Traffic Impact Analysis

Lemoore Union Elementary School District Elementary School

Located on the Northwest Quadrant of 19th Avenue and Cinnamon Drive

In the City of Lemoore, California

Prepared for:
Lemoore Union Elementary School District
100 Vine Street
Lemoore, CA 93245

September 17, 2019

Project No. 039-002
JLBiraffic

Traffic Engineering, Transportation Planning, \& Parking Solutions
516 W. Shaw Ave., Ste. 103
Fresno, CA 93704
Phone: (559) 570-8991
www.JLBtraffic.com

Traffic Engineering, Transportation Planning, \& Parking Solutions
 Traffic Impact Analysis

For the Elementary School located on the Northwest Quadrant of 19th Avenue and Cinnamon Drive

In the City of Fresno, CA

September 17, 2019

This Traffic Impact Analysis has been prepared under the direction of a licensed Traffic Engineer. The licensed Traffic Engineer attests to the technical information contained therein and has judged the qualifications of any technical specialists providing engineering data from which recommendations, conclusions, and decisions are based.

Prepared by:

President

Traffic Engineering, Transportation Planning, \& Parking Solutions
516 W. Shaw Ave., Ste. 103
Fresno, CA 93704
Phone: (559) 570-8991
www.JLBtraffic.com

Elementary School - City of Lemoore
 Traffic Impact Analysis
 September 17, 2019

Table of Contents

Introduction and Summary1
Introduction 1
Summary 1
Existing Traffic Conditions 1
Existing plus Project Traffic Conditions 1
Near Term Year 2023 plus Project Traffic Conditions 2
Cumulative Year 2040 No Project Traffic Conditions 2
Cumulative Year 2040 plus Project Traffic Conditions 2
Queuing Analysis 2
Project's Equitable Fair Share 2
Scope of Work 3
Study Facilities 3
Study Intersections 3
Study Scenarios 4
Existing Traffic Conditions 4
Existing plus Project Traffic Conditions 4
Near Term Year 2023 plus Project Traffic Conditions 4
Cumulative Year 2040 No Project Traffic Conditions. 4
Cumulative Year 2040 plus Project Traffic Conditions 4
Level of Service Analysis Methodology 5
Criteria of Significance 5
Operational Analysis Assumptions and Defaults 6
Existing Traffic Conditions7
Roadway Network 7
Traffic Signal Warrants 8
Results of Existing Level of Service Analysis 8
Existing plus Project Traffic Conditions 11
Project Description 11
Project Access 11
Trip Generation 11
www.JLBtraffic.com
info@JLBtraffic.com
Elementary School - City of Lemoore
Traffic Impact Analysis
September 17, 2019
Trip Distribution 12
Bikeways 12
Walkways 12
Transit 12
Safe Routes to School 12
Traffic Signal Warrants 13
Results of Existing plus Project Level of Service Analysis 14
Near Term Year 2023 plus Project Traffic Conditions 18
Description of Approved and Pipeline Projects 18
Traffic Signal Warrants 18
Results of Near Term Year 2023 plus Project Level of Service Analysis 19
Cumulative Year 2040 No Project Traffic Conditions 22
Traffic Signal Warrants. 22
Results of Cumulative Year 2040 No Project Level of Service Analysis 22
Cumulative Year 2040 plus Project Traffic Conditions 25
Traffic Signal Warrants 25
Results of Cumulative Year 2040 plus Project Level of Service Analysis 25
Queuing Analysis 28
Project's Pro-Rata Fair Share of Future Transportation Improvements 30
Conclusions and Recommendations. 31
Existing Traffic Conditions 31
Existing plus Project Traffic Conditions 31
Near Term Year 2023 plus Project Traffic Conditions 32
Cumulative Year 2040 No Project Traffic Conditions. 32
Cumulative Year 2040 plus Project Traffic Conditions 33
Queuing Analysis 33
Project's Equitable Fair Share 33
Study Participants 34
References 34

Elementary School - City of Lemoore
 Traffic Impact Analysis
 September 17, 2019

List of Figures

Figure 1: Vicinity Map 9
Figure 2: Existing - Traffic Volumes, Geometrics and Controls. 10
Figure 3: Project Site Plan 15
Figure 4: Project Only Trips 16
Figure 5: Existing plus Project - Traffic Volumes, Geometrics and Controls 17
Figure 6: Near Term Projects' Trip Assignment 20
Figure 7: Near Term Year 2023 plus Project - Traffic Volumes, Geometrics and Controls 21
Figure 8: Cumulative Year 2040 No Project - Traffic Volumes, Geometrics and Controls 24
Figure 9: Cumulative Year 2040 plus Project - Traffic Volumes, Geometrics and Controls 27
List of Tables
Table I: Existing Intersection LOS Results 8
Table II: Project Trip Generation 11
Table III: Existing plus Project Intersection LOS Results 14
Table IV: Near Term Projects' Trip Generation 18
Table V: Near Term Year 2023 plus Project Intersection LOS Results 19
Table VI: Cumulative Year 2040 No Project Intersection LOS Results 23
Table VII: Cumulative Year 2040 plus Project Intersection LOS Results 26
Table VIII: Queuing Analysis 28
Table IX: Project's Fair Share of Future Roadway Improvements 30
List of Appendices
Appendix A: Scope of Work
Appendix B: Traffic Counts
Appendix C: Traffic Modeling
Appendix D: Methodology
Appendix E: Existing Traffic Conditions
Appendix F: Existing plus Project Traffic Conditions
Appendix G: Near Term Year 2023 plus Project Traffic Conditions
Appendix H: Cumulative Year 2040 No Project Traffic Conditions
Appendix I: Cumulative Year 2040 plus Project Traffic Conditions
Appendix J: Signal Warrants

Introduction and Summary

Introduction

This report describes a Traffic Impact Analysis (TIA) prepared by JLB Traffic Engineering, Inc. (JLB) for the Lemoore Union Elementary School District (District) proposed Elementary School (Project) located on the northwest quadrant of 19th Avenue and Cinnamon Drive in the City of Lemoore. The District proposes to build an Elementary School (Project) with approximately 22 classrooms, administrative offices, a multipurpose building, hard court areas and athletic fields. The Project is estimated to serve up to 700 students in kindergarten through sixth grades. Based on information provided to JLB, the Project is consistent with the City of Lemoore 2030 General Plan. Figure 1 shows the location of the proposed Project site relative to the surrounding roadway network.

The purpose of this TIA is to evaluate the potential on-site and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures, and identify any critical traffic issues that should be addressed in the on-going planning process. The TIA primarily focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. The Scope of Work was prepared via consultation with City of Lemoore, County of Kings and Caltrans staff.

Summary

The potential traffic impacts of the proposed Project were evaluated in accordance with the standards set forth by the Level of Service (LOS) policy of the City of Lemoore, County of Kings and Caltrans.

Existing Traffic Conditions

- At present, all study intersections operate at an acceptable LOS during both peak periods.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the proposed access points relative to the existing local roads and driveways in the Project's vicinity. A review of the Project access points indicates that they are located at points that minimize traffic operational impacts to the existing roadway network.
- The proposed Project is estimated to generate a maximum of 1,323 daily trips, 469 AM peak hour trips and 119 PM peak hour trips.
- It is recommended that the Project implement a Class II Bike Lane along its frontage to 19th Avenue.
- It is recommended that the District work with the City of Lemoore to implement a Safe Routes to School plan and seek grant funding to help build walkways where they are lacking within a one-mile radius of the proposed Project site.
- It is also recommended that a high-visibility crosswalk with rapid rectangular flashing beacons be installed across the south leg of 19th Avenue and Freedom Drive.
- Under this scenario, the study intersection of 19th Avenue and Cinnamon Drive is projected to operate at an unacceptable LOS during the AM peak period. To improve the LOS at this intersection, the addition of lanes is recommended. Additional details as to the recommended improvements are presented later in this Report.

Near Term Year 2023 plus Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road, 19th Avenue and Project Driveway 1, and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, the addition of lanes and modification of traffic control mechanisms are recommended. Additional details as to the recommended improvements are presented later in this Report.

Cumulative Year 2040 No Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, the addition of lanes and modification of traffic control mechanisms are recommended. Additional details as to the recommended improvements are presented later in this Report.

Cumulative Year 2040 plus Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, the addition of lanes and modification of traffic control mechanisms are recommended. Additional details as to the recommended improvements are presented later in this Report.

Queuing Analysis

- It is recommended that the City consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Project's Equitable Fair Share

- It is recommended that the Project contribute its equitable fair share as listed in Table VIII for the future improvements necessary to maintain an acceptable LOS.

Scope of Work

The TIA primarily focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. On May 29, 2019, a Draft Scope of Work for the preparation of a Traffic Impact Analysis for this Project was provided to the City of Lemoore, County of Kings and Caltrans for their review and comment. Any comments to the Draft Scope of Work were to be provided by June 19, 2019.

On June 26, 2019, JLB received comments from the City of Lemoore. The City of Lemoore requested that a comparison with City of Lemoore 2030 General Plan LOS threshold be prepared and that the intersections of 19th Avenue and " D " Street and 19th Avenue and Bush Street be included in the analysis. On June 28, 2019, the County of Kings responded to the Draft Scope of Work. The County of Kings accepted the Draft Scope of Work as presented and requested that the Draft Scope of Work be forwarded to Chuck Kinney with the Community Development Agency.

While the City of Lemoore requested that the intersections of of 19th Avenue and " D " Street and 19th Avenue and Bush Street be included in the analysis, JLB determined that these intersections would not be impacted by the proposed Project, especially since the anticipated boundary is not projected to extend south of the existing railroad tracks. The Draft Scope of Work and the comments received from the lead agency and responsible agencies are included in Appendix A.

Study Facilities

The existing peak hour turning movement volume counts were conducted at the study intersections on May 30, 2019, while schools in the vicinity of the proposed Project were in session. The intersection turning movement counts included pedestrian volumes. The traffic counts for the existing study intersections are contained in Appendix B. The existing intersection turning movement volumes, intersection geometrics and traffic controls are illustrated in Figure 2.

Study Intersections

1. 19th Avenue / Hanford-Armona Road
2. Liberty Drive / Hanford-Armona Road
3. 19th Avenue / Project Driveway 1
4. 19th Avenue / Project Driveway 2
5. 19th Avenue / Cinnamon Drive
6. Liberty Drive / Cinnamon Drive

Study Scenarios

Existing Traffic Conditions

This scenario evaluates the Existing Traffic Conditions based on existing traffic volumes and roadway conditions from traffic counts and field surveys conducted on May 30, 2019.

Existing plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Existing plus Project Traffic Conditions. The Existing plus Project traffic volumes were obtained by adding the Project Only Trips to the Existing Traffic Conditions scenario. The Project Only Trips to the study facilities were developed based on the anticipated school boundary, data provided by the District, existing travel patterns, the existing roadway network, engineering judgment, knowledge of the study area, existing residential and commercial densities, and the City's General Plan in the vicinity of the Project.

Near Term Year 2023 plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Near Term Year 2023 plus Project Traffic Conditions. The Near Term Year 2023 plus Project traffic volumes were obtained by adding the near term related trips to the Existing plus Project Traffic Conditions scenario.

Cumulative Year 2040 No Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2040 No Project Traffic Conditions. The Cumulative Year 2040 No Project traffic volumes were obtained by Subtracting the Project Only Trips from the Cumulative Year 2040 plus Project Traffic Conditions scenario.

Cumulative Year 2040 plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2040 plus Project Traffic Conditions. JLB utilized the Kings County Association of Governments (KCAG) Base Year 2019 and Cumulative Year 2042 models to determine the average annual growth rate along HanfordArmona Road and 19th Avenue near the vicinity of the proposed Project. JLB found that the average annual growth rate ranged from 1.1 percent to 1.9 percent. Therefore, to be conservative, JLB utilized an average annual growth rate of 1.9 percent to arrive at future year forecast volumes.

Level of Service Analysis Methodology

Level of Service (LOS) is a qualitative index of the performance of an element of the transportation system. LOS is a rating scale running from " A " to " F ", with " A " indicating no congestion of any kind and " F " indicating unacceptable congestion and delays. LOS in this study describes the operating conditions for signalized and unsignalized intersections.

The Highway Capacity Manual (HCM) 6th Edition is the standard reference published by the Transportation Research Board and contains the specific criteria and methods to be used in assessing LOS. U-turn movements were analyzed using HCM 2000 methodologies and would yield more accurate results for the reason that HCM 6th Edition methodologies do not allow the analysis of U-turns. Synchro software was used to define LOS in this study. Details regarding these calculations are included in Appendix D.

Criteria of Significance

The City of Lemoore 2030 General Plan does not currently have any adopted LOS standard. However, recent traffic studies have utilized LOS D as the acceptable level of traffic congestion. Therefore, LOS D is used to evaluate the potential significant of LOS impacts to City of Lemoore roadway facilities.

The County of Kings 2035 General Plan has established a minimum LOS standard within the County, which shall be no lower than LOS E for urban areas and LOS D for rural areas. For this TIA, LOS D is used to evaluate the potential significance of LOS impacts to intersections within the County of Kings.

Caltrans endeavors to maintain a target LOS at the transition between LOS C and D on State highway facilities consistent with the Caltrans Guide for the Preparation of Traffic Impact Studies dated December 2002. However, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. In this TIA, all study facilities fall within the City of Lemoore. Therefore, the City of Lemoore LOS D threshold is utilized to evaluate the potential significance of LOS impacts.

Operational Analysis Assumptions and Defaults

The following operational analysis values, assumptions and defaults were used in this study to ensure a consistent analysis of LOS among the various scenarios.

- Yellow time consistent with the California Manual of Uniform Traffic Control Devices (CA MUTCD) based on approach speeds
- Yellow time of 3.2 seconds for left-turn phases
- All-red clearance intervals of 1.0 second for all phases
- Walk intervals of 7.0 seconds
- Flashing Don't Walk based on 3.5 feet/second walking speed with yellow plus all-red clearance subtracted and 2.0 seconds added
- All new or modified signals utilize protective left-turn phasing
- A 3 percent heavy vehicle factor
- An average of 3 pedestrian calls per hour at signalized intersections
- The number of observed pedestrians at existing intersections was utilized under all study scenarios
- At existing intersections, the observed approach Peak Hour Factor (PHF) is utilized in the Existing, Existing plus Project, and Near Term Year 2023 plus Project scenarios
- For the Cumulative Year 2040 scenarios, the following PHF's were utilized to reflect school traffic operations and an increase in future traffic volumes. As roadways start to reach their saturated flow rates, PHF's tend to increase to 0.90 or higher. The PHF's were established based on historical traffic counts collected by JLB for intersections in proximity of school sites.
- For the intersections of 19th Avenue and Cinnamon Drive, the following PHF's were utilized:
- A PHF of 0.86 during the AM peak
- A PHF of 0.90 during the PM peak
- A PHF of 0.92 , or the existing PHF if higher, is utilized for all other intersections
www.JLBtraffic.com
info@JLBtraffic.com

Existing Traffic Conditions

Roadway Network

The Project site and surrounding study area are illustrated in Figure 1. Important roadways serving the Project are discussed below.

Hanford-Armona Road is an existing east-west two-lane arterial adjacent to the proposed Project. In this area, Hanford-Armona Road extends through the City of Lemoore SOI. Hanford-Armona Road is a two- to three-lane arterial divided by a two-way left-turn lane between Apricot Avenue and Lemoore Avenue, a four-lane undivided arterial between Lemoore Avenue and Cinnamon Drive, and a two-lane undivided arterial east of Cinnamon Drive. The City of Lemoore 2030 General Plan designates Hanford-Armona Road as a four-lane arterial between College Drive and Cinnamon Drive.

19th Avenue is an existing north-south two-lane arterial divided by a two-way left-turn lane adjacent to the proposed Project. In this area, 19th Avenue extends south of Hanford-Armona Road through the City of Lemoore SOI. 19th Avenue is a two-lane divided arterial between Hanford-Armona Road and Silverado Drive, a four-lane arterial between Silverado Drive and Iona Avenue, and a two-lane undivided arterial south of Iona Avenue through the City of Lemoore SOI. The City of Lemoore 2030 General Plan plans to extend 19th Avenue north of Hanford-Armona Road as a two-lane collector and designates 19th Avenue as a four-lane arterial between Hanford-Armona Road and Idaho Avenue.

Liberty Drive is an existing north-south two-lane arterial divided by a two-way left-turn lane in the vicinity of the proposed Project. In this area, Liberty Drive is a two-lane collector divided by a two-way left-turn lane between Cinnamon Drive and Hanford-Armona Road and a two-lane local roadway north of HanfordArmona Road through the City of Lemoore SOI. The City of Lemoore 2030 General Plan designates Liberty Drive as a divided collector between Cinnamon Drive and Hanford-Armona Road and a four-lane arterial between Hanford-Armona Road and Lacey Boulevard.

Cinnamon Drive is an existing east-west two-lane divided collector adjacent to the proposed Project. In this area, Cinnamon Drive extends east of its connection to 19 th $1 / 2$ Avenue and changes orientation to intersect Hanford-Armona Road. Cinnamon Drive is a two-lane collector divided by a two-way left-turn lane between 19th $1 / 2$ Avenue and Lemoore Avenue and a two-lane undivided collector east of Lemoore Avenue and south of Hanford-Armona Road. The City of Lemoore 2030 General Plan designates Cinnamon Drive as a four-lane collector between 19th $1 / 2$ Avenue and Lemoore Avenue.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized intersections in the Existing Traffic Conditions scenario. These warrants are found in Appendix J. These warrants were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, none of the unsignalized intersections satisfy the peak hour signal warrant. Based on the signal warrants and engineering judgement, signalization of these intersections is not recommended, especially since these intersections operate at an acceptable LOS during both peak periods.

Results of Existing Level of Service Analysis

Figure 2 illustrates the Existing Traffic Conditions turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing Traffic Conditions scenario are provided in Appendix E. Table I presents a summary of the Existing peak hour LOS at the study intersections.

At present, all study intersections operate at an acceptable LOS during both peak periods.
Table I: Existing Intersection LOS Results

ID	Intersection	Intersection Control	AM (7-9) Peak Hour		PM (4-6) Peak Hour	
			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	19th Avenue / Hanford-Armona Road	One-Way Stop	11.5	B	12.3	B
2	Liberty Drive / Hanford-Armona Road	Two-Way Stop	25.1	D	16.1	C
3	19th Avenue / Project Driveway 1	Does Not Exist	N/A	N/A	N/A	N/A
4	19th Avenue / Project Driveway 2	Does Not Exist	N/A	N/A	N/A	N/A
5	19th Avenue / Cinnamon Drive	All-Way Stop	22.4	C	22.1	C
6	Liberty Drive / Cinnamon Drive	Two-Way Stop	13.7	B	11.7	B

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls
LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Existing plus Project Traffic Conditions

Project Description

The District proposes to build an Elementary School (Project) with approximately 22 classrooms, administrative offices, a multi-purpose building, hard court areas and athletic fields. The Project is estimated to serve up to 700 students in kindergarten through sixth grades. Based on information provided to JLB, the Project is consistent with the City of Lemoore 2030 General Plan. Figure 3 illustrates the latest Project Site Plan.

Project Access

Based on the latest Project Site Plan, access to and from the Project site will be from two (2) main access points located along 19th Avenue and one (1) emergency fire access with access to 19th Avenue and Cinnamon Drive. The main access driveways are located along the west side of 19th Avenue at approximately 660 feet (Project Driveway 1) and 420 feet (Project Driveway 2) north of Cinnamon Drive. Both of these access points are proposed as full access.

JLB analyzed the location of the proposed access points relative to the existing local roads and driveways in the Project's vicinity. A review of the Project access points indicates that they are located at points that minimize traffic operational impacts to the existing roadway network. However, if upon opening of the school queuing issues are observed between the southbound left-turn lane at the intersection of 19th Avenue and Cinnamon Drive and the northbound two-way left-turn lane at the intersection of 19th Avenue and Project Driveway 2, then it is recommended that Project Driveway 2 be limited to right-in, right-out access only and that a raised median be installed on 19th Avenue so as to prohibit northbound and eastbound left-turning movements to and from Project Driveway 2.

Trip Generation

Trip generation rates for the proposed Project were obtained from the 10th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table II presents the trip generation for the proposed Project with trip generation rates for Elementary School. The proposed Project is estimated to generate a maximum of 1,323 daily trips, 469 AM peak hour trips and 119 PM peak hour trips.

Table II: Project Trip Generation

Land Use (ITE Code)	Size	Unit	Daily		AM (7-9) Peak Hour						PM (4-6) Peak Hour					
			Rate	Total	Trip Rate		Out	In	Out	Total	Trip Rate		Out	In	Out	Total
Elementary School (520)	700	St.	1.89	1,323	0.67	54	46	253	216	469	0.17	48	52	57	62	119
Total Project Trips				1,323				253	216	469				57	62	119

Note: St. = Students

Trip Distribution

The trip distribution assumptions were developed based on the anticipated school boundary, existing travel patterns, the existing roadway network, engineering judgement, existing residential and commercial densities, knowledge of the study area, and the City of Lemoore 2030 General Plan Circulation element in the vicinity of the Project. Figure 4 illustrates the Project Only Trips to the study intersections.

Bikeways

Currently, Class II Bike Lanes exist in the vicinity of the proposed Project site along Hanford-Armona Road, 19th Avenue, Liberty Drive, and Cinnamon Drive. The 2011 Kings County Regional Bicycle Plan does not plan Class II Bike Lanes on 19th Avenue north of Cinnamon Drive. However, it is recommended that the Project implement a Class II Bike Lane along its frontage to 19th Avenue. By implementing this recommendation, the City will be promoting alternative modes of transportation to and from the Project.

Walkways

Currently, walkways exist in the vicinity of the proposed Project site along Hanford-Armona Road, 19th Avenue, Liberty Drive, and Cinnamon Drive. A goal of the 2011 Kings County Regional Bicycle Plan is to provide for pedestrian-friendly zones in conjunction with the development, redevelopment, and design of mixed-use neighborhood core areas, the Downtown area, schools, parks, and other high use areas. Based on the latest Project Site Plan, the Project proposes to construct walkways along its frontage to 19th Avenue.

Transit

Kings Area Rural Transit (KART), the transit operator in the City of Lemoore, provides fixed-route service. At present, there are no KART fixed routes that operate in the vicinity of the proposed Project. The closest is KART Route 21 - Lemoore NAS, which runs on " E " Street, approximately 0.89 miles to the southeast of the proposed Project. Route 21 operates at 20-minute intervals on weekdays and its nearest stop to the Project site is located on the north side of " E " Street approximately 70 feet east of Heinlen Street. This Route provides a direct connection to the KART Transit Center, Central Valley Health Center, Lemoore Depot, Naval Air Station, and McDonalds. Retention of the existing and expansion of future transit routes is dependent of transit ridership demand and available funding.

Safe Routes to School

The most direct path to the Project site for students residing to the northwest would be head east toward 19th Avenue. Students may then proceed south along the west side of 19th Avenue until reaching the nearest campus entrance.

The most direct path to the Project site for students residing to the northeast would be to head west toward 19th Avenue. Neither the intersection of 19th Avenue and Avalon Drive nor the intersection of 19th Avenue and Freedom Drive have marked crosswalks across 19th Avenue. Students may proceed to safely cross 19th Avenue and continue south along the east side of 19th Avenue until reaching the nearest campus entrance.

The most direct path to the Project site for students residing to the southeast would be to head north toward Cinnamon Drive. Students may then proceed west along the south side of Cinnamon Drive toward the intersection of 19th Avenue and Cinnamon Drive. The intersection of 19th Avenue and Cinnamon Drive is currently controlled by an all-way stop and contains marked crosswalks on all approaches. Students may proceed to cross 19th Avenue and Cinnamon Drive and continue north until reaching the nearest campus entrance.

The most direct path to the Project site for students residing to the southwest would be to head north toward Cinnamon Drive. Students may then proceed east along the south side of Cinnamon Drive toward the intersection of 19th Avenue and Cinnamon Drive. The intersection of 19th Avenue and Cinnamon Drive is currently controlled by an all-way stop and contains marked crosswalks on all approaches. Students may proceed to cross Cinnamon Drive along the west side of 19th Avenue and continue north until reaching the nearest campus entrance.

The most direct path to the Project site for students residing to the west would be to head south toward Cinnamon Drive. Students may then proceed east along the north side of Cinnamon Drive toward the intersection of 19th Avenue and Cinnamon Drive. Students may proceed north until reaching the nearest campus entrance.

Most of the areas are well-developed with walkways and intersection controls, but there are a few exceptions. Therefore, it is recommended that the District work with the City of Lemoore to implement a Safe Routes to School plan and seek grant funding to help build walkways where they are lacking within a one-mile radius of the proposed Project site. It is also recommended that a high-visibility crosswalk with rapid rectangular flashing beacons be installed across the south leg of 19th Avenue and Freedom Drive.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized intersections in the Existing plus Project Traffic Conditions scenario. These warrants are found in Appendix J. The effects of right-turning traffic from the minor approach onto the major approach were taken into account using engineering judgement pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of 19th Avenue and Cinnamon Drive satisfies the peak hour signal warrant during the AM peak period only.

Based on the signal warrants and engineering judgement, signalization of this intersection is not recommended. It is worth noting that the CA MUTCD states "satisfaction of a signal warrant or warrants shall not in itself require the installation of a traffic signal." Therefore, it is recommended that prior to the installation of a traffic signal, investigation of CA MUTCD warrants 4 and 7, as applicable, be conducted for these intersections.

Results of Existing plus Project Level of Service Analysis

The Existing plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 5 illustrates the Existing plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing plus Project Traffic Conditions scenario are provided in Appendix F. Table III presents a summary of the Existing plus Project peak hour LOS at the study intersections.

Under this scenario, the study intersection of 19th Avenue and Cinnamon Drive is projected to operate at an unacceptable LOS during the AM peak period. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.

- 19th Avenue / Cinnamon Drive
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane; and
- Add a southbound right-turn lane.

Table III: Existing plus Project Intersection LOS Results

ID	Intersection	Intersection Control	AM (7-9) Peak Hour		PM (4-6) Peak Hour	
			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	19th Avenue / Hanford-Armona Road	One-Way Stop	12.3	B	12.6	B
2	Liberty Drive / Hanford-Armona Road	Two-Way Stop	28.9	D	16.4	C
3	19th Avenue / Project Driveway 1	One-Way Stop	28.9	D	14.2	B
4	19th Avenue / Project Driveway 2	One-Way Stop	24.2	C	11.8	B
5	19th Avenue / Cinnamon Drive	All-Way Stop	50.3	F	25.0	C
		All-Way Stop (Mitigated)	33.0	D	16.1	C
6	Liberty Drive / Cinnamon Drive	Two-Way Stop	14.4	B	11.6	B

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls
LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Near Term Year 2023 plus Project Traffic Conditions

Description of Approved and Pipeline Projects

Approved and Pipeline Projects consist of developments that are either under construction, built but not fully occupied, are not built but have final site development review (SDR) approval, or for which the lead agency or responsible agencies have knowledge of. The City of Lemoore, County of Kings and Caltrans staff were consulted throughout the preparation of this TIA regarding approved and/or known projects that could potentially impact the study intersections. JLB staff conducted a reconnaissance of the surrounding area to confirm the Near Term Projects. Subsequently, it was agreed that the projects listed in Table IV were approved, near approval, or in the pipeline within the proximity of the proposed Project.

The trip generation listed in Table IV is that which is anticipated to be added to the streets and highways by these projects between the time of the preparation of this report and five years after buildout of the proposed Project. As shown in Table IV, the total trip generation for the Near Term Projects is 10,329 daily trips, 720 AM peak hour trips and 841 PM peak hour trips. Figure 6 illustrates the location of the approved, near approval, or pipeline projects and their combined trip assignment to the study intersections under the Near Term Year 2023 plus Project Traffic Conditions scenario.

Table IV: Near Term Projects' Trip Generation

Approved Project Location	Approved or Pipeline Project Name	Daily Trips	AM Peak Hour	PM Peak Hour
A	Parkview Estates ${ }^{1}$	831	65	87
B	Park Meadows	189	15	20
C	Oleander Terrace ${ }^{1}$	483	30	37
D	Dollar General	399	9	36
E	Hanford-Armona Mixed-Use Development ${ }^{2}$	6,775	471	488
F County Tract No. 920	$\mathbf{1}, 652$	130	173	
Total				
Approved and Pipeline Project Trips	$\mathbf{1 0 , 3 2 9}$	$\mathbf{7 2 0}$	$\mathbf{8 4 1}$	

Note: $\quad 1$ = Trip Generation prepared by JLB Traffic Engineering, Inc. based on readily available information $2=$ Trip Generation based on JLB Traffic Engineering, Inc. Traffic Impact Analysis Report

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized intersections in the Near Term Year 2023 plus Project Traffic Conditions scenario. These warrants are found in Appendix J. The effects of right-turning traffic from the minor approach onto the major approach were taken into account using engineering judgement pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of 19th Avenue and Cinnamon Drive satisfies the peak hour signal warrant during the AM peak period only. Based on the signal warrants and engineering judgement, signalization of this intersection is recommended.
www.JLBtraffic.com
info@JLBtraffic.com

Results of Near Term Year 2023 plus Project Level of Service Analysis

The Near Term Year 2023 plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 7 illustrates the Near Term Year 2023 plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Near Term Year 2023 plus Project Traffic Conditions scenario are provided in Appendix G. Table V presents a summary of the Near Term Year 2023 plus Project peak hour LOS at the study intersections.

Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road, 19th Avenue and Project Driveway 1, and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.

- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane;
- Add a southbound right-turn lane; and
- Implement an all-way stop control.
- 19th Avenue / Project Driveway 1
- Add a northbound left-turn lane; and
- Modify the northbound left-through lane to a through lane.
- 19th Avenue / Cinnamon Drive
- Signalize the intersection with protective left-turn phasing in all directions while retaining the existing lane geometrics.

Table V: Near Term Year 2023 plus Project Intersection LOS Results

ID	Intersection	Intersection Control	AM (7-9) Peak Hour		PM (4-6) Peak Hour	
			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	19th Avenue / Hanford-Armona Road	One-Way Stop	15.2	C	15.6	C
2	Liberty Drive / Hanford-Armona Road	Two-Way Stop	95.9	F	27.4	D
		All-Way Stop (Mitigated)	34.1	D	16.2	C
3	19th Avenue / Project Driveway 1	One-Way Stop	35.0	E	16.4	C
		Two-Way Stop (Mitigated)	32.7	D	16.3	C
4	19th Avenue / Project Driveway 2	One-Way Stop	32.2	D	13.2	B
5	19th Avenue / Cinnamon Drive	All-Way Stop	69.1	F	41.7	E
		Signalized (Mitigated)	31.0	C	24.4	C
6	Liberty Drive / Cinnamon Drive	Two-Way Stop	14.8	B	11.8	B

Note: \quad LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls
LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Cumulative Year 2040 No Project Traffic Conditions

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized intersections in the Cumulative Year 2040 No Project Traffic Conditions scenario. These warrants are found in Appendix J. The effects of right-turning traffic from the minor approach onto the major approach were taken into account using engineering judgement pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of 19th Avenue and Cinnamon Drive satisfies the peak hour signal warrant during both peak periods.

Based on the signal warrants and engineering judgement, signalization of this intersection is not recommended. It is worth noting that the CA MUTCD states "satisfaction of a signal warrant or warrants shall not in itself require the installation of a traffic signal." Therefore, it is recommended that prior to the installation of a traffic signal, investigation of CA MUTCD warrants 4 and 7 , as applicable, be conducted for these intersections.

Results of Cumulative Year 2040 No Project Level of Service Analysis

The Cumulative Year 2040 No Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 8 illustrates the Cumulative Year 2040 No Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2040 No Project Traffic Conditions scenario are provided in Appendix H. Table VI presents a summary of the Cumulative Year 2040 No Project peak hour LOS at the study intersections.

Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.

- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Add a second westbound through lane with a receiving lane west of Liberty Drive; and
- Implement an all-way stop control.
- 19th Avenue / Cinnamon Drive
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane; and
- Add a southbound right-turn lane.
info@JLBtraffic.com

Elementary School - City of Lemoore
Traffic Impact Analysis
September 17, 2019
Table VI: Cumulative Year 2040 No Project Intersection LOS Results

ID	Intersection	Intersection Control	AM (7-9) Peak Hour		PM (4-6) Peak Hour	
			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	19th Avenue / Hanford-Armona Road	One-Way Stop	14.4	B	17.6	C
2	Liberty Drive / Hanford-Armona Road	Two-Way Stop	85.7	F	47.2	E
		All-Way Stop (Improved)	21.6	C	21.2	C
3	19th Avenue / Project Driveway 1	Does Not Exist	N/A	N/A	N/A	N/A
4	19th Avenue / Project Driveway 2	Does Not Exist	N/A	N/A	N/A	N/A
5	19th Avenue / Cinnamon Drive	All-Way Stop	51.6	F	59.4	F
		All-Way Stop (Improved)	33.1	D	23.6	C
6	Liberty Drive / Cinnamon Drive	Two-Way Stop	14.7	B	14.1	B

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.
LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.
www.JLBtraffic.com
516 W. Shaw Ave., Ste. 103

Cumulative Year 2040 plus Project Traffic Conditions

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the unsignalized intersections in the Cumulative Year 2040 plus Project Traffic Conditions scenario. These warrants are found in Appendix J. The effects of right-turning traffic from the minor approach onto the major approach were taken into account using engineering judgement pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of 19th Avenue and Cinnamon Drive satisfies the peak hour signal warrant during the AM peak period only. Based on the signal warrants and engineering judgement, signalization of this intersection is recommended.

Results of Cumulative Year 2040 plus Project Level of Service Analysis

The Cumulative Year 2040 plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 9 illustrates the Cumulative Year 2040 plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2040 plus Project Traffic Conditions scenario are provided in Appendix I. Table VII presents a summary of the Cumulative Year 2040 plus Project peak hour LOS at the study intersections.

Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.

- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Add a second westbound through lane with a receiving lane west of Liberty Drive; and
- Implement an all-way stop control.
- 19th Avenue / Cinnamon Drive
- Signalize the intersection with protective left-turn phasing in all directions while retaining the existing lane geometrics.

Elementary School - City of Lemoore
Traffic Impact Analysis
September 17, 2019
Table VII: Cumulative Year 2040 plus Project Intersection LOS Results

ID	Intersection	Intersection Control	AM (7-9) Peak Hour		PM (4-6) Peak Hour	
			Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	19th Avenue / Hanford-Armona Road	One-Way Stop	15.9	C	18.4	C
2	Liberty Drive / Hanford-Armona Road	Two-Way Stop	113.0	F	50.0	F
		All-Way Stop (Mitigated)	25.6	D	22.5	C
3	19th Avenue / Project Driveway 1	One-Way Stop	28.7	D	14.9	B
4	19th Avenue / Project Driveway 2	One-Way Stop	24.0	C	12.3	B
5	19th Avenue / Cinnamon Drive	All-Way Stop	85.4	F	65.1	F
		Signalized (Mitigated)	33.1	C	31.8	C
6	Liberty Drive / Cinnamon Drive	Two-Way Stop	15.3	C	14.1	B

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.
LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.
www.JLBtraffic.com
516 W. Shaw Ave., Ste. 103
info@JLBtraffic.com

Queuing Analysis

Table VIII provides a queue length summary for left-turn and right-turn lanes at the study intersections under all study scenarios. The queuing analyses for the study intersections are contained in the LOS worksheets for the respective scenarios. Appendix D contains the methodologies used to evaluate these intersections. Queuing analyses were completed using Sim Traffic output information. Synchro provides both 50th and 95th percentile maximum queue lengths (in feet). According to the Synchro manual, "the 50th percentile maximum queue is the maximum back of queue on a typical cycle and the 95th percentile queue is the maximum back of queue with 95th percentile volumes." The queues shown on Table VIII are the 95th percentile queue lengths for the respective lane movements.

The Highway Design Manual (HDM) provides guidance for determining deceleration lengths for the leftturn and right-turn lanes based on design speeds. Per the HDM criteria, "tapers for right-turn lanes are usually un-necessary since the main line traffic need not be shifted laterally to provide space for the rightturn lane. If, in some rare instances, a lateral shift were needed, the approach taper would use the same formula as for a left-turn lane." Therefore, a bay taper length pursuant to the Caltrans HDM would need to be added, as necessary, to the recommended storage lengths presented in Table VIII.

Based on the SimTraffic output files and engineering judgement, it is recommended that the storage capacity for the following be considered for the Cumulative Year 2040 plus Project Traffic Conditions. At the remaining approaches, the existing storage capacity will be sufficient to accommodate the maximum queue.

- 19th Avenue / Cinnamon Drive
- Consider increasing the storage capacity of the eastbound left-turn lane to 150 feet.
- Consider increasing the storage capacity of the westbound left-turn lane to 200 feet.
- Consider increasing the storage capacity of the northbound left-turn lane to 200 feet.
- Consider increasing the storage capacity of the southbound left-turn lane to 150 feet.

Table VIII: Queuing Analysis

ID	Intersection	Existing Queue Storage Length (ft.)		Existing		Existing plus Project		Near Term Year 2023 plus Project		Cumulative Year 2040 No Project		Cumulative Year 2040 plus Project	
				AM	PM	AM	PM	AM	AM	AM	PM	AM	PM
		EB Thru-Right	>500	7	0	0	0	0	10	10	7	0	17
	/	WB Left	250	61	47	57	73	60	70	63	64	59	63
1	Hanford-Armona	WB Thru	>500	0	0	0	0	0	0	0	0	0	0
	Road	NB Left	245	46	47	63	60	83	65	50	50	85	57
		NB Right	>500	71	64	68	64	72	72	61	64	72	88

[^0]Table VIII: Queuing Analysis (cont.)

ID	Intersection	Existing Queue Storage Length (ft.)		Existing		Existing plus Project		$\begin{array}{\|c\|} \text { Near Term } \\ \text { Year } 2023 \text { plus } \\ \text { Project } \\ \hline \end{array}$		Cumulative Year 2040 No Project		Cumulative Year 2040 plus Project	
				AM	PM	AM	PM	AM	AM	AM	PM	AM	PM
2	```Liberty Drive / Hanford-Armona Road```	EB Left	135	38	10	41	26	45	51	58	54	54	59
		EB Thru	*	*	*	*	*	66	64	75	77	73	78
		EB Thru-Right	>500	0	0	7	18	77	70	72	93	73	91
		WB Left	190	38	32	54	32	47	41	63	53	56	52
		WB Thru	*	*	*	*	*	101	113	94	95	104	102
		WB Thru-Right	>500	0	0	0	0	*	*	73	57	70	82
		WB Right	*	*	*	*	*	33	38	*	*	*	*
		NB Left	185	42	8	39	14	46	20	46	18	41	20
		NB Thru	*	*	*	*	*	32	43	*	*	*	*
		NB Thru-Right	>500	59	43	51	34	*	*	61	54	65	48
		NB Right	*	*	*	*	*	63	47	*	*	*	*
		SB Left	55	34	26	42	36	32	43	52	52	54	39
		SB Thru	*	*	*	*	*	31	34	*	*	*	*
		SB Thru-Right	>500	52	61	55	58	*	*	49	51	51	51
		SB Right	*	*	*	*	*	38	35	*	*	*	*
3	$\begin{gathered} \text { 19th Avenue } \\ \text { / } \\ \text { Project Driveway } 1 \end{gathered}$	EB Left-Right	*	*	*	37	21	37	24	*	*	43	24
		NB Left	*	*	*	*	*	66	26	*	*	*	*
		NB Left-Thru	>500	*	*	78	27	0	0	*	*	88	40
		SB Thru-Right	>500	*	*	7	0	7	0	*	*	7	0
4	$\begin{gathered} \text { 19th Avenue } \\ \text { / } \\ \text { Project Driveway } 2 \end{gathered}$	EB Left-Right	*	*	*	95	53	121	47	*	*	112	59
		NB Left-Thru	>500	*	*	32	0	25	10	*	*	30	14
		SB Thru-Right	>500	*	*	0	0	0	0	*	*	0	0
5	$\begin{gathered} \text { 19th Avenue } \\ / \\ \text { Cinnamon Drive } \end{gathered}$	EB Left	100	33	41	71	36	135	102	36	42	145	101
		EB Thru-Right	>500	74	66	62	71	153	144	94	100	200	188
		WB Left	100	65	66	63	48	137	111	100	81	191	153
		WB Thru	*	*	*	64	64	*	*	106	79	*	*
		WB Thru-Right	>500	68	69	*	*	199	155	*	*	247	172
		WB Right	*	*	*	56	32	*	*	32	38	*	*
		NB Left	100	40	53	45	53	50	125	46	69	118	184
		NB Thru	*	*	*	68	69	*	*	98	109	*	*
		NB Thru-Right	>500	126	106	*	*	203	232	*	*	266	314
		NB Right	*	*	*	74	90	*	*	94	112	*	*
		SB Left	100	53	46	57	45	119	82	57	46	124	85
		SB Thru	*	*	*	110	71	*	*	117	83	*	*
		SB Thru-Right	>500	99	62	*	*	202	114	*	*	206	173
		SB Right	*	*	*	36	32	*	*	34	41	*	*
6	Liberty Drive / Cinnamon Drive	EB Left	100	60	30	54	45	59	30	64	47	83	42
		EB Thru	>500	0	0	0	0	0	12	10	0	22	21
		WB Thru-Right	>500	14	0	22	7	7	10	21	10	21	21
		SB Left	115	45	47	57	45	59	46	61	60	66	56
		SB Right	>500	46	34	53	40	56	40	67	46	77	42

Note: $\quad{ }^{*}=$ Does not exist or is not projected to exist
www.JLBtraffic.com
516 W. Shaw Ave., Ste. 103
info@JLBtraffic.com

Project's Pro-Rata Fair Share of Future Transportation Improvements

The Project's fair share percentage impact to study intersections projected to fall below their LOS threshold and which are not covered by an existing impact fee program is provided in Table IX. The Project's fair share percentage impacts were calculated pursuant to the Caltrans Guide for the Preparation of Traffic Impact Studies. The Project's pro-rata fair shares were calculated utilizing the Existing volumes, Project Only Trips, and Cumulative Year 2040 plus Project volumes. Figure 2 illustrates the Existing traffic volumes, Figure 4 illustrates the Project Only Trips, and Figure 9 illustrates the Cumulative Year 2040 plus Project traffic volumes. Since the critical peak period for the study facilities was determined to be during the AM peak, the AM peak volumes are utilized to determine the Project's pro-rata fair share.

It is recommended that the Project contribute its equitable fair share as listed in Table IX for the future improvements necessary to maintain an acceptable LOS. However, fair share contributions should only be made for those facilities, or portion thereof, currently not funded by the responsible agencies roadway impact fee program(s) or grant funded projects, as appropriate. For those improvements not presently covered by local and regional roadway impact fee programs or grant funding, it is recommended that the Project contribute its equitable fair share. Payment of the Project's equitable fair share in addition to the local and regional impact fee programs would satisfy the Project's traffic mitigation measures.

This study does not provide construction costs for the recommended mitigation measures; therefore, if the recommended mitigation measures are implemented, it is recommended that the District work with the City of Lemoore to develop the estimated construction cost.

Table IX: Project's Fair Share of Future Roadway Improvements

ID	Intersection	Existing Traffic Volumes (AM Peak)	Cumulative Year 2040 plus Project Traffic Volumes (AM Peak)	Project Only Trips (AM Peak)	Project's Fair Share (\%)
2	Liberty Drive / Hanford-Armona Road	927	1,516	68	11.54
5	19th Avenue / Cinnamon Drive	1,002	1,781	288	36.97

Note: Project Fair Share = ((Project Only Trips) / (Cumulative Year $2040+$ Project Traffic Volumes - Existing Traffic Volumes)) x 100

Conclusions and Recommendations

Conclusions and recommendations regarding the proposed Project are presented below.

Existing Traffic Conditions

- At present, all study intersections operate at an acceptable LOS during both peak periods.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the proposed access points relative to the existing local roads and driveways in the Project's vicinity. A review of the Project access points indicates that they are located at points that minimize traffic operational impacts to the existing roadway network. However, if upon opening of the school queuing issues are observed between the southbound left-turn lane at the intersection of 19th Avenue and Cinnamon Drive and the northbound two-way left-turn lane at the intersection of 19th Avenue and Project Driveway 2, then it is recommended that Project Driveway 2 be limited to right-in, right-out access only and that a raised median be installed so as to prohibit northbound left-turning movements into Project Driveway 2.
- The proposed Project is estimated to generate a maximum of 1,323 daily trips, 469 AM peak hour trips and 119 PM peak hour trips.
- It is recommended that the Project implement a Class II Bike Lane along its frontage to 19th Avenue.
- It is recommended that the District work with the City of Lemoore to implement a Safe Routes to School plan and seek grant funding to help build walkways where they are lacking within a one-mile radius of the proposed Project site.
- It is also recommended that a high-visibility crosswalk with rapid rectangular flashing beacons be installed across the south leg of 19th Avenue and Freedom Drive.
- Under this scenario, the study intersection of 19th Avenue and Cinnamon Drive is projected to operate at an unacceptable LOS during the AM peak period. To improve the LOS at this intersection, it is recommended that the following improvements be implemented.
- 19th Avenue / Cinnamon Drive
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane; and
- Add a southbound right-turn lane.

Near Term Year 2023 plus Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road, 19th Avenue and Project Driveway 1, and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.
- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane;
- Add a southbound right-turn lane; and
- Implement an all-way stop control.
- 19th Avenue / Project Driveway 1
- Add a northbound left-turn lane; and
- Modify the northbound left-through lane to a through lane.
- 19th Avenue / Cinnamon Drive
- Signalize the intersection with protective left-turn phasing in all directions while retaining the existing lane geometrics.

Cumulative Year 2040 No Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.
- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Add a second westbound through lane with a receiving lane west of Liberty Drive; and
- Implement an all-way stop control.
- 19th Avenue / Cinnamon Drive
- Modify the westbound through-right lane to a through lane;
- Add a westbound right-turn lane;
- Modify the northbound through-right lane to a through lane;
- Add a northbound right-turn lane;
- Modify the southbound through-right lane to a through lane; and
- Add a southbound right-turn lane.
info@JLBtraffic.com

Cumulative Year 2040 plus Project Traffic Conditions

- Under this scenario, the study intersections of Liberty Drive and Hanford-Armona Road and 19th Avenue and Cinnamon Drive are projected to operate at an unacceptable LOS during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.
- Liberty Drive / Hanford-Armona Road
- Add a second eastbound through lane with a receiving lane east of Liberty Drive;
- Add a second westbound through lane with a receiving lane west of Liberty Drive; and
- Implement an all-way stop control.
- 19th Avenue / Cinnamon Drive
- Signalize the intersection with protective left-turn phasing in all directions while retaining the existing lane geometrics.

Queuing Analysis

- It is recommended that the City consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Project's Equitable Fair Share

- It is recommended that the Project contribute its equitable fair share as listed in Table VIII for the future improvements necessary to maintain an acceptable LOS.

Study Participants

JLB Traffic Engineering, Inc. Personnel:

Jose Luis Benavides, PE, TE
Susana Maciel, EIT
Matthew Arndt, EIT
Javier Rios
Jove Alcazar
Dennis Wynn
Jesus Garcia
Adrian Benavides
Justin Barnett

Persons Consulted:
Julie Fagundes
Wa Vang
Steve Brandt
Judy Holwell
Dominic Tyburski
Chuck Kinney
Michael Navarro

Project Manager
Project Engineer
Engineer I/II
Engineer I/II
Engineer I/II
Sr. Engineering Technician
Engineering Aide
Engineering Aide
Engineering Aide

Lemoore Union Elementary School District
Lane Engineers, Inc.
City of Lemoore
City of Lemoore
County of Kings
County of Kings
Caltrans

References

1. City of Lemoore, 2030 General Plan.
2. Guide for the Preparation of Traffic Impact Studies, Caltrans, dated December 2002.
3. Trip Generation, 10th Edition, Washington D.C., Institute of Transportation Engineers, 2017.
4. 2014 California Manual on Uniform Traffic Control Devices, Caltrans, November 7, 2014.

Appendix A: Scope of Work

June 7, 2019

Steve Brandt
City Planner
City of Lemoore
711 West Cinnamon Drive
Lemoore, CA 93245

Via Email Only: sbrandt@lemoore.com

Subject: \quad Proposed Draft Scope of Work for the Preparation of a Traffic Impact Analysis for the Lemoore Union Elementary School District, Elementary School in the City of Lemoore (JLB Project 039-002)

Dear Mr. Steve Brandt,
JLB Traffic Engineering, Inc. (JLB) hereby submits this Draft Scope of Work for the preparation of a Traffic Impact Analysis (TIA) for the proposed Elementary School (Project) located at the northwest quadrant of Cinnamon Drive and 19th Avenue in the City of Lemoore. An aerial of the Project vicinity and Project Site Plan are shown in Exhibit A and Exhibit B, respectively.

The purpose of the TIA is to evaluate the potential on-site and off-site traffic impacts, identify shortterm roadway and circulation needs, determine potential mitigation measures and identify any critical traffic issues that should be addressed in the on-going planning process. To evaluate the on-site and offsite traffic impacts of the proposed Project, JLB proposes the following Scope of Work.

Scope of Work

- To arrive at the future year forecast volumes, JLB proposes to average annual growth rates for the road network in the vicinity of the Project as derived from the Kings County Association of Governments (Kings CAG) Base Year 2019 and Cumulative Year 2042 model networks. Based on a review of the Kings CAG model networks, a minimum annual growth rate of 1.1 percent, a maximum annual growth rate of 1.9 percent and an average annual growth rate of 1.4 percent were determined. Therefore, JLB proposes to utilize the maximum annual growth rate of 1.9 percent to expand the existing traffic volumes by 21 years to arrive at the Cumulative Year 2040 plus Project scenario.
- JLB will obtain recent or schedule and conduct new traffic counts at the study facility(ies) as necessary. These counts will include pedestrians and vehicles.
- JLB will perform a site visit to observe existing traffic conditions, especially during the AM and PM peak hours. Existing roadway conditions including intersection geometrics and traffic controls will be verified.
- JLB will evaluate on-site circulation and provide recommendations as necessary to improve circulation to and within the Project site.

Page / 1

Mr. Steve Brandt
Lemoore Union Elementary School TIA - Draft Scope of Work
June 7, 2019

- JLB will prepare CA MUTCD Warrant 3 "Peak Hour" for unsignalized study intersections under the Existing, Existing plus Project, Near Term plus Project and Cumulative Year 2040 plus Project scenarios.
- JLB will qualitatively analyze existing and planned transit routes in the vicinity of the Project.
- JLB will qualitatively analyze existing and planned bikeways in the vicinity of the Project.
- JLB will forecast trip distribution based on turn count information and knowledge of the existing and planned circulation network in the vicinity of the Project.
- JLB will evaluate existing and forecasted levels of service (LOS) at the study intersection(s). JLB will use HCM 6 or HCM 2000 methodologies (as appropriate) within Synchro to perform this analysis for the AM and PM peak hours. JLB will identify the causes of poor LOS.
- JLB in consultation with the Environmental Consultant and School District staff will identify the nonbusing service boundaries for the elementary school students. Using the no busing boundaries, JLB will conduct a qualitative safe routes to school evaluation. The safe routes to school evaluation will be prepared based on the information to be provided by the School District, and field surveys to be conducted by JLB. Based on the above information, JLB will provide suggested Safe Routes to School recommendations.
- JLB will prepare the Project's equitable percent fair share of the mitigation measures (if any).

Study Scenarios:

1. Existing traffic conditions with proposed mitigation measures (if any);
2. Existing plus Project traffic conditions with proposed mitigation measures (if any);
3. Near Term (2023) plus Project (include pending and approved projects) traffic conditions with proposed mitigation measures (if any); and
4. Cumulative Year 2040 No Project traffic conditions with proposed mitigation measures (if any)
5. Cumulative Year 2040 plus Project traffic conditions with proposed mitigation measures (if any).

Weekday peak hours to be analyzed (Tuesday through Thursday only):

1. 7-9 AM peak hour
2. 4-6 PM peak hour

Study Intersections:

1. $19^{\text {th }}$ Avenue / Hanford-Armona Road
2. Liberty Drive / Hanford-Armona Road
3. $19^{\text {th }}$ Avenue / Main Drop-off Aisle Access Driveway
4. $19^{\text {th }}$ Avenue / Main Exit Aisle Access Driveway
5. $19^{\text {th }}$ Avenue / Cinnamon Drive
6. Liberty Drive / Cinnamon Drive

Queuing analysis is included in the proposed Scope of Work for the study intersection(s) listed above under all study scenarios. This analysis will be utilized to recommend minimum storage lengths for leftand right-turn lanes at all study intersections.

Study Segments:

1. None

Mr. Steve Brandt
Lemoore Union Elementary School TIA - Draft Scope of Work
June 7, 2019

Project Only Trip Assignment to State Facilities:

1. None

Project Trip Generation

The trip generation rates for the proposed Project were obtained from the 10th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table I presents the trip generation for the proposed with trip generation rates for an Elementary School. The proposed Project is estimated to generate a maximum of 1,323 daily trips, 469 AM peak hour trips and 119 PM peak hour trips.

Table I: Project Trip Generation

$\begin{aligned} & \text { Land Use } \\ & \text { (ITE } \\ & \text { CODE) } \end{aligned}$	Size	Unit	Daily		A.M. Peak Hour					P.M. Peak Hour				
			Rate	Total	Trip Rate	$\begin{gathered} \hline \text { In Out } \\ \% \\ \hline \end{gathered}$	In	Out	Total	Trip Rate	$\begin{gathered} \hline \text { In Out } \\ \% \\ \hline \end{gathered}$	In	Out	Total
$\begin{gathered} \hline \hline \text { Elementary } \\ \text { School } \\ (520) \\ \hline \end{gathered}$	700	Students	1.89	1,323	0.67	$54 \quad 46$	253	216	469	0.17	$48 \quad 52$	57	62	119
Sub Total Project Trips				1,323			253	216	469			57	62	119

Near Term Projects to be Included

Based on our local knowledge of the study area, JLB proposes to include near term projects in the vicinity of the proposed Project under the Near Term plus Project scenario. The near term projects proposed to be included in the Near Term scenario are:
Project name

1. Silvia Estates Patio Homes
2. Parkview Estates
3. Park Meadows
4. Oleander Terrace
5. Dollar General
6. Hanford-Armona Road Mixed-Use Development
7. Other projects provided to us by other responsible agencies. These include Near Term (2023) Projects the City of Lemoore, County of Kings or Caltrans has knowledge of and for which it is anticipated that said project(s) is/are projected to be whole or partially built by the Near Term (2023) Project Year, and for which the City of Lemoore, County of Kings or Caltrans, as appropriate, provides JLB with near term project details. Near term project details include project description, location, proposed land uses with breakdowns and type of residential units and amount of square footages for non-residential uses.

This Draft Scope of Work is based on our understanding of this Project and our experience with similar TIAs. In the absence of comments by June 19, 2019 it will be assumed that the Scope of Work is acceptable to the agency(ies) that have not submitted any comments.

Mr. Steve Brandt
Lemoore Union Elementary School TIA - Draft Scope of Work
June 7, 2019
If you have any questions or require additional information, please contact me by phone at (559) 3176243 or by e-mail at marndt@JLBtraffic.com.

Sincerely,

Matthew Arndt
Engineer I/II
cc: Judy Holwell, City of Lemoore
Dominic Tyburski, County of Kings
Michael Navarro, Caltrans
Jose Benavides, JLB Traffic Engineering, Inc.

Z:\01 Projects \039 Lemoore\039-002 Elementary School TIA\Draft Scope of Work\L05282019 LESD ES TIA.docx

Exhibit A - Aerial

Exhibit B - Project Site Plan

Matt Arndt

From:	Steve Brandt Steve.Brandt@qkinc.com
Sent:	Wednesday, June 26, 2019 5:42 PM
To:	Matt Arndt
Subject:	Lemoore Elementary School TIS

Hi Matt,

I had made some recommendations to the Lemoore City staff about your TIS scope for the Lemoore elementary school, but I am not sure if they ever got to you. Here they are, just in case. Thanks. Let me know if you have any questions.

- Scope of Work bullet points (pp. 1-2): Add 'Compare with Lemoore General Plan LOS thresholds'
- Study Intersections (p. 2): Add $19^{\text {th }}$ Avenue / D Street and add $19^{\text {th }}$ Avenue / Bush Street

Regards,
sterve

Steve Brandt, AICP
Principal Planner
901 East Main Street
Visalia, CA 93292
(559) 733-0440 Office
(559) 259-1466 Cell
www.QKinc.com

From:	Tyburski, Dominic Dominic.Tyburski@co.kings.ca.us
Sent:	Friday, June 28, 2019 8:39 AM
To:	Matt Arndt; sbrandt@lemoore.com
Cc:	jholwell@lemoore.com; michael.navarro@dot.ca.gov; Jose Benavides; Kinney, Chuck
Subject:	RE: Draft Scope of Work for Lemoore Union Elementary School
Attachments:	L05282019 LESD ES TIA.PDF
Hi Matt,	

Public Works accepts the scope as proposed. Have you forwarded this to the Community Development Agency? Deputy Director Chuck Kinney should be included on all such correspondence. Thank you.

Dominic Tyburski, P.E.
Chief Engineer | Division of Engineering
County of Kings | Public Works Department
1400 W. Lacey Blvd. | Hanford, CA 93230

Direct 559-852-2698 | Fax 559-582-2506
Dominic.Tyburski@co.kings.ca.us | www.countyofkings.com

From: Matt Arndt [mailto:marndt@jlbtraffic.com]
Sent: Friday, June 07, 2019 4:25 PM
To: sbrandt@lemoore.com
Cc: Tyburski, Dominic; jholwell@lemoore.com; michael.navarro@dot.ca.gov; Jose Benavides
Subject: Draft Scope of Work for Lemoore Union Elementary School

Hello Mr. Brandt,

Attached is the Draft Scope of Work for the preparation of a Traffic Impact Analysis for Lemoore Union Elementary School.

Please take a moment to review and comment on the proposed Scope of Work. In the absence of comments by June 28, 2019, it will be assumed that the proposed Scope of Work is acceptable to the agency(ies) that have not submitted any comments.

If you have any questions or require additional information, please feel free to contact me by phone at 559.317.6243 or email at marndt@jlbtraffic.com. I appreciate your time and attention to this matter.

Have a good day.

Sincerely,

Matthew Arndt

Traffic Engineering, Transportation Planning and Parking Solutions
Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

1300 E. Shaw Ave., Ste. 103
Fresno, CA 93710
Office: (559) 317-6243
Cell: (559) 360-1886
www.JLBtraffic.com

Appendix B: Traffic Counts

Vato Tafific Datalanc.

Metro Traffic Data Inc.
310 N. Irwin Street - Suite 20
Hanford, CA 93230
800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc.
1300 E. Shaw Ave, Suite 103 Fresno, CA
LOCATION _19th Ave @ Hanford-Armona Rd

LATITUDE	36.3134
${ } \ldots }$	
WEATHER	-119.7988

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	13	0	27	1	0	0	0	0	0	24	4	0	15	81	0	1
7:15 AM - 7:30 AM	12	0	18	2	0	0	0	0	0	40	7	1	17	68	0	2
7:30 AM - 7:45 AM	10	0	37	1	0	0	0	0	0	40	14	2	23	81	0	2
7:45 AM - 8:00 AM	4	0	29	2	0	0	0	0	0	84	14	2	32	56	0	3
8:00 AM - 8:15 AM	7	0	36	2	0	0	0	0	0	43	10	1	26	44	0	4
8:15 AM - 8:30 AM	7	0	18	2	0	0	0	0	0	27	4	0	14	51	0	2
8:30 AM - 8:45 AM	7	0	10	1	0	0	0	0	0	30	4	3	8	31	0	5
8:45 AM - 9:00 AM	5	0	12	2	0	0	0	0	0	31	5	0	14	22	0	1
TOTAL	65	0	187	13	0	0	0	0	0	319	62	9	149	434	0	20

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4:00 PM - 4:15 PM	6	0	26	0	0	0	0	0	0	83	13	1	17	44	0	3
4:15 PM - 4:30 PM	9	0	24	0	0	0	0	0	0	93	13	0	32	39	0	1
4:30 PM - 4:45 PM	7	0	22	0	0	0	0	0	0	92	9	2	26	42	0	0
4:45 PM - 5:00 PM	13	0	37	2	0	0	0	0	0	100	8	0	24	34	0	1
5:00 PM - 5:15 PM	9	0	32	2	0	0	0	0	0	71	9	1	23	48	0	1
5:15 PM - 5:30 PM	8	0	26	0	0	0	0	0	0	93	13	2	26	41	0	0
5:30 PM - 5:45 PM	6	0	43	0	0	0	0	0	0	75	12	1	29	55	0	2
5:45 PM - 6:00 PM	8	0	22	1	0	0	0	0	0	76	6	1	27	46	0	1
TOTAL	66	0	232	5	0	0	0	0	0	683	83	8	204	349	0	9

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7:15 AM - 8:15 AM	33	0	120	7	0	0	0	0	0	207	45	6	98	249	0	11
4:45 PM - 5:45 PM	36	0	138	4	0	0	0	0	0	339	42	4	102	178	0	4

Page 1 of 3

ㄱำ［率比 田 Metro Traficic Data Inc．

Metro Traffic Data Inc．

310 N．Irwin Street－Suite 20

Hanford，CA 93230

800－975－6938 Phone／Fax
www．metrotrafficdata．com

Turning Movement Report

Prepared For：
JLB Traffic Engineering，Inc
1300 E．Shaw Ave，Suite 103

LOCATION	19th Ave＠Hanford－Armona Rd	LATITUDE	Kings
	LOUNTY	LONGITUDE	-119.7988
COLLECTION DATE	Thursday，May 30，2019	WEATHER	Clear

	Northbound Bikes			N．Leg Peds	Southbound Bikes			$\begin{gathered} \text { S.Leg } \\ \text { Peds } \end{gathered}$	Eastbound Bikes			$\begin{gathered} \text { E.Leg } \\ \text { Peds } \end{gathered}$	Westbound Bikes			W．Leg Peds
Time	Left	Thru	Right													
7：00 AM－7：15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7：15 AM－7：30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7：30 AM－7：45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7：45 AM－8：00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8：00 AM－8：15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8：15 AM－8：30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8：30 AM－8：45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8：45 AM－9：00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		oound		N．Leg		bound		S．Leg		ound		E．Leg		ound		W．Leg
Time	Left	Thru	Right	Peds												
4：00 PM－4：15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4：15 PM－4：30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4：30 PM－4：45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4：45 PM－5：00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5：00 PM－5：15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5：15 PM－5：30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5：30 PM－5：45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0
5：45 PM－6：00 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	5	0	0	0	0	1	0	0	0

	Northbound Bikes			$\begin{aligned} & \hline \text { N.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Southbound Bikes			$\begin{aligned} & \hline \text { S.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Eastbound Bikes			$\begin{aligned} & \hline \text { E.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Westbound Bikes			$\begin{gathered} \hline \text { W.Leg } \\ \text { Peds } \\ \hline \end{gathered}$
PEAK HOUR	Left	Thru	Right													
7：15 AM－8：15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4：45 PM－5：45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	1	1

Page 2 of 3

Vato Tafific Datalac.

Metro Traffic Data Inc.
310 N. Irwin Street - Suite 20
Hanford, CA 93230
800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc.
1300 E. Shaw Ave, Suite 103 Fresno, CA
LOCATION Liberty Dr @ Hanford-Armona Rd

LATITUDE	36.3134
${ } \ldots }$	
WEATHER	-119.7943

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	5	4	5	0	2	4	7	0	14	45	1	2	1	68	4	3
7:15 AM - 7:30 AM	9	3	11	4	2	11	5	2	12	53	4	1	6	65	3	1
7:30 AM - 7:45 AM	3	4	33	2	8	3	7	1	18	76	5	2	14	97	9	4
7:45 AM - 8:00 AM	4	2	44	1	4	5	7	2	13	111	10	6	16	80	3	0
8:00 AM - 8:15 AM	3	2	8	1	5	2	3	1	13	63	2	3	2	60	4	4
8:15 AM - 8:30 AM	4	4	6	1	2	2	3	3	4	35	2	2	0	56	4	1
8:30 AM - 8:45 AM	1	3	4	1	1	1	4	2	10	32	0	3	1	26	0	1
8:45 AM - 9:00 AM	1	2	5	0	1	1	2	1	6	36	2	1	0	37	1	0
TOTAL	30	24	116	10	25	29	38	12	90	451	26	20	40	489	28	14

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4:00 PM - 4:15 PM	1	3	6	0	3	3	7	1	5	120	7	0	2	56	5	2
4:15 PM - 4:30 PM	0	5	5	1	1	3	11	0	6	94	6	1	4	64	4	2
4:30 PM - 4:45 PM	3	3	4	0	3	5	12	0	10	113	10	1	3	59	3	0
4:45 PM - 5:00 PM	2	2	5	1	3	4	4	0	3	121	15	0	4	70	0	0
5:00 PM - 5:15 PM	0	4	5	0	3	5	6	0	6	97	11	2	4	70	3	1
5:15 PM - 5:30 PM	1	0	6	1	4	11	13	0	9	103	8	1	7	60	1	1
5:30 PM - 5:45 PM	0	2	3	0	6	5	13	0	8	103	8	0	14	70	4	1
5:45 PM - 6:00 PM	2	2	7	1	4	7	8	0	9	86	7	0	10	71	5	2
TOTAL	9	21	41	4	27	43	74	1	56	837	72	5	48	520	25	9

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7:15 AM - 8:15 AM	19	11	96	8	19	21	22	6	56	303	21	12	38	302	19	9
4:45 PM - 5:45 PM	3	8	19	2	16	25	36	0	26	424	42	3	29	270	8	3

PHF

Liberty Dr
Page 1 of 3

Metro Traficic Data Inc.

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20

Hanford, CA 93230

800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc.
1300 E. Shaw Ave, Suite 103

LOCATION \qquad
Liberty Dr @ Hanford-Armona Rd

Kings
COUNTY \qquad _

COLLECTION DATE \qquad Thursday, May 30, 2019

	Northbound Bikes			N.Leg Peds	Southbound Bikes		
Time	Left	Thru	Right		Left	Thru	Right
7:00 AM - 7:15 AM	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	1	0	0	0	0
TOTAL	0	0	1	0	0	0	0

LATITUDE	36.3134
	-119.7943
WEATHER	Clear

	S.Leg	Eastbound Bikes			
	Peds	Left	Thru	Right	
	0	0	0	0	
	0	0	0	0	
	1	0	0	0	
	0	0	0	0	
	0	0	0	0	
	1	0	0	0	
	1	0	0	0	
	0	0	0	0	
	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	

	E.Leg	Westbound Bikes		
W.Leg				
	Left	Thru	Right	Peds
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Time	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0
TOTAL	0	0	0	0	0	0	0	9	0	3	0	3	0	4	0	0

	Northbound Bikes			$\begin{aligned} & \hline \text { N.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Southbound Bikes			$\begin{aligned} & \hline \text { S.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Eastbound Bikes			$\begin{aligned} & \hline \text { E.Leg } \\ & \text { Peds } \\ & \hline \end{aligned}$	Westbound Bikes			$\begin{gathered} \hline \text { W.Leg } \\ \text { Peds } \end{gathered}$
PEAK HOUR	Left	Thru	Right													
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM - 5:45 PM	0	0	0	0	0	0	0	7	0	2	0	1	0	1	0	0

	Bikes	Peds
AM Peak Total	0	1
PM Peak Total	3	8

Vatotatafici Datalac

Metro Traffic Data Inc.
310 N. Irwin Street - Suite 20
Hanford, CA 93230
800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc.
1300 E. Shaw Ave, Suite 103 Fresno, CA

LOCATION	19th Ave @ Cinnamon Dr	LATITUDE	36.3056
COUNTY	Kings	LONGITUDE	-119.7988
COLLECTION DATE	Thursday, May 30, 2019		

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	1	17	10	3	7	21	3	0	1	24	0	0	5	26	9	0
7:15 AM - 7:30 AM	3	20	19	3	6	23	5	0	2	20	3	1	17	35	7	1
7:30 AM - 7:45 AM	8	25	28	4	10	40	8	3	3	26	0	0	23	30	7	0
7:45 AM - 8:00 AM	1	28	59	4	17	70	5	11	5	60	5	1	53	46	3	0
8:00 AM - 8:15 AM	6	44	42	5	8	59	5	2	0	26	0	0	39	39	14	3
8:15 AM - 8:30 AM	7	15	26	3	5	23	3	0	2	19	0	0	24	17	8	2
8:30 AM - 8:45 AM	0	16	14	3	7	13	2	3	1	21	0	0	15	23	3	2
8:45 AM - 9:00 AM	0	12	26	3	3	15	1	1	0	22	0	1	14	13	3	3
TOTAL	26	177	224	28	63	264	32	20	14	218	8	3	190	229	54	11

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4:00 PM - 4:15 PM	10	25	20	0	9	19	5	2	6	32	6	0	21	31	9	1
4:15 PM - 4:30 PM	7	27	27	3	7	38	5	0	7	41	3	0	26	27	15	3
4:30 PM - 4:45 PM	6	25	43	3	9	30	2	0	5	36	12	0	25	33	13	2
4:45 PM - 5:00 PM	6	38	38	1	6	30	4	0	6	37	10	1	31	34	16	4
5:00 PM - 5:15 PM	7	28	26	1	6	20	8	1	8	30	8	0	16	31	11	0
5:15 PM - 5:30 PM	16	29	38	1	4	30	7	0	6	33	10	1	23	22	7	1
5:30 PM - 5:45 PM	19	60	82	2	12	38	4	1	7	29	14	1	29	32	8	0
5:45 PM - 6:00 PM	8	20	40	1	4	28	6	2	3	32	7	0	22	26	10	3
TOTAL	79	252	314	12	57	233	41	6	48	270	70	3	193	236	89	14

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7:15 AM - 8:15 AM	18	117	148	16	41	192	23	16	10	132	8	2	132	150	31	4
4:45 PM - 5:45 PM	48	155	184	5	28	118	23	2	27	129	42	3	99	119	42	5

$\underline{\text { Cinnamon Dr }}$
PHF

Meto Traficic Data Inc.

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20

Hanford, CA 93230

800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:
JLB Traffic Engineering, Inc
1300 E. Shaw Ave, Suite 103

LATITUDE	36.3056
	-119.7988
${ } \quad$ Clear $}$	

WEATHER \qquad

Time	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
7:00 AM - 7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7:15 AM - 7:30 AM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	3	3	0	0	0	2	0	1	0	0	1	0	0	4
7:45 AM - 8:00 AM	0	0	3	1	0	0	0	1	0	1	0	0	0	0	0	2
8:00 AM - 8:15 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
8:45 AM - 9:00 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	1	6	9	1	0	0	3	0	3	0	0	1	2	1	6

Time	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
TOTAL	0	0	0	1	0	0	0	8	0	1	0	1	0	1	0	1

PEAK HOUR	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
7:15 AM - 8:15 AM	0	0	6	6	1	0	0	3	0	2	0	0	1	0	0	6
4:45 PM - 5:45 PM	0	0	0	1	0	0	0	3	0	0	0	1	0	0	0	1

Bikes	Peds	
AM Peak Total	10	15
PM Peak Total	$\mathbf{0}$	$\mathbf{6}$

Cinnamon Dr

Vatotatafic: Datalac

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20
Hanford, CA 93230
800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc.
1300 E. Shaw Ave, Suite 103 Fresno, CA
LOCATION Liberty Dr @ Cinnamon Dr
COUNTY
\qquad COLLECTION DATE \qquad Thursday, May 30, 2019

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	0	0	0	0	6	0	5	1	9	26	0	0	0	34	5	1
7:15 AM - 7:30 AM	0	0	0	0	11	0	9	1	15	30	0	2	0	44	9	5
7:30 AM - 7:45 AM	0	1	0	0	12	0	25	0	42	58	0	8	0	43	22	5
7:45 AM - 8:00 AM	0	1	0	0	14	0	35	0	58	73	0	3	0	60	27	1
8:00 AM - 8:15 AM	0	0	0	0	9	0	10	0	5	51	0	1	0	57	7	2
8:15 AM - 8:30 AM	0	0	0	0	4	0	6	2	3	37	0	2	0	35	8	1
8:30 AM - 8:45 AM	0	0	0	0	7	0	2	1	2	31	0	1	0	29	5	2
8:45 AM - 9:00 AM	0	0	0	0	10	0	4	0	6	52	0	4	0	19	3	2
TOTAL	0	2	0	0	73	0	96	5	140	358	0	21	0	321	86	19

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
7:00 AM - 7:15 AM	0	0	0	0	6	0	5	1	9	26	0	0	0	34	5	1
7:15 AM - 7:30 AM	0	0	0	0	11	0	9	1	15	30	0	2	0	44	9	5
7:30 AM - 7:45 AM	0	1	0	0	12	0	25	0	42	58	0	8	0	43	22	5
7:45 AM - 8:00 AM	0	1	0	0	14	0	35	0	58	73	0	3	0	60	27	1
8:00 AM - 8:15 AM	0	0	0	0	9	0	10	0	5	51	0	1	0	57	7	2
8:15 AM - 8:30 AM	0	0	0	0	4	0	6	2	3	37	0	2	0	35	8	1
8:30 AM - 8:45 AM	0	0	0	0	7	0	2	1	2	31	0	1	0	29	5	2
8:45 AM - 9:00 AM	0	0	0	0	10	0	4	0	6	52	0	4	0	19	3	2
TOTAL	0	2	0	0	73	0	96	5	140	358	0	21	0	321	86	19

LATITUDE	36.3056
LONGITUDE	-119.7943

	Northbound				Southbound				Eastbound				Westbound			
Time	Left	Thru	Right	Trucks												
4:00 PM - 4:15 PM	0	0	0	0	5	0	11	1	4	59	0	2	0	48	5	1
4:15 PM - 4:30 PM	0	0	0	0	15	0	5	1	3	62	0	3	0	66	7	1
4:30 PM - 4:45 PM	0	0	0	0	12	0	4	2	10	65	0	6	0	70	6	1
4:45 PM - 5:00 PM	0	0	0	0	10	0	4	0	7	70	0	3	0	64	7	3
5:00 PM - 5:15 PM	0	0	0	0	8	0	4	2	4	61	0	2	0	48	13	2
5:15 PM - 5:30 PM	0	0	0	0	16	0	5	0	12	63	0	1	0	52	9	0
5:30 PM - 5:45 PM	0	0	0	0	5	0	7	0	23	62	0	3	0	65	7	1
5:45 PM - 6:00 PM	0	0	0	0	12	0	4	0	24	49	0	6	0	52	14	0
TOTAL	0	0	0	0	83	0	44	6	87	491	0	26	0	465	68	9

	Northbound				Southbound				Eastbound				Westbound			
PEAK HOUR	Left	Thru	Right	Trucks												
7:15 AM - 8:15 AM	0	2	0	0	46	0	79	1	120	212	0	14	0	204	65	13
4:45 PM - 5:45 PM	0	0	0	0	39	0	20	2	46	256	0	9	0	229	36	6

Metro Traficic Data Inc.

Metro Traffic Data Inc.
310 N. Irwin Street - Suite 20
Hanford, CA 93230

800-975-6938 Phone/Fax
www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc
1300 E. Shaw Ave, Suite 103

LATITUDE	36.3056
	-119.7943
${ } \quad$ Clear $}$	

WEATHER \qquad

Time	Northbound Bikes			N.Leg Peds	Southbound Bikes			$\begin{gathered} \hline \text { S.Leg } \\ \text { Peds } \end{gathered}$	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
7:30 AM - 7:45 AM	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	3
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	3
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	2
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
TOTAL	0	0	0	2	0	0	0	5	0	0	0	7	0	0	0	13

Time	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2
4:45 PM - 5:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
TOTAL	0	0	0	1	0	0	0	1	0	0	0	7	0	0	0	11

PEAK HOUR	Northbound Bikes			N.Leg Peds	Southbound Bikes			S.Leg Peds	Eastbound Bikes			E.Leg Peds	Westbound Bikes			W.Leg Peds
	Left	Thru	Right													
7:15 AM - 8:15 AM	0	0	0	2	0	0	0	4	0	0	0	3	0	0	0	8
4:45 PM - 5:45 PM	0	0	0	1	0	0	0	0	0	0	0	3	0	0	0	4

	Bikes	Peds
AM Peak Total	0	17
PM Peak Total	0	8

Cinnamon Dr

Appendix C: Traffic Modeling

Base Year 2019
AM, PM and Daily Volumes

Cumulative Year 2042 AM, PM and Daily Volumes

Appendix D: Methodology

Levels of Service Methodology

The description and procedures for calculating capacity and level of service (LOS) are found in the Transportation Research Board, Highway Capacity Manual (HCM). The HCM 2010 represents the research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level of service (LOS), from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each LOS represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish a LOS.

Urban Streets (Automobile Mode)

The term "urban streets" refers to urban arterials and collectors, including those in downtown areas. Arterial streets are roads that primarily serve longer through trips. However, providing access to abutting commercial and residential land uses is also an important function of arterials. Collector streets provide both land access and traffic circulation within residential, commercial and industrial areas. Their access function is more important than that of arterials, and unlike arterials their operation is not always dominated by traffic signals. Downtown streets are signalized facilities that often resemble arterials. They not only move through traffic but also provide access to local businesses for passenger cars, transit buses, and trucks. Pedestrian conflicts and lane obstructions created by stopping or standing taxicabs, buses, trucks and parking vehicles that cause turbulence in the traffic flow are typical of downtown streets.

Flow Characteristics

The speed of vehicles on urban streets is influenced by three main factors, street environment, interaction among vehicles and traffic control.

The street environment includes the geometric characteristics of the facility, the character of roadside activity, and adjacent land uses. Thus, the environment reflects the number and width of lanes, type of median, driveway/access point density, spacing between signalized intersections, existence of parking, level of pedestrian and bicyclist activity and speed limit.

The interaction among vehicles is determined by traffic density, the proportion of trucks and buses, and turning movements. This interaction affects the operation of vehicles at intersections and, to a lesser extent, between signals.

Traffic controls (including signals and signs) forces a portion of all vehicles to slow or stop. The delays and speed changes caused by traffic control devices reduce vehicle speeds; however, such controls are needed to establish right-of-way.

Levels of Service (automobile Mode)

The average travel speed for through vehicles along an urban street is the determinant of the operating level of service (LOS). The travel speed along a segment, section or entire length of an urban street is dependent on the running speed between signalized intersections and the amount of control delay incurred at signalized intersections.

LOS A describes primarily free-flow operation. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is minimal. Travel speeds exceed 85 of the base free flow speed (FFS).

LOS B describes reasonably unimpeded operation. The ability to maneuver within the traffic stream is only slightly restricted and control delay at the boundary intersections is not significant. The travel speed is between 67 and 85 percent of the base FFS.

LOS C describes stable operations. The ability to maneuver and change lanes in midblock location may be more restricted than at LOS B. Longer queues at the boundary intersections may contribute to lower travel speeds. The travel speed is between 50 and 67 percent of the base FFS.

LOS D indicates a less stable condition in which small increases in flow may cause substantial increases in delay and decreases in travel speed. This operation may be due to adverse signal progression, high volumes, inappropriate signal timing, at the boundary intersections. The travel speed is between 40 and 50 percent of the base FFS.

LOS E is characterized unstable operation and significant delay. Such operations may be due to some combination of adverse progression, high volume, and inappropriate signal timing at the boundary intersections. The travel speed is between 30 and 40 percent of the base FFS.

LOS F is characterized by street flow at extremely low speed. Congestion is likely occurring at the boundary intersections, as indicated by high delay and extensive queuing. The travel speed is 30 percent or less of the base FFS.

Table A-1: Urban Street Levels of Service (Automobile Mode)

Travel Speed as a Percentage of Base Free-Flow Speed (\%)	LOS by Critical Volume-to-Capacity Ratio	
	≤ 1.0	>1.0
>85	A	F
>67 to 85	B	F
>50 to 67	C	F
>40 to 50	D	F
>30 to 40	E	F
≤ 30	F	F

$a=$ The Critical volume-to-capacity ratio is based on consideration of the through movement-to-capacity ratio at each boundary intersection in the subject direction of travel. The critical volume-to-capacity ratio is the largest ratio of those considered. Source: Highway Capacity Manual 2010, Exhibit 16-4. Urban Street LOS Criteria (Automobile Mode)

Intersection Levels of Service

One of the more important elements limiting, and often interrupting the flow of traffic on a highway is the intersection. Flow on an interrupted facility is usually dominated by points of fixed operation such as traffic signals, stop and yield signs.

Signalized Intersections - Performance Measures

For signalized intersections the performance measures include automobile volume-to-capacity ratio, automobile delay, queue storage length, ratio of pedestrian delay, pedestrian circulation area, pedestrian perception score, bicycle delay, and bicycle perception score. LOS is also considered a performance measure. For the automobile mode average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection. A LOS designation is given to the weighted average control delay to better describe the level of operation. A description of LOS for signalized intersections is found in Table A-2.

Table A-2: Signalized Intersection Level of Service Description (Automobile Mode)

	Description	Average Control Delay (seconds per vehicle)
A	Operations with a control delay of 10 seconds/vehicle or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when volume-to-capacity ratio is and either progression is exceptionally favorable or the cycle length is very short. If it's due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.	≤ 10
B	Operations with control delay between 10.1 to 20.0 seconds/vehicle and a volume-tocapacity ratio no greater than 1.0. This level is typically assigned when the volume-tocapacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.	$\begin{gathered} >10.0 \text { to } \\ 20.0 \end{gathered}$
C	Operations with average control delays between 20.1 to 35.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.	>20 to 35
D	Operations with control delay between 35.1 to 55.0 seconds/vehicle and a volume-tocapacity ratio no greater than 1.0. This level is typically assigned when the volume-tocapacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop, and i ndividual cycle failures are noticeable.	>35 to 55
E	Operations with control delay between 55.1 to 80.0 seconds/vehicle and a volume-tocapacity ratio no greater than 1.0. This level is typically assigned when the volume-tocapacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.	>55 to 80
F	Operations with unacceptable control delay exceeding 80.0 seconds/vehicle and a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.	>80

Source: Highway Capacity Manual 2010

Unsignalized Intersections

The HCM 2010 procedures use control delay as a measure of effectiveness to determine level of service. Delay is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, i. e., in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Control delay is the increased time of travel for a vehicle approaching and passing through an unsignalized intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection.
www.JLBtraffic.com
info@JLBtraffic.com

All-Way Stop Controlled Intersections

All-way stop controlled intersections is a form of traffic controls in which all approaches to an intersection are required to stop. Similar to signalized intersections, at all-way stop controlled intersections the average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection as a whole. In other words the delay measured for all-way stop controlled intersections is a measure of the average delay for all vehicles passing through the intersection during the peak hour. A LOS designation is given to the weighted average control delay to better describe the level of operation.

Two-Way Stop Controlled Intersections

Two-way stop controlled (TWSC) intersections in which stop signs are used to assign the right-of-way, are the most prevalent type of intersection in the United States. At TWSC intersections the stopcontrolled approaches are referred as the minor street approaches and can be either public streets or private driveways. The approaches that are not controlled by stop signs are referred to as the major street approaches.

The capacity of movements subject to delay are determined using the "critical gap" method of capacity analysis. Expected average control delay based on movement volume and movement capacity is calculated. A LOS for TWSC intersection is determined by the computed or measured control delay for each minor movement. LOS is not defined for the intersection as a whole for three main reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at the typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay from all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements. Table A-3 provides a description of LOS at unsignalized intersections.

Table A-3: Unsignalized Intersection Level of Service Description (Automobile Mode)

Control Delay (seconds per vehicle)	LOS by Volume-to-Capacity Ratio	
	$\mathbf{v / c} \leq \mathbf{1 . 0}$	$\mathbf{v / c}>\mathbf{1 . 0}$
≤ 10	A	F
>10 to 15	B	F
>15 to 25	C	F
>25 to 35	D	F
>35 to 50	E	F
>50	F	F

Source: HCM 2010 Exhibit 19-1.

Appendix E: Existing Traffic Conditions

www.JLBtraffic.com
info@JLBtraffic.com

Intersection						
Int Delay, s/veh	3.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			4	1	$\mathbf{7}$
Traffic Vol, veh/h	207	45	98	249	33	120
Future Vol, veh/h	207	45	98	249	33	120
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	241	52	114	290	38	140

Major/Minor	Major1	Major2					Minor1		
Conflicting Flow All	0	0	293	0	785				
\quad Stage 1	-	-	-	-	267				
\quad Stage 2	-	-	-	-	518				

HCM LOS B

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	431	769	-	-1263	-
HCM Lane V/C Ratio	0.089	0.181	-	-	0.09
HCM Control Delay (s)	14.2	10.7	-	-	-
HCM Lane LOS	B	B	-	-	A
HCM 95th \%tile Q(veh)	0.3	0.7	-	-	-
H.					

Intersection	
Intersection Delay, s/veh $\quad 22.4$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{*}$	F		${ }^{1}$	\uparrow		${ }^{*}$	F	
Traffic Vol, veh/h	10	132	8	132	150	31	18	117	148	41	192	23
Future Vol, veh/h	10	132	8	132	150	31	18	117	148	41	192	23
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	14	186	11	186	211	44	25	165	208	58	270	32
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	17.6			18.8			28.9			22.6		
HCM LOS	C			C			D			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thu, \%	0%	44%	0%	94%	0%	83%	0%	89%
Vol Right, \%	0%	56%	0%	6%	0%	17%	0%	11%
Sign Control	Stop							
Traffic Vol by Lane	18	265	10	140	132	181	41	215
LT Vol	18	0	10	0	132	0	41	0
Through Vol	0	117	0	132	0	150	0	192
RT Vol	0	148	0	8	0	31	0	23
Lane Flow Rate	25	373	14	197	186	255	58	303
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.059	0.76	0.035	0.458	0.435	0.552	0.135	0.66
Departure Headway (Hd)	8.345	7.455	8.928	8.368	8.428	7.789	8.434	7.841
Convergence, Y/N	Yes							
Cap	430	489	402	432	429	464	427	463
Service Time	6.074	5.155	6.659	6.098	6.145	5.505	6.152	5.558
HCM Lane V/C Ratio	0.058	0.763	0.035	0.456	0.434	0.55	0.136	0.654
HCM Control Delay	11.6	30.1	12	18	17.5	19.7	12.5	24.5
HCM Lane LOS	B	D	B	C	C	C	B	C
HCM 95th-tile Q	0.2	6.5	0.1	2.3	2.2	3.3	0.5	4.7

6: Cinnamon Drive \& Liberty Drive

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBT	WBT	WBR	SBL	
Lane Configurations	${ }^{7}$	4	个		${ }^{1}$	「
Traffic Vol, veh/h	120	212	204	65	46	79
Future Vol, veh/h	120	212	204	65	46	79
Conflicting Peds, \#/hr	2	0	0	2	3	8
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	115	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	68	68	68	68	68	68
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	176	312	300	96	68	116

Major/Minor	Major1	Major2			Minor2	
Conflicting Flow All	398	0	-	0	1017	358
\quad Stage 1	-	-	-	-	350	-
\quad Stage 2	-	-	-	-	667	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1155	-	-	-	262	684
\quad Stage 1	-	-	-	-	711	-
\quad Stage 2	-	-	-	-	508	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1153	-	-	-	221	677
Mov Cap-2 Maneuver	-	-	-	-	351	-
Stage 1	-	-	-	-	601	-
Stage 2	-	-	-	-	507	-

Approach	EB	WB	SB
HCM Control Delay, s	3.1	0	13.7
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1153	-	-	-	351	677
HCM Lane V/C Ratio	0.153	-	-	-0.193	0.172	
HCM Control Delay (s)	8.7	-	-	-	17.7	11.4
HCM Lane LOS	A	-	-	-	C	B
HCM 95th \%tile Q(veh)	0.5	-	-	-	0.7	0.6

Intersection						
Int Delay, s/veh	3.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			4	i	$\mathbf{7}$
Traffic Vol, veh/h	339	42	102	178	36	138
Future Vol, veh/h	339	42	102	178	36	138
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	357	44	107	187	38	145

Approach	EB	WB	NB
HCM Control Delay, s	0	3.1	12.3
HCM LOS		B	

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBT	EBR	WBL	WBT
Capacity (veh/h)	444	664	-	-1150	-	
HCM Lane V/C Ratio	0.085	0.219	-	-0.093	-	
HCM Control Delay (s)	13.9	11.9	-	-	8.5	-
HCM Lane LOS	B	B	-	-	A	-
HCM 95th \%tile Q(veh)	0.3	0.8	-	-	0.3	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 22.1 |
| Intersection LOS | C |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{*}$	F		${ }^{1}$	\uparrow		${ }^{*}$	F	
Traffic Vol, veh/h	27	129	42	99	119	42	48	155	184	28	118	23
Future Vol, veh/h	27	129	42	99	119	42	48	155	184	28	118	23
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	36	170	55	130	157	55	63	204	242	37	155	30
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	16.5			15.4			32.8			14.7		
HCM LOS	C			C			D			B		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thru, \%	0%	46%	0%	75%	0%	74%	0%	84%
Vol Right, \%	0%	54%	0%	25%	0%	26%	0%	16%
Sign Control	Stop							
Traffic Vol by Lane	48	339	27	171	99	161	28	141
LT Vol	48	0	27	0	99	0	28	0
Through Vol	0	155	0	129	0	119	0	118
RT Vol	0	184	0	42	0	42	0	23
Lane Flow Rate	63	446	36	225	130	212	37	186
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.135	0.84	0.082	0.476	0.295	0.438	0.085	0.394
Departure Headway (Hd)	7.678	6.778	8.306	7.614	8.149	7.448	8.271	7.638
Convergence, Y/N	Yes							
Cap	466	531	430	473	440	481	432	469
Service Time	5.441	4.54	6.082	5.389	5.924	5.222	6.05	5.416
HCM Lane VIC Ratio	0.135	0.84	0.084	0.476	0.295	0.441	0.086	0.397
HCM Control Delay	11.6	35.8	11.8	17.2	14.3	16	11.8	15.3
HCM Lane LOS	B	E	B	C	B	C	B	C
HCM 95th-tile Q	0.5	8.6	0.3	2.5	1.2	2.2	0.3	1.9

	Intersection					
Int Delay, s/veh 1.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{7}$	4	\uparrow		${ }^{1}$	「
Traffic Vol, veh/h	46	256	229	36	39	20
Future Vol, veh/h	46	256	229	36	39	20
Conflicting Peds, \#/hr	1	0	0	1	3	4
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	115	0
Veh in Median Storage, \#		0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	49	275	246	39	42	22

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	286	0	-	0	643	271	
Stage 1	-	-	-	-	267	-	
Stage 2	-	-	-	-	376	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-	3.527	3.327	
Pot Cap-1 Maneuver	1270	-	-	-	436	765	
Stage 1	-	-	-	-	775	-	
Stage 2	-	-	-	-	692	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1269	-	-	-	418	761	
Mov Cap-2 Maneuver	-	-	-	-	517	-	
Stage 1	-	-	-	-	744	-	
Stage 2	-	-	-	-	691	-	

Approach	EB	WB	SB
HCM Control Delay, s	1.2	0	11.7
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1269	-	-	-	517	761
HCM Lane V/C Ratio	0.039	-	-	-0.081	0.028	
HCM Control Delay (s)	8	-	-	-	12.6	9.9
HCM Lane LOS	A	-	-	-	B	A
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.3	0.1

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	22	76	52	98
Average Queue (ft)	1	25	20	43
95th Queue (ft)	7	61	46	71
Link Distance (ft)	1523			924
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	245	
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB	SB	SB
Directions Served	L	L	L	TR	L	TR
Maximum Queue (ft)	55	54	60	75	31	54
Average Queue (ft)	12	11	15	37	12	26
95th Queue (ft)	38	38	42	59	34	52
Link Distance (ft)				2740		2636
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	135	190	185		55	1
Storage Blk Time (\%)						0

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	31	105	79	77	31	198	68	117
Average Queue (ft)	10	45	41	45	15	69	28	61
95th Queue (ft)	33	74	65	68	40	126	53	99
Link Distance (ft)		2548		1262		995		384
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft$)$	100		100		100		100	
Storage Blk Time (\%)		0				3		1

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	WB	SB	SB
Directions Served	L	TR	L	R
Maximum Queue (ft)	93	31	51	64
Average Queue (ft)	24	2	25	31
95th Queue (ft)	60	14	45	46
Link Distance (ft)		1121		2740
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)	0			
Queuing Penalty (veh)	0			

Zone Summary

Zone wide Queuing Penalty: 1

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	WB	NB	NB
Directions Served	L	L	R
Maximum Queue (ft)	54	52	75
Average Queue (ft)	18	19	38
95th Queue (ft)	47	47	64
Link Distance (ft)			924
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	245	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB	SB	SB
Directions Served	L	L	L	TR	L	TR
Maximum Queue (ft)	31	31	25	50	31	90
Average Queue (ft)	1	10	1	18	7	27
95th Queue (ft)	10	32	8	43	26	61
Link Distance (ft)				2740		2636
Upstream Blk Time (\%)						
Queuing Penalty (veh)					55	
Storage Bay Dist (ft)	135	190	185			1
Storage Blk Time (\%)						0

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	31	56	79	97	55	115	50	67
Average Queue (ft)	16	40	46	43	25	71	21	43
95th Queue (ft)	41	66	66	69	53	106	46	62
Link Distance (ft)		2548		1262		995		384
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	100		100		100		100	
Storage Blk Time (\%)				0		1		
Queuing Penalty (veh)				0		0		

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	31	53	29
Average Queue (ft)	8	22	12
95th Queue (ft)	30	47	34
Link Distance (ft)			2740
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	100	115	
Storage Blk Time (\%)			

Zone Summary

Zone wide Queuing Penalty: 1

Appendix F: Existing plus Project Traffic Conditions

Intersection						

Major/Minor	Minor2	Major1 Major2					
Conflicting Flow All	1151		476	0	-	0	
Stage 1	416	-	-	-	-	-	
Stage 2	735	-	-	-	-	-	
Critical Hdwy	6.43	-	4.13	-	-	-	
Critical Hdwy Stg 1	5.43	-	-	-	-	-	
Critical Hdwy Stg 2	5.43	-	-	-	-	-	
Follow-up Hdwy	3.527		2.227	-	-	-	
Pot Cap-1 Maneuver	218		1081	-	-	-	
Stage 1	664	0	-	-	-	-	
Stage 2	473	0	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	169	-	1081	-	-	-	
Mov Cap-2 Maneuver	169	-	-	-	-	-	
Stage 1	513		-	-	-	-	
Stage 2	473		-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	28.9		3.4		0		
HCM LOS	D						
Minor Lane/Major Mvm		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		1081	-	169	-	-	
HCM Lane V/C Ratio		0.185	-	0.108	-	-	
HCM Control Delay (s)		9.1	0	28.9	-	-	
HCM Lane LOS		A	A	D	-	-	
HCM 95th \%tile Q(veh)		0.7	-	0.4	-	-	

Intersection						

Major/Minor	Minor2	Major1					Major2
Conflicting Flow All	849	358	358	0	-		
\quad Stage 1	358	-	-	-	-		
\quad Stage 2	491	-	-	-			
Critical Hdwy	6.43	6.23	4.13	-	-		

Approach	EB	NB	SB
HCM Control Delay, s	24.2	0.6	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1195	-466	-	-	
HCM Lane V/C Ratio	0.029	-0.614	-	-	
HCM Control Delay (s)	8.1	0	24.2	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.1	-	4	-	-

Intersection	
Intersection Delay, s/veh $\quad 50.3$	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		${ }^{7}$	F		*	\uparrow		7	\uparrow	
Traffic Vol, veh/h	108	132	8	132	150	97	18	120	148	80	252	45
Future Vol, veh/h	108	132	8	132	150	97	18	120	148	80	252	45
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mumt Flow	152	186	11	186	211	137	25	169	208	113	355	63
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	21.7			38			57.4			76.2		
HCM LOS	C			E			F			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thư, \%	0%	45%	0%	94%	0%	61%	0%	85%
Vol Right, \%	0%	55%	0%	6%	0%	39%	0%	15%
Sign Control	Stop							
Traffic Vol by Lane	18	268	108	140	132	247	80	297
LT Vol	18	0	108	0	132	0	80	0
Through Vol	0	120	0	132	0	150	0	252
RT Vol	0	148	0	8	0	97	0	45
Lane Flow Rate	25	377	152	197	186	348	113	418
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.069	0.934	0.424	0.52	0.496	0.853	0.305	1.059
Departure Headway (Hd)	10.003	9.074	10.397	9.828	9.938	9.126	9.745	9.111
Convergence, Y/N	Yes							
Cap	360	404	348	369	364	400	372	402
Service Time	7.703	6.774	8.097	7.528	7.638	6.826	7.414	6.78
HCM Lane V/C Ratio	0.069	0.933	0.437	0.534	0.511	0.87	0.304	1.04
HCM Control Delay	13.4	60.4	20.5	22.7	22	46.6	16.6	92.2
HCM Lane LOS	B	F	C	C	C	E	C	F
HCM 95th-tile Q	0.2	10.3	2	2.9	2.6	8.2	1.3	14.1

Major/Minor \quad a	Major1		Major2		Minor2		
Conflicting Flow All	435	0	-	0	- 1117	395	
Stage 1	-	-	-	-	387	-	
Stage 2	-	-	-	-	730	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-		5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-	3.527	3.327	
Pot Cap-1 Maneuver	1119	-	-	-	228	652	
Stage 1	-	-	-		684	-	
Stage 2	-	-	-		475	-	
Platoon blocked, \%		-	-	-	-		
Mov Cap-1 Maneuver	1117	-	-	-	190	646	
Mov Cap-2 Maneuver		-	-		322	-	
Stage 1	-		-		571	-	
Stage 2	-	-	-		- 474	-	
Approach	EB		WB		SB		
HCM Control Delay, s	3		0		14.4		
HCM LOS					B		
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)		1117	-	-	- -	322	646
HCM Lane V/C Ratio		0.163	-	-	- -	0.21	0.237
HCM Control Delay (s)		8.9	-	-	- -	19.1	12.3
HCM Lane LOS		A	-	-	- -	C	B
HCM 95th \%tile Q(veh)		0.6	-	-	- -	0.8	0.9

Intersection						
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			4	d	$\mathbf{7}$
Traffic Vol, veh/h	339	43	103	178	42	157
Future Vol, veh/h	339	43	103	178	42	157
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	357	45	108	187	44	165

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{4}$	F		${ }^{7}$	F	
Traffic Vol, veh/h	26	443	42	29	271	8	3	8	19	16	25	36
Future Vol, veh/h	26	443	42	29	271	8	3	8	19	16	25	36
Conflicting Peds, \#/hr	0	0	7	7	0	0	0	0	1	1	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	135	-	-	190	-	-	185	-	-	55	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	27	461	44	30	282	8	3	8	20	17	26	38

Intersection						

Approach	EB	NB	SB
HCM Control Delay, s	11.8	0.1	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1324	-611	-	-	
HCM Lane V/C Ratio	0.005	-0.136	-	-	
HCM Control Delay (s)	7.7	0	11.8	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.5	-	-

Intersection	
Intersection Delay, s/veh $\quad 25$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		7	\uparrow		${ }^{7}$	\uparrow		${ }^{*}$	个	
Traffic Vol, veh/h	47	129	42	99	119	57	48	156	184	39	135	29
Future Vol, veh/h	47	129	42	99	119	57	48	156	184	39	135	29
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	62	170	55	130	157	75	63	205	242	51	178	38
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	17.2			16.9			39.4			16.7		
HCM LOS	C			C			E			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100\%	0\%	100\%	0\%	100\%	0\%	100\%	0\%
Vol Thru, \%	0\%	46\%	0\%	75\%	0\%	68\%	0\%	82\%
Vol Right, \%	0\%	54\%	0\%	25\%	0\%	32\%	0\%	18\%
Sign Control	Stop							
Traffic Vol by Lane	48	340	47	171	99	176	39	164
LT Vol	48	0	47	0	99	0	39	0
Through Vol	0	156	0	129	0	119	0	135
RT Vol	0	184	0	42	0	57	0	29
Lane Flow Rate	63	447	62	225	130	232	51	216
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.141	0.884	0.148	0.496	0.307	0.497	0.122	0.474
Departure Headway (Hd)	8.014	7.112	8.629	7.935	8.478	7.728	8.547	7.902
Convergence, Y/N	Yes							
Cap	446	506	414	452	422	463	417	453
Service Time	5.794	4.891	6.427	5.731	6.273	5.522	6.345	5.7
HCM Lane VIC Ratio	0.141	0.883	0.15	0.498	0.308	0.501	0.122	0.477
HCM Control Delay	12.1	43.3	12.9	18.4	15	18	12.5	17.7
HCM Lane LOS	B	E	B	C	B	C	B	C
HCM 95th-tile Q	0.5	9.8	0.5	2.7	1.3	2.7	0.4	2.5

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	293	0	-	0	665	278
\quad Stage 1	-	-	-	-	274	-
Stage 2	-	-	-	-	391	-
Critical Hdwy	4.13	-	-	-6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-5.43	-	
Follow-up Hdwy	2.227	-	-	-3.527	3.327	
Pot Cap-1 Maneuver	1263	-	-	-	424	758
\quad Stage 1	-	-	-	-	770	-
\quad Stage 2	-	-	-	-	681	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1262	-	-	-	406	754
Mov Cap-2 Maneuver	-	-	-	-	508	-
Stage 1	-	-	-	-	738	-
Stage 2	-	-	-	-	680	-

Approach	EB	WB	SB
HCM Control Delay, s	1.2	0	11.6
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1262	-	-	-	508
754					
HCM Lane V/C Ratio	0.04	-	-	-0.083	0.037
HCM Control Delay (s)	8	-	-	-	12.7
HCM Lane LOS	A	-	-	-	10
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.3

Intersection	
Intersection Delay, s/veh	33
Intersection LOS	D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\hat{}$		7	\uparrow	F	\%	\uparrow	F'	${ }^{7}$	\uparrow	F
Traffic Vol, veh/h	108	132	8	132	150	97	18	120	148	80	252	45
Future Vol, veh/h	108	132	8	132	150	97	18	120	148	80	252	45
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	152	186	11	186	211	137	25	169	208	113	355	63
Number of Lanes	1	1	0	1	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	23.6			23.5			23.3			56.1		
HCM LOS	C			C			C			F		

| Lane | NBLn1 | NBLn2 | NBLn3 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | SBLn1 | SBLn2 | SBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | 100% | 0% | 0% | 100% | 0% | 100% | 0% | 0% | 100% | 0% | 0% |
| Vol Thu, $\%$ | 0% | 100% | 0% | 0% | 94% | 0% | 100% | 0% | 0% | 100% | 0% |
| Vol Right, $\%$ | 0% | 0% | 100% | 0% | 6% | 0% | 0% | 100% | 0% | 0% | 100% |
| Sign Control | Stop |
| Traffic Vol by Lane | 18 | 120 | 148 | 108 | 140 | 132 | 150 | 97 | 80 | 252 | 45 |
| LT Vol | 18 | 0 | 0 | 108 | 0 | 132 | 0 | 0 | 80 | 0 | 0 |
| Through Vol | 0 | 120 | 0 | 0 | 132 | 0 | 150 | 0 | 0 | 252 | 0 |
| RT Vol | 0 | 0 | 148 | 0 | 8 | 0 | 0 | 97 | 0 | 0 | 45 |
| Lane Flow Rate | 25 | 169 | 208 | 152 | 197 | 186 | 211 | 137 | 113 | 355 | 63 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 0.077 | 0.492 | 0.564 | 0.451 | 0.555 | 0.543 | 0.588 | 0.353 | 0.328 | 0.983 | 0.163 |
| Departure Headway (Hd) | 10.993 | 10.475 | 9.749 | 10.667 | 10.127 | 10.524 | 10.012 | 9.294 | 10.489 | 9.973 | 9.25 |
| Convergence, Y/N | Yes |
| Cap | 326 | 345 | 3311 | 338 | 357 | 344 | 361 | 387 | 344 | 366 | 388 |
| Service Time | 8.749 | 8.23 | 7.504 | 8.417 | 7.877 | 8.276 | 7.763 | 7.045 | 8.24 | 7.724 | 7 |
| HCM Lane V/C Ratio | 0.077 | 0.49 | 0.561 | 0.45 | 0.552 | 0.541 | 0.584 | 0.354 | 0.328 | 0.97 | 0.162 |
| HCM Control Delay | 14.7 | 23 | 24.5 | 21.9 | 24.9 | 25.2 | 26.2 | 17.1 | 18.3 | 75.6 | 13.8 |
| HCM Lane LOS | B | C | C | C | C | D | D | C | C | F | B |
| HCM 95th-tile Q | 0.2 | 2.6 | 3.3 | 2.2 | 3.2 | 3.1 | 3.6 | 1.6 | 1.4 | 11.1 | 0.6 |

Mitigated
JLB Traffic Engineering, Inc.

Intersection	
Intersection Delay, s/veh $\quad 16.1$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	1		\%	\uparrow	F	${ }^{7}$	\uparrow	「	\%	\uparrow	F
Traffic Vol, veh/h	47	129	42	99	119	57	48	156	184	39	135	29
Future Vol, veh/h	47	129	42	99	119	57	48	156	184	39	135	29
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	62	170	55	130	157	75	63	205	242	51	178	38
Number of Lanes	1	1	0	1	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	17.6			14.8			16.4			15.7		
HCM LOS	C			B			C			C		

| Lane | NBLn1 | NBLn2 | NBLn3 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | SBLn1 | SBLn2 | SBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | 100% | 0% | 0% | 100% | 0% | 100% | 0% | 0% | 100% | 0% | 0% |
| Vol Thu, $\%$ | 0% | 100% | 0% | 0% | 75% | 0% | 100% | 0% | 0% | 100% | 0% |
| Vol Right, $\%$ | 0% | 0% | 100% | 0% | 25% | 0% | 0% | 100% | 0% | 0% | 100% |
| Sign Control | Stop |
| Traffic Vol by Lane | 48 | 156 | 184 | 47 | 171 | 99 | 119 | 57 | 39 | 135 | 29 |
| LT Vol | 48 | 0 | 0 | 47 | 0 | 99 | 0 | 0 | 39 | 0 | 0 |
| Through Vol | 0 | 156 | 0 | 0 | 129 | 0 | 119 | 0 | 0 | 135 | 0 |
| RT Vol | 0 | 0 | 184 | 0 | 42 | 0 | 0 | 57 | 0 | 0 | 29 |
| Lane Flow Rate | 63 | 205 | 242 | 62 | 225 | 130 | 157 | 75 | 51 | 178 | 38 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 0.148 | 0.453 | 0.486 | 0.15 | 0.503 | 0.316 | 0.358 | 0.157 | 0.129 | 0.42 | 0.083 |
| Departure Headway (Hd) | 8.457 | 7.948 | 7.234 | 8.721 | 8.049 | 8.728 | 8.222 | 7.513 | 9.016 | 8.504 | 7.789 |
| Convergence, Y/N | Yes |
| Cap | 423 | 452 | 496 | 409 | 446 | 410 | 435 | 475 | 396 | 421 | 457 |
| Service Time | 6.245 | 5.735 | 5.021 | 6.509 | 5.837 | 6.519 | 6.013 | 5.304 | 6.812 | 6.301 | 5.585 |
| HCM Lane V/C Ratio | 0.149 | 0.454 | 0.488 | 0.152 | 0.504 | 0.317 | 0.361 | 0.158 | 0.129 | 0.423 | 0.083 |
| HCM Control Delay | 12.7 | 17.2 | 16.7 | 13.1 | 18.8 | 15.5 | 15.6 | 11.7 | 13.2 | 17.4 | 11.3 |
| HCM Lane LOS | B | C | C | B | C | C | C | B | B | C | B |
| HCM 95th-tile Q | 0.5 | 2.3 | 2.6 | 0.5 | 2.8 | 1.3 | 1.6 | 0.6 | 0.4 | 2 | 0.3 |

Mitigated
JLB Traffic Engineering, Inc.

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	WB	NB	NB
Directions Served	L	L	R
Maximum Queue (ft)	73	78	75
Average Queue (ft)	23	36	45
95th Queue (ft)	57	63	68
Link Distance (ft)			947
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	245	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	L	TR	L	TR
Maximum Queue (ft)	52	22	110	71	72	50	76
Average Queue (ft)	12	1	15	13	31	16	24
95th Queue (ft)	41	7	54	39	51	42	55
Link Distance (ft)		1257			2741		2631
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	135		190	185		55	
Storage Blk Time (\%)						1	1
Queuing Penalty (veh)						0	0

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB	SB
Directions Served	L	LT	TR
Maximum Queue (ft)	31	115	20
Average Queue (ft)	13	36	1
95th Queue (ft)	37	78	7
Link Distance (ft)	181	283	677
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	106	68
Average Queue (tt)	61	6
95th Queue (tt)	95	32
Link Distance (ft)	193	362
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	91	64	70	71	68	65	76	112	66	166	42
Average Queue (ft)	40	34	35	37	28	14	42	44	31	61	14
95th Queue (ft)	71	62	63	64	56	45	68	74	57	110	36
Link Distance (ft)		2524		1242			1008			362	
Upstream Blk Time (\%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100		100		250	100		250	100		250
Storage Blk Time (\%)	0									2	
Queuing Penalty (veh)	0									3	

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	WB	SB	SB
Directions Served	L	TR	L	R
Maximum Queue (t)	54	54	87	76
Average Queue (t)	23		26	34
95th Queue (t)	54	22	57	53
Link Distance (t)		1125		2741
Upstream BIk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (t)	100		115	
Storage Blk Time (\%)				
Queuing Penalty (veh)				
Network Summary				
Network wide Queuin				

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	WB	NB	NB
Directions Served	L	L	R
Maximum Queue (ft)	116	77	79
Average Queue (ft)	34	26	42
95th Queue (ft)	73	60	64
Link Distance (ft)			947
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	245	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	L	TR	L	TR
Maximum Queue (ft)	31	54	54	25	29	53	71
Average Queue (ft)	7	2	8	2	12	12	30
95th Queue (ft)	26	18	32	14	34	36	58
Link Distance (ft)		1257			2748		2626
Upstream Blk Time (\%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	135		190	185		55	
Storage Blk Time (\%)						0	1
Queuing Penalty (veh)						0	0

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB
Directions Served	L	LT
Maximum Queue (ft)	31	53
Average Queue (ft)	4	5
95th Queue (ft)	21	27
Link Distance (ft)	181	288
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB
Directions Served	LR
Maximum Queue (ft)	58
Average Queue (ft)	32
95th Queue (ft)	53
Link Distance (ft)	196
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	45	84	50	66	44	75	91	122	52	74	38
Average Queue (ft)	19	39	31	36	15	24	44	55	24	44	15
95th Queue (ft)	36	71	48	64	32	53	69	90	45	71	32
Link Distance (ft)		2529		1233			1006			359	
Upstream Blk Time (\%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100		100		250	100		250	100		250
Storage Blk Time (\%)		0					0				
Queuing Penalty (veh)		0					0				

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	WB	SB	SB
Directions Served	L	TR	L	R
Maximum Queue (t)	70	22	54	30
Average Queue (t)	15	1	23	18
95th Queue (t)	45	7	45	40
Link Distance (t)		1129		2748
Upstream BIk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (t)	100		115	
Storage Blk Time (\%)				
Queuing Penalty (veh)				
Network Summary				
Network wide Queuin				

Appendix G: Near Term Year 2023 plus Project Traffic Conditions

Intersection						
Int Delay, s/veh	5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}			4	T	$\mathbf{7}$
Traffic Vol, veh/h	272	76	128	328	89	196
Future Vol, veh/h	272	76	128	328	89	196
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	316	88	149	381	103	228

Approach	EB	WB	NB	SB
HCM Control Delay, s	1.2	0.8	29.4	95.9
HCM LOS			D	F

Intersection						

Intersection						

Major/Minor	Minor2		Major1	Major2			
Conflicting Flow All	969	424	424	0	-	0	
Stage 1	424		-	-	-	-	
Stage 2	545		-	-	-	-	
Critical Hdwy	6.43	6.23	4.13	-	-	-	
Critical Hdwy Stg 1	5.43	-	-	-	-	-	
Critical Hdwy Stg 2	5.43	-	-	-	-	-	
Follow-up Hdwy	3.527	3.327	2.227	-	-	-	
Pot Cap-1 Maneuver	280	628	1130	-	-	-	
Stage 1	658	-	-	-	-	-	
Stage 2	579	-	-	-	-	-	
Platoon blocked, \%				-	-	-	-
Mov Cap-1 Maneuver	268	628	1130	-	-	-	
Mov Cap-2 Maneuver	268	-	-	-	-	-	
Stage 1	630	-	-	-	-	-	
Stage 2	579	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, S	32.2	0.6	0
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1130	-407	-	-	
HCM Lane V/C Ratio	0.031	-0.702	-	-	
HCM Control Delay (s)	8.3	0	32.2	-	-
HCM Lane LOS	A	A	D	-	-
HCM 95th \%tile Q(veh)	0.1	-	5.3	-	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh $\quad 69.1$ | |
| Intersection LOS | F |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{*}$	$\hat{\beta}$		${ }^{*}$	$\hat{\beta}$		${ }^{1}$	F	
Traffic Vol, veh/h	117	137	10	138	152	107	19	139	151	90	277	57
Future Vol, veh/h	117	137	10	138	152	107	19	139	151	90	277	57
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	165	193	14	194	214	151	27	196	213	127	390	80
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	23.9			45.7			77.4			113		
HCM LOS	C			E			F			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thru, \%	0%	48%	0%	93%	0%	59%	0%	83%
Vol Right, \%	0%	52%	0%	7%	0%	41%	0%	17%
Sign Control	Stop							
Traffic Vol by Lane	19	290	117	147	138	259	90	334
LT Vol	19	0	117	0	138	0	90	0
Through Vol	0	139	0	137	0	152	0	277
RT Vol	0	151	0	10	0	107	0	57
Lane Flow Rate	27	408	165	207	194	365	127	470
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.073	1.016	0.466	0.554	0.526	0.908	0.343	1.193
Departure Headway (Hd)	10.365	9.456	10.813	10.233	10.345	9.514	10.014	9.364
Convergence, Y/N	Yes							
Cap	348	388	336	354	352	383	361	390
Service Time	8.065	7.156	8.513	7.933	8.045	7.214	7.714	7.064
HCM Lane V/C Ratio	0.078	1.052	0.491	0.585	0.551	0.953	0.352	1.205
HCM Control Delay	13.9	81.6	22.6	24.9	24	57.2	17.9	138.6
HCM Lane LOS	B	F	C	C	C	F	C	F
HCM 95th-tile Q	0.2	12.4	2.4	3.2	2.9	9.4	1.5	18.5

Intersection						

Intersection						
Int Delay, s/veh	4.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}			4	1	$\mathbf{7}$
Traffic Vol, veh/h	429	75	124	258	75	190
Future Vol, veh/h	429	75	124	258	75	190
Conflicting Peds, \#/hr	0	1	1	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	452	79	131	272	79	200

Intersection												
Int Delay, s/veh	4.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	81	511	42	29	340	51	3	19	19	42	31	68
Future Vol, veh/h	81	511	42	29	340	51	3	19	19	42	31	68
Conflicting Peds, \#/hr	0	0	7	7	0	0	0	0	1	1	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	135	-	-	190	-	-	185	-	-	55	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	84	532	44	30	354	53	3	20	20	44	32	71

Intersection						

Intersection						

Major/Minor	Minor2	Major1		Major2	
Conflicting Flow All	757	311	311	0	-
\quad Stage 1	311	-	-	-	-
\quad Stage 2	446	-	-	-	
Critical Hdwy	6.43	6.23	4.13	-	-

Approach	EB	NB	SB
HCM Control Delay, s	13.2	0.1	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1244	-523	-	-	
HCM Lane V/C Ratio	0.006	-0.159	-	-	
HCM Control Delay (s)	7.9	0	13.2	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.6	-	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 41.7 |
| Intersection LOS | E |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{7}$	$\hat{\dagger}$		${ }^{7}$	$\hat{\beta}$		${ }^{*}$	$\hat{\beta}$	
Traffic Vol, veh/h	61	132	44	105	127	66	52	187	193	51	165	40
Future Vol, veh/h	61	132	44	105	127	66	52	187	193	51	165	40
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	80	174	58	138	167	87	68	246	254	67	217	53
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	19.5			20.1			80.3			22.2		
HCM LOS	C			C			F			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thru, \%	0%	49%	0%	75%	0%	66%	0%	80%
Vol Right, \%	0%	51%	0%	25%	0%	34%	0%	20%
Sign Control	Stop							
Traffic Vol by Lane	52	380	61	176	105	193	51	205
LT Vol	52	0	61	0	105	0	51	0
Through Vol	0	187	0	132	0	127	0	165
RT Vol	0	193	0	44	0	66	0	40
Lane Flow Rate	68	500	80	232	138	254	67	270
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.163	1.071	0.202	0.538	0.341	0.573	0.165	0.621
Departure Headway (Hd)	8.595	7.711	9.473	8.769	9.292	8.522	9.21	8.547
Convergence, Y/N	Yes							
Cap	419	475	381	415	390	427	392	426
Service Time	6.307	5.423	7.173	6.469	6.992	6.222	6.91	6.247
HCM Lane VIC Ratio	0.162	1.053	0.21	0.559	0.354	0.595	0.171	0.634
HCM Control Delay	13	89.5	14.6	21.2	16.7	22	13.7	24.3
HCM Lane LOS	B	F	B	C	C	C	B	C
HCM 95th-tile Q	0.6	15.9	0.7	3.1	1.5	3.5	0.6	4.1

Intersection	
Intersection Delay，s／veh	34.1
Intersection LOS	D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	㻢		${ }^{*}$	4	「	${ }^{7}$	4	「	${ }^{7}$	4	「
Traffic Vol，veh／h	72	428	21	38	362	32	19	14	96	58	31	71
Future Vol，veh／h	72	428	21	38	362	32	19	14	96	58	31	71
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles，\％	3	3	3	3	3	3	3	3	3	3	3	3
Mumt Flow	92	549	27	49	464	41	24	18	123	74	40	91
Number of Lanes	1	2	0	1	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			3		
HCM Control Delay	24.4			59.4			13.9			13.4		
HCM LOS	C			F			B			B		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left，\％	100%	0%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru，\％	0%	100%	0%	0%	100%	87%	0%	100%	0%	0%	100%
Vol Right，\％	0%	0%	100%	0%	0%	13%	0%	0%	100%	0%	0%
Sign Control	Stop										
Traffic Vol by Lane	19	14	96	72	285	164	38	362	32	58	31
LT Vol	19	0	0	72	0	0	38	0	0	58	0
Through Vol	0	14	0	0	285	143	0	362	0	0	31
RT Vol	0	0	96	0	0	21	0	0	32	0	0
Lane Flow Rate	24	18	123	92	366	210	49	464	41	74	40
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.064	0.045	0.283	0.208	0.773	0.438	0.111	0.996	0.08	0.193	0.098
Departure Headway（Hd）	9.476	8.976	8.276	8.109	7.609	7.519	8.225	7.725	7.025	9.34	8.84
Convergence，Y／N	Yes										
Cap	377	397	432	441	476	478	435	469	508	383	404
Service Time	7.265	6.765	6.065	5.88	5.38	5.29	5.994	5.494	4.794	7.124	6.624
HCM Lane VIC Ratio	0.064	0.045	0.285	0.209	0.769	0.439	0.113	0.989	0.081	0.193	0.099
HCM Control Delay	12.9	12.2	14.3	13	32	16.1	12	68.7	10.4	14.4	12.6
HCM Lane LOS	B	B	B	B	D	C	B	F	B	B	B
HCM 95th－tile Q	0.2	0.1	1.1	0.8	6.8	2.2	0.4	13	0.3	0.7	0.3

Mitigated
JLB Traffic Engineering，Inc．

Intersection						

	4			7			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	$\hat{\beta}$		\%	$\hat{\beta}$		${ }^{7}$	\uparrow	
Traffic Volume (veh/h)	117	137	10	138	152	107	19	139	151	90	277	57
Future Volume (veh/h)	117	137	10	138	152	107	19	139	151	90	277	57
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	165	193	14	194	214	151	27	196	213	127	390	80
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	205	420	30	237	266	188	51	231	252	161	518	106
Arrive On Green	0.12	0.25	0.25	0.13	0.26	0.26	0.03	0.28	0.28	0.09	0.35	0.35
Sat Flow, veh/h	1767	1708	124	1767	1007	711	1767	813	884	1767	1491	306
Grp Volume(v), veh/h	165	0	207	194	0	365	27	0	409	127	0	470
Grp Sat Flow(s),veh/h/ln	1767	0	1832	1767	0	1718	1767	0	1697	1767	0	1797
Q Serve(g_s), s	6.6	0.0	6.9	7.7	0.0	14.3	1.1	0.0	16.4	5.1	0.0	16.7
Cycle Q Clear (g_c), s	6.6	0.0	6.9	7.7	0.0	14.3	1.1	0.0	16.4	5.1	0.0	16.7
Prop In Lane	1.00		0.07	1.00		0.41	1.00		0.52	1.00		0.17
Lane Grp Cap(c), veh/h	205	0	450	237	0	454	51	0	483	161	0	624
V/C Ratio(X)	0.80	0.00	0.46	0.82	0.00	0.80	0.53	0.00	0.85	0.79	0.00	0.75
Avail Cap(c_a), veh/h	289	0	686	338	0	690	122	0	653	240	0	812
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.1	0.0	23.1	30.4	0.0	24.8	34.6	0.0	24.3	32.1	0.0	20.8
Incr Delay (d2), s/veh	10.6	0.0	0.7	10.1	0.0	4.1	8.2	0.0	7.7	9.8	0.0	2.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	3.3	0.0	2.9	3.8	0.0	5.9	0.6	0.0	7.1	2.5	0.0	6.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	41.7	0.0	23.9	40.4	0.0	28.9	42.7	0.0	32.0	41.9	0.0	23.8
LnGrp LOS	D	A	C	D	A	C	D	A	C	D	A	C
Approach Vol, veh/h		372			559			436			597	
Approach Delay, s/veh		31.8			32.9			32.7			27.6	
Approach LOS		C			C			C			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($G+Y+R \mathrm{C})$, s	10.8	25.1	13.9	22.3	6.3	29.6	12.6	23.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	*4.2	4.6	* 4.2	4.6	* 4.2	4.6	* 4.2	4.6				
Max Green Setting (Gmax), s	* 9.8	27.8	*14	27.0	*5	32.6	*12	29.0				
Max Q Clear Time (g_c+1), s	7.1	18.4	9.7	8.9	3.1	18.7	8.6	16.3				
Green Ext Time (p_c), s	0.1	1.7	0.2	1.0	0.0	2.5	0.1	1.8				
Intersection Summary												
HCM 6th Ctrl Delay			31.0									
HCM 6th LOS			C									
Notes												

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection		
Intersection Delay，s／veh	16.2	
Intersection LOS	C	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {F }}$		＊	个	「	${ }^{7}$	4	「	${ }^{*}$	4	「
Traffic Vol，veh／h	81	511	42	29	340	51	3	19	19	42	31	68
Future Vol，veh／h	81	511	42	29	340	51	3	19	19	42	31	68
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles，\％	3	3	3	3	3	3	3	3	3	3	3	3
Mumt Flow	84	532	44	30	354	53	3	20	20	44	32	71
Number of Lanes	1	2	0	1	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			3		
HCM Control Delay	15.9			19			10.7			11.1		
HCM LOS	C			C			B			B		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left，\％	100%	0%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru，\％	0%	100%	0%	0%	100%	80%	0%	100%	0%	0%	100%
Vol Right，\％	0%	0%	100%	0%	0%	20%	0%	0%	100%	0%	0%
Sign Control	Stop										
Traffic Vol by Lane	3	19	19	81	341	212	29	340	51	42	31
LT Vol	3	0	0	81	0	0	29	0	0	42	0
Through Vol	0	19	0	0	341	170	0	340	0	0	31
RT Vol	0	0	19	0	0	42	0	0	51	0	0
Lane Flow Rate	3	20	20	84	355	221	30	354	53	44	32
Geometry Grp	8	8	8	8	8	8	8	8	8	8	8
Degree of Util（X）	0.007	0.043	0.04	0.16	0.623	0.38	0.06	0.654	0.088	0.098	0.068
Departure Headway（Hd）	8.39	7.89	7.19	6.817	6.317	6.178	7.151	6.651	5.951	8.093	7.593
Convergence，Y／N	Yes										
Cap	424	451	494	525	571	579	499	542	599	441	470
Service Time	6.187	5.687	4.987	4.576	4.076	3.937	4.915	4.415	3.715	5.877	5.377
HCM Lane VIC Ratio	0.007	0.044	0.04	0.16	0.622	0.382	0.06	0.653	0.088	0.1	0.068
HCM Control Delay	11.2	11	10.3	10.9	19	12.7	10.4	21.2	9.3	11.8	10.9
HCM Lane LOS	B	B	B	B	C	B	B	C	A	B	B
HCM 95th－tile Q	0	0.1	0.1	0.6	4.3	1.8	0.2	4.7	0.3	0.3	0.2

Mitigated
JLB Traffic Engineering，Inc．

Intersection						

	4			7			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	$\hat{\beta}$		*	\uparrow		${ }^{7}$	$\hat{\beta}$		${ }^{7}$	\uparrow	
Traffic Volume (veh/h)	61	132	44	105	127	66	52	187	193	51	165	40
Future Volume (veh/h)	61	132	44	105	127	66	52	187	193	51	165	40
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	80	174	58	138	167	87	68	246	254	67	217	53
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	111	249	83	176	257	134	102	292	301	101	502	123
Arrive On Green	0.06	0.19	0.19	0.10	0.22	0.22	0.06	0.35	0.35	0.06	0.35	0.35
Sat Flow, veh/h	1767	1329	443	1767	1148	598	1767	836	863	1767	1440	352
Grp Volume(v), veh/h	80	0	232	138	0	254	68	0	500	67	0	270
Grp Sat Flow(s),veh/h/ln	1767	0	1772	1767	0	1746	1767	0	1699	1767	0	1792
Q Serve(g_s), s	2.5	0.0	7.0	4.4	0.0	7.6	2.2	0.0	15.6	2.1	0.0	6.6
Cycle Q Clear (g_c), s	2.5	0.0	7.0	4.4	0.0	7.6	2.2	0.0	15.6	2.1	0.0	6.6
Prop In Lane	1.00		0.25	1.00		0.34	1.00		0.51	1.00		0.20
Lane Grp Cap(c), veh/h	111	0	331	176	0	391	102	0	593	101	0	624
V/C Ratio(X)	0.72	0.00	0.70	0.78	0.00	0.65	0.67	0.00	0.84	0.66	0.00	0.43
Avail Cap(c_a), veh/h	154	0	835	241	0	908	154	0	818	154	0	863
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.4	0.0	21.8	25.2	0.0	20.2	26.5	0.0	17.2	26.5	0.0	14.3
Incr Delay (d2), s/veh	9.5	0.0	2.7	11.1	0.0	1.8	7.3	0.0	5.9	7.2	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.3	0.0	2.9	2.2	0.0	2.9	1.0	0.0	6.1	1.0	0.0	2.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.9	0.0	24.5	36.3	0.0	22.0	33.7	0.0	23.1	33.7	0.0	14.8
LnGrp LOS	D	A	C	D	A	C	C	A	C	C	A	B
Approach Vol, veh/h		312			392			568			337	
Approach Delay, s/veh		27.4			27.0			24.4			18.5	
Approach LOS		C			C			C			B	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	7.5	24.6	9.9	15.3	7.5	24.6	7.8	17.4				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	* 4.2	4.6	* 4.2	4.6	* 4.2	4.6	* 4.2	4.6				
Max Green Setting (Gmax), s	* 5	27.6	* 7.8	27.0	* 5	27.6	*5	29.8				
Max Q Clear Time (g_c+1), s	4.1	17.6	6.4	9.0	4.2	8.6	4.5	9.6				
Green Ext Time (p_c), s	0.0	2.3	0.0	1.2	0.0	1.4	0.0	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			24.4									
HCM 6th LOS			C									
Notes												

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	WB	NB	NB
Directions Served	L	L	R
Maximum Queue (ft)	54	105	74
Average Queue (tt)	31	43	47
95th Queue (tt)	60	83	72
Link Distance (tt)			934
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (tt)	250	245	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	51	72	93	62	112	57	53	31	89	26	39	65
Average Queue (ft)	29	43	44	21	68	14	20	9	37	18	13	19
95th Queue (ft)	45	66	77	47	101	33	46	32	63	32	31	38
Link Distance (ft)		1245	1245		1585			2742			2619	
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	135			190		250	185		250	55		250
Storage Blk Time (\%)											0	
Queuing Penalty (veh)											0	

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB	SB
Directions Served	L	L	TR
Maximum Queue (ft)	31	75	22
Average Queue (ft)	12	30	1
95th Queue (ft)	37	66	7
Link Distance (ft)	175		677
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		250	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	163	51
Average Queue (ft)	68	5
95th Queue (ft)	121	25
Link Distance (ft)	187	368
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	164	185	200	232	68	273	180	222
Average Queue (ft)	79	89	78	110	18	109	66	123
95th Queue (ft)	135	153	137	199	50	203	119	202
Link Distance (ft)		2562		1250		1014		368
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	100		100		100		100	
Storage Blk Time (\%)	2	4	3	11		10	1	14
Queuing Penalty (veh)	4	5	9	15		2	4	13

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	WB	SB	SB
Directions Served	L	TR	L	R
Maximum Queue (t)	78	22	79	72
Average Queue (t)	29	1	26	36
95th Queue (t)	59	7	59	56
Link Distance (t)		1125		2742
Upstream BIk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (t)	100		115	
Storage Blk Time (\%)				
Queuing Penalty (veh)				
Network Summary				
Network wide Queuin				

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	22	96	91	75
Average Queue (ft)	1	36	38	44
95th Queue (ft)	10	70	65	72
Link Distance (ft)	1526			934
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	245	
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	62	68	68	50	133	44	30	55	74	50	42	44
Average Queue (ft)	27	43	48	18	67	18	4	16	15	22	17	18
95th Queue (ft)	51	64	70	41	113	38	20	43	47	43	34	35
Link Distance (ft)		1245	1245		1583			2748			2614	
Upstream Blk Time (\%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	135			190		250	185		250	55		250
Storage Blk Time (\%)										0	0	
Queuing Penalty (veh)										0	0	

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB
Directions Served	L	L
Maximum Queue (ft)	31	31
Average Queue (ft)	5	6
95th Queue (ft)	24	26
Link Distance (ft)	175	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	250	
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	74	31
Average Queue (ft)	30	1
95th Queue (ft)	47	10
Link Distance (ft)	190	369
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	159	182	199	268	174	283	130	142
Average Queue (ft)	44	79	57	79	51	129	42	69
95th Queue (ft)	102	144	111	155	125	232	82	114
Link Distance (ft)		2542		1246		1006		369
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	100		100		100		100	
Storage Blk Time (\%)	0	4	0	5	0	15	0	2

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	31	31	29	53	31
Average Queue (ft)	8	2	1	22	18
95th Queue (ft)	30	12	10	46	40
Link Distance (ft)		1246	1129		2748
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	100				
Storage Blk Time (\%)					
Queuing Penalty (veh)					
Network Summary					

Appendix H: Cumulative Year 2040 No Project Traffic Conditions

www.JLBtraffic.com
info@JLBtraffic.com

Intersection						
Int Delay, s/veh	4.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}			4	1	$\mathbf{7}$
Traffic Vol, veh/h	307	73	146	370	67	178
Future Vol, veh/h	307	73	146	370	67	178
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	250	-	245	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	334	79	159	402	73	193

Intersection		
Intersection Delay, s/veh	51.6	
Intersection LOS	F	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	1		\%	\hat{F}		\%	$\hat{\beta}$		${ }^{7}$	$\hat{\beta}$	
Traffic Vol, veh/h	19	196	12	196	223	46	27	174	220	61	285	35
Future Vol, veh/h	19	196	12	196	223	46	27	174	220	61	285	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	22	228	14	228	259	53	31	202	256	71	331	41
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	26.3			31.2			90.9			48.3		
HCM LOS	D			D			F			E		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thru, \%	0%	44%	0%	94%	0%	83%	0%	89%
Vol Right, \%	0%	56%	0%	6%	0%	17%	0%	11%
Sign Control	Stop	Stop	Stop	Stop	Sttop	Stop	Stop	Stto
Traffic Vol by Lane	27	394	19	208	196	269	61	320
LT Vol	27	0	19	0	196	0	61	0
Through Vol	0	174	0	196	0	223	0	285
RT Vol	0	220	0	12	0	46	0	35
Lane Flow Rate	31	458	22	242	228	313	71	372
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.082	1.08	0.061	0.627	0.591	0.757	0.184	0.904
Departure Headway (Hd)	9.414	8.486	10.342	9.773	9.764	9.115	9.697	9.094
Convergence, Y/N	Yes							
Cap	380	426	348	372	371	400	372	402
Service Time	7.177	6.248	8.042	7.473	7.464	6.815	7.397	6.994
HCM Lane V/C Ratio	0.082	1.075	0.063	0.651	0.615	0.782	0.191	0.925
HCM Control Delay	13	96.2	13.7	27.5	25.6	35.2	14.6	54.7
HCM Lane LOS	B	F	B	D	D	E	B	F
HCM 95th-tile Q	0.3	15.3	0.2	4.1	3.6	6.2	0.7	9.5

Intersection						
Int Delay, s/veh 4						
Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{*}$	4	\uparrow		${ }^{7}$	「
Traffic Vol, veh/h	178	315	303	97	68	117
Future Vol, veh/h	178	315	303	97	68	117
Conflicting Peds, \#/hr	2	0	0	2	3	8
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	115	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	193	342	329	105	74	127

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	436	0	-	0	1115	392	
Stage 1	-	-	-	-	384	-	
Stage 2	-	-	-	-	731	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-	3.527	3.327	
Pot Cap-1 Maneuver	1118	-	-	-	229	655	
Stage 1	-	-	-	-	686	-	
Stage 2	-	-	-	-	475	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1116	-	-	-	189	649	
Mov Cap-2 Maneuver	-	-	-	-	321	-	
Stage 1	-	-	-	-	566	-	
Stage 2	-	-	-	-	474	-	
Approach	EB		WB		SB		
HCM Control Delay, s	3.2		0		14.7		
HCM LOS					B		
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1 SBLn2			
Capacity (veh/h)		1116	-	-	-	321	649
HCM Lane V/C Ratio		0.173	-	-	-	0.23	0.196
HCM Control Delay (s)		8.9	-	-	-	19.5	11.9
HCM Lane LOS		A	-	-	-	C	B
HCM 95th \%tile Q(veh)		0.6	-	-	-	0.9	0.7

Intersection	
Intersection Delay, s/veh	59.4
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{*}$	F		${ }^{1}$	\uparrow		${ }^{*}$	F	
Traffic Vol, veh/h	41	192	62	147	177	62	71	230	273	42	175	34
Future Vol, veh/h	41	192	62	147	177	62	71	230	273	42	175	34
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	46	213	69	163	197	69	79	256	303	47	194	38
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	25.2			21.9			119.1			20.7		
HCM LOS	D			C			F			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100\%	0\%	100\%	0\%	100\%	0\%	100\%	0\%
Vol Thru, \%	0\%	46\%	0\%	76\%	0\%	74\%	0\%	84\%
Vol Right, \%	0\%	54\%	0\%	24\%	0\%	26\%	0\%	16\%
Sign Control	Stop							
Traffic Vol by Lane	71	503	41	254	147	239	42	209
LT Vol	71	0	41	0	147	0	42	0
Through Vol	0	230	0	192	0	177	0	175
RT Vol	0	273	0	62	0	62	0	34
Lane Flow Rate	79	559	46	282	163	266	47	232
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.189	1.199	0.114	0.656	0.403	0.605	0.118	0.549
Departure Headway (Hd)	8.633	7.724	9.637	8.936	9.479	8.769	9.648	9.005
Convergence, Y/N	Yes							
Cap	416	469	374	406	382	414	374	404
Service Time	6.381	5.471	7.337	6.636	7.179	6.469	7.348	6.705
HCM Lane V/C Ratio	0.19	1.192	0.123	0.695	0.427	0.643	0.126	0.574
HCM Control Delay	13.4	134	13.6	27.1	18.4	24	13.6	22.1
HCM Lane LOS	B	F	B	D	C	C	B	C
HCM 95th-tile Q	0.7	21.3	0.4	4.5	1.9	3.9	0.4	3.2

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	424	0	-	0	954	400	
Stage 1	-	-	-	-	396	-	
Stage 2	-	-	-	-	558	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-3.527	3.327		
Pot Cap-1 Maneuver	1130	-	-	-	286	648	
\quad Stage 1	-	-	-	-	678	-	
Stage 2	-	-	-	-	571	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1129	-	-	-	267	645	
Mov Cap-2 Maneuver	-	-	-	-	395	-	
Stage 1	-	-	-	-	633	-	
Stage 2	-	-	-	-	570	-	

Approach	EB	WB	SB
HCM Control Delay, s	1.3	0	14.1
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1129	-	-	-	395	645
HCM Lane V/C Ratio	0.065	-	-	-0.158	0.05	
HCM Control Delay (s)	8.4	-	-	-	15.8	10.9
HCM Lane LOS	A	-	-	-	C	B
HCM 95th \%tile Q(veh)	0.2	-	-	-	0.6	0.2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中t		${ }^{7}$	虾		${ }^{*}$	\uparrow		${ }^{1}$	\uparrow	
Traffic Vol, veh/h	83	450	31	56	448	32	28	16	143	58	31	71
Future Vol, veh/h	83	450	31	56	448	32	28	16	143	58	31	71
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	90	489	34	61	487	35	30	17	155	63	34	77
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	23.2			23.8			16.5			14.7		
HCM LOS	C			C			C			B		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru, \%	0%	10%	0%	100%	83%	0%	100%	82%	0%	30%
Vol Right, \%	0%	90%	0%	0%	17%	0%	0%	18%	0%	70%
Sign Control	Stop									
Traffic Vol by Lane	28	159	83	300	181	56	299	181	58	102
LT Vol	28	0	83	0	0	56	0	0	58	0
Through Vol	0	16	0	300	150	0	299	149	0	31
RT Vol	0	143	0	0	31	0	0	32	0	71
Lane Flow Rate	30	173	90	326	197	61	325	197	63	111
Geometry Grp	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.082	0.41	0.215	0.731	0.435	0.146	0.733	0.438	0.171	0.271
Departure Headway (Hd)	9.683	8.535	8.588	8.075	7.952	8.644	8.131	8.004	9.792	8.788
Convergence, Y/N	Yes									
Cap	370	422	420	450	454	416	448	451	366	408
Service Time	7.442	6.294	6.309	5.796	5.673	6.366	5.853	5.726	7.554	6.549
HCM Lane V/C Ratio	0.081	0.41	0.214	0.724	0.434	0.147	0.725	0.437	0.172	0.272
HCM Control Delay	13.3	17.1	13.7	29.8	16.7	12.8	30.1	16.8	14.6	14.8
HCM Lane LOS	B	C	B	D	C	B	D	C	B	B
HCM 95th-tile Q	0.3	2	0.8	5.9	2.2	0.5	5.9	2.2	0.6	1.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$\hat{\beta}$		*	4	T	*	4	7	${ }^{7}$	4	「
Traffic Vol, veh/h	19	196	12	196	223	46	27	174	220	61	285	35
Future Vol, veh/h	19	196	12	196	223	46	27	174	220	61	285	35
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	22	228	14	228	259	53	31	202	256	71	331	41
Number of Lanes	1	1	0	1	1	1	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le	ft SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Rig	ighNB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	30			29.1			25.5			48.2		
HCM LOS	D			D			D			E		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中t		${ }^{7}$	虾		${ }^{*}$	\uparrow		${ }^{1}$	\uparrow	
Traffic Vol, veh/h	81	630	62	43	401	51	4	19	28	42	37	68
Future Vol, veh/h	81	630	62	43	401	51	4	19	28	42	37	68
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	84	656	65	45	418	53	4	20	29	44	39	71
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	26.2			16.8			12.3			13.2		
HCM LOS	D			C			B			B		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru, $\%$	0%	40%	0%	100%	77%	0%	100%	72%	0%	35%
Vol Right, \%	0%	60%	0%	0%	23%	0%	0%	28%	0%	65%
Sign Control	Stop									
Traffic Vol by Lane	4	47	81	420	272	43	267	185	42	105
LT Vol	4	0	81	0	0	43	0	0	42	0
Through Vol	0	19	0	420	210	0	267	134	0	37
RT Vol	0	28	0	0	62	0	0	51	0	68
Lane Flow Rate	4	49	84	438	283	45	278	192	44	109
Geometry Grp	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.011	0.115	0.173	0.833	0.527	0.098	0.568	0.382	0.109	0.243
Departure Headway (Hd)	9.359	8.429	7.362	6.855	6.694	7.856	7.349	7.153	8.955	7.993
Convergence, Y/N	Yes									
Cap	382	425	488	529	538	456	490	504	400	450
Service Time	7.12	6.19	5.101	4.594	4.433	5.599	5.092	4.896	6.708	5.745
HCM Lane V/C Ratio	0.01	0.115	0.172	0.828	0.526	0.099	0.567	0.381	0.11	0.242
HCM Control Delay	12.2	12.3	11.6	35.2	16.7	11.5	19.4	14.3	12.8	13.3
HCM Lane LOS	B	B	B	E	C	B	C	B	B	B
HCM 95th-tile Q	0	0.4	0.6	8.4	3	0.3	3.5	1.8	0.4	0.9

Intersection

Intersection Delay, s/veh23.6
Intersection LOS

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	22	73	69	72
Average Queue (ft)	1	30	30	39
95th Queue (ft)	10	63	50	61
Link Distance (ft)	1513			934
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	245	
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	75	89	102	73	122	103	53	56	72	55
Average Queue (ft)	34	49	46	31	66	37	17	42	27	31
95th Queue (ft)	58	75	72	63	94	73	46	61	52	49
Link Distance (ft)		649	649		1597	1597		2742		2619
Upstream Blk Time (\%)										
Queuing Penalty (veh)								185		55
Storage Bay Dist (ft)	135							0	0	
Storage Blk Time (\%)									0	0

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	49	126	136	132	42	52	136	112	72	152	42
Average Queue (ft)	14	54	59	57	15	18	58	58	30	70	14
95th Queue (ft)	36	94	100	106	32	46	98	94	57	117	34
Link Distance (ft)		2524		1243			997			374	374
Upstream Blk Time (\%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100		100		250	100		250	100		
Storage Blk Time (\%)		1	2	2			1			4	
Queuing Penalty (veh)		0	4	4			2			2	

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	75	30	53	75	74
Average Queue (ft)	39	1	3	38	41
95th Queue (ft)	64	10	21	61	67
Link Distance (ft)		1243	1125		2742
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	100				
Storage Blk Time (\%)					
Queuing Penalty (veh)					

Zone Summary

[^1]Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	22	74	71	73
Average Queue (ft)	1	36	26	41
95th Queue (ft)	7	64	50	64
Link Distance (ft)	1526			934
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	245	
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft$)$	78	79	117	55	108	75	30	67	55	61
Average Queue (ft)	34	57	63	26	67	34	3	29	25	35
95th Queue (ft)	54	77	93	53	95	57	18	54	52	51
Link Distance (ft)		610	610		1595	1595		2748		2614
Upstream Blk Time (\%)										
Queuing Penalty (veh)				190			185		55	
Storage Bay Dist (ft)	135								0	1
Storage Blk Time (\%)									0	0

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	T	R	L	T	R	L	T	R
Maximum Queue (ft)	48	127	97	113	56	92	143	122	53	108	47
Average Queue (ft)	22	58	45	44	18	38	64	68	23	48	20
95th Queue (ft)	42	100	81	79	38	69	109	112	46	83	41
Link Distance (ft)		2529		1233			1006			359	
Upstream Blk Time (\%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100		100		250	100		250	100		250
Storage Blk Time (\%)		1	0	0		0	1			0	
Queuing Penalty (veh)		0	0	1		0	4			0	

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	WB	SB	SB
Directions Served	L	TR	L	R
Maximum Queue (ft)	53	31	79	54
Average Queue (ft)	18	1	27	19
95th Queue (ft)	47	10	60	46
Link Distance (ft)		1129		2748
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	100			
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Zone Summary

Zone wide Queuing Penalty: 6

Appendix I: Cumulative Year 2040 plus Project Traffic Conditions

Intersection												
Int Delay, s/veh	16.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	个		${ }^{7}$	$\hat{\beta}$		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	83	515	31	56	451	32	28	16	143	58	31	71
Future Vol, veh/h	83	515	31	56	451	32	28	16	143	58	31	71
Conflicting Peds, \#/hr	0	0	1	1	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	135	-	-	190	-	-	185	-	-	55	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	90	560	34	61	490	35	30	17	155	63	34	77

Intersection						

Intersection						

Major/Minor	Minor2		Major1	Major2			
Conflicting Flow All	932	438	438	0	-	0	
Stage 1	438		-	-	-	-	
Stage 2	494		-	-	-	-	
Critical Hdwy	6.43	6.23	4.13	-	-	-	
Critical Hdwy Stg 1	5.43	-	-	-	-	-	
Critical Hdwy Stg 2	5.43	-	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-	
Pot Cap-1 Maneuver	295	617	1117	-	-	-	
Stage 1	648	-	-	-	-	-	
Stage 2	611	-	-	-	-	-	
Platoon blocked, \%				-	-	-	-
Mov Cap-1 Maneuver	285	617	1117	-	-	-	
Mov Cap-2 Maneuver	285	-	-	-	-	-	
Stage 1	626	-	-	-	-	-	
Stage 2	611	-	-	-	-	-	

	EB	NB	SB
Approach	0.5	0	

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1117	-420	-	-	
HCM Lane V/C Ratio	0.026	-0.562	-	-	
HCM Control Delay (s)	8.3	0	24	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.1	-	3.4	-	-

Intersection	
Intersection Delay, s/veh 85.4	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{1}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	117	196	12	196	223	112	27	177	220	100	345	57
Future Vol, veh/h	117	196	12	196	223	112	27	177	220	100	345	57
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mumt Flow	136	228	14	228	259	130	31	206	256	116	401	66
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	27.4			57			124.2			120.2		
HCM LOS	D			F			F			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100\%	0\%	100\%	0\%	100\%	0\%	100\%	0\%
Vol Thru, \%	0\%	45\%	0\%	94\%	0\%	67\%	0\%	86\%
Vol Right, \%	0\%	55\%	0\%	6\%	0\%	33\%	0\%	14\%
Sign Control	Stop							
Traffic Vol by Lane	27	397	117	208	196	335	100	402
LT Vol	27	0	117	0	196	0	100	0
Through Vol	0	177	0	196	0	223	0	345
RT Vol	0	220	0	12	0	112	0	57
Lane Flow Rate	31	462	136	242	228	390	116	467
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.087	1.171	0.386	0.65	0.617	0.976	0.32	1.207
Departure Headway (Hd)	10.539	9.604	11.205	10.631	10.677	9.901	10.414	9.783
Convergence, Y/N	Yes							
Cap	342	383	324	343	340	370	348	374
Service Time	8.239	7.304	8.905	8.331	8.377	7.601	8.114	7.483
HCM Lane V/C Ratio	0.091	1.206	0.42	0.706	0.671	1.054	0.333	1.249
HCM Control Delay	14.2	131.7	20.8	31.1	29.1	73.4	17.9	145.6
HCM Lane LOS	B	F	C	D	D	F	C	F
HCM 95th-tile Q	0.3	17.4	1.8	4.3	3.9	11	1.3	18.5

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	464	0	-	0	1191	420
Stage 1				-	412	
Stage 2		-		-	779	
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1		-	-	-	5.43	
Critical Hdwy Stg 2				-	5.43	
Follow-up Hdwy	2.227	-	-		3.527	3.327
Pot Cap-1 Maneuver	1092	-		-	206	631
Stage 1		-	-	-	666	
Stage 2		-	-	-	451	
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1090	-		-	168	625
Mov Cap-2 Maneuver		-	-	-	300	
Stage 1		-	-		543	
Stage 2	-	-	-	-	450	

Approach	EB	WB	SB
HCM Control Delay, s	3.1	0	15.3
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1090	-	-	-300	625
HCM Lane V/C Ratio	0.181	-	-	-0.246	0.247
HCM Control Delay (s)	9	-	-	-	20.9
12.6					
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0.7	-	-	-	0.9

Intersection												
Int Delay, s/veh	6.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个		${ }^{7}$	$\hat{\beta}$		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	81	649	62	43	402	51	4	19	28	42	37	68
Future Vol, veh/h	81	649	62	43	402	51	4	19	28	42	37	68
Conflicting Peds, \#/hr	0	0	7	7	0	0	0	0	1	1	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	135	-	-	190	-	-	185	-	-	55	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	84	676	65	45	419	53	4	20	29	44	39	71

Intersection						

Intersection						

Approach	EB	NB	SB
HCM Control Delay, s	12.3	0.1	0

HCM LOS B

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1280	-561	-	-	
HCM Lane V/C Ratio	0.004	-0.117	-	-	
HCM Control Delay (s)	7.8	0	12.3	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.4	-	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh $\quad 65.1$ | |
| Intersection LOS | F |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{*}$	F		${ }^{1}$	\uparrow		${ }^{*}$	F	
Traffic Vol, veh/h	61	192	62	147	177	77	71	231	273	53	192	40
Future Vol, veh/h	61	192	62	147	177	77	71	231	273	53	192	40
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	68	213	69	163	197	86	79	257	303	59	213	44
Number of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			2			2		
HCM Control Delay	26.2			24.4			135.3			23.7		
HCM LOS	D			C			F			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	100%	0%	100%	0%
Vol Thru, \%	0%	46%	0%	76%	0%	70%	0%	83%
Vol Right, \%	0%	54%	0%	24%	0%	30%	0%	17%
Sign Control	Stop							
Traffic Vol by Lane	71	504	61	254	147	254	53	232
LT Vol	71	0	61	0	147	0	53	0
Through Vol	0	231	0	192	0	177	0	192
RT Vol	0	273	0	62	0	77	0	40
Lane Flow Rate	79	560	68	282	163	282	59	258
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.195	1.244	0.174	0.672	0.412	0.657	0.152	0.62
Departure Headway (Hd)	8.912	8	9.927	9.224	9.768	9.023	9.884	9.234
Convergence, Y/N	Yes							
Cap	402	454	364	395	371	404	365	394
Service Time	6.669	5.757	7.627	6.924	7.468	6.723	7.584	6.934
HCM Lane V/C Ratio	0.197	1.233	0.187	0.714	0.439	0.698	0.162	0.655
HCM Control Delay	13.8	152.4	14.7	28.9	19.1	27.4	14.3	25.9
HCM Lane LOS	B	F	B	D	C	D	B	D
HCM 95th-tile Q	0.7	22.8	0.6	4.7	2	4.5	0.5	4

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	430	0	-	0	972	406
Stage 1					402	
Stage 2	-				570	
Critical Hdwy	4.13	-	-		6.43	6.23
Critical Hdwy Stg 1	-	-	-		5.43	
Critical Hdwy Stg 2					5.43	
Follow-up Hdwy	2.227	-	-		3.527	3.327
Pot Cap-1 Maneuver	1124	-	-		279	643
Stage 1		-	-		673	
Stage 2	-	-	-		564	
Platoon blocked, \%		-	-			
Mov Cap-1 Maneuver	1123	-	-		260	640
Mov Cap-2 Maneuver		-	-		389	
Stage 1		-	-		628	
Stage 2	-	-	-	-	563	

	EB	WB	SB
Approach	0	14.1	
HCM Control Delay, s	1.3	0	B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1123	-	-	-	389
640					
HCM Lane V/C Ratio	0.066	-	-	-	0.16
0.06					
HCM Control Delay (s)	8.4	-	-	-	16
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0.2	-	-	-	0.6
H.	0.2				

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 25.6 |
| Intersection LOS | D |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	中 ${ }^{\text {F }}$		${ }^{*}$	虾		${ }^{7}$	\uparrow		${ }^{*}$	\dagger	
Traffic Vol, veh/h	83	515	31	56	451	32	28	16	143	58	31	71
Future Vol, veh/h	83	515	31	56	451	32	28	16	143	58	31	71
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	90	560	34	61	490	35	30	17	155	63	34	77
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	30.6			25.7			17.3			15.3		
HCM LOS	D			D			C			C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru, \%	0%	10%	0%	100%	85%	0%	100%	82%	0%	30%
Vol Right, \%	0%	90%	0%	0%	15%	0%	0%	18%	0%	70%
Sign Control	Stop									
Traffic Vol by Lane	28	159	83	343	203	56	301	182	58	102
LT Vol	28	0	83	0	0	56	0	0	58	0
Through Vol	0	16	0	343	172	0	301	150	0	31
RT Vol	0	143	0	0	31	0	0	32	0	71
Lane Flow Rate	30	173	90	373	220	61	327	198	63	111
Geometry Grp	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.084	0.424	0.217	0.845	0.492	0.15	0.758	0.452	0.177	0.28
Departure Headway (Hd)	9.971	8.822	8.666	8.153	8.043	8.858	8.345	8.219	10.087	9.08
Convergence, Y/N	Yes									
Cap	359	408	414	444	447	405	435	438	356	396
Service Time	7.729	6.579	6.415	5.902	5.792	6.609	6.095	5.969	7.845	6.838
HCM Lane V/C Ratio	0.084	0.424	0.217	0.84	0.492	0.151	0.752	0.452	0.177	0.28
HCM Control Delay	13.6	18	13.8	41.9	18.4	13.2	33	17.6	15	15.4
HCM Lane LOS	B	C	B	E	C	B	D	C	B	C
HCM 95th-tile Q	0.3	2.1	0.8	8.3	2.7	0.5	6.3	2.3	0.6	1.1

Mitigated
JLB Traffic Engineering, Inc.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	㻢		${ }^{*}$	㻢		${ }^{*}$	$\hat{\beta}$		${ }^{*}$	\uparrow	
Traffic Vol, veh/h	81	649	62	43	402	51	4	19	28	42	37	68
Future Vol, veh/h	81	649	62	43	402	51	4	19	28	42	37	68
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	84	676	65	45	419	53	4	20	29	44	39	71
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	28.3			17			12.4			13.3		
HCM LOS	D			C			B			B		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left, \%	100%	0%	100%	0%	0%	100%	0%	0%	100%	0%
Vol Thru, \%	0%	40%	0%	100%	78%	0%	100%	72%	0%	35%
Vol Right, \%	0%	60%	0%	0%	22%	0%	0%	28%	0%	65%
Sign Control	Stop									
Traffic Vol by Lane	4	47	81	433	278	43	268	185	42	105
LT Vol	4	0	81	0	0	43	0	0	42	0
Through Vol	0	19	0	433	216	0	268	134	0	37
RT Vol	0	28	0	0	62	0	0	51	0	68
Lane Flow Rate	4	49	84	451	290	45	279	193	44	109
Geometry Grp	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.011	0.115	0.173	0.86	0.541	0.098	0.574	0.385	0.11	0.245
Departure Headway (Hd)	9.42	8.491	7.38	6.873	6.715	7.904	7.396	7.201	9.011	8.049
Convergence, Y/N	Yes									
Cap	380	422	487	527	536	454	489	499	398	446
Service Time	7.182	6.252	5.117	4.61	4.452	5.645	5.138	4.942	6.763	5.801
HCM Lane VIC Ratio	0.011	0.116	0.172	0.856	0.541	0.099	0.571	0.387	0.111	0.244
HCM Control Delay	12.3	12.4	11.7	38.7	17.1	11.5	19.7	14.4	12.9	13.4
HCM Lane LOS	B	B	B	E	C	B	C	B	B	B
HCM 95th-tile Q	0	0.4	0.6	9.2	3.2	0.3	3.6	1.8	0.4	1

Mitigated
JLB Traffic Engineering, Inc.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	WB	NB	NB
Directions Served	L	L	R
Maximum Queue (ft)	74	111	93
Average Queue (ft)	31	49	44
95th Queue (ft)	59	85	72
Link Distance (ft)			934
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	245	
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	56	79	79	68	122	100	32	74	73	54
Average Queue (ft)	37	49	55	27	74	37	17	43	27	31
95th Queue (ft)	54	73	73	56	104	70	41	65	54	51
Link Distance (ft)		610	610		1597	1597		2742		2619
Upstream BIk Time (\%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	135			190			185		55	
Storage Blk Time (\%)									0	0
Queuing Penalty (veh)									0	0

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB	SB
Directions Served	L	LT	TR
Maximum Queue (ft)	48	129	22
Average Queue (ft)	18	41	1
95th Queue (ft)	43	88	7
Link Distance (ft)	181	283	677
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	134	31
Average Queue (tt)	69	8
95th Queue (tt)	112	30
Link Distance (ft)	193	368
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	165	248	200	303	174	308	179	260
Average Queue (ft)	84	124	114	149	47	167	57	128
95th Queue (ft)	145	200	191	247	118	266	124	206
Link Distance (ft)		2536		1250		1014		368
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	100		100		100		100	
Storage BIk Time (\%)	4	14	11	22	0	26	3	18
Queuing Penalty (veh)	9	17	35	43	1	7	13	18

Intersection: 6: Cinnamon Drive \& Liberty Drive

Intersection: 1: 19th Avenue \& Hanford-Armona Road

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	31	94	67	114
Average Queue (ft)	3	36	31	56
95th Queue (ft)	17	63	57	88
Link Distance (ft)	1526			934
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	245	
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Liberty Drive/18 3/4 Avenue \& Hanford-Armona Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	L	T	TR	L	TR	L	TR
Maximum Queue (ft)	68	96	107	73	117	103	31	52	31	53
Average Queue (ft)	37	56	67	25	69	44	4	29	20	31
95th Queue (ft$)$	59	78	91	52	102	82	20	48	39	51
Link Distance (ft)		605	605		1595	1595		2748		2614
Upstream Blk Time (\%)										
Queuing Penalty (veh)								185		55
Storage Bay Dist (ft)	135								0	
Storage Blk Time (\%)									0	

Intersection: 3: 19th Avenue \& Project Driveway 1

Movement	EB	NB
Directions Served	L	LT
Maximum Queue (ft)	31	76
Average Queue (ft)	5	9
95th Queue (ft)	24	40
Link Distance (ft)	181	288
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 4: 19th Avenue \& Project Driveway 2

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	78	31
Average Queue (ft)	31	2
95th Queue (ft)	59	14
Link Distance (ft)	196	369
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: 19th Avenue \& Cinnamon Drive

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	165	263	199	242	174	320	94	243
Average Queue (ft)	49	108	86	102	85	198	46	89
95th Queue (ft)	101	188	153	172	184	314	85	173
Link Distance (ft)		2542		1246		1006		369
Upstream Blk Time (\%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	100		100		100		100	
Storage Blk Time (\%)	2	7	10	8	3	28	0	10
Queuing Penalty (veh)	4	4	27	11	14	20	1	5

Intersection: 6: Cinnamon Drive \& Liberty Drive

Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	50	53	53	55	52
Average Queue (ft)	16	3	3	29	15
95th Queue (ft)	42	21	21	56	42
Link Distance (ft)		1246	1129		2748
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	100				
Storage Blk Time (\%)					
Queuing Penalty (veh)					
Network Summary					

Appendix J: Signal Warrants

Warrant 3: Peak Hour (Urban)

Existing Traffic Conditions

1. 19th Avenue / Hanford-Armona Road

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

$-$

Warrant 3: Peak Hour (Urban)

Existing Traffic Conditions

2. Liberty Drive / Hanford-Armona Road AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing Traffic Conditions

5. 19th Avenue / Cinnamon Drive

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing Traffic Conditions

6. Liberty Drive / Cinnamon Drive

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

1. 19th Avenue / Hanford-Armona Road

AM (PM) Peak Hour

19th
Avenue
Highest
Approach
Volume =
148 (121)
VPH

Hanford-Armona Road Total of Both Approaches $=$ 605 (663) VPH
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

2. Liberty Drive / Hanford-Armona Road

 AM (PM) Peak Hour
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

3. 19th Avenue / Project Driveway 1

AM (PM) Peak Hour

Project
Driveway 1
Highest
Approach
Volume =
13 (4) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

4. 19th Avenue / Project Driveway 2

AM (PM) Peak Hour

Project
Driveway 2
Highest
Approach
Volume =
143 (42) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

5. 19th Avenue / Cinnamon Drive
 AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

$\stackrel{*}{\star}$
 AM Peak Hour - Signal Warrant is Met
 PM Peak Hour - Signal Warrant is Not Met

www.JLBtraffic.com

Warrant 3: Peak Hour (Urban)

Existing plus Project Traffic Conditions

6. Liberty Drive / Cinnamon Drive

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

1. 19th Avenue / Hanford-Armona Road

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

2. Liberty Drive / Hanford-Armona Road AM (PM) Peak Hour

Liberty
Drive
Highest
Approach Volume =

125 (107) VPH

Hanford-Armona Road Total of Both Approaches = 953 (1054) VPH
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

www.JLBtraffic.com

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

3. 19th Avenue / Project Driveway 1
 AM (PM) Peak Hour

Project
Driveway 1
Highest
Approach Volume =

13 (4) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

4. 19th Avenue / Project Driveway 2

AM (PM) Peak Hour

Project
Driveway 2
Highest
Approach
Volume =
143 (42) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

5. 19th Avenue / Cinnamon Drive
 AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

Warrant 3: Peak Hour (Urban)

Near Term plus Project Traffic Conditions

6. Liberty Drive / Cinnamon Drive
 AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 T PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 No Project Traffic Conditions

1. 19th Avenue / Hanford-Armona Road

AM (PM) Peak Hour

19th
Avenue
Highest
Approach
Volume =
156 (171)
VPH

Hanford-Armona Road Total of Both Approaches $=$ 896 (993) VPH
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 15 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 No Project Traffic Conditions

2. Liberty Drive / Hanford-Armona Road AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 No Project Traffic Conditions

5. 19th Avenue / Cinnamon Drive
 AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

*
 AM Peak Hour - Signal Warrant is Met PM Peak Hour - Signal Warrant is Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 No Project Traffic Conditions

6. Liberty Drive / Cinnamon Drive

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

1. 19th Avenue / Hanford-Armona Road

AM (PM) Peak Hour

19th
Avenue
Highest
Approach
Volume =
211 (187) VPH

Hanford-Armona Road Total of Both Approaches = 902 (995) VPH
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

2. Liberty Drive / Hanford-Armona Road AM (PM) Peak Hour

Liberty
Drive
Highest
Approach Volume =

125 (113) VPH

Hanford-Armona Road Total of Both Approaches = 1169 (1288) VPH
*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

3. 19th Avenue / Project Driveway 1
 AM (PM) Peak Hour

Project
Driveway 1
Highest
Approach
Volume =
13 (4) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

4. 19th Avenue / Project Driveway 2

AM (PM) Peak Hour

Project
Driveway 2
Highest
Approach
Volume =
143 (42) VPH

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

5. 19th Avenue / Cinnamon Drive
 AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

*
 AM Peak Hour - Signal Warrant is Met PM Peak Hour - Signal Warrant is Met

Warrant 3: Peak Hour (Urban)

Cumulative Year 2040 plus Project Traffic Conditions

6. Liberty Drive / Cinnamon Drive

AM (PM) Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met
 PM Peak Hour - Signal Warrant is Not Met

[^0]: Note:

 * = Does not exist or is not projected to exist

[^1]: Zone wide Queuing Penalty: 14

