Appendix A

Air Quality and Greenhouse Gas Models

Table 1 MAXIMUM DAILY CONSTRUCTION EMISSIONS

Phase		Pollutant Emissions (pounds per day)									
Phase	ROG	NOx	СО	SOx	PM ₁₀	PM _{2.5}					
Site Preparation	1	10	4	<0.5	1	<0.5					
Grading	4	102	28	<0.5	7	3					
Trenching	1	5	5	<0.5	<0.5	<0.5					
Building Construction	1	11	8	<0.5	1	1					
Paving	1	9	8	<0.5	1	1					
Architectural Coating	6	2	2	<0.5	<0.5	<0.5					
TOTAL ¹	6	102	28	<0.5	7	3					
Thresholds	75	250	550	250	100	55					
Significant Impact?	No	No	No	No	No	No					

Source: CalEEMod

Notes: Includes standard fugitive dust reduction measures. Maximum daily ROG emissions occur during the Architectural Coatings phase. All other maximums occur during the Grading phase. ¹ The total presented is the sum of the unrounded values.

Table 2 **OPERATION DAILY MAXIMUM EMISSIONS**

Emission Source	Pollutant Emissions (pounds/day)										
Emission Source	ROG	NOx	СО	SOx	PM ₁₀	PM _{2.5}					
Area	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					
Energy	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					
Vehicular (Mobile)	5	17	40	<0.5	6	2					
	5	17	40	<0.5	6	2					
Thresholds	75	250	550	250	100	55					
Significant Impact?	No	No	No	No	No	No					

Source: CalEEMod ¹ The total presented is the sum of the unrounded values.

Table 3 ESTIMATED CONSTRUCTION **GREENHOUSE GAS EMISSIONS**

Year	Emissions (MT CO2e)
Site Preparation	<0.5
Grading	24
Trenching	1
Building Construction	60
Paving	3
Architectural Coating	1
	88
Amortized Construction Emissions ²	4

Source: CalEEMod

 ¹ The total presented is the sum of the unrounded values.
 ² Construction emissions are amortized over 20 years in accordance with City of San Diego guidance.

Table 4 **PROJECT OPERATIONAL GREENHOUSE GAS EMISSIONS**

Emission Sources	CO ₂ e (MT/year)
Area	<0.5
Energy	60
Vehicular (Mobile)	1,431
Solid Waste	13
Water	5
Operational Subtotal ¹	1,509
Amortized Construction Emissions	4
TOTAL OPERATIONAL EMISSIONS	1,513
Screening Threshold	3,000
Significant Impact?	No

Source: CalEEMod output data ¹ The total presented is the sum of the unrounded values.

Source: Helix Environmental 2018

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

Graves Avenue 7/Eleven & Starbucks Project

San Diego County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Parking Lot	32.00	Space	0.29	12,800.00	0
Fast Food Restaurant with Drive Thru	1.80	1000sqft	0.04	1,800.00	0
Convenience Market (24 Hour)	4.47	1000sqft	0.10	4,467.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	40
Climate Zone	13			Operational Year	2019
Utility Company	San Diego Gas & Electric				
CO2 Intensity (Ib/MWhr)	720.49	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Page 2 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

Project Characteristics -

Land Use -

Construction Phase -

Off-road Equipment -

Grading -

Architectural Coating - 50 g/L is assumed

Vehicle Trips - Traffic Impact Analysis provided by Darnell & Associates

Area Coating - Assume 50 g/L

Construction Off-road Equipment Mitigation -

Water Mitigation -

Waste Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblArchitecturalCoating	EF_Parking	250.00	50.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	250	50
tblAreaCoating	Area_EF_Nonresidential_Interior	250	50
tblAreaCoating	Area_EF_Parking	250	50
tblAreaCoating	Area_EF_Residential_Exterior	250	50
tblAreaCoating	Area_EF_Residential_Interior	250	50
tblConstDustMitigation	WaterUnpavedRoadMoistureContent	0	12
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	PhaseEndDate	12/19/2018	12/10/2018
tblConstructionPhase	PhaseEndDate	12/5/2018	11/26/2018

Graves Avenue 7/Eleven &	Starbucks F	Proiect - San	Diego County.	Winter

			=///22/2
tblConstructionPhase	PhaseEndDate	7/18/2018	7/4/2018
tblConstructionPhase	PhaseEndDate	12/12/2018	12/3/2018
tblConstructionPhase	PhaseEndDate	7/16/2018	7/2/2018
tblConstructionPhase	PhaseStartDate	12/13/2018	12/4/2018
tblConstructionPhase	PhaseStartDate	7/19/2018	7/10/2018
tblConstructionPhase	PhaseStartDate	7/17/2018	7/3/2018
tblConstructionPhase	PhaseStartDate	12/6/2018	11/27/2018
tblConstructionPhase	PhaseStartDate	7/14/2018	7/1/2018
tblGrading	MaterialExported	0.00	300.00
tblGrading	MaterialImported	0.00	4,300.00
tblOffRoadEquipment	LoadFactor	0.37	0.37
tblOffRoadEquipment	OffRoadEquipmentType		Tractors/Loaders/Backhoes
tblVehicleTrips	ST_TR	863.10	576.56
tblVehicleTrips	ST_TR	722.03	576.56
tblVehicleTrips	SU_TR	758.45	576.56
tblVehicleTrips	SU_TR	542.72	576.56
tblVehicleTrips	WD_TR	737.99	576.56
tblVehicleTrips	WD_TR	496.12	576.56

2.0 Emissions Summary

Page 4 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2018	6.4742	101.8881	28.3790	0.2402	6.1820	0.9915	7.1735	1.8613	0.9471	2.8084	0.0000	25,985.44 75	25,985.44 75	2.5283	0.0000	26,048.65 51
Maximum	6.4742	101.8881	28.3790	0.2402	6.1820	0.9915	7.1735	1.8613	0.9471	2.8084	0.0000	25,985.44 75	25,985.44 75	2.5283	0.0000	26,048.65 51

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2018	6.4742	101.8881	28.3790	0.2402	5.5902	0.9915	6.5817	1.6068	0.9471	2.5539	0.0000	25,985.44 75	25,985.44 75	2.5283	0.0000	26,048.65 51
Maximum	6.4742	101.8881	28.3790	0.2402	5.5902	0.9915	6.5817	1.6068	0.9471	2.5539	0.0000	25,985.44 75	25,985.44 75	2.5283	0.0000	26,048.65 51

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	9.57	0.00	8.25	13.67	0.00	9.06	0.00	0.00	0.00	0.00	0.00	0.00

Page 5 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Area	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003
Energy	9.5700e- 003	0.0870	0.0731	5.2000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024
Mobile	5.1174	17.0570	40.1835	0.0841	6.2164	0.1057	6.3220	1.6618	0.0993	1.7610		8,534.028 5	8,534.028 5	0.6654		8,550.663 6
Total	5.2744	17.1441	40.2605	0.0847	6.2164	0.1123	6.3287	1.6618	0.1059	1.7676		8,638.419 0	8,638.419 0	0.6674	1.9100e- 003	8,655.674 9

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003
Energy	9.5700e- 003	0.0870	0.0731	5.2000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024
Mobile	5.1174	17.0570	40.1835	0.0841	6.2164	0.1057	6.3220	1.6618	0.0993	1.7610		8,534.028 5	8,534.028 5	0.6654		8,550.663 6
Total	5.2744	17.1441	40.2605	0.0847	6.2164	0.1123	6.3287	1.6618	0.1059	1.7676		8,638.419 0	8,638.419 0	0.6674	1.9100e- 003	8,655.674 9

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	7/1/2018	7/2/2018	5	1	
2	Grading	Grading	7/3/2018	7/4/2018	5	2	
3	Building Construction	Building Construction	7/10/2018	11/26/2018	5	100	
4	Paving	Paving	11/27/2018	12/3/2018	5	5	
5	Architectural Coating	Architectural Coating	12/4/2018	12/10/2018	5	5	
	Underground Infrastructure/Utilities	Trenching	7/5/2018	7/9/2018	5	3	

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.29

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 9,401; Non-Residential Outdoor: 3,134; Striped Parking Area: 768 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	4	6.00	9	0.56
Underground Infrastructure/Utilities	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Grading	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes	1	4.00	231	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	7.00	130	0.42
Paving	Rollers	1	7.00	80	0.38
Grading	Rubber Tired Dozers	1	1.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Underground	2	5.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	575.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	5	8.00	3.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	7	18.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	2.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2016.3.2

Page 8 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

Water Exposed Area

Water Unpaved Roads

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Fugitive Dust					0.5303	0.0000	0.5303	0.0573	0.0000	0.0573			0.0000			0.0000
Off-Road	0.7858	9.7572	4.2514	9.7600e- 003		0.4180	0.4180		0.3846	0.3846		982.7113	982.7113	0.3059		990.3596
Total	0.7858	9.7572	4.2514	9.7600e- 003	0.5303	0.4180	0.9483	0.0573	0.3846	0.4418		982.7113	982.7113	0.3059		990.3596

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.2 Site Preparation - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529
Total	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.2386	0.0000	0.2386	0.0258	0.0000	0.0258			0.0000			0.0000
Off-Road	0.7858	9.7572	4.2514	9.7600e- 003		0.4180	0.4180		0.3846	0.3846	0.0000	982.7113	982.7113	0.3059		990.3596
Total	0.7858	9.7572	4.2514	9.7600e- 003	0.2386	0.4180	0.6566	0.0258	0.3846	0.4103	0.0000	982.7113	982.7113	0.3059		990.3596

Page 10 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.2 Site Preparation - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529
Total	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529

3.3 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					1.0760	0.0000	1.0760	0.4627	0.0000	0.4627			0.0000			0.0000
Off-Road	1.0643	9.4295	7.7762	0.0120		0.6228	0.6228		0.5943	0.5943		1,169.350 2	1,169.350 2	0.2254		1,174.985 7
Total	1.0643	9.4295	7.7762	0.0120	1.0760	0.6228	1.6987	0.4627	0.5943	1.0570		1,169.350 2	1,169.350 2	0.2254		1,174.985 7

Page 11 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.3 Grading - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	2.7072	92.4241	20.2780	0.2274	5.0239	0.3682	5.3920	1.3768	0.3523	1.7291		24,731.86 45	24,731.86 45	2.3000		24,789.36 37
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0481	0.0344	0.3247	8.5000e- 004	0.0822	5.9000e- 004	0.0827	0.0218	5.5000e- 004	0.0223		84.2327	84.2327	2.9200e- 003		84.3057
Total	2.7552	92.4586	20.6027	0.2283	5.1060	0.3688	5.4748	1.3986	0.3528	1.7514		24,816.09 73	24,816.09 73	2.3029		24,873.66 94

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					0.4842	0.0000	0.4842	0.2082	0.0000	0.2082			0.0000			0.0000
Off-Road	1.0643	9.4295	7.7762	0.0120		0.6228	0.6228		0.5943	0.5943	0.0000	1,169.350 2	1,169.350 2	0.2254		1,174.985 7
Total	1.0643	9.4295	7.7762	0.0120	0.4842	0.6228	1.1069	0.2082	0.5943	0.8025	0.0000	1,169.350 2	1,169.350 2	0.2254		1,174.985 7

Page 12 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.3 Grading - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day		<u>.</u>					lb/c	lay		
Hauling	2.7072	92.4241	20.2780	0.2274	5.0239	0.3682	5.3920	1.3768	0.3523	1.7291		24,731.86 45	24,731.86 45	2.3000		24,789.36 37
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0481	0.0344	0.3247	8.5000e- 004	0.0822	5.9000e- 004	0.0827	0.0218	5.5000e- 004	0.0223		84.2327	84.2327	2.9200e- 003		84.3057
Total	2.7552	92.4586	20.6027	0.2283	5.1060	0.3688	5.4748	1.3986	0.3528	1.7514		24,816.09 73	24,816.09 73	2.3029		24,873.66 94

3.4 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	day							lb/c	day		
Off-Road	1.0848	11.0316	7.7512	0.0114		0.7087	0.7087		0.6520	0.6520		1,146.532 3	1,146.532 3	0.3569		1,155.455 5
Total	1.0848	11.0316	7.7512	0.0114		0.7087	0.7087		0.6520	0.6520		1,146.532 3	1,146.532 3	0.3569		1,155.455 5

Page 13 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.4 Building Construction - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0161	0.3959	0.1158	8.2000e- 004	0.0203	3.1400e- 003	0.0235	5.8500e- 003	3.0100e- 003	8.8500e- 003		87.2094	87.2094	7.5500e- 003		87.3980
Worker	0.0385	0.0275	0.2598	6.8000e- 004	0.0657	4.7000e- 004	0.0662	0.0174	4.4000e- 004	0.0179		67.3862	67.3862	2.3400e- 003		67.4446
Total	0.0546	0.4235	0.3756	1.5000e- 003	0.0860	3.6100e- 003	0.0896	0.0233	3.4500e- 003	0.0267		154.5956	154.5956	9.8900e- 003		154.8426

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.0848	11.0316	7.7512	0.0114		0.7087	0.7087		0.6520	0.6520	0.0000	1,146.532 3	1,146.532 3	0.3569		1,155.455 5
Total	1.0848	11.0316	7.7512	0.0114		0.7087	0.7087		0.6520	0.6520	0.0000	1,146.532 3	1,146.532 3	0.3569		1,155.455 5

Page 14 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.4 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0161	0.3959	0.1158	8.2000e- 004	0.0203	3.1400e- 003	0.0235	5.8500e- 003	3.0100e- 003	8.8500e- 003		87.2094	87.2094	7.5500e- 003		87.3980
Worker	0.0385	0.0275	0.2598	6.8000e- 004	0.0657	4.7000e- 004	0.0662	0.0174	4.4000e- 004	0.0179		67.3862	67.3862	2.3400e- 003		67.4446
Total	0.0546	0.4235	0.3756	1.5000e- 003	0.0860	3.6100e- 003	0.0896	0.0233	3.4500e- 003	0.0267		154.5956	154.5956	9.8900e- 003		154.8426

3.5 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	0.9202	8.7447	7.2240	0.0113		0.5109	0.5109		0.4735	0.4735		1,070.137 2	1,070.137 2	0.3017		1,077.679 8
Paving	0.1520					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0722	8.7447	7.2240	0.0113		0.5109	0.5109		0.4735	0.4735		1,070.137 2	1,070.137 2	0.3017		1,077.679 8

Page 15 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.5 Paving - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0866	0.0620	0.5845	1.5200e- 003	0.1479	1.0600e- 003	0.1489	0.0392	9.8000e- 004	0.0402		151.6189	151.6189	5.2500e- 003		151.7503
Total	0.0866	0.0620	0.5845	1.5200e- 003	0.1479	1.0600e- 003	0.1489	0.0392	9.8000e- 004	0.0402		151.6189	151.6189	5.2500e- 003		151.7503

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Off-Road	0.9202	8.7447	7.2240	0.0113		0.5109	0.5109		0.4735	0.4735	0.0000	1,070.137 2	1,070.137 2	0.3017		1,077.679 8
Paving	0.1520					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.0722	8.7447	7.2240	0.0113		0.5109	0.5109		0.4735	0.4735	0.0000	1,070.137 2	1,070.137 2	0.3017		1,077.679 8

Page 16 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.5 Paving - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			<u>.</u>		lb/o	day		<u>.</u>					lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0866	0.0620	0.5845	1.5200e- 003	0.1479	1.0600e- 003	0.1489	0.0392	9.8000e- 004	0.0402		151.6189	151.6189	5.2500e- 003		151.7503
Total	0.0866	0.0620	0.5845	1.5200e- 003	0.1479	1.0600e- 003	0.1489	0.0392	9.8000e- 004	0.0402		151.6189	151.6189	5.2500e- 003		151.7503

3.6 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	6.1659					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171
Total	6.4646	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171

Page 17 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.6 Architectural Coating - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	9.6200e- 003	6.8900e- 003	0.0650	1.7000e- 004	0.0164	1.2000e- 004	0.0166	4.3600e- 003	1.1000e- 004	4.4700e- 003		16.8466	16.8466	5.8000e- 004		16.8611
Total	9.6200e- 003	6.8900e- 003	0.0650	1.7000e- 004	0.0164	1.2000e- 004	0.0166	4.3600e- 003	1.1000e- 004	4.4700e- 003		16.8466	16.8466	5.8000e- 004		16.8611

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	6.1659					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171
Total	6.4646	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171

Page 18 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.6 Architectural Coating - 2018

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	9.6200e- 003	6.8900e- 003	0.0650	1.7000e- 004	0.0164	1.2000e- 004	0.0166	4.3600e- 003	1.1000e- 004	4.4700e- 003		16.8466	16.8466	5.8000e- 004		16.8611
Total	9.6200e- 003	6.8900e- 003	0.0650	1.7000e- 004	0.0164	1.2000e- 004	0.0166	4.3600e- 003	1.1000e- 004	4.4700e- 003		16.8466	16.8466	5.8000e- 004		16.8611

3.7 Underground Infrastructure/Utilities - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
	0.5301	5.2381	4.6545	6.1900e- 003		0.3711	0.3711		0.3414	0.3414	-	623.0159	623.0159	0.1940		627.8647
Total	0.5301	5.2381	4.6545	6.1900e- 003		0.3711	0.3711		0.3414	0.3414		623.0159	623.0159	0.1940		627.8647

Page 19 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.7 Underground Infrastructure/Utilities - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529
Total	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	0.5301	5.2381	4.6545	6.1900e- 003		0.3711	0.3711		0.3414	0.3414	0.0000	623.0159	623.0159	0.1940		627.8647
Total	0.5301	5.2381	4.6545	6.1900e- 003		0.3711	0.3711		0.3414	0.3414	0.0000	623.0159	623.0159	0.1940		627.8647

Page 20 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

3.7 Underground Infrastructure/Utilities - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529
Total	0.0240	0.0172	0.1624	4.2000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.7000e- 004	0.0112		42.1164	42.1164	1.4600e- 003		42.1529

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 21 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	5.1174	17.0570	40.1835	0.0841	6.2164	0.1057	6.3220	1.6618	0.0993	1.7610		8,534.028 5	8,534.028 5	0.6654		8,550.663 6
Unmitigated	5.1174	17.0570	40.1835	0.0841	6.2164	0.1057	6.3220	1.6618	0.0993	1.7610		8,534.028 5	8,534.028 5	0.6654		8,550.663 6

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Convenience Market (24 Hour)	2,575.47	2,575.47	2575.47	1,961,420	1,961,420
Fast Food Restaurant with Drive Thru	1,037.80	1,037.80	1037.80	969,642	969,642
Parking Lot	0.00	0.00	0.00		
Total	3,613.27	3,613.27	3,613.27	2,931,061	2,931,061

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Convenience Market (24 Hour)	9.50	7.30	7.30	0.90	80.10	19.00	24	15	61
Fast Food Restaurant with Drive	9.50	7.30	7.30	2.20	78.80	19.00	29	21	50
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Convenience Market (24 Hour)	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357
Fast Food Restaurant with Drive Thru	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357
Parking Lot	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mist make at	9.5700e- 003	0.0870	0.0731	5.2000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024
	9.5700e- 003	0.0870	0.0731	5.2000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024

Page 23 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Convenience Market (24 Hour)	27.2915	2.9000e- 004	2.6800e- 003	2.2500e- 003	2.0000e- 005		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		3.2108	3.2108	6.0000e- 005	6.0000e- 005	3.2299
Fast Food Restaurant with Drive Thru	859.956	9.2700e- 003	0.0843	0.0708	5.1000e- 004		6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003		101.1713	101.1713	1.9400e- 003	1.8500e- 003	101.7725
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		9.5600e- 003	0.0870	0.0731	5.3000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
Convenience Market (24 Hour)	0.0272915	2.9000e- 004	2.6800e- 003	2.2500e- 003	2.0000e- 005		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		3.2108	3.2108	6.0000e- 005	6.0000e- 005	3.2299
Fast Food Restaurant with Drive Thru	0.859956	9.2700e- 003	0.0843	0.0708	5.1000e- 004		6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003		101.1713	101.1713	1.9400e- 003	1.8500e- 003	101.7725
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		9.5600e- 003	0.0870	0.0731	5.3000e- 004		6.6100e- 003	6.6100e- 003		6.6100e- 003	6.6100e- 003		104.3821	104.3821	2.0000e- 003	1.9100e- 003	105.0024

Page 24 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003
Unmitigated	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003

Page 25 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Conting	8.4500e- 003					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1387					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.7000e- 004	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003
Total	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Coating	8.4500e- 003					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1387					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Lanuscaping	3.7000e- 004	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003
Total	0.1475	4.0000e- 005	3.9500e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		8.3700e- 003	8.3700e- 003	2.0000e- 005		8.9400e- 003

7.0 Water Detail

Page 26 of 26

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Winter

7.1 Mitigation Measures Water

Apply Water Conservation Strategy Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

Graves Avenue 7/Eleven & Starbucks Project

San Diego County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Parking Lot	32.00	Space	0.29	12,800.00	0
Fast Food Restaurant with Drive Thru	1.80	1000sqft	0.04	1,800.00	0
Convenience Market (24 Hour)	4.47	1000sqft	0.10	4,467.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	40
Climate Zone	13			Operational Year	2019
Utility Company	San Diego Gas & Electric				
CO2 Intensity (Ib/MWhr)	720.49	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity ((Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Page 2 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

Project Characteristics -

Land Use -

Construction Phase -

Off-road Equipment -

Grading -

Architectural Coating - 50 g/L is assumed

Vehicle Trips - Traffic Impact Analysis provided by Darnell & Associates

Area Coating - Assume 50 g/L

Construction Off-road Equipment Mitigation -

Water Mitigation -

Waste Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblArchitecturalCoating	EF_Parking	250.00	50.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	250	50
tblAreaCoating	Area_EF_Nonresidential_Interior	250	50
tblAreaCoating	Area_EF_Parking	250	50
tblAreaCoating	Area_EF_Residential_Exterior	250	50
tblAreaCoating	Area_EF_Residential_Interior	250	50
tblConstDustMitigation	WaterUnpavedRoadMoistureContent	0	12
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	PhaseEndDate	12/19/2018	12/10/2018
tblConstructionPhase	PhaseEndDate	12/5/2018	11/26/2018

tblConstructionPhase	PhaseEndDate	7/18/2018	7/4/2018
tblConstructionPhase	PhaseEndDate	12/12/2018	12/3/2018
tblConstructionPhase	PhaseEndDate	7/16/2018	7/2/2018
tblConstructionPhase	PhaseStartDate	12/13/2018	12/4/2018
tblConstructionPhase	PhaseStartDate	7/19/2018	7/10/2018
tblConstructionPhase	PhaseStartDate	7/17/2018	7/3/2018
tblConstructionPhase	PhaseStartDate	12/6/2018	11/27/2018
tblConstructionPhase	PhaseStartDate	7/14/2018	7/1/2018
tblGrading	MaterialExported	0.00	300.00
tblGrading	MaterialImported	0.00	4,300.00
tblOffRoadEquipment	LoadFactor	0.37	0.37
tblOffRoadEquipment	OffRoadEquipmentType		Tractors/Loaders/Backhoes
tblVehicleTrips	ST_TR	863.10	576.56
tblVehicleTrips	ST_TR	722.03	576.56
tblVehicleTrips	SU_TR	758.45	576.56
tblVehicleTrips	SU_TR	542.72	576.56
tblVehicleTrips	WD_TR	737.99	576.56
tblVehicleTrips	WD_TR	496.12	576.56
			-

2.0 Emissions Summary

Page 4 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2018	0.0808	0.7156	0.4674	9.4000e- 004	0.0110	0.0390	0.0501	3.1300e- 003	0.0360	0.0391	0.0000	87.7237	87.7237	0.0200	0.0000	88.2248
Maximum	0.0808	0.7156	0.4674	9.4000e- 004	0.0110	0.0390	0.0501	3.1300e- 003	0.0360	0.0391	0.0000	87.7237	87.7237	0.0200	0.0000	88.2248

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
2018	0.0808	0.7156	0.4674	9.4000e- 004	0.0103	0.0390	0.0493	2.8600e- 003	0.0360	0.0388	0.0000	87.7236	87.7236	0.0200	0.0000	88.2247
Maximum	0.0808	0.7156	0.4674	9.4000e- 004	0.0103	0.0390	0.0493	2.8600e- 003	0.0360	0.0388	0.0000	87.7236	87.7236	0.0200	0.0000	88.2247

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	6.71	0.00	1.48	8.63	0.00	0.69	0.00	0.00	0.00	0.00	0.00	0.00

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	7-1-2018	9-30-2018	0.4657	0.4657
		Highest	0.4657	0.4657

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Area	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004		
Energy	1.7500e- 003	0.0159	0.0133	1.0000e- 004		1.2100e- 003	1.2100e- 003		1.2100e- 003	1.2100e- 003	0.0000	59.8470	59.8470	2.0400e- 003	6.7000e- 004	60.0982		
Mobile	0.8970	3.1263	7.0566	0.0155	1.1048	0.0190	1.1238	0.2959	0.0178	0.3137	0.0000	1,428.619 0	1,428.619 0	0.1069	0.0000	1,431.291 3		
Waste						0.0000	0.0000		0.0000	0.0000	6.9342	0.0000	6.9342	0.4098	0.0000	17.1791		
Water						0.0000	0.0000		0.0000	0.0000	0.2784	4.5974	4.8758	0.0288	7.1000e- 004	5.8078		
Total	0.9257	3.1422	7.0703	0.0156	1.1048	0.0202	1.1250	0.2959	0.0190	0.3149	7.2126	1,493.064 1	1,500.276 6	0.5475	1.3800e- 003	1,514.377 1		

Page 6 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10		PM10 Total	Fugitiv PM2.		aust 12.5	PM2.5 Total	Bio-	CO2 NE	Bio- CO2	Total CO2	CH4	N2O	CO2e
Category					1	ons/yr									M	T/yr		
Area	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0	000	0.0000	0.0	000 6	.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004
0,	1.7500e- 003	0.0159	0.0133	1.0000e- 004		1.2100e- 003	1.2100e- 003			00e- 03	1.2100e- 003	0.0	000 5	9.8470	59.8470	2.0400e 003	6.7000e 004	- 60.0982
Weblie	0.8970	3.1263	7.0566	0.0155	1.1048	0.0190	1.1238	0.295	9 0.0	178	0.3137	0.0	000 1,	428.619 0	1,428.619 0	0.1069	0.0000	1,431.291 3
Waste	e,					0.0000	0.0000		0.0	000	0.0000	5.2	006	0.0000	5.2006	0.3074	0.0000	12.8843
Water	r,					0.0000	0.0000		0.0	000	0.0000	0.2	227	3.6779	3.9006	0.0230	5.7000e 004	- 4.6462
Total	0.9257	3.1422	7.0703	0.0156	1.1048	0.0202	1.1250	0.295	9 0.0	190	0.3149	5.4	233 1,	492.144 6	1,497.567 9	0.4393	1.2400e 003	- 1,508.920 7
	ROG	M	lOx	co s				VI10 I otal	ugitive PM2.5	Exha PM		12.5 otal	Bio- CO	2 NBio-	CO2 Total	CO2 (CH4	N20 CO2
Percent Reduction	0.00	0	.00 (0.00 0	.00	0.00 (0.00 0	.00	0.00	0.0	0 0	.00	24.81	0.0)6 0.	18 1	9.76 '	0.14 0.36

3.0 Construction Detail

Construction Phase

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	7/1/2018	7/2/2018	5	1	
2	Grading	Grading	7/3/2018	7/4/2018	5	2	
3	Building Construction	Building Construction	7/10/2018	11/26/2018	5	100	
4	Paving	Paving	11/27/2018	12/3/2018	5	5	
5	Architectural Coating	Architectural Coating	12/4/2018	12/10/2018	5	5	
	Underground Infrastructure/Utilities	Trenching	7/5/2018	7/9/2018	5	3	

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.29

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 9,401; Non-Residential Outdoor: 3,134; Striped Parking Area: 768 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	4	6.00	9	0.56
Underground Infrastructure/Utilities	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Grading	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes	1	4.00	231	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Site Preparation	Graders	1	8.00	187	0.41
Paving	Pavers	1	7.00	130	0.42
Paving	Rollers	1	7.00	80	0.38
Grading	Rubber Tired Dozers	1	1.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Underground	2	5.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	575.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	5	8.00	3.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	7	18.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	2.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2016.3.2

Page 9 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

Water Exposed Area

Water Unpaved Roads

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					2.7000e- 004	0.0000	2.7000e- 004	3.0000e- 005	0.0000	3.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.9000e- 004	4.8800e- 003	2.1300e- 003	0.0000		2.1000e- 004	2.1000e- 004		1.9000e- 004	1.9000e- 004	0.0000	0.4458	0.4458	1.4000e- 004	0.0000	0.4492
Total	3.9000e- 004	4.8800e- 003	2.1300e- 003	0.0000	2.7000e- 004	2.1000e- 004	4.8000e- 004	3.0000e- 005	1.9000e- 004	2.2000e- 004	0.0000	0.4458	0.4458	1.4000e- 004	0.0000	0.4492

3.2 Site Preparation - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193
Total	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Fugitive Dust					1.2000e- 004	0.0000	1.2000e- 004	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.9000e- 004	4.8800e- 003	2.1300e- 003	0.0000		2.1000e- 004	2.1000e- 004		1.9000e- 004	1.9000e- 004	0.0000	0.4458	0.4458	1.4000e- 004	0.0000	0.4492
Total	3.9000e- 004	4.8800e- 003	2.1300e- 003	0.0000	1.2000e- 004	2.1000e- 004	3.3000e- 004	1.0000e- 005	1.9000e- 004	2.0000e- 004	0.0000	0.4458	0.4458	1.4000e- 004	0.0000	0.4492

3.2 Site Preparation - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193
Total	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193

3.3 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					1.0800e- 003	0.0000	1.0800e- 003	4.6000e- 004	0.0000	4.6000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0600e- 003	9.4300e- 003	7.7800e- 003	1.0000e- 005		6.2000e- 004	6.2000e- 004		5.9000e- 004	5.9000e- 004	0.0000	1.0608	1.0608	2.0000e- 004	0.0000	1.0659
Total	1.0600e- 003	9.4300e- 003	7.7800e- 003	1.0000e- 005	1.0800e- 003	6.2000e- 004	1.7000e- 003	4.6000e- 004	5.9000e- 004	1.0500e- 003	0.0000	1.0608	1.0608	2.0000e- 004	0.0000	1.0659

3.3 Grading - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	2.6600e- 003	0.0933	0.0195	2.3000e- 004	4.9200e- 003	3.6000e- 004	5.2800e- 003	1.3500e- 003	3.5000e- 004	1.7000e- 003	0.0000	22.6560	22.6560	2.0400e- 003	0.0000	22.7071
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.0000e- 005	3.0000e- 005	3.2000e- 004	0.0000	8.0000e- 005	0.0000	8.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0772	0.0772	0.0000	0.0000	0.0772
Total	2.7000e- 003	0.0934	0.0198	2.3000e- 004	5.0000e- 003	3.6000e- 004	5.3600e- 003	1.3700e- 003	3.5000e- 004	1.7200e- 003	0.0000	22.7331	22.7331	2.0400e- 003	0.0000	22.7843

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					4.8000e- 004	0.0000	4.8000e- 004	2.1000e- 004	0.0000	2.1000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0600e- 003	9.4300e- 003	7.7800e- 003	1.0000e- 005		6.2000e- 004	6.2000e- 004		5.9000e- 004	5.9000e- 004	0.0000	1.0608	1.0608	2.0000e- 004	0.0000	1.0659
Total	1.0600e- 003	9.4300e- 003	7.7800e- 003	1.0000e- 005	4.8000e- 004	6.2000e- 004	1.1000e- 003	2.1000e- 004	5.9000e- 004	8.0000e- 004	0.0000	1.0608	1.0608	2.0000e- 004	0.0000	1.0659

3.3 Grading - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	2.6600e- 003	0.0933	0.0195	2.3000e- 004	4.9200e- 003	3.6000e- 004	5.2800e- 003	1.3500e- 003	3.5000e- 004	1.7000e- 003	0.0000	22.6560	22.6560	2.0400e- 003	0.0000	22.7071
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.0000e- 005	3.0000e- 005	3.2000e- 004	0.0000	8.0000e- 005	0.0000	8.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0772	0.0772	0.0000	0.0000	0.0772
Total	2.7000e- 003	0.0934	0.0198	2.3000e- 004	5.0000e- 003	3.6000e- 004	5.3600e- 003	1.3700e- 003	3.5000e- 004	1.7200e- 003	0.0000	22.7331	22.7331	2.0400e- 003	0.0000	22.7843

3.4 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0542	0.5516	0.3876	5.7000e- 004		0.0354	0.0354	1 1 1	0.0326	0.0326	0.0000	52.0058	52.0058	0.0162	0.0000	52.4106
Total	0.0542	0.5516	0.3876	5.7000e- 004		0.0354	0.0354		0.0326	0.0326	0.0000	52.0058	52.0058	0.0162	0.0000	52.4106

3.4 Building Construction - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	7.9000e- 004	0.0200	5.5100e- 003	4.0000e- 005	1.0000e- 003	1.6000e- 004	1.1500e- 003	2.9000e- 004	1.5000e- 004	4.4000e- 004	0.0000	4.0149	4.0149	3.3000e- 004	0.0000	4.0232
Worker	1.7100e- 003	1.3500e- 003	0.0130	3.0000e- 005	3.2100e- 003	2.0000e- 005	3.2300e- 003	8.5000e- 004	2.0000e- 005	8.7000e- 004	0.0000	3.0871	3.0871	1.1000e- 004	0.0000	3.0898
Total	2.5000e- 003	0.0214	0.0185	7.0000e- 005	4.2100e- 003	1.8000e- 004	4.3800e- 003	1.1400e- 003	1.7000e- 004	1.3100e- 003	0.0000	7.1020	7.1020	4.4000e- 004	0.0000	7.1129

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0542	0.5516	0.3876	5.7000e- 004		0.0354	0.0354	1 1 1	0.0326	0.0326	0.0000	52.0058	52.0058	0.0162	0.0000	52.4105
Total	0.0542	0.5516	0.3876	5.7000e- 004		0.0354	0.0354		0.0326	0.0326	0.0000	52.0058	52.0058	0.0162	0.0000	52.4105

3.4 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	7.9000e- 004	0.0200	5.5100e- 003	4.0000e- 005	1.0000e- 003	1.6000e- 004	1.1500e- 003	2.9000e- 004	1.5000e- 004	4.4000e- 004	0.0000	4.0149	4.0149	3.3000e- 004	0.0000	4.0232
Worker	1.7100e- 003	1.3500e- 003	0.0130	3.0000e- 005	3.2100e- 003	2.0000e- 005	3.2300e- 003	8.5000e- 004	2.0000e- 005	8.7000e- 004	0.0000	3.0871	3.0871	1.1000e- 004	0.0000	3.0898
Total	2.5000e- 003	0.0214	0.0185	7.0000e- 005	4.2100e- 003	1.8000e- 004	4.3800e- 003	1.1400e- 003	1.7000e- 004	1.3100e- 003	0.0000	7.1020	7.1020	4.4000e- 004	0.0000	7.1129

3.5 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	2.3000e- 003	0.0219	0.0181	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	2.4270	2.4270	6.8000e- 004	0.0000	2.4441
Paving	3.8000e- 004					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	2.6800e- 003	0.0219	0.0181	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	2.4270	2.4270	6.8000e- 004	0.0000	2.4441

3.5 Paving - 2018

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.9000e- 004	1.5000e- 004	1.4600e- 003	0.0000	3.6000e- 004	0.0000	3.6000e- 004	1.0000e- 004	0.0000	1.0000e- 004	0.0000	0.3473	0.3473	1.0000e- 005	0.0000	0.3476
Total	1.9000e- 004	1.5000e- 004	1.4600e- 003	0.0000	3.6000e- 004	0.0000	3.6000e- 004	1.0000e- 004	0.0000	1.0000e- 004	0.0000	0.3473	0.3473	1.0000e- 005	0.0000	0.3476

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	ſ/yr		
Off-Road	2.3000e- 003	0.0219	0.0181	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	2.4270	2.4270	6.8000e- 004	0.0000	2.4441
Paving	3.8000e- 004					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	2.6800e- 003	0.0219	0.0181	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1800e- 003	1.1800e- 003	0.0000	2.4270	2.4270	6.8000e- 004	0.0000	2.4441

Page 17 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

3.5 Paving - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.9000e- 004	1.5000e- 004	1.4600e- 003	0.0000	3.6000e- 004	0.0000	3.6000e- 004	1.0000e- 004	0.0000	1.0000e- 004	0.0000	0.3473	0.3473	1.0000e- 005	0.0000	0.3476
Total	1.9000e- 004	1.5000e- 004	1.4600e- 003	0.0000	3.6000e- 004	0.0000	3.6000e- 004	1.0000e- 004	0.0000	1.0000e- 004	0.0000	0.3473	0.3473	1.0000e- 005	0.0000	0.3476

3.6 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
U U	0.0154					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.5000e- 004	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398
Total	0.0162	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398

3.6 Architectural Coating - 2018

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0000e- 005	2.0000e- 005	1.6000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0386	0.0386	0.0000	0.0000	0.0386
Total	2.0000e- 005	2.0000e- 005	1.6000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0386	0.0386	0.0000	0.0000	0.0386

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Archit. Coating	0.0154					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.5000e- 004	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398
Total	0.0162	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398

3.6 Architectural Coating - 2018

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0000e- 005	2.0000e- 005	1.6000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0386	0.0386	0.0000	0.0000	0.0386
Total	2.0000e- 005	2.0000e- 005	1.6000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0386	0.0386	0.0000	0.0000	0.0386

3.7 Underground Infrastructure/Utilities - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	7/yr		
	8.0000e- 004	7.8600e- 003	6.9800e- 003	1.0000e- 005		5.6000e- 004	5.6000e- 004		5.1000e- 004	5.1000e- 004	0.0000	0.8478	0.8478	2.6000e- 004	0.0000	0.8544
Total	8.0000e- 004	7.8600e- 003	6.9800e- 003	1.0000e- 005		5.6000e- 004	5.6000e- 004		5.1000e- 004	5.1000e- 004	0.0000	0.8478	0.8478	2.6000e- 004	0.0000	0.8544

3.7 Underground Infrastructure/Utilities - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 005	3.0000e- 005	2.4000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579
Total	3.0000e- 005	3.0000e- 005	2.4000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	8.0000e- 004	7.8600e- 003	6.9800e- 003	1.0000e- 005		5.6000e- 004	5.6000e- 004		5.1000e- 004	5.1000e- 004	0.0000	0.8478	0.8478	2.6000e- 004	0.0000	0.8544
Total	8.0000e- 004	7.8600e- 003	6.9800e- 003	1.0000e- 005		5.6000e- 004	5.6000e- 004		5.1000e- 004	5.1000e- 004	0.0000	0.8478	0.8478	2.6000e- 004	0.0000	0.8544

3.7 Underground Infrastructure/Utilities - 2018

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 005	3.0000e- 005	2.4000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579
Total	3.0000e- 005	3.0000e- 005	2.4000e- 004	0.0000	6.0000e- 005	0.0000	6.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 22 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.8970	3.1263	7.0566	0.0155	1.1048	0.0190	1.1238	0.2959	0.0178	0.3137	0.0000	1,428.619 0	1,428.619 0	0.1069	0.0000	1,431.291 3
Unmitigated	0.8970	3.1263	7.0566	0.0155	1.1048	0.0190	1.1238	0.2959	0.0178	0.3137	0.0000	1,428.619 0	1,428.619 0	0.1069	0.0000	1,431.291 3

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Convenience Market (24 Hour)	2,575.47	2,575.47	2575.47	1,961,420	1,961,420
Fast Food Restaurant with Drive Thru	1,037.80	1,037.80	1037.80	969,642	969,642
Parking Lot	0.00	0.00	0.00		
Total	3,613.27	3,613.27	3,613.27	2,931,061	2,931,061

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Convenience Market (24 Hour)	9.50	7.30	7.30	0.90	80.10	19.00	24	15	61
Fast Food Restaurant with Drive	9.50	7.30	7.30	2.20	78.80	19.00	29	21	50
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Convenience Market (24 Hour)	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357
Fast Food Restaurant with Drive Thru	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357
Parking Lot	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	42.5654	42.5654	1.7100e- 003	3.5000e- 004	42.7138
Electricity Unmitigated	n 1 1 1 1		,			0.0000	0.0000		0.0000	0.0000	0.0000	42.5654	42.5654	1.7100e- 003	3.5000e- 004	42.7138
NaturalGas Mitigated	1.7500e- 003	0.0159	0.0133	1.0000e- 004		1.2100e- 003	1.2100e- 003	,	1.2100e- 003	1.2100e- 003	0.0000	17.2816	17.2816	3.3000e- 004	3.2000e- 004	17.3843
i latara o ao	1.7500e- 003	0.0159	0.0133	1.0000e- 004		1.2100e- 003	1.2100e- 003	 , , ,	1.2100e- 003	1.2100e- 003	0.0000	17.2816	17.2816	3.3000e- 004	3.2000e- 004	17.3843

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	'/yr		
Convenience Market (24 Hour)	9961.41	5.0000e- 005	4.9000e- 004	4.1000e- 004	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005	0.0000	0.5316	0.5316	1.0000e- 005	1.0000e- 005	0.5347
Fast Food Restaurant with Drive Thru	313884	1.6900e- 003	0.0154	0.0129	9.0000e- 005		1.1700e- 003	1.1700e- 003		1.1700e- 003	1.1700e- 003	0.0000	16.7501	16.7501	3.2000e- 004	3.1000e- 004	16.8496
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		1.7400e- 003	0.0159	0.0133	9.0000e- 005		1.2100e- 003	1.2100e- 003		1.2100e- 003	1.2100e- 003	0.0000	17.2816	17.2816	3.3000e- 004	3.2000e- 004	17.3843

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	7/yr		
Convenience Market (24 Hour)	9961.41	5.0000e- 005	4.9000e- 004	4.1000e- 004	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005	0.0000	0.5316	0.5316	1.0000e- 005	1.0000e- 005	0.5347
Fast Food Restaurant with Drive Thru	313884	1.6900e- 003	0.0154	0.0129	9.0000e- 005		1.1700e- 003	1.1700e- 003		1.1700e- 003	1.1700e- 003	0.0000	16.7501	16.7501	3.2000e- 004	3.1000e- 004	16.8496
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		1.7400e- 003	0.0159	0.0133	9.0000e- 005		1.2100e- 003	1.2100e- 003		1.2100e- 003	1.2100e- 003	0.0000	17.2816	17.2816	3.3000e- 004	3.2000e- 004	17.3843

Page 25 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	7/yr	
Convenience Market (24 Hour)	56105.5	18.3358	7.4000e- 004	1.5000e- 004	18.3997
Fast Food Restaurant with Drive Thru	69660	22.7655	9.2000e- 004	1.9000e- 004	22.8449
Parking Lot	4480	1.4641	6.0000e- 005	1.0000e- 005	1.4692
Total		42.5654	1.7200e- 003	3.5000e- 004	42.7138

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	/yr	
Convenience Market (24 Hour)	56105.5	18.3358	7.4000e- 004	1.5000e- 004	18.3997
Fast Food Restaurant with Drive Thru	69660	22.7655	9.2000e- 004	1.9000e- 004	22.8449
Parking Lot	4480	1.4641	6.0000e- 005	1.0000e- 005	1.4692
Total		42.5654	1.7200e- 003	3.5000e- 004	42.7138

Page 26 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004
Unmitigated	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004

Page 27 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr							МТ	/yr							
O a atia a	1.5400e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0253					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.0000e- 005	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004
Total	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr							МТ	/yr							
Casting	1.5400e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0253					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.0000e- 005	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004
Total	0.0269	0.0000	3.6000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	6.8000e- 004	6.8000e- 004	0.0000	0.0000	7.3000e- 004

7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

Use Water Efficient Irrigation System

	Total CO2	CH4	N2O	CO2e				
Category	MT/yr							
miligated	3.9006	0.0230	5.7000e- 004	4.6462				
Unmitigated	4.8758	0.0288	7.1000e- 004	5.8078				

Page 29 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e		
Land Use	Mgal	MT/yr					
Convenience Market (24 Hour)	0.331104/ 0.202935		0.0109	2.7000e- 004	2.6040		
	0.546361 / 0.0348741		0.0179	4.4000e- 004	3.2038		
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000		
Total		4.8758	0.0288	7.1000e- 004	5.8078		

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e		
Land Use	Mgal	MT/yr					
Convenience Market (24 Hour)	0.264883/ 0.162348		8.7000e- 003	2.2000e- 004	2.0832		
	0.437089/ 0.0278993		0.0143	3.5000e- 004	2.5631		
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000		
Total		3.9006	0.0230	5.7000e- 004	4.6462		

Page 30 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

	Total CO2	CH4	N2O	CO2e				
	MT/yr							
-		0.3074	0.0000	12.8843				
Unmitigated		0.4098	0.0000	17.1791				

Page 31 of 32

Graves Avenue 7/Eleven & Starbucks Project - San Diego County, Annual

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e		
Land Use	tons	MT/yr					
Convenience Market (24 Hour)	13.43	2.7262	0.1611	0.0000	6.7540		
Fast Food Restaurant with Drive Thru	20.73	4.2080	0.2487	0.0000	10.4252		
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		
Total		6.9342	0.4098	0.0000	17.1791		

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e		
Land Use	tons	MT/yr					
Convenience Market (24 Hour)	. 10.0720 1	2.0446	0.1208	0.0000	5.0655		
Fast Food Restaurant with Drive Thru	15.5475	3.1560	0.1865	0.0000	7.8189		
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		
Total		5.2006	0.3073	0.0000	12.8843		

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type		
10.0 Stationary Equipment								
Fire Pumps and Emergency Generators								
Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type		
<u>Boilers</u>								
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type			
User Defined Equipment						-		
Equipment Type	Number							
11.0 Vegetation								

Appendix B

Traffic Impact Study

TRAFFIC IMPACT STUDY

For

CONVIENENCE MARKET and COFFEE SHOP WITH DRIVE THRU PROJECT Located at 8606 Graves Avenue

in the City of Santee

Submitted To: M. Grant Corporation, Santee Navy Associates, LLC. 1080 Railroad Avenue Santee, CA 92071

Prepared By:

Darnell & Associates, Inc. 4411 Mercury Street, Suite 207A San Diego, California 92111

Revised May 30, 2019

Revised May 2, 2018 Revised November 21, 2017 Revised August 22, 2017 March 30, 2017

Darnell & ASSOCIATES, INC.

TRANSPORTATION PLANNING & TRAFFIC ENGINEERING

May 30, 2019

Michael Grant Santee Navy Associates, LLC. 8510 Railroad Avenue Santee, CA 92071

D&A Project No: 170104

Subject: Revised Traffic Study for the proposed Convenience Market and a Coffee Shop with drive thru located at 8606 Graves Avenue in the City of Santee.

Dear Mr. Grant:

In accordance with you authorization, Darnell & Associates, Inc. (D&A) has prepared this Traffic Impact Study to assess impacts associated with the proposed Convenience Market and a Coffee Shop with drive thru project located at 8606 Graves Avenue in the City of Santee.

This report analyzes the traffic impacts on local roadways and intersections that the project, Opening Day 2018 and Future conditions. The analysis was prepared in accordance with the City of Santee (City) and SANTEC/ITE Guidelines for Traffic Impact Studies (TIS) requirements. The report has been revised to respond to the City of Santee comments dated April 23, 2018.

If you have any questions, please feel free to contact this office.

Sincerely, DARNELL & ASSOCIATES, INC.

Bill E. Darnell, P.E. Firm Principal

Date Signed: May 30, 2019

BED/jam/vla

170104 -CONVEINENCE MARKET AND COFFEE SHOP WITH DRIVE THRU TRAFFIC STUDY_MAY 2019 STRIKEOUT.DOC

FOCUSED TRAFFIC STUDY

FOR

CONVIENENCE MARKET AND A COFFEE SHOP WITH DRIVE THRU PROJECT LOCATED AT 8606 GRAVES AVENUE

In the City of Santee

Submitted To:

M. Grant Corporation Santee Navy Associates, LLC. 8510 Railroad Avenue Santee, CA 92071

Prepared By:

Darnell & Associates, Inc. 4411 Mercury Street, Suite 207A San Diego, CA 92111 619-233-9373

May 30, 2019

170104 -Conveinence Market and Coffee Shop with Drive Thru Traffic Study_ MAY 2019 strikeout.doc/

TABLE OF CONTENTS

SECTION I - INTRODUCTION	1
PROJECT DESCRIPTION	1
ANALYSIS APPROACH AND METHODOLOGY	1
LEVEL OF SERVICE	
ANALYSIS METHODOLOGY	5
Roadway Segments	5
Intersections	5
SIGNIFICANCE CRITERIA	5
REPORT ORGANIZATION	5
SECTION II - EXISTING CONDITIONS	6
KEY INTERSECTIONS	6
ROADWAY SEGMENTS	6
EXISTING CONDITIONS	6
Existing Roadway Segment operation	9
Existing Intersection Operation	9
SECTION III - PROJECT RELATED CONDITIONS	10
TRIP GENERATION	10
TRIP DISTRIBUTION & ASSIGNMENT	-
SECTION IV - EXISTING PLUS PROJECT CONDITIONS	13
ROADWAY SEGMENT	13
INTERSECTION	
SECTION V - 2018 OPENING DAY CONDITIONS	18
2018 OPENING DAY CONDITIONS	18
ROADWAY SEGMENT	18
INTERSECTION	
PROSPECT AVENUE QUEUING ANALYSIS AT SR-67 NB OFF RAMP	22
/ GRAVES AVENUE INTERSECTION	22
HORIZON YEAR 2035	24
SECTION VI - PROJECT ACCESS & INTERNAL CIRCULATION	
PROJECT ACCESS	31
ON-CITE CIRCULATION	31
SECTION VII - MITIGATION	32
SECTION VIII – SUMMARY AND SIGNIFICANCE OF IMPACTS	34
SUMMARY	
SIGNIFICANCE OF IMPACTS	35

LIST OF FIGURES

Figure 1 – Vicinity Map	2
Figure 2 – Project Site Plan	3
Figure 3 – Existing Configurations	
Figure 4 – Existing Traffic Volumes	8
Figure 5 – Project Trip Distribution	11
Figure 6 – Project Traffic Volumes	12
Figure 7 – Project Traffic Volumes	
Figure 8 – Existing Plus Project Traffic Volumes	16
Figure 9 – Opening Day Traffic Volumes	17
Figure 10 – 2018 Opening Day Plus Project Traffic Volumes	19
Figure 11 – Channelization and Striping Improvement Plan	
Figure 12 – City of Santee 2035 Daily Traffic Volumes	25
Figure 13 – Year 2035 Traffic Volumes	26
Figure 14 – Additional Year 2035 Project Traffic Volumes	
Figure 15 – Year 2035 Project Traffic Volumes Plus Project	

LIST OF TABLES

TABLE 1	4
TABLE 2	4
TABLE 3 - LOS CRITERIA FOR STOP CONTROLLED UNSIGNALIZED	
INTERSECTIONS	5
TABLE 4 - CITY OF SANTEE TRAFFIC IMPACT SIGNIFICANT THRESHOLDS	5
Table 5 - Existing Roadway Segment Level of Service	9
Table 6 - Existing Conditions Intersection Operation	9
Table 7 - Trip Generation Rates and Calculations Summary 1	0
Table 8 - Project Trip Generation Summary	0
Table 9 - Existing Plus Project Roadway Segment Level of Service 1	3
Table 10 - Existing Plus Project Intersection Operation Summary 1	.4
Table 11 – 2018 Opening Day Roadway Segment Level of Service 2	20
Table 12 – 2018 Opening Day Intersection Operation Summary (a) 2	21
Table 13 - 2018 Opening Day Intersection Operation Summary with Figure 11 Improvements 2	21
Table 14 – SR-67 Northbound Off Ramp Queuing Analysis Summary 2	22
Table 15 - City of Santee Mobility Element Year 2035 Traffic Analysis Zone 2348 2	24
Table 16 – Year 2035 Roadway Segment Level of Service	29
Table 17 – Year 2035 Intersection Operation Summary	60
Table 18 – Existing Plus Project Graves Avenue	

APPENDIX A

Traffic Counts

APPENDIX B

Existing Synchro Worksheets

APPENDIX C

- Existing Plus Project Synchro Worksheets
- 2018 Opening Day Synchro Worksheets
- 2018 Opening Day Plus Project Synchro Worksheets
 - Horizon Year 2035 Synchro Worksheets

APPENDIX D

Prospect Avenue/Graves Avenue Intersection and Signalization Improvement Plan

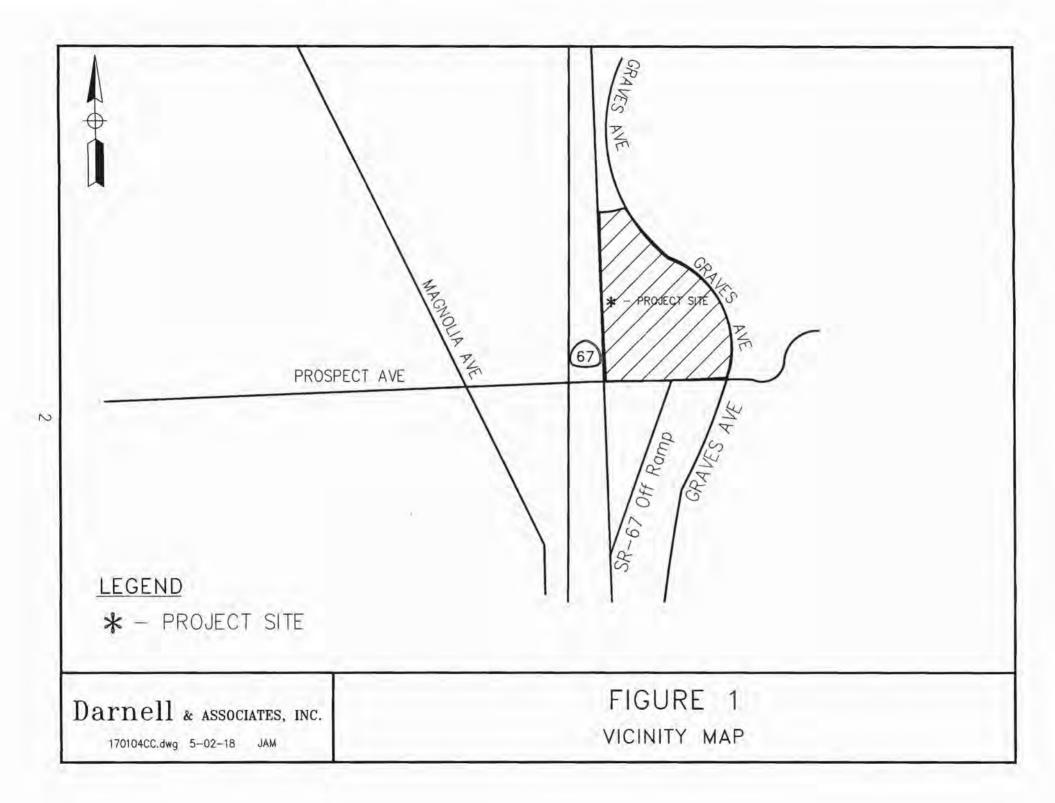
SECTION I - INTRODUCTION

PROJECT DESCRIPTION

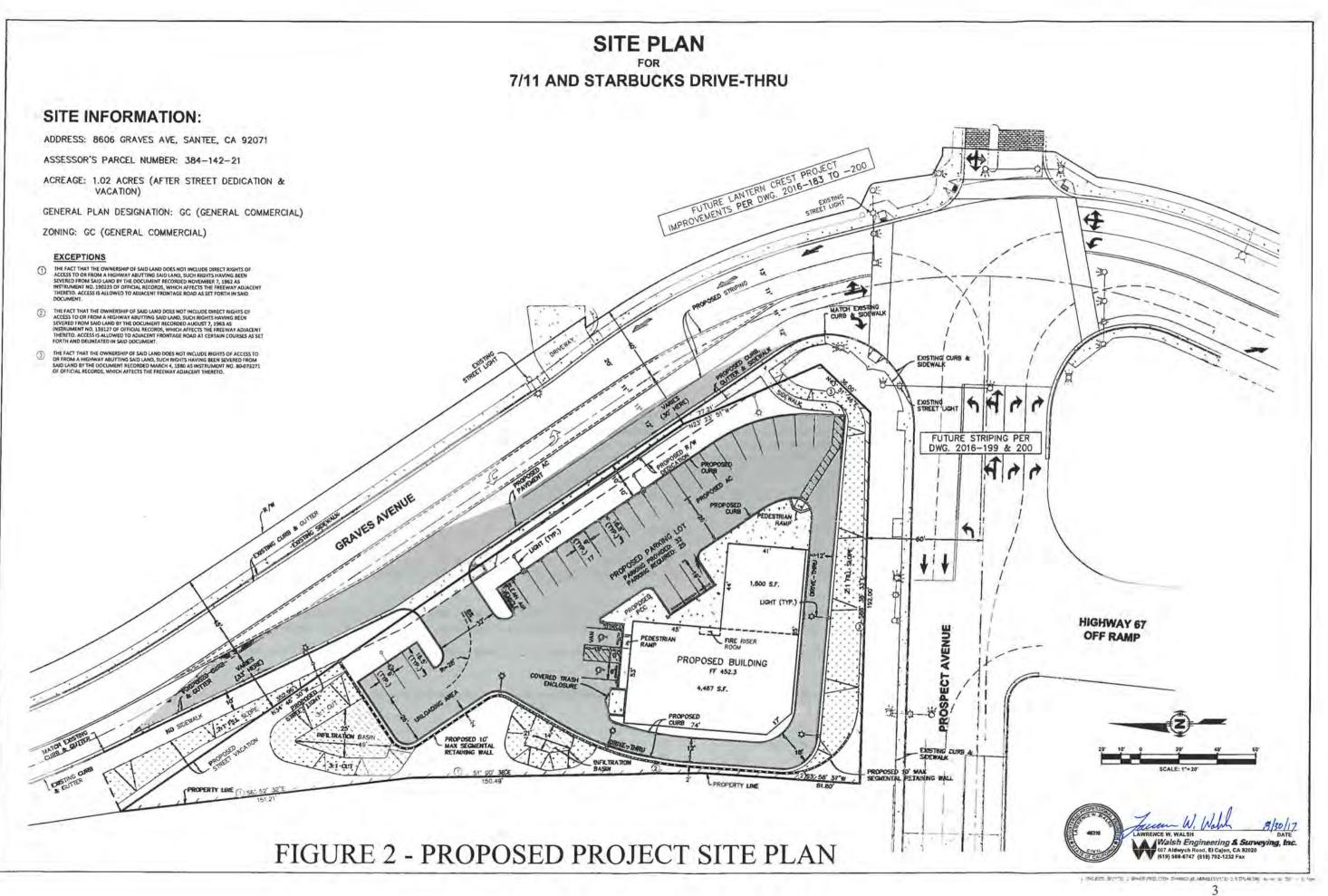
Darnell and Associates Inc (D&A) has prepared the following traffic impact analysis to assess the impacts to the surrounding street system as a result of the addition of project traffic from the Convenience Market and Coffee Shop with Drive Thru Project ("Project"). The project proposes the development of a 4,467 square foot Convenience Market and an 1,800 square foot Coffee Shop with Drive Thru. The Project site is located on the northwest corner of the Graves Avenue/ Prospect Avenue intersection in the City of Santee. Figure 1 shows the Vicinity Map and Figure 2 presents the project site plan.

The proposed project is consistent with the property's existing General Commercial Zoning and General Plan designated for the project site.

The traffic analysis presented in this report includes the following:


- Project Description
- Existing Conditions
- Analysis Approach and Methodology
- Significance Criteria
- Existing Conditions
- Project Traffic
- Existing Plus Project Conditions
- 2018 Opening Day Conditions
- 2018 Opening Day Plus Project Conditions
- Horizon Year 2035
- Prospect Avenue Queuing Analysis at SR-67
- Site Access \ Circulation Discussion
- Significance of Impacts and Mitigation Measures

ANALYSIS APPROACH AND METHODOLOGY


Level of Service

Level of Service (LOS) is a professional industry standard by which the operating conditions of a given roadway segment or intersection are measured. Level of Service is defined on a scale of "A" to "F"; where LOS "A" represents the best operating conditions and LOS F represents the worst operating conditions. LOS "A" facilities are characterized as having free flowing traffic conditions with no restrictions on maneuvering or operating speeds; traffic volumes are low and travel speeds are high. LOS "F" facilities are characterized as having forced flow with many stoppages and low operating speeds. Table 1 shows the ADT and delay ranges that are equivalent to each level of service.

The City of Santee has established LOS standards and thresholds to analyze arterial roadway segment performance. The analysis of roadway segment level of service is based on the functional classification of the roadway, the maximum desired level of service capacity, roadway geometrics, and the existing or forecasted average daily traffic (ADT) volume. Table 1 summarizes the City's roadway segment threshold criteria for a residential collector and associated levels of service where daily traffic demand is compared to the given roadway capacity.

FOR

		Table 1							
City of Santee Revised Roadway Classifications and Standards									
Street	Description/ Sub-classification	# of Lanes	LOS/ADT Thresholds						
Classificatio n			Α	В	С	D	Е		
Circulation El	ement					•	•		
Prime Arterial	Median	6 lanes	25,000	35,000	50,000	55,000	60,000		
Major Arterial	Median	4 lanes	15,000	21,000	30,000	35,000	40,000		
Parkway	Median	4 lanes	15,000	21,000	30,000	35,000	40,000		
	w/TWLTL	2 lanes w/TWLTL	5,000	7,000	10,000	13,000	15,000		
	-	2 lanes	4,000	5,500	7,500	9,000	10,000		
Collector	w/TWLTL	2 lanes w/TWLTL	5,000	7,000	10,000	13,000	15,000		
	Industrial Collector	2 lanes	2,500	3,500	5,000	6,500	8,000		
	Residential Collector	2 lanes	2,500	3,500	5,000	6,500	8,000		
Non-Circulati	on Element								
Industrial Local		2 lanes	-	-	2,200*	-	-		
Residential Local		2 lanes	-	-	2,200*	-	-		
Cul-De-Sac Street		2 lanes	-	-	300*	-	-		
Hillside Street		2 lanes	-	-	700*	-	-		
	Two-way left-turn lane. capacity of non-CE road. L0	OS does not apply to non-CE r	oads.						

The analysis of signalized and unsignalized intersection Level of Service is based on the Highway Capacity Manual (HCM) The Levels of Service for signalized intersections is presented in Table 2. The Level of Service criteria for unsignalized intersections is presented on Table 3. Synchro 8 Software has been used to perform the analysis.

TABLE 2 SIGNALIZED INTERSECTION LEVEL OF SERVICE HIGHWAY CAPACITY MANUAL OPERATIONAL ANALYSIS METHOD						
Delay per Vehicle	Level of Service Characteristics					
(seconds)						
≤ 10.0	LOS A occurs when the volume – to- capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during a green indication and travel through the intersection without stopping.					
10.1 - 20.0	LOS B occurs when the volume –to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.					
20.1 - 35.0	LOS C occurs when progression is favorable or the cycle length is moderate. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.					
35.1 - 55.0	LOS D occurs when the volume –to-capacity ratio is high and either progression is highly favorable or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.					
55.1 - 80.0	LOS E occurs when the volume –to-capacity ratio is high and either progression is unfavorable or the cycle length is long. Individual cycle failures are frequent.					
>80.0	LOS F occurs when the volume –to-capacity ratio is very high, progression is very poor or the cycle length is long. Most cycles fail to clear the intersection.					
Source: 2010 Highway Capacity Manual, Chapter 18						

TABLE 3 - LEVEL OF SERVICE CRITERIA FOR STOP CONTROLLED UNSIGNALIZED INTERSECTIONS.					
≤ 10.0	А				
10.1 - 15.0	В				
15.1 - 25.0	С				
25.1 - 35.0	D				
35.1 - 50.0	Е				
>50.0	F				
Source: 2010 Highway Capacity Manual, Chapters 19 & 20	÷				

ANALYSIS METHODOLOGY

Roadway Segments

Roadway segment operation was analyzed using the volume to capacity (V/C) threshold analysis by comparing the average daily traffic (ADT) to a roadway segment's maximum capacity (see Table 1). These values are reported in V/C and assigned to Level of Service.

Intersections

The Synchro coordination software (Version 8.0) was utilized to analyze the morning and afternoon peak hour conditions of the study intersections. This version of Synchro is based on the methodologies outlined in the 2000 Highway Capacity Manual (HCM). The coordination software defines LOS based on delay using variables such as lane configuration, traffic volumes and signal timings. The unsignalized intersection methodology defines LOS based on the longest delay experienced by any single critical movement.

SIGNIFICANCE CRITERIA

The City of Santee uses the regionally adopted SANTEC/ITE Guidelines for the purposes of traffic impact analysis. The City of Santee considers LOS D as the minimum acceptable level of service. A project is considered to have a significant impact if the new project traffic decreases the operations of surrounding roadways by a defined threshold. The defined thresholds shown in **Table 5–1** for roadway segments and intersections are based on published *San Diego Traffic Engineers' Council* (SANTEC) guidelines. If the project exceeds the thresholds in *Table 5–1*, then the project may be considered to have a significant impact is identified the project will need to identify a feasible mitigation measure to return the impact to a level within the allowable increase or better.

TABLE 4 - CITY OF SANTEE TRAFFIC IMPACT SIGNIFICANT THRESHOLDS						
	Allowable Increase Due to Project Impacts ^a					
Level of Service with Project	Roadway Segments	Intersections				
	V/C	Delay (sec.)				
E & F ^b	0.02	2				
a. If a proposed project's traffic impacts exceed the values shown in the table, then the impacts are deemed "significant."						
The project applicant shall identify "feasible mitigation measures".						
b. The acceptable Level of Service (LOS) standard for roadways and intersections in the City of Santee is LOS D. Hence,						
if the project maintains the level of service at LOS D, the impact is not considered significant,						
V/C = Volume to Capacity Ratio, Delay = Average stopped delay per vehicle measured in seconds for intersections, LOS = Level						
of Service.						

REPORT ORGANIZATION

Section II evaluates the existing roadway characteristics and traffic conditions surrounding the project area. Section III examines the project related potential trips generated by the proposed project and it defines the trip distribution assumptions. Section IV examines project impacts for existing plus project conditions and 2018 Opening Day Conditions and 2018 Opening Day plus Project conditions. Section V analyzes the projects access and on-site circulation. Section VI provides recommended mitigation measures, significance of impacts and summary of findings.

SECTION II - EXISTING CONDITIONS

This section of the traffic study assesses the existing conditions of the roadways and intersections within the vicinity of the project to determine travel flow and/or delay difficulties, if any, that exist prior to adding the traffic generated by the proposed project. The existing conditions analysis establishes a base condition which is used to assess the other scenarios discussed in this report. Darnell & Associates, Inc. (D&A) conducted a field review of the area surrounding the project in February 2017. The existing roadway geometrics for the study area are illustrated in Figure 3.

KEY INTERSECTIONS

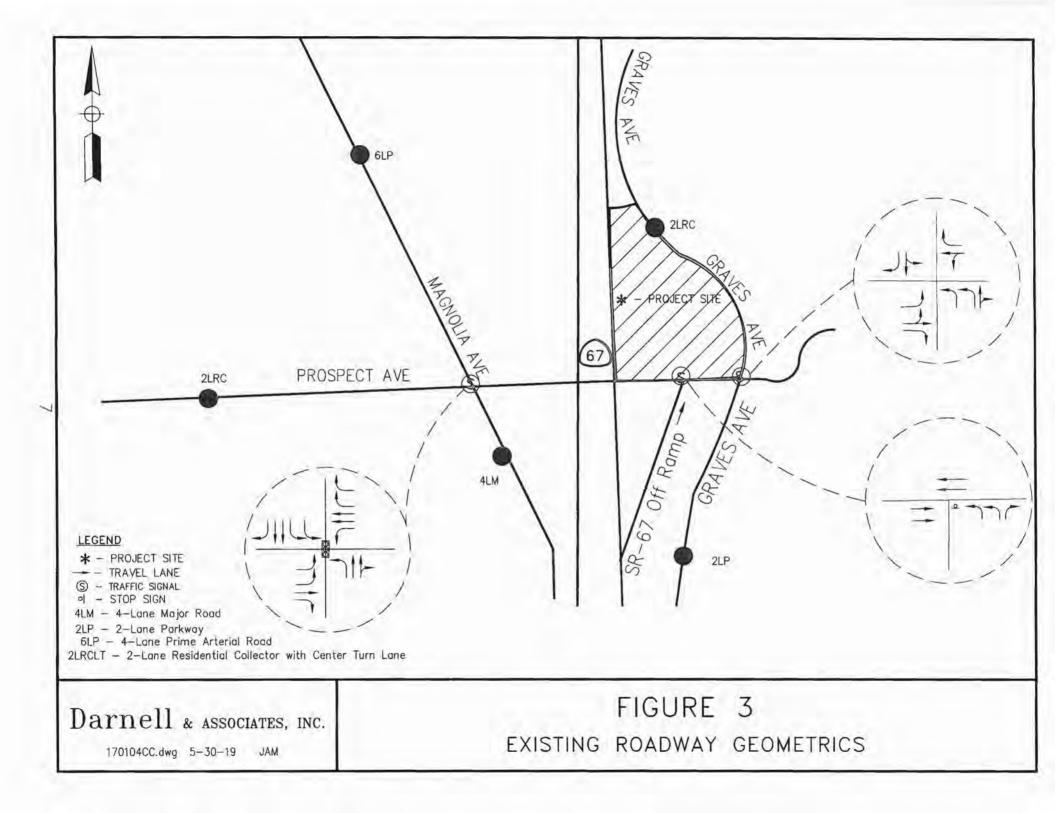
The key intersections analyzed in this study are identified below:

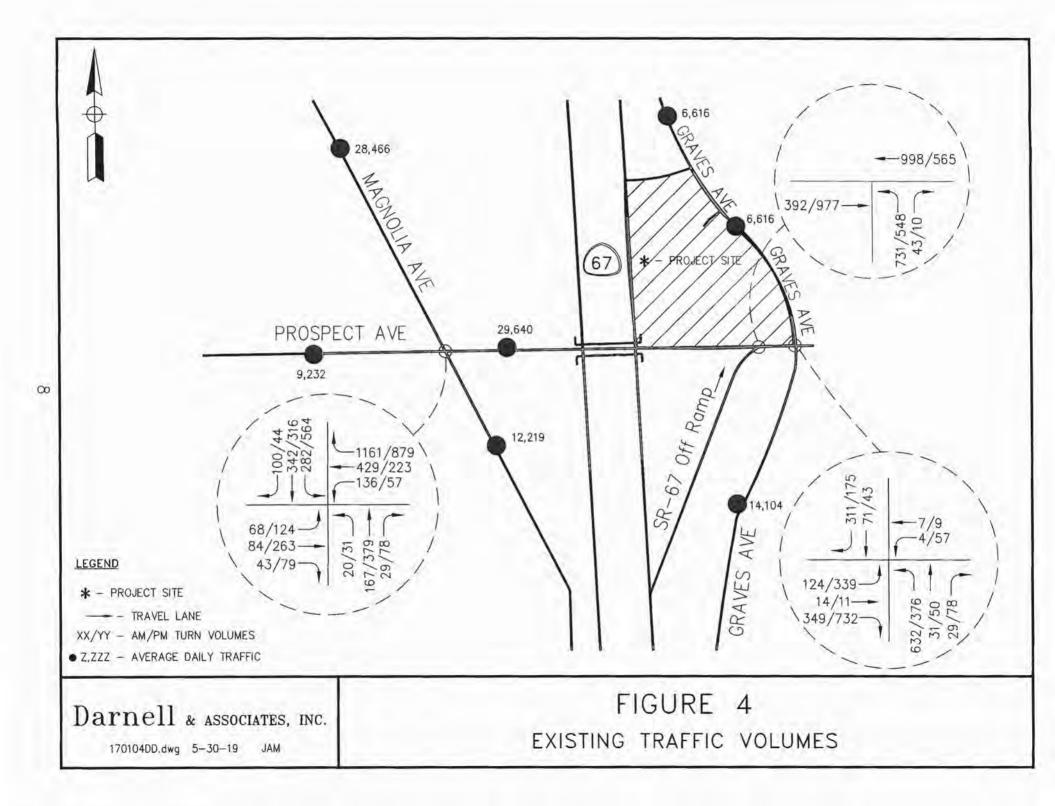
Prospect Avenue at Graves Avenue; Prospect Avenue at SR-67 Northbound Off Ramp; Prospect Avenue at Magnolia Avenue; and Graves Avenue at the Project Access.

ROADWAY SEGMENTS

The key roadway segments analyzed in the study area are identified below:

Prospect Avenue west of Magnolia Avenue is an east-west Circulation Element roadway that is constructed as a 2-Lane Collector Road with a center lane and bike lanes on each side. The LOS E Capacity of the roadway is 15,000 vehicles per day. The posted speed limit on this segment of Prospect Avenue is 35 miles per hour.


Prospect Avenue between Magnolia Avenue (overcrossing of SR-67), is improved to provide two (2) eastbound and three (3) westbound travel lanes equivalent to a 4-Lane Major Road. The LOS "E" capacity of the road is 40,000 vehicles per day.


Graves Avenue is a north-south circulation element roadway that is improved to a 2-Lane Collector as a 2-Lane a Residential Collector Road with a LOS E Capacity of <u>8,000</u> vehicles per day. South of Prospect Avenue is constructed equivalent to a 2-Lane <u>Parkway</u> with the LOS "E" capacity of 10,000 vehicles per day. North of Prospect Avenue. The posted speed limit is 35 miles per hour.

<u>Magnolia Avenue</u> is a north-south circulation element roadway that is constructed as a 6-Lane Prime Arterial Road north of Prospect Avenue with a LOS E Capacity of 60,000 vehicles per day. South of Prospect Avenue, Magnolia Avenue is constructed equivalent to a 4-Lane Major Road with a center turn lane with the LOS "E" capacity of 40,000 vehicles per day.

EXISTING CONDITIONS

Daily, morning and afternoon peak hour traffic counts were conducted at key roadway and intersections, during typical weekdays, in March 2017. Count summary sheets can be found in Appendix A. Existing daily and peak hour traffic volumes are presented on Figure 4.

Existing Roadway Segment operation

Table 5 summarizes the existing conditions roadway segment operation. As shown on Table 5-<u>each of the</u> roadways analyzed operates at LOS "C" or better except Graves Avenue south of Prospect Avenue which <u>Magnolia Avenue and Prospect Avenue operate at LOS "C" or better and Graves Avenue operates at LOS</u> "E" north of Prospect Avenue and LOS "F" south of Prospect Avenue.

Existing Intersection Operation

Table 6 summarizes the existing intersection operation. As shown on Table 6 each of the three (3) intersections analyzed operates at LOS "C" or better in the AM peak hours and PM LOS "D" or better in the PM hours. A copy of the Synchro Worksheets is presented in Appendix B.

Tab	le 5 - Existing Roadway Seg	ment Level	of Service							
Roadway Segment	Class	Capacity	Existing	(2017) Cond	itions					
Roadway Segment	Class	(LOS E)	ADT	V/C	LOS					
Prospect Avenue										
West of Magnolia Avenue	2LCTL 2-Lane Collector (with center turn lane)	15,000	9,232	0.62	В					
East of Magnolia Avenue	4M (4-Lane Major Road)	40,000	29,640	0.74	С					
Graves Avenue										
North of Project	2-Lane Residential Collector	<u>8,000</u>	6.616	0.827	E					
North of Prospect Avenue	2-Lane Residential Collector	<u>8,000</u>	6.616	0.827	E					
South of Prospect Avenue	2-Lane Parkway	10,000	14,104	1.41	F					
Magnolia Avenue										
North of Prospect Avenue	6LP (6-Lane Prime Arterial)	60,000	28,466	0.47	А					
South of Prospect Avenue	4M (4-Lane Major Road)	40,000	12,219	0.31	Α					
LOS=level of service; ADT=Average daily traffic; V/C=volume to capacity ratio, LOS E Capacity per City of Santee Levels of Service.										

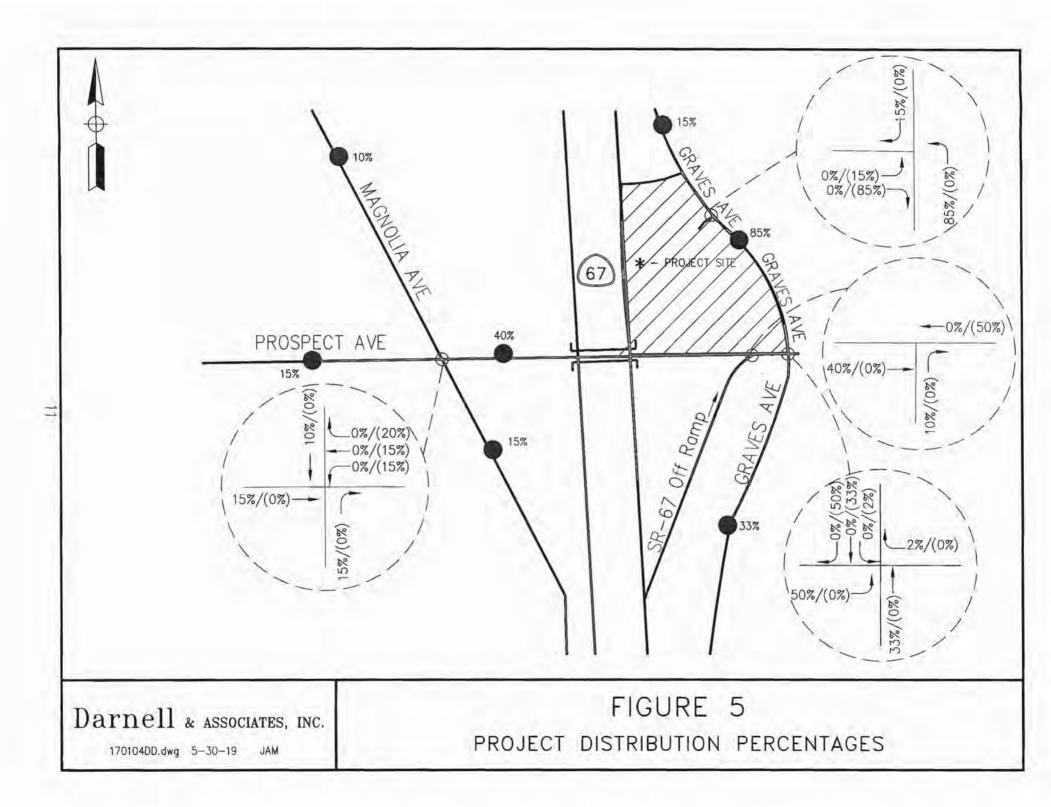
		Existing Conditions						
Intersection	Control	AM PH	EAK	PM PEAK				
	Туре	Delay (veh/sec)	LOS	Delay (veh/sec)	LOS			
Graves Avenue at Project Access			DNE					
Graves Avenue at Prospect Avenue	Signalized	14.7	В	13.5	В			
Prospect Avenue at Magnolia Avenue	Signalized	32.9	С	37.5	D			
Prospect Avenue at SR-67 Northbound Off Ramp	Signalized	16.5	В	11.3	В			

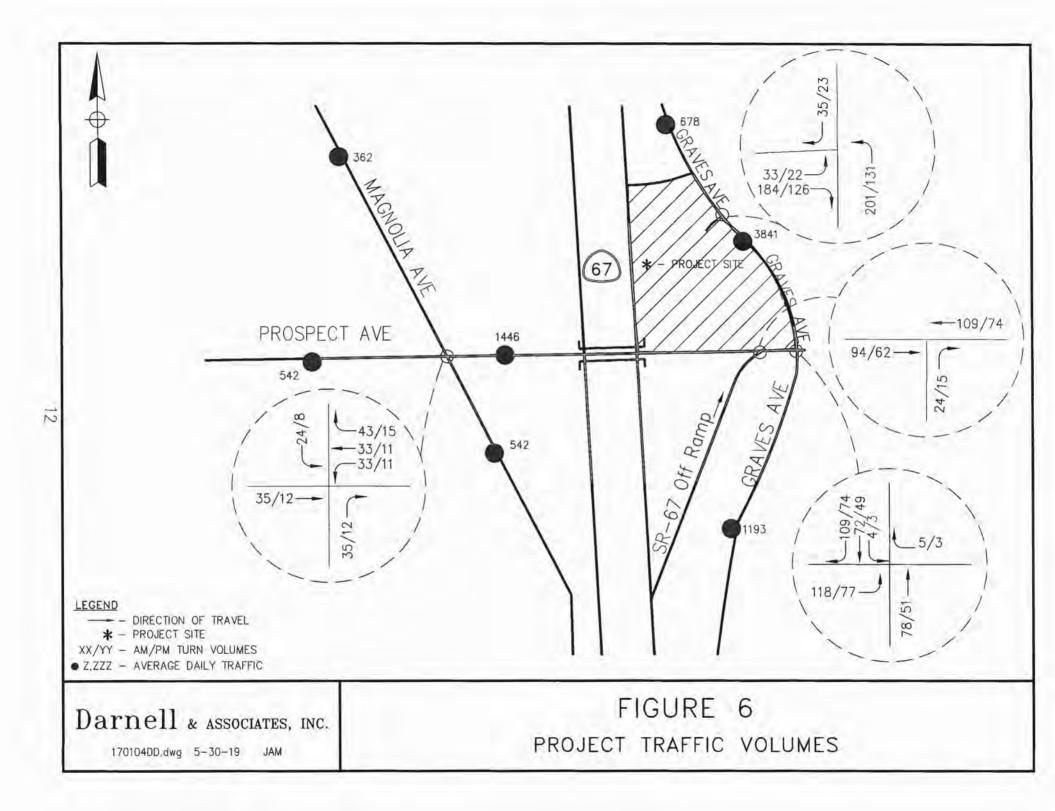
SECTION III - PROJECT RELATED CONDITIONS

TRIP GENERATION

The weekday trip generation potential for the proposed project is based on daily and peak hour trip generation rates obtained from the (*Not So*) *Brief Guide of Traffic Generators for the San Diego Region* published by the San Diego Association of Governments (SANDAG) in April 2002 Utilizing the SANDAG rates and the characteristics of the proposed project, estimates of daily and peak hour traffic volumes generated by the project can be calculated. Table 7 summarizes the weekday trip generation rates and calculations for the proposed project.

As shown in Table 8, the proposed project is estimated to generate 4,519 average weekday daily trips with 453 trips being generated during the morning peak hour and 302 trips being generated during the afternoon peak hour. Further review of Table 8 shows that the total cumulative trips with pass-by reductions results in 3,615 Daily, 453 AM peak hour trips and 150 PM peak hour trips to be added to the surrounding roadways in the study area.


Table	Table 7 - Trip Generation Rates and Calculations Summary											
Y 111		AM Pe	eak Hou	r	PM Peak Hour							
Land Use	Daily	Rate	In	Out	Rate	In	Out					
Convenience Market (24 Hours)	700.00 trips/ 1,000 sq. ft	63.00/ksf	0.50	0.50	49.00/ksf	0.50	0.50					
Coffee Shop w/Drive Thru	773.17 trips/ 1,000 sq. ft	95.00/ksf	0.55	0.45	46.11/ksf	0.53	0.47					


Table 8	8 - Project Trip	Genera	ation Sun	nmary					
T 111	Density		AM F	Peak Ho	our	PM Peak Hour			
Land Use	Density	Daily	Total	In	Out	Total	In	Out	
Project Trip Generation									
Coffee Shop with Drive Thru	1.800 ksf	1,392	95	76	171	44	39	83	
Pass-By Reduction (15% Daily, 50% PM	-209	n/a			-22	-20	-42		
Transit Reduction (5% daily)	-70		n/a		n/a				
Convenience Market	4.467 ksf	3,127	141	141	282	110	109	219	
Pass-By Reduction (15% Daily, 50% PM)	-469	n/a			-55	-55	-110	
Transit Reduction (5% daily)		-156		n/a		n/a			
Total Driveway Trips		4,519	236	217	453	154	148	302	
Total Cumulative Trips		3,615	236	217	453	77	73	150	
Note: Trip generation rates are based on SANDAG's (Not So) Brief guide to Vehicular Generation Rates for the San Diego Region (April 2002). Driveway trips reflect the total project traffic. Cumulative Trips reflect trip generation after Pass-by traffic subtracted. The trip rates for the Starbucks with a drive-thru are based on the Institute of Transportation Engineers (ITE) Trip									

Generation Manual, 9^{th} Edition. ksf = 1,000 square foot.

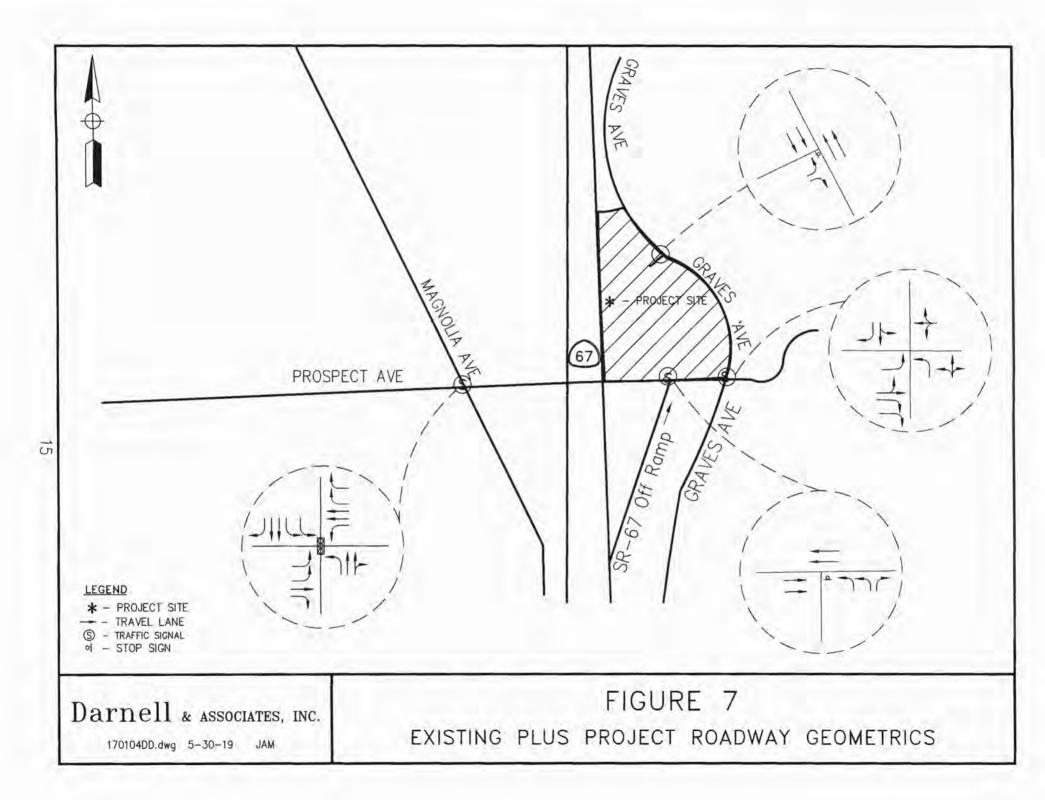
TRIP DISTRIBUTION & ASSIGNMENT

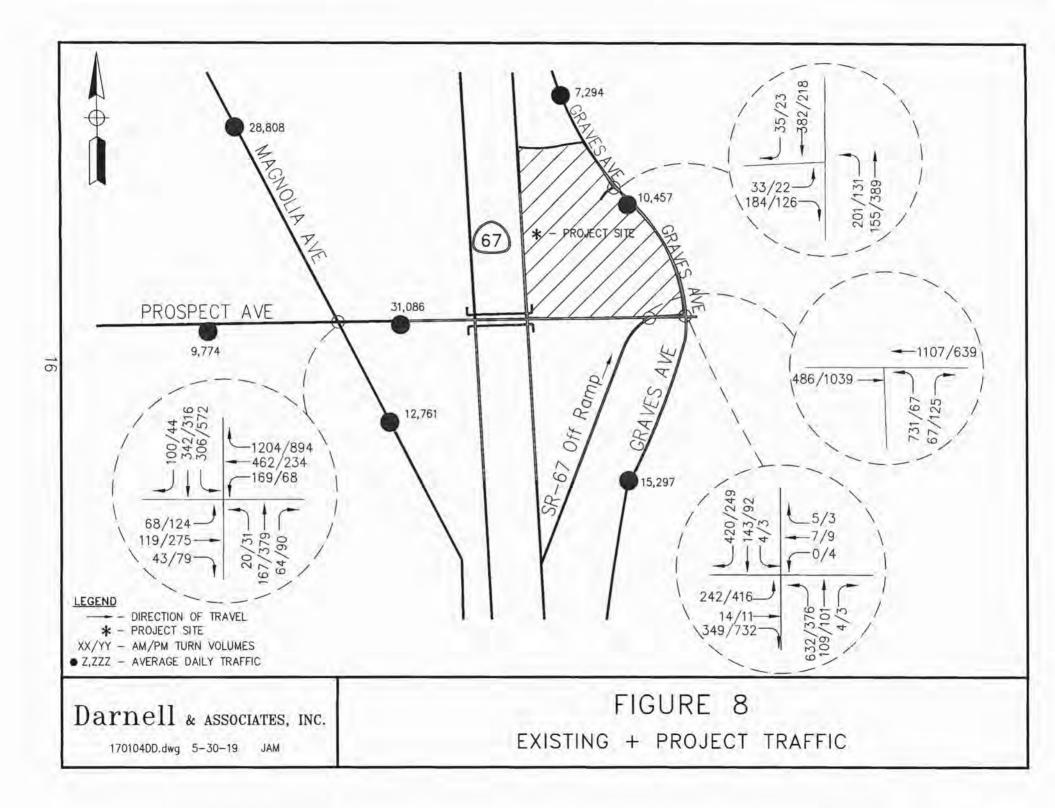
The trip distribution percentages for the project were estimated based on likely travel routes and distributions, as well as circulation to local state routes and major arterials. Figure 5 demonstrates the project trip percentages. The project traffic presented on Table 8 was assigned to the roadway network and is shown on Figure 6.

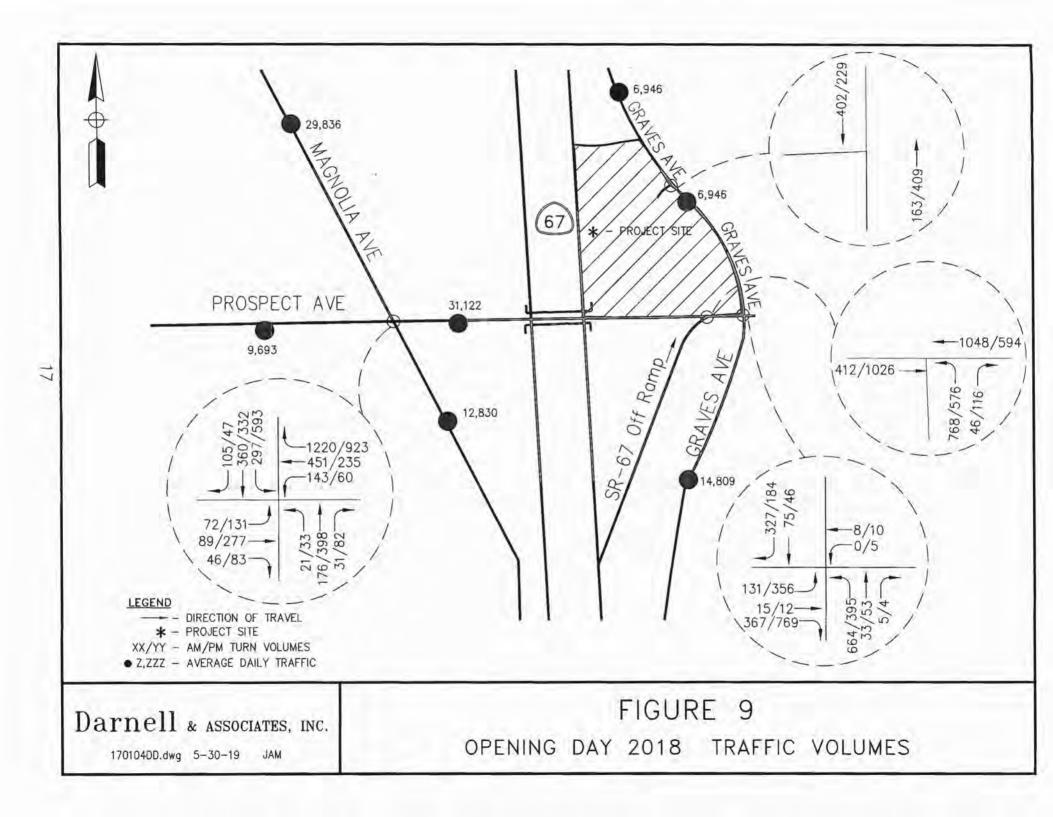
SECTION IV - EXISTING PLUS PROJECT CONDITIONS

This scenario analyzes the traffic impacts of the proposed project under existing conditions. The construction of the project will improve the projects Graves Avenue frontage and complete improvements to the Prospect Avenue/Graves Avenue intersection that are previously approved for the Lantern Crest Project. With these improvements the roadways and intersections geometrics presented on Figure 7 and will be used for further analysis in this report. The existing plus project traffic volumes are presented on Figure 8.

ROADWAY SEGMENT


The daily traffic data presented on Figure 8 was analyzed and the results are presented on Table 9. Review of Table 9 shows each roadway segment continues to operate at LOS "C" or better except for Graves Avenue north and south of Prospect Avenue which operates at LOS "F". Magnolia Avenue and Prospect Avenue continues to operate at LOS C or better and Graves Avenue continues to operate at LOS "F" north and south of Prospect Avenue. The addition of project traffic to Graves Avenue is considered to create a significant impact for existing plus project conditions on Graves Avenue north and south of Prospect Avenue.


	Table 9 - Exist	ing Plus Pro	ject Road	lway Se	gment l	Level of Se	ervice			
			Exi	sting (20)17)	-	Existing	(2017) P	lus Project	
Roadway Segment	Functional Classification	LOS E Capacity	ADT	V/C	LOS	ADT	V/C	LOS	$\Delta V/C$	Proj. Sign?
Prospect Avenue										
West of Magnolia Ave.	2LCTL 2-Lane Collector (with center turn lane)	15,000	9,232	0.62	В	9,774	0.65	В	0.03	No
East of Magnolia Ave.	4M (4-Lane Major Road)	40,000	29,640	0.74	С	31,086	0.77	С	0.03	No
Graves Avenue										
North of Project	2-Lane Residential	8,000	6,616	0.83	С	7,279	<u>0.91</u>	E	<u>0.08</u>	Yes
North of Prospect Ave	2-Lane Residential	8,000	6,616	0.83	С	10,457	<u>1.31</u>	F	<u>0.48</u>	Yes
South of Prospect Ave.	2-Lane Parkway	10,000	14,104	1.41	F	15,297	1.53	F	0.12	Yes
Magnolia Avenue							•			•
North of Prospect Ave.	6LP (6-Lane Prime Arterial)	60,000	28,466	0.47	А	28,808	0.48	А	0.01	No
South of Prospect Ave.	4M (4-Lane Major Road)	40,000	12,219	0.31	А	12,761	0.32	А	0.01	No
LOS=level of service; ADT	=Average daily traffic; V/C=vo	lume to capacity	ratio, LOS	E Capacit	y per City	of Santee Le	vels of Ser	vice		


INTERSECTION

The traffic volumes presented on Figure 8 were analyzed with the Synchro software. Intersection operation level of service for the Existing Plus Project scenarios are summarized on Table 10. Review of Table 10 shows each of the four (4) intersections analyzed operate at LOS "C" or better in the AM peak hours and LOS "D" or better in the PM peak Hour. A copy of the Synchro worksheets is presented in Appendix C. The resulting operating conditions analysis identifies the project does not create any significant impacts.

Table 10 - Existing Plus Project Intersection Operation Summary													
		Exist	ing (201	7) Conditio	ons	Existing (2017) Plus Project Conditions							
Intersection	Traffic	AM Peak		PM Peak			AM Peak				PN	I Peak	
Contro	Control	Delay sec/veh	LOS	Delay sec/veh	LOS	Delay sec/veh	LOS	Δ Delay sec/veh	Sign.	Delay sec/veh	LOS	Δ Delay sec/veh	Sign.
Graves Ave. at Project Access	OWSC	DNE			17.6	С	17.6	No	12.8	В	12.8	No	
Graves Ave. at Prospect Ave.	Signalized	14.7	В	13.5	В	21.3	С	6.6	No	16.3	С	2.8	No
Prospect Ave. at Magnolia Ave.	Signalized	32.9	С	37.5	D	33.5	С	0.6	No	37.8	D	0.3	No
Prospect Ave. at SR-67 Northbound Off Ramp	Signalized	16.5	В	11.3	В	16.6	В	0.1	No	11.8	В	0.5	No
Delay is measured in seconds per vehicle; LOS=level of service; Delay and LOS calculated using Synchro 8 (with HCS value) Sign = Significant, OWSC = One way stop control, DNE = Does Not Exist, sec/veh = Second per Vehicle.													

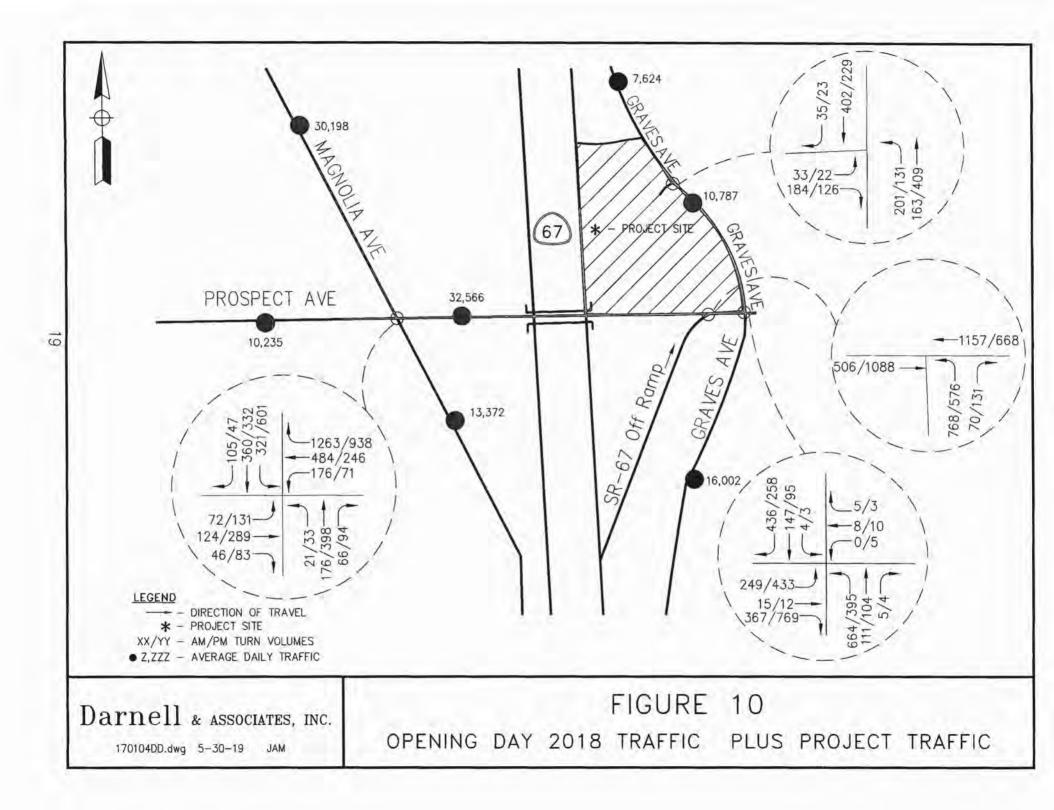
SECTION V - 2018 OPENING DAY CONDITIONS

2018 OPENING DAY CONDITIONS

This scenario analyzes the traffic impacts of the proposed project under 2018 Opening day and 2018 Opening Day Plus Project Conditions. The 2018 Opening Day and Opening Day Plus Project analysis is considered the horizon Year Analysis for the project. To establish 2018 Opening Day traffic volumes the existing 2017 traffic volumes presented on Figure 4 were increased five (5) percent. The resulting 2018 Opening Day traffic volumes are presented on Figure 8. Project traffic volumes shown on Figure 6 was added to 2018 Opening Day traffic volumes. Figure 10 presents the 2018 Opening Day plus project traffic volumes. In conjunction with the adjacent development of the Lantern Crest Project the project will improve its Graves Avenue frontage and complete the Prospect Avenue/Graves Avenue intersection improvements shown on the Project Site Plan.

The construction of the proposed project improvements and the completion of the Prospect Avenue/Graves Avenue intersection improvements to be constructed by the lantern Crest Development on the east side of Graves Avenue will complete the development of the area. Therefore, additional Horizon Year Analysis is not required.

ROADWAY SEGMENT


The daily traffic volumes presented on Figures 9 and Figure 10 were analyzed and the results are presented on Table 11. Review of Table 11 shows the addition of project traffic volumes to the 2018 Opening Day traffic conditions. Each roadway analyzed will operate at LOS "D" or better for 2018 Opening Day Conditions except Graves Avenue south of Prospect Avenue will operate at LOS "F" for Opening Day 2018 conditions and Graves Avenue north and south of Prospect will continue to operate at LOS "F" with the addition of project traffic.

INTERSECTION

Intersection operation results for the 2018 Opening Day scenarios based on existing intersection geometrics presented on Figure 3 are summarized on Table 12. As shown on Table 12 each of the five intersections analyzed operate at LOS "C" or better in the AM peak hour and LOS "D" in the PM peak hour. The increase in delay is less than 0.02 second/vehicle. Therefore, the project does not create a significant impact. A copy of the Synchro Worksheets is presented in Appendix C.

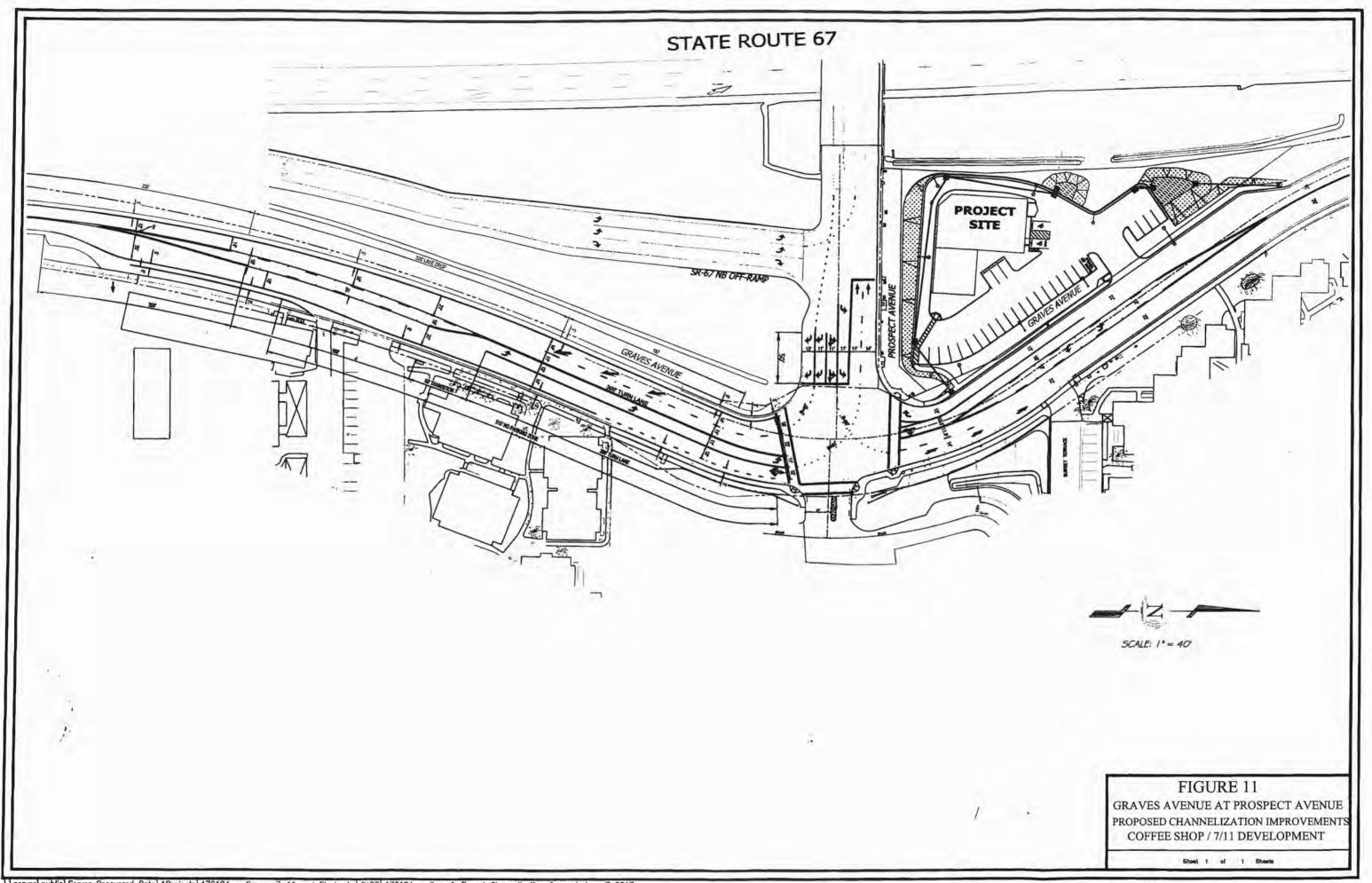
Additional analysis of the Opening Day 2018 and Opening Day 2018 plus project traffic conditions based on the proposed Prospect Avenue and the Graves Avenue roadway and intersection improvements presented on Figure 11 were prepared. The improvements presented on Figure 11 include the required traffic signal modifications at the Prospect Avenue/Graves Avenue intersection. A copy of the traffic signal modification plan to be constructed by the Lantern Crest project is presented in Appendix D.

Table 13 shows each intersection will continue to operate at LOS D or better with the addition of project traffic. A copy of the worksheets is presented in Appendix C.

	Table 11 – 20)18 Openin	ng Day R	Roadwa	y Segme	nt Level of	Service			
			Open	ing Day	(2018)	Ope	ning Day	(2018) I	Plus Projec	et
Roadway Segment	Functional Classification	LOS E Capacity	ADT	V/C	LOS	ADT	V/C	LOS	Δ V/C	Proj. Sign?
Prospect Avenue										
West of Magnolia Avenue	2LCTL 2-Lane Collector (with center turn lane)	15,000	9,693	0.65	С	10,235	0.68	D	0.03	No
East of Magnolia Avenue	4M (4-Lane Major Road)	40,000	31,122	0.78	D	32,566	0.81	D	0.03	No
Graves Avenue										
North of Project	Collector (2-Lane without Fronting Property)	<u>8,000</u>	6,946	<u>0.868</u>	<u>E</u>	7,624	<u>0.953</u>	Ē	<u>0.085</u>	Yes
North of Prospect Avenue	Collector (2-Lane without Fronting Property)	<u>8,000</u>	6,946	<u>0.868</u>	E	10,787	<u>1.348</u>	F	<u>0.480</u>	Yes
South of Prospect Avenue	Collector (2-Lane without Fronting Property)	10,000	14,809	1.48	F	16,002	1.60	F	0.12	Yes
Magnolia Avenue										
North of Prospect Avenue	6LP (6-Lane Prime Arterial)	60,000	29,836	0.50	В	30,198	0.50	В	0.00	No
South of Prospect Avenue	4M (4-Lane Major Road)	40,000	12,830	0.32	В	13,372	0.33	В	0.01	No
LOS=level of service; ADT=Ave	erage daily traffic; V/0	C=volume to ca	pacity ratio	, LOS E C	apacity per (City of Santee Le	evels of Ser	vice		

		Opening Day (2018) Conditions (a)				Opening Day (2018) Plus Project Conditions (a)							
	Traffic	AM Peak		PM Peak			AM Peak			PM Peak			
Intersection Cont	Control	Delay sec/veh	LOS	Delay sec/veh	LOS	Delay sec/ve h	LOS	Δ Delay sec/veh	Sign.	Delay sec/veh	LOS	Δ Delay sec/veh	Sign.
Graves Ave. at Project Access	OWSC	DNE			18.4	С	18.4	No	13.1	В	13.1	No	
Graves Ave. at Prospect Ave.	Signalized	19.8	В	28.5	С	18.9	В	-0.8	No	22.0	С	-0.6	No
Prospect Ave. at Magnolia Ave.	Signalized	32.4	С	38.1	D	33.3	С	0.9	No	38.3	D	0.2	No
Prospect Ave. at SR-67 Northbound Off Ramp	Signalized	20.5	С	16.9	В	18.9	В	-1.6	No	15.8	В	-1.4	No

		Opening	Opening Day (2018) Conditions (a)			Opening Day (2018) Plus Project Conditions (b)							
Intersection Traffic Control	Traffic	AM Peak PM Peak			AM Peak					PM Peak			
	Control	Delay sec/veh	LOS	Delay sec/veh	LOS	Delay sec/ve h	LOS	Δ Delay sec/veh	Sign.	Delay sec/veh	LOS	Δ Delay sec/veh	Sign.
Graves Ave. at Prospect Ave.	Signalized	19.8	В	28.5	В	28.4	С	8.6	No	14.4	В	-14.1	No
Prospect Ave. at SR-67 Northbound Off Ramp	Signalized	20.5	C	16.9	В	18.5	В	-2.0	No	15.7	В	-1.2	No


PROSPECT AVENUE QUEUING ANALYSIS AT SR-67 NORTHBOUND OFF RAMP AND GRAVES AVENUE INTERSECTION

Caltrans has requested the vehicle queues on the SR-67 Northbound Off Ramp at Prospect Avenue be analyzed to confirm that traffic does not back upon the off ramp and conflict with the northbound thru lanes on SR-67. In addition, they have requested the analysis to include the eastbound Prospect Avenue traffic lanes at Graves Avenue to show eastbound traffic queues stopped at Graves Avenue do not bloke the SR-67 northbound off-ramp. The Synchro 8 software was used to calculate the 95th percentile queues for the northbound left turn lane and the northbound right turn lane on the SR-67 off-ramp. Table 14 summarizes the existing storage lengths and the resulting queue lengths for the scenarios analyzed.

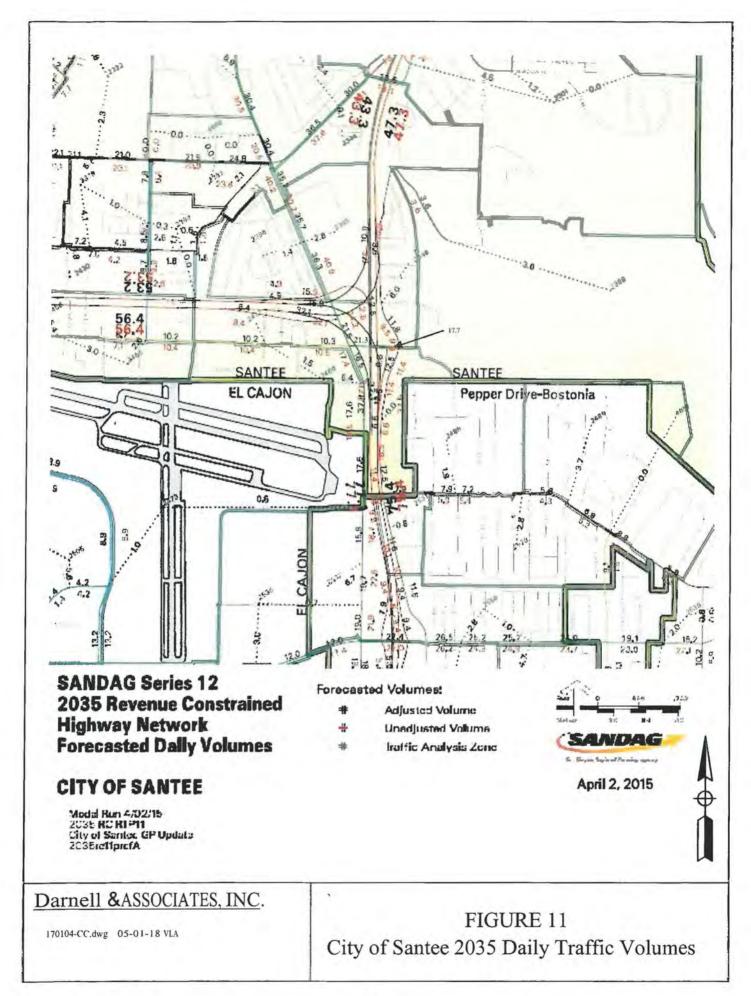
Т	able 14 -	- SR-67 Nortl	hbound Off Ramp (vsis Summary	
Intersection	Peak Hour	Movement	Storage Length (ft)	2018 Opening Day Existing Conditions	2018 Opening Day Existing Plus Project Conditions	2018 Opening Day Existing Plus Project Conditions with Figure 11 Improvements
	AM		2,050'	300'	300'	300'
Prospect Ave /	PM	NBL	(2 lanes x 1,025')	225'	225'	225'
SR-67 NB Off-	AM	NDD	1.0051	25'	50'	50'
Ramp	PM	NBR	1,025'	75'	75'	75'
-	AM	EDT	880'	100'	125'	125'
	PM	EBT	(2 lanes x 440')	250'	275'	275'
	AM	EDI	220'	75'	75'	125'
Prospect Avenue	PM	EBL	(2 lanes x 110')	150'	125'	200'
at Graves Avenue	AM	EBR	170'	50'	50'	0'
	PM	EDK	(110' + 60')	150'	225'	0'
11 presents the propose up to the nearest 25 feet	intersectio to represe	n geometrics at the length of a	ed in the Opening Day 20 ne Prospect Avenue/Grave typical vehicle. NBL = N Eastbound Left and Thru	es Avenue interse orthbound left, N	ction. (a) Queue	lengths were rounded

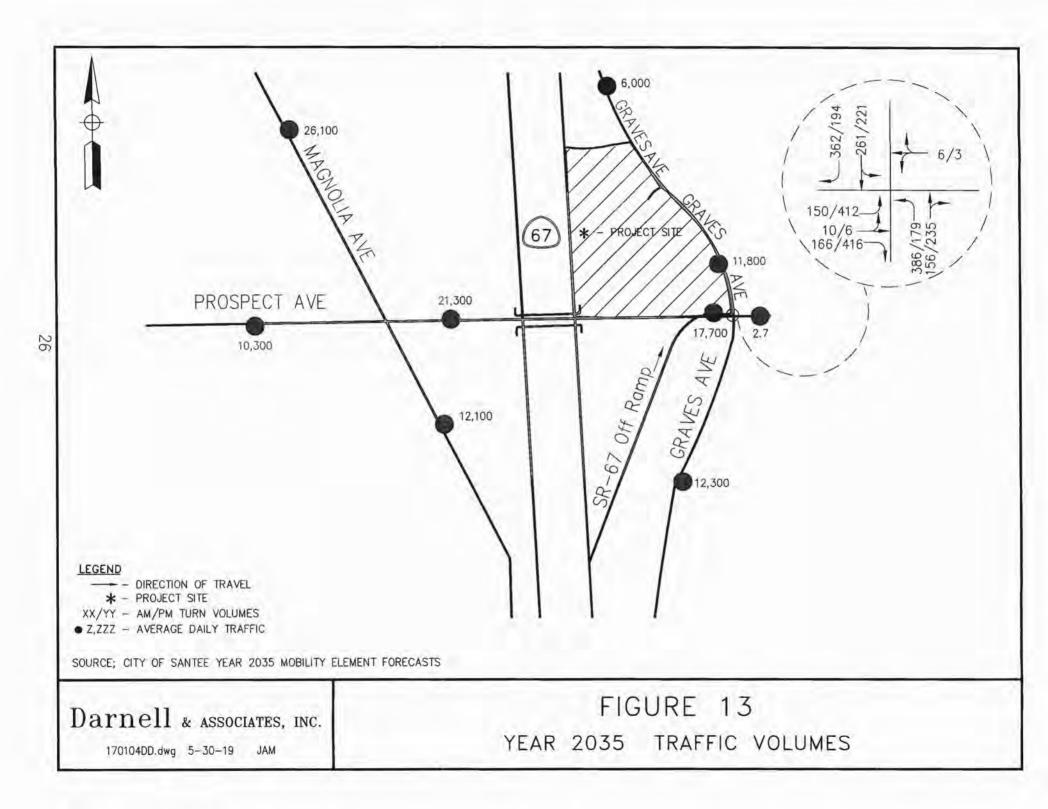
Review of Table 14 shows there is adequate vehicle stacking on the SR-67 Northbound off-ramp with existing intersection geometrics and with the project intersection geometrics. Further review of Table 14 shows the 95th percentile queues for the eastbound left and thru movements on Prospect Avenue at Graves Avenue not exceed available storage for all the conditions analyzed. Further review of Table 14 shows the eastbound right turn movement at Graves Avenue will exceed available storage for 2018 Opening Day plus Project with existing geometrics. However, Table 14 shows no vehicle queue with the proposed Prospect Avenue and Graves Avenue geometrics shown on Figure 11.

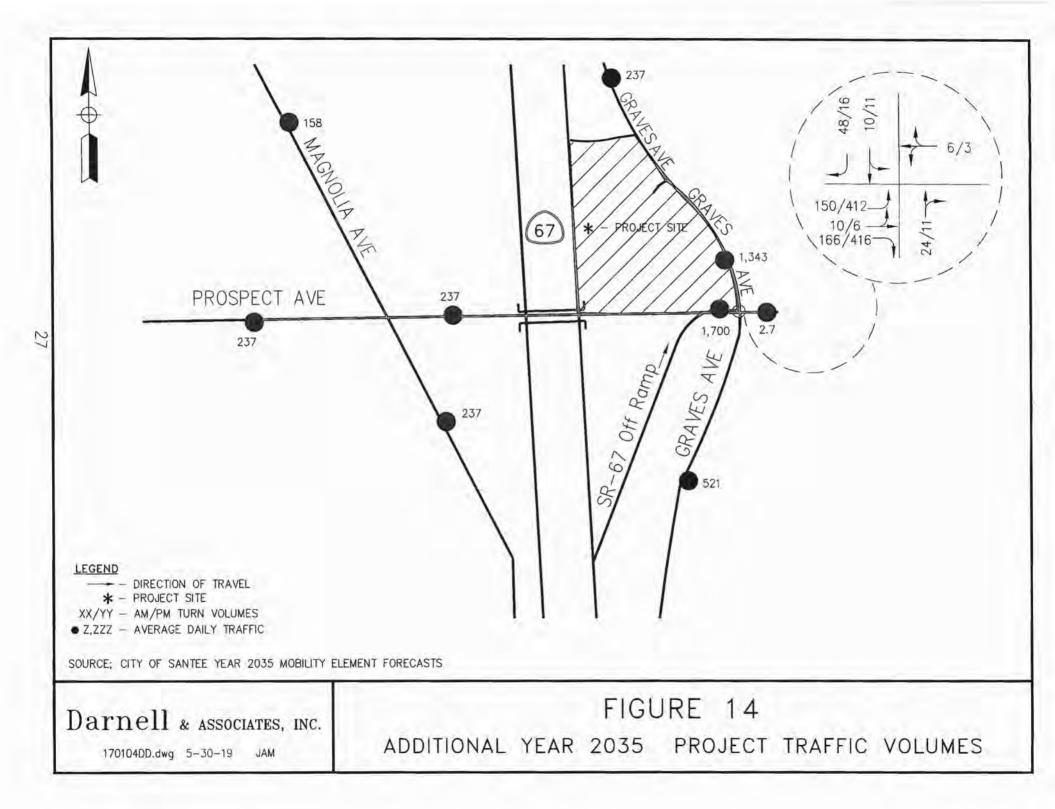
In summary the vehicle queues on eastbound Prospect Avenue at Graves Avenue can be mitigated by construction of the proposed intersection geometrics shown on Figure 11 and the traffic signal is modified as shown on the approved signal modification plan presented in Appendix D.

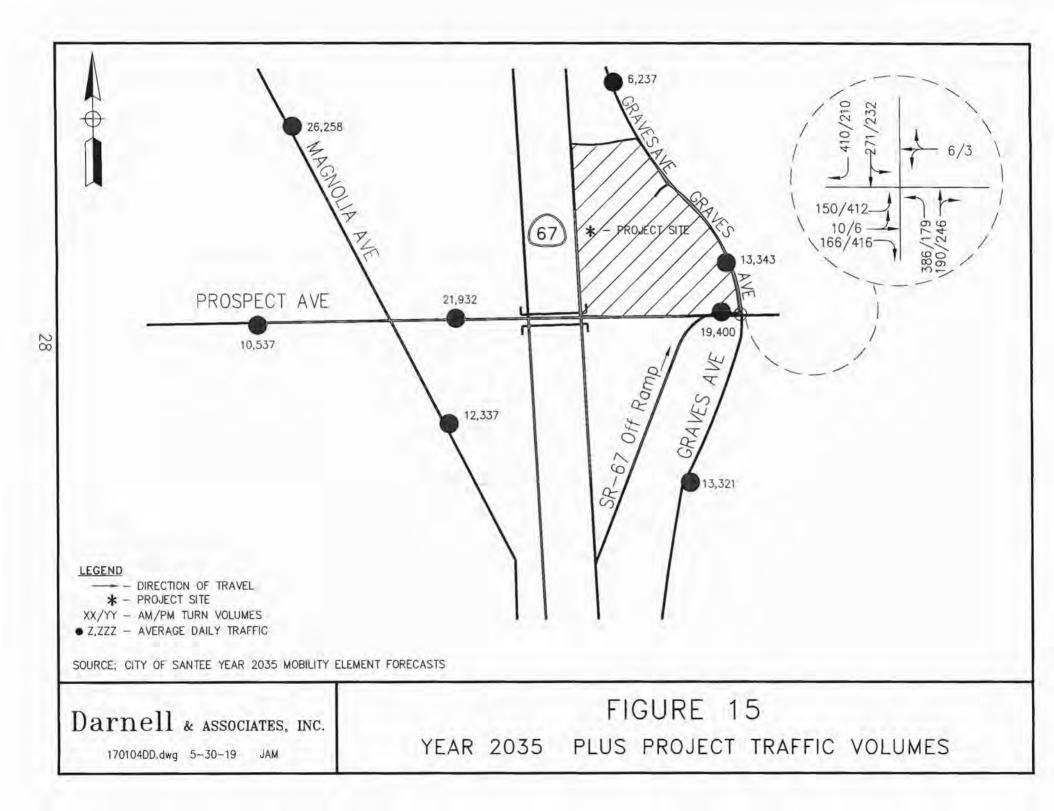
HORIZON YEAR 2035

To address the project impacts on Graves Avenue south of Prospect Avenue, the City of Santee Senior Traffic Engineer has requested, that we prepare a 2035 Analysis for Graves Avenue south of Prospect Avenue to determine if the proposed project percentage increase in daily traffic volumes is significant. In addition, we also estimated the Year 2035 turning movements at Graves Avenue and Prospect Avenue and prepared the Daily and AM/PM peak hour analysis of the 2035 Future Traffic Volumes.


To establish the Year 2035 Traffic Forecasts, we assembled the SANDAG Year 2035 Series 12 Traffic Volume Forecasts, prepared by SANDAG for the City of Santee 2035 Mobility Element. Land Use and Vehicle Trips generated for the area for the project area north of Graves Avenue and East of SR-67. Figure 12 presents a copy of the SANDAG Series 12 Year 2035 Forecast for the City of Santee Mobility Element.


The next step in the analysis process involves a review of the SANDAG 2035 Land Uses for the project area. The project is within TAZ 2348, which includes the project site and the area north of Graves Avenue and east of SR-67. Table 15 presents the SANDAG TAZ 2348 Land Uses and shows 2.3 acres of Neighborhood Commercial Land Use that generates 2,096 daily trips. The Neighborhood Commercial Land Use is representative of the proposed project site.


Ta	able 15 – City of Santee Mobility Element Yea	r 2035 Traffic Analys	sis Zone 2348
Land Use Code	Description	Туре	Amount
101	SINGLE FAMILY	Dwelling Unit	90
102	MULTI-FAMILY	Dwelling Unit	573
4112	RIGHT-OF-WAY	Acre	30.9
4113	COMMUNICATION OR UTILITY	Acre	2.7
5004	NEIGHBORHOOD COMMERCIAL	Acre	2.3
9101	INACTIVE USE	Acre	7.8


To estimate the Year 2035 Buildout scenario turning movement volumes at the study intersection, the existing turning movements at the intersection were factored up based on the projected Average Daily Traffic (ADT) volumes along each segment. Each respective movement was derived using an iterative approach that balances the inflows and outflows for each approach. The input values include the existing turning movement volumes and future year peak hour approach and departure volumes along each leg of the intersection. The future peak hour approach volumes were estimated by applying the existing peak hour factor (K-factor) and directional distributional percentage (D-factor) to the future ADT volumes along each approach. A more detailed description of the methodology used to forecast turning movement volumes is contained in the National Cooperative Highway Research Program (NCHRP) 255 Highway Traffic Data for Urbanized Area Project Planning and Design, Chapter 8. Figure 12 presents the resulting Year 2035 AM/PM peak hour daily traffic.

Based on the City of Santee comments that the proposed project generates additional traffic greater than the 2035 Forecasts. The increase is estimated to be 1,580 Daily, 199 AM peak hour trips and 66 PM peak hour trips. Since the project generates an additional 1,580 Daily, 199 AM peak hour traffic and 66 PM peak hour traffic. The additional traffic was distributed to the surrounding roadways and the Prospect Avenue /Graves Avenue intersection. Figure 14 presents the additional traffic to be added. The results are presented on Figure 15.

The Year 2035 daily traffic volumes presented on Figure 15 were then analyzed and the results are presented on Table 16.

Table 16 – Ye	ear 2035 Roady	way Segme	nt Level	of Ser	vice			
			Year 2035 Plus Project					
Roadway Segment	Functional Classification	LOS E Capacity	ADT	V/C	LOS	Proj.		
						Sign?		
Graves Avenue								
North of Prospect Avenue	Residential 2 lanes	8,000	13,143	1.64	F	Yes		
South of Prospect Avenue	Parkway 2 lanes	10,000	13,321	1.33	F	Yes		
LOS=level of service; ADT=Ave Santee Levels of Service	rage daily traffic; V/O	C=volume to ca	pacity ratio	LOS E C	Capacity po	er City of		

<u>Review of Table 16 shows Graves Avenue will operate at LOS F, based on the City of Santee Roadway</u> <u>Classifications. Therefore, the mitigation of the projects Year 2035 impacts are required.</u>

The next step in the analysis process requires mitigation of the projects unacceptable LOS F on Graves Avenue north and south of Prospect Avenue. To mitigate the projects impacts, we analyzed Graves Avenue north and south of Prospect Avenue, based on the recommended channelization shown on Figure 11 to provide a continuous two-way left turn from north of the project driveway to approximately 840 feet south of Prospect Avenue. With this improvement the LOS E capacity of the roadway will be increased to 15,000 ADT. Table 17 was then prepared summarizing the results of the analysis.

		Table	17 – Ye	ar 2035	5 Mitig	ated Level of	<u>Service</u>							
		Exi	sting Cor	<u>nditions</u>		Mitigated Conditions								
<u>Roadway</u> <u>Segment</u>	<u>Class.</u>	LOS E Capacity	ADT	<u>V/C</u>	LOS	<u>Class.</u>	LOS E Capacity	ADT	<u>V/C</u>	<u>Δ V/C</u>	LOS			
Graves Avenue														
North of Prospect Avenue	Residential 2 lanes	<u>8,000</u>	<u>13,143</u>	<u>1.64</u>	<u>F</u>	Collector w/TWLTL	<u>15,000</u>	<u>13,143</u>	<u>0.876</u>	<u>-0.77</u>	Ē			
South of Prospect Avenue	Parkway 2 lanes	<u>10,000</u>	<u>13,321</u>	<u>1.33</u>	F	Collector w/TWLTL	<u>15,000</u>	<u>13,321</u>	<u>0.874</u>	<u>-0.46</u>	E			
LOS=level of service; A Service	ADT=Average da	ily traffic; V/C=	=volume to	capacity r	atio, Clas	s. = Classification	of Roadway, L	OS E Capac	city per City	y of Santee L	evels of			

Review of Table 17 shows the proposed improvements improve the Level of Service from LOS "F" to LOS "E" and provide mitigation of the project's impacts.

The next step in the analysis involves the Year 2035 analysis of the Prospect Avenue/Graves Avenue intersection AM/PM peak hour conditions. For Year 2035 conditions, we analyzed the peak hour volumes based on the intersection improvements presented on Figure 11. The results of the analysis are presented on Table 18.

Table 18 – Yea	r 2035 Inters	section Op	eratio	n Summai	ry		
		Ye	ear 2035	Conditions	5		
Intersection	Traffic	AM P	eak	PM P	eak	Project	
	Control	Delay sec/veh	LOS	Delay sec/veh LOS		Sign.	
Graves Ave. at Prospect Ave.	Signalized	<u>29.3</u>	<u>C</u>	<u>31.0</u>	<u>C</u>	<u>No</u>	
Delay is measured in seconds per vehi (with HCS value) Sign = Significant, Second per Vehicle. (b) Based on t presented on Figure 11.	OWSC = One	way stop co	ontrol, D	NE = Does	Not Exist	, sec/veh =	

Review of Table 18 shows that the addition of project traffic to the Prospect Avenue and Graves Avenue intersection will operate at LOS C in the AM and PM peak hour conditions for Year 2035 Conditions including the additional project traffic. Therefore, the project is not considered to have a significant direct impact on <u>the Graves Avenue/</u><u>Prospect Avenue intersection</u>.

In summary Graves Avenue south of Prospect Avenue will operate at LOS D based on the City of Santee 15,000 capacity of a 2-Lane Collector Street with a continuous left turn lane as identified on the City of Santee Mobility Element.

SECTION VI - PROJECT ACCESS & INTERNAL CIRCULATION

PROJECT ACCESS

The project proposes the development of a 4,467 square foot Convenience Market and an 1,800 square foot Coffee Shop with Drive Thru. The Project site is located on the northwest corner of the Graves Avenue/ Prospect Avenue intersection in the City of Santee.

Development of the project includes the improvement of the project frontage along Graves Avenue in accordance with the City of Santee requirements and the previously approved improvements for the Prospect Avenue/Graves Avenue intersection. Figure 11 presents these improvements. The improvements need to include the installation of a stop sign for traffic control at the project's driveway entering Graves Avenue.

ON-CITE CIRCULATION

Traffic enters the project site from a single access point near the north end of the project site. The access provides direct access to the drive-thru around the buildings and enters the parking lot adjacent to Graves Avenue.

The proposed circulation plan provides good circulation for customers parking and entering the two (2) facilities. It also reduces conflict between the drive thru uses and the customers parking. The Convenience Market and Coffee Shop with drive thru is designed to accommodate a minimum of nine (9) vehicles from the order pick up window with stacking for an additional three (3) vehicles before they reach the parking aisle at the project's driveway.

Based on our experience and reviews of other projects with Drive Thru Facilities the proposed Drive thru stacking was found satisfactory. In summary the proposed on-site circulation of the Convenience Market and Coffee Shop with Drive thru stacking was found satisfactory.

SECTION VII - MITIGATION

Graves Avenue north and south of Prospect Avenue will operate at LOS "F" for Opening Day 2018 Plus Project Conditions based on the daily capacity of the roadways. However, a review of the Opening Day 2018 Plus Project intersection Analysis shown on Table 12 shows each intersection will operate at LOS "D" or better. To further support the roadway will also operate at an acceptable condition, we prepared Figure 11 depicting the recommended striping and channelization that can be provided on Graves Avenue from north of the project to south of Prospect Avenue. The proposed improvements previously presented on Figure 11 include the previously approved Lantern Crest Improvements. The channelization shown on Figure 11 also depicts the recommended striping and channelization from the projects northern Graves Avenue boundary to 840 feet south of Prospect Avenue. The addition of the two-way left turn lane allows left turning vehicles to move out of the through lanes of traffic and increases the traffic flow and capacity of the roadway.

To further support the conclusion that the proposed improvements will improve the level of service on Graves Avenue south of Prospect Avenue, we used the Synchro Software to determine the AM and PM level of service for northbound and southbound on Graves Avenue between Prospect Avenue and Pepper Drive. The Synchro Software allows the analysis of the traffic volumes entering and exiting Graves Avenue to determine the level of service. Table 19 presents the results of the analysis. Review of Table 19 shows in the AM peak northbound traffic on Graves Avenue operates at LOS "C" and southbound traffic on Graves Avenue operates at LOS "B". In the afternoon PM peak Graves Avenue operates at LOS "C" for the northbound traffic flow towards Prospect Avenue and operates at LOS "B" for the southbound traffic flow towards Pepper Drive.

The arterial analysis process involves use of the Synchro 8 software to analysis the level of service of Graves Avenue roadways between Prospect Avenue and Pepper Street. Based on the traffic control at each intersection with the proposed improvements to the Prospect Avenue/Graves Avenue intersection. Review of Table 19 shows the speed, running time, travel time and arterial speeds of the roadway and calculates the level of service of the roadway. The arterial analysis has analyzed the traffic volumes on Graves Avenue north of the project site to Pepper Drive. It evaluates the volumes on the roadway for each intersection controls to show the acceptable intersection Level of Service benefits the roadway segments. Whereas, the Daily capacity analysis does not consider the peak hour Level of Service.

To further support the adequacy of Graves Avenue south of Prospect Avenue the Horizon Year 2035 Traffic Forecasts were analyzed and found to operate at LOS D. This conclusion is supported by the Year 2035 Santee Mobility Element traffic forecasts for the area and interchange improvements at SR-67/Bradley Avenue that will reduce demands on Graves Avenue and Prospect Avenue.

In summary the arterial Level of Service supports the conclusion that Graves Avenue will operate at LOS "C" or better and will not require mitigation.

			– Existing l ospect Ave Arterial	•	kimately to		ive	
Arterial Level o	f Service: N	Northbou	ind Graves	Ave – AM	Peak			
Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time(s)	Dist (mi)	Arterial Speed	Arterial LOS
Pepper Dr	III	35	14.2	0.0	14.2	0.11	26.7	В
Prospect Ave	III	35	49.8	22.2	72.0	0.41	20.7	С
Total	III		64.0	22.2	86.2	0.52	21.7	С
Arterial Level o	f Service: S	Southbou	ind Graves	Ave – AM	Peak			
Cross Street	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time(s)	(mi)	Speed	LOS
Pepper Dr	III	35	48.6	45.0	93.6	0.41	15.6	D
Prospect Ave	III	35	49.8	0.0	49.8	0.41	30.0	В
Total	III		98.4	45.0	143.4	0.82	20.6	С
Arterial Level o	f Service: N	Northbou	ind Graves	Ave – PM	Peak			
Cross Street	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time(s)	(mi)	Speed	LOS
Pepper Dr	III	35	14.2	7.7	21.9	0.11	17.3	D
Prospect Ave	III	35	49.8	21.2	71.0	0.41	21.0	С
Total	III		64.0	28.9	92.9	0.52	20.1	С
Arterial Level o	f Service: S	Southbou	ind Graves	Ave – PM	Peak			
Cross Street	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time(s)	(mi)	Speed	LOS
Pepper Dr	III	35	48.6	37.7	86.3	0.41	16.9	D
Prospect Ave	III	35	49.8	8.4	58.	0.41	25.6	В
Total	III		98.4	46.1	144.5	0.82	20.4	С

SECTION VIII – SUMMARY AND SIGNIFICANCE OF IMPACTS

SUMMARY

- The project proposes the development of a 4,467 square foot Convenience Market and an 1,800 square foot Coffee Shop with Drive Thru. The Project site is located on the northwest corner of the Graves Avenue/ Prospect Avenue intersection in the City of Santee.
- The proposed project is estimated to 4,519 average weekday daily trips with 302 trips being generated during the morning peak hour and 453 trips being generated during the afternoon peak hour. Further review of Table 8 shows that the total cumulative trips with pass-by reductions the site will generate 3,615 Daily, 453 AM peak hour trips and 150 PM peak hour trips to be added to the surrounding roadways in the study area.
- Analysis of existing, existing plus project, 2018 Opening Day and 2018 Opening Day plus project conditions found the roadways analyzed would operate at LOS "C" or better except for Graves Avenue, which will operate at LOS "F" north and south of Prospect Avenue with additional of project traffic.
- Analysis of Opening Day 2018 plus project conditions at the three (3) study intersections found each intersection to operate at a LOS "C" or better with the addition of project traffic.
- Opening Day 2018 and Opening Day 2018 plus Project analysis of northbound SR-67 off-ramp at Prospect Avenue was prepared and it was concluded the vehicle queues would be accommodated and would not create an impact to the Caltrans SR-67 Northbound off-ramp and or the Eastbound Prospect Avenue at Graves Avenue.
- Analysis of the Year 2035 traffic volumes found the Prospect Avenue/Graves Avenue intersection to operate at LOS "C" with the recommended channelization improvements shown on Figure 11 and Graves Avenue north and south of Prospect Avenue improve for LOS "F" to LOS "E".
- On-site Circulation and vehicle stacking for the drive thru window was reviewed and found to be satisfactory.
- Improve the projects Graves Avenue frontage, to be consistent with the City of Santee requirements and provide the Graves Avenue/Prospect Avenue intersection improvements shown on the site plan and Figure 11 including the addition of the continuous Two-Way Left Turn Lane on Graves Avenue to increase the capacity of the Graves Avenue to 15,000 daily vehicles
- Stop sign control is recommended to be installed at the project's driveway entering Graves Avenue.
- Figure 11 was prepared to identify Prospect Avenue and Graves Avenue improvements to be constructed by the project. Graves Avenue improvements will mitigate the projects impacts. Constructions of the improvements shown on Figure 11 will adequally mitigate the projects impacts.
- The project will be required to obtain an Encroachment Permit from Caltrans to construct the Graves Avenue roadway and the Prospect Avenue/Graves Avenue traffic signal improvements presented in Appendix D.
- Arterial Level of Service Analysis for the AM and PM peak hour conditions was prepared and the results are presented on Table 15. Table 15 shows Graves Avenue will operate at LOS "C" or better in the AM and PM peak hours. Based on the arterial level of service analysis Northbound Graves Avenue will operate at LOS "C" in the AM and PM peak hours and Southbound Graves Avenue will operate at LOS "B" in the AM and PM peak hours. Therefore, mitigation of the daily level of service identified on Table 15 is not required.

SIGNIFICANCE OF IMPACTS

- Analysis of the intersections within the study area found each intersection to operate at LOS "D" or better. The analysis also concluded the project does not create any significant direct intersection impacts.
- Analysis of the roadway segments within the study area found each roadway to operate at LOS "D" or better except for Graves Avenue north and south of Prospect Avenue. However, analysis of the Year 2035 Conditions on Graves Avenue based on the City of Santee Mobility Element <u>and restriping of Graves Avenue from north and south of the projects access to approximately 840 feet south of Prospect Avenue found Graves would operate at an acceptable LOS D, improve the LOS F to a LOE E</u>
- The analysis of project vehicle queues on Prospect Avenue at the SR-67 Northbound off-ramp found the project would create a vehicle queuing impact at the SR-67 Northbound off-ramp.

APPENDIX A

Traffic Counts

Prepared by NDS/ATD

Magnolia Ave N/O Prospect Ave

Day: Thursday Date: 3/2/2017

-						10			1
Contraction of the	DAILY TOTALS	NB 17,031	5B 11,435	EB	_	0 0			Total 28,466
AM Perio	d NB SB E	B WB	TOTAL	PM Period	I NB	SB	EB	WB	TOTAL
00:00	34 30		64	12:00	261	180			441
00:15	36 23		59	12:15	247	195			-840
00:30	25 22		47	12:30	249	184			493 414 177
00:45	21 116 13 88		34 204	12:45	248 100		725	-	414 177
01:00	17 17		34 33 23 36 104	13:00	234	158			392
01:15	14 17		31	13:15	266	149			435
01:30	11 12		78	13:30	268	178			446
01:45	7 49 9 55		36 104	13:45	293 106	210	664		472 172
02:00	12 13 8 9		20	14:15	236	192			678
02:30	10 7		ii ii	14:30	308	205			428 539 515 199
02:45	18 48 11 40		29 88	14:45	296 110		826		515 193
03:00	14 9			15:00	309	232	010		541
03:15	13 10		23 23 34 35 112	15:15	283	203			465
03:30	28 6		34	15:30	317	237			524 210
03:45	25 80 7 32			15:45	315 122		881		524 210
04:00	25 7		32	16:00	330	224	17		554
04:15	23 6		29	16:15	360	248			608 534
04:30	36 22		58 64 210	16:30	336	218			
04:45	66 150 25 60			16:45	327 135		915		592 226
05:00	75 18 99 27		98 125	17:00 17:15	358	240 233			556
05:15	143 34		177	17:30	292	248			502
05:45	185 502 54 133		289 635	17:45	307 128		968		540 554 225
06:00	167 54		221	18:00	267	212			478
06:15	170 76		246	18:15	250	190			440
06:30	235 73		308	18:30	221	189			410
06:45	267 839 108 311		375 1150	18:45	196 934		756		
07:00	270 107		377 496	19:00	178	173			351
07:15	325 171		496	19:15	167	135			302 277
07:30	322 154 383 1300 191 623		476	19:30 19:45	147 171 663	130 192	630		270
07:45	383 1300 191 623 370 222			20:00	171 005	163	030		363 1299
08:15	294 158		592	20:15	155	159			314
08:30	254 136		350	20:30	129	169			255
08:45	259 1177 108 624		350 367 1801	20:45	124 578		641		374 3229
09:00	244 106		350	21:00	118	137			255
09:15	226 122		348	21:15	119	107			225
09:30	189 120		309	21:30	95	90	100		255 225 1批 1消 最新
09:45	220 879 134 482			21:45	87 419		417		170 336
10:00	217 . 117 183 121		334 904	22:00 22:15	66 76	90 67			156
10:15 10:30	205 126		229	22:30	69	60			490
10:30	230 835 134 498		391 364 1393	22:45	63 274		76		129
11:00	252 134		386	23:00	68	52			120
11:15	230 148		378	23:15	40	36			120 76 82 84 372
11:30	234 148		8012 423 1569	23:30	40	52			\$2
11:45	250 966 173 603		The state of the second state of the	23:45	37 185		87		84 372
TOTALS	6941 3549		10490	TOTALS	10090		1915 ÷		17576
SPLIT%	66.2% 33.8%	1.5	86.9%	SPUTX	56,1%	- 40	1956	- and and	MEER .
-	DAILY TOTALS	NB	SB	EB	WB	C II			Total
	DAILY TOTALS	17,031	11,435	0	0	016	10 C	and the second	28,466
Peak Hour	07:15 07:15		07:15	PM Paak Hour	16:15		200'	1.1	18:15
Pit Welgense	1400 738		2158	PH Pt Volume	1381	. 9	68		2812
Hr Factor	0.914 0.891	×	0.903	Pk Hr Factor	0.959		376	1.0	0.951
9 Volume	2477 1247		3724	4-6 Volume	2639		83	- 1.5	4522
Pent Hour	07:15 .07:15		and the participant of the second	-6 Peak Hour	16:15		190	1 2 2	36:15
A COLORED	1400 738			the set of provide later was also				P-3	
Pit Volume	2000		2134 14	- 6 Pk Volume	1381	51	58	12.4.2	2312

Prepared by NDS/ATD

Prospect Ave W/O Magnolia Ave

Day: Thursday Date: 3/2/2017

	DAILY TOTALS	-	-		-		В	EB	WB							Total
	No. of Street,		-		0			4,509							-	9,232
AM Period	NB SB	_	В	W 5		-	TOTAL	PM Period	NB	58	EE		WB	-		OTA
00:00		3	4	2		5	A 100 March	12:15			76		77 83		109	1
00:30		-		3			100	12:30			80		65		1.00	
00:45		-			11	1 3	23		1.000		77		77	302	145	1
		ć		4			the second s	13:00			81	230	70	SUK	굽	
01:00		č		1				13:15			64				101	
01:15						6	2	13:30					67			
01:30		2		6			() () () () () () () () () ()	and the second se	1		65		80		145	100
01:45		0			13	-	15				81	291	85	302		_5
02:00		0		3		12		14:00			74		83		城城	
02:15		1		1		1 2		14:15			90		78			
02:30		3		1		18.2	1.1	14:30			102		66		168	
02:45	the state of the s	3		2	7	5					95	361	68	295	163	- 4
03:00		2		2		100	1.1.1	15:00			105		88		調査書	
03:15		3		2		5		15:15			112		82		194	
03:30		1		4		- 5	1000	15:30			124		82		226	
03:45		1	7	1	9	2	16				118	459	87	339	205	7
04:00		2		3	-	5	-	16:00			113		81	-	12.5	
04:15		2		7		9		16:15			127		88		255	
04:30		з		3		6		16:30			114		71		105 185	
D4:45		3	10	13	26	16	36	16:45			99	453	82	322	265	7
05:00	100	7		17		20		17:00			139	1.000	54		263	1.0
05:15		17	0	23		- 40	Ē.	17:15			104		68		172	
05:30		8		38		46		17:30			100		76		176	
05:45		9	41	49	127	58	168				116	459	73	271	189	73
06:00		20		55		75		18:00			103	100	67		DO	
06:15		31		90		121	100	18:15			103		41		344	
06:30		34		94		128		18:30			67		37		104	
06:45		33	118	160	399	193	517				62	335	37	182	344 99	51
07:00		34	410	107	333	2.61		19:00			64	333	48	102		- 24
07:15		47		137		184	1000	19:15			50		33		122	
07:30		47		129		176		19:30			39		23		100	
07:45		48	176	163	536		732				44	197	43	147	新 新	34
08:00		60	210	114	200	174		20:00			49	4.31	31	241	80	-20
08:15		64		94		153		20:15			36		25		61	
		43		81		124		20:30			55		30			
08:30		55	222	76	365	124	567	20:45			29	169	14	100	1.22	36
08:45		41	444	70	303	111		21:00			24	109		100		_
09:00		52		79		131		21:15			23		17		41	
09:15		46						21:30			18		24		2	
09:30			100	66	202	132 134		21:45					4	~	22	
09:45		57	196	77 66	292	1	488	22:00			22	87	17	62	89	14
10:00		49				华山		22:15			18		11	100	22	
10:15		67		72		1					4		6	1.5	10	
10:30		65	-	68	-	733	in the	22:30 22:45			18		3	-	21	-
10:45		69	250	85	291	븠	541				8	48	13	33	-	83
11:00		81		76		357	1	23:00			9		5		M	
11:15		71		53		124		23:15			6		4		20	
11:30		69		82		缸	753.0	23:30			6		8	- L	14	
11:45		66	287	57	268	173	555	23:45			3	24	7	24	10	48
TOTALS			1328		2544	192	3672	TOTALS	1.1.1.1	2.52		M		2379		559
SPLITS			36,2%		63.8%	1.	39.8%	SPUTS			- R	前期	.3	2.8%	1	60.2
	The Case of Lands			NB	-	SB		EB	WB						Test	
	DAILY TOTALS		-	0	-	0		4,509	4,723						Tot 9,2	
			10:45		07:15		07:15	PM Penk Nour ···		-	-	1800		340	-	
Peak Hour		1	290		543	1.1	745	PM Pt Volume	10	1000	1	1590				調整
Hi: Volume			and a state of the second s			-	The Property lies	and the second	1.4		153	and some output to the second				and the second
Hr Fector			0,895	-	0.833	14-1-1-1	6.683	PkHrEactor	- project	and the second second	-	0.580				015
9 Volume		1.10	398		901		1299	4-5 Volume	a sea and	1217	1919	912	-		1	1
Peak Hour			00:00		07:15		07:25	4-5 Pesk Nour				16:15	1		- 20	abath
			222		543		745	4 - S Pk Volume		1	1.11	479		12	-	725
Pk Volume																

Prepared by NDS/ATD VOLUME

Magnolia Ave S/O Prospect Ave

Day: Thursday Date: 3/2/2017

	DAILY TO	TALS	5,222	6.007			3		Tota
				6,997	0				12,21
AM Perior			EB WB	TOTAL			SB	EB WB	TOTA
00:00		21		11 12 8	12:00	87	111		196
00:15		3		32	12:15	101	133		284
00:30		6		12 8	12:30	114	136		250 9
00:45		7 47		12 8		109 411			220 9
01:00		1		15 15 13	13:00	100	128		728 199
01:15		9		10	13:30	89	110 113		199
01:30		31		4 47		78 88 355			191 198 B
01:45	4 4			12	14:00	94	106 401		198 8
02:15	3			6	14:15	97	123		200
02:30	7			25	14:30	112	132		284
02:45	11 25 5	24		16. 49		113 416			244
03:00	6 7				15:00	110	118		1218
03:15	5 5			10	15:15	111	116		327
03:30	7 6			33	15:30	109	118		277
03:45	3 21 8			18 14 13 11 51		110 440	101 453		228 127 127 127 127 127 127 127 127 127 127
04:00	2 2			4	16:00	112	96		28
04:15	6 4				16:15	129	110		208 239
04:30	5 20)		10 25 43 43	16:30	112	122		234
04:45	6 19 37			13 12		100 453	110 438		234 210 85
05:00	12 19	0		31 56 56 89 232	17:00	147	111		28
05:15	22 34			56	17:15	110	116		288 256 192 224 90
05:30	15 41			56	17:30	94	98		192
05:45	27 76 62			89 232		96 447	128 453		22.8 90
06:00	26 62			88 105	18:00	90	92		162
06:15	28 77			205	18:15	81	80		362
06:30	32 83			215	18:30	66	73		139 150 G
06:45	43 129 101			144 452		73 310	77 322		150 62
07:00	41 95			1.86	19:00	53	60		128
07:15	33 112			145	19:15 19:30	58	57		115
07:30	49 117 60 183 145			165 205 652 220		50 44 205	59 91 267		100
07:45	71 149			1 200	20:00	60	101		135 47
08:15	52 119			171	20:15	57	92		151
08:30	59 99			152	20:30	53	94		347
08:45	60 242 87	454		158 147 695		63 233	77 364		140 597
09:00	62 85			147	21:00	44	80		124
09:15	57 103			260	21:15	43	65		506
09:30	55 96			151	21:30	28	40		
09:45	61 235 115	399		175 534	21:45	40 155	39 224		58 79 379
10:00	60 89			149	22:00	30	40		
10:15	58 83			141	22:15	27	34		70 51
10:30	74 91			165 177 532	22:30	26	32		58 57 245
10:45	78 270 99	362		177 532	22:45	22 105	35 141		57 245
11:00	90 94			284	23:00	27	41		68
11:15	84 116			200	23:15	16	23		39
11:30	92 106			198	23:30	10	35		68 39 45 57 209
11:45	92 358 100	416		192 774	23:45	26 79	31 130		the second se
TOTALS	1613	2774		4307	TOTALS	3609	4223	at a strange	7832
SPUTS	36.8%	63.2%	36. L	35.9%	SPUT%	46.1%	53.9%		61.1
	DAUNTOS	10	NB	SB	EB	WB	1.00	Contraction of the	Total
the second	DAILY TOTA	its .	5,222	6,997	0	0			12,219
M Peak Hour	11:45	07:30		21545	PM Peak Hour	16:15	12:15	The Constant of the local division of the lo	. skas
M Pic Volume	. 254	330		874	Part Pic Volume	-488	508		inis.
the Hr Factor	0.854	0.889	*	0.474	Pk Hr Fector	0.830	0.954	Service Caller	1.511
Statement of the local division of the local	425	923		- 1348	4-6 Volume	900	391		UM.
-9 Volume	425 871-15	0730.		07:30	4-6 Pesk Hour	16:15	26:30	1 1 2	and a second second second
9 Peak Hour	0440	William.		01.20		- Colora	20,00		34/35
9 Pk Volume	242	.590		761	4-5Pk Volume	488	459		941

Prepared by NDS/ATD VOLUME

Prospect Ave E/O Magnolia Ave

Day: Thursday Date: 3/2/2017

Date	e: 3/2/2017										Project	#: CA17	4050	5_004		
-	DAILY TOTALS			_	1B 0		B D	EB 9,062	WB 16,578		-					Tota 5,64
AM Period	NB SB	E	B	M	VB		TOTAL	PM Period	NB	SB	EB	3	w	6	T	OTA
00:00		2	3	3		14 M	100	12:00			113		23		349	
00:15		1		2		-		12:15			119		244		563	
00:30	1	2		2		1.5		12:30			139		192		331	1 3 20
00:45		1			5 90			1 12:45			121	492			303	1
01:00		1		1		1 X		13:00	1		134		229		短期	
01:15	1	9		1		23		13:15			122		231		353	
01:30		11		17		20	A	13:30			121		267		388	ţe.
01:45	1.72	8								_	136			2 1009	338	31
02:00		12		15		20		14:00			178		250		428	
02:15	1	8		16		24	y	14:15			176		239	1	415	÷ 4.
02:30		9		14		28	and an	14:30	· · · · · · · · · · · · · · · · · · ·		168		251	1	的加加	
02:45		5	34					14:45			190	712	255	995	ANS.	. 12
03:00		3		12	2	15	1000	15:00			218	1.000	271		489	1.50
03:15	1	2		12	2	3.0	3	15:15			178		259		437	
03:30		1		23	3	20	32	15:30			222		265	-	487	
03:45		2	8	22	69	15 10 20 24	71	15:45			215		280		495	-18
04:00		9	A	25		34		16:00			211		257		458	-
04:15		11		23		34	71 -	16:15			237		323		860	
04:30		12		36		48		16:30			208		275		483	
04:45		14				48 96	232	16:45			213		316			20
05:00		11		86		97		17:00			248		246		ding.	-
05:15		15		99		334	k	17:15			215		289		504	
05:30		12		169				17:30			252		268		539	
05:45		25		217		281	634				261	976	305			20
06:00		23		215		238	1	18:00		-	215	310	232		-	-
06:15		32		234		238	£	18:15			212		228		840	
06:30		36		289		375		18:30			195		212			
06:45		45	135		1113	335 420	1249				148	770	178	850	407	16
07:00		61		323		384		19:00			172		170	0.50	195	
07:15		72		418		490		19:15			133		150		312 313	
07:30		95		410		905		19:30			130		146		276	1.00
07:45		97	325	490		905 SAD	1966				139	574	173	639	311	121
08:00		131		410		1 BAL		20:00		-	116		139	035	255	1
08:15		104		324		428	1000	20:15			114		129		349	
08:30		63		276		355		20:30			126		102		228	
08:45		75	373	263	1273	541 439 38 439 38	1645	20:45			115	471	88	458	340	1025
09:00		77		217		284		21:00			91		100	-30	191	-
09:15		84		246		320		21:15			72		102		114	-1
09:30		65		205		271		21:30			69		73		142	
09:45		80	306	245	914	如四次	1210				77	309	80	355	117	-
10:00		77	500	210	244	200		22:00		-	76	303	56	333	132	
10:15		100		183		田田	1 11	22:15			43		61		104	
10:15		96		203		200		22:30			48		42			
10:30		102	375	232	828	299 334	1203	22:45			35	202	60	219	50 55	per-
11:00		106	212	214	510	320		23:00			31	2.04	58	415		42
11:15		110		214		320		23:15			35		34		88	
11:15		94		220		314		23:30			26		46		72	
11:45		131	441	218	866	314	1307	23:45			30	122	29	167	72 59	289
TOTALS		1.51	2219		7638		5857	TOTALS				6843	13	6940	-	1578
SPUTS			22.5%		77.5%	1	38.4%		· · · · · ·	-	-	adjans		56.6%		51.5
Mail &	de la companya de la		di un	•	11.57	10-20	0011/0		in the second		- inter	CHUNCH		Seros	-	PLLO
	DAILY TOTALS			NB		SB	-	EB	WB						Tot	_
	Cantes as and		-	0		0		9,052	16,578			-	-		25,6	540
Pank Hour			11145	- 1	07:15	-	07:15	Ped Peak Hour		1	A 10	17:00	-	16:00		17:0
Pik Volume			501		1,728		2123	PM Pk Volume		12-57	1 A	\$76	1	1171	7 - 7	2084
and the second se			0.903		0.882	·	0.904	Pik Hir Factor		1. 182	1.11	0.935	1.5	0.905		8.920
R Fir Factor							100000	a Patching			_			other Designation of the local division of t	of the local division in which the local division in the local div	1124
Cardon and C			696		2914		3612	4+0 X00085				1845		2173		
9 Volume	and the second second				the second second		and the state of the	4-6 Volume		-		I general and		2275	1	and the second
Cardon and C		80	696 07:50 427		2914 07:15 1728		07:15 2123	4 - 6 Pask Hour 4 - 5 Pk Volume			- 7	17:00		2275 16:00 1171		17:00

Prepared by NDS/ATD

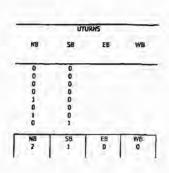
Graves Ave S/O Prospect Ave

Day: Thursday Date: 3/2/2017

-	DAILY TOTAL	s =		8	EB				and the second	Tota
	CARLED GCADAC			64	0	0				14,10
AM Perio	and the second sec	EB		TOTAL	PM Period		SB	EB	WB	TOTA
00:00	9 32		4 X 3 X		12:00	91	95			185 182 207 190 7
00:15	7 20		13	12 14	12:15	91	91			142
00:30	9 25		2	J	12:30	85	122	-		207
00:45	6 31 16	93				93 360		105	-	190 7
01:00	6 18		2		13:00	95	109			2000 174 212 212 212 8
01:15	4 12		24		13:15 13:30	77	97			174
01:30	4 10	-	3	72	13:45	97 105 374	115	37		112
01:45		52			14:00	105 374 80	116 4	3/		721 8
02:00 02:15	2 13 6 15		12	2.0	14:15	93	145			132 138 211 271
02:30	3 9		13	1. 1.	14:30	97	136			230
02:50		42	12 30	58		102 372		03		272 9
03:00	3 7	42	10		15:00	102 3/2	178	05		500
03:15	8 5		10	1000	15:15	114	164			280 278
03:30	8 12		19 20 22		15:30	106	186			300
03:45		30	22	65	15:45	116 438		19		292 307 11
04:00	13 2		195	and a	16:00	108	183			291
04:15	15 9		15 24	r	16:15	126	200			291 \$16
04:30	14 6		20		16:30	101	186			287
04:45		21	20	92	16:45	94 429		52		287 277 19
05:00	40 6		46		17:00	105	209			114 289
05:15	44 10		54	1.20	17:15	101	168			269
05:30	B4 9		33		17:30	111	207			318
05:45	85 253 12 3	37	93 97	290	17:45	115 432	203 78	37		318 318 121
06:00	92 19		111 119 154 174	1.000	18:00	88	183			271
06:15	86 33		119	ĵ.,	18:15	88	150			238
06:30	122 32		154	- and	18:30	88	139			238 227 165 50
06:45		20	174	. 558	18:45	55 319	111 58	3		165 50
07:00	107 52		159		19:00	65	125			190
07:15	140 69		200 238	6	19:15	38	104			142 155 157 65
07:30	152 B6		8258	-	19:30	61	105			155
07:45		05	328	885	19:45	61 225 33	106 44 96	0		167 68
08:00	196 132		240	21	20:15	32	103			1729 135
08:15	135 105		500	1000	20:30	33	96			150
08:30	143 57 109 583 59 35	53	240 200 168	389	20:45	25 123	89 38			129 114 540
08:45	96 65	5	251	300	21:00	31	76	1		110 30
09:15	114 69		3.63	Contrast,	21:15	39	56			
09:30	104 54		158	and and	21:30	32	48			107 85 80 90
09:45	98 412 68 25	6	365	668	21:45	30 132	60 24	0		90 377
10:00	85 56	a	161	1121	22:00	21	65			65
10:15	68 85		161	11281	22:15	24	41			65
10:30	73 77		150	1	22:30	21	46			66 55 67 38) 28)
10:45	87 313 55 27	3	242	586	22:45	20 86	43 19	i		5 281
11:00	89 86		175	a line in	23:00	20	45			65
11:15	84 93		177	-	23:15	24	49			73
11:30	68 80		148	123	23:30	15	41			65 73 56 48 242
11:45	91 332 102 36	1	193	693	23:45	7 66	41 176			48 242
TOTALS	3084 194	5		5027	TOTALS	3355.	572	1 - 400	- 27	9077
SPUTS	61.3% 38.7	756	15	35.6%	SPUTS	37.0%	'sı	*	1.1.1	EA.A
		TNE	3 SB	1	EB	WB			-	Total
210-100	DAILY TOTALS	<u> </u>		0	0	.0	12			Total 14,104
				10141						_
M Pesk Hour	07:15 07:3			07:\$0	PM Peak Hour	15:20	17:0			17:00
I Pt Volame	669 #21			1085	PSA Pk Volume	456	787			1215
the Her Fection	· 0.853 0.79			0.877	Pit Hr Factor	0.905	0.94	and the second se		4.954
- 9 Volume	1153 1558			1121	4-6 Volume	861	1539		Trade	2400
9 Pank Noor	07:15 07:3	0			4 - 6 Pesk Hour	17:00	17:9	3	1.000	17:00
Ph Volume	569 421			1085	4 - 6 Pk Volume	492	767			1219

Prepared by NDS/ATD

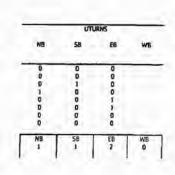
Graves Ave N/O Prospect Ave


Day: Thursday Date: 3/2/2017

City: Santee Project #: CA17_4056_007

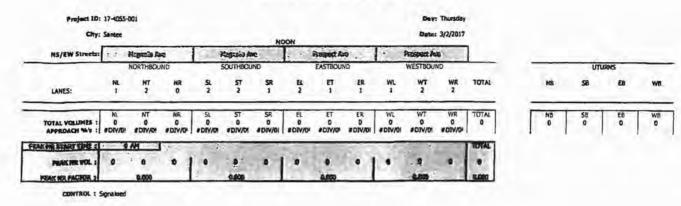
1	1. AND AND A	and the	NB	SB	1 EB	WB	Contraction of the local division of the loc		Tota
-	DAILY TO	DTALS	3,308	3,308	0		-		6,616
AM Period	NB	SB EB	WB	TOTAL	PM Period	NB	SB EB	WB	ΤΟΤΑ
00:00	9	5		14	12:00	44	45		
00:15	7	1		8	12:15	32	39	18	197191 I
00:30	8	2		10 3 35	12:30	53	37		ED .
00:45	1 25	2 10		3 35		38 167	33 154		a s
01:00	3	2		5	13:00	42	38	1	50
01:15	4	3		7	13:15	45	48		19 14 11
01:30	3	4		.7	13:30	39	50	0	9
01:45	2 12	2 11		4 29		54 180	60 206	3	14 B
02:00	5	1		- 6	14:00	48	57	8	
02:15		2		18	14:15	58	36	8	<u>H</u>
02:30		1		2	14:30	77	51	8	28
02:45		1 5		7 28		68 251	54 198		22 -4
03:00		2		9.5	15:00 15:15	76	57	5	10 10
03:15	1	4			15:15	68 65	42	5	
03:30	3 6 1	2 22		7 28 28		73 282	46 44 189		i I s
03:45		2 22			16:00	70 70	44 189		12 5
04:00		7		2	16:15	72	62		20
04:30		2			16:30	58	45		
04:45		5 46		14 27 52		62 262	51 204	1.	
05:00		6		38	17:00	85	52	55	0
05:15		9		38 20	17:15	79	56	19	15
05:30	9 3			45	17:30	107	49		15
05:45	10 22 3			48 131	17:45	88 359	56 213	1	H 57
06:00	13 4			61	18:00	86	46		2
06:15	6 5			67	18:15	91	35	191	5
06:30	10 6			76 86 285	18:30	93	47		0
06:45	11 40 7			85 285	18:45		34 162		4
07:00	18 9			115	19:00	66	32		
07:15	21 11			123	19:15		27	-8	1
07:30	29 92			121	19:30		25	1	
07:45	33 101 10			185 504	19:45	52 226	20 104		984
08:00	45 90			185	20:00 20:15		20		1500
08:15	41 59 32 48			200	20:15		20		-
08:30 08:45	32 48 36 154 57			30 53 406	20:45		23 84		380
09:00	25 50			75	21:00		28		1.10
09:00	25 43			61	21:15		22		75-
09:15	31 47			75 68 78 71 292	21:30		18		1- and
09:45	24 105 47			71 292	21:45		13 81		220
10:00	27 38				22:00		10	10	C
10:15	35 36			65 71	22:15		15		ř=
10:30	31 43			74	22:30		12		
10:45	35 128 45				22:45		9 46	1000	197
11:00	31 37			68	23:00		11	122	
11:15	31 39			70 58	23:15		13	438	41.0
11:30	29 39			58	23:30		7	a reference	- The second
11:45	43 134 46			89 295	23:45		1 52		-
TOTALS	. 756	1615		2371	TOTALS	2552	1693	and the second second	- 2000
SPUTN	31.9%	. 68.1%	1	35.8%	SPLIT %	60.2%	39,5%	1	61.8
	and and the state	-	NB	58	EB	WB			fota!
-	DAILY TOT	ALS	3,308	3,308	0	0			616
A Peak Hour	31:45	07:00		07:15	PM Peak Hour	17:30	13:15		17:00
	172	403.		524	PM Pk Volume	872	225		572
A Pic Volume	0.811	6.900		0.970	Pik Hir Factor	0.869	0.538		0.911
k Mr Anctor	255	- 657		912	4-6 Volume	621	417	and the state of the	1034
-9 Volume		1.1.2 F. 1.		07:15	4-6 Peak Hour	17:00	17:00	and the second second	
9 Peak Hour	08400	107:00			4 - 6 Pk Volume	359	248	7	17:00
	154	403		524	4 - D PK VOUUDA	359	223		572
9 Pk Volume & Hr Factor	0.856	0.900		0.970	Pk Hr Factor	0.839	0.351	5	0.917

Intersection Turning Movement Prepared by: National Data & Surveying Services


City:	Santee				_		M	-		1.1.1.	Data:	3/2/2017	
NS/EW Streets:	(*) (topolo An	9		Necrosia An	C.		Romat Au	a .	1	huspect #		
	7	VORTHBOU	ND	1	SOUTHBOU	ND		EASTBOUN	D		WESTBOUN	D	-
	M	M	NR	s	51 2	SR	EL 2	ET	ER	WL	WT 2	WR	TOT
LANES:		2	0		1	1	2			1			
7:00 AM	5	27	+	43	50	19	13	13	13	20	77	227	511
7:15 AM	2	36 31	4	53	84 77	26 21	14	16 24	10	25	115	278	665
7:30 AM	3	31	7	62	77	21	18	24	9	27	107	269	655
7:45 AM	5	55	8	n	92	25	11	17 27	13	-13	127	327	795
6:00 AM	10	45	10	95	69	26	25	27	11	-41	80	287	746
8:15 AM	8	44	6	78	73	17	22	19	14	33	65	228	607
8:30 AN	11	42	5	48	64	18	17	11	16	25	59	20)	507
8:45 AM	7	48	7	48	55	11	13	17	19	17	54	193	489
	NL	NT	NR T	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOT
TOTAL VOLUMES : APPROACH %'s :	51 11.86%	328 76.28%	51 11.86%	499 39.98%	564 46.79%	165 13.22%	133 34.82%	144 37.70%	105 27.49%	221 7.58%	684 23.46%	2010 68.95%	497.
	151	N I	1		-	100	1	1 A.	26.7	3-	- 10	1	. 1010
PERSON WOL	20	397	21	382	312	300	a:		. 1	-	-	1161	201
FRAN DE PACIOR I	-	0.794	100		0.652	1000		9.774	1 - 1		0.961	1	000

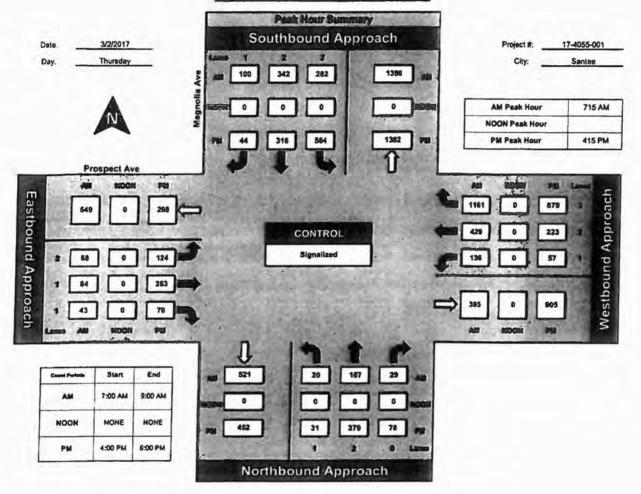
CONTROL : Signalized

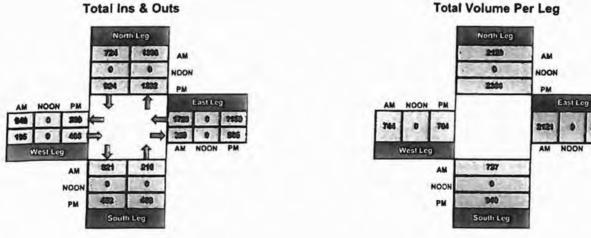
Intersection Turning Movement Prepared by: National Data & Surveying Services


Projact 10: 17-4055-001 Day: Thursday City: Sontee Outa: 3/2/2017 PM Phonescolt Assa - Magandi Alia . · Magana Ave NS/EW Streets: Prespect Are NORTHBOUND SOUTHBOUND WESTBOUND EASTBOUND 1 WT 2 TOTAL ET 1 ER 1 WR NR. 2 ST 2 SR J 8 1 NI J LANES: 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 15 17 28 15 18 24 27 24 143 144 128 132 160 131 171 156 96 99 88 71 121 81 62 68 70 76 84 74 82 81 77 81 31 28 35 21 40 36 25 23 18 16 21 20 22 11 8 19 12 11 17 15 14 17 15 25 53 73 55 56 37 55 68 195 239 211 237 192 219 195 225 705 803 726 738 770 726 709 709 772 26348544 16 19 11 9 5 9 11 9 52 77 49 66 71 58 57 78 NL 46 5.11% NT 686 76-22% NR 168 18.67% S. 1165 61.94% 5T 625 33.23% 5R 91 4.84% El 240 27.18% ET 506 57.53% ER 135 15.29% WL 126 5.57% WT 445 19.52% WR 1713 74.97% TOTAL 5949 TOTAL VOLUMES : PERCHIN STREET THE ST 相辨 ANAL PEAK HIR HOL 1 379 . 3837 31 28 554 326 41 -20 1 T 28 -PEAR INCOME 0,630 2.9% 01 842 8.946

CONTROL : Signalized

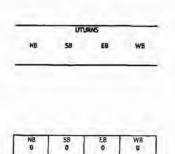
Intersection Turning Movement


Prepared by: National Data & Surveying Services


ITM Peak Hour Summary ned has

National Data & Surveying Services

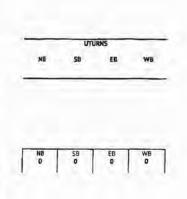
Magnolia Ave and Prospect Ave , Santee



.

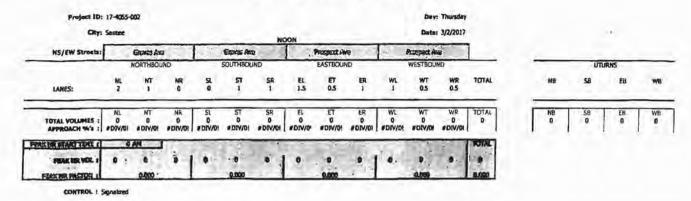
NOON

Intersection Turning Movement Prepared by: National Data & Surveying Services


Project 10: City:	17-4055-0 Santee	02					м					Thursday 3/2/2017	
NS/EW Streets:		GENES AND		(r. 1	Grans An			Tolacat A	ia i	1	Antipact Fac		1
	,	ORTHBOU			SOUTHBOU	ND		EASTBOUN	ID .		WESTBOUN	D	-
LANES:	NL 7	NT I	MR	8 0	डा ।	SR 1	B. 15	ET 0.5	ER 1	WL 1	WT 0.5	WR 0.5	TOTA
7:00 AM	99	3	0	0	. 8	68	18	2	49	0	1	0	268
7:15 AM	137	5	0	0	9	101	13	2	54	0	0	0	321
7:30 AM	150	3	1	0	11	91	29	4	76 78	0	0	0	365
7:45 AM	175	3	1	0	17	95	31	5		0	3	0	408
E:00 AM	168	10	1	0	26	68	33	2	108	0	2	0	438
8:15 AM	119	15	1.0	0	17	57	31	3	87	a	2	0	332
5:30 AM	126	12	3	0	7	42	22	5	51	3	1	0	272
8:45 AM	107	3	1	0	8	55	32	•	51	1	2	0	262
ALC: NO ALC: NO ALC: N	NL	NT	NR	SL	ST	SR	EL	ET	FR	WL	WT	WR	TOTA
APPROACH % 1	1101 94.67%	54 4.69%	0.69%	0.00%	102 14.47%	597 85.53%	209 26.46%	27 3.42%	554 70.13%	26.67%	11 73.33%	0.00%	2666
KAR BARTAN	187	M I		2.60	- 10	247		27	The second	1	1	-C.	TOTA
-	632	31	+1	.0	71	mi	335	- 24	30 1	Ø -	1		398
PEAK IND PACTOR 2		8.838		14.5	4.63	· · · · ·		IL IST	12.1	3	0.000	40	-

CONTROL : Signalized

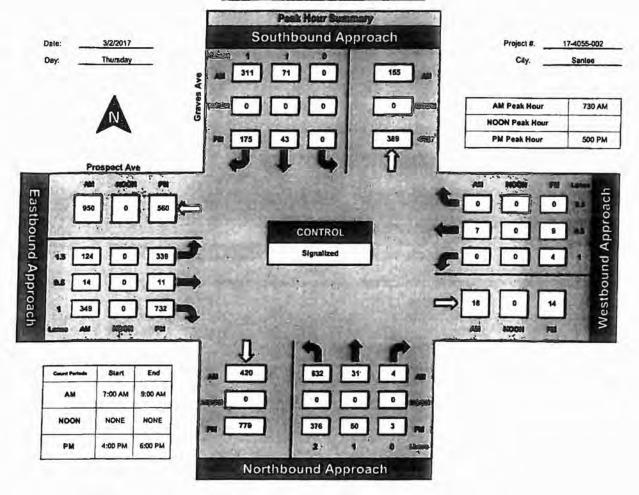
Intersection Turning Movement Present by: National Data & Surveying Services


Project ID: City:	17-4055-D Sances	02									1.25	Thursday 3/2/2017	
NS/EW Streets:	1	Granas Jace		-	COURSE AND		H I	Thepat An	. 1	0	hosped has	a	1
		ORTHBOUI			SOUTHBOU	ND		EASTBOUN	D		WESTBOUN	D	
LANES.	ML 2	N7 1	NR	84	डा 1	SR 1	EL 1.5	ET 0.5	ER 1	WL J	WT 0.5	WR 0.5	TOTA
4:00 PM	104	8	0	0	3	42	62	2	177	1	1	0	401
4:15 PM	111	10	1	0	11	54	59		194	0	6	0	460
4:30 PM	93	10	2	D	9	41	49	2	172	1	5	0	384
4:45 PM	90	4	0	0	10 12	41	63	1	177	0	2	0	391
5:00 PM	82	10	2	0	12	37	79	1	386	4	3	0	418
5:15 PM	92	18	0	0	10	49 39	72	4	164	0	1	0	410
5:30 PM	97	11	1	0	9	39	95	5	188	0		0	449
5:45 PM	105	31	0	0	12	50	93		192	0	- 1	0	465
	NL	NT	MR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTA
TOTAL VOLUMES : APPROACH %'Y 1	774 89 79%	82 9.51%	6 0.70%5	0.00%	78 18.01%	355 81.99%	582 28.33%	20 0.97%	1452 70.69%	6 20,69%	23 79.31%	0.00%	337
ZAK HR STAND TIME 2]	190	* T				1.7	17 1	1.00			-	-	TORN
PERK IN VOL'S	376	æ	3 1		-13	15	339	Ш.,	m				1742
PERIC ALL PARTICIPAL 3		0.925			0.879			1.00	1	125	0.464	5 - 1	0.507

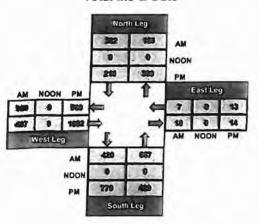
CONTROL : Signalized

Intersection Turning Movement

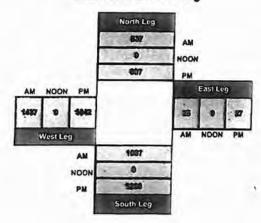
Prepared by: National Data & Surveying Services

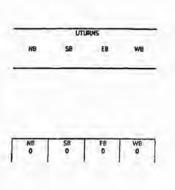

ł

A-13


ITM Peak Hour Summary

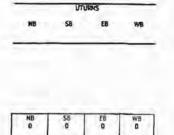
National Data & Surveying Services


Graves Ave and Prospect Ave , Santee



Total Volume Per Leg

Intersection Turning Movement Prepared by: National Data & Surveying Services


Project ID: Citys	17-4055-0 Santee	03					м					Thursday 3/2/2017	
NS/EW Streets:	\$14		Barp.	SR	-67 KB OR			Pipipiece An	. 1	1	Propert An	1.00	1
	N	ORTHBOU	CIV		SOUTHBOI	UND		EASTBOUN	D		WESTBOUN	D	-
LANES:	HL 2	NT Q	NR J	51 0	51 0	58. 0	EL O	ЕТ 2	ER D	WL D	WT Z	WR 0	TOTA
7:00 AM	128	0	6	0	0	0	0	62	0	0	194	0	390
7:15 AM	183	0	6	0	0	0	0	65	0	0	235	0	489
7:30 AM	178	0	11	0	D	0	0	97	0	0	235	0	521
7:45 AM	205	0	13	0	D	0	0	100	0	0	281	0	600
8:00 AM	164	0	13 19	0	0	0	0	130	0	0	247	0	554 457
8:15 AM	157	٥	19	0	0	0	0	105	D	0	171	0	452
8:30 AM	93	0	12	0	0	0	0	63	D	D	176	0	344
8:45 AM	101	٥	12	0	D	0	0	75	0	0	164	0	352
	NL	NT	NR	SL	57	SR	EL	ET	ER	WI	WT	WR	TOTA
APPRIMON %'s :	1210 92.93%	0.00%	92 7.07%	#DIV/01	NDIV/O!	#DEV/O	0	697 100.00%	0.00%	0.00%	1703	0.00%	3702
SALAR STATE OF ST	#\$ A	I N		197	-		10	in the	4	150		× 1117	10.00
PEAK PIR MAL 2	711 .		0 1	0		. 1		392	0.1		-		2594
PEAK HE MICHOR		8.891	1	122.	0.000	1. 24		0.751		5.2%			8.580

CONTROL : Signaland

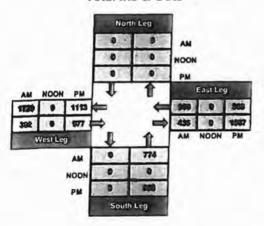
Intersection Turning Movement Propund by: National Data & Surveying Services

Project ID: 17-4055-003 Day: Thursday City: Santes Date: 3/2/2017 NS/EW Streets: SR 67 10 GR Reap Prespect Acro. Prospect Ave . NORTHBOUND EASTBOUND SOUTHBOUND WESTBOUND TOTAL NR 1 ET 2 ER WT 2 WR NL 2 NT 0 8 51 SR EL O WL LANES: 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 117 158 139 171 136 136 142 134 21 33 16 24 25 26 35 24 214 234 212 213 243 243 249 249 265 148 164 144 137 115 148 139 162 500 589 511 545 520 530 565 565 565 0 000000000 000000000 000000000 000000000 000000000 00000000 00000000 0 00000 NT 0 0,00% NR SL ST 204 0 0 15.26% #DIV/04 #DIV/01 SR 0 #OIV/04 61 0 0.00% ET 1850 100.00% ER 0 0.00% WL WT 0 1158 0.00% 100.00% WR 0 0.00% 10TAL 1345 TOTAL VOLUMES : NL APPROACH %'s : 84.74% FURTHER STATE THE I AND PH • . . 0 PEAK IN SOL 200.]. à 555 2009 0 - 9 MT: . . 0.800 FANK HIL PACTOR 1.029 0.027 -

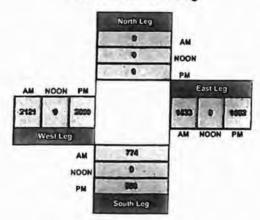
CONTROL : Signalized


Intersection Turning Movement Prepared by: National Data & Surveying Services

	CRY:	Santee	-	-			N	DON				Dette	3/2/2017								
	NS/EW Streets:	SR +	67 NB 02 P	(and	şı.	67 AN OF S	2550	N. CO.	Prospect As	AÐ.		haspuit A	9								
-			ORTHBOU	ND.		SOUTHBOU	ND	-	EASTBOUN	D		WESTBOUI	ND.			-		U1	TURNS		
	LANES:	NL 2	NT 0	MR 1	SL O	57	SR 0	EL 0	ET 2	ER 0	WL O	WT 2	WR D	TOTAL	14	NB		58	EB		WB
	TOTAL VOLUMES :	NL D SDIV/01	NT 0 FDIV/0	NR. 0 PDIV/0!	51 0 #DIV/04	5T 0 #DIV/0!	SR 0 FDIV/DI	EL O #DIV/O!	ET 0 #DIV/01	ER Ø Ø DIV/OR	WI 0 #DIV/0!	WT 0 #DJV/DI	WR 0 #DIV/0!	TOTAL 0	T	NE	T	58 0	EB 0	T	WB O
1	CHASTARC THE I	. 1	AM I	1.1	1.10	1997	13-	15	1	100	1250	1		TOTAL							
	PEAK HE VOL 1	0		0-1			0		.e.,	0	Ŭ.										
		0	0 0000	0-1	•	0			9 8.000		÷.	8		9.080							


A-17

ITM Peak Hour Summary Prepared by: NDS National Data & Surveying Services


SR-67 NB Off Ramp and Prospect Ave , Santee

Total ins & Outs

Total Volume Per Leg

APPENDIX B

Existing Synchro Worksheets

	٦	-	7	1	+	4	1	1	1	+	1	
Lane Group	EBL	- EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL		SBR -	
Lane Configurations	99	4	F	7	44	FF	ŋ	4%	F F	44	*	
Volume (vph)	68	84	43	136	429	1161	20	167	282	342	100	
Tum Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8	1	5	2	1	6		
Permitted Phases			4			8					6	
Delector Phase	7	4	4	3	8	1	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.0	23.0	23.0	9.0	23.0	9.0	9.0	23.0	9.0	23.0	23.0	
Total Split (s)	10.0	23.0	23.0	23.0	36.0	38.0	10.0	26.0	38.0	54.0	54.0	
Total Split (%)	9.1%	20.9%	20.9%	20.9%	32.7%	34.5%	9.1%	23.6%	34.5%	49.1%	49.1%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0 _	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 42 (38%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 70 Control Type: Actualed-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

Wei .	1 #2 (R) U	√ #3	784
85	1265	235	236
5 \$ # #6 (R)	r	₽7 ₽8	
5 1545		10 6 136 6	A

EXAM.syn

Existing Conditions Timing Plan: AM Peak

	×	-	7	1	+	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	. WBR	NBL	NBT.	NBR.	SBL	SBT	SB
Lane Configurations	35	4	F	ij	44	FF	Ą	41		99	44	
Volume (vph)	68	84	43	136	429	1161	20	167	29	282	342	10
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.0
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.8
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.0
Satd. Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3461		3433	3539	158
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Said. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3461		3433	3539	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	76	93	48	151	477	1290	22	186	32	313	380	111
RTOR Reduction (vph)	0	0	43	0	0	280	0	10	0	0	0	51
Lane Group Flow (vph)	76	93	5	151	477	1010	22	208	0	313	380	60
Tum Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA	-	Prot	NA	Perm
Protected Phases	7	4		3	8	1	5	2		1	6	
Permitted Phases			4		1.0	8						6
Actuated Green, G (s)	6.6	11.6	11.6	15.8	20.8	45.5	3.3	37.9		24.7	59.3	59.3
Effective Green, g (s)	6.6	11.6	11.6	15.8	20.8	45.5	3.3	37.9		24.7	59.3	59.3
Actuated g/C Ratio	0.06	0.11	0.11	0.14	0.19	0.41	0.03	0.34		0.22	0.54	0.54
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
ane Grp Cap (vph)	205	196	166	254	669	1279	53	1192		770	1907	853
Is Ratio Prot	0.02	0.05		c0.09	0.13	c0.18	0.01	0.06		0.09	c0.11	
/s Ratio Perm			0.00			0.19						0.04
/c Ratio	0.37	0.47	0.03	0.59	0.71	0.79	0.42	0.17		0.41	0.20	0.07
Iniform Delay, d1	49.7	46.3	44.2	44.1	41.8	28.1	52.4	25.1		36.4	13.1	12.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
cremental Delay, d2	1.1	1.8	0.1	3.7	3.6	3.3	5.2	0.3		0.4	0.2	0.2
elay (s)	50.8	48.1	44.2	47.8	45.4	31.4	57.6	25.5		36.7	13.3	12.3
evel of Service	D	D	D	D	D	С	E	C		D	В	В
pproach Delay (s)		48.2			36.2			28.4			22.3	
pproach LOS		D			D			С			C	
tersection Summary			ST 18			1, -					34 - 197.94	1
CM 2000 Control Delay			32.9	HC	A 2000 L	evel of Se	rvice		C			
CM 2000 Volume to Capac	ity ratio		0.59	120		Veren			100			
ctuated Cycle Length (s)			110.0		of lost t				20.0			
ersection Capacity Utilizati	on	6	2.0%	ICU	Level of	Service			В			
halysis Period (min)			15									
Critical Lane Group												

EXAM.syn

Existing Conditions Timing Plan: PM Peak

	1	-+	7	1	+	4	1	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT.	SBR
Lane Configurations	55	A	r	9	44	FF	7	41	99	44	1
Volume (vph)	124	263	79	57	223	879	31	379	564	316	44
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2	1	6	
Permitted Phases			4			8					6
Detector Phase	7	4	4	3	8	8	5	2	1	6	6
Switch Phase											
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	9.0	23.0	23.0	9.0	23.0	23.0	9.0	23.0	9.0	23.0	23.0
Total Split (s)	13.0	33.0	33.0	14.0	34.0	34.0	11.0	30.0	33.0	52.0	52.0
Total Split (%)	11.8%	30.0%	30.0%	12.7%	30.9%	30.9%	10.0%	27.3%	30.0%	47.3%	47.3%
fellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0
otal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag
ead-Lag Oplimize?	Yes										
Recall Mode	None	C-Min	None	C-Min	C-Min						

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 70 Control Type: Actualed-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

61		1 ø2 (R)	P	× #3	₹₽84
335	1	30 \$		145	133 8
1 #5	1 # #6 (R)		r	A 87	4 ⁴ − ø8
115	1525			113.5	134.5

EXPM.syn

Existing Conditions Timing Plan: PM Peak

	1	-	7	1	+	4	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NBT	NBR	SBL	SBT	- SB
Lane Configurations	59	1	۴	٩	44	TT	ÿ	4%	1.0	17	† †	
Volume (vph)	124	263	79	57	223	879	31	379	78	564	316	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.
Lane Ulil. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.0
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.8
Fil Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.0
Sald, Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3449		3433	3539	158
Fil Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3449		3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	131	277	83	60	235	925	33	399	82	594	333	46
RTOR Reduction (vph)	0	0	65	0	0	718	0	14	0	0	0	23
Lane Group Flow (vph)	131	277	18	60	235	207	33	467	0	594	333	23
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases	7	4	1.500	3	8	0.000	5	2		1	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	8.7	23.3	23.3	7.3	21.9	21.9	4.4	35.6		23.8	55.0	55.0
Effective Green, g (s)	8.7	23.3	23.3	7.3	21.9	21.9	4.4	35.6		23.8	55.0	55.0
Actuated g/C Ralio	0.08	0.21	0.21	0.07	0.20	0.20	0.04	0.32		0.22	0.50	0.50
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
ane Grp Cap (vph)	271	394	335	117	704	554	70	1116	-	742	1769	791
/s Ratio Prot	c0.04	c0.15		0.03	0.07		0.02	c0.14		c0.17	0.09	
/s Ratio Perm			0.01			0.07						0.01
/c Ratio	0.48	0.70	0.05	0.51	0.33	0.37	0.47	0.42		0.80	0.19	0.03
Iniform Delay, d1	48.5	40.1	34.6	49.6	37.8	38.1	51.7	29.1		40.9	15.2	14.0
rogression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
cremental Delay, d2	1.4	5.6	0.1	3.8	0.3	0.4	4.9	1.2		6.2	0.2	0.1
elay (s)	49.9	45.8	34.6	53.4	38.1	38.5	56.6	30.3		47.0	15.4	14.0
evel of Service	D	D	С	D	D	D	E	C		D	B	B
pproach Delay (s)		45.0			39.2			32.0			34.7	
pproach LOS		D			D			C			С	
lersection Summary	na a maina			24.9	1.294	1				1.1	94- j ^A e	
CM 2000 Control Delay			37.5	HCM	A 2000 Le	evel of Se	ervice		D			
CM 2000 Volume to Capac	ity ratio		0.61		1.11							
luated Cycle Length (s)			110.0		of lost til				20.0			
ersection Capacity Utilizati	ion	6	2.9%	ICU	Level of	Service			В			
alysis Period (min)			15									
Critical Lane Group												

EXPM.syn

Existing	Conditions
Timino	Plan: AM Peak

	->	+	1	1			
Lane Group	EBT	WBT	NBL	NBR	 	 	
Lane Configurations	††	44	99	F			
Volume (vph)	392	998	731	43			
Tum Type	NA	NA	Prot	Perm			
Protected Phases	2	6	8				
Permitted Phases				8			
Delector Phase	2	6	8	8			
Switch Phase							
Minimum Initial (s)	13.0	10.0	5.0	5.0			
Minimum Split (s)	23.0	23.0	23.0	23.0			
Total Split (s)	80.0	80.0	70.0	70.0			
Total Split (%)	53.3%	53.3%	46.7%	46.7%			
Yellow Time (s)	4.1	4.1	4.0	4.0			
All-Red Time (s)	2.0	1.5	1.5	1.5			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0			
Total Lost Time (s) Lead/Lag	6.1	5,6	5.5	5.5			
Lead-Lag Optimize?							
Recall Mode	None	None	Min	Min			
ntersection Summary					 •	 	 131
Vole Length: 150					 		

Cycle Length: 150 Actuated Cycle Length: 73.5 Natural Cycle: 50 Control Type: Actuated-Uncoordinated

Splits and Phases: 2: SR-67 NB Off-Ramp & Prospect Ave

→ <u>\$2</u>	
30's 1	
← #5	N 68
80 5	170 5

EXAM.syn

	-+	Y	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44			44	15	1	
Volume (vph)	392	0	0	998	731	43	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.1			5.6	5.5	5.5	
Lane Util. Factor	0.95			0.95	0.97	1.00	
Frt	1.00			1.00	1.00	0.85	
Fit Protected	1.00			1.00	0.95	1.00	
Satd. Flow (prot)	3539			3539	3433	1583	
Fit Permitted	1.00			1.00	0.95	1.00	
Sald. Flow (perm)	3539			3539	3433	1583	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
Adj. Flow (vph)	445	0	0	1134	831	49	
RTOR Reduction (vph)	0	0	0	0	0	27	
Lane Group Flow (vph)	445	0	0	1134	831	22	
Turn Type	NA			NA	Prot	Perm	
Protected Phases	2			6	8		
Permitted Phases						8	
Actuated Green, G (s)	34.5			35.0	26.8	26.8	
Effective Green, g (s)	34.5			35.0	26.8	26.8	
Actuated g/C Ratio	0.47			0.48	0.37	0.37	
Clearance Time (s)	6.1			5.6	5.5	5.5	
/ehicle Extension (s)	3.0	-		3.0	3.0	3.0	
ane Grp Cap (vph)	1674			1699	1262	581	
/s Ratio Prol	0.13			c0.32	c0.24		
/s Ratio Perm						0.01	
/c Ratio	0.27			0.67	0.66	0.04	
niform Delay, d1	11.6			14.5	19.2	14.8	
rogression Factor	1.00			1.00	1.00	1.00	
cremental Delay, d2	0.1			1.0 15.5	1.3	0.0	
elay (s)	11.7			15.5 B	20.5 C	14.8 B	
evel of Service	B 11.7			15.5	20.2	D	
pproach Delay (s) pproach LOS	н.7 В			15.5 B	20.2 C		
pproach LOS	D			D	C.	-	
lersection Summary						*	
CM 2000 Control Delay			16.5	HC	M 2000 Le	evel of Servi	ice B
CM 2000 Volume to Capac	ity ratio		0.67				
tuated Cycle Length (s)			2.9		n of lost tin		11.6
ersection Capacity Utilizati	on	57	.7%	ICU	Level of S	Service	В
alysis Period (min)			15				
Critical Lane Group							

EXAM.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Group Flow (vph)	445	1134	831	49	
v/c Ratio	0.27	0.67	0.66	0.08	
Control Delay	12.8	17.7	23.2	7.3	
Queue Delay	0.0	0.1	0.0	0.0	
Total Delay	12.8	17.8	23.2	7.3	
Queue Length 50th (ft)	59	191	154	2	
Queue Length 95th (ft)	112	328	270	24	
Internal Link Dist (ft)	544	70	303		
Turn Bay Length (ft)				200	
Base Capacity (vph)	3289	3297	2979	1380	
Starvation Cap Reductn	0	1001	0	0	
Spillback Cap Reductn	0	0	0	0	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.14	0.49	0.28	0.04	
ntersection Summary	<u>, , , , , , , , , , , , , , , , , , , </u>		: -		A CONTRACTOR OF

EXAM.syn

Synchro 8 Report Page 1

,

Existing	Conditions
Timing	Plan: PM Peak

	-+	+	4	1						
Lane Group	EBT	WBT	. NBL	NER			 ,	· · · · · ·	 	
Lane Configurations	11	* *	55	F	and a second					
Volume (vph)	977	565	548	110						
Turn Type	NA	NA	Prot	Perm						
Protected Phases	2	6	8							
Permitted Phases				8						
Delector Phase	2	6	8	8 8						
Switch Phase										
Minimum Initial (s)	4.0	4.0	4.0	4.0						
Minimum Split (s)	23.0	23.0	23.0	23.0						
Total Split (s)	80.0	80.0	70.0	70.0						
Total Split (%)	53.3%	53.3%	46.7%	46.7%						
Yellow Time (s)	4.0	4.0	4.0	4.0						
All-Red Time (s)	1.0	1.0	1.0	1.0						
Lost Time Adjust (s)	0.0	- 0.0	0.0	0.0						
Total Lost Time (s)	5.0	5.0	5.0	5.0						
_ead/Lag										
ead-Lag Optimize?										
Recall Mode	None	None	Min	Min						
niersection Summary		+				1. S. S. S. S.	 	<u> </u>	 	17
Vole Length: 150							 			-

Cycle Length: 150 Actuated Cycle Length: 53.7 Natural Cycle: 50 Control Type: Actuated-Uncoordinated

Splits and Phases: 2: SR-67 NB Off-Ramp & Prospect Ave

-02		and the	
80 \$	5 5 5 TOPE (1917)		
+		Ada	
80 5	Contraction of the second second	1 100	

EXPM.syn

	-+	Y	1	+-	1	1		
Movement	EBT	EBR	WBL'	WBT	NBL	NBR	 • 27	
Lane Configurations	^			44	15	F		
Volume (vph)	977	0	0	565		110		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0			5.0	5.0	5.0		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Fri	1.00			1.00	1.00	0.85		
Fit Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Fit Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	D.94		
Adj. Flow (vph)	1039	0	0	601	583	117		
RTOR Reduction (vph)	0	0	0	0	0	46		
Lane Group Flow (vph)	1039	0	0	601	583	71		
Turn Type	NA		-	NA	Prot	Perm		
Protected Phases	2			6	8	- Sector		
Permitted Phases						8		
Actuated Green, G (s)	25.9			25.9	17.4	17.4		
Effective Green, g (s)	25.9			25.9	17.4	17.4		
Actuated g/C Ratio	0.49			0.49	0.33	0.33		
Clearance Time (s)	5.0			5.0	5.0	5.0		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1719			1719	1120	516		
v/s Ratio Prot	c0.29			0.17	c0.17			
/s Ratio Perm						0.04		
//c Ratio	0.60			0.35	0.52	0.14		
Jniform Delay, d1	10.0			8.5	14.6	12.7		
Progression Factor	1.00			1.00	1.00	1.00		
ncremental Delay, d2	0.6		ž.	0.1	0.4	0.1		
Delay (s)	10.6			8.6	15.0	12.8		
evel of Service	B			A	В	В		
pproach Delay (s)	10.6			8.6	14.6			
pproach LOS	В			A	В			
tersection Summary.	10 17 199 (39) 20			1923	10,000		 	
CM 2000 Control Delay			11.3	HC	M 2000 Le	evel of Service	В	
CM 2000 Volume to Capac	city ratio		0.57				0.0	
ctuated Cycle Length (s)			53.3		n of lost ti		10.0	
tersection Capacity Utilizat	ion	5	1.0%	ICU	Level of	Service	A	
nalysis Period (min)			15					
Critical Lane Group								

c Critical Lane Group

EXPM.syn

	+	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Group Flow (vph)	1039	601	583	117	
v/c Ratio	0.61	0.35	0.52	0.21	
Control Delay	12.3	9.6	17.4	8.6	
Queue Delay	0.0	0.0	0.0	0.0	
Total Delay	12.3	9.7	17.4	8.6	
Queue Length 50th (ft)	111	54	73	10	
Queue Length 95th (ft)	209	108	143	46	
Internal Link Dist (ft)	544	70	303		
Tum Bay Length (ft)				200	
Base Capacity (vph)	3539	3539	3382	1560	
Starvation Cap Reductn	0	1204	0	0	
Spillback Cap Reductn	0	0	0	0	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.29	D.26	0.17	0.07	

EXPM.syn

Control Type: Actuated-Uncoordinated

.

Splits and Phases: 3: Graves Ave & Prospect Ave

\$ 105

43.

	٦	-+	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	ij	4	٢	4.	55	4	+	F	
Volume (vph)	124	14	349	7	632	31	71	311	
Tum Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase Switch Phase	8	8	6	7	6	6	2	8	
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	40.0	40.0	40.0	21.0	40.0	40.0	40.0	40.0	
Total Split (s)	45.0	45.0	43.0	21.0	43.0	43.0	41.0	45.0	
Total Split (%)	30.0%	30.0%	28.7%	14.0%	28.7%	28.7%	27.3%	30.0%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
ead/Lag	Lag	Lag		Lead				Lag	
ead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	None	None	Min	None	Min	Min	None	None	
ntersection Summary									an a
Cycle Length: 150 Incluated Cycle Length: 60.2 Iatural Cycle: 145									

4

45 8

7.7

21 8

EXAM.syn

-1

413

	×	-	7	1	+	*	4	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	F	न	1		4		14	4			Ą	
Volume (vph)	124	14	349	0	7	0	632	31	4	0	71	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3		1000	4.9	4.
Lane Util, Factor	0.95	0.95	1.00		1.00		0.97	1.00			1.00	1.0
Fri	1.00	1.00	0.85		1.00		1.00	0.98			1.00	0.8
Fit Protected	0.95	0.96	1.00		1.00		0.95	1.00			1.00	1.0
Satd. Flow (prot)	1681	1702	1583		1863		3433	1833			1863	158
Fit Permitted	0.95	0.96	1.00		1.00		0.95	1.00			1.00	1.0
Satd. Flow (perm)	1681	1702	1583		1863		3433	1833			1863	158
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	138	16	388	0	8	0	702	34	4	0	79	340
RTOR Reduction (vph)	0	0	163	0	0	0	0	2	Ó	0	Ő	235
Lane Group Flow (vph)	77	77	225	Ő	8	0	702	36	Ő	Ď	79	111
Turn Type	Split	NA	pm+ov		NA		Split	NA			NA	pm+ov
Protected Phases	8	8	6	7	7		6	6			2	5
Permitted Phases			8								-	2
Actuated Green, G (s)	10.2	10.2	37.1		0.9		26.9	26.9			7.4	17.6
Effective Green, g (s)	10.2	10.2	37.1		0.9		26.9	26.9			7.4	17.6
Actuated g/C Ratio	0.16	0.16	0.58		0.01		0.42	0.42			0.12	0.28
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
ane Grp Cap (vph)	267	271	917		26		1442	770			215	539
/s Ratio Prot	c0.05	0.05	0.10		c0.00		c0.20	0.02			c0.04	0.03
/s Ratio Perm			0.04									0.04
/c Ratio	0.29	0.28	0.25		0.31		0.49	0.05			0.37	0.21
niform Delay, d1	23.7	23.7	6.6		31.2		13.5	11.0			26.1	17.8
rogression Factor	1.00	1.00	1.00		1.00		1.00	1.00			1.00	1.00
cremental Delay, d2	0.6	0.6	0.2		2.4		0.3	0.0			1.4	0.2
elay (s)	24.3	24.3	6.8		33.7		13.9	11.0			27.6	18.0
evel of Service	С	С	Α		С		8	B			С	В
pproach Delay (s)		11.8			33.7			13.7			19.8	
pproach LOS		в			С			В			В	
tersection Summary	*****											
CM 2000 Control Delay			14.7	HCM	2000 Le	vel of Se	rvice		В			-
M 2000 Volume to Capac	ity ratio		0.42	10,000	and the second	121.24.24			-			
luated Cycle Length (s)	A. Condina		64.0	Sum	of lost tim	ne (s)			18.6			
ersection Capacity Utilizati	ion	5	4.5%		Level of S				A			
alysis Period (min)			15		19429-2548	10.12			53			
Critical Lane Group												

EXAM.syn

	1	-	7	+	1	1	+	1		
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR		
Lane Configurations	ħ	4	1	4	19	P.	4	1		
Volume (vph)	339	11	732	9	376	50	43	175		
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov		
Protected Phases	8	8	6	7	6	6	2	8		
Permitted Phases			8					2		
Detector Phase	8	8	6	7	6	6	2	В		
Switch Phase										
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0		
Minimum Split (s)	40.0	40.0	40.0	21.0	40.0	40.0	40.0	40.0		
Total Split (s)	45.0	45.0	43.0	21.0	43.0	43.0	41.0	45.0		
Total Split (%)	30.0%	30.0%	28.7%	14.0%	28.7%	28.7%	27.3%	30.0%		
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2		
ead/Lag	Lag	Lag		Lead				Lag	1.2	
ead-Lag Optimize?	Yes	Yes		Yes				Yes		
Recall Mode	None	None	None	None	None	None	None	None		
Itersection Summary									ميدينس م	
Cycle Length: 150 Cluated Cycle Length: 60.4 Iatural Cycle: 145 ontrol Type: Actuated-Unco	ordinated									
plits and Phases: 3: Grave	es Ave & F	rospect	Ave							
			110			4-	-	AL		
10 02	13	N #6				7 07		400		

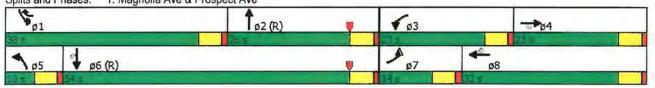
1 B2	N #6	7 17	4408
415	435	215	155. · · · · · · · · · · · · · · · · · ·

EXPM.syn

	1	-	Y	1	+	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WEL	. WBT	WBR	NBL	NBT	NBR	ŚBL	- SBT	SB
Lane Configurations	5	4	1	-	4	-	My M	1			4	7
Volume (vph)	339	11	732	4	9	0	376	50	3	0	43	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	1.00		1.00		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85		1.00		1.00	0.99			1.00	0.85
Fit Protected	0.95	0.96	1.00		0.99		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1691	1583		1837		3433	1848			1863	1583
Fit Permitted	0.95	0.96	1.00		0.99		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1691	1583		1837		3433	1848			1863	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	361	12	779	4	10	0	400	53	3	0	46	186
RTOR Reduction (vph)	0	0	290	0	0	0	0	1	Ō	0	0	129
Lane Group Flow (vph)	188	185	489	0	14	0	400	55	õ	0	46	57
Tum Type	Split	NA	pm+ov	Split	NA	-	Split	NA	-	-	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases		-	8							-		2
Actuated Green, G (s)	15.1	15.1	40.7		0.9		25.6	25.6			4.6	19.7
Effective Green, g (s)	15.1	15.1	40.7		0.9		25.6	25.6			4.6	19.7
Actuated g/C Ratio	0.23	0.23	0.63		0.01		0.40	0.40			0.07	0.30
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
/ehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
ane Grp Cap (vph)	391	394	994		25		1356	730			132	583
/s Ratio Prot	0.11	0.11	c0.19		c0.01		0.12	0.03			c0.02	0.02
/s Ratio Perm		200	0.11								COLES.	0.01
lo Ratio	0.48	0.47	0.49		0.56		0.29	0.08			0.35	0.10
niform Delay, d1	21.5	21.4	6.5		31.8		13.4	12.2			28.7	16.2
rogression Factor	1.00	1.00	1.00		1.00		1.00	1.00			1.00	1.00
cremental Delay, d2	0.9	0.9	0.5		15.9		0.2	0.1			2.1	0.1
elay (s)	22.4	22.3	7.0		47.7		13.6	12.3			30.8	16.2
evel of Service	С	C	A		D		В	В			C	В
oproach Delay (s)		12.0			47.7			13.4			19.1	
proach LOS		B			D			В			B	
ersection Summary				177	10.0	5 5		·		5 55		
CM 2000 Control Delay			13.5	HCM	1 2000 Le	vel of Se	rvice		В			
M 2000 Volume to Capac	ity ratio		0.48									
tuated Cycle Length (s)			64.8	Sum	of lost lin	ne (s)			18.6			
ersection Capacity Utilizati	on	(59.0%	ICU	Level of S	Service			С			
alysis Period (min)			15									
Critical Lane Group												

EXPM.syn

APPENDIX C


Existing Plus Project Synchro Worksheets 2018 Opening Day Synchro Worksheets 2018 Opening Day Plus Project Synchro Worksheets Horizon Year 2035 Synchro Worksheets

1	-	7	*	-	*	1	Ť	1	ŧ	1	
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
55	Ŷ	7	7	11	17	5	种	55	† †	T	
68	119	43	169	462	1204	20	167	317	342	100	
Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA	Prot	NA	Perm	
7	4		3	8	1	5	2	1	6		
		4			8					6	
7	4	4	3	8	1	5	2	1	6	6	
4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
9.0	23.0	23.0	9.0	23.0	9.0	9.0	23.0	9.0	23.0	23.0	
14.0	23.0	23.0	23.0	32.0	38.0	10.0	26.0	38.0	54.0	54.0	
12.7%	20.9%	20.9%	20.9%	29.1%	34.5%	9.1%	23.6%	34.5%	49.1%	49.1%	
4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lag	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	
	ที่ที่ 68 Prot 7 7 4.0 9.0 14.0 12.7% 4.0 10 5.0 Lead Yes	% % 68 119 Prot NA 7 4 7 4 7 4 4.0 4.0 9.0 23.0 14.0 23.0 12.7% 20.9% 4.0 4.0 1.0 1.0 0.0 5.0 Lead Lag Yes Yes	Image: Figure 1 Image: Fig	Image Image <th< td=""><td>Image Image <th< td=""><td>Image Image <th< td=""><td>Image: Protect NA Image: Protect NA</td><td>Image: Non-State Image: Non-State<</td><td>1 1</td><td>1 1</td><td>1 1</td></th<></td></th<></td></th<>	Image Image <th< td=""><td>Image Image <th< td=""><td>Image: Protect NA Image: Protect NA</td><td>Image: Non-State Image: Non-State<</td><td>1 1</td><td>1 1</td><td>1 1</td></th<></td></th<>	Image Image <th< td=""><td>Image: Protect NA Image: Protect NA</td><td>Image: Non-State Image: Non-State<</td><td>1 1</td><td>1 1</td><td>1 1</td></th<>	Image: Protect NA Image: Protect NA	Image: Non-State Image: Non-State<	1 1	1 1	1 1

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 42 (38%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 75 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

Existing Plus Project Timing Plan: AM Peak

	1	-	7	1	+-	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	4	F	٦	11	77	٦	AP.		ሻሻ	^	ř
Volume (vph)	68	119	43	169	462	1204	20	167	64	317	342	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.96		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3392		3433	3539	1583
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3392		3433	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	74	129	47	184	502	1309	22	182	70	345	372	109
RTOR Reduction (vph)	0	0	41	0	0	338	0	29	0	0	0	53
Lane Group Flow (vph)	74	129	6	184	502	971	22	223	0	345	372	56
Turn Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA		Prot	NA	Perm
Protected Phases	7	4	1 onn	3	8	1	5	2		1	6	
Permitted Phases			4	-		8						6
Actuated Green, G (s)	6.6	14.0	14.0	16.5	23.9	44.5	2.8	38.9		20.6	56.7	56.7
Effective Green, g (s)	6.6	14.0	14.0	16.5	23.9	44.5	2.8	38.9		20.6	56.7	56.7
Actuated g/C Ratio	0.06	0.13	0.13	0.15	0.22	0.40	0.03	0.35		0.19	0.52	0.52
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	205	237	201	265	768	1254	45	1199		642	1824	815
v/s Ratio Prot	0.02	0.07		c0.10	0.14	c0.14	0.01	0.07		0.10	c0.11	010
v/s Ratio Perm	1.17	1110	0.00			0.20						0.04
v/c Ratio	0.36	0.54	0.03	0.69	0.65	0.77	0.49	0.19		0.54	0.20	0.07
Uniform Delay, d1	49.7	45.0	42.1	44.4	39.3	28.4	52.9	24.6		40.4	14.4	13.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.1	2.5	0.1	7.7	2.0	3.0	8.1	0.3		0.9	0.3	0.2
Delay (s)	50.8	47.6	42.1	52.0	41.3	31.4	61.0	24.9		41.3	14.7	13.6
Level of Service	D	D	D	D	D	C	E	С		D	В	В
Approach Delay (s)	2.	47.5		-	35.8	1		27.8		-	25.6	
Approach LOS		D			D			С			С	
		1					_					_
Intersection Summary			00.5		0000			_	-			_
HCM 2000 Control Delay			33.5	H	JM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.59									
Actuated Cycle Length (s)			110.0			t time (s)			20.0			
Intersection Capacity Utiliza	tion		64.6%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	-	7	1	+	*	1	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻሻ	1	1	η	^	77	7	44	ካካ	† †	1	
Volume (vph)	124	275	79	68	234	894	31	379	576	316	44	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases			4			8					6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.0	23.0	23.0	9.0	23.0	23.0	9.0	23.0	9.0	23.0	23.0	
Total Split (s)	13.0	33.0	33.0	14.0	34.0	34.0	11.0	30.0	33.0	52.0	52.0	
Total Split (%)	11.8%	30.0%	30.0%	12.7%	30.9%	30.9%	10.0%	27.3%	30.0%	47.3%	47.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 70 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

Vø1		1 ø2 (R)	• 1 ø3	
1 ø5	↓ ¢6 (R)	01	₩ ₩ ₩ ₩ ₩ ₩	 β8
15	52.5		11:	14 1

Existing Plus Project Timing Plan: PM Peak

	٠	-	7	1	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	1	ř	٦	**	77	٦	A₽		ሻሻ	**	7
Volume (vph)	124	275	79	68	234	894	31	379	90	576	316	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3437		3433	3539	1583
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3437		3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	131	289	83	72	246	941	33	399	95	606	333	46
RTOR Reduction (vph)	0	0	65	0	0	711	0	16	0	0	0	23
Lane Group Flow (vph)	131	289	18	72	246	230	33	478	0	606	333	23
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8	0					6
Actuated Green, G (s)	8.7	23.8	23.8	7.7	22.8	22.8	4.4	34.4		24.1	54.1	54.1
Effective Green, g (s)	8.7	23.8	23.8	7.7	22.8	22.8	4.4	34.4		24.1	54.1	54.1
Actuated g/C Ratio	0.08	0.22	0.22	0.07	0.21	0.21	0.04	0.31		0.22	0.49	0.49
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	271	403	342	123	733	577	70	1074		752	1740	778
v/s Ratio Prot	0.04	c0.16		c0.04	0.07		0.02	c0.14		c0.18	0.09	
v/s Ratio Perm	10510	11111	0.01	Trubber .		0.08	40.44					0.01
v/c Ratio	0.48	0.72	0.05	0.59	0.34	0.40	0.47	0.44		0.81	0.19	0.03
Uniform Delay, d1	48.5	40.0	34.2	49.6	37.1	37.7	51.7	30.2		40.7	15.7	14.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.4	6.0	0.1	6.9	0.3	0.5	4.9	1.3		6.3	0.2	0.1
Delay (s)	49.9	46.0	34.2	56.5	37.4	38.1	56.6	31.5		47.0	15.9	14.5
Level of Service	D	D	С	E	D	D	E	С		D	В	В
Approach Delay (s)		45.0			39.0			33.1			35.0	
Approach LOS		D			D			С			C	
Intersection Summary												
HCM 2000 Control Delay			37.8	HC	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			110.0		m of lost				20.0			
Intersection Capacity Utilizat	tion		64.7%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

EXWPPM.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	^	44	59	7	
Volume (vph)	486	1107	731	67	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	23.0	23.0	23.0	23.0	
Total Split (s)	80.0	80.0	70.0	70.0	
Total Split (%)	53.3%	53.3%	46.7%	46.7%	
Yellow Time (s)	4.1	4.1	4.0	4.0	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.5	5.5	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	Min	Min	
Intersection Summary					
Cycle Length: 150	-		-		
Actuated Cycle Length: 75	.8				
Natural Cycle: 50					
	coordinated				

-•ø2	
60 a	
← ø6	↑ ø8
10.5	20 5

EXWPAM.syn

	-	7	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	<u>†</u> †			† †	ካካ	F		
Volume (vph)	486	0	0	1107	731	67		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1			5.6	5.5	5.5		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Flt Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	528	0	0	1203	795	73		
RTOR Reduction (vph)	0	0	0	0	0	43		
Lane Group Flow (vph)	528	0	Ő	1203	795	30		
Turn Type	NA			NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases						8		
Actuated Green, G (s)	36.6			37.1	27.0	27.0		
Effective Green, g (s)	36.6			37.1	27.0	27.0		
Actuated g/C Ratio	0.49			0.49	0.36	0.36		
Clearance Time (s)	6.1			5.6	5.5	5.5		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1722			1745	1232	568		
v/s Ratio Prot	0.15			c0.34	c0.23			
v/s Ratio Perm						0.02		
v/c Ratio	0.31			0.69	0.65	0.05		
Uniform Delay, d1	11.6			14.6	20.1	15.7		
Progression Factor	1.00			1.00	1.00	1.00		
ncremental Delay, d2	0.1			1.2	1.2	0.0		
Delay (s)	11.7			15.8	21.3	15.8		
Level of Service	В			В	С	В		
Approach Delay (s)	11.7			15.8	20.8			
Approach LOS	В			В	С			
			-					
ntersection Summary HCM 2000 Control Delay			16.6	L	CM 2000	oval of Convice	В	
HCM 2000 Volume to Capa	city ratio		0.68			Level of Service	D	
Actuated Cycle Length (s)	ory ratio		75.2			11.6		
ntersection Capacity Utiliza	tion		60.7%			B		
						i dervice	D	
Analysis Period (min) c Critical Lane Group			15					

	-+	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	^	^	ካካ	ľ	
Volume (vph)	1039	639	548	125	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	4.0	4.0	4.0	4.0	
Minimum Split (s)	23.0	23.0	23.0	23.0	
Total Split (s)	80.0	80.0	70.0	70.0	
Total Split (%)	53.3%	53.3%	46.7%	46.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	Min	Min	
ntersection Summary					
Cycle Length: 150					
Actuated Cycle Length: 5	7.6				
Natural Cycle: 50					
Control Type: Actuated-U	ncoordinated				
Splits and Phases: 2: S	R-67 NB Off	Ramp &	Prospect	Ave	
→ø2					
10.0	-				
-					•
ø6		_			↑ ø8

EXWPPM.syn

	-	7	*	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	**		-	**	ካካ	1		
Volume (vph)	1039	0	0	639	548	125		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0			5.0	5.0	5.0		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Fit Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Flt Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	1105	0	0	680	583	133		
RTOR Reduction (vph)	0	0	0	0	0	39		
Lane Group Flow (vph)	1105	0	0	680	583	94		
Turn Type	NA		-	NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases						8		
Actuated Green, G (s)	28.6			28.6	18.5	18.5		
Effective Green, g (s)	28.6			28.6	18.5	18.5		
Actuated g/C Ratio	0.50			0.50	0.32	0.32		
Clearance Time (s)	5.0			5.0	5.0	5.0		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1772			1772	1112	512		
v/s Ratio Prot	c0.31			0.19	c0.17			
v/s Ratio Perm						0.06		
v/c Ratio	0.62			0.38	0.52	0.18		
Uniform Delay, d1	10.3			8.8	15.7	13.9		
Progression Factor	1.00			1.00	1.00	1.00		
Incremental Delay, d2	0.7			0.1	0.4	0.2		
Delay (s)	11.0			8.9	16.2	14.1		
Level of Service	В			А	В	В		
Approach Delay (s)	11.0			8.9	15.8			
Approach LOS	В			А	В			
Intersection Summary								
HCM 2000 Control Delay			11.8	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	city ratio		0.58					
Actuated Cycle Length (s)			57.1	Su	um of lost	time (s)	10.0	
Intersection Capacity Utiliza	ation		52.7%	IC	U Level o	of Service	А	
Analysis Period (min)			15					
Critical Lane Group								

	٦	-	Y	+	1	1	1	Į.	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	र्भ	77	4	55	f.		^	7	
Volume (vph)	242	14	349	7	632	109	4	143	420	
Turn Type	Split	NA	pm+ov	NA	Split	NA	Perm	NA	pm+ov	
Protected Phases	8	8	6	7	6	6		2	8	
Permitted Phases			8				2		2	
Detector Phase	8	8	6	7	6	6	2	2	8	
Switch Phase										
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	40.0	40.0	40.0	21.0	40.0	40.0	40.0	40.0	40.0	
Total Split (s)	45.0	45.0	43.0	21.0	43.0	43.0	41.0	41.0	45.0	
Total Split (%)	30.0%	30.0%	28.7%	14.0%	28.7%	28.7%	27.3%	27.3%	30.0%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3		4.9	4.2	
_ead/Lag	Lag	Lag		Lead					Lag	
Lead-Lag Optimize?	Yes	Yes		Yes					Yes	
Recall Mode	None	None	Min	None	Min	Min	None	None	None	
Intersection Summary									-	

Cycle Length: 150 Actuated Cycle Length: 81.8 Natural Cycle: 145

Control Type: Actuated-Uncoordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

¢2	₩ø6	▼ ø7	200 B8	
ALS	Als	21.5	15 5	

Existing Plus Project Timing Plan: AM Peak

	٠	-	7	1	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ή	4	17	٦	4	_	ሻሻ	Þ			1	1
Volume (vph)	242	14	349	0	7	5	632	109	4	4	143	420
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88		0.95		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85		0.94		1.00	1.00			1.00	0.85
Flt Protected	0.95	0.96	1.00		1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1694	2787		1668		3433	1854			1860	1583
Flt Permitted	0.95	0.96	1.00		1.00		0.95	1.00			0.57	1.00
Satd. Flow (perm)	1681	1694	2787		1668		3433	1854			1054	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	263	15	379	0	8	5	687	118	4	4	155	457
RTOR Reduction (vph)	0	0	174	0	5	0	0	1	0	0	0	192
Lane Group Flow (vph)	139	139	205	0	8	0	687	121	0	0	159	265
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA		Perm	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6			2	8
Permitted Phases			8				-	-		2	-	2
Actuated Green, G (s)	15.4	15.4	45.5		1.0		30.1	30.1			19.0	34.4
Effective Green, g (s)	15.4	15.4	45.5		1.0		30.1	30.1			19.0	34.4
Actuated g/C Ratio	0.18	0.18	0.54		0.01		0.36	0.36			0.23	0.41
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	307	310	1507		19		1228	663			238	726
v/s Ratio Prot	c0.08	0.08	0.05		c0.00		c0.20	0.07				0.07
v/s Ratio Perm			0.02								c0.15	0.10
v/c Ratio	0.45	0.45	0.14		0.42		0.56	0.18			0.67	0.36
Uniform Delay, d1	30.6	30.6	9.6		41.3		21.7	18.6			29.7	17.3
Progression Factor	1.00	1.00	1.00		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	1.1	1.0	0.1		5.5		0.7	0.2			7.5	0.3
Delay (s)	31.7	31.6	9.6		46.7		22.3	18.7			37.2	17.6
Level of Service	С	С	А		D		С	В			D	В
Approach Delay (s)		18.9			46.7			21.8			22.6	
Approach LOS		В			D			С			С	
Intersection Summary		_										
HCM 2000 Control Delay			21.3	HC	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.56									
Actuated Cycle Length (s)			84.1		m of lost				18.6			
ntersection Capacity Utiliza	ation		61.3%	ICI	U Level o	f Service			В			
Analysis Period (min)			15									

c Critical Lane Group

	٠	-+	7	1	-	1	Ť	ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	ħ,	र्भ	77	٦	4	ካካ	Þ	4	۴	
Volume (vph)	416	11	732	4	9	376	101	92	249	
Turn Type	Split	NA	pm+ov	Split	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	7	6	6	2	8	
Permitted Phases			8						2	
Detector Phase	8	8	6	7	7	6	6	2	8	
Switch Phase										
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	40.0	40.0	40.0	21.0	21.0	40.0	40.0	40.0	40.0	
Total Split (s)	45.0	45.0	43.0	21.0	21.0	43.0	43.0	41.0	45.0	
Total Split (%)	30.0%	30.0%	28.7%	14.0%	14.0%	28.7%	28.7%	27.3%	30.0%	
Yellow Time (s)	3.2	3.2	4.3	3.2	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lag	Lag		Lead	Lead				Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes				Yes	
Recall Mode	None									
							-		_	

Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 73.8 Natural Cycle: 145 Control Type: Actuated-Uncoordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

₩o2	₹ 1 06	707	208	
41.0		215	45 5	

Existing Plus Project Timing Plan: PM Peak

	٠	-	7	1	+	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	r,	र्भ	77	٢	4		55	Þ			4	1
Volume (vph)	416	11	732	4	9	3	376	101	3	3	92	249
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3	4.2	4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88	0.95	0.95		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00			1.00	0.85
Flt Protected	0.95	0.95	1.00	0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1690	2787	1681	1708		3433	1855			1860	1583
Flt Permitted	0.95	0.95	1.00	0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1690	2787	1681	1708		3433	1855			1860	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	443	12	779	4	10	3	400	107	3	3	98	265
RTOR Reduction (vph)	0	0	300	0	3	0	0	1	0	0	0	169
Lane Group Flow (vph)	226	229	479	4	10	0	400	109	0	0	101	96
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA		Split	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases			8							-	-	2
Actuated Green, G (s)	18.9	18.9	46.9	2.0	2.0		28.0	28.0			8.8	27.7
Effective Green, g (s)	18.9	18.9	46.9	2.0	2.0		28.0	28.0			8.8	27.7
Actuated g/C Ratio	0.25	0.25	0.61	0.03	0.03		0.37	0.37			0.12	0.36
Clearance Time (s)	4.2	4.2	5.3	4.2	4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9	2.0	2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	416	418	1713	44	44		1259	680			214	661
v/s Ratio Prot	0.13	c0.14	0.10	0.00	c0.01		c0.12	0.06			c0.05	0.04
v/s Ratio Perm			0.07									0.02
v/c Ratio	0.54	0.55	0.28	0.09	0.23		0.32	0.16			0.47	0.15
Uniform Delay, d1	24.9	25.0	6.8	36.3	36.4		17.3	16.2			31.6	16.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	1.5	1.5	0.1	0.3	1.0		0.2	0.1			2.2	0.1
Delay (s)	26.4	26.5	7.0	36.6	37.4		17.5	16.4			33.8	16.4
Level of Service	С	С	А	D	D		В	В			С	В
Approach Delay (s)		14.1			37.2			17.3			21.2	
Approach LOS		В			D			В			С	
Intersection Summary						-						
HCM 2000 Control Delay			16.3	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.41									
Actuated Cycle Length (s)	and the second		76.3	S	um of lost	time (s)			18.6			
Intersection Capacity Utiliza	tion		49.3%		U Level o				A			
Analysis Period (min)			15		6-63 est 4	a constant			510			
Critical Lane Group			0.20									

EXWPPM.syn

	٢	7	1	1	Ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		~
Lane Configurations	Y		7	Ŷ	†			
Volume (veh/h)	33	184	201	155	382	35		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	36	200	218	168	415	38		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (ft)				227				
pX, platoon unblocked								
vC, conflicting volume	1040	227	453					
vC1, stage 1 conf vol	19.15		26.5					
vC2, stage 2 conf vol								
vCu, unblocked vol	1040	227	453					
tC, single (s)	6.8	6.9	4.1					
tC, 2 stage (s)	2.2							
tF (s)	3.5	3.3	2.2					
p0 queue free %	80	74	80					
cM capacity (veh/h)	181	776	1104					
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2			
/olume Total	236	218	168	277	176			
Volume Left	36	218	0	0	0			
Volume Right	200	0	0	0	38			
cSH	518	1104	1700	1700	1700			
Volume to Capacity	0.46	0.20	0.10	0.16	0.10			
Queue Length 95th (ft)	59	18	0	0	0			
Control Delay (s)	17.6	9.1	0.0	0.0	0.0			
Lane LOS	С	A						
Approach Delay (s)	17.6	5.1		0.0				
Approach LOS	С							
ntersection Summary								
Average Delay			5.7			an an		
ntersection Capacity Utilizatio	n		46.0%	IC	U Level o	f Service	А	
Analysis Period (min)			15					

EXWPAM.syn

	٠	Y	1	Ť	ŧ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		7	Ť	朴		
Volume (veh/h)	22	126	131	389	218	23	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	24	137	142	423	237	25	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)				227			
pX, platoon unblocked	0.99						
vC, conflicting volume	957	131	262				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	951	131	262				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	89	85	89				
cM capacity (veh/h)	227	894	1299				
Direction. Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
/olume Total	161	142	423	158	104		
Volume Left	24	142	0	0	0		
Volume Right	137	0	0	0	25		
SH	622	1299	1700	1700	1700		
Volume to Capacity	0.26	0.11	0.25	0.09	0.06		
Queue Length 95th (ft)	26	9	0	0	0		
Control Delay (s)	12.8	8.1	0.0	0.0	0.0		
Lane LOS	В	А					
Approach Delay (s)	12.8	2.0		0.0			
Approach LOS	В						
ntersection Summary	-						
Average Delay			3.3				
Intersection Capacity Utilization	F.		36.1%	IC	U Level o	f Service	A
Analysis Period (min)			15				

EXWPPM.syn

Opening Year (2018) Timing Plan: AM Peak

	1	-+	7	1	+	4	1	1	1	+	1	
Lane Group	EBL	EBT	EBR	- WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	. 59	+	F	P	44	17	ħ	47	39			
Volume (vph)	72	89	46	143	451	1220	21	176	297	360		
Turn Type	Prot	NA	Perm	Prol	NA	pm+ov	Prol	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8	1	5	2	1	6		
Permitted Phases			4			8					6	
Detector Phase	7	4	4	3	8	1	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.0	23.0	23.0	9.0	23.0	9.0	9.0	23.0	9.0	23.0	23.0	
Total Split (s)	10.0	23.0	23.0	23.0	36.0	38.0	10.0	26.0	38.0	54.0	54.0	
Total Split (%)	9.1%	20.9%	20,9%	20.9%	32.7%	34.5%	9.1%	23.6%	34.5%	49.1%	49.1%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
fotal Lost Time (s)	. 5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 42 (38%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 70 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

5		1 #2 (R) C	1 p3	7784
38 6		263	235	238
105	₩ ø6 (R)	, r	A 17 58	
0s]	54 6		1105 1365	

OYAM.syn

	1	-+	7	1	+		1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WER	NBL	NBT	NBR	- 981	887	- 58
Lane Configurations	59	4	r	7	44	FF	5	4%		95	44	1
Volume (vph)	72	89	46	143	451			176	31	297	360	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Ulil. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Sald. Flow (prol)	3433	1863	1583	1770	3539	2787	1770	3461		3433	3539	1583
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3461		3433	3539	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	80	99	51	159	501	1356	23	196	34	330	400	117
RTOR Reduction (vph)	0	0	44	0	0	246	0	11	0	0	0	56
Lane Group Flow (vph)	80	99	7	159	501	1110	23	219	Ő	330	400	61
Turn Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA		Prot	NA	Perm
Protected Phases	7	4	I SOM	3	8	1	5	2		1	6	r sam
Permitted Phases			4			8					, u	6
Actuated Green, G (s)	6.8	14.4	14.4	15.0	22.6	49.0	3.3	34.2		26.4	57.3	57.3
Effective Green, g (s)	6.8	14.4	14.4	15.0	22.6	49.0	3.3	34.2		26.4	57.3	57.3
Actuated g/C Ratio	0.06	0.13	0.13	0.14	0.21	0.45	0.03	0.31		0.24	0.52	0.52
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	212	243	207	241	727	1368	53	1076		823	1843	824
//s Ratio Prol	0.02	0.05		c0.09	0.14	c0.19	0.01	0.06		0.10	c0.11	
Is Ratio Perm	1116	715 2	0.00			0.20						0.04
/c Ratio	0.38	0.41	0.03	0.66	0.69	0.81	0.43	0.20		0.40	0.22	0.07
Iniform Delay, d1	49.6	43.9	41.7	45.1	40.4	26.5	52.4	27.9		35.2	14.2	13.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
ncremental Delay, d2	1.1	1.1	0.1	6.4	2.7	3.8	5.6	0.4		0.3	0.3	0.2
elay (s)	50.7	45.0	41.8	51.5	43.2	30.3	58.0	28.3		35.5	14.5	13.3
evel of Service	D	D	D	D	D	С	E	C		D	В	В
pproach Delay (s)		46.3			35.1			31.0			22.5	
pproach LOS		D			D			C			C	
tersection Summary	7 7 7		ي أيسك ال	242.0							1.5	-1-
CM 2000 Control Delay			32.4	HCM	1 2000 L	evel of Se	rvice		С			
CM 2000 Volume to Capacit	y ratio		0.64									
cluated Cycle Length (s)			10.0		of lost li			3	20.0			
tersection Capacity Utilizatio	n	64	4.4%	ICU	Level of	Service			C			
nalysis Period (min)			15									
Critical Lane Group												

OYAM.syn

	1	-+	7	1	+	*	1	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	49	+	F	Ą	44	FF	Ą	410	F F	44	F	
Volume (vph)	131	277	83	60	235	923	33	398	593	332	47	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases			4			8					6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Ainimum Split (s)	9.0	23.0	23.0	9.0	23.0	23.0	9.0	23.0	9.0	23.0	23.0	
otal Split (s)	13.0	33.0	33.0	14.0	34.0	34.0	11.0	30.0	33.0	52.0	52.0	
otal Split (%)	11.8%	30.0%	30.0%	12.7%	30.9%	30.9%	10.0%	27.3%	30.0%	47.3%	47.3%	
ellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
II-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
ead-Lag Oplimize?	Yes	Yes	Yes									
ecall Mode	None	C-Min	None	C-Min	C-Min							

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 75 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

1		1 #2 (R) (103	7-184
335		30 6	148	1338
105	₩ #6 (R)	t	A 87	₽ 8
15	1525	- 44 A 8 - •	1135	1345

OYPM.syn

	٦	-	2	1	+	4	1	1	1	1	+	1
Movement	- EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	5
Lane Configurations	54	4	F	7	† †	FF	F	47		17	† †	1
Volume (vph)	131		83	60	235	923	33		82		332	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
FII Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prol)	3433	1863	1583	1770	3539	2787	1770	3449		3433	3539	1583
Fil Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3449		3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	138	292	87	63	247	972	35	419	86	624	349	49
RTOR Reduction (vph)	0	0	68	0	0	704	0	14	0	0	0	25
Lane Group Flow (vph)	138	292	19	63	247	268	35	491	0	624	349	24
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prol	NA	Perm
Protected Phases	7	4	r cim	3	8	reim	5	2		1	6	reim
Permitted Phases			4			8					U	6
Actuated Green, G (s)	8.8	23.9	23.9	7.4	22.5	22.5	4.5	34.2		24.5	54.2	54.2
Effective Green, g (s)	8.8	23.9	23.9	7.4	22.5	22.5	4.5	34.2		24.5	54.2	54.2
Actuated g/C Ratio	0.08	0.22	0.22	0.07	0.20	0.20	0.04	0.31		0.22	0.49	0.49
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	274	404	343	119	723	570	72	1072		764	1743	779
Is Ratio Prot	c0.04	c0.16		0.04	0.07		0.02	c0.14		c0.18	0.10	115
/s Ratio Perm		2246.2	0.01			0.10				44.14	0.10	0.02
/c Ratio	0.50	0.72	0.06	0.53	0.34	0.47	0.49	0.46		0.82	0.20	0.03
Iniform Delay, d1	48.5	40.0	34.1	49.6	37.4	38.5	51.6	30.5		40.6	15.7	14.4
rogression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
cremental Delay, d2	1.5	6.3	0.1	4.2	0.3	0.6	5.1	1.4		6.8	0.3	0.1
lelay (s)	50.0	46.3	34.2	53.8	37.7	39.1	56.7	31.9		47.4	16.0	14.4
evel of Service	D	D	C	D	D	D	E	С		D	В	8
pproach Delay (s)		45.2			39.6			33.5			35.1	
pproach LOS		D			D			С			D	
lersection Summary			1.4.2	t	بعظت فأح				-		<u>a 70</u>	
CM 2000 Control Delay			38.1	HCM	A 2000 Le	evel of Se	rvice		D			
CM 2000 Volume to Capac	ity ratio		0.64									
cluated Cycle Length (s)			10.0		of lost tir			.0	20.0			
lersection Capacity Utilizati	on	6	5.1%	ICU	Level of S	service			С			
alysis Period (min)			15									
Critical Lane Group												

OYPM.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	**	**	ኘሻ	1	
Volume (vph)	412	1048	768	46	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	24.0	23.0	23.0	23.0	
Total Split (s)	56.0	56.0	34.0	34.0	
Total Split (%)	62.2%	62.2%	37.8%	37.8%	
Yellow Time (s)	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Min	Min	
ntersection Summary					
Cycle Length: 90					
Actuated Cycle Length: 9	0				
Offset: 87 (97%), Referen	ced to phase	2:EBT a	nd 6:WB1	, Start of Y	fellow
Natural Cycle: 50					
Control Type: Actuated-C	oordinated				
Splits and Phases: 2: S	R-67 NB Off	-Ramp &	Prospect	Ave	
→ø2 (R)					
56 \$		-	-		
+					
ø6 (R)					08

OYAM_Existing Chan.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Group Flow (vph)	438	1115	817	49	
v/c Ratio	0.21	0.54	0.83	0.10	
Control Delay	9.7	14.4	37.9	7.3	
Queue Delay	0.0	4.6	0.0	0.0	
Total Delay	9.7	19.0	37.9	7.3	
Queue Length 50th (ft)	60	311	218	0	
Queue Length 95th (ft)	88	372	282	25	
Internal Link Dist (ft)	544	70	431		
Turn Bay Length (ft)				200	
Base Capacity (vph)	2062	2081	1083	533	
Starvation Cap Reductn	0	877	0	0	
Spillback Cap Reductn	66	0	0	0	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.22	0.93	0.75	0.09	

OYAM_Existing Chan.syn

	-+	7	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† †		_	**	ሻሻ	1		
Volume (vph)	412	0	0	1048	768	46		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1			5.6	5.6	5.6		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Flt Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	438	0	0	1115	817	49		
RTOR Reduction (vph)	0	0	0	0	0	35		
Lane Group Flow (vph)	438	0	0	1115	817	14		
Tum Type	NA			NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases						8		
Actuated Green, G (s)	52.4			52.9	25.9	25.9		
Effective Green, g (s)	52.4			52.9	25.9	25.9		
Actuated g/C Ratio	0.58			0.59	0.29	0.29		
Clearance Time (s)	6.1			5.6	5.6	5.6		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	2060	-		2080	987	455		
v/s Ratio Prot	0.12			c0.32	c0.24			
/s Ratio Perm						0.01		
/c Ratio	0.21			0.54	0.83	0.03		
Uniform Delay, d1	9.0			11.2	30.0	23.0		
Progression Factor	1.00			1.15	1.00	1.00		
Incremental Delay, d2	0.2			0.9	5.8	0.0		
Delay (s)	9.2			13.7	35.8	23.1		
Level of Service	А			В	D	С		
Approach Delay (s)	9.2			13.7	35.1			
Approach LOS	А			В	D			
Intersection Summary								
HCM 2000 Control Delay			20.5	Н	CM 2000	Level of Service	C	
HCM 2000 Volume to Capa	city ratio		0.64					
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)	11.7	
ntersection Capacity Utiliza	tion		60.2%			of Service	В	
Analysis Period (min)			15				-	
Critical Lane Group								

OYAM_Existing Chan.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	^	11	ኻኻ	1	
Volume (vph)	1026	594	576	116	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	24.0	23.0	23.0	23.0	
Total Split (s)	56.0	56.0	34.0	34.0	
Total Split (%)	62.2%	62.2%	37.8%	37.8%	
Yellow Time (s)	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Min	Min	
Intersection Summary					
Cycle Length: 90					
Actuated Cycle Length: 9					
Offset: 87 (97%), Referen	iced to phase	2:EBT a	nd 6:WB1	, Start of)	ellow
Natural Cycle: 50					
Control Type: Actuated-C	oordinated				
Splits and Phases: 2: S	R-67 NB Off	-Ramp &	Prospect	Ave	
-					
→ø2 (R)			_		
30.5					
ø6 (R)					▼ σ8

34 e

OYPM_Existing Chan.syn

Synchro 8 Report Page 1

	-	+	1	1
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	1091	632	613	123
v/c Ratio	0.49	0.28	0.74	0.28
Control Delay	10.6	10.7	36.6	12.2
Queue Delay	0.1	1.0	0.0	0.0
Total Delay	10.7	11.7	36.6	12.2
Queue Length 50th (ft)	160	151	165	19
Queue Length 95th (ft)	248	37	205	58
Internal Link Dist (ft)	544	70	431	
Turn Bay Length (ft)				200
Base Capacity (vph)	2219	2238	1083	553
Starvation Cap Reductn	0	1283	0	0
Spillback Cap Reductn	169	0	0	3
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.53	0.66	0.57	0.22
ntersection Summary				

OYPM_Existing Chan.syn

	-	7	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^			††	ሻሻ	1		
Volume (vph)	1026	0	0	594	576	116		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1			5.6	5.6	5.6		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Fit Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	1091	0	0	632	613	123		
RTOR Reduction (vph)	0	0	0	0	0	60		
Lane Group Flow (vph)	1091	Ő	0	632	613	63		
Turn Type	NA			NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases	-					8		
Actuated Green, G (s)	56.4			56.9	21.9	21.9		
Effective Green, g (s)	56.4			56.9	21.9	21.9		
Actuated g/C Ratio	0.63			0.63	0.24	0.24		
Clearance Time (s)	6.1			5.6	5.6	5.6		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	2217			2237	835	385		
v/s Ratio Prot	c0.31			0.18	c0.18			
/s Ratio Perm						0.04		
/c Ratio	0.49			0.28	0.73	0.16		
Uniform Delay, d1	9.1			7.4	31.4	26.8		
Progression Factor	1.00			1.28	1.00	1.00		
ncremental Delay, d2	0.8			0.3	3.4	0.2		
Delay (s)	9.9			9.8	34.7	27.0		
evel of Service	А			А	С	С		
Approach Delay (s)	9.9			9.8	33.5			
Approach LOS	А			А	С			
Intersection Summary		-						
HCM 2000 Control Delay			16.9	Н	CM 2000	Level of Service	В	
ICM 2000 Volume to Capa	city ratio		0.56	11	2000		U	
Actuated Cycle Length (s)	ing rado		90.0	S	m of lost	time (s)	11.7	
ntersection Capacity Utiliza	tion		54.5%			of Service	A	
Analysis Period (min)			15	10	C LOVOI C		n	
Critical Lane Group			10					

OYPM_Existing Chan.syn

	٨	-	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	7	4	1	4	ሻሻ	1	4	*	
Volume (vph)	131	15	367	8	664	33	75	327	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	35.0	35.0	24.0	18.0	24.0	24.0	13.0	35.0	
Total Split (%)	38.9%	38.9%	26.7%	20.0%	26.7%	26.7%	14.4%	38.9%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lead	Lead		Lag				Lead	
Lead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	
Intersection Summary									

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection Natural Cycle: 85 Control Type: Actuated-Coordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

₽. ₀₂	\$ 1 96	58 (R)	7 \$7
13.5	245	35 5	18 s

	٦	-	7	+-	1	t	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	76	79	390	9	706	40	80	348	
v/c Ratio	0.11	0.11	0.29	0.06	0.65	0.07	0.38	0.34	
Control Delay	13.1	13.0	1.5	39.6	30.8	21.0	41.7	1.9	
Queue Delay	0.8	0.8	0.3	0.0	52.2	0.0	0.0	0.1	
Total Delay	13.8	13.8	1.9	39.6	83.0	21.0	41.7	2.0	
Queue Length 50th (ft)	30	31	0	5	160	13	43	0	
Queue Length 95th (ft)	66	67	45	20	#307	42	84	25	
Internal Link Dist (ft)		70		31		339	147		
Turn Bay Length (ft)					225				
Base Capacity (vph)	692	700	1329	285	1090	583	213	1018	
Starvation Cap Reductn	433	439	455	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	466	0	0	93	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.30	0.45	0.03	1.13	0.07	0.38	0.38	
Intersection Summary							-		

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

OYAM_Existing Chan.syn

	٠	-	7	1	+	*	1	t	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4	1		\$		ሻሻ	ħ	1.5		र्भ	7
Volume (vph)	131	15	367	0	8	0	664	33	5	0	75	327
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	1.00		1.00		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85		1.00		1.00	0.98			1.00	0.85
Fit Protected	0.95	0.96	1.00		1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1702	1583		1863		3433	1828			1863	1583
Flt Permitted	0.95	0.96	1.00		1.00		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1702	1583		1863		3433	1828			1863	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	139	16	390	0	9	0	706	35	5	0	80	348
RTOR Reduction (vph)	0	0	124	0	0	0	0	3	0	0	0	188
Lane Group Flow (vph)	76	79	266	0	9	0	706	37	0	0	80	160
Turn Type	Split	NA	pm+ov		NA		Split	NA			NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	. 8
Permitted Phases			8									2
Actuated Green, G (s)	32.7	32.7	61.3		1.4		28.6	28.6			8.7	41.4
Effective Green, g (s)	32.7	32.7	61.3		1.4		28.6	28.6			8.7	41.4
Actuated g/C Ratio	0.36	0.36	0.68		0.02		0.32	0.32			0.10	0.46
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0	10-50	3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	610	618	1171		28		1090	580	1.1		180	728
v/s Ratio Prot	0.05	0.05	c0.07		c0.00		c0.21	0.02			c0.04	0.08
v/s Ratio Perm			0.10									0.02
v/c Ratio	0.12	0.13	0.23		0.32		0.65	0.06			0.44	0.22
Uniform Delay, d1	19.1	19.1	5.4		43.8		26.4	21.4			38.4	14.6
Progression Factor	0.64	0.64	1.36		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	0.4	0.4	0.1		2.4		1.5	0.1			2.3	0.2
Delay (s)	12.6	12.6	7.5		46.2		27.8	21.4			40.7	14.8
Level of Service	В	В	Α		D		С	С			D	В
Approach Delay (s)		8.9			46.2			27.5			19.6	
Approach LOS		А			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			19.8	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.43									
Actuated Cycle Length (s)	A PARTICIPACITY OF A PARTICIPACI		90.0		m of lost				18.6			
Intersection Capacity Utiliza	tion		56.4%	IC	U Level o	f Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

OYAM_Existing Chan.syn

	٠	-	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	र्भ	1	4	ካካ	₽.	4	1	
Volume (vph)	356	12	769	10	395	53	46	184	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Vinimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Vinimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	35.0	35.0	24.0	18.0	24.0	24.0	13.0	35.0	
Total Split (%)	38.9%	38.9%	26.7%	20.0%	26.7%	26.7%	14.4%	38.9%	
fellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
ead/Lag	Lead	Lead		Lag				Lead	
Lead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	
							_		

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection Natural Cycle: 85 Control Type: Actuated-Coordinated

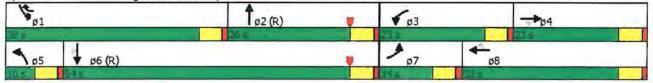
Splits and Phases: 3: Graves Ave & Prospect Ave

1 02	\$ 96	Stars (R)	▼ 7 87
135	245	35 s	18 5

	1	-	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	197	195	818	16	420	60	49	196	
v/c Ratio	0.24	0.23	0.56	0.11	0.44	0.12	0.27	0.20	
Control Delay	10.4	10.4	5.3	40.6	28.0	22.4	40.8	1.8	
Queue Delay	0.7	0.7	0.5	0.0	1.3	0.0	0.0	0.0	
Total Delay	11.2	11.1	5.7	40.6	29.3	22.4	40.8	1.9	
Queue Length 50th (ft)	75	74	113	9	95	22	26	0	
Queue Length 95th (ft)	151	149	243	29	150	56	59	22	
Internal Link Dist (ft)		70	-	31		339	147	-	
Turn Bay Length (ft)					225				
Base Capacity (vph)	829	834	1456	281	971	524	189	1003	
Starvation Cap Reductn	377	382	249	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	347	0	0	19	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.43	0.68	0.06	0.67	0.11	0.26	0.20	

OYPM_Existing Chan.syn

	٠	-	7	1	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	4	7		4		ሻሻ	4	1.5	_	र्भ	ľ
Volume (vph)	356	12	769	5	10	0	395	53	4	0	46	184
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	1.00		1.00		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85		1.00		1.00	0.99			1.00	0.85
Fit Protected	0.95	0.96	1.00		0.98		0.95	1.00			1.00	1.00
Satd, Flow (prot)	1681	1691	1583		1834		3433	1844			1863	1583
Flt Permitted	0.95	0.96	1.00		0.98		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1691	1583		1834		3433	1844			1863	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	379	13	818	5	11	0	420	56	4	0	49	196
RTOR Reduction (vph)	0	0	235	0	0	0	0	3	0	0	0	98
Lane Group Flow (vph)	197	195	583	0	16	0	420	57	0	0	49	98
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA			NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	. 8
Permitted Phases			8									2
Actuated Green, G (s)	39.1	39.1	64.1		1.4		25.0	25.0			5.9	45.0
Effective Green, g (s)	39.1	39.1	64.1		1.4		25.0	25.0			5.9	45.0
Actuated g/C Ratio	0.43	0.43	0.71		0.02		0.28	0.28			0.07	0.50
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	730	734	1220		28		953	512			122	791
v/s Ratio Prot	0.12	0.12	c0.13		c0.01		0.12	0.03			c0.03	0.05
v/s Ratio Perm			0.24									0.01
v/c Ratio	0.27	0.27	0.48		0.57		0.44	0.11			0.40	0.12
Uniform Delay, d1	16.3	16.3	5.6		44.0		26.7	24.2			40.4	12.0
Progression Factor	0.55	0.55	7.16		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	0.8	0.8	0.4		16.3		0.4	0.1			2.9	0.1
Delay (s)	9.9	9.8	40.8		60.3		27.2	24.4			43.2	12.1
Level of Service	Α	Α	D		E		С	С			D	В
Approach Delay (s)		30.8			60.3			26.8			18.3	
Approach LOS		С			E			С			В	
Intersection Summary												_
HCM 2000 Control Delay			28.5	HC	CM 2000	Level of S	Service		С			2-04
HCM 2000 Volume to Capa	city ratio		0.51									
Actuated Cycle Length (s)			90.0	Su	m of lost	time (s)			18.6			
Intersection Capacity Utiliza	tion		71.3%	IC	U Level o	f Service			С			
Analysis Period (min)			15									
c Critical Lane Group												


OYPM_Existing Chan.syn

	٠	-	7	*	+	*	1	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻሻ	Ŷ	1	η	11	77	5	†	ኘካ	^	r	
Volume (vph)	72	124	46	176	484	1263	21	176	321	360	105	
Turn Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8	1	5	2	1	6		
Permitted Phases			4			8					6	
Detector Phase	7	4	4	3	8	1	5	2	1	6	6 6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	9.0	23.0	23.0	9.0	23.0	9.0	9.0	23.0	9.0	23.0	23.0	
Total Split (s)	14.0	23.0	23.0	23.0	32.0	38.0	10.0	26.0	38.0	54.0	54.0	
Total Split (%)	12.7%	20.9%	20.9%	20.9%	29.1%	34.5%	9.1%	23.6%	34.5%	49.1%	49.1%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	
	. Curren				-							_

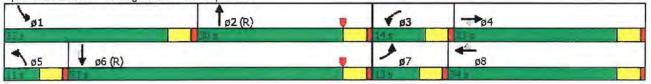
Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 42 (38%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 80 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

Opening	Year (2018) With Proje	ct
	Ti	ming Plan: AM Pe	ak

	٠	-+	7	*	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻሻ	1	7	٦	*	77	٦	仲诤	1.00	55	**	7
Volume (vph)	72	124	46	176	484	1263	21	176	66	321	360	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.96		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3394		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3394		3433	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	78	135	50	191	526	1373	23	191	72	349	391	114
RTOR Reduction (vph)	0	0	44	0	0	302	0	30	0	0	0	56
Lane Group Flow (vph)	78	135	7	191	526	1071	23	233	0	349	391	58
Turn Type	Prot	NA	Perm	Prot	NA	pm+ov	Prot	NA		Prot	NA	Perm
Protected Phases	7	4	1 4111	3	8	1	5	2		1	6	
Permitted Phases			4			8		-				6
Actuated Green, G (s)	6.7	14.3	14.3	17.0	24.6	47.5	2.5	35.8		22.9	56.2	56.2
Effective Green, g (s)	6.7	14.3	14.3	17.0	24.6	47.5	2.5	35.8		22.9	56.2	56.2
Actuated g/C Ratio	0.06	0.13	0.13	0.15	0.22	0.43	0.02	0.33		0.21	0.51	0.51
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	209	242	205	273	791	1330	40	1104	1 1 M	714	1808	808
v/s Ratio Prot	0.02	0.07		c0.11	0.15	c0.17	0.01	0.07		0.10	c0.11	
v/s Ratio Perm			0.00			0.22						0.04
v/c Ratio	0.37	0.56	0.03	0.70	0.66	0.81	0.57	0.21		0.49	0.22	0.07
Uniform Delay, d1	49.6	44.9	41.8	44.1	38.9	27.2	53.2	26.9		38.4	14.8	13.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.1	2.8	0.1	7.6	2.1	3.6	18.4	0.4		0.5	0.3	0.2
Delay (s)	50.8	47.7	41.9	51.7	41.1	30.9	71.7	27.3		38.9	15.1	13.8
Level of Service	D	D	D	D	D	С	E	С		D	В	В
Approach Delay (s)		47.5			35.3			30.9			24.6	
Approach LOS		D			D			С			С	
Intersection Summary			-									
HCM 2000 Control Delay	AT al		33.3	HC	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.63									
Actuated Cycle Length (s)			110.0			t time (s)			20.0			
Intersection Capacity Utiliza	tion		67.0%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												


OYWPAM.syn

	×	-+	7	*	+	*	1	t	1	ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻሻ	A	7	7	个个	17	7	44	17	44	1	
Volume (vph)	131	289	83	71	246	938	33	398	601	332	47	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Prot	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases			4			8					6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Vinimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Vinimum Split (s)	9.0	23.0	23.0	9.0	23.0	23.0	9.0	23.0	9.0	23.0	23.0	
Fotal Split (s)	13.0	33.0	33.0	14.0	34.0	34.0	11.0	30.0	33.0	52.0	52.0	
Total Split (%)	11.8%	30.0%	30.0%	12.7%	30.9%	30.9%	10.0%	27.3%	30.0%	47.3%	47.3%	
(ellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Min	None	C-Min	C-Min	

Intersection Summary

Cycle Length: 110 Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow Natural Cycle: 75 Control Type: Actuated-Coordinated

Splits and Phases: 1: Magnolia Ave & Prospect Ave

Opening	Year	(2018)	With	Project
		Tim	ing Plan	: PM Peak

	٠	-	7	1	+	*	1	1	1	6	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ኘካ	↑	7	7	个个	17	ሻ	谷谷		55	††	7
Volume (vph)	131	289	83	71	246	938	33	398	94	601	332	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lane Util. Factor	0.97	1.00	1.00	1.00	0.95	0.88	1.00	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	1863	1583	1770	3539	2787	1770	3438		3433	3539	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	1863	1583	1770	3539	2787	1770	3438		3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	138	304	87	75	259	987	35	419	99	633	349	49
RTOR Reduction (vph)	0	0	67	0	0	694	0	17	0	0	0	25
Lane Group Flow (vph)	138	304	20	75	259	293	35	501	0	633	349	24
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases	7	4	1 onn	3	8	1 onn	5	2		1	6	1 Olin
Permitted Phases			4			8		-				6
Actuated Green, G (s)	8.6	24.7	24.7	7.6	23.7	23.7	4.2	33.0		24.7	53.5	53.5
Effective Green, g (s)	8.6	24.7	24.7	7.6	23.7	23.7	4.2	33.0		24.7	53.5	53.5
Actuated g/C Ratio	0.08	0.22	0.22	0.07	0.22	0.22	0.04	0.30		0.22	0.49	0.49
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	268	418	355	122	762	600	67	1031		770	1721	769
v/s Ratio Prot	0.04	c0.16		c0.04	0.07		0.02	c0.15		c0.18	0.10	100
v/s Ratio Perm	0.01	00.10	0.01	00.01	0.01	0.11	0.02			00.10	0.10	0.02
v/c Ratio	0.51	0.73	0.06	0.61	0.34	0.49	0.52	0.49		0.82	0.20	0.03
Uniform Delay, d1	48.7	39.5	33.5	49.8	36.5	37.8	51.9	31.6		40.6	16.1	14.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.7	6.2	0.1	8.9	0.3	0.6	7.2	1.6		7.1	0.3	0.1
Delay (s)	50.4	45.7	33.6	58.6	36.8	38.5	59.1	33.2		47.6	16.4	14.8
Level of Service	D	D	C	E	D	D	E	C		D	В	В
Approach Delay (s)		44.9		-	39.3		-	34.8			35.5	1
Approach LOS		D			D			C			D	
		-		_						_	-	-
Intersection Summary HCM 2000 Control Delay			38.3		2M 2000	Level of S	online		D			
HCM 2000 Control Delay HCM 2000 Volume to Capad	ity ratio		0.65	n	JWI 2000	Level of a	bervice		U			
and the second se	aty ratio		110.0	0.	im of lost	time (a)			20.0			
Actuated Cycle Length (s)	lion		67.0%			of Service			20.0 C			
Intersection Capacity Utilizat	lion		15	10	O Level C	Service			U			
Analysis Period (min) c Critical Lane Group			15									

OYWPPM.syn

	-	-	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	**	^	ሻሻ	۴	
Volume (vph)	506	1157	768	70	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	23.0	23.0	23.0	23.0	
Total Split (s)	80.0	80.0	70.0	70.0	
	53.3%	53.3%	46.7%	46.7%	
Yellow Time (s)	4.1	4.1	4.0	4.0	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.5	5.5	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	Min	Min	
ntersection Summary					
Cycle Length: 150					
Actuated Cycle Length: 82.7					
Natural Cycle: 55					
Control Type: Actuated-Uncool	rdinated	51.			

	p a l'iospeci Ave	
→ø2		
80 A		
ф6	1 p8	
HO u		

OYWPAM.syn

	-+	7	*	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^		_	^	ሻሻ	1		
Volume (vph)	506	0	0	1157	768	70		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1			5.6	5.5	5.5		
Lane Util, Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Fit Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Fit Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	550	0	0	1258	835	76		
RTOR Reduction (vph)	0	0	0	0	0	43		
Lane Group Flow (vph)	550	Ő	Ő	1258	835	33		
Turn Type	NA			NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases	-					8		
Actuated Green, G (s)	40.5			41.0	29.9	29.9		
Effective Green, g (s)	40.5			41.0	29.9	29.9		
Actuated g/C Ratio	0.49			0.50	0.36	0.36		
Clearance Time (s)	6.1			5.6	5.5	5.5		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1747		_	1769	1251	577		
v/s Ratio Prot	0.16			c0.36	c0.24			
/s Ratio Perm	0.10					0.02		
v/c Ratio	0.31			0.71	0.67	0.06		
Uniform Delay, d1	12.4			15.9	21.9	16.9		
Progression Factor	1.00			1.00	1.00	1.00		
ncremental Delay, d2	0.1			1.4	1.4	0.0		
Delay (s)	12.5			17.3	23.2	17.0		
Level of Service	B			B	C	B		
Approach Delay (s)	12.5			17.3	22.7			
Approach LOS	B			B	C			
A STATE OF STATE					~			
ntersection Summary			40.4		014 0000	Lauri (C. 2		
HCM 2000 Control Delay			18.1	H	CM 2000	Level of Service	В	
ICM 2000 Volume to Capa	icity ratio		0.70	-		time (-)	11.0	
Actuated Cycle Length (s)			82.0		um of lost		11.6	
ntersection Capacity Utiliza	ation		63.1%	IC	U Level o	of Service	В	
			15					
Analysis Period (min) c Critical Lane Group			15					

OYWPAM.syn

VBT NBL ↑↑ ↑↑ 668 576 NA Prot 6 8 6 8 4.0 4.0 23.0 23.0 80.0 70.0	NBR ↑ 131 Perm 8 8 4.0 23.0 70.0		
668 576 NA Prot 6 8 6 8 4.0 4.0 23.0 23.0	131 Perm 8 8 4.0 23.0		
668 576 NA Prot 6 8 6 8 4.0 4.0 23.0 23.0	Perm 8 8 4.0 23.0		
6 8 6 8 4.0 4.0 23.0 23.0	8 8 4.0 23.0		
6 8 6 8 4.0 4.0 23.0 23.0	8 4.0 23.0		
4.0 4.0 23.0 23.0	8 4.0 23.0		
4.0 4.0 23.0 23.0	4.0 23.0		
23.0 23.0	23.0		
23.0 23.0	23.0		
80.0 70.0	70.0		
	70.0		
.3% 46.7%	46.7%		
4.0 4.0	4.0		
1.0 1.0	1.0		
0.0 0.0	0.0		
5.0 5.0	5.0		
one Min	Min		
	1.0 1.0 0.0 0.0 5.0 5.0	1.0 1.0 1.0 0.0 0.0 0.0 5.0 5.0 5.0	1.0 1.0 1.0 0.0 0.0 0.0 5.0 5.0 5.0

Natural Cycle: 50 Control Type: Actuated-Uncoordinated

Splits and Phases: 2: SR-67 NB Off-Ramp & Prospect Ave

-\$ø2		
10.1		
ø6	80	
nD s	UNS .	

	-	7	*	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	* *			^	ኻኻ	T		
Volume (vph)	1088	0	0	668	576	131		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0			5.0	5.0	5.0		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Flt Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	1157	0	0	711	613	139		
RTOR Reduction (vph)	0	0	0	0	0	33		
Lane Group Flow (vph)	1157	0	0	711	613	106		
Turn Type	NA	_		NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases						8		
Actuated Green, G (s)	30.7			30.7	20.0	20.0		
Effective Green, g (s)	30.7			30.7	20.0	20.0		
Actuated g/C Ratio	0.51			0.51	0.33	0.33		
Clearance Time (s)	5.0			5.0	5.0	5.0		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1789			1789	1131	521		
v/s Ratio Prot	c0.33			0.20	c0.18			
v/s Ratio Perm						0.07		
v/c Ratio	0.65			0.40	0.54	0.20		
Uniform Delay, d1	11.0			9.3	16.6	14.6		
Progression Factor	1.00			1.00	1.00	1.00		
Incremental Delay, d2	0.8			0.1	0.5	0.2		
Delay (s)	11.8			9.4	17.1	14.8		
Level of Service	В			Α	В	В		
Approach Delay (s)	11.8			9.4	16.7			
Approach LOS	В			Α	В			
Intersection Summary								
HCM 2000 Control Delay			12.6	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	city ratio		0.61					
Actuated Cycle Length (s)	10 × 10 × 10		60.7	Su	um of lost	time (s)	10.0	
Intersection Capacity Utiliza	ation		54.8%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	-	7	+	1	1	1	ŧ	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	4	17	4	ኻኻ	P		†	F	
Volume (vph)	249	15	367	8	664	111	4	147	436	
Turn Type	Split	NA	pm+ov	NA	Split	NA	Perm	NA	pm+ov	
Protected Phases	8	8	6	7	6	6		2	8	
Permitted Phases			8				2		2	
Detector Phase	8	8	6	7	6	6	2	2	8	
Switch Phase										
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	40.0	40.0	40.0	21.0	40.0	40.0	40.0	40.0	40.0	
Total Split (s)	45.0	45.0	43.0	21.0	43.0	43.0	41.0	41.0	45.0	
Total Split (%)	30.0%	30.0%	28.7%	14.0%	28.7%	28.7%	27.3%	27.3%	30.0%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3		4.9	4.2	
_ead/Lag	Lag	Lag		Lead					Lag	
Lead-Lag Optimize?	Yes	Yes		Yes					Yes	
Recall Mode	None	None	Min	None	Min	Min	None	None	None	
ntorenation Cummon				-						

Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 87.4 Natural Cycle: 145 Control Type: Actuated-Uncoordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

	₹	170	2.
11	40 :		45 s

Opening Year (2018) With Project Timing Plan: AM Peak

EBL 249 1900 4.2 0.95 1.00 0.95 1681 0.95	EBT 15 1900 4.2 0.95 1.00 0.96 1694	EBR 367 1900 5.3 0.88 0.85 1.00	WBL * j 0 1900	WBT	WBR 5 1900	NBL 11 664	NBT 111	NBR	SBL	SBT	SBR
249 1900 4.2 0.95 1.00 0.95 1681 0.95	15 1900 4.2 0.95 1.00 0.96 1694	367 1900 5.3 0.88 0.85	0	8 1900		664					1
1900 4.2 0.95 1.00 0.95 1681 0.95	1900 4.2 0.95 1.00 0.96 1694	1900 5.3 0.88 0.85		1900			111				
4.2 0.95 1.00 0.95 1681 0.95	4.2 0.95 1.00 0.96 1694	5.3 0.88 0.85	1900		1000			5	4	147	436
0.95 1.00 0.95 1681 0.95	0.95 1.00 0.96 1694	0.88 0.85		4.2	1900	1900	1900	1900	1900	1900	1900
1.00 0.95 1681 0.95	1.00 0.96 1694	0.85				5.3	5.3			4.9	4.2
0.95 1681 0.95	0.96 1694			0.95		0.97	1.00			1.00	1.00
0.95 1681 0.95	1694			0.95		1.00	0.99			1.00	0.85
1681 0.95		1.00		1.00		0.95	1.00			1.00	1.00
0.95	1000	2787		1675		3433	1852			1860	1583
	0.96	1.00		1.00		0.95	1.00			0.57	1.00
1681	1694	2787		1675		3433	1852			1061	1583
			0.92		0.92			0.92	0.92		0.92
											474
							1				189
							125				285
											pm+ov
8			7			6					8
									2	-	2
16.7	16.7			2.1		31.9	31.9		-	19.7	36.4
											36.4
											0.41
											4.2
											3.0
315		1521		39		1230					722
				c0.01						1997	0.07
							4147			c0.15	0.11
0.46	0.45			0.23		0.59	0.19				0.40
											18.5
											1.00
	1.0	0.1		1.1		0.8	0.2				0.4
											18.9
		В									В
	В			D			С				
			_	-							-
_		22.0	Ц	NA 2000 I	ovel of C			0			
ralla			п	JM 2000 1	Level of 3	ervice		U			
ratio			0.	flast	time (a)			40.0			
n			IC	U Level o	Service			В			
		15									
	16.7 16.7 0.19 4.2 3.0 315 c0.09 0.46 32.1 1.00 1.1 33.2 C	0.92 0.92 271 16 0 0 144 143 Split NA 8 8 16.7 16.7 16.7 16.7 16.7 16.7 0.19 0.19 4.2 4.2 3.0 3.0 315 317 c0.09 0.08 0.46 0.45 32.1 32.1 1.00 1.00 1.1 1.0 33.2 33.1 C C 19.7 B ratio	0.92 0.92 0.92 271 16 399 0 0 181 144 143 218 Split NA pm+ov 8 8 6 16.7 16.7 48.6 16.7 16.7 48.6 16.7 16.7 48.6 16.7 16.7 48.6 0.19 0.19 0.55 4.2 4.2 5.3 3.0 3.0 3.9 315 317 1521 c0.09 0.08 0.05 0.03 0.46 0.45 0.14 32.1 32.1 9.9 1.00 1.00 1.00 1.00 1.1 1.0 0.1 33.2 33.1 10.0 C C B 19.7 B 22.8 ratio 0.58 89.0	0.92 0.92 0.92 0.92 271 16 399 0 0 0 181 0 144 143 218 0 Split NA pm+ov Split 8 8 6 7 8 8 6 7 8 8 6 7 8 8 6 7 8 8 6 7 8 8 6 7 8 3 6 7 8 3 6 7 8 3 6 7 8 3 6 7 8 3 6 7 8 0.19 0.55 4.2 4.2 4.2 5.3 3.0 3.0 3.0 3.9 0.03 0.46 0.45 0.14 33.2 3.1 1.00 1.00<	0.92 0.92 0.92 0.92 0.92 271 16 399 0 9 0 0 181 0 5 144 143 218 0 9 Split NA pm+ov Split NA 8 8 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 2.1 NA 16.7 16.7 48.6 2.1 10.19 0.19 0.19 0.55 0.02 4.2 3.2 4.2 4.2 5.3 4.2 3.9 2.0 315 317 1521 39 2.0 32.1 32.1 9.9 42.7 1.00 1.00 1.00 1.00 1.00 1.1 33.2 33.1	0.92 0.91 0.91 0 16 0 9 0 144 143 218 0 9 0 Split NA pm+ov Split NA 8 8 6 7 7 8 16.7 16.7 48.6 2.1 0.19 0.19 0.55 0.02 4.2 4.2 5.3 4.2 3.0 3.0 3.9 2.0 315 317 1521 39 2.0 315 317 1521 39 2.0 315 317 1521 39 2.0 32.1 32.1 32.1 32.1 9.9 42.7 1.00 1.00 1.00 1.1 33.2 33.1 10.0 43.8 B D	0.92 0 0 122 0 0 0 144 143 218 0 9 0 722 Split NA pm+ov Split NA pm+ov Split NA Split Split NA Split Split NA Split Sp	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 121 0 0 181 0 5 0 0 1 144 143 218 0 9 0 722 125 Split NA pm+ov Split NA Split NA 8 8 6 7 7 6 6 8 16.7 16.7 48.6 2.1 31.9 31.9 0.19 0.19 0.55 0.02 0.36 0.36 4.2 4.2 5.3 4.2 5.3 5.3 3.0 3.0 3.9 2.0 3.9 3.9 315 317 1521 39 1230 663 c0.09 0.08 0.05 c0.01 c0.21 0.07 0.33 0.31 1.00 1.00	0.92 0.93 <th< td=""><td>0.92 0.93 0.93 <th< td=""><td>0.92 <th< td=""></th<></td></th<></td></th<>	0.92 0.93 0.93 <th< td=""><td>0.92 <th< td=""></th<></td></th<>	0.92 0.92 <th< td=""></th<>

	٠	-	7	1	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	5	÷.	77	٦	4	ካካ	Þ	4	7	
Volume (vph)	433	12		5	10	395	104	95	258	
Turn Type	Split	NA	pm+ov	Split	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	7	6	6	2	8	
Permitted Phases			8						2	
Detector Phase	8	8	6	7	7	6	6	2	8	
Switch Phase										
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	40.0	40.0	40.0	21.0	21.0	40.0	40.0	40.0	40.0	
Total Split (s)	45.0	45.0	43.0	21.0	21.0	43.0	43.0	41.0	45.0	
Total Split (%)	30.0%	30.0%	28.7%	14.0%	14.0%	28.7%	28.7%	27.3%	30.0%	
Yellow Time (s)	3.2	3.2	4.3	3.2	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lag	Lag		Lead	Lead				Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes				Yes	
Recall Mode	None									
			-	_			_	_		

Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 76.8 Natural Cycle: 145 Control Type: Actuated-Uncoordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

N	▲ ↑	1	1.	
▼*ø2	₩ ø6	V Ø7	08	
41.0		211	45.1	

Opening Year (2018) With Project Timing Plan: PM Peak

	1	-	7	*	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	र्स	17	٦	\$		ሻሻ	f,			4	1
Volume (vph)	433	12	769	5	10	3	395	104	4	3	95	258
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3	4.2	4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88	0.95	0.95		0.97	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.97		1.00	0.99			1.00	0.85
Flt Protected	0.95	0.95	1.00	0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1690	2787	1681	1711		3433	1853			1860	1583
FIt Permitted	0.95	0.95	1.00	0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1690	2787	1681	1711		3433	1853			1860	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	461	13	818	5	11	3	420	111	4	3	101	274
RTOR Reduction (vph)	0	0	307	0	3	0	0	1	0	0	0	173
Lane Group Flow (vph)	235	239	511	4	12	0	420	114	0	0	104	101
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA		Split	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases			8									2
Actuated Green, G (s)	20,0	20.0	49.5	2.0	2.0		29.5	29.5			9.1	29.1
Effective Green, g (s)	20.0	20.0	49.5	2.0	2.0		29.5	29.5			9.1	29.1
Actuated g/C Ratio	0.25	0.25	0.62	0.03	0.03		0.37	0.37			0.11	0.37
Clearance Time (s)	4.2	4.2	5.3	4.2	4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9	2.0	2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	424	426	1741	42	43		1278	690			213	665
v/s Ratio Prot	0.14	c0.14	0.11	0.00	c0.01		c0.12	0.06			c0.06	0.04
v/s Ratio Perm			0.07									0.03
v/c Ratio	0.55	0.56	0.29	0.10	0.28		0.33	0.17			0.49	0.15
Uniform Delay, d1	25.7	25.8	6.8	37.7	37.9		17.8	16.6			32.9	16.8
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	1.6	1.7	0.1	0.4	1.3		0.2	0.2			2.3	0.1
Delay (s)	27.3	27.5	6.9	38.1	39.2		18.0	16.8			35.2	16.9
Level of Service	С	С	Α	D	D		В	В			D	В
Approach Delay (s)		14.4			39.0			17.7			21.9	
Approach LOS		В			D			В			С	
Intersection Summary		-							_			
HCM 2000 Control Delay			16.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.43									
Actuated Cycle Length (s)	A CONTRACT		79.2	S	um of lost	time (s)			18.6			
Intersection Capacity Utilizat	ion		50.6%		U Level o				A			
Analysis Period (min)			15		13-07-1							
Critical Lane Group												

	٠	7	1	1	+	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		7	1	≜ ⊅		
Volume (veh/h)	33	184	201	163	402	35	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	36	200	218	177	437	38	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)					Verie.		
Upstream signal (ft)				227			
pX, platoon unblocked							
vC, conflicting volume	1070	238	475				
vC1, stage 1 conf vol	201.0		1 996				
vC2, stage 2 conf vol							
vCu, unblocked vol	1070	238	475				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	79	74	80				
cM capacity (veh/h)	172	764	1083				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	236	218	177	291	184		
Volume Left	36	218	0	0	0		
Volume Right	200	0	0	0	38		
cSH	502	1083	1700	1700	1700		
Volume to Capacity	0.47	0.20	0.10	0.17	0.11		
Queue Length 95th (ft)	62	19	0	0	0		
Control Delay (s)	18.4	9.2	0.0	0.0	0.0		
Lane LOS	С	А					
Approach Delay (s)	18.4	5.1		0.0			
Approach LOS	С						
ntersection Summary							
Average Delay	tion		5.7 46.5%	10	U Level o	Convice	٥
Intersection Capacity Utiliza Analysis Period (min)	uon		40.5%	iC	U Level 0	Service	А

OYWPAM.syn

	۶	7	1	1	+	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		٢	Ť	♠₽		
Volume (veh/h)	22	126	131	409	229	23	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	24	137	142	445	249	25	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)				227			
pX, platoon unblocked	0.99						
vC, conflicting volume	991	137	274				
vC1, stage 1 conf vol			210				
vC2, stage 2 conf vol							
vCu, unblocked vol	983	137	274				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)		10.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	89	85	89				
cM capacity (veh/h)	215	886	1286				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
/olume Total	161	142	445	166	108		
Volume Left	24	142	0	0	0		
Volume Right	137	0	0	0	25		
SH	606	1286	1700	1700	1700		
Volume to Capacity	0.27	0.11	0.26	0.10	0.06		
Queue Length 95th (ft)	27	9	0	0	0		
Control Delay (s)	13.1	8.1	0.0	0.0	0.0		
Lane LOS	В	А					
Approach Delay (s)	13.1	2.0		0.0			
Approach LOS	В						
ntersection Summary							
Average Delay			3.2			ALL ST	
Intersection Capacity Utilization	ř.		37.2%	IC	U Level o	f Service	А
Analysis Period (min)			15				

OYWPPM.syn

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	^	11	ኘኘ	1	A second s
Volume (vph)	506	1157	768	70	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	24.0	23.0	23.0	23.0	
Total Split (s)	56.0	56.0	34.0	34.0	
Total Split (%)	62.2%	62.2%	37.8%	37.8%	
Yellow Time (s)	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Min	Min	
Intersection Summary					
Cycle Length: 90					
Actuated Cycle Length: 9	0				
Offset: 87 (97%), Referen	nced to phase	2:EBT a	nd 6:WB1	, Start of Y	ellow
Natural Cycle: 55					
Control Type: Actuated-C	oordinated				
Splits and Phases: 2: S	SR-67 NB Off	-Ramp &	Prospect	Ave	
-•• \$\$2 (R)					
56.5					
+					
ø6 (R)			_		108

	-+	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Group Flow (vph)	538	1231	817	74	
v/c Ratio	0.26	0.59	0.83	0.15	
Control Delay	10.1	11.2	37.9	6.5	
Queue Delay	0.0	25.4	0.0	0.0	
Total Delay	10.1	36.6	37.9	6.5	
Queue Length 50th (ft)	75	330	218	0	
Queue Length 95th (ft)	108	m377	282	30	
Internal Link Dist (ft)	544	112	431		
Turn Bay Length (ft)				200	
Base Capacity (vph)	2062	2081	1083	550	
Starvation Cap Reductn	0	896	0	0	
Spillback Cap Reductn	15	0	0	0	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.26	1.04	0.75	0.13	

m Volume for 95th percentile queue is metered by upstream signal.

OYWPAM_Proposed Chan.syn

	-	7	1	+-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† †			††	ካካ	1		
Volume (vph)	506	0	0	1157	768	70		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1		1.4.2.07	5.6	5.6	5.6		
Lane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Flt Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	538	0	0	1231	817	74		
RTOR Reduction (vph)	0	0	0	0	0	53		
Lane Group Flow (vph)	538	0	0	1231	817	21		
Turn Type	NA			NA	Prot	Perm		
Protected Phases	2			6	8			
Permitted Phases	-					8		
Actuated Green, G (s)	52.4			52.9	25.9	25.9		
Effective Green, g (s)	52.4			52.9	25.9	25.9		
Actuated g/C Ratio	0.58			0.59	0.29	0.29		
Clearance Time (s)	6.1			5.6	5.6	5.6		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	2060			2080	987	455		
v/s Ratio Prot	0.15			c0.35	c0.24			
v/s Ratio Perm						0.01		
v/c Ratio	0.26			0.59	0.83	0.05		
Uniform Delay, d1	9.3			11.7	30.0	23.1		
Progression Factor	1.00			0.83	1.00	1.00		
Incremental Delay, d2	0.3			0.9	5.8	0.0		
Delay (s)	9.6			10.6	35.8	23.2		
Level of Service	А			В	D	С		
Approach Delay (s)	9.6			10.6	34.7			
Approach LOS	А			В	С			
Intersection Summary								
HCM 2000 Control Delay			18.5	Н	CM 2000	Level of Service	B	
HCM 2000 Volume to Capa	city ratio		0.67					
Actuated Cycle Length (s)	1		90.0	S	um of lost	time (s)	11.7	
Intersection Capacity Utiliza	ation		63.2%	IC	U Level o	of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

c Critical Lane Group

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Configurations	† †	^	ኘካ	1	
Volume (vph)	1088	668	576	131	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	8		
Permitted Phases				8	
Detector Phase	2	6	8	8	
Switch Phase					
Minimum Initial (s)	13.0	10.0	5.0	5.0	
Minimum Split (s)	24.0	23.0	23.0	23.0	
Total Split (s)	56.0	56.0	34.0	34.0	
Total Split (%)	62.2%	62.2%	37.8%	37.8%	
Yellow Time (s)	4.1	4.1	4.1	4.1	
All-Red Time (s)	2.0	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	5.6	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Min	Min	
Intersection Summary					
Cycle Length: 90					
Actuated Cycle Length: 9	0				
Offset: 87 (97%), Referen	nced to phase	2:EBT a	nd 6:WB1	, Start of Y	'ellow
Natural Cycle: 50					
Control Type: Actuated-C	oordinated				
Splits and Phases: 2: S	SR-67 NB Off	-Ramp &	Prospect	Ave	
-0 g2 (R)					
56.5					
+					
ø6 (R)					V 08

	-	+	1	1	
Lane Group	EBT	WBT	NBL	NBR	
Lane Group Flow (vph)	1157	711	613	139	
v/c Ratio	0.52	0.32	0.74	0.32	
Control Delay	11.0	6.5	36.6	16.1	
Queue Delay	0.1	1.0	0.0	0.0	
Total Delay	11.1	7.5	36.6	16.1	
Queue Length 50th (ft)	174	151	165	32	
Queue Length 95th (ft)	269	51	205	75	
Internal Link Dist (ft)	544	70	431		
Turn Bay Length (ft)				200	
Base Capacity (vph)	2219	2238	1083	545	
Starvation Cap Reductn	0	1189	0	0	
Spillback Cap Reductn	189	0	0	3	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.57	0.68	0.57	0.26	

OYWPPM_Proposed Chan.syn

	-	7	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		-
Lane Configurations	† †		_	† †	ሻሻ	1		
Volume (vph)	1088	0	0	668	576	131		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1			5.6	5.6	5.6		
ane Util. Factor	0.95			0.95	0.97	1.00		
Frt	1.00			1.00	1.00	0.85		
Fit Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	3539			3539	3433	1583		
Fit Permitted	1.00			1.00	0.95	1.00		
Satd. Flow (perm)	3539			3539	3433	1583		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	1157	0.54	0.54	711	613	139		
RTOR Reduction (vph)	0	0	0	0	0	51		
ane Group Flow (vph)	1157	0	0	711	613	88		
Turn Type	NA	0	0	NA	Prot	Perm		
Protected Phases	2			6	8	reini		
Permitted Phases	2			U	U	8		
ctuated Green, G (s)	56.4			56.9	21.9	21.9		
the set of	56.4			56.9	21.9	21.9		
ffective Green, g (s)	0.63			0.63	0.24	0.24		
ctuated g/C Ratio	6.1			5.6	5.6	5.6		
Clearance Time (s)								
ehicle Extension (s)	3.0			3.0	3.0	3.0		-
ane Grp Cap (vph)	2217			2237	835	385		
/s Ratio Prot	c0.33			0.20	c0.18			
/s Ratio Perm						0.06		
/c Ratio	0.52			0.32	0.73	0.23		
Iniform Delay, d1	9.3			7.6	31.4	27.3		
Progression Factor	1.00			0.75	1.00	1.00		
ncremental Delay, d2	0.9			0.3	3.4	0.3		
Delay (s)	10.2			6.0	34.7	27.6		
evel of Service	В			A	С	С		
pproach Delay (s)	10.2			6.0	33.4			
Approach LOS	В			A	С			
ntersection Summary								
ICM 2000 Control Delay			15.7	Н	CM 2000	Level of Service	В	
ICM 2000 Volume to Capa	city ratio		0.58					
ctuated Cycle Length (s)			90.0	S	um of lost	time (s)	11.7	
tersection Capacity Utiliza	tion		56.3%			of Service	В	
nalysis Period (min)			15			1040007	-	
Critical Lane Group			10					

	٦	-	>	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	4	17	4	ሻ	4	4	1	
Volume (vph)	249	15	367	8	664	111	147	436	
Тигп Туре	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	39.0	39.0	24.0	14.0	24.0	24.0	13.0	39.0	
Total Split (%)	43.3%	43.3%	26.7%	15.6%	26.7%	26.7%	14.4%	43.3%	
fellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
ead/Lag	Lead	Lead		Lag				Lead	
ead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	
		_		_	_		_		

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection Natural Cycle: 85 Control Type: Actuated-Coordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

102	\$ 06	108 (R)	• 7 ø7
13 5	24 s	39 s	14.9

	٠	+	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	140	141	390	14	409	420	160	464	
v/c Ratio	0.22	0.22	0.19	0.10	0.90	0.91	0.55	0.43	
Control Delay	12.2	12.2	0.2	32.6	57.8	58.8	43.7	3.4	
Queue Delay	1.5	1.5	0.2	0.0	52.4	51.7	0.0	0.0	
Total Delay	13.7	13.7	0.5	32.6	110.2	110.5	43.7	3.4	
Queue Length 50th (ft)	54	54	0	5	233	240	83	26	
Queue Length 95th (ft)	103	103	0	24	#481	#498	#180	52	
Internal Link Dist (ft)	-	112		31	-	329	171	-	
Turn Bay Length (ft)					225				
Base Capacity (vph)	649	655	2078	197	455	463	292	1073	
Starvation Cap Reductn	358	363	1015	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	186	189	0	38	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.48	0.48	0.37	0.07	1.52	1.53	0.55	0.45	
Intersection Summary									

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

OYWPAM_Proposed Chan.syn

Opening Year With Project (Prop. Geometrics) Timing Plan: AM Peak

	٠	-	7	1	+-	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	5	र्स	17		4		1	÷		-	Æ	1
Volume (vph)	249	15	367	0	8	5	664	111	5	4	147	436
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88		1.00		0.95	0.95			1.00	1.00
Frt	1.00	1.00	0.85		0.95		1.00	1.00			1.00	0.85
Flt Protected	0.95	0.96	1.00		1.00		0.95	0.97			1.00	1.00
Satd. Flow (prot)	1681	1694	2787		1773		1681	1706			1860	1583
Flt Permitted	0.95	0.96	1.00		1.00		0.95	0.97			1.00	1.00
Satd. Flow (perm)	1681	1694	2787		1773		1681	1706			1860	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	265	16	390	0	9	5	706	118	5	4	156	464
RTOR Reduction (vph)	0	0	148	0	5	0	0	1	0	0	0	170
Lane Group Flow (vph)	140	141	242	0	9	0	409	419	0	0	160	294
Turn Type	Split	NA	pm+ov		NA		Split	NA		Split	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases	°.		8	-						-	-	2
Actuated Green, G (s)	31.4	31.4	55.8		1.4		24.4	24.4			14.2	45.6
Effective Green, g (s)	31.4	31.4	55.8		1.4		24.4	24.4			14.2	45.6
Actuated g/C Ratio	0.35	0.35	0.62		0.02		0.27	0.27			0.16	0.51
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	586	591	1892		27		455	462			293	802
v/s Ratio Prot	0.08	0.08	0.03		c0.01		0.24	c0.25			c0.09	c0.13
v/s Ratio Perm	0.00	0.00	0.05		00.01		ULT	UUILU			00.00	0.06
v/c Ratio	0.24	0.24	0.13		0.34		0.90	0.91			0.55	0.37
Uniform Delay, d1	20.8	20.8	7.1		43.8		31.6	31.7			34.9	13.5
Progression Factor	0.61	0.61	0.04		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	0.9	0.9	0.0		2.7		20.5	21.6			2.5	0.4
Delay (s)	13.6	13.6	0.3		46.5		52.1	53.3			37.5	13.8
Level of Service	B	B	A		D		D	D			D	B
Approach Delay (s)		5.9			46.5			52.7			19.9	-
Approach LOS		A			D			D			B	
Intersection Summary			_								-	_
HCM 2000 Control Delay			28.4	H	CM 2000	Level of S	Service		С		-	
HCM 2000 Volume to Capac	ity ratio		0.59									
Actuated Cycle Length (s)	ing rudo		90.0	S	m of lost	time (s)			18.6			
Intersection Capacity Utilizat	ion		65.7%		U Level o				C			
Analysis Period (min)			15	10	C LOTOI O	0011100			U.			
c Critical Lane Group			10									

OYWPAM_Proposed Chan.syn

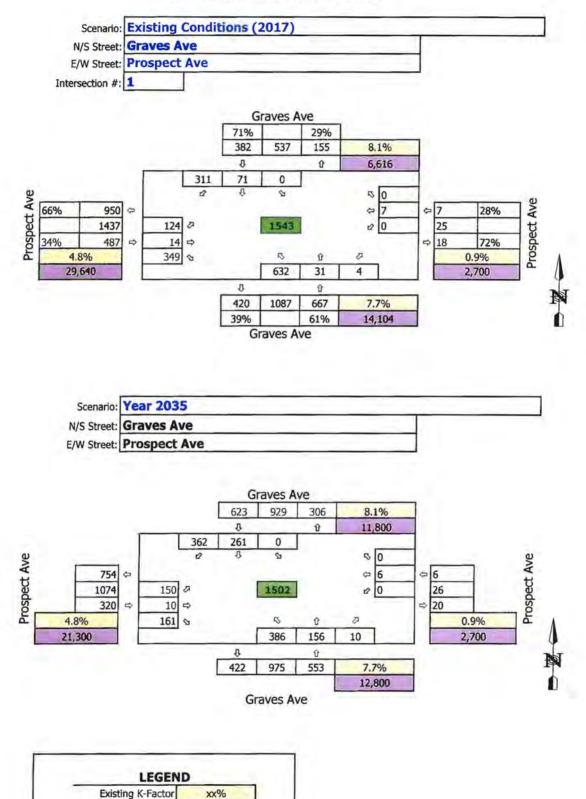
	٦	-	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	٢	4	17	4	5	4	4	1	
Volume (vph)	433	12	769	10	395	104	95	258	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	. 8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	35.0	35.0	24.0	18.0	24.0	24.0	13.0	35.0	
Total Split (%)	38.9%	38.9%	26.7%	20.0%	26.7%	26.7%	14.4%	38.9%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lead	Lead		Lag				Lead	
Lead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	
standation Commences		_	_	-			_		

Intersection Summary

Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection Natural Cycle: 85 Control Type: Actuated-Coordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

₽ø2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	# 108 (R)	₹ø7
135	245	35.5	18 5


	٦	-+	7	+	1	1	t	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	235	239	818	19	265	270	104	274	
v/c Ratio	0.32	0.32	0.36	0.13	0.61	0.61	0.44	0.27	
Control Delay	13.8	13.8	0.4	36.8	37.6	37.2	41.8	1.5	
Queue Delay	1.1	1.1	0.2	0.0	6.9	6.4	0.0	0.0	
Total Delay	14.9	14.9	0.6	36.8	44.5	43.7	41.8	1.6	
Queue Length 50th (ft)	107	109	0	9	118	121	56	0	
Queue Length 95th (ft)	181	184	0	30	#272	#274	101	21	
Internal Link Dist (ft)		70		31	A STORE	339	147		
Turn Bay Length (ft)					225				
Base Capacity (vph)	732	736	2274	278	432	442	236	1019	
Starvation Cap Reductn	298	298	574	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	121	123	0	29	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.55	0.48	0.07	0.85	0.85	0.44	0.28	

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

OYWPPM_Proposed Chan.syn

	٦	-	7	*	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	A	17	1	4		7	4.			Ą	7
Volume (vph)	433	12	769	5	10	3	395	104	4	3	95	258
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88		1.00		0.95	0.95			1.00	1.00
Frt	1.00	1.00	0.85		0.98		1.00	1.00			1.00	0.85
Fit Protected	0.95	0.95	1.00		0.99		0.95	0.97			1.00	1.00
Satd. Flow (prot)	1681	1690	2787		1799		1681	1716			1860	1583
Flt Permitted	0.95	0.95	1.00		0.99		0.95	0.97			1.00	1.00
Satd. Flow (perm)	1681	1690	2787		1799		1681	1716			1860	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	461	13	818	5	11	3	420	111	4	3	101	274
RTOR Reduction (vph)	0	0	284	0	3	0	0	1	0	0	0	135
Lane Group Flow (vph)	235	239	534	0	16	0	265	269	0	0	104	139
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA		Split	NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases			8									2
Actuated Green, G (s)	35.7	35.7	58.8		2.8		23.1	23.1			9.8	45.5
Effective Green, g (s)	35.7	35.7	58.8		2.8		23.1	23.1			9.8	45.5
Actuated g/C Ratio	0.40	0.40	0.65		0.03		0.26	0.26			0.11	0.51
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	666	670	1984		55		431	440		-	202	800
v/s Ratio Prot	0.14	c0.14	0.07		c0.01		c0.16	0.16			c0.06	0.07
v/s Ratio Perm			0.12									0.02
v/c Ratio	0.35	0.36	0.27		0.29		0.61	0.61			0.51	0.17
Uniform Delay, d1	19.0	19.1	6.6		42.6		29.5	29.5			37.9	12.1
Progression Factor	0.62	0.62	0.01		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	1.3	1.3	0.1		1.1		2.9	2.8			2.9	0.1
Delay (s)	13.1	13.2	0.2		43.7		32.5	32.3			40.7	12.2
Level of Service	В	В	A		D		С	С			D	В
Approach Delay (s)		4.9			43.7			32.4			20.0	
Approach LOS		Α			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			14.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.46									
Actuated Cycle Length (s)			90.0	SL	um of lost	time (s)			18.6			
Intersection Capacity Utiliza	tion		50.6%	IC	U Level o	f Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

OYWPPM_Proposed Chan.syn

Int 1 AM Peak Volumes

ADT Volume

XX

Year 2035 With Project (Prop. Geometrics) Timing Plan: AM Peak

	٦	-	7	+-	1	t	ŧ	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	1	4	11	4	٦	4	र्भ	1	
Volume (vph)	150	10	161	6	386	156	261	362	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	25.8	25.8	34.0	25.2	34.0	34.0	20.0	25.8	
Total Split (%)	24.6%	24.6%	32.4%	24.0%	32.4%	32.4%	19.0%	24.6%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lead	Lead		Lag				Lead	
Lead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	
Intersection Summary									
Cycle Length: 105 Actuated Cycle Length: Offset: 0 (0%), Reference		EBTL, SI	art of Yell	ow, Mast	er Interse	ction			

₩ø2	\$ ø6	\$ (R)	7 07
20.9	200	35.8 a	25.23

C-58

	٦	-	7	+-	1	1	ŧ	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	٦	र्स	17	4	7	4	र्स	1	
Traffic Volume (vph)	202	10	161	8	386	190	271	410	
Future Volume (vph)	202	10	161	8	386	190	271	410	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Vinimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Vinimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	25.8	25.8	34.0	25.2	34.0	34.0	20.0	25.8	
Total Split (%)	24.6%	24.6%	32.4%	24.0%	32.4%	32.4%	19.0%	24.6%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
_ead/Lag	Lead	Lead		Lag				Lead	
ead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	

Cycle Length: 105

Actuated Cycle Length: 105

Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection

Natural Cycle: 85

Control Type: Actuated-Coordinated

Splits and Phases: 3: Graves Ave & Prospect Ave

Ø2	\$ Ø6	28 (R)	707
Di I	- Abba		

	۶	-	7	1	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	સ	77		4		7	4			4	7
Traffic Volume (vph)	202	10	161	0	8	0	386	190	10	0	271	410
Future Volume (vph)	202	10	161	0	8	0	386	190	10	0	271	410
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88		1.00		0.95	0.95			1.00	1.00
Frt	1.00	1.00	0.85		1.00		1.00	0.99			1.00	0.85
Fit Protected	0.95	0.96	1.00		1.00		0.95	0.98			1.00	1.00
Satd. Flow (prot)	1681	1693	2787		1863		1681	1732			1863	1583
Flt Permitted	0.95	0.96	1.00		1.00		0.95	0.98			1.00	1.00
Satd. Flow (perm)	1681	1693	2787		1863		1681	1732			1863	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	215	11	171	0	9	0	411	202	11	0	288	436
RTOR Reduction (vph)	0	0	76	0	0	0	0	2	0	0	0	192
Lane Group Flow (vph)	112	114	95	0	9	0	308	314	0	0	288	244
Turn Type	Split	NA	pm+ov		NA		Split	NA			NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	. 8
Permitted Phases			8									2
Actuated Green, G (s)	32.0	32.0	58.2		1.4		26.2	26.2			26.8	58.8
Effective Green, g (s)	32.0	32.0	58.2		1.4		26.2	26.2			26.8	58.8
Actuated g/C Ratio	0.30	0.30	0.55		0.01		0.25	0.25			0.26	0.56
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	512	515	1685		24		419	432			475	886
v/s Ratio Prot	0.07	0.07	0.01		c0.00		c0.18	0.18			c0.15	c0.08
v/s Ratio Perm			0.02		100		1000					0.07
v/c Ratio	0.22	0.22	0.06		0.38		0.74	0.73			0.61	0.28
Uniform Delay, d1	27.2	27.2	10.8		51.4		36.2	36.1			34.5	12.0
Progression Factor	1.00	1.00	1.00		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	1.0	1.0	0.0		3.6		7.0	6.4			2.5	0.2
Delay (s)	28.2	28.2	10.8		54.9		43.2	42.5			36.9	12.2
Level of Service	С	С	В		D		D	D			D	В
Approach Delay (s)		20.7			54.9			42.8			22.1	
Approach LOS		С			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			29.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.52									
Actuated Cycle Length (s)			105.0	Su	um of lost	time (s)			18.6			
Intersection Capacity Utiliza	tion		58.6%	IC	U Level o	f Service	£		В			
Analysis Period (min)			15									
the second se												

c Critical Lane Group

	1	-	7	+	1	1	+	1	
Lane Group	EBL	EBT	EBR	WBT	NBL	NBT	SBT	SBR	
Lane Configurations	7	र्च	77	4	٦	4	र्स	1	
Traffic Volume (vph)	424	6	416	4	179	246	232	210	
Future Volume (vph)	424	6	416	4	179	246	232	210	
Turn Type	Split	NA	pm+ov	NA	Split	NA	NA	pm+ov	
Protected Phases	8	8	6	7	6	6	2	8	
Permitted Phases			8					2	
Detector Phase	8	8	6	7	6	6	2	8	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	25.2	25.2	22.3	25.2	22.3	22.3	11.9	25.2	
Total Split (s)	35.0	35.0	24.0	18.0	24.0	24.0	13.0	35.0	
Total Split (%)	38.9%	38.9%	26.7%	20.0%	26.7%	26.7%	14.4%	38.9%	
Yellow Time (s)	3.2	3.2	4.3	3.2	4.3	4.3	3.9	3.2	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.2	4.2	5.3	4.2	5.3	5.3	4.9	4.2	
Lead/Lag	Lead	Lead		Lag				Lead	
Lead-Lag Optimize?	Yes	Yes		Yes				Yes	
Recall Mode	C-Max	C-Max	Min	None	Min	Min	None	C-Max	

Intersection Summary

Cycle Length: 90

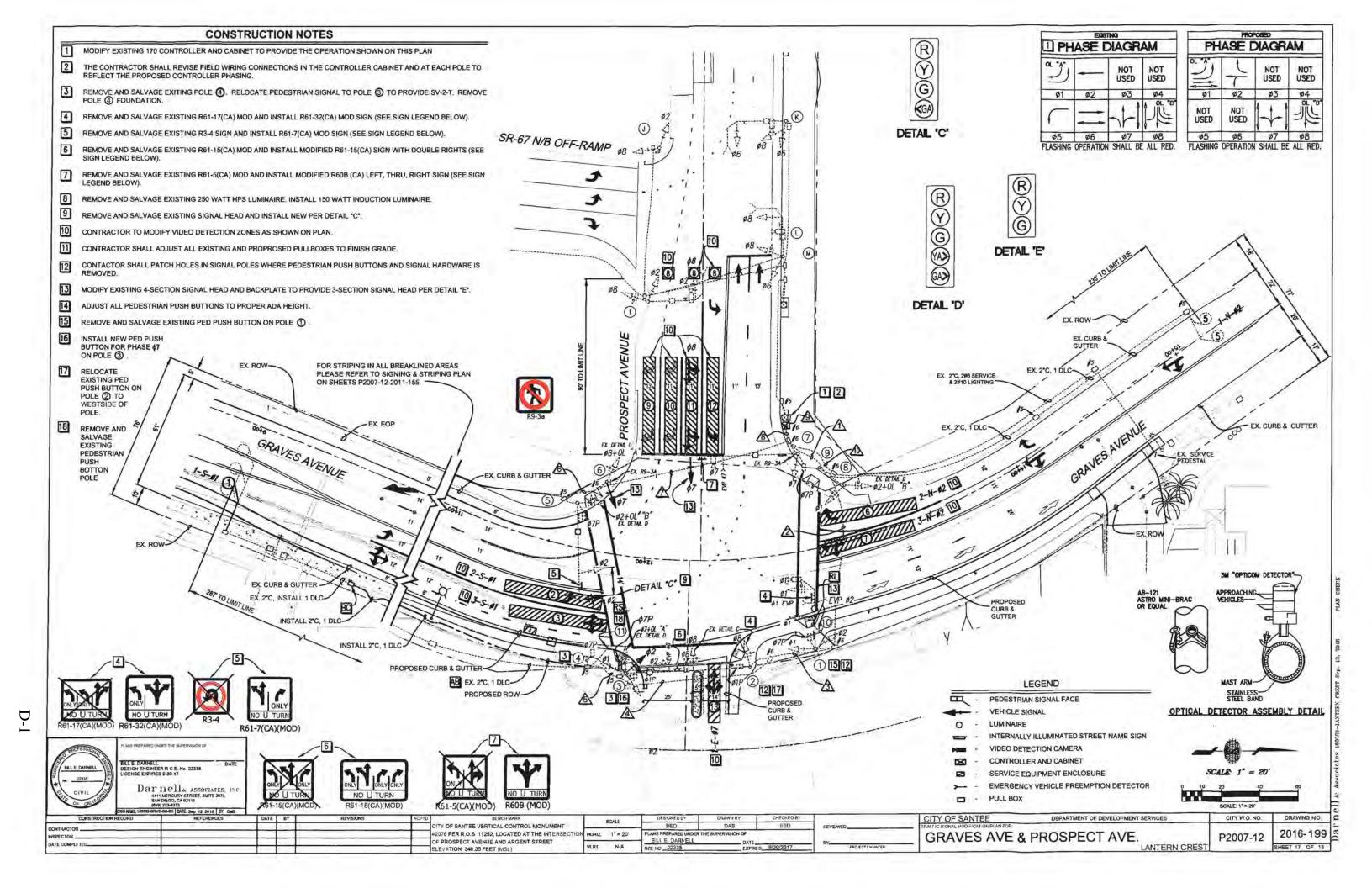
Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 8:EBTL, Start of Yellow, Master Intersection

Natural Cycle: 85

Control Type: Actuated-Coordinated

Splits and Phases: 3: Graves Ave & Prospect Ave


102	\$ Ø6	208 (R)	▼ø7
dia	iki .		

	1	-	7	1	+	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	77		4		1	4	_		A	1
Traffic Volume (vph)	424	6	416	69	4	0	179	246	77	0	232	210
Future Volume (vph)	424	6	416	69	4	0	179	246	77	0	232	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Lane Util. Factor	0.95	0.95	0.88		1.00		0.95	0.95			1.00	1.00
Frt	1.00	1.00	0.85		1.00		1.00	0.97			1.00	0.85
Flt Protected	0.95	0.95	1.00		0.95		0.95	1.00			1.00	1.00
Satd. Flow (prot)	1681	1687	2787		1778		1681	1705			1863	1583
Flt Permitted	0.95	0.95	1.00		0.95		0.95	1.00			1.00	1.00
Satd. Flow (perm)	1681	1687	2787		1778		1681	1705			1863	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	451	6	443	73	4	0	190	262	82	0	247	223
RTOR Reduction (vph)	0	0	204	0	0	0	0	12	0	0	0	111
Lane Group Flow (vph)	230	227	239	0	77	0	171	351	0	0	247	112
Turn Type	Split	NA	pm+ov	Split	NA		Split	NA	-		NA	pm+ov
Protected Phases	8	8	6	7	7		6	6		2	2	8
Permitted Phases			8									2
Actuated Green, G (s)	29.9	29.9	48.6		7.4		18.7	18.7			15.4	45.3
Effective Green, g (s)	29.9	29.9	48.6		7.4		18.7	18.7			15.4	45.3
Actuated g/C Ratio	0.33	0.33	0.54		0.08		0.21	0.21			0.17	0.50
Clearance Time (s)	4.2	4.2	5.3		4.2		5.3	5.3			4.9	4.2
Vehicle Extension (s)	3.0	3.0	3.9		2.0		3.9	3.9			3.9	3.0
Lane Grp Cap (vph)	558	560	1669		146		349	354			318	796
v/s Ratio Prot	c0.14	0.13	0.03		c0.04		0.10	c0.21			c0.13	0.05
v/s Ratio Perm			0.06								11111	0.02
v/c Ratio	0.41	0.41	0.14		0.53		0.49	0.99			0.78	0.14
Uniform Delay, d1	23.3	23.2	10.3		39.6		31.4	35.6			35.7	11.9
Progression Factor	0.66	0.66	0.17		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	2.0	1.9	0.0		1.6		1.4	45.5			11.9	0.1
Delay (s)	17.4	17.2	1.8		41.2		32.9	81.1			47.5	12.1
Level of Service	В	В	A		D		С	F		-	D	В
Approach Delay (s)		9.7			41.2			65.6			30.7	
Approach LOS		A			D			E			С	
Inforce data Countri <mark>ary</mark>												
HCM 2000 Control Delay			31.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.65									
Actuated Cycle Length (s)			90.0		um of lost				18.6			
Intersection Capacity Utiliza	ation		49.7%	IC	U Level o	f Service			А			
Analysis Period (min)			15									
A 11 A												

c Critical Lane Group

APPENDIX D

Prospect Avenue/Graves Avenue Intersection and Signalization Improvement Plan

Appendix C

Biological Survey Report

RECON

An Employee-Owned Company

February 16, 2017

Mr. Michael Grant Development Contractor, Inc. 110 Town Center Parkway Santee, CA 92071

Reference: 8606 Graves Avenue Biology Survey Report (RECON Number 8615)

Dear Mr. Grant:

A biological survey was conducted within the proposed 8606 Graves Avenue project (project boundary) to determine the biological resources present. The purpose of this letter is to provide information on the current condition of the biological resources within the project boundary.

Introduction

The proposed project would construct a Starbucks and 7-Eleven at the northeast corner of Graves Avenue and Prospect Avenue in the city of Santee, California (Figure 1). The project boundary encompasses approximately one acre (Assessor's Parcel Number 384-142-21-00). The site is located within the El Cajon Land Grant of the El Cajon quadrangle U.S. Geological Survey (USGS) topographic map (Figure 2; USGS 1975). The project site is bounded by California State Route 67 (also known as San Vicente Freeway) to the west, Graves Avenue to the north and east, and Prospect Avenue to the south (Figure 3). The project boundary is further surrounded by a mosaic of residential and commercial development.

The proposed project is within the boundaries of the City of Santee draft Multiple Species Conservation Program Subarea Plan, which has yet to be approved (City of Santee 1996).

Methods

RECON biologist Mandy Weston conducted a biological survey on February 7, 2017, to determine the biological resources present within the one-acre project boundary. General plant and wildlife species were documented to identify any potential sensitive species or vegetation communities within the project boundary. All plant and wildlife species apparent at the time of the survey were recorded. Plant species that could not be readily identified in the field were collected and identified using a taxonomic key. Floral nomenclature follows that specified in the Jepson Online Interchange (University of California 2014). Zoological nomenclature for birds is in accordance with the American Ornithologist's Union Checklist (2015) and Revised Checklist of North American Mammals North of Mexico (Baker 2003). Vegetation community classifications follow Oberbauer (2008), which is based on Holland's 1986 Preliminary Descriptions of the Terrestrial Natural Communities of California. Determination of the potential occurrence for listed, sensitive, or noteworthy species is based upon known ranges and habitat preferences for the species (Jennings and Hayes 1994; Unitt 2004; CNPS 2017; Reiser 2001), and species occurrence records from the California Natural Diversity Database (CNDDB; State of California 2017) and other sites in the vicinity of the survey area.

Biological Resources

The project boundary contains one acre of disturbed habitat (Figure 4; Photographs 1 and 2). The disturbed land within the project boundary is dominated by non-native plant species, including cheeseweed (*Malva parviflora*), redstem filaree (*Erodium cicutarium*), and short-pod mustard (*Hirschfeldia incana*) and includes

Mr. Michael Grant Page 2 February 16, 2017

some scattered native individual species that are too few and widespread to form a distinct native habitat. These native species consist of broom baccharis (*Baccharis sarothroides*), California sagebrush (*Artemisia californica*), California buckwheat (*Eriogonum fasciculatum*), and saw-toothed goldenbush (*Hazardia squarrosa*).

A total of 17 plant species, 13 non-native species and four native species, were identified within the project boundary, and 10 wildlife species were identified within the project boundary. Complete lists of the plant and wildlife species identified within the project boundary are provided in Tables 1 and 2, respectively. No Narrow Endemic plant species were detected during the survey, and none are not expected to occur within the project boundary.

Table 1 Plant Species Observed									
Scientific Name	Common Name								
ANGIOSPERMS: MONOCOTS									
POACEAE (GRAMINEAE)	GRASS FAMILY								
Cynodon dactylon (L.) Pers.	Bermuda grass (I)								
Schismus barbatus (L.) Thell.	Mediterranean schismus (I)								
ANGIOSPERMS: DICOTS									
ANACARDIA [°] CEAE	SUMAC OR CASHEW FAMILY								
Schinus molle L.	Peruvian pepper tree (I)								
Schinus terebinthifolius Raddi	Brazilian pepper tree (I)								
ASTERACEAE	SUNFLOWER FAMILY								
Artemisia californica Less.	California sagebrush								
Baccharis sarothroides A. Gray	broom baccharis								
Hazardia squarrosa (Hook. & Arn.) Greene	saw-toothed goldenbush								
Senecio vulgaris L.	common groundsel (I)								
BRASSICACEAE (CRUCIFERAE)	MUSTARD FAMILY								
Hirschfeldia incana (L.) LagrFossat	short-pod mustard (I)								
CHENOPODIACEAE	GOOSEFOOT FAMILY								
Salsola tragus L.	Russian thistle, tumbleweed (I)								
FABACEAE (LEGUMINOSAE)	LEGUME FAMILY								
Melilotus indicus (L.) All.	sourclover (I)								
Parkinsonia aculeata L.	Mexican palo verde (I)								
GERANIACEAE	GERANIUM FAMILY								
Erodium botrys (Cav.) Bertol.	long-beak filaree (I)								
Erodium cicutarium (L.) L'Hér. ex Aiton	redstem filaree (I)								
MALVACEAE	MALLOW FAMILY								
Malva parviflora L.	cheeseweed, little mallow (I)								
PLANTAGINACEAE	PLANTAIN FAMILY								
Plantago lanceolata L.	English plantain (I)								
POLYGONACEAE	BUCKWHEAT FAMILY								
Eriogonum fasciculatum Benth.	California buckwheat								
I = introduced species									

Table 2	
Wildlife Species Observed	
Scientific Name	Common Name
BIRDS	
ACCIPITRIDAE	HAWKS, KITES, & EAGLES
Buteo jamaicensis	red-tailed hawk
Columbidae	PIGEONS & DOVES
Zenaida macroura marginella	mourning dove
TROCHILIDAE	HUMMINGBIRDS
Calypte anna	Anna's hummingbird
PARULIDAE	WOOD WARBLERS
Setophaga [=Dendroica] coronata	yellow-rumped warbler
Emberizidae	Emberizids
Melozone [=Pipilo] crissalis	California towhee
FRINGILLIDAE	FINCHES
Haemorhous [=Carpodacus] mexicanus frontalis	house finch
MAMMALS	
LEPORIDAE	RABBITS & HARES
Sylvilagus audubonii	desert cottontail
SCIURIDAE	SQUIRRELS & CHIPMUNKS
Spermophilus beecheyi	California ground squirrel
GEOMYIDAE	Pocket Gophers
Thomomys bottae	Botta's pocket gopher
CANIDAE	CANIDS
Canis latrans	coyote

Sensitive Biological Resources

The presence of sensitive biological resources and their potential for occurrence were evaluated within the project boundary. No sensitive biological resources, including sensitive plants or wildlife, were identified at the time of the survey. Additionally, no sensitive plants or wildlife species are anticipated to occur due to the high levels of disturbance (e.g., existing development, visible soil disturbance, and prevalence of non-native species) and lack of native habitat within the project boundary. One sensitive bird species, coastal California gnatcatcher (*Polioptila californica californica*), has been known to occur within 0.25 mile of the project boundary due to lack of suitable coastal sage scrub habitat for nesting. No Narrow Endemic species were identified during the survey, and none are expected to occur.

Impacts

The project would impact one acre of disturbed habitat (see Figure 4). Impacts to disturbed habitat are not considered significant, as this land cover type is not considered a sensitive biological resource. No impacts to sensitive plant or wildlife species are anticipated, as no sensitive species were identified within the project boundary and none are expected to occur. There is a potential for the project to have direct impacts on nesting and migratory bird species from the removal of trees within the project boundary. However, the Migratory Bird Treaty Act of 1918 (MBTA) and California Department of Fish and Game Code 3503 (CDFG code) require that no direct impacts shall occur to any nesting birds or their eggs, chicks, or nests during the breeding season (i.e., February 15–September 15). Thus, project compliance with existing regulations would ensure that impacts to nesting and migratory birds would be less than significant. If project grading and/or brush management is proposed during the bird breeding season or an active nest is noted, nest avoidance

Mr. Michael Grant Page 4 February 16, 2017

measures would be required in accordance with the MBTA and CDFG code. Direct impacts to nesting and migratory birds would be less than significant.

Mitigation

Mitigation is required for impacts that are considered significant under the California Environmental Quality Act. As no significant impacts would occur, no mitigation would be required.

Conclusion

The project boundary does not contain any sensitive vegetation communities, plants, or wildlife. Compliance with existing regulations would ensure that potential impacts to migratory or nesting birds during construction would be less than significant. If you have any questions concerning the contents of this letter, please contact me at (619) 308-9333 x153 or mweston@reconenvironmental.com

Sincerely,

- Notstan

Mandy Weston Biologist

MEW:eab

Mr. Michael Grant Page 5 February 16, 2017

References

American Ornithologists Union

2016 Check-list of North American Birds: The Species of Birds of North America from the Arctic through Panama, Including the West Indies and Hawaiian Islands. 7th ed. Committee on Classification and Nomenclature and the 57th Supplement. Accessed from at http://checklist.aou.org/taxa/.

Baker, R. J., Lisa C. Bradley, Robert D. Bradley, Jerry W. Dragoo, Mark D. Engstrom, Robert S. Hoffman, Cheri A. Jones, Fiona Reid, Dale W. Rice, and Clyde Jones

2003 Revised Checklist of North American Mammals North of Mexico. Occasional Papers, Museum of Texas Tech University No. 229. December.

California Native Plant Society (CNPS)

2017 Inventory of Rare and Endangered Plants (online edition, v8-2). California Native Plant Society, Sacramento, CA. Accessed February 10, 2017 from http://www.rareplants.cnps.org.

California, State of

2017 Natural Diversity Data Base. RareFind Version 3.1.0. Department of Fish and Game. February.

California, University of

- 2014 *The Jepson Online Interchange*. Updated July 1, 2014. Accessed from http://ucjeps.berkeley.edu/interchange.html.
- Jennings, M. R., and M. P. Hayes
 - 1994 Amphibian and Reptile Species of Special Concern in California. Final report submitted to the California Department of Fish and Game, Inland Fisheries Division, Rancho Cordova, CA.

Oberbauer, T., M. Kelly, and J. Buegge

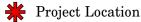
2008 Draft Vegetation Communities of San Diego County. March. Based on "Preliminary Descriptions of the Terrestrial Natural Communities of California," Robert F. Holland, Ph.D., October 1986.

Reiser, C. H.

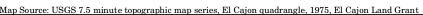
2001 Rare Plants of San Diego County. Aquifir Press, Imperial Beach, CA.

Santee, City of

1996 City of Santee Draft Subarea Plan. In Multiple Species Conservation Program, Volume II. MSCP Subarea Plans. SANDAG. August.


U.S. Geological Survey (USGS)

1975 El Cajon Quadrangle.


Unitt, P.

2004 San Diego County Bird Atlas. San Diego Natural History Museum. Ibis Publishing Company. San Diego, California. October.

FIGURE 1 Regional Location

0 Feet 2,000

RECON \\serverfs01\gis\JOBS5\8615\common_gis\fig2.mxd 2/13/2017 fmm FIGURE 2 Project Location on USGS Map

0 Feet

Project Boundary

RECON VIN Nserverfs01\gis\JOBS5\8615\common_gis\fig3.mxd 2/13/2017 fmm

FIGURE 3

Project Boundary Disturbed Habitat

FIGURE 4

IN Vegetation Community on Aerial Photograph

RECON

PHOTOGRAPH 1 View of Project Site Looking Southwest

PHOTOGRAPH 2 View of Project Site Looking North-Northwest

Appendix D

Phase I Environmental Site Assessment

Advantaged Asset Acquisitions I, LLC

PHASE I ENVIRONMENTAL SITE ASSESSMENT *

Undeveloped Property 8606 Graves Avenue Santee, California

CERES, Corp.

4617 CALAVO DRIVE LA MESA, CALIFORNIA 91941 Phone (800) 258-1490

* Based on guidelines designated in ASTM E 1527-13 for the Phase I Environmental Site Assessment Process

To the user:

This Phase I Environmental Site Assessment (ESA) report is designed by CERES and is based on the *Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process* developed by the American Society for Testing and Materials (ASTM) Committee E-50 on Environmental Assessment, designated E 1527-13. The purpose of E 1527-13 is to define good commercial and customary practice in the United States of America for conducting an ESA of a parcel of commercial real estate with respect to the range of contaminants within the scope of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and petroleum products. As such, this practice is intended to permit a user to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability; that is, the practices that constitute "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined in 42 USC Section 9601(35)(B). An evaluation of business environmental risk associated with a parcel of commercial real estate may necessitate investigation beyond that identified in this practice (ASTM E 1527-13, Section 1.1).

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in Section 312.10 of 40 CFR 312 and we have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. Unless otherwise indicated herein, we have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312 (ASTM E 1527-13, Sections 12.13.1 and 12.13.2). Qualifications of the individuals who prepared this report are included in Appendix A - Professional Qualifications (ASTM E 1527-13, Section 12.14).

CERES

COVER: View of the Property looking northeastward from near its southwesternmost corner

<u>CERES</u>

Prepared for:

Advantaged Asset Acquisitions I, LLC

8510 Railroad Avenue Santee, California 92072

PHASE I ENVIRONMENTAL SITE ASSESSMENT

Undeveloped Property 8606 Graves Avenue Santee, California

Project C477-01

Prepared by:

Scott W. Green Senior Environmental Specialist

Reviewed by:

Jeffrey B. Fleming, REPA #994321 President

(E 1527-13, Section 12.12)

CERES, Corp.

4617 Calavo Drive La Mesa, California 91941 (800) 258-1490 / Fax (208) 765-1745

May 5, 2017

TABLE OF CONTENTS

			Page
1.0	SUM	MARY, CONCLUSIONS, AND RECOMMENDATIONS	1
2.0	PHY	SICAL SETTING	2
	2.1 2.2	UNITED STATES GEOLOGICAL SURVEY (USGS) MAP REVIEW PROPERTY ENVIRONMENTAL CONDITIONS	
3.0	PRO	PERTY RECONNAISSANCE	3
	3.1 3.2	PROPERTY AND ADJOINING SITES DESCRIPTION HAZARDOUS MATERIALS	
4.0		ERVIEWS AND DATABASE REVIEW	5
	4.1 4.2	INTERVIEWS ENVIRONMENTAL DATABASE REVIEW	
5.0	HIST	ORICAL REVIEW	7
	5.1	HISTORICAL AERIAL PHOTOGRAPHS AND TOPOGRAPHIC MAP	
	5.2	BUILDING DEPARTMENT RECORDS	
	5.3 5.4	ADDITIONAL HISTORICAL SOURCES SUMMARY OF HISTORICAL USE	
6.0	LIM	ITATIONS	. 11
7.0	PRO	PERTY PHOTOGRAPHS	. 12
FIGU	RES		

Figure 1 - Property Location Maps Figure 2 - Property Map

APPENDICES

Appendix A - Professional Qualifications

- Appendix B Additional Records
- Appendix C Environmental Database Report

1.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

At the request of Advantaged Asset Acquisitions I, LLC, CERES Corp., (CERES) completed a Phase I Environmental Site Assessment (ESA) of an undeveloped property located at 8606 Graves Avenue within the city limits of Santee, San Diego County, California (Property) (refer to Figure 1 - Property Location Maps). The Phase I ESA included: a Property and adjoining sites reconnaissance; interviews with informed persons; reviews of public records, historical topographic maps, aerial photographs, and an environmental database report.

The reported 1.09-acre Property is located at the northwest corner of the Graves Avenue and Prospect Avenue intersection. It is reportedly owned by Advantaged Asset Acquisitions I, LLC. The undeveloped, relatively flat Property was covered with weedy vegetation and several trees at the time of the Property reconnaissance. The perimeter of the Property was partially fenced.

CERES has performed a Phase I ESA in conformance with the scope and limitations of ASTM E 1527-13 of the Property and to the limitations provided in Section 6.0 of this report. Any exceptions to, or deletions from, this practice, if any, are described herein. This assessment has revealed no evidence of recognized environmental conditions (including historical and controlled) in connection with the Property (E 1527-13, Section 12.8.1). Based on the findings of this assessment, CERES does not recommend additional assessment at this time (E 1527-13, Sections 12.5. and 12.6).

2.0 PHYSICAL SETTING

2.1 UNITED STATES GEOLOGICAL SURVEY (USGS) MAP REVIEW (E 1527-13, Section 8.2.4)

The elevation of the Property ranges from approximately 440 to 450 feet above mean sea level (amsl). The immediate surrounding area of the Property slopes westward at a gradient of approximately 6.0 x 10⁻² feet per foot. The nearest surface water to the Property is the San Diego River which is located about 1.1 miles to the north-northwest (United States Geological Survey [USGS], 1967, *El Cajon Quadrangle, California - San Diego County, 7.5 Minute Series (Topographic)*; photorevised 1975, scale 1:24,000).

2.2 PROPERTY ENVIRONMENTAL CONDITIONS (E 1527-13, Section 9.4.1.6)

The Property is underlain by Mesozoic -age granitic rocks consisting of biotite granite (gr₃). This light- to dark-colored granite is characterized by abundant coarse pink to gray feldspar and biotite (California Division of Mines and Geology, 1992, *Geologic Map of California, San Diego - El Centro Sheet*). Soil underlying the Property is described as Visalia sandy loam, 9 to 15 percent slopes (VaD). This strongly sloping soil generally occurs at the base of steep slopes. In many areas it formed in colluvium of sandy loam texture. Runoff is medium and VaD has a moderate erosion hazard. The Visalia series consists of moderately well drained, very deep sandy loams derived from granitic alluvium (United States Department of Agriculture, Soil Conservation Service and Forest Service, 1973, *Soil Survey, San Diego Area, California*).

Depth to groundwater beneath the Property was not found. Groundwater depth reportedly ranged from 19 to 23 feet below ground surface (bgs) as measured from groundwater monitoring wells installed at 10775 Rockville Street. The measurements were made in 1998 and 1999. This site is located about 1,200 feet north-northwest of the northern Property corner (across California State Highway 67). Groundwater flow direction was not reported from this site (Geocon, Inc., July 12, 2016, *Soil Management Plan, Santee Self-Storage, 10775 Rockville Street, Santee, California*). Based on an interpretation of elevation contours, groundwater beneath the Property is expected to flow approximately westward.

The Property is located in the Santee Hydrologic Subarea of the Lower San Diego Hydrologic Area of the San Diego Hydrologic Unit of the San Diego Basin Planning Area (907.12). Groundwater in the Santee Hydrologic Subarea is beneficial for municipal, agricultural, and industrial supply and process uses (California Regional Water Quality Control Board, 1994, *Water Quality Control Plan for the San Diego Basin (9)*).

3.0 PROPERTY RECONNAISSANCE

3.1 PROPERTY AND ADJOINING SITES DESCRIPTION

An unaccompanied walking reconnaissance of the Property was made on May 4, 2017, by Mr. Scott Green. Environmental irregularities, problems, and concerns, if noted, were marked on a map drawn by CERES in the field (E 1527-13, Section 9.2.3). The Property was observed for evidence of hazardous substances that may affect the environmental quality of the Property. CERES observed the Property for evidence of aboveground and underground storage tanks (ASTs and USTs), surface staining, hazardous materials, suspected polychlorinated biphenyls (PCBs)-containing devices, asbestos-containing building materials (ACBMs), and other indications of environmental concern.

The reported 1.09-acre Property is undeveloped and characterized as relatively flat and covered in weedy vegetation interspersed with a few trees. The perimeter of the Property is partially fenced. Refer to Figure 2 and Photographs 1 through 6 in Section 7.0 - Property Photographs (E 1527-13, Section 9).

POTABLE WATER (E 1527-13, Section 9.4.1.9)

Potable water is not currently provided to the Property. Padre Dam Municipal Water District is the likely source of water for future developments.

HEATING AND COOLING (E 1527-13, Section 9.4.3.1)

Heating, ventilation and air conditioning energy s not currently provided to the Property. The source of this energy for future developments is expected to be San Diego Gas and Electric (SDG&E).

SEWAGE DISPOSAL SYSTEM (E 1527-13, Sections 9.4.1.10 and 9.4.4.7)

Sewage disposal for the Property is not currently provided to the Property. Padre Dam Municipal Water District will likely provide municipal sewer service to future developments. Evidence of cesspools was not found.

INTERIOR--STAINS, CORROSION, DRAINS, AND SUMPS (E 1527-13, Sections 9.4.3.2 and 9.4.3.3)

Interior spaces are not present at the Property.

EXTERIOR–PITS, PONDS, LAGOONS, SURFACE STAINING, STRESSED VEGETATION, AND WELLS (E 1527-13, Sections 9.4.4.1, 9.4.4.2, 9.4.4.3, and 9.4.4.6)

Pits, ponds, lagoons, significant surface staining, stressed vegetation, and wells were not observed on the Property.

SOLID WASTE AND WASTE WATER (E 1527-13, Sections 9.4.4.4 and 9.4.4.5).

Solid waste and waste water were not observed on the Property.

CURRENT AND PAST USES OF ADJOINING SITES AND SURROUNDING AREA (E 1527-13, Sections 9.4.1.3, 9.4.1.4, and 9.4.1.5)

Sunset Trails Apartments (a large, multi-building apartment complex addressed 8655 Graves Avenue) adjoins the Property to the north and northwest, across Graves Avenue. Undeveloped parcels of land and the terminus to an off-ramp from California State Highway 67, adjoin the Property to the south, across Prospect Avenue. East of the approximate southern half of the Property, across Graves Avenue, is the entry (i.e., paved driveway) to the residential complex known as Lantern Crest Senior Living. Adjoining the Property to the west is a sloped easement leading to California State Highway 67. The immediate surrounding area of the Property is dominated by multi-family residential use.

3.2 HAZARDOUS MATERIALS

HAZARDOUS MATERIALS (E 1527-13, Sections 9.4.2.3, 9.4.2.8 and 9.4.2.9)

Evidence of the storage of hazardous materials was not observed at the Property.

STORAGE TANKS (E 1527-13, Section 9.4.2.4)

Evidence of USTs, ASTs, clarifiers, and other hazardous materials storage tanks was observed during the Property reconnaissance.

ODORS, POOLS OF LIQUID, DRUMS (E 1527-13, Sections 9.4.2.5, 9.4.2.6 and 9.4.2.7)

Evidence of unusual odors, pools of liquid, or drums was not observed during the Property reconnaissance.

POLYCHLORINATED BIPHENYLS (PCBs) (E 1527-13, Section 9.4.2.10)

Evidence of PCBs was not found during the Property reconnaissance.

4.0 INTERVIEWS AND DATABASE REVIEW

4.1 INTERVIEWS

- CERES interviewed Ms. Shannon Hines, a representative of the Property owner, for information regarding past uses of the Property and the use, storage, or disposal of hazardous materials on the Property. Ms. Hines indicated that she was not aware of any issues regarding hazardous materials/wastes associated with the Property. She was also not aware of the presence or past presence of Property USTs or other subsurface features of concern (E 1527-13, Section 10).
- Mr. Michael Grant, a Property owner, completed a *User Questionnaire* (UQ) provided by CERES. Mr. Grant did not indicate environmental issues regarding the Property on the UQ. Refer to Appendix B - Additional Records for a copy of the completed UQ (E 1527-13, Section 10).
- CERES contacted the County of San Diego Department of Environmental Health (DEH) with a request to research UST and hazardous materials files for the Property address. According to Mr. Edwin C. Andrus of the DEH, records for the Property address were not found (E 1527-13, Section 11).

All pertinent records may not have been available for this review. If a site is currently under litigation, the file information will not be made available. In addition, some public records may be filed by information that was not given to CERES, i.e. incident date, and thus may not have been accessed.

4.2 ENVIRONMENTAL DATABASE REVIEW

CERES subcontracted the services of an environmental database search firm to provide a list of sites within designated distances of the Property that are listed by regulatory agencies as having potential environmental concern (refer to Appendix C - Environmental Database Report). This is done to assess the potential for offsite contamination which may adversely affect the environmental quality of the Property. A table is provided in Appendix C indicating referenced agency lists and the distances from the Property for which searches are conducted (E 1527-13, Section 8.2.1.1).

The environmental database report was generated on April 27, 2017. Selected sites found on referenced agency lists within the designated distances of the Property are discussed below. Sites which are listed as not requiring further action (NFA) or were deemed by CERES to be too distant to represent an environmental concern, are excluded from the discussion. Acronyms placed in bold letters refer to database lists and the bold number is the map identification number. The Property and its adjoining sites were not found on referenced agency lists. The nearest **Leaking UST** site to the Property is as follows:

<u>CERES</u>

A1 Prospect Plaza Enterprises, 8518 Magnolia Avenue, is reportedly located 0.129 miles southwest of the Property (across California State Highway 67), and is listed on SWEEPS UST, SAN DIEGO CO. SAM and LUST, as a facility that was assigned an unauthorized release case by the DEH (H20822-001). The case involved ten USTs that were formerly operated at the site and during removal were discovered to have impacted the soil/groundwater with gasoline. Case H20822-001 was opened in February 1986, and after the completion of cleanup and abatement orders, the DEH closed the April 5, 2002. Based on case status and distance, this site does not represent a significant risk to the environmental integrity of the Property.

Other than the aforementioned, there are numerous sites listed on various agency lists within onehalf mile of the Property. This is reflective of the light industrial nature of the immediate surrounding area of the Property. Based on distance and/or case status, the sites listed in the database report are not considered by CERES to represent a significant environmental concern to the Property.

Munger Map Book, California-Alaska Oil and Gas Fields, 1994, is a compilation of maps produced by the State of California Department of Natural Resources - Division of Oil and Gas, Oil Operators, Munger Oilogram, and other journals of present or past drilling locations for oil and gas exploration. CERES reviewed the map book to assess if oil wells were located on the Property. Wells were not depicted on the Property or on its adjoining sites.

5.0 HISTORICAL REVIEW

5.1 HISTORICAL AERIAL PHOTOGRAPHS AND TOPOGRAPHIC MAP

Historical aerial photographs were reviewed by CERES using an Abrams Instrument Corporation stereoscope, model CB-1, with a built-in 2-power magnifier, and 4-power binoculars. During review, CERES looked for evidence of hazardous materials and features that might affect the environmental quality of the Property, such as sumps, pits, ponds, lagoons, ASTs, landfills, outside storage of hazardous materials, and general land use (E 1527-13, Section 8.3.4.1).

This review has been supplemented by geographic place names and other data obtained in other assessment activities of this ESA. Eleven aerial photographs, one set of stereoscopic aerial photographs, and one topographic map were reviewed as follows.

SOURCE	YEAR/DATE	PRINTED SCALE	MEDIUM
County of San Diego	1928	1 inch equals 1,000 feet	Stereoscopic Aerial Photographs
historicaerials.com	1953	not printed	Single Aerial Photograph
CERES Archives (XI- SD-12-13)	March 4, 1958	1 inch equal 3,250 feet	Single Aerial Photograph
historicaerials.com	1964	not printed	Single Aerial Photograph
historicaerials.com	1966	not printed	Single Aerial Photograph
historicaerials.com	1971	not printed	Single Aerial Photograph
historicaerials.com	1980	not printed	Single Aerial Photograph
historicaerials.com	1989	not printed	Single Aerial Photograph
Google Earth	May 30, 1994	not printed	Single Aerial Photograph
Google Earth	June 27, 2002	not printed	Single Aerial Photograph
Google Earth	August 23, 2010	not printed	Single Aerial Photograph
Google Earth	October 27, 2012	not printed	Single Aerial Photograph
United States Geological Survey	1967, Photorevised 1975	1 inch equals 2,000 feet	El Cajon Quadrangle Topographic Map

Aerial Photographs

^{1928 -} The Property was undeveloped and may have been utilized for limited agricultural use. Land use in the Property vicinity was a mix of residential, agricultural, and undeveloped sites. Graves Avenue and California State Highway 67 were not present.

- **1953 -** The Property was undeveloped and appeared to be part of two agricultural fields. The immediate surrounding area of the Property was also in agricultural use. A small house was nearby at the approximate location of the entrance to Lantern Crest Senior Living. Graves Avenue and California State Highway 67 were not present. A narrow, unpaved road was in the place of Prospect Avenue.
- **1958** Significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 1953 photograph.
- 1964 The approximate northern half of the Property was undeveloped without a discernible use. The approximate southern half of the Property was developed with a small structure near its southeasternmost corner. Remaining areas of the Property appeared cultivated. A small commercial structure adjoined the Property to the northeast, across Graves Avenue. What appeared to be a residence with associated outbuildings adjoined the Property to the east, across Graves Avenue. Undeveloped land adjoined the Property to the south, across Prospect Avenue. Graves Avenue and Prospect Avenue were apparent as paved roads. The existing Prospect bridge over California State Highway 67 was present. The portion of California State Highway 67 adjoining the western Property border appeared to be under construction.
- 1966 The approximate northern half of the Property was undeveloped without a discernible use. The approximate southern half of the Property was developed with three small structures. This portion of the Property appeared to be used as a plant nursery. Similar structures to what was observed in the 1966 photograph adjoined the Property to the northeast and east, across Graves Avenue. This area may have been used as a plant nursery as well. California State Highway 67 adjoined the western Property. Undeveloped parcels of land and the terminus to an off-ramp from California State Highway 67 adjoined the Property to the south, across Prospect Avenue.
- **1971-** Except that a small commercial building had been removed from the adjoining site to the northeast, across Graves Avenue, significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 1966 photograph.
- **1980** Except that the suspect nursery operation east of the Property, across Graves Avenue, had been diminished in size, significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 1971 photograph.
- **1989 -** The Property was undeveloped and cleared of vegetation. Existing Sunset Trails Apartments adjoined the Property to the north and northeast, across Graves Avenue. Undeveloped land adjoined the approximate southern half of the Property to the east, across Graves Avenue. Significant discernible changes to the Property's other adjoining sites were not observed from what was noted in the 1980 photograph
- **1994** Except that the Property was overgrown with weedy vegetation and a few trees, significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 1989 photograph.

- **2002** Significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 1994 photograph.
- **2010** Significant discernible changes to the Property and its adjoining sites were not observed from what was noted in the 2002 photograph.
- **2012** The existing entrance to the Lantern Crest Senior Living complex adjoined the approximate southern half of the Property to the east, across Graves Avenue. Significant discernible changes to the Property and its other adjoining sites were not observed from what was noted in the 2010 photograph.

Topographic Map (E 1527-13, Section 8.3.4.5)

CERES reviewed *El Cajon Quadrangle, California - San Diego County, 7.5 Minute Series (Topographic)* map printed at a scale of one inch equals 2,000 feet (USGS, 1967, photorevised 1975). This map depicts features from 1967 and 1975 as photorevisions, as follows:

- **1967** The Property was depicted with two small structures. Graves Avenue, Prospect Avenue, and California State Highway 67 were depicted. Undeveloped land was depicted to the north, south, and east of the Property.
- 1975 Photorevised features were not depicted on the Property or on its adjoining sites.

5.2 **BUILDING DEPARTMENT RECORDS**

CERES requested a review of building department records for the Property at the City of Santee Building Department. Building permits indicating previous use and occupants of the Property were found as follows:

YEAR	DOCUMENT
1987	Permit application by Alice Johnson for a "Kiosk Sign"

Information regarding uses of the Property prior to 1987, was not found at the City of Santee Building Department (E 1527-13, Section 8.3.4.7).

5.3 ADDITIONAL HISTORICAL SOURCES

The aforementioned sources of historical information provided historical information of the Property use pursuant to Section 8.3 of E 1527-13; thus, additional information and reports were not reviewed for this ESA.

5.4 SUMMARY OF HISTORICAL USE

Based on reviews of available historical records, the Property was undeveloped and in agricultural use from as early as 1928 to 1958. By 1964 a small structure had been built near the southeasternmost corner of the Property, and the existing Graves Avenue and Prospect Avenue intersection had been constructed. A small cultivated area was also noted on the Property in this year. From about 1966 to sometime in the 1980s, the approximate southern half of the Property was developed with three small structures, and this area appeared to be used as a plant nursery. By 1989, this use had ceased and the Property was undeveloped without a discernible use. Reasonably ascertainable historical information dated prior to 1928, was not found during the assessment activities of this Phase I ESA (E 1527-13, Section 8.3.2).

6.0 LIMITATIONS

The scope of work described herein is designed to meet the minimum requirements of ASTM document E 1527-13. However, it is not intended to be all inclusive, identify all potential concerns, or eliminate the possibility of the Property having some degree of environmental problems. It is possible that variations in soil or groundwater conditions or unpermitted, undocumented, or concealed improvements or alterations to the Property could exist beyond what was found during this ESA. Changes in observed conditions could also occur in the future due to variations in environmental and physical conditions.

Any geologic and hydrogeologic data are gathered for drawing conclusions, by CERES, within the context and timing of this report only.

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with a property. Performance of Practice E 1527-13 is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions in connection with a property, and this practice recognizes reasonable limits of time and cost (E 1527-13, Section 4.5.1).

All appropriate inquiry does not mean an exhaustive assessment of a clean property. There is a point at which the cost of information obtained or the time required to gather it outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. One of the purposes of E 1527-13 is to identify a balance between the competing goals of limiting the costs and time demands inherent in performing an ESA and the reduction of uncertainty about unknown conditions resulting from additional information (E 1527-13, Section 4.5.2). Not every property will warrant the same level of assessment (E 1527-13, Section 4.5.3).

Much of the information on which the conclusions and recommendations of this ESA are based comes from data provided by others. CERES is not responsible for the accuracy or completeness of this information. CERES is not required to verify independently the information provided [from others] but may rely on information provided (E 1527-13, Section 7.5.2.1). Inaccurate data or information that was not found or made available to CERES may result in a modification of the presented conclusions and recommendations.

REPORT USE

This report was prepared for the sole use and benefit of Advantaged Asset Acquisitions I, LLC. This report is not a legal opinion and does not offer warranties or guarantees.

CERES would like to thank Advantaged Asset Acquisitions I, LLC, for the opportunity to work on this project. We look forward to working together on future projects.

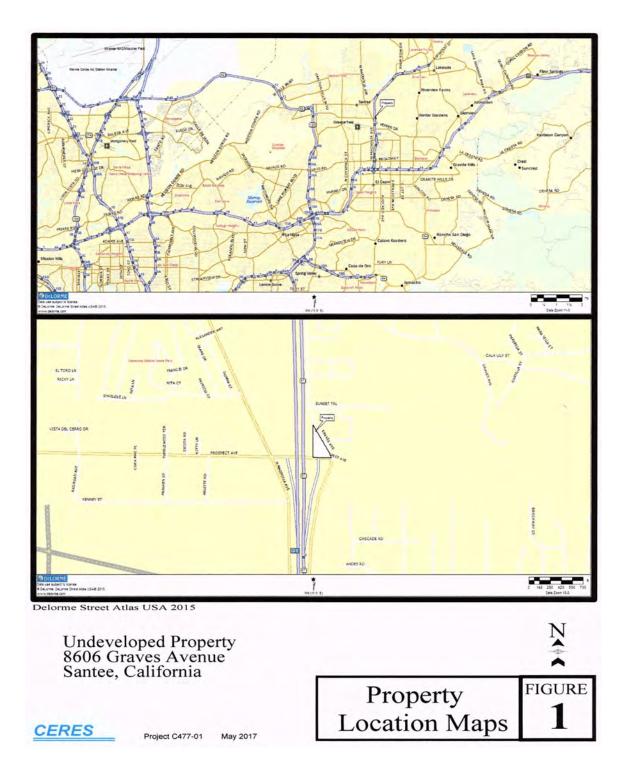
7.0 PROPERTY PHOTOGRAPHS

Photograph 1: View of the Property looking northeastward from near its southwesternmost corner

Photograph 2: View of the Property looking northwestward from near its southeasternmost corner

Photograph 3: View of the Property looking northward from near its southeasternmost corner

Photograph 4: View of the approximate southern half of the Property looking southwestward from along the eastern Property border



Photograph 5: View of the central portion of the Property looking westward from along the eastern Property border

Photograph 6: View of the Property looking southward from near the northernmost Property corner

FIGURES

Approximate scale: 1 inch = 90 feet

nderlying image courtesy of Google Earth collection date: November 8, 2016

Undeveloped Property 8606 Graves Avenue Santee, California	approximate Property border <i>Adjoining sites in italics</i>	
CERES Project C477-01 May 2017	Property Map	figure 2

APPENDIX A PROFESSIONAL QUALIFICATIONS

SCOTT W. GREEN

SENIOR ENVIRONMENTAL SPECIALIST

Education

Degree

Bachelor of Science, Environmental Science, University of California, Santa Barbara, California

Certification

OSHA, Hazardous Waste Operators and Emergency Response (HAZWOPER) Standard, 29 CFR 1910.120(e) and 8 CCR 5192(e), Environmental Training and Compliance

Registration

State of Nevada, Certified Environmental Manager

Summary of Experience

Mr. Green has twenty-three years experience in conducting and managing environmental investigations. His experience includes supervision of assessment and remediation projects associated with contaminated soil and groundwater sites, including underground storage tank removals, groundwater and vadose zone well completions, and soil and groundwater quality assessment and mitigation. He is experienced in interfacing with clients and regulatory agencies. Mr. Green is also experienced in conducting and managing Phase I, II, and III Environmental Site Assessments (ESAs) and Transaction Screen Assessments (TSAs) for property transfers. He has conducted these assessments and surveys at a large variety of sites, including commercial, residential, agricultural, and undeveloped properties throughout California, Arizona, and Nevada.

JEFFREY B. FLEMING PRESIDENT/ENVIRONMENTAL SPECIALIST

Education

Degrees

Bachelor of Science, Physics/Scientific and Technical Communication, University of Washington, Seattle, Washington

Master of Arts, Physical Geography, San Diego State University, San Diego, California

Registrations

National Registry of Environmental Professions, Registered Environmental Property Assessor (REPA) #994321

Mr. Fleming was a State of California Registered Environmental Assessor (#7055) from 1997 through 2012. The State of California discontinued this program in 2012.

Summary of Experience

Mr. Fleming has twenty-seven years experience conducting and managing environmental investigations, teaching environmental science, and managing environmental risk. His environmental work experience includes private consulting, County government, banking, and college-level instruction. He has conducted or managed Phase I, II, and III Environmental Site Assessments (ESAs), Transaction Screens, Second Level Reviews, asbestos surveys, and lead-in-paint sampling. He has conducted these assessments and surveys at a large variety of sites, including commercial, residential, agricultural, and undeveloped properties. His fieldwork experience includes borehole drilling; underground storage tank removal; groundwater, surface water, soil, and soil vapor sampling; and geophysical surveys.

As an Environmental Resources Specialist III with the Orange County Environmental Management Agency, California, Mr. Fleming was tasked with the management of Phase IESAs, conducted storm water sampling and gauging, and assisted in the development of Best Management Practices in the control of storm water runoff quality. As an Environmental Analyst with a major bank in the State of California, Mr. Fleming assessed and managed environmental risk associated with collateralized loans and foreclosures. He was active in the supervision of Phase II assessments and Phase III characterization activities. His teaching experience at San Diego State University and the University of Wisconsin - Madison included undergraduate instruction in physiography, hydrology, and climatology.

APPENDIX B ADDITIONAL RECORDS

CERES PROJECT NUMBER: C477-01

CERES, Corp., is conducting a Phase I Environmental Site Assessment of: Undeveloped Property, 8606 Graves Avenue, Santee, California (Property)

Property Name and Address

Please complete this User Questionnaire in order to qualify for one of the Landowner Liability Protections offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001. Failure to provide this information could result in a determination that "all appropriate inquiry" is not complete (E 1527-13, Appendix X3). After completion, please fax back to 208.765.1745, email to jefffleming@roadrunner.com, or call 800.258.1490 for mailing instructions.

 Are you aware of any environmental cleanup liens against the Property that are filed or recorded under federal, tribal, state or local law?

YES NO Comments:

2) Are you aware of any Activity and Use Limitations (AULs), such as engineering controls, land use restrictions or institutional controls that are in place at the Property and/or have been filed or recorded in a registry under federal, tribal, state or local law?

YES NO Comments:

3) Do you have any specialized knowledge or experience related to the Property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the Property or an adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business?

YES NO Comments:

4) Does the purchase price being paid for this Property reasonably reflect the fair market value of the Property? If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the Property?

YES NO Comments:

5) Are you aware of commonly known or reasonably ascertainable information about the Property that would help the environmental professional to identify conditions indicative of releases or threatened releases? [For example: past uses(s), chemical use, spills/releases, environmental cleanups].

YES NO Comments:

6) Based on your knowledge and experience related to the Property, are there any obvious indicators that point to the presence or likely presence of contamination at the Property?

YES NO Comments:

- 7)
 - Do you have any other knowledge or experience with the Property that may be pertinent to the environmental professional? [For example: copies of prior environmental site assessment reports, correspondence, etc.].

YES 🗆 Comments:

Completed By (Signatur

Grant Corp. Managing member Printed Name

APPENDIX C ENVIRONMENTAL DATABASE REPORT

Appendix E

Geotechnical Investigation Report and Infiltration Testing Results

August 30, 2016 (Revised September 28, 2018)

Development Contractor, Inc. 110 Town Center Parkway Santee, CA 92071

Attention: Michael Grant, President

SUBJECT: Infiltration Testing Results 8606 Graves Avenue Santee, California

Mr. Grant:

In accordance with our proposal dated July 13, 2016, Group Delta Consultants, Inc. (Group Delta) is submitting the results from the infiltration testing for the proposed development of the above referenced site. Figure No. 1 shows the location of the site. We have revised this letter to respond to a comment in a City of Santee review letter dated July 18, 2017 requesting an update to incorporate the latest proposed plans.

We have based on our understanding of the project on a preliminary grading plan prepared by Walsh Engineering & Surveying dated August 30, 2017 that shows the location of the two proposed infiltration basins. The basins will be in undeveloped landscaped areas within the western portion of the site. An approximately 10-foot high Segmental Retaining Wall (SRW) will form a portion of the basin walls. The bottom elevation of the basins (441.0 and 442.5 feet) will be located a minimum horizontal distance ranging from about 25 to 30 feet from the corresponding elevation (441.0 and 442.5 feet) near the crest of an existing west facing cut slope along the eastern side of State Route 67. Figure No. 2 shows the location of the proposed infiltration basins. The latest preliminary grading is also attached for reference.

PURPOSE and SCOPE OF WORK

The purpose of our geotechnical services was to evaluate the geotechnical aspects of storm water management in accordance with the City of Santee Design Manual. The scope of work consisted of the following tasks:

- Evaluation of Feasibility for On-Site Storm Water Infiltration
- Test Boring
- Laboratory Testing
- Infiltration Testing

The following sections provide specific information about each task.

Evaluation of Feasibility for On-Site Storm Water Infiltration

Group Delta reviewed the site and subsurface conditions relative to the criteria stated in Form I-8: Categorization of Infiltration Feasibility Condition in the Work. The completed form is attached to this letter.

Test Boring

Group Delta advanced one test boring (B-1) to a depth 20.5 feet to evaluate soil characteristics and the depth of groundwater. Figure 2 shows the location of this boring. A descriptive log for this boring is attached to this letter.

Laboratory Testing

Disturbed soil samples were obtained from the test borings for particle size distribution testing to evaluate the physical characteristics of the soils. Test results are attached to this letter.

Infiltration Testing

Infiltration testing was conducted using the Borehole Percolation Test method (Riverside County Percolation Test, 2011) referenced in the Design Manual. Four tests (B-2 through B-5) were completed at the approximate locations shown on Figure No. 2. The depth of all the infiltration tests was five feet. Descriptive logs for the borings associated with these tests are attached.

FINDINGS

Evaluation of Feasibility

The feasibility screening category is "Full Infiltration". The completed form I-8 is attached.

Test Boring

Residual soils associated with the weathering of granite that transitioned to decomposed granite with depth were encountered in test boring B-1. The soils observed in driven split barrel samplers consisted of fine to medium grained silty sand. Based on drive sampler resistance, the relative density of these materials was dense to very dense. No groundwater was encountered.

Laboratory Testing

The soils tested were classified as Silty Sand (SM) per ASTM D2487 with average of about 29 percent fines (silt and clay). The test results are attached.

Infiltration Testing

The average design infiltration is 0.6 inches/hour. The infiltration test data is summarized in the table below.

Test Hole	Stabilized Infiltration Rate inches/hour	Design Infiltration Rate* inches/hour
B-2	1.32	0.6
B-3	0.54	0.3
B-4	2.24	1.1
B-5	0.78	0.4
	Average	0.6

* Design infiltration rate adopted a factor of safety of 2.0.

CONCLUSIONS

The site should be suitable for full infiltration. The average design infiltration is greater than 0.5 inches/hour, which is the recommended minimum infiltration rate for full infiltration per the Design Manual. In our opinion, it is geotechnically feasible to adopt full infiltration at the proposed basin locations. Note the following items regarding this conclusion.

Infiltration Testing Results 8606 Graves Avenue Development Contractor, Inc. GDC Project No. SD493 August 30, 2016 (Revised September 28, 2017) Page 3

- The infiltration basins will be in undeveloped, landscaped areas of the site.
- The bottom elevation of the basins (441.0 and 442.5 feet) will be located a minimum horizontal distance ranging from about 25 to 30 feet from the corresponding elevation (441.0 and 442.5 feet) near the crest of an existing west facing slope along the eastern portion of State Route 67.
- Considering the findings from test boring B-1, the existing west facing slope along the eastern portion of State Route 67 should be formed in dense to very dense residual soils and decomposed granite.
- The reinforced zone of the proposed SRWs that forms part of the basins will need to be deepened to extend below the bottom elevation of the basin.
- We understand there are no existing or proposed utilities near the proposed basins.
- Additional geotechnical considerations are discussed in the attached Form I-8.

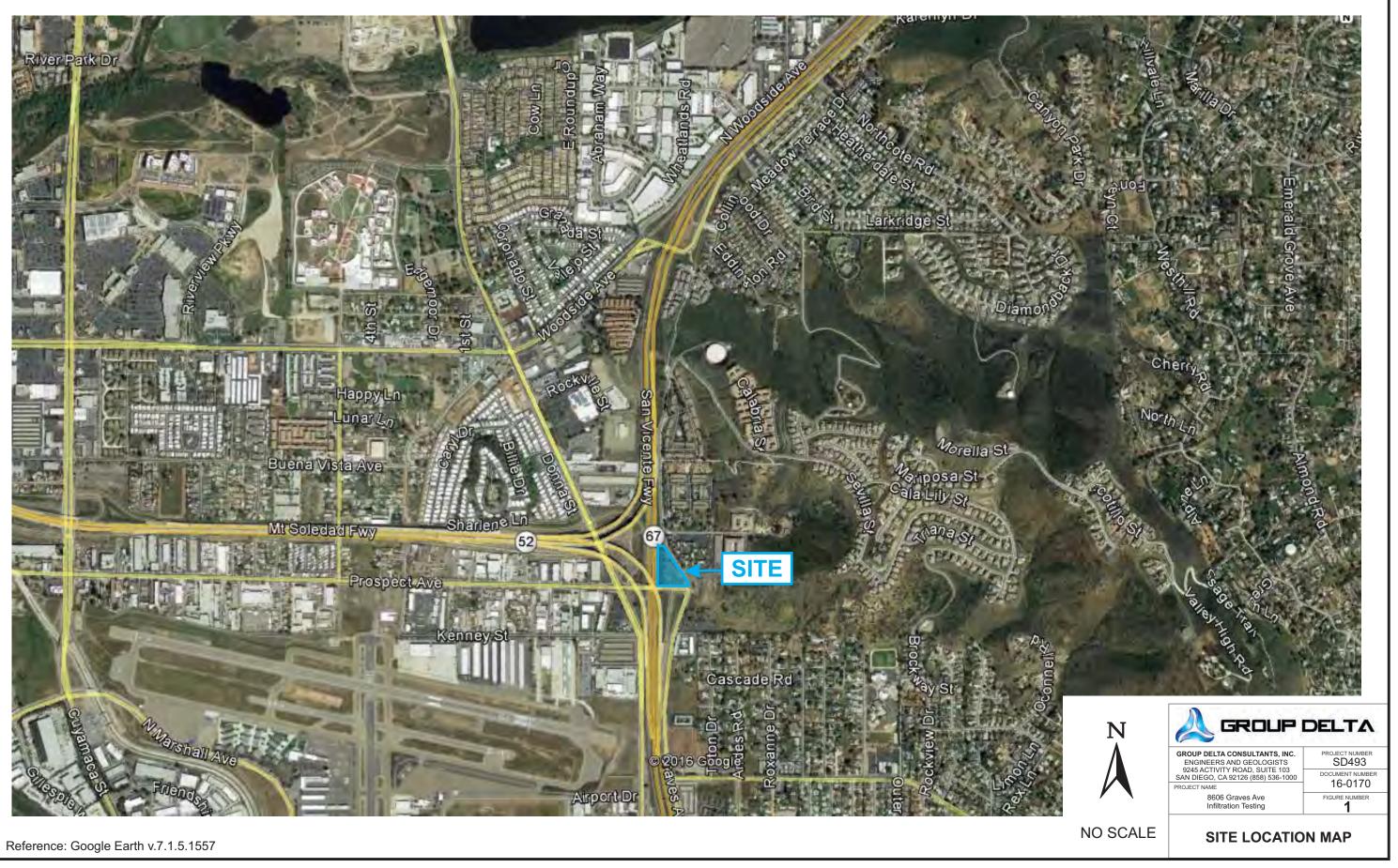
LIMITATIONS

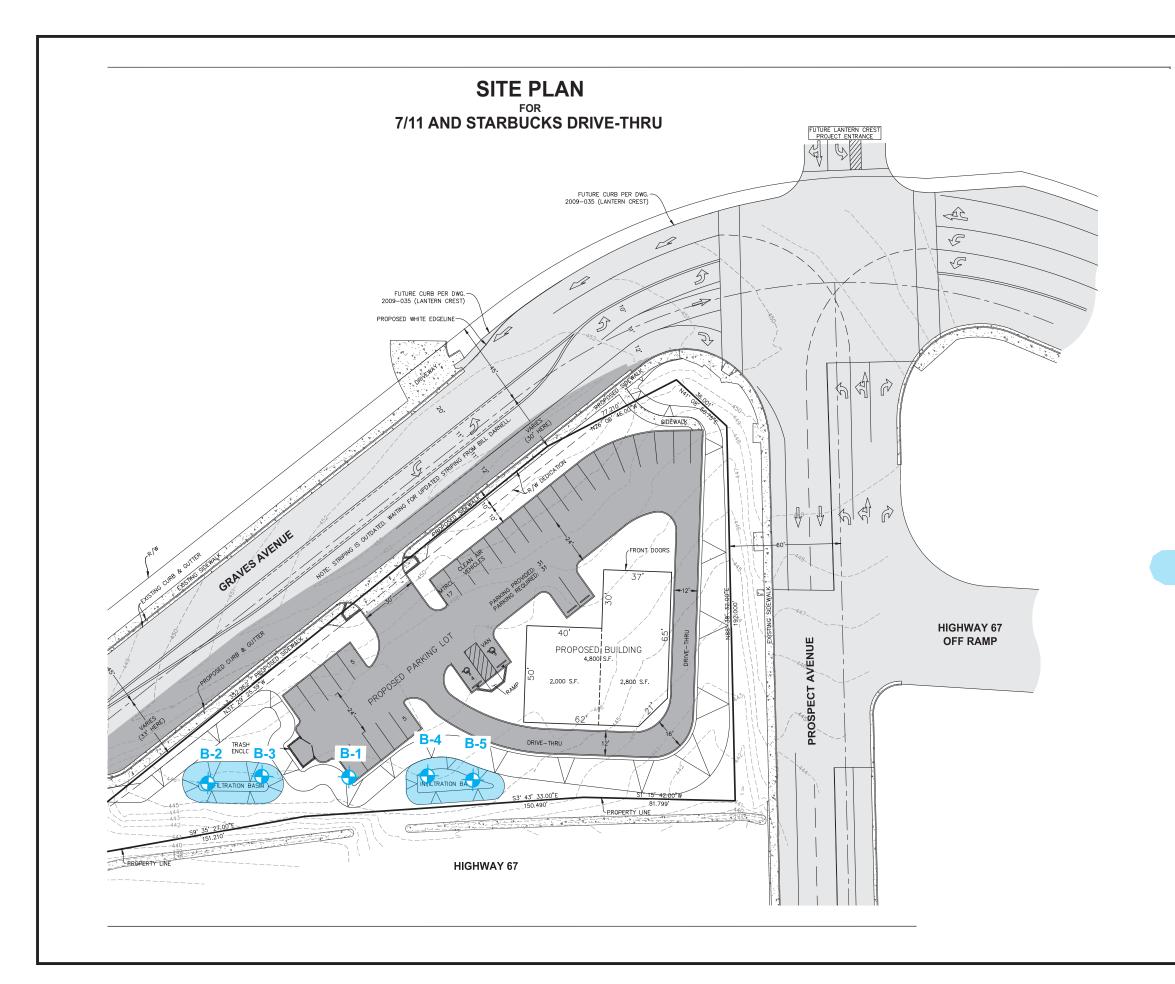
The conclusion and recommendations stated in this letter assume that soil and groundwater conditions do not deviate appreciably from those locally observed by Group Delta. Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical engineers and geologists practicing in this or similar localities. No warranty, express or implied, is made as to the conclusions and professional advice included in this report. We appreciate this opportunity to be of professional service. Feel free to contact the office with any questions or comments, or if you need anything else.

GROUP DELTA CONSULTANTS

Charles Robin (Rob) Stroop, G.E. 2298

Associate Geotechnical Engineer




Attachments: Figure No. 1, Site Location Plan Figure No. 2, Exploration Plan Boring Legend and Records Laboratory Test Results Form I-8: Categorization of Infiltration Feasibility Condition Preliminary Grading Plan, Walsh Engineering & Surveying, August 30, 2017

Distribution: (1) Addressee, Mr. Michael Grant (grant.michael@sbcglobal.net) (2) Walsh Engineering & Surveying, William O'Gorman (william@walsh-engineering.com)

Graves Ave Infiltration Results (Group Delta 16-0170R1).doc

EXPLANATION:

B-5

Approximate location of borings.

Approximate location of storm water infiltration basins

PROJECT NUMBER

DOCUMENT NUMBER

FIGURE NUMBER

NO SCALE

EXPLORATION PLAN

SOIL IDENTIFICATION AND DESCRIPTION SEQUENCE

ce		Refer to Section		R	-
Sequence	Identification Components	Field	Lab	Required	Optional
1	Group Name	2.5.2	3.2.2	•	6 m 4
2	Group Symbol	2.5.2	3.2.2	•	
	Description Components				
з	Consistency of Cohesive Soil	2.5.3	3.2.3		
4	Apparent Density of Cohesionless Soil	2.5.4		•	-
5	Color	2.5.5			11
6	Moisture	2.5.6		•	
	Percent or Proportion of Soil	2.5.7	3.2.4	•	•
7	Particle Size	2.5.8	2.5.8	•	0
	Particle Angularity	2.5.9			0
	Particle Shape	2.5.10			0
8	Plasticity (for fine- grained soil)	2.5.11	3.2.5		0
9	Dry Strength (for fine-grained soil)	2.5.12			0
10	Dilatency (for fine- grained soil)	2.5.13			0
11	Toughness (for fine-grained soil)	2.5.14	1		0
12	Structure	2.5.15		-	0
13	Cementation	2.5.16		•	1
14	Percent of Cobbles and Boulders	2.5.17		•	
	Description of Cobbles and Boulders	2.5.18			
15	Consistency Field Test Result	2.5.3		٠	
16	Additional Comments	2.5.19			0

Describe the soil using descriptive terms in the order shown

Minimum Required Sequence:

USCS Group Name (Group Symbol); Consistency or Density; Color; Moisture; Percent or Proportion of Soil; Particle Size; Plasticity (optional).

• = optional for non-Caltrans projects

Where applicable:

Cementation; % cobbles & boulders; Description of cobbles & boulders; Consistency field test result

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010).

HOLE IDENTIFICATION

Holes are identified using the following convention:

H - YY - NNN

Where:

H: Hole Type Code

YY: 2-digit year

NNN: 3-digit number (001-999)

Hole Type Code and Description

Hole Type Code	Description
A	Auger boring (hollow or solid stem, bucket)
R	Rotary drilled boring (conventional)
RC	Rotary core (self-cased wire-line, continuously-sampled)
RW	Rotary core (self-cased wire-line, not continuously sampled)
Ρ	Rotary percussion boring (Air)
HD	Hand driven (1-inch soil tube)
НА	Hand auger
D	Driven (dynamic cone penetrometer)
CPT	Cone Penetration Test
0	Other (note on LOTB)

Description Sequence Examples:

SANDY lean CLAY (CL); very stiff; yellowish brown; moist; mostly fines; some SAND, from fine to medium; few gravels; medium plasticity; PP=2.75.

Well-graded SAND with SILT and GRAVEL and COBBLES (SW-SM); dense; brown; moist; mostly SAND, from fine to coarse; some fine GRAVEL; few fines; weak cementation; 10% GRANITE COBBLES; 3 to 6 inches; hard; subrounded.

Clayey SAND (SC); medium dense, light brown; wet; mostly fine sand,; little fines; low plasticity.

Project No. SD493

8606 Graves Ave BORING RECORD LEGEND #1

	_	GROUP SYMB	OLS A	ND NA	MES	FIELD AND LABORATORY TESTING	
Graphic	/ Symbol	Group Names	Graphi	c / Symbo	Concernance and the second second	C Consolidation (ASTM D 2435)	
	GW	Well-graded GRAVEL	1/1	1	Leas CLAY Leas CLAY with SAND	CL Collapse Potential (ASTM D 5333)	
	Gir	Well-graded GRAVEL with SAND	11	1	Lean CLAY with GRAVEL	CP Compaction Curve (CTM 216)	
2000		Poolly graded GRAVEL	V/	CL	SANDY lean CLAY SANDY lean CLAY with GRAVEL	CR Corrosion Sulfates, Chlorides (CTM 643; CTM 417)	
0000	GP	Poorly graded GRAVEL with SAND	11		GRAVELLY lean CLAY GRAVELLY lean CLAY with SAND	CTM 422)	
000	-		Kit/	-	SHAYELLY MAIL CLAY WIT SAND	CU Consolidated Undrained Triaxial (ASTM D 4767)	
	GW-GM	Well-graded GRAVEL with SILT		1	SILTY GLAY with SAND	DS Direct Shear (ASTM D 3080)	
	1	Well-graded GRAVEL with SILT and SAND		CL-ML	SILTY CLAY with GRAVEL SANDY SILTY CLAY	EL Expansion Index (ASTM D 4829)	
	GW-GC	Well-graded GRAVEL with CLAY (or SILTY CLAY)	IIIZ		SANDY SILTY CLAY WITH GRAVEL	M Moisture Content (ASTM D 2216)	
	Smoc	Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)	IIIK		GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND	OC Organic Content (ASTM D 2974)	
2020		Poorly graded GRAVEL with SILT	TTT		SILT	P Permeability (CTM 220)	
000	GP-GM	Poorly graded GRAVEL with SILT and SAND			SET with SAND	PA Particle Size Analysis (ASTM D 422)	
2021	-			ML	SANDY SILT SANDY SILT with GRAVEL	PI Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89, AASHTO T 90)	
200	GP-GC	Poonly graded GRAVEL with CLAY (or SILTY CLAY) Poonly graded GRAVEL with CLAY and SAND	1111	1000	GRAVELLY SILT	PL Point Load Index (ASTM D 5731)	
200	_	Poonly graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)	ЦIJ		GRAVELLY SILT with SAND	PM Pressure Meter	
EPE	GM	SILTY GRAVEL	0	1	ORGANIC lean CLAY ORGANIC lean CLAY with SAND		
1000		SILTY GRAVEL with SAND	12	1	ORGANIC lean CLAY with GRAVEL	R. R-Value (CTM 301)	
1322		CLAYEY GRAVEL	PA	OL	SANDY ORGANIC lean CLAY SANDY ORGANIC lean CLAY with GRAVEL	SE Sand Equivalent (CTM 217)	
29	GC	CLAYEY GRAVEL with SAND	KI	1	GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAN	SG Specific Gravity (AASHTO T 100)	
IELS A			655	1	ORGANIC SILT		
HE S	GC-GM	SILTY, CLAYEY GRAVEL	1(((ORGANIC SILT with SAND	SW Swell Potential (ASTM D 4546)	
90%	1	SILTY, CLAYEY GRAVEL with SAND	1222	OL	ORGANIC SILT with GRAVEL SANDY ORGANIC SILT	UC Unconfined Compression - Soil (ASTM D 2166) Unconfined Compression - Rock (ASTM D 2938)	
1.4	sw	Welligraded SAND	()))		SANDY ORGANIC SILT with GRAVEL	UU Unconsolidated Undrained Triaxial	
10.5	SW	Well-graded SAND with GRAVEL	1555	18.21	GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND	(ASTM D 2850)	
	1.0	Poorly graded SAND	11	1	Fat CLAY	UW Unit Weight (ASTM D 4767)	
2.53	SP	Poorly graded SAND with GRAVEL	11	1	Fat CLAY with SAND Fat CLAY with GRAVEL		
1.111			11	CH	SANDY fat CLAY		
	SW-SM	Well-graded SAND with SILT	11		SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY		
		Well-graded SAND with SILT and GRAVEL	11		GRAVELLY fat GLAY with SAND	÷	
		Well-graded SAND with CLAY (or SILTY CLAY)			Elastic SILT Elastic SILT with SAND		
: 1%	SW-SC	Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		мн	Elastic SILT with GRAVEL	SAMPLER GRAPHIC SYMBOLS	
•-K1		Poorly graded SAND with SILT	1111		SANDY elastic SILT SANDY elastic SILT with GRAVEL		
	SP-SM				GRAVELLY elastic SILT	Standard Penetration Test (SPT)	
		Foony graded SAND with SILT and GRAVEL		-	GRAVELLY elastic SILT with SAND		
	SP-SC	Foorly graded SAND with CLAY (or SILTY CLAY)	DO		ORGANIC fat CLAY ORGANIC fat CLAY with SAND		
- 1/	01-00	Foorty graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)	DD		ORGANIC fat CLAY with GRAVEL	Standard California Sampler	
	-	SILTY SAND	PP	OH	SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY with GRAVEL		
	SM	SILTY SAND with GRAVEL	CO		GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND		
11	-		555	2	ORGANIC elastic SILT	Modified California Sampler (2.4" ID, 3" OD)	
//	SC	CLAYEY SAND	1000	1.75	ORGANIC elastic SILT with SAND		
11		CLAYEY SAND with GRAVEL	1222	OH	DRGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT	Shelby Tube Piston Sampler	
	SC-SM	SILTY, CLAYEY SAND	$\left \right\rangle\rangle\rangle$	1.20	SANDY ORGANIC elastic SILT with GRAVE		
$ \leq 2$	30-3m	SILTY, CLAYEY SAND with GRAVEL	1886		GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAM		
WW 2			J.J.		ORGANIC SOIL	NX Rock Core HQ Rock Core	
स्त्र क्रम क् इ. क्रम क्रम	PT	PEAT	S.S.		ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL		
WWW.	-	A complete	FEF	OL/OH	SANDY ORGANIC SOIL		
30		COBBLES COBBLES and BOULDERS	FF	1	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL	Bulk Sample Other (see remarks)	
XX		BOULDERS	F.F.	1	GRAVELLY ORGANIC SOIL with SAND		
		DRILLING MET	THOP	SYME	301.5	WATER LEVEL SYMBOLS	
-		DIGELING		01111	5520		
ITT					127		
И	Auge	r Drilling 🔗 Rotary Drilling	× I	Dynamic or Hand	Cone Diamond Core		
bu			\sim	or Hanu		Static Water Level Reading (after drilling, date)	
						(
Definit	ines for 1	Changes in Material		_			
Term		Change in Material	ymbol	_	REFERENCE: Ca	Itrans Soil and Rock Logging, Classification,	
Term		and a second restriction of the second	ymbol			and Descentation Manual (2010)	
Mater	iai i	ange in material is observed in the			- ⁴	and Presentation Manual (2010).	
Chang	e	nple or core and the location of change					
	can	be accurately located.			24	Project No. SD493	
	ch	ange in material cannot be accurately			GROUP		
Estima	irea	ange in material cannot be accurately ated either because the change is					
Mater	ial gra	dational or because of limitations of	197				
Chang	e	drilling and sampling methods.				8606 Graves Ave	
			-	_		DODINO DECODO I ECENIO "A	
Soil / F	Rock Ma	terial changes from soil characteristics	~	1		BORING RECORD LEGEND #2	
Bound	2011 C 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rock characteristics.	1-	~			
	-			~			

Description	Shear Strength (tsf)	Pocket Penetrometer, PP. Measurement (tsf)	Torvane, TV, Measurement (tsf)	Vane Shear, VS, Measurement (tsf)
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12	Less than 0.12
Soft	0.12 - 0.25	0.25 - 0.5	0.12-0.25	0.12 - 0.25
Medium Stiff	0.25 - 0.5	0.5 - 1	0.25 - 0.5	0.25 - 0.5
Stiff	0.5 - 1	1-2	0.5 - 1	0.5 - 1
Very Stiff	1 - 2	2 - 4	1-2	1-2
Hard	Greater than 2	Greater than 4	Greater than 2	Greater than 2

APPARENT DENSITY OF COHESIONLESS SOILS		
Description	SPT N ₆₀ (blows / 12 inches)	
Very Loose	0 - 5	
Loose	5 - 10	
Medium Dense	10 - 30	
Dense	30 - 50	
Very Dense	Greater than 50	

Description	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5 - 10%
Little	15 - 25%
Some	30 - 45%
Mostly	50 - 100%

CEMENTATION			
Description	Criteria		
Weak	Crumbles or breaks with handling or little finger pressure.		
Moderate	Crumbles or breaks with considerable finger pressure.		
Strong	Will not crumble or break with finger pressure.		

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), with the exception of consistency of cohesive soils vs. $N_{\rm 60}.$

CONSISTEN	ICY OF COHESIVE SOILS							
Description SPT N ₆₀ (blows/12 inches)								
Very Soft	0 - 2							
Soft	2 - 4							
Medium Stiff	4 - 8							
Stiff	8 - 15							
Very Stiff	15 - 30							
Hard	Greater than 30							

Ref: Peck, Hansen, and Thornburn, 1974,

"Foundation Engineering," Second Edition.

Note: Only to be used (with caution) when pocket penetrometer or other data on undrained shear strength are unavailable. Not allowed by Caltrans Soil and Rock Logging and Classification Manual, 2010.

MOISTURE								
Description	Criteria							
Dry	No discernable moisture							
Moist	Moisture present, but no free water							
Wet	Visible free water							

	PA	RTICLE SIZE	
Descriptio	n	Size (in)	
Boulder		Greater than 12	
Cobble		3 - 12	
Carriel	Coarse	3/4 - 3	
Gravel	Fine	1/5 - 3/4	
1.72	Coarse	1/16 - 1/5	
Sand	Medium	1/64 - 1/16	
	Fine	1/300 - 1/64	
Silt and Cla	У	Less than 1/300	

Plasticity

Description	Criteria						
Nonplastic	A 1⁄8-in. thread cannot be rolled at any water content.						
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.						
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.						
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.						

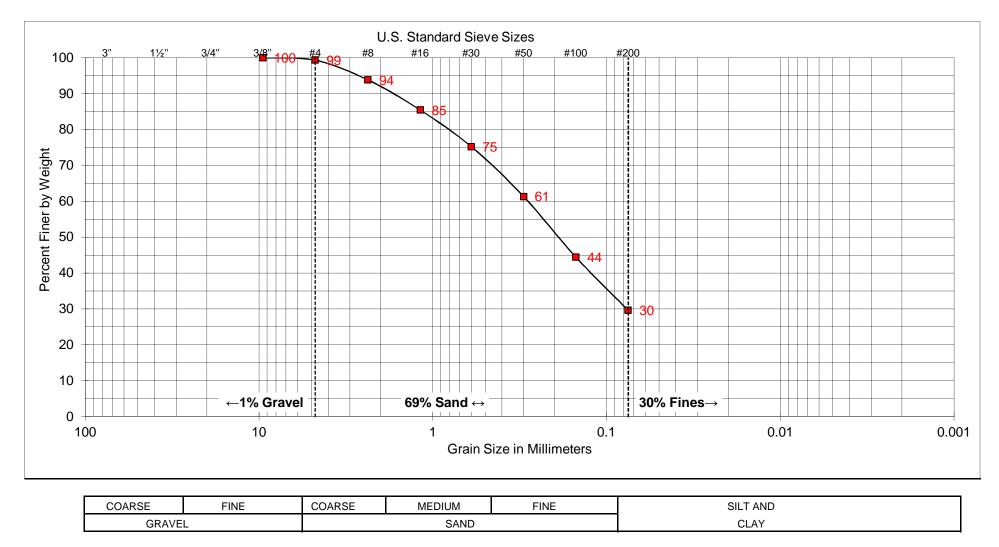
GROUP

DELTA

Project No. SD493

8606 Graves Ave

BORING RECORD LEGEND #3

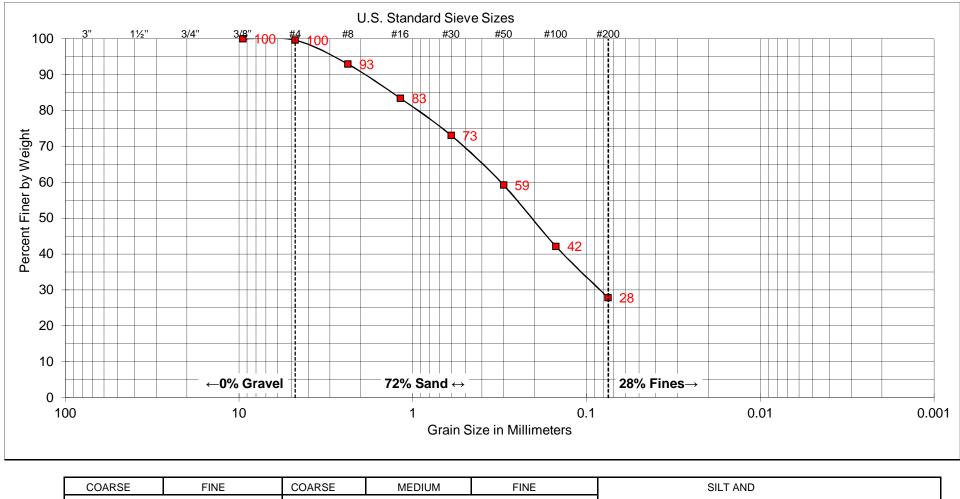

ITE LO	CATION			RECC	RD		PROJE0 8606 (STA	RT	SD ₂	493 FINISI			BORING B-1 SHEET NO.
Pacific Drilling Ho							Hol BORII 6	.ING ME Iow S [:] Ng dia.	tem Au	ger TOTAL DE 20.5	7/22/2016 1 of 1 LOGGED BY CHECKED BY T. Latimer R. Stroop DEPTH (ft) GROUND ELEV (ft) ~445 ¥ / na						скер ву Stroop	
			., Dro	p: 30 in.	(Auton	natic)			%, N ₆	₆₀ ~ 82/	60 * N ~ 1	.37 * N						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	N ₅₀	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG	DESCRIPTION AND CLASSIFICATION						ION
-5			R-1 R-2 S-3 R-4	13 18 17 10 33 50 (3") 31 31 50 (3") 38 50 (4")	35 83 (9") 81 (9") 50 (4")	32 76 (9") 111 (9") 46 (4")			PA PA PA	- - 5 -		brown some 3" of s 70% S Very c 72% S Little f	; moist; mo fines; non ample. GAND: 30% ense; brov GAND: 28%	ostly fi plastic % FINE wn. % FINE	ine to ;; piec ES ES) mèdiun	n grain	e; reddish led SAND; ock in bottom
-10		\times	S-5	50 (4")	50 (4")	68 (4")				- -		dense	MPOSED ; light gray t; nonplas	-brow	IITE: 'n; soi	Silty SA me fines	ND (S a, incre	iM); very base in SILT
-15		\times	S-6	50 (4")	50 (4")	68 (4")				- 15 — - -			o coarse g iposed gra		I SAN	ID assoc	ciated	with
20		\times	S-7	50 (4")	50 (4")	68 (4")				- 20 — -		No gro	n of boring bundwater backfilled	encou	untere	ed.	0	
	924	5 Ao	ctiv	ity Ro	ad,	Suit	e 10		• OF SU LO WI PR	THIS BO BSURFA CATION TH THE ESENTE	ARY APPL DRING AND ACE CONDITS S AND MAY PASSAGE (D IS A SIMI NS ENCOUN	AT THE FIONS M CHANG OF TIME PLIFICA	TIME OF I AY DIFFER E AT THIS . THE DAT FION OF T	DRILLI R AT O LOCA A	NG. DTHEF ATION	1	F	FIGURE A-1

BOR	ING	R R	ECC	RD		PROJE 8606 (•				D493	NUMBER	BORING B-2
SITE LOCATION					I				<u> </u>		STAF	RT	FINI	SH	SHEET NO.
Santee, Cali	fornia										8/5	5/2016		5/2016	
Pacific Drilling									етнор tem Au	aer			GGED		снескер ву R. Stroop
RILLING EQUIP											EPTH (ft)	GROUND EL			EV. GROUND WATER
Truck Rig (D	iedric	h D5	0)				6			5	. ,	~445	. ,	¥ / na	
AMPLING METH		-			<i></i> 、	NOTES		0/ NI	0.0 //	00 * NI - 4	00 * 11				
Hammer: 140	<u>, ids.</u>	Dro	<u>5: 30 in.</u>	(Auton	natic)	EIR	< ~ 80 ∣	%, N _€	₅₀ ~ 80/6	60 * N ~ 1	.33 " N				
DEPTH (feet) ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DESCRI	PTION A	AND CLASSIF	ICATION
5		S-1	7 8 9	17	23						FILL: grained cemen	d SÁND; sor	(SM); t	prown; mois s; non-plasti	t; mostly fine ic; weakly
									-		Ground	n of boring at dwater not er backfilled w	ncounte	ered.	
.10									- - 10 -						
-15									_ 						
20									_ 20 _						
GROUP 9245			CON ty Ro					• OF SU LO	THIS BO BSURFA CATION	ORING AND	AT THE TIONS M CHANG	Y AT THE LO TIME OF DR AY DIFFER A E AT THIS LO	lling. T othi	ER	FIGURE A-2

E	BOR	lN	GϜ	RECC	RD		PROJE0 8606 (;				PROJI SD [,]		UMBER		BORING B-3
	CATION					I						STAF			FINIS			SHEET NO.
	ee, Cal I <mark>G COM</mark> F		a					י ייפח	ING ME			8/5	5/2016	LOGO		5/2016	CUI	1 of 1 ECKED BY
	ic Drilli									tem Au	laer				Latin			. Stroop
	IG EQUIF								NG DIA.			PTH (ft)	GROUND					GROUND WATER (ft)
Truck	< Rig ([<mark>NG MET</mark>	Diedri	ch D5	50)			NOTES	6			5		~445			Į /na	9	
			Dro	p: 30 in.	(Autor	natic)			%. Na	∞ ~ 80 /	60 * N ~ 1.3	33 * N						
					(
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTI	ON A	ND CLASS	SIFICA	TION
5			S-1	16 24 43	67	89						RESID brown; nonpla	moist; m	<u>L:</u> Cla ostly 1	ayey fine to	SAND (S o mediun	SC); v n SAN	ery dense; ND; some fines;
										-	1 1	Ground	n of boring dwater no backfilled	t enco	ounte	red.		
10										- 10 -	-							
15										- - - -								
20										- 20 -								
				CON ity Rc					• OF SU	THIS B	MARY APPLIE ORING AND A ACE CONDITI	AT THE ONS M	TIME OF AY DIFFE	DRILL R AT (ING. DTHE	R		FIGURE
				ego, C					WI PR	TH THE ESENTI	PASSAGE O ED IS A SIMP NS ENCOUNT	F TIME. LIFICAT	THE DA	ΤA				A-3

E	BOR		G R	RECC	DRD		PROJE 8606 (;				PROJECT SD493		BORING B-4
	CATION					•						STAF		FINI		SHEET NO.
Sante	e, Cal G COMF	ifornia PANY	3					ו וופח		ETHOD		8/5	5/2016	8/ LOGGED	5/2016	1 of 1 CHECKED BY
	ic Drilli									tem Au	laer			T. Lati	I	R. Stroop
	G EQUIF								NG DIA			DEPTH (ft)	GROUND	ELEV (ft)		EV. GROUND WATER
Truck	Rig (E	Diedri	ch D5	50)			1	6			5		~446		🕹 / na	
			., Dro	p: 30 in.	(Autor	natic)	NOTES ETF		%, N _e	₅₀ ~ 80/	60 * N ~	1.33 * N				
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTION /	AND CLASSIF	FICATION
			S-1	18 26 38	64	85						reddish		noist; mo		very dense; nedium SAND;
-5		~ ~ ~		30						5		Ground	dwater no	t encount	below grou ered. cuttings 08	ind surface. /05/16.
-10										- 10 — -						
-15										- 15 — -						
-20										- 20 — -						
				CON ity Rc					• OF SU	THIS BO	MARY APP ORING ANI ACE COND	D AT THE	TIME OF AY DIFFE	drilling. R at oth	ER	FIGURE
				ego, C				C,	WI PR	TH THE	S AND MA PASSAGE ED IS A SIN NS ENCOL	OF TIME.	THE DA	ΓA		A-4

Sante DRILLIN Pacif DRILLIN Truch SAMPLI	ee, Cal G COMF							JIAVE	s Ave	;				SD4	+93		B-5
Pacif Pacif RILLIN Truck	IG COMF	lifornia				·						STAF			FINIS		SHEET NO.
Pacif RILLIN Trucł			3							TUOD		8/5	5/2016	LOGG		5/2016	
RILLIN Truck AMPLI										етнор tem Au	aer				_atin		нескер ву R. Stroop
AMPLI	IG EQUIF								NG DIA			DEPTH (ft)	GROUND				V. GROUND WATER
	k Rig ([Diedri	ch D5	50)				6			5		~446			⊈ /na	
1.0000			Dre		(1)	e ette)	NOTES		0/ NI		20 * N	1 00 * N					
Ham			., Dro I	p: 30 in.	(Autor			(~ 00 ∣	70, IN ₆	₅₀ ~ 00/0	50 N∼	1.33 * N					
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	°° Z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTI	ON AI	ND CLASSIFI	CATION
										-		<u>RESID</u> mostly	UAL SOII fine to m	<u>L:</u> Silt edium	ty SA SAN	ND (SM); t ID; some fi	prown; moist; nes; non-plastic.
-5		\square	S-1	7 16 21	37	49				- 5 —		Fine to	coarse g	grained	I SAI	ND; weakly	cemented.
										-		Ground	dwater no	t enco	unte	oelow groun red. cuttings 08/0	
										-							
-10										10 —							
										_							
										_							
15										15 —							
										_							
										-							
										-							
20										20 —							
										_							
										-							
									 			LIES ONL		1004			
				CON					• OF	THIS BO	ORING AN	D AT THE	TIME OF	DRILLI	NG.		FIGURE
	924	5 A	ctiv	ity Ro	oad,	Suit	e 10	3	LO	CATION	S AND MA	Y CHANG	E AT THIS	S LOCA			· -
				go, C					PR	ESENTE		e of time. Mplificat			TUA	_	A-5



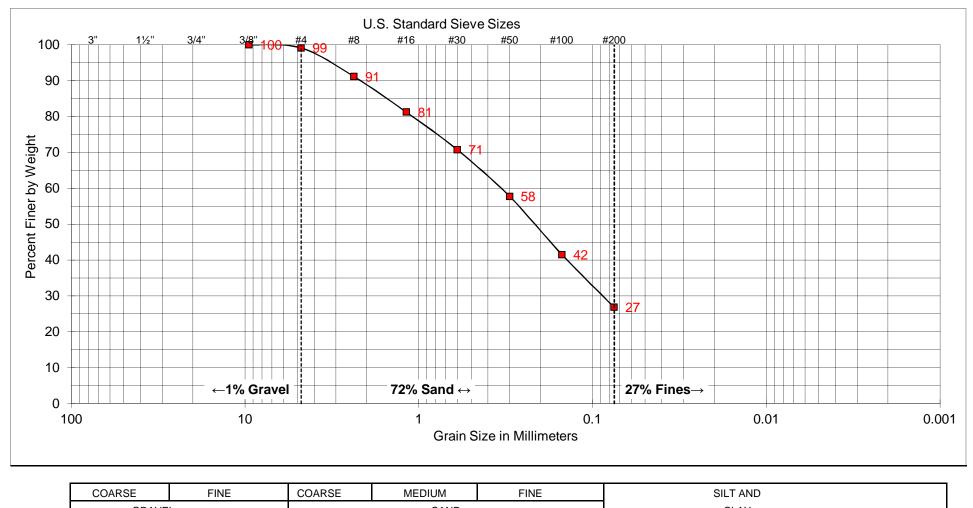
		-		
SAMPLE			UNIFIED SOIL CLASSIFICATION: SC	ATTERBERG LIMITS
BORING NUMBER:	B-1			LIQUID LIMIT:
SAMPLE DEPTH:	2.5-3'		DESCRIPTION: CLAYEY SAND	PLASTIC LIMIT:
		-		PLASTICITY INDEX:

SOIL CLASSIFICATION

Document No. 16-0170 Project No. SD493

GROUP DELTA

COARSE	FINE	COARSE	MEDIUM	FINE	SILT AND
GRAVE	L		SAND		CLAY
		-			


SOIL CLASSIFICATION

SAMPLE			UNIFIED SOIL CLASSIFICATION: SC	ATTERBERG LIMITS
BORING NUMBER:	B-1			LIQUID LIMIT:
SAMPLE DEPTH:	4-4.5'		DESCRIPTION: CLAYEY SAND	PLASTIC LIMIT:
		-		

PLASTICITY INDEX: --

Document No. 16-0170 Project No. SD493

	GRAVEL	SAND	CLAY	
	SAMPLE	UNIFIED SOIL CLASSIFICATION: SC		ATTERBERG LIMITS
BORING	NUMBER: B-1			LIQUID LIMIT:

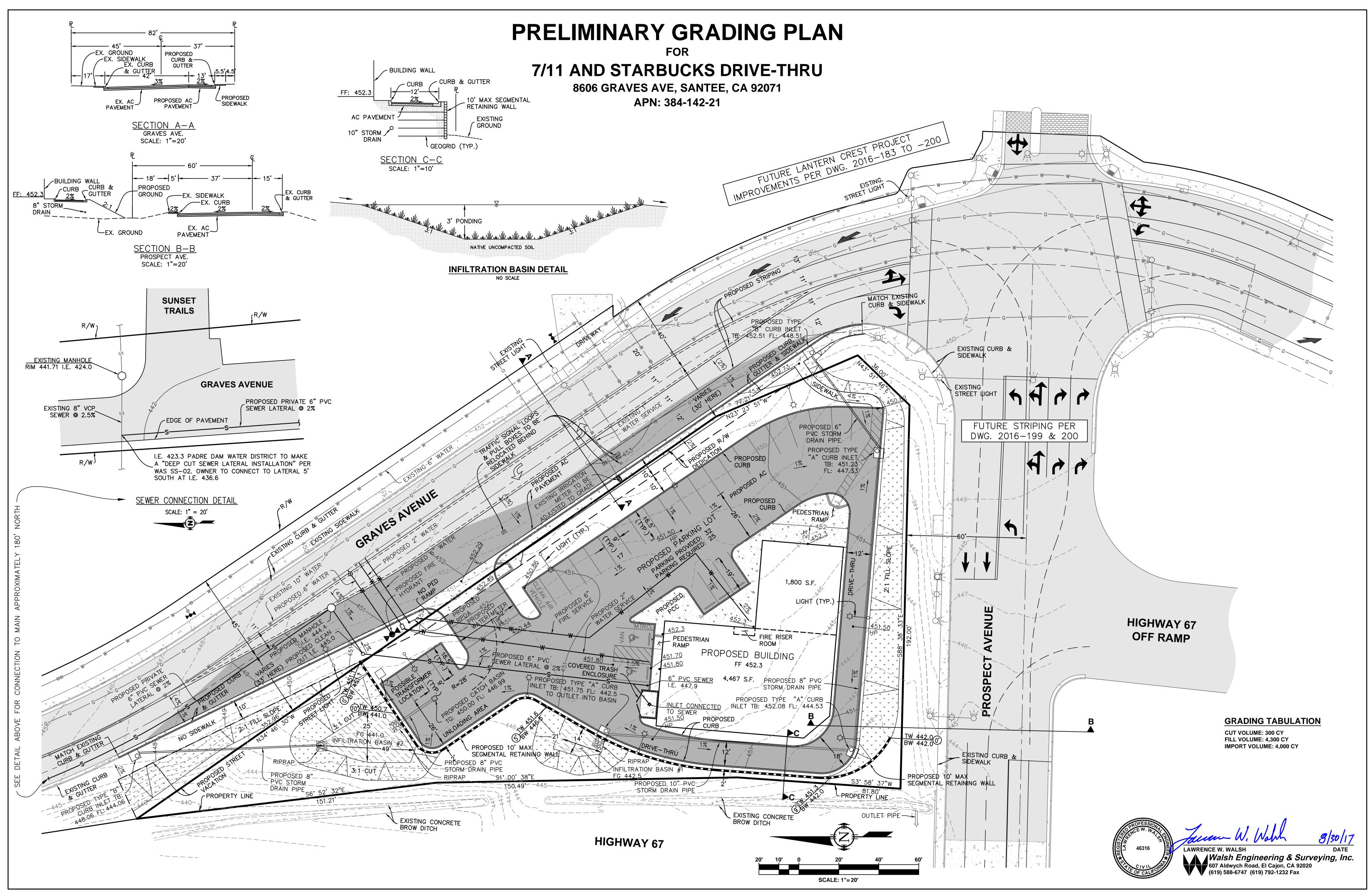
SAMPLE	UNIFIED SOIL CLASSIFICATION: SC	ATTERBERG LIMITS
BORING NUMBER: B-1		LIQUID LIMIT:
SAMPLE DEPTH: 5-6.5'	DESCRIPTION: CLAYEY SAND	PLASTIC LIMIT:

GROUP DELTA

PLASTICITY INDEX: --

Document No. 16-0170 Project No. SD493

SOIL CLASSIFICATION


Appendix I: Forms and Checklists

Categ	orization of Infiltration Feasibility Condition	Form	n I-8
Would in	Full Infiltration Feasibility Screening Criteria nfiltration of the full design volume be feasible from a physical per ences that cannot be reasonably mitigated?	spective withou	nt any undesirable
Criteria	Screening Question	Yes	No
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	~	
Provide l	Dasis:		
dated Summari	average design infiltration rate from field testing is 0.6 inches/per hour as d August 30, 2016. ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.		
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	~	
Provide l	pasis:	1	•
	See Group Delta letter dated August 30, 2016.		
	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	e. Provide narrative

Appendix I: Forms and Checklists

	Form I-8 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	\checkmark	
Provide	basis:		
dated Summar	ndwater level is more than 20 feet from bottom of infiltration basin as pre d August 30, 2016. ze findings of studies; provide reference to studies, calculations, maps, on n of study/data source applicability.		
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	\checkmark	
Provide			
Summar	ere are no streams or bodies of surface water near the site. ze findings of studies; provide reference to studies, calculations, maps, on of study/data source applicability.	lata sources, et	c. Provide narrative
Part 1 Result *	If all answers to rows 1 - 4 are " Yes " a full infiltration design is potentiall feasibility screening category is Full Infiltration If any answer from row 1-4 is " No ", infiltration may be possible to some would not generally be feasible or desirable to achieve a "full infiltration" Proceed to Part 2	extent but	Full Infiltration

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

Proposed Lantern Crest Commercial Building 8606 Graves Avenue Santee, California

> **JOB NO. 15-10852** 16 October 2015

> > Prepared for:

Advantaged Asset Acquisitions I, LLC

16 October 2015

Advantaged Asset Acquisitions I, LLC 110 Town Center Parkway Santee, CA 92071 Attn: Mr. Michael Grant Job No. 15-10852

Subject: <u>Report of Preliminary Geotechnical Investigation</u> Proposed Lantern Crest Commercial Building 8606 Graves Avenue Santee, California

Dear Mr. Grant:

In accordance with your request, and our proposal of April 16, 2015, **Geotechnical Exploration, Inc.** has performed a preliminary geotechnical investigation for the subject property. The fieldwork was performed on September 10, 2015.

If the conclusions and recommendations presented in this report are incorporated into the design and construction of the proposed commercial building project, it is our opinion that the site is suitable for the project.

This opportunity to be of service is sincerely appreciated. Should you have any questions concerning the following report, please do not hesitate to contact us. Reference to our **Job No. 15-10852** will expedite a response to your inquiries.

Respectfully submitted,

GEOTECHNICAL EXPLORATION, INC.

Wm. D. Hesperer, G.E. 396 Senior Geotechnical Engineer

7420 TRADE STREET SAN DIEGO, CA. 92121 (858) 549-7222 FAX: (858) 549-1604 EMAIL: geotech@gel-sd.com

TABLE OF CONTENTS

		PAGE
I.	PROJECT SUMMARY AND SCOPE OF SERVICES	1.
п.	SITE DESCRIPTION	2
III.	FIELD INVESTIGATION	2
IV.	SOIL DESCRIPTION	4
v	GROUNDWATER	4
VI.	SEISMIC CONSIDERATIONS	5
VII.	LABORATORY TESTS AND SOIL INFORMATION	6
VIII.	CONCLUSION AND RECOMMENDATIONS	7
IX.	GRADING NOTES	20
x.	LIMITATIONS	21

FIGURES

1.	Vicinity Map
II.	Site Plan
IIIa-c.	Exploratory Trench Logs

APPENDICES

A. Unified Soil Classification System

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

Proposed Lantern Crest Commercial Building 8606 Graves Avenue Santee, California

Job No. 15-10852

The following report presents the findings and recommendations of **Geotechnical Exploration, Inc.** for the subject proposed commercial building project in Santee, California. Refer to the Vicinity Map, Figure No. I, for the location of the site.

I. PROJECT SUMMARY AND SCOPE OF SERVICES

It is our understanding, based on our conversations, that the currently vacant site will be developed to receive a single-story commercial building with pavements and other associated improvements. Although site development and grading plans are not available at this time, we anticipate that grading to achieve the desired finish site grades will be minimal with cuts and fills of less than about 2 feet.

The scope of work performed for this investigation included a site reconnaissance and subsurface exploration program, laboratory testing, geotechnical engineering analysis of the field and laboratory data, and the preparation of this report. The data obtained and the analyses performed were for the purpose of providing design and construction criteria for the project earthwork, building foundations, slab ongrade floors and pavements.

II. SITE DESCRIPTION

The relatively flat triangular-shaped lot, with a plan area of about 2½ acres, is located northwest of Prospect Street and Graves Avenue. The site is currently vacant and vegetation consists of a sparse growth of dry grass and weeds.

Proposed Lantern Crest Commercial Building Santee, California

Job No. 15-10852 Page 2

III. FIELD INVESTIGATION

The field investigation consisted of a surface reconnaissance and a subsurface exploration program using a rubber tired backhoe to investigate and sample the subsurface soils. Three exploratory trenches were excavated across the site on September 10, 2015, to a maximum depth of 5½ feet. The soils encountered in the trenches were continuously logged in the field by our representative and described in accordance with the Unified Soil Classification System (refer to Appendix A). The approximate locations of the trenches are shown on the Site Plan, Figure No. II.

Representative samples were obtained from the exploratory trenches at selected depths appropriate to the investigation. All samples were returned to our laboratory for evaluation and testing. Trench logs have been prepared on the basis of our observations and laboratory test results. Logs of the trenches are attached as Figure Nos. IIIa-c.

IV. LABORATORY TESTS AND SOIL INFORMATION

Laboratory tests were performed on disturbed and relatively undisturbed soil samples in order to evaluate their index, strength, expansion, and compressibility properties. The following tests were conducted on the sampled soils and the results are presented on the boring logs:

 Laboratory Compaction Characteristics (ASTM D1557-12)
 Determination of Percentage of Particles Passing #200 Sieve (ASTM D1140-06)

Laboratory compaction tests establish the laboratory maximum dry density and optimum moisture content of the tested soils and are used to aid in evaluating the degree of compaction of existing fill soils and their strength characteristics.

The particle size smaller than a No. 200 sieve analysis aids in classifying the tested soils in accordance with the Unified Soil Classification System and provides qualitative information related to engineering characteristics such as expansion potential, permeability, and shear strength.

The test results are presented on the trench logs at the appropriate sample depths.

V. SOIL DESCRIPTION

Existing fill soils consisting of dry to damp, loose to medium dense silty sands were encountered in trench 2 to a depth of 2 feet. The materials encountered beneath the fill soils in trench 2 (and from the ground surface in trenches 1 and 3) consisted of medium dense to dense clayey and silty sand residuum to the depth explored in trench 2, to a depth of 4½ feet in trench 1, and to a depth of 4¼ feet in trench 3. The residuum in trenches 1 and 3 was underlain by weathered granitic material consisting of very dense silty sand to the depths explored of 5 and 4½ feet.

VI. GROUNDWATER

Free groundwater was not encountered in the exploratory trenches at the time of excavation. It must be noted, however, that fluctuations in the level of ground-water may occur due to variations in ground surface topography, subsurface stratification, rainfall, and other possible factors that may not have been evident at the time of our field investigation.

It should be kept in mind that grading operations can change surface drainage patterns and/or reduce permeabilities due to the densification of compacted soils. Such changes of surface and subsurface hydrologic conditions, plus irrigation of landscaping or significant increases in rainfall, may result in the appearance of surface or near-surface water at locations where none existed previously. The appearance of such water is expected to be localized and cosmetic in nature, if good positive drainage is implemented, as recommended in this report, during and at the completion of construction.

It must be understood that unless discovered during initial site exploration or encountered during site grading operations, it is extremely difficult to predict if or where perched or true groundwater conditions may appear in the future. When site fill or formational soils are fine-grained and of low permeability, water problems may not become apparent for extended periods of time.

Water conditions, where suspected or encountered during construction, should be evaluated and remedied by the project civil and geotechnical consultants. The project developer and property owner, however, must realize that post-construction appearances of groundwater may have to be dealt with on a site-specific basis.

VII. SEISMIC CONSIDERATIONS

The San Diego area, as most of California, is located in a seismically active region. The San Diego area has been referred to as the eastern edge of the Southern California Continental Borderland, an extension of the Peninsular Ranges Geomorphic Province. The borderland is part of a broad tectonic boundary between the North American and Pacific Plates. The plate boundary is dominated by a complex system of active major strike-slip (right lateral), northwest trending faults

extending from the San Andreas fault, about 70 miles east, to the San Clemente fault, about 50 miles west of the San Diego metropolitan area.

Based on our review of some available published information there are no faults known to pass through the site. The prominent fault zones generally considered having the most potential for earthquake damage in the vicinity of the site are the active Rose Canyon and Coronado Bank fault zones mapped approximately 13 and 27 miles southwest of the site, respectively, and the active Elsinore and San Jacinto fault zones mapped approximately 28 and 49 miles northeast of the site, respectively.

Although research on earthquake prediction has greatly increased in recent years, geologists and seismologists have not yet reached the point where they can predict when and where an earthquake will occur. Nevertheless, on the basis of current technology, it is reasonable to assume that the proposed structure may be subject to the effects of at least one moderate to major earthquake during its design life. During such an earthquake, the danger from fault offset through the site is remote, but relatively strong ground shaking is likely to occur.

VIII. CONCLUSIONS AND RECOMMENDATIONS

From a geotechnical engineering standpoint, it is our opinion that the site is suitable for construction of the proposed commercial building provided the conclusions and recommendations presented in this report are incorporated into its design and construction.

The following conclusions and recommendations are based on the field investigation conducted by our firm, our laboratory test results, and our experience with similar soils and formational materials. The opinions, conclusions, and recommendations presented in this report are contingent upon **Geotechnical Exploration**, **Inc.** being retained to review the final plans and specifications as they are developed and to observe the site earthwork and installation of foundations. Accordingly, we recommend that the following paragraph be included on the grading and foundation plans for the project.

If the geotechnical consultant of record is changed for the project, the work shall be stopped until the replacement has agreed in writing to accept the responsibility within their area of technical competence for approval upon completion of the work. It shall be the responsibility of the permittee to notify the City Engineer in writing of such change prior to the recommencement of grading and/or foundation installation work.

A. Site Preparation and Earthwork

 <u>Clearing and Stripping</u>: The site should be cleared of any debris that may be present at the time of construction. After clearing, the ground surface should be stripped of surface vegetation as well as associated root systems. Holes resulting from the removal of buried obstructions that extend below the proposed finished site grades should be cleared and backfilled with suitable material compacted to the requirements given under Recommendation No. 5, "Compaction." The cleared and stripped materials should be properly disposed of off-site.

- 2. <u>Treatment of Existing Fill Soils</u>: In order to provide suitable foundation support for the proposed buildings and other improvements (such as exterior flatwork and pavements), we recommend that all existing fill soils that remain after the necessary site excavations have been made be removed and recompacted. The areal extent and depth required to remove the existing fill soils should be determined by our representatives during the excavation work based on their examination of the soils being exposed. Any unsuitable materials (such as oversize rubble, construction debris and/or organic matter) should be selectively removed as directed by our representative and disposed of off-site.
- 3. <u>Subgrade Preparation</u>: After the site has been cleared, stripped, and the required excavations made, the exposed subgrade soils in those areas to receive fill or building improvements (including any exterior flatwork or pavement areas) should be scarified to a depth of 12 inches, moisture conditioned, and compacted to the requirements of Recommendation No. 5, "Compaction."
- 4. <u>Materials for Fill:</u> All on-site soils with an organic content of less than 3 percent by volume are in general suitable for reuse as fill. Fill material should not, however, contain rocks or lumps over 6 inches in greatest dimension and not more than 15 percent larger than 2½ inches. No more than 25 percent of the fill should be larger than ¼-inch. In addition to the preceding size requirements, any required imported fill material should be a granular soil with an Expansion Index of 50 or less as determined by ASTM D4829.

- 5. <u>Compaction</u>: All structural fill and backfill should be compacted to a minimum degree of compaction of 90 percent at a moisture content at least 2 percent above the optimum moisture content based upon ASTM D1557-12. Fill material should be spread and compacted in uniform horizontal lifts not exceeding 8 inches in uncompacted thickness. Before compaction begins, the fill should be brought to a moisture content that will permit proper compaction by either 1) aerating and drying the fill if it is too wet, or 2) moistening the fill with water if it is too dry. Each lift should be thoroughly mixed before compaction to ensure a uniform distribution of moisture.
- 6. <u>Permanent Slopes:</u> We recommend that any required permanent cut or fill slopes be constructed to an inclination no steeper than 2 to 1 (horizontal to vertical). The project plans and specifications should contain all necessary design features and construction requirements to prevent erosion of the onsite soils both during and after construction. Slopes and other exposed ground surfaces should be appropriately planted with a protective groundcover.
- 7. <u>Trench Backfill</u>: All pipeline trenches should be backfilled with compacted fill. Backfill material should be placed in lift thicknesses appropriate to the type of compaction equipment utilized and compacted to a minimum degree of compaction of 90 percent by mechanical means. Our experience has shown that even shallow, narrow trenches, such as for irrigation and electrical lines, which are not properly compacted, can result in problems, particularly with respect to shallow groundwater accumulation and migration.

 Drainage: Positive surface gradients should be provided adjacent to the building, and roof gutters and downspouts should be installed to direct water away from foundations and slabs toward suitable discharge facilities. Ponding of surface water should not be allowed, especially adjacent to the building or on pavements.

B. Design Parameters for Proposed Foundations

9. <u>Footings:</u> We recommend that the proposed buildings be supported on conventional, individual-spread and/or continuous footing foundations bearing on well-compacted fill soil and/or dense natural soils. All footings should be founded at least 18 inches below the lowest adjacent finished grade.

At the recommended depth, footings may be designed for allowable bearing pressures of 2,500 pounds per square foot (psf) for combined dead and live loads and 3,300 psf for all loads, including wind or seismic. The footings should, however, have a minimum width of 12 inches.

10. <u>General Criteria For All Footings</u>: Footings located adjacent to the tops of slopes or on sloping natural ground should be extended sufficiently deep so as to provide at least 10 feet of horizontal cover or 1½ times the width of the footing, whichever is greater, between the slope face and outside edge of the footing at the footing bearing level. Footings located adjacent to utility trenches should have their bearing surfaces situated below an imaginary 1.5 to 1.0 plane projected upward from the bottom edge of the adjacent utility trench.

All continuous footings should contain top and bottom reinforcement to provide structural continuity and to permit spanning of local irregularities. We recommend that a minimum of two No. 5 top and two No. 5 bottom reinforcing bars be provided in the footings. A minimum clearance of 3 inches should be maintained between steel reinforcement and the bottom or sides of the footing. In order for us to offer an opinion as to whether the footings are founded on soils of sufficient load bearing capacity, it is essential that our representative inspect the footing excavations prior to the placement of reinforcing steel or concrete.

NOTE: The project Civil/Structural Engineer should review all reinforcing schedules. The reinforcing minimums recommended herein are not to be construed as structural designs, but merely as minimum reinforcement to reduce the potential for cracking and separations.

11. <u>Lateral Loads</u>: Lateral load resistance for the buildings supported on footing foundations may be developed in friction between the foundation bottoms and the supporting subgrade. An allowable friction coefficient of 0.35 is considered applicable. An additional allowable passive resistance equal to an equivalent fluid weight of 300 pcf acting against the foundations may be used in design provided the footings are poured neat against the adjacent undisturbed compacted fill materials and/or dense natural soils. These lateral resistance values assume a level surface in front of the footing for a minimum distance of three times the embedment depth of the footing and any shear keys.

- 12. <u>Settlement:</u> Settlement under building loads is expected to be within tolerable limits for the proposed structures. For footings designed in accordance with the recommendations presented in the preceding paragraphs, we anticipate that total settlements should not exceed 1 inch and that post-construction differential settlements should be less than 1/2inch in 25 feet.
- 13. <u>Seismic Design Criteria</u>: Site-specific seismic design criteria for the proposed residence are presented in the following table in accordance with Section 1613 of the 2013 CBC, which incorporates by reference ASCE 7-10 for seismic design. We have determined the mapped spectral acceleration values for the site, based on a latitude of 32.8315 degrees and longitude of -116.9612 degrees, utilizing a tool provided by the USGS, which provides a solution for ASCE 7-10 (Section 1613 of the 2013 CBC) utilizing digitized files for the Spectral Acceleration maps. Based on our past experience with similar conditions, we have assigned a Site Soil Classification of C.

TABLE I <u>Mapped Spectral Acceleration Values and Design Parameters</u>

Ss	S ₁	Fa	Fv	Sms	Smi	Sds	S _{d1}
0.874g	0.339g	1.050	1.461	0.918g	0.495g	0.612g	0.330g

14. <u>Retaining Walls:</u> Any retaining walls must be designed to resist lateral earth pressures and any additional lateral pressures caused by surcharge loads on the adjoining retained surface. We recommend that unrestrained (cantilever) retaining walls with level backfill be designed for an equivalent fluid pressure of 35 pcf. We recommend that restrained walls (i.e., any retaining walls with angle points or that are curvilinear that restrain them

from rotation) with level backfill be designed for an equivalent fluid pressure of 35 pcf plus an additional uniform lateral pressure of 8H pounds per square foot where H is equal to the height of backfill above the top of the wall footing in feet.

The preceding design pressures assume that the walls are backfilled with low expansion potential on-site or imported materials and that there is sufficient drainage behind the walls to prevent the build-up of hydrostatic pressures from surface water infiltration. We recommend that drainage be provided by a composite drainage material such as Miradrain 6000/6200 and QuickDrain or equivalent that is discharged to a free outlet. No gravel or perforated pipe is used with the Miradrain/QuickDrain system. The drain material should terminate 12 inches below the finish surface where the surface is covered by slabs or 18 inches below the finish surface in landscape areas.

Backfill placed behind the walls should be compacted to a minimum degree of compaction of 90 percent using light compaction equipment. If heavy equipment is used, the walls should be appropriately temporarily braced.

Retaining walls should be supported on footing foundations designed in accordance with the recommendations presented previously under Recommendation Nos. 9 and 10. Lateral load resistance for the walls can be developed in accordance with the recommendations presented under Recommendation No. 11 "Lateral Loads."

Proposed Lantern Crest Commercial Building Santee, California

C. <u>Concrete Slab-on-grade Criteria</u>

- 15. <u>Minimum Floor Slab Thickness and Reinforcement</u>: Based on our experience, we have found that, for various reasons, floor slabs occasionally crack, causing brittle surfaces such as ceramic tiles to become damaged. Therefore, we recommend that all slabs-on-grade contain at least a minimum amount of reinforcing steel to reduce the separation of cracks, should they occur.
 - 15.1 Interior floor slabs should be a minimum of 5 inches actual thickness and be reinforced with No. 4 bars on 18-inch centers, both ways, placed at midheight in the slab. Slab subgrade soil should be verified by a **Geotechnical Exploration**, **Inc**. representative to have the proper moisture content within 48 hours prior to placement of the vapor barrier and pouring of concrete.
 - 15.2 Following placement of any concrete floor slabs, sufficient drying time must be allowed prior to placement of floor coverings. Premature placement of floor coverings may result in degradation of adhesive materials and loosening of the finish floor materials.
- 16. <u>Concrete Isolation Joints:</u> We recommend the project Civil/Structural Engineer incorporate isolation joints and sawcuts to at least one-fourth the thickness of the slab in any floor designs. The joints and cuts, if properly placed, should reduce the potential for and help control floor slab cracking. We recommend that concrete shrinkage joints be spaced no farther than approximately 20 feet apart, and also at re-entrant corners. However, due to a number of reasons (such as base preparation, construction techniques,

curing procedures, and normal shrinkage of concrete), some cracking of slabs can be expected.

17. <u>Slab Moisture Protection and Vapor Barrier Membrane</u>: Although it is not the responsibility of geotechnical engineering firms to provide moisture protection recommendations, as a service to our clients we provide the following discussion and suggested minimum protection criteria. Actual recommendations should be provided by the architect and waterproofing consultants.

Soil moisture vapor can result in damage to moisture-sensitive floors, some floor sealers, or sensitive equipment in direct contact with the floor, in addition to mold and staining on slabs, walls and carpets. The common practice in Southern California is to place vapor retarders made of PVC, or of polyethylene. PVC retarders are made in thickness ranging from 10- to 60mil. Polyethylene retarders, called visqueen, range from 5- to 10-mil in thickness. These products are no longer considered adequate for moisture protection and can actually deteriorate over time.

Specialty vapor retarding products possess higher tensile strength and are more specifically designed for and intended to retard moisture transmission into and through concrete slabs. The use of such products is highly recommended for reduction of floor slab moisture emission.

The following American Society for Testing and Materials (ASTM) and American Concrete Institute (ACI) sections address the issue of moisture transmission into and through concrete slabs: ASTM E1745-97 (2009) Standard Specification for Plastic Water Vapor Retarders Used in Contact

Concrete Slabs; ASTM E154-88 (2005) Standard Test Methods for Water Vapor Retarders Used in Contact with Earth; ASTM E96-95 Standard Test Methods for Water Vapor Transmission of Materials; ASTM E1643-98 (2009) Standard Practice for Installation of Water Vapor Retarders Used in Contact Under Concrete Slabs; and ACI 302.2R-06 Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials.

- 17.1 Based on the above, we recommend that the vapor barrier consist of a minimum 15-mil extruded polyolefin plastic (no recycled content or woven materials permitted). Permeance as tested before and after mandatory conditioning (ASTM E1745 Section 7.1 and sub-paragraphs 7.1.1-7.1.5) should be less than 0.01 perms (grains/square foot/hour in Hg) and comply with the ASTM E1745 Class A requirements. Installation of vapor barriers should be in accordance with ASTM E1643. The basis of design is 15-mil StegoWrap vapor barrier placed per the manufacturer's guidelines. Reef Industries Vapor Guard membrane has also been shown to achieve a permeance of less than 0.01 perms. We recommend that the slab be poured directly on the vapor barrier which is placed directly on the prepared subgrade soil.
- 17.2 Common to all acceptable products, vapor retarder/barrier joints must be lapped and sealed with mastic or the manufacturer's recommended tape or sealing products. In actual practice, stakes are often driven through the retarder material, equipment is dragged or rolled across the retarder, overlapping or jointing is not properly implemented, etc. All these construction deficiencies reduce the retarder's effectiveness. In no case should retarder/barrier products be punctured or gaps be allowed to form prior to or during concrete placement.

- 17.3 Vapor retarders/barriers do not provide full waterproofing for structures constructed below free water surfaces. They are intended to help reduce or prevent vapor transmission and/or capillary migration through the soil and through the concrete slabs. Waterproofing systems must be designed and properly constructed if full waterproofing is desired. The owner and project designers should be consulted to determine the specific level of protection required.
- 17.4 Following placement of concrete floor slabs, sufficient drying time must be allowed prior to placement of any floor coverings. Premature placement of floor coverings may result in degradation of adhesive materials and loosening of the finish floor materials.
- 18. <u>Exterior Slab Thickness and Reinforcement</u>: As a minimum for protection of on-site improvements, we recommend that all exterior pedestrian concrete slabs be founded on properly compacted and tested fill, with No. 3 bars at 15-inch centers, both ways, at the center of the slab, and contain adequate isolation and control joints. The performance of on-site improvements can be greatly affected by soil base preparation and the quality of construction. It is therefore important that all improvements are properly designed and constructed for the existing soil conditions. The improvements should not be built on loose soils or fills placed without our observation and testing.

For exterior slabs with the minimum shrinkage reinforcement, control joints should be placed at spaces no farther than 15 feet apart or the width of the slab, whichever is less, and also at re-entrant corners. Control joints in exterior slabs should be sealed with elastomeric joint sealant. The sealant should be inspected every 6 months and be properly maintained.

19. <u>Asphalt Concrete Pavements</u>: Based on the results of our exploratory borings and laboratory tests as well as our experience with soils similar to those encountered at the site, we anticipate that pavement sections for the proposed development will be on the order of 2½ inches of asphalt concrete on 4 inches of aggregate base for parking stalls and minor traffic channels (Traffic Index of 4.0), 3 inches on 5½ inches for major automobile traffic channels (TI of 5.0), and 3 inches on 7 inches for pavements subject to up to 13 heavy 2-axle trucks per week (TI of 5.5). Final pavement section recommendations should be based on R-value (Resistance) tests performed on bulk samples of the soils that are exposed at the finished subgrade elevations across the site at the completion of the mass grading operations.

Asphalt concrete should consist of Type III-C2-PG64-10 conforming to the Standard Specifications for Public Works Construction, 2000 Edition (Standard Specifications), Section 400-4 and be placed in accordance with Section 302-5. Aggregate base should conform to the requirements for Crushed Aggregate Base or Crushed Miscellaneous Base in Section 200-2 of the Standard Specifications. The upper 6 inches of the pavement subgrade soil as well as the aggregate base layer should be compacted to a minimum degree of compaction of 95 percent. Preparation of the subgrade and placement of the asphalt concrete and base materials should be performed under the observation of our representative.

D. <u>Slope Performance</u>

20. <u>Slope Top/Face Performance</u>: The soils that occur in close proximity to the top or face of even properly compacted fill or dense natural ground cut slopes often possess poor lateral stability. The degree of lateral and vertical

deformation depends on the inherent expansion and strength characteristics of the soil types comprising the slope, slope steepness and height, loosening of slope face soils by burrowing rodents, and irrigation and vegetation maintenance practices, as well as the quality of compaction of fill soils. Structures and other improvements could suffer damage due to these soil movement factors if not properly designed to accommodate or withstand such movement.

21. <u>Slope Top Structure Performance:</u> Rigid improvements such as top-of-slope walls, columns, decorative planters, concrete flatwork, and other similar types of improvements can be expected to display varying degrees of separation typical of improvements constructed at the top of a slope. The separations result primarily from slope top lateral and vertical soil deformation processes. These separations often occur regardless of being underlain by cut or fill slope material. Proximity to a slope top is often the primary factor affecting the degree of separations occurring.

Typical and to-be-expected separations can range from minimal to up to 1 inch or greater in width. In order to minimize the effect of slope-top lateral soil deformation, we recommend that the top-of-slope improvements be designed with flexible connections and joints in rigid structures so that the separations do not result in visually apparent cracking damage and/or can be cosmetically dressed as part of the ongoing property maintenance. These flexible connections may include "slip joints" in wrought iron fencing, evenly spaced vertical joints in block walls or fences, control joints with flexible caulking in exterior flatwork improvements, etc.

Proposed Lantern Crest Commercial Building Santee, California Job No. 15-10852 Page 19

E. <u>General Recommendations</u>

22. <u>Project Start Up Notification</u>: In order to minimize any work delays during site development, this firm should be contacted 24 hours prior to any need for observation of footing excavations or field density testing of compacted fill soils. If possible, placement of formwork and steel reinforcement in footing excavations should not occur prior to observing the excavations; in the event that our observations reveal the need for deepening or redesigning foundation structures at any locations, any formwork or steel reinforcement in the affected footing excavation areas would have to be removed prior to correction of the observed problem (i.e., deepening the footing excavation, recompacting soil in the bottom of the excavation, etc.).

IX. GRADING NOTES

Geotechnical Exploration, Inc. recommends that we be retained to verify the actual soil conditions revealed during site grading work and footing excavations to be as anticipated in this "*Report of Preliminary Geotechnical Investigation*" for the project. In addition, the compaction of any fill soils placed during site grading work must be observed and tested by the soil engineer. It is the responsibility of the grading contractor to comply with the requirements on the grading plans and the local grading ordinance. All retaining wall and trench backfill should be properly compacted. **Geotechnical Exploration, Inc.** will assume no liability for damage occurring due to improperly or uncompacted backfill placed without our observation and testing.

Proposed Lantern Crest Commercial Building Santee, California Job No. 15-10852 Page 20

X. LIMITATIONS

Our conclusions and recommendations have been based on available data obtained from our field investigation and laboratory analysis, as well as our experience with similar soils and formational materials located in this area of San Diego County. Of necessity, we must assume a certain degree of continuity between exploratory borings. It is, therefore, necessary that all observations, conclusions, and recommendations be verified at the time grading operations begin or when footing excavations are placed. In the event discrepancies are noted, additional recommendations may be issued, if required.

The work performed and recommendations presented herein are the result of an investigation and analysis that meet the contemporary standard of care in our profession within the County of San Diego. No warranty is provided.

This report should be considered valid for a period of two (2) years, and is subject to review by our firm following that time. If significant modifications are made to the building plans, especially with respect to the height and location of any proposed structures, this report must be presented to us for immediate review and possible revision.

It is the responsibility of the owner and/or developer to ensure that the recommendations summarized in this report are carried out in the field operations and that our recommendations for design of this project are incorporated in the structural plans. We should be retained to review the project plans once they are available, to verify that our recommendations are adequately incorporated in the plans.

This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for the safety of personnel other than our own on the site; the safety of others is the responsibility of the contractor. The contractor should notify the owner if any of the recommended actions presented herein are considered unsafe.

The firm of **Geotechnical Exploration**, **Inc.** shall not be held responsible for changes to the physical condition of the property, such as addition of fill soils or changing drainage patterns, which occur subsequent to issuance of this report and the changes are made without our observations, testing, and approval.

Once again, should any questions arise concerning this report, please feel free to contact the undersigned. Reference to our **Job No. 15-10852** will expedite a reply to your inquiries.

Respectfully submitted,

GEOTECHNICAL EXPLORATION, INC.

Wm. D. Hespeler, G.E. 396 Senior Geotechnical Engineer

VICINITY MAP

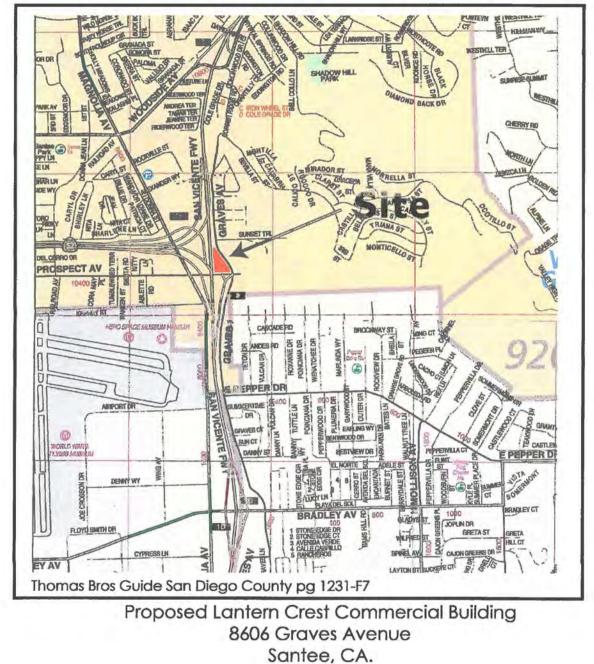
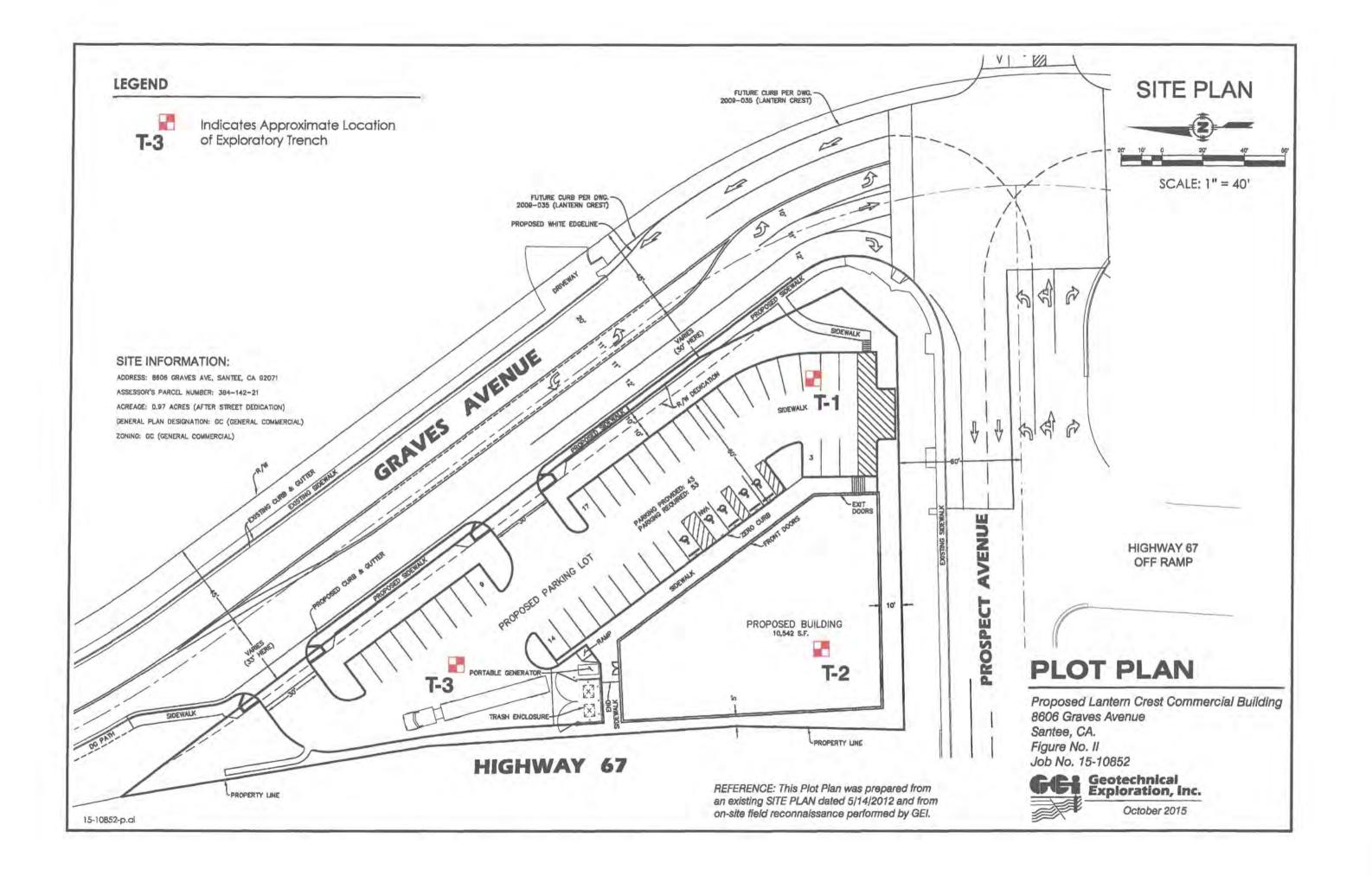



Figure No. I Job No. 15-10852

Rubber-tire Backhoe		DIMENSION & TYPE OF EXCAVATION 13' X 2' X 5' Trench				DATE LOGGED							
						9-10-15							
					GROUNDWATER/ SEEPAGE DEPTH			LOGGED BY					
±	447'	Me	an Sea Level	Not Encountered	4			J	AB		_	_	_
DEPTH (feet)			FIELD DESCRI AND CLASSIFICAT			IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + (%) CONSOL - (%)	BLOW COUNTS/FT.	SAMPLE O.D.
	SYMBOL	SAMPLE	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SILTY SAND, fine- to coarse-gr abundant pinhole voids. Mediur the upper 1') to moist. Light red- RESIDUUM trace rootlets in the upper 2'. 31% passing #200 sieve. CLAYEY SAND, fine- to coarse some pinhole voids. Dense. Mo red-brown. RESIDUUM 31% passing #200 sieve.	n dense. Dry (in brown. -grained, with bist. Dark	SM								
5-1-1-1-1		X	SILTY SAND , medium- to coars moderately weathered. Very de red-gray. GRANITIC BEDR TONALITE (K) Bottom @ 5'	nse. Moist. Dark	SM								
	¥ × 1	BU IN- MC	RCHED WATER TABLE ILK BAG SAMPLE PLACE SAMPLE DDIFIED CALIFORNIA SAMPLE ICLEAR FIELD DENSITY TEST	JOB NAME Lantern Crest (SITE LOCATION 8606 Graves Av JOB NUMBER 15-10852 FIGURE NUMBER		, Sant	tee, CA	A	WDH nical lon, Inc.	LOG	No. T-	1	

EQUIP	PMENT	6	1	DIMENSION & TYPE OF EX	CAVATIO	N		DATE	LOGGED				
R	ubbe	er-ti	re Backhoe	12' X 2' X 5.5' Tr	ench	-		9	10-15	1			
SURF	ACE EL	EVA	TION	GROUNDWATER/ SEEPAGE DEPTH LOGGED BY									
±	± 442' Mean Sea Level			Not Encountere	d	_		J	AB	_			
(set)			FIELD DESCRI AND CLASSIFICA			E RE (%)	E DRY (pd)	M RE (%)	(pcf)	('O'	(%)	ET.	0.D.
DEPTH (feet)	SYMBOL	SAMPLE	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL -	BLOW COUNTS/FT.	SAMPLE O.D.
1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		X	SILTY SAND, fine- to coarse-g dense. Dry (in the upper 1.5') to red-brown. FILL (Qaf) - 31% passing #200 sieve. - trace rootlets in the upper 2'. SILTY SAND, fine- to coarse-gu pinhole voids. Medium dense to Dark red-brown. RESIDUUM - gopher hole @ 3'. CLAYEY SAND, fine- to coarse some pinhole voids. Medium de Moist. Dark red-brown. RESIDUUM - gopher hole @ 4.5'.	a moist. Light rained, with some o dense. Moist.	SM	1.0	106.3	7.8	134.0	79			
		BU IN-	Bottom @ 5.5' RCHED WATER TABLE LK BAG SAMPLE PLACE SAMPLE	JOB NAME Lantern Crest (SITE LOCATION 8606 Graves Av JOB NUMBER		, Sant	1000			LOG	No.		
	s	NU	DIFIED CALIFORNIA SAMPLE CLEAR FIELD DENSITY TEST ANDARD PENETRATION TEST	15-10852 FIGURE NUMBER	-	G			WDH Nical on, Inc.		T-	2	

EQUIPM			DIMENSION & TYPE OF EXCA		N		1.1.1	LOGGED				
		TON	12' X 2' X 4.5' Tre GROUNDWATER/ SEEPAGE I		_		-	10-15				_
SURFACE ELEVATION G ± 444' Mean Sea Level			Not Encountered	LOGGED BY								
set)		FIELD DESCR AND CLASSIFICA			tE (%)	(pcf)	A KE (%)	A DRY (pcf)	(D.)	(%)	1.	.D.
DEPTH (feet)	SYMBOL	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pd)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL -	BLOW COUNTS/FT.	SAMPLE O.D.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SILTY SAND, fine- to coarse-g abundant pinhole voids. Mediu the upper 1.5') to moist. Light in RESIDUUN - trace roots and rootlets.	e-grained, with oist. Dark	SM								
	BL	SILTY SAND, medium- to coan moderately weathered. Very d red-gray. GRANITIC BEDI TONALITE (H Bottom @ 4.5' ERCHED WATER TABLE JLK BAG SAMPLE PLACE SAMPLE	ense. Moist. Dark		, Sant	tee, C/	4					
	MC S NU	DDIFIED CALIFORNIA SAMPLE JCLEAR FIELD DENSITY TEST ANDARD PENETRATION TEST	15-10852 FIGURE NUMBER		REVI		_	WDH nical ion, inc.	LOG	No.	3	

APPENDIX A UNIFIED SOIL CLASSIFICATION CHART SOIL DESCRIPTION

Coarse-grained (More than half of material is larger than a No. 200 sieve)

GRAVELS, CLEAN GRAVELS (More than half of coarse fraction is larger than No. 4 sieve size, but	GW	Well-graded gravels, gravel and sand mixtures, little or no fines.
smaller than 3")	GP	Poorly graded gravels, gravel and sand mixtures, little or no fines.
GRAVELS WITH FINES (Appreciable amount)	GC	Clay gravels, poorly graded gravel-sand-silt mixtures
SANDS, CLEAN SANDS (More than half of coarse fraction	sw	Well-graded sand, gravelly sands, little or no fines
is smaller than a No. 4 sieve)	SP	Poorly graded sands, gravelly sands, little or no fines.
SANDS WITH FINES (Appreciable amount)	SM	Silty sands, poorly graded sand and silty mixtures.
A the second second second	SC	Clayey sands, poorly graded sand and clay mixtures.

Fine-grained (More than half of material is smaller than a No. 200 sieve)

SILTS AND CLAYS

Liquid Limit Less than 50	ML	Inorganic silts and very fine sands, rock flour, sandy silt and clayey-silt sand mixtures with a slight plasticity
	CL	Inorganic clays of low to medium plasticity, gravelly clays, silty clays, clean clays.
	OL	Organic silts and organic silty clays of low plasticity.
Liquid Limit Greater than 50	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
	CH	Inorganic clays of high plasticity, fat clays.
	ОН	Organic clays of medium to high plasticity.
HIGHLY ORGANIC SOILS	PT	Peat and other highly organic soils

Appendix F

Amendment to Storm Water Quality Management Plan and Storm Water Quality Management Plan

CITY OF SANTEE

AMENDMENT TO STORM WATER QUALITY MANAGEMENT PLAN

FOR

7/11 AND STARBUCKS DRIVE-THRU 8606 GRAVES AVENUE SANTEE, CALIFORNIA 92071

ASSESSOR'S PARCEL NUMBER(S): 384-142-21

PREPARED FOR:

MICHAEL GRANT DEVELOPMENT CONTRACTORS, INC. 110 TOWN CENTER PARKWAY SANTEE, CALIFORNIA

PREPARED BY:

REC CONSULTANTS, INC. 2442 SECOND AVENUE SAN DIEGO, CALIFORNIA 92101 (619) 232-9200

> DATE: DECEMBER 14, 2017

PLANS PREPARED BY: REC CONSULTANTS, INC. 2442 SECOND AVENUE SAN DIEGO, CALIFORNIA 92101 (619) 232-9200 Page intentionally blank

Table of Contents

1.	INTRODUCTION	4
2.	DESCRIPTION OF PROPOSED SITE DRAINAGE	4
3.	DESCRIPTION OF BMP STRATEGY	4
4.	HYDROMODIFICATION COMPLIANCE	5
ATT	ACHMENT 1: REVISED BMP EXHIBIT	6
ATT	ACHMENT 2: BMP DESIGN CALCULATIONS	7
ATT	ACHMENT 3: HYDROMODIFICATION EXEMPTION DOCUMENTATION	8

TABLES

Table 1. Increase in Areas treated by Infiltration Basins	4
Table 2. Summary of BMP Details	.4

1. INTRODUCTION

This Amendment to the Storm Water Quality Management Plan (SWQMP) by Walsh Engineering & Surveying, Inc. (August 2017) has been prepared to modify the proposed basin for DMA-B (infiltration basin #2). This modification is due to the fact that additional areas will be flowing onto the project site, and that the proposed basins also need to comply with Q100 requirements. Per Project Clean Water Maps, the project site is exempt from hydromodification, thus basins do not need to meet hydromodification requirements.

The City of Santee has requested that the improvements to the adjacent Graves Avenue to the east of the project site, include grading in such a way that a larger portion of the roadway will drain onto the project area. This roadway will undergo improvements; as such, runoff from the centerline to the project boundary will be directed towards the two proposed infiltration basins within the project area.

Additionally, it has been determined that flood control requirements need to be met. This amendment is complementary to a separate drainage report prepared by REC Consultants (December 2017) where Q100 needs are addressed.

This document also establishes that the Graves Commercial Center project site is considered to be exempt from hydromodification. The necessary documentation has been provided to demonstrate that this is the case.

2. DESCRIPTION OF PROPOSED SITE DRAINAGE

The proposed grading will not be altered within the project site with the increase of Graves Avenue improvement area. Runoff from roadway will be conveyed via storm water drains onto the infiltration basins as proposed in the SWQMP report. The following table shows the increase in DMA areas:

	INFILTRATON	AREA IN SWQMP	AMENDED AREA	DIFFERENCE
DMA	BASIN	(sq-ft)	(sq-ft)	(sq-ft)
А	1	16,976	20,557	+3,581
В	2	24,942	28,478	+3,536
TOTAL	-	41,918	49,035	+7,117

 Table 1. Increase in areas treated by proposed Infiltration Basins

3. DESCRIPTION OF BMP STRATEGY

The existing SWQMP prepared by Walsh Engineering proposes two (2) infiltration basins with the intent of meeting water quality purposes. These basins have been revised in such a way that they are able to receive runoff from the increased areas and that they serve not only water quality purposes, but that they are able to comply with Q100 requirements as well. Additionally, per web soil survey, the project site is underlined by soil type "A" throughout entire area, which is used in this analysis.

Basin 1, which receives runoff from the southern section of the project site (DMA-A), remains the same. The basin, as designed in the SWQMP, has the capacity to meet both Water Quality and Q100 needs for the newly increased areas.

On the other hand, Basin 2, which receives runoff from the northern section of the project site (DMA-B), has been revised as the original design found in the SWQMP was deemed insufficient for flood control requirements. The basin remains an infiltration basin but with an increased area, and a total depth of 2.75 ft. BMP design spreadsheets have been included in Appendix 2 of this amendment.

For details regarding the compliance of flood control please refer to the project's Drainage Study prepared by REC and dated December 2017.

The following table summarizes the proposed basins details:

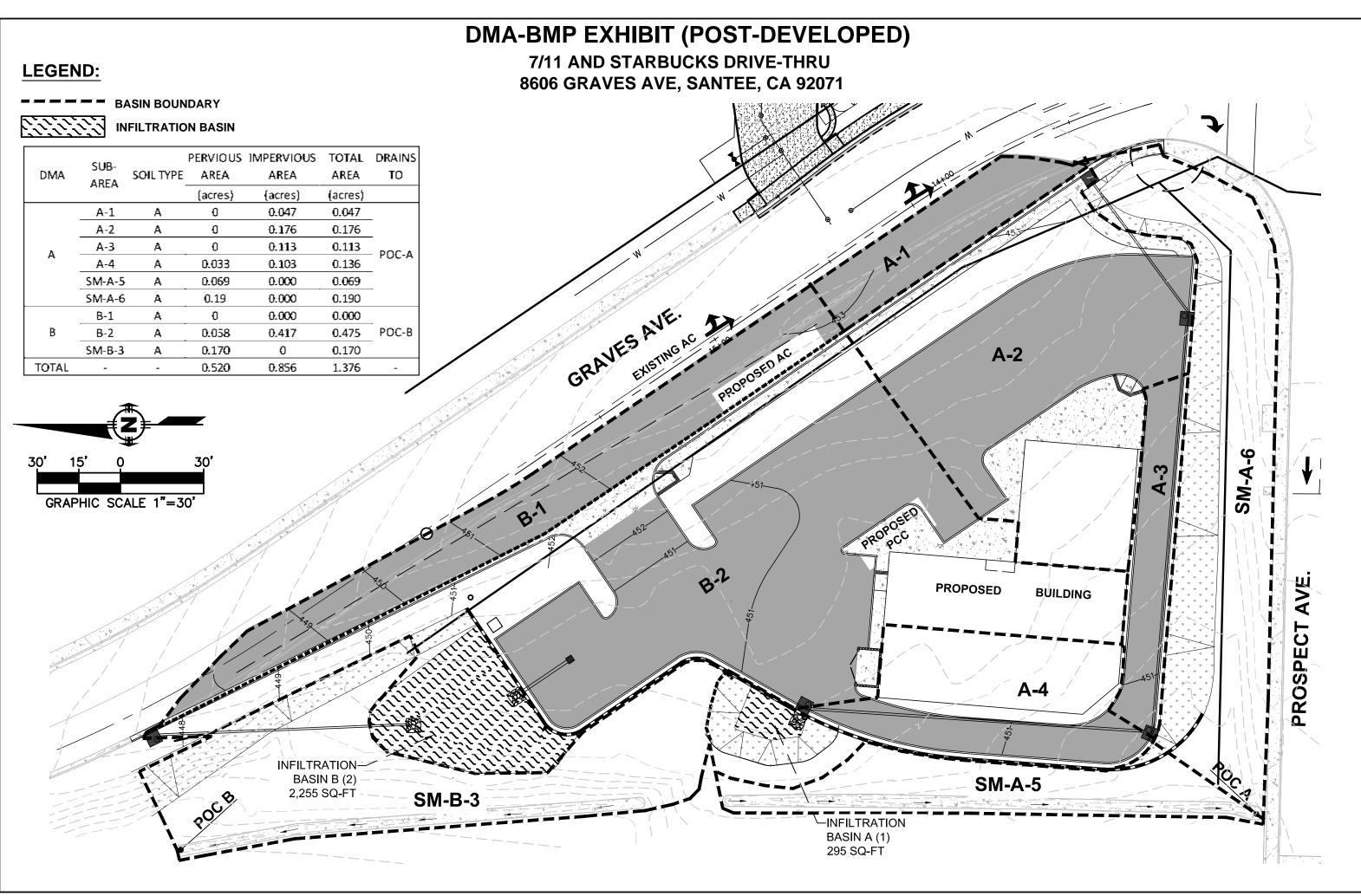

DMA	BMP	BOTTOM BMP AREA (sq-ft)	CREST BMP AREA (sq-ft)	DEPTH (ft)	LOS FLOW ORIFICE (inches)	RISER DEPTH (in)	SLOT WIDTH (in)	FLOWS TO
А	1	296	940	3	-	-	-	POC-A
В	2	2255	2255	2.75	1	8	36	POC-B

Table 2. SUMMARY OF BMP DETAILS

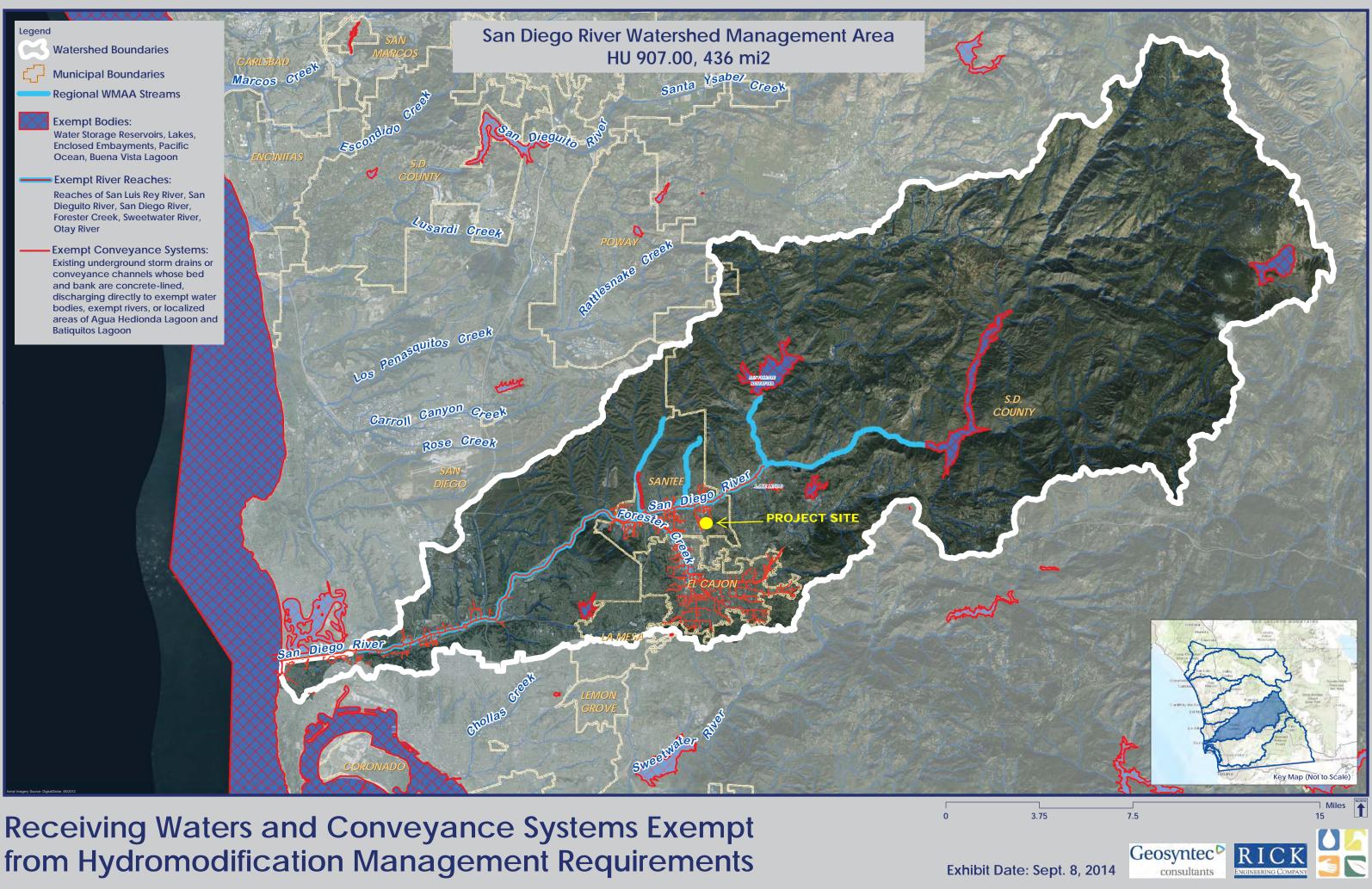
4. HYDROMODIFICATION COMPLIANCE

The project area lies in an area that has been found to be exempt from hydromodification, as receiving bodies of water are lined by concrete. Appendix 3 provides a Project Clean Water Hydromodification Exemption map.

ATTACHMENT 1: REVISED BMP EXHIBIT

ATTACHMENT 2: BMP DESIGN CALCULATIONS

Automated Worksheet B.1-1: Calculation of Design Capture Volume (V1.3)


Calculations 27 Upstream Imperious Surfaces Not Directed to Depension Area (C=0.90) 0			Automated Worksh			Let a let	/ <u> </u>	e volume (
1 Theorem Date on the Tables on	Category		*	ĺ	Ű	ŰĨ	ā.	V	17	VÜ	VIII	Ž×	${\mathcal X}$	
Section 9 </td <td></td> <td>0</td> <td>Drainage Basin ID or Name</td> <td>DMA-1</td> <td>DMA-2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>unitless</td>		0	Drainage Basin ID or Name	DMA-1	DMA-2									unitless
Suntal Driving (selection) Constraints (selection) O(20) O(20) (selection) (select		1	Basin Drains to the Following BMP Type	Retention	Retention									unitless
NNM 0 Framework of the section of the sectin of the section of the section of the sectin of the sec		2	85th Percentile 24-hr Storm Depth	0.48	0.48									inches
Drainson Improving finite Net Lanstan Lanstan Autor 2010 2009	Standard	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620									in/hr
Best Dyte 3 State Books State States and Data And (2-13) 6 <		4	Impervious Surfaces <u>Not Directed to Dispersion Area</u> (C=0.90)	20,049	25,949									sq-ft
Act Improved Hyperson Strates National National Strates National Natext National Natext National National National Nat		5	Semi-Pervious Surfaces <u>Not Serving as Dispersion Area</u> (C=0.30)											sq-ft
6 Number (1)::::::::::::::::::::::::::::::::::::	Dashiinputs	6	Engineered Pervious Surfaces <u>Not Serving as Dispersion Area</u> (C=0.10)											sq-ft
9 Name Thy C 53 2xx Saving an Expension Ang 57-039 No. No. <td></td> <td>7</td> <td>Natural Type A Soil <u>Not Serving as Dispersion Area</u> (C=0.10)</td> <td>1,440</td> <td>2,529</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>sq-ft</td>		7	Natural Type A Soil <u>Not Serving as Dispersion Area</u> (C=0.10)	1,440	2,529									sq-ft
10 Num Type D53 Nix Swing a Dipersion Awarg 703/0 No No <th< td=""><td></td><td>8</td><td>Natural Type B Soil <u>Not Serving as Dispersion Area</u> (C=0.14)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>sq-ft</td></th<>		8	Natural Type B Soil <u>Not Serving as Dispersion Area</u> (C=0.14)											sq-ft
11 Dos/fiktarg (norgyme: Dayser, file: Wile, ad/or Ren/Hander No No </td <td></td> <td>9</td> <td>Natural Type C Soil <u>Not Serving as Dispersion Area</u> (C=0.23)</td> <td></td> <td>sq-ft</td>		9	Natural Type C Soil <u>Not Serving as Dispersion Area</u> (C=0.23)											sq-ft
12 Improversion Decent of Lagonian Acayser SD B (3 - 02) improversion Acayser SD B (3 - 02) improver		10	Natural Type D Soil <u>Not Serving as Dispersion Area</u> (C=0.30)											sq-ft
13 Smithvas Strikes Soring a.D Bayesin Anage SDB (G-01) is 13 Smithvas Strikes Soring a.D Bayesin Anage SDB (G-01) is		11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	No			No	No	No	No	No	No	yes/no
Dispession Avec, Tre Viell & King, 14 Figureed Devices Strikes Strike as Dispession Area per SDB (C=100) with a king and tree strike with a king and tree as a strike strike as Dispession Area per SDB (C=100) with a king as a strike as a strike strike as a strike strike as Dispession Area per SDB (C=102) with a king as a strike strike as a strike strike as Dispession Area per SDB (C=102) with a king as a strike strike as a strike strike as a strike str		12	Impervious Surfaces Directed to Dispersion Area per SD-B (G=0.90)											sq-ft
Hypothy 15 Number Lippe Actod Serving as Dispession Array per SD B(G=0.10) 100 <td></td> <td>13</td> <td>Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (G=0.30)</td> <td></td> <td>sq-ft</td>		13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (G=0.30)											sq-ft
Anite Trip 15 Natual Type, X-St Serving as Deposion Aracy eS DB (G-111) Image: Construct on the service of the s		14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (G=0.10)											sq-ft
With & Rain 16 Name Lype 25 al Serving as Depender Average SD-B(C)=0.23 Image Solution (1) Solution (-	15	Natural Type A Soil Serving as Dispersion Area per SD-B (G=0.10)											sq-ft
Brind Tippas 17 Nixed Type CS-01 Skrifting as Dependent Area (FSDB (G=0.2)) Image Type (C) Image Ty		16	Natural Type B Soil Serving as Dispersion Area per SD-B (G=0.14)											sq-ft
Optional 18 Name Type D's d'extrage Lbegradon Area per SDR (1940) Image Composition Image Compositio		17	Natural Type C Soil Serving as Dispersion Area per SD-B (G=0.23)											sq-ft
Option 19 Number of Tise Web Imposed per SDA image Number of Tise Careys Damser image Number of Tise Careys Damser image Number of Tise Tise Name Sec image Number of Tise Tise Name Sec image Number of Tise Tise Name Sec image Number of Tise Name Sec image Name Sec	-	18	Natural Type D Soil Serving as Dispersion Area per SD-B (G=0.30)											sq-ft
21 Number of Rain Hands Proposal per SDT		19	Number of Tree Wells Proposed per SD-A											#
22 Average RainHard Sor Image RainHard Sor <td></td> <td>20</td> <td>Average Mature Tree Canopy Diameter</td> <td></td> <td>ft</td>		20	Average Mature Tree Canopy Diameter											ft
Tiestnery Restrict 23 Des BMPOutflow to Stammaar Liatures in Desination Desination No C		21	Number of Rain Barrels Proposed per SD-E											#
Institute 24 Identify Dawnsram Dringe Brin Poxiding Titammer in Series in i		22	Average Rain Barrel Size											gal
Train Input 2 Indicatify Downstram Dampe Rain Boxiding Tightmatri fixits inc percent 6 2 Upstram Impervious Surfaces Directed to Dispersion Area (Ci=0.9) 0	Treatment	23	Does BMP Overflow to Stormwater Features in <u>Downstream</u> Drainage?	No	No	No	No	No	No	No	No	No	No	unitless
& 25 Precent of Quescient Hows Directed to Depresion Area (G=020) 0		24	Identify Downstream Drainage Basin Providing Treatment in Series											unitless
Galcutation Zo Upstacam Impervious Surfaces Directed to Dispersion Area (C=020) 0		25	Percent of Upstream Hows Directed to Downstream Dispersion Areas											percent
27 Upstream Impervious Surfaces Not Directed to Depension Area (2-0.9) 0 <th< td=""><td></td><td>26</td><td>Upstream Impervious Surfaces Directed to Dispersion Area (G=0.90)</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>aubic-feet</td></th<>		26	Upstream Impervious Surfaces Directed to Dispersion Area (G=0.90)	0	0	0	0	0	0	0	0	0	0	aubic-feet
Initial Runoff 29 Initial Runoff Factor for Standard Drainage Avas 0.85 0.83 0.00	Calculations	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
Excor 30 Initial Runoff Fiactor for Dispersed & Dispersion Areas 0.00		28	Total Tributary Area	21,489	28,478	0	0	0	0	0	0	0	0	sq-ft
Calculation 31 Initial Weighted Rumoff Factor 0.85 0.83 0.00	Initial Runoff	29	Initial Runoff Factor for Standard Drainage Areas	0.85	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
32 Initial Design Capture Volum 731 945 0	Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
33 Total Inpervious Area Dispessed to Pervious Surface 0	Calculation	31	Initial Weighted Runoff Factor	0.85	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Bispersion Area 34 Total Pervices Dispersion Area Area 0 <t< td=""><td></td><td>32</td><td>Initial Design Capture Volume</td><td>731</td><td>945</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>albic-feet</td></t<>		32	Initial Design Capture Volume	731	945	0	0	0	0	0	0	0	0	albic-feet
Dispersion Area 35 Ratio of Dispersed Impervious Area to Pervious Dispersion Area n/a		33	Total Impervious Area Dispersed to Pervious Surface	0	0	0	0	0	0	0	0	0	0	sq-ft
Area 35 Ratio of Dspared Impervious Area to Pervious Dspersion Area n/a	Diamanian	34	Total Pervious Dispersion Area	0	0	0	0	0	0	0	0	0	0	sq-ft
Adjustment 36 Adjustment Factor for Dispersed & Dispersion Areas 1.00 </td <td>-</td> <td>35</td> <td>Ratio of Dispersed Impervious Area to Pervious Dispersion Area</td> <td>n/a</td> <td>ratio</td>	-	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ratio
37 Runoff Factor Atter Dispersion Techniques 0.85 0.83 n/a		36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
Tree & Band 39 Total Tree Well Volume Reduction 0 <td>Adjustments</td> <td>37</td> <td>Runoff Factor After Dispersion Techniques</td> <td>0.85</td> <td>0.83</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>unitless</td>	Adjustments	37	Runoff Factor After Dispersion Techniques	0.85	0.83	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	unitless
Adjustments 40 Total Rain Banel Volume Reduction 0 <td></td> <td>38</td> <td>Design Capture Volume After Dispersion Techniques</td> <td>731</td> <td>945</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>albic-feet</td>		38	Design Capture Volume After Dispersion Techniques	731	945	0	0	0	0	0	0	0	0	albic-feet
41 End Adjusted Runoff Factor 0.85 0.83 0.00 0	Tree & Barrel	39	Total Tree Well Volume Reduction	0	0	0	0	0	0	0	0	0	0	albic-feet
42 Final Effective Tributary Area 18,266 23,637 0	Adjustments	40	Total Rain Barrel Volume Reduction	0	0	0	0	0	0	0	0	0	0	albic-feet
Results 43 Initial Design Capture Volume Retained by Site Design Elements 0 0 0 0 0 0 0 0		41	Final Adjusted Runoff Factor	0.85	0.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
43 Initial Design Capture Volume Retained by Site Design Elements 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dografica	42	Final Effective Tributary Area	18,266	23,637	0	0	0	0	0	0	0	0	sqft
44 Final Design Capture Volume Tributary to BMP 731 945 0 <th< td=""><td>Nesults</td><td>43</td><td>Initial Design Capture Volume Retained by Site Design Elements</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>albic-feet</td></th<>	Nesults	43	Initial Design Capture Volume Retained by Site Design Elements	0	0	0	0	0	0	0	0	0	0	albic-feet
		44	Final Design Capture Volume Tributary to BMP	731	945	0	0	0	0	0	0	0	0	albic-feet

		Automat	ed Workshe	et B.4-1: Sizir	ng Retenti	ion BMPs	(V1.3)						
Category	#	Description	i	ü	iii	iv	v	vi	vii	viii	ix	X	Units
	0	Drainage Basin ID or Name	DMA-1	DMA-2	-	-	-	-	-	-	-	-	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620	-	-	-	-	-	-	-	-	in/hr
	2	Design Capture Volume Tributary to BMP	731	945	-	-	-	-	-	-	-	-	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Non-Vegetated	Non-Vegetated									unitless
DMF Inputs	4	Provided Surface Area	296	2,255									sq-ft
	5	Provided Surface Ponding Depth	36	33									inches
	6	Provided Soil Media Thickness	0	0									inches
	7	Provided Gravel Storage Thickness	0	0									inches
	8	Volume Infiltrated Over 6 Hour Storm	92	699	0	0	0	0	0	0	0	0	cubic-feet
	9	Soil Media Pore Space	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
	10	Gravel Pore Space	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
T (11)	11	Effective Depth of Retention Storage	36.0	33.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	58	53	0	0	0	0	0	0	0	0	hours
Galculations	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	64	59	0	0	0	0	0	0	0	0	hours
	14	Volume Retained by BMP	980	6,900	0	0	0	0	0	0	0	0	cubic-feet
	15	Fraction of DCV Retained	1.34	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	cubic-feet

			ummary c					ons (V1.3)					
Category	#	Description	i	ü	iii	<i>i</i> v	ν	vi	vü	งนั้น	ż×	\mathcal{X}	Units
	0	Drainage Basin ID or Name	DMA-1	DMA-2	-	-	-	-	-	-	-	-	unitless
	1	85th Percentile Storm Depth	0.48	0.48	-	-	-	-	-	-	-	-	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620	-	-	-	-	-	-	-	-	in/hr
	3	Total Tributary Area	21,489	28,478	-	-	-	-	-	-	-	-	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	860	1,139	-	-	-	-	-	-	-	_	cubic-feet
Initial DCV	5	Initial Weighted Runoff Factor	0.85	0.83	-	-	-	-	-	-	-	_	unitless
	6	Initial Design Capture Volume	731	945	-	-	-	-	-	-	-	-	cubic-feet
Site Design Volume	7	Dispersion Area Reductions	0	0	-	-	-	-	-	-	-	-	cubic-feet
Reductions	8	Tree Well and Rain Barrel Reductions	0	0	-	-	-	-	-	-	-	-	cubic-feet
	9	Effective Area Tributary to BMP	18,266	23,637	-	-	-	-	-	-	-	-	square feet
BMP Volume	10	Final Design Capture Volume Tributary to BMP	731	945	-	-	-	-	-	-	-	-	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Retention	Retention	-	-	-	-	-	-	-	-	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	731	945	-	-	_	_	_	-	-	_	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	1.00	1.00	-	-	-	-	-	-	-	-	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	80.4%	-	-	-	-	-	-	-	-	%
	15	Percent of Average Annual Runoff Retention Required	80.0%	80.0%	-	-	_	_	_	_	_	-	%
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	_	_	_	_	_	_	_	_	0⁄0
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	-	-	-	-	-	-	-	-	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	_	-	-	-	-	-	-	-	-	_	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	_	-	-	-	-	-	-	-	-	_	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	-	-	-	-	-	-	-	-	cubic-feet

Summary of Stormwater Pollutant Control Calculations (V1.3)

ATTACHMENT 3: HYDROMODIFICATION EXEMPTION DOCUMENTATION

CITY OF SANTEE

PRIORITY DEVELOPMENT PROJECT (PDP) STORM WATER QUALITY MANAGEMENT PLAN (SWQMP)

FOR

7/11 and Starbucks Drive-Thru

8606 Graves Ave. Santee, CA 92071

ASSESSOR'S PARCEL NUMBER: 384-142-21 ENGINEER OF WORK:

tim

No. 46316

Lawrence W. Walsh, RCE 46306

PREPARED FOR:

Michael Grant Development Contractors Inc. 110 Town Center Parkway Santee, CA 92071

PLANS AND PDP SWQMP PREPARED BY:

Walsh Engineering & Surveying, Inc. 607 Aldwych Road El Cajon, CA 92020 (619) 588-6747

> DATE OF SWQMP: August 30, 2017

> > PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: August 30, 2017

Page intentionally blank

TABLE OF CONTENTS

Acronym Sheet PDP SWQMP Preparer's Certification Page PDP SWQMP Project Owner's Certification Page Submittal Record **Project Vicinity Map** FORM I-1 Applicability of Permanent, Post-Construction Storm Water BMP Requirements FORM I-2 Project Type Determination Checklist (Standard Project or PDP) FORM I-3B Site Information Checklist for PDPs FORM I-4 Source Control BMP Checklist for All Development Projects FORM I-5 Site Design BMP Checklist for All Development Projects FORM I-6 Summary of PDP Structural BMPs Attachment 1: Backup for PDP Pollutant Control BMPs Attachment 1a: DMA Exhibit Attachment 1b: Tabular Summary of DMAs and Design Capture Volume Calculations Attachment 1c: Harvest and Use Feasibility Screening (when applicable) Attachment 1d: Categorization of Infiltration Feasibility Condition (when applicable) Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations Attachment 2: Backup for PDP Hydromodification Control Measures Attachment 2a: Hydromodification Management Exhibit Attachment 2b: Management of Critical Coarse Sediment Yield Areas Attachment 2c: Geomorphic Assessment of Receiving Channels Attachment 2d: Flow Control Facility Design Attachment 3: Structural BMP Maintenance Plan Attachment 3a: B Structural BMP Maintenance Thresholds and Actions Attachment 3b: Draft Maintenance Agreement (when applicable) Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs

ACRONYMS

APN	Assessor's Parcel Number
BMP	Best Management Practice
HMP	Hydromodification Management Plan
HSG	Hydrologic Soil Group
MS4	Municipal Separate Storm Sewer System
N/A	Not Applicable
NRCS	Natural Resources Conservation Service
PDP	Priority Development Project
PE	Professional Engineer
SC	Source Control
SD	Site Design
SDRWQCB	San Diego Regional Water Quality Control Board
SIC	Standard Industrial Classification
SWQMP	Storm Water Quality Management Plan

SWQMP PREPARER'S CERTIFICATION PAGE

Project Name: 7/11 and Starbucks Drive-Thru Permit Application Number:

PREPARER'S CERTIFICATION

I hereby declare that I am the Engineer in Responsible Charge of design of storm water best management practices (BMPs) for this project, and that I have exercised responsible charge over the design of the BMPs as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the PDP requirements of the City of Santee BMP Design Manual, which is a design manual for compliance with local City of Santee and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2015-0100) requirements for storm water management.

I have read and understand that the [City Engineer] has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the BMP Design Manual. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the [City Engineer] is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Engineer of Work's Signature, PE Number & Expiration Date

Lawrence W. Walsh, RCE 46306 Print Name

Walsh Engineering & Surveying, Inc.

Company

Date

Engineer's Seal:

PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: October 12, 2016 Page intentionally blank

SWQMP PROJECT OWNER'S CERTIFICATION PAGE

Project Name: 7/11 and Starbucks Drive-Thru Permit Application Number:

PROJECT OWNER'S CERTIFICATION

This PDP SWQMP has been prepared for me by Walsh Engineering & Surveying, Inc. The PDP SWQMP is intended to comply with the PDP requirements of the City of Santee BMP Design Manual, which is a design manual for compliance with local City of Santee and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2015-0100) requirements for storm water management.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan. Once the undersigned transfers its interests in the property, its successor-ininterest shall bear the aforementioned responsibility to implement the best management practices (BMPs) described within this plan, including ensuring on-going operation and maintenance of structural BMPs. A signed copy of this document shall be available on the subject property into perpetuity.

Project Owner's Signature

Michael Grant, President Print Name

Page intentionally blank

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is resubmitted, provide the date and status of the project. In column 4 summarize the changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments behind this page.

Submittal Number	Date	Project Status	Summary of Changes
1		Preliminary Design / Planning/ CEQA	Initial Submittal
2	2-6-17	Preliminary Design / Planning/ CEQA Einal Design	Formal Submittal
3	8-30-17	 Preliminary Design / Planning/ CEQA Final Design 	Addressed comments dated 7-18-17
4		 Preliminary Design / Planning/ CEQA Final Design 	

PROJECT VICINITY MAP

Project Name: 7/11 and Starbucks Drive-Thru Permit Application Number:

PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: October 12, 2016

Applicability of Permanent, Post-Construction Storm Water BMP Requirements

Form I-1 Model BMP Design Manual [August 31, 2015]

10-12-16

Date:

(Storm Water Intake Form for all Development Permit Applications) Project Identification

Project Name: 7/11 and Starbucks Drive-Thru

Permit Application Number:

Project Address: 8606 Graves Ave. Santee, CA 92071

Determination of Requirements

The purpose of this form is to identify permanent, post-construction requirements that apply to the project. This form serves as a short <u>summary</u> of applicable requirements, in some cases referencing separate forms that will serve as the backup for the determination of requirements.

Answer each step below, starting with Step 1 and progressing through each step until reaching "Stop". Upon reaching a Stop, do not complete further Steps beyond the Stop.

Refer to BMP Design Manual sections and/or separate forms referenced in each step below.

Step	Answer	Progression
Step 1: Is the project a "development	Yes	Go to Step 2.
project"?	·	
See Section 1.3 of the BMP Design	🗆 No	Stop.
Manual for guidance.		Permanent BMP requirements do not apply.
		No SWQMP will be required. Provide
		discussion below.

Discussion / justification if the project is <u>not</u> a "development project" (e.g., the project includes *only* interior remodels within an existing building):

Step 2: Is the project a Standard	🗆 Standard	Stop.
Project, Priority Development Project	Project	Only Standard Project requirements apply,
(PDP), or exception to PDP definitions?		including Standard Project SWQMP.
To answer this item, see Section 1.4 of	VPDP	Standard and PDP requirements apply,
the BMP Design Manual in its entirety		including <u>PDP SWQMP</u> .
for guidance, AND complete Form I-2,		Go to Step 3.
Project Type Determination.	Exception	Stop.
	to PDP	Standard Project requirements apply, and any
	definitions	additional requirements specific to the type of
		project. Provide discussion and list any
		additional requirements below. Prepare
		Standard Project SWQMP.

Form I-1 Page	2. Form Tem	plate Date: August 31, 2015
		ation, and additional requirements for exceptions to
Step 3 (PDPs only). Is the project subject to earlier PDP requirements due to a prior lawful approval? See Section 1.10 of the BMP Design Manual for guidance.	□ Yes	Consult the [City Engineer] to determine requirements. Provide discussion and identify requirements below. Go to Step 4. BMP Design Manual PDP requirements apply. Go to Step 4.
Discussion / justification of prior lawful approval does not apply):	approval, an	d identify requirements (<i>not required if prior lawful</i>
Step 4 (PDPs only). Do hydromodification control requirements apply? See Section 1.6 of the BMP Design Manual for guidance.	Ves	PDP structural BMPs required for pollutant control (Chapter 5) and hydromodification control (Chapter 6). Go to Step 5. Stop.
		PDP structural BMPs required for pollutant control (Chapter 5) only. Provide brief discussion of exemption to hydromodification control below.
Discussion / justification if hydromodifi	cation contro	ol requirements do <u>not</u> apply:
Step 5 (PDPs subject to hydromodification control requirements only). Does protection of critical coarse sediment yield areas	Yes	Management measures required for protection of critical coarse sediment yield areas (Chapter 6.2). Stop.
apply based on review of WMAA Potential Critical Coarse Sediment Yield Area Map? See Section 6.2 of the BMP Design Manual for guidance.	□ No	Management measures not required for protection of critical coarse sediment yield areas. Provide brief discussion below. Stop.

			Priority Determination Form	Form I-2 Model BMP Design Manual [August 31, 2015]	
			Project Information		
Proje	ct Nam	e: <mark>7</mark> /	11 and Starbucks Drive-Thru		
Perm	it Appli	catio	n Number:	Date: 10-12-16	
Proje	Project Address: 8606 Graves Ave. Santee, CA 92071				
	Proj	ect Ty	pe Determination: Standard Project or Priority	Development Project (PDP)	
The p	oroject i	s (sel	ect one): 🍸 New Development 🛛 Redevelopme	ent	
The t	otal pro	pose	d newly created or replaced impervious area is:	28,899 ft ² (0.66) acres	
Is the	projec	t in ai	ny of the following categories, (a) through (f)?		
Yes	No	(a)	New development projects that create 10,000 square feet or more of impervious surfaces (collectively over the entire project site). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.		
Yes	No	(b)	Redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site on an existing site of 10,000 square feet or more of impervious surfaces). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.		
Yes	No	(c)	 New and redevelopment projects that create an more of impervious surface (collectively over the one or more of the following uses: (i) Restaurants. This category is defined as and drinks for consumption, including s refreshment stands selling prepared for consumption (Standard Industrial Class (ii) Hillside development projects. This category is defined as temporary parking or storage of motor business, or for commerce. (iv) Streets, roads, highways, freeways, and defined as any paved impervious surface automobiles, trucks, motorcycles, and components. 	the entire project site), and support is a facility that sells prepared foods tationary lunch counters and ods and drinks for immediate ification (SIC) code 5812). egory includes development on any it or greater. is a land area or facility for the vehicles used personally, for d driveways. This category is se used for the transportation of	

			Form I-2 Page 2, Form Template Date: August 31, 2015				
Yes	No	(d)	New or redevelopment projects that create and/or replace 2,500 square feet or				
	V	. ,	more of impervious surface (collectively over the entire project site), and				
	•		discharging directly to an Environmentally Sensitive Area (ESA). "Discharging				
			directly to" includes flow that is conveyed overland a distance of 200 feet or less				
			from the project to the ESA, or conveyed in a pipe or open channel any distance as				
			an isolated flow from the project to the ESA (i.e. not commingled with flows from				
			adjacent lands).				
			Note: ESAs are areas that include but are not limited to all Clean Water Act				
			Section 303(d) impaired water bodies; areas designated as Areas of Special				
			Biological Significance by the State Water Board and San Diego Water Board;				
			State Water Quality Protected Areas; water bodies designated with the RARE				
			beneficial use by the State Water Board and San Diego Water Board; and any				
			other equivalent environmentally sensitive areas which have been identified				
			by the Copermittees. See BMP Design Manual Section 1.4.2 for additional				
			guidance.				
Yes	No	(e)	New development projects, or redevelopment projects that create and/or replace				
	V		5,000 square feet or more of impervious surface, that support one or more of the				
			following uses: (i) Automotive repair shops. This category is defined as a facility that is				
			categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-				
			7534, or 7536-7539.				
			(ii) Retail gasoline outlets (RGOs). This category includes RGOs that meet the				
			following criteria: (a) 5,000 square feet or more or (b) a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.				
Max	N .	(0)					
Yes	No	(f)	New or redevelopment projects that result in the disturbance of one or more acres				
	¥		of land and are expected to generate pollutants post construction.				
			Note: See BMP Design Manual Section 1.4.2 for additional guidance.				
Does	the pro	piect r	meet the definition of one or more of the Priority Development Project categories				
	-	-	ed above?				
. ,	0.	•	t is <u>not</u> a Priority Development Project (Standard Project).				
Yes Yes	s – the	proje	ct is a Priority Development Project (PDP).				
The fo	ollowin	g is fo	or redevelopment PDPs only:				
The a	The area of existing (pre-project) impervious area at the project site is: ft^2 (A) The total proposed newly created or replaced impervious area is ft^2 (B)						
	Percent impervious surface created or replaced (B/A)*100:%						
	The percent impervious surface created or replaced is (select one based on the above calculation):						
	🗆 Iess t	nan c	or equal to fifty percent (50%) – only new impervious areas are considered PDP				
(OR						
ſ	groo	tor th	an fifty percent (50%) – the entire project site is a PDP				

PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: October 12, 2016

Site	Design Checklist For PDPs	Form I-3B (PDPs) Model BMP Design Manual [August 31, 2015]
Project Sur	nmary Information	
Project Name	7/11 and Starbuc	ks Drive-Thru
Project Address	8606 Graves Ave Santee, CA 9207	
Assessor's Parcel Number(s) (APN(s))	384-142-21	
Permit Application Number		
Project Hydrologic Unit	Select One: Santa Margarita 90 San Luis Rey 903 Carlsbad 904 San Dieguito 905 Penasquitos 906 San Diego 907 Pueblo San Diego 9 Sweetwater 909 Otay 910 Tijuana 911	
Project Watershed (Complete Hydrologic Unit, Area, and Subarea Name with Numeric Identifier)	907.13 - San Dieg El Cajon HSA	go HU, Lower San Diego HA,
Parcel Area (total area of Assessor's Parcel(s) associated with the project)	Acres (43,982 Square Feet)
Area to be Disturbed by the Project (Project Area)	Acres (42,295 Square Feet)
Project Proposed Impervious Area (subset of Project Area)	Acres (28,899 Square Feet)
Project Proposed Pervious Area (subset of Project Area) Note: Proposed Impervious Area + Proposed Per This may be less than the Parcel Area.		13,396 Square Feet) Disturbed by the Project.

Form I-3B Page 2 of 10, Form Template Date: August 31, 2015
Description of Existing Site Condition
Current Status of the Site (select all that apply): Existing development
Previously graded but not built out
Demolition completed without new construction
□ Agricultural or other non-impervious use
Vacant, undeveloped/natural
Description / Additional Information:
Existing Land Cover Includes (select all that apply): Vegetative Cover
Non-Vegetated Pervious Areas
Impervious Areas
Description / Additional Information:
Underlying Soil belongs to Hydrologic Soil Group (select all that apply): NRCS Type A
□ NRCS Type B
□ NRCS Type C
VNRCS Type D
Approximate Depth to Groundwater (GW): □ GW Depth < 5 feet
□ 5 feet < GW Depth < 10 feet
□ 10 feet < GW Depth < 20 feet
GW Depth > 20 feet

Existing Natural Hydrologic Features (select all that apply):

□ Seeps

Springs

Wetlands

None

Description / Additional Information:

Form I-3B Page 3 of 10, Form Template Date: August 31, 2015 Description of Existing Site Drainage Patterns

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

(1) whether existing drainage conveyance is natural or urban;

(2) Is runoff from offsite conveyed through the site? if yes, quantify all offsite drainage areas, design flows, and locations where offsite flows enter the project site, and summarize how such flows are conveyed through the site;

(3)Provide details regarding existing project site drainage conveyance network, including any existing storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels; and

(4) Identify all discharge locations from the existing project site along with a summary of conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Describe existing site drainage patterns:

Existing runoff from the project site sheet flows across natural vegetation to the West into two concrete ditches immediately past the property line. No off site run-on flows onto the site. No on site drainage conveyance structures exist on site.

Form I-3B Page 4 of 10, Form Template Date: August 31, 2015
Description of Proposed Site Development
Project Description / Proposed Land Use and/or Activities:
The applicant proposes to construct a drive-thru Starbucks coffee shop and 7/11 convenience store.
List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):
Road widening, sidewalk, parking lot, walkways, and buildings.
List/describe proposed pervious features of the project (e.g., landscape areas): Landscaped areas.
Does the project include grading and changes to site topography? Yes No
Description / Additional Information:
Grading for the road widening, parking lot, and building.

Form I-3B Page 5 of 10, Form Template Date: August 31, 2015 Description of Proposed Site Drainage Patterns

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)?

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre- and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Describe proposed site drainage patterns::

Curb inlets and storm drains will be constructed on Graves Avenue and on site to convey runoff from the development to two infiltration basins for treatment. Any runoff not detained by the infiltration basins will sheet flow into two ditches immediately to the West of the project site.

Form I-3B Page 6 of 10, Form Template Date: August 31, 2015
Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply):
Von-site storm drain inlets
Interior floor drains and elevator shaft sump pumps
Interior parking garages
Need for future indoor & structural pest control
Landscape/Outdoor Pesticide Use
Pools, spas, ponds, decorative fountains, and other water features
Food service
Refuse areas
Industrial processes
Outdoor storage of equipment or materials
Vehicle and Equipment Cleaning
Vehicle/Equipment Repair and Maintenance
Fuel Dispensing Areas
Loading Docks
VFire Sprinkler Test Water
Miscellaneous Drain or Wash Water
VPlazas, sidewalks, and parking lots
Description / Additional Information:

Form I-3B Page 7 of 10, Form Template Date: August 31, 2015

Identification and Narrative of Receiving Water and Pollutants of Concern

Describe flow path of storm water from the project site discharge location(s), through urban storm conveyance systems as applicable, to receiving creeks, rivers, and lagoons as applicable, and ultimate discharge to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable):

Runoff sheet flows from the infiltration basins into two concrete ditches immediately West of the project site. One ditch heads North and discharges into the San Diego River. The other ditch heads South and then East and discharges into Forrester Creek which confluences with the San Diego River. Flow from the San Diego River flows into the Pacific Ocean.

List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

				TMDL	s / WQIP Highest Priority
303(d) Impaired Water	Body	Pollutant(s)	/Stressor(s)		Pollutant
Forrester Creek		Fecal Coliform, Se	elenium, TDS, pH		Bacteria
San Diego River		Enterococcus, Fee			Bacteria
y		Manganese, Nitro	-		
	Id	TDS, pH, Toxcicity entification of Pro		·c*	
*Identification of project			•		nt BMPs are
	•	•••			t must also participate in
an alternative compliance			•	•••	• •
demonstrated)		-			-
Identify pollutants expect		the project site bas	sed on all propose	d use(s)	of the site (see BMP
Design Manual Appendix					1
		pplicable to the	Expected fron		Also a Receiving Water
Pollutant	P	Project Site	Project Sit	e	Pollutant of Concern
Sediment					
Nutrients					
Heavy Metals					
Organic Compounds			N/A		
Trash & Debris					
Oxygen Demanding					
Substances					
Oil & Grease					
Bacteria & Viruses					
Pesticides					

*This Section only required if hydromodification management requirements apply

Based on the maps provided within the WMAA, do potential critical coarse sediment yield areas exist within the project drainage boundaries?

🗆 Yes

VNo, No critical coarse sediment yield areas to be protected based on WMAA maps

If yes, have any of the optional analyses presented in Section 6.2 of the BMP Design Manual been performed?

- □ 6.2.1 Verification of Geomorphic Landscape Units (GLUs) Onsite
- 6.2.2 Downstream Systems Sensitivity to Coarse Sediment
- 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite
- □ No optional analyses performed, the project will avoid critical coarse sediment yield areas identified based on WMAA maps

If optional analyses were performed, what is the final result?

- □ No critical coarse sediment yield areas to be protected based on verification of GLUs onsite
- □ Critical coarse sediment yield areas exist but additional analysis has determined that protection is not required. Documentation attached in Attachment 2.b of the SWQMP.
- □ Critical coarse sediment yield areas exist and require protection. The project will implement management measures described in Sections 6.2.4 and 6.2.5 as applicable, and the areas are identified on the SWQMP Exhibit.

Discussion / Additional Information:

Form I-3B Page 9 of 10, Form Template Date: August 31, 2015

Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply

List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.

POC A for Basin A is located at the flow line of the Southerly heading ditch immediately past the West property line. POC B for Basin B is located at the flow line of the Northerly heading ditch immediately past the West property line. See HMP map in Attachment 2.

Has a geomorphic assessment been performed for the receiving channel(s)? No, the low flow threshold is 0.1Q2 (default low flow threshold)

 \Box Yes, the result is the low flow threshold is 0.1Q2

 \Box Yes, the result is the low flow threshold is 0.3Q2

 \Box Yes, the result is the low flow threshold is 0.5Q2

If a geomorphic assessment has been performed, provide title, date, and preparer:

Discussion / Additional Information: (optional)

Form I-3B Page 10 of 10, Form Template Date: August 31, 2015 Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

No constraints are apparent at this time.

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

Form I-4 **Source Control BMP Checklist** Model BMP Design for All Development Projects Manual (Standard Projects and Priority Development Projects) [August 31, 2015] **Project Identification Project Name** 7/11 and Starbucks Drive-Thru Permit Application Number **Source Control BMPs** All development projects must implement source control BMPs SC-1 through SC-6 where applicable and feasible. See Chapter 4 and Appendix E of the Model BMP Design Manual for information to implement source control BMPs shown in this checklist. Answer each category below pursuant to the following. "Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E of the Model BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion / justification may be provided. **Source Control Requirement** Applied? Yes SC-1 Prevention of Illicit Discharges into the MS4 □ N/A No Discussion / justification if SC-1 not implemented: SC-2 Storm Drain Stenciling or Signage Yes 🗆 No $\square N/A$ Discussion / justification if SC-2 not implemented: VN/A SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, 2 Yes 🗆 No Runoff, and Wind Dispersal Discussion / justification if SC-3 not implemented: N/A SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, 2 Yes 🗆 No Run-On, Runoff, and Wind Dispersal Discussion / justification if SC-4 not implemented:

Form I-4 Page 2 of 2, Form Template Date: August 31, 2015					
Source Control Requirement		Applied			
SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	Yes	□ No	□ N/A		
Discussion / justification if SC-5 not implemented:					
	1	-	-		
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants					
(must answer for each source listed below)					
On-site storm drain inlets	Yes	□ No	□ N/A		
Interior floor drains and elevator shaft sump pumps	🗆 Yes	🗆 No	N/A		
Interior parking garages	🗆 Yes	□ No	N/A		
Need for future indoor & structural pest control	□ Yes	□ No	N/A		
Landscape/Outdoor Pesticide Use	Yes	□ No	□ N/A		
\square Pools, spas, ponds, decorative fountains, and other water features	□ Yes	□ No	N/A		
Food service	Yes	□ No	□ N/A		
Refuse areas	Yes	□ No	□ N/A		
Industrial processes	🗆 Yes	□ No	N/A		
Outdoor storage of equipment or materials	🗆 Yes	□ No	N/A		
Vehicle and Equipment Cleaning	🗆 Yes	□ No	N/A		
Vehicle/Equipment Repair and Maintenance	🗆 Yes	□ No	N/A		
Fuel Dispensing Areas	🗆 Yes	□ No	N/A		
Loading Docks	🗆 Yes	□ No	VN/A		
Fire Sprinkler Test Water	Yes	□ No	□ N/A		
Miscellaneous Drain or Wash Water	🗆 Yes	□ No	N/A		
Plazas, sidewalks, and parking lots	Yes	□ No	□ N/A		

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

Site Design BMP Che for All Development Pro		Model BN	n I-5 ⁄IP Design
(Standard Projects and Priority Development Pro			nual
Project Identification		[August :	31, 2015]
Project Name 7/11 and Starbucks Drive-Thru			
Permit Application Number			
Site Design BMPs			
All development projects must implement site design BMPs SD-1 thro feasible. See Chapter 4 and Appendix E of the Model BMP Design Mar site design BMPs shown in this checklist.	-		
 Answer each category below pursuant to the following. "Yes" means the project will implement the site design BMP as design Appendix E of the Model BMP Design Manual. Discussion / just "No" means the BMP is applicable to the project but it is not fear justification must be provided. "N/A" means the BMP is not applicable at the project site because feature that is addressed by the BMP (e.g., the project site has not provided. 	stification is sible to imp use the proj	s not require plement. Dis ect does not	d. scussion / include the
Discussion / justification may be provided.			
Site Design Requirement		Applied	1?
SD-1 Maintain Natural Drainage Pathways and Hydrologic Features	Yes	🗆 No	□ N/A
Discussion / justification if SD-1 not implemented: SD-2 Conserve Natural Areas, Soils, and Vegetation	Yes	□ No	□ N/A
Discussion / justification if SD-2 not implemented:	• • • • • •		
SD-3 Minimize Impervious Area Discussion / justification if SD-3 not implemented:	Yes	□ No	□ N/A
SD-4 Minimize Soil Compaction	Yes	□ No	□ N/A
Discussion / justification if SD-4 not implemented:			
SD-5 Impervious Area Dispersion	🗆 Yes	No	□ N/A
Discussion / justification if SD-5 not implemented:			, ,
Impervious Area Dispersion is not feasible due to limited an	ea availa	able.	

Form I-5 Page 2 of 2, Form Template Date: August 31, 2015					
Site Design Requirement	Applied?				
SD-6 Runoff Collection	Yes	🗆 No	□ N/A		
Discussion / justification if SD-6 not implemented:					
		1	1		
SD-7 Landscaping with Native or Drought Tolerant Species	Yes	□ No	□ N/A		
Discussion / justification if SD-7 not implemented:					
	-				
SD-8 Harvesting and Using Precipitation	🗆 Yes	V No	□ N/A		
Discussion / justification if SD-8 not implemented:					
Harvest and Use not feasible. See Attachment 1.					

Summary of PDP Structural BMPs

Form I-6 (PDPs) Model BMP Design Manual [August 31, 2015]

Project Identification

Project Name 7/11 and Starbucks Drive-Thru Permit Application Number

PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the local jurisdiction at the completion of construction. This may include requiring the project owner or project owner's representative and engineer of record to certify construction of the structural BMPs (see Section 1.12 of the BMP Design Manual). PDP structural BMPs must be maintained into perpetuity, and the local jurisdiction must confirm the maintenance (see Section 7 of the BMP Design Manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

Infiltration basins were selected due to acceptable infiltration rates on site and the inability to discharge an outlet pipe from the basin at a suitable discharge location. The infiltration basins are located to evenly split the flow from the development to mimic the existing condition. Any overflow from the infiltration basins will sheet flow into the two existing ditches immediately past the property line which also mimics the existing condition. The infiltration basins will satisfy both pollutant control and hydromodification flow control.

(Continue on page 2 as necessary.)

Form I-	6 Page 2 of	X Form Tem	nlate Date: Ai	igust 31, 2015

(Page reserved for continuation of description of general strategy for structural BMP implementation at the site)

(Continued from page 1)

Form I-6 Page 3 of X (Copy as many as needed), Form Template Date: August 31, 2015					
Structural BMP Summary Information					
(Copy this page as needed to provide information for each individual proposed structural BMP)					
Structural BMP ID No. Infiltration Basin #1					
Construction Plan Sheet No.					
Type of structural BMP:					
Retention by harvest and use (HU-1)					
VRetention by infiltration basin (INF-1)					
Retention by bioretention (INF-2)					
Retention by permeable pavement (INF-3)					
Partial retention by biofiltration with partial retention	tion (PR-1)				
□ Biofiltration (BF-1)					
□ Biofiltration with Nutrient Sensitive Media Design					
□ Proprietary Biofiltration (BF-3) meeting all require					
□ Flow-thru treatment control with prior lawful app					
BMP type/description in discussion section below)					
Flow-thru treatment control included as pre-treat RMD (provide RMD type (description and indicate)	which onsite retention or biofiltration BMP it serves				
in discussion section below)	which offsite retention of biofilitation bivin it serves				
 Flow-thru treatment control with alternative complexity 	bliance (provide BMP type/description in discussion				
section below)	shance (provide bivin type/description in discussion				
 Detention pond or vault for hydromodification ma 	nagement				
 Other (describe in discussion section below) 					
Purpose:					
Pollutant control only					
Hydromodification control only					
Combined pollutant control and hydromodification	n control				
Pre-treatment/forebay for another structural BMF					
Other (describe in discussion section below)					
Who will certify construction of this BMP?	Walsh Engineering & Surveying, Inc.				
Provide name and contact information for the party responsible to sign BMP verification forms if	607 Aldwych Road				
required by the [City Engineer] (See Section 1.12 of	El Cajon, CA 92020				
the BMP Design Manual)					
Who will be the final owner of this BMP?					
	Development Contractors Inc.				
Who will maintain this BMP into perpetuity?	Owner(e) of building				
Owner(s) of building					
What is the funding mechanism for maintenance?	Profits from buisiness				

Form I-6 Page 4 of X (Copy as many as needed) , Form Template Date: August 31, 2015

Structural BMP ID No.

Construction Plan Sheet No.

Discussion (as needed):

Form I-6 Page 3 of X (Copy as many as needed), Form Template Date: August 31, 2015					
Structural BMP Summary Information					
(Copy this page as needed to provide information for each individual proposed structural BMP)					
Structural BMP ID No. Infiltration Basin #2					
Construction Plan Sheet No.					
Type of structural BMP:					
Retention by harvest and use (HU-1)					
VRetention by infiltration basin (INF-1)					
Retention by bioretention (INF-2)					
Retention by permeable pavement (INF-3)					
Partial retention by biofiltration with partial retention	ion (PR-1)				
□ Biofiltration (BF-1)					
□ Biofiltration with Nutrient Sensitive Media Design					
□ Proprietary Biofiltration (BF-3) meeting all require					
□ Flow-thru treatment control with prior lawful app					
BMP type/description in discussion section below)					
Flow-thru treatment control included as pre-treat RMD (provide RMD type (description and indicate)	which onsite retention or biofiltration BMP it serves				
in discussion section below)	which offsite retention of biofilitation bivin it serves				
 Flow-thru treatment control with alternative complexity 	liance (provide BMP type/description in discussion				
section below)	shance (provide bivin type/description in discussion				
 Detention pond or vault for hydromodification ma 	nagement				
 Other (describe in discussion section below) 					
Purpose:					
Pollutant control only					
Hydromodification control only					
Combined pollutant control and hydromodification	n control				
Pre-treatment/forebay for another structural BMF					
Other (describe in discussion section below)					
Who will certify construction of this BMP?	Walsh Engineering & Surveying, Inc.				
Provide name and contact information for the party responsible to sign BMP verification forms if	607 Aldwych Road				
required by the [City Engineer] (See Section 1.12 of	El Cajon, CA 92020				
the BMP Design Manual)					
Who will be the final owner of this BMP?					
	Development Contractors Inc.				
Who will maintain this BMP into perpetuity?	Owner(e) of building				
Owner(s) of building					
And an inclusion of the second sectors for each second sec					
What is the funding mechanism for maintenance?	Profits from buisiness				

Form I-6 Page 4 of X (Copy as many as needed) , Form Template Date: August 31, 2015

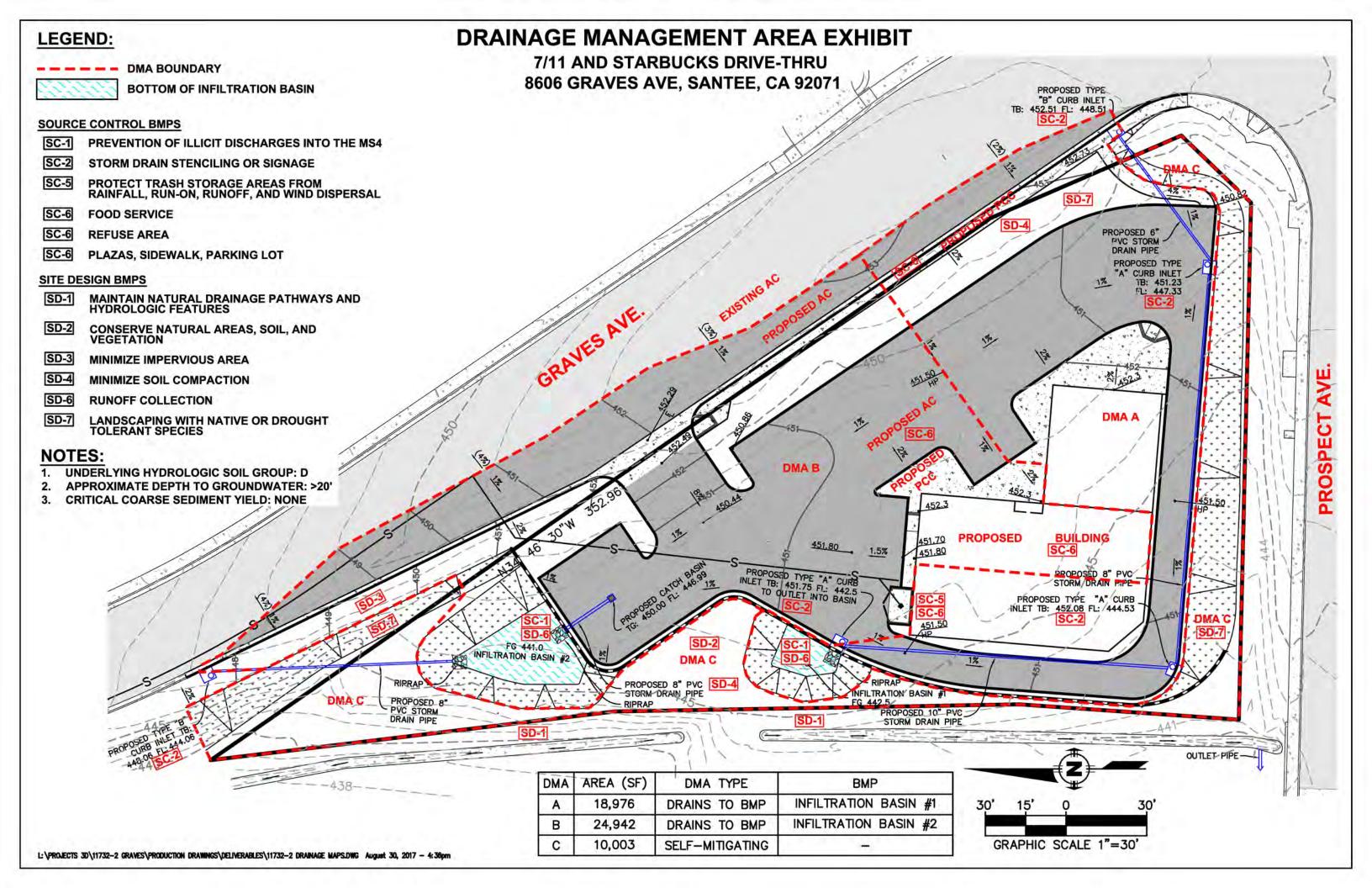
Structural BMP ID No.

Construction Plan Sheet No.

Discussion (as needed):

ATTACHMENT 1 BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.


Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist
Attachment 1a	DMA Exhibit (Required) See DMA Exhibit Checklist on the back of this Attachment cover sheet.	Mincluded
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)* *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	 Included on DMA Exhibit in Attachment 1a Included as Attachment 1b, separate from DMA Exhibit
Attachment 1c	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	 Included Not included because the entire project will use infiltration BMPs
Attachment 1d	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs) Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	 Included Not included because the entire project will use harvest and use BMPs Included in "Infiltration Testing Results" report by Group Delta dated August 30, 2016
Attachment 1e	PollutantControlBMPDesignWorksheets / Calculations (Required)Refer to Appendices B and E of the BMPDesignManual for structural pollutantcontrol BMP design guidelines	Included

Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:

Vinderlying hydrologic soil group
 Approximate depth to groundwater
 N/A
 Vexisting natural hydrologic features (watercourses, seeps, springs, wetlands)
 Veritical coarse sediment yield areas to be protected
 Vexisting topography and impervious areas
 Vexisting and proposed site drainage network and connections to drainage offsite
 N/A
 Veroposed demolition
 Veroposed grading
 Veroposed design features and surface treatments used to minimize imperviousness
 Verainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
 Vetential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Form I-3B)
 Structural BMPs (identify location, type of BMP, and size/detail)

Category	#	Description	Value	Units
	0	Design Capture Volume for Entire Project Site	1,421	cubic-feet
	1	Proposed Development Type	Retail	unitless
Capture & Use Inputs	2	Number of Residents or Employees at Proposed Development	0	#
inputs	3	Total Planted Area within Development	10,000	sq-ft
	4	Water Use Category for Proposed Planted Areas	Moderate	unitless
	5	Is Average Site Design Infiltration Rate ≤0.500 Inches per Hour?	No	yes/no
Infiltration	6	Is Average Site Design Infiltration Rate ≤0.010 Inches per Hour?	No	yes/no
Inputs	7	Is Infiltration of the Full DCV Anticipated to Produce Negative Impacts?	No	yes/no
	8	Is Infiltration of Any Volume Anticipated to Produce Negative Impacts?	No	yes/no
	9	36-Hour Toilet Use Per Resident or Employee	1.40	cubic-feet
	10	Subtotal: Anticipated 36 Hour Toilet Use	0	cubic-feet
	11	Anticipated 1 Acre Landscape Use Over 36 Hours	196.52	cubic-feet
	12	Subtotal: Anticipated Landscape Use Over 36 Hours	45	cubic-feet
Calculations	13	Total Anticipated Use Over 36 Hours	45	cubic-feet
	14	Total Anticipated Use / Design Capture Volume	0.03	cubic-feet
	15	Are Full Capture and Use Techniques Feasible for this Project?	No	unitless
	16	Is Full Retention Feasible for this Project?	Yes	yes/no
	17	Is Partial Retention Feasible for this Project?	Yes	yes/no
Result	18	Feasibility Category	3	1, 2, 3, 4, 5

Automated Worksheet B.3-1: Project-Scale BMP Feasibility Analysis (V1.2)

Worksheet B.3-1 General Notes:

A. Applicants may use this worksheet to determine the types of structural BMPs that are acceptable for implementation at their project site (as required in Section 5 of the BMPDM). User input should be provided for yellow shaded cells, values for all other cells will be automatically generated. Projects demonstrating feasibility or potential feasibility via this worksheet are encouraged to incorporate capture and use features in their project.

B. Negative impacts associated with retention may include geotechnical, groundwater, water balance, or other issues identified by a geotechnical engineer and substantiated through completion of Form I-8.

C. Feasibility Category 1: Applicant must implement capture & use, retention, and/or infiltration elements for the entire DCV.

D. Feasibility Category 2: Applicant must implement capture & use elements for the entire DCV.

E. Feasibility Category 3: Applicant must implement retention and/or infiltration elements for all DMAs with Design Infiltration Rates greater than 0.50 in/hr.

F. Feasibility Category 4: Applicant must implement standard <u>unlined</u> biofiltration BMPs sized at $\geq 3\%$ of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.011 to 0.50 in/hr. Applicants may be permitted to implement lined BMPs, reduced size BMPs, and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.

G. Feasibility Category 5: Applicant must implement standard <u>lined</u> biofiltration BMPs sized at \geq 3% of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.010 in/hr or less. Applicants may also be permitted to implement reduced size and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.

H. PDPs participating in an offsite alternative compliance program are not held to the feasibility categories presented herein.

Automated	Worksheet	B.1-1: (Calculation	of Design	Capture	Volume	(V1.2)
inatomatea	W OILDHEEL	D .1 1. 1	Galculation	or Design	Suprare	vorunic j	* 1.21

Category	#	Automated Worksheet B.1-1: Calculation of Design Capture V Description	<i>i</i>	ii	Units
Gategory	# 0	Description Drainage Basin ID or Name	DMA A	DMA B	unitless
	1	Basin Drains to the Following BMP Type	Retention	Retention	unitless
		0 /1			
	2	85th Percentile 24-hr Storm Depth	0.51	0.51	inches
Standard	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620	in/hr
Drainage	4	Impervious Surfaces <u>Not Directed to Dispersion Area</u> (C=0.90)	15,456	18,432	sq-ft
Basin Inputs	5	Semi-Pervious Surfaces <u>Not Serving as Dispersion Area</u> (C=0.30)			sq-ft
	6 7	Engineered Pervious Surfaces <u>Not Serving as Dispersion Area</u> (C=0.10)			sq-ft
		Natural Type A Soil <u>Not Serving as Dispersion Area</u> (C=0.10)			sq-ft
	8	Natural Type B Soil <u>Not Serving as Dispersion Area</u> (C=0.14)			sq-ft
	9	Natural Type C Soil <u>Not Serving as Dispersion Area</u> (C=0.23)			sq-ft
	10	Natural Type D Soil <u>Not Serving as Dispersion Area</u> (C=0.30)	3,520	6,510	sq-ft
	11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	No	yes/no
	12	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)			sq-ft
	13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)			sq-ft
Dispersion	14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)			sq-ft
Area, Tree	15	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)			sq-ft
Well & Rain	16	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)			sq-ft
Barrel Inputs	17	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)			sq-ft
(Optional)	18	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)			sq-ft
	19	Number of Tree Wells Proposed per SD-A			#
	20	Average Mature Tree Canopy Diameter			ft
	21	Number of Rain Barrels Proposed per SD-E			#
	22	Average Rain Barrel Size			gal
	23	Does BMP Overflow to Stormwater Features in Downstream Drainage?	No	No	unitless
Treatment	24	Identify Downstream Drainage Basin Providing Treatment in Series			unitless
Frain Inputs &	25	Percent of Upstream Flows Directed to Downstream Dispersion Areas			percent
Calculations	26	Upstream Impervious Surfaces Directed to Dispersion Area (Ci=0.90)	0	0	cubic-feet
	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	0	cubic-feet
	28	Total Tributary Area	18,976	24,942	sq-ft
Initial Runoff	29	Initial Runoff Factor for Standard Drainage Areas	0.79	0.74	unitless
Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	0.00	unitless
Calculation	31	Initial Weighted Runoff Factor	0.79	0.74	unitless
	32	Initial Design Capture Volume	637	784	cubic-feet
	33	Total Impervious Area Dispersed to Pervious Surface	0	0	sq-ft
Dispersion	34	Total Pervious Dispersion Area	0	0	sq-ft
Area	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	n/a	ratio
Adjustments	36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	1.00	ratio
	37	Runoff Factor After Dispersion Techniques	0.79	0.74	unitless
	38	Design Capture Volume After Dispersion Techniques	637	784	cubic-feet
Tree & Barrel	39	Total Tree Well Volume Reduction	0	0	cubic-feet
Adjustments	40	Total Rain Barrel Volume Reduction	0	0	cubic-feet
	41	Final Adjusted Runoff Factor	0.79	0.74	unitless
Results	42	Final Effective Tributary Area	14,991	18,457	sq-ft
	43	Initial Design Capture Volume Retained by Site Design Elements	0	0	cubic-feet
	44	Final Design Capture Volume Tributary to BMP	637	784	cubic-feet

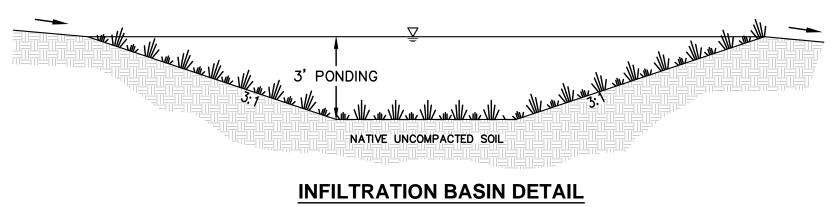
Worksheet B.1-1 General Notes: A. Applicants may use this worksneet to calculate design capture volumes for up to 10 drainage areas User input must be provided for yellow shaded cells, values for all other cells will be automatically generated, errors/notifications will be highlighted in red and summarized below. Upon completion of this worksheet proceed to the appropriate BMP Sizing worksheet(s)

Category	#	Description	i	ü	Units
	0	Drainage Basin ID or Name	DMA A	DMA B	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620	in/hr
	2	Design Capture Volume Tributary to BMP	637	784	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Non-Vegetated	Non-Vegetated	unitless
BMP inputs	4	Provided Surface Area	296	885	sq-ft
	5	Provided Surface Ponding Depth	36	36	inches
	6	Provided Soil Media Thickness	0	0	inches
	7	Provided Gravel Storage Thickness	0	0	inches
	8	Volume Infiltrated Over 6 Hour Storm	92	274	cubic-feet
	9	Soil Media Pore Space	0.40	0.40	unitless
	10	Gravel Pore Space	0.40	0.40	unitless
T (11)	11	Effective Depth of Retention Storage	36.0	36.0	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	58	58	hours
Curculutorio	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	64	64	hours
	14	Volume Retained by BMP	980	2,929	cubic-feet
	15	Fraction of DCV Retained	1.54	3.00	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	cubic-feet

Automated Worksheet B.4-1: Sizing Retention BMPs (V1.2)

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully


Category	#	Description	i	ii	Units
	0	Drainage Basin ID or Name	DMA A	DMA B	unitless
	1	85th Percentile Storm Depth	0.51	0.51	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.620	0.620	in/hr
	3	Total Tributary Area	18,976	24,942	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	806	1,060	cubic-feet
Initial DCV	5	Initial Weighted Runoff Factor	0.79	0.74	unitless
Initial DCV	6	Initial Design Capture Volume	637	784	cubic-feet
Site Design Volume	7	Dispersion Area Reductions	0	0	cubic-feet
Reductions	8	Tree Well and Rain Barrel Reductions	0	0	cubic-feet
	9	Effective Area Tributary to BMP	14,991	18,457	square feet
BMP Volume	10	Final Design Capture Volume Tributary to BMP	637	784	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Retention	Retention	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	637	784	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	1.00	1.00	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	80.4%	%
	15	Percent of Average Annual Runoff Retention Required	80.0%	80.0%	%
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	%
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	-	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	-	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	cubic-feet

Summary of Stormwater Pollutant Control Calculations (V1.2)

Summary Notes:

All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange and summairzed in the red

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the SWQMP submittal package.

NO SCALE

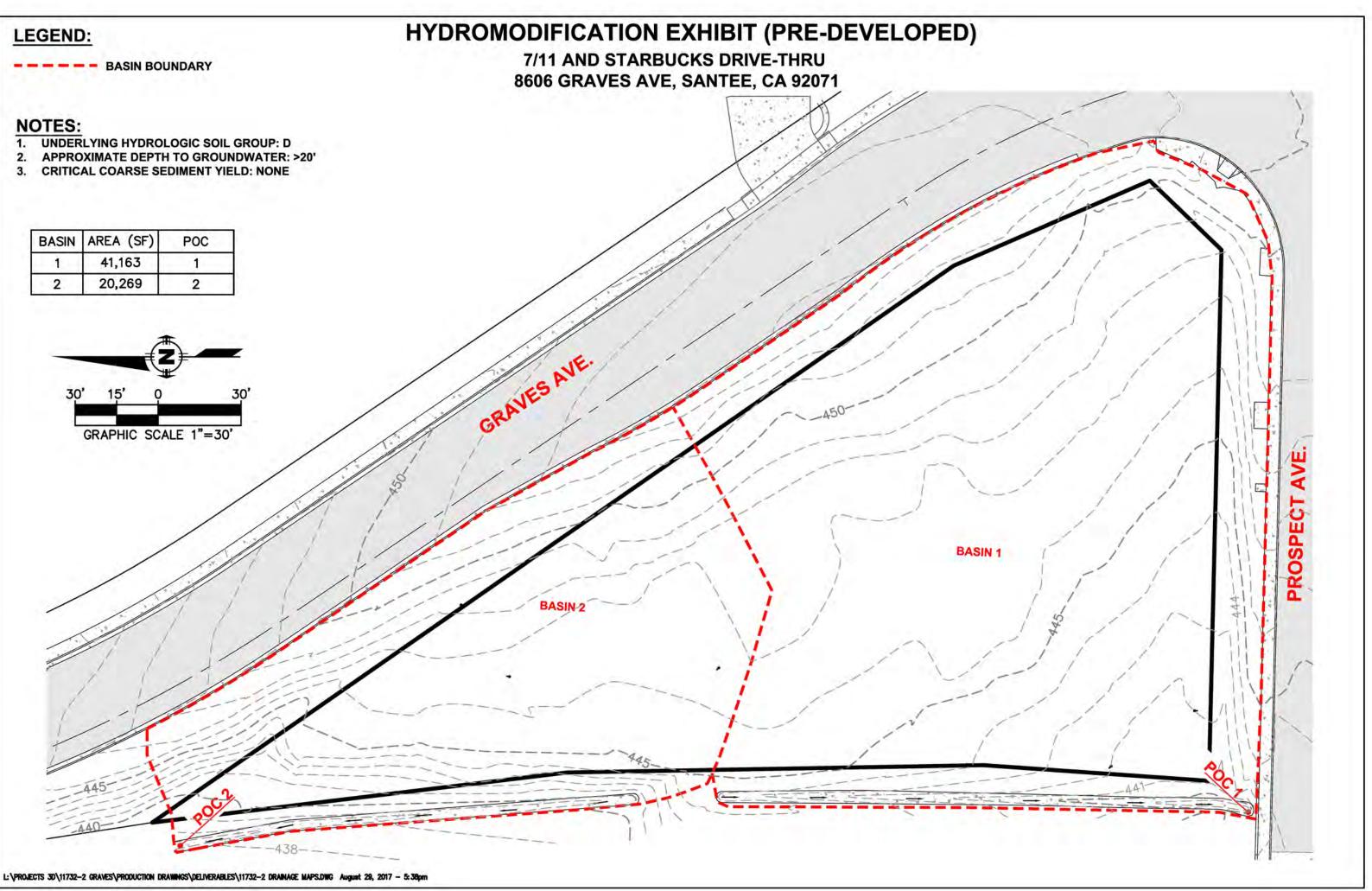
ATTACHMENT 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

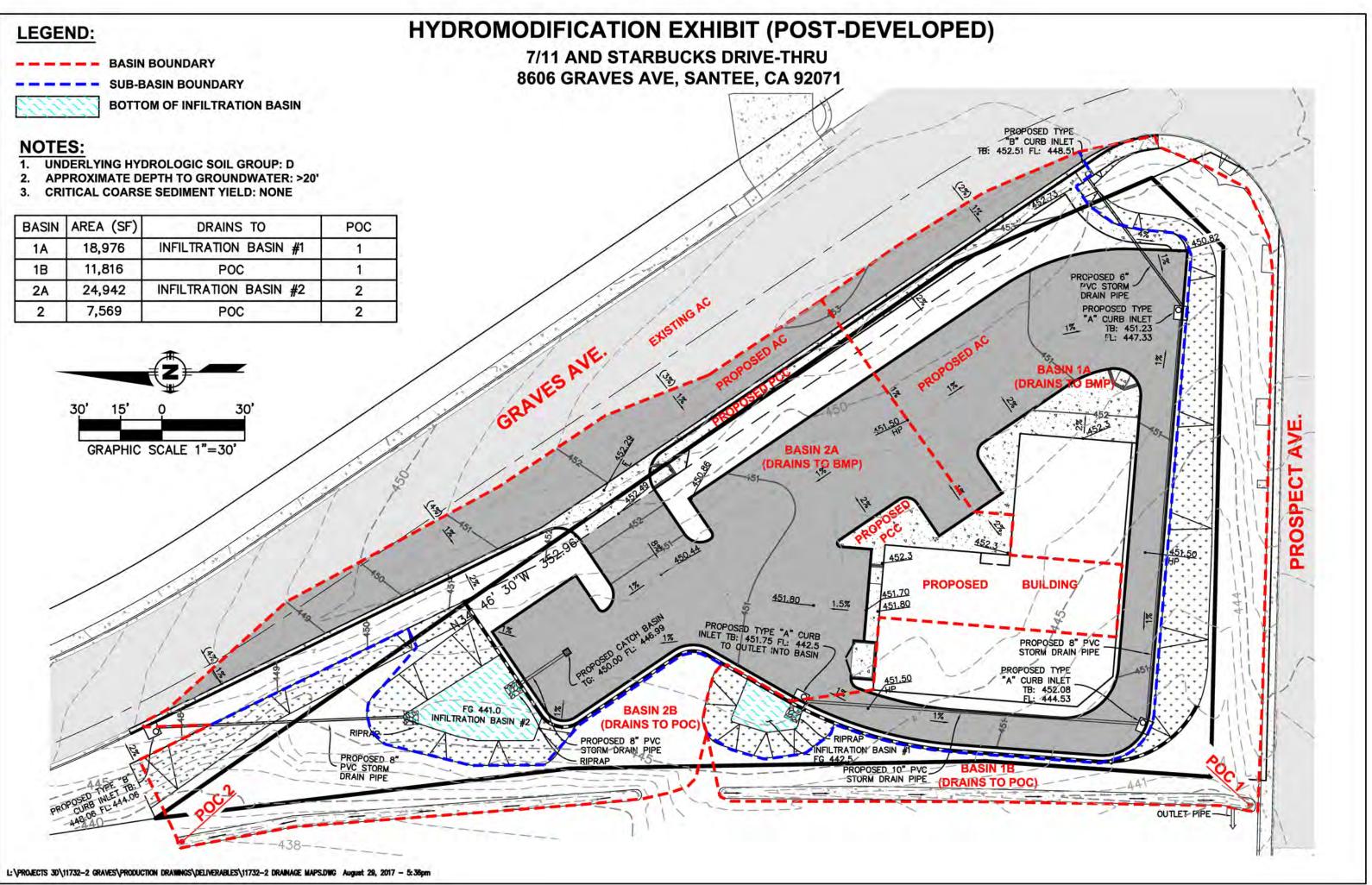
This is the cover sheet for Attachment 2.

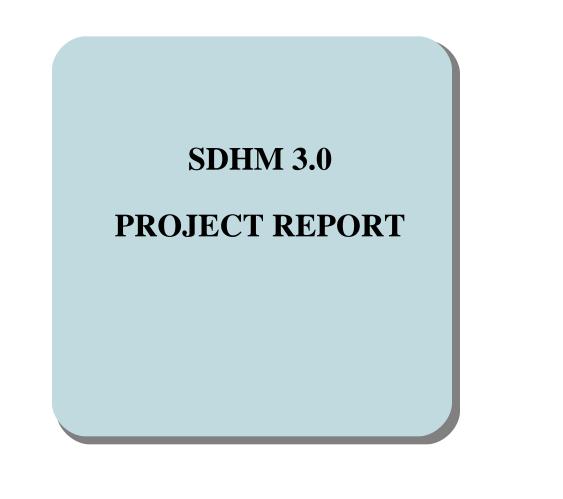
□ Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Attachment	Contents	Checklist
Sequence		
Attachment 2a	Hydromodification Management Exhibit (Required)	Vincluded See Hydromodification Management Exhibit Checklist on the back of this Attachment cover sheet.
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional) See Section 6.2 of the BMP Design Manual.	 Exhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required) Optional analyses for Critical Coarse Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite
Attachment 2c	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	 Not performed Included Submitted as separate stand-alone document
Attachment 2d	Flow Control Facility Design, including Structural BMP Drawdown Calculations and Overflow Design Summary (Required) See Chapter 6 and Appendix G of the BMP Design Manual	 Included Submitted as separate stand-alone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	 Included Not required because BMPs will drain in less than 96 hours

Indicate which Items are Included behind this cover sheet:


Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:


The Hydromodification Management Exhibit must identify:


Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed impervious features
Proposed design features and surface treatments used to minimize imperviousness
Point(s) of Compliance (POC) for Hydromodification Management
Existing and proposed drainage boundary and drainage area to each POC (when necessary, create

separate exhibits for pre-development and post-project conditions)

VStructural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

General Model Information

Project Name:	11732-2 Graves 8-29-17
Site Name:	11732-2 Graves
Site Address:	8606 Graves Ave.
City:	Santee
Report Date:	8/29/2017
Gage:	SANTEE
Data Start:	10/01/1973
Data End:	09/30/2004
Timestep:	Hourly
Precip Scale:	1.000
Version Date:	2016/05/13

POC Thresholds

Low Flow Threshold for POC1:	10 Percent of the 2 Year
High Flow Threshold for POC1:	10 Year
Low Flow Threshold for POC2:	10 Percent of the 2 Year
High Flow Threshold for POC2:	10 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use D,NatVeg,Flat D,NatVeg,Moderate D,NatVeg,Steep	acre 0.33 0.48 0.13
Pervious Total	0.94
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.94

Element Flows To:	
Surface	Interflow

Groundwater

Basin 2 Bypass: No GroundWater: No Pervious Land Use acre D,NatVeg,Flat D,NatVeg,Moderate D,NatVeg,Steep 0.12 0.19 0.16 **Pervious Total** 0.47 Impervious Land Use acre Impervious Total 0 **Basin Total** 0.47

Element Flows To: Surface

Interflow

Groundwater

Mitigated Land Use

Basin 1A (Drains t Bypass:	o BMP) No	
GroundWater:	No	
Pervious Land Use D,NatVeg,Flat	acre 0.06	
Pervious Total	0.06	
Impervious Land Use IMPERVIOUS-FLAT	acre 0.38	
Impervious Total	0.38	
Basin Total	0.44	
Element Flows To: Surface Infiltration Basin #1	Interflow Infiltration Basin #1	Groundwater

Basin 2A (Drains to BMP)
Bypass:NoGroundWater:NoPervious Land Use
D,NatVeg,Flatacre
0.15

Pervious Total	0.15
Impervious Land Use IMPERVIOUS-FLAT	acre 0.42
Impervious Total	0.42

Basin Total 0.57

Element Flows To:		
Surface	Interflow	Groundwater
Infiltration Basin #2	Infiltration Basin #2	

Basin 2B (Drains to POC)

Bypass:	Yes
GroundWater:	No
Pervious Land Use D,NatVeg,Steep D,NatVeg,Flat D,NatVeg,Moderate	acre 0.09 0.03 0.05
Pervious Total	0.17
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.17

Element Flows To: Surface Inte

Interflow

Groundwater

Basin 1B (Drains to POC)

Bypass:	Yes
GroundWater:	No
Pervious Land Use D,NatVeg,Steep D,NatVeg,Flat D,NatVeg,Moderate	acre 0.18 0.04 0.05
Pervious Total	0.27
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.27

Element Flows To: Surface Int

Interflow

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

Infiltration Basin #1

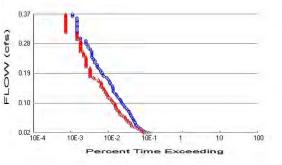
Bottom Length: Bottom Width: Depth: Volume at riser head: Infiltration On Infiltration rate: Infiltration safety factor Wetted surface area O Total Volume Infiltrated Total Volume Through	n d (ac-ft.):	9.722 0.76
Total Volume Through	Facility (ac-ft.):	10.482
Percent Infiltrated:		92.75
Total Precip Applied to		0.345
Total Evap From Facili		0.061
Side slope 1:	3 To 1	
Side slope 2:	3 To 1	
Side slope 3:	3 To 1	
Side slope 4:	0 To 1	
Discharge Structure	o <i>t</i>	
Riser Height:	3 ft.	
Riser Diameter:	99 in.	
Element Flows To: Outlet 1	Outlet 2	

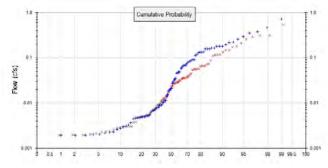
Pond Hydraulic Table

Stage(feet) 0.0000 0.0344 0.0689 0.1033 0.1378	Area(ac.) 0.006 0.006 0.007 0.007 0.007	Volume(ac-ft.) 0.000 0.000 0.000 0.000 0.001	Discharge(cfs) 0.000 0.000 0.000 0.000 0.000 0.000) Infilt(cfs) 0.000 0.004 0.004 0.004 0.004 0.004
0.1722	0.007	0.001	0.000	0.004
0.2067	0.007	0.001	0.000	0.004
0.2411	0.007	0.001	0.000	0.004
0.2756	0.007	0.002	0.000	0.004
0.3100	0.008	0.002	0.000	0.004
0.3444	0.008	0.002	0.000	0.004
0.3789	0.008	0.002	0.000	0.005
0.4133	0.008	0.003	0.000	0.005
0.4478	0.008	0.003	0.000	0.005
0.4822	0.008	0.003	0.000	0.005
0.5167	0.008	0.004	0.000	0.005
0.5511 0.5856 0.6200 0.6544 0.6889	0.009 0.009 0.009 0.009 0.009 0.009	0.004 0.004 0.005 0.005 0.005	0.000 0.000 0.000 0.000 0.000	0.005 0.005 0.005 0.005 0.005
0.7233 0.7578 0.7922 0.8267 0.8611	0.009 0.009 0.010 0.010 0.010	0.005 0.006 0.006 0.007 0.007	0.000 0.000 0.000 0.000 0.000 0.000	0.005 0.006 0.006 0.006 0.006

2.8933	0.021	0.039	0.000	0.013
2.9278	0.021	0.040	0.000	0.013
2.9622	0.022	0.040	0.000	0.013
2.9967	0.022	0.041	0.000	0.013
3.0311	0.022	0.042	0.480	0.013
3.0656	0.022	0.043	1.470	0.013
3.1000	0.022	0.043	2.769	0.013

Infiltration Basin #2


Bottom Length: Bottom Width: Depth: Volume at riser head: Infiltration On Infiltration rate: Infiltration safety factor Wetted surface area O Total Volume Infiltrated	n I (ac-ft.):	11.994
Total Volume Through Total Volume Through		0.095 12.089
Percent Infiltrated:	Facility (ac-it.).	99.21
Total Precip Applied to	Facility:	0.647
Total Evap From Facili	ty:	0.096
Side slope 1:	3 <u>T</u> o 1	
Side slope 2:	3 To 1	
Side slope 3:	0 To 1	
Side slope 4:	3 To 1	
Discharge Structure	2.4	
Riser Height:	3 ft.	
Riser Diameter: Element Flows To:	99 in.	
	Outlet 2	


Pond Hydraulic Table

Stage(feet) 0.0000	Area(ac.) 0.020	Volume(ac-ft.) 0.000	Discharge(cfs 0.000) Infilt(cfs) 0.000
0.0344	0.020	0.000	0.000	0.012
0.0689	0.020	0.001	0.000	0.012
0.1033	0.020	0.002	0.000	0.012
0.1378	0.020	0.002	0.000	0.012
0.1722	0.021	0.003	0.000	0.012
0.2067	0.021	0.004	0.000	0.012
0.2411	0.021	0.005	0.000	0.013
0.2756	0.021	0.005	0.000	0.013
0.3100	0.022	0.006	0.000	0.013
0.3444	0.022	0.007	0.000	0.013
0.3789	0.022	0.008	0.000	0.013
0.4133	0.022	0.008	0.000	0.013
0.4478	0.022	0.009	0.000	0.013
0.4822	0.023	0.010	0.000	0.014
0.5167	0.023	0.011	0.000	0.014
0.5511	0.023	0.012	0.000	0.014
0.5856	0.023	0.012	0.000	0.014
0.6200	0.024	0.013	0.000	0.014
0.6544	0.024	0.014	0.000	0.014
0.6889	0.024	0.015	0.000	0.014
0.7233	0.024	0.016	0.000	0.015
0.7578	0.025	0.017	0.000	0.015
0.7922	0.025	0.017	0.000	0.015
0.8267	0.025	0.018	0.000	0.015
0.8611	0.025	0.019	0.000	0.015
0.8956	0.025	0.020	0.000	0.015
0.9300	0.026	0.021	0.000	0.015

2.9622 2.9967	0.042 0.042	0.090 0.091	0.000 0.000	0.025 0.025
3.0311 3.0656	0.042 0.043	0.093	0.480	0.025
3.1000	0.043	0.094	2.769	0.026

Analysis Results

+ Predeveloped >

Predeveloped Landuse Totals for POC #1Total Pervious Area:0.94Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.33 Total Impervious Area: 0.38

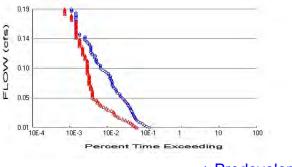
Flow Frequency Method: Weibull

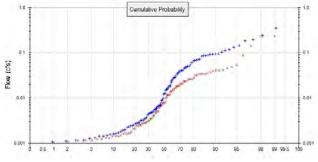
Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.1575885 year0.23131610 year0.36658825 year0.507783

Flow Frequency Return Periods for Mitigated. POC #1Return PeriodFlow(cfs)2 year0.0873185 year0.18790610 year0.29820525 year0.351284

Duration Flows

The Facility PASSED


Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0158	331	257	77	Pass
0.0193	270	234	86	Pass
0.0228	238	211	88	Pass
0.0264 0.0299	205 186	187 165	91 88	Pass Pass
0.0335	172	139	80	Pass
0.0370	158	117	74	Pass
0.0406	151	114	75	Pass
0.0441	146	107	73	Pass
0.0477	141	98	69	Pass
0.0512	133	93	69	Pass
0.0547	132	86	65	Pass
0.0583 0.0618	124 119	80 78	64 65	Pass Pass
0.0654	112	70	62	Pass
0.0689	109	62	56	Pass
0.0725	106	57	53	Pass
0.0760	99	55	55	Pass
0.0795	97	54	55	Pass
0.0831	90	49	54	Pass
0.0866	86	47	54	Pass
0.0902 0.0937	78 75	44 43	56 57	Pass Pass
0.0973	73	43	60	Pass
0.1008	66	42	63	Pass
0.1044	64	39	60	Pass
0.1079	61	37	60	Pass
0.1114	59	34	57	Pass
0.1150	56	33	58	Pass
0.1185	51 47	30 27	58 57	Pass
0.1221 0.1256	47 46	27 27	57 58	Pass Pass
0.1292	44	25	56	Pass
0.1327	41	25	60	Pass
0.1362	38	23	60	Pass
0.1398	37	23	62	Pass
0.1433	37	21	56	Pass
0.1469	37	21	56 52	Pass
0.1504 0.1540	36 36	19 18	52 50	Pass Pass
0.1575	33	18	54	Pass
0.1611	31	18	58	Pass
0.1646	31	18	58	Pass
0.1681	29	16	55	Pass
0.1717	28	15	53	Pass
0.1752	26	12	46	Pass
0.1788	25 21	11	44 42	Pass
0.1823 0.1859	20	9 9	42 45	Pass Pass
0.1894	19	9	43	Pass
0.1929	19	9	47	Pass
0.1965	17	9	52	Pass
0.2000	17	9	52	Pass


Water Quality Drawdown Time Results

Pond: Infiltration Basin #1 Days 1 2 3 4 5	Stage(feet) N/A N/A N/A N/A N/A	Percent of Total Run Time N/A N/A N/A N/A N/A
5	N/A	N/A

Maximum Stage: 3.018 Drawdown Time: Less than 1 day

POC 2

+ Predeveloped x Mitig

x Mitigated

Predeveloped Landuse Totals for POC #2Total Pervious Area:0.47Total Impervious Area:0

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.32 Total Impervious Area: 0.42

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Predeveloped. POC #2Return PeriodFlow(cfs)2 year0.0864915 year0.122177

10 year	0.187591
25 year	0.26028
•	

Flow Frequency Return Periods for Mitigated. POC #2Return PeriodFlow(cfs)2 year0.034015 year0.0463110 year0.11062825 year0.233646

Duration Flows

The Facility PASSED

Flow(cfs)	Predev 366	Mit 170	Percentage 46	Pass/Fail
0.0086 0.0105	312	153	40 49	Pass Pass
0.0123	270	138	51	Pass
0.0141	243	125	51	Pass
0.0159	209	116	55	Pass
0.0177	186	102	54	Pass
0.0195 0.0213	172 161	86 72	50 44	Pass Pass
0.0231	153	58	37	Pass
0.0249	147	53	36	Pass
0.0267	141	46	32	Pass
0.0285	137	44	32	Pass
0.0303 0.0321	132 127	42 40	31 31	Pass Pass
0.0340	123	36	29	Pass
0.0358	117	29	24	Pass
0.0376	113	26	23	Pass
0.0394	109	22	20	Pass
0.0412 0.0430	103 99	19 18	18 18	Pass
0.0430	99 95	17	17	Pass Pass
0.0466	89	15	16	Pass
0.0484	82	15	18	Pass
0.0502	78	14	17	Pass
0.0520 0.0538	73 68	12 11	16 16	Pass Pass
0.0556	63	11	17	Pass
0.0575	60	11	18	Pass
0.0593	59	11	18	Pass
0.0611	51	11	21	Pass
0.0629 0.0647	49 47	11 11	22 23	Pass Pass
0.0665	46	10	21	Pass
0.0683	42	10	23	Pass
0.0701	40	10	25	Pass
0.0719	37	10	27	Pass
0.0737 0.0755	37 37	9 9	24 24	Pass Pass
0.0773	37	9	24	Pass
0.0791	36	9	25	Pass
0.0809	35	9	25	Pass
0.0828	33 33	9 9	27 27	Pass
0.0846 0.0864	33	9	27	Pass Pass
0.0882	31	9	29	Pass
0.0900	29	9 8	27	Pass
0.0918	26	8	30	Pass
0.0936 0.0954	24 21	8 8	33 38	Pass Pass
0.0972	19	8	30 42	Pass
0.0990	18	8	44	Pass
0.1008	18	8	44	Pass
0.1026	18	8	44	Pass

Water Quality Drawdown Time Results

Pond: Infiltration Basin #2 Days 1 2 3 4	Stage(feet) N/A N/A N/A N/A	Percent of Total Run Time N/A N/A N/A N/A
4	N/A	N/A
5	N/A	N/A

Maximum Stage: 3.004 Drawdown Time: Less than 1 day

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

	Basin (Drains	2	Basin (Drains POC)	1B to//	Basin (Drains	Basin 2 (Drains
SI	BMP) 0.44ac		0.27ac	SI	BMP) 0.57ac	POC) 0.17ac
A	Infiltratio			AI2	Infiltrati Basin #	

Disclaimer

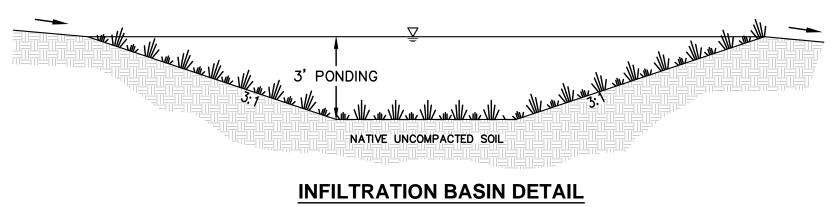
Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Potential Critical Coarse Sediment Yield Area Exhibit



meters

Source: San Diego River Watershed Management Area Analysis

300

NO SCALE

ATTACHMENT 3 Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist
Attachment 3a	Structural BMP Maintenance Thresholds and Actions (Required)	Vincluded See Structural BMP Maintenance Information Checklist on the back of this Attachment cover sheet.
Attachment 3b	Draft Maintenance Agreement (when applicable)	 Included Not Applicable(Preliminary Design)

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Preliminary Design / Planning / CEQA level submittal:

Attachment 3a must identify:

□ Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual

Attachment 3b is not required for preliminary design / planning / CEQA level submittal.

□ Final Design level submittal:

Attachment 3a must identify:

- Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)
- □ How to access the structural BMP(s) to inspect and perform maintenance
- Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- □ Recommended equipment to perform maintenance
- When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

Attachment 3b: For private entity operation and maintenance, Attachment 3b shall include a draft maintenance agreement in the local jurisdiction's standard format (PDP applicant to contact the [City Engineer] to obtain the current maintenance agreement forms).

				BMP: Infiltration Basin MAINTENANCE ACTIVITIE	s								
ROUTINE ACTION	MAINTENANCE INDICATOR	FIELD MEASUREMENT	MEASUREMENT FREQUENCY	MAINTENANCE ACTIVITY	Frequency (# of times per year)	Hours per Event	Average Labor Crew Size	Avg. (Pro- Rated) Labor Rate/Hr. (\$)	Equipment	Equipment Cost/Hour (\$)	Materials & Incidentals Cost or Disposal Cost/Event (\$)	Total cost per visit (\$)	Total cost per year (\$)
Vegetation Management for Aesthetics (optional)	Average vegetation height greater than 12-inches, emergence of trees or woody vegetation,	Visual observation and random measurements through out the side slope area	Annually, prior to start of wet season	Cut vegetation to an average height of 6-inches and remove trimmings. Remove any trees, or woody vegetation.	1.0	1.0	2	\$ 74.97	Utility Truck	\$ 14.39	\$ 50.00	\$ 214	\$ 214
Slope Stability	Evidence of erosion	Visual observation	Annually, prior to start of wet season	Reseed/revegetate barren spots prior to wet season.	1.0	4.0	2	\$ 74.97	Utility Truck	\$ 14.39	\$ 150.00	\$ 807	\$ 807
Standing Water	Standing water for more than 96 hrs	Visual observation	Annually, 96 hours after a target storm (0.60 in) event	Drain facility. Remove sediment, scarify invert, and regrade if necessary. (expected every 10 years)	0.1	24.0	3	\$ 74.97	Utility Truck, 10-15 yd Truck, Backhoe	\$ 56.02		\$ 6,742	\$ 674
Trash and Debris	Trash and Debris present	Visual observation	Annually, prior to start of wet season	Remove and dispose of trash and debris	1.0	2.0	2	\$ 74.97	Utility Truck	\$ 14.39		\$ 329	\$ 329
Sediment Management	Sediment depth exceeds 10% of the facility design or drain time exceed 96 hours.	Measure depth at apparent maximum and minimum accumulation of sediment. Calculate average depth. Visual observation of drain time.	Annually, prior to start of wet season	Remove and properly dispose of sediment. Regrade if necessary. (expected every 10 years)	0.1	8.0	3	\$ 74.97	Utility Truck, 10-15 yd Truck, Backhoe	\$ 56.02	\$ 400.00	\$ 2,647	\$ 265
General Maintenance Inspection	Inlet structures, outlet structures, side slopes or other features damaged, significant erosion, burrows, emergence of trees or woody vegetation, graffiti or vandalism, fence damage, etc.	Visual observation	Annually, prior to start of wet season	Corrective action prior to wet season. Consult engineers if immediate solution is not evident.	1.0	1.0	2	\$ 74.97	Utility Truck	\$ 14.39		\$ 164	\$ 164
Reporting				1	1.0	3.0	1	\$ 74.97				\$ 225	\$ 225
				Average Annual Total		28.6							\$ 2,679

Small Infiltration Basin (1500 sf)	28.6	\$ 2,67
Medium Infiltration Basin (3750 sf)	33.0	\$ 3,29
Large Infiltration Basin (7500 sf)	46.2	\$ 4,28

Equipment	Equipment Cost
Utility Truck	\$14.39/hr
10-15 yd truck	\$28.27/hr
Backhoe	\$13.36/hr
Vactor	\$62.70/hr
Sweeper	\$123.26/hr

\$74.97/hr

Labor Rate

ATTACHMENT 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

- Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs
- The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
- Details and specifications for construction of structural BMP(s)
- N/A VSignage indicating the location and boundary of structural BMP(s) as required by the [City Engineer] How to access the structural BMP(s) to inspect and perform maintenance
- N/A VFeatures that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- N/A Manufacturer and part number for proprietary parts of structural BMP(s) when applicable N/A - Inc. in Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference Maint. Plan (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within
- the BMP)
- N/A Inc. in Maint, Plan Recommended equipment to perform maintenance
 - N/A When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
 - Vinclude landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
 - All BMPs must be fully dimensioned on the plans
 - N/A When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number shall be provided. Photocopies of general brochures are not acceptable.

PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: October 12, 2016

Appendix G

"Ftckpcig"Uwf{"

DRAINAGE STUDY

For

GRAVES COMMERCIAL CENTER SANTEE, CA 92071

GRADING PLAN NO.

Prepared for:

Development Contractor, Inc. 110 Town Center Parkway Santee, Ca 92071 (619) 444-2054

Prepared by:

Consultants, Inc.

REC Consultants, Inc. 2442 Second Avenue San Diego, CA 92101 Telephone: 619-232-9200

Report Prepared:

January 2019

Table of Contents

CHAPTER 1 - EXECUTIVE SUMMARY	3
1.1 – Introduction	3
1.2 – Summary of Existing Conditions	4
1.3 – Summary of Developed Conditions	5
1.4 – Summary of Results	7
1.5 – Conclusions	9
1.6 – References	10
1.7 – Declaration of Responsible Charge	11
CHAPTER 2 – METHODOLOGY	13
2.1 – County of San Diego Rational Method Design Criteria	13
2.2 – Runoff Coefficient Determination	15
2.3 – Design Rainfall Determination	19
2.3.1 – 100-Year, 6-Hour Rainfall Isopluvial Map	19
2.3.2 – 100-Year, 24-Hour Rainfall Isopluvial Map	21
2.4 – Urban Watershed Overland Time of Flow Nomograph	23
2.5 – County of San Diego Intensity- Duration Curve	31
2.6 – Model Development Summary	35
2.7 – Rational Method Hydrograph Procedure	43
2.8 –Generating a Hydrograph	49
CHAPTER 3 - 100 YEAR HYDROLOGIC ANALYSIS FOR EXISTING CONDITIONS	51
CHAPTER 4 - 100 YEAR HYDROLOGIC ANALYSIS FOR UNMITIGATED CONDITIONS	61
CHAPTER 5 - 100 YEAR HYDROLOGIC ANALYSIS FOR MITIGATED CONDITIONS	87
CHAPTER 6 – MODIFIED-PULS DETENTIONS ROUTING	109
6.1 – Rational Method Hydrograph	109
6.2 – Stage-Storage & Stage-Discharge Relationships	113
6.3 – HEC-HMS Modified-Puls Routing Results	121
CHAPTER 7 – HYDROLOGY MAPS	157
CHAPTER 8 – GRADING PLAN	159
CHAPTER 9 – APPENDICES	161
CHAPTER 10 - REVEW COMMENTS AND RESPONSES	163

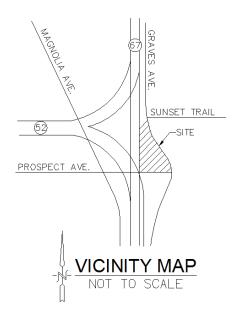

List of Tables

Table 1–SUMMARY OF EXISTING CONDITIONS FLOWS	5
Table 2-SUMMARY OF DEVELOPED CONDITIONS FLOWS - UNMITIGATED	5
Table 3-SUMMARY OF INFILTRATION BASINS	6
Table 4–SUMMARY OF OUTLET DETAILS	6
Table 5–SUMMARY OF BMP ROUTING	6
Table 6-SUMMARY OF AREAS AND PEAK FLOWS - MITIGATED	7

CHAPTER 1 - EXECUTIVE SUMMARY

1.1 – Introduction

The Graves Commercial project proposes to develop an empty lot with a 7/11 and a Starbucks and widen the adjacent road. This project is located west of Graves Avenue, north of Prospect Avenue and east of San Vicente Freeway (Highway 67) in the city of Santee, in San Diego County, California. The total project area is 1.60 acres. See Figure 1 below:

Figure 1–Vicinity Map

The site is currently undeveloped. The site is comprised of four (4) drainage management areas (DMA) each flowing to a corresponding point of compliance (POC). Approximately one-third of the site currently drains to the southwest towards an existing concrete drainage channel. Similarly, the remaining two thirds of the site drain to the northwest towards another existing concrete channel. Drainage from the adjacent street, Graves Avenue, is also split with a portion draining to the south towards an existing curb inlet and the remainder draining to the north towards another existing curb inlet.

The proposed development consists of equivalently sized DMAs as in pre-developed conditions. Onsite runoff from the developed project site shall drain to two (2) proposed infiltration basins via overland flow, gutters, and a storm drain system. These basins have been sized to mitigate the 100-year storm peak flows.

The proposed storm drain system has been sized assuming fully developed conditions. This study analyzes and verifies that the 100-year runoff from the developed site can be conveyed by the system.

Per FEMA Flood Insurance Map 06065C2720G, revised August 28, 2008 and provided as part of Chapter 9, the project site resides in Zone X, indicating that the site is an area determined to be outside the 1% annual change floodplain. Therefore a letter of map revision is not needed.

Graves Commercial Center Drainage Study

Per County of San Diego drainage criteria, the Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 sq-mile. The total watershed area discharging from the site is less than 1.0 sq-mile, thus CivilCadd/CivilDesign Engineering Software (CivilD) has been used to model the pre- and post-developed condition runoff response. The existing conditions hydrology calculations from CivilD can be found in Chapter 3 of this report. The proposed unmitigated and mitigated hydrology calculations from CivilD can be found in Chapters 4 and 5, respectively.

Methodology used for the peak 100-year flow analyses of existing and proposed conditions are consistent with criteria set forth in the County of San Diego Hydrology Manual. The time of concentration (T_c) for each drainage area was calculated in accordance with section 3.1.4 and was performed by CivilD. In order to calculate the T_c , a Manning's Roughness Coefficient, n, was assumed for each surface type. The n values chosen for the analyses are consistent with Table A-1 of the San Diego County Drainage Design Manual. A roughness coefficient of 0.015 was chosen for concrete gutters and concrete drainage channels, 0.013 for RCP and PVC pipes and 0.013 for asphalt. As the site is comprised of both short and high grass an average n value of 0.035 was assumed. A more detailed explanation of the protocols followed for this analysis and all corresponding tables are provided in Chapter 2 of this report.

Developed condition's peak flows were calculated using CivilD. The corresponding hydrographs were generated using Rick Engineering's RATHYDRO software per the County of San Diego Hydrology Manual. Hydraulic Modified-Puls infiltration basin routing of the CivilD rational method hydrology was performed using the Army Corps of Engineers HEC-HMS 4.0 software. The hydrographs and infiltration basin routing results can be found in Chapter 6 of this report.

1.2 – Summary of Existing Conditions

The project site is currently an undeveloped lot with poor vegetative covering. Drainage from the site is divided into two areas, DMA-A and DMA-B, and drainage from the gutter along Graves Avenue is divided into two areas, DMA-C and DMA-D. Approximately two-thirds of onsite flows drain to the southwest corner of the site to an existing concrete drainage channel (POC-A) via overland flow. POC-A also receives runoff from the adjacent street, Prospect Avenue, via an existing grate inlet. The remaining one-third of the site flows to the northwest corner of the site to an existing concrete drainage channel (POC-B) via overland flow. The southern portion of Graves Avenue's runoff flow southeast via the gutter then sheet flows across the intersection into an existing curb inlet (POC-C). Similarly, the northern portion of Graves Avenue's runoff flows northeast via the gutter before sheet flowing across Graves Avenue into an existing curb inlet (POC-D).

The results of the Web Soil Survey, provided as part of Chapter 9, show that the site sits entirely on Type A soil. Per table 3-1 of the County of San Diego Hydrology Manual, a runoff coefficient of 0.80 for General Commercial was used for drainage within Graves and Prospect Avenue and a runoff coefficient of 0.2 for Undisturbed Natural Runoff was used for the project site. Per the County of San Diego rainfall isopluvial maps, the design 6-hr 100-year rainfall depth for the site is 2.53 inches and the 24-hr 100-year rainfall depth is 4.47 inches. The runoff coefficient table and isopluvial maps have been included as part of Chapter 2 of this report.

Table 1 summarizes the existing condition 100-year peak flows from the project site. The complete analysis of the existing drainage conditions can be found in Chapter 3 of this report.

POC	Drainage Area (ac)	100-Year Peak Flow(cfs)
POC-A	1.10	1.31
POC-B	0.49	0.43
POC-C	0.004	0.02
POC-D	0.01	0.05

Table 1–SUMMARY OF EXISTING CONDITIONS FLOWS

<u>1.3 – Summary of Developed Conditions</u>

The proposed project consists of the construction of a commercial building, walkways, a parking lot, infiltration basins and landscape areas. The widening of Graves Avenue is also proposed.

Due to the widening of Graves Avenue, post-developed drainage areas differ from pre-existing. In order to remedy this and avoid diversion of flow, DMA-A and DMA-B shall receive drainage from a portion of Graves Avenue, equivalent to the area of the widening. This design shall ensure that POC-A and POC-B receive the same amount of runoff in pre- and post-developed conditions. The remaining runoff from Graves Avenue, equivalent to DMA-C and DMA-D in pre- developed conditions, shall continue to flow to their respective POCs.

As previously mentioned, the site sits entirely on Type A soil. Per Table 3-1 of the County of San Diego Hydrology Manual, runoff coefficients of 0.80 for General Commercial and 0.2 for Permanent Open Space were assumed. Areas designated as "Permanent Open Space" are considered infeasible for future development as they are mainly comprised of steep slopes and the required infiltration basins.

Table 2 summarizes the unmitigated, developed condition design 100-year peak flow from the project site. The complete unmitigated flow analysis can be found in Chapter 4 of this report.

POC	Drainage Area (ac)	100-Year Peak Flow (cfs)
POC-A	1.10	3.86
POC-B	0.49	1.34
POC-C	0.004	0.02
POC-D	0.01	0.05

Table 2–SUMMARY OF DEVELOPED CONDITIONS FLOWS – UNMITIGATED

Onsite 100-year storm peak flows shall be mitigated by implementing two (2) infiltration basins, BMP-A and BMP-B. The peak flows arriving to the infiltration basins were calculated using CiviID. The complete mitigation analyses for DMA-A and DMA-B can be found in Chapter 5 of

this report. As the peak flows for DMA-C and DMA-D are the same in pre- and post-developed conditions no mitigation measures are required for these areas.

The proposed development peak flows were calculated using the rational method in conformance with the County of San Diego's Hydrology Manual. The corresponding hydrographs were generated using the RATHYDRO computer program by Rick Engineering. The hydrographs were then routed in HEC-HMS, per the Modified Puls method, through the proposed BMP facilities. Tables 3 summarize the design criteria of the infiltration basins, Table 4 summarizes the design of the outlet structures and Table 5 summarizes the HEC-HMS routing results.

Table 3–SUMMARY OF INFILTRATION BASINS

System	Surface Area (ft ²)	Freeboard ⁽¹⁾ (in)	Ponding (in)	Total Depth (ft)
BMP-A	925	6	0	3.0
BMP-B	317	12	12	3.0

Note: (1): Elevation is from the emergency weir invert elevation to the top of storage system

Table 4–SUMMARY OF OUTLET DETAILS

System	Low Orifice		Lower Slot		Emerge	ncy Weir
System	Diameter (in)	Width (in)	Height (in)	Invert ⁽¹⁾ (ft)	Width (ft)	Invert ⁽¹⁾ (ft)
BMP-A	3	N/A	N/A	N/A	8	2.5
BMP-B	N/A	6	1	1	8	2.0

Note: (1): Elevation 0.00 ft is at the invert of storage system

Table 5–SUMMARY OF BMP ROUTING

System	100-Year Peak Inflow (cfs)	100-Year Peak Outflow (cfs)	Peak Water Surface Elevation (ft)
BMP-A	3.02	0.36	2.30 ⁽¹⁾
BMP-B	1.17	0.16	1.70 ⁽¹⁾

Note: (1): Elevation is from invert of storage system and is obtained from HEC-HMS

As HEC-HMS uses an elevation-storage-discharge function to model the basin volume (stagestorage) and basin discharge (stage-discharge) relationships, the available storage volume was calculated from the first surface slot to the crest of the basins.

The Rational Method hydrographs, stage-storage, stage-discharge relationships and HEC-HMS model output is provided in Chapter 6 of this report.

1.4 – Summary of Results

Table 6 summarizes the drainage areas for the developed and existing conditions and the resultant 100-year peak flow rates at each POC for the Graves Commercial Center project.

Discharge	Area (ac)		100 Year Peak Flow (cfs)			
Location	Existing	Developed	Existing	Developed*	Difference	
POC-A	1.10	1.10	1.22	1.09	-0.13	
POC-B	0.49	0.49	0.43	0.41	-0.02	
POC-C	0.004	0.004	0.02	0.02	0.0	
POC-D	0.01	0.01	0.05	0.05	0.0	
TOTAL	1.604	1.604	1.72	1.57	-0.15	

Table 6–SUMMARY OF AREAS AND PEAK FLOWS - MITIGATED

As shown in the above table, the proposed Graves Commercial Center project will not increase the 100-year peak flow discharged to any of the points of compliance. The net reduction in flows from pre-developed conditions is approximately 0.15 cfs.

1.5 – Conclusions

This report has been prepared in accordance with the County of San Diego Hydrology Manual. This report has evaluated and addressed the potential impacts and proposed mitigation measures. A summary of the facts and findings associated with this project and the measures addressed by this report are as follows:

- The project will not alter drainage patterns on the site or increase runoff after development.
- The ultimate discharge points will not be changed.
- Graded areas and slopes will be hydro-seeded to reduce or eliminate sediment discharge.
- The project will respond to the CEQA questions that follow.

CEQA: Identify and discuss, with appropriate backup/research information, the following questions item by item for CEQA purposes. Would the project:

A. Substantially alter the existing drainage patterns of the site or area, including through the alteration if the course of a stream or river, in a manner which would result in substantial erosion or siltation on – or off-site?

The project does not substantially alter the existing drainage pattern of the area and does not alter the course of a stream or river. The storm drain system is designed to route offsite flows through the site to the existing point of confluence.

B. Substantially alter the existing drainage patterns of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

The project will not substantially alter the existing drainage pattern of the area as it will not alter the course of a stream or river, and also will not substantially increase the rate or amount of surface runoff in a manner which would result in on- or off-site flooding.

C. Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems?

The project will not create runoff water which would exceed the capacity of the existing storm water system. All project discharge points release water at rates less than or equal to planned existing conditions.

D. Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood insurance Rate Map or other flood hazard delineation map, including County Floodplain Maps? For example; research the foregoing and provide same (to indicate applicability or not) in the study?

The project does not place any housing within a 100-year flood hazard area.

E. Place within a 100-year flood hazard area structures which would impede or redirect flood flows?

There are no structures proposed within a 100-year flood hazard area.

F. Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam on-sit or off-site?

N/A

1.6 – References

"County of San Diego Hydrology Manual", June 2003

"San Diego County Hydraulics Design Manual", September 2014

"Stormwater Quality Management Plan for 7/11 and Starbucks Drive Thru", dated August 2017 by Walsh Engineering

"Amendment to Stormwater Quality Management Plan for 7/11 and Starbucks Drive Thru", dated December 2017, revised August 2018, but REC Consultants

"Infiltration Testing Results for 8606 Graves Avenue, Santee, California" dated August 2016, revised September 2017, by Group Delta.

1.7 – Declaration of Responsible Charge

THIS DRAINAGE STUDY HAS BEEN PREPARED UNDER THE DIRECTION OF THE FOLLOWING REGISTERED CIVIL ENGINEER. THE REGISTERED ENGINEER ATTESTS TO THE TECHNICAL INFORMATION CONTAINED HEREIN AND THE ENGINEERING DATA UPON WHICH RECOMMENDATIONS, CONCLUSIONS, AND DECISIONS ARE BASED.

Beech

Jonathan Raab Rydeen R.C.E. 64811

CHAPTER 2 – METHODOLOGY

2.1 – County of San Diego Rational Method Design Criteria

The following are excerpts from the San Diego County Hydrology Manual. As the project site is less than 1 square mile the Rational Method, as described below, was used to determine the peak flows for pre- and post-developed conditions.

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	1 of 26
SECTION 3 RATIONAL METHOD AND MODIFIED RATI	ONAL METHOD	

3.1 THE RATIONAL METHOD

The Rational Method (RM) is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. The RM is recommended for analyzing the runoff response from drainage areas up to approximately 1 square mile in size. It should not be used in instances where there is a junction of independent drainage systems or for drainage areas greater than approximately 1 square mile in size. In these instances, the Modified Rational Method (MRM) should be used for junctions of independent drainage systems in watersheds up to approximately 1 square mile in size (see Section 3.4); or the NRCS Hydrologic Method should be used for watersheds greater than approximately 1 square mile in size (see Section 4).

The RM can be applied using any design storm frequency (e.g., 100-year, 50-year, 10-year, etc.). The local agency determines the design storm frequency that must be used based on the type of project and specific local requirements. A discussion of design storm frequency is provided in Section 2.3 of this manual. A procedure has been developed that converts the 6-hour and 24-hour precipitation isopluvial map data to an Intensity-Duration curve that can be used for the rainfall intensity in the RM formula as shown in Figure 3-1. The RM is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration.

3.1.1 Rational Method Formula

The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (T_c) , which is the time required for water to

Date: June 2003 Page: 3 of 26	Diego County Hydrology Manual e: June 2003	Section: Page:	3 3 of 26	
-------------------------------	---	-------------------	--------------	--

flow from the most remote point of the basin to the location being analyzed. The RM formula is expressed as follows:

Q = CIA

Where: Q = peak discharge, in cubic feet per second (cfs)

- C = runoff coefficient, proportion of the rainfall that runs off the surface (no units)
- I = average rainfall intensity for a duration equal to the T_c for the area, in inches per hour (Note: If the computed T_c is less than 5 minutes, use 5 minutes for computing the peak discharge, Q)
- A = drainage area contributing to the design location, in acres

Combining the units for the expression CIA yields:

$$\left(\frac{1\,\text{acre}\times\text{inch}}{\text{hour}}\right)\left(\frac{43,560\,\text{ft}^2}{\text{acre}}\right)\left(\frac{1\,\text{foot}}{12\,\text{inches}}\right)\left(\frac{1\,\text{hour}}{3,600\,\text{seconds}}\right) \Rightarrow 1.008\,\text{cfs}$$

For practical purposes the unit conversion coefficient difference of 0.8% can be ignored.

The RM formula is based on the assumption that for constant rainfall intensity, the peak discharge rate at a point will occur when the raindrop that falls at the most upstream point in the tributary drainage basin arrives at the point of interest.

Unlike the MRM (discussed in Section 3.4) or the NRCS hydrologic method (discussed in Section 4), the RM does not create hydrographs and therefore does not add separate subarea hydrographs at collection points. Instead, the RM develops peak discharges in the main line by increasing the T_c as flow travels downstream.

Characteristics of, or assumptions inherent to, the RM are listed below:

 The discharge flow rate resulting from any I is maximum when the I lasts as long as or longer than the T_c.

2.2 – Runoff Coefficient Determination

The results of the Web Soil Survey, which can be found as part of Chapter 9, show that the site sits entirely on Type A soil. Per County of San Diego criteria, a runoff coefficient "C" value of 0.2 was assumed for the existing Undisturbed Natural Terrain. In developed conditions, a runoff coefficient of 0.80 was assumed for General Commercial and 0.2 was assumed for Permanent Open Space (identified as the self-mitigating areas in this report).

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	4 of 26
	•	

- The storm frequency of peak discharges is the same as that of I for the given T_c .
- The fraction of rainfall that becomes runoff (or the runoff coefficient, C) is independent of I or precipitation zone number (PZN) condition (PZN Condition is discussed in Section 4.1.2.4).
- The peak rate of runoff is the only information produced by using the RM.

3.1.2 Runoff Coefficient

Table 3-1 lists the estimated runoff coefficients for urban areas. The concepts related to the runoff coefficient were evaluated in a report entitled *Evaluation, Rational Method "C" Values* (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report is available at San Diego County Department of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page.

The runoff coefficients are based on land use and soil type. Soil type can be determined from the soil type map provided in Appendix A. An appropriate runoff coefficient (C) for each type of land use in the subarea should be selected from this table and multiplied by the percentage of the total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient (Σ [CA]). Good engineering judgment should be used when applying the values presented in Table 3-1, as adjustments to these values may be appropriate based on site-specific characteristics. In any event, the impervious percentage (% Impervious) as given in the table, for any area, shall govern the selected value for C. The runoff coefficient can also be calculated for an area based on soil type and impervious percentage using the following formula:

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	5 of 26

 $C = 0.90 \times (\% \text{ Impervious}) + C_p \times (1 - \% \text{ Impervious})$

Where: C_p = Pervious Coefficient Runoff Value for the soil type (shown in Table 3-1 as Undisturbed Natural Terrain/Permanent Open Space, 0% Impervious). Soil type can be determined from the soil type map provided in Appendix A.

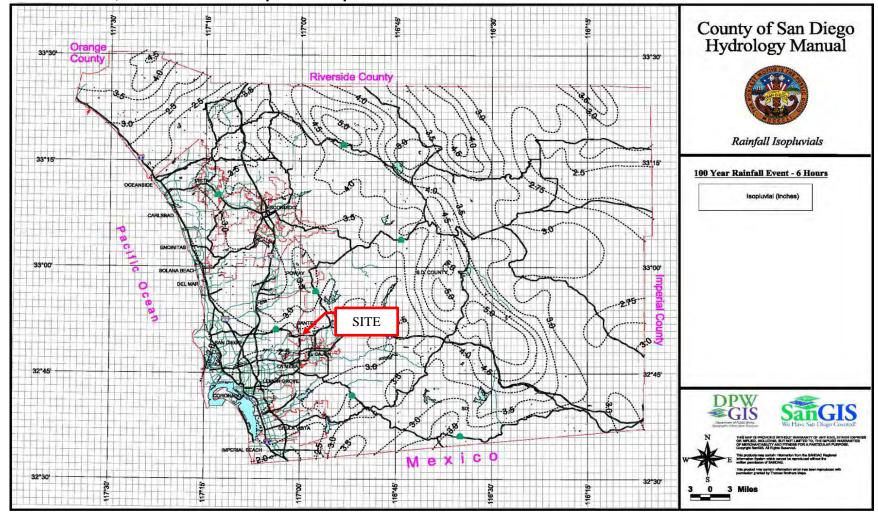
The values in Table 3-1 are typical for most urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the local agency.

3-5

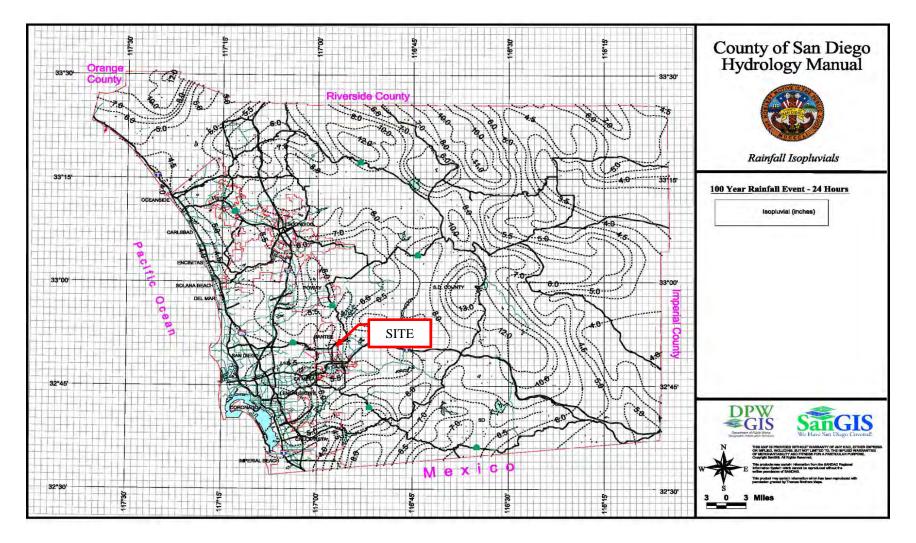
San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	6 of 26

Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Land Use			Ru	noff Coefficient '	"C"	
				Soil	Туре	
NRCS Elements	County Elements	% IMPER.	Α	в	С	D
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87


*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre NRCS = National Resources Conservation Service


3-6

2.3 – Design Rainfall Determination

Peak flows were calculated for the 100-year storm per the County of San Diego Hydrology Manual. The following maps provide the 6-hr and 24-hr 100-year rainfall isopluvial data. A P6 and P24 value of 2.53 and 4.47 inches, respectively, were assumed for this analysis.

2.3.1 – 100-Year, 6-Hour Rainfall Isopluvial Map

2.3.2 – 100-Year, 24-Hour Rainfall Isopluvial Map

2.4 – Urban Watershed Overland Time of Flow Nomograph

The time of concentration (T_c) for each drainage area was calculated per the methodology outlined below. T_c calculations were performed using Table 3-2 by CivilD and can be found in Chapters 3-5 of this report.

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	9 of 26

3.1.4 Time of Concentration

The Time of Concentration (T_c) is the time required for runoff to flow from the most remote part of the drainage area to the point of interest. The T_c is composed of two components: initial time of concentration (T_i) and travel time (T_t) . Methods of computation for T_i and T_t are discussed below. The T_i is the time required for runoff to travel across the surface of the most remote subarea in the study, or "initial subarea." Guidelines for designating the initial subarea are provided within the discussion of computation of T_i . The T_t is the time required for the runoff to flow in a watercourse (e.g., swale, channel, gutter, pipe) or series of watercourses from the initial subarea to the point of interest. For the RM, the T_c at any point within the drainage area is given by:

 $T_c = T_i + T_t$

Methods of calculation differ for natural watersheds (nonurbanized) and for urban drainage systems. When analyzing storm drain systems, the designer must consider the possibility that an existing natural watershed may become urbanized during the useful life of the storm drain system. Future land uses must be used for T_c and runoff calculations, and can be determined from the local Community General Plan.

3.1.4.1 Initial Time of Concentration

The initial time of concentration is typically based on sheet flow at the upstream end of a drainage basin. The Overland Time of Flow (Figure 3-3) is approximated by an equation developed by the Federal Aviation Agency (FAA) for analyzing flow on runaways (FAA, 1970). The usual runway configuration consists of a crown, like most freeways, with sloping pavement that directs flow to either side of the runway. This type of flow is uniform in the direction perpendicular to the velocity and is very shallow. Since these depths are ¼ of an inch (more or less) in magnitude, the relative roughness is high. Some higher relative roughness values for overland flow are presented in Table 3.5 of the *HEC-1 Flood Hydrograph Package User's Manual* (USACE, 1990).

San Diego County Hydrology Manual Date: June 2003	Section:	3
Date: June 2003	Page:	11 of 26

The sheet flow that is predicted by the FAA equation is limited to conditions that are similar to runway topography. Some considerations that limit the extent to which the FAA equation applies are identified below:

- <u>Urban Areas</u> This "runway type" runoff includes:
 - 1) Flat roofs, sloping at 1% ±
 - Parking lots at the extreme upstream drainage basin boundary (at the "ridge" of a catchment area).

Even a parking lot is limited in the amounts of sheet flow. Parked or moving vehicles would "break-up" the sheet flow, concentrating runoff into streams that are not characteristic of sheet flow.

- 3) Driveways are constructed at the upstream end of catchment areas in some developments. However, if flow from a roof is directed to a driveway through a downspout or other conveyance mechanism, flow would be concentrated.
- Flat slopes are prone to meandering flow that tends to be disrupted by minor irregularities and obstructions. Maximum Overland Flow lengths are shorter for the flatter slopes (see Table 3-2).
- <u>Rural or Natural Areas</u> The FAA equation is applicable to these conditions since (.5% to 10%) slopes that are uniform in width of flow have slow velocities consistent with the equation. Irregularities in terrain limit the length of application.
 - Most hills and ridge lines have a relatively flat area near the drainage divide. However, with flat slopes of .5% ±, minor irregularities would cause flow to concentrate into streams.
 - Parks, lawns and other vegetated areas would have slow velocities that are consistent with the FAA Equation.

The concepts related to the initial time of concentration were evaluated in a report entitled *Initial Time of Concentration, Analysis of Parameters* (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report is available at San Diego County Department of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page.

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	12 of 26
	-	

Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

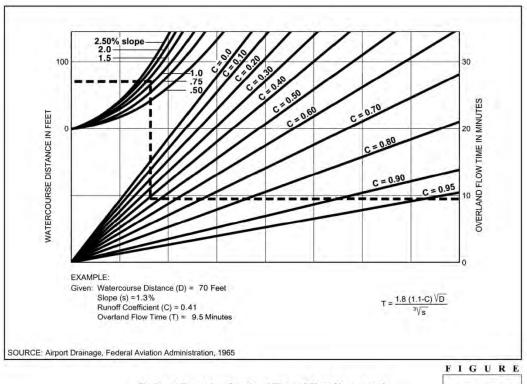

Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2

& INITIAL TIME OF CONCENTRATION (Ii)													
Element*	DU/	.5	5%	1	%	2	%	3	%	- 59	%	10	%
	Acre	L _M	Ti	L _M	Ti	L _M	Ti						
Natural		50	13.2	70	12.5	8 5	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	8 5	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	8 5	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	8 5	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

MAXIMUM OVERLAND FLOW LENGTH (L_M) & INITIAL TIME OF CONCENTRATION (T_i)

*See Table 3-1 for more detailed description

Rational Formula - Overland Time of Flow Nomograph

3-3

In order to calculate time of concentration a roughness value, n, from Manning's formula must be assigned based on the characteristics of the channel. The following table is from the San Diego County Drainage Design Manual and provides n values for various surface types. Note, since the site is a mixture of short and high grass an average n value of 0.035 was assumed.

	Tab
Table A-1 Average Manning Roughness Co	efficients for Pavement and Gutters ¹
Concrete Gutter ²	.0.015
Concrete Pavement	
Float Finish	
Des en Fiziels	0.016
Concrete Gutter with Asphalt Pavement	
One oth Finish	0.013
Rough Texture	0.015
Asphalt Pavement	
Smooth Finish	

¹ Based on materials and workmanship required by standard specifications.
 ² Increase roughness coefficient in gutters with mild slopes where sediment might accumulate by 0.020.

Table A-2 Average Manning Roughness Coefficients	for Closed Conduits ³
Reinforced Concrete Pipe (RCP)	
Corrugated Metal Pipe and Pipe Arch	
2-3/8 x 1/2 inch Corrugations	
Unlined	0.024
Half Lined	
Full Flow	0.018
d/D>=0.60	
d/D<0.60	
Fully Lined	
3 x 1 inch Corrugations	
6 x 2 inch Corrugations	
Spiral Rib Pipe	0.013
Helically Wound Pipe	
18-inch	
24-inch	
30-inch	
36-inch	
42-inch	
48-inch	0.023
Plastic Pipe (HPDE and PVC)	0.012
Smooth	
Corrugated	
Vitrified Clay Pipe	
Cast-Iron Pipe (Uncoated) Steel Pipe	
Brick Cast-In-Place Concrete Pipe	0.017
Rough Wood Forms	0.017
Smooth Wood or Steel Forms	

³ Based on materials and workmanship required by standard specifications.

Table A-3

Average Manning Roughness Coefficients for Small Open Channels Conveying Less than 50 cfs⁴ Table A-3

		Design Flow Depth	
Lining Type	0 – 0.5 ft	0.5 – 2.0 ft	> 2.0 ft
Concrete (Poured)	0.015	0.013	0.013
Air Blown Concrete	0.023	0.019	0.016
Grouted Riprap	0.040	0.030	0.028
Stone Masonry	0.042	0.032	0.030
Soil Cement	0.025	0.022	0.020
Bare Soil	0.023	0.020	0.020
Rock Cut	0.045	0.035	0.025
Rock Riprap	Based o	n Rock Size (See Section	on 5.7.2)

Table A-4

Average Manning Roughness Coefficients for Larger Open Channels Table A-4

Unlined Channels	
Clay Loam	0.023
Sand	0.020
Lined Channels	
Grass Lined (Well-Maintained)	0.035
Grass Lined (Not Maintained)	0.045
Wetland-Bottom Channels (New Channel)	0.023
Wetland-Bottom Channels (Mature Channel)	See Table A-5
Riprap-Lined Channels	See Section 5.7.2
Concrete (Poured)	
Air Blown Mortar (Gunite or Shotcrete) ⁵	0.016
Asphaltic Concrete or Bituminous Plant Mix	

For channels with revetments or multiple lining types, use composite Manning roughness coefficient based on component lining materials.

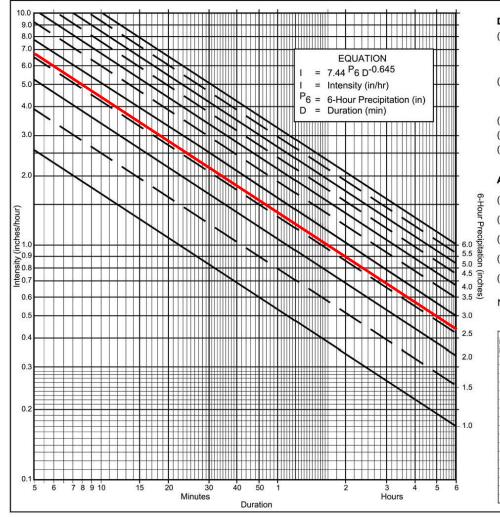
 4 Based on materials and workmanship required by standard specifications. 5 For air-blown concrete, use $n{=}0.012$ (if troweled) and $n{=}0.025$ if purposely roughened.

Table A-5 Average Manning Roughness Coefficients for Natural Channels	
Minor Streams (Surface Width at Flood Stage < 100 ft)	
Fairly Regular Section	
 (A) Some Grass and Weeds, Little or No Brush (B) Dense Growth of Weeds, Depth of Flow Materially Greater Than Weed 	0.030
(b) Dense Growth of Weeds, Depth of Plow Materially Greater Than Weed Height	0.040
(C) Some Weeds, Light Brush on Banks.	
(D) Some Weeds, Heavy Brush on Banks	
(E) For Trees within Channel with Branches Submerged at High Stage, Increase	
All Above Values By	0.015
Irregular Section, with Pools, Slight Channel Meander	0.046
Channels (A) to (E) Above, Increase All Values By Mountain Streams: No Vegetation in Channel, Banks Usually Steep, Trees and Brush	
Banks Submerged at High Stage	raiong
(A) Bottom, Gravel, Cobbles and Few Boulders	0.050
(B) Bottom, Cobbles with Large Boulders	0.060
Flood Plains (Adjacent To Natural Streams)	
Pasture, No Brush (A) Short Grass	0.000
(A) Short Grass	
Cultivated Areas	
(A) No Crop	0.040
(B) Mature Row Crops	
(C) Mature Field Crops	
Heavy Weeds, Scattered Brush	
Light Brush and Trees	
Medium To Dense Brush	
Dense Willows Cleared Land with Tree Stumps, 100-150 Per Acre	
Heavy Stand of Timber, Little Undergrowth	.0.000
(A) Flood Depth below Branches	0.110

2.5 – County of San Diego Intensity- Duration Curve

The rainfall intensity (I) for each drainage area was determined using the 100-year P6 value and the time of concentration. The intensity was calculated in CivilD and was used to determine the peak flow for each drainage area.

San Diego County Hydrology Manual Date: June 2003	Section: Page:	7 of 26
--	-------------------	---------

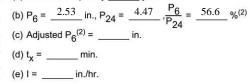

3.1.3 Rainfall Intensity

The rainfall intensity (I) is the rainfall in inches per hour (in/hr) for a duration equal to the T_c for a selected storm frequency. Once a particular storm frequency has been selected for design and a T_c calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration Design Chart (Figure 3-1). The 6-hour storm rainfall amount (P₆) and the 24-hour storm rainfall amount (P₂₄) for the selected storm frequency are also needed for calculation of I. P₆ and P₂₄ can be read from the isopluvial maps provided in Appendix B. An Intensity-Duration Design Chart applicable to all areas within San Diego County is provided as Figure 3-1. Figure 3-2 provides an example of use of the Intensity-Duration Design Chart. Intensity can also be calculated using the following equation:

 $I = 7.44 P_6 D^{-0.645}$

<u>Note</u>: This equation applies only to the 6-hour storm rainfall amount (i.e., P_6 cannot be changed to P_{24} to calculate a 24-hour intensity using this equation).

The Intensity-Duration Design Chart and the equation are for the 6-hour storm rainfall amount. In general, P_6 for the selected frequency should be between 45% and 65% of P_{24} for the selected frequency. If P_6 is not within 45% to 65% of P_{24} , P_6 should be increased or decreased as necessary to meet this criteria. The isopluvial lines are based on precipitation gauge data. At the time that the isopluvial lines were created, the majority of precipitation gauges in San Diego County were read daily, and these readings yielded 24-hour precipitation data. Some 6-hour data were available from the few recording gauges distributed throughout the County at that time; however, some 6-hour data were extrapolated. Therefore, the 24-hour precipitation data for San Diego County are considered to be more reliable.



Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency 100 year

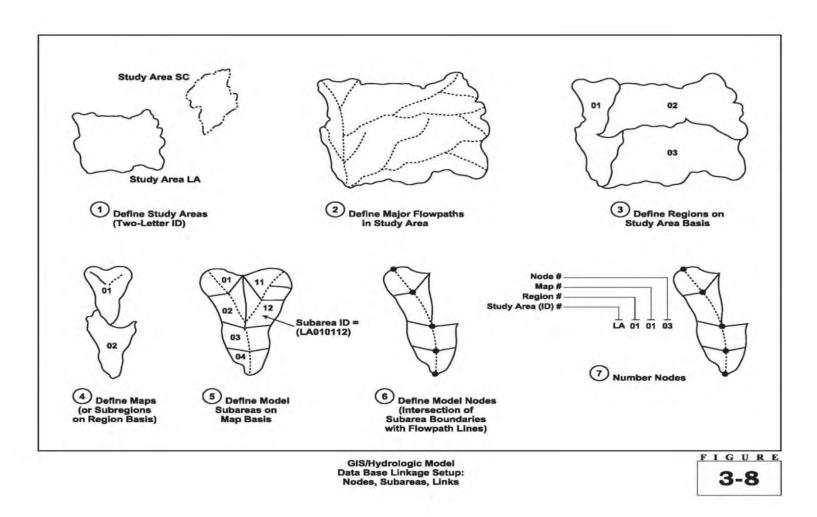
Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	1	1	1	1	1	1	1	1.	1	1	1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

FIGURE

Intensity-Duration Design Chart - Template

2.6 – Model Development Summary


The following excerpt from the County of San Diego Hydrology Manual is an overview for developing the drainage areas to be analyzed and calculating the peak flows. Each drainage area in pre- and post-developed conditions was delineated and analyzed following the protocol outlined below. A map of the pre-developed and post-developed drainage areas may be found in Chapter 7 of this report.

San Diego County Hydrology ManualSection:Date:June 2003Page:	20 of 26
--	----------

3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD

This section describes the development of the necessary data to perform RM calculations. Section 3.3 describes the RM calculation process. Input data for calculating peak flows and T_c 's with the RM should be developed as follows:

- 1. On a topographic base map, outline the overall drainage area boundary, showing adjacent drains, existing and proposed drains, and overland flow paths.
- 2. Verify the accuracy of the drainage map in the field.
- 3. Divide the drainage area into subareas by locating significant points of interest. These divisions should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform.
- Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies.
- 5. Measure each subarea in the drainage area to determine its size in acres (A).
- 6. Determine the length and effective slope of the flow path in each subarea.
- 7. Identify the soil type for each subarea.

San Diego County Hydrology Manual Date: June 2003	Section: Page:	22 of 26
--	-------------------	----------

- Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc.
- 9. Calculate the CA value for the subarea.
- 10. Calculate the Σ(CA) value(s) for the subareas upstream of the point(s) of interest.
- 11. Determine P_6 and P_{24} for the study using the isophuvial maps provided in Appendix B. If necessary, adjust the value for P_6 to be within 45% to 65% of the value for P_{24} .

See Section 3.3 for a description of the RM calculation process.

3.3 PERFORMING RATIONAL METHOD CALCULATIONS

This section describes the RM calculation process. Using the input data, calculation of peak flows and T_c 's should be performed as follows:

- Determine T_i for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the downstream end of the first subarea can be added to T_i to obtain the T_c. Refer to paragraph 3.1.4.2 (a).
- Determine I for the subarea using Figure 3-1. If T_i was less than 5 minutes, use the 5 minute time to determine intensity for calculating the flow.
- 3. Calculate the peak discharge flow rate for the subarea, where Q_p = Σ(CA) I. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again.

San Diego County Hydrology Manual Date: June 2003	Section: Page:	23 of 26
--	-------------------	----------

- Estimate the T_t to the next point of interest.
- Add the Tt to the previous Tc to obtain a new Tc.
- 6. Continue with step 2, above, until the final point of interest is reached.

<u>Note</u>: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system.

3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS)

The purpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MRM. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method, is described below.

The engineer should only use the MRM for drainage areas up to approximately 1 square mile in size. If the watershed will significantly exceed 1 square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the MRM for calculations for up to an approximately 1-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4.

3.4.1 Modified Rational Method General Process Description

The general process for the MRM differs from the RM only when a junction of independent drainage systems is reached. The peak Q, T_c , and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure described below. The peak Q, T_c , and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	24 of 26

values will be used for the MRM calculations. After the independent drainage systems have been combined, RM calculations are continued to the next point of interest.

3.4.2 Procedure for Combining Independent Drainage Systems at a Junction

Calculate the peak Q, T_c, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations.

At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at T_c . Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding T_c using the peak Q, T_c , and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order of increasing T_c .

Let Q_1 , T_1 , and I_1 correspond to the tributary area with the shortest T_c . Likewise, let Q_2 , T_2 , and I_2 correspond to the tributary area with the next longer T_c ; Q_3 , T_3 , and I_3 correspond to the tributary area with the next longer T_c ; and so on. When only two independent drainage systems are combined, leave Q_3 , T_3 , and I_3 out of the equation. Combine the independent drainage systems using the junction equation below:

Junction Equation: $T_1 \le T_2 \le T_3$

$$Q_{T1} = Q_1 + \frac{T_1}{T_2}Q_2 + \frac{T_1}{T_3}Q_3$$
$$Q_{T2} = Q_2 + \frac{I_2}{I_1}Q_1 + \frac{T_2}{T_3}Q_3$$
$$Q_{T3} = Q_3 + \frac{I_3}{I_1}Q_1 + \frac{I_3}{I_2}Q_2$$

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	25 of 26
Date: June 2003	Page:	25 of 26

Calculate Q_{T1} , Q_{T2} , and Q_{T3} . Select the largest Q and use the T_c associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., $Q_{T1} = Q_{T2} > Q_{T3}$), use the shorter of the T_c's associated with that Q.

This equation may be expanded for a junction of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea (e.g., Q_2) is combined with Q from another subarea with a shorter T_c (e.g., Q_1), the Q from the subarea with the shorter T_c is reduced by the ratio of the I's (I_2/I_1); and when Q from a selected subarea (e.g., Q_2) is combined with Q from another subarea with a longer T_c (e.g., Q_3), the Q from the subarea with the longer T_c is reduced by the ratio of the T_c 's (T_2/T_3).

<u>Note #1</u>: At a junction of two independent drainage systems that have the same T_c , the tributary flows may be added to obtain the Q_p .

$$Q_p = Q_1 + Q_2$$
; when $T_1 = T_2$; and $T_c = T_1 = T_2$

This can be verified by using the junction equation above. Let Q_3 , T_3 , and $I_3 = 0$. When T_1 and T_2 are the same, I_1 and I_2 are also the same, and T_1/T_2 and $I_2/I_1 = 1$. T_1/T_2 and I_2/I_1 are cancelled from the equations. At this point, $Q_{T1} = Q_{T2} = Q_1 + Q_2$.

<u>Note #2</u>: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (T_c 's) are relatively close in magnitude (within 10%), use the shorter T_c for the intensity and the equation $Q = \Sigma(CA)I$.

<u>Note #3</u>: An optional method of determining the T_c is to use the equation $T_c = [(\Sigma (CA)7.44 P_6)/Q]^{1.55}$

This equation is from $Q = \sum (CA)I = \sum (CA)(7.44 P_6/T_c^{.645})$ and solving for T_c . The advantage in this option is that the T_c is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases.

2.7 – Rational Method Hydrograph Procedure

The following excerpt from the County of San Diego Hydrology Manual explains the procedure followed in order to mitigate the peak 100-year flow and properly size the two (2) infiltration basins required for the site.

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	1 of 10

SECTION 6 RATIONAL METHOD HYDROGRAPH PROCEDURE

6.1 INTRODUCTION

The procedures in this section are for the development of hydrographs from RM study results for study areas up to approximately 1 square mile in size. The RM, discussed in Section 3, is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. However, in some instances such as for design of detention basins, the peak runoff rate is insufficient information for the design, and a hydrograph is needed. Unlike the NRCS hydrologic method (discussed in Section 4), the RM itself does not create hydrographs. The procedures for detention basin design based on RM study results were first developed as part of the East Otay Mesa Drainage Study. Rick Engineering Company performed this study under the direction of County Flood Control. The procedures in this section may be used for the development of hydrographs from RM study results for study areas up to approximately 1 square mile in size.

6.2 HYDROGRAPH DEVELOPMENT

The concept of this hydrograph procedure is based on the RM formula:

$$Q = CIA$$

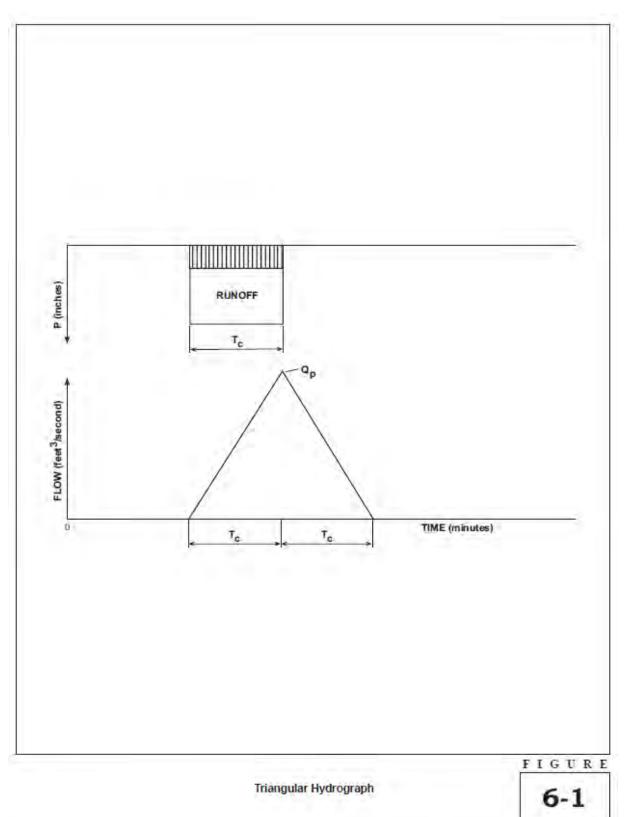
Where: Q = peak discharge, in cubic feet per second (cfs)

- C = runoff coefficient, proportion of the rainfall that runs off the surface (no units)
- I = average rainfall intensity for a duration equal to the T_c for the area, in inches per hour
- A = drainage area contributing to the design location, in acres

The RM formula is discussed in more detail in Section 3.

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	2 of 10

An assumption of the RM is that discharge increases linearly over the T_c for the drainage area until reaching the peak discharge as defined by the RM formula, and then decreases linearly. A linear hydrograph can be developed for the peak flow occurring over the T_c as shown in Figure 6-1. However, for designs that are dependent on the total storm volume, it is not sufficient to consider a single hydrograph for peak flow occurring over the T_c at the beginning of a 6-hour storm event because the hydrograph does not account for the entire volume of runoff from the storm event. The volume under the hydrograph shown in Figure 6-1 is equal to the rainfall intensity multiplied by the duration for which that intensity occurs (T_c), the drainage area (A) contributing to the design location, and the runoff coefficient (C) for the drainage area. For designs that are dependent on the total storm volume, a hydrograph must be generated to account for the entire volume of runoff from the 6-hour storm event. The hydrograph for the entire 6-hour storm event is generated by creating a rainfall distribution consisting of blocks of rain, creating an incremental hydrograph for each block of rain, and adding the hydrographs from each block of rain. This process creates a hydrograph that contains runoff from all the blocks of rain and accounts for the entire volume of runoff from the 6-hour storm event. The total volume under the resulting hydrograph is equal to the following equation:


$$VOL = CP_6A$$
 (Eq. 6-1)

Where: VOL = volume of runoff (acre-inches)

 $P_6 = 6$ -hour rainfall (inches)

C = runoff coefficient

A = area of the watershed (acres)

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	4 of 10
	-	

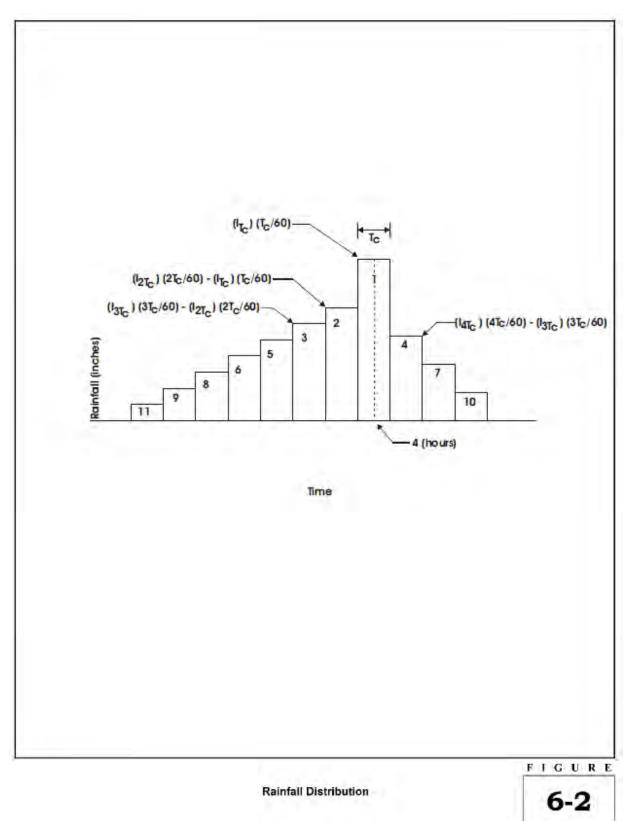
6.2.1 Rainfall Distribution

Figure 6-2 shows a 6-hour rainfall distribution consisting of blocks of rain over increments of time equal to T_c . The number of blocks is determined by rounding T_c to the nearest whole number of minutes, dividing 360 minutes (6 hours) by T_c , and rounding again to the nearest whole number. The blocks are distributed using a (2/3, 1/3) distribution in which the peak rainfall block is placed at the 4-hour time within the 6-hour rainfall duration. The additional blocks are distributed in a sequence alternating two blocks to the left and one block to the right of the 4-hour time (see Figure 6-2). The total amount of rainfall ($P_{T(N)}$) for any given block (N) is determined as follows:

$$P_{T(N)} = (I_{T(N)} T_{T(N)}) / 60$$

Where: $P_{T(N)} = \text{total amount of rainfall for any given block (N)}$

$$\begin{split} I_{T(N)} &= \text{average rainfall intensity for a duration equal to } T_{T(N)} \text{ in inches per hour} \\ T_{T(N)} &= NT_c \text{ in minutes (N is an integer representing the given block number of rainfall)} \end{split}$$


Intensity is calculated using the following equation (described in detail in Section 3):

$$I = 7.44 P_6 D^{-0.645}$$

Where: I = average rainfall intensity for a duration equal to D in inches per hour

 P_6 = adjusted 6-hour storm rainfall

D = duration in minutes

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	6 of 10

Substituting the equation for I in the equation above for $P_{T(N)}$ and setting the duration (D) equal to $T_{T(N)}$ yields:

$$\begin{split} P_{T(N)} &= [(7.44 \ P_6/T_{T(N)}^{0.645})(T_{T(N)})] \ / \ 60 \\ P_{T(N)} &= 0.124 \ P_6 T_{T(N)}^{0.355} \end{split}$$

Substituting NT_c for T_T (where N equals the block number of rainfall) in the equation above yields:

$$P_{T(N)} = 0.124 P_6 (NT_c)^{0.355}$$
 (Eq. 6-2)

Equation 6-2 represents the total rainfall amount for a rainfall block with a time base equal to $T_{T(N)}$ (NT_c). The actual time base of each rainfall block in the rainfall distribution is T_c, as shown in Figure 6-2. The actual rainfall amount (P_N) for each block of rain is equal to P_T at N (P_{T(N)}) minus the previous P_T at N-1 (P_{T(N-1)}) at any given multiple of T_c (any NT_c). For example, the rainfall for block 2 is equal to P_{T(N)} at T_{T(N)} = 2T_c minus the P_{T(N)} at T_{T(N)} = 1T_c, and the rainfall for block 3 equals P_{T(N)} at T_{T(N)} = 3T_c minus the P_{T(N)} at T_{T(N)} = 2T_c, or P_N can be represented by the following equation:

$$P_N = P_{T(N)} - P_{T(N-1)}$$
 (Eq. 6-3)

For the rainfall distribution, the rainfall at block N = 1, $(1T_c)$, is centered at 4 hours, the rainfall at block N = 2, $(2T_c)$, is centered at 4 hours – $1T_c$, the rainfall at block N = 3, $(3T_c)$, is centered at 4 hours – $2T_c$, and the rainfall at at block N = 4, $(4T_c)$, is centered at 4 hours + $1T_c$. The sequence continues alternating two blocks to the left and one block to the right (see Figure 6-2).

2.8 – Generating a Hydrograph

The County of San Diego Hydrology Manual encourages the use of Rick Engineering's RATHYDRO computer program for generating hydrographs. The excerpt below explains the procedure for developing a hydrograph using this software. The results of this analysis for DMA-A and DMA-B can be found in Chapter 6 of this report.

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	9 of 10

6.3 GENERATING A HYDROGRAPH USING RATHYDRO

The rainfall distribution and related hydrographs can be developed using the RATHYDRO computer program provided to the County by Rick Engineering Company. A copy of this program is available at no cost from the County. The output from this computer program may be used with HEC-1 or other software for routing purposes.

The design storm pattern used by the RATHYDRO program is based on the (2/3, 1/3) distribution described in Sections 4.1.1 and 6.2.1. The ordinates on the hydrograph are calculated based on the County of San Diego Intensity-Duration Design Chart (Figure 3-1), which uses the intensity equation described in Sections 3.1.3 and 6.2.1 to relate the intensity (I) of the storm to T_c , $I = 7.44 P_6 D^{-0.645}$. The computer program uses equations 6-2 and 6-3 described above and calculates I_N directly. The intensity at any given multiple of T_c is calculated by the following equation:

$$I_{N} = [(I_{T(N)}) (T_{T(N)}) - (I_{T(N-1)}) (T_{T(N-1)})] / T_{c}$$
(Eq. 6-6)

Where: N = number of rainfall blocks

 $T_{T(N)}$ = time of concentration at rainfall block N in minutes (equal to $NT_{c})$

 I_N = actual rainfall intensity at rainfall block N in inches per hour

 $I_{T(N)}$ = rainfall intensity at time of concentration $T_{T(N)}$ in inches per hour

Figure 6-2 shows the rainfall distribution used in the RM hydrograph, computed at multiples of T_c . The rainfall at block N = 1, $(1T_c)$, is centered at 4 hours, the rainfall at block N = 2, $(2T_c)$, is centered at 4 hours – $1T_c$, the rainfall at block N = 3, $(3T_c)$, is centered at 4 hours – $2T_c$, and the rainfall at block N = 4, $(4T_c)$, is centered at 4 hours + $1T_c$. The sequence continues alternating two blocks to the left and one block to the right (see Figure 6-2).

As described in Section 6.2.2, the peak discharge (Q_N) of the hydrograph for any given rainfall block (N) is determined by the RM formula Q = CIA, where $I = I_N$ = the actual

San Diego County Hydrology Manual	Section:	6
Date: June 2003	Page:	10 of 10
San Diego County Hydrology Manual Date: June 2003		10 of 10

rainfall intensity for the rainfall block. The RATHYDRO program substitutes equation 6-6 into the RM formula to determine Q_N yielding the following equation:

$$Q_{N} = [(I_{T(N)}) (T_{T(N)}) - (I_{T(N-1)}) (T_{T(N-1)})] CA / T_{c}$$
(Eq. 6-7)

Where: $Q_N = \text{peak discharge for rainfall block N in cubic feet per second (cfs)}$

N = number of rainfall blocks

 $T_{T(N)}$ = time of concentration at rainfall block N in minutes (equal to NT_c)

 $I_{T(N)}$ = rainfall intensity at time of concentration $T_{T(N)}$ in inches per hour

C = RM runoff coefficient

A = area of the watershed (acres)

To develop the hydrograph for the 6-hour design storm, a series of triangular hydrographs with ordinates at multiples of the given T_c are created and added to create the hydrograph. This hydrograph has its peak at 4 hours plus $\frac{1}{2}$ of the T_c . The total volume under the hydrograph is equal to the following equation (equation 6-1):

$$VOL = CP_6A$$

Where:

 $P_6 = 6$ -hour rainfall (inches)

C = runoff coefficient

A = area of the watershed (acres)

VOL = volume of runoff (acre-inches)

<u>CHAPTER 3 - 100 YEAR HYDROLOGIC ANALYSIS FOR</u> <u>EXISTING CONDITIONS</u>

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7.9

```
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
     Rational Hydrology Study Date: 11/28/18
 _____
EXISTING CONDITIONS HYDROLOGY
100 YEAR STORM
GRAVES COMMERCIAL
SANTEE, CA
_____
******** Hydrology Study Control Information *********
 _____
Program License Serial Number 6292
_____
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.530
24 hour precipitation(inches) = 4.470
P6/P24 = 56.6%
San Diego hydrology manual 'C' values used
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                     ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 453.500(Ft.)
Lowest elevation = 446.600(Ft.)
Elevation difference = 6.900(Ft.) Slope = 6.900 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 6.90 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) = 4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.093(CFS)
Total initial stream area =
                           0.100(Ac.)
```

***** Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 446.600(Ft.) Downstream point elevation = 441.800(Ft.) Channel length thru subarea = 100.000(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Estimated mean flow rate at midpoint of channel = 0.485(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.485(CFS) Depth of flow = 0.043(Ft.), Average velocity = 1.132(Ft/s) Channel flow top width = 10.000(Ft.) Flow Velocity = 1.13(Ft/s)Travel time = 1.47 min. Time of concentration = 10.17 min. Critical depth = 0.042(Ft.) Adding area flow to channel Rainfall intensity (I) = $4.216({\rm In/Hr})$ for a $-100.0~{\rm year}$ storm Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.200 4.216(In/Hr) for a 100.0 year storm Rainfall intensity = Effective runoff coefficient used for total area (Q=KCIA) is C = 0.200 CA = 0.188
 Subarea runoff =
 0.699(CFS) for
 0.840(Ac.)

 Total runoff =
 0.793(CFS)
 Total area =
 0.940(Ac.)
 Depth of flow = 0.058(Ft.), Average velocity = 1.377(Ft/s) Critical depth = 0.058(Ft.) Process from Point/Station 3.000 to Point/Station 100.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 441.800(Ft.) Downstream point elevation = 440.000(Ft.) Channel length thru subarea = 91.000(Ft.) Channel base width = 4.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Manning's 'N' = 0.015Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 0.793(CFS) Depth of flow = 0.078(Ft.), Average velocity = 2.488(Ft/s) Channel flow top width = 4.156(Ft.) Flow Velocity = 2.49(Ft/s) Travel time = 0.61 min. Time of concentration = 10.78 min. Critical depth = 0.105(Ft.) ***** Process from Point/Station 100.000 to Point/Station 100.000 **** CONFLUENCE OF MAIN STREAMS ****

```
In Main Stream number: 1
Stream flow area = 0.940(Ac.)
Runoff from this stream = 0.793(CFS)
Time of concentration = 10.78 min.
Rainfall intensity = 4.061(In/Hr)
Program is now starting with Main Stream No. 2
*****
Process from Point/Station 4.000 to Point/Station
                                                          5 000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         ]
(General Commercial
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 85.000(Ft.)
Highest elevation = 450.500(Ft.)
Lowest elevation = 448.200(Ft.)
Elevation difference = 2.300(Ft.) Slope = 2.706 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85.00 (Ft)
for the top area slope value of 2.70 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 3.40 minutes
(for slope value of 3.00 %)
Calculated TC of 3.400 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.160(CFS)
Total initial stream area =
                               0.030(Ac.)
Process from Point/Station 5.000 to Point/Station
                                                          6.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 448.200(Ft.)
End of street segment elevation = 443.300(Ft.)
Length of street segment = 129.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 37.000(Ft.)
Distance from crown to crossfall grade break = 33.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
                                        0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 20.000(Ft.)
Slope from curb to property line (v/hz) =
                                        0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                 0.423(CFS)
Depth of flow = 0.114(Ft.), Average velocity = 2.706(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.000(Ft.)
Flow velocity = 2.71(Ft/s)
Travel time = 0.79 min.
                          TC = 4.19 min.
```

```
Adding area flow to street
Calculated TC of 4.194 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                       1
(General Commercial
                   )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.128
Subarea runoff = 0.693(CFS) for
                                   0.130(Ac.)
Total runoff = 0.853(CFS) Total area = 0.160(Ac.)
Street flow at end of street = 0.853(CFS)
Half street flow at end of street = 0.427(CFS)
Depth of flow = 0.148(Ft.), Average velocity = 3.226(Ft/s)
Flow width (from curb towards crown)= 2.000(Ft.)
Process from Point/Station 6.000 to Point/Station
                                                     100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 443.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 19.000(Ft.)
Channel base width = 2.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 0.500(Ft.)
Flow(q) thru subarea = 0.853(CFS)
Depth of flow = 0.066(Ft.), Average velocity = 6.462(Ft/s)
Channel flow top width = 2.000(Ft.)
Flow Velocity = 6.46(Ft/s)
Travel time = 0.05 min.
Time of concentration = 4.24 min.
Critical depth = 0.178(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.160(Ac.)
Runoff from this stream = 0.853(CFS)
Time of concentration = 4.24 min.
Rainfall intensity =
                     6.666(In/Hr)
Summary of stream data:
Stream Flow rate TC (CFS) (min)
                                Rainfall Intensity
                                      (In/Hr)
       0.793 10.78
                              4.061
1
2
       0.853
                4.24
                              6.666
Qmax(1) =
        1.000 * 1.000 * 0.793) +
        0.609 * 1.000 *
                           0.853) + =
                                           1.312
```

```
Qmax(2) =
        1.000 *
                0.394 * 0.793) +
        1.000 * 1.000 *
                           0.853) + =
                                           1.165
Total of 2 main streams to confluence:
Flow rates before confluence point:
      0.793 0.853
Maximum flow rates at confluence using above data:
     1.312 1.165
Area of streams before confluence:
       0.940 0.160
Results of confluence:
Total flow rate = 1.312(CFS)
Time of concentration = 10.781 min.
Effective stream area after confluence = 1.100(Ac.)
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 453.300(Ft.)
Lowest elevation = 446.300(Ft.)
Elevation difference = 7.000(Ft.) Slope = 7.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 7.00 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) = 4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.084(CFS)
Total initial stream area =
                             0.090(Ac.)
Process from Point/Station 11.000 to Point/Station 12.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 446.300(Ft.)
Downstream point elevation = 440.200(Ft.)
Channel length thru subarea = 54.000(Ft.)
Channel base width = 10.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Estimated mean flow rate at midpoint of channel =
                                               0.270(CFS)
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.270(CFS)
Depth of flow = 0.023(Ft.), Average velocity = 1.161(Ft/s)
Channel flow top width = 10.000(Ft.)
Flow Velocity = 1.16(Ft/s)
```

```
Travel time = 0.78 min.
Time of concentration = 9.48 min.
Critical depth = 0.028(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                          4.414(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 4.414(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.200 CA = 0.098
Subarea runoff = 0.349(CFS) for
                                    0.400(Ac.)
Total runoff = 0.433(CFS) Total area =
                                              0.490(Ac.)
Depth of flow = 0.031(Ft.), Average velocity = 1.399(Ft/s)
                  0.039(Ft.)
Critical depth =
Process from Point/Station 12.000 to Point/Station 200.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 440.200(Ft.)
Downstream point elevation = 436.600(Ft.)
Channel length thru subarea = 164.000(Ft.)
Channel base width = 4.000(Ft.)
Slope or 'Z' of left channel bank = 1.000
Slope or 'Z' of right channel bank = 1.000
Manning's 'N' = 0.015
Maximum depth of channel = 4.000(Ft.)
Flow(q) thru subarea = 0.433(CFS)
Depth of flow = 0.053(Ft.), Average velocity = 2.029(Ft/s)
Channel flow top width = 4.105(Ft.)
Flow Velocity = 2.03(Ft/s)
Travel time = 1.35 min.
Time of concentration = 10.82 min.
Critical depth = 0.071(Ft.)
Process from Point/Station 200.000 to Point/Station 200.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.490(Ac.)
Runoff from this stream = 0.433(CFS)
Time of concentration = 10.82 min.
Rainfall intensity = 4.051(In/Hr)
Summary of stream data:
                     TC
                                 Rainfall Intensity
Stream Flow rate
                     (min)
                                    (In/Hr)
No.
         (CFS)
                10.82
                                4.051
1
       0.433
Qmax(1) =
        1.000 * 1.000 * 0.433) + =
                                           0.433
Total of 1 main streams to confluence:
Flow rates before confluence point:
```

```
0.433
Maximum flow rates at confluence using above data:
      0.433
Area of streams before confluence:
       0.490
Results of confluence:
Total flow rate = 0.433(CFS)
Time of concentration = 10.823 min.
Effective stream area after confluence = 0.490(Ac.)
Process from Point/Station 20.000 to Point/Station 21.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                        ]
(General Commercial
                    )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 114.000(Ft.)
Highest elevation = 453.000(Ft.)
Lowest elevation = 452.200(Ft.)
Elevation difference = 0.800(Ft.) Slope = 0.702 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 50.00 (Ft)
for the top area slope value of 0.70 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.70 minutes
(for slope value of 0.50 %)
Calculated TC of 4.700 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.021(CFS)
Total initial stream area =
                            0.004(Ac.)
Process from Point/Station 21.000 to Point/Station 300.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 452.200(Ft.)
Downstream point elevation = 446.000(Ft.)
Channel length thru subarea = 217.000(Ft.)
Channel base width = 23.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.013
Maximum depth of channel = 0.100(Ft.)
Flow(q) thru subarea = 0.021(CFS)
Depth of flow = 0.003(Ft.), Average velocity = 0.362(Ft/s)
Channel flow top width = 23.000(Ft.)
Flow Velocity = 0.36(Ft/s)
Travel time = 10.00 min.
Time of concentration = 14.70 min.
Critical depth = 0.003(Ft.)
```

```
Process from Point/Station 300.000 to Point/Station
                                                       300.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.004(Ac.)
Runoff from this stream =
                            0.021(CFS)
Time of concentration = 14.70 min.
Rainfall intensity = 3.325(In/Hr)
Summary of stream data:
                                  Rainfall Intensity
Stream Flow rate
                    TC
         (CFS)
No.
                                        (In/Hr)
                    (min)
               14.70
1
       0.021
                               3.325
Qmax(1) =
        1.000 *
                1.000 *
                            0.021) + =
                                           0.021
Total of 1 main streams to confluence:
Flow rates before confluence point:
      0.021
Maximum flow rates at confluence using above data:
      0.021
Area of streams before confluence:
       0.004
Results of confluence:
Total flow rate = 0.021(CFS)
Time of concentration = 14.697 min.
Effective stream area after confluence =
                                         0.004(Ac.)
Process from Point/Station 20.000 to Point/Station
                                                         22 000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 289.000(Ft.)
Highest elevation = 453.000(Ft.)
Lowest elevation = 447.000(Ft.)
Elevation difference = 6.000(Ft.) Slope = 2.076 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of 2.08 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 3.60 minutes
 (for slope value of 2.00 %)
Calculated TC of 3.600 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.053(CFS)
Total initial stream area =
                               0.010(Ac.)
```

```
Process from Point/Station 22.000 to Point/Station 400.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 447.000(Ft.)
Downstream point elevation = 438.000(Ft.)
Channel length thru subarea = 508.000(Ft.)
Channel base width = 23.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.013
Maximum depth of channel = 0.100(Ft.)
Flow(q) thru subarea = 0.053(CFS)
Depth of flow = 0.005(Ft.), Average velocity = 0.452(Ft/s)
Channel flow top width = 23.000(Ft.)
Flow Velocity = 0.45(Ft/s)
Travel time = 18.72 min.
Time of concentration = 22.32 min.
Critical depth = 0.005(Ft.)
Process from Point/Station 400.000 to Point/Station 400.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.010(Ac.)
Runoff from this stream = 0.053(CFS)
Time of concentration = 22.32 min.
Rainfall intensity = 2.540(In/Hr)
Summary of stream data:
                   TC
                               Rainfall Intensity
Stream Flow rate
No. (CFS) (min)
                                 (In/Hr)
1
      0.053 22.32
                             2.540
Qmax(1) =
        1.000 * 1.000 * 0.053) + = 0.053
Total of 1 main streams to confluence:
Flow rates before confluence point:
     0.053
Maximum flow rates at confluence using above data:
      0.053
Area of streams before confluence:
      0.010
Results of confluence:
Total flow rate = 0.053(CFS)
Time of concentration = 22.322 min.
Effective stream area after confluence = 0.010(Ac.)
End of computations, total study area =
                                         1.604 (Ac.)
```

Existing Conditions Q ₁₀₀ Calculation Summary					
DMA	Tc (min)	C	l (in/in)	A (ac)	Q ₁₀₀ (cfs)
A-1	8.7	0.2	4.663	0.1	0.09
A-2	10.2	0.2	4.216	0.84	0.7
OFF-A-1	5	0.8	6.666	0.03	0.16
OFF-A-2	5	0.8	6.666	0.13	0.69
B-1	8.7	0.2	4.663	0.09	0.08
B-2	9.5	0.2	4.414	0.4	0.35
С	5	0.8	6.666	0.004	0.02
D	5	0.8	6.666	0.01	0.05

Calculations Summary

CHAPTER 4 - 100 YEAR HYDROLOGIC ANALYSIS FOR UNMITIGATED CONDITIONS

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7.9

```
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
     Rational Hydrology Study Date: 11/28/18
_____
PROPOSED CONDITIONS HYDROLOGY - UNMITIGATED
100 YEAR STORM
GRAVES COMMERCIAL
SANTEE, CA
_____
******** Hydrology Study Control Information *********
_____
Program License Serial Number 6292
_____
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.530
24 hour precipitation(inches) = 4.470
P6/P24 = 56.6%
San Diego hydrology manual 'C' values used
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                     ]
(General Commercial
                  )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 50.000(Ft.)
Highest elevation = 453.000(Ft.)
Lowest elevation = 452.500(Ft.)
Elevation difference = 0.500(Ft.) Slope = 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.00 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.10 minutes
(for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
```

```
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.107(CFS)
Total initial stream area =
                               0.020(Ac.)
Process from Point/Station 2.000 to Point/Station 3.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 452.500(Ft.)
End of street segment elevation = 451.800(Ft.)
Length of street segment = 68.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
                                        0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                 0.108(CFS)
Depth of flow = 0.087(Ft.), Average velocity = 1.179(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.000(Ft.)
Flow velocity = 1.18(Ft/s)
Travel time = 0.96 min.
                            TC = 5.06 min.
Adding area flow to street
Rainfall intensity (I) =
                          6.613(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         1
(General Commercial
                    )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 6.613(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.032
                                     0.020(Ac.)
Subarea runoff =
                  0.105(CFS) for
Total runoff =
                 0.212(CFS) Total area =
                                              0.040(Ac.)
Street flow at end of street = 0.212(CFS)
Half street flow at end of street = 0.106(CFS)
Depth of flow = 0.112(Ft.), Average velocity = 1.395(Ft/s)
Flow width (from curb towards crown)= 2.000(Ft.)
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 447.200(Ft.)
Downstream point/station elevation = 445.900(Ft.)
Pipe length = 129.80(Ft.) Slope = 0.0100 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.212(CFS)
                  18.00(In.)
Given pipe size =
```

```
Calculated individual pipe flow = 0.212(CFS)
Normal flow depth in pipe = 1.77(In.)
Flow top width inside pipe = 10.72(In.)
Critical depth could not be calculated.
Pipe flow velocity = 2.36(Ft/s)
Travel time through pipe = 0.92 min.
Time of concentration (TC) = 5.98 min.
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.040(Ac.)
Runoff from this stream = 0.212(CFS)
Time of concentration = 5.98 min.
Rainfall intensity = 5.940(In/Hr)
Process from Point/Station 5.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                       ]
(General Commercial
                    )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 44.000(Ft.)
Highest elevation = 452.800(Ft.)
Lowest elevation = 452.400(Ft.)
Elevation difference = 0.400(Ft.) Slope = 0.909 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 0.91 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.10 minutes
 (for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.107(CFS)
Total initial stream area =
                               0.020(Ac.)
Process from Point/Station 4.000 to Point/Station
                                                        4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.020(Ac.)
Runoff from this stream = 0.107(CFS)
Time of concentration = 4.10 min.
Rainfall intensity = 6.666(In/Hr)
Summary of stream data:
```

> Stream Flow rate TC No (CFS) (min) Rainfall Intensity (In/Hr) 0.212 5.98 1 5.940 0.107 2 4.10 6.666 Qmax(1) =1.000 * 1.000 * 0.891 * 1.000 * 0.212) + 0.107) + =0.307 Qmax(2) =1.000 * 0.686 * 0.212) + 1.000 * 1.000 * 0.107) + = 0.252 Total of 2 streams to confluence: Flow rates before confluence point: 0.212 0.107 Maximum flow rates at confluence using above data: 0.307 0.252 Area of streams before confluence: 0.040 0.020 Results of confluence: Total flow rate = 0.307(CFS) Time of concentration = 5.978 min. Effective stream area after confluence = 0.060(Ac.) Process from Point/Station 4.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 445.900(Ft.) Downstream point/station elevation = 445.600(Ft.) Pipe length = 12.30(Ft.) Slope = 0.0244 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.307(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.307(CFS) Normal flow depth in pipe = 1.71(In.) Flow top width inside pipe = 10.56(In.) Critical depth could not be calculated. Pipe flow velocity = 3.60(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 6.04 min. Process from Point/Station 6.000 to Point/Station 6.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.060(Ac.) Runoff from this stream = 0.307(CFS) Time of concentration = 6.04 min. Rainfall intensity = 5.904(In/Hr) Process from Point/Station 7.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION ****

Decimal fraction soil group A = 1.000

```
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                           1
(General Commercial
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 60.000(Ft.)
Highest elevation = 452.500(Ft.)
Lowest elevation = 451.700(Ft.)
Elevation difference = 0.800(Ft.) Slope = 1.333 %
Top of Initial Area Slope adjusted by User to 1.300 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.30 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration =
                                   4.10 minutes
 (for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.160(CFS)
Total initial stream area =
                                 0.030(Ac.)
Process from Point/Station 8.000 to Point/Station
                                                            6.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 451.700(Ft.)
End of street segment elevation = 450.800(Ft.)
Length of street segment = 155.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 0.025(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                   0.754(CFS)
Depth of flow = 0.255(Ft.), Average velocity = 1.407(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.395(Ft.)
Flow velocity = 1.41(Ft/s)
Travel time = 1.84 min.
                             TC =
                                     5.94 min.
Adding area flow to street
Rainfall intensity (I) =
                            5.967(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                           ]
(General Commercial
                      )
```

```
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 5.967(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.240
Subarea runoff = 1.272(CFS) for 0.270(Ac.)
Total runoff = 1.432(CFS) Total area = 0.300(Ac.)
Street flow at end of street = 1.432(CFS)
Half street flow at end of street = 1.432(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 1.609(Ft/s)
Flow width (from curb towards crown) = 8.738(Ft.)
Process from Point/Station 6.000 to Point/Station 6.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.300(Ac.)
Runoff from this stream = 1.432(CFS)
Time of concentration = 5.94 min.
Rainfall intensity = 5.967(In/Hr)
Summary of stream data:
Stream Flow rate TC
No. (CFS) (min)
                                Rainfall Intensity
                                   (In/Hr)
1
      0.307
                6.04
                               5.904
                 5.94
       1.432
2
                               5.967
Omax(1) =
        1.000 * 1.000 *
                            0.307) +
        0.989 * 1.000 *
                            1.432) + =
                                            1.724
Qmax(2) =
                 U.984 * 0.307) +
1.000 * 1 432
         1.000 * 0.984 *
         1.000 *
                            1.432) + =
                                           1.734
Total of 2 streams to confluence:
Flow rates before confluence point:
      0.307 1.432
Maximum flow rates at confluence using above data:
      1.724 1.734
Area of streams before confluence:
       0.060 0.300
Results of confluence:
Total flow rate = 1.734(CFS)
Time of concentration = 5.936 min.
Effective stream area after confluence = 0.360(Ac.)
Process from Point/Station 6.000 to Point/Station 9.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 445.600(Ft.)
Downstream point/station elevation = 444.100(Ft.)
Pipe length = 104.80(Ft.) Slope = 0.0143 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.734(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 1.734(CFS)
Normal flow depth in pipe = 4.52(In.)
```

```
Flow top width inside pipe = 15.61(In.)
Critical Depth = 5.93(In.)
Pipe flow velocity = 4.99(Ft/s)
Travel time through pipe = 0.35 min.
Time of concentration (TC) = 6.29 min.
Process from Point/Station 9.000 to Point/Station 9.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.360(Ac.)
Runoff from this stream = 1.734(CFS)
Time of concentration = 6.29 min.
Rainfall intensity = 5.751(In/Hr)
Process from Point/Station 7.000 to Point/Station 10.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                        ]
(General Commercial
                    )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 60.000(Ft.)
Highest elevation = 452.500(Ft.)
Lowest elevation = 451.800(Ft.)
Elevation difference = 0.700(Ft.) Slope = 1.167 %
Top of Initial Area Slope adjusted by User to 1.200 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.20 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.10 minutes
(for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (O=KCIA) is C = 0.800
Subarea runoff = 0.320(CFS)
Total initial stream area =
                              0.060(Ac.)
Process from Point/Station 10.000 to Point/Station 9.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 451.800(Ft.)
End of street segment elevation = 451.000(Ft.)
Length of street segment = 166.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
```

```
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 22.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                   0.777(CFS)
Depth of flow = 0.263(Ft.), Average velocity = 1.313(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.820(Ft.)
Flow velocity = 1.31(Ft/s)
Travel time = 2.11 min.
                            TC = 6.21 min.
Adding area flow to street
Rainfall intensity (I) = 5.798(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                           ]
(General Commercial
                      )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 5.798(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.224
Subarea runoff = 0.979(CFS) for 0.220(Ac.)
Total runoff = 1.299(CFS) Total area = 0.280(Ac.)
Street flow at end of street = 1.299(CFS)
Half street flow at end of street = 1.299(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 1.464(Ft/s)
Flow width (from curb towards crown) = 8.720(Ft.)
Process from Point/Station 9.000 to Point/Station 9.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.280(Ac.)
Runoff from this stream = 1.299(CFS)
Time of concentration = 6.21 min.
Rainfall intensity = 5.798(In/Hr)
Summary of stream data:
Stream Flow rate
                     TC
                                   Rainfall Intensity
No.
         (CFS)
                     (min)
                                           (In/Hr)
                 6.29
1
        1.734
                                  5.751
        1.299
                   6.21
2
                                  5.798
Qmax(1) =
         1.000 *
                   1.000 *
                               1.734) +
         0.992 *
                   1.000 *
                               1.299) + =
                                                3.022
Qmax(2) =
         1.000 *
                   0.987 *
                             1.734) +
         1.000 *
                   1.000 *
                               1.299) + =
                                                3.011
```

Total of 2 streams to confluence:

```
Flow rates before confluence point:
     1.734 1.299
Maximum flow rates at confluence using above data:
      3.022 3.011
Area of streams before confluence:
      0.360 0.280
Results of confluence:
Total flow rate = 3.022(CFS)
Time of concentration = 6.286 min.
Effective stream area after confluence = 0.640(Ac.)
Process from Point/Station 9.000 to Point/Station 11.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 444.100(Ft.)
Downstream point/station elevation = 444.000(Ft.)
Pipe length = 10.00(Ft.) Slope = 0.0100 Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                      3.022(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 3.022(CFS)
Normal flow depth in pipe = 6.61(In.)
Flow top width inside pipe = 17.35(In.)
Critical Depth = 7.93(In.)
Pipe flow velocity = 5.14(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 6.32 min.
Process from Point/Station 11.000 to Point/Station 12.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 442.700(Ft.)
Downstream point/station elevation = 441.300(Ft.)
Pipe length = 122.50(Ft.) Slope = 0.0114 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.022(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 3.022(CFS)
Normal flow depth in pipe = 6.38(In.)
Flow top width inside pipe = 17.22(In.)
Critical Depth = 7.93(In.)
Pipe flow velocity = 5.39(Ft/s)
Travel time through pipe = 0.38 min.
Time of concentration (TC) = 6.70 min.
Process from Point/Station 12.000 to Point/Station 100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 441.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 39.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 3.022(CFS)
```

```
Depth of flow = 0.224(Ft.), Average velocity = 2.699(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 2.70(Ft/s)
Travel time = 0.24 min.
Time of concentration = 6.94 min.
Critical depth = 0.225(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.640(Ac.)
Runoff from this stream = 3.022(CFS)
Time of concentration = 6.94 min.
Rainfall intensity = 5.396(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 13.000 to Point/Station
                                                     14,000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                       1
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 445.400(Ft.)
Lowest elevation = 441.300(Ft.)
Elevation difference = 4.100(Ft.) Slope = 4.100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 4.10 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) =
                        4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (O=KCIA) is C = 0.200
Subarea runoff = 0.056(CFS)
Total initial stream area =
                             0.060(Ac.)
Process from Point/Station 14.000 to Point/Station 100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 441.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 104.000(Ft.)
Channel base width = 4.000(Ft.)
Slope or 'Z' of left channel bank = 1.000
Slope or 'Z' of right channel bank = 1.000
Estimated mean flow rate at midpoint of channel =
                                             0.084(CFS)
```

```
Manning's 'N'
               = 0.015
Maximum depth of channel = 4.000(Ft.)
Flow(q) thru subarea = 0.084(CFS)
Depth of flow = 0.023(Ft.), Average velocity = 0.896(Ft/s)
Channel flow top width = 4.047(Ft.)
Flow Velocity = 0.90(Ft/s)
Travel time = 1.93 min.
Time of concentration = 10.63 min.
Critical depth = 0.024(Ft.)
 Adding area flow to channel
Rainfall intensity (I) =
                            4.097(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                            1
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity =
                         4.097(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.200 CA = 0.024
Subarea runoff = 0.042(CFS) for
                                       0.060(Ac.)
Total runoff = 0.098(CFS) Total area = 0.120(Ac.)
Depth of flow = 0.026(Ft.), Average velocity = 0.954(Ft/s)
Critical depth = 0.026(Ft.)
*****
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.120(Ac.)
Runoff from this stream = 0.098(CFS)
Time of concentration = 10.63 min.
Rainfall intensity = 4.097(In/Hr)
Program is now starting with Main Stream No. 3
Process from Point/Station 15.000 to Point/Station
                                                            16.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                            ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 451.700(Ft.)
Lowest elevation = 445.700(Ft.)
Elevation difference = 6.000(Ft.) Slope = 6.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 6.00 %, in a development type of
 Permanent Open Space
```

```
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) = 4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.065(CFS)
Total initial stream area =
                               0.070(Ac.)
Process from Point/Station 16.000 to Point/Station 100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 445.700(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 154.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Estimated mean flow rate at midpoint of channel = 0.117(CFS)
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.117(CFS)
Depth of flow = 0.030(Ft.), Average velocity = 0.780(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 0.78(Ft/s)
Travel time = 3.29 min.
Time of concentration = 11.99 min.
Critical depth = 0.026(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 3.792(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                          ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 3.792(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.200 CA = 0.036
Subarea runoff = 0.071(CFS) for 0.110(Ac.)
Total runoff = 0.137(CFS) Total area = 0.180(Ac.)
Depth of flow = 0.033(Ft.), Average velocity = 0.831(Ft/s)
Critical depth = 0.028(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 0.180(Ac.)
Runoff from this stream = 0.137(CFS)
Time of concentration = 11.99 min.
Rainfall intensity = 3.792(In/Hr)
Program is now starting with Main Stream No. 4
```

Process from Point/Station 17.000 to Point/Station 18,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type 1 (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 85.000(Ft.) Highest elevation = 450.500(Ft.) Lowest elevation = 448.200(Ft.) Elevation difference = 2.300(Ft.) Slope = 2.706 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 2.70 %, in a development type of General Commercial In Accordance With Table 3-2 Initial Area Time of Concentration = 3.40 minutes (for slope value of 3.00 %) Calculated TC of 3.400 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.160(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 18.000 to Point/Station 19.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 448.200(Ft.) End of street segment elevation = 443.300(Ft.) Length of street segment = 129.000(Ft.) Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 37.000(Ft.) Distance from crown to crossfall grade break = 33.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) =0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 20.000(Ft.) Slope from curb to property line (v/hz) = 0.025Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.423(CFS) Depth of flow = 0.114(Ft.), Average velocity = 2.706(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000(Ft.) Flow velocity = 2.71(Ft/s)Travel time = 0.79 min. TC = 4.19 min. Adding area flow to street Calculated TC of 4.194 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm

```
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         ]
(General Commercial )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.128
Subarea runoff = 0.693(CFS) for 0.130(Ac.)
Total runoff = 0.853(CFS) Total area = 0.160(Ac.)
Street flow at end of street = 0.853(CFS)
Half street flow at end of street = 0.427(CFS)
Depth of flow = 0.148(Ft.), Average velocity = 3.226(Ft/s)
Flow width (from curb towards crown) = 2.000(Ft.)
Process from Point/Station 19.000 to Point/Station 100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 443.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 19.000(Ft.)
Channel base width = 2.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 0.500(Ft.)
Flow(q) thru subarea = 0.853(CFS)
Depth of flow = 0.066(Ft.), Average velocity = 6.462(Ft/s)
Channel flow top width = 2.000(Ft.)
Flow Velocity = 6.46(Ft/s)
Travel time = 0.05 min.
Time of concentration = 4.24 min.
Critical depth = 0.178(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 4
Stream flow area = 0.160(Ac.)
Runoff from this stream = 0.853(CFS)
Time of concentration = 4.24 min.
Rainfall intensity =
                      6.666(In/Hr)
Summary of stream data:
Stream Flow rate TC (CFS) (min)
                                Rainfall Intensity
                                        (In/Hr)
1
        3.022
                 6.94
                                5.396
2
        0.098
                 10.63
                               4.097
               11.99
       0.137
                               3.792
3
4
       0.853
                 4.24
                               6.666
Qmax(1) =
```

```
74
```

```
1.000 *
                 1.000 *
                            3.022) +
        1.000 *
                 0.652 *
                            0.098) +
        1.000 *
                 0.579 *
                             0.137) +
        0.810 *
                 1.000 *
                             0.853) + =
                                             3.856
Qmax(2) =
        0.759 *
                 1.000 *
                            3.022) +
                 1.000 *
        1.000 *
                            0.098) +
                  0.887 *
        1.000 *
                             0.137) +
        0.615 *
                  1.000 *
                             0.853) + =
                                             3.038
Omax(3) =
        0.703 *
                  1.000 *
                             3.022) +
        0.926 *
                  1.000 *
                             0.098) +
        1.000 *
                 1.000 *
                             0.137) +
        0.569 *
                 1.000 *
                             0.853) + =
                                             2.836
Qmax(4) =
        1.000 *
                 0.612 *
                            3.022) +
        1.000 * 0.399 *
                            0.098) +
        1.000 *
                 0.354 *
                            0.137) +
                 1.000 *
        1.000 *
                            0.853) + =
                                            2.789
Total of 4 main streams to confluence:
Flow rates before confluence point:
      3.022 0.098 0.137
                                     0.853
Maximum flow rates at confluence using above data:
       3.856 3.038 2.836 2.789
Area of streams before confluence:
                 0.120 0.180
       0.640
                                          0.160
Results of confluence:
Total flow rate = 3.856(CFS)
Time of concentration = 6.938 min.
Effective stream area after confluence =
                                          1.100(Ac.)
Process from Point/Station 20.000 to Point/Station
                                                         21 000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 85.000(Ft.)
Highest elevation = 453.200(Ft.)
Lowest elevation = 450.500(Ft.)
Elevation difference = 2.700(Ft.) Slope = 3.176 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85.00 (Ft)
for the top area slope value of 3.18 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 3.40 minutes
(for slope value of 3.00 %)
Calculated TC of 3.400 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
```

Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.320(CFS) Total initial stream area = 0.060(Ac.) Process from Point/Station 21.000 to Point/Station 22.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 450.500(Ft.) End of street segment elevation = 449.500(Ft.) Length of street segment = 53.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) =0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 15.000(Ft.) Slope from curb to property line (v/hz) = 0.025Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.532(CFS) Depth of flow = 0.193(Ft.), Average velocity = 2.252(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.309(Ft.) Flow velocity = 2.25(Ft/s)Travel time = 0.39 min. TC = 3.79 min.Adding area flow to street Calculated TC of 3.792 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type] (General Commercial Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Rainfall intensity = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (O=KCIA) is C = 0.800 CA = 0.120Subarea runoff = 0.480(CFS) for 0.090(Ac.) Total runoff = 0.800(CFS) Total area = 0.150(Ac.) Street flow at end of street = 0.800(CFS) Half street flow at end of street = 0.800(CFS) Depth of flow = 0.220(Ft.), Average velocity = 2.320(Ft/s) Flow width (from curb towards crown) = 4.670(Ft.) Process from Point/Station 22.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 445.600(Ft.) Downstream point/station elevation = 445.000(Ft.) Pipe length = 21.70(Ft.) Slope = 0.0276 Manning's N = 0.013

```
No. of pipes = 1 Required pipe flow = 0.800(CFS)
Given pipe size = 18.00(In.)
                                0.800(CFS)
Calculated individual pipe flow =
Normal flow depth in pipe = 2.62(In.)
Flow top width inside pipe = 12.70(In.)
Critical Depth = 3.98(In.)
Pipe flow velocity = 5.02(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TC) = 3.86 min.
Process from Point/Station 23.000 to Point/Station 23.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.150(Ac.)
Runoff from this stream = 0.800(CFS)
Time of concentration = 3.86 min.
Rainfall intensity = 6.666(In/Hr)
Process from Point/Station 5.000 to Point/Station 24.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                     ]
(General Commercial
                  )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 75.000(Ft.)
Highest elevation = 452.800(Ft.)
Lowest elevation = 451.000(Ft.)
Elevation difference = 1.800(Ft.) Slope = 2.400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of 2.40 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 3.60 minutes
(for slope value of 2.00 %)
Calculated TC of 3.600 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.160(CFS)
Total initial stream area =
                             0.030(Ac.)
Process from Point/Station 24.000 to Point/Station 25.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 451.000(Ft.)
End of street segment elevation = 449.200(Ft.)
Length of street segment = 81.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
```

```
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
 Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                 0.241(CFS)
Depth of flow = 0.132(Ft.), Average velocity = 2.287(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.000(Ft.)
Flow velocity = 2.29(Ft/s)
Travel time = 0.59 min.
                             TC = 4.19 min.
Adding area flow to street
Calculated TC of 4.190 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
                                          ]
[COMMERCIAL area type
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
                       6.666(In/Hr) for a 100.0 year storm
Rainfall intensity =
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.056
Subarea runoff = 0.213(CFS) for 0.040(Ac.
Total runoff = 0.373(CFS) Total area =
                                      0.040(Ac.)
                                                 0.070(Ac.)
Street flow at end of street =
                              0.373(CFS)
Half street flow at end of street = 0.373(CFS)
Depth of flow = 0.156(Ft.), Average velocity = 2.552(Ft/s)
Flow width (from curb towards crown) = 2.000(Ft.)
Process from Point/Station 25.000 to Point/Station 23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 445.200(Ft.)
Downstream point/station elevation = 445.000(Ft.)
Pipe length = 23.00(Ft.) Slope = 0.0087 Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                        0.373(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow =
                                   0.373(CFS)
Normal flow depth in pipe = 2.40(In.)
Flow top width inside pipe = 12.24(In.)
Critical depth could not be calculated.
Pipe flow velocity = 2.66(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) =
                             4.33 min.
```

Process from Point/Station 23.000 to Point/Station 23.000

**** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.070(Ac.) Runoff from this stream = 0.373(CFS) Time of concentration = 4.33 min. Rainfall intensity = 6.666(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity (CFS) (In/Hr) (min) No. 0.800 3.86 1 6.666 2 0.373 4.33 6.666 Qmax(1) =1.000 * 1.000 * 0.800) +1.000 * 0.892 * 0.373) + =1.133 Qmax(2) =1.000 * 1.000 * 0.800) + 1.000 * 1.000 * 0.373) + =1.173 Total of 2 streams to confluence: Flow rates before confluence point: 0.800 0.373 Maximum flow rates at confluence using above data: 1.133 1.173 Area of streams before confluence: 0.150 0.070 Results of confluence: Total flow rate = 1.173(CFS) Time of concentration = 4.334 min. Effective stream area after confluence = 0.220(Ac.) Process from Point/Station 23.000 to Point/Station 26.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 441.500(Ft.) Downstream point/station elevation = 441.000(Ft.) Pipe length = 44.90(Ft.) Slope = 0.0111 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.173(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.173(CFS) Normal flow depth in pipe = 3.96(In.) Flow top width inside pipe = 14.91(In.) Critical Depth = 4.85(In.) Pipe flow velocity = 4.08(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 4.52 min. ***** Process from Point/Station 26.000 to Point/Station 200.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 441.000(Ft.) Downstream point elevation = 436.600(Ft.) Channel length thru subarea = 41.000(Ft.)

```
Channel base width = 5.000(Ft.)
```

```
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.035
Maximum depth of channel =
                          2.000(Ft.)
Flow(q) thru subarea = 1.173(CFS)
Depth of flow = 0.088(Ft.), Average velocity = 2.680(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 2.68(Ft/s)
Travel time = 0.25 min.
Time of concentration = 4.77 min.
Critical depth = 0.119(Ft.)
Process from Point/Station 200.000 to Point/Station 200.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.220(Ac.)
Runoff from this stream = 1.173(CFS)
Time of concentration = 4.77 min.
Rainfall intensity = 6.666(In/Hr)
Process from Point/Station 27.000 to Point/Station 28.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                       ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 452.000(Ft.)
Lowest elevation = 438.600(Ft.)
Elevation difference = 13.400(Ft.) Slope = 13.400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 13.40 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 6.90 minutes
(for slope value of 10.00 %)
Rainfall intensity (I) = 5.415(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.065(CFS)
Total initial stream area =
                              0.060(Ac.)
Process from Point/Station 28.000 to Point/Station 200.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 438.600(Ft.)
Downstream point elevation = 436.600(Ft.)
Channel length thru subarea = 129.000(Ft.)
Channel base width = 4.000(Ft.)
```

```
80
```

```
Slope or 'Z' of left channel bank = 1.000
Slope or 'Z' of right channel bank = 1.000
Estimated mean flow rate at midpoint of channel = 0.179(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 4.000(Ft.)
Flow(q) thru subarea = 0.179(CFS)
Depth of flow = 0.034(Ft.), Average velocity = 1.290(Ft/s)
Channel flow top width = 4.069(Ft.)
Flow Velocity = 1.29(Ft/s)
Travel time = 1.67 min.
Time of concentration = 8.57 min.
Critical depth = 0.040(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 4.710(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                           ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 4.710(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(O=KCIA) is C = 0.200 CA = 0.054
Subarea runoff = 0.189(CFS) for
                                       0.210(Ac.)
Total runoff = 0.254(CFS) Total area = 0.270(Ac.)
Depth of flow = 0.042(Ft.), Average velocity = 1.482(Ft/s)
Critical depth =
                   0.050(Ft.)
Process from Point/Station 200.000 to Point/Station 200.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.270(Ac.)
Runoff from this stream = 0.254(CFS)
Time of concentration = 8.57 min.
Rainfall intensity = 4.710(In/Hr)
Summary of stream data:
                      TC
                                   Rainfall Intensity
Stream Flow rate
No
         (CFS)
                     (min)
                                           (In/Hr)
        1.173
                  4.77
                                 6.666
1
2
        0.254
                   8.57
                                  4.710
Qmax(1) =
         1.000 *
                  1.000 *
                               1.173) +
         1.000 *
                   0.557 *
                               0.254) + =
                                              1.315
Qmax(2) =
         0.707 *
                   1.000 *
                               1.173) +
                   1.000 *
         1.000 *
                               0.254) + =
                                              1.083
Total of 2 streams to confluence:
Flow rates before confluence point:
      1.173 0.254
Maximum flow rates at confluence using above data:
      1.315 1.083
Area of streams before confluence:
```

```
0.220
                 0.270
Results of confluence:
Total flow rate = 1.315(CFS)
Time of concentration =
                        4.773 min.
Effective stream area after confluence =
                                      0.490(Ac.)
Process from Point/Station 3.000 to Point/Station 29.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                       1
(General Commercial
                    )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 25.000(Ft.)
Highest elevation = 451.800(Ft.)
Lowest elevation = 451.200(Ft.)
Elevation difference = 0.600(Ft.) Slope = 2.400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 75.00 (Ft)
for the top area slope value of 2.40 %, in a development type of
General Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 3.49 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}]
TC = [1.8*(1.1-0.8000)*(75.000^{-5})/(2.400^{-1})] = 3.49
Calculated TC of 3.493 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.021(CFS)
Total initial stream area =
                              0.004(Ac.)
Process from Point/Station 29.000 to Point/Station 300.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 451.200(Ft.)
Downstream point elevation = 446.000(Ft.)
Channel length thru subarea = 191.000(Ft.)
Channel base width = 23.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.013
Maximum depth of channel = 0.100(Ft.)
Flow(q) thru subarea = 0.021(CFS)
Depth of flow = 0.003(Ft.), Average velocity = 0.356(Ft/s)
Channel flow top width = 23.000(Ft.)
Flow Velocity = 0.36(Ft/s)
Travel time = 8.93 min.
Time of concentration = 12.42 min.
Critical depth = 0.003(Ft.)
```

```
Process from Point/Station 300.000 to Point/Station
                                                        300.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.004(Ac.)
Runoff from this stream = 0.021(CFS)
Time of concentration = 12.42 min.
Rainfall intensity = 3.706(In/Hr)
Summary of stream data:
                    TC
(min)
Stream Flow rate
                                 Rainfall Intensity
No. (CFS)
                                         (In/Hr)
       0.021 12.42
                                3.706
1
Omax(1) =
       1.000 * 1.000 * 0.021) + =
                                            0.021
Total of 1 main streams to confluence:
Flow rates before confluence point:
     0.021
Maximum flow rates at confluence using above data:
      0.021
Area of streams before confluence:
       0.004
Results of confluence:
Total flow rate = 0.021(CFS)
Time of concentration = 12.423 min.
Effective stream area after confluence =
                                          0.004(Ac.)
Process from Point/Station 30.000 to Point/Station 31.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
                                          1
[COMMERCIAL area type
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 96.000(Ft.)
Highest elevation = 450.000(Ft.)
Lowest elevation = 447.000(Ft.)
Elevation difference = 3.000(Ft.) Slope = 3.125 %
Top of Initial Area Slope adjusted by User to 3.100 %
Bottom of Initial Area Slope adjusted by User to 3.100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85.00 (Ft)
for the top area slope value of 3.10 %, in a development type of
General Commercial
In Accordance With Figure 3-3
Initial Area Time of Concentration = 3.41 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]
TC = [1.8*(1.1-0.8000)*( 85.000^.5)/( 3.100^(1/3)]= 3.41
The initial area total distance of 96.00 (Ft.) entered leaves a
```

remaining distance of 11.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.19 minutes for a distance of 11.00 (Ft.) and a slope of 3.10 % with an elevation difference of 0.34(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) 0.188 Minutes = Tt=[(11.9*0.0021^3)/(0.34)]^.385= 0.19 Total initial area Ti = 3.41 minutes from Figure 3-3 formula plus 0.19 minutes from the Figure 3-4 formula = 3.60 minutes Calculated TC of 3.603 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.053(CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 31.000 to Point/Station 400.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 447.000(Ft.) Downstream point elevation = 438.000(Ft.) Channel length thru subarea = 509.000(Ft.) Channel base width = 23.000(Ft.)Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.013Maximum depth of channel = 0.100(Ft.) Flow(q) thru subarea = 0.053(CFS) Depth of flow = 0.005(Ft.), Average velocity = 0.452(Ft/s) Channel flow top width = 23.000(Ft.) Flow Velocity = 0.45(Ft/s)Travel time = 18.77 min. Time of concentration = 22.37 min. Critical depth = 0.005(Ft.) Process from Point/Station 400.000 to Point/Station 400.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.010(Ac.)Runoff from this stream = 0.053(CFS) Time of concentration = 22.37 min. Rainfall intensity = 2.536(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity (min) No. (CFS) (In/Hr) 0.053 22.37 1 2.536 Qmax(1) =1.000 * 1.000 * 0.053) + =0.053 Total of 1 main streams to confluence: Flow rates before confluence point: 0.053

```
Maximum flow rates at confluence using above data:
        0.053
Area of streams before confluence:
        0.010
Results of confluence:
Total flow rate = 0.053(CFS)
Time of concentration = 22.373 min.
Effective stream area after confluence = 0.010(Ac.)
End of computations, total study area = 1.604 (Ac.)
```

Calculations Summary

Proposed Conditions Q ₁₀₀ Calculation Summary					
DMA	Tc (min)	С	l (in/in)	A (ac)	Q ₁₀₀ (cfs)
A-1	5	0.8	6.666	0.02	0.11
A-2	5	0.8	6.613	0.02	0.11
A-3	5	0.8	6.666	0.02	0.11
A-4	5	0.8	6.666	0.03	0.16
A-5	5.9	0.8	6.395	0.27	1.27
A-6	5	0.8	6.666	0.06	0.32
A-7	6.2	0.8	5.798	0.22	0.98
SM-A-1	8.7	0.2	4.663	0.06	0.06
SM-A-2	10.6	0.2	4.097	0.06	0.04
SM-A-3	8.7	0.2	4.663	0.07	0.07
SM-A-4	12	0.2	3.792	0.11	0.07
OFF-A-1	5	0.8	6.666	0.03	0.16
OFF-A-2	5	0.8	6.666	0.13	0.69
B-1	5	0.8	6.666	0.06	0.32
B-2	5	0.8	6.666	0.09	0.48
B-3	5	0.8	6.666	0.03	0.16
B-4	5	0.8	6.666	0.04	0.21
SM-B-1	6.9	0.2	5.415	0.06	0.07
SM-B-2	8.6	0.2	4.71	0.21	0.19
С	5	0.8	6.666	0.004	0.02
D	5	0.8	6.666	0.01	0.05

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

CHAPTER 5 - 100 YEAR HYDROLOGIC ANALYSIS FOR MITIGATED CONDITIONS

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2012 Version 7.9

```
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
    Rational Hydrology Study Date: 11/28/18
_____
                                                  _____
DEVELOPED CONDITIONS HYDROLOGY - MITIGATED
100 YEAR STORM
GRAVES COMMERCIAL
SANTEE, CA
 _____
               _____
******** Hydrology Study Control Information *********
_____
Program License Serial Number 6292
_____
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 2.530
24 hour precipitation(inches) = 4.470
P6/P24 = 56.6%
San Diego hydrology manual 'C' values used
Process from Point/Station 1.000 to Point/Station **** INITIAL AREA EVALUATION ****
                                                      2.000
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                      ]
(General Commercial
                   )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 50.000(Ft.)
Highest elevation = 453.000(Ft.)
Lowest elevation = 452.500(Ft.)
Elevation difference =
                     0.500(Ft.) Slope = 1.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 1.00 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.10 minutes
(for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
```

Effective runoff coefficient used for area (Q=KCIA) is C = 0.800Subarea runoff = 0.107(CFS) Total initial stream area = 0.020(Ac.) Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 452.500(Ft.) End of street segment elevation = 451.800(Ft.) Length of street segment = 68.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.025Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.108(CFS) Depth of flow = 0.087(Ft.), Average velocity = 1.179(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000(Ft.) Flow velocity = 1.18(Ft/s) Travel time = 0.96 min. TC = 5.06 min. Adding area flow to street Rainfall intensity (I) = 6.613(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Rainfall intensity = 6.613(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.800 CA = 0.032 Subarea runoff = 0.105(CFS) for 0.020(Ac.) Total runoff = 0.212(CFS) Total area = 0.040(Ac.) Street flow at end of street = 0.212(CFS) Half street flow at end of street = 0.106(CFS) Depth of flow = 0.112(Ft.), Average velocity = 1.395(Ft/s) Flow width (from curb towards crown)= 2.000(Ft.) Process from Point/Station 3.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 447.200(Ft.) Downstream point/station elevation = 445.900(Ft.) Pipe length = 129.80(Ft.) Slope = 0.0100 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.212(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.212(CFS)

```
Normal flow depth in pipe = 1.77(In.)
Flow top width inside pipe = 10.72(In.)
Critical depth could not be calculated.
Pipe flow velocity = 2.36(Ft/s)
Travel time through pipe = 0.92 min.
Time of concentration (TC) = 5.98 min.
Process from Point/Station 4.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.040(Ac.)
Runoff from this stream = 0.212(CFS)
Time of concentration = 5.98 min.
Rainfall intensity = 5.940(In/Hr)
Process from Point/Station 5.000 to Point/Station
                                                          4.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                          ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 44.000(Ft.)
Highest elevation = 452.800(Ft.)
Lowest elevation = 452.400(Ft.)
Elevation difference = 0.400(Ft.) Slope = 0.909 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 60.00 (Ft)
for the top area slope value of 0.91 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 4.10 minutes
(for slope value of 1.00 %)
Calculated TC of 4.100 minutes is less than 5 minutes,
 resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.107(CFS)
Total initial stream area =
                                0.020(Ac.)
Process from Point/Station 4.000 to Point/Station
                                                          4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.020(Ac.)
Runoff from this stream = 0.107(CFS)
Time of concentration = 4.10 min.
Rainfall intensity = 6.666(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
```

No. (CFS) (min) (In/Hr) 1 0.212 5.98 5.940 2 0.107 4.10 6.666 Omax(1) =1.000 * 1.000 * 0.212) +0.891 * 1.000 * 0.107) + =0.307 Qmax(2) =1.000 * 0.686 * 0.212) + 1.000 * 1.000 * 0.107) + =0.252 Total of 2 streams to confluence: Flow rates before confluence point: 0.212 0.107 Maximum flow rates at confluence using above data: 0.307 0.252 Area of streams before confluence: 0.040 0.020 Results of confluence: Total flow rate = 0.307(CFS) Time of concentration = 5.978 min. Effective stream area after confluence = 0.060(Ac.) Process from Point/Station 4.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 445.900(Ft.) Downstream point/station elevation = 445.600(Ft.) Pipe length = 12.30(Ft.) Slope = 0.0244 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.307(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.307(CFS) Normal flow depth in pipe = 1.71(In.) Flow top width inside pipe = 10.56(In.) Critical depth could not be calculated. Pipe flow velocity = 3.60(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 6.04 min. Process from Point/Station 6.000 to Point/Station 6.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.060(Ac.) Runoff from this stream = 0.307(CFS) Time of concentration = 6.04 min. Rainfall intensity = 5.904(In/Hr) Process from Point/Station 7.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000

[COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 452.500(Ft.) Lowest elevation = 451.700(Ft.) Elevation difference = 0.800(Ft.) Slope = 1.333 % Top of Initial Area Slope adjusted by User to 1.300 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.30 %, in a development type of General Commercial In Accordance With Table 3-2 Initial Area Time of Concentration = 4.10 minutes (for slope value of 1.00 %) Calculated TC of 4.100 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.160(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 8.000 to Point/Station 6.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 451.700(Ft.) End of street segment elevation = 450.800(Ft.) Length of street segment = 155.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) =0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 0.025(Ft.) Slope from curb to property line (v/hz) = 0.025Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.754(CFS) Depth of flow = 0.255(Ft.), Average velocity = 1.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.395(Ft.) Flow velocity = 1.41(Ft/s)Travel time = 1.84 min. TC = 5.94 min. Adding area flow to street Rainfall intensity (I) = 5.967(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Rainfall intensity = 5.967(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area

```
(Q=KCIA) is C = 0.800 CA = 0.240
Subarea runoff = 1.272(CFS) for 0.270(Ac.)
Total runoff = 1.432(CFS) Total area = 0.300(Ac.)
Street flow at end of street = 1.432(CFS)
Half street flow at end of street = 1.432(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 1.609(Ft/s)
Flow width (from curb towards crown) = 8.738(Ft.)
Process from Point/Station 6.000 to Point/Station 6.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.300(Ac.)
Runoff from this stream = 1.432(CFS)
Time of concentration = 5.94 min.
Rainfall intensity = 5.967(In/Hr)
Summary of stream data:
        Flow rate TC
(CFS) (min)
                       TC
                                     Rainfall Intensity
Stream Flow rate
                                        (In/Hr)
 No.
1 0.307 6.04
                                   5.904
2
        1.432
                   5.94
                                   5.967
Omax(1) =
                              0.307) +
         1.000 * 1.000 *
0.989 * 1.000 *
                                 1.432) + =
                                                 1.724
Qmax(2) =
          1.000 * 0.984 * 0.307) +
1.000 * 1.000 * 1.432) + = 1.734
Total of 2 streams to confluence:
Flow rates before confluence point:
       0.307 1.432
Maximum flow rates at confluence using above data:
       1.724 1.734
Area of streams before confluence:
       0.060 0.300
Results of confluence:
Total flow rate = 1.734(CFS)
Time of concentration = 5.936 min.
Effective stream area after confluence =
                                             0.360(Ac.)
Process from Point/Station 6.000 to Point/Station 9.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 445.600(Ft.)
Downstream point/station elevation = 444.100(Ft.)
Pipe length = 104.80(Ft.) Slope = 0.0143 Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.734(CFS)
Given pipe size = 18.00(In.)
                                      1.734(CFS)
Calculated individual pipe flow =
Normal flow depth in pipe = 4.52(In.)
Flow top width inside pipe = 15.61(In.
Flow top width inside pipe =
                               15.61(In.)
Critical Depth = 5.93(In.)
Pipe flow velocity = 4.99(Ft/s)
Travel time through pipe = 0.35 min.
Time of concentration (TC) = 6.29 min.
```

Process from Point/Station 9.000 to Point/Station 9.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.360(Ac.) Runoff from this stream = 1.734(CFS) Time of concentration = 6.29 min. Rainfall intensity = 5.751(In/Hr) Process from Point/Station 7.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 452.500(Ft.) Lowest elevation = 451.800(Ft.) Elevation difference = 0.700(Ft.) Slope = 1.167 % Top of Initial Area Slope adjusted by User to 1.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.20 %, in a development type of General Commercial In Accordance With Table 3-2 Initial Area Time of Concentration = 4.10 minutes (for slope value of 1.00 %) Calculated TC of 4.100 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.320(CFS) Total initial stream area = 0.060(Ac.) Process from Point/Station 10.000 to Point/Station 9.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 451.800(Ft.) End of street segment elevation = 451.000(Ft.) Length of street segment = 166.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020Street flow is on [1] side(s) of the street Distance from curb to property line = 22.000(Ft.) Slope from curb to property line (v/hz) = 0.025Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.)

```
Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                  0.777(CFS)
Depth of flow = 0.263(Ft.), Average velocity = 1.313(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.820(Ft.)
Flow velocity = 1.31(Ft/s)
Travel time = 2.11 min.
                            TC = 6.21 min.
Adding area flow to street
Rainfall intensity (I) = 5.798(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                           ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 5.798(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.224
Subarea runoff = 0.979(CFS) for 0.220(Ac.)
Total runoff = 1.299(CFS) Total area = 0.280(Ac.)
Street flow at end of street = 1.299(CFS)
Half street flow at end of street = 1.299(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 1.464(Ft/s)
Flow width (from curb towards crown) = 8.720(Ft.)
Process from Point/Station 9.000 to Point/Station 9.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.280(Ac.)
Runoff from this stream = 1.299(CFS)
Time of concentration = 6.21 min.
Rainfall intensity = 5.798(In/Hr)
Summary of stream data:
Stream Flow rate
                     TC
                                  Rainfall Intensity
        (CFS) (min)
No.
                                     (In/Hr)
1
        1.734
                 6.29
                                 5.751
       1.299
2
                  6.21
                                 5.798
Qmax(1) =
         1.000 *
                  1.000 *
                              1.734) +
        0.992 *
                  1.000 *
                              1.299) + =
                                               3.022
Qmax(2) =
                            1.734) +
         1.000 * 0.987 *
                  1.000 *
         1.000 *
                              1.299) + =
                                               3.011
Total of 2 streams to confluence:
Flow rates before confluence point:
      1.734 1.299
Maximum flow rates at confluence using above data:
       3.022 3.011
Area of streams before confluence:
       0.360 0.280
Results of confluence:
```

> Total flow rate = 3.022(CFS) Time of concentration = 6.286 min. Effective stream area after confluence = 0.640(Ac.) Process from Point/Station 9.000 to Point/Station 11.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 444.100(Ft.) Downstream point/station elevation = 444.000(Ft.) Pipe length = 10.00(Ft.) Slope = 0.0100 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.022(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.022(CFS) Normal flow depth in pipe = 6.61(In.) Flow top width inside pipe = 17.35(In.) Critical Depth = 7.93(In.) Pipe flow velocity = 5.14(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.32 min. Process from Point/Station 11.000 to Point/Station 11.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.200 Rainfall intensity (I) = 4.263(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 10.00 min. Rain intensity = 4.26(In/Hr) Total area = 0.640(Ac.) Total runoff = 0.360(CFS)Process from Point/Station 11.000 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 442.700(Ft.) Downstream point/station elevation = 441.300(Ft.) Pipe length = 122.50(Ft.) Slope = 0.0114 Manning's N = 0.013No. of pipes = 1 Required pipe flow = 0.360(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.360(CFS) Normal flow depth in pipe = 2.21(In.) Flow top width inside pipe = 11.81(In.) Critical Depth = 2.64(In.) Pipe flow velocity = 2.90(Ft/s) Travel time through pipe = 0.70 min. Time of concentration (TC) = 10.70 min. Process from Point/Station 12.000 to Point/Station 100.000 **** IMPROVED CHANNEL TRAVEL TIME ****

```
Upstream point elevation = 441.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 39.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.360(CFS)
Depth of flow = 0.061(Ft.), Average velocity = 1.181(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 1.18(Ft/s)
Travel time = 0.55 min.
Time of concentration = 11.25 min.
Critical depth = 0.055(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.640(Ac.)
Runoff from this stream = 0.360(CFS)
Time of concentration = 11.25 min.
Rainfall intensity = 3.950(In/Hr)
Program is now starting with Main Stream No. 2
*****
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 445.400(Ft.)
Lowest elevation = 441.300(Ft.)
Elevation difference = 4.100(Ft.) Slope = 4.100 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 4.10 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) = 4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.056(CFS)
Total initial stream area =
                              0.060(Ac.)
Process from Point/Station 14.000 to Point/Station 100.000
```

**** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 441.300(Ft.) Downstream point elevation = 440.000(Ft.) Channel length thru subarea = 104.000(Ft.) Channel base width = 4.000(Ft.)Slope or 'Z' of left channel bank = 1.000Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.084(CFS) Manning's 'N' = 0.015Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 0.084(CFS) Depth of flow = 0.023(Ft.), Average velocity = 0.896(Ft/s) Channel flow top width = 4.047(Ft.) Flow Velocity = 0.90(Ft/s) Travel time = 1.93 min. Time of concentration = 10.63 min. Critical depth = 0.024(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.097(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.200 Rainfall intensity = 4.097(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.200 CA = 0.024 Subarea runoff = 0.042(CFS) for 0.060(Ac.)Total runoff = 0.098(CFS) Total area = 0.120(Ac.)Depth of flow = 0.026(Ft.), Average velocity = 0.954(Ft/s)Critical depth = 0.026(Ft.) Process from Point/Station 100.000 to Point/Station 100.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.120(Ac.) Runoff from this stream = 0.098(CFS) Time of concentration = 10.63 min. Rainfall intensity = 4.097(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 15.000 to Point/Station 16.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.200

```
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 451.700(Ft.)
Lowest elevation = 445.700(Ft.)
Elevation difference = 6.000(Ft.) Slope = 6.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 6.00 %, in a development type of
Permanent Open Space
In Accordance With Table 3-2
Initial Area Time of Concentration = 8.70 minutes
(for slope value of 5.00 %)
Rainfall intensity (I) = 4.663(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.065(CFS)
Total initial stream area =
                               0.070(Ac.)
*****
Process from Point/Station 16.000 to Point/Station
                                                       100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 445.700(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 154.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Estimated mean flow rate at midpoint of channel = 0.117(CFS)
Manning's 'N'
               = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.117(CFS)
Depth of flow = 0.030(Ft.), Average velocity = 0.780(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 0.78(Ft/s)
Travel time = 3.29 min.
Time of concentration = 11.99 min.
Critical depth = 0.026(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                          3.792(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                         ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 3.792(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.200 CA = 0.036
Subarea runoff = 0.071(CFS) for 0.110(AC.)
Total runoff = 0.137(CFS) Total area = 0.180(Ac.)
0.831(Ft/s)
Depth of flow = 0.033(Ft.), Average velocity = 0.831(Ft/s)
Critical depth =
                   0.028(Ft.)
Process from Point/Station 100.000 to Point/Station 100.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed: In Main Stream number: 3

```
Stream flow area = 0.180(Ac.)
Runoff from this stream = 0.137(CFS)
Time of concentration = 11.99 min.
Rainfall intensity = 3.792(In/Hr)
Program is now starting with Main Stream No. 4
Process from Point/Station 17.000 to Point/Station
                                                         18.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                          ]
(General Commercial
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Initial subarea total flow distance = 85.000(Ft.)
Highest elevation = 450.500(Ft.)
Lowest elevation = 448.200(Ft.)
Elevation difference = 2.300(Ft.) Slope = 2.706 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 85.00 (Ft)
for the top area slope value of 2.70 %, in a development type of
General Commercial
In Accordance With Table 3-2
Initial Area Time of Concentration = 3.40 minutes
 (for slope value of 3.00 %)
Calculated TC of 3.400 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.160(CFS)
Total initial stream area =
                               0.030(Ac.)
Process from Point/Station 18.000 to Point/Station 19.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 448.200(Ft.)
End of street segment elevation = 443.300(Ft.)
Length of street segment = 129.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 37.000(Ft.)
Distance from crown to crossfall grade break = 33.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 20.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                  0.423(CFS)
Depth of flow = 0.114(Ft.), Average velocity = 2.706(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.000(Ft.)
```

```
Flow velocity = 2.71(Ft/s)
Travel time = 0.79 min.
                            TC = 4.19 min.
 Adding area flow to street
Calculated TC of 4.194 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                         1
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity =
                      6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.128
Subarea runoff = 0.693(CFS) for
                                     0.130(Ac.)
Total runoff =
                 0.853(CFS) Total area = 0.160(Ac.)
Street flow at end of street = 0.853(CFS)
Half street flow at end of street = 0.427(CFS)
Depth of flow = 0.148(Ft.), Average velocity = 3.226(Ft/s)
Flow width (from curb towards crown)= 2.000(Ft.)
Process from Point/Station 19.000 to Point/Station 100.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 443.300(Ft.)
Downstream point elevation = 440.000(Ft.)
Channel length thru subarea = 19.000(Ft.)
Channel base width = 2.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.015
Maximum depth of channel = 0.500(Ft.)
Flow(q) thru subarea = 0.853(CFS)
Depth of flow = 0.066(Ft.), Average velocity = 6.462(Ft/s)
Channel flow top width = 2.000(Ft.)
Flow Velocity = 6.46(Ft/s)
Travel time = 0.05 min.
Time of concentration = 4.24 min.
Critical depth = 0.178(Ft.)
Process from Point/Station 100.000 to Point/Station
                                                       100.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 4
Stream flow area = 0.160(Ac.)
Runoff from this stream = 0.853(CFS)
Time of concentration = 4.24 min.
Rainfall intensity =
                    6.666(In/Hr)
Summary of stream data:
Stream Flow rate
                     TC
                                  Rainfall Intensity
 No.
         (CFS)
                     (min)
                                         (In/Hr)
```

> 0.36011.253.9500.09810.634.0970.13711.993.7920.8534.246.666 1 2 3 4.24 4 Qmax(1) =1.000 * 1.000 * 0.360) +
>
> 0.964 *
> 1.000 *
> 0.098) +
>
>
> 1.000 *
> 0.939 *
> 0.137) +
>
>
> 0.593 *
> 1.000 *
> 0.853) +
>
> 0.853) + = 1.089 Qmax(2) =1.000 * 0.945 * 1.000 * 1.000 * 1.000 * 0.887 * 0.615 * 1.000 * 0.360) + 0.098) + 0.137) + 0.853) + = 1.084 Qmax(3) =0.960 * 1.000 * 0.360) + 0.098) + 0.137) + 0.853) + = 0.926 * 1.000 * 1.000 * 1.000 * 0.569 * 1.000 * 1.059 Qmax(4) =1.000 * 0.377 * 0.360) + 0.098) + 0.137) + 0.853) + = 1.000 * 0.399 * 1.000 * 0.354 * 1.000 * 1.000 * 1.077 Total of 4 main streams to confluence: Flow rates before confluence point: 0.360 0.098 0.137 0.853 Maximum flow rates at confluence using above data: 1.089 1.084 1.059 1.077 Area of streams before confluence: 0.640 0.120 0.180 0.160 Results of confluence: Total flow rate = 1.089(CFS) Time of concentration = 11.255 min. Effective stream area after confluence = 1.100(Ac.) Process from Point/Station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000 [COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 85.000(Ft.) Highest elevation = 453.200(Ft.) Lowest elevation = 450.500(Ft.) Elevation difference = 2.700(Ft.) Slope = 3.176 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 3.18 %, in a development type of General Commercial In Accordance With Table 3-2 Initial Area Time of Concentration = 3.40 minutes

```
(for slope value of 3.00 %)
Calculated TC of 3.400 minutes is less than 5 minutes,
 resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.800
Subarea runoff = 0.320(CFS)
Total initial stream area =
                                0.060(Ac.)
Process from Point/Station 21.000 to Point/Station 22.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 450.500(Ft.)
End of street segment elevation = 449.500(Ft.)
Length of street segment = 53.000(Ft.)
Height of curb above gutter flowline =
                                      6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 15.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                  0.532(CFS)
Depth of flow = 0.193(Ft.), Average velocity = 2.252(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.309(Ft.)
Flow velocity = 2.25(Ft/s)
Travel time = 0.39 min.
                             TC = 3.79 min.
Adding area flow to street
Calculated TC of 3.792 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                          ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity =
                       6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.800 CA = 0.120
Subarea runoff =
                  0.480(CFS) for
                                      0.090(Ac.)
Total runoff = 0.800(CFS) Total area = 
Street flow at end of street = 0.800(CFS)
                                                 0.150(Ac.)
Half street flow at end of street =
                                     0.800(CFS)
Depth of flow = 0.220(Ft.), Average velocity = 2.320(Ft/s)
Flow width (from curb towards crown) = 4.670(Ft.)
*****
Process from Point/Station 22.000 to Point/Station 23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
```

Upstream point/station elevation = 445.600(Ft.) Downstream point/station elevation = 445.000(Ft.) Pipe length = 21.70(Ft.) Slope = 0.0276 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.800(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.800(CFS) Normal flow depth in pipe = 2.62(In.) Flow top width inside pipe = 12.70(In.) Critical Depth = 3.98(In.) Pipe flow velocity = 5.02(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 3.86 min. Process from Point/Station 23.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.150(Ac.) Runoff from this stream = 0.800(CFS) Time of concentration = 3.86 min. Rainfall intensity = 6.666(In/Hr) Process from Point/Station 5.000 to Point/Station 24.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000[COMMERCIAL area type] (General Commercial) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 75.000(Ft.) Highest elevation = 452.800(Ft.) Lowest elevation = 451.000(Ft.) Elevation difference = 1.800(Ft.) Slope = 2.400 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 2.40 %, in a development type of General Commercial In Accordance With Table 3-2 Initial Area Time of Concentration = 3.60 minutes (for slope value of 2.00 %) Calculated TC of 3.600 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.160(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 24.000 to Point/Station 25.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 451.000(Ft.)

End of street segment elevation = 449.200(Ft.)

```
Length of street segment = 81.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
                                         0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                   0.241(CFS)
Depth of flow = 0.132(Ft.), Average velocity = 2.287(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 2.000(Ft.)
Flow velocity = 2.29(Ft/s)
Travel time = 0.59 min.
                             TC = 4.19 min.
Adding area flow to street
Calculated TC of 4.190 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 6.666(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[COMMERCIAL area type
                                           ]
(General Commercial
                     )
Impervious value, Ai = 0.850
Sub-Area C Value = 0.800
Rainfall intensity = 6.666(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(O=KCIA) is C = 0.800 CA = 0.056
Subarea runoff = 0.213(CFS) for 0.040(Ac.)
                                                 0.070(Ac.)
Total runoff = 0.373(CFS) Total area =
Street flow at end of street = 0.373(CFS)
Half street flow at end of street = 0.373(CFS)
Depth of flow = 0.156(Ft.), Average velocity = 2.552(Ft/s)
Flow width (from curb towards crown)= 2.000(Ft.)
*****
Process from Point/Station 25.000 to Point/Station
                                                          23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 445.200(Ft.)
Downstream point/station elevation = 445.000(Ft.)
Pipe length = 23.00(Ft.) Slope = 0.0087 Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                         0.373(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow =
                                   0.373(CFS)
Normal flow depth in pipe = 2.40(In.)
Flow top width inside pipe = 12.24(In.)
Critical depth could not be calculated.
Pipe flow velocity = 2.66(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 4.33 min.
```

Process from Point/Station 23.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.070(Ac.)Runoff from this stream = 0.373(CFS) Time of concentration = 4.33 min. Rainfall intensity = 6.666(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 3.86 1 0.800 6.666 2 0.373 4.33 6.666 Qmax(1) =1.000 * 1.000 * 0.800) +1.000 * 0.892 * 0.373) + =1.133 Qmax(2) =1.000 * 1.000 * 0.800) + 1.000 * 1.000 * 0.373) + =1.173 Total of 2 streams to confluence: Flow rates before confluence point: 0.800 0.373 Maximum flow rates at confluence using above data: 1.133 1.173 Area of streams before confluence: 0.150 0.070 Results of confluence: Total flow rate = 1.173(CFS) Time of concentration = 4.334 min. Effective stream area after confluence = 0.220(Ac.) Process from Point/Station 23.000 to Point/Station 23.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000 [UNDISTURBED NATURAL TERRAIN] (Permanent Open Space) Impervious value, Ai = 0.000 Sub-Area C Value = 0.200 Rainfall intensity (I) = 4.923(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 8.00 min. Rain intensity = 4.92(In/Hr) Total area = 0.220(Ac.) Total runoff = 0.160(CFS)***** Process from Point/Station 23.000 to Point/Station 26.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 441.500(Ft.) Downstream point/station elevation = 441.000(Ft.) Pipe length = 44.90(Ft.) Slope = 0.0111 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.160(CFS)

```
Given pipe size =
                 18.00(In.)
Calculated individual pipe flow = 0.160(CFS)
Normal flow depth in pipe = 1.51(In.)
Flow top width inside pipe = 9.98(In.)
Critical depth could not be calculated.
Pipe flow velocity = 2.25(Ft/s)
Travel time through pipe = 0.33 min.
Time of concentration (TC) = 8.33 min.
Process from Point/Station 26.000 to Point/Station 200.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 441.000(Ft.)
Downstream point elevation = 436.600(Ft.)
Channel length thru subarea = 41.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.000
Manning's 'N' = 0.035
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 0.160(CFS)
Depth of flow = 0.026(Ft.), Average velocity = 1.220(Ft/s)
Channel flow top width = 5.000(Ft.)
Flow Velocity = 1.22(Ft/s)
Travel time = 0.56 min.
Time of concentration = 8.89 min.
Critical depth = 0.032(Ft.)
Process from Point/Station 200.000 to Point/Station 200.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.220(Ac.)
Runoff from this stream = 0.160(CFS)
Time of concentration = 8.89 min.
Rainfall intensity = 4.598(In/Hr)
Process from Point/Station 27.000 to Point/Station 28.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                        ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 452.000(Ft.)
Lowest elevation = 438.600(Ft.)
Elevation difference = 13.400(Ft.) Slope = 13.400 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 13.40 %, in a development type of
Permanent Open Space
```

```
In Accordance With Table 3-2
Initial Area Time of Concentration = 6.90 minutes
 (for slope value of 10.00 %)
Rainfall intensity (I) = 5.415(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.200
Subarea runoff = 0.065(CFS)
Total initial stream area =
                                0.060(Ac.)
Process from Point/Station 28.000 to Point/Station 200.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 438.600(Ft.)
Downstream point elevation = 436.600(Ft.)
Channel length thru subarea = 129.000(Ft.)
Channel base width = 4.000(Ft.)
Slope or 'Z' of left channel bank =
                                   1.000
Slope or 'Z' of right channel bank = 1.000
Estimated mean flow rate at midpoint of channel =
                                                   0.179(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 4.000(Ft.)
Flow(q) thru subarea = 0.179(CFS)
Depth of flow = 0.034(Ft.), Average velocity = 1.290(Ft/s)
Channel flow top width = 4.069(Ft.)
Flow Velocity = 1.29(Ft/s)
Travel time = 1.67 min.
Time of concentration = 8.57 min.
Critical depth = 0.040(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                           4.710(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                           ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 4.710(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.200 CA = 0.054
Subarea runoff = 0.189(CFS) for 0.210(Ac.)
Total runoff = 0.254(CFS) Total area = 0.270(Ac.)
Total runoff = 0.254(CFS) Total area = 0.270(Ac.)
Depth of flow = 0.042(Ft.), Average velocity = 1.482(Ft/s)
Critical depth = 0.050(Ft.)
Process from Point/Station 200.000 to Point/Station
                                                          200.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.270(Ac.)
Runoff from this stream = 0.254(CFS)
Time of concentration = 8.57 min.
Rainfall intensity = 4.710(In/Hr)
Summary of stream data:
                     TC
                                  Rainfall Intensity
Stream Flow rate
        (CFS) (min)
                                    (In/Hr)
 No.
```

1	0.160	8.89	4.598	
2	0.254	8.57	4.710	
Qmax(1)	=			
	1.000 *	1.000 *	0.160) +	
	0.976 *	1.000 *	0.254) + =	0.408
Qmax(2)	=			
	1.000 *	0.963 *	0.160) +	
	1.000 *	1.000 *	0.254) + =	0.408
Total of 2 streams to confluence:				
Flow ra	tes before	confluence	point:	
0.160 0.254				
Maximum flow rates at confluence using above data:				
0.408 0.408				
Area of	streams be	fore conflu	ence:	
0.220 0.270				
Results of confluence:				
Total flow rate = 0.408(CFS)				
Time of concentration = 8.567 min.				
Effective stream area after confluence = 0.490(Ac.)				
End of computations, total study area = 2.450 (Ac.)				

Calculations Summary

Proposed Conditions Q ₁₀₀ Calculation Summary					
DMA	Tc (min)	С	I (in/in)	A (ac)	Q ₁₀₀ (cfs)
A-1	5	0.8	6.666	0.02	0.11
A-2	5	0.8	6.613	0.02	0.11
A-3	5	0.8	6.666	0.02	0.11
A-4	5	0.8	6.666	0.03	0.16
A-5	5.9	0.8	6.395	0.27	1.27
A-6	5	0.8	6.666	0.06	0.32
A-7	6.2	0.8	5.798	0.22	0.98
SM-A-1	8.7	0.2	4.663	0.06	0.06
SM-A-2	10.6	0.2	4.097	0.06	0.04
SM-A-3	8.7	0.2	4.663	0.07	0.07
SM-A-4	12	0.2	3.792	0.11	0.07
OFF-A-1	5	0.8	6.666	0.03	0.16
OFF-A-2	5	0.8	6.666	0.13	0.69
B-1	5	0.8	6.666	0.06	0.32
B-2	5	0.8	6.666	0.09	0.48
B-3	5	0.8	6.666	0.03	0.16
B-4	5	0.8	6.666	0.04	0.21
SM-B-1	6.9	0.2	5.415	0.06	0.07
SM-B-2	8.6	0.2	4.71	0.21	0.19
С	5	0.8	6.666	0.004	0.02
D	5	0.8	6.666	0.01	0.05

CHAPTER 6 – MODIFIED-PULS DETENTIONS ROUTING

<u>6.1 – Rational Method Hydrograph</u> DMA-A

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 11/28/2018 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 6 MIN. 6 HOUR RAINFALL 2.53 INCHES BASIN AREA 0.64 ACRES RUNOFF COEFFICIENT 0.8 PEAK DISCHARGE 3.02 CFS

TIME (MIN) = 0	DISCHARGE (CFS) = 0
TEME(MIN) = 6	DISCHARGE (CES) = 0.1
TRAE (MIN) = 12	DISCHARGE (CES) = 0.1
T (A A C (A A A A)) = 12	D(OO) A (OE) = 0.1
IIME(MIN) = 18	DISCHARGE (CFS) = 0.1
TIME (MIN) ≈ 24	DISCHARGE (CFS) = 0.1
TIME (MIN) = 30	DISCHARGE (CFS) = 0.1
TIME (MIN) = 36	DISCHARGE (CFS) = 0.1
TIME $(MN) \approx 42$	DISCHARGE (CES) # 0.1
TIME $(MiN) = 40$	DICCHARGE (CER) = 0.1
11ME (MIN) = 40	DISCHARGE (CFS) - 0.1
TIME (MIN) = 54	DISCHARGE (CFS) = 0.1
TIME (MIN) = 60	DISCHARGE (CFS) = 0.1
TIME $(M N) = 66$	DISCHARGE (CFS) = 0.1
TIME $(MIN) = 72$	DISCHARGE (CES) = 0.1
TIME (MIN) = 79	DISCHARGE (CES) = 0.1
	DISCHARGE (CFS) = 0.1
TIME (MIN) ≈ 84	DISCHARGE (CFS) # 0.1
TIME (MIN) = 90	DISCHARGE (CFS) = 0.1
TIME (MIN) = 96	DISCHARGE (CFS) = 0.1
TIME (MIN) = 102	DISCHARGE (CFS) = 0.1
TIME (MIN) = 408	DISCHARGE (CES) = 0.1
F(ME (MRM) = 100	
TIME (MIN) = 114	DISCHARGE (CFS) = 0.1
TIME (MIN) = 120	DISCHARGE (CFS) = 0.1
TIME (MIN) = 126	DISCHARGE (CFS) = 0.1
TIME (MIN) = 132	DISCHARGE (CFS) = 0.1
TIME $(MN) = 138$	DISCHARGE (CES) = 0.1
TIME (MIN) ~ 144	DISCHARGE (CES) = 0.1
TIME $(Min) = 400$	DISCHARGE (CER) = 0.1
EIME(MIN) = 150	DISCHARGE (CFS) = 0.1
TIME (MIN) = 156	DISCHARGE (CFS) = 0.1
TIME (MIN) ≈ 162	DISCHARGE (CFS) = 0.2
TIME(MIN) = 168	DISCHARGE (CFS) = 0.2
TIME (MIN) = 174	DISCHARGE (CES) = 0.2
TIME (MIN) - 180	DISCHARGE (CFS) = 0.2
	DISCHARGE (CES) = 0.2
TIME (MIN) = 100	DISCHARGE (OFS) - 0.2
TIME (MIN) = 192	DISCHARGE (CFS) = 0.2
TIME (MIN) = 198	DISCHARGE (CFS) = 0.2
TIME (MIN) = 204	DISCHARGE (CFS) = 0.2
TIME(MIN) = 210	DISCHARGE (CFS) ≈ 0.3
TIME $(MIN) = 218$	DISCHARGE (CES) = 0.3
THME $(MIN) = 222$	DISCHARGE (OFS) = 0.4
TIME (MIN) = 228	DISCHARGE (GFS) = 0.4
TIME (MIN) = 234	DISCHARGE (CFS) = 0.6
TIME (MIN) ≈ 240	DISCHARGE (CFS) = 0.9
TIME(MIN) = 246	DISCHARGE (CFS) = 3.02
TIME $(MIN) = 252$	DISCHARGE (CES) = 0.5
TIME (MIN) = 252	DISCHARCE (CES) = 0.3
TIME (MIN) ~ 200	DISCHARGE (CFS) = 0.3
TIME (MIN) = 264	DISCHARGE (CFS) = 0.3
TIME (MIN) = 270	DISCHARGE (CFS) = 0.2
TIME (MIN) = 278	DISCHARGE (CFS) = 0.2
TME(MN) = 282	DISCHARGE (CFS) = 0.2
TIME(MIN) = 288	DISCHARGE (CFS) $\Rightarrow 0.1$
TIME $(MIN) = 204$	DISCHARGE (CES) = 0.1
TIME (MIN) - 204	
FIME (MIN) = 300	DISCHARGE (CFS) = 0.1
TIME (MIN) = 306	DISCHARGE (GFS) $= 0.1$
TIME (MIN) = 312	DISCHARGE (CFS) = 0.1
TIME (MIN) = 318	DISCHARGE (CFS) = 0.1
TIME(MIN) = 324	DISCHARGE (CFS) = 0.1
TIME (MIN) = 330	DISCHARGE (CFS) = 0.1
TIME (MIN) - 222	DISCHARGE (CES) = 0.1
	DISCHARGE (CFS) = 0.1
HME(MIN) = 342	DISCHARGE (GFS) = 0.1
TIME (MIN) = 348	DISCHARGE (CFS) = 0.1
TIME (MIN) = 354	DISCHARGE (CFS) = 0.1
TIME (MIN) = 360	DISCHARGE (CFS) = 0.1
TIME $(MIN) = 366$	DISCHARGE (CFS) = 0
····· (·····) ••••	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0.3 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 D

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

DMA-B

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 11/8/2018 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 6 MIN, 6 HOUR RAINFALL 2.53 INCHES BASIN AREA 0.22 ACRES RUNOFF COEFFICIENT 0.8 PEAK DISCHARGE 1.17 CFS

TIME (MIN) = 0	DISCHARGE (CFS) = 0
TIME(MIN) = 6	DISCHARGE (CFS) = 0
There $(M(0, q) = 0)$	
TIME (MIN) = 12	DISCHARGE (CFS) = 0
TIME (MIN) = 18	DISCHARGE (CFS) = 0
TIME (MIN) = 24	DISCHARGE (CFS) = 0
TIME (MIN) ≈ 30	DISCHARGE (CFS) = 0
TIME (MIN) = 36	DISCHARGE (CFS) = 0
TIME (MIN) = 42	DISCHARGE (CFS) = 0
TIME (MIN) \approx 48	DISCHARGE (CFS) = 0
TIME (MIN) = 54	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0
TIME (MIN) = 60	DISCHARGE (CFS) = 0
TIME (MIN) ≈ 66	DISCHARGE (CFS) = 0
TIME (MIN) = 72	DISCHARGE (CFS) = 0
TIME (MIN) = 78	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0
TIME (MIN) = 84	DISCHARGE (CFS) = 0
TIME (MIN) = 90	DISCHARGE(CES) = 0
TIME (MIN) = 00	DISCHARGE (CES) = 0
TIME (MIN) = 96	DISCHARGE (CFS) = 0
TIME (MIN) = 102	DISCHARGE (CFS) # 0
TIME (MIN) = 108	DISCHARGE (CFS) = 0
TIME (MIN) = 114	DISCHARGE (CFS) = 0
TIME (MIN) = 120	DISCHARGE (CES) = 0
TIME (MIN) = 120	DISCUARES (CES) = 0
TIME (MIN) = 126	DISCHARGE (CFS) - 0
TIME (MIN) = 132	DISCHARGE (CFS) = 0
TIME (MIN) = 138	DISCHARGE (CFS) = 0
TIME (MIN) = 144	DISCHARGE (CFS) = 0
TIME (MIN) = 150	DISCHARGE(CES) = 0
TIME (MIN) = 160	
TIME (MIN) = 156	DISCHARGE (CFS) = 0
TIME (MIN) = 162	DISCHARGE (CFS) = 0.1
TIME (MIN) = 168	DISCHARGE (CFS) = 0.1
TIME (MIN) = 174	DISCHARGE (CES) = 0.1
TIME (MIN) = 180	DISCHARGE (CFS) = 0.1
TIME (MIN) = 186	DISCHARGE(CES) = 0.1
THAT (MIN) = 400	DISCUARCE (0F0) = 0.1
TIME (MIN) = 192	DISCHARGE (CFS) = 0.1
TIME (MIN) = 198	DISCHARGE (CFS) = 0.1
TIME (MIN) = 204	DISCHARGE (CFS) = 0.1
TIME (MIN) = 210	DISCHARGE (CFS) = 0.1
TIME (MIN) = 216	DISCHARGE (CES) = 0.1
TIME (MIN) = 200	DISCHARGE (CES) = 0.1
TIME (MIN) = 222	DISCHARGE (CFS) = 0.1
TIME (MIN) = 228	DISCHARGE (CFS) = 0.1
TIME (MIN) = 234	DISCHARGE (CFS) = 0.2
TIME (MIN) = 240	DISCHARGE (CFS) = 0.2
TIME (MIN) = 246	DISCHARGE (CES) = 1.17
THAT (MIN) - 252	DISCHARGE (CES) = 0.2
TIME (MIN) = 252	
TIME (MIN) = 258	DISCHARGE (CFS) = 0.1
TIME (MIN) = 264	DISCHARGE (CFS) = 0.1
TIME (MIN) = 270	DISCHARGE (CFS) = 0.1
TIME (MIN) = 276	DISCHARGE (CES) = 0.1
TIME (MIN) = 282	DISCHARGE (CES) = 0.1
TIME (MIN) = 202	Disclaract (or o) = 0.1
TIME (MIN) = 288	DISCHARGE (CFS) = 0.1
TIME (MIN) = 294	DISCHARGE (CFS) = 0
TIME (MIN) = 300	DISCHARGE (CFS) = 0
TIME (MIN) = 306	DISCHARGE (CFS) = 0
TIME (MIN) = 312	DISCHARGE (CES) = 0
TIME (MIN) = 340	DISCHARGE (OF 6) - A
TIME (MIN) = 318	
TIME (MIN) = 324	DISCHARGE (CFS) = 0
TIME (MIN) = 330	DISCHARGE (CFS) = 0
TIME (MIN) = 336	DISCHARGE (CFS) = 0
TIME (MIN) # 342	DISCHARGE (CES) = 0
TIME (MIN) - 349	DISCHARGE (CES) - 0
TIME (MIN) = 346	DISCHARGE (OFS) = 0
TIME (MIN) = 330 TIME (MIN) = 342 TIME (MIN) = 348 TIME (MIN) = 354 TIME (MIN) = 360	DISCHARGE (CFS) = 0
TIME (MIN) = 360	DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0
TIME (MIN) = 366	DISCHARGE (CFS) = 0

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

6.2 – Stage-Storage & Stage-Discharge Relationships

Stage Storage for B	MP-A
---------------------	------

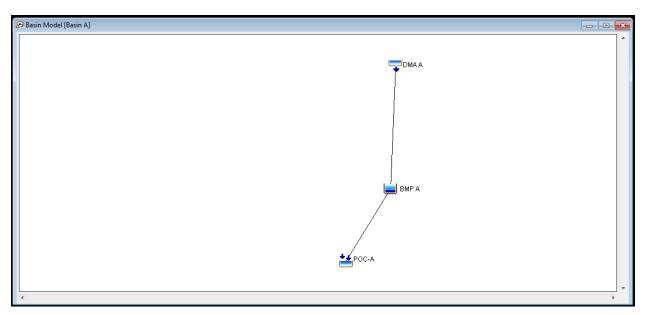
Stage Storage for Divil -A	-	-	1
Depth (ft)	Area (ft ²)	Volume (ft ³)	
0.00	925	0	3" LOW ORIFICE
0.08	925	77	
0.17	925	154	
0.25	925	231	
0.33	925	308	
0.42	925	385	
0.50	925	463	
0.58	925	540	
0.67	925	617	
0.75	925	694	
0.83	925	771	
0.92	925	848	
1.00	925	925	
1.08	925	1002	
1.17	925	1079	
1.25	925	1156	
1.33	925	1233	
1.42	925	1310	
1.50	925	1388	
1.58	925	1465	
1.67	925	1542	
1.75	925	1619	
1.83	925	1696	
1.92	925	1773	
2.00	925	1850	
2.08	925	1927	
2.17	925	2004	
2.25	925	2081	
2.33	925	2158	
2.42	925	2235	
2.50	925	2313	EMERGENCY WEIR
2.58	925	2390	
2.67	925	2467	
2.75	925	2544	
2.83	925	2621	
2.92	925	2698	
3.00	925	2775	
		-	1

Stage Storage for BMP-B

Depth (ft)			1
	Area (ft ²)	Volume (ft ³)	
0.00	317	0	
0.08	337	27	
0.17	358	56	
0.25	380	87	
0.33	401	120	
0.42	423	154	
0.50	446	190	
0.58	468	228	
0.67	492	268	
0.75	515	310	
0.83	539	354	
0.92	564	400	
1.00	588	448	LOWER SLOT INVERT
1.08	614	498	
1.17	639	550	
1.25	665	605	
1.33	691	661	
1.42	718	720	
1.50	745	781	
1.58	773	844	
1.67	801	910	
1.75	829	977	
1.83	858	1048	
1.92	887	1120	
2.00	916	1195	EMERGENCY WEIR
2.08	946	1273	
2.17	976	1353	
2.25	1007	1436	
2.33	1038	1521	
2.42	1069	1609	
2.50	1101	1699	
2.58	1133	1792	
2.67	1166	1888	
2.75	1199	1987	
2.83	1232	2088	
2.92	1266	2192	
3.00	1300	2299]

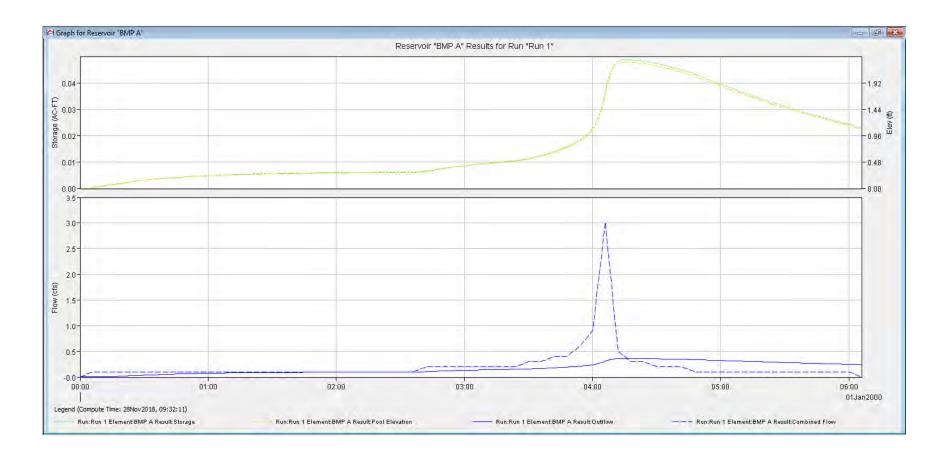
Stage Discharge for BMP-A

Low orifice:	3"	Emergency Weir Invert:	2.5 ft
No. of orifice:	1	Emergency Weir Permieter:	8.0 ft
Cg-low:	0.62		


h*	Qlow-orif	Qtot-low	Qemerg	Qtot
(ft)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00	0.000
0.08	0.00	0.01	0.00	0.011
0.17	0.05	0.04	0.00	0.041
0.25	0.09	0.08	0.00	0.081
0.33	0.11	0.11	0.00	0.111
0.42	0.13	0.13	0.00	0.132
0.50	0.15	0.15	0.00	0.150
0.58	0.17	0.17	0.00	0.165
0.67	0.18	0.18	0.00	0.180
0.75	0.19	0.19	0.00	0.193
0.83	0.21	0.21	0.00	0.206
0.92	0.22	0.22	0.00	0.217
1.00	0.23	0.23	0.00	0.228
1.08	0.24	0.24	0.00	0.239
1.17	0.25	0.25	0.00	0.249
1.25	0.26	0.26	0.00	0.259
1.33	0.27	0.27	0.00	0.268
1.42	0.28	0.28	0.00	0.278
1.50	0.29	0.29	0.00	0.286
1.58	0.29	0.29	0.00	0.295
1.67	0.30	0.30	0.00	0.303
1.75	0.31	0.31	0.00	0.311
1.83	0.32	0.32	0.00	0.319
1.92	0.33	0.33	0.00	0.327
2.00	0.33	0.33	0.00	0.334
2.08	0.34	0.34	0.00	0.342
2.17	0.35	0.35	0.00	0.349
2.25	0.36	0.36	0.00	0.356
2.33	0.36	0.36	0.00	0.363
2.42	0.37	0.37	0.00	0.370
2.50	0.38	0.38	0.00	0.376
2.58	0.38	0.38	0.60	0.980
2.67	0.39	0.39	1.69	2.077
2.75	0.40	0.40	3.10	3.496
2.83	0.40	0.40	4.77	5.175
2.92	0.41	0.41	6.67	7.078
3.00	0.41	0.41	8.77	9.182

Stage Discharge for BMP-B

Lower slot Invert:	1.0 ft	Emergency Weir Invert:	2.0 ft
No. of slots:	1	Emergency Weir Permieter:	8.0 ft
Dimension:	0.50 x 0.083 ft		


h*	Qslot-low	Qemerg	Qtot
(ft)	(cfs)	(cfs)	(cfs)
0.00	0.00	0.00	0.00
0.08	0.00	0.00	0.00
0.17	0.00	0.00	0.00
0.25	0.00	0.00	0.00
0.33	0.00	0.00	0.00
0.42	0.00	0.00	0.00
0.50	0.00	0.00	0.00
0.58	0.00	0.00	0.00
0.67	0.00	0.00	0.00
0.75	0.00	0.00	0.00
0.83	0.00	0.00	0.00
0.92	0.00	0.00	0.00
1.00	0.00	0.00	0.00
1.08	0.04	0.00	0.04
1.17	0.07	0.00	0.07
1.25	0.09	0.00	0.09
1.33	0.11	0.00	0.11
1.42	0.12	0.00	0.12
1.50	0.14	0.00	0.14
1.58	0.15	0.00	0.15
1.67	0.16	0.00	0.16
1.75	0.17	0.00	0.17
1.83	0.18	0.00	0.18
1.92	0.19	0.00	0.19
2.00	0.20	0.00	0.20
2.08	0.21	0.60	0.80
2.17	0.22	1.69	1.90
2.25	0.22	3.10	3.32
2.33	0.23	4.77	5.00
2.42	0.24	6.67	6.91
2.50	0.25	8.77	9.01
2.58	0.25	11.05	11.30
2.67	0.26	13.50	13.76
2.75	0.27	16.11	16.37
2.83	0.27	18.87	19.14
2.92	0.28	21.77	22.04
3.00	0.29	24.80	25.09

6.3 – HEC-HMS Modified-Puls Routing Results

HEC-HMS POST DEVELOPMENT: DMA-A

 Summary Results for Reservoir	"BMP A"		- • •
-	ves DMA A Reservoir: Bl	Simulation Run: Run MP A	1
Start of Run: 01Jan2000, 0 End of Run: 01Jan2000, 0 Compute Time:28Nov2018, 0	6:06	Basin Model: Meteorologic Model: Control Specification	Met 1
Volume U Computed Results	Jnits: 🍥 IN	O AC-FT	
Peak Inflow: 3.02 (CFS) Peak Discharge: 0.36 (CFS) Inflow Volume: n/a Discharge Volume:n/a		of Peak Discharge:03 ge: 0.	1Jan2000, 04:06 1Jan2000, 04:16 .049 (AC-FT) .30 (FT)

Project: 1175 Graves DMA A Simulation Run: Run 1 Reservoir: BMP A

 Start of Run:
 01Jan2000, 00:00

 End of Run:
 01Jan2000, 06:06

 Compute Time:
 28Nov2018, 09:32:11

Basin Model: Basin A Meteorologic Model: Met 1 Control Specifications:Control 1

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	00:00	0.00	0.000	0.00	0.00
01Jan2000	00:01	0.02	0.000	0.00	0.00
01Jan2000	00:02	0.03	0.000	0.00	0.00
01Jan2000	00:03	0.05	0.000	0.00	0.00
01Jan2000	00:04	0.07	0.000	0.01	0.00
01Jan2000	00:05	0.08	0.000	0.01	0.00
01Jan2000	00:06	0.10	0.000	0.02	0.00
01Jan2000	00:07	0.10	0.001	0.02	0.00
01Jan2000	00:08	0.10	0.001	0.03	0.00
01Jan2000	00:09	0.10	0.001	0.04	0.00
01Jan2000	00:10	0.10	0.001	0.04	0.01
01Jan2000	00:11	0.10	0.001	0.05	0.01
01Jan2000	00:12	0.10	0.001	0.05	0.01
01Jan2000	00:13	0.10	0.001	0.06	0.01
01Jan2000	00:14	0.10	0.001	0.06	0.01
01Jan2000	00:15	0.10	0.002	0.07	0.01
01Jan2000	00:16	0.10	0.002	0.08	0.01
01Jan2000	00:17	0.10	0.002	0.08	0.01
01Jan2000	00:18	0.10	0.002	0.09	0.01
01Jan2000	00:19	0.10	0.002	0.09	0.02
01Jan2000	00:20	0.10	0.002	0.10	0.02
01Jan2000	00:21	0.10	0.002	0.11	0.02
01Jan2000	00:22	0.10	0.002	0.11	0.02
01Jan2000	00:23	0.10	0.002	0.12	0.02
01Jan2000	00:24	0.10	0.003	0.12	0.03
01Jan2000	00:25	0.10	0.003	0.13	0.03

Page 1

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	00:26	0.10	0.003	0.13	0.03
01Jan2000	00:27	0.10	0.003	0.14	0.03
01Jan2000	00:28	0.10	0.003	0.14	0.03
01Jan2000	00:29	0.10	0.003	0.15	0.03
01Jan2000	00:30	0.10	0.003	0.15	0.04
01Jan2000	00:31	0.10	0.003	0.16	0.04
01Jan2000	00:32	0.10	0.003	0.16	0.04
01Jan2000	00:33	0.10	0.003	0.17	0.04
01Jan2000	00:34	0.10	0.004	0.17	0.04
01Jan2000	00:35	0.10	0.004	0.17	0.04
01Jan2000	00:36	0.10	0.004	0.18	0.04
01Jan2000	00:37	0.10	0.004	0.18	0.05
01Jan2000	00:38	0.10	0.004	0.18	0.05
01Jan2000	00:39	0.10	0.004	0.19	0.05
01Jan2000	00:40	0.10	0.004	0.19	0.05
01Jan2000	00:41	0.10	0.004	0.19	0.05
01Jan2000	00:42	0.10	0.004	0.20	0.05
01Jan2000	00:43	0.10	0.004	0.20	0.06
01Jan2000	00:44	0.10	0.004	0.20	0.06
01Jan2000	00:45	0.10	0.004	0.20	0.06
01Jan2000	00:46	0.10	0.004	0.21	0.06
01Jan2000	00:47	0.10	0.004	0.21	0.06
01Jan2000	00:48	0.10	0.004	0.21	0.06
01Jan2000	00:49	0.10	0.004	0.21	0.06
01Jan2000	00:50	0.10	0.005	0.22	0.06
01Jan2000	00:51	0.10	0.005	0.22	0.07
01Jan2000	00:52	0.10	0.005	0.22	0.07
01Jan2000	00:53	0.10	0.005	0.22	0.07
01Jan2000	00:54	0.10	0.005	0.22	0.07
01Jan2000	00:55	0.10	0.005	0.23	0.07
01Jan2000	00:56	0.10	0.005	0.23	0.07

Page 2

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	00:57	0.10	0.005	0.23	0.07
01Jan2000	00:58	0.10	0.005	0.23	0.07
01Jan2000	00:59	0.10	0.005	0.23	0.07
01Jan2000	01:00	0.10	0.005	0.24	0.07
01Jan2000	01:01	0.10	0.005	0.24	0.07
01Jan2000	01:02	0.10	0.005	0.24	0.07
	01:02				
01Jan2000		0.10	0.005	0.24	0.08
01Jan2000	01:04	0.10	0.005	0.24	0.08
01Jan2000	01:05	0.10	0.005	0.24	0.08
01Jan2000	01:06	0.10	0.005	0.24	0.08
01Jan2000	01:07	0.10	0.005	0.25	0.08
01Jan2000	01:08	0.10	0.005	0.25	0.08
01Jan2000	01:09	0.10	0.005	0.25	0.08
01Jan2000	01:10	0.10	0.005	0.25	0.08
01Jan2000	01:11	0.10	0.005	0.25	0.08
01Jan2000	01:12	0.10	0.005	0.25	0.08
01Jan2000	01:13	0.10	0.005	0.25	0.08
01Jan2000	01:14	0.10	0.005	0.25	0.08
01Jan2000	01:15	0.10	0.005	0.25	0.08
01Jan2000	01:16	0.10	0.005	0.26	0.08
01Jan2000	01:17	0.10	0.005	0.26	0.08
01Jan2000	01:18	0.10	0.005	0.26	0.08
01Jan2000	01:19	0.10	0.005	0.26	0.08
01Jan2000	01:20	0.10	0.006	0.26	0.08
01Jan2000	01:21	0.10	0.006	0.26	0.08
01Jan2000	01:22	0.10	0.006	0.26	0.09
01Jan2000	01:23	0.10	0.006	0.26	0.09
01Jan2000	01:24	0.10	0.006	0.26	0.09
01Jan2000	01:25	0.10	0.006	0.26	0.09
01Jan2000	01:26	0.10	0.006	0.26	0.09
01Jan2000	01:27	0.10	0.006	0.27	0.09

Page 3

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	01:28	0.10	0.006	0.27	0.09
01Jan2000	01:29	0.10	0.006	0.27	0.09
01Jan2000	01:30	0.10	0.006	0.27	0.09
01Jan2000	01:31	0.10	0.006	0.27	0.09
01Jan2000	01:32	0.10	0.006	0.27	0.09
01Jan2000	01:33	0.10	0.006	0.27	0.09
01Jan2000	01:34	0.10	0.006	0.27	0.09
01Jan2000	01:35	0.10	0.006	0.27	0.09
01Jan2000	01:36	0.10	0.006	0.27	0.09
01Jan2000	01:37	0.10	0.006	0.27	0.09
01Jan2000	01:38	0.10	0.006	0.27	0.09
01Jan2000	01:39	0.10	0.006	0.27	0.09
01Jan2000	01:40	0.10	0.006	0.27	0.09
01Jan2000	01:41	0.10	0.006	0.28	0.09
01Jan2000	01:42	0.10	0.006	0.28	0.09
01Jan2000	01:43	0.10	0.006	0.28	0.09
01Jan2000	01:44	0.10	0.006	0.28	0.09
01Jan2000	01:45	0.10	0.006	0.28	0.09
01Jan2000	01:46	0.10	0.006	0.28	0.09
01Jan2000	01:47	0.10	0.006	0.28	0.09
01Jan2000	01:48	0.10	0.006	0.28	0.09
01Jan2000	01:49	0.10	0.006	0.28	0.09
01Jan2000	01:50	0.10	0.006	0.28	0.09
01Jan2000	01:51	0.10	0.006	0.28	0.09
01Jan2000	01:52	0.10	0.006	0.28	0.09
01Jan2000	01:53	0.10	0.006	0.28	0.09
01Jan2000	01:54	0.10	0.006	0.28	0.09
01Jan2000	01:55	0.10	0.006	0.28	0.09
01Jan2000	01:56	0.10	0.006	0.28	0.09
01Jan2000	01:57	0.10	0.006	0.28	0.09
01Jan2000	01:58	0.10	0.006	0.28	0.09

Page 4

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	01:59	0.10	0.006	0.28	0.09
01Jan2000	02:00	0.10	0.006	0.28	0.09
01Jan2000	02:01	0.10	0.006	0.28	0.09
01Jan2000	02:02	0.10	0.006	0.29	0.09
01Jan2000	02:03	0.10	0.006	0.29	0.09
01Jan2000	02:04	0.10	0.006	0.29	0.09
01Jan2000	02:05	0.10	0.006	0.29	0.09
01Jan2000	02:06	0.10	0.006	0.29	0.09
01Jan2000	02:07	0.10	0.006	0.29	0.09
01Jan2000	02:08	0.10	0.006	0.29	0.09
01Jan2000	02:09	0.10	0.006	0.29	0.10
01Jan2000	02:10	0.10	0.006	0.29	0.10
01Jan2000	02:11	0.10	0.006	0.29	0.10
01Jan2000	02:12	0.10	0.006	0.29	0.10
01Jan2000	02:13	0.10	0.006	0.29	0.10
01Jan2000	02:14	0.10	0.006	0.29	0.10
01Jan2000	02:15	0.10	0.006	0.29	0.10
01Jan2000	02:16	0.10	0.006	0.29	0.10
01Jan2000	02:17	0.10	0.006	0.29	0.10
01Jan2000	02:18	0.10	0.006	0.29	0.10
01Jan2000	02:19	0.10	0.006	0.29	0.10
01Jan2000	02:20	0.10	0.006	0.29	0.10
01Jan2000	02:21	0.10	0.006	0.29	0.10
01Jan2000	02:22	0.10	0.006	0.29	0.10
01Jan2000	02:23	0.10	0.006	0.29	0.10
01Jan2000	02:24	0.10	0.006	0.29	0.10
01Jan2000	02:25	0.10	0.006	0.29	0.10
01Jan2000	02:26	0.10	0.006	0.29	0.10
01Jan2000	02:27	0.10	0.006	0.29	0.10
01Jan2000	02:28	0.10	0.006	0.29	0.10
01Jan2000	02:29	0.10	0.006	0.29	0.10

Page 5

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	02:30	0.10	0.006	0.29	0.10
01Jan2000	02:31	0.10	0.006	0.29	0.10
01Jan2000	02:32	0.10	0.006	0.29	0.10
01Jan2000	02:33	0.10	0.006	0.29	0.10
01Jan2000	02:34	0.10	0.006	0.29	0.10
01Jan2000	02:35	0.10	0.006	0.29	0.10
01Jan2000	02:36	0.10	0.006	0.29	0.10
01Jan2000	02:37	0.12	0.006	0.29	0.10
01Jan2000	02:38	0.13	0.006	0.30	0.10
01Jan2000	02:39	0.15	0.006	0.30	0.10
01Jan2000	02:40	0.17	0.006	0.30	0.10
01Jan2000	02:41	0.18	0.007	0.31	0.10
01Jan2000	02:42	0.20	0.007	0.31	0.10
01Jan2000	02:43	0.20	0.007	0.32	0.11
01Jan2000	02:44	0.20	0.007	0.32	0.11
01Jan2000	02:45	0.20	0.007	0.33	0.11
01Jan2000	02:46	0.20	0.007	0.34	0.11
01Jan2000	02:47	0.20	0.007	0.34	0.11
01Jan2000	02:48	0.20	0.007	0.35	0.12
01Jan2000	02:49	0.20	0.008	0.35	0.12
01Jan2000	02:50	0.20	0.008	0.36	0.12
01Jan2000	02:51	0.20	0.008	0.37	0.12
01Jan2000	02:52	0.20	0.008	0.37	0.12
01Jan2000	02:53	0.20	0.008	0.38	0.12
01Jan2000	02:54	0.20	0.008	0.38	0.12
01Jan2000	02:55	0.20	0.008	0.39	0.12
01Jan2000	02:56	0.20	0.008	0.39	0.13
01Jan2000	02:57	0.20	0.008	0.40	0.13
01Jan2000	02:58	0.20	0.009	0.40	0.13
01Jan2000	02:59	0.20	0.009	0.41	0.13
01Jan2000	03:00	0.20	0.009	0.41	0.13

Page 6

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	03:01	0.20	0.009	0.42	0.13
01Jan2000	03:02	0.20	0.009	0.42	0.13
01Jan2000	03:03	0.20	0.009	0.43	0.13
01Jan2000	03:04	0.20	0.009	0.43	0.13
01Jan2000	03:05	0.20	0.009	0.44	0.14
01Jan2000	03:06	0.20	0.009	0.44	0.14
01Jan2000	03:07	0.20	0.009	0.44	0.14
01Jan2000	03:08	0.20	0.009	0.45	0.14
01Jan2000	03:09	0.20	0.010	0.45	0.14
01Jan2000	03:10	0.20	0.010	0.46	0.14
01Jan2000	03:11	0.20	0.010	0.46	0.14
01Jan2000	03:12	0.20	0.010	0.46	0.14
01Jan2000	03:13	0.20	0.010	0.47	0.14
01Jan2000	03:14	0.20	0.010	0.47	0.14
01Jan2000	03:15	0.20	0.010	0.47	0.14
01Jan2000	03:16	0.20	0.010	0.48	0.14
01Jan2000	03:17	0.20	0.010	0.48	0.15
01Jan2000	03:18	0.20	0.010	0.48	0.15
01Jan2000	03:19	0.20	0.010	0.49	0.15
01Jan2000	03:20	0.20	0.010	0.49	0.15
01Jan2000	03:21	0.20	0.010	0.49	0.15
01Jan2000	03:22	0.20	0.011	0.50	0.15
01Jan2000	03:23	0.20	0.011	0.50	0.15
01Jan2000	03:24	0.20	0.011	0.50	0.15
01Jan2000	03:25	0.22	0.011	0.51	0.15
01Jan2000	03:26	0.23	0.011	0.51	0.15
01Jan2000	03:27	0.25	0.011	0.52	0.15
01Jan2000	03:28	0.27	0.011	0.52	0.15
01Jan2000	03:29	0.28	0.011	0.53	0.16
01Jan2000	03:30	0.30	0.011	0.54	0.16
01Jan2000	03:31	0.30	0.012	0.55	0.16

Page 7

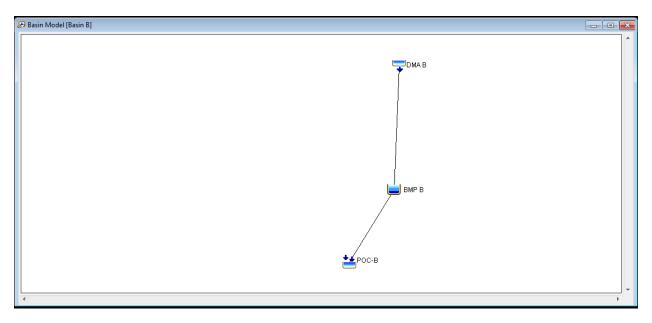
Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	03:32	0.30	0.012	0.55	0.16
01Jan2000	03:33	0.30	0.012	0.56	0.16
01Jan2000	03:34	0.30	0.012	0.57	0.16
01Jan2000	03:35	0.30	0.012	0.58	0.17
01Jan2000	03:36	0.30	0.013	0.59	0.17
01Jan2000	03:37	0.32	0.013	0.60	0.17
01Jan2000	03:38	0.33	0.013	0.61	0.17
01Jan2000	03:39	0.35	0.013	0.62	0.17
01Jan2000	03:40	0.37	0.013	0.63	0.17
01Jan2000	03:41	0.38	0.014	0.65	0.18
01Jan2000	03:42	0.40	0.014	0.66	0.18
01Jan2000	03:43	0.40	0.014	0.68	0.18
01Jan2000	03:44	0.40	0.015	0.69	0.18
01Jan2000	03:45	0.40	0.015	0.71	0.19
01Jan2000	03:46	0.40	0.015	0.72	0.19
01Jan2000	03:47	0.40	0.016	0.73	0.19
01Jan2000	03:48	0.40	0.016	0.75	0.19
01Jan2000	03:49	0.43	0.016	0.76	0.19
01Jan2000	03:50	0.47	0.016	0.78	0.20
01Jan2000	03:51	0.50	0.017	0.79	0.20
01Jan2000	03:52	0.53	0.017	0.81	0.20
01Jan2000	03:53	0.57	0.018	0.83	0.21
01Jan2000	03:54	0.60	0.018	0.86	0.21
01Jan2000	03:55	0.65	0.019	0.89	0.21
01Jan2000	03:56	0.70	0.020	0.92	0.22
01Jan2000	03:57	0.75	0.020	0.95	0.22
01Jan2000	03:58	0.80	0.021	0.99	0.23
01Jan2000	03:59	0.85	0.022	1.03	0.23
01Jan2000	04:00	0.90	0.023	1.07	0.24
01Jan2000	04:01	1.25	0.024	1.12	0.24
01Jan2000	04:02	1.61	0.025	1.20	0.25

Page 8

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
		· ,	· ,	. ,	. ,
01Jan2000	04:03	1.96	0.028	1.30	0.26
01Jan2000	04:04	2.31	0.030	1.42	0.28
01Jan2000	04:05	2.67	0.033	1.56	0.29
01Jan2000	04:06	3.02	0.037	1.73	0.31
01Jan2000	04:07	2.60	0.040	1.89	0.32
01Jan2000	04:08	2.18	0.043	2.02	0.34
01Jan2000	04:09	1.76	0.045	2.13	0.35
01Jan2000	04:10	1.34	0.047	2.21	0.35
01Jan2000	04:11	0.92	0.048	2.25	0.36
01Jan2000	04:12	0.50	0.048	2.28	0.36
01Jan2000	04:13	0.47	0.049	2.29	0.36
01Jan2000	04:14	0.43	0.049	2.29	0.36
01Jan2000	04:15	0.40	0.049	2.29	0.36
01Jan2000	04:16	0.37	0.049	2.30	0.36
01Jan2000	04:17	0.33	0.049	2.30	0.36
01Jan2000	04:18	0.30	0.049	2.29	0.36
01Jan2000	04:19	0.30	0.049	2.29	0.36
01Jan2000	04:20	0.30	0.049	2.29	0.36
01Jan2000	04:21	0.30	0.048	2.28	0.36
01Jan2000	04:22	0.30	0.048	2.28	0.36
01Jan2000	04:23	0.30	0.048	2.27	0.36
01Jan2000	04:24	0.30	0.048	2.27	0.36
01Jan2000	04:25	0.28	0.048	2.27	0.36
01Jan2000	04:26	0.27	0.048	2.26	0.36
01Jan2000	04:27	0.25	0.048	2.25	0.36
01Jan2000	04:28	0.23	0.048	2.25	0.36
01Jan2000	04:29	0.22	0.048	2.24	0.36
01Jan2000	04:30	0.20	0.047	2.23	0.35
01Jan2000	04:31	0.20	0.047	2.22	0.35
01Jan2000	04:32	0.20	0.047	2.21	0.35
01Jan2000	04:33	0.20	0.047	2.20	0.35

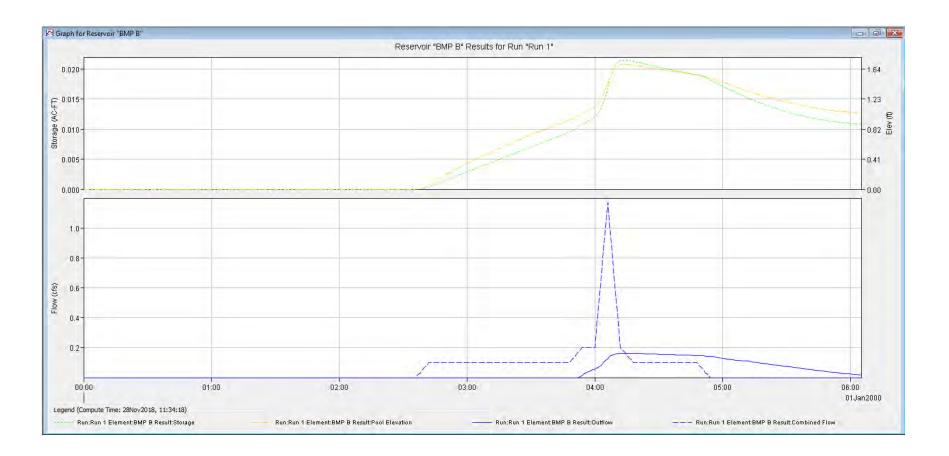
Page 9

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	04:34	0.20	0.047	2.19	0.35
01Jan2000	04:35	0.20	0.046	2.18	0.35
01Jan2000	04:36	0.20	0.046	2.17	0.35
01Jan2000	04:37	0.20	0.046	2.16	0.35
01Jan2000	04:38	0.20	0.046	2.15	0.35
01Jan2000	04:39	0.20	0.045	2.14	0.35
01Jan2000	04:40	0.20	0.045	2.13	0.35
01Jan2000	04:41	0.20	0.045	2.12	0.35
01Jan2000	04:42	0.20	0.045	2.11	0.34
01Jan2000	04:43	0.18	0.045	2.10	0.34
01Jan2000	04:44	0.17	0.044	2.09	0.34
01Jan2000	04:45	0.15	0.044	2.08	0.34
01Jan2000	04:46	0.13	0.044	2.07	0.34
01Jan2000	04:47	0.12	0.044	2.05	0.34
01Jan2000	04:48	0.10	0.043	2.04	0.34
01Jan2000	04:49	0.10	0.043	2.02	0.34
01Jan2000	04:50	0.10	0.043	2.01	0.33
01Jan2000	04:51	0.10	0.042	1.99	0.33
01Jan2000	04:52	0.10	0.042	1.98	0.33
01Jan2000	04:53	0.10	0.042	1.96	0.33
01Jan2000	04:54	0.10	0.041	1.95	0.33
01Jan2000	04:55	0.10	0.041	1.94	0.33
01Jan2000	04:56	0.10	0.041	1.92	0.33
01Jan2000	04:57	0.10	0.040	1.91	0.33
01Jan2000	04:58	0.10	0.040	1.89	0.32
01Jan2000	04:59	0.10	0.040	1.88	0.32
01Jan2000	05:00	0.10	0.040	1.86	0.32
01Jan2000	05:01	0.10	0.039	1.84	0.32
01Jan2000	05:02	0.10	0.039	1.83	0.32
01Jan2000	05:03	0.10	0.039	1.82	0.32
01Jan2000	05:04	0.10	0.038	1.80	0.32


Page 10

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	05:05	0.10	0.038	1.79	0.31
01Jan2000	05:06	0.10	0.038	1.77	0.31
01Jan2000	05:07	0.10	0.037	1.76	0.31
01Jan2000	05:08	0.10	0.037	1.75	0.31
01Jan2000	05:09	0.10	0.037	1.73	0.31
01Jan2000	05:10	0.10	0.037	1.72	0.31
01Jan2000	05:11	0.10	0.036	1.71	0.31
01Jan2000	05:12	0.10	0.036	1.70	0.31
01Jan2000	05:13	0.10	0.036	1.68	0.30
01Jan2000	05:14	0.10	0.035	1.67	0.30
01Jan2000	05:15	0.10	0.035	1.66	0.30
01Jan2000	05:16	0.10	0.035	1.64	0.30
01Jan2000	05:17	0.10	0.035	1.63	0.30
01Jan2000	05:18	0.10	0.034	1.62	0.30
01Jan2000	05:19	0.10	0.034	1.60	0.30
01Jan2000	05:20	0.10	0.034	1.59	0.30
01Jan2000	05:21	0.10	0.033	1.57	0.29
01Jan2000	05:22	0.10	0.033	1.56	0.29
01Jan2000	05:23	0.10	0.033	1.55	0.29
01Jan2000	05:24	0.10	0.033	1.54	0.29
01Jan2000	05:25	0.10	0.032	1.53	0.29
01Jan2000	05:26	0.10	0.032	1.51	0.29
01Jan2000	05:27	0.10	0.032	1.50	0.29
01Jan2000	05:28	0.10	0.032	1.49	0.28
01Jan2000	05:29	0.10	0.031	1.48	0.28
01Jan2000	05:30	0.10	0.031	1.47	0.28
01Jan2000	05:31	0.10	0.031	1.46	0.28
01Jan2000	05:32	0.10	0.031	1.44	0.28
01Jan2000	05:33	0.10	0.030	1.43	0.28
01Jan2000	05:34	0.10	0.030	1.42	0.28
01Jan2000	05:35	0.10	0.030	1.41	0.28

Page 11


Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	05:36	0.10	0.030	1.40	0.28
01Jan2000	05:37	0.10	0.029	1.39	0.27
01Jan2000	05:38	0.10	0.029	1.37	0.27
01Jan2000	05:39	0.10	0.029	1.36	0.27
01Jan2000	05:40	0.10	0.029	1.35	0.27
01Jan2000	05:41	0.10	0.028	1.34	0.27
01Jan2000	05:42	0.10	0.028	1.33	0.27
01Jan2000	05:43	0.10	0.028	1.32	0.27
01Jan2000	05:44	0.10	0.028	1.31	0.27
01Jan2000	05:45	0.10	0.028	1.30	0.26
01Jan2000	05:46	0.10	0.027	1.29	0.26
01Jan2000	05:47	0.10	0.027	1.28	0.26
01Jan2000	05:48	0.10	0.027	1.27	0.26
01Jan2000	05:49	0.10	0.027	1.26	0.26
01Jan2000	05:50	0.10	0.026	1.25	0.26
01Jan2000	05:51	0.10	0.026	1.24	0.26
01Jan2000	05:52	0.10	0.026	1.23	0.26
01Jan2000	05:53	0.10	0.026	1.22	0.25
01Jan2000	05:54	0.10	0.026	1.21	0.25
01Jan2000	05:55	0.10	0.025	1.20	0.25
01Jan2000	05:56	0.10	0.025	1.19	0.25
01Jan2000	05:57	0.10	0.025	1.18	0.25
01Jan2000	05:58	0.10	0.025	1.17	0.25
01Jan2000	05:59	0.10	0.025	1.16	0.25
01Jan2000	06:00	0.10	0.024	1.15	0.25
01Jan2000	06:01	0.08	0.024	1.14	0.25
01Jan2000	06:02	0.07	0.024	1.13	0.24
01Jan2000	06:03	0.05	0.024	1.11	0.24
01Jan2000	06:04	0.03	0.023	1.10	0.24
01Jan2000	06:05	0.02	0.023	1.08	0.24
01Jan2000	06:06	0.00	0.023	1.07	0.24

Page 12

HEC-HMS POST DEVELOPMENT: DMA-B

🛄 Summ	ary Results	for Reservoir	"BMP B"		- 0 💌
	Proj	ject: 1175 Gra	ives DMA B Reservoir: BN	Simulation Run: Ru	n 1
E	nd of Run:	01Jan2000, 01Jan2000, 28Nov2018,	06:05	Basin Model: Meteorologic Mode Control Specificati	
Comp	uted Results	Volume	Units: 💿 IN	⊘ AC-FT	
Peak Inflo	Inflow: Discharge: w Volume: arge Volume	0.16 (CFS) n/a		of Peak Discharge: ge:	01Jan2000, 04:06 01Jan2000, 04:14 0.021 (AC-FT) 1.70 (FT)

Project: 1175 Graves DMA B Simulation Run: Run 1 Reservoir: BMP B

Start of Run:	01Jan2000, 00:00
End of Run:	01Jan2000, 06:05
Compute Time	28Nov2018, 11:34:18

Basin Model: Basin B Meteorologic Model: Met 1 Control Specifications:Control 1

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	00:00	0.00	0.000	0.00	0.00
01Jan2000	00:01	0.00	0.000	0.00	0.00
01Jan2000	00:02	0.00	0.000	0.00	0.00
01Jan2000	00:03	0.00	0.000	0.00	0.00
01Jan2000	00:04	0.00	0.000	0.00	0.00
01Jan2000	00:05	0.00	0.000	0.00	0.00
01Jan2000	00:06	0.00	0.000	0.00	0.00
01Jan2000	00:07	0.00	0.000	0.00	0.00
01Jan2000	00:08	0.00	0.000	0.00	0.00
01Jan2000	00:09	0.00	0.000	0.00	0.00
01Jan2000	00:10	0.00	0.000	0.00	0.00
01Jan2000	00:11	0.00	0.000	0.00	0.00
01Jan2000	00:12	0.00	0.000	0.00	0.00
01Jan2000	00:13	0.00	0.000	0.00	0.00
01Jan2000	00:14	0.00	0.000	0.00	0.00
01Jan2000	00:15	0.00	0.000	0.00	0.00
01Jan2000	00:16	0.00	0.000	0.00	0.00
01Jan2000	00:17	0.00	0.000	0.00	0.00
01Jan2000	00:18	0.00	0.000	0.00	0.00
01Jan2000	00:19	0.00	0.000	0.00	0.00
01Jan2000	00:20	0.00	0.000	0.00	0.00
01Jan2000	00:21	0.00	0.000	0.00	0.00
01Jan2000	00:22	0.00	0.000	0.00	0.00
01Jan2000	00:23	0.00	0.000	0.00	0.00
01Jan2000	00:24	0.00	0.000	0.00	0.00
01Jan2000	00:25	0.00	0.000	0.00	0.00

Page 1

Date	Time	Inflow	Storage	Elevation	Outflow
		(CFS)	(AC-FT)	(FT)	(CFS)
01Jan2000	00:26	0.00	0.000	0.00	0.00
01Jan2000	00:27	0.00	0.000	0.00	0.00
01Jan2000	00:28	0.00	0.000	0.00	0.00
01Jan2000	00:29	0.00	0.000	0.00	0.00
01Jan2000	00:30	0.00	0.000	0.00	0.00
01Jan2000	00:31	0.00	0.000	0.00	0.00
01Jan2000	00:32	0.00	0.000	0.00	0.00
01Jan2000	00:33	0.00	0.000	0.00	0.00
01Jan2000	00:34	0.00	0.000	0.00	0.00
01Jan2000	00:35	0.00	0.000	0.00	0.00
01Jan2000	00:36	0.00	0.000	0.00	0.00
01Jan2000	00:37	0.00	0.000	0.00	0.00
01Jan2000	00:38	0.00	0.000	0.00	0.00
01Jan2000	00:39	0.00	0.000	0.00	0.00
01Jan2000	00:40	0.00	0.000	0.00	0.00
01Jan2000	00:41	0.00	0.000	0.00	0.00
01Jan2000	00:42	0.00	0.000	0.00	0.00
01Jan2000	00:43	0.00	0.000	0.00	0.00
01Jan2000	00:44	0.00	0.000	0.00	0.00
01Jan2000	00:45	0.00	0.000	0.00	0.00
01Jan2000	00:46	0.00	0.000	0.00	0.00
01Jan2000	00:47	0.00	0.000	0.00	0.00
01Jan2000	00:48	0.00	0.000	0.00	0.00
01Jan2000	00:49	0.00	0.000	0.00	0.00
01Jan2000	00:50	0.00	0.000	0.00	0.00
01Jan2000	00:51	0.00	0.000	0.00	0.00
01Jan2000	00:52	0.00	0.000	0.00	0.00
01Jan2000	00:53	0.00	0.000	0.00	0.00
01Jan2000	00:54	0.00	0.000	0.00	0.00
01Jan2000	00:55	0.00	0.000	0.00	0.00
01Jan2000	00:56	0.00	0.000	0.00	0.00

Page 2

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	00:58	0.00	0.000	0.00	0.00
01Jan2000	00:59	0.00	0.000	0.00	0.00
01Jan2000	01:00	0.00	0.000	0.00	0.00
01Jan2000	01:01	0.00	0.000	0.00	0.00
01Jan2000	01:02	0.00	0.000	0.00	0.00
01Jan2000	01:03	0.00	0.000	0.00	0.00
01Jan2000	01:04	0.00	0.000	0.00	0.00
01Jan2000	01:05	0.00	0.000	0.00	0.00
01Jan2000	01:06	0.00	0.000	0.00	0.00
01Jan2000	01:07	0.00	0.000	0.00	0.00
01Jan2000	01:08	0.00	0.000	0.00	0.00
01Jan2000	01:09	0.00	0.000	0.00	0.00
01Jan2000	01:10	0.00	0.000	0.00	0.00
01Jan2000	01:11	0.00	0.000	0.00	0.00
01Jan2000	01:12	0.00	0.000	0.00	0.00
01Jan2000	01:13	0.00	0.000	0.00	0.00
01Jan2000	01:14	0.00	0.000	0.00	0.00
01Jan2000	01:15	0.00	0.000	0.00	0.00
01Jan2000	01:16	0.00	0.000	0.00	0.00
01Jan2000	01:17	0.00	0.000	0.00	0.00
01Jan2000	01:18	0.00	0.000	0.00	0.00
01Jan2000	01:19	0.00	0.000	0.00	0.00
01Jan2000	01:20	0.00	0.000	0.00	0.00
01Jan2000	01:21	0.00	0.000	0.00	0.00
01Jan2000	01:22	0.00	0.000	0.00	0.00
01Jan2000	01:23	0.00	0.000	0.00	0.00
01Jan2000	01:24	0.00	0.000	0.00	0.00
01Jan2000	01:25	0.00	0.000	0.00	0.00
01Jan2000	01:26	0.00	0.000	0.00	0.00
01Jan2000	01:27	0.00	0.000	0.00	0.00

Page 3

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	01:29	0.00	0.000	0.00	0.00
01Jan2000	01:30	0.00	0.000	0.00	0.00
01Jan2000	01:31	0.00	0.000	0.00	0.00
01Jan2000	01:32	0.00	0.000	0.00	0.00
01Jan2000	01:33	0.00	0.000	0.00	0.00
01Jan2000	01:34	0.00	0.000	0.00	0.00
01Jan2000	01:35	0.00	0.000	0.00	0.00
01Jan2000	01:36	0.00	0.000	0.00	0.00
01Jan2000	01:37	0.00	0.000	0.00	0.00
01Jan2000	01:38	0.00	0.000	0.00	0.00
01Jan2000	01:39	0.00	0.000	0.00	0.00
01Jan2000	01:40	0.00	0.000	0.00	0.00
01Jan2000	01:41	0.00	0.000	0.00	0.00
01Jan2000	01:42	0.00	0.000	0.00	0.00
01Jan2000	01:43	0.00	0.000	0.00	0.00
01Jan2000	01:44	0.00	0.000	0.00	0.00
01Jan2000	01:45	0.00	0.000	0.00	0.00
01Jan2000	01:46	0.00	0.000	0.00	0.00
01Jan2000	01:47	0.00	0.000	0.00	0.00
01Jan2000	01:48	0.00	0.000	0.00	0.00
01Jan2000	01:49	0.00	0.000	0.00	0.00
01Jan2000	01:50	0.00	0.000	0.00	0.00
01Jan2000	01:51	0.00	0.000	0.00	0.00
01Jan2000	01:52	0.00	0.000	0.00	0.00
01Jan2000	01:53	0.00	0.000	0.00	0.00
01Jan2000	01:54	0.00	0.000	0.00	0.00
01Jan2000	01:55	0.00	0.000	0.00	0.00
01Jan2000	01:56	0.00	0.000	0.00	0.00
01Jan2000	01:57	0.00	0.000	0.00	0.00
01Jan2000	01:58	0.00	0.000	0.00	0.00

Page 4

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
		, ,	· ,	. ,	. ,
01Jan2000	01:59	0.00	0.000	0.00	0.00
01Jan2000	02:00	0.00	0.000	0.00	0.00
01Jan2000	02:01	0.00	0.000	0.00	0.00
01Jan2000	02:02	0.00	0.000	0.00	0.00
01Jan2000	02:03	0.00	0.000	0.00	0.00
01Jan2000	02:04	0.00	0.000	0.00	0.00
01Jan2000	02:05	0.00	0.000	0.00	0.00
01Jan2000	02:06	0.00	0.000	0.00	0.00
01Jan2000	02:07	0.00	0.000	0.00	0.00
01Jan2000	02:08	0.00	0.000	0.00	0.00
01Jan2000	02:09	0.00	0.000	0.00	0.00
01Jan2000	02:10	0.00	0.000	0.00	0.00
01Jan2000	02:11	0.00	0.000	0.00	0.00
01Jan2000	02:12	0.00	0.000	0.00	0.00
01Jan2000	02:13	0.00	0.000	0.00	0.00
01Jan2000	02:14	0.00	0.000	0.00	0.00
01Jan2000	02:15	0.00	0.000	0.00	0.00
01Jan2000	02:16	0.00	0.000	0.00	0.00
01Jan2000	02:17	0.00	0.000	0.00	0.00
01Jan2000	02:18	0.00	0.000	0.00	0.00
01Jan2000	02:19	0.00	0.000	0.00	0.00
01Jan2000	02:20	0.00	0.000	0.00	0.00
01Jan2000	02:21	0.00	0.000	0.00	0.00
01Jan2000	02:22	0.00	0.000	0.00	0.00
01Jan2000	02:23	0.00	0.000	0.00	0.00
01Jan2000	02:24	0.00	0.000	0.00	0.00
01Jan2000	02:25	0.00	0.000	0.00	0.00
01Jan2000	02:26	0.00	0.000	0.00	0.00
01Jan2000	02:27	0.00	0.000	0.00	0.00
01Jan2000	02:28	0.00	0.000	0.00	0.00
01Jan2000	02:29	0.00	0.000	0.00	0.00

Page 5

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	02:30	0.00	0.000	0.00	0.00
01Jan2000	02:31	0.00	0.000	0.00	0.00
01Jan2000	02:32	0.00	0.000	0.00	0.00
01Jan2000	02:33	0.00	0.000	0.00	0.00
01Jan2000	02:34	0.00	0.000	0.00	0.00
01Jan2000	02:35	0.00	0.000	0.00	0.00
01Jan2000	02:36	0.00	0.000	0.00	0.00
01Jan2000	02:37	0.02	0.000	0.00	0.00
01Jan2000	02:38	0.03	0.000	0.01	0.00
01Jan2000	02:39	0.05	0.000	0.01	0.00
01Jan2000	02:40	0.07	0.000	0.02	0.00
01Jan2000	02:41	0.08	0.000	0.04	0.00
01Jan2000	02:42	0.10	0.000	0.06	0.00
01Jan2000	02:43	0.10	0.001	0.07	0.00
01Jan2000	02:44	0.10	0.001	0.09	0.00
01Jan2000	02:45	0.10	0.001	0.11	0.00
01Jan2000	02:46	0.10	0.001	0.13	0.00
01Jan2000	02:47	0.10	0.001	0.14	0.00
01Jan2000	02:48	0.10	0.001	0.16	0.00
01Jan2000	02:49	0.10	0.001	0.18	0.00
01Jan2000	02:50	0.10	0.002	0.19	0.00
01Jan2000	02:51	0.10	0.002	0.21	0.00
01Jan2000	02:52	0.10	0.002	0.23	0.00
01Jan2000	02:53	0.10	0.002	0.24	0.00
01Jan2000	02:54	0.10	0.002	0.26	0.00
01Jan2000	02:55	0.10	0.002	0.27	0.00
01Jan2000	02:56	0.10	0.002	0.29	0.00
01Jan2000	02:57	0.10	0.002	0.30	0.00
01Jan2000	02:58	0.10	0.003	0.32	0.00
01Jan2000	02:59	0.10	0.003	0.34	0.00
01Jan2000	03:00	0.10	0.003	0.35	0.00

Page 6

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	03:01	0.10	0.003	0.37	0.00
01Jan2000	03:02	0.10	0.003	0.38	0.00
01Jan2000	03:03	0.10	0.003	0.40	0.00
01Jan2000	03:04	0.10	0.003	0.41	0.00
01Jan2000	03:05	0.10	0.004	0.43	0.00
01Jan2000	03:06	0.10	0.004	0.44	0.00
01Jan2000	03:07	0.10	0.004	0.45	0.00
01Jan2000	03:08	0.10	0.004	0.46	0.00
01Jan2000	03:09	0.10	0.004	0.48	0.00
01Jan2000	03:10	0.10	0.004	0.49	0.00
01Jan2000	03:11	0.10	0.004	0.50	0.00
01Jan2000	03:12	0.10	0.005	0.51	0.00
01Jan2000	03:13	0.10	0.005	0.53	0.00
01Jan2000	03:14	0.10	0.005	0.54	0.00
01Jan2000	03:15	0.10	0.005	0.56	0.00
01Jan2000	03:16	0.10	0.005	0.57	0.00
01Jan2000	03:17	0.10	0.005	0.58	0.00
01Jan2000	03:18	0.10	0.005	0.60	0.00
01Jan2000	03:19	0.10	0.006	0.61	0.00
01Jan2000	03:20	0.10	0.006	0.62	0.00
01Jan2000	03:21	0.10	0.006	0.63	0.00
01Jan2000	03:22	0.10	0.006	0.65	0.00
01Jan2000	03:23	0.10	0.006	0.66	0.00
01Jan2000	03:24	0.10	0.006	0.67	0.00
01Jan2000	03:25	0.10	0.006	0.68	0.00
01Jan2000	03:26	0.10	0.006	0.69	0.00
01Jan2000	03:27	0.10	0.007	0.71	0.00
01Jan2000	03:28	0.10	0.007	0.72	0.00
01Jan2000	03:29	0.10	0.007	0.73	0.00
01Jan2000	03:30	0.10	0.007	0.74	0.00
01Jan2000	03:31	0.10	0.007	0.76	0.00

Page 7

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	03:32	0.10	0.007	0.77	0.00
01Jan2000	03:33	0.10	0.007	0.78	0.00
01Jan2000	03:34	0.10	0.008	0.79	0.00
01Jan2000	03:35	0.10	0.008	0.80	0.00
01Jan2000	03:36	0.10	0.008	0.81	0.00
01Jan2000	03:37	0.10	0.008	0.82	0.00
01Jan2000	03:38	0.10	0.008	0.83	0.00
01Jan2000	03:39	0.10	0.008	0.84	0.00
01Jan2000	03:40	0.10	0.008	0.85	0.00
01Jan2000	03:41	0.10	0.009	0.87	0.00
01Jan2000	03:42	0.10	0.009	0.88	0.00
01Jan2000	03:43	0.10	0.009	0.89	0.00
01Jan2000	03:44	0.10	0.009	0.90	0.00
01Jan2000	03:45	0.10	0.009	0.91	0.00
01Jan2000	03:46	0.10	0.009	0.92	0.00
01Jan2000	03:47	0.10	0.009	0.93	0.00
01Jan2000	03:48	0.10	0.010	0.94	0.00
01Jan2000	03:49	0.12	0.010	0.95	0.00
01Jan2000	03:50	0.13	0.010	0.97	0.00
01Jan2000	03:51	0.15	0.010	0.98	0.00
01Jan2000	03:52	0.17	0.010	1.00	0.00
01Jan2000	03:53	0.18	0.010	1.01	0.01
01Jan2000	03:54	0.20	0.011	1.03	0.02
01Jan2000	03:55	0.20	0.011	1.05	0.02
01Jan2000	03:56	0.20	0.011	1.07	0.03
01Jan2000	03:57	0.20	0.011	1.08	0.04
01Jan2000	03:58	0.20	0.012	1.10	0.05
01Jan2000	03:59	0.20	0.012	1.11	0.05
01Jan2000	04:00	0.20	0.012	1.13	0.06
01Jan2000	04:01	0.36	0.012	1.15	0.06
01Jan2000	04:02	0.52	0.013	1.19	0.07

Page 8

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	04:03	0.69	0.014	1.23	0.09
01Jan2000	04:04	0.85	0.015	1.29	0.10
01Jan2000	04:05	1.01	0.016	1.36	0.11
01Jan2000	04:06	1.17	0.017	1.45	0.13
01Jan2000	04:07	1.01	0.018	1.52	0.14
01Jan2000	04:08	0.85	0.019	1.58	0.15
01Jan2000	04:09	0.69	0.020	1.63	0.16
01Jan2000	04:10	0.52	0.021	1.67	0.16
01Jan2000	04:11	0.36	0.021	1.69	0.16
01Jan2000	04:12	0.20	0.021	1.70	0.16
01Jan2000	04:13	0.18	0.021	1.70	0.16
01Jan2000	04:14	0.17	0.021	1.70	0.16
01Jan2000	04:15	0.15	0.021	1.70	0.16
01Jan2000	04:16	0.13	0.021	1.70	0.16
01Jan2000	04:17	0.12	0.021	1.69	0.16
01Jan2000	04:18	0.10	0.021	1.69	0.16
01Jan2000	04:19	0.10	0.021	1.69	0.16
01Jan2000	04:20	0.10	0.021	1.68	0.16
01Jan2000	04:21	0.10	0.021	1.68	0.16
01Jan2000	04:22	0.10	0.021	1.67	0.16
01Jan2000	04:23	0.10	0.021	1.67	0.16
01Jan2000	04:24	0.10	0.021	1.66	0.16
01Jan2000	04:25	0.10	0.021	1.66	0.16
01Jan2000	04:26	0.10	0.021	1.65	0.16
01Jan2000	04:27	0.10	0.021	1.65	0.16
01Jan2000	04:28	0.10	0.020	1.64	0.16
01Jan2000	04:29	0.10	0.020	1.64	0.16
01Jan2000	04:30	0.10	0.020	1.63	0.16
01Jan2000	04:31	0.10	0.020	1.63	0.16
01Jan2000	04:32	0.10	0.020	1.63	0.16
01Jan2000	04:33	0.10	0.020	1.62	0.15

Page 9

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	04:34	0.10	0.020	1.62	0.15
01Jan2000	04:35	0.10	0.020	1.61	0.15
01Jan2000	04:36	0.10	0.020	1.61	0.15
01Jan2000	04:37	0.10	0.020	1.60	0.15
01Jan2000	04:38	0.10	0.020	1.60	0.15
01Jan2000	04:39	0.10	0.020	1.59	0.15
01Jan2000	04:40	0.10	0.020	1.59	0.15
01Jan2000	04:41	0.10	0.020	1.59	0.15
01Jan2000	04:42	0.10	0.019	1.58	0.15
01Jan2000	04:43	0.10	0.019	1.58	0.15
01Jan2000	04:44	0.10	0.019	1.57	0.15
01Jan2000	04:45	0.10	0.019	1.57	0.15
01Jan2000	04:46	0.10	0.019	1.57	0.15
01Jan2000	04:47	0.10	0.019	1.56	0.15
01Jan2000	04:48	0.10	0.019	1.56	0.15
01Jan2000	04:49	0.08	0.019	1.56	0.15
01Jan2000	04:50	0.07	0.019	1.55	0.15
01Jan2000	04:51	0.05	0.019	1.54	0.15
01Jan2000	04:52	0.03	0.019	1.54	0.14
01Jan2000	04:53	0.02	0.018	1.53	0.14
01Jan2000	04:54	0.00	0.018	1.52	0.14
01Jan2000	04:55	0.00	0.018	1.51	0.14
01Jan2000	04:56	0.00	0.018	1.50	0.14
01Jan2000	04:57	0.00	0.018	1.49	0.14
01Jan2000	04:58	0.00	0.017	1.48	0.13
01Jan2000	04:59	0.00	0.017	1.47	0.13
01Jan2000	05:00	0.00	0.017	1.46	0.13
01Jan2000	05:01	0.00	0.017	1.45	0.13
01Jan2000	05:02	0.00	0.017	1.44	0.12
01Jan2000	05:03	0.00	0.017	1.43	0.12
01Jan2000	05:04	0.00	0.016	1.42	0.12

Page 10

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	05:05	0.00	0.016	1.40	0.12
01Jan2000	05:06	0.00	0.016	1.39	0.12
01Jan2000	05:07	0.00	0.016	1.38	0.12
01Jan2000	05:08	0.00	0.016	1.37	0.11
01Jan2000	05:09	0.00	0.016	1.36	0.11
01Jan2000	05:10	0.00	0.015	1.35	0.11
01Jan2000	05:11	0.00	0.015	1.34	0.11
01Jan2000	05:12	0.00	0.015	1.33	0.11
01Jan2000	05:13	0.00	0.015	1.32	0.11
01Jan2000	05:14	0.00	0.015	1.31	0.11
01Jan2000	05:15	0.00	0.015	1.30	0.10
01Jan2000	05:16	0.00	0.015	1.29	0.10
01Jan2000	05:17	0.00	0.014	1.28	0.10
01Jan2000	05:18	0.00	0.014	1.28	0.10
01Jan2000	05:19	0.00	0.014	1.27	0.09
01Jan2000	05:20	0.00	0.014	1.26	0.09
01Jan2000	05:21	0.00	0.014	1.25	0.09
01Jan2000	05:22	0.00	0.014	1.24	0.09
01Jan2000	05:23	0.00	0.014	1.24	0.09
01Jan2000	05:24	0.00	0.014	1.23	0.08
01Jan2000	05:25	0.00	0.013	1.22	0.08
01Jan2000	05:26	0.00	0.013	1.22	0.08
01Jan2000	05:27	0.00	0.013	1.21	0.08
01Jan2000	05:28	0.00	0.013	1.20	0.08
01Jan2000	05:29	0.00	0.013	1.20	0.08
01Jan2000	05:30	0.00	0.013	1.19	0.07
01Jan2000	05:31	0.00	0.013	1.18	0.07
01Jan2000	05:32	0.00	0.013	1.18	0.07
01Jan2000	05:33	0.00	0.013	1.17	0.07
01Jan2000	05:34	0.00	0.013	1.16	0.07
01Jan2000	05:35	0.00	0.012	1.16	0.07


Page 11

Date	Time	Inflow (CFS)	Storage (AC-FT)	Elevation (FT)	Outflow (CFS)
01Jan2000	05:36	0.00	0.012	1.15	0.06
01Jan2000	05:37	0.00	0.012	1.14	0.06
01Jan2000	05:38	0.00	0.012	1.14	0.06
01Jan2000	05:39	0.00	0.012	1.13	0.06
01Jan2000	05:40	0.00	0.012	1.13	0.06
01Jan2000	05:41	0.00	0.012	1.12	0.05
01Jan2000	05:42	0.00	0.012	1.11	0.05
01Jan2000	05:43	0.00	0.012	1.11	0.05
01Jan2000	05:44	0.00	0.012	1.10	0.05
01Jan2000	05:45	0.00	0.012	1.10	0.05
01Jan2000	05:46	0.00	0.012	1.09	0.04
01Jan2000	05:47	0.00	0.012	1.09	0.04
01Jan2000	05:48	0.00	0.011	1.09	0.04
01Jan2000	05:49	0.00	0.011	1.08	0.04
01Jan2000	05:50	0.00	0.011	1.08	0.04
01Jan2000	05:51	0.00	0.011	1.07	0.04
01Jan2000	05:52	0.00	0.011	1.07	0.04
01Jan2000	05:53	0.00	0.011	1.07	0.03
01Jan2000	05:54	0.00	0.011	1.06	0.03
01Jan2000	05:55	0.00	0.011	1.06	0.03
01Jan2000	05:56	0.00	0.011	1.06	0.03
01Jan2000	05:57	0.00	0.011	1.05	0.03
01Jan2000	05:58	0.00	0.011	1.05	0.03
01Jan2000	05:59	0.00	0.011	1.05	0.02
01Jan2000	06:00	0.00	0.011	1.05	0.02
01Jan2000	06:01	0.00	0.011	1.04	0.02
01Jan2000	06:02	0.00	0.011	1.04	0.02
01Jan2000	06:03	0.00	0.011	1.04	0.02
01Jan2000	06:04	0.00	0.011	1.04	0.02
01Jan2000	06:05	0.00	0.011	1.04	0.02

Page 12

CHAPTER 7 – HYDROLOGY MAPS

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

		DMA S	UMMARY T	ABLE		
	DMA	SUB-DMA	AREA	Q ₁₀₀	MITIGATION	POC
		A-1	0.02	0.11	BMP-A	
		A-2	0.02	0.11	BMP-A	
		A-3	0.02	0.11	BMP-A	
		A-4	0.03	0.16	BMP-A	
		A-5	0.27	1.27	BMP-A	
	A	A-6	0.06	0.32	BMP-A	
	(TOTAL	A-7	0.22	0.98	BMP-A	POC-A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10 AC)	SM-A-1	0.06	0.06	N/A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SM-A-2	0.06	0.04	N/A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SM-A-3	0.07	0.07	N/A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SM-A-4	0.11	0.07	N/A	
		OFF-A-1	0.03	0.16	N/A	
		OFF-A-2	0.13	0.69	N/A	
		B-1	0.06	0.32	BMP-B	
		B-2	0.09	0.48	BMP-B	
	B	B-3	0.03	0.16	BMP-B	
	(TOTAL 0.49 AC)	B-4	0.04	0.21	BMP-B	РОС-Е
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SM-B-1	0.06	0.07	N/A	
Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ		SM-B-2	0.21	0.19	N/A	
	С		0.004	0.02	N/A	POC-C
	D		0.01	0.05	N/A	POC-D
TOTAL			1.604			

CHAPTER 8 – GRADING PLAN

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

ENGINEER OF WORK'S DESIGN CERTIFICATION

I, JONATHAN R. RYDEEN, HEREBY DECLARE THAT I AM THE ENGINEER OF WORK FOR THIS PROJECT, THAT I HAVE EXERCISED RESPONSIBLE CHARGE, AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, OVER THE ENGINEERING DESIGN OF THIS PROJECT AND THAT THE DESIGN IS CONSISTENT WITH CURRENT STANDARDS.

I, UNDERSTAND THAT THE CHECK OF PROJECT DRAWINGS AND SPECIFICATIONS IN THE CITY OF SANTEE IS CONFINED TO A REVIEW ONLY AND DOES NOT RELIEVE ME AS THE ENGINEER OF WORK OF MY RESPONSIBILITIES FOR PROJECT DESIGN.

I FURTHER UNDERSTAND THAT UPON APPROVAL OF THESE PLANS BY THE CITY ENGINEER, THE PLANS BECOME THE PROPERTY OF THE CITY OF SANTEE IN ACCORDANCE WITH THE CITY PUBLIC WORKS STANDARDS. AS SUCH, I HEREBY RELENQUISH RIGHT OF OWNERSHIP TO THE CITY TO USE THESE PLANS AS THEY MAY DEEM NECESSARY.

SIGNED: REGISTRATION NO. 64811 EXPIRES ON: 6-30-19

FIRM: REC CONSULTANTS

ADDRESS: 2442 SECOND AVE

SAN DIEGO, CA 92101 TELEPHONE: 619-232-9200

ENGINEER OF WORK'S AS-BUILT CERTIFICATION

I, JONATHAN R. RYDEEN, A REGISTERED CIVIL ENGINEER IN THE STATE OF CALIFORNIA, HEREBY DECLARE THAT I HAVE EXERCISED RESPONSIBLE CHARGE, AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, OVER THE PREPARATION OF THE ENGINEERING PORTION OF THE AS-BUILT DRAWINGS AND THAT THE INFORMATION SHOWN IS BASED ON AN INVESTIGATION AND SURVEY OF THE IMPROVEMENTS BETWEEN THE DATES OF ...TO THE BEST OF MY KNOWLEDGE AND EXPERIENCE THE AND _ INFORMATION SHOWN ON THESE PLANS PROVIDE AN ACCURATE AND CORRECT REPRESENTATION

OF THE AS-BUILT CONDITIONS.

SIGNED: **REGISTRATION NO. 64811** EXPIRES ON: 6-30-19

FIRM: REC CONSULTANTS

ADDRESS: 2442 SECOND AVE

SAN DIEGO, CA 92101

TELEPHONE: 619-232-9200

SOIL ENGINEER'S DESIGN CERTIFICATION

I, CHARLES ROBIN STROOP, A REGISTERED CIVIL ENGINEER IN THE STATE OF CALIFORNIA, PRINCIPALLY DOING BUSINESS IN THE FIELD OF APPLIED SOIL MECHANICS, HEREBY CERTIFY THAT A SAMPLING AND STUDY OF THE SOIL CONDITIONS PREVALENT WITHIN THIS SITE WAS MADE BY ME OR UNDER MY DIRECTION BETWEEN THE DATES OF APRIL 1, 2015 AND MAY 30, 2015 THREE COMPLETE COPIES OF THE SOILS REPORT COMPLIED FROM WITH MY RECOMMENDATIONS, HAS BEEN SUBMITTED TO THE OFFICE OF THE DIRECTOR OF DEVELOPMENT SERVICES.

I HAVE REVIEWED THE PROJECT DESIGN AND THE GRADING SHOWN HEREON IS CONSISTENT WITH THE RECOMMENDATIONS CONTAINED IN THE APPROVED SOILS AND GEOTECHNICAL REPORTS FOR THE PROJECT.

I FURTHER UNDERSTAND THAT UPON APPROVAL OF THESE PLANS BY THE CITY ENGINEER, THE PLANS BECOME THE PROPERTY OF THE CITY OF SANTEE IN ACCORDANCE WITH THE CITY PUBLIC WORKS STANDARDS. AS SUCH, I HEREBY RELINQUISH RIGHT OF OWNERSHIP TO THE CITY TO USE THESE PLANS AS THEY MAY DEEM NECESSARY.

SIGNED: _ EXPIRES ON 03-31-30 REGISTRATION NO. 2298 GROUP DELTA

FIRM: 9245 ACTIVITY ROAD, SUITE 103 ADDRESS: _ SAN DIEGO, CA 92126

TELEPHONE: 858-536-1000

SOIL ENGINEER'S AS-BUILT CERTIFICATION

I, CHARLES ROBIN STROOP, A REGISTERED CIVIL ENGINEER IN THE STATE OF CALIFORNIA, HEREBY DECLARE THAT I HAVE EXERCISED RESPONSIBLE CHARGE, AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, OVER THE GEOTECHNICAL ASPECTS OF THE GRADING OF THIS PROJECT. TO THE BEST OF MY KNOWLEDGE AND EXPERIENCE THE GRADING CONFORMS WITH THE RECOMMENDATIONS CONTAINED IN THE SOILS REPORTS AND PLANS WITH THE EXCEPTION THAT ANY CHANGES OR DEVIATIONS FROM THE PLANS DUE TO UNFORESEEN FIELD CONDITIONS HAVE BEEN IDENTIFIED IN THE FINAL SOILS REPORT FOR THE PROJECT.

DATE: SIGNED: EXPIRES ON 03-31-30 REGISTRATION NO. 2298 GROUP DELTA FIRM: _____ ADDRESS: <u>9245 ACTIVITY ROAD, SUITE 103</u> SAN DIEGO, CA 92126 TELEPHONE: 858-536-1000

RESIDENTIAL FLOOD STATEMENT

, JONATHAN R. RYDEEN, A REGISTERED CIVIL ENGINEER/LAND SURVEYOR HEREBY CERTIFY THAT THE PAD ELEVATIONS SHOWN ON THIS AS-BUILT GRADING PLAN HAVE BEEN VERIFIED BY ME AND THAT SAID ELEVATIONS ARE AT OR ABOVE THE BASE FLOOD ELEVATION AS ESTABLISHED BY THE BASE FLOOD DISCHARGE RATES SET FORTH IN THE FLOOD DAMAGE PREVENTION ORDINANCE - CHAPTER 15.52 OF THE SANTEE MUNICIPAL CODE.

SIGNED: REGISTRATION NO. 64811 EXPIRES ON: 6-30-19

CONSTRUCTION RECORD REFERENCES DATE BY REVISIONS ACPTD STANDARD STRE CONTRACTOR 21944 PER R.O.S. NSPECTOR _ MAP: R.O. DATE COMPLETED. HORZ. DATL

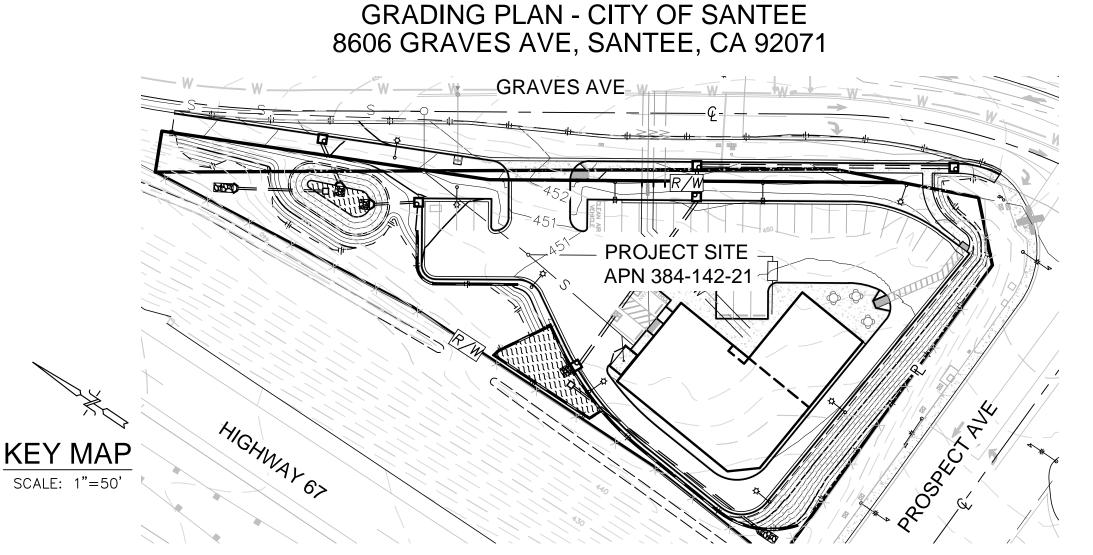
SIGNED: _

SIGNED:

LANDSCAPE ARCHITECT'S RECORD DRAWING CERTIFICATION

I, GARY F. HOYT, A REGISTERED LANDSCAPE ARCHITECT IN THE STATE OF CALIFORNIA, HEREBY DECLARE THAT I HAVE EXERCISED RESPONSIBLE CHARGE OVER THE PREPARATION OF THESE RECORD DRAWINGS AS THEY PERTAIN TO THE LANDSCAPE IMPROVEMENTS. THE INFORMATION SHOWN IS BASED ON ACTUAL SITE INVESTIGATION AND SURVEY OF THE IMPROVEMENTS BETWEEN THE DATES OF ______AND _____. TO THE BEST OF MY KNOWLEDGE AND EXPERIENCE THE INFORMATION SHOWN ON THESE PLANS PROVIDE AN ACCURATE AND CORRECT REPRESENTATION OF THE AS-B

SIGNED: REGISTRAT FIRM: GAR ADDRESS:


TELEPHONE

HART

SAVE DATE: 1/28/2019 ~ PLOT DATE: 1/29/2019 ~ FILE NAME: P:\Acad\1175 Graves Commercial\Civil\Grading Plan\Rough Grading Plan\Grading Plan.dwg

GRAVES COMMERCIAL

OWNER'S ACCEPTANCE

, MICHAEL GRANT, AS OWNER OF THE PROPERTY DESCRIBED HEREON ACKNOWLEDGE THESE PLANS HAVE BEEN PREPARED AT MY DIRECTION AND WITH MY FULL CONSENT. I UNDERSTAND ALL CONSTRUCTION MUST CONFORM TO CURRENT CITY STANDARDS AND BE COMPLETED IN ACCORDANCE WITH THESE PLANS. ANY CHANGES TO THE WORK MUST BE APPROVED IN ADVANCE, IN ACCORDANCE WITH THE CITY'S CONSTRUCTION CHANGE POLICY. I AGREE TO REMOVE AND RECONSTRUCT AT MY COST ANY WORK NOT COMPLETED IN STRICT ACCORDANCE WITH THESE PLANS OR ANY CONSTRUCTION CHANGES APPROVED INCIDENTAL THERETO. I HAVE REVIEWED THESE PLANS AND UNDERSTAND AND AGREE TO THE TERMS AND CONDITIONS CONTAINED HEREIN AND AS ATTACHED BY REFERENCE TO THIS GRADING PERMIT.I UNDERSTAND FAILURE TO ABIDE BY THESE TERMS IS GROUNDS FOR REVOCATION OF THE GRADING PERMIT. SHOULD THE PERMIT BE REVOKED CONTINUATION OF THE WORK WITHOUT A GRADING PERMIT CONSTITUTES ILLEGAL GRADING WHICH MAY RESULT IN FINE, IMPRISONMENT OR BOTH.

DATE:

MICHAEL GRANT, OWNER DEVELOPMENT CONTRACTOR INC.

ADDRESS: 110 TOWN CENTER PARKWAY

SANTEE, CA 92071 TELEPHONF: 619-444-2054

LANDSCAPE ARCHITECT'S DESIGN CERTIFICATION

I, GARY F. HOYT, HEREBY DECLARE THAT I AM THE LANDSCAPE ARCHITECT OF WORK FOR THIS PROJECT, THAT I HAVE EXERCISED RESPONSIBLE CHARGE, AS DEFINED IN THE BUSINESS AND PROFESSIONALS CODE, OVER THE DESIGN OF THIS PROJECT AND THAT THE DESIGN IS CONSISTENT WITH CURRENT STANDARDS.

I UNDERSTAND THAT THE CHECK OF PROJECT DRAWINGS AND SPECIFICATIONS IN THE CITY OF SANTEE IS CONFINED TO A REVIEW ONLY AND DOES NOT RELIEVE ME AS THE LANDSCAPE ARCHITECT OF WORK OF MY RESPONSIBILITIES FOR PROJECT DESIGN.

I FURTHER UNDERSTAND THAT UPON APPROVAL OF THESE PLANS BY THE CITY ENGINEER, THE PLANS BECOME THE PROPERTY OF THE CITY OF SANTEE IN ACCORDANCE WITH THE CITY PUBLIC WORKS STANDARDS. AS SUCH, I HEREBY RELINQUISH RIGHT OF OWNERSHIP TO THE CITY TO USE THESE PLANS AS THEY MAY DEEM NECESSARY.

DATE: REGISTRATION NO. 2517, MY REGISTRATION EXPIRES ON 12-31-18

FIRM: GARY F. HOYT LANDSCAPE ARCHITECTURE, INC.

ADDRESS: 13625 ADRIAN ST. POWAY, CA 92064

TELEPHONE: <u>858-486-4931</u>

UILT CONDITIONS.						CITY OF SANTEE		
						FIRE DEPARTMENT		
	DATE:							
ION NO. 2517, MY REGISTRATION EXPIRES	S ON 12-31-18					DEPUTY FIRE CHIEF	DATE	
RY F. HOYT LANDSCAPE ARCHITECTURE, I	NC.					COMMUNITY SERVICES DEPA	RTMENT	
<u>13625 ADRIAN ST.</u> POWAY, CA 92064						PUBLIC WORKS MANAGER	DATE	
E: <u>858–486–4931</u>						ENGINEERING DIVISION		
						FOR CITY ENGINEER RCE NO: 62189 EXPIRES: 09,		
				SEWER & V	WATER AGENCY	PLANNING DIVISION	00/11	
				PADRE DAM MUNI	CIPAL WATER DISTRICT			
	DROFESS/OW					PROJECT PLANNER	DATE	
	nmental	COUNTY	OF SAN DIEGO	APPROVED BY: Director of Engineeri	ing and Planning Date	TRAFFIC ENGINEERING DIVIS	ION	
Civil Engineering Enviro	「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	DEPARTMENT OF ENVIRONMENTAL H	IEALTH SERVICES	R.C.E. No.	Date	PRINCIPAL TRAFFIC ENGINEER	DATE	
Land Surveying 2442 Second Avenue San Diego, CA 92101	$\begin{array}{c} \bigstar \text{EXP } 6/30/19 \\ \bigstar \text{CIVIL} \\ OF \text{CAL} \\ \downarrow F \\ OF H \\ \downarrow F \\ OF H \\ \downarrow F \\ OF H \\ I \\$	REVIEWED	PROJECT NO		Job No. SA AR FROM DATE OF SIGNATURE. ESE PLANS IS NOT A COMMITMENT TO SERVE.	CAPITAL IMPROVEMENTS DIV	ISION	
sultants, Inc. (619)232-9200 (619)232-	9210 Fax	BY	TITLE		LEET EANS IS NOT A COMMITMENT TO SERVE.			
BENCH MARK # 2143	SCALE DESIGNED BY	DRAWN BY CHECKED BY		CITY OF SANTEE	DEPARTMENT OF DEVELO	OPMENT SERVICES	CITY W.O. NO.	DRAWING NO.
ET SURVEY MONUMENT STAMPED RCE . 10733. CENTERLINE INTERSECTION OF			REVIEWED	- GRADING PLAN FOR:	GRAVES COMMERCIAL			0047.004
DRIVE AND GRAVES AVENUE.	AS NOTED PLANS PREPARED UNDER				APN: 384-142-21		G-XXXX	2017-264
S. 10733 ELEVATION: 412.23' JM: NAD 83 VERT. DATUM: MSLD	AS NOTED RCE NO. <u>64811</u>	EXPIRES 6/30/19	BYPROJECT ENGINEER	-	AF N. 304-142-21			SHEET 1 OF 10

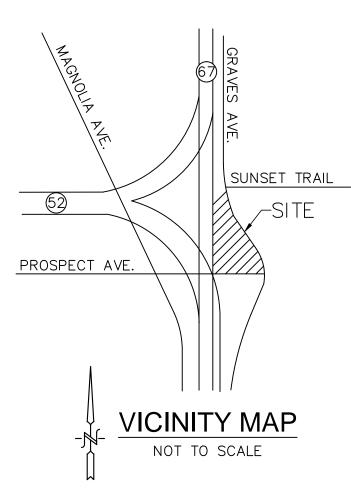
384-142-21

LEGAL DESCRIPTION

COUNTY, APRIL 2, 1896.

SITE ADDRESS

8606 GRAVES AVE. SANTEE, CA 92071


GRADING QUANTITIES

CUT = FILL = IMPORT =

WDID# PENDING

PUBLIC UTILITIES

SAN DIEGO GAS & ELECTRIC SBC TELEPHONE COX COMMUNICATIONS (CATV)

ASSESSOR PARCEL NUMBER

A PORTION OF LOT 9 IN BLOCK 7 OF SUBDIVISION OF TRACTS "H" AND "O", RANCHO EL CAJON, IN THE CITY OF SANTEE, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO THE MAP THEREOF NO. 817, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAID SAN DIEGO

130 CY 6,420 CY 6,190 CY

PADRE DAM MWD (WATER & SEWER)

800-422-4133 800-422-4133 619-263-5793 619-448-3111

SHEET INDEX

HEET NO.	DESCRIPTION
1	TITLE SHEET
2	NOTES
3	DETAILS
4	GRADING PLAN
5	CURB PLAN
6	SITE CROSS SECTIONS
7	STORM DRAIN PLAN
8	STORM DRAIN PROFILES
9	EROSION CONTROL PLA
10	LANDSCAPE PLAN

	GENERAL NOTES		
	SUBDIVISION MONUMENTATION SHALL BE PROTECTED AT ALL TIMES. PRIOR TO ISSUANCE OF GRADING PERMIT THE SUBDIVISION BOUNDARY SHALL BE STAKED AND FLAGGED, WITH LATHS AT LEAST THREE FEET IN HEIGHT, AT ALL SUBDIVISION CORNERS, ANGLE POINTS, AND POINTS OF CURVE. WHERE BOUNDARY LINES EXCEED THREE HUNDRED FEET IN LENGTH STAKES SHALL BE PLACED ON LINE AT NOT OVER THREE HUNDRED FOOT INTERVALS. WHERE PERMISSION FOR OFFSITE GRADING HAS BEEN GRANTED THE LIMITS OF OFF-SITE WORK SHALL BE STAKED AND FLAGGED ALSO. OFF-SITE WORK SHALL BE CLEARLY IDENTIFIED WITH DIFFERENT COLOR FLAGGING OR MARKINGS FROM THE SUBDIVISION BOUNDARY FLAGGING. THE CONTRACTOR SHALL AT ALL TIMES PROTECT THE SUBDIVISION BOUNDARY AND OFF-SITE MARKERS AND SHALL IMMEDIATELY REPLACE ANY MARKERS THAT ARE DISTURBED OR DESTROYED.		THE DEVE ANY (619 UNDE SAN 15.52 REQU DEP THE THE
2.	ACCEPTANCE OF THIS GRADING PLAN DOES NOT CONSTITUTE ACCEPTANCE OF VERTICAL OR HORIZONTAL ALIGNMENT OF ANY PRIVATE ROAD SHOWN HEREON FOR PUBLIC ROAD PURPOSES.	20.	TO CON CON SUB
3.	FINAL ACCEPTANCE OF THESE GRADING PLANS IS SUBJECT TO FINAL ACCEPTANCE OF THE ASSOCIATED IMPROVEMENT PLANS WHERE APPLICABLE. FINAL CURB GRADE ELEVATIONS MAY REQUIRE CHANGES IN THESE PLANS.		AT / UPO
	IMPORT MATERIAL SHALL BE OBTAINED FROM A LEGAL SITE.		PRIC HAV
5.	WASTE MATERIAL GENERATED FROM GRADING OPERATIONS SHALL BE HAULED TO A LEGAL DUMP SITE AS APPROVED BY THE DIRECTOR OF DEVELOPMENT SERVICES.		ACC SER DRA
6.	AN ENCROACHMENT PERMIT IS REQUIRED PRIOR TO ANY WORK BEING PERFORMED WITHIN THE LIMITS OF THE PUBLIC RIGHT OF WAY.	22.	SLO CU EX(
7.	ALL SLOPES OVER THREE FEET IN HEIGHT SHALL BE LANDSCAPED AND IRRIGATED IN ACCORDANCE WITH CITY SPECIFICATIONS.		(NC
8.	THE CONTRACTOR SHALL VERIFY THE EXISTENCE AND LOCATION OF ALL UTILITIES BEFORE COMMENCING WORK. NOTICE OF PROPOSED WORK SHALL BE GIVEN TO THE FOLLOWING AGENCIES:	23.	SH
	SAN DIEGO GAS & ELECTRIC 1-800-422-4133 PACIFIC BELL TELEPHONE 1-800-422-4133 OOX OADLE TV 2007 5703		YEA
	COX CABLE TV 263–5793 PADRE DAM MUNICIPAL WATER DISTRICT 448–3111 (WATER AND SEWER)	24.	THE GRA
9.	REQUESTS FOR RELEASE OF GRADING AND EROSION CONTROL SECURITIES UPON COMPLETION OF THE WORK SHALL BE MADE IN ACCORDANCE WITH THE		REC
10	REQUIREMENTS SET FORTH IN THE CITY OF SANTEE LAND DEVELOPMENT MANUAL ACCEPTANCE OF THESE PLANS BY THE CITY ENGINEER DOES NOT AUTHORIZE		
	ANY WORK OR GRADING TO BE PERFORMED UNTIL THE PROPERTY OWNER'S PERMISSION HAS BEEN OBTAINED AND A VALID GRADING PERMIT HAS BEEN ISSUED.		
11.	THE CITY ENGINEER'S ACCEPTANCE OF THESE PLANS DOES NOT CONSTITUTE THE BUILDING OFFICIALS' ACCEPTANCE OF ANY FOUNDATION FOR STRUCTURES TO BE PLACED IN THE AREA COVERED BY THESE PLANS. NO WAIVER OF THE GRADING ORDINANCE REQUIREMENTS CONCERNING MINIMUM COVER OVER EXPANSIVE SOILS IS MADE OR IMPLIED (SECTION 15.58.590, SANTEE MUNICIPAL CODE).	1.	THE OR BEEN
	ALL OPERATIONS CONDUCTED ON THE PREMISES, INCLUDING THE WARMING UP, REPAIR, ARRIVAL, DEPARTURE OR RUNNING OF TRUCKS, EARTHMOVING EQUIPMENT, CONSTRUCTION EQUIPMENT AND ANY OTHER ASSOCIATED CONSTRUCTION ACTIVITY SHALL BE LIMITED TO THE PERIOD BETWEEN 7:00 A.M. AND 7:00 P.M. EACH DAY, MONDAY THROUGH FRIDAY. NO EARTHMOVING OR GRADING OPERATIONS SHALL BE CONDUCTED ON THE PREMISES ON SUNDAY OR CITY HOLIDAYS. WORK ON SATURDAY REQUIRES THE WRITTEN APPROVAL OF THE CITY ENGINEER.		SPEC CON A FI ENGI MATI DESI THE MAN
13.	ALL MAJOR SLOPES SHALL BE ROUNDED INTO EXISTING TERRAIN TO PRODUCE A SMOOTH CONTOURED TRANSITION FROM CUT OR FILL FACES TO NATURAL GROUND AND ABUTTING CUT OR FILL SURFACES.		REP THE NO. PRO
	NOTWITHSTANDING THE MINIMUM STANDARDS SET FORTH IN THE GRADING ORDINANCE AND NOTWITHSTANDING THE ACCEPTANCE OF THESE GRADING PLANS, THE PERMITTEE IS RESPONSIBLE FOR THE PREVENTION OF DAMAGE TO ADJACENT PROPERTY. NO PERSON SHALL EXCAVATE ON LAND SO CLOSE TO THE PROPERTY LINE AS TO ENDANGER ANY ADJOINING PUBLIC STREET, SIDEWALK, ALLEY, FUNCTION OF ANY SEWAGE DISPOSAL SYSTEM, OR ANY OTHER PUBLIC OR PRIVATE PROPERTY WITHOUT SUPPORTING AND PROTECTING SUCH PROPERTY FROM SETTLING, CRACKING, EROSION, SILTING, SCOUR OR OTHER DAMAGE WHICH MIGHT RESULT FROM GRADING DESCRIBED ON THIS PLAN. THE CITY WILL HOLD THE PERMITTEE RESPONSIBLE FOR CORRECTION ON NON-DEDICATED IMPROVEMENTS WHICH DAMAGE ADJACENT PROPERTY.	3.	R-V SUB THE TRAI FOR CON STRI A. B. C.
15.	ALL OFFSITE HAUL ROUTES ARE SUBJECT TO THE ACCEPTANCE OF THE CITY ENGINEER. THE CONTRACTOR SHALL MAKE APPLICATION FOR A HAUL PERMIT, IN A FORMAT SUITABLE TO THE DEPARTMENT OF DEVELOPMENT SERVICES, A MINIMUM OF 72 HOURS PRIOR TO BEGINNING WORK. THE GRADING PERMIT SHALL NOT BE ISSUED PRIOR TO ISSUANCE OF THE HAUL PERMIT.		*STF DESI
16.	SPECIAL CONDITIONS: IF ANY ARCHAEOLOGICAL RESOURCES ARE DISCOVERED ON THE SITE OF THIS GRADING DURING GRADING OPERATIONS, SUCH OPERATIONS		MINI EXP RES
	WILL CEASE IMMEDIATELY, AND THE PERMITTEE WILL NOTIFY THE CITY ENGINEER OF THE DISCOVERY. GRADING OPERATIONS WILL NOT COMMENCE UNTIL THE PERMITTEE HAS RECEIVED WRITTEN AUTHORITY FROM THE CITY ENGINEER TO DO SO.		THE ONL DES
	ALL GRADING SHOWN ON THESE PLANS SHALL BE COMPLETED AS A SINGULAR UNIT WITH NO PROVISION FOR PARTIAL RELEASES. IF ANY PORTION OF THIS PROJECT IS TO BE COMPLETED SEPARATELY, A SEPARATE PLAN AND PERMIT APPLICATION SHALL BE SUBMITTED FOR ACCEPTANCE.	4.	ASP CUR MINI CON
18.	FINISH GRADING AND PLANTING SHALL BE ACCOMPLISHED ON ALL SLOPES PRIOR TO OCTOBER 1 OR IMMEDIATELY UPON COMPLETION OF ANY SLOPES BETWEEN		ASP <u>ACC</u>
	OCTOBER 1 AND APRIL 1. ALL LANDSCAPING SHALL BE DONE IN ACCORDANCE WITH THE ACCEPTED LANDSCAPING AND IRRIGATION PLANS.		PER PER CAL
			PRO
			ACC
			PER
	NOTE:		<u>ACC</u>
	SEE IMPROVEMENT PLAN DWG. NO. XXXXX FOR WATER AND SEWER INFORMATION.		PER
	DNSTRUCTION RECORD REFERENCES DATE BY	REVISIONS	
OR _			

CONTRACTOR SHALL NOTIFY THE CITY OF SANTEE-DEPARTMENT OF ELOPMENT SERVICES AT (619) 258–4100 A MINIMUM OF 48 HOURS BEFORE WORK COMMENCES AND 24 HOURS PRIOR TO REQUESTS FOR INSPECTION. CALL 258-4100 x 168 FOR ALL INSPECTION REQUESTS. ALL WORK PERFORMED ER THIS PERMIT IS SUBJECT TO THE INSPECTION REQUIREMENTS OF THE FEE GRADING ORDINANCE. THE CONTRACTOR IS REFERRED TO SECTION 8.930 OF THE SANTEE MUNICIPAL CODE FOR A LIST OF DETAILED INSPECTION JIREMENTS. FAILURE TO PROVIDE ADEQUATE NOTIFICATION TO THE ARTMENT OF DEVELOPMENT SERVICES REQUESTING INSPECTION OF THE WORK AT APPROPRIATE TIMES MAY RESULT IN ISSUANCE OF A STOP WORK ORDER FOR GRADING OPERATIONS.

- IN REASONABLE DEMAND BY THE CITY.
- WINGS FOR PRIVATE DEVELOPMENT.

PE RATIOS:

F 2:1 FILL 2:1 CAVATION: <u>130</u> C.Y. FILL: <u>6,420</u> C.Y. IMPORT: <u>6,190</u> C.Y. DTE: A SEPARATE VALID PERMIT MUST EXIST FOR EITHER WASTE OR PORT AREAS).

- RINKAGE _____%

(a) "INFILTRATION TESTING RESULTS FOR 8606 GRAVES AVENUE, SANTEE, CALIFORNIA" ~ DATED: AUGUST 30, 2016 PREPARED BY: GROUP DELTA PH: 858-536-1000 9245 ACTIVITY ROAD, SUITE 103 SAN DIEGO, CA 92126

AVING NOTES:

- TAINED IN THE PROJECT'S SOILS REPORT.
- JECT TO APPROVAL OF THE CITY PROJECT ENGINEER.
- STRUCTION.

EET NAME TRAFFIC INDEX ANTICIPATED STRUCTURAL SECTION PASSENGER CAR PARKING 3" AC / 5" AB 5.0 4" AC / 5" AB TRUCK TRAFFIC AREAS 6.0 HEAVY TRAFFIC AREAS 7.0 4" AC / 7" AB

UCTURAL SECTION RECOMMENDATION PROVIDED BY "PRELIMINARY PAVEMENT GN" REPORT DATED APRIL 6, 2017 BY ADVANCED GEOTECHNICAL SOLUTIONS, INC.

MUM CONCRETE SECTION SHALL BE 5.5" PCC OVER 95% COMPACTED NON NSIVE SOILS. MIX DESIGN SHALL BE MINIMUM CLASS 520-C-2500 PER DLUTION NO. 050-2006

MINIMUM SECTIONS LISTED ABOVE ARE FOR ESTIMATION AND DESIGN PURPOSES AND ARE SUBJECT TO CHANGE FOLLOWING SUBMITTAL OF THE FINAL PAVEMENT GN REPORT.

HALT, A MINIMUM THICKNESS OF 2 INCHES.

SECTION 200-2.2 CRUSHED AGGREGATE BASE SECTION 200-2.4 CRUSHED MISCELLANEOUS BASE TRANS CLASS 2 – AGGREGATE BASE

CESSED MISCELLANEOUS BASE PER THE GREEN BOOK AND CALTRANS CLASS 2

YCLED BASE ARE NOT PERMITTED.

EPTED ASPHALT BASE COURSE MIXES INCLUDE: CALTRANS 39 PG 64-10 - $\frac{3}{4}$ " MAXIMUM, COARSE

EPTED ASPHALT SURFACE COURSE MIXES INCLUDE:

CALTRANS 39 PG 64-10 - $\frac{1}{2}$ " MAXIMUM, COARSE

CONSTRUCTION RECORD	REFERENCES	DATE	BY	REVISIONS	ACPTD	
CONTRACTOR	TM 66 877					STANDARD ST
	TM 3696-1, TM 4086-1					21944 PER R.O HAR ⁻
DATE COMPLETED	TM 2005-14					MAP: R.
	DWG NO. 2017-155 TO 168					HORZ. DA

SAVE DATE: 1/28/2019 ~ PLOT DATE: 1/29/2019 ~ FILE NAME: P: \Acad\1175 Graves Commercial\Civil\Grading Plan\Rough Grading Plan\Grading Plan.dwg

ENSURE COMPLIANCE WITH THE ACCEPTED GRADING PLAN AND AS A DITION OF ACCEPTANCE OF THE GRADING PLAN, THE OWNER, ITS TENANTS, ITS TRACTORS, AND ITS SUB-CONTRACTORS SHALL MAINTAIN THE PREMISES JECT TO THE GRADING PLAN OPEN FOR INSPECTION BY CITY REPRESENTATIVES LL TIMES GRADING OPERATIONS ARE OCCURRING, AND AT ALL OTHER TIMES,

N COMPLETION OF THE GRADING WORK SHOWN ON THESE PLANS AND OR TO FINAL ACCEPTANCE OF THE WORK BY THE CITY, THE OWNER SHALL AS-BUILT GRADING PLANS PREPARED. PLANS SHALL BE PREPARED IN ORDANCE WITH THE CITY OF SANTEE-DEPARTMENT OF DEVELOPMENT /ICES POLICY REGARDING CONSTRUCTION CHANGES AND AS-BUILT

EPTANCE OF THESE PLANS BY THE CITY OF SANTEE IS VALID FOR ONE R FROM THE DATE OF ACCEPTANCE. FAILURE TO COMMENCE CONSTRUCTION IIN ONE YEAR VOIDS ACCEPTANCE OF THE PLANS.

FOLLOWING SOILS REPORT(S) SHALL BE CONSIDERED PART OF THIS DING PLAN. ALL GRADING SHALL BE DONE IN ACCORDANCE WITH THE DMMENDATIONS AND SPECIFICATIONS CONTAINED IN SAID REPORT(S).

NIMUM OF SEVEN DAYS PRIOR TO THE PLACEMENT OF ROADWAY BASE MATERIAL CONTRACTOR SHALL SUBMIT A CERTIFIED SOILS REPORT FROM A REGISTERED CIVIL GEOTECHNICAL ENGINEER CERTIFYING ALL ROADWAY AND UTILITY TRENCHING HAS COMPACTED TO THE MINIMUM REQUIREMENTS SPECIFIED IN THE STANDARD CIFICATIONS FOR PUBLIC WORKS CONSTRUCTION AND THE RECOMMENDATIONS

NAL PAVEMENT STRUCTURAL SECTION DESIGN SHALL BE SUBMITTED TO THE CITY NEER FOR APPROVAL A MINIMUM OF TEN DAYS PRIOR TO PLACEMENT OF BASE ERIAL. THE DESIGN REPORT SHALL CONFORM TO CITY FORM 435 — PAVEMENT GN AND R-VALUE TEST SUBMITTAL PROCEDURES. THE DESIGN SHALL ADHERE TO METHODOLOGY SET FORTH IN CHAPTER 600 OF THE CALTRANS HIGHWAY DESIGN UAL AND UTILIZE THE "R" VALUE METHOD. DESIGN SHALL BE SUBMITTED IN ORT FORM AND MUST INCLUDE ALL SUPPORTING CALCULATIONS AND TEST RESULTS. "R" VALUE TESTS SHALL BE CONDUCTED IN ACCORDANCE WITH CALIFORNIA TEST 301 AND SHALL BE PERFORMED BY A REGISTERED CIVIL ENGINEER WHOSE PRIMARY ESSIONAL ACTIVITY IS PERFORMING SUCH TESTS. THE NUMBER AND LOCATION OF ALUE TESTS SHALL BE COORDINATED WITH THE CITY PROJECT INSPECTOR AND BE

FOLLOWING MINIMUM STRUCTURAL THICKNESS ARE BASED ON AN R-VALUE OF 30. FIC INDEXES ARE BASED ON CITY PUBLIC WORKS STANDARDS AND SHALL BE USED PAVEMENT DESIGN BASED ON ACTUAL R-VALUES OBTAINED AT TIME OF

HALT CONCRETE SHALL CONFORM TO ALL PROVISIONS OF SECTION 39 OF THE RENT CALTRANS STANDARD SPECIFICATIONS. SURFACE COURSE SHALL BE A MUM THICKNESS IS 2 INCHES, MAXIMUM THICKNESS IS 3 INCHES. ASPHALT CRETE SECTIONS GREATER THAN 3 INCHES SHALL CONTAIN A BASE COURSE OF

EPTED UNTREATED BASE MATERIALS INCLUDE:

STORMWATER POLLUTION PREVENTION NOTES:

APPROPRIATE EROSION PREVENTION AND SEDIMENT CONTROL MEASURES WILL BE IMPLEMENTED AT ALL TIMES.

- 2. THE TOPS OF ALL SLOPES SHALL HAVE A DIKE OR TRENCH TO PREVENT WATER FROM FLOWING OVER THE CRESTS OF SLOPES.
- 3 CLEAN GRAVEL ONLY WILL BE USED IN GRAVEL BAGS.
- CATCH BASINS, DESILTING BASINS, GRAVEL BAGS, CHECK DAMS AND STORM DRAIN SYSTEMS SHALL BE INSTALLED TO THE SATISFACTION OF THE CITY ENGINEER. THESE FACILITIES SHALL BE CLEANED ON A REGULAR BASIS, AND KEPT FREE OF SOIL ACCUMULATION.
- GRAVEL BAG CHECK DAMS SHALL BE PLACED IN UNPAVED AREAS WITH GRADIENTS IN EXCESS OF 2%, IN OTHER GRADED OR EXCAVATED AREAS AS REQUIRED BY THE DEPARTMENT OF DEVELOPMENT SERVICES, AND AT OR NEAR EVERY POINT WHERE CONCENTRATED FLOWS LEAVE THE DEVELOPMENT.
- GRAVEL BAGS SHALL BE PLACED ON THE UPSTREAM SIDE OF ALL DRAINAGE INLETS TO MINIMIZE SILT BUILDUP IN THE INLETS AND PIPES.
- THE CONTRACTOR SHALL IMMEDIATELY REPAIR ANY ERODED SLOPES.
- ROADWAYS AND ENTRANCES TO AND FROM THE SITE SHALL BE SWEPT ON A REGULAR BASIS TO KEEP THEM FREE OF SOIL ACCUMULATION.
- CONTRACTOR SHALL HAVE WATER TRUCKS AND EQUIPMENT ON-SITE TO PREVENT AIRBORNE DUST CREATED FROM GRADING AND HAULING OPERATIONS OR WIND CONDITIONS. WATERING SHALL BE PERFORMED ON A CONTINUOUS BASIS TO PREVENT AIRBORNE DUST AND AT ALL OTHER TIMES AS DIRECTED BY THE CITY ENGINEER. ADDITIONAL DUST CONTROL MEASURES SHALL BE IMPLEMENTED AS NEEDED.
- 10. STOCKPILES SHALL BE COVERED AT THE END OF EACH WORKING DAY AND PRIOR TO PREDICTED RAIN EVENTS. ASPHALT SHALL BE STORED ON A LAYER OF PLASTIC SHEETING. OR EQUIVALENT.
- 11. ALL PORTABLE TOILETS SHALL HAVE A SECONDARY CONTAINMENT AND NOT BE LOCATED NEAR A STORM DRAIN (I.E. CATCH BASIN OR STREET).
- 12. INACTIVE SLOPES SHALL BE PROTECTED AND STABILIZED WITHIN 10 CALENDAR DAYS OF LAST BEING WORKED, OR ON THE DIRECTION OF THE CITY. ACTIVE SLOPES SHALL BE STABILIZED DURING RAIN.
- 13. EROSION CONTROL ON SLOPES SHALL BE MITIGATED BY INSTALLING LANDSCAPING AS PER APPROVED LANDSCAPE PLANS AS REQUIRED BY THE DEVELOPMENT REVIEW CONDITIONS, OR BY TEMPORARY EROSION CONTROL CONFORMING TO THE FOLLOWING:

NON-IRRIGATED HYDROSEED MIX

<u>BS. PER ACRE</u>	% PURITY PER ACRE	SEED SPECIES
20 50 8	70% PLS.	ATRIPLEX GLAUCA PLANTAGE INSULARIS ENCELIS FARINOSA
6 7	SCARIFIED 50% PLS.	LOTUS SCOPARIUS EXCHSCHOLTZIA CALIF.
91 LBS.		

- 14. VEHICLE MAINTENANCE, REPAIR AND STORAGE BMPS WILL BE IMPLEMENTED INCLUDING: USE OF DRIP PANS OR EQUIVALENT UNDER VEHICLE STORED OVERNIGHT; DAILY INSPECTION FOR LEAKS AND SPILLS; PROMPT REMOVAL OF SPILLS; AVAILABILITY OF OIL-ABSORBENT SPILL REMOVAL MATERIALS ON SITE.
- 15. HEAVY EQUIPMENT WILL NOT BE STORED ON THE PUBLIC RIGHT-OF-WAY.
- 16. TRASH SHALL BE PLACED IN DUMPSTERS. OFFCUTS FROM FRAMING WILL BE STORED APPROPRIATLY AND NOT ALLOWED TO ACCUMULATE IN STOCKPILES AROUND THE SITE.
- 17. TRASH DUMPSTERS WILL HAVE LIDS. THE LIDS WILL REMAIN CLOSED AND THE DUMPSTERS WILL NOT BE OVERFILLED. ADDITIONAL TRASH PICK UPS SHALL BE MADE AS NECESSARY.
- 18. LIQUID MATERIALS WILL BE STORED IN CLOSED CONTAINERS IN SECONDARY CONTAINMENT AND UNDER COVER. SOLID MATERIALS WILL BE STORED ON PALLETS AND BE COVERED DURING RAIN.
- A MATERIALS WASHOUT WILL BE AVAILABLE ONSITE WHENEVER LIQUID MATERIALS ARE USED. THE WASHOUT WILL FULLY CONTAIN THOSE MATERIALS AND THE SURROUNDING AREA SHALL BE KEPT FREE OF SPILLS.
- DISCHARGE OF POTABLE WATER (SUCH AS FROM POWERWASHING OR FILLING WATER 20. TRUCKS) WILL BE PREVENTED.
- 125 PERCENT OF THE MATERIALS REQUIRED TO MAINTAIN STORM WATER BMPS SHALL 21. BE PRESENT ON THE SITE AT ALL TIMES.
- STORMWATER CONTROL MEASURES SHOWN HEREON ARE BEST MANAGEMENT PRACTICES 22. FOR THIS SITE BASED ON THE ANTICIPATED PROGRESS OF THE WORK. ADDITIONAL MEASURES MAY BE REQUIRED AT ANY TIME AT THE DISCRETION OF THE CITY ENGINEER AS THE WORK PROGRESSES. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ENSURE ADEQUATE PROTECTION IS IN PLACE AT ALL TIMES TO PREVENT ANY DISCHARGE OF POLLUTANTS, INCLUDING SEDIMENT, FROM THE EXPOSED SITE AREAS. BMPS WILL BE MAINTAINED UNTIL REMOVAL.

FIRE DEPARTMENT NOTES:

PROVIDE A MINIMUM 20' WIDE, CLEAR AREA (NO PARKING), ALL-WEATHER, PAVED (OR OTHER APPROVED SURFACE) EMERGENCY ACCESS ROADWAY FOR THE SITE PRIOR TO THE DELIVERY OF COMBUSTIBLE CONSTRUCTION MATERIALS. ADDITIONALLY, ALL UNDERGROUND UTILITIES INCLUDING FIRE MAINS, FIRE HYDRANTS AND FIRE SERVICE UNDERGROUND DEVICES SHALL BE INSTALLED PRIOR TO THE DELIVERY OF CONSTRUCTION MATERIALS. AN EMERGENCY ACCESS PLAN FOR THE SITE SHALL BE SUBMITTED FOR APPROVAL PRIOR TO CONSTRUCTION. EMERGENCY ACCESS MUST BE MAINTAINED AT ALL TIMES DURING CONSTRUCTION.

							Consultants,	Inc. (619)232–9200 (6	319)232-9210 Fax
BENCH MARK # 2143	SCALE	DESIGNED BY	DRAWN BY	CHECKED BY		CITY OF SANTEE	DEPARTMENT OF DEVELOPMENT SERVICES	CITY W.O. NO.	DRAWING NO.
STREET SURVEY MONUMENT STAMPED RCE		JMW	JMW	JRR	REVIEWED	NOTES FOR:		+	+
R.O.S. 10733. CENTERLINE INTERSECTION OF ART DRIVE AND GRAVES AVENUE.	HORIZ: AS NOTED	PLANS PREPARED UNDER TI	HE SUPERVISION OF			Notestok.	GRAVES COMMERCIAL		2017-264
R.O.S. 10733 ELEVATION: 412.23'		JONATHAN RAAB RYDEEN	DATE		BY		APN: 384-142-21	G-XXXX	
DATUM: NAD 83 VERT. DATUM: MSLD	VERT: AS NOTED	RCE NO. 64811	EXPIR	ES6/30/19	PROJECT ENGINEER		(TM 2005-14)		SHEET 2 OF 10

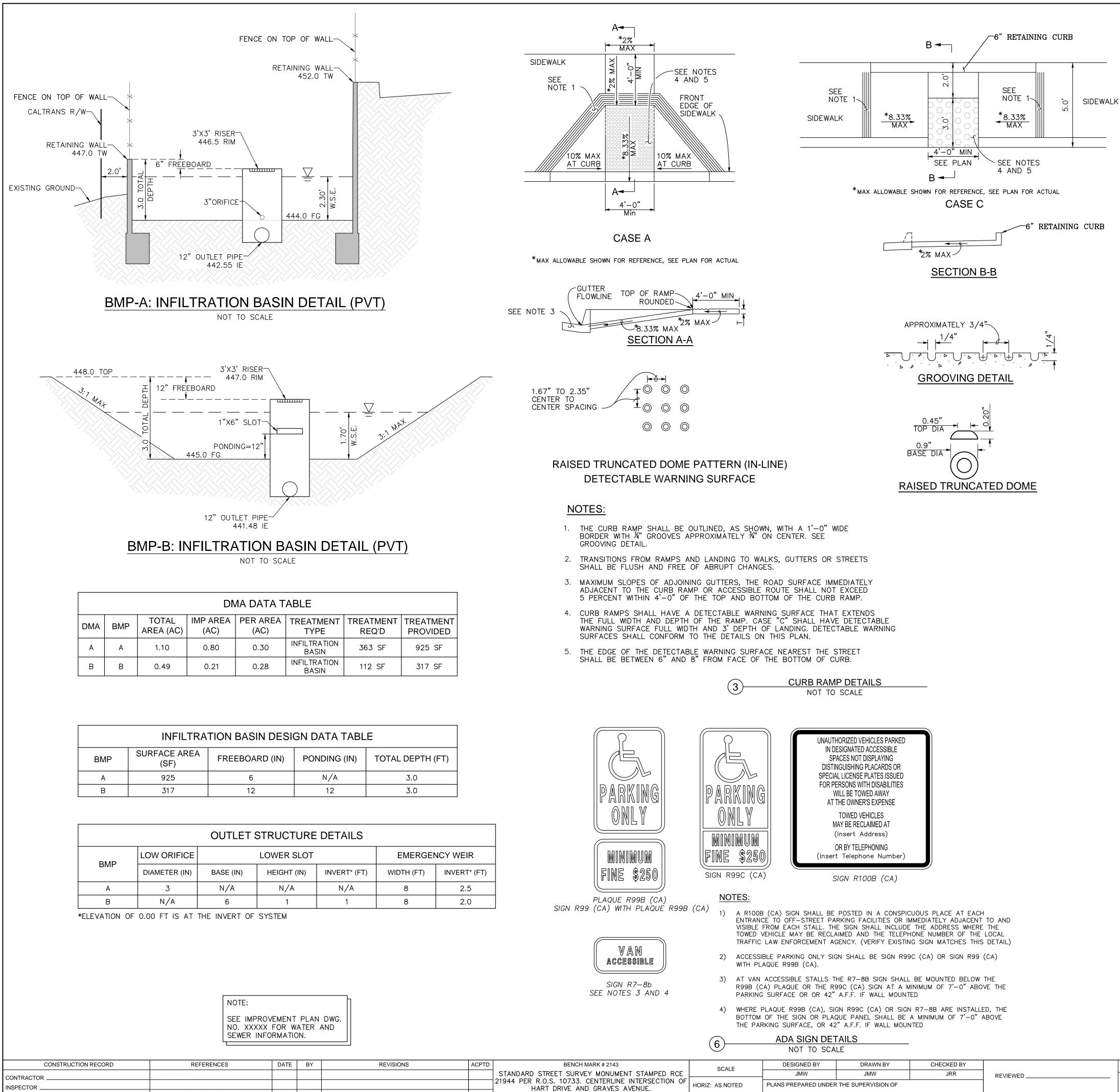
GENERAL STANDARDS OF CONSTRUCTION

UNLESS OTHERWISE NOTED ON THE PLANS, ALL WORK SHALL CONFORM WITH THE FOLLOWING STANDARD SPECIFICATIONS AND DRAWINGS:

STANDARD SPECIFICATIONS:

- 1. STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION, LATEST EDITION.
- 2. STANDARD SPECIAL PROVISIONS.
- 3. CITY OF SANTEE PUBLIC WORKS STANDARDS, SEPTEMBER 1982.
- 4. CALIFORNIA DEPARTMENT OF TRANSPORTATION, "MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (MUTCD)" LATEST EDITION.
- 5. STANDARD SPECIFICATIONS OF THE PADRE DAM MUNICIPAL WATER DISTRICT, WATER AGENCY STANDARDS, W.A.S.
- 6. CALIFORNIA STORMWATER QUALITY ASSOCIATION (CASQA), STORMWATER BEST MANAGEMENT PRACTICE HANDBOOK CONSTRUCTION, LATEST EDITION.

STANDARD DRAWINGS:


- 1. CITY OF SANTEE STANDARD DRAWINGS.
- 2. SAN DIEGO REGIONAL STANDARD DRAWINGS (S.D.R.S.D.) AS RECOMMENDED BY THE REGIONAL STANDARDS COMMITTEE. MAINTAINED AND PUBLISHED BY THE SAN DIEGO COUNTY DEPARTMENT OF PUBLIC WORKS. LATEST EDITION.
- 3. STANDARD DRAWINGS OF THE PADRE DAM MUNICIPAL WATER DISTRICT, WATER AGENCY STANDARDS, W.A.S.

	GEND	SYMPOL
DESCRIPTION BOUNDARY		<u>SYMBOL</u>
FINISH CONTOURS		
CENTERLINE		
CURB AND GUTTER	G-02	
CONCRETE WALKWAYS	G-07	
PVT RETAINING WALL (PER SEPARATE PER	МІТ)	
DRIVEWAY ENTRANCE W/ CROSS GUTTER	G-12, G-14E ≡	
AC PAVEMENT		
TRENCH RESURFACING	G-24A	
CURB RAMP	G-27, -31 THRU 32	
LIGHT	E-01	•¢
LANDSCAPING (PER OTHER)		
INFILTRATION BASIN		
STORM DRAIN (SIZE PER PLAN)		======
TYPE 'A' CURB INLET	SDRSD D-01	
TYPE 'B' CURB INLET	SDRSD D-02	
RIP RAP	SDRSD D-40	
SEWER LATERAL (PVT.) (SIZE PER PLAN)	SDRSD SS-01, -03	S
SEWER MANHOLE	SDRSD SM-01, -03	0
SEWER CLEAN OUT	SDRSD SC-01	0
2" WATER SERVICE(PVT.) WITH 2" METER AND RPDA	WS-01, WS-02, WR-01	w
2" METER AND RPDA (PVT.)	WR-01, WS-02, WS-03	
6" FIRE SERVICE (PVT.)	WF-05, WS-04	₩ ⊗ ®-
FIRE HYDRANT	WF-01	\sum
EXISTING CONTOURS		
EXISTING CURB AND GUTTER		
EXISTING MANHOLE FOR SEWER MAIN		
EXISTING WATER		W
EXISTING SEWER		S

Civil Engineering Environmental Land Surveying 2442 Second Avenue San Diego, CA 92101

	DWG NO, 2017-155 TO 168		
<u>SAVE DATE: 1/28/2019 ~ PLOT DATE</u> : 1/29/	2019 ~ <u>FILE_NAME</u> : P:\Acad\1175 Grav	ves Commercial\Civil\Grading Plan\Rough	Grading Plan\Grading Plan.dwg

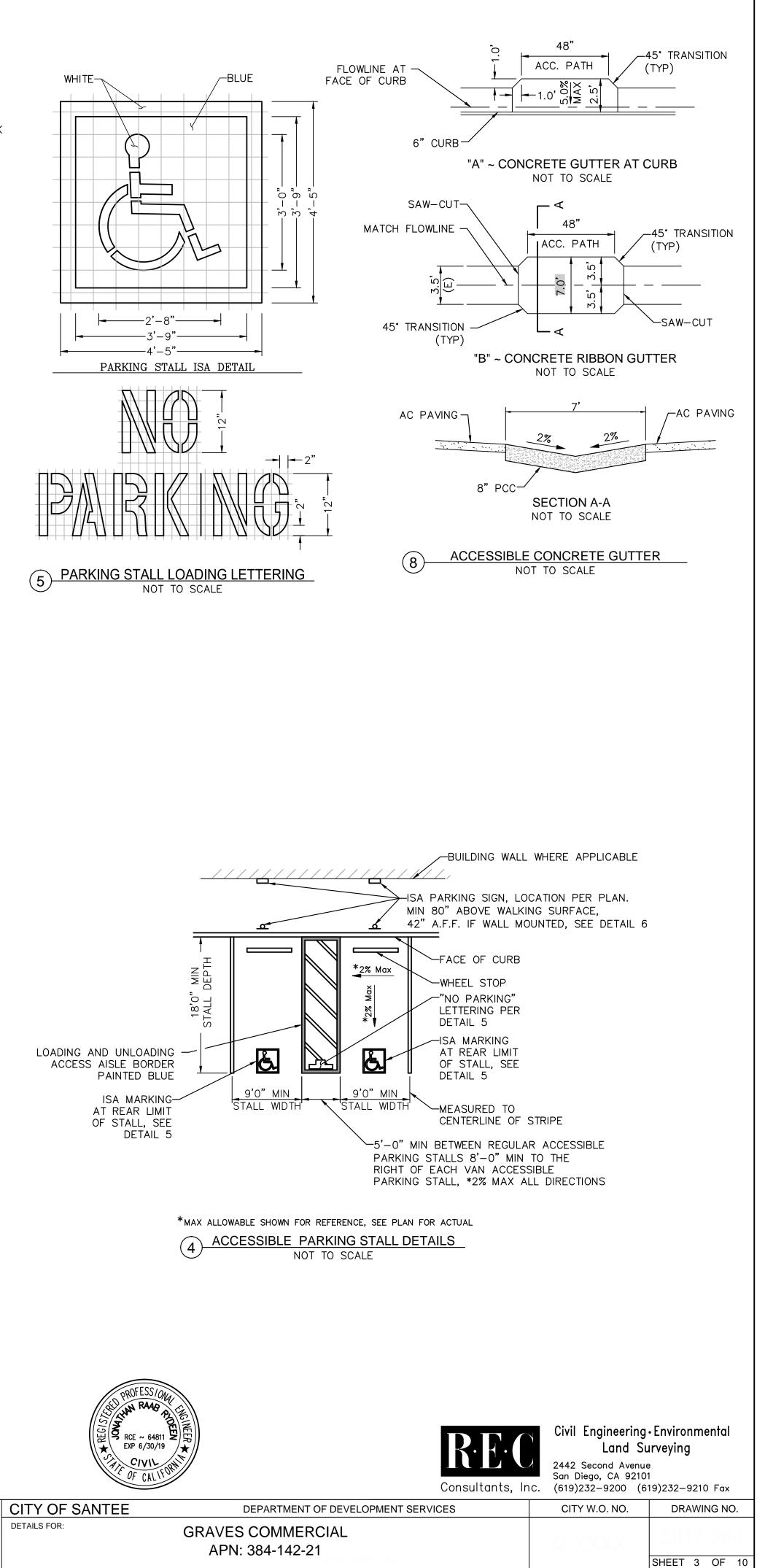
DATE COMPLETED_

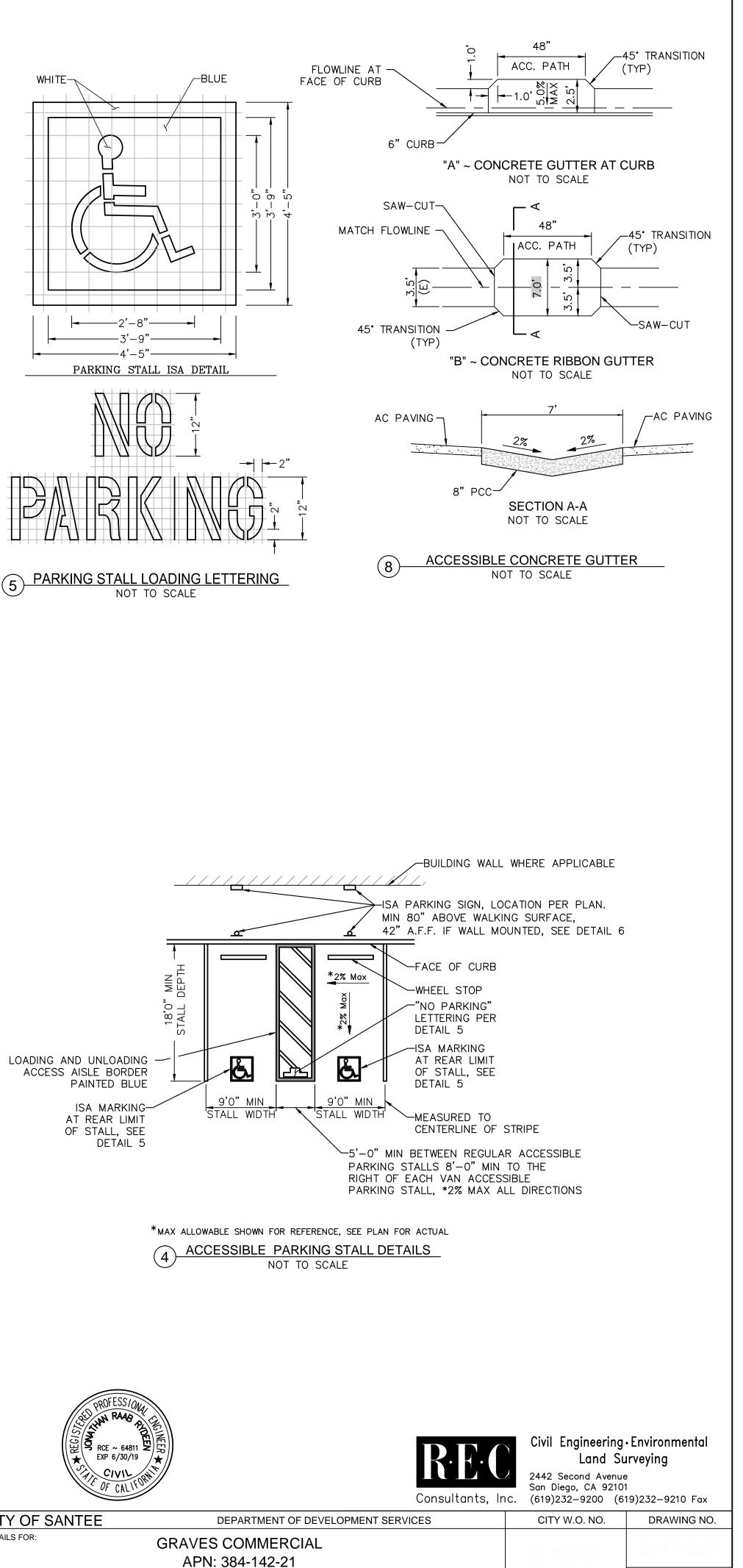
MAP: R.O.S. 10733 ELEVATION: 412.23'

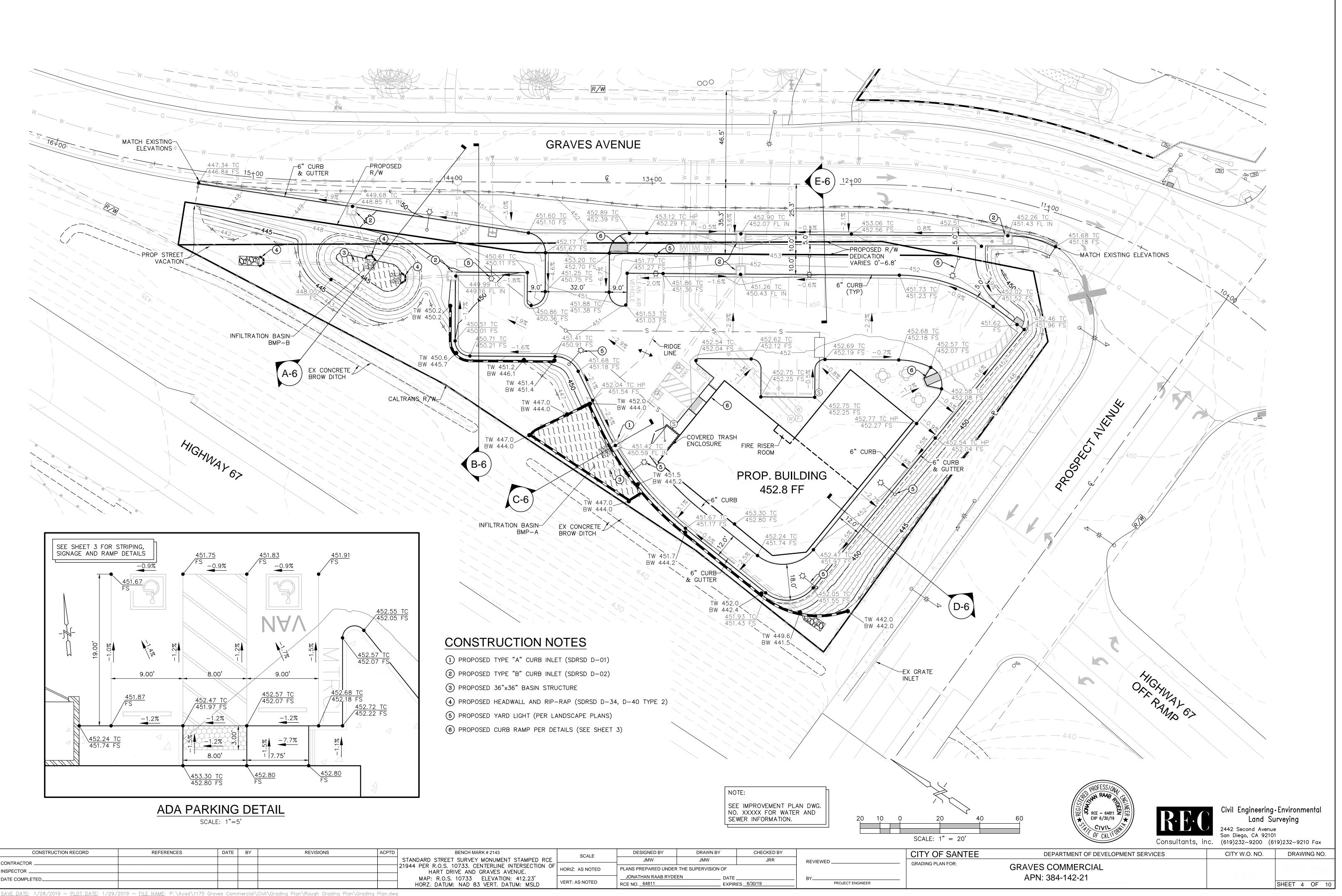
HORZ. DATUM: NAD 83 VERT. DATUM: MSLD

JONATHAN RAAB RYDEEN

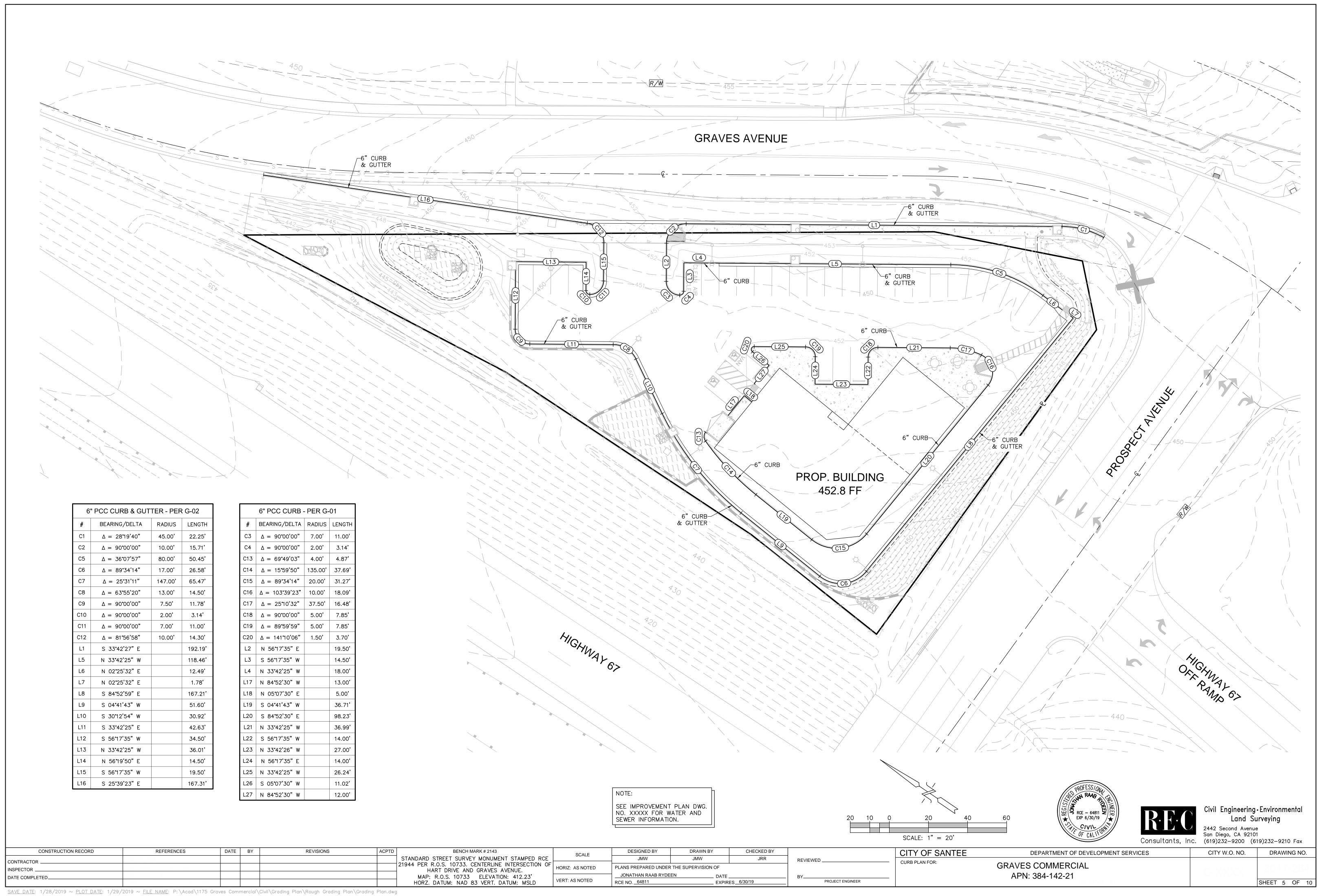
RCE NO. 64811

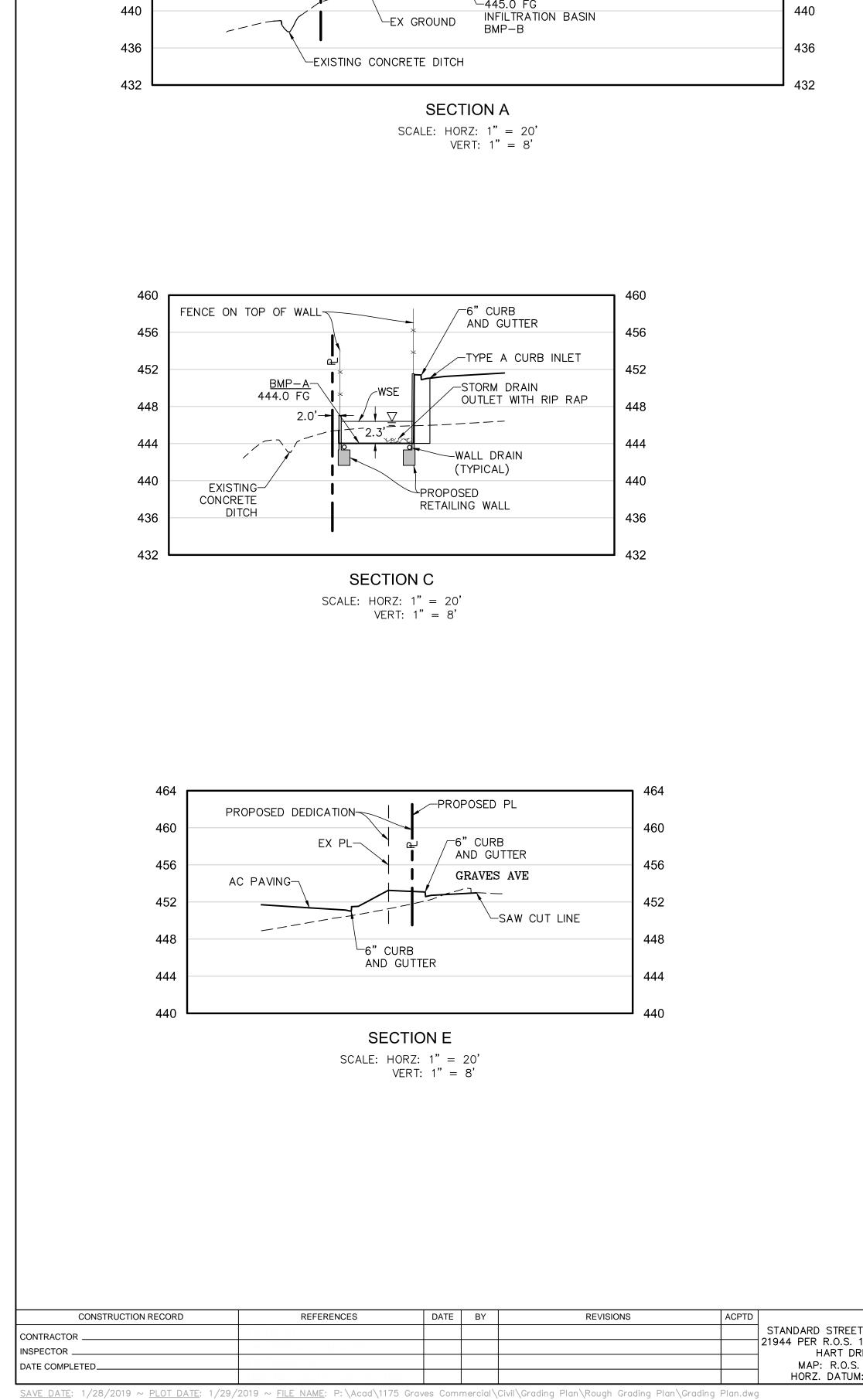

VERT: AS NOTED

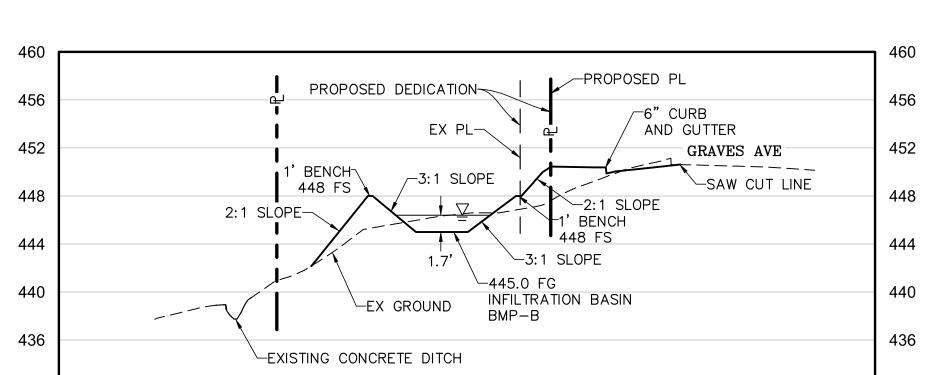

DATE_

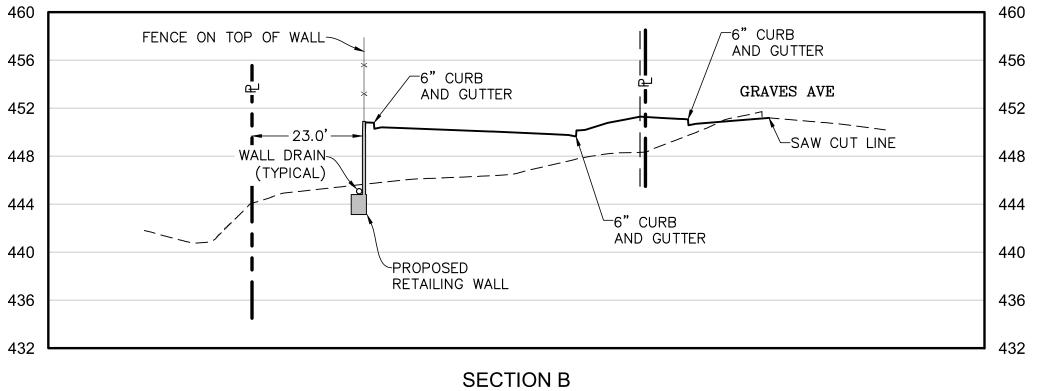

_ EXPIRES _ 6/30/19

BY____

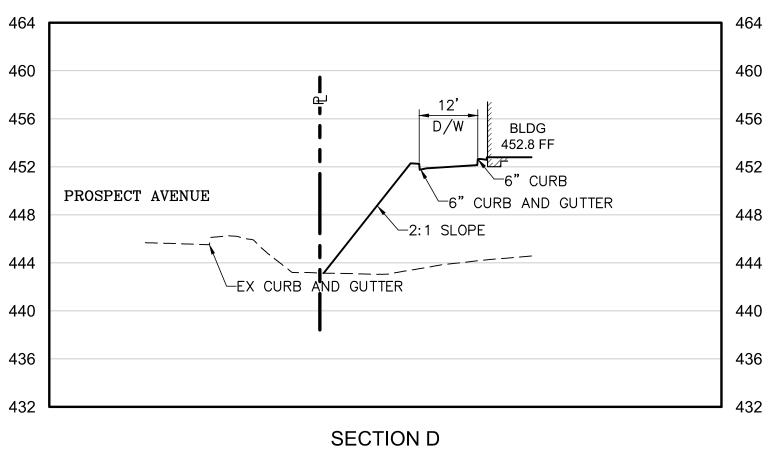

PROJECT ENGINEER


SAVE DATE: 1/28/2019 ~ PLOT DATE: 1/29/2019 ~ FILE NAME: P: \Acad\1175 Graves Commercial\Civil\Grading Plan\Rough Grading Plan\Grading Plan.dwg




6"	PCC CURB & GUT		(G-02
#	BEARING/DELTA	RADIUS	LENGTH
C1	$\Delta = 28^{\circ}19'40''$	45.00'	22.25'
C2	$\Delta = 90^{\circ}00'00"$	10.00'	15.71'
C5	$\Delta = 36^{\circ}07'57"$	80.00'	50.45'
C6	$\Delta = 89^{\circ}34'14''$	17.00'	26.58'
C7	$\Delta = 25^{\circ}31'11''$	147.00'	65.47 '
C8	Δ = 63°55'20"	13.00'	14.50'
C9	$\Delta = 90^{\circ}00'00"$	7.50'	11.78'
C10	$\Delta = 90^{\circ}00'00"$	2.00'	3.14'
C11	$\Delta = 90^{\circ}00'00''$	7.00'	11.00'
C12	Δ = 81°56'58"	10.00'	14.30'
L1	S 33°42'27" E		192.19'
L5	N 33°42'25" W		118.46'
L6	N 02 ° 25'32" E		12.49'
L7	N 02°25'32" E		1.78'
L8	S 84°52'59" E		167.21'
L9	S 04°41'43" W		51.60'
L10	S 30°12'54" W		30.92'
L11	S 33°42'25" E		42.63'
L12	S 56°17'35" W		34.50'
L13	N 33°42'25" W		36.01'
L14	N 56°19'50" E		14.50'
L15	S 56°17'35" W		19.50'
L16	S 25°39'23" E		167.31'

6" PCC CURB - PER G-01									
#	BEARING/DELTA	RADIUS	LENGTH						
C3	$\Delta = 90^{\circ}00'00''$	7.00'	11.00'						
C4	$\Delta = 90^{\circ}00'00''$	2.00'	3.14'						
C13	$\Delta = 69^{\circ}49'03"$	4.00'	4.87'						
C14	$\Delta = 15^{\circ}59'50''$	135.00'	37.69'						
C15	$\Delta = 89^{\circ}34'14''$	20.00'	31.27'						
C16	$\Delta = 103^{\circ}39'23''$	10.00'	18.09'						
C17	$\Delta = 25^{\circ}10'32''$	37.50'	16.48'						
C18	$\Delta = 90^{\circ}00'00''$	5.00'	7.85'						
C19	$\Delta = 89^{\circ}59'59''$	5.00'	7.85'						
C20	$\Delta = 141^{\circ}10'06"$	1.50'	3.70'						
L2	N 56°17'35" E		19.50'						
L3	S 56°17'35" W		14.50'						
L4	N 33°42'25" W		18.00'						
L17	N 84 ° 52'30" W		13.00'						
L18	N 05°07'30" E		5.00'						
L19	S 04°41'43" W		36.71'						
L20	S 84°52'30" E		98.23'						
L21	N 33°42'25" W		36.99'						
L22	S 56°17'35" W		14.00'						
L23	N 33°42'26" W		27.00'						
L24	N 56°17'35" E		14.00'						
L25	N 33°42'25" W		26.24'						
L26	S 05°07'30" W		11.02'						
L27	N 84°52'30" W		12.00'						


CONSTRUCTION RECORD	REFERENCES	DATE	BY	REVISIONS	ACPTD	
	TM-06-877					STANDARD STREE
	TM 3696-1 TM 4086-1					21944 PER R.O.S. HART DF
DATE COMPLETED	TM-2005-14					MAP: R.O.S.
	DWG NO. 2017-155 TO 168					HORZ. DATUM

SCALE: HORZ: 1" = 20' VERT: 1" = 8'

SCALE: HORZ: 1" = 20' VERT: 1" = 8'

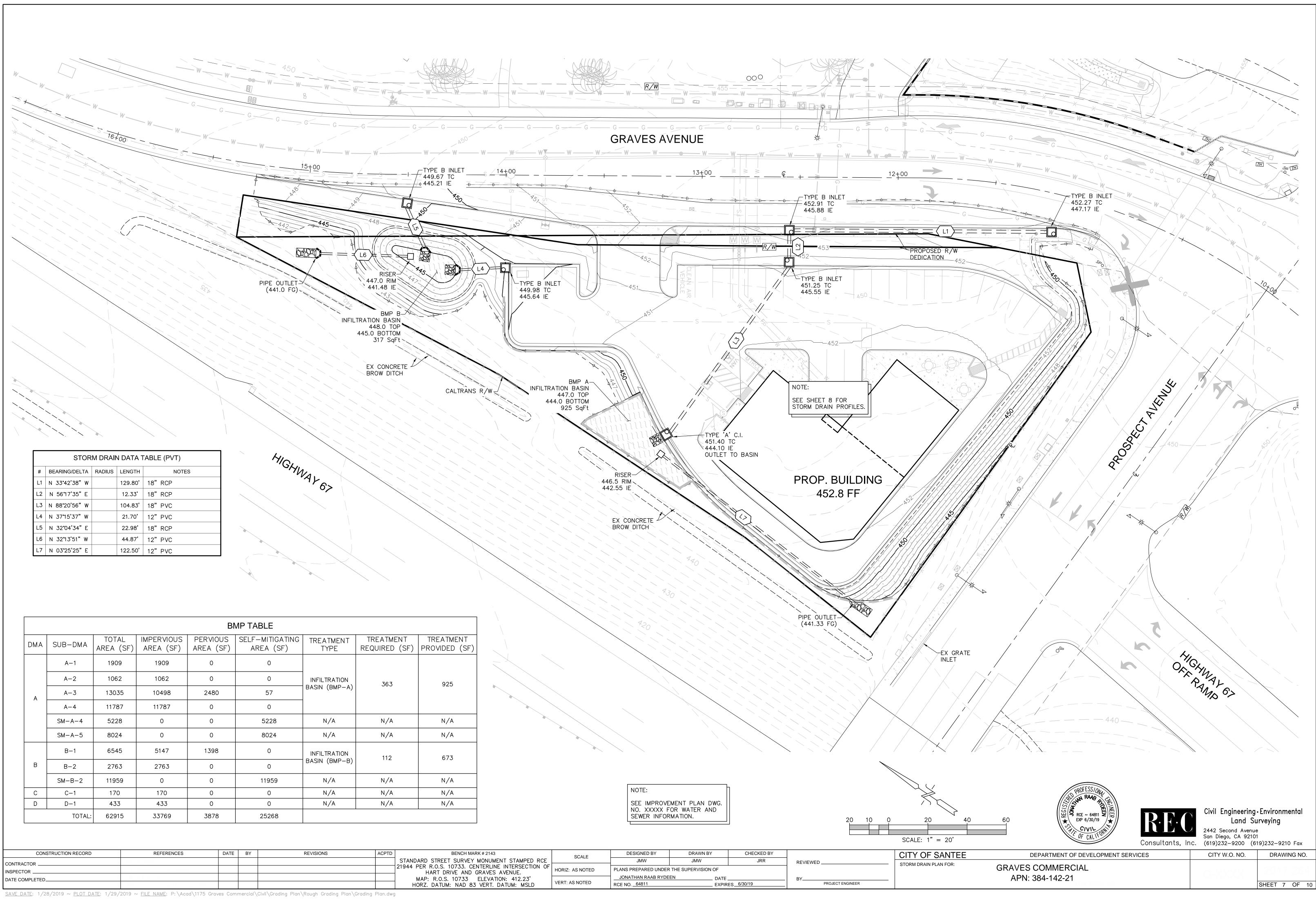
BENCH MARK # 2143	SCALE	DESIGNED BY	DRAWN BY	CHECKED BY		CITY OF S
ARD STREET SURVEY MONUMENT STAMPED RCE		JMW	JMW	JRR	REVIEWED	SITE CROSS SECT
PER R.O.S. 10733. CENTERLINE INTERSECTION OF HART DRIVE AND GRAVES AVENUE.	HORIZ: AS NOTED	PLANS PREPARED UNDER				
MAP: R.O.S. 10733 ELEVATION: 412.23' ORZ. DATUM: NAD 83 VERT. DATUM: MSLD	VERT: AS NOTED	JONATHAN RAAB RYDE RCE NO64811		ES6/30/19	BY PROJECT ENGINEER	

DEPARTMENT OF DEVELOPMENT SERVICES

Civil Engineering.Environmental Land Surveying 2442 Second Avenue San Diego, CA 92101

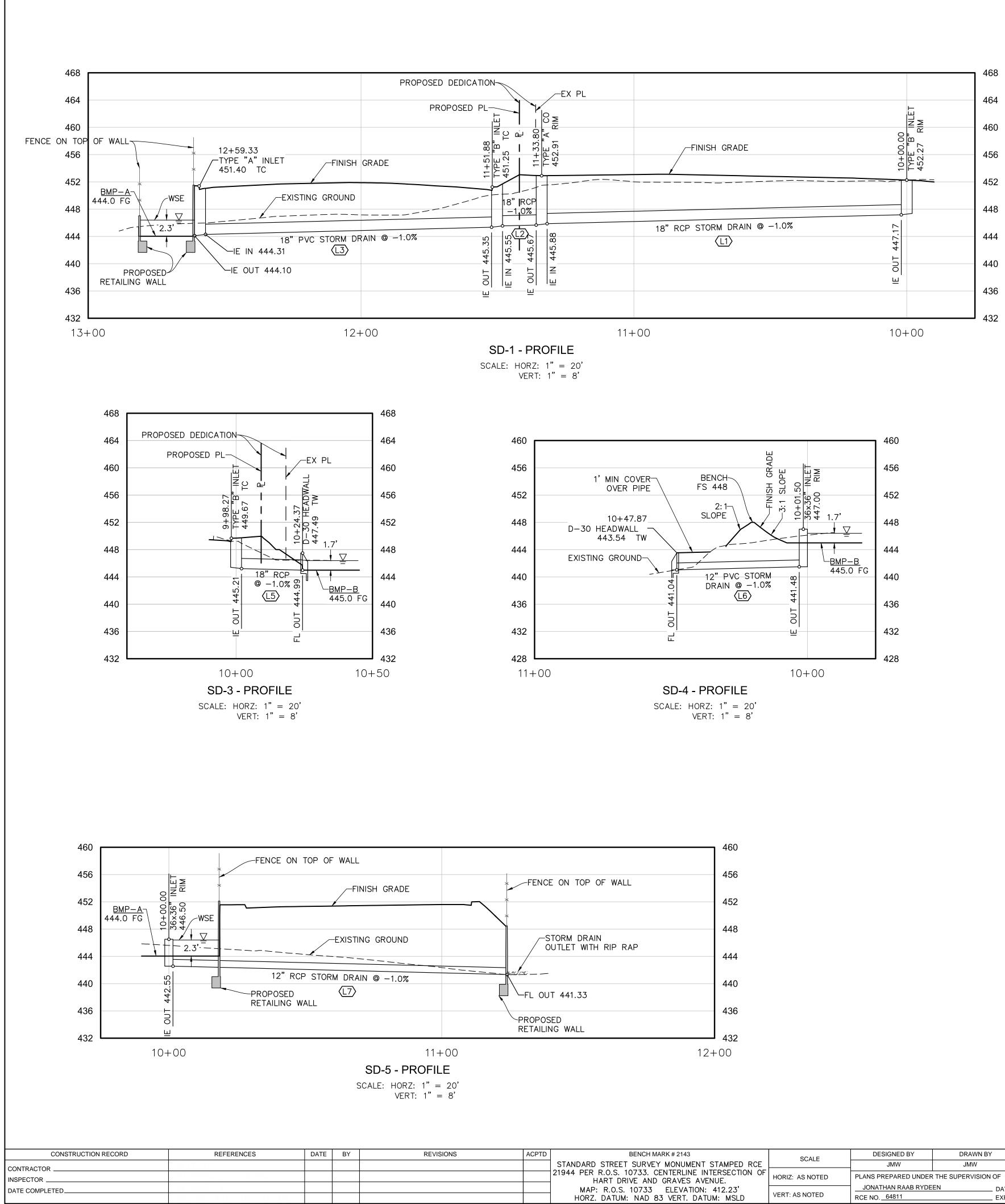
CITY W.O. NO.

Consultants, Inc. (619)232-9200 (619)232-9210 Fax

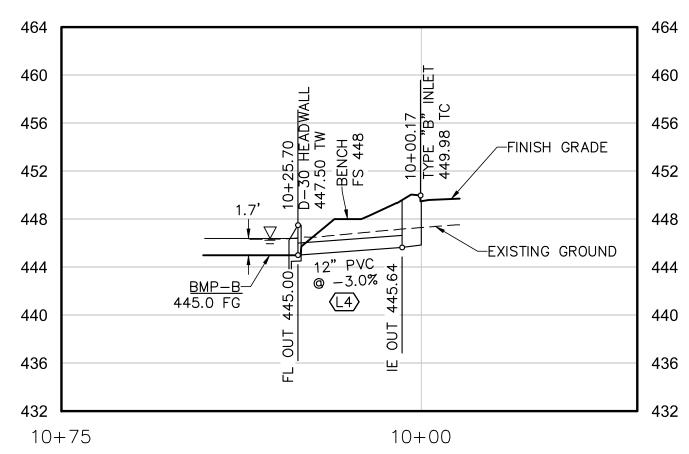

SANTEE ECTIONS FOR:

GRAVES COMMERCIAL APN: 384-142-21

SHEET 6 OF 10


DRAWING NO.

E ANS	N RA40 PL
	CE ~ 64811 €
\sim	© 6/30/19 ★
N. C	PF CALIFORM



				BI	MP TABLE			
DMA	SUB-DMA	TOTAL AREA (SF)	IMPERVIOUS AREA (SF)	PERVIOUS AREA (SF)	SELF-MITIGATING AREA (SF)	TREATMENT TYPE	TREATMENT REQUIRED (SF)	TREAT PROVIDE
A	A-1	1909	1909	0	0			
	A-2	1062	1062	0	0	INFILTRATION	363	9
	A-3	13035	10498	2480	57	BASIN (BMP-A)	303	
	A-4	11787	11787	0	0			
	SM-A-4	5228	0	0	5228	N/A	N/A	N,
	SM-A-5	8024	0	0	8024	N/A	N/A	N,
	B-1	6545	5147	1398	0	INFILTRATION	112	67
В	B-2	2763	2763	0	0	BASIN (BMP-B)	112	
	SM-B-2	11959	0	0	11959	N/A	N/A	N,
С	C-1	170	170	0	0	N/A	N/A	N,
D	D-1	433	433	0	0	N/A	N/A	N,
	TOTAL:	62915	33769	3878	25268			

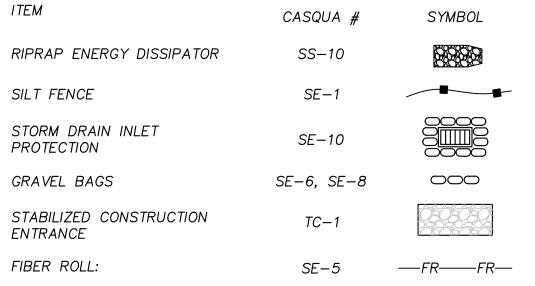
CONSTRUCTION RECORD	REFERENCES	DATE	BY	REVISIONS	ACPTD	
	TM-06-877					STANDARD STREE
	TM 3696-1 TM 4086-1					21944 PER R.O.S. HART D
DATE COMPLETED	TM 2005-14					MAP: R.O.S
	DWG NO. 2017-155 TO 168					HORZ. DATU

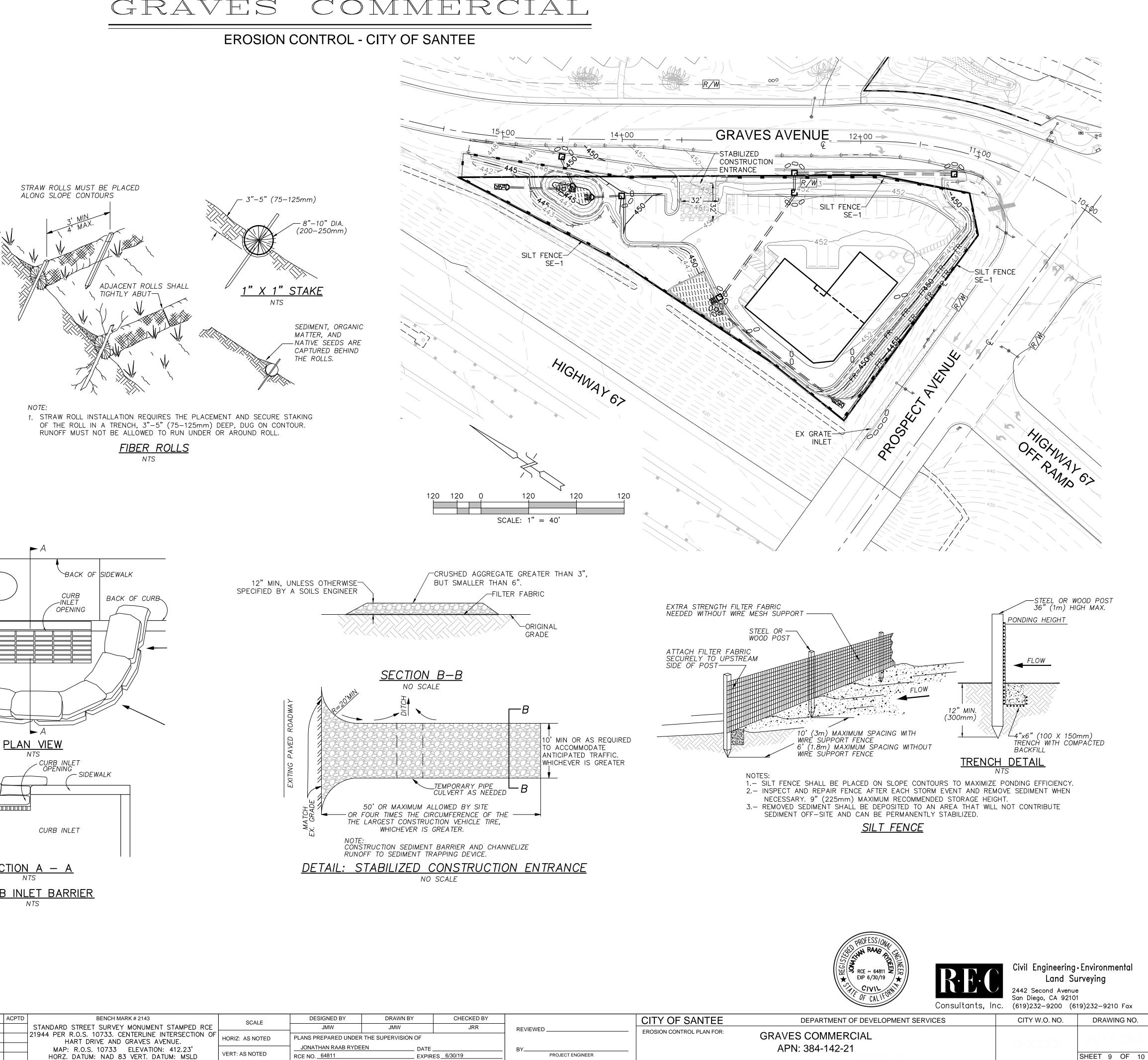
SAVE DATE: 1/28/2019 ~ PLOT DATE: 1/29/2019 ~ FILE NAME: P:\Acad\1175 Graves Commercial\Civil\Grading Plan\Rough Grading Plan\Grading Plan.dwg

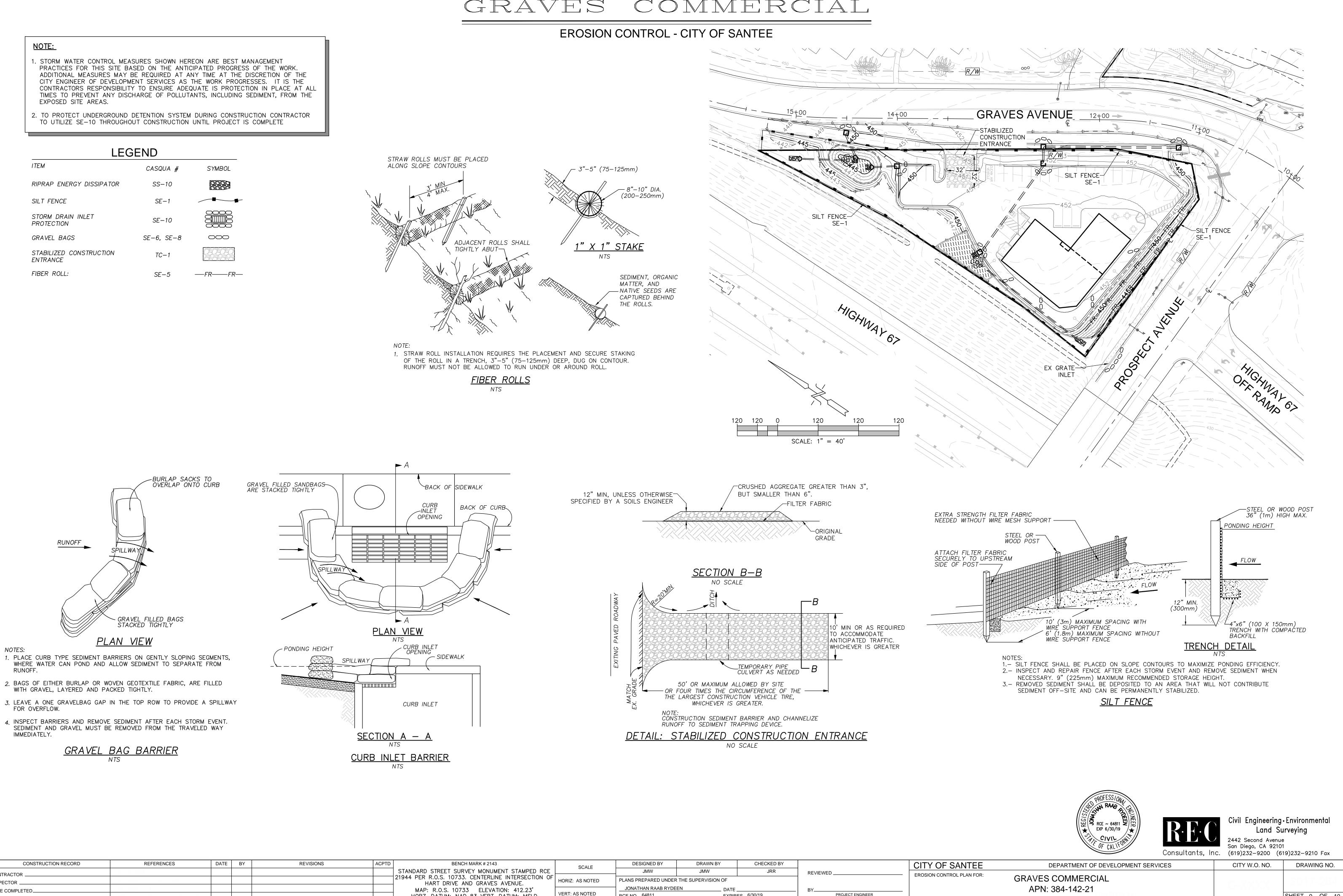
BENCH MARK # 2143	SCALE	DESIGNED BY	DRAWN BY	CHECKED BY		CITY OF S
EET SURVEY MONUMENT STAMPED RCE		JMW	JMW	JRR	REVIEWED	STORM DRAIN PRO
S. 10733. CENTERLINE INTERSECTION OF DRIVE AND GRAVES AVENUE.	HORIZ: AS NOTED	PLANS PREPARED UNDER	THE SUPERVISION OF			
D.S. 10733 ELEVATION: 412.23' IUM: NAD 83 VERT. DATUM: MSLD	VERT: AS NOTED	JONATHAN RAAB RYDE RCE NO64811	DAIL_	ES6/30/19	BY PROJECT ENGINEER	

DEPARTMENT OF DEVELOPMENT SERVICES

Civil Engineering.Environmental Land Surveying


2442 Second Avenue San Diego, CA 92101 Consultants, Inc. (619)232-9200 (619)232-9210 Fax CITY W.O. NO. DRAWING NO.


SANTEE PROFILES FOR:


GRAVES COMMERCIAL APN: 384-142-21

SHEET 8 OF 10

- 1. STORM WATER CONTROL MEASURES SHOWN HEREON ARE BEST MANAGEMENT PRACTICES FOR THIS SITE BASED ON THE ANTICIPATED PROGRESS OF THE WORK. ADDITIONAL MEASURES MAY BE REQUIRED AT ANY TIME AT THE DISCRETION OF THE CITY ENGINEER OF DEVELOPMENT SERVICES AS THE WORK PROGRESSES. IT IS THE CONTRACTORS RESPONSIBILITY TO ENSURE ADEQUATE IS PROTECTION IN PLACE AT ALL TIMES TO PREVENT ANY DISCHARGE OF POLLUTANTS, INCLUDING SEDIMENT, FROM THE EXPOSED SITE AREAS.
- TO UTILIZE SE-10 THROUGHOUT CONSTRUCTION UNTIL PROJECT IS COMPLETE

CONTRACTOR INSPECTOR _ DATE COMPLETED_ HORZ. DATU

SAVE DATE: 1/28/2019 ~ PLOT DATE: 1/29/2019 ~ FILE NAME: P:\Acad\1175 Graves Commercial\Civil\Grading Plan\Rough Grading Plan\Grading Plan.dwg

GRAVES COMMERCIAL

BENCH MARK # 2143	SCALE	DESIGNED BY	DRAWN BY	CHECKED BY		CITY OF S
REET SURVEY MONUMENT STAMPED RCE		JMW	JMW	JRR	REVIEWED	EROSION CONTRO
S. 10733. CENTERLINE INTERSECTION OF DRIVE AND GRAVES AVENUE.	HORIZ: AS NOTED	PLANS PREPARED UNDER				
D.S. 10733 ELEVATION: 412.23' TUM: NAD 83 VERT. DATUM: MSLD	VERT: AS NOTED	JONATHAN RAAB RYDEE RCE NO. 64811	DAIL_	S6/30/19	BY PROJECT ENGINEER	

CHAPTER 9 – APPENDICES

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING

NOAA Atlas 14, Volume 6, Version 2 Location name: Santee, California, USA* Latitude: 32.8315°, Longitude: -116.9612° Elevation: 449.14 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

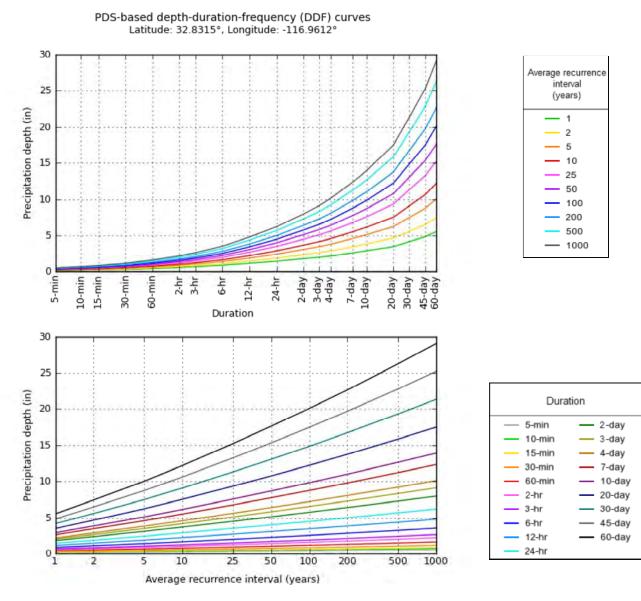
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.115 (0.097-0.138)	0.145 (0.122-0.175)	0.185 (0.155-0.224)	0.219 (0.182–0.266)	0.265 (0.212-0.335)	0.302 (0.236-0.389)	0.340 (0.259-0.449)	0.379 (0.281-0.516)	0.433 (0.307–0.617)	0.475 (0.325-0.702
10-min	0.165 (0.139–0.198)	0.208 (0.175-0.250)	0.266 (0.222-0.321)	0.314 (0.260-0.382)	0.380 (0.305–0.480)	0.433 (0.339–0.558)	0.487 (0.371–0.644)	0.543 (0.402-0.740)	0.621 (0.440-0.884)	0.681 (0.466-1.01)
15-min	0.199 (0.168-0.240)	0.251 (0.211-0.303)	0.321 (0.269–0.388)	0.379 (0.315-0.462)	0.460 (0.368-0.580)	0.523 (0.410-0.674)	0.589 (0.449-0.779)	0.657 (0.487-0.895)	0.751 (0.532-1.07)	0.824 (0.564-1.22)
30-min	0.277 (0.233-0.333)	0.350 (0.293-0.421)	0.447 (0.374-0.539)	0.527 (0.438-0.642)	0.640 (0.512-0.807)	0.727 (0.570-0.938)	0.818 (0.625-1.08)	0.913 (0.677-1.25)	1.04 (0.740-1.49)	1.15 (0.784–1.69)
60-min	0.392 (0.330-0.471)	0.494 (0.415-0.595)	0.632 (0.529-0.762)	0.746 (0.619-0.908)	0.904 (0.724-1.14)	1.03 (0.806-1.33)	1.16 (0.883-1.53)	1.29 (0.957-1.76)	1.48 (1.05-2.10)	1.62 (1.11–2.39)
2-hr	0.541 (0.455-0.650)	0.679 (0.570–0.817)	0.864 (0.724-1.04)	1.02 (0.845-1.24)	1.23 (0.986-1.55)	1.40 (1.10-1.80)	1.57 (1.20-2.08)	1.75 (1.30-2.39)	2.00 (1.42-2.85)	2.20 (1.50-3.25)
3-hr	0.650 (0.547-0.781)	0.816 (0.685-0.982)	1.04 (0.869-1.25)	1.22 (1.01–1.49)	1.48 (1.18–1.86)	1.68 (1.32–2.16)	1.89 (1.44-2.50)	2.10 (1.56-2.87)	2.40 (1.70-3.42)	2.64 (1.80-3.89)
6-hr	0.867 (0.729-1.04)	1.09 (0.917-1.32)	1.39 (1.17–1.68)	1.64 (1.36-2.00)	1.98 (1.59–2.50)	2.25 (1.76–2.90)	2.53 (1.93–3.35)	2.82 (2.09–3.84)	3.22 (2.28-4.58)	3.53 (2.42–5.22)
12-hr	1.14 (0.961–1.37)	1.46 (1.23–1.76)	1.88 (1.57–2.27)	2.22 (1.85-2.71)	2.70 (2.16–3.40)	3.07 (2.40-3.95)	3.44 (2.63–4.56)	3.83 (2.84–5.22)	4.37 (3.10-6.22)	4.78 (3.27–7.06)
24-hr	1.44 (1.26-1.67)	1.86 (1.64-2.16)	2.42 (2.12-2.82)	2.88 (2.50-3.38)	3.50 (2.96-4.24)	3.98 (3.30-4.91)	4.47 (3.62–5.64)	4.98 (3.93-6.44)	5.67 (4.30-7.62)	6.20 (4.56-8.61)
2-day	1.80 (1.59–2.09)	2.36 (2.07–2.74)	3.09 (2.71–3.59)	3.68 (3.20-4.32)	4.49 (3.79–5.43)	5.11 (4.23–6.30)	5.75 (4.65-7.25)	6.40 (5.05-8.28)	7.29 (5.53-9.80)	7.97 (5.86–11.1)
3-day	2.00 (1.76-2.32)	2.64 (2.32–3.06)	3.48 (3.05-4.05)	4.16 (3.62–4.88)	5.09 (4.30-6.16)	5.81 (4.81-7.16)	6.54 (5.29-8.25)	7.30 (5.75-9.44)	8.32 (6.32–11.2)	9.12 (6.70-12.7)
4-day	2.17 (1.91–2.52)	2.87 (2.53-3.34)	3.80 (3.34-4.43)	4.56 (3.97–5.35)	5.60 (4.72-6.77)	6.40 (5.29-7.89)	7.21 (5.84-9.09)	8.06 (6.35-10.4)	9.21 (6.99–12.4)	10.1 (7.43–14.0)
7-day	2.60 (2.29-3.02)	3.45 (3.03-4.01)	4.57 (4.01-5.32)	5.50 (4.78-6.45)	6.76 (5.70-8.18)	7.74 (6.41–9.54)	8.74 (7.08–11.0)	9.79 (7.72-12.7)	11.2 (8.51–15.1)	12.3 (9.06–17.1)
10-day	2.89 (2.54-3.35)	3.84 (3.37–4.45)	5.10 (4.47–5.93)	6.13 (5.34–7.19)	7.56 (6.38–9.15)	8.67 (7.18–10.7)	9.81 (7.94–12.4)	11.0 (8.67–14.2)	12.6 (9.58–17.0)	13.9 (10.2–19.3)
20-day	3.48 (3.06-4.03)	4.65 (4.09–5.40)	6.22 (5.46-7.24)	7.53 (6.55-8.83)	9.34 (7.88–11.3)	10.8 (8.90–13.3)	12.2 (9.88–15.4)	13.7 (10.8–17.8)	15.8 (12.0-21.3)	17.5 (12.8-24.3)
30-day	4.16 (3.66-4.82)	5.58 (4.90-6.47)	7.49 (6.56-8.71)	9.08 (7.90–10.6)	11.3 (9.53–13.7)	13.0 (10.8–16.1)	14.8 (12.0-18.7)	16.7 (13.2–21.6)	19.3 (14.6-26.0)	21.3 (15.7–29.6)
45-day	4.82 (4.24–5.59)	6.48 (5.69-7.52)	8.72 (7.65–10.2)	10.6 (9.22–12.4)	13.2 (11.2–16.0)	15.3 (12.7–18.9)	17.4 (14.1–22.0)	19.7 (15.5–25.5)	22.8 (17.3-30.6)	25.2 (18.5-35.0)
60-day	5.53 (4.86-6.41)	7.43 (6.53–8.63)	10.0 (8.77–11.7)	12.2 (10.6–14.3)	15.2 (12.8–18.4)	17.6 (14.6–21.7)	20.1 (16.2–25.3)	22.7 (17.9–29.3)	26.2 (19.9–35.3)	29.1 (21.4-40.4)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

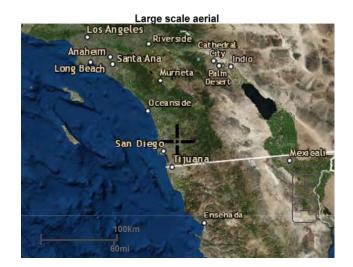
Back to Top

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Tue Dec 5 20:39:30 2017

Back to Top

Maps & aerials

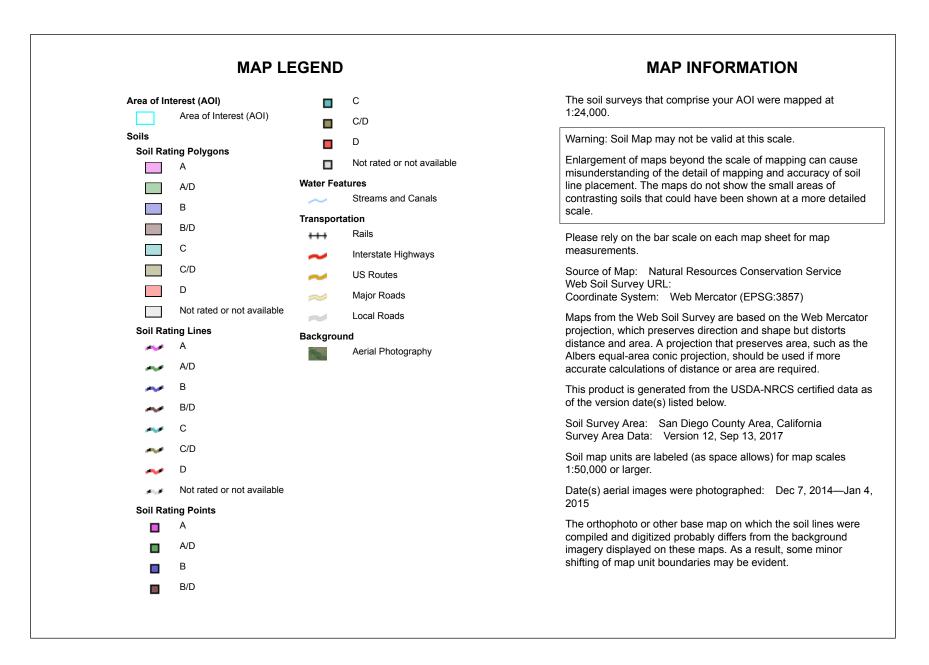

PKY

733km

Large scale map Los Angeles Riverside Anaheim Cathedral Indio Long Beach Palm Desert . 10 San ta Ana Murrieta Oceanside San Diego Mexicali lijuana +Ensenada 100km 60mi

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=32.8315&lon=-116.9612&da... 12/5/2017

Back to Top


US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
RaC	Ramona sandy loam, 5 to 9 percent slopes	С	0.0	0.9%
VaD	Visalia sandy loam, 9 to 15 percent slopes	A	4.0	99.1%
Totals for Area of Intere	est		4.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

LEGEND

SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined.

ZONE AE Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.

Special Flood Hazard Area formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the ZONE AR 1% annual chance or greater flood.

ZONE A99 Areas to be protected from 1% annual chance flood event by a Federal flood protection system under construction; no Base Flood Elevations determined.

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encreachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

ZONE X

OTHER AREAS

ZONE D

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and ORAs are normally located within or adjacent to Special Flood Hazard Areas.

Coro ateas and orwanic risk hard while or adjacent to operating hour makes wheas.				
	1% annual chance floodplain boundary			
	0.2% annual chance floodplain boundary			
	Floodway boundary			
	Zone D boundary			
*****************	CBRS and OFA boundary			
	Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths, or flood velocities			
~~~~ 513 ~~~~	Base Flood Elevation line and value; elevation in feet*			
(EL.987)	Base Flood Elevation value where uniform within zone; elevation in feet+			
* Referenced to the North American	Vertical Datum of 1988			
AA	Cross section line			
නන	Transect line			
97"07"30", 32"22"30"	Geographic coordinates referenced to the North American Datum of 1983 (NAD 83), Western Hemisphere			
427600mE	1000-meter Universal Transverse Mercator grid ticks, zone 11			
6000000 FT	5000-foot grid values: California State Plane coordinate system, Zone VI (FIPSZONE = 406), Lambert projection			
DX5510	Bench mark (see explanation in Notes to Users section of this FIRM panel)			
<ul> <li>M1.5</li> </ul>	River Mile			
MAP REPOSITORIES Refer to Map Repositories list on Map Index				
EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP June 19, 1997				
EFFECTIVE DATE(\$) OF REVISION(3) TO THIS PANEL Way 15, 2012 – to update corporate limits, to add roads and road names, to incorporate previously				

issued Letters of Map Revision, and to update map elevations to North American Vertical Datum of 1988

#### FEMA's National Flood Hazard Layer (Official)





August 30, 2016 (Revised September 28, 2018)

Development Contractor, Inc. 110 Town Center Parkway Santee, CA 92071

Attention: Michael Grant, President

SUBJECT: Infiltration Testing Results 8606 Graves Avenue Santee, California

Mr. Grant:

In accordance with our proposal dated July 13, 2016, Group Delta Consultants, Inc. (Group Delta) is submitting the results from the infiltration testing for the proposed development of the above referenced site. Figure No. 1 shows the location of the site. We have revised this letter to respond to a comment in a City of Santee review letter dated July 18, 2017 requesting an update to incorporate the latest proposed plans.

We have based on our understanding of the project on a preliminary grading plan prepared by Walsh Engineering & Surveying dated August 30, 2017 that shows the location of the two proposed infiltration basins. The basins will be in undeveloped landscaped areas within the western portion of the site. An approximately 10-foot high Segmental Retaining Wall (SRW) will form a portion of the basin walls. The bottom elevation of the basins (441.0 and 442.5 feet) will be located a minimum horizontal distance ranging from about 25 to 30 feet from the corresponding elevation (441.0 and 442.5 feet) near the crest of an existing west facing cut slope along the eastern side of State Route 67. Figure No. 2 shows the location of the proposed infiltration basins. The latest preliminary grading is also attached for reference.

#### PURPOSE and SCOPE OF WORK

The purpose of our geotechnical services was to evaluate the geotechnical aspects of storm water management in accordance with the City of Santee Design Manual. The scope of work consisted of the following tasks:

- Evaluation of Feasibility for On-Site Storm Water Infiltration
- Test Boring
- Laboratory Testing
- Infiltration Testing

The following sections provide specific information about each task.

#### Evaluation of Feasibility for On-Site Storm Water Infiltration

Group Delta reviewed the site and subsurface conditions relative to the criteria stated in Form I-8: Categorization of Infiltration Feasibility Condition in the Work. The completed form is attached to this letter.

#### **Test Boring**

Group Delta advanced one test boring (B-1) to a depth 20.5 feet to evaluate soil characteristics and the depth of groundwater. Figure 2 shows the location of this boring. A descriptive log for this boring is attached to this letter.

#### Laboratory Testing

Disturbed soil samples were obtained from the test borings for particle size distribution testing to evaluate the physical characteristics of the soils. Test results are attached to this letter.

#### **Infiltration Testing**

Infiltration testing was conducted using the Borehole Percolation Test method (Riverside County Percolation Test, 2011) referenced in the Design Manual. Four tests (B-2 through B-5) were completed at the approximate locations shown on Figure No. 2. The depth of all the infiltration tests was five feet. Descriptive logs for the borings associated with these tests are attached.

#### FINDINGS

#### **Evaluation of Feasibility**

The feasibility screening category is "Full Infiltration". The completed form I-8 is attached.

#### **Test Boring**

Residual soils associated with the weathering of granite that transitioned to decomposed granite with depth were encountered in test boring B-1. The soils observed in driven split barrel samplers consisted of fine to medium grained silty sand. Based on drive sampler resistance, the relative density of these materials was dense to very dense. No groundwater was encountered.

#### Laboratory Testing

The soils tested were classified as Silty Sand (SM) per ASTM D2487 with average of about 29 percent fines (silt and clay). The test results are attached.

#### **Infiltration Testing**

The average design infiltration is 0.6 inches/hour. The infiltration test data is summarized in the table below.

Test Hole	Stabilized Infiltration Rate inches/hour	Design Infiltration Rate* inches/hour
B-2	1.32	0.6
B-3	0.54	0.3
B-4	2.24	1.1
B-5	0.78	0.4
	Average	0.6

* Design infiltration rate adopted a factor of safety of 2.0.

#### CONCLUSIONS

The site should be suitable for full infiltration. The average design infiltration is greater than 0.5 inches/hour, which is the recommended minimum infiltration rate for full infiltration per the Design Manual. In our opinion, it is geotechnically feasible to adopt full infiltration at the proposed basin locations. Note the following items regarding this conclusion.



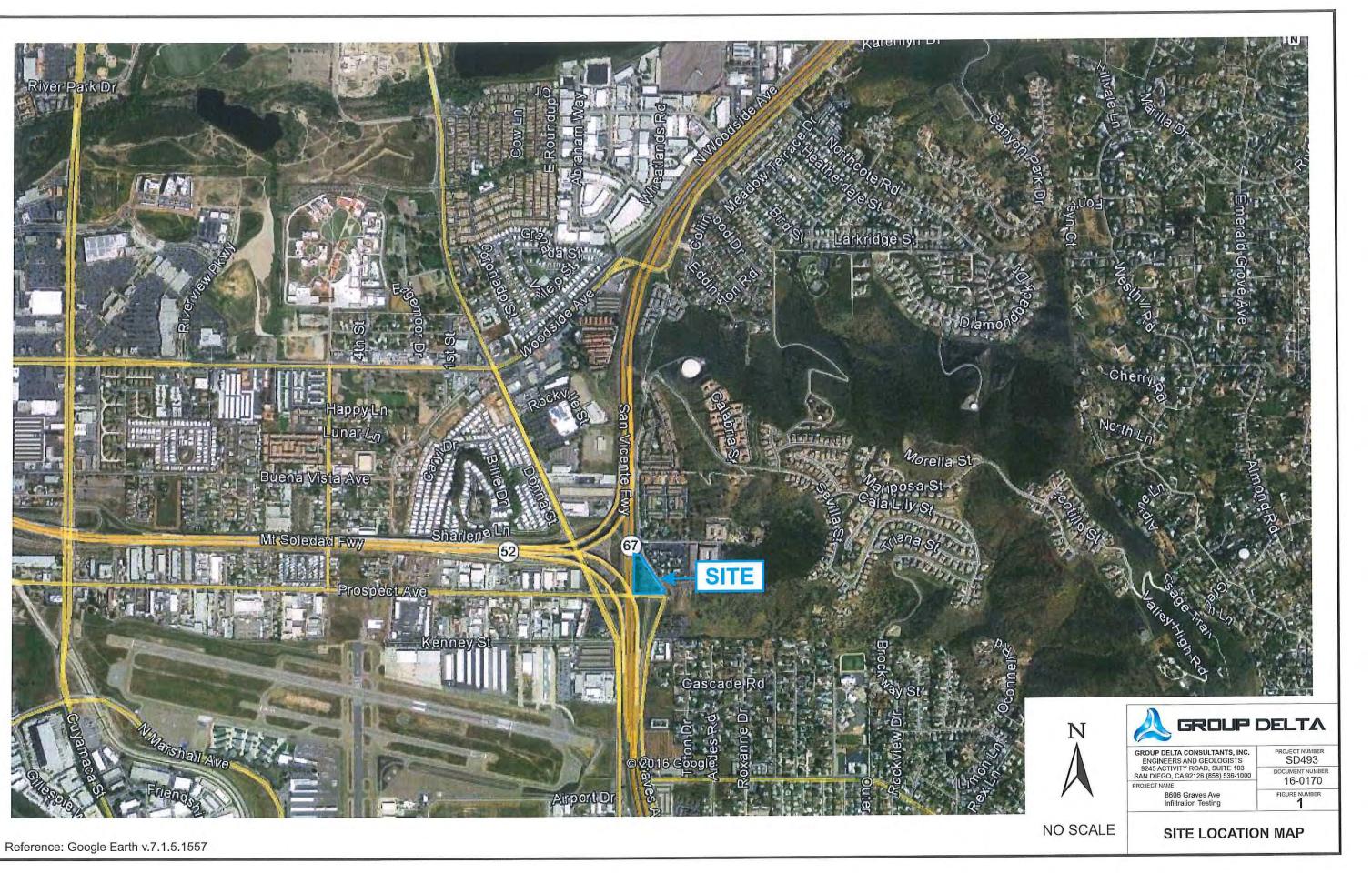
GDC Project No. SD493 August 30, 2016 (Revised September 28, 2017) Page 3

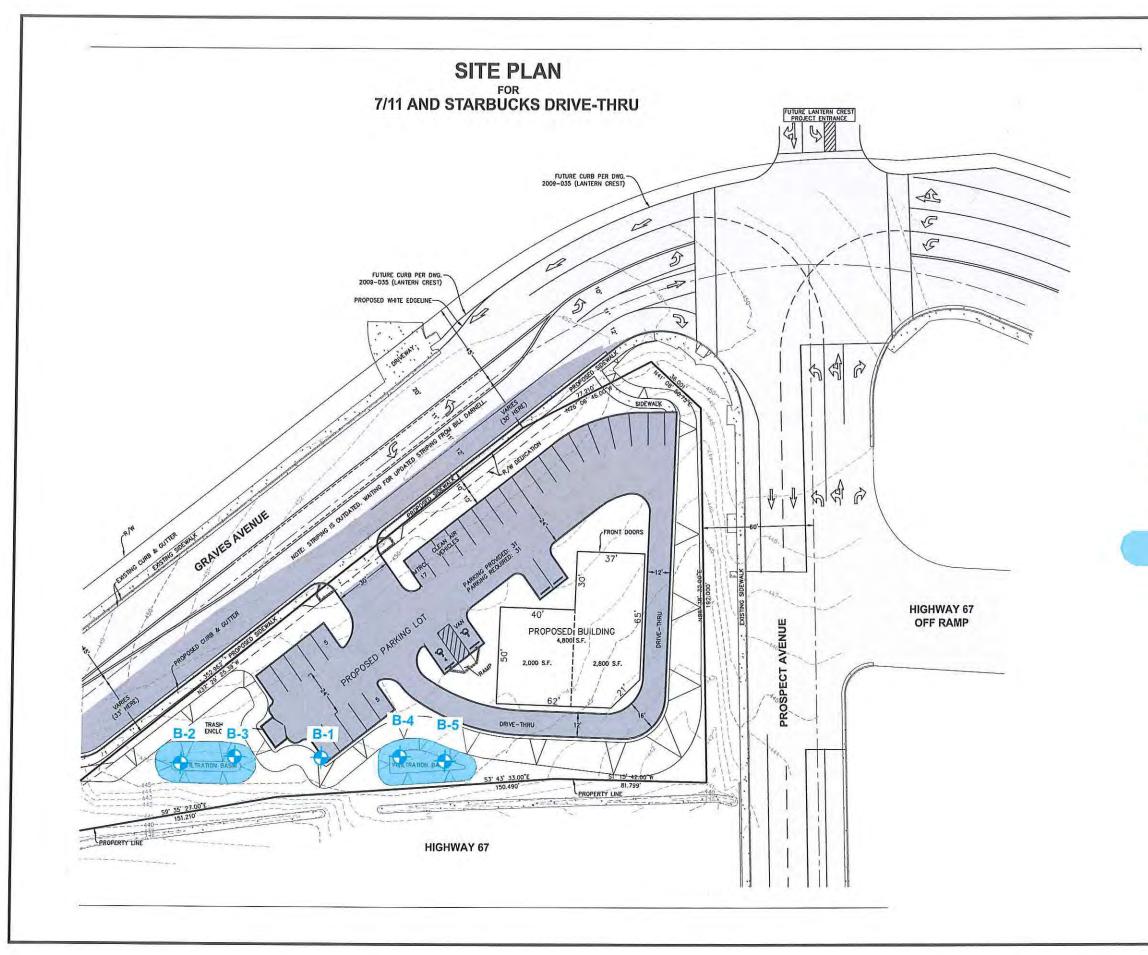
- The infiltration basins will be in undeveloped, landscaped areas of the site.
- The bottom elevation of the basins (441.0 and 442.5 feet) will be located a minimum horizontal distance ranging from about 25 to 30 feet from the corresponding elevation (441.0 and 442.5 feet) near the crest of an existing west facing slope along the eastern portion of State Route 67.
- Considering the findings from test boring B-1, the existing west facing slope along the eastern portion of State Route 67 should be formed in dense to very dense residual soils and decomposed granite.
- The reinforced zone of the proposed SRWs that forms part of the basins will need to be deepened to extend below the bottom elevation of the basin.
- We understand there are no existing or proposed utilities near the proposed basins.
- Additional geotechnical considerations are discussed in the attached Form I-8.

#### LIMITATIONS

The conclusion and recommendations stated in this letter assume that soil and groundwater conditions do not deviate appreciably from those locally observed by Group Delta. Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical engineers and geologists practicing in this or similar localities. No warranty, express or implied, is made as to the conclusions and professional advice included in this report. We appreciate this opportunity to be of professional service. Feel free to contact the office with any questions or comments, or if you need anything else.

**GROUP DELTA CONSULTANTS** 


Charles Robin (Rob) Stroop, G.E. 2298 Associate Geotechnical Engineer




Attachments: Figure No. 1, Site Location Plan
 Figure No. 2, Exploration Plan
 Boring Legend and Records
 Laboratory Test Results
 Form I-8: Categorization of Infiltration Feasibility Condition
 Preliminary Grading Plan, Walsh Engineering & Surveying, August 30, 2017

Distribution: (1) Addressee, Mr. Michael Grant (<u>grant.michael@sbcglobal.net</u>) (2) Walsh Engineering & Surveying, William O'Gorman (<u>william@walsh-engineering.com</u>)







#### **EXPLANATION:**



Approximate location of borings.

Approximate location of storm water infiltration basins



#### SOIL IDENTIFICATION AND DESCRIPTION SEQUENCE

g			er to tion	g	-
Sequence	Identification Components	Field	Lab	Required	Optional
1	Group Name	2.5.2	3.2.2		
2	Group Symbol	2.5.2	3.2.2	•	
	Description Components				
з	Consistency of Cohesive Soil	2.5.3	3.2.3	•	
4	Apparent Density of Cohesionless Soil	2.5.4		•	
5	Color	2.5.5		•	
6	Moisture	2.5.6		•	
	Percent or Proportion of Soil	2.5.7	3.2.4	•	0
7	Particle Size	2.5.8	2.5.8		0
	Particle Angularity	2.5.9			0
	Particle Shape	2.5.10			0
8	Plasticity (for fine- grained soil)	2.5.11	3.2.5		0
9	Dry Strength (for fine-grained soil)	2.5.12			0
10	Dilatency (for fine- grained soil)	2.5,13			0
11	Toughness (for fine-grained soil)	2.5.14			0
12	Structure	2.5.15		1943	0
13	Cementation	2.5.16	1	•	
14	Percent of Cobbles and Boulders	2.5.17			
14	Description of Cobbles and Boulders	2.5.18		•	
15	Consistency Field Test Result	2.5.3	1.1	•	1
16	Additional Comments	2.5.19			0

## Describe the soil using descriptive terms in the order shown

#### Minimum Required Sequence:

USCS Group Name (Group Symbol); Consistency or Density; Color; Moisture; Percent or Proportion of Soil; Particle Size; Plasticity (optional).

• = optional for non-Caltrans projects

#### Where applicable:

Cementation; % cobbles & boulders; Description of cobbles & boulders; Consistency field test result

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010).

# 

#### HOLE IDENTIFICATION

Holes are identified using the following convention:

H-YY-NNN

Where:

H: Hole Type Code

YY: 2-digit year

NNN: 3-digit number (001-999)

#### Hole Type Code and Description

Hole Type Code	Description		
A	Auger boring (hollow or solid stem, bucket)		
R	Rotary drilled boring (conventional)		
RC	Rotary core (self-cased wire-line, continuously-sampled)		
RW	Rotary core (self-cased wire-line, no continuously sampled)		
P	Rotary percussion boring (Air)		
HD	Hand driven (1-inch soil tube)		
НА	Hand auger		
D	Driven (dynamic cone penetrometer)		
CPT	Cone Penetration Test		
0	Other (note on LOTB)		

#### **Description Sequence Examples:**

SANDY lean CLAY (CL); very stiff; yellowish brown; moist; mostly fines; some SAND, from fine to medium; few gravels; medium plasticity; PP=2.75.

Well-graded SAND with SILT and GRAVEL and COBBLES (SW-SM); dense; brown; moist; mostly SAND, from fine to coarse; some fine GRAVEL; few fines; weak cementation; 10% GRANITE COBBLES; 3 to 6 inches; hard; subrounded.

Clayey SAND (SC); medium dense, light brown; wet; mostly fine sand,; little fines; low plasticity.

Project No. SD493

8606 Graves Ave BORING RECORD LEGEND #1

_		GROUP SYMBO				FIELD AND LABORATORY TESTING
0.000	/ Symbol GW GP	Group Names Weil-graded GRAVEL Weil-graded GRAVEL with SAND Poorly graded GRAVEL Notice SAND Poorly graded GRAVEL with SAND	Graphic	CL	Group Names Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY Jean CLAY SANDY Jean CLAY GRAVELLY Jean CLAY GRAVELLY Jean CLAY GRAVELLY Jean CLAY with SAND	C Consolidation (ASTM.D 2435) CL Collapse Potential (ASTM D 5333) CP Compaction Curve (CTM 216) CR Corrosion Sulfates Chlorides (CTM 643, CTM 417, CTM 422) CU Consolidated Undrained Triaxial (ASTM D 4767)
	GW-GM GW-GC	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		CL-ML	SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL SANDY SILTY CLAY SANDY SILTY CLAY GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND	DS         Direct Shear (ASTM D 3080)           EI         Expansion Index (ASTM D 4829)           M         Moisture Content (ASTM D 2216)           OC         Organic Content (ASTM D 2974)
	GP-GM GP-GC	Peorly graded GRAVEL with SILT Peorly graded GRAVEL with SILT and SAND Peorly graded GRAVEL with CLAY (or SILTY CLAY) Feerly graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		ML	SILT with SAND SILT with GRAVEL SANDY SILT SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT	P       Permeability (CTM 220)         PA       Particle Size Analysis (ASTM D 422)         PI       Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89, AASHTO T 90)         PL       Point Load Index (ASTM D 5731)
0000000	GM	SILTY GRAVEL SILTY GRAVEL with SAND CLAYEY GRAVEL		OL	ORGANIC Ivan CLAY ORGANIC Ivan CLAY with SAND ORGANIC Ivan CLAY with GRAVEL SANDY ORGANIC Ivan CLAY SANDY ORGANIC Ivan CLAY with GRAVEL	PM Pressure Meter R R-Value (CTM 301) SE Sand Equivalent (CTM 217) PC Second Communication (CTM 217)
19:0000	GC GC-GM	CLAYEY GRAVEL #/01 SAND SILTY CLAYEY GRAVEL SILTY CLAYEY GRAVEL #/01 SAND	335		GRAVELLY ORGANIC Isan CLAY GRAVELLY ORGANIC Isan CLAY with SAND ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL	SG Specific Gravity (AASHTO T 100)     SL Shinkage Limit (ASTM D 427)     SW Swell Potential (ASTM D 4546)     UC Unconfined Compression - Soil (ASTM D 2166)     UC Unconfined Compression - Soil (ASTM D 2166)
	sw	Well-graded SAND Well-graded SAND with GRAVEL Poorly graded SAND	333	OL	SANDY ORGANIC SILT SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND Far CLAY	Unconfined Compression - Rock (ASTM D 2938) UU Unconsolidated Undrained Triaxial (ASTM D 2850) UW Unit Weight (ASTM D 4767)
	SP SW-SM	Poorly graded SAND with GRAVEL Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL		сн	Far CLAY with SAND Far CLAY with GRAVEL SANDY fat CLAY GRAVELLY fat CLAY and GRAVEL GRAVELLY fat CLAY with SAND	
1.1	sw-sc	Weil-graded SAND with CLAY (or SILTY CLAY) Weil-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL) Poorly graded SAND with SILT	ÍÍ	мн	Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT SANDY elastic SILT SANDY elastic SILT with GRAVEL	SAMPLER GRAPHIC SYMBOLS
	SP-SM SP-SC SM	Feorly graded SAND with SILT and GRAVEL Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL) SILTY SAND	III I III	он	GRAVELLY elast is SILT GRAVELLY elast is SILT ORGANIC for CLAY ORGANIC for CLAY ORGANIC for CLAY with SAND ORGANIC for CLAY with GRAVEL SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY	Standard Penetration Test (SPT)
	SC SC-SM	SILTY SAND with ORAVEL CLAYEY SAND CLAYEY SAND with GRAVEL SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		он	GRAVELLY ORGANIC fait CLAY with SAND ORGANIC elastic SILT ORGANIC elastic SILT SANDY elastic SILT with GRAVEL SANDY elastic ELASTIC SILT SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT the SAND	Modified California Sampler (2.4" ID, 3" OD)
	PT	FEAT COBBLES COULDERS BOULDERS	17555555 1755555 175555	оі/он	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL	NX Rock Core     HQ Rock Core       Bulk Sample     Other (see remarks)
		DRILLING MET	HOD	SYME	BOLS	WATER LEVEL SYMBOLS
R	Auge	r Drilling Rotary Drilling	N I	Dynamic or Hand	Cone Driven Diamond Core	<ul> <li>✓ First Water Level Reading (during drilling)</li> <li>✓ Static Water Level Reading (after drilling, date)</li> </ul>
efinit erm Aateri	Del Cha	ange in material is observed in the	ymbol			rrans Soil and Rock Logging, Classification, nd Presentation Manual (2010).
hange	e car	nple or core and the location of change be accurately located.			GROUP	Project No. SD493
stima Aateri Change	ial loc e gra the	ange in material cannot be accurately ated either because the change is dational or because of limitations of e drilling and sampling methods.	~			8606 Graves Ave BORING RECORD LEGEND #2
Bound	Contract of the second	rock characteristics.	1-	1		

Description	Shear Strength (tsf)	Pocket Penetrometer, PP Measurement (tsf)	Torvane, TV, Measurement (tsf)	Vane Shear, VS, Measurement (tsf)
		Measurement ((sr)	measurement ((SI)	measurement (tsi)
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12	Less than 0.12
Soft	0.12 - 0.25	0.25 - 0.5	0.12 - 0.25	0.12 - 0.25
Medium Stiff	0.25 - 0.5	0.5 - 1	0.25 - 0.5	0.25 - 0.5
Stiff	0.5 - 1	1-2	0.5 - 1	0.5 - 1
Very Stiff	1-2	2 • 4	1 - 2	1 - 2
Hard	Greater than 2	Greater than 4	Greater than 2	Greater than 2

APPARENT DENSITY OF COHESIONLESS SOILS		
Description	SPT N ₆₀ (blows / 12 inches)	
Very Loose	0 - 5	
Loose	5 - 10	
Medium Dense	10 - 30	
Dense	30 - 50	
Very Dense	Greater than 50	

PERCENT OR PROPORTION OF SOILS		
Description	Criteria	
Trace	Particles are present but estimated to be less than 5%	
Few	5 - 10%	
Little	15 - 25%	
Some	30 - 45%	
Mostly	50 - 100%	

CEMENTATION		
Description	Criteria	
Weak	Crumbles or breaks with handling or little finger pressure.	
Moderate	Crumbles or breaks with considerable finger pressure.	
Strong	Will not crumble or break with finger pressure.	

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), with the exception of consistency of cohesive soils vs.  $N_{60}$ .

CONSISTENCY OF COHESIVE SOILS			
Description	SPT N ₆₀ (blows/12 inches)		
Very Soft	0-2		
Soft	2 - 4		
Medium Stiff	4 - 8		
Stiff	8 - 15		
Very Stiff	15 - 30		
Hard	Greater than 30		

Ref: Peck, Hansen, and Thornburn, 1974, "Foundation Engineering," Second Edition.

Note: Only to be used (with caution) when pocket penetrometer or other data on undrained shear strength are unavailable. Not allowed by Caltrans Soil and Rock Logging and Classification Manual, 2010.

MOISTURE		
Description	Criteria	
Dry	No discernable moisture	
Moist	Moisture present. but no free water	
Wet	Visible free water	

PARTICLE SIZE				
Description Boulder Cobble		Size (in)		
		Greater than 12		
		3 - 12		
Gravel	Coarse	3/4 - 3		
	Fine	1/5 - 3/4		
	Coarse	1/16 - 1/5		
Sand	Medium	1/64 - 1/16		
	Fine	1/300 - 1/64		
Silt and Clay		Less than 1/300		

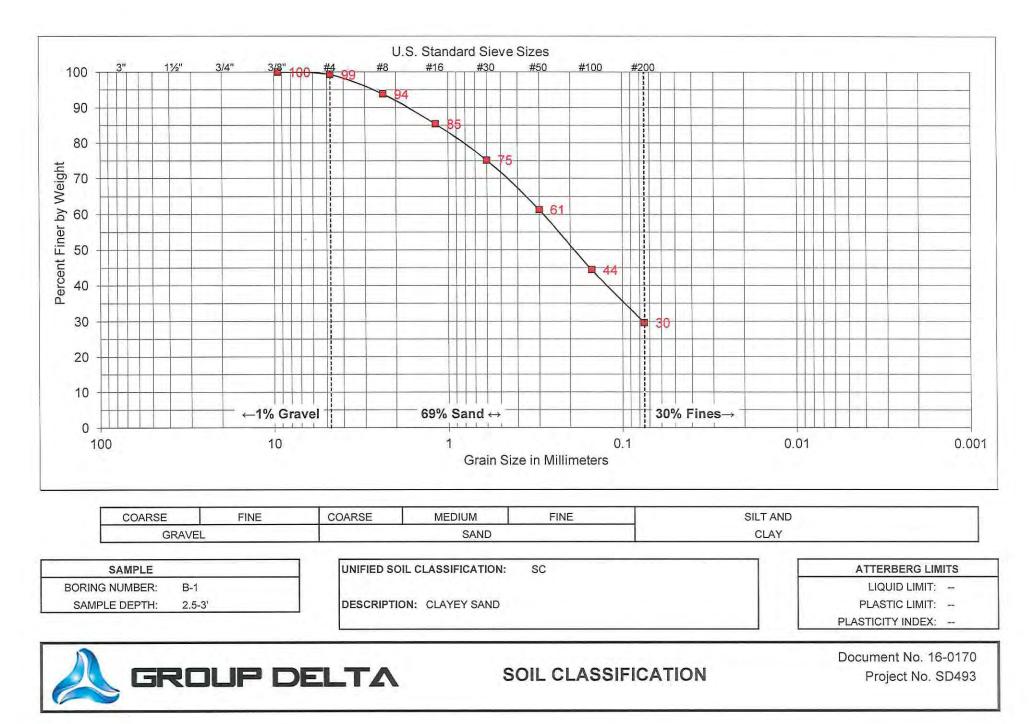
#### Plasticity

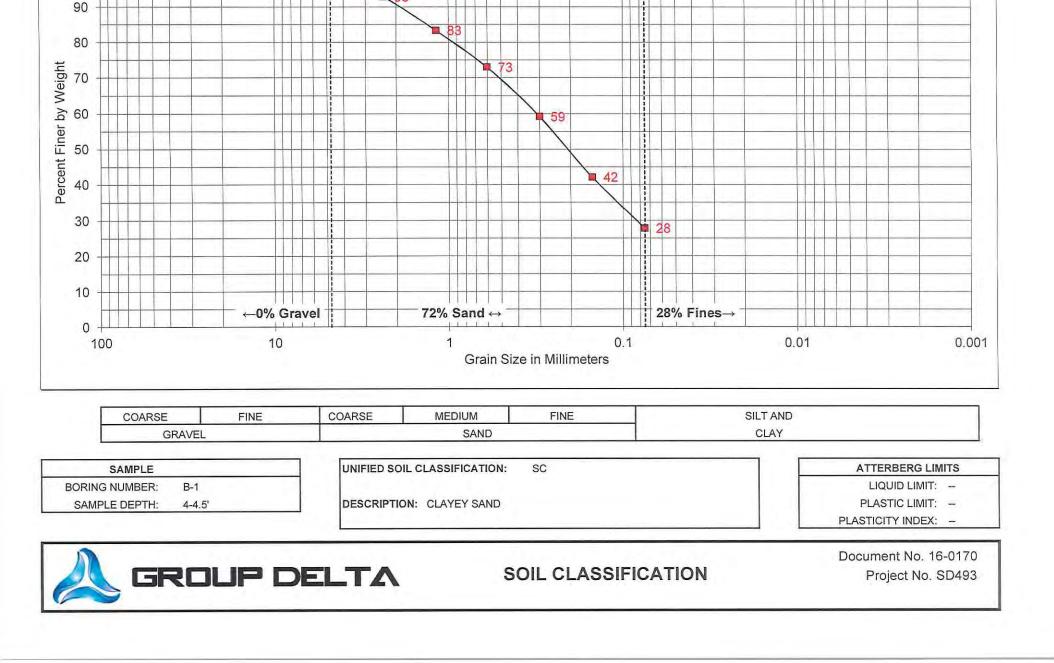
Description	Criteria	
Nonplastic	A 1/8-in. thread cannot be rolled at any water content.	
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.	
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.	
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.	

#### Project No. SD493



8606 Graves Ave
BORING RECORD LEGEND #3


E		INIC	20	RECC	PD		PROJE							20100-0-0-	TNUMBER		BORING
			3 N	EUC	עחי	3	8606 (	Grave	es Ave	1.0.00		STAF		SD4	93 NISH		B-1 SHEET NO.
	ee, Cal												2/2016		7/22/2016	3	1 of 1
	ee, Cal IG COMF		a					DRILL	ING ME	THOD	-	112	.212010	LOGGE			CKED BY
	ic Drilli							Hol	low St	tem Au		_			atimer		Stroop
DRILLIN	IG EQUIF	MENT						BORI	NG DIA.	(in)		DEPTH (ft)	GROUND	ELEV (f	A Contraction of the second		BROUND WATER (
Truck	KRIG (L	Jnime	g)		_		NOTES	6			20.5		~445	G	<b>▼</b> / r	na	
			, Dro	p: 30 in.	(Autor	natic)	I CONTRACTOR AND		%, N ₆	₀ ~ 82/	60 * N ~	1.37 * N					
				ZWG	1												
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	"N" THIMOLE	N ₅₀	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTIO	N AND CLAS	SSIFICAT	TION
										1.		brown:	moist: m	ostly fin	e to mediu	im grain	e; reddish ned SAND; ock in bottom
÷		$\nabla$		13	35	32			PA	-		3" of sa		ipiastic,	piece of gi	annuor	UCK IT DOUGHT
			R-1	18 17	35	32			PA			10 M 10 M 10 M	AND: 30		S		
			R-2	10	83	76			PA	1		Very de	ense; bro	wn.			
÷	2	$\triangle$	17-2	33 50 (3")	(9")	(9")			FA	-		72% S	AND: 28	% FINE	S		
_5						. 1				5 —		Little fi	nes.				
1		X	S-3	31 31 50 (3")	81 (9")	111 (9")			PA				AND: 27	% FINE	S		
-			R-4	38	50	46				-							
			10.3	50 (4")	(4")	(4")				-							
- —10		$\times$	S-5	50 (4")	50	68				10 —		DECO	MPOSED	GRANI	TE: Silty S	AND (S	SM); very
				1717	(4")	(4")							light gra t; nonpla		; some fine	es, incre	ease in SILT
										-							
—15		$\times$	S-6	50 (4")	50 (4")	68 (4")				15 —			coarse g posed gr		SAND asso	ociated	with
										-							
- 20		X	S-7	50	50	68				- 20 —							
_				(4")	(4")	(4")				+	<u>, r., r.</u>	No gro	undwate	r encoul	∕₂ feet belo ntered. oil cuttings		nd surface. 22/16.
GRO				CON					I OF	THIS BO	ORING AN ACE CONI	PLIES ONL ID AT THE DITIONS M AY CHANG E OF TIME.	TIME OF AY DIFFE	DRILLIN R AT O	IG. THER		FIGURE A-1


E	BOR		GF	RECO	ORD	0	PROJEC 8606 (			9				PROJEC SD49	T NUMBE	R	BORING B-2
	CATION											STA		FI	INISH		SHEET NO.
Sante	ee, Cal	ifornia	а									8/	5/2016		8/5/201		1 of 1 ECKED BY
AT 1 1942	IG COMP									ETHOD	205			LOGGE	atimer		
Pacif	ic Drilli	ng							NG DIA	tem Au		DEPTH (ft)	GROUN	D ELEV (f			R. Stroop GROUND WATER
				50)				6		. (11)	5	DEF III (II)	~445		.,		
SAMPLI	( Rig ([ NG MET	HOD					NOTES				0		1 440			na	
				p: 30 in.	(Autor	natic)	ETR	2 ~ 80	1%, N _e	_{so} ~ 80/6	60 * N ~	1.33 * N	[]				52-007-05-0
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	SCRIPTIO	N AND CL	ASSIFIC/	ATION
- - -		X	S-1	7 8 9	17	23				5		<u>FILL:</u> graine ceme	d SAND;	ND (SM) some fir	); brown; nes; non·	moist; r -plastic;	nostly fine weakly
		e		0						-	2	Groun	n of borin dwater n g backfille	ot encou	ntered.		
- —10				÷	2					- 10 —							
-				9						-							
<del>.</del>	8									_							
15 _										15 —							
- 										-				12			
<b></b> 3										_							
										20 —							
I							30			_							
GRO				CON					I OF SU LO	THIS BO	ORING AN CE CONI S AND MA	ID AT THE DITIONS M AY CHANC	LY AT THE TIME OF MAY DIFFE GE AT THI	DRILLIN ER AT OT S LOCAT	IG. THER		FIGURE
				ego, C					PR	ESENTE	D IS A SI		E, THE DA TION OF ).		UAL		A-2

F	BOR		GR	RECC	DRD	M 10	PROJE 8606 (			<b>,</b>				PROJE SD4		NUMBER	E	BORING
	CATION		(5% N.)		ः सः अत्र सम्बद्धाः सः			Jiave	J AVE			STA	रा		FINI	SH	5	GHEET NO.
Sante	ee, Cal	lifornia	а									8/5	5/2016			5/2016		1 of 1
RILLIN	IG COMP	PANY								ETHOD				LOGO				KED BY
	ic Drilli				_					tem Au		DEDTIL (0)	opound	_	Latin		R.S	troop OUND WATER
				201				0.2%	NG DIA.	. (in)	5	DEPTH (ft)	GROUND ~445	CLEV	(11)	I I I I I I I I I I I I I I I I I I I		OUND WATER
AMPLI	(Rig ([ NG MET	HOD	ch De	50)			NOTES	6			5	11	~445				a	
			., Dro	p: 30 in.	(Autor	natic)	ETF	R ~ 80	%, N _e	_{so} ~ 80/	60 * N ~	1.33 * N						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Ž	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTI	on A	ND CLAS	SIFICATIC	DN
			S-1	16 24	67	89						RESID brown; nonpla		<u>L:</u> Clá iostly f	ayey îne l	SAND (i	SC); very m SAND	/ dense; ; some fines;
-5	0	$\land$	6	43						5 —	·./·/.:							
										-	-	Ground	n of boring dwater no backfilleo	t enco	ounte	ered.		
										-								
										-								
10										10 —								
										02022								
								1		-								
										_								
			8							2								
										2								
15										15 —								
										-								
									. 1									
									² 84									
20										20 —	-							
																		φ.
										-	1							
										-								
									-			PLIES ONL		1004	TIO			
GRC	OUP	DE	LTA	CON	SUL	TAN	TS,	INC	• OF	THIS B	ORING AN	<b>JD AT THE</b>	TIME OF	DRILL	ING.	es.	FI	GURE
				ity Rc					SU	BSURF	ACE CON	DITIONS M AY CHANG	AY DIFFE	R AT C		=R N		
								-	WI	TH THE	PASSAG	E OF TIME.	THE DA	TA				A-3
	9	ban	Die	go, C	A 92	126			CC	NDITIO	NS ENCO	UNTERED.			UP			

E	BOR	INC	GF	RECC	RD	()	PROJE0 8606 (							PROJECT I SD493		BORING B-4
	CATION					!		5,470	57.00			STAR	т	FINIS	SH	SHEET NO.
Sante	ee, Cal	ifornia	a					-				8/5	/2016		5/2016	1 of 1
	IG COMF								ING ME	THOD	nor		1	LOGGED I T. Latir		CHECKED BY R. Stroop
	ic Drilli G EQUIF								NG DIA.		TOTAL DE	PTH (ft)	GROUND	ELEV (ft)		LEV. GROUND WATER (f
Truck	Rig (	Diedri		50)				6			5		~446	4.44	¥ / na	
SAMPLI	NG MET	HOD			1	notie)	NOTES		0/ NI	~ 90/	SO * N - 1	33 * M				
Hamr	ner: 14	U IDS	., Dro	p: 30 in.	Autor	natic)	CIR	~ 80	70, N ₆	0~80/6	60 * N ~ 1.	N 66.				
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	N ⁰	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DESC	CRIPTION A	ND CLASS	IFICATION
_5		X	S-1	18 26 38	64	85				5		reddish some fi Bottom Ground	of boring	noist; mos plastic.	below gro	; very dense; medium SAND; und surface. 8/05/16.
-10																
-20										20						
	924	5 A	ctiv	CON ity Ro go, C	ad,	Suite	e 10		OF     SU     LO     WI     PR	THIS BO BSURFA CATIONS TH THE I ESENTE	IARY APPLI DRING AND CE CONDIT S AND MAY PASSAGE C D IS A SIMP IS ENCOUN	AT THE TONS MA CHANGE OF TIME. PLIFICAT	TIME OF I Y DIFFEI AT THIS THE DAT	DRILLING. R AT OTHE LOCATIO	ER N	FIGURE A-4

F	BOR	INC	GR	RECC	RD		PROJE0 8606 (							PROJEC SD49	NUMBER		BORING B-5
	CATION						0000	Slave	SAVE			STAR	:T	FI	NISH		SHEET NO.
Sante	e, Cal	ifornia	3									8/5	/2016		3/5/2016		1 of 1
RILLIN	G COMF	PANY							ING ME					LOGGE			ECKED BY
	G EQUIF								IG DIA.	tem Au		DEPTH (ft)	GROUND	T. La			. Stroop GROUND WATER (
	c Equir Rig (E			50)				6	G DIA.	(11)	5		~446		, <u>∎</u> / n		
AMPLI	NG MET	HOD					NOTES	5									
-lamr	ner: 14	l0 lbs	., Dro	p: 30 in.	(Autor	natic)	ETF	8 ~ 80 ⊺	%, N ₆	₀ ~ 80/	60 * N ~	1.33 * N					
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Z ^o	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTION	I AND CLAS	SIFICA	TION
										-		<u>RESID</u> mostly	UAL SOII fine to m	<u>L:</u> Silty edium S	SAND (SM AND; som	м); bro ne fine:	wn; moist; s; non-plastic.
5		X	S-1	7 16 21	37	49				-		Fine to	coarse g	grained S	SAND; wea	akly ce	mented.
20010										-	-	Ground	lwater no	t encour	et below g ntered. il cuttings		
		6								-	-						
-10					14					- 10 —	-						
										-							
				o.						-	-						
										-							
15										15							
											_						
	-										-						
00										20							
-20											-						
									×		_						
GRO									I OF	THIS B	ORING A	PLIES ONL ND AT THE IDITIONS M	TIME OF	DRILLIN	G. HER		FIGURE
				vity Ro ego, C				)3	LC W PF	CATION	NS AND M PASSAG ED IS A S	AY CHANG E OF TIME IMPLIFICATION	E AT THI THE DA	S LOCAT	ION		A-5





U.S. Standard Sieve Sizes

#30

#50

#100

#200

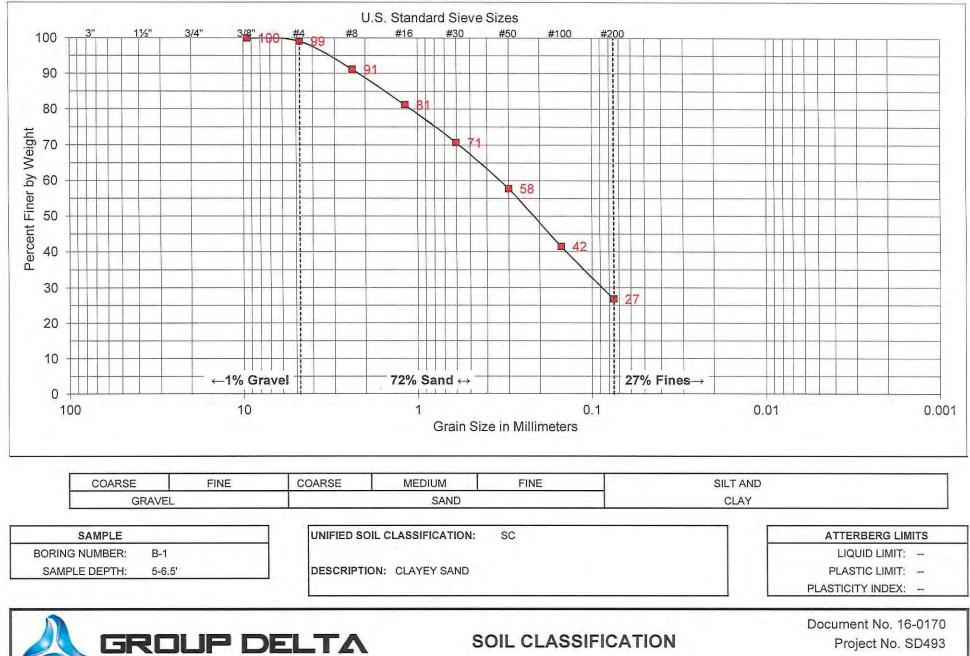
1

#16

#8

93

3/8" 100


#4

100

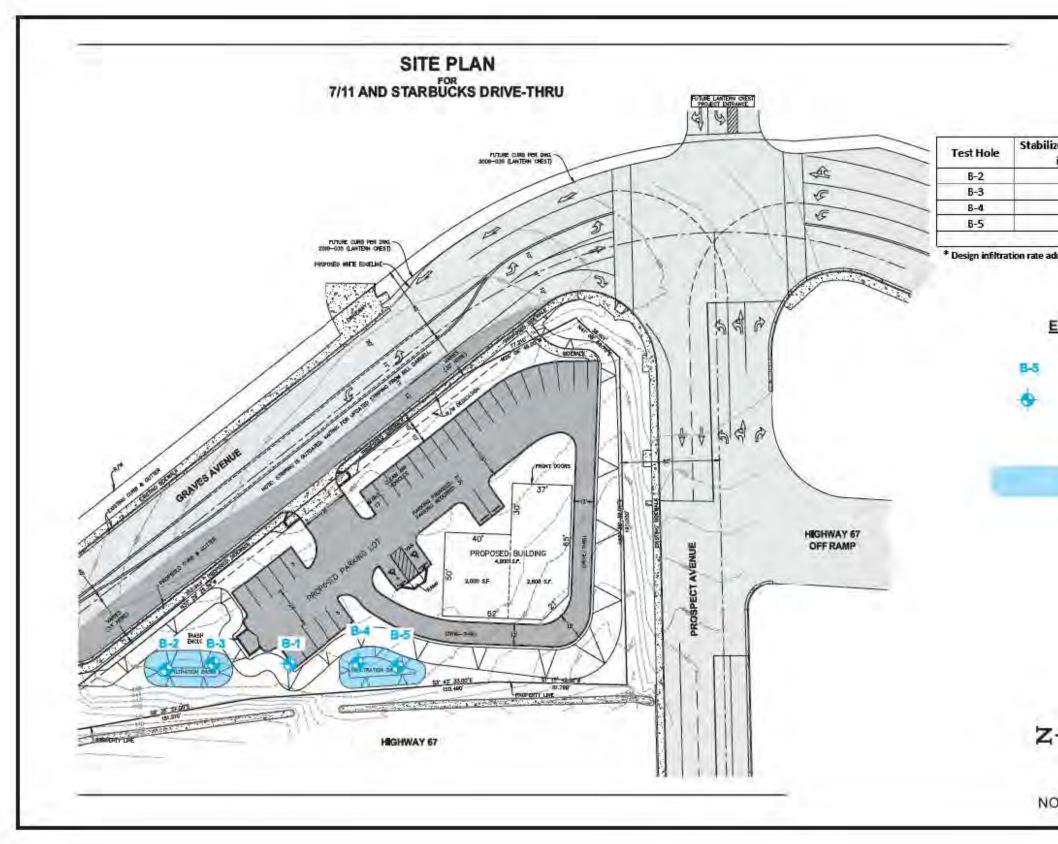
11/2"

100

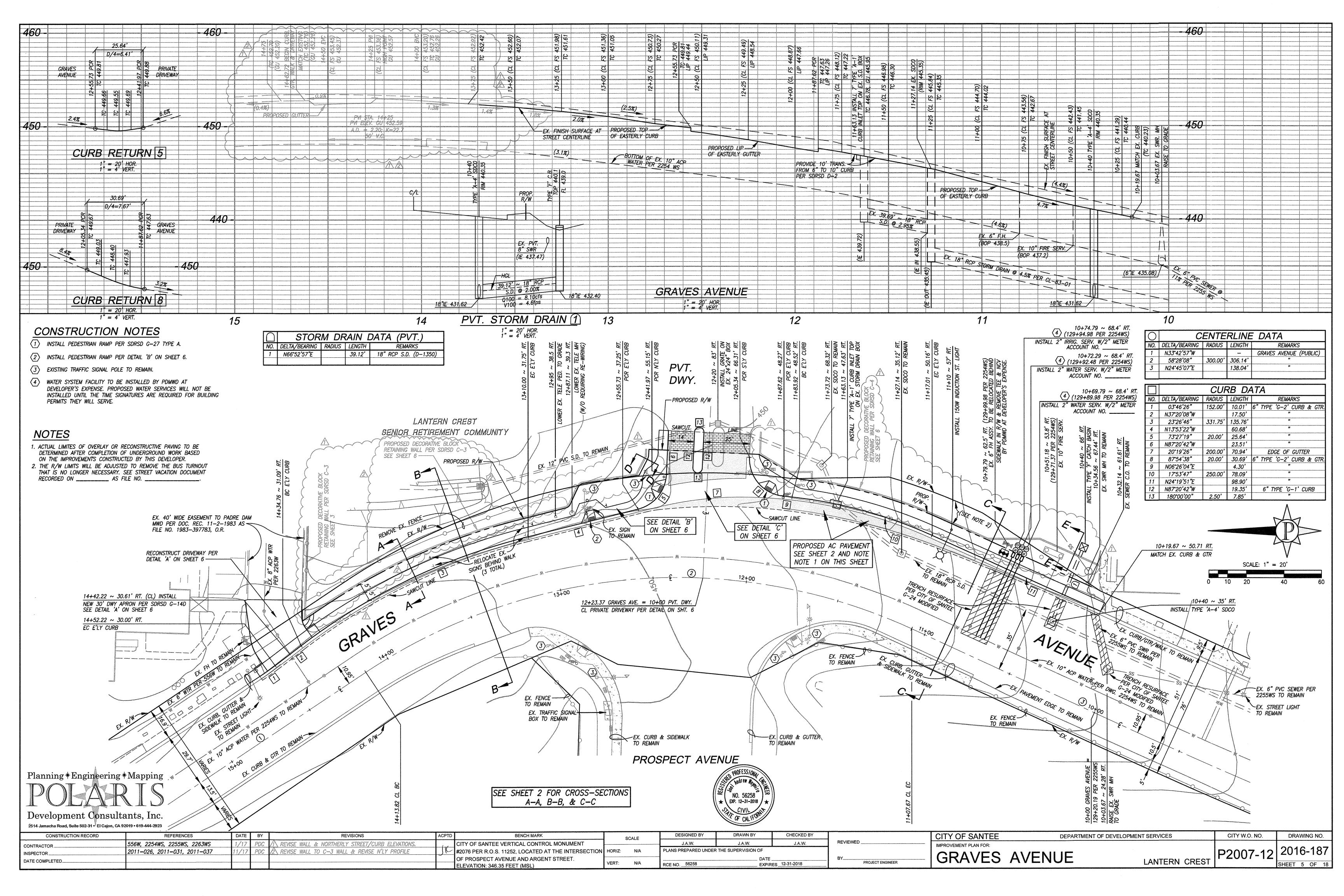
3/4"

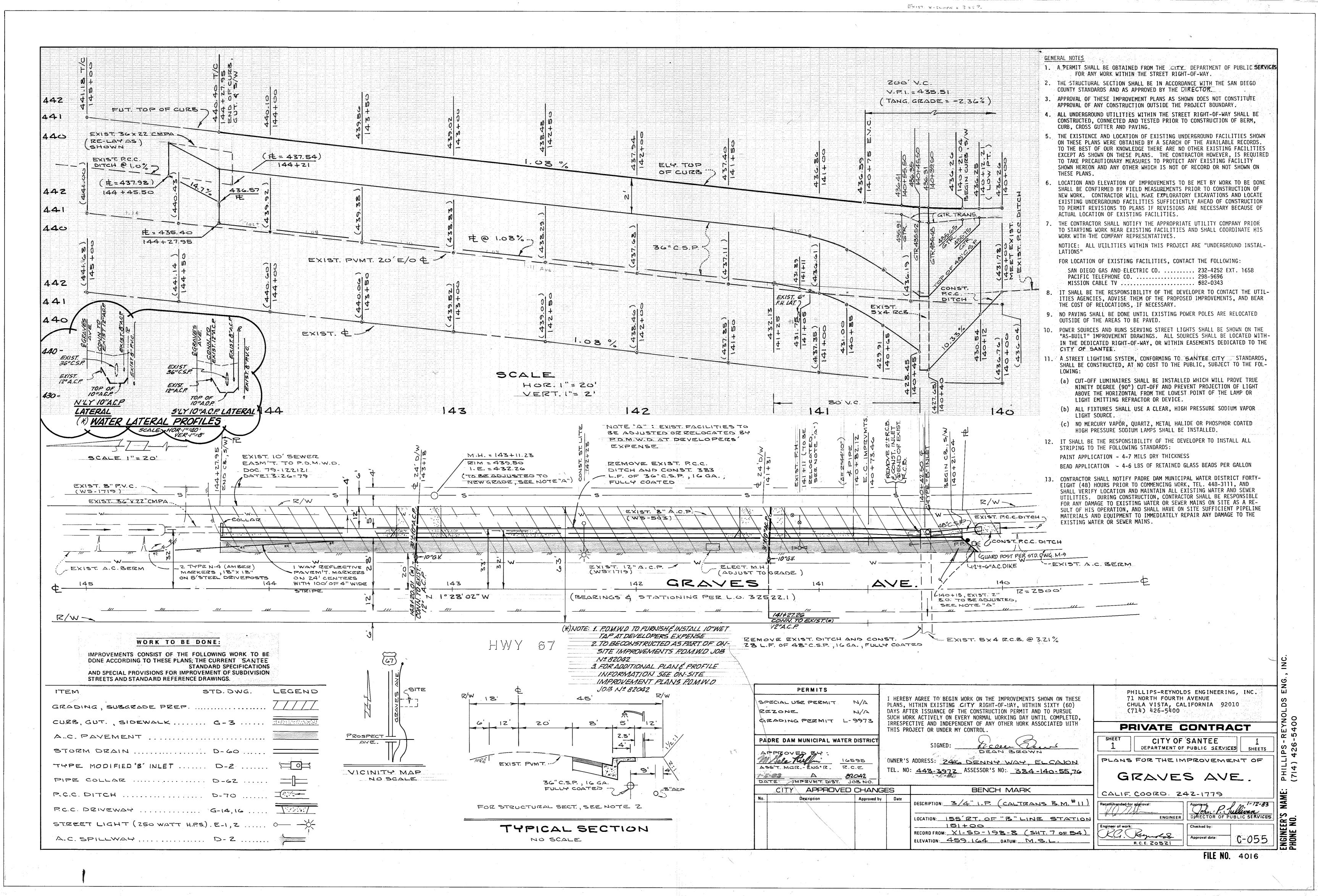


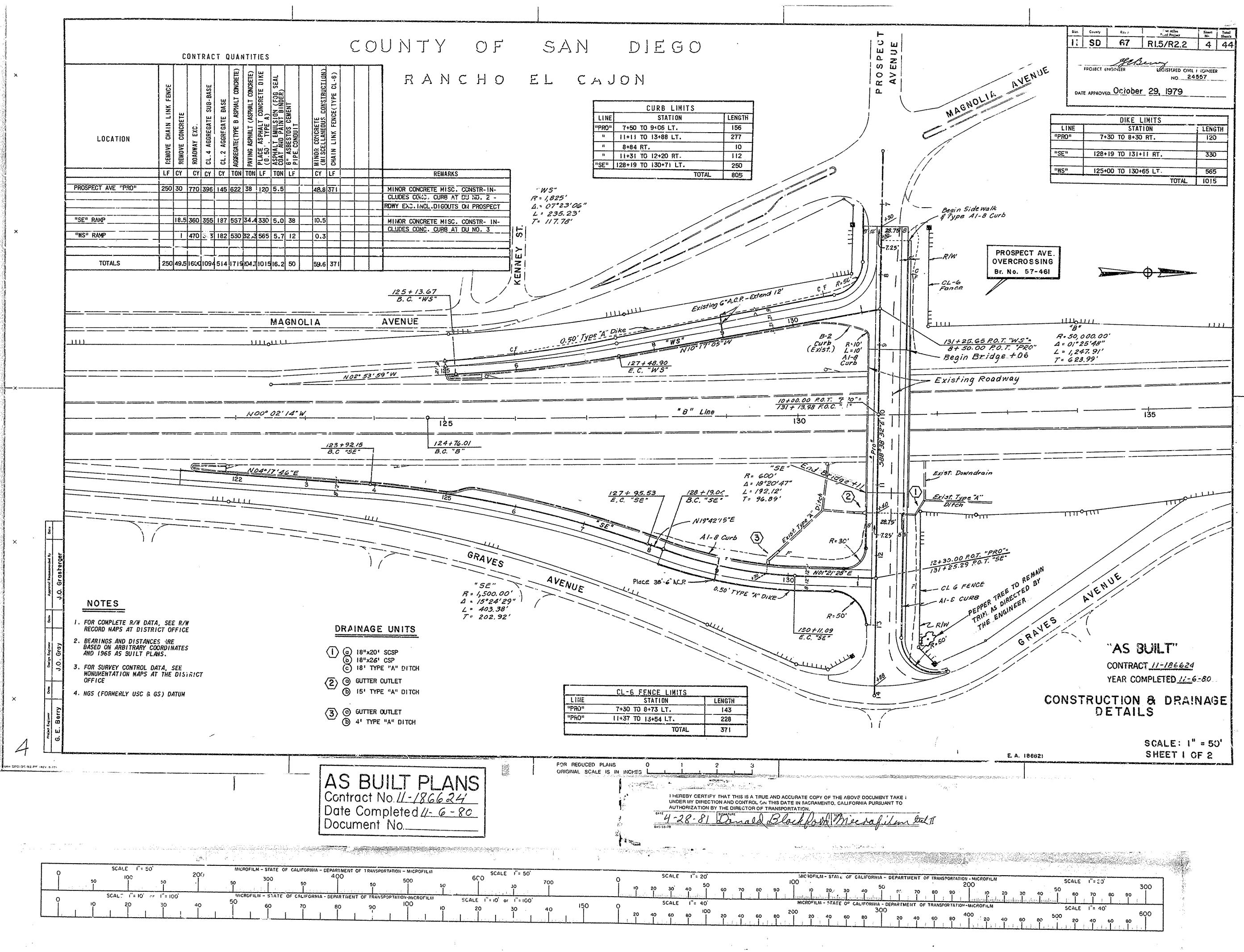
Project No. SD493

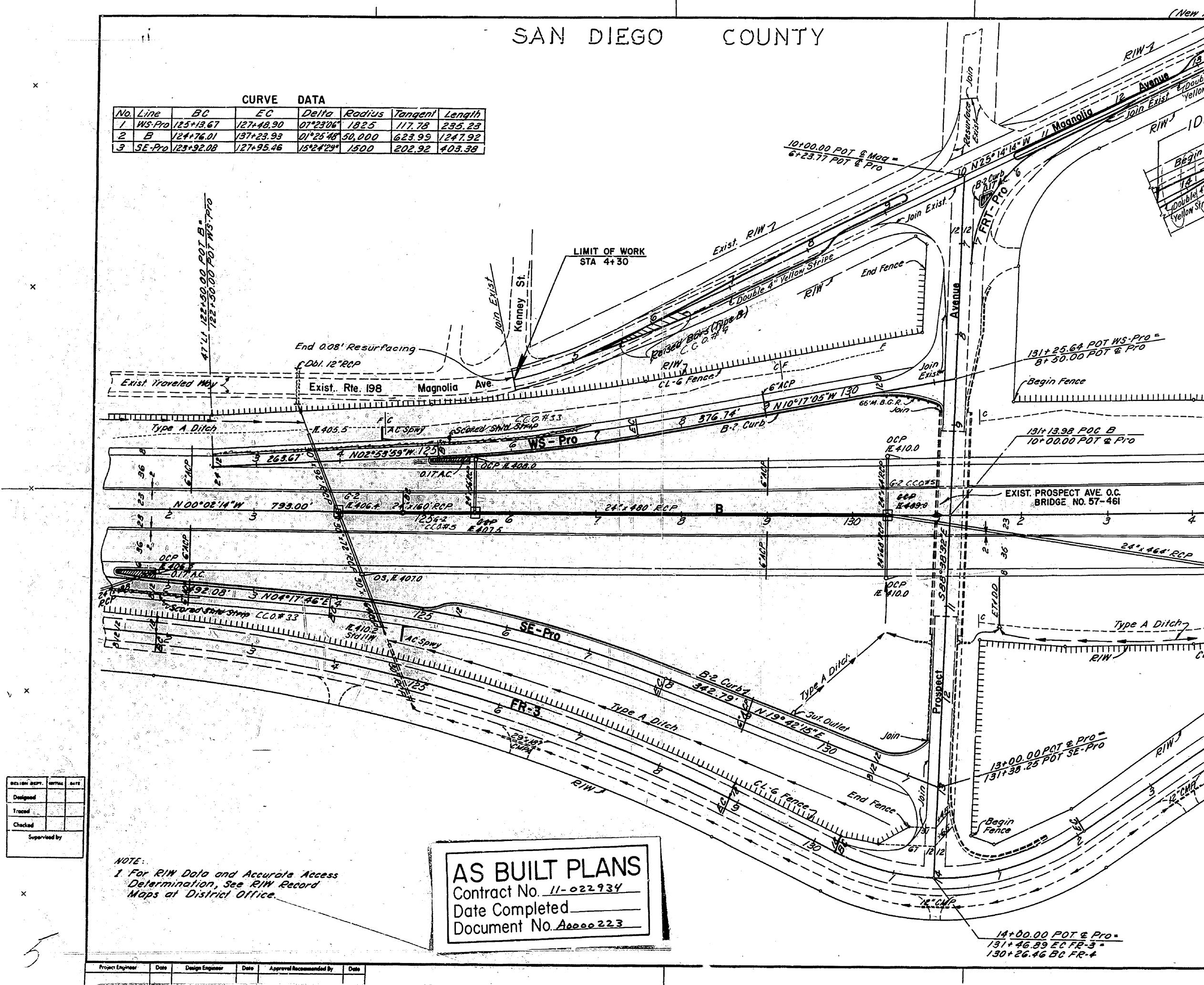

#### Appendix I: Forms and Checklists

	gorization of Infiltration Feasibility Condition		
Part 1 -	Full Infiltration Feasibility Screening Criteria		
	infiltration of the full design volume be feasible from a physical persp nences that cannot be reasonably mitigated?	ective without	any undesirable
Criteria	Screening Question	Yes	No
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	$\checkmark$	
Provide	basis:		
	d August 30, 2016. ize findings of studies; provide reference to studies, calculations, maps, da	ita sources, etc.	Provide narrativ
Summar	ize findings of studies; provide reference to studies, calculations, maps, da on of study/data source applicability.	ata sources, etc.	Provide narrativ
Summar	ize findings of studies; provide reference to studies, calculations, maps, da	nta sources, etc.	Provide natrativ
Summar liscussio	ize findings of studies; provide reference to studies, calculations, maps, da on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	ata sources, etc.	Provide natrativ
Summai liscussio 2	ize findings of studies; provide reference to studies, calculations, maps, da on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	nta sources, etc.	Provide natrativ
Summai liscussio 2	ize findings of studies; provide reference to studies, calculations, maps, da on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	nta sources, etc.	Provide narrativ
2 Provide	ize findings of studies; provide reference to studies, calculations, maps, da on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. basis:	~	


#### Appendix I: Forms and Checklists


C 1	Form I-8 Page 2 of 4	Ver	NIa
Criteria 3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Yes	No
date	ndwater level is more than 20 feet from bottom of infiltration basin as pres d August 30, 2016. The findings of studies; provide reference to studies, calculations, maps, da		
discussic	n of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	~	
Provide Th	basis: ere are no streams or bodies of surface water near the site.		
	ize findings of studies; provide reference to studies, calculations, maps, da n of study/data source applicability.		
Part 1 Result	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentially feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to some of		Full Infiltration


*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings




ed Infiltration Rate inches/hour	Design Infiltration Rate* inches/hour
1.32	0.6
0.54	0.3
2.24	1.1
0.78	0.4
Average	0.6
Approximate	e location of borings.
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	e location of infiltration basins
	e location of infiltration basins
storm water	
storm water	GROLP DELT
Storm water	GROLP DELT









REG. NO. STATE FEDERAL PROJECT NO. FISCAL SHEET TOTAL NO. SHEETS 7 CALIF. (New XI-SD-67) sheet total Mo: sheeta 5 54 AIST. COUNTY NOUTE XI SD 198 SECTION Asat. State Hwy, Engr April 28. 1964 Warren Englisher of Deskyr Recisivered Civil Englisher No. 7603 LIMIT OF CHANNELIZATION STA 16+00 CL-6 FenceOCP TRAISO - Conclined Gutter C.C.O.# 3 A GCP RUMMS OCPOS CCO#5 9 Ralto Type A Ditch. RIW CL-6 Fence 1:02-03-ECH 7-62

### **CHAPTER 10 – REVEW COMMENTS AND RESPONSES**

Graves Commercial Center Drainage Study

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED PRINTING



#### To: ROY ABBOUD DEVELOPMENT REVIEW COORDINATOR

Date: February 1, 2019

#### From: REC Consultants, Inc.

**Subject:** Hydraulic Development Review – Prospect and Graves Retail

Please see below for our responses to the review comments provided by the Caltrans Hydraulics Department pertaining to the Hydrology Study for the Graves Commercial Center project:

#### Grading Plans

1. Sheet 3 of 10 - BMP

a. Show the Caltrans R/W and distance between fence and Caltrans R/W. The distance of 2 ft. between Caltrans R/W and the fence has been provided. Please see BMP-A

Detail on Sheet 3 of the grading plans.

- 2. Sheet 6 of 10
  - a. Show distance between face of wall and Caltrans R/W

A distance of 23 ft. and 2 ft. between the face of wall and Caltrans R/W has been added to Section B and Section C, respectively. See sections provided on Sheet 6 of the grading plans.

- 3. Caltrans requests that the project be conditioned for;
  - a. Any retaining wall interfacing with infiltration/retention basin be designed for the presence of groundwater and hydrostatic pressure
  - b. Drainage pattern cannot be altered from what is shown in provided drainage study (dated December 2018) nor can they be altered from existing conditions

This comment has been noted. The project shall not alter any drainage patterns from the Drainage Study dated January 2019. Additionally, all retaining walls interfacing with the basins shall be designed for the presence of groundwater and hydrostatic pressure.

#### Drainage Study

- 4. Drainage Study
  - a. Explain the difference between nodes 11 and 12 and nodes 23 and 26 for the mitigated and unmitigated conditions.

In unmitigated conditions the flow being conveyed through the pipe between nodes 11 and 12 and 23 and 26 are calculated assuming no detention. In the mitigated conditions these flows have been adjusted for detention of  $Q_{100}$  in the basins thus yielding a lower value.

b. Between node 9 to 11 and 11 to 12 the time of concentration goes from 6.32 mins to 10.70 mins. How is this? Why is there a user defined Tc at node 11 to 11 of 10 minutes?

There is a difference in time of concentration between the unmitigated and the mitigated calculations because the detention time of the water is being accounted for in the mitigated conditions. The detention of the  $Q_{100}$  flows was modeled in HEC-HMS and then the results were input into CivilD to determine the peak discharge at the POC. The user defined input at Node 11 to 11 is the insertion of the HEC-HMS results.



c. Between node 23 to 23 and 23 to 26 time of concentration goes from 4.33 minutes to 8.33 minutes. How is this? Why is there a user defined Tc at node 23 to 23 of 8 minutes?

There is a difference in time of concentration between the unmitigated and the mitigated calculations because the detention time of the water is being accounted for in the mitigated conditions. The detention of the  $Q_{100}$  flows was modeled in HEC-HMS and then the results were input into CivilD to determine the peak discharge at the POC. The user defined input at Node 23 to 23 is the insertion of the HEC-HMS results.

d. Please provide flowrate (Q) calculations for all sub-DMA areas, include C values used, Tc used, and intensity used

A summary has been included at the end of Chapters 4, 5 and 6 which provide the time of concentration, runoff coefficient, intensity, area and  $Q_{100}$  value for each sub-DMA for the Existing Conditions Hydrology, the Proposed Conditions-Unmitigated Hydrology and the Proposed Conditions-Mitigated Hydrology, respectively.

e. 6.2 – according to plan sheet 3 of 10 the orifice elevation is shown at 444.0 ft. Why does the stage storage show it at 444.08 ft?

Section 6.2 of the Drainage Study has been revised to accurately depict the orifice elevation.

f. 6.2 - is the column labeled "elevation" an elevation or depth?

This column has been revised to read "depth" for clarification.

5. Stage – Discharge for BMP- A & B

a. What is the purpose of calculating H/D low and H/D mid?

H/D low and H/D mid columns have been removed.

b. Remove columns/inputs not used.

Unused columns and inputs have been removed.

6. Provide a copy of all input for HEC-HMS

HEC-HMS inputs have been provided with this submittal.



#### To: ROY ABBOUD DEVELOPMENT REVIEW COORDINATOR

**Date:** November 29, 2018

#### From: REC Consultants, Inc.

**Subject:** Hydraulic Development Review – Prospect and Graves Retail

Please see below for our responses to the review comments provided by the Caltrans Hydraulics Department pertaining to the Hydrology Study for the Graves Commercial Center project:

1. Please update the entire Study to reflect the correct existing hydrology of Graves Ave and the elimination of the diversion of flow from the proposed design.

The drainage areas have been revised for existing conditions and the division of flow has been eliminated in proposed conditions. The Drainage Study has been revised accordingly to reflect these changes.

- 2. Missing Stamped Signature Page. The report has been signed.
- 3. Provide a letter from the City of Santee that indicates the City will enforce that the infiltration basins
  - Remain a permanent feature on the property;
  - Be maintained in good working order and;
  - Be reconstructed should they fail

As part of the SWQMP requirements, a Maintenance Agreement shall be made between the owner and the City to ensure the infiltration basins will be maintained in accordance with Project Clean Water Standards. This agreement is required by the City and shall be included in the SWQMP as Attachment 3. This is a stamped and recorded agreement between the owner and the City. The BMP Maintenance Fact Sheet for infiltration basins has been included as part of this submittal for your reference.

#### Grading Plans

4. Sheet 3 of 8: none of the tree well details match the proposed conditions. Provided appropriate details.

No longer applicable – tree wells have been removed from design.

- 5. Sheet 4 of 8:
  - a. Contour representing 446' between existing contour 447' and proposed infiltration basin/detention basin BMP-A is missing Contours have been revised.
  - b. Will pipe backfill for pipe draining BMP-A be at least 0.5' from Caltrans R/W? The design for the outlet pipe from BMP-A has been revised slightly. This revision places it further away from Caltrans R/W so yes, the outlet pipe shall be at least 0.5' from Caltrans R/W.
  - c. All existing drainage features should be shown. This includes the existing inlet on Prospect that drains to the affected channel.



The existing grate inlet on Prospect Avenue is shown and called out on the plans and accounted for in the Drainage Study.

d. A copy of these plans should be part of the drainage study in an Appendix The grading plans have been included in the Drainage Study as Chapter 8.

#### Drainage Study

Introduction

6. Street trees are not a flow mitigation measure recognized by Caltrans. Provide an appropriate mitigation measure or analyze without mitigation consideration. Revise throughout report.

No longer applicable – tree wells have been removed from design.

Summary of Existing Conditions

7. The areas shown for POC-C and POC-D should only cover the area that is in the gutter pans. The areas delineated for these in the existing conditions are not reflecting actual flow patterns. Revise throughout report.

DMA-C and DMA-D have been revised to only include the area in the gutter pans.

#### Summary of Developed Conditions

8. This development is diverting flows. The first sentence of the second paragraph is an incorrect statement. Portions of areas that drained to one discharge location drain to a different discharge location post project. This constitutes a change in drainage pattern and diversion of flow. It appears the Caltrans ditches are being bypassed by the proposed pipes.

The site has been redesigned so that the proposed drainage areas match the existing drainage areas. All DMAs are the same area in pre- and post-developed conditions. To account for the widening of Graves Avenue, which is a requirement of the project, DMA-C and D have been purposely excluded from the area that drains to the basins. These areas will flow to their respective curb inlets as in pre-existing conditions. The pipes from the outlet structures have been designed accordingly to ensure emergency overflow does not inundate the basins and drains to the corresponding POC. Caltrans brow ditches shall still be used to convey flows to the respective POCs. All of these changes have been reflected on the Proposed Conditions Hydrology Map provided in Chapter 7 of the Drainage Study.

9. Missing discussion of travel time

Discussion of travel time has been included in the introduction of the report. Travel time methodology is also included as part of Chapter 2.

10. Missing runoff coefficient calculations

The C values were derived from the San Diego County Hydrology Manual per Table 3-1. A discussion of the runoff coefficients has been included in the introduction of the report and the runoff coefficient information and methodology is also included as part of Chapter 2 Section 2.2.

11. Unable to verify dimensions used in analysis for BMP-C and BMP-D

Hydrology map has been revised to clearly show the drainage paths and associated lengths. See Chapter 7 of the Drainage Study for the revised Hydrology maps.

Conclusion

12. First part of the first bullet. Same as comment number 8. See response for comment 8.



#### Chapter 2 - Methodology

13. Missing methodology used for detention basin design and analysis

Modified Puls Method, in accordance with the County of San Diego Hydrology Manual, was used for the basin detention analysis. The analysis was performed using HEC-HMS. Discussion of this methodology has been included in Chapter 2 Section 2.7 of the report. The HEC-HMS executable files have also been provided as part of this submittal.

#### Runoff Coefficient Calculations (Missing)

14. Provide runoff calculations/determinations

The C values were derived from the San Diego County Hydrology Manual per Table 3-1. A discussion of the runoff coefficients has been included in the introduction of the report and the runoff coefficient information and methodology is also included as part of Chapter 2 Section 2.2.

15. Provide justification for any area within the property that uses the Permanent Open Space values. What guarantees these areas will remain open space Justification for the use of Permanent Open Space has been included in Section 1.3 of the Drainage Study.

Chapter 3 – 100-Year Hydrologic Analysis for Existing Conditions

16. Maximum overland flow length used for initial time of concentration does not correspond with information provided. Revise.

Maximum overland flow lengths have been revised to be in accordance with Table 3-2 of the San Diego County Hydrology Manual. Information provided in the report is consistent with the lengths used.

- 17. Provide back-up for Manning's n values used. Discussion of Manning's roughness coefficient value, n, has been included in the introduction of the report and the tables have been included in Chapter 2 Section 2.4
- Runoff coefficient calculations missing Runoff coefficient calculations are performed by CivilD and are included in the results analysis provided as Chapter 3.
- 19. There does not appear to be a trapezoidal channel between Nodes 2 and 100. Revise. The existing conditions analysis has been revised. See Chapter 3 for results.
- 20. For all channels a back-up for dimensions used must be provided, such as an as-built plan As-built drawings have been provided as part of Chapter 9 of the Drainage Study.
- 21. Provide back-up for Manning's values used. Back-up for the Manning's Roughness Coefficient values used in the analysis is provided in Section 2.4 of the report.
- 22. POC-A (Node 100) receives flows from an existing inlet (SCSP) on Prospect Ave. The flows to this inlet appear to be altered due to widening on Graves Ave. Provide the preproject calculations for the inlet on Prospect Ave.

Runoff from the existing inlet on Prospect Avenue has been included in the analysis of POC-A. The flows to the inlet are not altered by the widening of Graves Avenue as those flows drain towards an existing curb inlet adjacent to the site as discussed in the report.

23. These comments apply to all other basins. Comment noted

Chapter 4 – 100-Year Hydrologic Analysis for Unmitigated Conditions

24. See comments 18-24 See responses above.



Civil Engineering Environmental Land Surveying

25. Initial length has a portion that is steep, is this accounted for appropriately for the slope used in the analysis?

Per the County of San Diego Hydrology Manual table 3-2 for maximum overland flow length and initial time of concentration, the steep slopes have been appropriately accounted for in the initial area analysis. The initial lengths chosen for evaluation we're taken from this table which is based on the slope. Discussion of this methodology and the table referenced has been included in Chapter 2 Section 2.4 of this report.

- 26. Provide back-up for pipes, such as profile plans Pipe profiles are part of the grading plans which have been provided in Chapter 8.
- 27. The drainage areas from Graves/Prospect Ave and Nodes 10-100 are not accounted for. Revise

The open space has been accounted for. See Nodes 13 and 14 of the analysis.

- 28. These comments apply to all other basins.
- Comment noted.

Chapter 5 – 100-Year Hydrologic Analysis for Mitigated Conditions

29. Mitigated conditions should be analyzed using hydrographs.

The mitigated conditions are analyzed using hydrographs. The discussion of the mitigation process has been revised to better clarify the procedures followed. Refer to Section 2.8 for methodology and Chapter 6 for results.

- Chapter 6 Modified-Puls Detention Routing
  - 30. Rational Method Hydrograph by Rick Engineering? The County of San Diego Hydrology Manual specifies that the computer program by Rick Engineering, RATHYDRO, may be used for the creation of the unit hydrograph. Discussion for this methodology has been included in Section 2.8 of the report.
  - 31. Letter from City approving the use of this program? The City of Santee follows the County of San Diego Hydrology Manual thus use of this program is approved.
- 6.2 Stage-Storage and Stage-Discharge Relationships
  - 32. Stage discharge calculations?

Stage-discharge calculations are included in the Drainage Study in Chapter 6 Section 6.2.

#### 6.3 – HEC-HMS Modified Puls Routing Results

33. Provide copy of HEC-HMS Input Data HEC-HMS files have been included with this submittal.

#### Chapter 7: Hydrology Maps

34. Provide in color and assign a color to each unique delineated basin area. This applies to subbasins

The Hydrology Maps have been revised to provide a specific color for each subbasin.

- 35. All information should be legible when printed. May require printing on larger sheet Comment noted
- 36. Each basin area should have a unique identifier as well as corresponding unique ids for each subbasin.
  - Hydrology Maps have been revised to identify each subbasin with a corresponding ID
- 37. Pre-Development
  - a. Delineated basin areas and flowpaths need to be corrected to reflect actual flow patterns. Based on existing contours the existing areas for DMA-C and D are both showing larger than actual areas. Only flow in gutter is likely to follow this



drainage path (approximately 2' wide). Flow paths do not correspond to contours provided.

DMA-C and DMA-D have been revised to only include flow in the gutter pans.

b. Corresponding C values missing

The C values were derived from the San Diego County Hydrology Manual per Table 3-1. A discussion of the runoff coefficients has been included in the introduction of the report and the runoff coefficient information and methodology is also included as part of Chapter 2 Section 2.2.

c. Basin area from an existing SCSP on Prospect is missing. All contributing flows must be considered for proper analysis of POC-A.

Basin area has been provided. See updated calculations and hydrology map in Chapter 3 and 7, respectively.

38. Post-Development

a. See comment 2a

See response for comment 2a.

- b. Basin area from an existing SCSP on Prospect is missing. All contributing flows must be considered for proper analysis of POC-A.
  Basin area has been provided for and is accounted for in the analysis of POC-A.
  See updated calculations and hydrology map in Chapters 3 and 7, respectively.
- c. Corresponding C values missing

Discussion of C values used for the post-developed conditions analysis is provided in section 1.3 of the report. The tables from which the values were obtained is provided in Section 2.2

General:

a. The Hydrology and Hydraulics Report is a standalone document (i.e. all pertinent information should be contained within). Include a copy of pertinent as-built plan sheets, all tables, figures, and recommended assumptions as back-up in an appendix within this report. (Previous comment – not addressed)

Noted – all applicable information has been provided within the report.

### INF-1 Infiltration Basin

#### BMP MAINTENANCE FACT SHEET FOR STRUCTURAL BMP INF-1 INFILTRATION BASIN

An **infiltration basin** typically consists of an earthen basin with a flat bottom constructed in uncompacted native soils. An infiltration basin retains storm water and allows it to evaporate and/or percolate into the underlying soils. Infiltration basins can also be constructed as linear trenches or as underground infiltration galleries. Typical infiltration basin components include:

- Inflow distribution mechanisms (e.g., perimeter flow spreader or filter strips)
- Energy dissipation mechanism for concentrated inflows (e.g., splash blocks or riprap)
- Forebay to provide pretreatment, or other pretreatment device (e.g., drainage inlet inserts, hydrodynamic separator installed within storm drain system)
- Surface ponding for captured flows
- Vegetation or other surface cover such as mulch or rocks selected based on basin use, climate, and ponding depth
- Uncompacted native soils at the bottom of the facility
- Overflow structure

#### **Normal Expected Maintenance**

Infiltration basins require routine maintenance to: remove accumulated materials such as sediment, trash or debris from the forebay and the basin; maintain vegetation health if the BMP includes vegetation; and maintain integrity of side slopes, inlets, energy dissipators, and outlets. A summary table of standard inspection and maintenance indicators is provided within this Fact Sheet.

#### Non-Standard Maintenance or BMP Failure

If any of the following scenarios are observed, the BMP is not performing as intended to protect downstream waterways from pollution and/or erosion. Corrective maintenance, increased inspection and maintenance, BMP replacement, or a different BMP type will be required.

- The BMP is not drained between storm events. Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health, and surface or subsurface ponding longer than approximately 96 hours following a storm event poses a risk of vector (mosquito) breeding. Poor drainage can result from clogging of the underlying native soils, or clogging of covers applied at the basin surface such as topsoil, mulch, or rock layer. The specific cause of the drainage issue must be determined and corrected. For surface-level basins (i.e., not underground infiltration galleries), surface cover materials can be removed and replaced, and/or native soils can be scarified or tilled to help reestablish infiltration. If it is determined that the underlying native soils have been compacted or do not have the infiltration capacity expected, or if the infiltration surface area is not accessible (e.g., an underground infiltration gallery) the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.
- Sediment, trash, or debris accumulation has filled the forebay or other pretreatment device within one month, or if no forebay or other pretreatment device is present, has filled greater than 25% of the surface ponding volume within one maintenance cycle. This means the load from the tributary drainage area is too high, reducing BMP function or clogging the BMP. This would require adding a forebay or other pretreatment measures within the tributary area draining to the BMP to intercept the materials if no pretreatment component is present, or increased maintenance frequency for an existing forebay or other pretreatment device. Pretreatment components, especially for sediment, will extend the life of the infiltration basin.

INF-1 Page 1 of 12 January 12, 2017

### INF-1 Infiltration Basin

• Erosion due to concentrated storm water runoff flow that is not readily corrected by adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.

#### **Other Special Considerations**

**If the infiltration basin is vegetated:** Vegetated structural BMPs that are constructed in the vicinity of, or connected to, an existing jurisdictional water or wetland could inadvertently result in creation of expanded waters or wetlands. As such, vegetated structural BMPs have the potential to come under the jurisdiction of the United States Army Corps of Engineers, SDRWQCB, California Department of Fish and Wildlife, or the United States Fish and Wildlife Service. This could result in the need for specific resource agency permits and costly mitigation to perform maintenance of the structural BMP. Along with proper placement of a structural BMP, <u>routine maintenance is key to preventing this scenario</u>.

#### SUMMARY OF STANDARD INSPECTION AND MAINTENANCE FOR INF-1 INFILTRATION BASIN

The property owner is responsible to ensure inspection, operation and maintenance of permanent BMPs on their property unless responsibility has been formally transferred to an agency, community facilities district, homeowners association, property owners association, or other special district.

Maintenance frequencies listed in this table are average/typical frequencies. Actual maintenance needs are site-specific, and maintenance may be required more frequently. Maintenance must be performed whenever needed, based on maintenance indicators presented in this table. The BMP owner is responsible for conducting regular inspections to see when maintenance is needed based on the maintenance indicators. During the first year of operation of a structural BMP, inspection is recommended at least once prior to August 31 and then monthly from September through May. Inspection during a storm event is also recommended. After the initial period of frequent inspections, the minimum inspection and maintenance frequency can be determined based on the results of the first year inspections.

Threshold/Indicator	Maintenance Action	Typical Maintenance Frequency
Accumulation of sediment, litter, or debris in forebay and/or basin	Remove and properly dispose of accumulated materials, (without damage to vegetation when applicable).	<ul> <li>Inspect monthly. If the forebay is 25% full* or more in one month, increase inspection frequency to monthly plus after every 0.1-inch or larger storm event.</li> <li>Remove any accumulated materials found within the infiltration area at each inspection.</li> <li>When the BMP includes a forebay, materials must be removed from the forebay when the forebay is 25% full*, or if accumulation within the forebay blocks flow to the infiltration area.</li> </ul>
Obstructed inlet or outlet structure	Clear blockage.	<ul> <li>Inspect monthly and after every 0.5-inch or larger storm event.</li> <li>Remove any accumulated materials found at each inspection.</li> </ul>
Poor vegetation establishment (when the BMP includes vegetated surface by design)	Re-seed, re-plant, or re-establish vegetation per original plans.	<ul><li>Inspect monthly.</li><li>Maintenance when needed.</li></ul>
Dead or diseased vegetation (when the BMP includes vegetated surface by design)	Remove dead or diseased vegetation, re-seed, re-plant, or re-establish vegetation per original plans.	<ul><li>Inspect monthly.</li><li>Maintenance when needed.</li></ul>
Overgrown vegetation (when the BMP includes vegetated surface by design)	Mow or trim as appropriate.	<ul><li>Inspect monthly.</li><li>Maintenance when needed.</li></ul>

*"25% full" is defined as ¼ of the depth from the design bottom elevation to the crest of the outflow structure (e.g., if the height to the outflow opening is 12 inches from the bottom elevation, then the materials must be removed when there is 3 inches of accumulation – this should be marked on the outflow structure).

# INF-1

### **Infiltration Basin**

SUMMARY OF STANDARD INSPECTION AND MAINTENANCE FOR INF-1 INFILTRATION BASIN (Continued from previous page)										
Threshold/Indicator	Maintenance Action	Typical Maintenance Frequency								
Erosion due to concentrated irrigation flow	Repair/re-seed/re-plant eroded areas and adjust the irrigation system.	<ul><li>Inspect monthly.</li><li>Maintenance when needed.</li></ul>								
Erosion due to concentrated storm water runoff flow	Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.	<ul> <li>Inspect after every 0.5-inch or larger storm event. If erosion due to storm water flow has been observed, increase inspection frequency to after every 0.1-inch or larger storm event.</li> <li>Maintenance when needed. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.</li> </ul>								
Standing water in infiltration basin without subsurface infiltration gallery for longer than 24-96 hours following a storm event	Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, or removing/replacing clogged or compacted surface treatments and/or scarifying or tilling native soils. Always remove deposited sediments before scarification, and use a hand-guided rotary tiller. If it is determined that the underlying native soils have been compacted or do not have the infiltration capacity expected, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.	<ul> <li>Inspect monthly and after every 0.5-inch or larger storm event. If standing water is observed, increase inspection frequency to after every 0.1-inch or larger storm event.</li> <li>Maintenance when needed.</li> </ul>								
Standing water in subsurface infiltration gallery for longer than 24-96 hours following a storm event	This condition requires investigation of why infiltration is not occurring. If feasible, corrective action shall be taken to restore infiltration (e.g., flush fine sediment or remove and replace clogged soils). BMP may require retrofit if infiltration cannot be restored. The [City Engineer] shall be contacted prior to any repairs or reconstruction.	<ul> <li>Inspect monthly and after every 0.5-inch or larger storm event. If standing water is observed, increase inspection frequency to after every 0.1-inch or larger storm event.</li> <li>Maintenance when needed.</li> </ul>								

# INF-1

### **Infiltration Basin**

SUMMARY OF STANDARD INSPE	CTION AND MAINTENANCE FOR INF-1 INFILTRATION BASIN	(Continued from previous page)
Threshold/Indicator	Maintenance Action	Typical Maintenance Frequency
Presence of mosquitos/larvae For images of egg rafts, larva, pupa, and adult mosquitos, see <u>http://www.mosquito.org/biology</u>	If mosquitos/larvae are observed: first, immediately remove any standing water by dispersing to nearby landscaping; second, make corrective measures as applicable to restore BMP drainage to prevent standing water. For subsurface infiltration galleries, ensure access covers are tight fitting, with gaps or holes no greater than 1/16 inch, and/or install barriers such as inserts or screens that prevent mosquito access to the subsurface storage. If mosquitos persist following corrective measures to remove standing water, or if the BMP design does not meet the 96-hour drawdown criteria because the underlying native soils have been compacted or do not have the infiltration capacity expected, the [City Engineer] shall be contacted to determine a solution. A different BMP type, or a Vector Management Plan prepared with concurrence from the County of San Diego Department of Environmental Health, may be required.	<ul> <li>Inspect monthly and after every 0.5-inch or larger storm event. If mosquitos are observed, increase inspection frequency to after every 0.1-inch or larger storm event.</li> <li>Maintenance when needed</li> </ul>
Damage to structural components such as weirs, inlet or outlet structures	Repair or replace as applicable.	<ul><li>Inspect annually.</li><li>Maintenance when needed.</li></ul>

#### References

American Mosquito Control Association.

http://www.mosquito.org/

California Storm Water Quality Association (CASQA). 2003. Municipal BMP Handbook. https://www.casqa.org/resources/bmp-handbooks/municipal-bmp-handbook

County of San Diego. 2014. Low Impact Development Handbook.

http://www.sandiegocounty.gov/content/sdc/dpw/watersheds/susmp/lid.html

San Diego County Copermittees. 2016. Model BMP Design Manual, Appendix E, Fact Sheet INF-1. <u>http://www.projectcleanwater.org/index.php?option=com_content&view=article&id=250&Itemid=220</u>

Page Intentionally Blank for Double-Sided Printing

# INF-1

## **Infiltration Basin**

Date:	Inspector:		BMP ID No.:
Permit No.:	APN(s):		
Property / Development Name:		Responsible Party Name and	Phone Number:
Property Address of BMP:		Responsible Party Address:	

INSPEC	TION AND MAINTENANCE CHECKLIST FOR INI	INSPECTION AND MAINTENANCE CHECKLIST FOR INF-1 INFILTRATION BASIN PAGE 1 of 5						
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted					
Threshold/Indicator         Accumulation of sediment, litter, or debris         Materials must be removed from the forebay when the forebay is 25% full*. In any case, materials must be removed if accumulation blocks flow to the infiltration area.         Materials must be removed from the infiltration area any time accumulation is observed in the infiltration area.         Materials must be removed from the infiltration area any time accumulation is observed in the infiltration area.         Maintenance Needed?         YES         NO         N/A	Maintenance Recommendation <ul> <li>Remove and properly dispose of accumulated materials, (without damage to the vegetation when applicable)</li> <li>If accumulation within the forebay is greater than 25% in one month, increase the inspection and maintenance frequency**</li> <li>Other / Comments:</li> </ul>	Date	Description of Maintenance Conducted					

*"25% full" is defined as ¼ of the depth from the design bottom elevation to the crest of the outflow structure (e.g., if the height to the outflow opening is 12 inches from the bottom elevation, then the materials must be removed when there is 3 inches of accumulation – this should be marked on the outflow structure).

**If no forebay is present, if sediment, litter, or debris accumulation exceeds 25% of the surface ponding volume within one month, add a forebay or other pre-treatment measures within the tributary area draining to the BMP to intercept the materials.

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPE	CTION AND MAINTENANCE CHECKLIST FOR INI	F-1 INFILTRATION BAS	IN PAGE 2 of 5
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Poor vegetation establishment (when the BMP includes vegetated surface by design)	<ul> <li>Re-seed, re-plant, or re-establish vegetation per original plans</li> <li>Other / Comments:</li> </ul>		
Maintenance Needed?			
□ YES □ NO □ N/A			
Dead or diseased vegetation	□ Remove dead or diseased vegetation,		
(when the BMP includes vegetated surface by design)	re-seed, re-plant, or re-establish vegetation per original plans		
Maintenance Needed?	□ Other / Comments:		
□ YES □ NO □ N/A			
Overgrown vegetation	□ Mow or trim as appropriate		
(when the BMP includes vegetated surface by design)	□ Other / Comments:		
Maintenance Needed?			
□ YES □ NO □ N/A			

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPEC	INSPECTION AND MAINTENANCE CHECKLIST FOR INF-1 INFILTRATION BASIN PAGE 3 of 5					
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted			
Erosion due to concentrated irrigation flow Maintenance Needed? YES NO N/A	<ul> <li>Repair/re-seed/re-plant eroded areas and adjust the irrigation system</li> <li>Other / Comments:</li> </ul>					
Erosion due to concentrated storm water runoff flow Maintenance Needed? YES NO N/A	<ul> <li>Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan</li> <li>If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction</li> <li>Other / Comments:</li> </ul>					

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPE	CTION AND MAINTENANCE CHECKLIST FOR INF	-1 INFILTRATION BAS	IN PAGE 4 of 5
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Obstructed inlet or outlet structure	Clear blockage		
Maintenance Needed?	Other / Comments:		
□ YES			
□ N/A			
Damage to structural components such as weirs,	Repair or replace as applicable		
inlet or outlet structures			
	□ Other / Comments:		
Maintenance Needed?			
□ YES			
□ N/A			

# INF-1

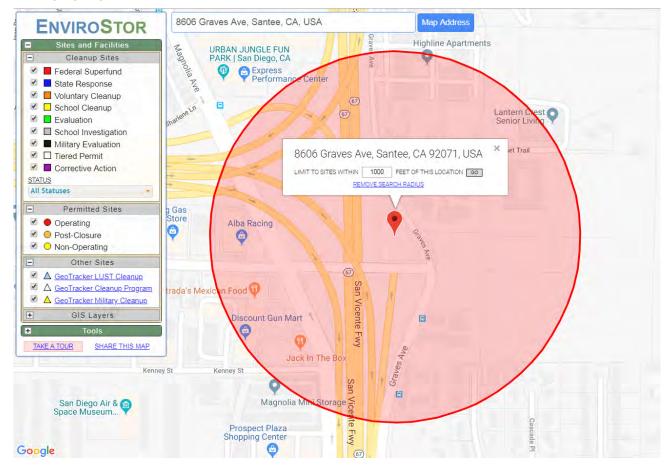
Infiltration Basin	Infi	Itration	Basin
--------------------	------	----------	-------

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

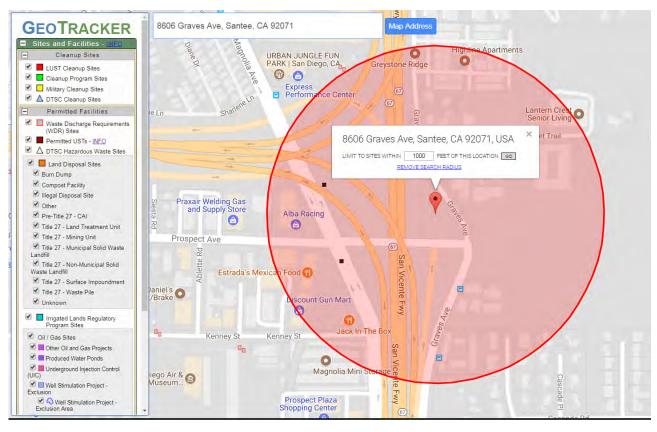
INSPEC	CTION AND MAINTENANCE CHECKLIST FOR INF	-1 INFILTRATION BAS	IN PAGE 5 of 5
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Standing water in infiltration basin without subsurface infiltration gallery for longer than 24- 96 hours following a storm event* Maintenance Needed? YES NO N/A	<ul> <li>Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, or removing/replacing clogged or compacted surface treatments and/or scarifying or tilling native soils.</li> <li>Other / Comments:</li> </ul>		
Standing water in subsurface infiltration gallery for longer than 24-96 hours following a storm event* Maintenance Needed? YES NO N/A	<ul> <li>If feasible, take corrective action to restore infiltration (e.g., flush fine sediment or remove and replace clogged soils). BMP may require retrofit if infiltration cannot be restored. The [City Engineer] shall be contacted prior to any repairs or reconstruction.</li> <li>Other / Comments:</li> </ul>		
Presence of mosquitos/larvae For images of egg rafts, larva, pupa, and adult mosquitos, see http://www.mosquito.org/biology Maintenance Needed? YES NO N/A	<ul> <li>Apply corrective measures to remove standing water in BMP when standing water occurs for longer than 24-96 hours following a storm event.**</li> <li>Other / Comments:</li> </ul>		

*Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health, and surface or subsurface ponding longer than approximately 96 hours following a storm event poses a risk of vector (mosquito) breeding. Poor drainage can result from clogging of the underlying native soils, or clogging of covers applied at the basin surface such as topsoil, mulch, or rock layer. The specific cause of the drainage issue must be determined and corrected. If it is determined that the underlying native soils have been compacted or do not have the infiltration capacity expected, or if the infiltration surface is not accessible (e.g., an underground infiltration gallery) the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.

**If mosquitos persist following corrective measures to remove standing water, or if the BMP design does not meet the 96-hour drawdown criteria because the underlying native soils have been compacted or do not have the infiltration capacity expected, the [City Engineer] shall be contacted to determine a solution. A different BMP type, or a Vector Management Plan prepared with concurrence from the County of San Diego Department of Environmental Health, may be required.


#### Appendix H

Cortese List Verification


### **Cortese List Verification**

Project: Graves Commercial Center Address: 8606 Graves Avenue, Santee, CA 92071 Prepared By: REC Consultants, Inc. – March 2018

1. The California Department of Toxic Substances Control (DTSC) <u>EnviroStor</u> database indicates that the property of interest is **NOT** included in the Hazardous Waste & Substances Site List.



2. The list of Leaking Underground Storage Tank sites by County from the Water Board <u>GeoTracker</u> database indicates that the property of interest is **NOT** included in this list.



 The list of solid waste disposal sites identified by Water Board with waste constituents above hazardous waste levels outside the waste management unit indicates that the property of interest is NOT included in this list.

COUNTY	СПУ	REGION	SWATI	WASTE DISCHARGER SYSTEM NO.	SOLID WASTE ID NO.	WASTE MANAGEMENT UNIT NAME	FACILITY NAME	AGENCY NAME
DEL NORTE	CRESCENT CITY	1	2	1A880520NSL-01		DEL NORTE COUNTY- PESTICIDE STORAGE	DEL NORTE PESTICIDE STORAGE AR	DEL NORTE, COUNTY OF
CONTRA COSTA	PITTSBURG	2	1	2 071059002-02	07-A1-0001	U.S. STEEL CORPPITTSBURG SITE LA	WDR-USS-POSCO	USS-POSCO
SOLANO	VALLEJO	2	1	2 482011003-01	48-AA-0008	US NAVY MARE ISLAND SANITARY LANDFILL	WDR-NAVAL SHIPYARD/CLASS I LAN	MARE ISLAND NAVAL SHIPYARD
CONTRA COSTA	RICHMOND	2	3	2 071007002-01		CHEVRON CHEMICAL COMPANY-OLD SITES	WDR-ORTHO DIV-RICHMOND PLANT	CHEVRON CHEMICAL COMPANY
MONTEREY	FORT ORD (Marina)	3	1	3 270301004-01	27-AA-0015	FORT ORD LANDFILL	SANITARY LANDFILL	U.S. ARMY, FORT ORD
SANTA BARBARA	LOMPOC	3	3	3 420305001-01	42-AA-0017	LOMPOC CITY LANDFILL	SOLID WASTE DISPOSAL SITE	LOMPOC CITY
LOS ANGELES	MONTEREY PARK	4	1	4B190332001-01	19-AM-0001	OPERATING INDUSTRIES LANDFILL	OPERATING INDUSTRIES, INC.	OPERATING INDUSTRIES, INC.
TULARE	WOODLAKE	5F	- 1	5D540300010-01	54-AA-0007	TULARE COUNTY-WOODLAKE LANDFILL	WOODLAKE SWDS	TULARE, COUNTY OF
FRESNO	FRESNO	SF	2	5D100300001-01	·	MCKINLEY AVE. YARD	T.H. AGRICULTURE AND NUTRITION	NORTH AMERICAN PHILLIPS
KINGS	CORCORAN	5F	2	5D160302001-01	16-AA-0011	KINGS COUNTY-CORCORAN LANDFILL	CORCORAN SWDS	KINGS COUNTY WASTE MGMT AUTH.
RESNO	FRESNO	5F	3	5D100319001-01	10-AA-0013	ORANGE AVENUE DISPOSAL COMPANY	ORANGE AVENUE LANDFILL	ORANGE AVENUE DISP CO. INC
TULARE	EXETER	5F	3	5D540300003-01	54-AA-0002	TULARE COUNTY-EXETER DISPOSAL SITE	EXETER SWDS	TULARE, COUNTY OF
MERCED	ATWATER	5F	4	5C240115001-01		ATWATER CITY	BERT CRANE ROAD LANDFILL	ATWATER, CITY OF
RESNO	FOWLER	5F	5	5D100325N01-01		FOWLER CITY	FOWLER CITY LANDFILL (OLD)	FOWLER, CITY OF
BUTTE	OROVILLE	5R	2	5A042005001-01		KOPPERS COMPANY-OROVILLE SITE	KOPPERS WOOD PRESERVING ISW	KOPPERS INDUSTRIES INC.
BUTTE	CHICO	5R	4	5A040302N01-01	-	CHICO CITY BURN DUMP	HUMBOLDT ROAD LANDFILL	CHICO, CITY OF
ACRAMENTO	SACRAMENTO	58	1	5A340700003-01	34-AA-0008	US AIR FORCE-MCCLELLAN AFB LANDFILL	CLASS III SITE 8 (CLOSURE)	US AIR FORCE-MCCLELLAN AFB
ACRAMENTO	MATHER (Rancho Cordova)	58	2	5A340700001-01		US AIR FORCE-MATHER FIELD LANDFILL	MATHER AFB ENVIRONMENTAL MGMT	US AIR FORCE - MATHER AFB
SACRAMENTO	SACRAMENTO	58	3	5B342000N01-01		SACRAMENTO ARMY DEPOT	SACRAMENTO ARMY DEPOT	U.S. ARMY
SAN JOAQUIN	STOCKTON	58	3	5 390002NUR-01	39-AA-0006	US NAVY COMMUNICATIONS LANDFILL	U.S.N. COMMUNICATION STA. LANDF	U.S. NAVY COMMUNICATIONS
SAN JOAQUIN	FRENCH CAMP	58	3	5 390003NUR-01		US ARMY-SHARPE ARMY DEPOT	US ARMY-SHARPE ARMY DEPOT	US ARMY
SAN JOAQUIN	TRACY	58	5	5 390006NUR-01	1	SITE 300 (OTHER 39 WMUS)	LAWRENCE LIVERMORE LAB	LAWRENCE LIVERMORE LABS
NYO	KEELER	6V	1	6B142000041-01	14-AA-0008	US TUNGSTEN OWENS LAKE LANDFILL	OWENS LAKE LANDFILL	UMETCO MINERALS CORPORATION
ORANGE	FULLERTON	8	1	8300002NUR-01		MCCOLL SITE	MCCOLL SLUDGE DISPOSAL SITE	TOXIC SUBSTANCES CONTROL DIVIS
RIVERSIDE	RIVERSIDE	8	1	8 330325001-01		STRINGFELLOW QUARRY ACID PITS	STATE OF CALIFORNIA-STRINGFELLOW	TOXIC PROGRAM MANAGEMENT SECT

SITES IDENTIFIED WITH WASTE CONSTITUENTS ABOVE HAZARDOUS WASTE LEVELS OUTSIDE THE WASTE MANAGEMENT UNIT

4. The (MS Excel) <u>list of "active" CDO and CAO from the Water Board</u> indicates that the property of interest is **NOT** included in this list.

 The list of hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code, identified by DTSC, indicate that the property of interest is **NOT** included in this list.

#### Cortese List: Section 65962.5(a)

Information Required From the Department of Toxic Substances Control (DTSC) Under Government Code Section 65962.5(a)

Section 65962.5(a)(1) requires that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: ....(1) [a]II hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code ("HSC")."

The hazardous waste facilities identified in HSC § 25187.5 are those where DTSC has taken or contracted for corrective action because a facility owner/operator has failed to comply with a date for taking corrective action in an order issued under HSC § 25187, or because DTSC determined that immediate corrective action was necessary to abate an imminent or substantial endangement. This is a very small and specific subgroup of facilities and they are not separately posted on the DTSC or CalEPA's website.

The facilities listed below fall under this category:

- AAD Distribution & Dry Cleaning Inc. EPA ID CAD9813974172308 E. 38th StreetVernon. CA 90058
- The Marquardt Co. CA ID CAD044696102 16555 Saticoy Street Van Nuys, CA 91408

Section 65962.5(a)(2) requires that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: ... (2) [a]ll land designated as hazardous waste property or border zone property pursuant to Article 11 (commencing with Section 25220) of Chapter 6.5 of Division 20 of the Health and Safety Code."

No facilities or lands are listed under this provision because DTSC has not designated any hazardous waste property or border zone property pursuant to the cited provisions.

Section 65962.5(a)(3) requires that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: ....(3) [a]li information received by the Department of Toxic Substances Control pursuant to Section 25242 of the Health and Safety Code on hazardous waste disposals on public land.

HSC § 25242(a) requires a city, county, or state agency that owns or leases land to notify DTSC if it "has probable cause to believe that a disposal of hazardous waste, which is not authorized pursuant to this chapter has occurred on, under or into the land which the city, county, or state agency owns or leases..."; DTSC then shall determine if there has been an unauthorized disposal of hazardous waste.

In practice, if a city, county or state agency contacts DTSC to provide such information, they also will have contacted or will be directed to contact DTSC's Emergency Response Duty Officer, who determines whether to authorize DTSC-funding for an emergency action to properly remove and dispose of the hazardous waste.

DTSC's Emergency Response program does not keep separate records of such reports that relate to city, county or state agency property.

In the future, DTSC will track any reports received from cities, counties, or state agencies of hazardous waste disposal on land owned or leased by a city, county or state agency, where hazardous waste was released into the environment, and provide the information to CaIEPA for inclusion in this section of the Cortese list.

Section 65962.5(a)(4)requires that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: ....(4) [a]ll sites listed pursuant to Section 25356 of the Health and Safety Code."

HSC § 25356(b)(1) requires "a listing of hazardous substance release sites selected for, and subject to, a response action under this chapter." HSC § 25356(b)(2) requires DTSC to 'update the list of sites at least annually to reflect new information regarding previously listed sites or the addition of new sites requiring response action." The implementing regulations provide that sites may be listed pursuant to HSC § 25356 if (a) they are not owned by the Federal Government and (b) a release or threatened release of hazardous substances has been confirmed by on-site sampling. (California Code of Regulations, Title 22, Section 67400.1). DTSC's list of sites that meet those oriteria as well as the oriteria in HSC § 25356(b)(c). Is found in a report in DTSC's "Envirostor' database:

· Hazardous Waste and Substances site "Cortese" list

Sites where response actions have been completed and no operation and maintenance activities are required are not included on the list.

Section 65962.5(a)(5) requires that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: ....(5) [a]ll sites included in the Abandoned Site Assessment Program."

DTSC had an abandoned site program in the 1980s. HSC § 25389, which was enacted in 1985, required an abandoned site survey in "rural unsurveyed counties." Sites identified in the abandoned site program were included in the "CalSites" database of known and potential hazardous substance release sites. After further investigation, many sites were removed from the "CalSites" database because there was no evidence that a release of hazardous substances occurred. Some time in the early 1990s, DTSC's activities under HSC § 25389, and the entire Abandoned Site Program, were concluded.

DTSC recently replaced the "CalSites" database with a new database of hazardous substance release sites, known as the "EnviroStor" database. The EnviroStor database does not indicate if a specific site was at one time included in the abandoned site program and does not have a category for sites that are considered abandoned. The CalSites database also did not include this information. Consequently, DTSC does not provide the information to CalEPA originally called for under section 65062.5(a)(5).

**Background and History** 

#### Appendix I

FAA Determination of No Hazard



Mail Processing Center Federal Aviation Administration Southwest Regional Office Obstruction Evaluation Group 10101 Hillwood Parkway Fort Worth, TX 76177

Issued Date: 03/30/2017

Michael Grant DCI 110 Town Center Parkway Santee, CA 92071

#### **** DETERMINATION OF NO HAZARD TO AIR NAVIGATION ****

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Building Graves Commercial
Santee, CA
32-49-52.40N NAD 83
116-57-40.14W
452 feet site elevation (SE)
36 feet above ground level (AGL)
488 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

_____ At least 10 days prior to start of construction (7460-2, Part 1)

___X__ Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

Based on this evaluation, marking and lighting are not necessary for aviation safety. However, if marking/ lighting are accomplished on a voluntary basis, we recommend it be installed in accordance with FAA Advisory circular 70/7460-1 L Change 1.

This determination expires on 09/30/2018 unless:

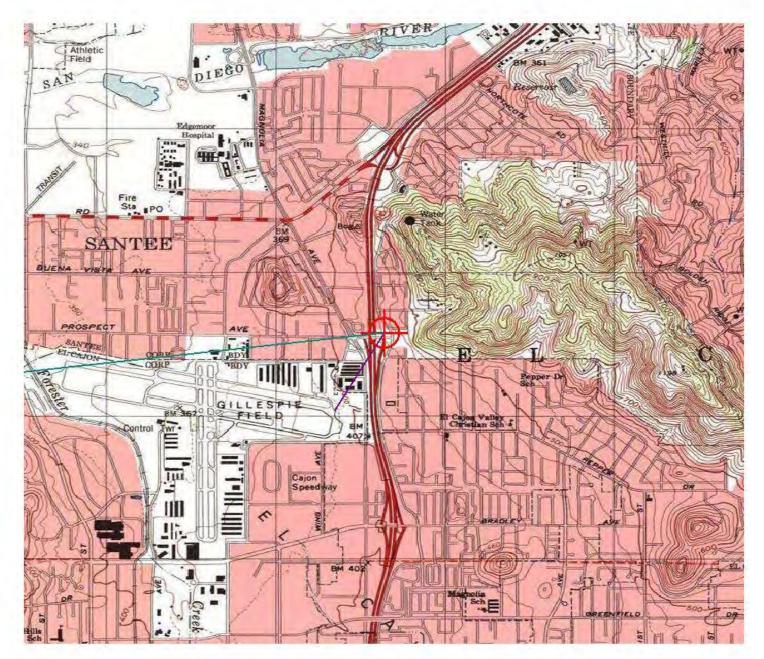
- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.
- (c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates , heights, frequency(ies) and power . Any changes in coordinates , heights, and frequencies or use of greater power will void this determination. Any future construction or alteration , including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.


If we can be of further assistance, please contact our office at (310) 725-6558. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2016-AWP-12463-OE.

(DNE)

Signature Control No: 312986571-327129359 LaDonna James Technician

Attachment(s) Map(s)

#### Verified Map for ASN 2016-AWP-12463-OE



#### Appendix J

Noise Impact Analysis



March 2, 2018

Hannah Gbeh REC Consultants, Inc. 2442 Second Avenue San Diego, CA 92101

Subject: Graves Avenue 7-Eleven and Starbucks Project Noise Impact Analysis

Dear Ms. Gbeh:

HELIX Environmental Planning, Inc. (HELIX) has performed a noise impact analysis for the construction and operational noise impacts of the proposed Graves Avenue 7-Eleven and Starbucks Project (project). This letter summarizes the modeling used to assess the noise impacts associated with construction activity and operation of the drive-through speaker setup for the Starbucks coffee shop and rooftopmounted heating, ventilation, and air conditioning (HVAC) units.

#### PROJECT DESCRIPTION AND ENVIRONMENTAL SETTING

The approximately one-acre project site is located at 8606 Graves Avenue in the City of Santee (City), California. The site is bounded by State Route (SR-) 67 to the west, Prospect Avenue to the south, and Graves Avenue to the north and east. The project proposes the construction of a single structure divided into two retail spaces totaling 6,267 square feet (SF). The larger store would provide 4,467 SF of space for the 7-Eleven convenience store, and the smaller store would provide 1,800 SF for the Starbucks coffee shop. The project proposes a drive-through to serve the Starbucks coffee shop which would wrap around the southern and western edges of the structure. The project also proposes 32 parking spaces, street and sidewalk improvements, and two infiltration basins. The site has a General Plan and zoning designation of General Commercial.

Noise-sensitive land uses (NSLUs) are land uses that may be subject to stress and/or interference from excessive noise, including residences, hospitals, schools, hotels, resorts, libraries, sensitive wildlife habitat, or similar facilities where quiet is an important attribute of the environment. Noise receptors are individual locations that may be affected by noise. NSLUs in the project vicinity include multi-family residences to the east and south across Graves Avenue, with the nearest residences approximately 100 feet east of the project boundary. Refer to the Figure 1, *Drive-through Speaker Noise Contours* for nearby land uses.

#### TERMINOLOGY

All noise level or sound level values presented herein are expressed in terms of decibels (dB), with A-weighting (dBA) to approximate the hearing sensitivity of humans. Time-averaged noise levels are

Letter to Hannah Gbeh March 2, 2018

expressed by the symbol  $L_{EQ}$ , with a specified duration. The Community Noise Equivalent Level (CNEL) is a 24-hour average, where noise levels during the evening hours of 7:00 p.m. to 10:00 p.m. have an added 5 dBA weighting, and noise levels during the nighttime hours of 10:00 p.m. to 7:00 a.m. have an added 10 dBA weighting.

#### NOISE MODELING SOFTWARE

Project construction noise was analyzed using the Roadway Construction Noise Model (RCNM; United States Department of Transportation [USDOT] 2008), which utilizes estimates of sound levels from standard construction equipment to determine the noise level at a given distance.

Modeling of the operational speaker system and rooftop HVAC units was accomplished using Computer Aided Noise Abatement (CadnaA) version 2018. CadnaA is a model-based computer program developed by *DataKustik* for predicting noise impacts in a wide variety of conditions. CadnaA assists in the calculation, presentation, assessment, and mitigation of noise exposure. It allows for the input of project-related information, such as noise source data, barriers, structures, and topography to create a detailed model for the prediction of outdoor noise impacts.

Project traffic-related noise was analyzed using the Traffic Noise Model (TNM) version 2.5, which calculates daytime average hourly  $L_{EQ}$  from various model inputs and traffic data (Caltrans 2004). The one-hour  $L_{EQ}$  noise level is calculated utilizing peak-hour traffic; peak-hour traffic volumes can be estimated based on the assumption that 10 percent of the average daily traffic would occur during a peak hour. The model-calculated one-hour  $L_{EQ}$  noise output is the equivalent to the CNEL (Caltrans Technical Noise Supplement, November 2009).

#### **NOISE STANDARDS**

#### **Construction Noise Standards**

Chapter 8.12.290 of the Santee Municipal Code regulates noise emissions from construction equipment. The Municipal Code states that no equipment or combination of equipment shall be operated so as to cause noise at a level in excess of 75 dBA for more than eight hours during any 24-hour period. Noise levels from construction equipment are corrected for based on time duration, and are shown in Table 1, *City of Santee Construction Noise Level Limits*.

Total Duration in 24-Hour Period	Decibel Level Allowance	Total Decibel Level
Up to 15 minutes	+15	90
Up to 30 minutes	+12	87
Up to 1 hour	+9	84
Up to 2 hours	+6	81
Up to 4 hours	+3	78
Up to 8 hours	0	75

#### Table 1 CITY OF SANTEE OPERATIONAL NOISE LEVEL LIMITS



#### **Operational Noise Standards**

Table 8.12.040(A) of the City of Santee Municipal Code regulates operational noise exposure limits for residential properties. These standards are depicted in Table 2, *City of Santee Operational Noise Level Limits.* The drive-through would be open 24 hours per day, so the project's operational noise sources must be below the City's lowest limit of 40 dBA  $L_{EQ}$  during nighttime hours.

Zone	Time Period	Applicable Limit One-Hour Average Sound Level (dB)
	7 a.m. to 7 p.m.	50
Residential	7 p.m. to 10 p.m.	45
	10 p.m. to 7 a.m.	40

Table 2
CITY OF SANTEE OPERATIONAL NOISE LEVEL LIMITS

Source: Table 8.12.040(A) of City of Santee Municipal Code

#### NOISE ANALYSIS AND IMPACTS

#### **Construction Noise Impacts**

Construction of the proposed project would involve site grading and preparation, underground utilities installation, building construction, and paving. Construction equipment is mobile and would be moving across the site throughout the construction period. For modeling purposes, equipment was assumed to operate at an average distance of approximately 120 feet from the nearest residence. The loudest construction noise levels would occur during grading, which would involve the simultaneous use of a tractor, backhoe, and front end loader. A tractor, backhoe, and front end loader is assumed to be operating simultaneously for 40 percent during a given hour. If used each hour over an eight-hour work day, this construction equipment would generate a noise level of 74.3 dBA L_{EQ} at 120 feet. Noise levels would not exceed the City's 75 dBA construction noise level limit and impacts from construction would be less than significant. For modeling results, see Attachment 1, *Construction Noise Modeling Outputs*.

#### **Operational Noise Impacts**

Operational sources of noise associated with the proposed project include the drive-through speaker system and HVAC units located on the roof. Table 3, *Site Features Included in the Noise Model*, shows the proposed features at the project site that were included in the CadnaA noise model. These features would affect the emission, obstruction, and reflection of noise from the speaker. Because it is assumed that an idling automobile would be present when the speaker is operating, a single vehicle was included in the model directly opposite the speaker to account for obstruction and reflection of sound that may occur. Per project designs, a parapet was included around the border of the roof, which would decrease noise levels from the HVAC units. To isolate noise generation from speaker and HVAC unit noise, the model did not include existing traffic noise from vehicles along Graves Avenue, Prospect Avenue, or SR-67.



#### Table 3 SITE FEATURES INCLUDED IN THE NOISE MODEL

Description	Height ¹
Proposed 7-Eleven/Starbucks building	15 feet
Parapet	4 feet
Automobile	6 feet

¹ Heights are estimated from architectural plans and from typical heights of objects/buildings.

Specific planning for the proposed speaker system is not available at this point in the planning process. A speaker at a similar style restaurant was measured for this analysis (HELIX 2016). A sound level meter at approximately five feet from a typical speaker measured 86.6 dBA  $L_{EQ}$  averaged over one hour. The summed measurement time period data (20-second average) are shown in octave format in Table 4, *Octave Data of Measured Drive-through Speaker*.

 Table 4

 OCTAVE DATA OF MEASURED DRIVE-THROUGH SPEAKER¹

Octave Band Center Frequency (Hz)	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	dBA L _{EQ*}
Measured Sound Pressure	79.3	75.2	72.2	74.8	84.8	80.0	61.1	51.9	86.6

¹ Drive-through speaker measured at a distance of five feet from the source.

The measurement data in Table 4 depicts the dBA  $L_{EQ}$  during the continuous use of a speaker for one hour. For the purposes of this analysis, it is assumed that a speaker would be in use for approximately 30 minutes in each hour. Assuming a one-minute customer order, the analysis for the proposed coffee shop assumes a conservative 60 customers per hour, with the speaker in use for half of a single order.

Specific planning for future HVAC systems is not available at this point in project design. Analysis using a typical rooftop commercial HVAC unit was analyzed for the project buildings. The unit used in this analysis is a Carrier Centurion Model 50 PG03-12 with a sound rating of 80 dBA sound power. The summed measurement time period data (20-second average) are shown in octave format in Table 5, *Octave Data of Carrier 50 PG03 12-Ton HVAC Unit*. A single one-ton HVAC unit is commonly required for every 350 square feet of habitable space (ASHRAE Handbook 2012). Using this calculation, two units for the combined 7-Eleven and Starbucks building would be required.



Octave Band Center Frequency (Hz)	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	dBA L _{EQ*}
Measured Sound Pressure	90.4	83.1	80.9	77.8	75.2	70.0	66.1	57.6	80.2

 Table 5

 OCTAVE DATA OF CARRIER 50 PG03 12-TON HVAC UNIT

Source: Carrier Product Data: Centurion.

Noise levels at three receivers placed at the three nearest residences were modeled in CadnaA using the data described above. The location of the three receivers and their proximity to the proposed project is depicted on Figure 1, *Drive-through Speaker Noise Contours* (see Attachment 2). Operation of the project, including a drive-through speaker and two HVAC units, would emit noise levels of approximately  $30.1 \text{ dBA } L_{EQ}$  at Receiver 1, 29.4 dBA  $L_{EQ}$  at Receiver 2, and 26.5 dBA  $L_{EQ}$  at Receiver 3. Noise levels would not exceed the City's 40 dBA  $L_{EQ}$  nighttime limit.

#### **Project Traffic-Related Noise Impacts**

Traffic noise levels presented in this analysis are based on traffic volumes provided by the project's Traffic Study (Darnell & Associates, Inc. 2017). TNM was used to calculate the noise contour distances for Existing and Existing + Project conditions along Graves Avenue north of Prospect Avenue. This roadway segment was analyzed because it would accommodate most of the traffic generated by the project, and thus provides a conservative analysis for project traffic noise levels. Additionally, residences are located along this segment of Graves Avenue, approximately 50 feet from the roadway centerline. The project's traffic levels and the results of the analysis for the CNEL at 50 feet from the roadway centerline are shown below in Table 6, *Existing and Future Traffic Volumes and Noise Levels*.

A significant direct impact would occur if the project's traffic more than doubles (increases by more than 3 CNEL) the existing noise level. The project would not increase traffic-related noise levels by more than 3 CNEL, and impacts would be less than significant.

Roadway Segment	Exi	sting	Existing	; + Project	Change from Existing				
Noauway Segment	ADT	CNEL @ 50 feet	ADT	CNEL @ 50 feet	ADT	CNEL @ 50 feet			
Graves Avenue									
North of Prospect Avenue	6,616	59.9	10,457	61.9	+3,841	+2.0			

 Table 6

 EXISTING AND FUTURE TRAFFIC VOLUMES AND NOISE LEVELS

ADT = Average Daily Traffic

Source: Darnell & Associates, Inc 2017; TNM



Letter to Hannah Gbeh March 2, 2018

#### Conclusions

Construction, operation of the project, and additional project-related traffic would not generate noise levels above City standards. Impacts would be less than significant.

Jason Rungan

Jason Runyan Noise Analyst

Joanne M. Dramko, AICP Senior Technical Specialist

Attachments:

Attachment 1: Construction Noise Modeling Outputs

Attachment 2: Figure 1-Drive-through Speaker Noise Contours

#### REFERENCES

ASHRAE. 2012. ASHRAE Handbook – HVAC Systems and Equipment.

California Department of Transportation (Caltrans). 2009. Technical Noise Supplement. November.

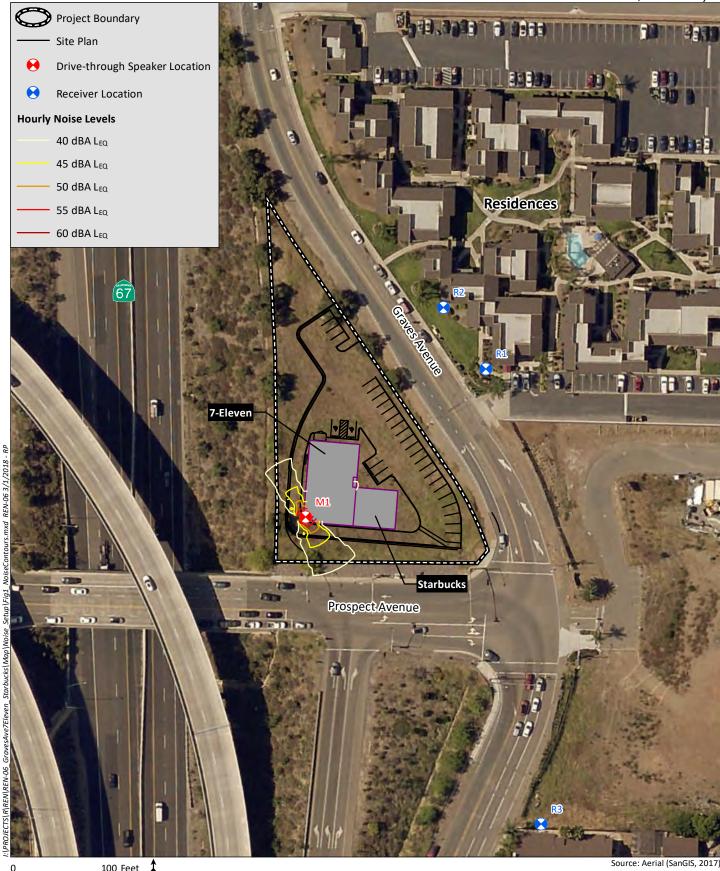
2004. California Department of Transportation, Traffic Noise Model (TNM).

Darnell & Associates. 2017. Traffic Impact Study for Convenience Market and Coffee Shop with Drive Thru Project. March 30. Revised August 22.

HELIX Environmental Planning, Inc. 2016. Noise Impact Analysis Tacos El Gavilan Drive-Through Restaurant. February 18



Report date 2/22/2018 Case Description:


			Rec	eptor #1 -	
	Baselines	(dBA)			
Descriptior Land Use	Daytime	Evening	Night		
Multi-famil Residential	70	) 7	0	70	

			Equipment					
			Spec	Actual		Receptor	Estimated	k
	Impact		Lmax	Lmax		Distance	Shielding	
Description	Device	Usage(%)	(dBA)	(dBA)		(feet)	(dBA)	
Tractor	No	40	)	84		120	)	0
Backhoe	No	40	)		77.6	120	)	0
Front End Loader	No	40			79.1	120	)	0

		Results											
	Calculated (dB/	4)	Noise Li	imits (dBA)					Nois	e Limit Ex	ceeda	nce (dB	A)
		Day		Evening		Night		Day		Evening		Night	
Equipment	*Lmax Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Tractor	76.4	72.4 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Backhoe	70	66 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Front End Loader	71.5	67.5 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	76.4	74.3 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

*Calculated Lmax is the Loudest value.

Starbucks/7-Eleven Project



100 Feet

Source: Aerial (SanGIS, 2017)



## Drive-through Speaker Noise Contours

Figure 1

#### Appendix K

Padre Dam Municipal Water District Project Availability Forms

## CITY OF SANTEE

## PROJECT FACILITY AVAILABILITY FORM, Sewer

Please type or use pen	an bandan sana an tanàna ing manana kao kao amin'ny fanina amin'ny fanina amin'ny fanina amin'ny fanina amin'ny		
-, -	-449-0249	ORG	
Advantaged Asset Acquisitions I, LLC 619 Owner's Name Phon		- ACCT	
8510 Railroad Avenue	-	ACT	
	Street	TASK	
Santee CA	92071	DATE	AMT \$
City State	Zip	-	SHIER'S USE ONLY
SECTION 1. PROJECT DESCRIPTION			ED BY APPLICANT
A. Major Subdivision (TM) Specific Plan or Sp Minor Subdivision (TPM) Certificate of Comp	ecific Plan Amendment		Parcel Number(s) ra if necessary)
Boundary Adjustment		384-14 <b>1</b> -21	T
Rezone (Reclassification) from to to	zone.	504-14 <b>L</b> -21	
Time Extension?Case No			
Expired Map?Case No CUP to construct and operate retail w.	/ drivethrough		
<ul> <li>B. Residential Total number of dwelling units_</li> <li>Commercial Gross floor area 6,267 sf</li> </ul>			<u> </u>
Industrial Gross floor area		Thomas Bros. Page	Grid
Other Gross floor area		8606 Graves Avenue	
C. 🔀 Total Project acreage <u>1.02</u> Total number of lots_	1	Project address	Street
D. Is the project proposing its own wastewater treatment pl	ant? 🗌 Yes 🛛 No	Santee	92071
Is the project proposing the use of reclaimed water?		Community Planning Area/Su	bregion Zip
Owner/Applicant agrees to pay all necessary constru- OWNER/APPLICANT MUST Applicant's Signature:			nd service to the project. iRICT.
Address: 8510 Railroad Avenue, Santee, CA 92071		Date Phone:619-449	-0249
(On completion of above, present to th SECTION 2: FACILITY AVAILABILITY		TO BE COMPLETED B	
***LETTER E	XPIRES 2/2//20		
District Name:PADRE DAM MUNICIPAL WATER DIST			
<ul> <li>A. A Project is in the district.</li> <li>Project is not in the district but is within its Sphere of</li> </ul>	Influence boundary own	er must apply for appayation	
Project is not in the district and is not within its Sphe	re of Influence boundary.		
The project is not located entirety within the district a			
B. Facilities to serve the project ARE ARE ARE ARE Capital facility plans of the district. Explain in space			ars based on the
Project will not be served for the following reason(s):			
C. District conditions are attrached. Number of sheets a			
District has specific water reclamation conditions whi	ich are attached. Numbe	r of sheets attached:	
District will submit conditions at a later date.     Additional District conditions:			
D. How far will the pipeline(s) have to be extended to set	erve the project?		
This Project Facility Availability Form is valid until final discr withdrawn, unless a shorter expiration date is otherwise note	etionary action is taken p ed.	ursuant to the application for the	proposed project or until it is
Authorized signature: Cherry presmo	~	Print nameCher	41 Brugman
Print title Senior Engineering Technicia.	<u>11 Phone (142</u>	<u>56-4635</u> Date	2/21/18
NOTE: THIS DOCUMENT IS NOT On completion of Section 2 by Department of Developme	A COMMITMENT OF SE	RVICE OR FACILITIES BY THE o submit this form with application olia Avenue, Santee, CA 92071	
		-	



#### SEWER AVAILABILITY ATTACHMENT CONDITIONS OF APPROVAL

PROJECT NAME _____MAP NUMBER _____ FOR ____Commercial Business Corner ____MAP NUMBER _____

A.P.N.(s) 384-142-21

Padre Dam does not require that all lots be connected to the public sewer system. Alternate sources of sewer disposal are under the jurisdiction of the County of San Diego, or the City of Santee.

#### SPECIAL CONDITIONS

- [X] A private sewer system is required.
- [X] The nearest sewer connection to serve this parcel is an 8 inch VCP main in Graves Avenue at Sunset Trails Road. Padre Dam will install the public lateral portion (±10') in Graves Avenue at the developer's expense.
- [X] The developer is responsible for extending the private lateral to the project site.

E-32 R-8/08

Approved by: Cheryl Brugman

Date: 2/21/2018

## **CITY OF SANTEE**

S. Y

## PROJECT FACILITY AVAILABILITY FORM, Water

Please type or use p	nan			dadaaday magaa ay ahaa ahaa ahaa ahaa ahaa ahaa ah	
	•	0040	ORG		
Advantaged Asset Acquisitions I, LLC	619-449- Phone	0249	ACCT		
8510 Railroad Avenue	l nyny		ACT		
8510 Rallroad Avenue	Street		-   TASK		
Ŭ	CA	92071	DATE	AMT \$	
Santee City	State		-		
•				SHIER'S USE ONLY	
SECTION 1. PROJECT DESCRIPTION	<u> </u>		TO BE COMPLETE	ED BY APPLICANT	
	Minor Subdivision (TPM)		(Add extr	Assessor's Parcel Number(s) (Add extra if necessary)	
Rezone (Reclassification) from	to	zone.	384-142-21	T f	
Major Use Permit (MUP), purpose:					
Time Extension?Case No Expired Map?Case No					
Other CUP to construct and operate re	etail w/ drive	through			
B. D Residential Total number of dwelling					
Commercial Gross floor area 6,267 s	sf			Crid	
Industrial Gross floor area Other Gross floor area				Grid	
C. Total Project acreage <u>1.02</u> Total number o			8606 Graves Avenue Project address	Street	
			- Santee	92071	
D. Is the project proposing the use of groundwater? Yes No is the project proposing the use of reclaimed water? Yes No		Community Planning Area/Sul			
Owner/Applicant agrees to pay all necessary o	Senstruction co	osts, dedicate all o IDITIÓNS REQUIF	istrict required easements to exter RED BY THE DISTRICT.	nd service to the project and	
Address: 8510 Railroad Avenue, Santee, CA 92	2071	<u> </u>	_{Date:} _2/1/2018 _{Phone:619-449}	-0249	
(On completion of above, presen					
SECTION 2: FACILITY AVAILABILITY			TO BE COMPLETED B		
***LET	TER EXPIRE	S 2/21/20,	19		
District Name: PADRE DAM MUNICIPAL WATER DISTRICT Service area WSA					
<ul> <li>A. A Project is in the district.</li> <li>Project is not in the district but is within its Sphere.</li> </ul>					
Project is not in the district and is not within its	is Sphere of Inf	fluence boundary.			
The project is not located entirely within the di B. $\checkmark$ Facilities to serve the project $\checkmark$ ARE					
B. A Facilities to serve the project ARE A capital facility plans of the district. Explain in s	space below (	onably expected in or on attached	<ul> <li>be available within the next o ye</li> <li>(Number of sheets)</li> </ul>	ars based on the	
Project will not be served for the following reas	ason(s):	Л			
C. District conditions are attlached. Number of sh			<u> </u>		
<ul> <li>District has specific water reclamation conditio</li> <li>District will submit conditions at a later date.</li> </ul>	ons which are	attached. Number	r of sheets attached:		
Additional District conditions:					
D. How far will the pipeline(s) have to be extende	ed to serve the	<pre>&gt; project?</pre>			
This Project Facility Availability Form is valid until fina withdrawn, unless a shorter expiration date is otherwise	ise noted.			., , ,	
Authorized signature: Church Bru	mon		Print name Chery/	Brugman	
Authorized signature: Church BML Print title Semior Engineering Tec.	hricia	Phone 014 :	2 58-4635 Date @	2/21/18	
NOTE: THIS DOCUMENT IS	S NOT A COM	MITMENT OF SEI	RVICE OR FACILITIES BY THE	DISTRICT	
On completion of Section	lon 2 by the dis	strict, applicant is t	to submit this form with applicatior gnolia Avenue, Santee, CA 9207	n to:	

.



#### WATER AVAILABILITY ATTACHMENT CONDITIONS OF APPROVAL

A.P.N.(s) 384-142-21

Padre Dam does not require that all lots be connected to the public water system. Alternate sources of water are under the jurisdiction of the County of San Diego, or the City of Santee.

#### EASEMENTS

[X] Developer shall dedicate to Padre Dam all necessary easements for that portion of the water system which is to be public.

#### SPECIAL CONDITIONS

- **[X]** The onsite water system will be private.
- [X] There is an existing 10 inch ACP water main in Graves Avenue to serve the project.
- [X] A separate irrigation meter is required.
- Any existing water services not used as part of the project to be abandoned by Padre Dam at developer's expense. [X]
- Submit all street improvement and landscape plans to Padre Dam for review and approval. [X]

Approved by: Cheryl Brugman

Date: 2/21/2018