
DRAFT INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL IMPACT STATEMENT / ENVIRONMENTAL IMPACT REPORT (EIS/EIR)

APPENDIX E: AIR QUALITY AND GREENHOUSE GAS METHODOLOGY AND DATA

EAST SAN PEDRO BAY ECOSYSTEM RESTORATION STUDY Long Beach, California

November 2019

Blank page to facilitate duplex printing

1		TABLE OF CONTENTS	
2	1 Alf	R QUALITY METHODOLOGY	1-1
3	1.1	Marine Material-Hauling Emissions	1-1
4	1.2	ON-SITE EQUIPMENT EMISSIONS	1-3
5	1.3	GENERAL CONFORMITY APPLICABILITY RATES (NEPA)	1-3
6	1.4	SCAQMD DAILY EMISSION THRESHOLDS (CEQA) METHODOLOGY	1-5
7	1.5	AIR TOXICS AND SENSITIVE RECEPTORS (CEQA)	1-6
8	1.6	OBJECTIONABLE ODORS (CEQA) METHODOLOGY.	
9	1.7	COMPLIANCE WITH APPLICABLE AIR QUALITY PLAN (CEQA)	1-7
10	2 GR	EENHOUSE GASES METHODOLOGY	2-1
11	2.1	10,000 MT of CO2E per Year (CEQA)	2-1
12			
13		LIST OF TABLES	
14		1: GENERAL CONFORMITY APPLICABILITY RATED IN THE SCAB	
15	TABLE E-	2: MAXIMUM ANNUAL EMISSIONS (TONS PER YEAR)	1-5
16	TABLE E-	3: SIGNIFICANCE THRESHOLDS – SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT	1-5
17	TABLE E-	4: MAXIMUM DAILY EMISSIONS (POUNDS PER DAY)	1-6
18	TABLE E-	5: MAXIMUM ON-SITE DAILY EMISSIONS (POUNDS PER DAY)	1-6
19	TABLE E-	6: TOTAL MAXIMUM GHG EMISSIONS (METRIC TONS CO2E)	2-2
20	TABLE E-	7: Modeling Summary – Daily Criteria Pollutant Emissions	2-3
21			2 5

1 **1 AIR QUALITY METHODOLOGY**

The air quality area of influence for the project is included in the SCAB, which consists of the urbanized
areas of Los Angeles, Riverside, San Bernardino, and Orange counties, and the ocean offshore of the south
coast waters.

5 For the purpose of this analysis, it was assumed that stone material would be imported from either 6 Catalina Quarry and shipped in by barge, or from an inland quarry such as 3M which is located 55 miles 7 away in Corona, California. Given those assumptions, sources of air emissions associated with various 8 project alternatives include:

- 9 Material-hauling emissions
 - Tug boat engine exhaust associated with hauling stone from Catalina Quarry; or
 - Vehicular emissions associations with hauling stone from 3M Quarry
- 12 On-Site Equipment emissions
 - Tug boat and barge generators; and
- 14 On-deck barge construction equipment such as front-end loaders and cranes/winches

On-site emissions include activities such as stone placement and sand dredging and placement for all alternatives. On-site emissions for Alternative 8 include construction of the sandy island, oyster beds, and the wetlands. Refer to the end of this appendix for full modeling results.

Construction Phasing. Construction would be phased such that the transportation and placement of stones would occur prior to the initiation of sand dredging operations. Emission estimates were sequenced to be consistent with the general construction phasing described.

21 **1.1 MARINE MATERIAL-HAULING EMISSIONS**

Marine Hauling. Stone (armor, filter, and core) from Catalina Quarry could be used. Stone would be loaded onto flat-deck barges and tug boats would tow the barges approximately 25 nautical miles to the project area. Engine emission factors associated with harbor craft, dredges and barges were developed from CARB's most recently U.S. EPA-approved off-road emissions model. Emissions estimates were developed using the Harbor Craft, Dredge and Barge Emission Factor Calculator, Version 1.0; a calculation tool developed by the Sacramento Metropolitan Air Quality Management District's (SMAQMD).

Emissions for hauling materials from Catalina Island include emissions outside the three nautical mile limitof the SCAB encompassing the island.

Towing each barge was assumed to take 3.5 hours. The total number of towed barges was estimated based on the volume of stone and capacity of barges. The number of barges towed annually was based

- on the total number of barges and the duration of construction; a 1-year period was anticipated to include
- 32 two-thirds of the total barges in the 30 to 53-month construction period (30 months under Alternative 2,
- 34 37 months under Alternative 4A, and 53 months under Alternative 8). Similarly, the number of barges
- 35 towed daily was estimated based on the duration of construction and was rounded up to the nearest
- 36 whole number.
- 37

10

11

13

Parameter	Alternative 2	Alternative 4A	Alternative 8			
Armor/Cap Stone	137,000 tons	617,000 tons	2,092,000 tons			
Filter/Fill Stone	55,000 tons	55,000 tons	87,000 tons			
Core/Base Stone	252,000 tons	265,000 tons	303,000 tons			
Total Quarry Stone	444,000 tons	937,000 tons	2,482,000 tons			
Catalina Quarry	1 barge/day	1 barge/day	3 barge/day			
Tug Boat Deliveries	106 barges	183 barges	338 barges			
3M Quarry Truck Deliveries	44 trips/day**	91 trips/day**	242 trips/day**			
Vessels	Flat Barge Derrick Barge	Flat-bed Barge Derrick Barge	Flat-bed Barge Derrick Barge Dredger			
On-Deck Equipment		Front-End Loader				
Workday	8 hours/day	8 hours/day	12 hours/day			
Sand Dredging						
Volume	100,000 cubic yards	100,000 cubic yards	100,000 cubic yards			
Dredging Duration	25 days	25 days	25 days			
Dredging Hours	22 hours/day	22 hours/day	22 hours/day			
Tug Boat Hours	20 hours/day	20 hours/day	20 hours/day			
Total Construction Duration	30 months	37 months	53 months			
	issions were estimated using 20 ntally over time as newer, cleane		nption is conservative; emission			

**Truck trips per day where based on an 18-month construction duration schedule. Truck trips per day for the schedules

reported throughout the IFR EIS/EIR would be less.

2

3 CARB's Commercial Harbor Craft Regulations were adopted in 2008 and became effective January 1, 2009

4 (CARB 2017). The Commercial Harbor Craft Regulations apply to all commercial harbor craft such as

5 tugboats, towboats, ferries, barges, dredges, and fishing boats that operate in California regulated waters.

6 The regulations also include compliance schedules for existing vessels. Because vessel engines have been

7 retrofit subsequent to implementation of Commercial Harbor Craft Regulations in 2009 this analysis uses

8 harbor craft emission factors for 2009 model year engines.

9 Truck Hauling. As an alternative to stone from the Catalina Quarry, stone from 3M Quarry in Corona, 10 California may be used. Obtaining stone from 3M Quarry would require that stone to be loaded into 11 heavy-duty trucks and transported 55 miles to the project staging area (Port of Long Beach Pier T), from 12 the staging area stone would be loaded on barges and towed construction areas within the Bay. Vehicle emissions associated with material hauling were developed from CARB's EMFAC2014, the most recent 13 14 EPA-approved on-road emissions factor model for use in California. On-road emissions estimates were 15 modeled using SMAQMD's Road Construction Emissions Model Version 8.1.0. Each truck was assumed to 16 carry 22 tons of stone per 55 miles transport to the staging area. The total number of vehicle trips was 17 estimated based on the volume of stone and capacity of trucks. Total trips were divided over the duration 18 of construction to determine the number of annual and daily truck trips.

19 Marine Vessel Generators. Marine vessels were assumed to require one onboard generator on each 20 barge (one flat-deck barge and one derrick barge). Additionally, material hauling from Catalina Quarry

- 1 was assumed to require one onboard generator on each tug boat, which was assumed to be active for the
- 2 3.5-hour towing duration. Material hauling from 3M Quarry was assumed to require one onboard
- 3 generator on each tug boat, which was assumed to be active for a 0.5-hour towing duration (within ESPB
- 4 from the staging site to the construction area). Alternatives that include sand placement (Alternative 8)
- 5 would require one additional onboard generator on each dredging vessel. As discussed previously, this
- 6 analysis uses harbor craft emission factors for 2009 model year engines.
- Onboard generators for tug boats were assumed to operate at full capacity while tug boats are towing barges. Onboard generators for barges would idle for much of the day while equipment is active and would only operate at full capacity as needed to power winches to reposition the barge. Thus, onboard generators for barges were assumed to operate under full load for approximately one hour per day. Additionally, the derrick barge crane motor would only operate under full load while raising stone, and would be under lesser load during disposition and repositioning. Thus, the derrick barge crane motor was
- also assumed to operate under full load for one hour per day.
- 14 Onboard generator for dredging vessels would be under full load while taking in sand and then would be
- idle during transport, positioning, and disposition. Thus, onboard generators for dredging vessels were
- 16 assumed to operate under full load approximately four hours per day.

17 **1.2 ON-SITE EQUIPMENT EMISSIONS**

- On-Deck Equipment. Equipment emissions from front-end loaders were modeled using CARB's most recent U.S. EPA-approved off-road emissions model. Emission estimates were calculated with SMAQMD's Road Construction Emissions Model Version 8.1.0. Due to the nature of the work, the front-end loader would take frequent breaks while the derrick is active. The front-end loader was assumed to operate
- 22 under full load approximately for two hours per day.
- On-site emissions also include sand dredging emissions under all alternatives. Send dredging operations
 emissions were estimated using dredges powered by diesel engines using Tier 4 emission standards.
- 25 On-site equipment emissions also include emissions associated with construction of the sandy island,
- 26 oyster beds, and the wetland under Alternative 8. Marine equipment emissions for the construction of
- 27 these elements were estimated SMAQMD Harbor Craft, Dredge and Barge Emission Factor Calculator,
- 28 Version 1.0.1.3.

29 **1.3 GENERAL CONFORMITY APPLICABILITY RATES (NEPA)**

- Annual emissions for the most emission intensive year were totaled and compared to the applicable general conformity rates in the SCAB. The SCAB encompasses two areas with different attainment
- 32 designation for certain criteria pollutants: Los Angeles County and Riverside County.
- 33
- 34 Criteria pollutants, except for lead, that are in nonattainment or in maintenance status and their
- associated General Conformity applicability rates are show in Table E-1.
- 36
- 37

	Los Angeles	County	Riverside County		
Pollutant	Designation Category	Emission (tons/year)	Designation Category	Emission (tons/year)	
Ozone (VOC as precursor)	Nonattainment (Extreme)	10 Nonattainment (Severe)		25	
Ozone (NOx as precursor)	Nonattainment (Extreme)	10	Nonattainment (Severe)	25	
Carbon Monoxide (CO)	Maintenance	100	Maintenance	100	
Nitrogen Dioxide (NO2)	Maintenance	100	Maintenance	100	
Particulate Matter (PM10)	Maintenance	100	Unclassifiable	100	
Nonattainment		100	Nonattainment (Moderate)	100	
Lead (Pb)	Nonattainment	25	Attainment	25	
Sources: 40 CFR 93.53(b)(1) and VOC = Volatile Organic Chemical					

Table E-1: General Conformity Applicability Rated in the SCAB

1

Onsite emissions would be located within the Los Angeles County portion of the SCAB. Emissions associated with transportation of stones from Western Riverside County would be located within the Riverside County portion of the SCAB. However, maximum annual emissions reported are associated with sand dredging operations which are considered part of the on-site emissions. Thus, stone delivery emissions through Riverside County are not shown in a separate table. Given that Riverside County has higher General Conformity applicability rates and that stone delivery emissions would not result in maximum emissions, annual emissions within Riverside County would be below applicable general

10 conformity rates for the area.

11 Estimates of lead emissions were not calculated. Lead emissions from mobile sources in California have

12 significantly decreased due to the near elimination of lead in fuels. Emission factors developed by the U.S.

13 Environmental Protection Agency, the California Air Resources Board, and the South Coast Air Quality

14 Management District (SCAQMD), including those in CalEEMod, the SCAQMD-approved emission modeling 15 software, do not provide estimated emissions for lead. Little to no quantifiable and foreseeable lead

16 emissions would be generated by the proposed action.

The construction duration for each alternative would span multiple years ranging from approximately 2.5 years for Alternative 2 to approximately 4 years for Alternative 8. Instead of reporting annual emissions for every year of construction for each alternative, only the emissions from the most intensive construction year are reported. Annual emissions for other construction years would be less. Table E-2

21 shows maximum annual emissions for all alternatives.

	Alternative 2		Alterna	tive 4A	Alternative 8		
Pollutant	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	
Ozone (VOC as precursor)	0.2	0.1	0.2	0.2	0.6	0.5	
Ozone (NO _x as precursor)	2.2	2.8	3.1	4.3	7.0	10.3	
Carbon Monoxide (CO)	2.0	1.8	2.6	2.2	4.7	3.7	
Nitrogen Dioxide (NO2)	2.9	2.4	3.1	4.2	9.1	11.1	
Particulate Matter (PM ₁₀)	0.1	0.1	0.1	0.2	0.2	0.6	
Particulate Matter (PM _{2.5})	0.1	0.1	0.1	0.1	0.2	0.3	

Table E-2: Maximum Annual Emissions (tons per year)

2

1

3 1.4 SCAQMD DAILY EMISSION THRESHOLDS (CEQA) METHODOLOGY

4 Maximum daily emissions were totaled and compared to SCAQMD Daily Emission Thresholds as shown in

5 Table E-3.

6

Table E-3: Significance Thresholds – South Coast Air Quality Management District

Pollutant	Mass Daily (pounds	Thresholds per day)	Mass Rate Screening Thresholds (pounds per day) ¹			
	Construction	Operation	Construction	Operation		
Ozone (NO _x as precursor)	100	55	179	179		
Ozone (VOC as precursor)	75	55	NA	NA		
Particulate Matter (PM ₁₀)	150	150	191	46		
Particulate Matter (PM _{2.5})	55	55	120	29		
Sulfur Oxides (SOx)	150	150	NA	NA		
Carbon Monoxide (CO)	550	550	10,198	10,198		
Lead (Pb)	3	3	NA	NA		
Sources: SCAQMD 2008 ¹ The source-receptor distance of 500 r reef working areas and the nearest res rocky reef working areas.						

7

8 For all alternatives, maximum daily emissions would occur in the last year of construction when sand

9 dredging emissions would overlap with stone transport and stone placement emissions. Table E-4 shows

10 maximum daily emissions for all alternatives.

	Alternative 2		Alternative 4A		Alternative 8	
Pollutant	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions
Ozone (VOC as precursor)	8	8	8	8	8	8
Ozone (NO _x as precursor)*	90	90	90	90	90	90
Carbon Monoxide (CO)	116	116	116	116	116	116
Sulfur Oxides (SOx)	<1	<1	<1	<1	<1	<1
Particulate Matter (PM ₁₀)	5	5	5	5	5	5
Particulate Matter (PM _{2.5})	2	2	2	2	2	2
*Construction would be phased s sand dredging operations. Emission		•	•		•	

Table E-4: Maximum Daily Emissions (pounds per day)

described. The dredging operations phase would result in the highest emissions and used for the maximum daily emission.

2

1

3 1.5 AIR TOXICS AND SENSITIVE RECEPTORS (CEQA)

4 Toxic air contaminant emissions include diesel particulate matter (DPM) emissions from materials hauling 5 and off-road equipment including marine vessels. Cancer risk from DPM exposure is a function of 6 concentration and duration of exposure.

7 Hauling emissions would be generated for the duration of the project. Hauling emissions would be 8 distributed, either along the 25 mile nautical waterway between Catalina Island Quarry and the project

9 site or the 55 miles of roadways between 3M Quarry and the project site. As the emissions release for

10 hauling emissions would be distributed over large areas, hauling emissions would not substantially elevate

11 pollutant concentrations at any sensitive receptor.

12 Thus, toxic air contaminant emissions estimates are limited to maximum on-site daily emissions. 13 Maximum daily emissions would occur in the last year of construction when sand dredging emissions 14 would overlap with stone transport and stone placement emissions. Emissions for all alternatives were 15 compared to mass rate screening thresholds for localized air quality impacts. Table E-5 shows maximum

16 on-site daily emissions for all alternatives.

17

Table E-5: Maximum On-Site Daily Emissions (pounds per day)

Pollutant	Alternative 2	Alternative 4A	Alternative 8	Significance Threshold (pounds/day)
Carbon Monoxide (CO)	<1	<1	1	10,198
Nitrogen Oxides (NOx)	5	7	18	179
Particulate Matter (PM ₁₀)	<1	<1	1	191
Particulate Matter (PM _{2.5})	<1	<1	<1	120

18

19 **1.6 OBJECTIONABLE ODORS (CEQA) METHODOLOGY.**

20 Impacts associated with objectionable odors were assessed qualitatively. They analysis considered the

21 distance of sensitive receptors to on-site construction activities and the potential for dissipation of

22 pollutants.

1 1.7 COMPLIANCE WITH APPLICABLE AIR QUALITY PLAN (CEQA)

- 2 Impacts associated with the applicable air quality plan were assessed qualitatively. The regional air quality
- plan, the 2016 Air Quality Management Plan (AQMP), outlines measures to reduce emissions of ozone
 and PM_{2.5}. The growth forecasting for the AQMP is based in part on the land uses established by local
- 5 general plans. Thus, if an action is consistent with land use as designated in the local general plan, it can
- 6 normally be considered consistent with the AQMP. Actions that propose a different land use than is
- 7 identified in the local general plan may also be considered consistent with the AQMP if the proposed land
- 8 use is less intensive than buildout under the current designation. None of the proposed alternatives would
- 9 involve a change in land use designation, or would result in regional growth, and would therefore be
- 10 consistent with the growth assumptions used in development of the AQMP. Thus, none of the proposed
- 11 actions would obstruct or conflict with implementation of the AQMP.

1 2 GREENHOUSE GASES METHODOLOGY

2 Greenhouse gases (GHGs) are considered gases that absorbs infrared radiation in the atmosphere. 3 Greenhouse gases include, but are not limited to, water vapor, carbon dioxide (CO2), methane (CH₄), 4 nitrous oxide (N₂O), hydrochlorofluorocarbons (HCFCs), ozone (O₃), hydrofluorocarbons (HFCs), 5 perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). The Greenhouse Gas Effect phenomenon is 6 responsible for maintaining a habitable climate on earth. Anthropogenic emissions of these greenhouse 7 gases in excess of natural ambient concentrations are responsible for the enhancement of the 8 Greenhouse Effect and have led to a trend of unnatural warming of the Earth's natural climate, known as 9 global warming or climate change. Emissions of gases that induce global warming are attributable to 10 human activities associated with industrial/manufacturing, agriculture, utilities, transportation, and 11 residential land uses. According to the CARB website, transportation is responsible for around 41 percent 12 of the State's greenhouse gas emissions, followed by the industrial sector (23%) and electricity generation 13 (10%). Emissions of CO₂ and N₂O are byproducts of fossil fuel combustion. Methane, a potent greenhouse 14 gas, results from off-gassing associated with agricultural practices and landfills. Sinks of CO₂, where CO₂ is 15 stored outside of the atmosphere, include uptake by vegetation and dissolution into the ocean. GHGs 16 have varying global warming potential (GWP). The GWP is the potential of a gas or aerosol to trap heat in 17 the atmosphere; it is the cumulative radiative forcing effects of a gas over a specified time horizon 18 resulting from the emission of a unit mass of gas relative to the reference gas, CO₂.

19 Estimates of GHG emissions from all models used above were summed and converted to CO2e, a metric

20 measure used to compare the emissions from various greenhouse gases (CO₂, N₂O, and CH₄) on the basis

of their global-warming potential, by converting amounts of other gases to the equivalent amount of

22 carbon dioxide with the same global warming potential.

23 2.1 10,000 MT OF CO2E PER YEAR (CEQA).

24 Emissions were amortized over a period of 30 years and compared to the CEQA GHG limit of 10,000 metric

tons of CO2E per year. Table E-6 shows total GHG and 30-year amortization quantities for all alternatives.

	Alternative 2		Alterna	tive 4A	Alternative 8		
	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	Catalina Quarry & On-Site Emissions	3M Quarry & On-Site Emissions	
Total GHG Emissions	550	2,175	997	4,066	3,580	11,714	
GHG Emissions Amortized Over 30 Years	18	72	33	136	119	390	
CEQA GHG 30-year Amortization threshold	10,000	10,000	10,000	10,000	10,000	10,000	

Table E-6: Total Maximum GHG Emissions (Metric Tons CO₂E)

2

1

3 GHG emissions from construction of Alternative 2, including dredging activities, were estimated based on

4 the methodology described in Appendix E. Total GHG was estimated for the construction period of 30

5 months. If stone is imported from the Catalina Quarry, Alternative 2 would result in approximately 550

6 MT CO2E, which is the 30-year annual equivalent of 18 MT CO2E. If stone is imported from the 3M Quarry

7 in Corona, Alternative 2 would result in approximately 2,175 MT CO2E, which is the 30-year annual

8 equivalent of 72 MT CO2E, therefore, the 30-year annual equivalent of 10,000 MT CO2E would not be

9 exceeded.

10 GHG emissions from construction of Alternative 4A, including dredging activities, were estimated based

11 on the methodology in Appendix E. Total GHG was estimated for the construction period of 37 months. If

12 stone is imported from the Catalina Quarry, Alternative 4A would result in approximately 997 MT CO₂E,

13 which is the 30-year annual equivalent of 33 MT CO₂E. If stone is imported from the 3M Quarry in Corona,

14 Alternative 4A would result in approximately 4,066 MT CO₂E, which is the 30-year annual equivalent of

15 136 MT CO₂E, therefore, the 30-year annual equivalent of 10,000 MT CO2E would not be exceeded.

16 GHG emissions from construction of Alternative 4A, including dredging activities, were estimated based

17 on the methodology in Appendix E. Total GHG was estimated for the construction period of 37 months. If

18 stone is imported from the Catalina Quarry, Alternative 4A would result in approximately 997 MT CO₂E,

19 which is the 30-year annual equivalent of 33 MT CO₂E. If stone is imported from the 3M Quarry in Corona,

20 Alternative 4A would result in approximately 4,066 MT CO₂E, which is the 30-year annual equivalent of

21 136 MT CO₂E, therefore, the 30-year annual equivalent of 10,000 MT CO2E would not be exceeded.

Table E-7: Modeling Summary – Daily Criteria Pollutant Emissions

Alternative	Source	Description		Emissior	ns (pounds	s per day)	
Alternative	Source	Description	ROG	NOx	со	PM10	PM2.5
	Material Hauling	Tug Boat (3.5 hrs/day)	1	10	8	0	0
	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	0	4	1	0	0
Alternative 2 Stone From Catalina	On-Deck Equipment	Loader (8 hrs/day)	0	1	0	0	0
Quarry	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	1	16	10	0	0
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2
	Material Hauling	Trucks (44 trips/day); (110 miles/trip)	0	8	2	1	0
	Material Hauling	Tug Boat (0.5 hrs/day)	0	1	1	0	0
	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	0	4	1	0	0
Alternative 2 Stone From 3M Quarry	On-Deck Equipment	Loader (8 hrs/day)	0	1	0	0	0
Stone Hom Stir Quarty	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	1	15	5	1	0
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2
	Material Hauling	Tug Boats (3.5 hrs/day)	1	10	8	0	0
	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	0	6	1	0	0
Alternative 4A Stone From Catalina	On-Deck Equipment	Loader (8 hrs/day)	0	1	0	0	0
Quarry	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	1	17	10	1	0
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2
	Material Hauling	Trucks (91 trips/day); (110 miles/trip)	1	16	4	1	0
	Material Hauling	Tug Boat (0.5 hrs/day)	0	1	1	0	0
	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	0	6	1	0	0
Alternative 4A Stone From 3M Quarry	On-Deck Equipment	Loader (8 hrs/day)	0	1	0	0	0
	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	1	24	7	1	1
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2

Alternative	Source Description			Emission	s (pounds	per day)	
Alternative	Source	Description	ROG	NOx	со	PM 10	PM2.5
	Material Hauling	Tug Boats (3.5 hrs/day) (3/day)	4	31	24	1	1
	Vessel Engines/Generators	Barge (1.5 hr/day) and Dredge (4 hrs/day)	0	17	4	0	0
Alternative 8 Stone From Catalina	On-Deck Equipment	Loader (12 hrs/day)	0	2	1	0	0
Quarry	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	4	50	29	1	1
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2
	Material Hauling	Trucks (242 trips/day); (110 miles/trip)	2	43	11	3	1
		Tug Boat (0.5 hrs/day) (3 per day)	1	4	3	0	0
	Vessel Engines/Generators	Barge (1.5 hr/day) and Dredge (4 hrs/day)	0	17	4	0	0
Alternative 8 - Stone From 3M Quarry	On-Deck Equipment	Loader (12 hrs/day)	0	2	1	0	0
Stone from Sivi Quarty	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	8	89	115	5	2
		Total - Hauling, Vessels, On-Deck Equipment	3	66	19	4	2
		Total - On-Deck Equipment, Sand Dredging	8	90	116	5	2

L	
L	

Cooperio	Courses	Description			Emissic	ons (tons/	year)	
Scenario	Source	Description		ROG	NOx	СО	PM10	PM2.5
	Material Hauling	Tug Boats (3.5 hrs/day) (119/year)		0.1	0.6	0.5	0.0	0.0
	Vessel							
Alternative 2	Engines/Generators	Barge Crane and Generator (1 hr/day)		0.0	0.7	0.2	0.0	0.0
Stone From Catalina	On-Deck Equipment	Loader (8 hrs/day)		0.0	0.2	0.1	0.0	0.0
Quarry	Sand Dredging (100,000							
	су)	Dredger, Tug, Crew Boat		0.1	0.7	1.3	0.0	0.0
		·	Total	0.2	2.2	2.0	0.1	0.1
	Material Hauling	Trucks (44 trips/day); (110 miles/trip)		0.1	1.2	0.3	0.1	0.0
	Material Hauling	Tug Boats (0.5 hrs/day) (119/year)		0.0	0.1	0.1	0.0	0.0
	Vessel							
Alternative 2	Engines/Generators	Barge Crane and Generator (1 hr/day)		0.0	0.7	0.2	0.0	0.0
Stone From 3M Quarry	On-Deck Equipment	Loader (8 hrs/day)		0.0	0.2	0.1	0.0	0.0
	Sand Dredging (100,000							
	су)	Dredger, Tug, Crew Boat		0.1	0.7	1.3	0.0	0.0
			Total	0.1	2.8	1.8	0.1	0.1
Alternative 4A Stone From Catalina Quarry	Material Hauling	Tug Boats (3.5 hrs/day) (250/year)		0.2	1.3	1.0	0.0	0.0
	Vessel							
	Engines/Generators	Barge Crane and Generator (1 hr/day)		0.0	0.9	0.2	0.0	0.0
	On-Deck Equipment	Loader (8 hrs/day)		0.0	0.2	0.1	0.0	0.0
	Sand Dredging (100,000							
	cy)	Dredger, Tug, Crew Boat		0.1	0.7	1.3	0.0	0.0
			Total	0.2	3.1	2.6	0.1	0.1
	Material Hauling	Trucks (91 trips/day); (110 miles/trip)		0.1	2.5	0.6	0.2	0.1
	Material Hauling	Tug Boats (0.5 hrs/day) (250/year)		0.0	0.2	0.1	0.0	0.0
	Vessel							
Alternative 4A Stone From 3M Quarry	Engines/Generators	Barge Crane and Generator (1 hr/day)		0.0	0.9	0.2	0.0	0.0
	On-Deck Equipment	Loader (8 hrs/day)		0.0	0.2	0.1	0.0	0.0
	Sand Dredging (100,000							
	cy)	Dredger, Tug, Crew Boat		0.1	0.7	1.3	0.0	0.0
			Total	0.2	4.3	2.2	0.2	0.1
	Material Hauling	Tug Boats (3.5 hrs/day) (662/year)		0.4	3.5	2.7	0.1	0.1

Scenario	Source	Description		Emissio	ns (tons/	year)	
Scenario	Source	Description	ROG	NOx	СО	PM10	PM2.5
	Vessel	Barge (1.5 hr/day) and Dredge (4 hrs/day)					
Alternative 8	Engines/Generators	Generators	0.1	2.6	0.6	0.1	0.1
Stone From Catalina	On-Deck Equipment	Loader (12 hrs/day)	0.0	0.3	0.1	0.0	0.0
	Sand Dredging (100,000						
Quarry	cy)	Dredger, Tug, Crew Boat	0.1	0.7	1.3	0.0	0.0
		Total	0.6	7.0	4.7	0.2	0.2
Alternative 8 Stone From 3M Quarry	Material Hauling	Trucks (242 trips/day); (110 miles/trip)	0.3	6.7	1.7	0.5	0.2
		Tug Boats (0.5 hrs/day) (662/year)	0.1	0.5	0.4	0.0	0.0
	Vessel	Barge (1.5 hr/day) and Dredge (4 hrs/day)					
	Engines/Generators	Generators	0.1	2.6	0.6	0.1	0.1
	On-Deck Equipment	Loader (12 hrs/day)	0.0	0.3	0.1	0.0	0.0
	Sand Dredging (100,000						
	cy)	Dredger, Tug, Crew Boat	0.1	0.7	1.3	0.0	0.0
		Total	0.5	10.3	3.7	0.6	0.3

1			
	1		

Scenario	Source	Description	Emissions MT CO ₂ E
	Material Hauling	Tug Boats (3.5 hrs/day) (119/year)	106
Alternative 2	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	140
Alternative 2	On-Deck Equipment	Loader (8 hrs/day)	29
Stone From Catalina Quarry	Sand Dredging (100,000 cy)	Dredger, Tug, Crew Boat	91
		Total	366
	Material Hauling	Trucks (44 trips/day); (110 miles/trip)	1,801
	Material Hauling	Tug Boats (0.5 hrs/day) (119/year)	15
Alternative 2	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	140
Stone From 3M Quarry	On-Deck Equipment	Loader (8 hrs/day)	29
			91
		Total	2,062
	Material Hauling	Tug Boats (3.5 hrs/day) (250/year)	222
Alternative 44	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	190
Iternative 4A tone From Catalina Quarry Iternative 4A	On-Deck Equipment	Loader (8 hrs/day)	29
Stone From Catalina Quarry			91
		Total	532
	Matorial Hauling	Trucks (91 trips/day); (110 miles/trip)	3,725
	Material Hauling	Tug Boats (0.5 hrs/day) (250/year)	32
Alternative 4A	Vessel Engines/Generators	Barge Crane and Generator (1 hr/day)	190
Stone From 3M Quarry	On-Deck Equipment	Loader (8 hrs/day)	29
			91
		Total	4,035
	Material Hauling	Tug Boats (3.5 hrs/day) (662/year)	588
Alternative 8	Vessel Engines/Generators	Barge (1.5 hr/day) and Dredge (4 hrs/day) Generators	553
Stone From Catalina Quarry	On-Deck Equipment	Loader (12 hrs/day)	43
Stone From Catalina Qualify			91
		Total	1,276
Alternative 8	Material Hauling	Trucks (242 trips/day); (110 miles/trip)	9,866
Stone From 3M Quarry		Tug Boats (0.5 hrs/day) (662/year)	84
Stone From Sivi Quarry	Vessel Engines/Generators	Barge (1.5 hr/day) and Dredge (4 hrs/day) Generators	553

Scenario	Source	Description	Emissions MT CO ₂ E
	On-Deck Equipment	Loader (12 hrs/day)	43
			91
		Total	10,554

2-8

1

GREENHOUSE GASES METHODOLOGY

ALTERNATIVE 2 MAIN AND AUXILIARY ENGINE EMISSION CALCULATORS

Alternative 2: Main Engine Emission Factor Calculator

Calendar Year: 20)19		Num	Number of Entries: 3										
Vessel/Engine Information														
Vessel Name		Engine	Engine	Engine	MdlYr	Engine	HP	FCF HP	Engine	BSFC	No. of			
	Vessel Type	Туре	Category	Model Year	Group	HP	Category	Category	Load Factor	(g/hp-hr)	Engines			
Flat-Deck Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1			
Derrick Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1			
	Tow Boats /													
Tug Boat 1	Push Boats	Main	A1	2009	2009	331	5	4	0.68	184.16	1			

3

4

Alternative 2: Main Engine Emission Factor Calculator continued

Calendar Year:	2019			Num	Number of Entries: 3										
Activity					ero-Hour En	nission Fact	tors (g/hp-	Deterioration Factors (g/hp-hr)							
Vessel Name	Annual Hours	Age	Useful Life	PM ₁₀	PM _{2.5}	NOx	ROG	СО	PM ₁₀	PM _{2.5}	NOx	ROG	СО		
Flat-Deck Barge	1,776	10	17												
Derrick Barge	1,776	10	17												
Tug Boat 1	1,250	10	26	0.150	0.138	5.102	0.680	3.730	0.67	0.62	0.21	0.44	0.25		

5

6

Alternative 2: Emission Rates (lb/hr)

Vessel Name		Emissions											
Vesser Name	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH4	N ₂ O	CO ₂ e			
Flat-Deck Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704			
Derrick Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704			
Tug Boat 1	0.075	0.068	2.592	0.284	2.028	0.003	293.139	0.012	0.002	294.145			

7

Alternative 2: Emission Rates for a Single Engine (g/bhp-hr)

Vessel Name		Emissions											
	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO2e			
Flat-Deck Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9			
Derrick Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9			
Tug Boat 1	0.151	0.137	5.227	0.572	4.089	0.006	591.045	0.024	0.005	593.1			

2

3

Alternative 2: Emission Factors (g/hr) and Fuel Correction Factors

				Fuel Correction Factors									
Vessel Name	PM ₁₀	PM _{2.5}	NOx	ROG	со	SO ₂	CO ₂	CH4	N_2O	NOx	PM	ROG	MY Bin
Tug Boat 1	34.0	30.7	1,175.9	128.8	919.8	1.2	132,965.3	5.4	1.1	0.95	0.80	0.72	1996

4

5

Alternative 2: Auxiliary Engine Emission Factor Calculator

Calendar Year	: 2019			Number of	Entries: 3						
				Ves	ssel/Engine I	nformatic	n				
Vessel Name	Vessel Type	Engine Type	Engine Category	Engine Model Year	MdlYr Group	Engine HP	HP Category	FCF HP Category	Engine Load Factor	BSFC (g/hp-hr)	No. of Engines
	Barge/Dredge										
Derrick Barge	Generator	Aux	C2	2009	2009	410	7	4	0.75	185.97	1
Derrick Barge	Crane	Aux	C2	2009	2009	349	7	4	0.42	185.97	1
	Tow Boats /										
Tug Boat 1	Push Boats	Aux	A2	2009	2009	79	2	2	0.43	184.16	1

Alternative 2: Emission Rates (lb/hr)

Vessel Name					Emis	sions				
vesserivanie	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH4	N ₂ O	CO ₂ e
Derrick Barge	0.077	0.070	2.796	0.070	0.689	0.004	402.559	0.016	0.003	403.941
Derrick Barge	0.048	0.042	1.485	0.041	0.372	0.002	193.136	0.008	0.002	193.799
Tug Boat 1	0.015	0.014	0.398	0.071	0.297	0.000	44.202	0.002	0.000	44.353

2

3

Alternative 2: Emission Rates for a Single Engine (g/bhp-hr)

Vessel Name					Emis	ssions				
Vesser Name	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO ₂ e
Derrick Barge	0.11	0.10	4.15	0.10	1.02	0.006	596.87	0.02	0.00	598.9
Derrick Barge	0.15	0.13	4.59	0.13	1.15	0.006	596.87	0.02	0.00	598.9
Tug Boat 1	0.21	0.19	5.33	0.94	3.97	0.006	591.04	0.02	0.00	593.1

4

Alternative 2 - 3M Quarry Barge On-Deck Equipment

Daily Emission						Fugitive			Fugitive					
Estimates for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases (Pounds)	ROG Ibs/day	CO Ibs/day	NOx Ibs/day	PM10 lbs/day	PM10 lbs/day	PM10 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	SOx Ibs/day	CO2 Ibs/day	CH4 Ibs/day	N2O Ibs/day	CO2e lbs/day
Grubbing/Land Clearing	0.10	0.41	1.16	0.04	0.04	0.00	0.04	0.04	0.00	0.00	151.57	0.05	0.00	153.18
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	0.10	0.41	1.16	0.04	0.04	0.00	0.04	0.04	0.00	0.00	151.57	0.05	0.00	153.18
Total														
(tons/construction														
project)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	31.86
Notes:														ļ

Project Start Year ->2019; Project Length (months) ->30; Total Project Area (acres) ->0; Total Project Area (acres) ->0; Maximum Area Disturbed/Day (acres) ->0 Water Truck Used? ->No

	Total Material Impo Volume (yd	· ·			Daily VMT niles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	0	0	0	0	0	0
Grading/Excavation	0	0	0	0	0	0
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0
Paving	0	0	0	0	0	0
PM10 and PM2.5 estimates assur Total PM10 emissions shown in co Total PM2.5 emissions shown in co	olumn F are the sum of ex Column I are the sum of ex	khaust and fugitive d xhaust and fugitive o	lust emissions shown dust emissions showr	in columns G and H. in columns J and K.		·
CO2e emissions are estimated by		•	its global warming po	otential (GWP), 1 , 25 a	nd 298 for CO_2 , CH_4 and N_2	O, respectively.
Total CO2e is then estimated by s	umming CO2e estimates	over all GHGs.				
Model: Road Construction En	nissions Model, Versio	n 8.1.0				

2

Alternative 2 - 3M Quarry Barge On-Deck Equipment

Total Emission Estimates by Phase for ->				Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases	-	со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90
Total (tons/construction														
project)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

Daily Emission						Fugitive			Fugitive					
Estimates for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases (Pounds)	ROG lbs/day	CO lbs/day	NOx lbs/day	PM10 lbs/day	PM10 lbs/day	PM10 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	SOx lbs/day	CO2 lbs/day	CH4 lbs/day	N2O lbs/day	CO2e lbs/day
Grubbing/Land Clearing	0.36	1.94	7.85	0.55	0.55	0.00	0.21	0.21	0.00	0.08	8402.7	0.02	0.28	8484.5
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	0.36	1.94	7.85	0.55	0.55	0.00	0.21	0.21	0.00	0.08	8402.7	0.02	0.28	8484.5
Total														
(tons/construction														
project)	0.08	0.45	1.84	0.13	0.13	0.00	0.05	0.05	0.00	0.02	1966.2	0.00	0.06	1985.6
Notes:								•						

Alternative 2 - 3M Quarry Truck Hauling (via Roadways)

Project Start Year ->2019; Project Length (months) ->30; Total Project Area (acres) ->0; Total Project Area (acres) ->0; Maximum Area Disturbed/Day (acres) ->0 Water Truck Used? ->No

1

	Total Material Importe Volume (yd³/d	•			Daily VMT miles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	44	0	2420	0	0	0
Grading/Excavation	0	0	0	0	0	0
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0
Paving	0	0	0	0	0	0
PM10 and PM2.5 estimates assu	me 50% control of fugitive du	st from watering	and associated dust	control measures if a r	ninimum number of water ti	rucks are specified.
Total PM10 emissions shown in o	column F are the sum of exha	ust and fugitive d	ust emissions shown	in columns G and H.		
Total PM2.5 emissions shown in	Column I are the sum of exha	ust and fugitive d	lust emissions showr	n in columns J and K.		
CO2e emissions are estimated by	y multiplying mass emissions	for each GHG by i	ts global warming po	otential (GWP), 1 , 25 a	nd 298 for CO ₂ , CH ₄ and N ₂ O	, respectively.
Total CO2e is then estimated by	summing CO2e estimates ove	er all GHGs.				

Model: Road Construction Emissions Model, Version 8.1.0

- 3
- 4
- 5

1	
т.	

Total Emission Estimates						Fugitive			Fugitive					
by Phase for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases		со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.08	0.45	1.84	0.13	0. 13	0.00	0.05	0.05	0.00	0.02	1966.2	0.00	0.06	1801.3
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.08	0.45	1.84	0.13	0.13	0.00	0.05	0.05	0.00	0.02	1966.2	0.00	0.06	1801.3
Total (tons/construction														
project)	0.08	0.45	1.84	0.13	0.13	0.00	0.05	0.05	0.00	0.02	1966.2	0.00	0.06	1801.3

Alternative 2 - 3M Quarry Truck Hauling (via Roadways)

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

2

3

Alternative 2 – Emission Rates for Sand Dredging Tug Boat, Crew Boat, and Tier 4 Dredger

	Engine	Load	Hours	Days				Emiss	ion Factor	(g/kW-hr)			
Equipment	(kW)	Factor	per Day	per Year	PM10	PM2.5	NOx	SOx	со	VOC	CO2	CH4	N₂O
Tug Boat Propulsion	223	0.31	20	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Tug Boat Auxiliary	34	0.43	20	25	0.3	0.27	6.27	0.01	5	0.35	652	0.01	0.03
Crew Boat Propulsion	370	0.38	2	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Crew Boat Auxiliary	55	0.20	2	25	0.3	0.27	7.13	0.01	5	0.35	652	0.01	0.03
T4 Dredger	600	0.50	22	25	0.04	0.036	1.8	0.0055	5	0.2	652	0.0038	0.031

ALTERNATIVE 4A MAIN AND AUXILIARY ENGINE EMISSION CALCULATORS

Alternative 4A: Main Engine Emission Factor Calculator

Calendar Year: 2019

Number	of Entries:	3
--------	-------------	---

	Vessel/Engine Information													
Vessel Name	Vessel Type	Engine Type	Engine Category	Engine Model Year	MdlYr Group	Engine HP	HP Category	FCF HP Category	Engine Load Factor	BSFC (g/hp-hr)	No. of Engines			
Flat-Deck Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1			
Derrick Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1			
Tug Boat 1	Tow Boats / Push Boats	Main	A1	2009	2009	331	5	4	0.68	184.16	1			

4 5

1

2

3

Alternative 4A: Main Engine Emission Factor Calculator continued

Calendar Year:	2019			Num	ber of Ent	ries: 3							
	Activity			Ze	ero-Hour Er	nission Fact	tors (g/hp-	hr)		Deteriorat	ion Factors	(g/hp-hr)	
Vessel Name	Annual Hours	Age	Useful Life	PM10	PM2.5	NOx	ROG	СО	PM10	PM2.5	NOx	ROG	СО
Flat-Deck Barge	1,776	10	17	0.110	0.101	4.290	0.145	0.920	0.67	0.62	0.21	0.44	0.25
Derrick Barge	1,776	10	17	0.110	0.101	4.290	0.145	0.920	0.67	0.62	0.21	0.44	0.25
Tug Boat 1	1,250	10	26	0.150	0.138	5.102	0.680	3.730	0.67	0.62	0.21	0.44	0.25

6

7

Alternative 4A: Emission Rates (lb/hr)

Vessel Name					Emis	sions				
vesserivanie	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH4	N ₂ O	CO ₂ e
Flat-Deck Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704
Derrick Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704
Tug Boat 1	0.075	0.068	2.592	0.284	2.028	0.003	293.139	0.012	0.002	294.145

Alternative 4A: Emission Rates for a Single Engine (g/bhp-hr)

Vessel Name					Emis	sions				
Vesser Name	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO ₂ e
Flat-Deck Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9
Derrick Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9
Tug Boat 1	0.151	0.137	5.227	0.572	4.089	0.006	591.045	0.024	0.005	593.1

2

3

Alternative 4A: Emission Factors (g/hr) and Fuel Correction Factors

				Emiss	ion Factors	(g/hr)				Fu	el Correctio	on Factors	;
Vessel Name	PM ₁₀	PM _{2.5}	NOx	ROG	СО	SO ₂	CO2	CH4	N ₂ O	NOx	PM	ROG	MY Bin
Flat-Deck Barge	159.1	143.1	5,927.0	170.7	1,368.8	7.2	774,212.0	31.4	6.3	0.95	0.80	0.72	1996
Derrick Barge	159.1	143.1	5,927.0	170.7	1,368.8	7.2	774,212.0	31.4	6.3	0.95	0.80	0.72	1996
Tug Boat 1	34.0	30.7	1,175.9	128.8	919.8	1.2	132,965.3	5.4	1.1	0.95	0.80	0.72	1996

4 5

Alternative 4A: Auxiliary Engine Emission Factor Calculator

Calendar Year	: 2019			Number of	Entries: 2						
				Ves	sel/Engine I	nformatic	n				
Vessel Name	Vessel Type	Engine Type	Engine Category	Engine Model Year	MdlYr Group	Engine HP	HP Category	FCF HP Category	Engine Load Factor	BSFC (g/hp-hr)	No. of Engines
	Barge/Dredge										
Derrick Barge	Generator	Aux	C2	2009	2009	410	7	4	0.75	185.97	1
Derrick Barge	Crane	Aux	C2	2009	2009	349	7	4	0.42	185.97	1
	Tow Boats /										
Tug Boat 1	Push Boats	Aux	A2	2009	2009	79	2	2	0.43	184.16	1

Alternative 4A: Emission Rates (lb/hr)

Vessel Name					Emis	sions				
vesserivanie	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO ₂ e
Derrick Barge	0.077	0.070	2.796	0.070	0.689	0.004	402.559	0.016	0.003	403.941
Derrick Barge	0.077	0.070	2.796	0.070	0.689	0.004	402.559	0.016	0.003	403.941
Tug Boat 1	0.015	0.014	0.398	0.071	0.297	0.000	44.202	0.002	0.000	44.353

2

3

Alternative 4A: Emission Rates for a Single Engine (g/bhp-hr)

Vessel Name					Emis	sions				
Vesser Name	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO2e
Derrick Barge	0.11	0.10	4.15	0.10	1.02	0.006	596.87	0.02	0.00	598.9
Derrick Barge	0.11	0.10	4.15	0.10	1.02	0.006	596.87	0.02	0.00	598.9
Tug Boat 1	0.21	0.19	5.33	0.94	3.97	0.006	591.04	0.02	0.00	593.1

4

Alternative 4A: 3M Quarry Barge On-Deck Equipment

Daily Emission						Fugitive			Fugitive					
Estimates for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases (Pounds)	ROG lbs/day	CO lbs/day	NOx lbs/day	PM10 lbs/day	PM10 lbs/day	PM10 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	SOx lbs/day	CO2 lbs/day	CH4 lbs/day	N2O lbs/day	CO2e lbs/day
Grubbing/Land Clearing	0.10	0.41	1.16	0.04	0.04	0.00	0.04	0.04	0.00	0.00	151.57	0.05	0.00	153.18
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	0.10	0.41	1.16	0.04	0.04	0.00	0.04	0.04	0.00	0.00	151.57	0.05	0.00	153.18
Total														
(tons/construction project)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	31.86
Notes: Project Start Year ->2019;	Project Ler	ngth (months)) ->37; Total P	roject Area (ad	cres) ->0; To	otal Project	Area (acres)	->0; Maximum A	rea Disturbe	d/Day (acre	s) ->0; Wate	er Truck Used?	->No	

	Total Material Impor Volume (yd ³	· ·			Daily VMT niles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	0	0	0	0	0	0
Grading/Excavation	0	0	0	0	0	0
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0
Paving	0	0	0	0	0	0
PM10 and PM2.5 estimates assur Total PM10 emissions shown in c Total PM2.5 emissions shown in	olumn F are the sum of exh Column I are the sum of exh	aust and fugitive d naust and fugitive c	ust emissions shown lust emissions showr	in columns G and H. in columns J and K.		
CO2e emissions are estimated by Total CO2e is then estimated by			ts global warming po	otential (GWP), 1 , 25 ar	nd 298 for CO_2 , CH_4 and N_2	D, respectively.
Model: Road Construction Er	missions Model, Version	8.1.0				

Alternative 4A: 3M Quarry Barge On-Deck Equipment

Total Emission Estimates						Fugitive			Fugitive					
by Phase for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases		со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90
Total (tons/construction														
project)	0.02	0.09	0.24	0.01	0.01	0.00	0.01	0.01	0.00	0.00	31.53	0.01	0.00	28.90

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

Daily Emission														
Estimates for ->				Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases	ROG	со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Pounds)	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day
Grubbing/Land Clearing	0.74	4.01	16.24	1.13	1.13	0.00	0.44	0.44	0.00	0.17	17,378.2	0.03	0.57	17,549.5
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	0.74	4.01	16.24	1.13	1.13	0.00	0.44	0.44	0.00	0.17	17,378.2	0.03	0.57	17,549.5
Total														
(tons/construction														
project)	0.17	0.94	3.80	0.27	0.27	0.00	0.10	0.10	0.00	0.04	4,066.51	0.01	0.13	4,106.57
Notes:														
Project Start Year ->2019														
Project Length (months) ->	>37													
Total Project Area (acres) -	->0													
Total Project Area (acres) -	->0													
Maximum Area Disturbed/	/Day (acres)) ->0												
Water Truck Used? ->No														

Alternative 4A: 3M Quarr	y Truck Hauling (via Roadways)
Alternative 4A. Sivi Quart	

	Total Material Impo Volume (yd	• •	Daily VMT (miles/day)							
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck				
Grubbing/Land Clearing	91	0	5005	0	0	0				
Grading/Excavation	0	0	0	0	0	0				
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0				
Paving	0	0	0	0	0	0				
PM10 and PM2.5 estimates assun Total PM10 emissions shown in C Total PM2.5 emissions shown in C CO2e emissions are estimated by Total CO2e is then estimated by s	olumn F are the sum of ex Column I are the sum of ex multiplying mass emission	haust and fugitive d haust and fugitive of hs for each GHG by	lust emissions shown dust emissions showr	in columns G and H. n in columns J and K.						

Model: Road Construction Emissions Model, Version 8.1.0

Total Emission Estimates						Fugitive			Fugitive					
by Phase for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases		со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.17	0.94	3.80	0.27	0.27	0.00	0.10	0.10	0.00	0.04	4,066.51	0.01	0.13	3,725.5
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.17	0.94	3.80	0.27	0.27	0.00	0.10	0.10	0.00	0.04	4066.51	0.01	0.13	3,725.5
Total (tons/construction														
project)	0.17	0.94	3.80	0.27	0.27	0.00	0.10	0.10	0.00	0.04	4066.51	0.01	0.13	3,725.5

Alternative 4A: 3M Quarry Truck Hauling (via Roadways)

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

1

~
/

Alternative 4A – Emission Rates for Sand Dredging Tug Boat, Crew Boat, and Tier 4 Dredger

	Engine	Load	Hours	Days				Emis	ssion Factor	(g/kW-hr)			
Equipment	(kW)	Factor	per Day	per Year	PM10	PM2.5	NOx	SOx	со	voc	CO2	CH4	N ₂ O
Tug Boat Propulsion	223	0.31	20	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Tug Boat Auxiliary	34	0.43	20	25	0.3	0.27	6.27	0.01	5	0.35	652	0.01	0.03
Crew Boat Propulsion	370	0.38	2	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Crew Boat Auxiliary	55	0.20	2	25	0.3	0.27	7.13	0.01	5	0.35	652	0.01	0.03
T4 Dredger	600	0.50	22	25	0.04	0.036	1.8	0.0055	5	0.2	652	0.0038	0.031

3

ALTERNATIVE 8 MAIN AND AUXILIARY ENGINE EMISSION CALCULATORS

Alternative 8: Main Engine Emission Factor Calculator

Calendar Year: 20)19		Num	Number of Entries: 4									
				Vessel/Eng	gine Inforr	nation							
Vessel Name	Vassal Tupa	Engine	Engine	Engine	MdlYr	Engine	HP	FCF HP	Engine	BSFC	No. of		
vesseriname	Vessel Type	Туре	Category	Model Year	Group	HP	Category	Category	Load Factor	(g/hp-hr)	Engines		
Flat-Deck Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1		
Derrick Barge	Barge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1		
Dredger	Dredge	Main	C1	2009	2009	2,883	10	4	0.45	185.97	1		
	Tow Boats /												
Tug Boat 1	Push Boats	Main	A1	2009	2009	331	5	4	0.68	184.16	1		

1

2 3

Alternative 8: Main Engine Emission Factor Calculator continued

Calendar Year: 2019

Number of Entries: 3

	Activity	,		Ze	ero-Hour En	nission Fact	ors (g/hp-	hr)	Deterioration Factors (g/hp-hr)					
Vessel Name	Annual Hours	Age	Useful Life	PM ₁₀	PM _{2.5}	NOx	ROG	со	PM ₁₀	PM _{2.5}	NOx	ROG	со	
Flat-Deck Barge	1,776	10	17	0.110	0.101	4.290	0.145	0.920	0.67	0.62	0.21	0.44	0.25	
Derrick Barge	1,776	10	17	0.110	0.101	4.290	0.145	0.920	0.67	0.62	0.21	0.44	0.25	
Tug Boat 1	1,250	10	26	0.150	0.138	5.102	0.680	3.730	0.67	0.62	0.21	0.44	0.25	

6 7

Alternative 8: Emission Rates (lb/hr)

Vessel Name					Emis	sions				
vesseriname	PM10	PM _{2.5}	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO ₂ e
Flat-Deck Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704
Derrick Barge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704
Dredge	0.351	0.315	13.067	0.376	3.018	0.016	1706.847	0.069	0.014	1712.704
Tug Boat 1	0.075	0.068	2.592	0.284	2.028	0.003	293.139	0.012	0.002	294.145

Alternative 8: Emission Rates (lb/hr)

Vessel Name		Emissions													
vessername	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO ₂ e					
Flat-Deck Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9					
Derrick Barge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9					
Dredge	0.123	0.110	4.569	0.132	1.055	0.006	596.868	0.024	0.005	598.9					
Tug Boat 1	0.151	0.137	5.227	0.572	4.089	0.006	591.045	0.024	0.005	593.1					

2

3

Alternative 8: Emission Factors (g/hr) and Fuel Correction Factors

				Emiss	ion Factors	(g/hr)				Fuel Correction Factors					
Vessel Name	PM10	PM2.5	NOx	ROG	СО	SO ₂	CO ₂	CH4	N ₂ O	NOx	PM	ROG	MY Bin		
Flat-Deck Barge	159.1	143.1	5,927.0	170.7	1,368.8	7.2	774,212.0	31.4	6.3	0.95	0.80	0.72	1996		
Derrick Barge	159.1	143.1	5,927.0	170.7	1,368.8	7.2	774,212.0	31.4	6.3	0.95	0.80	0.72	1996		
Dredge	159.1	143.1	5,927.0	170.7	1,368.8	7.2	774,212.0	31.4	6.3	0.95	0.80	0.72	1996		
Tug Boat 1	34.0	30.7	1,175.9	128.8	919.8	1.2	132,965.3	5.4	1.1	0.95	0.80	0.72	1996		

4

5

Alternative 8: Auxiliary Engine Emission Factor Calculator

Calendar Yea	r: 2019			Number of Entries: 4											
				Ve	ssel/Engine	Informatio	on								
Vessel Name	Vessel Type	Engine Type	Engine Category	Engine Model Year	MdlYr Group	Engine HP	HP Category	FCF HP Category	Engine Load Factor	BSFC (g/hp-hr)	No. of Engines				
	Barge/Dredge														
Derrick Barge	Generator	Aux	C2	2009	2009	410	7	4	0.75	185.97	1				
Derrick Barge	Crane	Aux	C2	2009	2009	349	7	4	0.42	185.97	1				
Dredge	Dredge	Dredge		2009	2009	425			0.51		1				
	Tow Boats /														
Tug Boat 1	Push Boats	Aux	A2	2009	2009	79	2	2	0.43	184.16	1				

2

Alternative 8: Emission Rates (lb/hr)

Vessel Name			Emissions													
Vesser Name	PM10	PM2.5	NOx	ROG	CO	SO ₂	CO2	CH ₄	N ₂ O	CO ₂ e						
Derrick Barge	0.077	0.070	2.796	0.070	0.689	0.004	402.559	0.016	0.003	403.941						
Derrick Barge	0.077	0.070	2.796	0.070	0.689	0.004	402.559	0.016	0.003	403.941						
Dredge	0.060	0.054	2.050	0.053	0.508	0.003	285.215	0.012	0.002	286.193						
Tug Boat 1	0.015	0.014	0.398	0.071	0.297	0.000	44.202	0.002	0.000	44.353						

3

4

Alternative 8: Emission Rates for a Single Engine (g/bhp-hr)

Vessel Name					Emis	sions				
vessername	PM10	PM _{2.5}	NOx	ROG	CO	SO ₂	CO ₂	CH ₄	N ₂ O	CO2e
Derrick Barge	0.11	0.10	4.15	0.10	1.02	0.006	596.87	0.02	0.00	598.9
Derrick Barge	0.11	0.10	4.15	0.10	1.02	0.006	596.87	0.02	0.00	598.9
Dredge	0.12	0.11	4.29	0.11	1.06	0.006	596.87	0.02	0.00	598.9
Tug Boat 1	0.21	0.19	5.33	0.94	3.97	0.006	591.04	0.02	0.00	593.1

								I DOOK EYA						
Daily Emission Estimates for ->				Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases	ROG	со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Pounds)	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day
Grubbing/Land Clearing	0.15	0.62	1.74	0.06	0.06	0.00	0.05	0.05	0.00	0.00	227.35	0.07	0.00	229.77
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	0.15	0.62	1.74	0.06	0.06	0.00	0.05	0.05	0.00	0.00	227.35	0.07	0.00	229.77
Total														
(tons/construction														
project)	0.03	0.13	0.36	0.01	0.01	0.00	0.01	0.01	0.00	0.00	47.29	0.02	0.00	47.79
Notes:													·	

Alternative 8: 3M Quarry Barge On-Deck Equipment

Project Start Year ->2019; Project Length (months) ->53; Total Project Area (acres) ->0; Total Project Area (acres) ->0; Maximum Area Disturbed/Day (acres) ->0; Water Truck Used? ->No

1

	Total Material Importe Volume (yd³/c	· ·			Daily VMT miles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	0	0	0	0	0	0
Grading/Excavation	0	0	0	0	0	0
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0
Paving	0	0	0	0	0	0
PM10 and PM2.5 estimates assur	me 50% control of fugitive du	ust from watering	and associated dust	control measures if a r	ninimum number of water ti	rucks are specified.
Total PM10 emissions shown in c	olumn F are the sum of exha	ust and fugitive d	lust emissions shown	in columns G and H.		

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO₂, CH₄ and N₂O, respectively. Total CO2e is then estimated by summing CO2e estimates over all GHGs.

Model: Road Construction Emissions Model, Version 8.1.0

2

3

Total Emission Estimates						Fugitive			Fugitive					
by Phase for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases		со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.03	0.13	0.36	0.01	0.01	0.00	0.01	0.01	0.00	0.00	47.29	0.02	0.00	43.36
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.03	0.13	0.36	0.01	0.01	0.00	0.01	0.01	0.00	0.00	47.29	0.02	0.00	43.36
Total (tons/construction														
project)	0.03	0.13	0.36	0.01	0.01	0.00	0.01	0.01	0.00	0.00	47.29	0.02	0.00	43.36

Alternative 8: 3M Quarry Barge On-Deck Equipment

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

1

Daily Emission						Fugitive			Fugitive					
Estimates for ->				Total	Exhaust	Dust	Total	Exhaust	Dust					
Project Phases (Pounds)	ROG lbs/day	CO Ibs/day	NOx Ibs/day	PM10 lbs/day	PM10 lbs/day	PM10 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	PM2.5 lbs/day	SOx lbs/day	CO2 lbs/day	CH4 lbs/day	N2O lbs/day	CO2e lbs/day
Grubbing/Land Clearing	1.95	10.62	43.01	3.00	3.00	0.00	1.18	1.18	0.00	0.44	46,023.7	0.09	1.51	46,477.1
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum														
(pounds/day)	1.95	10.62	43.01	3.00	3.00	0.00	1.18	1.18	0.00	0.44	46,023.7	0.09	1.51	46,477.1
Total														
(tons/construction														
project)	0.46	2.49	10.06	0.70	0.70	0.00	0.28	0.28	0.00	0.10	10,769.5	0.02	0.35	10,875.7
Notes:														
Project Start Year ->2019;	Project Len	gth (months)	->53; Total P	roject Area (ad	res) ->0; To	otal Project	Area (acres)	->0; Maximum A	rea Disturbe	d/Day (acres	s) ->0; Water	Truck Used?	->No	

Alternative 8: 3M Quarry Truck Hauling (via Roadways)

	Total Material Importe Volume (yd³/d	· · ·			Daily VMT miles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	241	0	13,255	0	0	0
Grading/Excavation	0	0	0	0	0	0
Drainage/Utilities/Sub-Grade	0	0	0	0	0	0
Paving	0	0	0	0	0	0
PM10 and PM2.5 estimates assur Total PM10 emissions shown in c	-	-			ninimum number of water	trucks are specified
Total PM2.5 emissions shown in	Column I are the sum of exha	ust and fugitive o	lust emissions showr	in columns J and K.		
CO2e emissions are estimated by	multiplying mass emissions	for each GHG by i	ts global warming po	otential (GWP), 1 , 25 a	nd 298 for CO_2 , CH_4 and N_2	O, respectively.
Total CO2e is then estimated by s	summing CO2e estimates ove	r all GHGs.				
Model: Road Construction Er	missions Model, Version 8	3.1.0				

2

			Alt	ernative	8: 3M Qua	rry Truck	Hauling	g (via Roa	idways)					
Total Emission Estimates by Phase for ->				Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases	-	со	NOx	PM10	PM10	PM10	PM2.5	PM2.5	PM2.5	SOx	CO2	CH4	N2O	CO2e
(Tons for all except CO2e.	ROG	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	tons/	MT/
Metric tons for CO2e)	tons/phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase	phase
Grubbing/Land Clearing	0.46	2.49	10.06	0.70	0.70	0.00	0.28	0.28	0.00	0.10	10,769.5	0.02	0.35	9,866.3
Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Drainage/Utilities/Sub-														
Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum (tons/phase)	0.46	2.49	10.06	0.70	0.70	0.00	0.28	0.28	0.00	0.10	10,769.5	0.02	0.35	9,866.3
Total (tons/construction														
project)	0.46	2.49	10.06	0.70	0.70	0.00	0.28	0.28	0.00	0.10	10,769.5	0.02	0.35	9,866.3

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H.

Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively.

Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Model: Road Construction Emissions Model, Version 8.1.0

	Engine	Load	Hours	Days				Emissio	on Factor	(g/kW-hr)			
Equipment	(kW)	Factor	per Day	per Year	PM 10	PM2.5	NOx	SOx	со	voc	CO2	CH₄	N2O
Tug Boat Propulsion	223	0.31	20	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Tug Boat Auxiliary	34	0.43	20	25	0.3	0.27	6.27	0.01	5	0.35	652	0.01	0.03
Crew Boat Propulsion	370	0.38	2	25	0.54	0.48	17	0.01	11.4	1.37	652	0.03	0.03
Crew Boat Auxiliary	55	0.20	2	25	0.3	0.27	7.13	0.01	5	0.35	652	0.01	0.03
T4 Dredger	600	0.50	22	25	0.04	0.036	1.8	0.0055	5	0.2	652	0.0038	0.031

|--|

Blank page to facilitate duplex printing