APPENDIX H: LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

This page intentionally left blank.

Project No. **16109.000.000**

May 16, 2019

Mr. Joe Martin TH Trumark Homes, LLC 450 Newport Center Drive, Suite 300 Newport Beach, CA 92660

Subject: Covina Bowl

1060 West San Bernardino Road

Covina, California

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Reference: Stantec; Phase I Environmental Site Assessment for 1060 West San Bernardino

Road, Covina, California; Stantec Project No. 185803933; May 26, 2017.

Dear Mr. Martin:

ENGEO is pleased to submit the findings of our environmental peer review and limited phase II environmental site assessment (ESA) services for the proposed development at 1060 West San Bernardino in Covina, California (Figure 1). The purpose of the environmental peer review and limited phase II ESA was to investigate potential impacts to Property soil, due to proximity to a historical railroad line along the southern boundary, as well as the past land use as an orchard.

BACKGROUND

The subject property (Property) is located at 1060 West San Bernardino in Covina, California. The Property is approximately 4.3 acres in area and is identified as Assessor's Parcel Number (APN) 8434-018-020. The Property currently consists of one vacant commercial building, constructed in the late 1950s, and asphalt-paved parking areas.

SUMMARY OF REVIEWED REPORT

Stantec; Phase I Environmental Site Assessment for 1060 West San Bernardino Road, Covina, California; Stantec Project No. 185803933; May 26, 2017.

At the time of the 2017 phase I ESA, the Property contained an approximately 44,000-square-foot single-story commercial building, which was inactive. Reportedly, the former building occupants included a bowling alley and restaurant, salon, real estate office, Radio Shack, and a church.

The environmental database report (EDR) listed the Property in two databases – HAZNET and FINDS. No information was provided for the FINDS listing, and the HAZNET listing described the removal and disposal of asbestos-containing material from the Property in 1995. The EDR also listed multiple commercial facilities near the Property, including historical dry cleaners. After reviewing the information, Stantec determined that none of the facilities are considered likely to represent a REC to the Property and recommended no further assessment regarding these facilities.

As summarized in the referenced phase I environmental site assessment, Stantec identified the following two Recognized Environmental Conditions (RECs) for the Property:

 "Historic Railroad Line. A historic railroad line appears to have been present along the southern Property boundary until circa 1950. Historically, vegetation inhibitor chemicals (i.e., herbicides) were applied along railroad lines, and often contained elevated levels of metals such as lead and arsenic.

The potential presence of elevated metals along the historic railroad line represents a REC to the property. Stantec recommends conducting a shallow soil assessment in this area to determine if metals are present at levels of concern.

• Historical Agricultural Use. The Property was used as an orchard from at least 1928 through circa 1960. The present-day commercial structure located on the Property was first observed in the 1964 aerial photograph. Due to the presence of an orchard on the Property until circa 1960, pesticides and/or herbicides may be present in the soils at the site. Therefore, the historical presence of the orchard is considered a REC. Stantec recommends conducting a shallow soil investigation throughout the Property to determine if pesticides and/or metals associated with herbicides are present at concentrations of concern."

As described above, Stantec recommended a shallow soil assessment for the Property.

Stantec did not identify evidence of any Controlled Recognized Environmental Conditions (CRECs) or Historical Recognized Environmental Conditions (HRECs) associated with the subject Property. However, Stantec did identify environmental considerations that did not qualify as RECs, which included the likely presence of lead-based paint and asbestos-containing materials (including possible asbestos in the building as well in stress-absorbing fabric commonly found below asphalt surfaces).

LIMITED PHASE II ESA

As described above, review of historical records indicates that a former railroad line was adjacent to the southern boundary of the Property until circa 1950, and an orchard was onsite between approximately 1928 and circa 1960. Due to the historical use, we conducted an agrichemical assessment of the near-surface soil to evaluate the potential for residual concentrations of organochlorine pesticides (OCPs), arsenic, and lead throughout the Property, as well as total petroleum hydrocarbons (TPH) as diesel and motor oil, semi-volatile organic compounds, and metals near the southern boundary of the Property.

The Property agricultural assessment was performed in general accordance with the Department of Toxic Substances Control (DTSC) Interim Guidance for Sampling Agricultural Properties (Third Revision, August 7, 2008).

Soil Sampling

We notified the Underground Service Alert (USA Dig Alert) prior to drilling, and we additionally retained a private utility locator to survey the boring locations. A C-57 licensed direct-push drilling contractor advanced 12 borings throughout the Property (Figure 2) to a depth of 4 feet below

14668.000.000 May 16, 2019 Page 3

ground surface (bgs) under the supervision of an engineer. We did not encounter groundwater during the drilling activities to the depth explored.

We collected soil samples on May 10, 2019, from 12 locations across the Property (Figure 2). The driller advanced the soil borings to depths of 4 feet below ground surface using a Geoprobe® direct-push rig, and retrieved continuous soil cores from each boring. Soil samples were collected at approximately 6 inches (0.5 feet) and 18 inches (1.5 feet) into native soil.

We collected a total of 24 soil samples and sealed using Teflon® sheets secured by tight-fitting plastic end caps. Upon collection of samples, we labeled each sample with a unique sample number, sample location, and collection date/timed. We placed all sampled in an ice-cooled chest and submitted under documented chain-of-custody to Enthalpy Analytical, State-certified laboratory in California. The deeper 1.5-foot soil samples were placed on hold pending the results of the shallower 0.5-foot samples.

We instructed the laboratory to combine adjacent 0.5-foot soil samples to create three composites (4 to 1), and analyze for organochlorine pesticides (OCP) (EPA Test Method 8081A), arsenic, and lead (EPA Test Method 6010B). Additionally, we instructed the laboratory to analyze the two southernmost samples on a discrete basis for TPH-diesel and TPH-motor oil with silica gel cleanup (EPA Test Method 8015), SVOCs-SIM (EPA Test Method 8270), and CAM 17 Metals (EPA Test Method 6010).

Analytical Results

We compared the laboratory test results to corresponding United States Environmental Protection Agency USEPA and CAL-EPA residential screening levels (RSLs)¹ assuming a residential use scenario.

Based on a review of the laboratory test results, the two discrete samples collected from the southern Property boundary reported TPH-diesel and TPH-motor oil concentrations as non-detectable. Sample 01-B-11@0.5 reported nine detectable concentrations of SVOCs; each is below the corresponding screening levels. All samples reported detectable concentrations of lead and arsenic. The maximum concentration of lead (14.6 milligrams per kilograms (mg/kg)) is below the screening level of 80 mg/kg. The maximum concentration of arsenic (6.37 mg/kg) exceeds the screening level, but is within the expected background concentration for arsenic in Southern California². The remaining metal concentrations are below the corresponding screening levels.

The three composite soil samples reported OCPs as non-detectable in the three composite samples. The laboratory report is attached in its entirety (Appendix A).

¹ USEPA Regional Screening Levels For Resident Soil (RSLs); November 2018.

¹ HERO HHRA Note Number: 3, DTSC Modified Screening Levels For Residential Soil (DTSC-SLs), April 2019.

² Department of Toxic Substances Control (DTSC) Determination of a Southern California Background Arsenic Concentration in Soil, March 2008

14668.000.000 May 16, 2019 Page 4

FINDINGS

Based on the analytical results, the Property has not been significantly impacted by past agricultural or railroad activities and is suitable for residential development. Based on the findings of this limited phase II assessment, we do not recommend any further studies at this time. If you have any questions regarding this report, please contact us.

LIMITATIONS

We strived to perform our professional services in accordance with generally accepted engineering principles and practices currently employed in the area (prevailing practice); no warranty is expressed or implied. This report is based upon field and other conditions discovered at the time of report preparation. We developed our conclusions with limited subsurface exploration data and assumed the test results are representative of the actual subsurface conditions across the Property. If unexpected conditions are encountered, notify ENGEO immediately to review these conditions and provide additional and/or modified conclusions, as necessary.

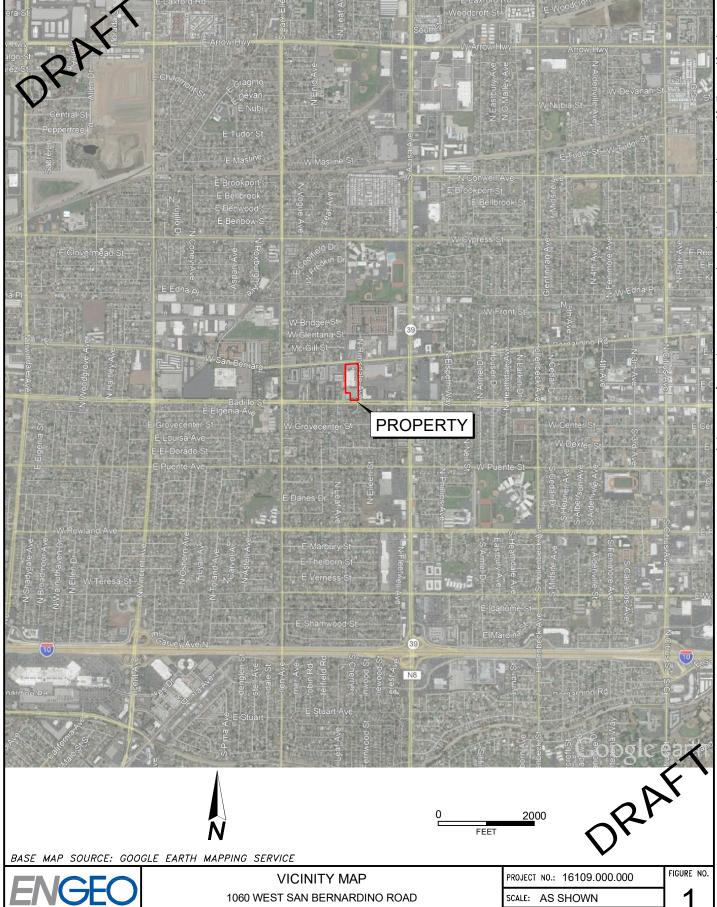
Because prevailing practice and applicable regulatory standards may change over time, our conclusions are limited to the circumstances under which we performed our services. In addition, the samples recovered and tested as part of this assessment are only representative of the noted locations/depths and the analytes tested. We are unable to eliminate all risks nor provide insurance; therefore, we are unable to guarantee or warrant the results of our services.

Sincerely,

ENGEO Incorporated

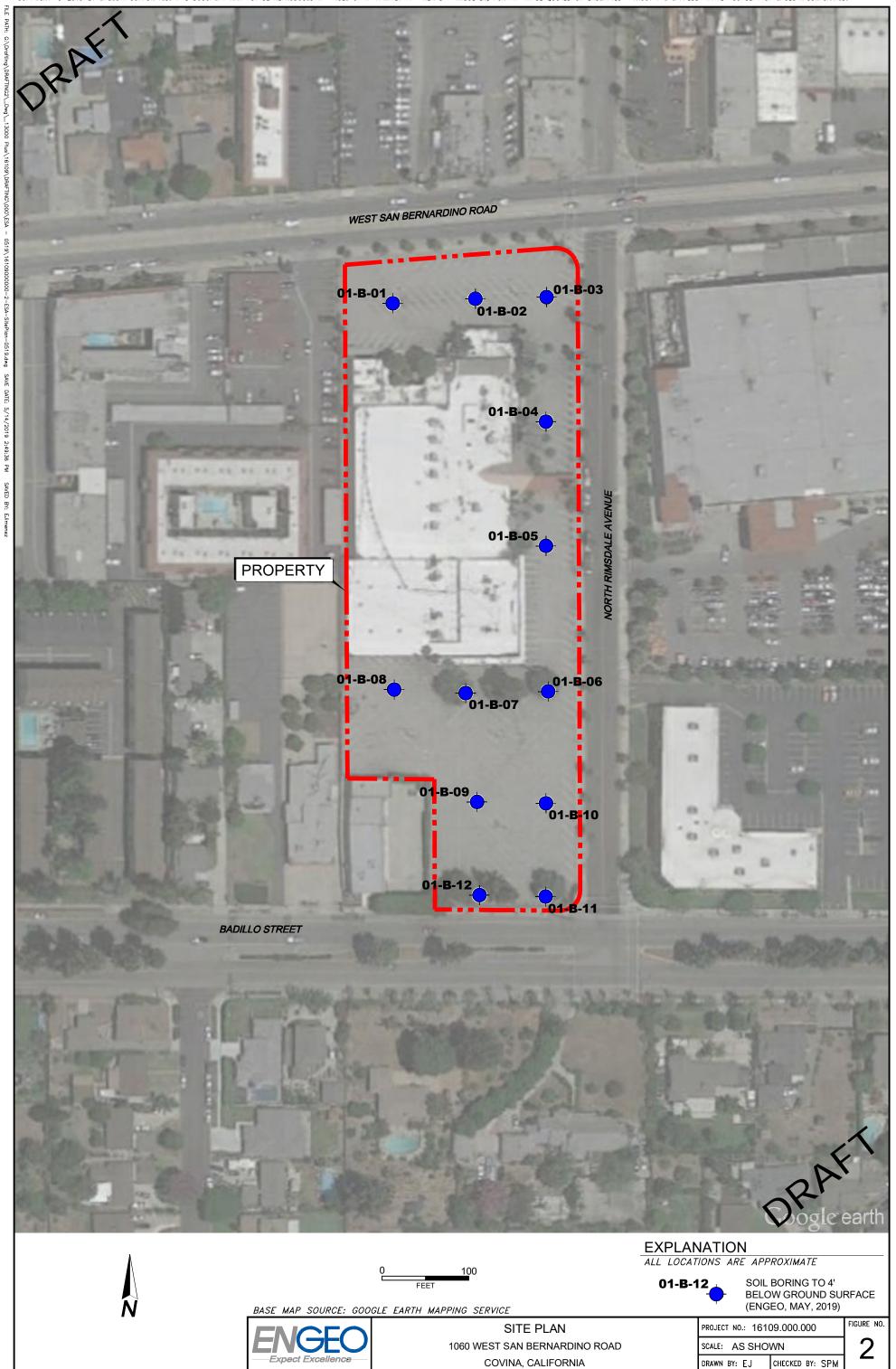
Adrianna Lundberg al/sm/jf

Shawn Munger


Attachments: Figures 1 and 2

Appendix A: Laboratory Test Result Report - Soil

FIGURES


Figure 1 - Vicinity Map Figure 2 - Site Plan

COPYRIGHT © 2019 BY ENGEO INCORPORATED. THIS DOCUMENT MAY NOT BE REPRODUCED IN WHOLE OR IN PART BY ANY MEANS WHATSOEVER, NOR MAY IT BE QUOTED OR EXCERPIED WITHOUT THE EXPRESS WRITTEN CONSENT OF ENGEO INCORPORATED.

COVINA, CALIFORNIA

DRAWN BY: EJ CHECKED BY: SPM

APPENDIX A

Laboratory Test Result Report - Soil Enthalpy Analytical

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: ENGEO Inc.

Address: 6 Morgan, Suite 162

Irvine, CA 92618-1922

Attn: Adrianna Lundberg

Comments: Covina Bowl

16109.000.000.T002

Lab Request: 415180
Report Date: 05/14/2019
Date Received: 05/10/2019

Client ID: 15790

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #Client Sample ID415180-0054-pt Composite 01-04415180-0104-pt Composite 05-08415180-01301-B-11@0.5415180-01401-B-12@0.5415180-0154-pt Composite 09-12

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Detections Summary

Sample #:	415180-005	Client Samp	ole #: 4-pt Comp	osite 01-04			
Method	<u>Analyte</u>		Result	<u>DF</u>	RDL	<u>Units</u>	<u>Notes</u>
EPA 6010B	Arsenic		4.03	1	1	mg/Kg	
EPA 6010B	Lead		14.6	1	1	mg/Kg	
Sample #:	415180-010	Client Samp	ole #: 4-pt Comp	osite 05-08			
Method	<u>Analyte</u>		Result	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic		5.58	1	1	mg/Kg	
EPA 6010B	Lead		8.46	1	1	mg/Kg	
Sample #:	415180-013	Client Samp	ole #: 01-B-11@	0.5			
Method	<u>Analyte</u>		Result	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic		6.32	1		mg/Kg	
EPA 6010B	Barium		137	1	1	mg/Kg	
EPA 6010B	Cadmium		0.72	1	0.5	mg/Kg	
EPA 6010B	Chromium		18.8	1	1	mg/Kg	
EPA 6010B	Cobalt		13.1	1	0.5	mg/Kg	
EPA 6010B	Copper		32.5	1	1	mg/Kg	
EPA 6010B	Lead		14.7	1	1	mg/Kg	
EPA 6010B	Nickel		15.8	1	1.5	mg/Kg	
EPA 6010B	Vanadium		45.8	1	0.5	mg/Kg	
EPA 6010B	Zinc		101	1	5	mg/Kg	
EPA 8270CM	Benz(a)anth	racene	23	1	10	ug/Kg	
EPA 8270CM	Benzo(a)pyr		25	1	10	ug/Kg	
EPA 8270CM	Benzo(b)fluo		12	1	10	ug/Kg	
EPA 8270CM	Benzo(g,h,i)		13	1	10	ug/Kg	
EPA 8270CM	Benzo(k)fluo	· ·	27	1	10	ug/Kg	
EPA 8270CM	Chrysene		23	1	10	ug/Kg	
EPA 8270CM	Fluoranthen	е	15	1	10	ug/Kg	
EPA 8270CM	Indeno(1,2,3		15	1	10	ug/Kg	
EPA 8270CM	Pyrene	/I- /	22	1	10	ug/Kg	
Sample #:	415180-014	Client Samp	ole #: 01-B-12@	0.5		0 0	
Method	<u>Analyte</u>		Result	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic		3.75	<u> </u>	1	mg/Kg	
EPA 6010B	Barium		164	1	1	mg/Kg	
EPA 6010B	Cadmium		0.69	1	0.5	mg/Kg	
EPA 6010B	Chromium		21.4	1	1	mg/Kg	
EPA 6010B	Cobalt		15.6	1	0.5	mg/Kg	
EPA 6010B	Copper		31.2	1	1	mg/Kg	
EPA 6010B	Lead		6.58	1	1	mg/Kg	
EPA 6010B	Nickel		19.0	1	1.5	mg/Kg	
EPA 6010B	Vanadium		52.8	1	0.5	mg/Kg	
EPA 6010B	Zinc		73.1	1	5	mg/Kg	
	415180-015	Client Samp	ole #: 4-pt Comp	osite 09-12		- -	
Method	<u>Analyte</u>		Result	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic		6.37	1	1	mg/Kg	
EPA 6010B	Lead		12.5	1	1	mg/Kg	
21 / (30 10 1	Load		12.0	•	1	1119/119	

Sampled: 05/10/2019 Site:

Sample #: 415180-005 Client Sample #: 4-pt Composite 01-04 Sample Type:

Analyte		Result	DF	RDL	Units	Prepared	Analyze	d By	Notes
Method: EPA 6010B NELAC	Prep Method:	EPA 3050B					QCBatch	ID: Q0	C1201898
Arsenic		4.03	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Lead		14.6	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Method: EPA 8081A NELAC	Prep Method:	EPA 3545					QCBatch	ID: Q0	C1201886
4,4'-DDD		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
4,4'-DDE		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
4,4'-DDT		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
a-BHC		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Aldrin		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
b-BHC		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Chlordane (technical)		ND	5	250	ug/Kg	05/10/19	05/11/19	MTS	D2
d-BHC		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Dieldrin		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan I		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan II		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan sulfate		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin aldehyde		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin Ketone		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Heptachlor		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Heptachlor epoxide		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Lindane (Gamma-BHC)		ND	5	25	ug/Kg	05/10/19	05/11/19	MTS	D2
Methoxychlor		ND	5	50	ug/Kg	05/10/19	05/11/19	MTS	D2
Toxaphene		ND	5	500	ug/Kg	05/10/19	05/11/19	MTS	D2
<u>Surrogate</u>		<u>% R</u>	ecovery	<u>Limits</u>	<u>Notes</u>				
Decachlorobiphenyl DCB (SUR)			53	50-150					
Tetrachloro-m-xylene TCMX (SL	IR)		62	50-150					

Sampled: 05/10/2019 Site:

Sample #: 4-pt Composite 05-08 Sample Type:

Analyte		Result	DF	RDL	Units	Prepared	Analyze	d By	Notes
Method: EPA 6010B NELAC	Prep Method:	EPA 3050B					QCBatch	ID: QC	C1201898
Arsenic		5.58	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Lead		8.46	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Method: EPA 8081A NELAC	Prep Method:	EPA 3545					QCBatch	ID: Q0	C1201886
4,4'-DDD		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
4,4'-DDE		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
4,4'-DDT		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
a-BHC		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Aldrin		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
b-BHC		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Chlordane (technical)		ND	2	100	ug/Kg	05/10/19	05/11/19	MTS	D2
d-BHC		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Dieldrin		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan I		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan II		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endosulfan sulfate		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin aldehyde		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Endrin Ketone		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Heptachlor		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Heptachlor epoxide		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Lindane (Gamma-BHC)		ND	2	10	ug/Kg	05/10/19	05/11/19	MTS	D2
Methoxychlor		ND	2	20	ug/Kg	05/10/19	05/11/19	MTS	D2
Toxaphene		ND	2	200	ug/Kg	05/10/19	05/11/19	MTS	D2
<u>Surrogate</u>		<u>% R</u>	ecovery	<u>Limits</u>	<u>Notes</u>				
Decachlorobiphenyl DCB (SUR)		;	54	50-150					
Tetrachloro-m-xylene TCMX (SU	JR)		56	50-150					

Sampled: 05/10/2019 09:30 **Site:**

Sample #: 415180-013 Client Sample #: 01-B-11@0.5 Sample Type:

Analyte		Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: EPA 6010B NELAC	Prep Method: EP.						QCBatchI		C1201898
Antimony		ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Arsenic		6.32	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Barium		137	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Cadmium		0.72	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Chromium		18.8	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Cobalt		13.1	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Copper		32.5	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Lead		14.7	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Molybdenum		ND	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Nickel		15.8	1	1.5	mg/Kg	05/13/19	05/13/19	KLN	
Selenium		ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Silver		ND	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Thallium		ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Vanadium		45.8	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Zinc		101	1	5	mg/Kg	05/13/19	05/13/19	KLN	
Method: EPA 7471A NELAC	Drop Mathadi CD								21201020
	Prep Method: EP.			0.14		05/40/40	QCBatchII		,1201929
Mercury		ND	1	0.14	mg/Kg	05/13/19	05/14/19	JP	
Method: EPA 8015M	Prep Method: EP.						QCBatchII		C1201919
TPH (C13 to C28) (SGT)		ND	1	10	mg/Kg	05/13/19	05/13/19	TW	
TPH (C29 to C 40) (SGT)		ND	1	20	mg/Kg	05/13/19	05/13/19	TW	
<u>Surrogate</u>		<u>% F</u>	Recovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			164	50-150	S	High surr.	Recovery but s	ample	is ND
Method: EPA 8270CM	Prep Method: EP.	A 3545					QCBatchI	D: Q0	C1201882
1-Methylnaphthalene	·	ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	L
2-Methylnaphthalene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Acenaphthene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Acenaphthylene		ND	1		- 3 3			MTS	
Anthracene					ua/Ka	05/10/19	05/13/19	IVI I O	
Benz(a)anthracene				10	ug/Kg ug/Ka	05/10/19 05/10/19	05/13/19 05/13/19		
		ND		10 10	ug/Kg	05/10/19	05/13/19	MTS	
, ,		ND 23	1	10 10 10	ug/Kg ug/Kg	05/10/19 05/10/19	05/13/19 05/13/19	MTS MTS	
Benzo(a)pyrene		ND 23 25	1 1 1	10 10 10 10	ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19	MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene		ND 23 25 12	1 1 1 1	10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene		ND 23 25 12	1 1 1 1	10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene		ND 23 25 12 13 27	1 1 1 1 1	10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene		ND 23 25 12 13 27 23	1 1 1 1 1 1	10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene		ND 23 25 12 13 27 23 ND	1 1 1 1 1 1 1	10 10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene		ND 23 25 12 13 27 23 ND 15	1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene		ND 23 25 12 13 27 23 ND 15 ND	1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS MTS MTS MTS MTS MTS MTS MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene		ND 23 25 12 13 27 23 ND 15 ND 15	1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene		ND 23 25 12 13 27 23 ND 15 ND 15 ND	1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene		ND 23 25 12 13 27 23 ND 15 ND 15 ND ND ND	1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene		ND 23 25 12 13 27 23 ND 15 ND 15 ND	1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene		ND 23 25 12 13 27 23 ND 15 ND 15 ND 15 ND 22	1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene		ND 23 25 12 13 27 23 ND 15 ND 15 ND 15 ND 22	1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Surrogate		ND 23 25 12 13 27 23 ND 15 ND 15 ND 15 ND 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ug/Kg	05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19 05/10/19	05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19 05/13/19	MTS	

Sampled: 05/10/2019 09:37 **Site:**

Sample #: 415180-014 Client Sample #: 01-B-12@0.5 Sample Type:

Analyte		Result	DF	RDL	Units	Prepared	Analyzed	d Bv	Notes
Method: EPA 6010B NELAC	Prep Method:			INDL	Oille	ricpared	QCBatch		C1201898
Antimony	· · · · · · · · · · · · · · · · · · ·	ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Arsenic		3.75	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Barium		164	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Cadmium		0.69	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Chromium		21.4	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Cobalt		15.6	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Copper		31.2	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Lead		6.58	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Molybdenum		ND	1	1	mg/Kg	05/13/19	05/13/19	KLN	
Nickel		19.0	1	1.5	mg/Kg	05/13/19	05/13/19	KLN	
Selenium		ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Silver		ND	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Thallium		ND	1	3	mg/Kg	05/13/19	05/13/19	KLN	
Vanadium		52.8	1	0.5	mg/Kg	05/13/19	05/13/19	KLN	
Zinc		73.1	1	5	mg/Kg	05/13/19	05/13/19	KLN	
Method: EPA 7471A NELAC	Prep Method:	EPA 7471A					QCBatch	ID: Q	C1201929
Mercury		ND	1	0.14	mg/Kg	05/13/19	05/14/19	JP	
Method: EPA 8015M	Prep Method:	EPA 3580A					QCBatch	ID: Q	C1201919
TPH (C13 to C28) (SGT)		ND	1	10	mg/Kg	05/13/19	05/13/19	TW	
TPH (C29 to C 40) (SGT)		ND	1	20	mg/Kg	05/13/19	05/13/19	TW	
<u>Surrogate</u>		<u>%</u>	Recovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			119	50-150					
Method: EPA 8270CM	Prep Method:	EPA 3545					QCBatch	ID: Q	C1201882
1-Methylnaphthalene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	L
2-Methylnaphthalene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Acenaphthene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Acenaphthylene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Anthracene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Benz(a)anthracene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Benzo(a)pyrene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Benzo(b)fluoranthene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Benzo(g,h,i)perylene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Benzo(k)fluoranthene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Chrysene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Dibenz(a,h)anthracene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Fluoranthene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Fluorene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Indeno(1,2,3-cd)pyrene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Naphthalene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Phenanthrene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
Pyrene		ND	1	10	ug/Kg	05/10/19	05/13/19	MTS	
<u>Surrogate</u>		<u>%</u>	Recovery	<u>Limits</u>	<u>Notes</u>				
2-Fluorobiphenyl (SUR)			66	30-120					
Nitrobenzene-d5 (SUR)			78	27-125					
p-Terphenyl (SUR)			64	33-155					

Sampled: 05/10/2019 Site:

Sample #: 415180-015 Client Sample #: 4-pt Composite 09-12 Sample Type:

Analyte		Result	DF	RDL	Units	Prepared	Analyze	d By Notes
Method: EPA 6010B NELAC	Prep Method:	EPA 3050B					QCBatch	ID: QC1201898
Arsenic		6.37	1	1	mg/Kg	05/13/19	05/13/19	KLN
Lead		12.5	1	1	mg/Kg	05/13/19	05/13/19	KLN
Method: EPA 8081A NELAC	Prep Method:	EPA 3545					QCBatch	ID: QC1201886
4,4'-DDD		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
4,4'-DDE		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
4,4'-DDT		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
a-BHC		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Aldrin		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
b-BHC		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Chlordane (technical)		ND	1	50	ug/Kg	05/10/19	05/11/19	MTS
d-BHC		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Dieldrin		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endosulfan I		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endosulfan II		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endosulfan sulfate		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endrin		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endrin aldehyde		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Endrin Ketone		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Heptachlor		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Heptachlor epoxide		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Lindane (Gamma-BHC)		ND	1	5	ug/Kg	05/10/19	05/11/19	MTS
Methoxychlor		ND	1	10	ug/Kg	05/10/19	05/11/19	MTS
Toxaphene		ND	1	100	ug/Kg	05/10/19	05/11/19	MTS
<u>Surrogate</u>		<u>% R</u>	ecovery	<u>Limits</u>	<u>Notes</u>			
Decachlorobiphenyl DCB (SU	R)		58	50-150				
Tetrachloro-m-xylene TCMX (SUR)	;	56	50-150				

QCBatchID: QC1201882 Analyst: Abanh Method: EPA 8270CM Matrix: Solid **Analyzed:** 05/10/2019 Instrument: SVOA-MS (group)

Blank Summary											
	Blank										
Analyte	Result	Units	RDL	Notes							
QC1201882MB1											
1-Methylnaphthalene	ND	ug/Kg	10								
2-Methylnaphthalene	ND	ug/Kg	10								
Acenaphthene	ND	ug/Kg	10								
Acenaphthylene	ND	ug/Kg	10								
Anthracene	ND	ug/Kg	10								
Benz(a)anthracene	ND	ug/Kg	10								
Benzo(a)pyrene	ND	ug/Kg	10								
Benzo(b)fluoranthene	ND	ug/Kg	10								
Benzo(g,h,i)perylene	ND	ug/Kg	10								
Benzo(k)fluoranthene	ND	ug/Kg	10								
Chrysene	ND	ug/Kg	10								
Dibenz(a,h)anthracene	ND	ug/Kg	10								
Fluoranthene	ND	ug/Kg	10								
Fluorene	ND	ug/Kg	10								
Indeno(1,2,3-cd)pyrene	ND	ug/Kg	10								
Naphthalene	ND	ug/Kg	10								
Phenanthrene	ND	ug/Kg	10								
Pyrene	ND	ug/Kg	10								

Lab Control Spike/ Lab Control Spike Duplicate Summary												
	Spike Amount	Spike Result		Recoveries		Limit	s					
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes				
QC1201882LCS1	<u> </u>	1	1	1			-					
1-Methylnaphthalene	50	16	ug/Kg	32		38-130		L				
2-Methylnaphthalene	50	36	ug/Kg	72		59-130						
Acenaphthene	50	37	ug/Kg	74		58-130						
Acenaphthylene	50	36	ug/Kg	72		52-130						
Anthracene	50	35	ug/Kg	70		55-136						
Benz(a)anthracene	50	35	ug/Kg	70		61-147						
Benzo(a)pyrene	50	25	ug/Kg	50		36-168						
Benzo(b)fluoranthene	50	35	ug/Kg	70		63-147						
Benzo(g,h,i)perylene	50	33	ug/Kg	66		54-135						
Benzo(k)fluoranthene	50	35	ug/Kg	70		64-142						
Chrysene	50	36	ug/Kg	72		66-130						
Dibenz(a,h)anthracene	50	33	ug/Kg	66		52-144						
Fluoranthene	50	38	ug/Kg	76		68-139						
Fluorene	50	38	ug/Kg	76		63-130						
Indeno(1,2,3-cd)pyrene	50	34	ug/Kg	68		58-144						
Naphthalene	50	34	ug/Kg	68		50-130						
Phenanthrene	50	38	ug/Kg	76		65-132						
Pyrene	50	37	ug/Kg	74		68-134						

	Matrix Spike/Matrix Spike Duplicate Summary												
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts		
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes	
QC1201882MS1, QC1201882MSD1										Sc	ource:	415178-003	
1-Methylnaphthalene	ND	50	50	15	16	ug/Kg	30	32	6.5	25-130	35		
2-Methylnaphthalene	ND	50	50	38	41	ug/Kg	76	82	7.6	32-133	35		
Acenaphthene	ND	50	50	37	39	ug/Kg	74	78	5.3	28-134	35		
Acenaphthylene	ND	50	50	37	39	ug/Kg	74	78	5.3	14-157	35		
Anthracene	2.5	50	50	36	39	ug/Kg	67	73	8.0	24-156	35		
Benz(a)anthracene	13	50	50	38	42	ug/Kg	50	58	10.0	26-174	35		

Enthalpy Analytical, LLC

QCBatchID: QC1201882	Analyst:	Abanh		М	ethod:	EPA 8270CM						
Matrix: Solid	Analyzed:	05/10/2	2019	Instru	ument:	SVOA-MS (gro	oup)					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201882MS1, QC1201882MSD1										Sc	urce:	415178-003
Benzo(a)pyrene	30	50	50	37	39	ug/Kg	14	18	5.3	18-173	35	М
Benzo(b)fluoranthene	16	50	50	37	42	ug/Kg	42	52	12.7	36-164	35	
Benzo(g,h,i)perylene	35	50	50	30	32	ug/Kg	0	0	6.5	36-130	35	M
Benzo(k)fluoranthene	19	50	50	40	43	ug/Kg	42	48	7.2	36-161	35	
Chrysene	27	50	50	37	40	ug/Kg	20	26	7.8	40-139	35	М
Dibenz(a,h)anthracene	8.9	50	50	35	28	ug/Kg	52	38	22.2	38-132	35	
Fluoranthene	9.4	50	50	42	46	ug/Kg	65	73	9.1	28-160	35	
Fluorene	ND	50	50	37	40	ug/Kg	74	80	7.8	27-140	35	
Indeno(1,2,3-cd)pyrene	18	50	50	32	31	ug/Kg	28	26	3.2	26-154	35	
Naphthalene	ND	50	50	39	40	ug/Kg	78	80	2.5	33-130	35	
Phenanthrene	20	50	50	38	41	ug/Kg	36	42	7.6	29-147	35	
Pyrene	22	50	50	38	43	ug/Kg	32	42	12.3	26-153	35	

QCBatchID:QC1201886Analyst:bmorrisMethod:EPA 8081AMatrix:SolidAnalyzed:05/10/2019Instrument:SVOA-GC (group)

Blank Summary											
	Blank										
Analyte	Result	Units	RDL	Notes							
QC1201886MB1											
4,4'-DDD	ND	ug/Kg	5								
4,4'-DDE	ND	ug/Kg	5								
4,4'-DDT	ND	ug/Kg	5								
a-BHC	ND	ug/Kg	5								
Aldrin	ND	ug/Kg	5								
b-BHC	ND	ug/Kg	5								
Chlordane (technical)	ND	ug/Kg	50								
d-BHC	ND	ug/Kg	5								
Dieldrin	ND	ug/Kg	5								
Endosulfan I	ND	ug/Kg	5								
Endosulfan II	ND	ug/Kg	5								
Endosulfan sulfate	ND	ug/Kg	5								
Endrin	ND	ug/Kg	5								
Endrin aldehyde	ND	ug/Kg	5								
Endrin Ketone	ND	ug/Kg	5								
Heptachlor	ND	ug/Kg	5								
Heptachlor epoxide	ND	ug/Kg	5								
Lindane (Gamma-BHC)	ND	ug/Kg	5								
Methoxychlor	ND	ug/Kg	10								
Toxaphene	ND	ug/Kg	100								

Lab Control Spike/ Lab Control Spike Duplicate Summary												
	Spike A	Amount	Spike	Result		Reco	veries		Limi	ts		
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes	
QC1201886LCS1								·				
4,4'-DDD	50		36		ug/Kg	72			43-172			
4,4'-DDE	50		36		ug/Kg	72			44-163			
4,4'-DDT	50		48		ug/Kg	96			40-158			
a-BHC	50		37		ug/Kg	74			45-150			
Aldrin	50		34		ug/Kg	68			46-142			
b-BHC	50		38		ug/Kg	76			42-156			
d-BHC	50		32		ug/Kg	64			37-161			
Dieldrin	50		36		ug/Kg	72			47-151			
Endosulfan I	50		35		ug/Kg	70			47-141			
Endosulfan II	50		33		ug/Kg	66			44-156			
Endosulfan sulfate	50		37		ug/Kg	74			43-157			
Endrin	50		40		ug/Kg	80			47-160			
Endrin aldehyde	50		29		ug/Kg	58			32-127			
Endrin Ketone	50		38		ug/Kg	76			48-159			
Heptachlor	50		31		ug/Kg	62			50-144			
Heptachlor epoxide	50		31		ug/Kg	62			48-145			
Lindane (Gamma-BHC)	50		35		ug/Kg	70			47-151			
Methoxychlor	50		44		ug/Kg	88			36-182			

	Mat	trix Sp	ike/Matı	rix Spil	ce Dupli	cate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	:S	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201886MS1, QC1201886MSD1								•		Sc	urce:	415178-001
4,4'-DDD	ND	50	50	32	33	ug/Kg	64	66	3.1	43-172	20	
4,4'-DDE	ND	50	50	30	33	ug/Kg	60	66	9.5	44-163	20	
4,4'-DDT	ND	50	50	44	40	ug/Kg	88	80	9.5	40-158	20	
a-BHC	ND	50	50	32	34	ug/Kg	64	68	6.1	45-150	20	

Enthalpy Analytical, LLC

QCBatchID: QC1201886	Analyst:	bmorri	s	М	ethod: E	EPA 8081A						
Matrix: Solid	Analyzed:	05/10/	2019	Instru	ument: S	SVOA-GC (gro	oup)					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201886MS1, QC1201886MSD1										So	urce:	415178-001
Aldrin	ND	50	50	30	33	ug/Kg	60	66	9.5	46-142	20	
b-BHC	ND	50	50	36	37	ug/Kg	72	74	2.7	42-156	20	
d-BHC	ND	50	50	29	32	ug/Kg	58	64	9.8	37-161	20	
Dieldrin	ND	50	50	31	34	ug/Kg	62	68	9.2	47-151	20	
Endosulfan I	ND	50	50	30	32	ug/Kg	60	64	6.5	47-141	20	
Endosulfan II	ND	50	50	29	31	ug/Kg	58	62	6.7	44-156	20	
Endosulfan sulfate	ND	50	50	33	35	ug/Kg	66	70	5.9	43-157	20	
Endrin	ND	50	50	35	36	ug/Kg	70	72	2.8	47-160	20	
Endrin aldehyde	ND	50	50	25	28	ug/Kg	50	56	11.3	32-127	20	
Endrin Ketone	ND	50	50	32	35	ug/Kg	64	70	9.0	48-159	20	
Heptachlor	ND	50	50	27	29	ug/Kg	54	58	7.1	50-144	20	
Heptachlor epoxide	ND	50	50	26	27	ug/Kg	52	54	3.8	48-145	20	
Lindane (Gamma-BHC)	ND	50	50	30	32	ug/Kg	60	64	6.5	47-151	20	
Methoxychlor	ND	50	50	38	44	ug/Kg	76	88	14.6	36-182	20	

QCBatchID:QC1201898Analyst:dswaffordMethod:EPA 6010BMatrix:SolidAnalyzed:05/13/2019Instrument:AAICP (group)

	Blar	nk Summary	/		
	Blank				
Analyte	Result	Units	RDL	Notes	
QC1201898MB1					
Antimony	ND	mg/Kg	3		
Arsenic	ND	mg/Kg	1		
Barium	ND	mg/Kg	1		
Beryllium	ND	mg/Kg	0.5		
Cadmium	ND	mg/Kg	0.5		
Chromium	ND	mg/Kg	1		
Cobalt	ND	mg/Kg	0.5		
Copper	ND	mg/Kg	1		
Lead	ND	mg/Kg	1		
Molybdenum	ND	mg/Kg	1		
Nickel	ND	mg/Kg	1.5		
Selenium	ND	mg/Kg	3		
Silver	ND	mg/Kg	0.5		
Thallium	ND	mg/Kg	3		
Vanadium	ND	mg/Kg	0.5		
Zinc	ND	mg/Kg	5		

L	.ab Control Spike/ La	b Control Spike	e Duplica	te Summary	/			
	Spike Amount	Spike Result		Recoveries		Limit	s	
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1201898LCS1	<u> </u>	1			1		,	
Antimony	100	108	mg/Kg	108		80-120		
Arsenic	100	101	mg/Kg	101		80-120		
Barium	100	102	mg/Kg	102		80-120		
Beryllium	100	106	mg/Kg	106		80-120		
Cadmium	100	101	mg/Kg	101		80-120		
Chromium	100	96.1	mg/Kg	96		80-120		
Cobalt	100	103	mg/Kg	103		80-120		
Copper	100	101	mg/Kg	101		80-120		
Lead	100	107	mg/Kg	107		80-120		
Molybdenum	100	104	mg/Kg	104		80-120		
Nickel	100	108	mg/Kg	108		80-120		
Selenium	100	97.1	mg/Kg	97		80-120		
Silver	100	99.3	mg/Kg	99		80-120		
Thallium	100	95.3	mg/Kg	95		80-120		
Vanadium	100	102	mg/Kg	102		80-120		
Zinc	100	103	mg/Kg	103		80-120	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	

	Mat	rix Sp	ike/Matı	rix Spik	ke Dupli	cate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201898MS1, QC1201898MSD1	'									Sc	urce:	415177-00°
Antimony	2.30	100	100	48.0	42.8	mg/Kg	46	41	11.5	75-125	20	М
Arsenic	2.54	100	100	97.5	95.6	mg/Kg	95	93	2.0	75-125	20	
Barium	136	100	100	221	231	mg/Kg	85	95	4.4	75-125	20	
Beryllium	ND	100	100	99.3	98.4	mg/Kg	102	101	0.9	75-125	20	
Cadmium	0.40	100	100	94.2	93.7	mg/Kg	94	93	0.5	75-125	20	
Chromium	28.8	100	100	118	121	mg/Kg	89	92	2.5	75-125	20	
Cobalt	9.80	100	100	104	103	mg/Kg	94	93	1.0	75-125	20	
Copper	48.4	100	100	145	148	mg/Kg	97	100	2.0	75-125	20	
Lead	5.20	100	100	104	102	mg/Kg	99	97	1.9	75-125	20	
Molybdenum	0.85	100	100	95.2	92.6	mg/Kg	94	92	2.8	75-125	20	

QCBatchID: QC1201898	Analyst:	dswaff	ord	М	ethod: E	PA 6010B						
Matrix: Solid	Analyzed:	05/13/2	2019	Instru	ument: A	AICP (group))					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201898MS1, QC1201898MSD1										Sc	ource:	415177-001
Nickel	9.46	100	100	107	105	mg/Kg	98	96	1.9	75-125	20	
Selenium	ND	100	100	93.5	86.8	mg/Kg	95	88	7.4	75-125	20	
Silver	ND	100	100	93.8	93.0	mg/Kg	95	94	0.9	75-125	20	
Thallium	5.29	100	100	89.4	88.6	mg/Kg	84	83	0.9	75-125	20	
Vanadium	59.7	100	100	153	162	mg/Kg	93	102	5.7	75-125	20	
Zinc	29.1	100	100	120	120	mg/Kg	91	91	0.0	75-125	20	

Matrix: Solid Anal	yzed: 05/13/2019	Instrument:	SVOA-GC (group)		
	Bla	ank Summary	/		
	Blank				
Analyte	Result	Units	RDL	Notes	
QC1201919MB1					1
TPH (C13 to C28) (SGT)	ND	mg/Kg	10		
TPH (C29 to C 40) (SGT)	ND	mg/Kg	20		

Analyst: Abanh

Method: EPA 8015M

10

Lab	Control Spik	re/ Lab	Contro	ol Spike	Duplicat	e Sun	nmary						
Spike Amount Spike Result Recoveries Limits													
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes		
QC1201919LCS1	<u>.</u>	,				•	•						
TPH Diesel (SGT)	250		214		mg/Kg	86			36-138				

mg/Kg

ND

	Matrix Spike/Matrix Spike Duplicate Summary													
Sample Spike Amount Spike Result Recoveries Limits Analyte Amount MS MSD MS MSD Units MS MSD RPD %Rec RPD Notes														
Analyte	Amount	MSD	RPD	%Rec	RPD	Notes								
QC1201919MS1, QC1201919MSD1										Sc	ource:	415180-013		
TPH Diesel (SGT)	ND	250	250	213	234	mg/Kg	85	94	9.4	70-130	30			

QCBatchID: QC1201919

TPH Diesel (SGT)

QCBatchID: QC1201929	Analyst:	JPared	es	Meth	od: E	EPA 7471A						
Matrix: Solid	Analyzed:	05/14/2	2019	Instrume	ent: /	AAICP-HG1						
			BI	ank Sumr	nary	7						
			Blank									
Analyte			Result	Units	;		RE	DL	No	tes		
QC1201929MB1	l.											
Mercury			ND	mg/K	g		0.1	14				
	-h O		l/ -h	041	D :1-	- D	- 0					
L	ab Conti	оі Зрі	Ke/ Lab	Control	Spik	e Duplicat	e Sun	nmary				
		Spike A	Amount	Spike Re	sult		Reco	veries		Limi	its	
Analyte		LCS	LCSD	LCS L	.CSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1201929LCS1												
Mercury		0.83		0.80		mg/Kg	96			80-120		
	Mat	riy Sni	ike/Matı	rix Snike l	Dunl	licate Sum	marv					
		•		•	•				ı	1 !!	_	
	Sample	•	Amount	Spike Re		l		overies		Limit		
Analyte	Amount	MS	MSD	MS N	ИSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1201929MS1, QC1201929MSD1										So	urce: 4	115012-001
Mercury	ND	0.83	0.83	0.76).77	mg/Kg	92	93	1.3	75-125	20	

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

BQ4 Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.

BQ5 Minor Dissolved Oxygen loss was observed in the blank water check.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

The sample was read outside of the method required incubation period.

IR Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply.

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit

TIC Tentatively Identified Compounds

931 W. Barkley Ave., Orange, CA 92868

Phone: (714) 771-6900 Fax: (714) 538-1209

Billing: Enthalpy Analytical

1 Park Plaza, Suite 1000

Irvine, CA 92614

8	Cha	in of Custo	dy Red	ord	Turn	Around	Time (Rush by	advanced notice only))
1	Lab No: $oldsymbol{L}$	b No: 415180		Standard:		4 Day:	3 Day:		
	Page:	1	of	4	2 Day:	✓	1 Day:	Same Day:	

Matrix: A = Air DW = Drinking Water
FL = Food Liquid FS = Food Solid L = Liquid
PP = Pure Product S = Solid SeaW = Sea Water
SW = Swab W = Water WP = Wipe O = Other

Preservatives: $1 = Na_2S_2O_3$ 2 = HCI $3 = HNO_3$ $4 = H_2SO_4$ 5 = NaOH 6 = Other

	CA 32014	ISTOMER IN	NFORMATION		1	PR	OJECT INFO	RMATION			<u> </u>		Anal	_	Reau	uest				Test Instructio	ns / Commer	nts
Compa		ENGEO			Name:		Covina Bo						T	1	Ť			1	-			
Report	-,-	ļ	L		Numbe		Covina Bo			1						ļ						
Email:		Adrianna I			P.O. #:		10100 000) 000 DU (0 46)	T00	1			MORO)	١						•		
		 	@engeo.com					0.000 PH002			윤		윌		Ì			-	1	•		
Addres	ss: 	6 Morgan			Addres	ss: 	 	t San Bernard	dino Rd	-	Arsenic		-	PAH								
		Irvine, CA					Covina, C	<u> </u>			and /		\sim 1							silica gel cleanup T MORO	PH DRO and	t
Phone): 	949.491.6	366		Global					_	ag ag		TPH (SVOCs	CAM 17			-		WORO		
Fax:					Sample	ed By: ————			 	OCP			ž) 	₹					•		
	Sample ID Date		Sampling Time	Matrix	Container No. / Size	Pres.	8081 -	6010 -		8015 N	8270 -	6010 -										
1	01-B-01@0.5 5/10/2019		19	7:23	soil	1/ 2x6	-	\square	∇I													
2			7:36	soil	1/ 2x6	-		V														
3	01-E	3-03@0.5		5/10/20	/10/2019 7:50		soil	1/ 2x6	-	Λ	Λ									4-pt comp	osite 01-04	
4	01-6	3-04@0.5		5/10/20	19	8:05		1/ 2x6	_		\square									analyze for OCP,	arsenic, a	nd lead
5	01-E	3-05@0.5		5/10/20	19	822	soil	1/ 2x6	-	M												
6	01-B	-06@0.5		5/10/20	19	836	soil	1/ 2x6	_	X	V											
7	01-B	-07@0.5		5/10/20	19	846	soil	1/ 2x6	-	$ \Lambda $	I	_								4-pt comp	osite 05-08	3
8	01-6	3-08@0.5		5/10/20	19	859	soil	1/.2x6	-	abla	Λ									analyze for OCP,	arsenic, a	nd lead
9																				-		
10									-													
			S	ignature			Pi	int Name			<u>''</u>	C	Com	par	ту /	Title	e			Date	/ Time	
¹ Reli	nquished	d By:	Adi	11110	lda		Adria	nna Lundberg			E	ENG	EO.	/ St	aff E	Eng	inee	r		5/10/2019	140	8 .
¹ Rec	eived By	•	1/2	f and	7	17	Herra	odez				F	=.K	7	-					Shohn	1408	
² Reli	inquished	d By:					, V. V. V.	****									-				7	
² Rec	eived By	:																				
³ Reli	inquished	d By:					· · · · ·															
³ Rec	eived By	:					.,,			\top												***

931 W. Barkley Ave., Orange, CA 92868

Phone: (714) 771-6900 Fax: (714) 538-1209

Billing: Enthalpy Analytical

1 Park Plaza, Suite 1000

Irvine, CA 92614

3	Ch	ain of Custo	dy Red	ord	Turn A	Around T	ime (Rush by	advanced notice only)
	Lab No:				Standard:		4 Day:	3 Day:
	Page: 2 of 4		2 Day:	√	1 Day:	Same Day:		

Matrix: A = Air DW = Drinking Water
FL = Food Liquid FS = Food Solid L = Liquid
PP = Pure Product S = Solid SeaW = Sea Water
SW = Swab W = Water WP = Wipe O = Other

Preservatives: $1 = Na_2S_2O_3$ 2 = HCl $3 = HNO_3$ $4 = H_2SO_4$ 5 = NaOH 6 = Other

· · · · · · · · · · · · · · · · · · ·									· · · PC								 		
CUSTOMER INFORMATION Company: ENGEO				PF	ROJECT INFO	RMATION					Ana	lysis	Red	ques	t		 Test Instructions / Comments		
Company:	ENGEO			Name:	Covina Bo	owl													
Report To:	Adrianna I	undberg		Number:							o								
Email:	alundberg	@engeo.com		P.O. #:	16109.000	0.000 BH002	T002		o		10R				l				
Address:	6 Morgan	Suite 162		Address:	1060 Wes	t San Bernard	dino Rd		and Arsenic		DRO, MORO)	_					,		
	Irvine, CA				Covina, CA				Ar		DR	PAH					silica gel cleanup TPH DRO and		
Phone:	949.491.6	366		Global ID:					au		TPH (Cs-	1				MORŎ		
Fax:				Sampled By:	Adrianna	Lundberg		OCP	Lead		Ι.	SVOCs	AM						
Sample ID Dat		Samplin Date	g Samplir Time	I WATER	Container No. / Size	Pres.	8081 - 0	6010 - 1		8015 M	8270 - 8	1 1							
1 01-B-09@0.5		5/10/20	19 9:08	soil	1/ 2x6	-													
2 01-E			5/10/201	19 918	soil	1/ 2x6	-	\coprod	\prod	V									
3 01-E			5/10/201	19 93) soil	1/ 2x6	-	V	X	Λ	X	X	∇				4-pt composite 09-12		
4 01-E			5/10/201	19 937	Z soil	1/ 2x6	-	Δ	u	\Box	\boxtimes	X	\geq				analyze for OCP, arsenic, and lead		
5							_												
6							-												
7																			
8							-												
9																			
10																			
		S	Signature		Pi	rint Name				(Com	par	ny /	/ Tit	le		Date / Time		
¹ Relinquished	d By:	Adr	- LUO	belog	Adria	nna Lundberg				ENG		/ St	taff	Eng	gine	er	 5/1,0/2019 1408		
¹ Received By	:	(1)		//	Herry	Wee				E	1/2						S/10/10 1468		
² Relinquished	Relinquished By:																		
² Received By																			
³ Relinquished	Relinquished By:																		
³ Received By	/:																		

931 W. Barkley Ave., Orange, CA 92868

Phone: (714) 771-6900 Fax: (714) 538-1209

Billing: Enthalpy Analytical

1 Park Plaza, Suite 1000

Irvine, CA 92614

20	Cha	ain of Custo	dy Red	ord	Turn A	۱ro	und	Time (Rush	by adva	nced notice	onl	y)	
A	Lab No:	ab No:			Standard:			4 Day:		3 Day:			
TRIEND	Page:	3	of	4	2 Day:		√	1 Day:		Same Day:			

Matrix: A = Air DW = Drinking Water
FL = Food Liquid FS = Food Solid L = Liquid
PP = Pure Product S = Solid SeaW = Sea Water
SW = Swab W = Water WP = Wipe O = Other

Preservatives: $1 = Na_2S_2O_3$ 2 = HCI $3 = HNO_3$ $4 = H_2SO_4$ 5 = NaOH 6 = Other

CUSTOMER INFORMATION Company: ENGEO					PRO	OJECT INFO	RMATION					Anal	ysis	Req	uest				Test Instruct	ons / Comr	nents	
Comp	any:	ENGEO			Name:		Covina Bo	owl														
Repoi	rt To:	Adrianna I	Lundberg		Number:								6									
Email	-	alundberg	@engeo.com		P.O. #:		16109.00	0.000 PH862	T00 %		ا د		TPH (DRO, MORO)									
Addre	ess:	6 Morgan	Suite 162		Address:		1060 West San Bernardino Rd				Arsenic		Ŏ,	_								
		Irvine, CA					Covina, C	A			d Ar		R R	PAH						silica gel cleanup	TPH DRO	and
Phone				,	Global ID:			7.000.2			and		Ä	S	17			.		MORO		
Fax:	ax:			Sampled B	y:	Adrianna	Lundberg		OCP P	Lead			SVOCs	CAM 17								
Sample ID			Sampling Date	1	Sampling Time		Container No. / Size	Pres.	8081 - 0	6010 -		≤ 1		6010 - 0								
1	1 01-B-01@1.5		5/10/201	19 7	: 24	soil	1/ 2x6												hold	sampl	٤	
2	01-E	01-B-02@1.5 5/10/2		5/10/201	9 7:38		soil	1/ 2x6	-													
3	01-E			5/10/201	19 7	:51	soil	1/ 2x6	-											•		
4			5/10/201	19 🕏	06	soil	1/ 2x6	-												-		
5									-													
6	01-E	3-05@1.5	**	5/10/201	19 🖁	9 823		1/ 2x6	-													
7	01-E	3-06@1.5		5/10/201		37-	soil	1/ 2x6	-													
8	01-	B-07@1.5		5/10/201			soil	1/ 2x6	-													
9	01	-B-08@1.5		5/10/201	19 8	58	soil	1/ 2x6			Ш						Ш			an, X	V.	4
10									-													
-			2/15	Signature	<i>j.</i>		Pi	rint Name								Title				Date	e / Time	
	inquished		M	LANA	deg	1		nna Lundberg	***	_	E	NG			aff I	Engi	inee	r		5/10/2019		08 .
_	eived By		(1//_		/	$\perp L$	Hema	Ner		_		E		Ò					_	Slola	141	8
_	inquished		-			<u> </u>	<u></u>			_									_		•	
	Received By:						···		_									_				
	³ Relinquished By:																					
³ Red	Received By:																					

931 W. Barkley Ave., Orange, CA 92868

Phone: (714) 771-6900 Fax: (714) 538-1209

Billing: Enthalpy Analytical

1 Park Plaza, Suite 1000

Irvine, CA 92614

MS	Cha	ain of Custo	ody Rec	ord	Turn A	٩ro	Turn Around Time (Rush by advanced notice only)												
	Lab No:	Standard:			4 Day:		3 Day:												
	Page:	4	of	4	2 Day:		√	1 Day:		Same Day:									

Matrix: A = Air DW = Drinking Water
FL = Food Liquid FS = Food Solid L = Liquid
PP = Pure Product S = Solid SeaW = Sea Water
SW = Swab W = Water WP = Wipe O = Other

Preservatives: $1 = Na_2S_2O_3$ 2 = HCl $3 = HNO_3$ $4 = H_2SO_4$ 5 = NaOH 6 = Other

CUSTOMED INFORMATION																		
С	USTOMER IN	VFORMATION		PF	ROJECT INFO	DRMATION	,				Anal	ysis	Req	uest				Test Instructions / Comments
Company:	ENGEO			Name:	Covina Bo	owl												
Report To:	Adrianna I	Lundberg		Number:							6							
Email:	alundberg	@engeo.com		P.O. #:	16109.00	0.000 PH00Z	T00 2		6		OR							
Address:	6 Morgan	Suite 162		Address:	1060 Wes	1060 West San Bernardino Rd			and Arsenic		2)	_						
	Irvine, CA				Covina, C	;A					DR.	PAH						silica gel cleanup TPH DRO and
Phone:	949.491.6	366		Global ID:					an		TPH (DRO, MORO)	်	17					MORŎ
Fax:				Sampled By:	Adrianna	Lundberg		OCP	Lead			SVOCs	CAM					·
Sample ID		Samplin Date	g Samplin Time	Matrix	Container No. / Size	Pres.	8081 - 0	6010 -				6010 - (
1 01-B-09@1.5		5/10/20	19 9:00	7 soil	1/ 2x6	-											hold sample	
2 01-			5/10/20 ⁻		soil	1/ 2x6	-											
3 01-			5/10/20 ⁻	19 93	soil	1/ 2x6	-											
4 01-			5/10/20	19 938	soil	1/ 2x6	-											\star
5							-											
6							-								,			
7							-											
8							-											`
9																		
10							-											
		S	Signature _A		Р	rint Name				(Com	par	ıy /	Titl	e			Date / Time
¹ Relinquishe	d By:	Adr	- 1	(Mess)		nna Lundberg			E	ENG				Eng	inee	er		5/10/2019 /ソン& .
¹ Received B	y:	1,1			GAREN	What				Ŧ	E	4					,	5/10/19 1405
² Relinquishe	ed By:	<u></u>			•													
² Received B	y:																	
³ Relinquishe	ed By:					<u> </u>												
³ Received B	y:																	

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: ENGEO	Project:			
Date Received: 05/10/19	Sampler's Name Present:	√Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)		e Temp (°C) (No Cooler)	٠ .
Sample Temp (°C), One from each cooler: #1: 14.3	#2: #3:		•	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accepto				s collected
the same day as sample receipt to have a higher temperat	ure as long as there is evidence that c	ooling has beg	un.)	
Shipping Information:			*	
Section 3	·			
Was the cooler packed with: ☐ Ice	Bubble Wrap Styre	ofoam		
Paper None	Other	<u> </u>		
Cooler Temp (°C): #1: 0.5 #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		√		
Are the tests required clearly indicated on the COC?		✓		
Are custody seals present?			1	
If custody seals are present, were they intact?				V
Are all samples sealed in plastic bags? (Recommended fo	or Microbiology samples)	✓		
Did all samples arrive intact? If no, indicate in Section 4 b	oelow.	✓		
Did all bottle labels agree with COC? (ID, dates and times	s)	✓		
Were the samples collected in the correct containers for	the required tests?	✓		100
Are the containers labeled with the correct preserv	ratives?			✓
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			✓
Was a sufficient amount of sample submitted for the req	juested tests?	✓		
Section 5 Explanations/Comments				
	•			
Section 6	12 The 3 to 1			
For discrepancies, how was the Project Manager notified	_			
n : 114	Email (email sent to	/on):	/	
Project Manager's response:				
/ <i> </i>	1 1			
-/	$=$ $\int_{\Omega} \int_{\Omega} dx$			
Completed By:	_Date:			