	1 2.5			
RESULTS: SOUND LEVELS		-										
PROJECT/CONTRACT:		<projec< td=""><td>ct Name?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></projec<>	ct Name?>									
RUN:		2020 E	xisting									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	e shall be use	d unless	!
								a State hi	ghway agency	y substantiate	es the use	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver]						ī				_
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
M1	1	1	0.0	69.0	66	69.0	0 10	Snd Lvl	69.0	0.0)	8 -8.0
M2	2	1	0.0	69.5	66	69.5	5 10	Snd Lvl	69.5	0.0)	8 -8.0
M3	3	1	0.0	58.1	66	58.1	10		58.1	0.0)	8 -8.0
M4	4	1	0.0	58.5	66	58.5	5 10		58.5	0.0)	8 -8.0
M5	5	1	0.0	57.9	66	57.9	9 10		57.9	0.0)	8 -8.0
M6	6	1	0.0	61.3	66	61.3	3 10		61.3	0.0)	8 -8.0
M7	7	1	0.0	52.5	66	52.5	5 10		52.5	0.0)	8 -8.0
M8	8	1	0.0	48.9	66	6 48.9	9 10		48.9	0.0		8 -8.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		8	3 0.0	0.0	0.0)						
All Impacted		2	2 0.0	0.0	0.0)						1
All that meet NR Goal		C	0.0	0.0	0.0)						-

<Project Name?>

			1														1	
<organization?></organization?>					21 Octo	ober 202	0											
<analysis by?=""></analysis>					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	<proj< td=""><td>ect Name</td><td>e?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></proj<>	ect Name	e?>															
RUN:	2020	Existing																
Barrier									Points									
Name	Туре	Height		If Wall	If Berm	1		Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			Х	Y	Z	at	Seg H	t Perturbs	On	Important
				Unit	Unit	Width		Unit				ĺ	Ì	Point	Incre-	#Up #Dn	Struct?	Reflec-
	İ			Area	Vol.			Length		Ì		Ì	Ì	Ì	ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier3	W	0.00	99.99	0.00			1	0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0 0		
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00				
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0 0		
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00				
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0 0		
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00				

INPUT: ROADWAYS							Stets	on Corner			
Dudek					1 May 2020						
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	ŝ
PROJECT/CONTRACT:	Stetson C	Corner					a State h	ighway agend	cy substant	tiates the u	Se
RUN:	Opening	Year 2022					of a diffe	rent type with	the appro	val of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Co	ntrol		Segment	
				Х	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0	0.00				Average	
		point7	7	1,639,963.6	12,243,909.0	0.00					
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0	0.00				Average	
		point9	9	1,638,656.9	12,243,437.0	0.00				Average	
		point10	10	1,638,660.6	12,242,844.0	0.00					1

INPUT: TRAFFIC FOR LAeq1h Volumes						St	etson Co	rner		1		
Dudek				1 May	2020							
СВ				TNM 2	.5	1						
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Stetson Corr	ner	1	1	1							
RUN:	Opening Yea	r 2022										
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	;	Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Stetson	point6	6	2490	40	108	40	108	40	0	0	0	0
	point7	7	,									
Sanderson	point8	8	2725	40	118	40	118	40	0	0	0	0
	point9	9	2725	40	118	40	118	40	0	0	0	0
	point10	10										

INPUT: RECEIVERS		-i	1	1				Stetson Co	rner	1	
Dudek						1 May 202	0				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Stets	on Corr	her		1						
RUN:	Oper	ing Yea	ır 2022								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M1		1 1	1,638,748.8	12,243,530.0	0.00	4.92	0.00	66	10.0	8.0	Y
M2		2 1	1,639,821.2	12,243,834.0	0.00	4.92	0.00	66	10.0	8.0	Y
M3		3 1	1,638,818.2	12,244,040.0	0.00	4.92	0.00	66	10.0	8.0	Y
M4		4 1	1,639,273.8	12,244,042.0	0.00	4.92	0.00	66	10.0	8.0	Y
M5		5 1	1,639,753.1	12,244,038.0	0.00	4.92	0.00	66	10.0	8.0	Y
M6		5 1	1,638,781.4	12,243,422.0	0.00	4.92	0.00	66	10.0	8.0	Y
M7		7 1	1,639,134.9	12,243,400.0	0.00	4.92	0.00	66	10.0	8.0	Y
M8		3 1	1,639,508.0	12,243,383.0	0.00	4.92	0.00	66	10.0	8.0	Y

		1	1							1					1			
Dudek					1 May 2	2020												
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Stets	on Corne	er															
RUN:	Openi	ing Year	2022															
Barrier						-			Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at	Seg H	t Perturbs	On	Important
				Unit	Unit	Width		Unit						Point	Incre-	#Up #Dn	Struct?	Reflec-
	1			Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier3	W	0.00	99.99	0.00				0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0	2	
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00				
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0)	
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00				
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0	ו	
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00				

RESULTS: SOUND LEVELS				1	1	5	Stetson Co	rner				
Dudek							1 May 202	20				
CB							TNM 2 5	.0				
								d with TNN	125			
RESULTS: SOUND LEVELS							Calculate		1 2.5			
PRO JECT/CONTRACT		Statson	Corper									
		Onenin	a Voar 202	2							_	
		ирени	UEICUTS	2				Avorago	anoment type	e hall he use		
BARRIER DESIGN.		INFOT						a Stato hi		e silali be use	oe the yer	2
ATMOSPHERICS:		68 dea	F. 50% RH					of a differ	ent type with	approval of F	FHWA.	,
Receiver			-							···	+	
Name	No	#DUs	Fxisting	No Barrier					With Barrier		_	
			LAea1h	LAea1h		Increase over	existina	Type	Calculated	Noise Reduc	ction	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeg1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
											-	Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
M1	1	1	0.0	68.9	66	68.9	9 10	Snd Lvl	68.9	0.0)	8 -8.0
M2	2	1	0.0	69.1	66	69.1	1 10	Snd Lvl	69.1	0.0)	8 -8.0
M3	3	1	0.0	57.7	66	57.7	7 10)	57.7	0.0)	8 -8.0
M4	4	1	0.0	58.0	66	58.0) 10)	58.0	0.0	j l	8 -8.0
M5	5	1	0.0	57.5	66	57.5	5 10)	57.5	5 O.C	<u>כ</u>	8 -8.0
M6	6	1	0.0	61.2	66	61.2	2 10)	61.2	2 0.0	<u>כ</u>	8 -8.0
M7	7	1	0.0	52.4	. 66	52.4	4 1C)	52.4	0.0	נ	8 -8.0
M8	8	1	0.0	48.6	66	6 48.6	6 10)	48.6	6 0.0	נ	8 -8.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		8	0.0	0.0	0.0)						
All Impacted		2	0.0	0.0	0.0)					1	_
All that meet NR Goal		0	0.0	0.0	0.0)					1	

INPUT: ROADWAYS

Dudek					21 October 2	2020					
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be ι	ised unles	S
PROJECT/CONTRACT:	Stetson C	Corner					a State hi	ghway agenc	y substant	iates the u	se
RUN:	Opening	Year 2022	+ Projec	t			of a differ	ent type with	the approv	al of FHW	A
Roadway		Points							_		
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0	0.00			_	Average	
		point7	7	1,639,963.6	12,243,909.0	0.00					
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0	0.00				Average	
		point9	9	1,638,656.9	12,243,437.0	0.00				Average	
		point10	10	1,638,660.6	12,242,844.0	0.00					

INPUT: TRAFFIC FOR LAeq1h Volumes						St	etson Co	rner				
Dudek				21 Oct	ober 202	20						
СВ				TNM 2	.5	1	1	1				
INPUT: TRAFFIC FOR LAeg1h Volumes												
PROJECT/CONTRACT:	Stetson Cor	mer	1	1	1					-		-
RUN:	Opening Ye	ar 2022 +	Project									
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	5	Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Stetson	point6	6	2868	40	124	40	124	40	0	0	C	0
	point7	7	,									
Sanderson	point8	8	2851	40	124	40	124	40	0	0	C	0
	point9	9	2851	40	124	40	124	40	0	0	C	0
	point10	10										

INPUT: RECEIVERS			ī.	- [r			Stetson Co	rner	1	
Dudek						21 Octobe	r 2020				
СВ						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Stetso	on Corr	her								
RUN:	Openi	ng Yea	r 2022 + Proje	ect							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
M1	1	1	1,638,748.8	12,243,530.0	0.00	4.92	0.00	66	10.0	8.0	Y
M2	2	1	1,639,821.2	12,243,834.0	0.00	4.92	0.00	66	10.0	8.0	Y
M3	3	1	1,638,818.2	12,244,040.0	0.00	4.92	0.00	66	10.0	8.0	Y
M4	4	1	1,639,273.8	12,244,042.0	0.00	4.92	0.00	66	10.0	8.0	Y
M5	5	1	1,639,753.1	12,244,038.0	0.00	4.92	0.00	66	10.0	8.0	Y
M6	6	1	1,638,781.4	12,243,422.0	0.00	4.92	0.00	66	10.0	8.0	Y
M7	7	1	1,639,134.9	12,243,400.0	0.00	4.92	0.00	66	10.0	8.0	Y
M8	8	1	1,639,508.0	12,243,383.0	0.00	4.92	0.00	66	10.0	8.0	Y

Dudek					21 Octo	ber 202	D											
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Stetso	on Corne	r															
RUN:	Openi	ng Year	2022 + F	roject														
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	z	at	Seg H	t Perturbs	On	Important
				Unit	Unit	Width		Unit		ÌÌ				Point	Incre-	#Up #Dn	Struct?	Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier3	W	0.00	99.99	0.00				0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0 ()	
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00				
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0 ()	
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00				
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0 ()	
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00				

RESULTS: SOUND LEVELS			ì				S	Stetson Cor	mer		i	1	
Dudek								21 Octobe	er 2020				
СВ								TNM 2.5					_
								Calculate	d with TNN	1 2.5			_
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		Stetso	n Corner										
RUN:		Openir	ng Year 202	2 + Project									
BARRIER DESIGN:		INPUT	HEIGHTS	-					Average p	pavement type	shall be use	d unless	_!
									a State hi	ghway agency	y substantiate	es the use	
ATMOSPHERICS:		68 deg	F, 50% RH						of a differ	ent type with	approval of F	HWA.	
Receiver										_			
Name	No.	#DUs	Existing	No Barrier						With Barrier			-
		1	LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction	
		1		Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
		İ						Sub'l Inc					minus
		1											Goal
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB
M1	1	1	I 0.0	69.	1	66	69.1	10	Snd Lvl	69.1	0.0)	8 -8.0
M2	2	2 1	I 0.0	69.	7	66	69.7	10	Snd Lvl	69.7	0.0) (8 -8.0
M3	3	3 1	0.0	58.3	3	66	58.3	3 10		58.3	0.0) (8 -8.0
M4	4	+ 1	I 0.0	58.	6	66	58.6	6 10		58.6	0.0) (8 -8.0
M5	5	5 1	I 0.0	58.	1	66	58.1	10		58.1	0.0) (8 -8.0
M6	6	5 1	0.0	61.4	4	66	61.4	10		61.4	0.0) (8 -8.0
M7	7	1	0.0	52.	7	66	52.7	10		52.7	0.0) (8 -8.0
M8	8	3 1	0.0	49.	1	66	49.1	10		49.1	0.0		8 -8.0
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		8	3 0.0	0.0	0	0.0							
All Impacted		2	2 0.0	0.0	0	0.0						1	
All that meet NR Goal		(0.0	0.0	D	0.0							

INPUT: ROADWAYS			i				Stets	on Corner			
Dudek					1 May 2020						
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	ŝ
PROJECT/CONTRACT:	Stetson C	Corner					a State h	ighway agenc	y substant	iates the u	Se
RUN:	Cumulati	ve (Existin	g + Amb	ient)			of a diffe	rent type with	the approv	al of FHW	Ά
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	itrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0	0.00				Average	
		point7	7	1,639,963.6	12,243,909.0	0.00					
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0	0.00				Average	
		point9	9	1,638,656.9	12,243,437.0	0.00				Average	
		point10	10	1,638,660.6	12,242,844.0	0.00					
										1	

INPUT: TRAFFIC FOR LAeq1h Volumes						St	etson Co	rner				
Dudek				1 May	2020							
СВ				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												_
PROJECT/CONTRACT:	Stetson Corr	ner			1							
RUN:	Cumulative (Existing	+ Ambie	ent)								
Roadway	Points											
Name	Name	No.	Segmen	it								
			Autos		MTrucks	5	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Stetson	point6	6	3025	40	131	40	131	40	0	0	C	0 0
	point7	7	,									
Sanderson	point8	8	3055	40	132	40	132	40	0	0	0	<i>i</i> 0
	point9	g	3055	40	132	40	132	40	0	0	C) O
	point10	10										

INPUT: RECEIVERS								5	Stetson Co	rner		
Dudek						1 N	lay 202	0				
СВ						TN	M 2.5					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Stetse	on Cori	ner		1							
RUN:	Cumu	lative (Existing + An	nbient)								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		He	ight	Input Sou	nd Levels a	and Criteria	à	Active
			X	Y	Z	abo	ove	Existing	Impact Cr	iteria	NR	in
						Gre	ound	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft		dBA	dBA	dB	dB	
M1	1	1	1,638,748.8	12,243,530.0		0.00	4.92	0.00	66	10.0	8.0	Y
M2	2	2 1	1,639,821.2	12,243,834.0		0.00	4.92	0.00	66	10.0	8.0	Y
M3	3	8 1	1,638,818.2	12,244,040.0		0.00	4.92	0.00	66	10.0	8.0	Y
M4	4	1	1,639,273.8	12,244,042.0		0.00	4.92	0.00	66	10.0	8.0	Y
M5	5	5 1	1,639,753.1	12,244,038.0		0.00	4.92	0.00	66	10.0	8.0	Y
M6	6	6 1	1,638,781.4	12,243,422.0		0.00	4.92	0.00	66	10.0	8.0	Y
M7	7	' 1	1,639,134.9	12,243,400.0		0.00	4.92	0.00	66	10.0	8.0	Y
M8	8	3 1	1,639,508.0	12,243,383.0		0.00	4.92	0.00	66	10.0	8.0	Y

				1		1											1	
Dudek					1 May 2	020												
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Stetso	on Corne	r															
RUN:	Cumu	lative (E	xisting +	Ambier	nt)													
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at	Seg H	t Perturbs	On	Important
	İ			Unit	Unit	Width		Unit		ÌÌ				Point	Incre-	#Up #Dn	Struct?	Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier3	W	0.00	99.99	0.00				0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0 ()	
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00				
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0 0)	
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00				
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0 ()	
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00				

RESULTS: SOUND LEVELS	1		Ì	1			S	Stetson Co	ner					
Dudek								1 May 202	0			_		
СВ								TNM 2.5				_		
								Calculate	d with TNN	1 2.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Stetso	n Corner											
RUN:		Cumul	ative (Exist	ing + Ambier	nt)									
BARRIER DESIGN:		INPUT	HEIGHTS						Average p	pavement type	shall be use	d unless	_!	
									a State hi	ghway agency	/ substantiate	es the use	ŧ	
ATMOSPHERICS:		68 deg	F, 50% RH						of a differ	ent type with	approval of F	HWA.		
Receiver										_		-	-	
Name	No.	#DUs	Existing	No Barrier						With Barrier		_		
		1	LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction		
		1		Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate	ed
		İ				i		Sub'l Inc					minus	
													Goal	
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB	
M1	1	1	1 0.0	69.4	4	66	69.4	l 10	Snd Lvl	69.4	0.0)	8	-8.0
M2	2	2 1	1 0.0	69.	9	66	69.9	9 10	Snd Lvl	69.9	0.0)	8	-8.0
M3	3	3 1	1 0.0	58.	5	66	58.5	5 10		58.5	0.0)	8	-8.0
M4	4	+ 1	1 0.0	58.	9	66	58.9	9 10		58.9	0.0)	8	-8.0
M5	5	5 1	1 0.0	58.	3	66	58.3	3 1C		58.3	0.0)	8	-8.0
M6	6	5 1	1 0.0	61.	7	66	61.7	7 1C		61.7	0.0)	8	-8.0
M7	7	1	1 0.0	53.	0	66	53.0) 10		53.0	0.0)	8	-8.0
M8	8	3 1	1 0.0	49.3	3	66	49.3	3 10		49.3	0.0)	8	-8.0
Dwelling Units		# DUs	Noise Re	duction					_					
			Min	Avg	Max									
			dB	dB	dB									
All Selected		8	3 0.0	0.0	0	0.0								
All Impacted		2	2 0.0	0.	0	0.0								
All that meet NR Goal		(0.0	0.	0	0.0								

INPL	JT:	RO	AD	WAY	S
------	-----	----	----	-----	---

Dudek					21 October 2	2020					
СВ					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	Si
PROJECT/CONTRACT:	Stetson 0	Corner					a State h	ighway agenc	y substant	iates the u	Sie
RUN:	Cumulati	ve + Proje	ct				of a diffe	rent type with	the approv	al of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	itrol		Segment	
				х	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Stetson	60.0	point6	6	1,638,698.6	12,243,909.0	0.00				Average	
		point7	7	1,639,963.6	12,243,909.0	0.00					
Sanderson	65.0	point8	8	1,638,653.2	12,243,873.0	0.00				Average	
		point9	9	1,638,656.9	12,243,437.0	0.00				Average	
		point10	10	1,638,660.6	12,242,844.0	0.00					

INPUT: TRAFFIC FOR LAeq1h Volumes						St	etson Co	rner				
Dudek				21 Oct	ober 202	0	1	1				
СВ				TNM 2	.5	1		1				
INPUT: TRAFFIC FOR LAeg1h Volumes												
PROJECT/CONTRACT:	Stetson Corr	ner	1	1	1							_
RUN:	Cumulative -	+ Project	t		_							
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Stetson	point6	6	3404	40	148	40	148	40	0	0	0) 0
	point7	7	•									
Sanderson	point8	8	3181	40	138	40	138	40	0	0	0) 0
	point9	g	3181	40	138	40	138	40	0	0	0) 0
	point10	10										

INPUT: RECEIVERS			1	[S	Stetson Co	rner	(
Dudek						21	Octobe	r 2020				
СВ						TN	IM 2.5					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	Stetso	on Corr	her		1							
RUN:	Cumu	lative +	+ Project									
Receiver												
Name	No.	#DUs	Coordinates	(ground)		He	eight	Input Soui	nd Levels a	and Criteria	à	Active
			X	Y	Z	ab	ove	Existing	Impact Cr	iteria	NR	in
						Gr	round	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft		dBA	dBA	dB	dB	
M1	1	1	1,638,748.8	12,243,530.0		0.00	4.92	0.00	66	10.0	8.0) Y
M2	2	1	1,639,821.2	12,243,834.0		0.00	4.92	0.00	66	10.0	8.0) Y
M3	3	1	1,638,818.2	12,244,040.0		0.00	4.92	0.00	66	10.0	8.0) Y
M4	4	1	1,639,273.8	12,244,042.0		0.00	4.92	0.00	66	10.0	8.0) Y
M5	5	1	1,639,753.1	12,244,038.0		0.00	4.92	0.00	66	10.0	8.0) Y
M6	6	1	1,638,781.4	12,243,422.0		0.00	4.92	0.00	66	10.0	8.0) Y
M7	7	1	1,639,134.9	12,243,400.0		0.00	4.92	0.00	66	10.0	8.0) Y
M8	8	1	1.639.508.0	12.243.383.0		0.00	4.92	0.00	66	10.0	8.0) Y

									<u></u>					1				
Dudek					21 Octo	ber 202	0											
СВ					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	Stetso	on Corne	er		1													
RUN:	Cumu	lative + I	Project															
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
	Ì	Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at	Seg H	t Perturbs	On	Important
	Î			Unit	Unit	Width		Unit					1	Point	Incre-	#Up #Dn	Struct?	Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Barrier3	W	0.00	99.99	0.00				0.00	point5	5	1,638,723.5	12,244,010.0	0.00	8.00	0.00	0 ()	
									point6	6	1,639,868.0	12,244,007.0	0.00	8.00				
Barrier4	W	0.00	99.99	0.00				0.00	point7	7	1,638,743.8	12,243,473.0	0.00	15.00	0.00	0 ()	
									point8	8	1,639,665.6	12,243,450.0	0.00	15.00				
Barrier5	W	0.00	99.99	0.00				0.00	point9	9	1,638,743.8	12,243,473.0	0.00	6.00	0.00	0 ()	
									point10	10	1,638,742.2	12,243,159.0	0.00	6.00				

RESULTS: SOUND LEVELS	ĺ	1	Î	i.			S	stetson Cor	ner		i.								
Dudek								21 Octobe	er 2020										
СВ								TNM 2.5											
					_			Calculated with TNM 2.5											
RESULTS: SOUND LEVELS																			
PROJECT/CONTRACT:		Stetsor	n Corner																
RUN:		Cumula	ative + Proj	ect															
BARRIER DESIGN:		INPUT	HEIGHTS					Average pavement type shall be used unless											
								a State highway agency substantiates the use											
ATMOSPHERICS:		68 deg	F, 50% RH					of a different type with approval of FHWA.											
Receiver					-							-							
Name	No.	#DUs	Existing	No Barrier						With Barrier		_							
		ĺ	LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	ction							
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated						
						ļ		Sub'l Inc					minus						
						Ì							Goal						
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB						
M1	1	1	0.0	69.	6	66	69.6	6 10	Snd Lvl	69.6	0.0)	8 -8.						
M2	2	! 1	0.0	70.4	4	66	70.4	10	Snd Lvl	70.4	0.0)	8 -8.						
M3	3	1	0.0	59.	0	66	59.0	10		59.0	0.0)	8 -8.						
M4	4	. 1	0.0	59.4	4	66	59.4	10		59.4	0.0)	8 -8.						
M5	5	i 1	0.0	58.	8	66	58.8	s 10		58.8	0.0)	8 -8.						
M6	6	i 1	0.0	61.	9	66	61.9	10		61.9	0.0)	8 -8.						
M7	7	1	0.0	53.2	2	66	53.2	2 10		53.2	. 0.0)	8 -8.						
M8	8	1	0.0	49.	7	66	49.7	10		49.7	0.0)	8 -8.						
Dwelling Units		# DUs	Noise Re	duction															
			Min	Avg	Max														
			dB	dB	dB														
All Selected		8	3 0.0	0.0	0	0.0													
All Impacted		2	2 0.0	0.	0	0.0													
All that meet NR Goal		C	0.0	0.0	0	0.0													

Attachment D

Operational Noise Model Input and Output Data

Name ID	Туре	Oktave Spectru	ım (dB)									Source											
5 Ton Carri ACU	Lw	Weight. A	31.5 50	63 53	125 2 56.5 62	50 500 2.5 66.5	1000 68	2000 63	4000 59.5	8000 A 51.5	lin 72.1	90											
Idling Car Car	Lw	A	67	76	87 89	92 92	92	88	79 80	69 70	97.8	109.9 Car											
Vacuum Isl VAC	Lw	A	30	50	49	52 52	58	64	67	69	76.9	84.1 Vacutec											
Car Wash 1 BL1	Lw	A	57	76	81	84 98	90	90	85	78	104.2	111.2 Blower											
Name M.	ID	Result. PWL		Lw /	Li		Correction		So	und Reductio	on At	tenuatio Operatin	g Time		ко	Freq.	Direct.	Height		Coordinate	IS .		
		Day Eve	ning Ni	ight Type	Value	norm.	Day Ev	ening Nig	ght R	Are	a N	Day (min)	Special (min)	Night (min)	(dP)	(4-1)		(#+)		X (fr)	Y Z		
Vacutec1		(UBA) (UB 76.9	76.9 (u	76.9 Lw	VAC	UD(A)	0 (A)	(A) UB	0	(IC))	(min)	(mm)	(min)	(ub)	0	(none)	(11)	4 r	550.82	521.35	4	
Gas Pump -		80.1 80.1	80.1 80.1	80.1 SET 80.1 SET												0	(none)		4 r 4 r	476.63	540.33 515 19	4	
7-11 HVAC	HVAC1	72.1	72.1	72.1 Lw	ACU		0	0	0							0	(none)		22 r	401.33	417.42	22	
Drive Thru	HVAC2	72.1	72.1	72.1 Lw	ACU		0	0	0							0	(none)		24 r	421.29	331.43	24	
Gas Pump -		80.1	80.1 80.1	80.1 SET 80.1 SET												0	(none) (none)		4 r 4 r	470.41 475.34	539.47	4	
Gas Pump		80.1	80.1	80.1 SET												0	(none)		4 r	469.76	514.49	4	
Gas Pump - Gas Pump		80.1 80.1	80.1 80.1	80.1 SET 80.1 SET												0	(none) (none)		4 r 4 r	440.14	515.13 514.49	4	
Gas Pump -		80.1	80.1	80.1 SET												0	(none)		4 r	440.57	540.03	4	
Gas Pump Gas Pump		80.1 80.1	80.1 80.1	80.1 SET 80.1 SET												0	(none) (none)		4 r 4 r	436.5	540.67 539.81	4	
Gas Pump -		80.1	80.1	80.1 SET												0	(none)		4 r	399.94	540.19	4	
Gas Pump Vacutec1		80.1 76.9	80.1 76.9	80.1 SET 76.9 Lw	VAC		0	0	0							0	(none) (none)		4 r 4 r	406.11 550.79	514.98 509.97	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	550.98	498.91	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	550.66	487.54	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	550.45	441.26	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	550.02	464.25	4	
Vacutec1 Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	550.63	429.89	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	550.3	418.06	4	
Vacutec1 Vacutec1		76.9	76.9	76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	551.72	336.46	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	551.99	324.43	4	
Vacutec1 Vacutec1		76.9	76.9	76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	551.85	290.49	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	551.72	278.05	4	
Vacutec1		76.9	76.9	76.9 LW 76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	552.22	245.78 232.01	4	
Vacutec1		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	552.19	255.67	4	
Vacutec1 Vacutec1		76.9	76.9 76.9	76.9 Lw 76.9 Lw	VAC		0	0	0							0	(none) (none)		4 r 4 r	551.92	268.11 313.88	4	
Idling Car +		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		3 r	580.72	372.84	3	
Idling Car + Idling Car +		97.8 97.8	97.8 97.8	97.8 Lw 97.8 Lw	Car Car		0	0	0							0	(none) (none)		4 r 4 r	596.22 581.51	253.43 254.07	4	
Idling Car +		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	581.25	274.3	4	
Idling Car + Idling Car +		97.8 97.8	97.8 97.8	97.8 Lw 97.8 Lw	Car Car		0	0	0							0	(none) (none)		4 r 4 r	596.11 595.68	274.68	4	
Idling Car +		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	580.23	295.71	4	
Idling Car		97.8 97.8	97.8 97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r 4 r	580.23	315.45	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	579.83	338.51	4	
Idling Car +		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r 4 r	597	338.08	4	
Idling Car		97.8	97.8	97.8 LW 97.8 LW	Car		0	0	0							0	(none)		4 r 4 r	481.96	305.46	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	482.82	326.06	4	
Idling Car		97.8	97.8	97.8 LW 97.8 LW	Car		0	0	0							0	(none)		4 r 4 r	462.82	361.69	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	441.61	360.4	4	
Idling Car Idling Car		97.8 97.8	97.8 97.8	97.8 Lw 97.8 Lw	Car Car		0	0	0							0	(none) (none)		4 r 4 r	419.72 456.2	359.97 460.42	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	427.44	460.42	4	
Idling Car Idling Car		97.8 97.8	97.8 97.8	97.8 Lw 97.8 Lw	Car Car		0	0	0							0	(none) (none)		4 r 4 r	484.53	419.64 255.49	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	387.37	256.03	4	
Idling Car		97.8	97.8	97.8 Lw	Car		0	0	0							0	(none)		4 r	454.86	254.41	4	
Area Source	10	0																					
Name M.	ID	Result. PWL Day Eve	ning Ni	Resul ight Day	It. PWL" Evening	Night	Lw/Li Type Va	lue noi	rm. Da	rrection y Eve	ening Ni	ght R	Area	Attenuati	Day	ing Time Special	Night	ко	Freq.	Direct.	Moving Pt. Src Number		
		(dBA) (dB	A) (d	IBA) (dBA)) (dBA)	(dBA)		dB	(A) dE	(A) dB(A) dE	B(A)	(ft²)		(min)	(min)	(min)	(dB)	(Hz)		Day Eve	ning Nigh	nt
Idling RV Vertical Area Source		98.8	98.8	98.8	86.7 8	5.7 86.7	Lw RV	, ,		0	0	0							0	(none)			
Name M.	ID	Result. PWL		Resul	lt. PWL"		Lw / Li		Co	rrection		Sound Re	duction	Attenuati	io Operati	ing Time		к0	Freq.	Direct.			
		(dBA) (dB	ning Ni A) (d	ight Day IBA) (dBA)	Evening (dBA)	(dBA)	Type Va	lue nor dB(rm. Da (A) dB	v Eve (A) dB(ening Ni (A) dB	ght R B(A)	Area (ft²)		Day (min)	Special (min)	Night (min)	(dB)	(Hz)				
Dryer		109.2	109.2	109.2 1	101.4 103	1.4 101.4	Lw BL	1		0	0	0		-	-5				3	(none)			
Nighttime Calculation	n																						
Source Library	Tuno	Oktava Sportru	m (dP)									Sourco											
Name ID	Type	Weight.	31.5	63	125 2	50 500	1000	2000	4000	8000 A	lin	Source											
5 Ton Carri ACU	Lw	A 4	50 67	53 76	56.5 62 87	2.5 66.5 92 92	68	63 88	59.5 79	51.5	72.1 97.8	90 109.9 Car											
Idling RV RV	Lw	A	68	77	88	93 93	93	89	80	79	98.8	110.9 RV											
Vacuum Isl VAC Car Wash 1 BL1	Lw Lw	A	30 57	50 76	49 81	52 52 84 98	58 90	64 90	67 85	69 78	76.9 104.2	84.1 Vacutec 111.2 Blower											
Doint 6				-				-		-													
Name M.	ID	Result. PWL		Lw /	Li		Correction		So	und Reductio	on At	tenuatio Operatin	g Time		ко	Freq.	Direct.	Height		Coordinate	15		
		Day Eve	ning Ni	ight Type	Value	norm.	Day Ev	ening Nig	ght R	Are	a	Day	Special	Night	1.15.					x	Y Z		
Vacutec1 -		(dBA) (dB 76.9	A) (d 76.9	њА) 76.9 Lw	VAC	dB(A)	аы(А) dB 0	(A) dB 0	(A) 0	(ft²	1	(min)	(min)	(min)	(dB)	(Hz) 0	(none)	(†t)	4 r	(tt) 550.82	(π) (ft) 521.35	4	
Gas Pump -		80.1	80.1	80.1 SET	-		-									0	(none)		4 r	476.63	540.33	4	
Gas Pump - 7-11 HVAC	HVAC1	80.1 72.1	80.1 72.1	80.1 SET 72.1 Lw	ACU		0	0	0							0 0	(none) (none)		4 r 22 r	401.39 427.24	515.19 417.42	4 22	
Drive Thru	HVAC2	72.1	72.1	72.1 Lw	ACU		0	0	0							0	(none)		24 r	421.29	331.43	24	
Gas Pump - Gas Pump -		80.1 80.1	80.1 80.1	80.1 SET 80.1 SET												0 0	(none) (none)		4 r 4 r	470.41 475.34	539.47 514.27	4	
Gas Pump		80.1	80.1	80.1 SET												0	(none)		4 r	469.76	514.49	4	
Gas Pump - Gas Pumn -		80.1 80 1	80.1 80.1	80.1 SET 80.1 SET												U 0	(none)		4 r 4 r	440.14	515.13 514.49	4	
Gas Pump -		80.1	80.1	80.1 SET												0	(none)		4 r	440.57	540.03	4	
Gas Pump -		80.1	80.1 80.1	80.1 SET												0	(none)		4 r 4 r	436.5	540.67	4	
Gas Pump -		80.1	80.1	80.1 SET												õ	(none)		4 r	399.94	540.19	4	
Gas Pump		80.1	80.1	80.1 SET			~		~							0	(none)		4 r 4 r	406.11	514.98	4	
Vacutec1 -		76.9	76.9	76.9 LW 76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	550.79 550.98	498.91	4	
Vacutec1 -		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r	550.66	487.54	4	
Vacutec1 - Vacutec1 -		76.9	76.9 76.9	76.9 Lw 76.9 Lw	VAC		0	0	0							0	(none) (none)		4 r 4 r	550.45 550.45	4/6.7 441.26	4	
Vacutec1 -		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	550.02	464.25	4	
Vacutec1 -		76.9	76.9	76.9 LW 76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	550.07	452.1 429.89	4	
Vacutec1 -		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	550.3	418.06	4	
Vacutec1 -		76.9	76.9	76.9 LW 76.9 LW	VAC		0	0	0							0	(none)		4 r 4 r	550.63	336.46	4	
Vacutec1 -		76.9	76.9	76.9 Lw	VAC		0	0	0							0	(none)		4 r 4 r	551.99	324.43	4	
Vacutec1 -		76.9	76.9	76.9 Lw	VAC		0	ő	0							0	(none)		4 r	551.99	290.49	4	

Daytime Calculation

Vacutec1 -		76.9	76.9	76.	9 Lw	VAC			0	0	0							0	(none)		4 r	551.72	278.05	4
Vacutec1 -		76.9	76.9	76.	9 Lw	VAC			0	0	0							0	(none)		4 r	552.22	243.78	4
Vacutec1 -		76.9	76.9	76.) Lw	VAC			0	0	0							0	(none)		4 r	551.01	232.01	4
Vacutec1 -		76.9	76.9	76.) Lw	VAC			0	0	0							0	(none)		4 r	552.19	255.67	4
Vacutec1 -		76.9	76.9	76.) Lw	VAC			0	0	0							0	(none)		4 r	551.92	268.11	4
Vacutec1 -		76.9	76.9	76.) Lw	VAC			0	0	0							0	(none)		4 r	551.58	313.88	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		3 r	580.72	372.84	3
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	596.22	253.43	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	581.51	254.07	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	581.25	274.3	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	596.11	274.68	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	595.68	293.99	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	580.23	295.71	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	580.23	315.45	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	595.68	316.74	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	579.83	338.51	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	597	338.08	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	481.96	284.43	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	481.1	305.46	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	482.82	326.06	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	482.82	346.67	4
Idling Car		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	461.78	361.69	4
Idling Car		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	441.61	360.4	4
Idling Car		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	419.72	359.97	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	456.2	460.42	4
Idling Car		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	427.44	460.42	4
Idling Car +		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	484.53	419.64	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	435.39	255.49	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	387.37	256.03	4
Idling Car -		97.8	97.8	97.	3 Lw	Car			0	0	0							0	(none)		4 r	454.86	254.41	4
-																								
Area Source																								
Name M.	ID	Result. PW	'L		Result. P	NL"	L	w / Li			Correcti	on		Sound	Reduction	Attenuatio	o Operatin	ig Time		KO	Freq.	Direct.	Moving Pt. Src	
		Day	Evening	Night	Day	Evening	Night Ty	ype	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night				Number	
		(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(ft ²)		(min)	(min)	(min)	(dB)	(Hz)		Day Eve	ening Night
fueling RV -	FRV	98.8	98.8	98.	8 86.	7 86.7	86.7 L	N	RV			0	0	0							0	(none)		
Vertical Area Sourc	e																							
Name M.	ID	Result. PW	L		Result. P	NL"	L	n / Li			Correcti	on		Sound	Reduction	Attenuatio	o Operatin	ng Time		KO	Freq.	Direct.		
		Day	Evening	Night	Day	Evening	Night Ty	ype	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night					
		(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(ft2)		(min)	(min)	(min)	(dB)	(Hz)			
Dryer -		109.2	109.2	109.	2 101.	4 101.4	101.4 Lv	N	BL1			0	0	0		-5					3	(none)		