### **A**PPENDICES

## **APPENDIX A**

Appendix A: Initial Study, Notice of Preparation, and Responses to NOP

Part 1: Initial Study

California Environmental Quality Act INITIAL STUDY

# Cypress Village Mixed Use Development Project

Lead Agency:



City of Covina 125 E. College Street Covina, CA 91723 (626) 384-5400 Contact: Lisette Sanchez-Mendoza (626) 384-5451 LSanchez-Mendoza@covinaca.gov

Prepared by:

### **Michael Baker**

#### INTERNATIONAL

3760 Kilroy Airport Way, #270 Long Beach, CA 90806 Office: (562) 200-7165 Fax: (562) 200-7166 Contact: Randy Nichols randy.nichols@mbakerintl.com JN 173379 California Environmental Quality Act INITIAL STUDY

# Cypress Village Mixed Use Development Project

Submitted to:

City of Covina 125 E. College Street Covina, CA 91723 (626) 384-5400

Contact: Lisette Sanchez-Mendoza (626) 384-5451 LSanchez-Mendoza@covinaca.gov

Submitted by:

3760 Kilroy Airport Way, #270 Long Beach, CA 90806 Office: (562) 200-7168 Fax: (562) 200-7166

Contact: Randy Nichols randy.nichols@mbakerintl.com JN 173379

December 2019

#### **Table of Contents**

| Section | <b>A.</b> | Environmental Checklist Form               |
|---------|-----------|--------------------------------------------|
| Section | <b>B.</b> | Environmental Factors Potentially Affected |
| Section | <b>C.</b> | Determination                              |
| Section | <b>D.</b> | Evaluation of Environmental Impacts10      |
| I.      | Aest      | thetics                                    |
| П.      | Agri      | culture and Forestry Resources 14          |
| 111.    | Air C     | Quality16                                  |
| IV.     | Biolo     | ogical Resources                           |
| V.      | Cult      | ural Resources 22                          |
| VI.     | Ener      | rgy2!                                      |
| VII.    | Geo       | logy and Soils                             |
| VIII.   | Gree      | enhouse Gas Emissions                      |
| IX.     | Haza      | ards and Hazardous Materials               |
| Х.      | Hyd       | rology and Water Quality 43                |
| XI.     | Land      | d Use and Planning                         |
| XII.    | Min       | eral Resources                             |
| XIII.   | Nois      | 5e54                                       |
| XIV.    | Рор       | ulation and Housing                        |
| XV.     | Publ      | lic Services                               |
| XVI.    | Recr      | reation62                                  |
| XVII.   | Tran      | nsportation/Traffic                        |
| XVIII.  | Triba     | al Cultural Resources                      |
| XIX.    | Utili     | ties and Service Systems                   |
| XX.     | Wilc      | fire74                                     |
| XXI.    | Man       | ndatory Findings of Significance           |
| Section | <b>E.</b> | References                                 |

#### List of Tables

| Table VI-1 – Covina Energy Action Plan | Consistency 2 | 8 |
|----------------------------------------|---------------|---|
|----------------------------------------|---------------|---|

#### List of Figures

| Figure 1 – Regional Location Map            | 4 |
|---------------------------------------------|---|
| Figure 2 – Project Location Map             | 5 |
| Figure 3 – Site Plan                        | 6 |
| Figure 4 – Aerial View of Site Surroundings | 7 |

#### Appendices

| Appendix A | Cultural and Paleontological Records Searches   |
|------------|-------------------------------------------------|
| Appendix B | Preliminary Geotechnical Investigation          |
| Appendix C | Environmental Site Assessments                  |
| Appendix D | Hydrology Study and Low Impact Development Plan |



#### SECTION A. ENVIRONMENTAL CHECKLIST FORM

| 1. | Project Title:                      | Cypress Village                                                                                                                                                                                                                                                                                                                                                         |
|----|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Lead Agency Name and Address:       | City of Covina                                                                                                                                                                                                                                                                                                                                                          |
| 3. | Contact Person and Phone Number:    | Lisette Sanchez-Mendoza, 626-384-5451                                                                                                                                                                                                                                                                                                                                   |
| 4. | Project Location:                   | As shown in <i>Figure 1 – Regional Location Map</i> ,<br>Covina is in the central San Gabriel Valley area, in<br>the eastern perimeter of Los Angeles County. As<br>shown in <i>Figure 2 – Project Location Map</i> , the project<br>site is located on the east side of Azusa Avenue,<br>between Cypress Street and Covina Boulevard and<br>west of N. Conwell Avenue. |
|    |                                     | The subject property consists of Los Angeles<br>County Assessor's Parcel Numbers 8421-001-016<br>and 8421-001-061. It is assigned two street<br>addresses: 1000 N. Azusa Avenue and 845 W.<br>Cypress Street.                                                                                                                                                           |
| 5. | Project Sponsor's Name and Address: | PKL Investments, LLC                                                                                                                                                                                                                                                                                                                                                    |
|    |                                     | 2863 Maricopa Street                                                                                                                                                                                                                                                                                                                                                    |
|    |                                     | Torrance, CA 90503                                                                                                                                                                                                                                                                                                                                                      |
| 6. | General Plan Designation:           | General Commercial                                                                                                                                                                                                                                                                                                                                                      |
| 7. | Zoning:                             | C-4: Highway Commercial                                                                                                                                                                                                                                                                                                                                                 |

8. Description of Project:

Development of a mixture of retail shops and drive through/fast food service businesses on the western 2.92 acres along the Azusa Avenue frontage and development of 61 single-family detached homes on the eastern and southern 4.99 acres. *Figure 3 – Site Plan*, illustrates the proposed development plan.

The retail component would consist of four buildings, totaling 14,000 square feet of floor area, arranged in three distinct building sites. Two of the sites would be designed with a drive-thru circulation pattern to accommodate fast-food and beverage businesses with drive-thru service. Vehicular access to these commercial uses would be from three existing drive approaches along the Azusa Avenue frontage, and from an existing driveway along Cypress Street that serves existing fast food businesses on adjacent properties. A total of 158 surface parking spaces would be provided within the three commercial sites.

The residential component would consist of 61 single family homes, in two-story and threestory structures, with floor plans ranging from approximately 1,700 square feet to approximately 2,600 square feet. Homes would have three-four bedrooms, with optional bonus areas and loft spaces. The proposed density is 12.25 homes per acre. Vehicle parking would include 122 spaces within attached garages, along with 12 spaces located in driveways, 23 "head-in" spaces located along internal driveways, and 7 parallel spaces along the entrance



drive. Vehicular access to the 61 homes would be from Cypress Avenue, via a private, gated driveway located between Los Angeles County Fire Station 152 and an existing restaurant site.

The commercial and residential areas would be developed independently and may be constructed concurrently or at different time frames, in response to market demand. For purposes of analysis, both areas are anticipated to be completed and fully occupied by 2021.

The project will require the following City approvals:

General Plan Amendment (GPA) 19-001: To redesignate the eastern 5.31 acres from General Commercial to Medium-Density Residential, to allow for development of single-family homes at densities of 7-14 units per acre.

Zone Change (ZCH) 19-001: To rezone the eastern 5.31 acres from C-4, Highway Commercial to RD, Multi-Family Zone, and to approve a Specific Plan to establish custom development standards corresponding to the proposed residential development plan, and to provide guidance for a unified design program to aesthetically integrate the commercial and residential components.

Tentative Tract Map (TTM) 82315: To reconfigure the existing parcels to create a subdivision of private residential lots and common areas for the residential component, and three individual lots for the commercial component.

Site Plan Review (SPR) 19-002: To approve the layout of the overall development plan

Conditional Use Permit (CUP) 19-002: To allow for development of drive-through facilities in the commercial side of the project

9. Surrounding Land Uses and Setting:

The project site consists of 7.99 acres of developed land, with remnant improvements from a former Albertsons grocery store that was constructed in 1991 and vacated in November 2012. The former grocery store is 81,333 square feet in total floor area, in a box-shaped structure reaching a height of 44 feet. A large surface parking lot with numerous small landscape planters and several pole-mounted lighting clusters is located between the building and the Azusa Avenue frontage, while paved drives abut the northern and eastern sides of the building. There are numerous mature trees within the parking area planters. Masonry walls separate the project site from a townhome community to the north and a single-family neighborhood to the east. The property shows signs of deterioration due to years of vacancy and decline in maintenance. The southern 'leg' of the site that connects to Cypress Avenue is maintained with low grass cover. Vehicular access to the site is currently available via two drive approaches along the Azusa Avenue frontage and from another driveway that connects to Cypress Avenue. The Azusa Avenue frontage is improved with sidewalk, curb, gutter, and two street lights, and there is a strip of grass between the sidewalk and the parking lot. There are no overhead power poles along this frontage. The Cypress Avenue frontage of the project site is improved with sidewalk, curb and gutter, and there is a single street light at the southeast corner. Overhead power poles and lines are in the sidewalk area, just to the east, starting at the County Fire Station site.

Site topography is relatively level, with a gentle slope to the west. The site is not within a flood hazard zone. Water, sewer, storm drainage, energy and telecommunications infrastructure occur in the adjacent streets.

This is a fully urbanized part of the City of Covina, where the built environment consists of a mixture of low-rise residential and commercial land uses, along with a high school campus.



Azusa Avenue is a four-lane, north/south Primary Arterial street with a raised median and is also State Highway 39. On-street parking is generally permitted. The local segment of this street is maintained by the City of Azusa, who also has authority over physical improvements and traffic controls along Azusa Avenue. Cypress Street is a four-lane, east/west Collector Street with a two-way left turn lane in the project vicinity. On-street parking is generally permitted. There is a bus stop for Foothill Transit Route 280, at the Azusa Avenue/Cypress Street intersection. There are no bike lanes along either street frontages.

*Figure 4 – Aerial View of Site and Surroundings* provides a view of the local land use pattern in the project vicinity. Surrounding land uses are described below.

North: U-Haul truck rental center and two-story townhomes community

South: Fast-food restaurants at the northeast corner of Cypress Street and Azusa Avenue, Los Angeles County Fire Station 152 at the northwest corner of Cypress Street and N. Conwell Street, and single-family homes on the south side of Cypress Street.

East: A neighborhood of one-story, single family homes, within unincorporated territory governed by the County of Los Angeles

West: A mixtures of commercial uses and mobile home communities on the west side of Azusa Avenue. To the southwest is the Northview High School.

10. Other Public Agencies Whose Approval is Required:

Los Angeles Regional Water Quality Control Board – National Pollutant Discharge Elimination System General Construction Permit

11. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

Notification of the project proposal and commencement of the CEQA process was provided by certified mail to the following Native American tribal entities:

- Gabrielino-Tongva Nation
- Gabrielino Band of Mission Indians Kizh Nation
- Gabrielino-Tongva Indians of California Tribal Council
- Gabrielino-Tongva San Gabriel Band of Mission Indians
- San Fernando Band of Mission Indians
- Torres Martinez Desert Cahuilla Indians

A request for consultation was received from the Gabrielino Band of Mission Indians – Kizh Nation on July 9, 2019. A consultation meeting was held with City staff and the project applicant on July 25, 2019. Further discussion regarding that consultation is provided in the response to Section D.XVIII, later in this Initial Study.





FIGURE 1 Regional Location Map

Michael Baker



Project Location Map

# FIGURE 2

- 0

800

Fee: 400





Figure 3



# Michael Baker

INTERNATIONAL

#### Aerial View of Site and Surroundings Feet

Source: NearMap February 2019

0

500



#### SECTION B. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

| $\boxtimes$ Aesthetics      | Agriculture and Forestry Resources | 🖂 Air Quality                           |
|-----------------------------|------------------------------------|-----------------------------------------|
| Biological Resources        | Cultural Resources                 | □ Energy                                |
| □ Geology/Soils             | 🛛 Greenhouse Gas Emissions         | 🗌 Hazards & Hazardous Materials         |
| □ Hydrology/Water Quality   | □ Land Use/Planning                | □ Mineral Resources                     |
| ⊠ Noise                     | ⊠ Population/Housing               | ⊠ Public Services                       |
| Recreation                  | $\boxtimes$ Transportation/Traffic | 🗌 Tribal Cultural Resources             |
| ⊠ Utilities/Service Systems | □ Wildfire                         | ⊠ Mandatory Findings of<br>Significance |

For the evaluation of potential impacts, the questions in the Initial Study Checklist are stated and an answer is provided according to the analysis undertaken as part of the Initial Study. The analysis considers the long-term, direct, indirect, and cumulative impacts of the project. To each question, there are four possible responses:

- **No Impact**. The project would not have any measurable environmental impact on the environment.
- Less Than Significant Impact. The project would have the potential for impacting the environment, although this impact would be below established thresholds that are considered to be significant.
- Less Than Significant Impact With Measures Incorporated. The project would have the potential to generate impacts which may be considered a significant effect on the environment, although measures or changes to the development's physical or operational characteristics can reduce these impacts to levels that are less than significant.
- **Potentially Significant Impact**. The project would have impacts which are considered significant, and additional analysis is required to identify measures that could reduce these impacts to less than significant levels.



#### SECTION C. DETERMINATION

On the basis of this initial evaluation:

- ☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- ☐ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
- I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- □ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- □ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Date



#### SECTION D. EVALUATION OF ENVIRONMENTAL IMPACTS

#### I. Aesthetics

|                                                                                                                                                                                                                                                                                                                                                                             | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>AESTHETICS:</b><br>Except as provided in Public Resources Code Section 21099, wor                                                                                                                                                                                                                                                                                        | uld the proj                         | ect:                                                            |                                    |              |
| a) Have a substantial adverse effect on a scenic vista?                                                                                                                                                                                                                                                                                                                     |                                      |                                                                 | $\boxtimes$                        |              |
| b) Substantially damage scenic resources, including,<br>but not limited to, trees, rock outcroppings, and<br>historic buildings within a state scenic highway?                                                                                                                                                                                                              |                                      |                                                                 |                                    | $\boxtimes$  |
| c) In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point.) If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality? |                                      |                                                                 |                                    |              |
| d) Create a new source of substantial light or glare<br>which would adversely affect day or nighttime views<br>in the area?                                                                                                                                                                                                                                                 |                                      |                                                                 |                                    |              |

#### Discussion

The proposed project is not classified as a "transit-oriented infill project" as set forth in Section 21099 of the Public Resources Code, and thus the provisions of that section do not apply to this project.

## a) Except as provided in Public Resources Code Section 21099, would the project have a substantial adverse effect on a scenic vista?

Less Than Significant Impact. As discussed in the project description of this Initial Study, the project site is located in a highly urbanized area, dominated by features of a built environment. Development surrounding the project site includes a mixture of building sizes and forms, including low-rise and two-level commercial buildings with varying architectural styles along Azusa Avenue, the low-rise Northview High School campus southwest of the Azusa Avenue and Cypress Street intersection, and one- and two-story, detached single-family homes across Cypress Street and east of the project site, along Conwell Avenue.

Many of the of the main arterial roads in the City of Covina that are oriented north and south provide distant views of the San Gabriel mountains on clear days to motorists traveling north. As such, motorists traveling north on Conwell Avenue and Azusa Avenue have distant views of the San Gabriel mountains, which begin approximately 5 miles north of the project site and extend further north. Views of these mountains are partially obstructed by their distance from the project site, as well as mature trees, overhead powerlines, and existing development along Conwell and Azusa Avenues. The existing mountain views motorists have while traveling north on Azusa Avenue are available only straight ahead, because utility poles, mature trees, and business signage obstruct views to the northeast



and northwest. Therefore, low-rise commercial buildings set back from Azusa Avenue do not substantially impact the existing, limited mountain views available to motorists. Motorists traveling north on Conwell Avenue have a view of the existing grocery store building on the project site, with the San Gabriel mountains visible above the building's roofline. This grocery store building is approximately 25 feet high, with a portion of the building's roofline extending to approximately 44 feet. As the proposed homes would range between 25.5 and 35.5 feet in height and the proposed commercial structures would be single-story, with heights ranging between 20.5 and 25 feet, the proposed project would not result in an increase in building height over current conditions and would not obstruct views of the San Gabriel mountains in the distance.

A scenic vista is defined as a publicly accessible, prominent vantage point that provides expansive views of highly valued landscapes or prominent visual elements composed of manmade or natural features. Conwell and Azusa Avenues, with their mountain views described above, could be considered public vantage points that provide a view of a highly valued landscape (i.e., the San Gabriel mountains); however, the mountain views are distant, not expansive, and extensively obstructed by existing development, utilities, and landscaping. Further, because the majority of the City is relatively flat, including the area surrounding the project site, the City of Covina General Plan Natural Resources and Open Space element does not identify any prominent vantage points through which the public can view an expansive scenic vista within or beyond the City (Covina 2000). Effects of this project on scenic vistas would be negligible and less than significant. No further analysis of this threshold is warranted.

#### b) Except as provided in Public Resources Code Section 21099, would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

**No Impact.** The closest officially designated state scenic highway is part of the Angeles Crest State Scenic Highway, State Route (SR) 2, from near La Cañada-Flintridge north to the San Bernardino County line. This state scenic highway is approximately 18 miles northwest of the project site. SR 110, Arroyo Seco Historic Parkway, between mileposts 25.7 and 31.9 in Los Angeles, is approximately 14 miles west of the project site (Caltrans 2018). The distance between the project site and these officially designated scenic highways indicate that the proposed project would not be visible from a state scenic highway. As such, the proposed project would not adversely affect the viewshed from a state scenic highway. While SR 39 between Interstate 210 and SR 2 is listed as an eligible scenic highway by Caltrans, it is not officially designated as a state scenic highway. Nevertheless, this eligible scenic highway begins 1.5 miles north of the project site and continues north; therefore, the project site would not be visible from this eligible scenic highway.

The project site is currently characterized by an existing large, rectangular grocery store building constructed in 1991 with nondescript architecture. The Azusa Avenue frontage of the project site is characterized by a surface parking lot, which served the former grocery store, and sporadic placement of decorative trees (which are not protected tree species), shrubs, and ground cover. In general, the existing landscaping in front of the building, along Azusa Avenue, and along the Cypress Street access driveway varies in size, species, and health/condition. The area east of the access driveway on Cypress Street is characterized by ruderal plant species and bare soil. Other characteristics of the site include overhead lights in the parking area, currently blank signs at the Cypress Street and Azusa Avenue entrances that are approximately 25 feet tall, and unattended landscaping and bare soil along the Azusa Avenue frontage. Therefore, no historic buildings, rock outcroppings, or other scenic resources, such



as protected trees, streams, or slopes, currently exist on the project site. Because of the project site's distance from the nearest officially designated scenic highway, and the lack of scenic resources on the project site, the proposed project would have no impact on scenic resources such as trees, rock outcroppings, or historic buildings within a state scenic highway.

c) Except as provided in Public Resources Code Section 21099, would the project, in nonurbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point.) If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

**Potentially Significant Impact.** The proposed project would be located in a fully urbanized area, where there is a variety of nonresidential and residential land uses and extensive urban infrastructure improvements. For purposes of determining impact significance for projects within urbanized areas, a project is evaluated for whether it would conflict with applicable zoning or other regulations governing "scenic quality." The term "scenic quality" is not specifically defined in the threshold language of Appendix G of the CEQA Guidelines; however, for assessment of impacts involving changes in visual character and quality, this is interpreted as pertaining to zoning standards involving building height and bulk, design character, landscape elements, and consistency with the scale, massing and character of surrounding development. The City of Covina's municipal code regulations for areas zoned C-4 (Commercial Zone Highway) do not pertain to protection of existing scenic qualities.

The proposed project would include a mixture of retail and drive-through/fast food service businesses on the western portion of the project site, with 61 single-family homes on the eastern and southern portion of the project. The City of Covina municipal code prohibits development of single-family residential homes in areas zoned C-4.<sup>1</sup> As such, the project conflicts with current zoning designations for the site. Therefore, the project is proposing a specific plan to establish custom development standards corresponding to the proposed residential development plan, a general plan amendment to redesignate the eastern portion of the project site from General Commercial to Medium-Density Residential, and a zone change to redesignate the eastern portion of the project site from Commercial Zone Highway to Multi-Family Zone.

The proposed lots supporting commercial development would remain designated as C-4, separated from the proposed residential development on the eastern portion of the project site by a proposed 6-foot-high masonry wall. The proposed commercial buildings, which would range between 20.6 and 25 feet in height, would not exceed the building height restrictions for C-4 zones that abut residential zoned lands (35-foot maximum), nor would they conflict with standards for yards (a minimum of 10 feet of landscaping abutting the street), or lot dimensions (a minimum 150-foot lot depth). However, further analysis is required to determine if the proposed commercial buildings would conflict with regulations and design guidelines governing signage in commercial zones and whether this signage would degrade the aesthetic character and quality of the area. This analysis will be provided in the EIR to be prepared for this project.

The 61 proposed single-family homes would be located along the eastern and northeastern boundaries of the project site, adjacent to existing single-family, detached homes along Conwell Avenue to the east and multi-family homes on West Covina Boulevard to the north. The proposed two- and three-

<sup>&</sup>lt;sup>1</sup> City of Covina municipal code 17.44.040



story single-family homes would be located closer to the eastern (15 feet) and northeastern (12 feet) project site boundaries than the existing grocery store building (which is approximately 35 feet from the eastern and northern boundaries). Therefore, there is the potential for adverse aesthetic impacts along the project's interface with existing homes to the north and east, specifically related to the proximity of the proposed homes to the project site boundary, the proposed building heights, and proposed privacy and screening features. As such, further analysis is required to evaluate the proposed building height, bulk, coverage, setbacks, landscaping, and screening features to determine if the project would degrade the visual character and quality of the site and surroundings. This analysis will be provided in the EIR to be prepared for this project.

# d) Except as provided in Public Resources Code Section 21099, would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

**Potentially Significant Impact.** The proposed project is primarily vacant, with an unoccupied grocery store building, a surface parking lot, and ornamental landscaping areas spread throughout the site, all of which are in disrepair. Existing sources of light on the project site include building security lights on the grocery store building and pole-mounted parking lot lights. The area is highly urbanized and therefore already impacted by night lighting from streetlights along Azusa Avenue and Cypress Street, traffic signals at the corner of Azusa Avenue and Cypress Street, vehicle headlights, and existing overhead parking area lights and building security lights located at the restaurants on the northeast corner of Azusa Avenue and Cypress Street. Further, homes in the residential neighborhood east of the project site emit nighttime light via accent lights and security lights. Finally, the Los Angeles County Fire Department building immediately adjacent to the project site emits light via building security lights and the occasional departure of emergency vehicles.

The proposed project would contain multiple new sources of night light, such as security lighting on internal walkways, residential common areas, and building exteriors; accent lighting on residential and commercial buildings and in landscaped areas; lighting at the gated entry to the residential area; and potential lighted signs in commercial building drive-throughs. Given the proximity of these light sources to existing homes north, east, and south of the project site, further analysis of the specific type and placement of lighting is required to determine whether the proposed project would create substantial light or glare that could adversely affect day or nighttime views. This further analysis will be provided in the EIR to be prepared for this project.



#### II. Agriculture and Forestry Resources

| Potentially | Less Than Significant  | Less Than   |        |
|-------------|------------------------|-------------|--------|
| Significant | Impact with Mitigation | Significant | No     |
| Impact      | Incorporated           | Impact      | Impact |

#### AGRICULTURE AND FORESTRY RESOURCES:

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

| a) | Convert Prime Farmland, Unique Farmland, or<br>Farmland of Statewide Importance (Farmland), as<br>shown on the maps prepared pursuant to the<br>Farmland Mapping and Monitoring Program of the<br>California Resources Agency, to non-agricultural<br>use?                                             |  |             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| b) | Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                                      |  | $\boxtimes$ |
| c) | Conflict with existing zoning for, or cause rezoning<br>of, forest land (as defined in Public Resources Code<br>section 12220(g)), timberland (as defined by Public<br>Resources Code section 4526), or timberland zoned<br>Timberland Production (as defined by Government<br>Code section 51104(g))? |  |             |
| d) | Result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                                      |  | $\boxtimes$ |
| e) | Involve other changes in the existing environment<br>which, due to their location or nature, could result<br>in conversion of Farmland, to non-agricultural use<br>or conversion of forest land to non-forest use?                                                                                     |  | $\boxtimes$ |

#### Discussion

#### a) Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

**No Impact.** According to the City of Covina's Zoning Map (2015), there are only two zones designated as agriculture and residential zones (A-1 and A-2) in the City of Covina. The two parcels in the City with either A-1 or A-2 zoning designations are located near the Walnut Creek Regional Park, along East Puente Street, on the east side of the City. These two parcels are approximately 3 miles southeast of the project site and are currently not used for agricultural purposes. Further, the City's General Plan Land Use Element does not identify any agricultural areas within the City (Covina



2000). The proposed project is in a fully urbanized area and is surrounded by commercial and residential land uses. The project site is currently developed, with a grocery store building (currently vacant), a surface parking lot, decorative landscaping, and driveways. While the City of Covina has not been surveyed as part of the California Department of Conservation's Important Farmland Finder, the County Assessor shows that the grocery store building was constructed in 1991 (LA County 2019). As such, there are no natural, undisturbed areas on the project site and the land does not support any agricultural activities. Therefore, the project would not convert prime farmland, unique farmland, or farmland of statewide importance to non-agriculture use, and there would be no impact.

# b) Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

**No Impact.** The only parcels in the City with either A-1 or A-2 zoning designations are located near the Walnut Creek Regional Park, along East Puente Street, on the east side of the City. These two parcels are approximately 3 miles southeast of the project site and are currently not used for agricultural purposes. Further, the City's General Plan Land Use Element does not identify any agricultural areas within the City (Covina 2000). The project site is zoned as Commercial (Highway) (C-4), a zone that does not support agricultural uses other than community gardens and plant nurseries. Additionally, the project site does not have a land use restriction, such as a Williamson Act contract, that serves to preserve farmland or agricultural uses. As such, the proposed project would not conflict with existing zoning for agricultural use or a Williamson Act contract, and there would be no impact.

# c) Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

**No Impact.** The project site is developed land, containing a former grocery store building, a surface parking lot, and decorative landscaping in various conditions. The project site does not contain any forest land or timberland and is not zoned for timberland production. Therefore, the project would not conflict with existing zoning for, or cause the rezoning of, forest land, timberland, or timberland production areas, and there would be no impact.

## d) Would the project result in the loss of forest land or conversion of forest land to non-forest use?

**No Impact.** The project site has been fully developed for decades and does not contain any forest resources. Because the project site does not contain any forest land, the project would not result in the loss of forest land. There would be no impact.

# e) Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

**No Impact.** The project site is in an urbanized area and has been developed for decades. As such, there is no farmland or forest land on or adjacent to the project site that could be converted to non-agricultural or non-forest land uses as a result of the proposed project. Therefore, the project would have no impact.



#### III. Air Quality

|                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>AIR QUALITY:</b><br>Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project: |                                      |                                                                 |                                    |              |
| a) Conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                                                               | $\boxtimes$                          |                                                                 |                                    |              |
| b) Result in a cumulatively considerable net increase of<br>any criteria pollutant for which the project region is<br>non-attainment under an applicable federal or state<br>ambient air quality standard?                                    | $\boxtimes$                          |                                                                 |                                    |              |
| c) Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                                                                        | $\boxtimes$                          |                                                                 |                                    |              |
| d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?                                                                                                                             |                                      |                                                                 |                                    |              |

#### Discussion

### a) Would the project conflict with or obstruct implementation of the applicable air quality plan?

**Potentially Significant Impact.** The Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have both established ambient air quality standards for certain pollutants. These standards define the maximum amount of a certain pollutant that can be present in outdoor air without harm to the public's health. Areas that meet these ambient air quality standards are classified as attainment areas, while areas that do not meet these standards are classified as non-attainment areas.

The project site is located within the South Coast Air Basin (SCAB), which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). Currently, the SCAB is considered to have non-attainment for several criteria pollutants, including ozone, particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>) for California Ambient Air Quality Standards (CAAQS); and ozone, fine particulate matter (PM<sub>2.5</sub>), and lead for Federal Ambient Air Quality Standards (FAAQS) (CARB, 2018). Because of the violations of ambient air quality standards, SCAB is required to create an Air Quality Management Plan (AQMP), which analyzes air quality on a regional level. In partnership with other entities, SCAB sets goals for reductions in criteria pollutants, greenhouse gases, and toxic risks; as well as goals for efficiencies in energy use, transportation, and goods movement. The latter goals are included because the AQMP states that the principle contributor to air quality challenges are mobile sources, such as vehicles and equipment traveling along transportation corridors and goods movement facilities. The current AQMP was adopted in 2016.

The proposed project would produce emissions during both short-term construction (through site preparation, grading, and construction) and long-term operation (through vehicle emissions from residents and users of the commercial facilities, and maintenance activities using combustion-powered equipment). Such emissions could generate criteria pollutants which could contribute to the SCAB's



existing non-attainment status and could contribute to adverse air quality impacts in the immediate area. Therefore, these emissions could conflict with the ACMP. As such, further analysis is required to quantify the proposed project's emissions of criteria pollutants and to determine if the project's emissions would conflict with the goals and strategies outlined in the AQMP (2016). This analysis will be included in the EIR to be prepared for this project. If it is determined that the project would conflict with the AQMP, mitigations measures will be developed to reduce air quality impacts to less than significant levels, if possible.

# b) Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

**Potentially Significant Impact.** The project is located within the SCAB, which is in non-attainment for ozone, particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>) under CAAQS, and for ozone, fine particulate matter (PM<sub>2.5</sub>), and lead under FAAQS (CARB, 2018). Further analysis is required to quantify the proposed project's emissions of the above pollutants and to determine whether the project's emissions of these pollutants would result in a cumulatively considerable net increase. This analysis, as well as mitigation measures, if necessary, will be included in the EIR to be prepared for this project.

#### c) Would the project expose sensitive receptors to substantial pollutant concentrations?

**Potentially Significant Impact.** As stated in the response to air quality threshold 3a), state and federal ambient air quality standards define the maximum amount of a certain pollutant that can be present in outdoor air without harm to the public's health. These standards are designed specifically to protect those who are most severely impacted by air pollution, such as the elderly, those with cardiovascular or respiratory diseases, and children. Therefore, most sensitive receptors are located in schools, residential areas, and hospitals and treatment centers.

Sensitive receptors that could be impacted by the air quality impacts associated with the proposed project include residential neighborhoods north, east, and south of the project site, employees of the Los Angeles County fire station south of the project site, and employees and students at Northview High School, southwest of the Cypress Street and Azusa Avenue intersection.

Because the proposed project would produce emissions during both construction and operation, the project has the potential to generate both short-term and long-term air emissions that could impact nearby sensitive receptors. Therefore, further analysis is required to quantify the propose project's emissions of pollutants and to determine if such emissions would expose nearby sensitive receptors to substantial pollutant concentrations. This analysis, as well as mitigation measures, if necessary, will be included in the EIR to be prepared for this project.

# d) Would the project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Less Than Significant Impact. During the construction phase of the proposed project, established requirements addressing construction equipment operations and construction material use, storage, and disposal act to minimize odors that may result from construction activities. Further, odors resulting from construction vehicle emissions would be localized and short-term in nature and would



not result in persistent impacts that would substantially affect neighboring residential and commercial uses. As such, the odors resulting from project construction would be less than significant.

The SCAQMD CEQA Air Quality Handbook (1993) identifies certain land uses as sources of odors: agriculture (farming and livestock), wastewater treatment plants, food processing plants, chemical plants, composting facilities, refineries, landfills, dairies, and fiberglass molding. The proposed project would not include any of the land uses identified by the SCAQMD as odor sources. While restaurants are not included on this list of land uses identified by SCAQMD as odor sources, the District regulates emissions from restaurant operations through SCAQMD Rule 1138 (Control of Emissions from Restaurant Operations, 1997). This rule requires the use of catalytic oxidizers in restaurants, to reduce particulate matter and volatile organic compounds, which contribute to odors.

The proposed residential development would generate emissions, including those leading to odors, on an occasional and temporary basis, through activities such as the use of outdoor barbeques and combustion-powered landscaping machinery. Each home would have covered or enclosed trash receptacles. This method of trash storage would limit rain intrusion and direct air exposure, and thus minimize the release of trash odors into the atmosphere. This practice is also regulated by SCAQMD's Rule 402 (Nuisance), which restricts the discharge of any source of air contaminants which cause nuisance or annoyance to any considerable numbers of persons or to the public. As such, odors associated with daily residential activities would be less than significant.

The proposed commercial buildings could generate odors from restaurant exhaust and occasionally from sources such as combustion-powered landscaping machinery and truck deliveries to the restaurant and retail buildings. Because emissions from restaurants operations are specifically regulated by SCAQMD's Rule 1138, and because fast-food restaurants are not identified by SCAQMD as an odor source in the CEQA Air Quality Handbook, the odors resulting from occupation of the proposed commercial buildings (including restaurant operations) would not adversely affect a significant number of people, and the impacts would be less than significant.



#### IV. Biological Resources

|                                                                                                                                                                                                                                                                                                                                 | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>BIOLOGICAL RESOURCES:</b><br><i>Would the project:</i>                                                                                                                                                                                                                                                                       |                                      | · · · · · ·                                                     |                                    | •            |
| a) Have a substantial adverse effect, either directly or<br>through habitat modifications, on any species<br>identified as a candidate, sensitive, or special status<br>species in local or regional plans, policies, or<br>regulations, or by the California Department of Fish<br>and Game or U.S. Fish and Wildlife Service? |                                      |                                                                 |                                    | $\boxtimes$  |
| b) Have a substantial adverse effect on any riparian<br>habitat or other sensitive natural community<br>identified in local or regional plans, policies,<br>regulations or by the California Department of Fish<br>and Game or US Fish and Wildlife Service?                                                                    |                                      |                                                                 |                                    |              |
| c) Have a substantial adverse effect on state or<br>federally protected wetlands (including, but not<br>limited to, marsh, vernal pool, coastal, etc.) through<br>direct removal, filling, hydrological interruption, or<br>other means?                                                                                        |                                      |                                                                 |                                    | $\boxtimes$  |
| d) Interfere substantially with the movement of any<br>native resident or migratory fish or wildlife species<br>or with established native resident or migratory<br>wildlife corridors, or impede the use of native<br>wildlife nursery sites?                                                                                  |                                      |                                                                 | $\boxtimes$                        |              |
| e) Conflict with any local policies or ordinances<br>protecting biological resources, such as a tree<br>preservation policy or ordinance?                                                                                                                                                                                       |                                      |                                                                 |                                    | $\boxtimes$  |
| f) Conflict with the provisions of an adopted Habitat<br>Conservation Plan, Natural Community<br>Conservation Plan, or other approved local,<br>regional, or state habitat conservation plan?                                                                                                                                   |                                      |                                                                 |                                    | $\boxtimes$  |

#### Discussion

a) Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

**No Impact.** The project site is within a fully urbanized area, where there is no natural habitat of any kind, or any kind of water resources that could support sensitive fish or wildlife species. A majority of the site is dominated by impervious surfaces. The only vegetation on the site consists of non-native, ornamental trees and groundcover, and a strip of non-native grass east of the site's Cypress Avenue



driveway There is no natural habitat or contiguous vegetative community on the project site. The U.S. Fish and Wildlife Service (USFWS) states that the following special-status species have been observed in the general area of this part of the San Gabriel Valley: the Coastal California Gnatcatcher (*Polioptila californica californica*, threatened), the Least Bell's Virio (*Vireo bellii pusillus*, endangered), and the Southwestern Willow Flycatcher (*Empidonax traillii extimus*, endangered) (USFWS 2019a). Given the urban characteristics of the project site and surrounding area, these avian species have not been reported in the vicinity of the project site. (They would likely be found in natural areas outside of the city limits.) Further, the Covina General Plan Natural Resource and Open Space Element states that the City does not contain any "significant, endangered wildlife" due to the "long-term urbanization" of the City and subsequent lack of natural wildlife habitat (Covina 2000, page D-3). The presence of these endangered and threatened species on the project site is also unlikely considering that these species prefer to breed and forage in low-elevation riparian woodland and shrub habitat and coastal sage scrub, none of which occur on or adjacent to the project site (USFWS 2019b). Since there would not be a substantial adverse effect on any species identified as a candidate, sensitive, or special status species, the project would have no impact in this regard.

# b) Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?

**No Impact.** The project site is complete disturbed and is almost covered in impervious surfaces except for a patch of grass and bare earth east of the Cypress Avenue driveway and sporadically placed decorative landscaping. There is no riparian habitat, wetlands, or other sensitive natural community on or adjacent to the project site. The project site contains no critical habitat designated by the USFWS or sensitive natural community designated by the California Department of Fish and Wildlife (CDFW) (USFWS 2019a; CDFW 2018). As the project site was cleared of natural vegetation decades ago, the project would not have a substantial adverse effect on any riparian habitat or other sensitive natural community, and there would be no impact.

# c) Would the project have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

**No Impact.** Section 404 of the Clean Water Act defines wetlands as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas." The project site does not contain any wetlands, rivers, streams, or riparian habitat, nor are such features present immediately surrounding the project site. Therefore, the project would no effect on state or federally protected wetlands.

# d) Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

**Less Than Significant Impact.** There are no waters or streams on the site. Thus, the project would not impact or interfere with the movement of any native resident or migratory fish. Wildlife corridors are typically made up of undeveloped wildlife habitat and open space linkages between larger patches of wildlife habitat. Habitat linkages may also include more tenuous linkages, like narrow vegetated



pathways or islands of habitat that act as stepping stones between larger habitat areas for some species. The project site has been highly disturbed for decades and is surrounded by urban land uses where there is little or no opportunity for overland movement of land-based wildlife species. There is a small patch of land, characterized by non-native grass cover and bare earth, between the Cypress Avenue driveway and the Los Angeles County Fire Department building immediately east of the project site; however, there is no natural habitat available on this small patch of land.

The project site currently contains trees and shrubs placed sporadically throughout the site that may provide suitable nesting habitat for bird species. All of these trees and shrubs are ornamental in nature and would be removed by the proposed project. It is possible that during the site clearance phase of construction, removal of one or more trees might result in damage or destruction to an active bird nest, which may be occupied by a type of bird species protected under the federal Migratory Bird Treaty Act or California Fish and Game Code Section 3503. The Migratory Bird Treaty Act prohibits the take, possession, import or export, transport, sale, or purchase of any migratory bird, including the parts, nests, or eggs of such a migratory bird, unless permitted. Further, California Fish and Game Code Section 3503 states that "it is unlawful to take, possess, or needlessly destroy the nest or eggs of any bird, except as otherwise provided by this code or any regulation made pursuant thereto." The project developer is obligated to comply with the Migratory Bird Treaty Act and the California Fish and Game Code, which typically involves compliance actions such as pre-construction surveys of existing trees on the project site to check for nesting migratory birds and avoidance measures, such as timing construction activities to avoid nesting seasons or monitoring by a qualified biologist during construction activities. Therefore, compliance with existing state and federal laws pertaining to the protection of nesting birds through avoidance measures would result in less than significant impacts to migratory avian wildlife.

## *e)* Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

**No Impact.** The City of Covina has a tree preservation chapter of its municipal code (Chapter 17.83) that seeks to preserve large, mature, native trees, specifically oak trees and trees designated as heritage trees by City Council. Heritage trees are defined in the Covina municipal code (Section 17.83.020) as protected trees that are either species of oak with a diameter at standard height of 10 inches or greater, or individual trees or groups of trees that are designated as a heritage tree(s) by City Council. There are only ornamental species of trees and shrubs located on the project site, as well as low, ruderal plant species on the south side of the project site, east of the Cypress Avenue driveway. Because the only trees on the project site are ornamental species, not oak trees, and no heritage trees exist on the project site, the project would not conflict with any local policies or ordinances protecting biological resources, and no impact would occur.

#### *f)* Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

**No Impact.** The project site is located in an urbanized area that does not contain any natural, undisturbed habitat. Further, the project site itself has been previously disturbed and contains no natural habitat resources. The project is not located within a Habitat Conservation Plan or Natural Community Conservation Plan area, or in an area covered by another local, regional or state habitat conservation plan. As such, the project would not conflict with such plans or other approved local, regional, or state habitat conservation plans, and there would be no impact.



#### V. Cultural Resources

|                                                                                                                | Potentially<br>Significant | Less Than Significant | Less Than<br>Significant | No     |
|----------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|--------------------------|--------|
|                                                                                                                | Impact                     | Incorporated          | Impact                   | Impact |
| CULTURAL RESOURCES:                                                                                            |                            |                       |                          |        |
| Would the project:                                                                                             |                            |                       |                          |        |
| a) Cause a substantial adverse change in the significance of a historical resource pursuant to $\S$ 15064.5?   |                            |                       |                          |        |
| b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5? |                            |                       |                          |        |
| c) Disturb any human remains, including those interred outside of dedicated cemeteries?                        |                            |                       | $\boxtimes$              |        |

#### Discussion

- a) Would the project cause a substantial adverse change in the significance of a historical resource pursuant to § 15064.5?
- b) Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?

Less Than Significant With Mitigation Incorporated. A historical assessment of the community and the existing grocery store building within the project limits was conducted to determine whether the existing grocery store structure and/or site improvements contains features that constitute or contribute to a historic resource, as defined in CEQA Guidelines Section 15064. Because the existing grocery store and related site improvements were developed in 1991, replacing previous urban uses, these improvements are much less than 50 years old, which is a key criteria in determining whether a site or structure could be a historic resource, as defined in the National Register and California Register. The South Central Coastal Information Center (SCCIC), as part of the California Historical Resources Information System, California State University, Fullerton, an affiliate of the California Office of Historic Preservation (OHP), is the official state repository of cultural resources records and reports for Los Angeles County. At Michael Baker International's request, SCCIC staff conducted a records search on July 19, 2019. As part of the records search, the following federal and California inventories were reviewed:

- California Inventory of Historic Resources (OHP 1976).
- California Points of Historical Interest (OHP 1992 and updates).
- California Historical Landmarks (OHP 1996).
- Directory of Properties in the Historic Property Data File (OHP 2012). The directory includes the listings of the National Register of Historic Places (National Register), National Historic Landmarks, California Register of Historical Resources (California Register), California Historical Landmarks, and California Points of Historical Interest.



The SCCIC search determined that there have been two prior cultural resources investigations for properties within <sup>1</sup>/<sub>4</sub> mile of the project site, but there are no cultural resources identified within the project site or within a quarter-mile search radius.

Given the extensive ground disturbances throughout the site from past development projects and the current site improvements, it is considered unlikely that archaeological materials remain within the near surface soils where soil disturbance has occurred. While shallow excavations (generally less than 10 feet deep) would be required to prepare building foundations and install site infrastructure, past disturbance from construction of a large grocery store, a parking lot, and associated site infrastructure makes the potential to uncover previously unidentified archaeological resources unlikely. The excavation work could extend into previously undisturbed alluvial soils. Therefore, in the event of an accidental discovery of an archaeological resource, construction would cease until a qualified archaeologist can review the artifact and determine next steps for removal and or preservation if necessary, pursuant to Mitigation Measure V-1. As such, the project would not result in a substantial adverse change in the significance of a historical resource or an archaeological resource and project impacts would be less than significant.

Please refer to Section XVIII of this Initial Study, for a discussion of concerns regarding potential impacts to tribal cultural resources, as defined in Section 21074 of the California Public Resources Code.

#### Mitigation Measure V-1

If suspected prehistoric or historical archaeological deposits are discovered during construction, all work within 25 feet of the discovery shall be redirected and a Secretary of the Interior Professional Qualified archaeologist and/or Registered Professional Archaeologist shall assess the situation and make recommendations regarding the treatment of the discovery. Impacts to significant archaeological deposits should be avoided if feasible, but if such impacts cannot be avoided, the deposits should be evaluated for their eligibility for the California Register of Historical Resources. If the deposits are not California Register eligible, no further protection of the find is necessary. If the deposits are California Register eligible, impacts shall be avoided or mitigated. Acceptable mitigation may consist of but is not necessarily limited to systematic recovery and analysis of archaeological deposits, recording the resource, preparation of a report of findings, and accessioning recovered archaeological materials at an appropriate curation facility.

### c) Would the project disturb any human remains, including those interred outside of dedicated cemeteries?

Less Than Significant Impact. The project would not likely disturb any human remains, including those interred outside of dedicated cemeteries. The research conducted at the SCCIC found no indications of any past human burial activities on or near the project site. Shallow excavations of approximately five feet deep are proposed beneath and for a distance of approximately five feet beyond proposed building foundations, as described in the preliminary geotechnical report prepared for this project (GeoConcepts, Inc. 2015) and additional shallow grading would be required to install underground infrastructure such as sewer lines and drainage basins. The excavation work could extend into previously undisturbed alluvial soils. However, given the extent of past disturbance on the project site from the construction of the existing grocery store building, parking areas, and related site infrastructure, the likelihood of disturbing subsurface human remains in predevelopment, native soil



is estimated to be very low. Further, the research conducted by the SCCIC, as described above, and the information included in the Phase I Environmental Site Assessment conducted by Partner Engineering and Science did not identify any known instances of human remains or human burial grounds (SCCIC, 2019; Partner, 2014).

Nonetheless, in the event of an accidental discovery of human remains during project excavation, construction contractor compliance with Section 7050.5 of the California Health and Safety Code would ensure that such remains are properly identified and treated. Compliance would start with ensuring that there is no further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains until the Los Angeles County Coroner has determined the manner and cause of any death, and the recommendations concerning the treatment and disposition of the human remains have been made to the person responsible for the excavation or to his or her authorized representative. Project personnel/construction workers shall not collect or move any human remains and associated materials. If the human remains are of Native American origin, the coroner must notify the Native American Heritage Commission (NAHC) within 24 hours of this identification. The NAHC will immediately identify a Native American most likely descendant to inspect the site and provide recommendations within 48 hours for the proper treatment of the remains and associated grave goods. With compliance with existing California Health and Safety Code regulations, the proposed project would have less than significant impacts related to disturbing human remains.



#### VI. Energy

|                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|--|
| ENERGY:<br>Would the project:                                                                                                                                                              |                                      |                                                                 |                                    |              |  |
| a) Result in potentially significant environmental<br>impact due to wasteful, inefficient, or unnecessary<br>consumption of energy resources, during project<br>construction or operation? |                                      |                                                                 | $\boxtimes$                        |              |  |
| b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?                                                                                              |                                      |                                                                 |                                    | $\boxtimes$  |  |

#### Discussion

# a) Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

**Less Than Significant Impact.** The main forms of available energy resources are electricity, natural gas, and oil. A description of the California Building Energy Efficiency Standards and California Green Building Standards Code (CALGreen), with which the proposed project would be required to comply, as well as discussions regarding the proposed project's potential effects related to energy demand during construction and operations are provided below.

#### California Building Energy Efficiency Standards (Title 24, Parts 6 and 11)

The 2016 Building Energy Efficiency Standards for Residential and Nonresidential Buildings (California Code of Regulations, Title 24, Part 6s and 11), commonly referred to as "Title 24," became effective on January 1, 2017. In general, Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. The 2016 Title 24 standards are 28 percent more efficient than previous standards for residential development.<sup>2</sup> The standards offer developers better windows, insulation, lighting, ventilation systems, and other features to reduce energy consumption in homes and businesses. Further, the 2019 Building Energy Efficiency Standards, which take effect on January 1, 2020, will require photovoltaic (PV) systems in newly constructed low-rise residential buildings such as the two- and three-story homes in the proposed project. These systems are required to generate at least the dwelling's annual electrical usage, unless there is substantial existing shading that would obstruct solar panels or if battery storage is also provided. With PV systems, homes built under the 2019 standards will use about 53 percent less energy than those under the 2016 standards.<sup>3</sup>

<sup>&</sup>lt;sup>2</sup> California Energy Commission, 2016 Energy Standards Overview, https://www.lgc.org/wordpress/wp-content/uploads/2016/02/2016-Energy-Standards-Overview-California-Energy-Commission.pdf, accessed April July 3, 2019.

<sup>&</sup>lt;sup>3</sup> California Energy Commission, 2019 Building Energy Efficiency Standards,

https://www.energy.ca.gov/title24/2019standards/documents/2018\_Title\_24\_2019\_Building\_Standards\_FAQ.pdf, accessed July 3, 2019.



#### California Green Building Standards Code

The 2016 California Green Building Standards Code, otherwise known as the CALGreen Code (CCR Title 24, Part 11), is a portion of the California Building Standards Code (CBSC or Title 24), which became effective with the rest of the CBSC on January 1, 2017. The purpose of the CALGreen Code is to improve public health, safety, and general welfare by enhancing the design and construction of buildings through the use of building concepts having a reduced negative impact or positive environmental impact and encouraging sustainable construction practices. The provisions of the code apply to the planning, design, operation, construction, use, and occupancy of every newly constructed building or structure throughout California. Requirements of the CALGreen Code are intended to address a variety of aspects of sustainable building practices involving water and energy conservation, solid waste reduction, pollution reduction, etc. Those provisions pertaining to energy conservation include:

- Compliance with relevant regulations related to future installation of Electric Vehicle charging infrastructure in residential and non-residential structures;
- For some single-family and low-rise residential development developed after January 1, 2020, mandatory on-site solar energy systems capable of producing 100 percent of the electricity demand created by the residence(s). Certain residential developments, including those developments that are subject to substantial shading, rendering the use of on-site solar photovoltaic systems infeasible, are exempted from the foregoing requirement.

#### Construction Energy Use

Construction of the proposed project would involve on-site energy demand and consumption related to use of oil in the form of gasoline and diesel fuel. These would be used for vehicle trips by construction workers, truck trips for hauling and delivering materials, and the operation of off-road construction equipment. In addition, diesel-fueled portable generators may be necessary to provide additional electricity for temporary on-site lighting, for welding, and for supplying energy to areas of the sites where the energy supply cannot be met via a hookup to the existing electricity grid. Project construction would not involve the use of natural gas appliances or equipment. Construction methods used to build the proposed project would be typical of current construction practices and would not require use of more energy-intensive machinery or higher than normal volumes of trucks and passenger vehicle trips.

Even during the most intense period of construction, due to the different types of construction activities (e.g., site preparation, grading, building construction), only portions of the project site would be disturbed at a time, with construction equipment being operated at different locations on the project site, rather than at a single location. All construction equipment and operation thereof would be regulated per the In-Use Off-Road Diesel Vehicle Regulation administered by the California Air Resources Board (CARB). The In-Use Off-Road Diesel Vehicle Regulation is intended to reduce emissions from in-use, off-road, heavy-duty diesel vehicles in California by imposing limits on idling, requiring all vehicles to be reported to CARB, restricting the addition of older vehicles into fleets, and requiring fleets to reduce emissions by retiring, replacing, or repowering older engines or installing exhaust retrofits. As another benefit of these restrictions, off-road diesel-powered vehicles would consume less fuel and combust the fuel more efficiently . The project would also be subject to mandates on portable diesel generators and the Environmental Protection Agency's (EPA's) strict on-road emissions standards for heady-duty engines. These regulations contain strict air emissions



standards that result in efficient engine fuel consumption (compared to the previous standards) rates during operations. In addition, technological innovations and more stringent standards are being researched, such as multi-function equipment, hybrid equipment, or other design changes, which could help reduce demand on the oil and emissions associated with construction in California over the next few years. As such, temporary energy use during construction of the proposed project would not result in a significant increase in peak or base demands on regional energy supplies or require additional capacity from local or regional energy supplies, and it would not result in a wasteful, inefficient, or unnecessary consumption of energy resources during project construction.

#### **Operational Energy Use**

After the proposed project is completed, Southern California Edison (SCE) would provide electricity and Southern California Gas Company (SoCal Gas) would provide natural gas to the project site. Energy use associated with operation of the proposed project would be typical of residential uses, retail shops, and drive-through/fast food restaurants. The project does not include any unusual project characteristics or require special equipment that would be more energy intensive than typical residential and commercial uses. The commercial and residential project components would be required to include ENERGY STAR-rated appliances, energy-efficient boilers and heating, ventilation, and air conditioning (HVAC) systems, water-efficient landscaping and irrigation systems. Also, the new homes would be installed with solar photovoltaic panels in compliance with the most current Title 24 energy efficiency standards. Maintenance activities during operations, such as landscape maintenance, would involve the use of electric or gas-powered equipment. In addition to on-site energy use, the proposed project would result in consumption of oil-based fuels associated with vehicle trips generated by the proposed residential, retail, and drive-through/fast food restaurants. With regard to transportation fuel use, the proposed project would not have control over fuel consumption factors such as vehicle type(s), engine efficiency, vehicle miles traveled, etc., for residents, employees, and patrons accessing the project site. However, due to CARB's increasing vehicle efficiency standards, it is assumed the long-term transportation fuel consumption from project operations would steadily decline over time and ensure that vehicle fuel consumption is not wasteful or inefficient.

The proposed project would be subject to all relevant provisions of the most recent update of the California Building Energy Efficiency Standards (Title 24) and CALGreen Code. Compliance with the Title 24 and the CALGreen Code energy efficiency standards would ensure that the building energy use associated with the proposed project would not be wasteful, inefficient, or unnecessary.

Based on the discussion above regarding construction and operational energy use, the project would not result in a wasteful, inefficient, or unnecessary consumption of energy resources. Project impacts would be less than significant.

## b) Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

**No Impact.** As noted in the preceding response, the California Code of Regulations Title 24, Part 6– Energy Efficiency Standards, and the California Code of Regulations Title 24, Part 11–the CALGreen Code–mandate a variety of energy conservation and efficiency standards to be implemented through building design and construction. The City of Covina enforces these standards through their local building code, plan check and permit procedures. In addition, electricity supplied to the project by



Southern California Edison (SCE) would comply with the State's Renewables Portfolio Standard, which requires investor-owned utilities, electric service providers, and community choice aggregators to increase procurement from eligible renewable energy resources to 33 percent of total procurement by 2020 and to 60 percent by 2030.

At the local level, Covina has approved the 2019 Energy Action Plan (EAP) Update<sup>4</sup>, which was prepared by the San Gabriel Valley Energy Wise Partnership (SGVEWP) between 30 member cities, SCE, and Southern California Gas Company. The 2019 EAP, an update to the 2012 EAP<sup>5</sup>, revised the City's energy reduction goals. Through the SGVEWP, member cities are able to participate in the SCE Energy Leader Model, which recognizes cities for increasing their energy efficiency in municipal facilities and communities, and participating in demand response programs and long-term strategic planning. Implementation of the EAP has allowed Covina to reach the highest level of energy efficiency, Platinum, under the Energy Leader Model.

The 2019 Covina EAP builds on the community goals and policies in the 2012 EAP and adds additional goals and policies for City-owned properties. *Table VI-1, Covina Energy Action Plan Consistency*, discusses project consistency with several energy policies outlined in the City's EAP.

| Policy                                                                                                                                                                                                               | Project Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Policy 2.2</b> : Encourage the use of innovative energy-<br>efficient appliances and equipment in businesses that<br>will reduce operational expenditures and improve the<br>efficiencies of business operations. | <ul> <li>Consistent. The project would comply with the State's Building<br/>Energy Efficiency Standards and CALGreen, which require the use<br/>of energy-efficient appliances, mechanical equipment, HVAC<br/>systems, and/or solar PV panels per the most current Title 24<br/>standards. The proposed commercial and residential buildings will<br/>include energy-efficient appliances, lighting, and mechanical<br/>equipment in their design. In addition, the proposed residences will<br/>be required to incorporate PV solar systems into their design to<br/>reduce the building's energy demand on the local grid, as required<br/>under 2019 Title 24 standards.</li> <li>Consistent. The project would include landscaping throughout the<br/>project site that would help shade the proposed commercial and<br/>residential buildings, which could result in some cooling of the<br/>interior of these structures and a corresponding reduction in the<br/>energy consumption/demand for HVAC systems.</li> </ul> |  |
| <b>Policy 3.1</b> : Maximize the energy-efficient design and orientation of new, remodeled, and renovated buildings through voluntary sustainable building standards.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <b>Policy 3.2</b> : Encourage the use of energy-efficient appliances and equipment in new buildings.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <b>Policy 5.1</b> : Maximize the cooling of buildings through strategic tree planting and shading to reduce building electricity demands.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <b>Policy 6.2:</b> Support water-efficient landscaping practices to reduce electricity demand for water transport and treatment.                                                                                     | <b>Consistent.</b> The project would be required to comply with the State's Model Water Efficient Landscape Ordinance (Title 23, Chapter 2.7 of the California Code of Regulations) to reduce the water demand from the proposed landscaping at the project site. Compliance with the State's Model Water Efficient Landscape Ordinance would help reduce electricity demand for water transport and treatment to supply the project's irrigation water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

#### Table VI-1 – Covina Energy Action Plan Consistency

Source: City of Covina, Energy Action Plan Update, 2019.

As discussed above in Table VI-1 and in Section VI(a), the proposed project would include energyefficient appliances, heaters, and HVAC systems; water-efficient landscaping and irrigation systems;

<sup>&</sup>lt;sup>4</sup> City of Covina, 2019 Energy Action Plan Update, 2019.

<sup>&</sup>lt;sup>5</sup> City of Covina, City of Covina Energy Action Plan, December 2012.



and solar photovoltaic electrical power generating systems for the new homes,6 and these features would comply with applicable State and local energy regulating policies. The project's energy consumption would be typical of these types of commercial and residential development projects in Southern California and would not result in an increased energy demand beyond the capacity of SCE or Southern California Gas Company. As such, the project would not conflict with or obstruct any plans for renewable energy or energy efficiency.

<sup>&</sup>lt;sup>6</sup> As required under 2019 Title 24 standards.


### VII. Geology and Soils

|                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| GEOLOGY AND SOILS:                                                                                                                                                                                                                                                                                       |                                      | · · ·                                                           | • •                                |              |
| <ul> <li>a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:</li> </ul>                                                                                                                                                       |                                      |                                                                 |                                    |              |
| i) Rupture of a known earthquake fault, as<br>delineated on the most recent Alquist-Priolo<br>Earthquake Fault Zoning Map issued by the State<br>Geologist for the area or based on other<br>substantial evidence of a known fault? Refer to<br>Division of Mines and Geology Special<br>Publication 42. |                                      |                                                                 |                                    | $\boxtimes$  |
| ii) Strong seismic ground shaking?                                                                                                                                                                                                                                                                       |                                      |                                                                 | $\boxtimes$                        |              |
| iii) Seismic-related ground failure, including liquefaction?                                                                                                                                                                                                                                             |                                      |                                                                 | $\boxtimes$                        |              |
| iv) Landslides?                                                                                                                                                                                                                                                                                          |                                      |                                                                 |                                    | $\boxtimes$  |
| b) Result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                                            |                                      |                                                                 | $\boxtimes$                        |              |
| c) Be located on a geologic unit or soil that is unstable,<br>or that would become unstable as a result of the<br>project, and potentially result in on- or off-site<br>landslide, lateral spreading, subsidence, liquefaction<br>or collapse?                                                           |                                      |                                                                 |                                    |              |
| <ul> <li>d) Be located on expansive soil, as defined in Table 18-<br/>1-B of the Uniform Building Code (1994), creating<br/>substantial direct or indirect risks to life or property?</li> </ul>                                                                                                         |                                      |                                                                 |                                    | $\boxtimes$  |
| e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?                                                                                                                     |                                      |                                                                 |                                    |              |
| f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                                                                                                                                                                                                  |                                      |                                                                 | $\boxtimes$                        |              |

The responses to the following thresholds are based, in part, on a preliminary geotechnical engineering investigation of the project site conducted by Geo Concepts Inc. (GCI) in December 2015, which is provided in Appendix B of this Initial Study.



### Discussion

a)i) Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

**No Impact.** The State Mining and Geology Board defines an active fault as one that has had surface displacement within the Holocene Epoch (roughly the last 11,000 years) and defines a potentially active fault as any fault that has been active during the Quaternary Period (approximately the last 1,600,000 years). These definitions are used in delineating Earthquake Fault Zones as mandated by the Alquist-Priolo Geologic Hazard Zones Act of 1972 and as revised in 1994 as the Alquist-Priolo Geologic Hazard Zones Act of 1972 and as revised in 1994 as the following active faults as those capable of producing seismic waves / ground shaking on the project site: the San Andreas fault zone, the Whittier-Elsinore fault zone, the San Fernando fault zone, the Raymond fault, the Sierra Madre fault zone, and the San Gabriel fault. The nearest of these is the Clamshell fault (a segment of the Sierra Madre fault zone), which is approximately 6 miles northwest of the project site.

GCI's review of geological maps and field exploration of the site determined that the project is not located within an Alquist-Priolo Earthquake Fault Zone and that there is no indication of any faults underneath the project site. Further, the project site is flat and is already disturbed. Grading would extend to roughly 5 feet below the proposed building foundations, which is not expected to be substantial enough to trigger a rupture along any of the faults noted earlier. As such, the project would have no direct or indirect impact associated with fault rupture. Potential ground shaking effects that could occur during movement along one or more of the active faults identified earlier are addressed in the next response (threshold 7a)ii).

## a)ii) Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving strong seismic ground shaking?

Less Than Significant Impact. As stated in response to threshold 7a)i), several active faults in the region may result in strong seismic ground shaking on the project site; however, strong ground shaking during a seismic event is a hazard risk that affects all of southern California, given the number of active faults in the region. The California Building Code (CBC) addresses this hazard by defining specifications for structural design to address and mitigate the anticipated levels of ground shaking affecting a site, given its location and geologic conditions. The City of Covina has incorporated by reference the CBC into the City's building code (Chapter 14 of the City's Municipal Code). Further, GCI offers a series of recommendations to reduce the risks posed by seismic ground shaking hazards, such as removing existing fill to the top layer of competent alluvial materials (removal to a depth of at least 5 feet below proposed foundations) and replacing with compacted fill to provide a stable support for building foundations. This would also prevent problems due to liquefaction and settlement. The proposed project is required to comply with these recommendations as part of the grading permit approval process with the City of Covina. Further, the project is required to comply with all applicable seismic design criteria set forth in the CBC. Thus, with the required adherence to the City of Covina Building Code, potential impacts involving strong seismic ground shaking would be less than significant.



### a)iii) Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving seismic-related ground failure, including liquefaction?

### including liquefaction?

**Less Than Significant Impact.** Liquefaction is a seismic phenomenon in which loose, saturated, fine-grained granular soils behave similarly to fluid when subjected to high-intensity ground shaking. Liquefaction occurs when there is the presence of shallow groundwater, low-density fine, clean, sandy soils, and high-intensity ground motion. Effects of liquefaction can include sand boils, settlement, and load-bearing capacity failures below foundations.

The State of California has prepared Seismic Hazard Zone Reports to map areas where groundwater and geological conditions create the conditions for liquefaction, as well as areas with historic occurrence of liquefaction. As stated in the GCI geotechnical report, the project site is not within a liquefaction hazard zone on the State of California Seismic Hazard Zone Map. Further, ground rupture is not likely on the project site because, as stated in the GCI geotechnical report, ground rupture is the result of the movement of an active fault, and no active fault is mapped on the project site. Further, the City of Covina General Plan states that liquefaction has not historically posed a risk to structures in the City because the water table is generally more than 50 feet deep and there are no areas of loose, cohesionless soils (Covina 2000). These conditions are confirmed by the GCI geotechnical report, which shows the project site is primarily underlain with alluvium soil, and groundwater resources are 150-200 feet below the project site. Therefore, because the project is outside of a liquefaction hazard zone, is away from known active faults, and the groundwater table is more than 150 feet below the site, the project would not directly or indirectly cause substantial adverse effects involving seismicrelated ground failure.

## a)iv) Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving landslides?

**No Impact.** The State of California has prepared Seismic Hazard Zone Reports to map areas with increased risks from earthquake-induced landslides. The project site is not located within an earthquake-induced landslide hazard zone on the State of California Hazard Map. The project site is relatively flat and does not have any topography that would create the potential for landslides. As such, the project would not directly or indirectly cause potential substantial adverse effects related to landslides.

### b) Would the project result in substantial soil erosion or the loss of topsoil?

Less Than Significant Impact. During demolition and removal of existing site improvements, such as the grocery store and the parking lot, grading and demolition activities would temporarily expose soil to the risk of erosion resulting from wind or rainfall. The City of Covina requires that projects greater than 1 acre submit an erosion and sediment control plan prior to receiving a grading permit, which details erosion control measures to be used during project construction and demolition. Further, the project applicant must submit grading plans to the Los Angeles Regional Water Quality Control Board in order to comply with its General Construction. The grading plan, as well as the required stormwater pollution prevention plan, are required to demonstrate that stormwater runoff containing sediment is reduced to the maximum practical extent and that best management practices are being applied from the commencement of demolition and construction through project

completion. Compliance with these existing regulatory standards would generally avoid or reduce potential erosion impacts during construction to less than significant.

Once completed, the majority of the project site would be covered by impervious surfaces, such as pavement and buildings, which would prevent soil erosion. Pervious areas of the project site would occur within landscape planters in the commercial site and within landscaped private yards and common areas in the residential site. The combination of impervious surfaces and landscaped pervious areas would almost eliminate any potential erosion impacts. As such, potential erosion impacts during project occupation would be less than significant.

The project site has been fully disturbed by past development, with artificial fill covering much of the site. As such, very little or no native topsoil remains on the project site. As such, the project would not result in any significant impacts involving loss of topsoil.

## c) Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Less Than Significant Impact. As stated in the response to threshold 7a)iii) above, the project site is not within a liquefaction hazard zone on the State of California Seismic Hazard Zone Map and there are no active faults mapped on the project site. Because ground rupture is the result of the movement of an active fault, ground rupture is not likely on the project site. Further, the risks of lateral spreading, subsidence/settlements, liquefaction, or collapse are greatly increased in saturated soils, areas with poor drainage or near bodies of water, or areas with a high water table. As stated in the GCI geotechnical report, groundwater levels are approximately 150 to 200 feet below the project site, and the soils encountered at the site consist of dense sand with silt to silty sand. In some areas of the project site, soil borings found that the top 1.5 feet of soil consisted of 2 inches of asphalt and 1.3 feet of artificial fill. The GCI report recommends that this artificial fill be removed and replaced by compacted fill, upon which the proposed structures should be founded. The proposed project must show compliance with these recommendations as part of City of Covina's grading plan and permit approval process. The GCI report did not identify conditions prone to lateral spreading, subsidence or collapse. No project-related earthwork would occur outside of the project's development footprint, except for minor trenching for off-site underground utility connections. This would not affect geologic stability on any surrounding properties. Therefore, project impacts would be less than significant.

### d) Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?

**No Impact.** Expansive soils can cause issues with proposed development as a variation in soil moisture content will cause a volume change in the soil, resulting in contraction when soils are dry and expansion when soils are moist. GCI conducted soil testing as part of their geotechnical report for the project site and did not encounter any expansive soils. As such, no direct or indirect impacts are anticipated as a result of expansive soils.



### e) Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

**No Impact.** All structures associated with the proposed project would be connected to the sanitary storm sewer system. As such, there would be no septic tanks or alternative wastewater disposal systems associated with the proposed project and there would be no impact.

## *f)* Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Less Than Significant Impact. A vertebrate paleontology collection records search for locality and specimen data was completed by the NHMLAC on July 11, 2019 (McLeod 2019: Attachment 2). The records search identified no previously identified vertebrate fossil localities within the project site. The project site was identified as having younger Quaternary alluvial soil deposits—deposits which are not typically sensitive for paleontological resources. Within the project site, older Quaternary alluvial soils. The older Quaternary deposits are known in the region to produce fossil specimens.

As stated above, shallow excavations of up to 5 feet below and extending about 5 feet beyond the proposed building foundations would be required to prepare building foundations and additional, possibly deeper soil disturbance would occur during construction of underground utilities such as sewer lines and drainage treatment mechanisms that could potentially affect native soil materials. Therefore, the earthwork would minimally extend into previously undisturbed soils. The NHMLAC stated that shallow excavations in the younger Quaternary alluvium are unlikely to uncover significant vertebrate fossil remains; however, deeper excavations, more than 15 feet, into older Quaternary deposits have a higher potential to uncover significant fossil vertebrate specimens. If an accidental discovery is made on the project site, Mitigation Measure VII-1 will require that the project must cease construction until a qualified paleontologist examines the unearthed materials and determines if the materials could be a significant resource that warrants further preservation. Compliance with this measure would ensure that the project would not directly or indirectly destroy a unique paleontological resource or unique geologic feature, and impacts would be less than significant.

### Mitigation Measure VII-1

In the event of a fossil discovery during excavation, the construction contractor shall notify the City and immediately cease work in the area of the find. The contractor shall retain a qualified paleontologist to evaluate the resource and prepare a recovery plan for immediate implementation, including field survey, construction monitoring, sampling and data recovery procedures, museum storage coordination for any specimen recovered, and a report of findings. Recommendations in the recovery plan that are determined by the City to be necessary and feasible will be implemented before construction activities resume in the area where the paleontological resources were discovered.



### VIII. Greenhouse Gas Emissions

|                                                                                                                                        | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>GREENHOUSE GAS EMISSIONS:</b><br><i>Would the project:</i>                                                                          |                                      |                                                                 |                                    |              |
| a) Generate greenhouse gas emissions, either directly<br>or indirectly, that may have a significant impact on<br>the environment?      | $\boxtimes$                          |                                                                 |                                    |              |
| b) Conflict with an applicable plan, policy or regulation<br>adopted for the purpose of reducing the emissions<br>of greenhouse gases? | $\boxtimes$                          |                                                                 |                                    |              |

### Discussion

### a) Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

**Potentially Significant Impact.** Gases that absorb and re-emit infrared radiation in the atmosphere are called greenhouse gases (GHGs). Based on numerous studies by climate scientists around the world (such as the National Climate Assessment, and studies by the International Panel on Climate Change), global temperatures have been rising as a result of more heat being trapped by GHGs near the earth's surface. GHGs produced from human sources are widely seen as an important contributor to human-induced climate change. According to the California Environmental Protection Agency's Climate Change Research Plan for California (2015), potential impacts of climate change in California may include worsened air quality, decreased snowpack and water supplies, sea level rise, an increase in extreme heat days per year, large forest fires, and drought.

Both natural processes and human activities emit GHGs, including the combustion of fossil fuels, agricultural practices, and landfills. The major sources of GHGs in California are transportation and industrial (i.e., manufacturing and production processes) sources.

The proposed project would directly result in GHG emissions during both short-term construction work (through operation of construction equipment during site preparation, grading, and construction) and long-term operations (through operation of vehicles by residents and users of the commercial facilities, and through use of combustion-powered equipment during maintenance activities). Other long-term sources of GHGs include combustion of natural gas from heating and cooking at residential and commercial land uses and combustion of fossil fuels at electrical power-generating plants that supply electricity to the project site.

Further analysis is required to quantify the project's direct and indirect generation of GHG emissions and to determine whether such emissions would have a significant impact on the environment. This analysis will be included in the EIR to be prepared for this project. If potentially significant impacts are identified, mitigation measures will be developed to reduce impacts to less than significant levels, if possible.



## b) Would the project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

**Potentially Significant Impact.** In December 2012, the City of Covina adopted an Energy Action Plan (EAP), which identifies the amount and source of GHGs emitted in Covina. The EAP establishes a baseline year of 2006 and outlines strategies to reduce the amount of GHGs produced in Covina to a level that is consistent with the reduction goals identified by Assembly Bill 32 (the California Global Warming Solutions Act, 2006). The EAP's target is a 15% reduction in baseline GHG emissions by 2020. Although the project would be occupied after 2020, it is appropriate to evaluate the project's characteristics relative to the applicable goals and strategies in the City's EAP.

Other reduction plans and programs that may be considered to determine whether the project's GHG emissions could be significant include the 2016 Regional Transportation Plan/Sustainable Communities Strategy, prepared by the Southern California Association of Governments, which contains regional targets for reducing GHGs as directed by Senate Bill 375, and the California Air Resources Board's most recent Climate Change Scoping Plan (2017).

Further analysis is required to determine the project's total GHG emissions and to evaluate such emissions in relation to applicable plans, policies, and regulations adopted with the intent to reduce GHG emissions. This analysis will be conducted in the EIR prepared for this project. If potentially significant impacts are identified, measures to avoid or mitigate those impacts will be developed, if possible.



### IX. Hazards and Hazardous Materials

|                                                                                                                                                                                                                                                                                                    | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| HAZARDS AND HAZARDOUS MATERIALS:<br>Would the project:                                                                                                                                                                                                                                             |                                      |                                                                 |                                    |              |
| a) Create a significant hazard to the public or the<br>environment through the routine transport, use, or<br>disposal of hazardous materials?                                                                                                                                                      |                                      |                                                                 | $\boxtimes$                        |              |
| b) Create a significant hazard to the public or the<br>environment through reasonably foreseeable upset<br>and accident conditions involving the release of<br>hazardous materials into the environment?                                                                                           |                                      |                                                                 | $\boxtimes$                        |              |
| c) Emit hazardous emissions or handle hazardous or<br>acutely hazardous materials, substances, or waste<br>within one-quarter mile of an existing or proposed<br>school?                                                                                                                           |                                      |                                                                 | $\boxtimes$                        |              |
| d) Be located on a site which is included on a list of<br>hazardous materials sites compiled pursuant to<br>Government Code Section 65962.5 and, as a result,<br>would it create a significant hazard to the public or<br>the environment?                                                         |                                      |                                                                 |                                    | $\boxtimes$  |
| e) For a project located within an airport land use plan<br>or, where such a plan has not been adopted, within<br>two miles of a public airport or public use airport,<br>would the project result in a safety hazard or<br>excessive noise for people residing or working in the<br>project area? |                                      |                                                                 |                                    | $\boxtimes$  |
| f) Impair implementation of or physically interfere<br>with an adopted emergency response plan or<br>emergency evacuation plan?                                                                                                                                                                    |                                      |                                                                 |                                    |              |
| g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?                                                                                                                                                            |                                      |                                                                 |                                    | $\boxtimes$  |

### Discussion

Responses to the following threshold questions are based, in part, on site investigations and assessments of prior land use activities regarding potential environmental contaminants provided in Phase I and Phase II Environmental Site Assessments (ESAs). The Phase I ESA was completed by Partner Engineering and Science on May 29, 2014. The Phase II ESA was completed by RSA Associates, Incorporated on October 31, 1990, with an addendum prepared on May 28, 1991. These documents are included as Appendix C of this Initial Study.



## a) Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

**Less Than Significant Impact.** Materials are generally considered hazardous if they are poisonous (toxicity), can be ignited by open flame (ignitability), corrode other materials (corrosivity), or react violently, explode, or generate vapors when mixed with water (reactivity). The term "hazardous material" is defined in California Health and Safety Code as any material that, because of its quantity, concentration, or physical or chemical characteristics, poses a significant present or potential hazard to human health and safety or to the environment if released into the workplace or the environment (Section 25501(n)(1)). The code additionally states that a hazardous material becomes a hazardous waste once it is abandoned, discarded, or recycled.

The transportation, use, and disposal of hazardous materials, as well as the potential release of hazardous materials to the environment, are closely regulated through state and federal laws. Such laws include those incorporated into the California Health and Safety Code, such as the California Hazardous Materials Release Response Plans and Inventory law and the California Hazardous Waste Control law, as well as other regulations governing hazardous waste promulgated by state and federal agencies, such as the Los Angeles County Department of Public Works, California Department of Toxic Substances Control (DTSC), California Division of Occupational Safety and Health, the Regional Water Quality Control Board, and the U.S. Environmental Protection Agency.

The proposed project would include residential and commercial uses. The residential uses involve the routine transport, use, and disposal of minor quantities of typical household hazardous materials, such as cleaning products, solvents, adhesives, other chemical materials used in building maintenance and interior improvements, small amounts of oil and fuels from internal combustion engines, pesticides and herbicides, sharp or used needles, and electronic waste. This level of hazardous materials use is typical for residential areas and has not been identified as a significant threat to the environment. Residents can dispose of household hazardous materials for free at any of the Los Angeles County Sanitation Districts' permanent disposal centers, and electronics can be disposed of at several private locations. Los Angeles County, in partnership with several cities, including Covina, hosts household hazardous waste and electronic waste recycling events at various locations in the Covina region. In July 2019, three such events were held in La Puente, Glendora, and Baldwin Park (Covina 2019); they were open to Los Angeles County residents.

Proposed commercial uses would also involve the routine transport, use, and disposal of minor quantities of hazardous materials associated with commercial uses and restaurants, such as cleaning products, solvents, lubricants, adhesives, refrigerants, sealants, other chemical materials used in building maintenance and interior improvements, and paints. This level of hazardous materials use is typical for commercial areas and has not been identified as a significant threat to the environment. Further, laws such as those mentioned above strictly regulate the use, transportation, and disposal of hazardous waste; they include training for employees in how to properly handle and dispose of hazardous materials, as well as filing floor plans with the Los Angeles County Fire Department showing locations of hazardous material storage.

Based on the types of land uses proposed; the relatively minor anticipated level of use, storage, and disposal of hazardous materials; and the requirement to comply with various state and federal laws regulating hazardous materials, the project would not result in a significant impact involving the routine transport, use, or disposal of hazardous materials.



## b) Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Less Than Significant Impact. The history of development on the project site includes agricultural uses between 1928 and 1950, residential uses between 1964 and 1972, vacant and unimproved between 1975 and 1990, and developed with the existing grocery store building and asphalt parking lots from 1991 to present (Partner 2014). Because the site was previously used for agriculture, agriculture-related chemicals, such as pesticides, herbicides, and fertilizers, could potentially be present in the soil; however, previous site development in 1991 generally mixed surface soils with fill material or other disturbed soils during grading. Further, the Phase I ESA states that agriculture-related hazardous chemicals would have degraded since the site was last used for agriculture uses.

Per the Phase I ESA, the Los Angeles County Department of Public Works (LACDPW) records database shows that two underground storage tanks (USTs) were discovered during the grading and excavation of the existing grocery store building in 1991. The USTs, located on the northwest portion of the project site, were made of concrete, and each had an approximate capacity of 6,000 gallons. The USTs were removed in spring 1991, and impacted soils were removed and exported to a treatment facility. The LACDPW issued a "no further action" letter for the project site in 1997. Per the State Water Resources Control Board's GeoTracker database, a leaking underground storage tank (diesel fuel) was also associated with the fire station adjacent to the project site, located at 807 Cypress Street; however, the cleanup has been completed and the case was closed in November 1992 (WRCB 2019).

The Phase I ESA did not identify any recognized environmental conditions (RECs, defined as the presence or likely presence of any hazardous substances) or controlled recognized environmental conditions (defined as an REC that has been addressed by a regulatory agency with hazardous substances remaining in place subject to implementation of required controls) on the project site. Further, the Phase I ESA did not identify any environmental issues other than a collapsed ceiling within the existing grocery store building and some ponding of water in the building interior. While the building shows signs of structural issues (i.e., roof leaks), no evidence of mold growth was observed during the site visit by Phase I ESA preparers. Since this building and all site improvements would be demolished and removed, these conditions would be eliminated by this project.

A Phase II ESA was prepared in 1990 for the construction of the existing grocery store building. It included soil borings and soil testing for the presence of Benzene, Toluene, Xylene, and Ethyl-Benzene. Toluene was found within soil samples taken from the project site; however, as described in the Phase II ESA, results of laboratory tests indicated that levels were within acceptable levels identified by California DTSC. An addendum to the Phase II ESA evaluated soil samples taken from five additional soil borings. The Phase II ESA addendum testing for volatile organic vapors showed non-detectable levels of contaminants in each of the additional soil borings. Neither the Phase II ESA or the addendum encountered groundwater during soil boring. Therefore, disturbance of the site by construction activities would not create a significant hazard to the public through the foreseeable upset of hazardous materials.

Construction activities may also include refueling and minor maintenance of construction equipment on site, which could lead to minor fuel and oil spills; however, as described in the response to threshold question a) in Section X, Hydrology and Water Quality, a variety of routine construction control measures would be incorporated, including spill prevention/containment, sedimentation and erosion



controls, and irrigation controls to prevent conditions that would release hazardous materials into the environment.

As stated in the response to threshold question a) of this section, Hazards and Hazardous Materials, occupation of the commercial and residential facilities would not result in substantial use, transport, or disposal of hazardous materials. Further, any such use, transport, and disposal of hazardous materials is strictly regulated by state and federal laws. Therefore, there would not be a significant hazard to the public involving the accidental release of hazardous materials into the environment associated with project operations.

For the proposed project, therefore, any reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment would not result in a significant hazard to the public.

## c) Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Less Than Significant Impact. Northview High School is located at the southwest corner of Azusa Avenue and Covina Street, approximately 400 feet (0.076 mile) from the project site. As stated in responses IXa) and IXb), the results of the Phase I and Phase II ESAs conducted on the project site and the review of regulations governing hazardous material determined that project construction and operation is not expected to release any hazardous substances that could endanger the public or the environment. Further, as noted in the response to IXa, the proposed commercial and residential land uses would not emit hazardous emissions or involve the use of acutely hazardous materials and would routinely involve only minor quantities of typical household and small business hazardous materials that are not known to represent a significant threat to the environment.

The project would result in limited emissions associated with delivery and trash trucks, personal vehicles, and combustion-powered maintenance equipment. The small amount of diesel exhaust from delivery trucks and trash collection trucks would not represent a substantial increase over current conditions, which includes truck traffic along North Azusa Avenue and Cypress Street, as well as the presence of delivery trucks and trash trucks serving area commercial businesses, restaurants, and homes. Therefore, as the project would not emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or wastes, it would not affect local schools in that regard. Impacts would be less than significant.

## d) Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

**No Impact.** The project site is not included on the Cortese list, which is the list of sites compiled by California DTSC under Government Code Section 65962.5. As such, the project is not included on DTSC's list of: (65962.5(a)(1)) hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code; (65962.5(a)(2)) land designated as hazardous waste property or border zone property pursuant to Article 11; (65962.5(a)(3)) information received regarding waste disposals on public land; (65962.5(a)(4)) all sites listed pursuant to section 25356 of the Health and Safety Code; or (65962.5(a)(5)) all sites included in the Abandoned Site Assessment



program (CalEPA 2019; DTSC 2019). Because the project site is not included on these lists, the project would not create a significant hazard to the public or the environment, and there would be no impact.

### e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

**No Impact.** The nearest airports to the project site are the El Monte Airport, located 7.25 miles west of the project site in El Monte, California, and the Brackett Field Airport, located approximately 7 miles east of the project site in La Verne, California. Therefore, the project is not within 2 miles of a public airport and would not result in a safety hazard or excessive noise for people residing or working in the project area, and there would be no impact.

## *f)* Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Less Than Significant. Both City and County emergency plans describe responsibilities and outline procedures for an emergency response. The County has adopted an Operational Area Emergency Response Plan (2012), which describes the planned responses to emergencies associated with natural and man-made disasters and technological incidents. The City's Emergency Plan also outlines procedures to be followed during emergencies, such as who is in charge under different scenarios, what should be done, and by whom it should be done. As stated in the General Plan Safety Element (2000), the City's Emergency Plan was designed to meet all applicable legislative mandates and to achieve consistency with all local, County, and State emergency response documents. The project site is not used by any emergency response agencies and supports no emergency response facilities.

Regarding evacuation routes, the City's General Plan Safety Element indicates that major public streets serve as principal evacuation routes, including the San Bernardino Freeway, located 1.6 miles south of the project site, and arterial roadways, such as Cypress Street and Azusa Avenue. As stated in the Safety Element, the exact emergency routes used during an emergency would depend on a number of variables, including the type, scope, and location of the incident. It would be the responsibility of public officials to adequately assess the situation so that safe and efficient evacuation routes are selected and clearly identified by temporary signage for motorists. Development of the proposed project would have no effect on decisions and actions associated with emergency response procedures and little or no effect on selection of evacuation routes.

Therefore, the project would have less than significant impacts related to implementation of or interfere with an adopted emergency response plan or evacuation plan.

## g) Would the project expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

**No Impact.** Wildlands are defined in the General Plan Safety Element as areas characterized by low density, hillside areas with large quantities of uncultivated, combustible plants (such as chaparral and riparian communities), brush, and grasslands. The project site is in a fully urbanized area with an urban street network, a fully pressurized local water system, and an adjacent fire station. Its vegetation is limited to decorative trees and shrubs, and a grass lot on the south side of the project site. The low-density decorative landscaping materials on site do not include uncultivated, combustible plants. Further, the project is 3 miles west of the Covina Hills neighborhood, which is the nearest area



characterized by development on hilly terrain, where wildland fires are more likely to occur. Therefore, the project would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires.



### X. Hydrology and Water Quality

|                                                                                                                                                                                                                                    | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| HYDROLOGY AND WATER QUALITY:<br>Would the project:                                                                                                                                                                                 |                                      |                                                                 |                                    |              |
| a) Violate any water quality standards or waste<br>discharge requirements or otherwise substantially<br>degrade surface or ground water quality?                                                                                   |                                      |                                                                 | $\boxtimes$                        |              |
| b) Substantially decrease groundwater supplies or<br>interfere substantially with groundwater recharge<br>such that the project may impede sustainable<br>groundwater management of the basin?                                     |                                      |                                                                 |                                    | $\boxtimes$  |
| c) Substantially alter the existing drainage pattern of<br>the site or area, including through the alteration of<br>the course of a stream or river or through the<br>addition of impervious surfaces, in a manner which<br>would: |                                      |                                                                 |                                    |              |
| i) result in substantial erosion or siltation on- or off-site?                                                                                                                                                                     |                                      |                                                                 | $\boxtimes$                        |              |
| ii) substantially increase the rate or amount of<br>surface runoff in a manner which would result in<br>flooding on- or off-site?                                                                                                  |                                      |                                                                 | $\boxtimes$                        |              |
| iii) create or contribute runoff water which would<br>exceed the capacity of existing or planned<br>stormwater drainage systems or provide<br>substantial additional sources of polluted runoff?                                   |                                      |                                                                 |                                    | $\boxtimes$  |
| iv) impede or redirect flood flows?                                                                                                                                                                                                |                                      |                                                                 |                                    | $\boxtimes$  |
| d) In flood hazard, tsunami, or seiche zones, risk<br>release of pollutants due to project inundation?                                                                                                                             |                                      |                                                                 |                                    | $\boxtimes$  |
| e) Conflict with or obstruct implementation of a water<br>quality control plan or sustainable groundwater<br>management plan?                                                                                                      |                                      |                                                                 | $\boxtimes$                        |              |

### Discussion

The following discussion references a hydrology and hydraulic study, prepared by JLC Engineering and Consulting in 2019 (referred to in the following analysis as "hydrology study"), and a Low Impact Development Plan, prepared by Land Development Consultants in 2019 (referred to in the following analysis as "LID plan"). The hydrology study and LID plan are available as Appendix D of this Initial Study.



## a) Would the project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?

**Less Than Significant Impact.** The existing site is characterized by a currently vacant grocery store building, an asphalt parking lot with sporadically placed decorative vegetation in a variety of health conditions, and a small patch of grass and bare earth on the south side of the project site, east of the driveway access point to Cypress Street. Currently, the majority of site runoff flows west to storm drains within Azusa Avenue. As stated in the LID Plan, the existing project site is approximately 85% covered with impervious materials. With site alterations under the proposed project, the site would be approximately 67% covered with impervious materials.

During the construction phase of the project, there is potential for generation of water pollutants that might be carried off-site during a rain storm. These pollutants might include loose soils, liquid and solid construction materials and wastes, and accidental spills of concrete, fuels, and other materials. Such construction-related sources of stormwater pollution would be mitigated through required permits and a required erosion and sediment control plan (such as a stormwater pollution prevention plan), as described in the City of Covina Municipal Code (section 8.50.100). Specifically, the municipal code states that prior to obtaining a grading or building permit, applicants must submit applicable water quality control permits, such as the General Construction Permit from the Los Angeles Regional Water Quality Control Board (LARWQCB) and, if warranted when there are alterations to Waters of the U.S., the State Water Board 401 Water Quality Certification. There are no Waters of the U.S. within or adjacent to the project site; therefore, no 401 Water Quality Certification would be required.

Per the City of Covina Municipal Code, each applicant must submit and implement an Erosion and Sediment Control Plan, which can be substituted with a Stormwater Pollution Prevention Plan (SWPPP) prepared in accordance with the LARWQCB's General Construction Permit, which would include sediment and erosion control measures to ensure that discharges of pollutants are effectively prohibited and that construction site runoff will be contained so as not to cause or contribute to an exceedance of water quality standards. The Erosion and Sediment Control Plan / SWPPP is listed as a minimum Best Management Practice (BMP) for all construction sites by the City of Covina and helps meet the requirements of the County of Los Angeles's Municipal Separate Storm Sewer System (MS4) permit (R4-2012-0175) (Covina, undated).

The LARWQCB has adopted and administers a Basin Plan, which designates beneficial uses for surface and ground waters; sets narrative and numerical objectives that must be attained or maintained to protect the designated beneficial uses and conform to the state's antidegradation policy; and describes implementation programs to protect all waters in the Region. The project is governed by this Basin Plan, and the proposed water quality control measures are required to satisfy the water quality objectives set forth in the Plan.

Once completed, the project could generate non-point sources of water pollution typical of residential and commercial development, including runoff from impervious surfaces such as streets, sidewalks, parking lots, driveways, and common area patios, and also landscaped areas. Such water pollutants would typically include oils, grease, metals, trash, fertilizers, pesticides, and herbicides. Under existing conditions, non-point sources of pollution include typical runoff from commercial parking areas, such as brake dust and vehicle oil, as well as landscape wastes and materials fallen from unmanaged trees, sediment runoff from areas of bare soil on the south side of the project site, and trash from illegal



dumping. Under current conditions, project site runoff is not treated before discharging into Azusa Avenue.

The proposed project would be directly connected to the City of Covina's sanitary sewer system; therefore, there would be no point source discharge of sewer waste or any other point source discharge of pollution. The project site would collect the onsite non-point source flows via curb and gutters, catch basins, and subsurface storm drains. The onsite flows would be conveyed to three proposed subsurface basins within the project site, one located in the proposed commercial development south of Building D, and two located in the residential area, one underneath the driveway entrance off of Cypress Street and one under the head-in parking stalls south of common area C. The subsurface basins have been designed to retain and store the required volume necessary to mitigate for increased runoff associated with the 25-year storm event to be equal to the allowable flow rate provided by Los Angeles County Department of Public Works (0.77 cubic feet per second per acre) to the existing storm sewer infrastructure (Line A storm drain managed by Los Angeles County Department of Public Works) located within Cypress Street. See the LID Site Plan (Appendix D) for a visual representation of where the subsurface systems would be placed within the project site. The subsurface stormwater basins would be constructed with 96-inch, perforated corrugated metal piping (CMP), would be approximately 100 feet long, and would have sufficient volume to store sitegenerated stormwater and allow it to infiltrate into underlying soils. Stormwater that does not infiltrate into surrounding soils would be released to the Line A storm drain at an allowable flow rate specified by the County of Los Angeles. Infiltration would effectively remove pollutants of concern, by allowing stormwater to slowly infiltrate into underlying soils, which removes solid contaminants at the surface through physical straining and removes dissolved contaminants through soil absorption. In addition to this structural design feature, the LID plan also identifies non-structural practices to be implemented by the proposed project, including landscaping and litter control in common areas; education for property owners, tenants, and occupants; common area catch basin inspections; and street sweeping of the parking lots and private residential streets.

Per the hydrology study, the nearest water body is the fully channelized, below-grade San Dimas wash, approximately 750 feet north of the project site. As described above, the proposed project would convey all stormwater from the project site into the three subsurface detention basins, which would allow for a metered release of stormwater into Los Angeles County's stormwater sewer system and/or infiltration of the water into the surrounding soils. As such, there would be no surface runoff directly associated with the proposed project to the San Dimas wash, or any other natural water body.

Further, as stated in the Geology and Soils section, the groundwater table is located between 150 and 200 feet below the project site. Given the depth to groundwater, the required BMPs in the LID plan that would limit pollutants in site runoff and provide soil filtration for runoff not released to the municipal storm drainage system, and the fact that typical pollutants found in residential and commercial runoff would not contain hazardous contaminants, the project would not substantially degrade ground water quality.

Compliance with the permits described above and implementation of the BMPs outlined in the LID plan prepared for this project would result in impacts regarding surface or groundwater quality and compliance with existing water quality standards that would be less than significant.



### b) Would the project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

**No Impact.** The proposed project would be connected to the municipal and county sewer system and potable water system. As such, the project would not include any operating water wells and would not result in any direct withdrawal of groundwater for residents or occupants of the proposed project. Further, there are no existing groundwater extraction wells or evidence of past groundwater extraction wells within the currently developed project site. As stated in the response to threshold 10a), the proposed project would convert the project site from approximately 85% impervious surfaces to approximately 67% impervious surfaces, allowing for more infiltration of rainwater than under current conditions. Further, the proposed storm drainage facilities would include three subsurface stormwater detention basins, which would capture and detain site runoff and allow for controlled releases into the subsurface soil materials. Given the decrease in total impervious surfaces on the project site, and that the project proposes subsurface catchment and infiltration of stormwater, the proposed project would represent an increase in stormwater infiltration and therefore would not decrease groundwater supplies or interfere with groundwater recharge and there would be no negative impact.

# c)i) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would result in substantial erosion or siltation on- or off-site?

**No Impact.** As described above, the proposed project would alter the existing drainage patterns of the project site by removing all existing site improvements, changing grades, constructing new buildings and pavement areas, and installing a new stormwater collection and discharge system. These changes would be minor and would not affect drainage patterns outside of the project site. There would be no alteration of a stream or river associated with the proposed project, as no such watercourse exists on the project site, and the San Dimas wash is 750 feet north of the site.

The existing site has approximately 85% impervious surfaces, such as the grocery store building and the paved surface parking areas and driveways, which collect and convey stormwater to Azusa Avenue. The proposed development plan would result in approximately 67% impervious surfaces, including parking areas, driveways, walkways, and common area patios. No soil erosion could occur in such surfaces. The rest of the developed site would include landscaped pervious surfaces, which would essentially prevent soil erosion in those small portions of the site. The project site would collect stormwater via curb and gutters, and catch basins, with the stormwater collecting in three proposed subsurface basins within the project site that would detain, meter the release of stormwater into an existing County storm sewer infrastructure in Cypress Street, and allow for infiltration in the soil. The proposed storm drainage system would thus not discharge to other properties or overland and would not result in alterations to downstream water courses. There would be no impacts involving alteration of a stream or river or other type of watercourse, and no impacts involving increased erosion and sedimentation of such watercourses.



### c)ii) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

Less Than Significant. As described in the preceding response, the proposed project would alter the existing drainage patterns of the project site by removing all existing site improvements, changing grades, constructing new buildings and pavement areas, and installing a new stormwater collection and discharge system, which includes three subsurface detention basins. The proposed project would convert the project site from approximately 85% impervious surfaces to approximately 67% impervious surfaces, allowing for more infiltration of rainwater than under current conditions.

The hydrology study shows that the proposed drainage facilities would adequately convey stormwater flows associated with 25-year rainfalls to the subsurface basins through gutter and catchment basins and would prevent flooding on-site. The hydrology study also states that the three subsurface basins have sufficient volume to store and treat site runoff through infiltration. Los Angeles County Department of Public Works is allowing a discharge rate of 0.77 cubic feet per second (cfs) per acre. With a total project area of 7.83 acres, the proposed project must discharge less than 6.0 cubic feet per second into the County's Line A system, within Cypress Street. The subsurface detention and infiltration basins are designed to result in a maximum outflow rate of 5.7 cfs. Therefore, the designed outflow rate is less than the flow rate allowable by the County, which would limit the likelihood of ponding or flooding on-site during a 25-year storm event with adequate maintenance of the subsurface stormwater basins. Further, with project designs complying with Los Angeles County Department of Public Works requirements, stormwater runoff associated with the proposed project would be collected on-site, transmitted to subsurface detention and infiltration basins, and either discharged at an appropriate rate to the County's storm sewer line within Cypress Street or allowed to infiltrate into the ground, limiting the possibility of off-site flooding. Therefore, the project would reduce the rate and amount of surface runoff compared with existing conditions and would not induce on- or off-site flooding. Impacts from site runoff would be less than significant.

### c)iii) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

**No Impact.** As described in the responses to threshold 10c)i) and 10c)ii), the Los Angeles County Public Works Department provided a maximum allowable discharge of 0.77 cfs per acre, or a total of 6.0 cfs into the County's existing stormwater infrastructure within Cypress Street. This maximum allowable discharge is greater than the 5.7 cfs maximum discharge of the proposed project's stormwater infrastructure.

Further, the project would result in typical stormwater runoff pollutants for residential and commercial land uses, such as oil and brake dust from parking areas and streets, dust and other atmospheric deposition from rooftops and pavement areas, litter and trash, and biodegradable materials from landscaping wastes and fallen materials from trees. Any other kind of polluted runoff is prohibited by City of Covina municipal code (section 8.50.030, Illicit Discharges). The proposed project would not result in a substantial increase of such pollutants over current conditions, as the existing parking lot is

still used by some vehicles, landscaped areas are not maintained, bare earth along the driveway from Cypress Street can lead to sediment runoff, and the site is currently used for some illegal dumping of trash, all of which could be carried in site runoff during rainstorms.

Therefore, as the proposed project would neither exceed the capacity of existing stormwater drainage systems operated by Los Angeles County nor generate substantial additional sources of polluted runoff compared to current conditions, there would be no impacts.

## c)iv) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would impede or redirect flood flows?

**No Impact.** The project site is not within a Special Flood Hazard Area as designated by the Federal Emergency Management Agency (FEMA). Flood hazards are present in the Walnut Creek area of the City of Covina; however, that area is on the far east side of the City, in the Covina Hills neighborhood, and is not close enough to affect the project site. Therefore, because the project site is within an "Area of Minimal Flood Hazard," as designated by FEMA, and because on-site or off-site flooding would be prevented by the proposed storm drainage system, as discussed in response to threshold 10c)ii), the proposed project would not impede or redirect flood flows, and there would be no impact.

## d) Would the project in flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?

**No Impact.** As stated in the preceding response, the project site is within an Area of Minimal Flood Hazard, as designated by FEMA. The City of Covina General Plan Safety Element states that since Covina is an inland community, tsunami hazards would not affect the City. Further, earthquake-prompted seiche events would not impact the project site or the project site's immediate vicinity, as there are no large bodies of water (such as a reservoir) that could be severely shaken and release flood waters during a seismic event (Covina 2000). Therefore, there would be no impact regarding the release of pollutants due to project inundation resulting from flooding, tsunami, or seiche.

## e) Would the project conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

Less Than Significant Impact. The City of Covina obtains water primarily from the Covina Irrigating Company (CIC), which sources water from the Main San Gabriel Groundwater Basin and the San Gabriel River. Backup water supplies are provided by the Three Valleys Municipal Water District, which sources water from the Colorado River and Northern California (Covina 2019). The City has not drawn water from groundwater wells within the City since the 1990s, citing groundwater quality issues (Covina 2015). As discussed in response to threshold 10b), the proposed project would be connected to existing sewer and potable water systems. As such, the project would not include any operating water wells and would not result in any direct withdrawal of groundwater for residents or occupants of the proposed project. Further, the project site is located a considerable distance from the nearest managed groundwater resources, located near the San Gabriel River. Therefore, the project would not conflict with or obstruct plans such as the Five-Year Water Quality and Supply Plan for the Main San Gabriel Groundwater Basin (2018).

As discussed in response to threshold 10a), the City of Covina municipal code (Section 8.50.100) states that prior to obtaining a grading or building permit, applicants must demonstrate compliance with the



requirements set forth in the General Construction Permit (GCP), administered by the LARWQCB, pursuant to the National Pollutant Discharge Elimination System. Compliance with the terms of the GCP would ensure that the project's construction activities would be consistent with the Basin Plan adopted by the LARWQCB. Further, the developer(s) must also submit and implement an Erosion and Sediment Control Plan, which can be substituted with a SWPPP prepared in accordance with the GCP. The Erosion and Sediment Control Plan/SWPPP is listed as a required BMP for all construction sites by the City of Covina and helps meet the requirements of the County of Los Angeles's Municipal Separate Storm Sewer System (MS4) permit (R4-2012-0175), which requires sediment control, erosion control, and construction materials control on the project site (Covina, undated). The proposed project must comply with such permitting requirements prior to obtaining a grading or building permit from the City. Further, the City of Covina prohibits illicit dumping of pollutants into stormwater systems, as stated in its municipal code (Section 08.50.030, Illicit Discharges). Therefore, compliance with the above-mentioned permits and regulations would ensure that the project would not conflict with or obstruct implementation of water quality control plans such as the Three Valleys Municipal Water District's Urban Water Management Plan (2015) or the City of Covina's Urban Water Management Plan (2015).



### XI. Land Use and Planning

|                                                                                                                                                                                        | Potentially<br>Significant | Less Than Significant<br>Impact with Mitigation | Less Than<br>Significant | No          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|--------------------------|-------------|
| LAND USE AND PLANNING:<br>Would the project:                                                                                                                                           | Impact                     | mcorporated                                     | Impact                   | Impact      |
| a) Physically divide an established community?                                                                                                                                         |                            |                                                 |                          | $\boxtimes$ |
| b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? |                            |                                                 |                          |             |

### Discussion

### a) Would the project physically divide an established community?

**No Impact.** The project site is located in a fully urbanized part of the City of Covina, where the built environment consists of a mixture of low-rise residential and commercial land uses, along with a high school campus. The physical arrangement of the surrounding private lots, streets, and utility infrastructure systems has been established for many years. The proposed project would use existing public streets for access to the commercial and residential components and would connect to existing utility mainline facilities in adjacent streets. The proposed project would not result in construction of a linear feature, such as railroad tracks, a flood control channel, or a major roadway, or the removal of a means of access that would result in a physical division of an established community. No physical alterations to any land use or the physical structure of this part of Covina are proposed for outside the project footprint. As such, the proposed project would not physically divide an established community, and further analysis of this issue is not necessary in the EIR.

## b) Would the project cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

**No Impact.** The existing General Plan land use designation for the project site is General Commercial, with a corresponding zoning of C-4, Highway Commercial. Based on the existing designations and zoning, no homes could be built on the project site. Therefore, the project applicant has requested approval of a General Plan Amendment to re-designate the eastern 5.31 acres from General Commercial to Medium-Density Residential, to allow for development of single-family homes at densities of 7-14 units per acre.

The project applicant has also requested approval of a Zone Change to correspond to the new General Plan land use designation and to rezone the eastern 5.31 acres from C-4, Highway Commercial to RD, Multi-Family Zone, and to approve the Cypress Village Specific Plan to establish custom development standards corresponding to the proposed residential development plan, and to provide guidance for a unified design program to aesthetically integrate the commercial and residential components. The residential component would consist of 61 single-family detached homes, in two-story and three-story structures, with floor plans ranging from approximately 1,700 square feet to approximately 2,600 square feet. The proposed density is 12.25 homes per acre, consistent with the proposed Medium-Density Residential general plan land use designation.



The Covina General Plan Natural Resources and Open Spaces Element does not identify any land use restrictions for the project site that would require conservation of the site for purposes of protecting wildlife habitat or other natural resources. There are no policies in the General Plan Safety Element that establish land use restrictions for this site pertaining to avoidance of environmental hazards on or near the project site. The project site is not within an area where special land use policies or zoning standards have been created for the purpose of avoiding or mitigating environmental effects, nor is it within a local coastal program. As such, the project would not conflict with an applicable land use plan, policy, or regulation established for the purpose of avoiding or mitigating an environmental effect. No further analysis of this threshold is warranted in the EIR.

Other issues related to the proposed changes in the site's land use designation and zoning standards will be addressed in the EIR, concerning effects on public services and utilities, traffic, public parkland, noise, air quality and greenhouse gas emissions. Please refer to the discussions of those topics elsewhere in this Initial Study.



### XII. Mineral Resources

| MINERAL RESOURCES:                                                                                                                                                              | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <ul> <li>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</li> </ul>                      |                                      |                                                                 |                                    |              |
| b) Result in the loss of availability of a locally-<br>important mineral resource recovery site delineated<br>on a local general plan, specific plan or other land<br>use plan? |                                      |                                                                 |                                    |              |

### Discussion

### a) Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

**No Impact.** Mineral resources are commonly defined as a concentration or occurrence of natural, solid, inorganic, or fossilized organic material in or on the earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. Mineral resources can be categorized into three classes: fuel, metallic, and non-metallic. Fuel resources include coal, oil, and natural gas. Metals include such resources as gold, silver, iron, and copper. Lastly, non-metal resources include industrial minerals and construction aggregate. Industrial minerals include boron compounds, rare-earth elements, clays, limestone, gypsum, salt, and dimension stone. Construction aggregate includes sand and gravel, and crushed stone.

There has been no mineral resource extraction on this site or surrounding properties in the recent past, and such activities are not known to have occurred in the distant past (Covina 2000, Page D-9). There are no oil wells on site according to the Phase I Environmental Assessment that was prepared for the project site in 2014 (Partner 2014, p.15). According to the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources, there are no significant energy-producing minerals or oil, gas, or geothermal fields in the City (Covina 2000). Therefore, the proposed project would not result in the loss of availability of a known mineral resource or resource recovery site, and no further study of this issue is required in the EIR.

### b) Would the project result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

**No Impact.** As discussed in the preceding response, no mineral resource recovery sites are located on or in the immediate vicinity of the project site.

The Surface Mining and Reclamation Act of 1975 (SMARA) is the primary regulator for surface mining in the state. The act requires the State Geologist (California Geological Survey) to identify all mineral deposits in the state and to classify them based on their significance. SMARA defines a mineral deposit as a naturally occurring concentration of minerals in amounts or arrangement that under certain conditions may constitute a mineral resource. The concentration may be of value for its chemical or physical characteristics. The classification of these mineral resources is a joint effort of



the state and local governments. It is based on geologic factors and requires that the State Geologist classify the mineral resources area as a Mineral Resource Zone (MRZ), Scientific Resource Zone (SZ), or Identified Resource Area (IRA), described below:

- MRZ-1: A Mineral Resource Zone where adequate information indicates that no significant mineral deposits are present or likely to be present.
- MRZ-2: A Mineral Resource Zone where adequate information indicates that significant mineral deposits are present, or a likelihood of their presence, and development should be controlled.
- MRZ-3: A Mineral Resource Zone where mineral resource significance is undetermined.
- MRZ-4: A Mineral Resource Zone where there is insufficient data to assign any other MRZ designation.
- SZ Areas: A zone that contains unique or rare occurrences of rocks, minerals, or fossils that are of outstanding scientific significance.
- IRA Areas: County or State Division of Mines and Geology Identified Areas where adequate production and information indicate that significant minerals are present.

A review of the City's General Plan Natural Resources and Open Space Element did not identify this area as having significant mineral deposits of any kind, or show it in an area delineated as a mineral resource recovery site, pursuant to SMARA (Covina 2000, Page D-9). Therefore, since there are no known significant mineral resources and the project site is not a designated mineral resource recovery site as identified by SMARA or in the City's General Plan, the project would have no impact upon the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan.

No further study of this issue is required in the EIR.



### XIII. Noise

|                                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant | Less Than Significant<br>Impact with Mitigation | Less Than<br>Significant | No     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|--------------------------|--------|
| <b>NOISE:</b><br>Would the project result in:                                                                                                                                                                                                                                                                            | Impact                     | Incorporated                                    | Impact                   | Impact |
| a) Generation of a substantial temporary or permanent<br>increase in ambient noise levels in the vicinity of the<br>project in excess of standards established in the local<br>general plan or noise ordinance, or applicable<br>standards of other agencies?                                                            | $\boxtimes$                |                                                 |                          |        |
| b) Generation of excessive groundborne vibration or groundborne noise levels?                                                                                                                                                                                                                                            | $\boxtimes$                |                                                 |                          |        |
| c) For a project located within the vicinity of a private<br>airstrip or an airport land use plan or, where such a<br>plan has not been adopted, within two miles of a<br>public airport or public use airport, would the<br>project expose people residing or working in the<br>project area to excessive noise levels? |                            |                                                 |                          |        |

### Discussion

### a) Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

**Potentially Significant Impact.** Construction of the proposed project would temporarily increase noise levels on and in the vicinity of the project site. Stationary and mobile noise sources would be generated by the completed/fully occupied and operational project that could result in a substantial permanent increase in ambient noise levels affecting sensitive receptors around the project site. Such noise sources would include vehicle traffic that would increase roadway noise, noise from building mechanical equipment, possibly noise from outdoor speaker systems associated with proposed drive-thru businesses, movements of cars in parking areas, and outdoor recreation activities by people in their back yards and in the common outdoor spaces within the residential area.

The nearest noise-sensitive land uses that could be impacted by construction noise include the adjacent residential properties to the north and east sides of the project site and the Northview High School campus, 0.4 miles to the southwest of the project site. Adjacent and nearby commercial uses would also be affected by the project's short-term construction noise, but these are considered less sensitive to noise intrusion than homes or schools.

According to Chapter 9.40 of the City of Covina Municipal Code, construction and operation of equipment within any residential land use category or within a radius of 500 feet therefrom are only permitted between the hours of 7:00 a.m. and 8:00 p.m., Monday through Saturday, and no construction is permitted at any time on a Sunday or any public holiday. In addition, the Municipal Code specifies the maximum exterior noise levels for various land uses in the following table:



| Receiving Land Use Category         | Time                                               | Sound Level (A-Weighted)<br>Decibels |
|-------------------------------------|----------------------------------------------------|--------------------------------------|
| Residential estate or agricultural  | 7:00 a.m. to 10:00 p.m.<br>10:00 p.m. to 7:00 a.m. | 50<br>40                             |
| Residential low density             | 7:00 a.m. to 10:00 p.m.<br>10:00 p.m. to 7:00 a.m. | 55<br>45                             |
| Residential medium and high density | 7:00 a.m. to 10:00 p.m.<br>10:00 p.m. to 7:00 a.m. | 60<br>50                             |
| Commercial                          | 7:00 a.m. to 10:00 p.m.<br>10:00 p.m. to 7:00 a.m. | 65<br>55                             |
| Industrial                          | 7:00 a.m. to 10:00 p.m.<br>10:00 p.m. to 7:00 a.m. | 70<br>60                             |

The City's General Plan Noise Element goal is "An environment in which potential adverse impacts of noise on the City's residents and workers are identified and prevented and mitigated" (Covina 2000).

Further evaluation of potential noise levels generated during the various construction phases and over the long term due to activities occurring regularly on the fully developed site is required to determine if neighboring land uses could be exposed to excessive noise levels or otherwise conflict with the limitations imposed by the City's Municipal Code regulations and the goals and policies set forth in the City's General Plan Noise Element. Therefore, a noise analysis will be prepared as part of the project EIR, to evaluate potential impacts and to develop mitigation measures (if necessary) to avoid significant short-term or long-term impacts that may be identified.

## b) Would the project result in generation of excessive groundborne vibration or groundborne noise levels?

**Potentially Significant Impact.** Construction of improvements under the proposed project would create periodic and short-term noise, including ground-borne vibration and ground-borne noise, which could exceed established noise standards. Temporary ground-borne vibration would likely be generated by various types of machinery during the grading and site preparation construction phases. The vibration levels would vary by type of machinery and distance to sensitive receptors near the construction activity, as well as soil materials. Typical types of machinery that could generate noticeable vibration off-site include jack hammers, loaded trucks, large bulldozers, and vibratory rollers.

However, development of the proposed project would support typical indoor and outdoor activities associated with single-family residences and commercial use; completed, the project would not generate ground-borne noise or vibration.

Further analysis of the proposed construction activities and the types of machinery is required to determine whether there could be any significant vibration sources that could adversely affect the nearest structures in terms of structural damage or human comfort. A noise analysis will be prepared as part of the project EIR, to assess construction impacts involving ground-borne vibration and ground-borne noise and to develop mitigation measures (if necessary) to prevent potentially significant impacts that may be identified.



c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

**No Impact.** The project site is not located within the vicinity of a private airstrip or an airport land use plan or within 2 miles of a public airport or public use airport. The closest public airport, Brackett Field Airport, at 1615 McKinley Avenue, La Verne, California, is approximately 5 miles from the project site. The closest private airstrip, Cable Airport, at 1749 W. 13<sup>th</sup> Street, Upland, California, is approximately 10 miles from the project site (AirNav LLC 2019). Therefore, the project would not expose people residing or working in the project area to excessive noise levels from such airport uses. As such, this issue is not required to be further analyzed in the EIR.



### XIV. Population and Housing

|                                                                                                                                                                                                                                 | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| POPULATION AND HOUSING:                                                                                                                                                                                                         |                                      |                                                                 |                                    |              |
|                                                                                                                                                                                                                                 |                                      |                                                                 | [                                  |              |
| a) Induce substantial unplanned population growth in<br>an area, either directly (for example, by proposing<br>new homes and businesses) or indirectly (for<br>example, through extension of roads or other<br>infrastructure)? | $\boxtimes$                          |                                                                 |                                    |              |
| b) Displace substantial numbers of existing people or<br>housing, necessitating the construction of<br>replacement housing elsewhere?                                                                                           |                                      |                                                                 |                                    | $\boxtimes$  |

### Discussion

## a) Would the project induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

**Potentially Significant Impact.** The project site is currently designated in the Covina General Plan Land Use Element as General Commercial, with a corresponding zoning classification of Commercial Highway (C-4). The proposed project would require a change in the General Plan land use designation and zoning classification for construction of the proposed 61 residential homes on a portion of the project site. This change in land use would result in unplanned population growth. Further evaluation of this project's increment of growth with respect to adopted growth forecasts is required to determine whether this would represent a substantial level of unplanned growth that could result in impacts related to accommodation of this many new homes and its resident population in this area. For example, the new residential land use onsite would result in different levels of demand for public services than a commercial land use. Utility and infrastructure needs would also differ. Those types of impacts are discussed elsewhere in this Initial Study and will also require further analysis. The proposed change from commercial to residential land use would not result in a need to extend or build any new roads or other transportation infrastructure, nor would it require construction of any new mainline infrastructure facilities, since all such facilities are present in the project area. Further evaluation of the project's implications involving unplanned residential growth and growth-inducing effects will be addressed in the EIR to be prepared for this project.

### b) Would the project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

**No Impact.** The proposed project would result in demolition of an existing abandoned grocery store and parking lot and development of new commercial buildings and residential units. Since no housing units or any type of shelter for people are currently in this area, and there are no onsite residents, this project would not displace any people or housing and there would be no impact.



### XV. Public Services

|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| PUBLIC SERVICES:                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                                 |                                    |              |
| a) Would the project result in substantial adverse<br>physical impacts associated with the provision of<br>new or physically altered governmental facilities,<br>need for new or physically altered governmental<br>facilities, the construction of which could cause<br>significant environmental impacts, in order to<br>maintain acceptable service ratios, response times or<br>other performance objectives for any of the public<br>services: |                                      |                                                                 |                                    |              |
| i) Fire protection?                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                                 | $\boxtimes$                        |              |
| ii) Police protection?                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                 | $\boxtimes$                        |              |
| iii) Schools?                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\boxtimes$                          |                                                                 |                                    |              |
| iv) Parks?                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\boxtimes$                          |                                                                 |                                    |              |
| v) Other public facilities?                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                                 | $\boxtimes$                        |              |

### Discussion

a)i) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for fire protection?

Less Than Significant Impact. The proposed project site is located in a fully urbanized part of the City. The City's fire protection services are provided through a contract with the Los Angeles County Fire Department (LACFD). The City is served by three existing LACFD Fire Stations: 152, 153, and 154. Fire Station 152, at 807 W. Cypress Street, is situated immediately adjacent to the project site on Cypress Street. It is presumed to be the primary station serving the project vicinity (Google Maps 2019). Redevelopment of the site with the proposed mix of commercial and residential development would not introduce unique land uses or construction materials to this area and would not represent a different set of circumstances to respond to in the event of a fire or medical emergency at the developed site. No new or different firefighting resources would be required to address potential response needs associated with the proposed project. Given the existence of an adjacent fire station and two additional stations not far away, this project would not result in adverse impacts involving response times for the LACFD. No new or expanded fire stations or other Fire Department facilities would be required to maintain adequate levels of service after this project is built. The project would result in less than significant impacts involving Fire Department resources, and no further analysis is required.



a)ii) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for police protection?

Less Than Significant Impact. The project site is located in a fully urbanized part of Covina that is adequately served by the Covina Police Department's existing resources. The Police Department headquarters is 1.4 miles northeast of the project site, at 11333 Valley Boulevard (City of Covina 2011, p. 5.11-5). No new or different police resources would be required to address potential response needs associated with the proposed project. This project would not result in adverse impacts involving response times for the CVPD. No new or expanded police stations or other police department facilities would be required to maintain adequate levels of service after this project is built. The project would result in less than significant impacts involving Police Department resources, and no further analysis is required in the EIR.

# a)iii) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for schools?

**Potentially Significant Impact.** Public education services in Covina are provided by the Covina Valley Unified School District (CVUSD). The proposed project would include new residential development that would directly increase the City's population. The associated increase in demand generated by the project for public school resources will require further evaluation to determine whether the additional students residing in the project site could result in a need to construct new educational facilities within the CVUSD, which could result in environmental impacts. Therefore, this issue will be further analyzed in the EIR to be prepared for this project.

# a)iv) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for parks?

**Potentially Significant Impact.** The proposed project would include new residential development that would directly increase the City's population. According to the City's General Plan, Natural Resources and Open Space Element, City parkland includes nine parks and two ballparks. The City owns seven of the nine parks. The other two parks are leased from the CVUSD (General Plan 2000).

The current size of the City parkland is approximately 62 acres, and the City has an estimated population of 48,876 residents (DOF 2019); thus, the City has 1.26 acres of open space per 1,000 residents. This ratio is significantly below the generally accepted, national guideline (established by the National Recreation and Park Association, or NRPA) of 2.5 to 4.0 acres of parkland for every 1,000 population. According to the City's General Plan Natural Resources and Open Space Element, "this deficiency has hampered the City for many years and, unless corrective policies and measures are adopted and followed, the shortfall would be exacerbated in the future because of various



demographic, socio-economic, and housing development trends" (General Plan 2000). A target of 2.0 acres of local parkland per 1,000 city residents is identified in the Natural Resources and Open Space Element.

This project, with 61 new homes, would further exacerbate that problem. Further analysis of the project's implications with respect to the City's supply of parkland resources is required to determine if the project could contribute to any adverse environmental effects due to worsening an existing deficiency of public parkland. This analysis will be provided in the EIR to be prepared for this project.

a)v) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for other public facilities?

Less Than Significant Impact. Future residents of the developed project site (61 new residential units) may occasionally visit public facilities such as libraries, senior centers, pools, and hospitals. All of these facilities are intended to serve residents throughout Covina. Currently, there are no adopted performance standards for "other" types of public facilities that can be applied to a particular land use proposal, and these other facilities are designed and planned to respond to community-wide needs, over time. The proposed project would be required to pay the City's development impact fees, which are allocated, in part, toward improvements to the local library system and various general government services and facilities. Payment of these fees would sufficiently offset the project's incremental effect on these other public facilities. Therefore, the project would result in less than significant impacts involving an increased demand generated by the project for other public facilities, and no further analysis is required in the EIR.



### XVI. Recreation

|                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| RECREATION:                                                                                                                                                                                                                |                                      |                                                                 |                                    |              |
| a) Would the project increase the use of existing<br>neighborhood and regional parks or other<br>recreational facilities such that substantial physical<br>deterioration of the facility would occur or be<br>accelerated? |                                      |                                                                 | $\boxtimes$                        |              |
| b) Does the project include recreational facilities or<br>require the construction or expansion of<br>recreational facilities which might have an adverse<br>physical effect on the environment?                           |                                      |                                                                 | $\boxtimes$                        |              |

### Discussion

## a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

Less Than Significant Impact. Future residents of the proposed 61 single-family homes may occasionally visit one or more of the public parks found in Covina, and possibly in neighboring areas, for a variety of active and passive recreational activities. Hollenbeck Park, located at 1250 North Hollenbeck Avenue, is the nearest City park, approximately 0.8 miles from the project site. This community park is 10 acres in size and provides a playground for 5- to 12-year-olds, sports fields, basketball courts, picnic tables, and a parking lot (Covina 2019). Given the size of this park and the scope of activities available there, occasional visits by future project site residents are not likely to result in physical deterioration of those park facilities. Generally, a new neighborhood of homes does not generate an intensive increase in the use of local park facilities, or in activities that result in a physical deterioration of the park. Those types of impacts are sometimes associated with special events conducted at existing parks, which involve exceptionally intensive levels of use due to high volumes of people concentrated in the same area at the same time. These uses can result in damage to turf, excessive littering, noise, traffic congestion, etc. The proposed project would not result in those types of impacts. As such, the proposed project is not expected to result in substantial physical deterioration of existing parks, and no further analysis is required.

### b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Less Than Significant Impact. The proposed project does not include and would not require the construction or expansion of any off-site recreational facilities. The proposed project would provide common open spaces comprising landscaping and walkways, along with private yards and pocket parks to provide passive recreation opportunities exclusively for the residential portion of the project site. There would be no unique or extreme effects attributable to the proposed recreational functions, as the on-site recreation areas would be limited to passive activities by on-site residents and their occasional visitors. Potential adverse effects associated with any proposed night lighting of the onsite common outdoor recreation areas will be addressed under the topic of Aesthetics, as noted in the



response to item 1)d). No other adverse physical effects on the environment are anticipated, and no further analysis of this issue is required in the EIR.



### XVII. Transportation/Traffic

|                                                                                                                                                                           | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>TRANSPORTATION:</b><br>Would the project:                                                                                                                              |                                      |                                                                 |                                    |              |
| a) Conflict with a program, plan, ordinance or policy<br>addressing the circulation system, including transit,<br>roadway, bicycle and pedestrian facilities?             | $\boxtimes$                          |                                                                 |                                    |              |
| b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?                                                                   |                                      |                                                                 | $\boxtimes$                        |              |
| c) Substantially increase hazards due to a geometric<br>design feature (e.g., sharp curves or dangerous<br>intersections) or incompatible uses (e.g., farm<br>equipment)? | $\boxtimes$                          |                                                                 |                                    |              |
| d) Result in inadequate emergency access?                                                                                                                                 |                                      |                                                                 | $\boxtimes$                        |              |

### Discussion

## a) Would the project conflict with a program, plan, ordinance or policy addressing the circulation system, taking into account all modes of transportation including transit, roadways, bicycle and pedestrian facilities??

**Potentially Significant Impact.** The proposed project, which consists of the redevelopment of the former Albertson's site at the northeast corner of the Azusa Avenue/Cypress Street intersection, may have potentially significant impacts to City's existing roadways and the planned bicycle network.

### Roadways

### **Cypress Street**

Cypress Street provides local and direct access to the commercial portion of the project site. Cypress Street is a four-lane, east-west Collector Street with a two-way left-turn lane (TWLTL) in the study area. On-street parking is generally permitted on Cypress Street, and the posted speed limit in the study area is 35 miles per hour.

### Azusa Avenue

Azusa Avenue provides local and direct access to the residential portion of the project site. Azusa Avenue is a four-lane, north-south, Primary Arterial Street with a raised median. On-street parking is generally permitted on Azusa Avenue, and the posted speed limit is 40 miles per hour.

The City's performance standard for the local street network is based on the level of service (LOS), calculated on the basis of traffic volumes as a percentage of the capacity of the street or intersection. LOS is commonly used to describe the quality of flow on roadways and at intersections, using a range of LOS from LOS A (free flow with little congestion) to LOS F (severely congested conditions).



The City of Covina has established LOS D or better as the acceptable LOS for intersections within the City. Currently, the intersection of Cypress Street and Azusa Avenue operates at LOS C. Because the proposed project would result in an increase in peak hour and daily traffic compared to the existing, undeveloped conditions, further evaluation is needed to calculate the project's traffic impact on the LOS of the affected portions of the surrounding street network, to determine if the City's performance objectives would be maintained or degraded. Therefore, a quantitative traffic impact analysis will be prepared as part of the EIR for this project.

### **Transit Service**

Transit services in the project vicinity are provided by Foothill Transit and Metrolink. Foothill Transit provides bus service within the City of Covina, along Azusa Avenue (Route 280) between Azusa and the Puente Hills Mall (Foothill Transit 2019). The northbound 280 bus line/stop is located on Azusa Avenue, approximately 200 feet south of the commercial portion of the project site, and the southbound 280 bus line/stop is across the street on the southwest corner of Azusa Avenue, approximately 700 feet southwest of the project site (Google Earth 2019).

Metrolink also provides regional and local rail service near the project area. The Covina Metrolink Station is approximately 1.5 miles east of the project site at 600 N. Citrus Avenue. This Metrolink station originates at Los Angeles Union Station and ends at the San Bernardino Metrolink Station.

The proposed project would not physically affect the nearby bus stop or any Metrolink stops. There could be additional transit riders among the future project residents, job holders, and customers of the proposed commercial businesses, but an increase in transit ridership would be considered beneficial.

### Pedestrian and Bicycle Facilities

### Sidewalks

There are sidewalks on all adjacent roadway segments surrounding the project site (Cypress Street and Azusa Avenue). The existing sidewalks along the project would be retained. In addition, there are crosswalks at the intersections adjacent to the project site, across the stopped approach of the intersection. No new sidewalks would be constructed for the proposed project. The proposed project would not affect any pedestrian paths.

### City of Covina Bicycle Network

### City of Covina Bicycle Master Plan

The Bicycle Master Plan refers to bikeways using California Department of Transportation (Caltrans) standard designations. Three types of bikeways identified by the Streets and Highways Code and by Chapter 1000 of the Highway Design Manual (HDM) are as follows:

- **Class I Bikeway**: Typically called a "bike path," a Class I Bikeway provides bicycle travel on a paved right-of-way completely separated from any street or highway.
- **Class II Bikeway**: Often referred to as a "bike lane," a Class II Bikeway provides a striped, signed, and stenciled lane for one-way travel on a street or highway.



 Class III Bikeway: Generally referred to as a "bike route," a Class III Bikeway provides for shared use with bicycle or motor vehicle traffic and uses only signage identification (BMP 2011)

The City's planned bicycle network identifies Class II bike lanes on both Azusa Avenue and Cypress Street. Class II bikeways are located along the edge of a street, with a striped lane denoting this bike lane. Caltrans bike lane standards mandate that a Class II facility must be a minimum of 5 feet wide (when including the gutter) and that parking is prohibited in the bike lane at all times.

Implementation of the City's bicycle master plan occurs through any of the five processes listed below:

1. Add Bike Lanes to existing roadway lane geometry.

Sufficient curb-to-curb roadway width exists to stripe a bike lane. Some existing vehicle lanes may require narrowing to 10 feet. This minimum vehicle lane width has been used at numerous locations within the City.

2. Add Bike Lanes, reduce to one travel lane in each direction, add a center turn lane, and maintain or restore curbside parking on both sides.

Sometimes referred to as a "road diet," this strategy for accommodating bike lanes takes advantage of excess roadway capacity, based upon relatively low Average Daily Traffic (ADT) volumes. A typical "road diet" conversion will involve restriping four through lanes as two through lanes with a center turn lane and two bike lanes.

3. Add Bike Lanes and prohibit curbside parking on one side only.

If traffic volumes are higher and a lane reduction as above is not feasible, removal of parking on one side of the street can provide enough space to stripe two bike lanes. This involves reducing travel lane widths to 10 or 11 feet where appropriate. Adjacent land uses and their demand for on-street parking generally determine the side of the street from which to remove parking.

4. Add Bike Lanes and prohibit curbside parking on both sides.

Similar to the third method, four travel lanes are maintained, but enough roadway width is still not available to stripe bike lanes. In this case, parking will be prohibited on each side of the street.

5. Add Bike Lanes where street widening and railroad crossing improvements would be required.

There is only one location where street widening is required to implement bike lanes: Barranca Avenue at the railroad crossing.

Neither of the two Class II bike lanes planned along Azusa Avenue and Cypress Street have been installed. The proposed project would have no effect on future City actions to install those lanes, as it would not encroach into the existing street right-of-way and thus would not eliminate space to provide a future bike lane. Further analysis of impacts to bike paths is not warranted.


#### b) Would the project conflict with CEQA Guidelines Section 15064.3, subdivision (b)?

**Less Than Significant Impact.** As of July 1, 2020, transportation impact assessments prepared in accordance with CEQA will be required to determine if a proposed project would conflict with CEQA Guidelines Section 15064.3(b). This section outlines criteria for analyzing transportation impacts using vehicle miles traveled (VMT) as the primary measure of transportation impact, which is generally defined as the amount and the distance of automobile travel associated with a project. The City has not developed local methods and procedures to analyze a project's using VMT as a measure. As such, the traffic analysis to be prepared for this project will not include an analysis of VMT-based impacts related to CEQA Guidelines Section 15064.3(b).

## c) Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

**Potentially Significant Impact.** Site access for the three new commercial buildings would be provided via separate driveway approaches fronting Azusa Avenue. The commercial lots on the north (lot 2) and south (Lot 4) of the proposed project site would utilize existing driveways serving the former Albertson's building on the site. The building in the center (Lot 3) would require a new driveway approach (See Project Description Figure 3, Site Plan). Site access for the residential portion of the proposed project will be separate from commercial access and will consist of one full access driveway on Cypress Street via a private, gated driveway located between Los Angeles County Fire Station 152 and an existing restaurant site. Analysis of the geometric configuration of the proposed new drive approach on Azusa Avenue is required to confirm that the turning movements there can be safely accommodated without adverse impacts to traffic movements along Azusa Avenue. Because of the proximity of the Cypress Street driveway to Azusa Avenue, an analysis of turn movements and queuing effects is also required to confirm that vehicular movements in and out of that drive would not result in safety hazards or impede traffic flow.

The intersection at Azusa Avenue and Cypress Street is signalized and provides pedestrian crossing on all four corners. As such, the proposed project would not require the construction of new roadways and intersections. All project-related vehicle traffic would consist of passenger vehicles and light-duty trucks that comprise the vast majority of traffic found on the street network. This traffic would not result in any types of vehicular movements that would be incompatible with existing traffic patterns or with the mixture of vehicles that occurs in this area. Therefore, impacts to road design and incompatible uses would be less than significant in this regard, and no further analysis of these issues in an EIR is required.

#### d) Would the project result in inadequate emergency access?

**Less Than Significant.** The proposed project would not require the construction of new roadways and intersections. Existing driveway access to the commercial and residential components of the project would provide adequate emergency access throughout the site.

Furthermore, the proposed project would have no effect on emergency access to any surrounding properties and would not impair access by emergency vehicles traveling along adjacent and nearby streets. As such, impacts to emergency access would be less than significant, and no further analysis of this issue in an EIR is required.



#### XVIII. Tribal Cultural Resources

|                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| TRIBAL CULTURAL RESOURCSE:                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                    | F                                                               | F                                  | <b>P</b>     |
| a) Would the project cause a substantial adverse<br>change in the significance of a tribal cultural<br>resource, defined in Public Resources Code section<br>21074 as either a site, feature, place, cultural<br>landscape that is geographically defined in terms of<br>the size and scope of the landscape, sacred place, or<br>object with cultural value to a California Native<br>American tribe, and that is:                          |                                      |                                                                 |                                    |              |
| <ul> <li>i) Listed or eligible for listing in the California<br/>Register of Historical Resources, or in a local<br/>register of historical resources as defined in<br/>Public Resources Code section 5020.1(k), or</li> </ul>                                                                                                                                                                                                               |                                      |                                                                 |                                    |              |
| <ul> <li>ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.</li> </ul> |                                      |                                                                 |                                    |              |

#### Discussion

a)i) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?

**No Impact.** The project site is currently developed with a commercial structure built in 1991 along with a paved surface parking and vehicle driveways and loading areas. Given the recent age of the commercial structure, it would not be listed or eligible for listing in the California Register or in a local register of historical resources. Further, a records search at the South Central Coastal Information Center (SCCIC) determined that there are no documented historic or prehistoric cultural resources on or within a 1/4-mile radius of the project site.

Based on the results of the SCCIC search this project would have no effect on any listed or potentially eligible historic resources that consist of tribal cultural resources. Therefore, no impacts to tribal cultural resources associated with known historic resources would occur.



a)ii) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource to a California Native American tribe.

**Potentially Significant Impact.** Approved by Governor Brown on September 25, 2014, Assembly Bill 52 (AB 52) establishes a formal consultation process for California Native Tribes to identify potential significant impacts to Tribal Cultural Resources as defined in the Public Resources Code §21074, as part of CEQA. As specified in AB 52, lead agencies must provide notice to tribes that are traditionally and culturally affiliated with the geographic area of a proposed project if the tribe has submitted a written request to be notified. The tribe must respond to the lead agency within 30 days of receipt of the notification if it wishes to engage in consultation on the project and the lead agency must begin consultation within 30 days of receiving the request for consultation.

In compliance with AB 52, on July 2, 2019, the City of Covina notified the following tribes: Gabrielano-Tongva Nation, Gabrielino Band of Mission Indians-Kizh Nation, Gabrielino-Tongva San Gabriel Band of Mission Indians, Gabrielino-Tongya Tribe, San Fernando Band of Mission Indians and Torres Martinez Desert Cahuilla Indians of the proposed project and requested a response if the tribes had a desire to consult. The Gabrieleño Band of Mission Indians-Kizh Nation responded to City staff with a written request for consultation dated July 9, 2019, and consultation was initiated on July 25, 2019. The Kizh Nation advised that the project site lies within ancestral tribal territory and requested that information provided as part of the written consultation remain confidential. Although the tribal representatives did not identify tribal cultural resources within the project site and there are no known resources recorded by others on the project site, there is a potential for inadvertent impact during excavation work to such resources that may still be present within native soils on-site. The Kizh Nation requested that the City impose mitigation measures focused on monitoring of grading activities to avoid impacting or destroying tribal cultural resources that may be inadvertently unearthed during the project's ground disturbing activities. The mitigation specifications are under discussion at this time and once agreed upon, will be incorporated into the Final Initial Study and EIR scoping determination.

The Gabrielino-Tongva Tribe also responded on July 21, 2019 with a request for further information concerning the proposed development plan and extent of soil disturbance during construction, which was provided. No further request for consultation was received.



#### XIX. Utilities and Service Systems

|                                                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>UTILITIES AND SERVICE SYSTEMS:</b><br><i>Would the project:</i>                                                                                                                                                                                                                                  | Impuot                               | morporadu                                                       | Impuot                             | Impuer       |
| a) Require or result in the relocation or construction of<br>new or expanded water, wastewater treatment or<br>storm water drainage, electric power, natural gas, or<br>telecommunications facilities, the construction or<br>relocation of which could cause significant<br>environmental effects? |                                      |                                                                 |                                    |              |
| b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?                                                                                                                                           | $\boxtimes$                          |                                                                 |                                    |              |
| c) Result in a determination by the wastewater<br>treatment provider which serves or may serve the<br>project that it has inadequate capacity to serve the<br>project's projected demand in addition to the<br>provider's existing commitments?                                                     |                                      |                                                                 |                                    |              |
| d) Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?                                                                                                             |                                      |                                                                 |                                    |              |
| e) Comply with federal, state, and local management<br>and reduction statutes and regulations related to<br>solid waste?                                                                                                                                                                            |                                      |                                                                 | $\boxtimes$                        |              |

#### Discussion

a) Would the project require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

**Potentially Significant Impact.** Implementation of the proposed project would convert a vacant, former grocery store site to a mix of fast food services, retail space, and 61 single-family homes. The project would connect to nearby water, sewer, storm drainage, and energy and telecommunications infrastructure, all of which exist in the immediate area. Further analysis is required to determine if the project's utility demands could require upgrades to existing utility infrastructure and, if so, if that could result in significant environmental impacts during or following construction of those upgrades. This additional analysis will be provided as part of the EIR to be prepared for the project.



## b) Would the project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?

**Potentially Significant Impact.** Implementation of the proposed project would convert a commercial land use to a mix of commercial and residential uses. Further analysis is required to determine whether the proposed project could result in a substantial increase in water demand, compared to the range of commercial uses that could be developed under the existing C-4 zoning. Any potentially substantial increase would need to be examined with respect to the current Urban Water Management Plan (UWMP) forecasts for the City of Covina, to determine whether the project's water demand and the existing water supplies could contribute to a need for additional water supplies not currently anticipated in the UWMP. This analysis will be provided as part of the EIR to be prepared for this project.

# c) Would the project result in a determination by the wastewater treatment provider which serves or may serve the project that it has inadequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

**Potentially Significant Impact.** Implementation of the proposed project would convert commercial land to a mix of commercial and residential land uses. Further analysis is required to determine whether the project's wastewater loads would exceed potential loads associated with the commercial uses permitted under the current C-4 zoning. If so, the project's estimated wastewater loads will be evaluated with respect to the capacities of the wastewater collection and treatment system serving this area. This additional analysis will be provided as part of the EIR to be prepared for the project.

# d) Would the project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Less Than Significant Impact. The solid waste generated by the proposed development would be typical of the types of wastes generated by single-family residential land and commercial uses throughout the City of Covina. Nothing inherent in the project design or in the type or intensity of land uses would indicate that this project would generate a higher than normal level of typical municipal solid wastes, or that it would generate any unique or problematic types of wastes requiring unusual disposal methods. The City administers trash and recycling programs, such as free disposal of bulky items, bulky item pickup, electronic waste disposal, and assistance with disposal of household hazardous waste (e.g., paint, pool chemicals, medication, batteries, household cleaners). The proposed project would be required to participate in solid waste recycling and the waste reduction program administered by the City of Covina. These programs include free disposal of bulky items, bulky item pickup, electronic with disposal of household hazardous waste.

#### Residential Refuse Service

Basic residential refuse service consists of three 90-gallon containers: a black trash container, a blue or gray recycling container, and a green container for green waste. All are collected weekly.

#### Bulky, Large Item Collection

Residential customers are entitled to free bulky item pickup. Materials accepted include furniture, mattresses, bicycles, and appliances. Bulky item pick up is available to commercial and industrial customers for a nominal charge.



#### Household Hazardous Waste, Electronic Waste and Universal Waste

Household hazardous waste is any item to be disposed that is labeled toxic, poisonous, corrosive, flammable, combustible or an irritant. Electronic waste (E-Waste) refers to consumer electronic equipment that is no longer wanted. E-waste can include computers, printers, televisions, VCRs, cell phones, fax machines, stereos, and electronic games. Universal wastes are also toxic and include batteries, fluorescent lamps, and mercury thermostats. These items may not be disposed of in the regular trash. Properly dispose of toxic materials by taking them to a hazardous waste collection event. Collection events are held every Saturday throughout Los Angeles County (Covina 2019).

#### Commercial Refuse Service

Commercial customers may choose from a variety of bin sizes and varying frequency of collection.

#### Commercial Recycling

Commercial and industrial facilities and multi-family complexes using bins (dumpsters) also participate in recycling. Contents from bins are taken to a Materials Recovery Facility (MRF), where the material is sorted and recyclables are separated and processed.

#### Business Assistance - Recycling Market Development Zone Program

Covina is one of 19 cities in the Los Angeles County Recycling Market Development Zone (RMDZ) (CalRecycle 2019). The RMDZ program combines recycling with economic development to fuel new business, expand existing business, create jobs, and divert waste from landfills. The Los Angeles County RMDZ is administered by Los Angeles County Public Works, Environmental Programs Division. It administers programs that assist residents and businesses throughout the county to recycle traditional (metals, paper, and plastic) and non-traditional (construction and demolition debris, homegenerated sharps waste, and electronic waste) materials (Covina 2019c).

In 2015, the target disposal rate for Covina was 6.10 pounds per person per day (ppd), and the actual disposal rate was 4.9 ppd; the target disposal rate per employee was 13.4 ppd, and the actual rate was 11.5 ppd per employee (CalRecycle 2015). Thus, Covina was meeting AB 939 goals in 2015.

Pursuant to the mandatory provisions of the California Green Building Code Standards, at least 50 percent of all non-hazardous construction waste materials must be recycled and/or salvaged. Based on the reported 2015 citywide disposal rate of 4.9 pounds of solid waste per person per day, the proposed project would generate roughly 905.5 pounds (or 0.45 tons) of common household wastes on a daily basis. Each home would have its own containers for household wastes and recyclable materials, which would be set in front of garages for collection by the City's contracted waste hauler and taken to a licensed/permitted municipal solid waste materials recovery facility in the City of Industry. Project residents could also take their recyclable waste materials to several commercial facilities in or near Covina that handle various types of recyclable wastes. Landscape maintenance contractors would be responsible for proper disposal of green wastes. No permits or other regulatory approvals are required to handle or dispose of the household or commercial wastes that would be generated by this project. The proposed project would not conflict with any federal, state, or local regulations pertaining to waste management and disposal.

Given the infill location of this project, where solid wastes have been generated and disposed of through the municipal waste stream for many years, and given the regional scale of landfill disposal



facilities, this project would not exceed state or local standards or otherwise impair the attainment of solid waste reduction goals. Further analysis of this issue in an EIR is not required.

### e) Would the project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Less Than Significant Impact. Assembly Bill (AB) 939, the California Integrated Waste Management Act of 1989, required every city and county in California to reduce the amount of waste disposed at landfills by 25 percent by 1995 and by 50 percent by 2000. The California Green Building Standards Code also requires construction projects for commercial, industrial, or retail structures, as well as all tenant improvements, irrespective of the square footage, to recycle debris. On February 20, 2018, the Covina City Council adopted Ordinance 18-03 to preserve available landfill space and maintain compliance with CALGreen Building Codes. The City's policy applies to all construction, demolition, addition, alteration, and remodeling projects occurring within the City of Covina (Covina 2019a). The requirements consist of the following:

- Recycling/reuse of 75% of the project waste stream.
- Recycling/reuse of 100% of material resulting from non-residential land clearing.
- Use of City-approved recycling facilities.
- Proper disposal of hazardous and universal waste.
- Submittal of a Pre-Project Recycling Plan.
- Payment of an Administrative Fee, non-refundable.
- Payment of a Diversion Security Deposit, refundable upon verification of compliance.
- Submittal of a Post-Project Compliance Report

Assembly Bill 341, Mandatory Commercial Recycling, was signed into California law in 2011. AB 341 requires all California businesses that generate 4 cubic yards or more of solid waste per week, as well as multifamily residential dwellings with five or more units, to implement a recycling program. In addition, AB 341 sets a statewide goal for 75% disposal reduction by 2020. Athens Services currently transports all of Covina's waste to a Material Recovery Facility, where recyclables are sorted and then sold to end markets. Therefore, Covina businesses would be in compliance with AB 341, and no additional containers would be needed to sort any materials (Covina 2019b).

AB 1826, Mandatory Organics Recycling, was signed into California law in 2014. AB 1826 requires all California businesses that generate 4 cubic yards or more of solid waste per week, and produce organic waste, to recycle that organic waste. Organic waste means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste. Approximately one third of California's waste stream consists of organic waste that can be diverted away from landfills through recycling, composting, or donation (CalRecycle 2014). To comply with AB 1826, Covina businesses may select one or more of the following recycling options:

 Subscribe to an organics recycling service through Athens Services. The collected material is delivered to the company's compost facility (American Organics), where it is processed into nutrient-rich compost for agricultural end users.



- Donate usable food to an agency that serves those in need. The EPA provides a variety of
  resources to help find local food banks and shelters that will accept usable food.
- Self-haul food waste off-site for recycling or beneficial reuse.
- Compost food scraps on-site (Covina 2019b).

During construction, waste materials such as building materials from the demolished structures, concrete/pavement, or asphalt would be disposed of in accordance with Ordinance 18-03. During operation, the proposed project would generate a variety of typical municipal solid wastes associated with residential and commercial uses, estimated to include paper, plastics, cardboard, metals, glass, and electronic wastes. All residential and commercial refuse generated at the project site would be disposed of and reused or recycled by the City's waste hauler, as discussed above under XIX.d).

Furthermore, to the extent any future residents or businesses generate hazardous wastes, they would be obligated to comply with applicable regulations governing the storage, transport, and disposal of such wastes outside of the municipal waste stream. Electronic wastes (e-wastes) would be disposed of during scheduled e-waste collection events sponsored by the City and/or private entities. As discussed in the response to XIX.a), neither of the proposed uses—commercial or single-family residential would generate substantial quantities of hazardous substances or wastes. Therefore, the proposed project would not result in conflicts with solid waste statutes or regulations, and the project's solid waste disposal impact would be less than significant. Further analysis of this issue in an EIR is not required.



#### XX. Wildfire

|                                                                                                                                                                                                                                                                                   | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| <b>WILDFIRE:</b><br>If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:                                                                                                                              |                                      |                                                                 |                                    |              |
| a) Substantially impair an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                                          |                                      |                                                                 |                                    | $\boxtimes$  |
| b) Due to slope, prevailing winds, and other factors,<br>exacerbate wildfire risks, and thereby expose project<br>occupants to, pollutant concentrations from a<br>wildfire or the uncontrolled spread of a wildfire?                                                             |                                      |                                                                 |                                    |              |
| c) Require the installation or maintenance of<br>associated infrastructure (such as roads, fuel breaks,<br>emergency water sources, power lines or other<br>utilities) that may exacerbate fire risk or that may<br>result in temporary or ongoing impacts to the<br>environment? |                                      |                                                                 |                                    | $\boxtimes$  |
| d) Expose people or structures to significant risks,<br>including downslope or downstream flooding or<br>landslides, as a result of runoff, post-fire slope<br>instability, or drainage changes?                                                                                  |                                      |                                                                 |                                    |              |

#### Discussion

# a) If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project substantially impair an adopted emergency response plan or emergency evacuation plan?

**No Impact.** The project site is not located in or adjacent to an area designated as a very high fire hazard severity zone (VHFHSZ) or any other type of wildfire hazard. Wildland fires typically occur in very low-density hillside areas with large quantities of uncultivated, combustible plants (such as chaparral and riparian communities), brush, and grasslands. The project site is within a flat, urbanized area adjacent to existing commercial and residential structures. Wildland fires would not occur on or near the project site. According to the Covina Fire Department, all major public streets could serve as a principal evacuation route. In any disaster warranting evacuation, the exact emergency routes used would depend on a number of variables, including the type, scope, and location of the incident. It is the responsibility of emergency service and/or appropriate public officials to adequately assess the situation so that safe and efficient evacuation routes are selected (Covina General Plan, Safety Element). Therefore, construction and operation of the proposed project would not substantially impair an adopted emergency response plan or emergency evacuation plan, and no further study of this issue is required in the EIR.



b) If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project, due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

**No Impact.** The project site is not within or near a VHFHSZ. Therefore, the proposed project would not have the potential to expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire due to slope, prevailing winds, and other factors, or exacerbate wildfire risks. No further study of this issue is required in the EIR.

c) If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

**No Impact.** The project site is not in or near lands that are classified as a VHFHSZ. The project would not require the installation or maintenance of associated infrastructure that may exacerbate fire risk or result in temporary or ongoing impacts to the environment. No impacts would occur with regard to this issue, and no further study of this issue is required in the EIR.

d) If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

**No Impact.** The project site is not in or near lands that are classified as a VHFHSZ. The project site is within a flat, urbanized area adjacent to existing commercial and residential structures. Therefore, the project would not expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes. No impacts would occur with regard to this issue, and no further study of this issue is required in the EIR.



#### XXI. Mandatory Findings of Significance

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than Significant<br>Impact with Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| MANDATORY FINDINGS OF SIGNIFICANCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                 |                                    |              |
| a) Does the project have the potential to substantially<br>degrade the quality of the environment, substantially<br>reduce the habitat of a fish or wildlife species, cause<br>a fish or wildlife population to drop below self-<br>sustaining levels, threaten to eliminate a plant or<br>animal community, substantially reduce the number<br>or restrict the range of a rare or endangered plant or<br>animal or eliminate important examples of the major<br>periods of California history or prehistory? |                                      |                                                                 |                                    |              |
| b) Does the project have impacts that are individually<br>limited, but cumulatively considerable?<br>("Cumulatively considerable" means that the<br>incremental effects of a project are considerable<br>when viewed in connection with the effects of past<br>projects, the effects of other current projects, and<br>the effects of probable future projects)?                                                                                                                                              |                                      |                                                                 |                                    |              |
| c) Does the project have environmental effects which<br>will cause substantial adverse effects on human<br>beings, either directly or indirectly?                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                                 |                                    |              |

#### Discussion

a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

**Potentially Significant Impact.** As discussed in Factor XVII, Transportation/Traffic, the proposed project would generate new vehicle trips that could add to congestion levels on the surrounding street network and degrade the performance of that street network. Accordingly, further analysis of the project's traffic impacts will be conducted as part of the EIR to be prepared for this project. As discussed in Factor IV, Biological Resources, there is no remaining natural, undisturbed habitat onsite, and the few ruderal plants and trees within the parking lot planters and in the grass-covered "leg" that extends to Cypress Street are not considered to be biologically sensitive or important resources. Any wildlife presence would be limited to common, urban-adapted species, rather than rare, threatened or endangered species protected under California or federal statutes. There are no surface drainage features or wetland features on or near the site, and thus no habitat to support any aquatic species. Since this site is in a fully urbanized area, surrounded by developed land, the site does not provide a habitat linkage to support fish or wildlife migration or movement. Compliance with the regulations of the federal Migratory Bird Treaty Act and Section 3503 of the California Fish and Game Code during



removal of existing trees will avoid potential impacts to avian species protected by those regulations. As such, removal of the few non-sensitive plants and trees would not result in a reduction of the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, or substantially reduce the number or restrict the range of a rare or endangered plant or animal.

As discussed in Factor V, Cultural Resources, the existing, vacant grocery store building and related site improvements were built in 1991 and are modern, rather than historic resources. A search of cultural resources archives at the South Central Coastal Regional Information Center in July 2019 determined that there are no recorded historic or archaeological resources on or near the project site. Proposed grading would generally be shallow and affect previously disturbed soils; however, construction of some underground utilities such as the subsurface drainage basins could potentially extend into native materials where it is possible that some archaeological materials could be discovered. Mitigation Measure V-1 will require archaeological monitoring during those grading activities to ensure that potentially significant cultural resources are not accidentally damaged.

# b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

**Potentially Significant Impact.** Additional research is needed to identify other pending development projects and major public infrastructure projects that could be constructed in the general vicinity of the project site over the next few years, to determine if there is a potential for overlapping effects that could be cumulatively considerable. For example, the proposed single-family homes, in combination with other proposed new residential development, could further exacerbate the existing deficiency of public parkland in Covina, resulting in cumulatively considerable impacts. Project-related vehicular traffic, in combination with increased traffic from other pending projects and general area growth, could result in cumulatively considerable impacts on the performance of the surrounding street network. Emissions of criteria air pollutants during construction and over the long-term operating life of the project must be quantified to determine whether those emission levels would exceed the thresholds established by the South Coast Air Quality Management District, which are indicators of cumulatively significant impacts. Project-related impacts, combined with impacts from other anticipated growth, could also result in cumulatively considerable impacts. Consequently, an assessment of cumulative impacts will be provided in the EIR to be prepared for this project.

## c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

**Potentially Significant Impact.** The proposed project has the potential to cause substantial adverse effects on human beings, either directly or indirectly. As discussed in the response to Factor III, Air Quality, further analysis is required to determine whether the levels of criteria air pollutants generated during construction and over the operating life of the project could exceed significance thresholds established by the South Coast Air Quality Management District. As discussed in Factor IX, Hazards and Hazardous Materials, potential harmful releases of environmental contaminants during construction are not anticipated, and the proposed fast food, retail and single-family residential uses would not involve the regular use, transport, storage, generation, or disposal of significant quantities



of hazardous substances. Therefore, significant impacts are not anticipated due to releases of hazardous substances and materials. As discussed in Factor XIII, Noise, further assessment of construction-period and long-term operational noise is required to determine whether short-term or long-term noise impacts could result in substantial adverse impacts on human beings. No other environmental impacts resulting from the project were determined to result in potentially adverse impacts to human beings. Further analysis of the potentially significant air quality and noise will be provided in the relevant sections of the EIR to be prepared for this project.



#### SECTION E. REFERENCES

#### I. Aesthetics

City of Covina, General Plan, Natural Resources and Open Space Element, 2000.

City of Covina, City of Covina Design Guidelines. 2009.

Caltrans (California Department of Transportation), *California Scenic Highway Mapping System: Los Angeles County*, 2018. Accessible online at www.dot.ca.gov/design/lap/livability/scenic-highways/. Last accessed July 2, 2019.

#### **II. Agriculture and Forestry Resources**

Covina, City of. 2000. General Plan Land Use Element

Los Angeles (LA) County. 2019. Los Angeles County Assessor Property Assessment Information System, APNs 8421-001-016, and 8421-001-061. Available online at <u>http://maps.assessor.lacounty.gov/GVH\_2\_2/Index.html?configBase=http://maps.assesso</u> <u>r.lacounty.gov/Geocortex/Essentials/REST/sites/PAIS/viewers/PAIS\_hv/virtualdirectory</u> <u>/Resources/Config/Default</u>. Last accessed June 24, 2019.

#### **III. Air Quality**

- California Air Resources Board (CARB). 2018. Area Designation Maps / State and National. Website. Accessed July 2, 2019. <u>https://ww3.arb.ca.gov/desig/adm/adm.htm</u>
- SCAQMD (South Coast Air Quality Management District). 2016. Air Quality Management Plan (AQMP). <u>http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan</u>

. 1993. CEQA Air Quality Handbook. <u>http://www.aqmd.gov/home/rules-</u> compliance/ceqa/air-quality-analysis-handbook

. 1997. SCAQMD Rule 1138 Control of Emissions from Restaurant Operations. Adopted November 14, 1997. <u>https://ww3.arb.ca.gov/drdb/sc/curhtml/r1138.pdf</u>

\_\_\_\_. 1976. SCAQMD Rule 402 Nuisance. Adopted May 7, 1976. http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-402.pdf

#### **IV. Biological Resources**

California Department of Fish and Wildlife (CDFW). 2018. *California Sensitive Natural Communities List.* October 15, 2018.

Covina, City of. 2000. General Plan Natural Resources and Open Space Element, page D-3.

U.S. Fish and Wildlife Service (USFWS). 2019a. Information for Planning and Consultation (IPaC) report, generated June 25, 2019.

\_\_\_\_\_. 2019b. USFWS Species Profiles for Least Bell's Vireo, Southwestern Willow Flycatcher, and Coastal California Gnatcatcher. Available online at



https://ecos.fws.gov/ecp0/profile/speciesProfile?sId=5945, https://ecos.fws.gov/ecp0/profile/speciesProfile?sId=6749, and https://ecos.fws.gov/ecp0/profile/speciesProfile?sId=8178; Last accessed June 24, 2019.

#### V. Cultural Resources

Partner Engineering and Science, Inc. 2014. Phase I Environmental Site Assessment Report. May 29, 2014

South Central Coastal Information Center (SCCIC). July 19, 2019.

#### VII. Geology and Soils

Covina, City of. 2000. General Plan Safety Element. April 18, 2000.

- Geo Concepts, Incorporated. 2015. Preliminary Geotechnical Engineering Investigation, Proposed Residential and Commercial Developments, 1000 North Azusa Avenue, Covina, California. December 7, 2015.
- Natural History Museum of Los Angeles County, July 2019. Vertebrate Paleontology Records Check for Paleontological Resources for the Proposed 1000 N. Azusa Avenue Project, in the City of Covina, Los Angeles County

#### VIII. Greenhouse Gas Emissions

- California Air Resources Board (CARB). 2017. California's 2017 Climate Change Scoping Plan. https://ww3.arb.ca.gov/cc/scopingplan/scoping\_plan\_2017.pdf.
- California Environmental Protection Agency. 2015 Climate Change Research Plan for California. http://climatechange.ca.gov/climate\_action\_team/reports/CAT\_research\_plan\_2015.pdf.
- Covina, City of. 2012. Energy Action Plan. December 2012. https://covinaca.gov/publicworks/page/energy-action-plan-city-covina.
- Southern California Association of Governments (SCAG). 2016. 2016-2040 Regional Transportation Plan / Sustainable Communities Strategy. http://scagrtpscs.net/Pages/FINAL2016RTPSCS.aspx.

#### IX. Hazards and Hazardous Materials

- California Department of Toxic Substances Control (DTSC). 2019. *Envirostor Database*, available online at <u>https://www.envirostor.dtsc.ca.gov/public/.</u> Last queried/accessed July 9, 2019.
- California Environmental Protection Agency (CalEPA). 2019. Cortese List: Section 65962.5(a). Available online at <u>https://calepa.ca.gov/sitecleanup/corteselist/section-65962-5a/.</u> Last accessed July 9, 2019.
- California State Water Resources Control Board (WRCB). 2019. *Geotracker Database*. Available online at <u>https://geotracker.waterboards.ca.gov/.</u> Last accessed July 9, 2019.

Covina, City of. 2000. General Plan Safety Element



\_\_\_\_\_. 2019. *Household Hazardous Waste Collection Events*. Website accessed July 9, 2019. <u>https://covinaca.gov/publicworks/page/household-hazardous-waste-collection-events</u>

Los Angeles County. 2012. Operational Area Emergency Response Plan.

- Partner Engineering and Science, Incorporated. 2014. Phase I Environmental Site Assessment Report. May 29, 2014
- RSA Associates, Incorporated. 1990. Phase II Site Assessment NEC Azusa Avenue and Cypress Street, Covina California.

\_\_\_\_\_. 1991. Addendum Phase II Site Assessment NEC Azusa Avenue and Cypress Street, Covina California

#### X. Hydrology and Water Quality

Covina, City of, General Plan Safety Element. 2000.

\_\_\_\_\_. Form OC1: Owner's Certification, Minimum BMPs for ALL Construction Sites. Undated.

\_\_\_\_\_. Urban Water Management Plan, 2015. Available online at <u>https://covinaca.gov/sites/default/files/fileattachments/public\_works/page/451/final\_201\_5\_uwmp\_-\_city\_of\_covina.pdf</u>

\_\_\_\_\_. *Water Quality*, 2019. Website, <u>https://covinaca.gov/publicworks/page/water-quality</u>. Last accessed July 5, 2019.

JLC Engineering and Consulting, Incorporated. *Hydrology and Hydraulic Study for Tract Map No. 83215*. January 17, 2019

Land Development Consultants. Low Impact Development Plan (LID Plan). January 22, 2019.

Main San Gabriel Basin Watermaster. Five Year Water Quality and Supply Plan (2018-2023). November 2018.

Three Valleys Municipal Water District, Urban Water Management Plan, 2015. https://www.threevalleys.com/uploads/files/Urban%20Water%20Mgmt.pdf

Federal Emergency Management Agency (FEMA). 2008. Flood Insurance Rate Map: 06037C1700F.

#### XI. Land Use

City of Covina. 2017, Zoning Ordinance. https://www.codepublishing.com/CA/Covina/#!/Covina17/Covina17.html

City of Covina. 2015 Zoning Map. https://covinaca.gov/pc/page/zoning-map



#### **XII. Mineral Resources**

- City of Covina. 2000. *General Plan*. Natural Resources and Open Space Element. Available online at <a href="https://covinaca.gov/sites/default/files/fileattachments/planning\_commission/page/1073/natural\_resources\_and\_open\_space.pdf">https://covinaca.gov/sites/default/files/fileattachments/planning\_commission/page/1073/natural\_resources\_and\_open\_space.pdf</a>.
- Partner Engineering and Science, Inc. (Partner) 2014. Phase I Environmental Site Assessment Report. May 29.

#### XIII. Noise

AirNav, LL, 2019. Available online at <u>https://www.airnav.com/cgi-bin/airport-search</u>. Last accessed June 26, 2019.

City of Covina. 2000. General Plan. Noise Element.

City of Covina Municipal Code. Chapter 9.40 Noise.

#### **XV. Public Services**

City of Covina, *Covina Parks and Recreation Department Park System Quick Reference Guide*. Available online at: <u>https://covinaca.gov/sites/default/files/fileattachments/parks\_and\_recreation/page/432/2</u> <u>018 park reference\_guide\_for\_web.pdf</u>. Last accessed July 8, 2019.

City of Covina, General Plan. Natural Resources and Open Space Element, 2000.

California Department of Finance (DOF). E-1 Cities, Counties, and the State Population Estimates with Annual Percent Change — January 1, 2018 and 2019. Available online at <u>http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-1/</u>. Last accessed July 9, 2019.

#### **XVI.** Recreation

City of Covina, *Parks and Facilities*, 2019. Available online at <u>https://covinaca.gov/parksrec/page/parks-facilities</u>. Last accessed June 26, 2019.

#### XVII. Transportation/Traffic

Alta Planning+Design, City of Covina Bicycle Master Plan Final Draft, 2011.

City of Covina, General Plan. Circulation Element, 2000.

Foothill Transit. Available online at <u>http://foothilltransit.org/line/280/.</u> Last accessed July 8, 2019.

Google Earth, 2019

Metrolink Azusa Gold Line Station. Available online at <u>http://foothilltransit.org/wp-content/uploads/2018/06/280.pdf. Last accessed July 8</u>, 2019.



#### **XVIII. Tribal Cultural Resources**

Michael Baker International. South Coast Central Informa Center Cultural Records Search Results for the Cypress Village Specific Plan Project. July 22, 2019.

#### XIX. Utilities and Service Systems

- City of Covina, Public Works. Refuse (Trash), 2019. Available online at <u>https://covinaca.gov/publicworks/page/refuse-trash</u>. Last accessed July 12. 2019.
- City of Covina, Construction & Demolition Debris Management, 2019a. Available online at <a href="https://covinaca.gov/publicworks/page/construction-demolition-debris-management">https://covinaca.gov/publicworks/page/construction-demolition-debris-management</a>. Last accessed on July 12, 2019.
- City of Covina, Commercial and Multifamily Recycling: It's the Law! 2019b. Available online at <a href="https://covinaca.gov/publicworks/page/commercial-and-multifamily-recycling-its-law">https://covinaca.gov/publicworks/page/commercial-and-multifamily-recycling-its-law</a>. Last accessed July 12, 2019.
- City of Covina, Public Works, Recycling. 2019c. Available online at <u>https://covinaca.gov/publicworks/page/recycling. Last Accessed July 12, 2019.</u>
- CalRecycle (California Department of Resources Recycling and Recovery), Organics in California's Overall Disposed Waste Stream, 2014. Data from Calreycle's 2014 Waste Characterization Report. Available online at https://www.calrecycle.ca.gov/Recycle/Commercial/Organics/. Last accessed July 15, 2019.
- CalRecycle, Jurisdiction Diversion/Disposal Rate Summary. Per Capita Disposal Rate, Covina, 2015. Available online at <u>https://www2.calrecycle.ca.gov/LGCentral/%20DiversionProgram/JurisdictionDiversionD</u> <u>etail/111/Year/2015</u>. Last accessed July 12, 2019.
- CalRecycle, Recycling Market Development Zone Los Angeles County, 2019. Available online at <a href="https://www2.calrecycle.ca.gov/bizassistance/rmdz/zones/details/16#materials">https://www2.calrecycle.ca.gov/bizassistance/rmdz/zones/details/16#materials</a>. Last accessed July 12, 2019.

#### XX. Wildfire

City of Covina, General Plan. Safety Element, 2000.

California Department of Forestry and Fire Protection (CalFire). Draft Fire Hazard Severity Zones in LRA -Los Angeles County, 2007. Available online at <u>https://frap.fire.ca.gov/media/6387/fhszl06\_1\_map19.pdf</u>. Last accessed July 16, 2019.

Appendix A: Initial Study, Notice of Preparation, and Responses to NOP

Part 2: Notice of Preparation



#### NOTICE OF PREPARATION AND PUBLIC SCOPING MEETING

#### TO: Distribution List

| Lead Agency:    |                                                              | <b>Consulting Firm:</b> |                                    |
|-----------------|--------------------------------------------------------------|-------------------------|------------------------------------|
| Agency Name:    | City of Covina                                               | Name:                   | Michael Baker International        |
| Street Address: | 125 E. College Street                                        | Street Address:         | 3760 Kilroy Airport Way, Suite 270 |
| City/State/Zip: | Covina, CA 91723                                             | City/State/Zip:         | Long Beach, CA 90806               |
| Contact:        | Lisette Sanchez-Mendoza, Community<br>Development Consultant | Contact:                | Randy Nichols, EIR Project Manager |
| Telephone:      | (626) 384-5451                                               | Telephone:              | (562) 200-7168                     |

### SUBJECT:Notice of Preparation of Draft Environmental Impact Report and Public Scoping<br/>Meeting for the Proposed Cypress Village Mixed Use Development Project

The City of Covina will be the lead agency and will prepare an Environmental Impact Report ("EIR") for the proposed "Cypress Village" Mixed Use Development Project (the "project"). The Project description, location, and the probable environmental effects are contained in the attached materials. A copy of the Initial Study is also included in the attached materials.

#### To Other Government Agencies

We need to know the views of your agency as to the scope and content of the environmental information, which is germane to your agency's statutory responsibilities in connection with the proposed project. Your agency may need to use the EIR prepared by our agency when considering your permit or other approval for the project.

#### To Individuals, Special Interest Groups and Other Interested Parties

We are requesting your written input regarding concerns about environmental effects that may result from this project, to help define the scope of the analysis to be provided in the EIR. The comment period for the Notice of Preparation begins on <u>December 6, 2019</u> and ends on <u>January 16, 2020</u>. Please send your written response to <u>Lisette Sanchez-Mendoza</u> at the address shown above. We would appreciate the name of a contact person in your agency.

Also, the City of Covina will conduct a public scoping meeting on <u>December 16, 2019, at 5:00 pm in the</u> <u>City of Covina Council Chambers, located at 125 E. College St., Covina, CA 91723.</u> to accept comments on the scope of the EIR for this project. This meeting will serve as a public forum to discuss the environmental issues already identified for the EIR, along with other issues identified by the public that should be included for further analysis within the EIR.

Date: 12-06-19

Title: Lisette Sanchez-Mendoza, Community Development Consultant



#### CITY OF COVINA NOTICE OF PREPARATION AND PUBLIC SCOPING MEETING ATTACHMENT

| Lead Agency:                     | City of Covina<br>125 E. College Street<br>Covina, California 91723                                                                                                                                                                                                                                                                   |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact Person & Phone Number:   | Lisette Sanchez-Mendoza, Community Development Consultant<br>City of Covina<br>Community Development Department<br>125 E. College Street<br>Covina, California 91723<br>(626) 384-5451                                                                                                                                                |
| Project Applicant:               | PKL Investments, LLC<br>2863 Maricopa Street<br>Torrance, CA 90503                                                                                                                                                                                                                                                                    |
| Case Numbers:                    | Case Nos: GPA 19-001, ZCH 19-001, SPR 19-002, TTM 19-002, SP 19-001                                                                                                                                                                                                                                                                   |
| Project Location:                | As shown in Figure 1 – Regional Location Map, Covina is in the central San Gabriel Valley area, in the eastern perimeter of Los Angeles County. As shown in Figure 2 – Project Location Map, the project site is located on the east side of Azusa Avenue, between Cypress Street and Covina Boulevard and west of N. Conwell Avenue. |
| Assessor's Parcel Numbers:       | 8421-001-016 and 8421-001-061. The subject property is assigned two street addresses: 1000 N. Azusa Avenue and 845 W. Cypress Street                                                                                                                                                                                                  |
| General Plan/Zoning Designation: | C-4 Highway Commercial                                                                                                                                                                                                                                                                                                                |

#### **Project Description:**

The project site currently consists of 7.99 acres of developed land, with remnant improvements from a former Albertsons grocery store that was constructed in 1991 and vacated in November 2012. The former grocery store is 81,333 square feet in total floor area, in a box-shaped structure reaching a height of 44 feet. A large surface parking lot with numerous small landscape planters and several pole-mounted lighting clusters is located between the building and the Azusa Avenue frontage, while paved drives abut the northern and eastern sides of the building.

The proposed project would include development of a mixture of retail shops and drive through/fast food service businesses on the western 2.92 acres along the Azusa Avenue frontage and development of 61 single-family detached homes on the eastern and southern 4.99 acres. Figure 3 – Site Plan, illustrates the proposed development plan.

The retail component of the proposed project would consist of four buildings, totaling 14,000 square feet of floor area, arranged in three distinct building sites. Two of these sites would include a drive-thru circulation pattern to accommodate fast-food and beverage businesses with drive-thru service. Vehicular access to these commercial uses would be from three drive approaches along the Azusa Avenue frontage, and from an existing driveway along



Cypress Street that serves existing fast food businesses on adjacent properties. A total of 158 surface parking spaces would be provided within the three commercial sites.

The residential component would consist of 61 single family homes, in two-story and three-story structures, with floor plans ranging from approximately 1,700 square feet to approximately 2,600 square feet. Homes would have three-four bedrooms, with optional bonus areas and loft spaces. The proposed density is 12.25 homes per acre. Vehicle parking would include 122 spaces within attached garages, along with 12 spaces located in driveways, 23 "head-in" spaces located along internal driveways, and 7 parallel spaces along the entrance drive. Vehicular access to the 61 homes would be from Cypress Avenue, via a private, gated driveway located between Los Angeles County Fire Station 152 and an existing restaurant site.

The commercial and residential areas would be developed independently and may be constructed concurrently or at different time frames, in response to market demand. For purposes of analysis, both areas are anticipated to be completed and fully occupied by 2021. The project site is relatively level; however, the project would require demolition of existing improvements and grading of the site in preparation of building pads and streets, drainage and underground utilities improvements.

#### Required City Approvals

- General Plan Amendment (GPA) 19-001: To redesignate the eastern 5.31 acres from General Commercial to Medium-Density Residential, to allow for development of single-family homes at densities of 7-14 units per acre.
- Zone Change (ZCH) 19-001: To rezone the eastern 5.31 acres from C-4, Highway Commercial to RD, Multi-Family Zone, and to approve a Specific Plan to establish custom development standards for the residential component and to provide a unified theme for the overall aesthetic character of the site.
- Tentative Tract Map (TTM) 82315: To reconfigure the existing parcels to create a subdivision of for-sale lots and common areas for the 61 proposed homes and three individual lots for the commercial component.
- Site Plan Review (SPR) 19-002: To approve the layout of the overall development plan.
- Conditional Use Permit (CUP) 19-002: To allow for development of drive-through facilities in the commercial side of the project.

#### ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED BY THE PROPOSED PROJECT

Based on the findings of a preliminary environmental assessment contained in the attached Initial Study, an environmental impact report (EIR) will be prepared to evaluate the project's potential impacts on the environment, identify measures to mitigate potentially significant impacts, and examine alternatives. The topics identified for further analysis in the EIR include the following:

• Aesthetics: Because the proposed project would be located in a fully urbanized area, the project will be evaluated in the EIR for whether it would conflict with applicable zoning and other regulations governing aesthetic character, including building height and bulk, design features, landscape elements, and consistency with the scale, massing and character of surrounding development. The EIR will determine whether the project would degrade the visual character and quality of the site and surroundings, by analyzing proposed building heights, bulk, coverage, setbacks, and screening, specifically along the project's interface with existing homes



to the north and east. Finally, because the project would include new sources of night lighting, such as security lighting on internal walkways, residential common areas, and building exteriors; accent lighting on residential and commercial buildings and in landscaped areas; lighting at the gated entry to the residential area; and potential lighted signs in commercial building drive-throughs, the EIR will analyze whether the type and placement of proposed lighting could create substantial light or glare that could adversely affect day or nighttime views.

- Air Quality: The project would generate air pollutants during both construction and operation. Construction of the project includes site clearance, excavation and grading, hauling of materials, and building construction, all of which would generate dust and equipment exhaust. In the long term, the proposed commercial and residential uses would generate an increase in vehicular travel, thus increasing tailpipe emissions, along with emissions resulting from on- and off-site energy use and regular maintenance activities. The EIR will quantify the project's construction and operation emissions and compare the project's emissions to the South Coast Air Quality Management District's (SCAQMD) regional and localized thresholds of significance. Further, the EIR will determine whether the project would expose sensitive receptors, such as those located in residential neighborhoods to the north and east, to substantial pollution concentrations.
- Greenhouse Gas Emissions: The project would generate temporary and long-term greenhouse gas (GHG) emissions from construction and operation activities, respectively. GHG emissions would primarily result from construction and material hauling equipment exhaust; increase in vehicle trips to and from the new residential and commercial buildings; use of consumer products and landscaping maintenance of the commercial and residential; and electricity and natural gas consumption in the new buildings. The EIR will quantify the project's direct and indirect GHG emissions and will examine the project's energy footprint with respect to applicable state and local regulatory and planning programs aimed at GHG reduction.
- Noise: Construction of the proposed project would temporarily increase noise and vibration levels on and in the vicinity of the project site. Operational noise would primarily result from stationary and mobile noise sources such as vehicle traffic that would increase roadway noise, noise from building mechanical equipment, possibly noise from outdoor speaker systems associated with proposed drive-thru businesses, movements of cars in parking areas, and outdoor recreation activities by people in their back yards and in the common outdoor spaces within the residential area. The nearest noise-sensitive land uses that could be impacted by construction noise include the adjacent residential properties to the north and east sides of the project site and the Northview High School campus to the southwest. The EIR will evaluate short-term and long-term noise and vibration impacts from the construction and operation of the project and will determine if the City's noise standards could be exceeded.
- Population and Housing: The project site is currently designated in the Covina General Plan Land Use Element as General Commercial, with a corresponding zoning classification of Commercial Highway (C-4). The proposed project would require a change in the General Plan land use designation and zoning classification for construction of the proposed 61 residential homes on a portion of the project site, which would result in unplanned population growth. The EIR will evaluate whether this unplanned population growth would conflict with adopted growth forecasts and if this growth would be substantial enough to result in impacts related to



accommodation of the population increase in this area (i.e., demand on public services, or utility service systems).

- Public Services: As stated above, the proposed project includes new residential development that would directly increase the City's population, on a site currently planned for commercial land uses. The associated increase in demand generated by the project for public school resources will require further evaluation to determine whether the additional students residing in the project site could result in a need to construct new educational facilities within the Covina Valley Unified School District, which could result in environmental impacts. Therefore, this issue will be further analyzed in the EIR. Further, the increase in the City's population associated with this project would also result in greater use of the City's existing park facilities. The City currently has a ratio of 1.26 acres of open space per 1,000 residents, which is significantly below the generally accepted, national guideline of 2.5 to 4.0 acres of parkland per 1,000 residents and below the City's General Plan target of 2 acres per 1,000 residents. The EIR will evaluate whether the project could contribute to any adverse environmental effects due to worsening the existing deficiency of public parkland.
- Transportation/Traffic: The proposed residential and commercial project would increase vehicle trips to and from the project site. The volume and distribution of this traffic will be determined through preparation of a detailed traffic impact study (TIS), which will be included in the EIR. This study will determine trip generation and circulation associated with the project, and project effects on the performance of the existing roadway network. The TIS will evaluate the traffic impacts of building all three commercial sites to accommodate fast food restaurant with/drive thru service, as a more conservative analysis that captures the higher trip generation characteristics of fast food with drive-thru service. The EIR will also determine if the new residential and commercial development would create hazards/disruptions at entrance and exit intersections. Specifically, the EIR will evaluate whether the turning movements at the residential site access point on Cypress Street would be safely accommodated without adverse impacts to traffic movements along Azusa Avenue, such as queuing effects.
- Utilities/Service Systems: The project would represent a substantial increase in water demand, wastewater generation, storm drainage, and energy and telecommunications usage as compared to the long-vacant project site. Specifically, the EIR will analyze whether water, wastewater, storm drain, electrical, natural gas, and telecommunications infrastructure is sufficient to meet the demands/generation of the proposed project's residential and commercial uses. If new, off-site infrastructure is required to address the increase in demand for these services, then the EIR will include analysis of the impacts associated with construction of this new infrastructure.

#### Other Required EIR Topics

In addition to the specific environmental issues noted above, the EIR will include sections to address the following topics, as required by the State CEQA Guidelines:

- Cumulative Impacts
- Growth Inducing Effects
- Significant Irreversible Environmental Changes
- Alternatives





FIGURE 1 Regional Location Map

Michael Baker



Project Location Map

# FIGURE 2

- 0

800

Fee: 400





Figure 3

Appendix A: Initial Study, Notice of Preparation, and Responses to NOP

Part 3: Responses to the Notice of Preparation



STATE OF CALIFORNIA Governor's Office of Planning and Research State Clearinghouse and Planning Unit



**Notice of Preparation** 

December 5, 2019

To: Reviewing Agencies

Re: 1000 North Azusa Avenue Mixed Use Development SCH# 2019120104

Attached for your review and comment is the Notice of Preparation (NOP) for the 1000 North Azusa Avenue Mixed Use Development draft Environmental Impact Report (EIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, <u>within 30 days of receipt of the NOP from</u> the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

Lisette Sanchez-Mendoza Covina, City of 125 East College Street Covina, CA 91723

with a copy to the State Clearinghouse in the Office of Planning and Research at <u>state.clearinghouse@opr.ca.gov</u>. Please refer to the SCH number noted above in all correspondence concerning this project on our website: https://ceqanet.opr.ca.gov/2019120104/2.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely,

Scott Morgan Director, State Clearinghouse

cc: Lead Agency

1400 TENTH STREET P.O. BOX 3044 SACRAMENTO, CALIFORNIA 95812-3044 TEL 1-916-445-0613 state.clearinghouse@opr.ca.gov www.opr.ca.gov



COUNTY OF LOS ANGELES FIRE DEPARTMENT

1320 NORTH EASTERN AVENUE LOS ANGELES, CALIFORNIA 90063-3294 (323) 881-2401 www.fire.lacounty.gov

"Proud Protectors of Life, Property, and the Environment"

BOARD OF SUPERVISORS

HILDA L. SOLIS FIRST DISTRICT

MARK RIDLEY-THOMAS SECOND DISTRICT

> SHEILA KUEHL THIRD DISTRICT

JANICE HAHN FOURTH DISTRICT

KATHRYN BARGER FIFTH DISTRICT

DARYL L. OSBY FIRE CHIEF FORESTER & FIRE WARDEN

January 7, 2020

Lisette Sanchez-Mendoza, Planner City of Covina Community Development Department 125 East College Street Covina, CA 91723

Dear Ms. Sanchez-Mendoza:

NOTICE OF PREPARATION DRAFT ENVIRONMENTAL IMPACT REPORT, "CYPRESS VILLAGE PROJECT," WOULD INCLUDE DEVELOPMENT OF A MIXTURE OF RETAIL SHOPS AND DRIVE THROUGH/FAST FOOD SERVICE BUSINESSES, AND THE DEVELOPMENT OF 61 SINGLE-FAMILY DETACHED HOMES, COVINA, FFER 2019007322

The Notice of Preparation Draft Environmental Impact Report has been reviewed by the Planning Division, Land Development Unit, Forestry Division, and Health Hazardous Materials Division of the County of Los Angeles Fire Department.

The following are their comments:

#### PLANNING DIVISION:

We will reserve our comments for the draft EIR analysis.

For any questions regarding this response, please contact Loretta Bagwell, Planning Analyst, at (323) 881-2404 or Loretta.Bagwell@fire.lacounty.gov.

#### LAND DEVELOPMENT UNIT:

The Land Development Unit is reviewing the proposed "MIXED USE" Commercial/Residential Project for access and water system requirements. The Land Development Unit comments are only preliminary requirements. Specific fire and life safety requirements will be

SERVING THE UNINCORPORATED AREAS OF LOS ANGELES COUNTY AND THE CITIES OF:

AGOURA HILLS ARTESIA AZUSA BALDWIN PARK BELL BELL BELL GARDENS BELLFLOWER BRADBURY CALABASAS CARSON CERRITOS CLAREMONT COMMERCE COVINA CUDAHY DIAMOND BAR DUARTE EL MONTE GARDENA GLENDORA HAWAIIAN GARDENS HAWTHORNE HERMOSA BEACH HIDDEN HILLS HUNTINGTON PARK INDUSTRY INGLEWOOD IRWINDALE LA CANADA-FLINTRIDGE LA HABRA LA MIRADA LA MIRADA LA PUENTE LAKEWOOD LANCASTER LAWNDALE LOMITA LYNWOOD MALIBU MAYWOOD NORWALK PALMDALE PALOS VERDES ESTATES

PARAMOUNT PICO RIVERA POMONA RANCHO PALOS VERDES ROLLING HILLS ROLLING HILLS ESTATES ROSEMEAD SAN DIMAS SANTA CLARITA SIGNAL HILL SOUTH EL MONTE SOUTH GATE TEMPLE CITY WALNUT WEST HOLLYWOOD WESTLAKE VILLAGE WHITTIER Lisette Sanchez-Mendoza, Planner January 7, 2020 Page 2

addressed during the review for building and fire plan check phases. There may be additional requirements during this time.

The development of this project must comply with all applicable code and ordinance requirements for construction, access, water mains, fire flows, and fire hydrants.

#### ACCESS REQUIREMENTS:

- 1. The proposed development will require multiple ingress/egress access for the circulation of traffic and emergency response issues.
- 2. All on-site Fire Department vehicular access roads shall be labeled as "Private Driveway and Fire Lane" on the site plan along with the widths clearly depicted on the plan. Labeling is necessary to assure the access availability for Fire Department use. The designation allows for appropriate signage prohibiting parking.
  - a. The Fire Apparatus Access Road shall be cross-hatch on the site plan with the width clearly noted on the plan.
- 3. Every building constructed shall be accessible to Fire Department apparatus by way of access roadways with an all-weather surface of not less than the prescribed width. The roadway shall be extended to within 150 feet of all portions of the exterior walls when measured by an unobstructed route around the exterior of the building.
- 4. Fire Apparatus Access Roads must be installed and maintained in a serviceable manner prior to and during the time of construction.
- 5. The edge of the Fire Apparatus Access Road shall be located a minimum of 5 feet from the building or any projections there from.
- 6. The Fire Apparatus Access Roads and designated fire lanes shall be measured from flow line to flow line.
- 7. The dimensions of the approved Fire Apparatus Access Roads shall be maintained as originally approved by the fire code official.
- 8. Provide a minimum unobstructed width of 28 feet, exclusive of shoulders and an unobstructed vertical clearance "clear to sky" Fire Department vehicular access to within 150 feet of all portions of the exterior walls of the first story of the building, as measured by an approved route around the exterior of the building when the height of the building above the lowest level of the Fire Department vehicular access road is more than 30 feet high, or the building is more than three stories. The access roadway shall be located a minimum of 15 feet and a maximum of 30 feet from the building and shall be positioned parallel to one entire side of the building. The side of the building on which the aerial Fire Apparatus Access Road is positioned shall be approved by the fire code official.

- 9. If the Fire Apparatus Access Road is separated by island, provide a minimum unobstructed width of 20 feet, exclusive of shoulders and an unobstructed vertical clearance "clear to sky" Fire Department vehicular access to within 150 feet of all portions of the exterior walls of the first story of the building, as measured by an approved route around the exterior of the building.
- 10. Dead-end Fire Apparatus Access Roads in excess of 150 feet in-length shall be provided with an approved Fire Department turnaround. Include the dimensions of the turnaround with the orientation of the turnaround shall be properly placed in the direction of travel of the access roadway.
- 11. Fire Department Access Roads shall be provided with a 32-foot centerline turning radius. Indicate the centerline, inside, and outside turning radii for each change in direction on the site plan.
- 12. Fire Apparatus Access Roads shall be designed and maintained to support the imposed load of fire apparatus weighing 75,000 lbs. and shall be surfaced so as to provide all-weather driving capabilities. Fire Apparatus Access Roads having a grade of 10 percent or greater shall have a paved or concrete surface.
- 13. Provide approved signs or other approved notices or markings that include the words "NO PARKING - FIRE LANE." Signs shall have a minimum dimension of 12 inches wide by 18 inches high and have red letters on a white reflective background. Signs shall be provided for Fire Apparatus Access Roads, to clearly indicate the entrance to such road, or prohibit the obstruction thereof and at intervals, as required by the Fire Inspector.
- 14. A minimum 5-foot wide approved firefighter access walkway leading from the Fire Department Access Road to all required openings in the building's exterior walls shall be provided for firefighting and rescue purposes. Clearly identify firefighter walkway access routes on the site plan. Indicate the slope and walking surface material. Clearly show the required width on the site plan.
- 15. Fire Apparatus Access Roads shall not be obstructed in any manner, including by the parking of vehicles, or the use of traffic calming devices, including but not limited to, speed bumps or speed humps. The minimum widths and clearances established in Fire Code Section 503.2.1 shall be maintained at all times.
- 16. Traffic Calming Devices, including but not limited to, speed bumps and speed humps, shall be prohibited unless approved by the fire code official.
- 17. Security barriers, visual screen barriers, or other obstructions shall not be installed on the roof of any building in such a manner as to obstruct firefighter access or egress in the event of fire or other emergency. Parapets shall not exceed 48 inches from the top of the parapet to the roof surface on more than two sides. Clearly indicate the height of all parapets in a section view.
Lisette Sanchez-Mendoza, Planner January 7, 2020 Page 4

- 18. Approved building address numbers, building numbers, or approved building identification shall be provided and maintained so as to be plainly visible and legible from the street fronting the property. The numbers shall contrast with their background, be Arabic numerals or alphabet letters, and be a minimum of 4 inches high with a minimum stroke width of 0.5 inch.
- 19. Multiple residential and commercial buildings having entrances to individual units not visible from the street or road shall have unit numbers displayed in groups for all units within each structure. Such numbers may be grouped on the wall of the structure or mounted on a post independent of the structure and shall be positioned to be plainly visible from the street or road as required by Fire Code 505.3 and in accordance with Fire Code 505.

#### WATER SYSTEM REQUIREMENTS:

- All fire hydrants shall measure 6"x 4"x 2-1/2" brass or bronze conforming to current AWWA standard C503 or approved equal and shall be installed in accordance with the County of Los Angeles Fire Code.
- The development may require fire flows up to 4,000 gallons per minute at 20 pounds per square inch residual pressure for up to a four-hour duration. Final fire flows will be based on the size of buildings, the installation of an automatic fire sprinkler system, and type(s) of construction used.
- 3. The fire hydrant spacing shall be every 300 feet for both the public and the on-site hydrants. The fire hydrants shall meet the following requirements:
  - a. No portion of lot frontage shall be more than 200 feet via vehicular access from a public fire hydrant.
  - b. No portion of a building shall exceed 400 feet via vehicular access from a properly spaced public fire hydrant.
  - c. Additional hydrants will be required if hydrant spacing exceeds specified distances.
- 4. All required public fire hydrants shall be installed and tested prior to beginning construction.
- All private on-site fire hydrants shall be installed, tested, and approved prior to building occupancy.
  - a. Plans showing underground piping for private on-site fire hydrants shall be submitted to the Sprinkler Plan Check Unit for review and approval prior to installation.

Lisette Sanchez-Mendoza, Planner January 7, 2020 Page 5

6. An approved automatic fire sprinkler system is required for the proposed buildings within this development. Submit design plans to the Fire Department Sprinkler Plan Check Unit for review and approval prior to installation. Additional Department requirements will be determined by Fire Prevention Engineering during the Building Plan Check.

For any questions regarding the report, please contact Inspector Claudia Soiza at (323) 890-4243 or <u>Claudia.soiza@fire.lacounty.gov.</u>

### FORESTRY DIVISION - OTHER ENVIRONMENTAL CONCERNS:

The statutory responsibilities of the County of Los Angeles Fire Department's Forestry Division include erosion control, watershed management, rare and endangered species, vegetation, fuel modification for Very High Fire Hazard Severity Zones, archeological and cultural resources, and the County Oak Tree Ordinance. Potential impacts in these areas should be addressed.

Under the Los Angeles County Oak tree Ordinance, a permit is required to cut, destroy, remove, relocate, inflict damage or encroach into the protected zone of any tree of the Oak genus which is 25 inches or more in circumference (eight inches in diameter), as measured 4 1/2 feet above mean natural grade.

If Oak trees are known to exist in the proposed project area further field studies should be conducted to determine the presence of this species on the project site. The County of Los Angeles Fire Department's Forestry Division has no further comments regarding this project.

For any questions regarding this response, please contact Forestry Assistant, Joseph Brunet at (818) 890-5719.

#### HEALTH HAZARDOUS MATERIALS DIVISION:

The Health Hazardous Materials Division (HHMD) of the Los Angeles County Fire Department advises that a leaking underground petroleum storage tank (UST) case was closed at the project site in 1997 either by the Los Angeles County Department of Public Works – Environmental Programs Division and/or by the Cal-EPA Los Angeles Regional Water Quality Control Board. HHMD recommends that the project applicant review and evaluate UST closure documents pertaining to the project site. HHMD has no additional comments at this time.

Please contact HHMD senior typist-clerk, Perla Garcia at (323) 890-4035 or <u>Perla.garcia@fire.lacounty.gov</u> if you have any questions.

If you have any additional questions, please contact this office at (323) 890-4330.

DEPARTMENT OF TRANSPORTATION DISTRICT 7- OFFICE OF REGIONAL PLANNING 100 S. MAIN STREET, SUITE 100 LOS ANGELES, CA 90012 PHONE (213) 897-0067 FAX (213) 897-1337 TTY 711 www.dot.ca.gov



Making Conservation a California Way of Life.

Governor's Office of Planning & Research

January 14, 2020

JAN 14 2020

#### STATE CLEARINGHOUSE

Lisette Sanchez-Mendoza Covina, City of 125 East College Street Covina, CA 91723

> RE: 1000 North Azusa Avenue Mixed Use Development – Notice of Preparation (NOP) SCH# 2019120104 GTS# 07-LA-2019-02948 Vic. LA-210/PM 39.645 & LA-10/PM 36.571

Dear Lisette Sanchez-Mendoza:

Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the above referenced project. The proposed project a retail shop and three drive through/fast food service businesses on the western 2.92 acres along the Azusa Avenue frontage and 61 single-family detached homes on the eastern and southern 4.99 acres. The retail component of the proposed project would consist of four buildings, totaling 14,000 square feet of floor area, arranged in three distinct building sites. Two sites would contain fast food restaurants with drive-thru service, while the third would contain a fast food restaurant and general retail space. Vehicular access to these commercial uses would be from three drive approaches along the Azusa Avenue frontage, and from an existing driveway along Cypress Street that serves existing fast food businesses on adjacent properties. A total of 158 surface parking spaces would be provided within the three commercial sites. The residential component would consist of 61 single family homes with 122 attached garage parking spaces, 12 driveway spaces, 23 "head-in" spaces along internal driveways, and 7 parallel spaces along the entrance drive. Vehicular access to the 61 homes would be from Cypress Avenue, via a private, gated driveway located between Los Angeles County Fire Station 152 and an existing restaurant site.

The nearest State facility to the proposed project is I-210 and I-10. After reviewing the NOP, Caltrans has the following comments:

Caltrans acknowledges and supports development that ultimately helps California to meet its climate, transportation, and livability goals. However, due to the amount of parking, number of drive throughs, and vehicle-centric site plan, the 1000 North Azusa Avenue Mixed Use Development Project is designed in a way that potentially induces demand for additional vehicle trips. For California to achieve its goals, this demand should be addressed with appropriate design and management principles. Caltrans recommends the following:

• Reducing the amount of parking whenever possible, as research on parking suggests that abundant car parking enables and encourages driving. Research looking at the

Lisette Sanchez-Mendoza January 14, 2020 Page 2 of 2

relationship between land-use, parking, and transportation indicates that the amount of car parking supplied can undermine a project's ability to encourage public transit and active modes of transportation. For any project to better promote public transit and reduce vehicle miles traveled (VMT), we recommend the implementation of Transportation Demand Management (TDM) strategies as an alternative to building an unnecessary amount of parking.

- If surface parking must be built, it is recommended that it not face the street directly. By shifting the parking to the rear or interior of the project site, a more inviting streetscape can be created. A more active frontage, against the sidewalk, can encourage both recreational and transportation walking. These urban design principles can affect mode choice and help the State of California achieve its goals to improve health and reduce Green House Gas (GHG) emissions.
- While the project will contain multiple uses when completed, the lack of connectivity between them means that the goal of "mixing uses" is not achieved. The commercial and residential portions of the project are separated by a six-foot-tall wrought iron fence. It is recommended that a pedestrian pathway be included to connect the residential homes to the goods and services located on the commercial portion of the project site.

When the traffic study is conducted, please include the Azusa Avenue on- and off-ramps to both the I-210 and I-10. The study should include an analysis of potential impacts to existing State transportation facilities, if any. Additionally, Caltrans is replacing Level of Service (LOS) with Vehicle Miles Traveled (VMT) when evaluating traffic impacts. By July 1, 2020, VMT will be the standard transportation metric for land use projects and new Transportation Impact Study guidelines will be used to analyze and address transportation impacts on the State Transportation System. For any future project we encourage the Lead Agency to integrate transportation and land use in a way that reduces VMT and Greenhouse Gas (GHG) emissions by facilitating the provision of more proximate goods and services to shorten trip lengths and achieve a high level of non-motorized travel and transit use. As required by SB 743, Caltrans recommends the Lead Agency develop a verifiable performance-based VMT criteria.

Any transportation of heavy construction equipment and/or materials which requires use of oversized-transport vehicles on State highways will need a Caltrans transportation permit. We recommend large size truck trips be limited to off-peak commute periods.

If you have any questions, please contact project coordinator Anthony Higgins, at anthony.higgins@dot.ca.gov and refer to GTS# 07-LA-2019-02948.

Sincerely

MIYA EDMONSON IGR/CEQA Branch Chief cc: Scott Morgan, State Clearinghouse

NATIVE AMERICAN HERITAGE COMMISSION Cultural and Environmental Department 1550 Harbor Blvd., Suite 100 West Sacramento, CA 95691 Phone: (916) 373-3710 Email: <u>nahc@nahc.ca.gov</u> Website: <u>http://www.nahc.ca.gov</u>

December 5, 2019



Governor's Office of Planning & Research

#### DEC 06 2019

#### STATE CLEARINGHOUSE

Lisette Sanchez-Mendoza Covina, City of 125 East College Street Covina, CA 91723

RE: SCH# 2019120104, 1000 North Azusa Avenue Mixed Use Development Project, Los Angeles County

Dear Ms. Sanchez-Mendoza:

The Native American Heritage Commission (NAHC) has received the Notice of Preparation (NOP), Draft Environmental Impact Report (DEIR) or Early Consultation for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code §21000 et seq.), specifically Public Resources Code §21084.1, states that a project that may cause a substantial adverse change in the significance of a historical resource, is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit.14, §15064.5 (b) (CEQA Guidelines §15064.5 (b)). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an Environmental Impact Report (EIR) shall be prepared. (Pub. Resources Code §21080 (d); Cal. Code Regs., tit. 14, § 5064 subd.(a)(1) (CEQA Guidelines §15064 (a)(1)). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource, a lead agency will need to determine whether there are historical resources within the area of potential effect (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a separate category of cultural resources, "tribal cultural resources" (Pub. Resources Code §21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment. (Pub. Resources Code §21084.2). Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code §21084.3 (a)). **AB 52 applies to any project for which a notice of preparation, a notice of negative declaration, or a mitigated negative declaration is filed on or after July 1, 2015.** If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). **Both SB 18 and AB 52 have tribal consultation requirements**. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101, 36 C.F.R. §800 et seq.) may also apply.

The NAHC recommends consultation with California Native American tribes that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of <u>portions</u> of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments.

Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws.

#### <u>AB 52</u>

- AB 52 has added to CEQA the additional requirements listed below, along with many other requirements:
- Fourteen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within
  fourteen (14) days of determining that an application for a project is complete or of a decision by a public agency
  to undertake a project, a lead agency shall provide formal notification to a designated contact of, or tribal
  representative of, traditionally and culturally affiliated California Native American tribes that have requested
  notice, to be accomplished by at least one written notice that includes:
  - **a.** A brief description of the project.
  - **b.** The lead agency contact information.
  - **c.** Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code §21080.3.1 (d)).
  - **d.** A "California Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code §21073).
- 2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a <u>Negative Declaration</u>, <u>Mitigated Negative Declaration</u>, or <u>Environmental Impact Report</u>: A lead agency shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code §21080.3.1, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or Environmental Impact Report. (Pub. Resources Code §21080.3.1(b)).
  - **a.** For purposes of AB 52, "consultation shall have the same meaning as provided in Gov. Code §65352.4 (SB 18). (Pub. Resources Code §21080.3.1 (b)).
- **3.** <u>Mandatory Topics of Consultation If Requested by a Tribe</u>: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:
  - **a.** Alternatives to the project.
  - **b.** Recommended mitigation measures.
  - c. Significant effects. (Pub. Resources Code §21080.3.2 (a)).
- 4. <u>Discretionary Topics of Consultation</u>: The following topics are discretionary topics of consultation:
  - **a.** Type of environmental review necessary.
  - **b.** Significance of the tribal cultural resources.
  - **c.** Significance of the project's impacts on tribal cultural resources.
  - **d.** If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code §21080.3.2 (a)).
- 5. <u>Confidentiality of Information Submitted by a Tribe During the Environmental Review Process</u>: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Government Code §6254 (r) and §6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code §21082.3 (c)(1)).
- 6. <u>Discussion of Impacts to Tribal Cultural Resources in the Environmental Document:</u> If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:
  - **a.** Whether the proposed project has a significant impact on an identified tribal cultural resource.
  - **b.** Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code §21082.3, subdivision (a), avoid or substantially lessen the impact on the identified tribal cultural resource. (Pub. Resources Code §21082.3 (b)).

- 7. <u>Conclusion of Consultation</u>: Consultation with a tribe shall be considered concluded when either of the following occurs:
  - **a.** The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or
  - **b.** A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code §21080.3.2 (b)).
- 8. <u>Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document:</u> Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code §21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code §21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code §21082.3 (a)).
- 9. <u>Required Consideration of Feasible Mitigation</u>: If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public Resources Code §21084.3 (b). (Pub. Resources Code §21082.3 (e)).
- **10.** Examples of Mitigation Measures That, If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:
  - **a.** Avoidance and preservation of the resources in place, including, but not limited to:
    - i. Planning and construction to avoid the resources and protect the cultural and natural context.
      - **ii.** Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
  - **b.** Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
    - i. Protecting the cultural character and integrity of the resource.
    - ii. Protecting the traditional use of the resource.
    - iii. Protecting the confidentiality of the resource.
  - **c.** Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
  - d. Protecting the resource. (Pub. Resource Code §21084.3 (b)).
  - e. Please note that a federally recognized California Native American tribe or a non-federally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code §815.3 (c)).
  - **f.** Please note that it is the policy of the state that Native American remains and associated grave artifacts shall be repatriated. (Pub. Resources Code §5097.991).
- 11. <u>Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource</u>: An Environmental Impact Report may not be certified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
  - **a.** The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code §21080.3.1 and §21080.3.2 and concluded pursuant to Public Resources Code §21080.3.2.
  - **b.** The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
  - c. The lead agency provided notice of the project to the tribe in compliance with Public Resources Code §21080.3.1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code §21082.3 (d)).

The NAHC's PowerPoint presentation titled, "Tribal Consultation Under AB 52: Requirements and Best Practices" may be found online at: <u>http://nahc.ca.gov/wp-content/uploads/2015/10/AB52TribalConsultation\_CalEPAPDF.pdf</u>

#### <u>SB 18</u>

SB 18 applies to local governments and requires local governments to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code §65352.3). Local governments should consult the Governor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at: https://www.opr.ca.gov/docs/09\_14\_05\_Updated\_Guidelines\_922.pdf

Some of SB 18's provisions include:

- <u>Tribal Consultation</u>: If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a "Tribal Consultation List." If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has 90 days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code §65352.3 (a)(2)).
- 2. <u>No Statutory Time Limit on SB 18 Tribal Consultation</u>. There is no statutory time limit on SB 18 tribal consultation.
- **3.** <u>Confidentiality</u>: Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code §65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code §5097.9 and §5097.993 that are within the city's or county's jurisdiction. (Gov. Code §65352.3 (b)).
- 4. <u>Conclusion of SB 18 Tribal Consultation</u>: Consultation should be concluded at the point in which:
  - **a.** The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
  - b. Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor's Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precludes agencies from initiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and "Sacred Lands File" searches from the NAHC. The request forms can be found online at: http://nahc.ca.gov/resources/forms/

#### NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, mitigation of project-related impacts to tribal cultural resources, the NAHC recommends the following actions:

- Contact the appropriate regional California Historical Research Information System (CHRIS) Center (http://ohp.parks.ca.gov/?page\_id=1068) for an archaeological records search. The records search will determine:
  - **a.** If part or all of the APE has been previously surveyed for cultural resources.
  - b. If any known cultural resources have already been recorded on or adjacent to the APE.
  - **c.** If the probability is low, moderate, or high that cultural resources are located in the APE.
  - d. If a survey is required to determine whether previously unrecorded cultural resources are present.
- 2. If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
  - **a.** The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public disclosure.
  - **b.** The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.

- **3.** Contact the NAHC for:
  - **a.** A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project's APE.
  - **b.** A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.
- 4. Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
  - a. Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, §15064.5(f) (CEQA Guidelines §15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
  - **b.** Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
  - c. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code §7050.5, Public Resources Code §5097.98, and Cal. Code Regs., tit. 14, §15064.5, subdivisions (d) and (e) (CEQA Guidelines §15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

If you have any questions or need additional information, please contact me at my email address:

Andrew.Green@nahc.ca.gov.

Sincerely,

andrew Green

Andrew Green Staff Services Analyst

cc: State Clearinghouse



SENT VIA USPS AND E-MAIL:

February 26, 2020

nfong@covinaca.gov Nancy Fong, AICP, Consultant City of Covina, Community Development Department 125 E. College Street Covina, CA 91723

#### <u>Notice of Preparation of a Draft Environmental Impact Report for the Proposed</u> <u>Cypress Village Mixed Use Development Project</u>

South Coast Air Quality Management District (South Coast AQMD) staff appreciates the opportunity to comment on the above-mentioned document. South Coast AQMD staff's comments are recommendations regarding the analysis of potential air quality impacts from the Proposed Project that should be included in the Draft Environmental Impact Report (EIR). Please send South Coast AQMD a copy of the Draft EIR upon its completion and public release. Note that copies of the Draft EIR that are submitted to the State Clearinghouse are not forwarded to South Coast AQMD. Please forward a copy of the Draft EIR directly to South Coast AQMD at the address shown in the letterhead. In addition, please send with the Draft EIR all appendices or technical documents related to the air quality, health risk, and greenhouse gas analyses and electronic versions of all air quality modeling input and output files (not PDF files). Without all files and supporting documentation, South Coast AQMD staff will be unable to complete our review of the air quality analyses in a timely manner. Any delays in providing all supporting documentation will require additional time for review beyond the end of the comment period.

#### Air Quality Analysis

South Coast AQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. South Coast AQMD recommends that the Lead Agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from South Coast AQMD's Subscription Services Department by calling (909) 396-3720. More guidance developed since this Handbook is also available on South Coast AQMD's website at: <a href="http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993)">http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993)</a>. South Coast AQMD staff also recommends that the Lead Agency use the CalEEMod land use emissions software. This software has recently been updated to incorporate up-to-date state and locally approved emission factors and methodologies for estimating pollutant emissions from typical land use development. CalEEMod is the only software model maintained by the California Air Pollution Control Officers Association (CAPCOA) and replaces the now outdated URBEMIS. This model is available free of charge at: <a href="http://www.caleemod.com">www.caleemod.com</a>.

South Coast AQMD has also developed both regional and localized significance thresholds. South Coast AQMD staff requests that the Lead Agency quantify criteria pollutant emissions and compare the results

<sup>&</sup>lt;sup>1</sup> Pursuant to the CEQA Guidelines Section 15174, the information contained in an EIR shall include summarized technical data, maps, plot plans, diagrams, and similar relevant information sufficient to permit full assessment of significant environmental impacts by reviewing agencies and members of the public. Placement of highly technical and specialized analysis and data in the body of an EIR should be avoided through inclusion of supporting information and analyses as appendices to the main body of the EIR. Appendices to the EIR may be prepared in volumes separate from the basic EIR document, but shall be readily available for public examination and shall be submitted to all clearinghouses which assist in public review.

to South Coast AQMD's CEQA regional pollutant emissions significance thresholds to determine air quality impacts. South Coast AQMD's CEQA regional pollutant emissions significance thresholds can be found here at: <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf</u>. In addition to analyzing regional air quality impacts, South Coast AQMD staff recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LSTs can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts when preparing a CEQA document. Therefore, when preparing the air quality analysis for the Proposed Project, it is recommended that the Lead Agency perform a localized analysis by either using the LSTs developed by South Coast AQMD staff or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at: <u>http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/localized-significance-thresholds</u>.

The Lead Agency should identify any potential adverse air quality impacts that could occur from all phases of the Proposed Project and all air pollutant sources related to the Proposed Project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, such as sources that generate or attract vehicular trips, should be included in the analysis.

In the event that the Proposed Project generates or attracts vehicular trips, especially heavy-duty dieselfueled vehicles, it is recommended that the Lead Agency perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment (*"Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis"*) can be found at: <u>http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mobile-sourcetoxics-analysis</u>. An analysis of all toxic air contaminant impacts due to the use of equipment potentially generating such air pollutants should also be included.

In addition, guidance on siting incompatible land uses can be found in the California Air Resources Board's *Air Quality and Land Use Handbook: A Community Health Perspective*, which can be found at: <u>http://www.arb.ca.gov/ch/handbook.pdf</u>. CARB's Land Use Handbook is a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process. Guidance<sup>2</sup> on strategies to reduce air pollution exposure near high-volume roadways can be found at: <u>https://www.arb.ca.gov/ch/rd\_technical\_advisory\_final.PDF</u>.

#### **Mitigation Measures**

In the event that the Proposed Project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize these impacts. Pursuant to CEQA Guidelines Section 15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed. Several resources are available to assist the Lead Agency with identifying potential mitigation measures for the Proposed Project, including:

<sup>&</sup>lt;sup>2</sup> In April 2017, CARB published a technical advisory, *Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways: Technical Advisory*, to supplement CARB's Air Quality and Land Use Handbook: A Community Health Perspective. This technical advisory is intended to provide information on strategies to reduce exposures to traffic emissions near high-volume roadways to assist land use planning and decision-making in order to protect public health and promote equity and environmental justice. The technical advisory is available at: <a href="https://www.arb.ca.gov/ch/landuse.htm">https://www.arb.ca.gov/ch/landuse.htm</a>.

- Chapter 11 "Mitigating the Impact of a Project" of South Coast AQMD'S *CEQA Air Quality Handbook* South Coast AQMD's CEQA web pages available here: <u>http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mitigation-measures-and-control-efficiencies</u>
- South Coast AQMD's Rule 403 Fugitive Dust, and the Implementation Handbook for controlling construction-related emissions and Rule 1403 Asbestos Emissions from Demolition/Renovation Activities
- South Coast AQMD's Mitigation Monitoring and Reporting Plan (MMRP) for the 2016 Air Quality Management Plan (2016 AQMP) available here (starting on page 86): <u>http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2017/2017-mar3-035.pdf</u>
- CAPCOA's *Quantifying Greenhouse Gas Mitigation Measures* available here: <u>http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf</u>

#### **Alternatives**

In the event that the Proposed Project generates significant adverse air quality impacts, CEQA requires the consideration and discussion of alternatives to the project or its location which are capable of avoiding or substantially lessening any of the significant effects of the project. The discussion of a reasonable range of potentially feasible alternatives, including a "no project" alternative, is intended to foster informed decision-making and public participation. Pursuant to CEQA Guidelines Section 15126.6(d), the Draft EIR shall include sufficient information about each alternative to allow meaningful evaluation, analysis, and comparison with the Proposed Project.

#### <u>Permits</u>

If implementation of the Proposed Project requires a permit from South Coast AQMD, South Coast AQMD should be identified as a Responsible Agency for the Proposed Project in the EIR. For more information on permits, please visit South Coast AQMD's webpage at: <u>http://www.aqmd.gov/home/permits</u>. Questions on permits can be directed to South Coast AQMD's Engineering and Permitting staff at (909) 396-3385.

#### **Data Sources**

South Coast AQMD rules and relevant air quality reports and data are available by calling South Coast AQMD's Public Information Center at (909) 396-2001. Much of the information available through the Public Information Center is also available at South Coast AQMD's webpage at: <u>http://www.aqmd.gov</u>.

South Coast AQMD staff is available to work with the Lead Agency to ensure that project's air quality and health risk impacts are accurately evaluated and mitigated where feasible. If you have any questions regarding this letter, please contact me at <u>lsun@aqmd.gov</u>.

Sincerely,

Lijin Sun

Lijin Sun, J.D. Program Supervisor, CEQA IGR Planning, Rule Development & Area Sources

LS <u>LAC200220-01</u> Control Number

# **APPENDIX B**

# **Covina Village Detailed Report**

### Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.3. Construction Emissions by Year, Mitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
  - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2024) Unmitigated
  - 3.2. Demolition (2024) Mitigated

- 3.3. Grading (2024) Unmitigated
- 3.4. Grading (2024) Mitigated
- 3.5. Building Construction (2024) Unmitigated
- 3.6. Building Construction (2024) Mitigated
- 3.7. Building Construction (2025) Unmitigated
- 3.8. Building Construction (2025) Mitigated
- 3.9. Building Construction (2025) Unmitigated
- 3.10. Building Construction (2025) Mitigated
- 3.11. Building Construction (2025) Unmitigated
- 3.12. Building Construction (2025) Mitigated
- 3.13. Building Construction (2025) Unmitigated
- 3.14. Building Construction (2025) Mitigated
- 3.15. Building Construction (2026) Unmitigated
- 3.16. Building Construction (2026) Mitigated
- 3.17. Building Construction (2026) Unmitigated
- 3.18. Building Construction (2026) Mitigated
- 3.19. Paving (2024) Unmitigated

### 3.20. Paving (2024) - Mitigated

- 3.21. Architectural Coating (2025) Unmitigated
- 3.22. Architectural Coating (2025) Mitigated
- 3.23. Architectural Coating (2025) Unmitigated
- 3.24. Architectural Coating (2025) Mitigated
- 3.25. Architectural Coating (2025) Unmitigated
- 3.26. Architectural Coating (2025) Mitigated
- 3.27. Architectural Coating (2026) Unmitigated
- 3.28. Architectural Coating (2026) Mitigated
- 3.29. Architectural Coating (2026) Unmitigated
- 3.30. Architectural Coating (2026) Mitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
    - 4.1.2. Mitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated

- 4.2.2. Electricity Emissions By Land Use Mitigated
- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
  - 4.3.2. Unmitigated
  - 4.3.1. Mitigated
- 4.4. Water Emissions by Land Use
  - 4.4.2. Unmitigated
  - 4.4.1. Mitigated
- 4.5. Waste Emissions by Land Use
  - 4.5.2. Unmitigated
  - 4.5.1. Mitigated
- 4.6. Refrigerant Emissions by Land Use
  - 4.6.1. Unmitigated
  - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
  - 4.7.1. Unmitigated

#### 4.7.2. Mitigated

- 4.8. Stationary Emissions By Equipment Type
  - 4.8.1. Unmitigated
  - 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
  - 4.9.1. Unmitigated
  - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
  - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
  - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
  - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
  - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
  - 5.1. Construction Schedule
  - 5.2. Off-Road Equipment

- 5.2.1. Unmitigated
- 5.2.2. Mitigated
- 5.3. Construction Vehicles
  - 5.3.1. Unmitigated
  - 5.3.2. Mitigated
- 5.4. Vehicles
  - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
  - 5.6.1. Construction Earthmoving Activities
  - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
  - 5.9.2. Mitigated
- 5.10. Operational Area Sources

### 5.10.1. Hearths

### 5.10.1.1. Unmitigated

### 5.10.1.2. Mitigated

### 5.10.2. Architectural Coatings

- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
  - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
  - 5.12.1. Unmitigated
  - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
  - 5.13.1. Unmitigated
  - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
  - 5.14.1. Unmitigated

5.14.2. Mitigated

- 5.15. Operational Off-Road Equipment
  - 5.15.1. Unmitigated

5.15.2. Mitigated

- 5.16. Stationary Sources
  - 5.16.1. Emergency Generators and Fire Pumps
  - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
  - 5.18.1. Land Use Change
    - 5.18.1.1. Unmitigated
    - 5.18.1.2. Mitigated
  - 5.18.1. Biomass Cover Type
    - 5.18.1.1. Unmitigated
    - 5.18.1.2. Mitigated
  - 5.18.2. Sequestration
    - 5.18.2.1. Unmitigated

5.18.2.2. Mitigated

- 6. Climate Risk Detailed Report
  - 6.1. Climate Risk Summary
  - 6.2. Initial Climate Risk Scores
  - 6.3. Adjusted Climate Risk Scores
  - 6.4. Climate Risk Reduction Measures

### 7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                   |
|-----------------------------|-----------------------------------------|
| Project Name                | Covina Village                          |
| Construction Start Date     | 5/1/2024                                |
| Operational Year            | 2026                                    |
| Lead Agency                 |                                         |
| Land Use Scale              | Project/site                            |
| Analysis Level for Defaults | County                                  |
| Windspeed (m/s)             | 1.80                                    |
| Precipitation (days)        | 22.4                                    |
| Location                    | 1000 N Azusa Ave, Covina, CA 91722, USA |
| County                      | Los Angeles-South Coast                 |
| City                        | Covina                                  |
| Air District                | South Coast AQMD                        |
| Air Basin                   | South Coast                             |
| TAZ                         | 5057                                    |
| EDFZ                        | 7                                       |
| Electric Utility            | Southern California Edison              |
| Gas Utility                 | Southern California Gas                 |
| App Version                 | 2022.1.1.13                             |

# 1.2. Land Use Types

| Land Use SubtypeSizeUnitLot AcreageBuilding Area (sq ft)Landscape Area (sq<br>ft)Special LandscapePopulationDescription |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------------------------------|--|

| Apartments Mid Rise                        | 97.0 | Dwelling Unit | 3.72 | 93,120 | 52,512 | — | 287 | — |
|--------------------------------------------|------|---------------|------|--------|--------|---|-----|---|
| Fast Food<br>Restaurant with<br>Drive Thru | 3.50 | 1000sqft      | 0.79 | 3,500  | 0.00   | _ | _   | _ |
| Automobile Care<br>Center                  | 3.60 | 1000sqft      | 1.34 | 3,596  | 0.00   | _ | _   | _ |
| Fast Food<br>Restaurant with<br>Drive Thru | 0.95 | 1000sqft      | 0.68 | 950    | 0.00   |   | _   | _ |
| Parking Lot                                | 163  | Space         | 1.47 | 0.00   | 0.00   |   | —   | — |

### 1.3. User-Selected Emission Reduction Measures by Emissions Sector

| Sector       | #       | Measure Title                                                                  |
|--------------|---------|--------------------------------------------------------------------------------|
| Construction | C-10-A  | Water Exposed Surfaces                                                         |
| Construction | С-10-В  | Water Active Demolition Sites                                                  |
| Construction | C-11    | Limit Vehicle Speeds on Unpaved Roads                                          |
| Energy       | E-2     | Require Energy Efficient Appliances                                            |
| Water        | W-4     | Require Low-Flow Water Fixtures                                                |
| Water        | W-5     | Design Water-Efficient Landscapes                                              |
| Waste        | S-1/S-2 | Implement Waste Reduction Plan                                                 |
| Area Sources | LL-1    | Replace Gas Powered Landscape Equipment with Zero-Emission Landscape Equipment |

# 2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

| n/Mit. TOG ROO | G NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------------|-------|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
|----------------|-------|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|

| Daily,<br>Summer<br>(Max) | _    | _    |      |      |         |      |      |      |      | _    |      |   |       | —     |      |      |      |       |
|---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------|
| Unmit.                    | 3.29 | 5.71 | 26.3 | 23.5 | 0.04    | 1.07 | 7.34 | 8.18 | 0.98 | 3.49 | 4.26 | — | 4,408 | 4,408 | 0.21 | 0.16 | 4.70 | 4,463 |
| Mit.                      | 3.29 | 5.71 | 26.3 | 23.5 | 0.04    | 1.07 | 3.02 | 3.86 | 0.98 | 1.40 | 2.17 | _ | 4,408 | 4,408 | 0.21 | 0.16 | 4.70 | 4,463 |
| %<br>Reduced              | —    | _    | —    | _    | _       | _    | 59%  | 53%  |      | 60%  | 49%  | — |       |       | —    | _    | _    |       |
| Daily,<br>Winter<br>(Max) |      |      |      |      |         |      |      |      | _    |      |      |   |       |       |      |      |      |       |
| Unmit.                    | 1.83 | 6.23 | 12.1 | 18.0 | 0.03    | 0.50 | 1.05 | 1.56 | 0.46 | 0.25 | 0.71 | — | 3,750 | 3,750 | 0.16 | 0.11 | 0.13 | 3,786 |
| Mit.                      | 1.83 | 6.23 | 12.1 | 18.0 | 0.03    | 0.50 | 1.05 | 1.56 | 0.46 | 0.25 | 0.71 | — | 3,750 | 3,750 | 0.16 | 0.11 | 0.13 | 3,786 |
| %<br>Reduced              | _    | _    | _    | _    | —       | _    | _    | _    |      | _    | —    | — |       | _     | —    | _    | —    |       |
| Average<br>Daily<br>(Max) |      |      | _    | _    | _       |      |      |      |      |      |      |   |       |       | -    | _    | _    | _     |
| Unmit.                    | 0.95 | 1.81 | 6.16 | 9.82 | 0.01    | 0.24 | 0.82 | 1.02 | 0.22 | 0.30 | 0.47 | _ | 2,048 | 2,048 | 0.09 | 0.06 | 1.14 | 2,068 |
| Mit.                      | 0.95 | 1.81 | 6.16 | 9.82 | 0.01    | 0.24 | 0.59 | 0.82 | 0.22 | 0.14 | 0.36 | _ | 2,048 | 2,048 | 0.09 | 0.06 | 1.14 | 2,068 |
| %<br>Reduced              | —    | —    | _    | _    |         | _    | 29%  | 19%  |      | 52%  | 25%  | — |       | —     | -    |      |      |       |
| Annual<br>(Max)           | _    | _    | _    | _    | _       |      | _    |      |      |      | _    | — |       | _     | —    | _    | _    |       |
| Unmit.                    | 0.17 | 0.33 | 1.13 | 1.79 | < 0.005 | 0.04 | 0.15 | 0.19 | 0.04 | 0.05 | 0.09 | — | 339   | 339   | 0.01 | 0.01 | 0.19 | 342   |
| Mit.                      | 0.17 | 0.33 | 1.13 | 1.79 | < 0.005 | 0.04 | 0.11 | 0.15 | 0.04 | 0.03 | 0.07 | _ | 339   | 339   | 0.01 | 0.01 | 0.19 | 342   |
| %<br>Reduced              |      | —    | —    | —    | —       | —    | 29%  | 19%  |      | 52%  | 25%  | — |       | —     | —    | —    | —    |       |
|                           |      |      |      |      |         |      |      |      |      |      |      |   |       |       |      |      |      |       |

### 2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

PM2.5E PM2.5D PM2.5T BCO2 PM10T NBCO2 CO2T CH4 N20 TOG ROG NOx CO SO2 PM10E PM10D CO2e R Year

| Daily -<br>Summer<br>(Max) |      | _    | —    |      |         |      |      | _    | _    | —    | —    |   | —     | —     |      | —       | —    | _     |
|----------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------|
| 2024                       | 3.29 | 2.72 | 26.3 | 23.5 | 0.04    | 1.07 | 7.34 | 8.18 | 0.98 | 3.49 | 4.26 | — | 4,408 | 4,408 | 0.21 | 0.16    | 2.49 | 4,463 |
| 2025                       | 1.72 | 5.71 | 11.2 | 18.3 | 0.03    | 0.44 | 1.05 | 1.49 | 0.40 | 0.25 | 0.65 | — | 3,776 | 3,776 | 0.16 | 0.11    | 4.70 | 3,816 |
| 2026                       | 1.61 | 5.69 | 10.5 | 17.9 | 0.03    | 0.38 | 1.05 | 1.44 | 0.35 | 0.25 | 0.60 | — | 3,749 | 3,749 | 0.15 | 0.11    | 4.32 | 3,789 |
| Daily -<br>Winter<br>(Max) |      | _    | _    |      |         |      |      | _    | _    |      |      |   |       |       |      |         |      | _     |
| 2024                       | 1.83 | 1.54 | 12.1 | 18.0 | 0.03    | 0.50 | 1.05 | 1.56 | 0.46 | 0.25 | 0.71 | — | 3,750 | 3,750 | 0.16 | 0.11    | 0.13 | 3,786 |
| 2025                       | 1.72 | 6.23 | 11.2 | 17.5 | 0.03    | 0.44 | 1.05 | 1.49 | 0.40 | 0.25 | 0.65 | — | 3,724 | 3,724 | 0.16 | 0.11    | 0.12 | 3,760 |
| 2026                       | 1.61 | 5.94 | 10.6 | 17.2 | 0.03    | 0.38 | 1.05 | 1.44 | 0.35 | 0.25 | 0.60 | _ | 3,698 | 3,698 | 0.15 | 0.11    | 0.11 | 3,733 |
| Average<br>Daily           | _    | —    | -    | _    | _       | _    | _    | _    | —    | _    | _    | _ | _     | _     | _    | _       | _    |       |
| 2024                       | 0.58 | 0.50 | 4.40 | 4.97 | 0.01    | 0.19 | 0.82 | 1.02 | 0.18 | 0.30 | 0.47 | _ | 897   | 897   | 0.04 | 0.02    | 0.27 | 905   |
| 2025                       | 0.95 | 1.81 | 6.16 | 9.82 | 0.01    | 0.24 | 0.59 | 0.82 | 0.22 | 0.14 | 0.36 | _ | 2,048 | 2,048 | 0.09 | 0.06    | 1.14 | 2,068 |
| 2026                       | 0.50 | 1.11 | 3.23 | 5.34 | 0.01    | 0.12 | 0.33 | 0.44 | 0.11 | 0.08 | 0.18 | _ | 1,130 | 1,130 | 0.05 | 0.03    | 0.59 | 1,141 |
| Annual                     | _    | _    | _    | _    | _       | _    | _    | _    | _    | _    | _    | _ |       | _     | _    | _       | _    | _     |
| 2024                       | 0.11 | 0.09 | 0.80 | 0.91 | < 0.005 | 0.03 | 0.15 | 0.19 | 0.03 | 0.05 | 0.09 | _ | 149   | 149   | 0.01 | < 0.005 | 0.05 | 150   |
| 2025                       | 0.17 | 0.33 | 1.13 | 1.79 | < 0.005 | 0.04 | 0.11 | 0.15 | 0.04 | 0.03 | 0.07 | _ | 339   | 339   | 0.01 | 0.01    | 0.19 | 342   |
| 2026                       | 0.09 | 0.20 | 0.59 | 0.98 | < 0.005 | 0.02 | 0.06 | 0.08 | 0.02 | 0.01 | 0.03 | _ | 187   | 187   | 0.01 | 0.01    | 0.10 | 189   |

# 2.3. Construction Emissions by Year, Mitigated

| Year                       | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|----------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Daily -<br>Summer<br>(Max) |      |      | —    |      |      |       |       |       |        |        | _      |      |       |       |      |      |      | —     |
| 2024                       | 3.29 | 2.72 | 26.3 | 23.5 | 0.04 | 1.07  | 3.02  | 3.86  | 0.98   | 1.40   | 2.17   | —    | 4,408 | 4,408 | 0.21 | 0.16 | 2.49 | 4,463 |
| 2025                       | 1.72 | 5.71 | 11.2 | 18.3 | 0.03 | 0.44  | 1.05  | 1.49  | 0.40   | 0.25   | 0.65   | —    | 3,776 | 3,776 | 0.16 | 0.11 | 4.70 | 3,816 |

| 2026                       | 1.61 | 5.69 | 10.5 | 17.9 | 0.03    | 0.38 | 1.05 | 1.44 | 0.35 | 0.25 | 0.60 | — | 3,749 | 3,749 | 0.15 | 0.11    | 4.32 | 3,789 |
|----------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------|
| Daily -<br>Winter<br>(Max) |      |      | -    |      | _       |      |      |      |      |      |      |   |       | —     |      |         |      |       |
| 2024                       | 1.83 | 1.54 | 12.1 | 18.0 | 0.03    | 0.50 | 1.05 | 1.56 | 0.46 | 0.25 | 0.71 | — | 3,750 | 3,750 | 0.16 | 0.11    | 0.13 | 3,786 |
| 2025                       | 1.72 | 6.23 | 11.2 | 17.5 | 0.03    | 0.44 | 1.05 | 1.49 | 0.40 | 0.25 | 0.65 | — | 3,724 | 3,724 | 0.16 | 0.11    | 0.12 | 3,760 |
| 2026                       | 1.61 | 5.94 | 10.6 | 17.2 | 0.03    | 0.38 | 1.05 | 1.44 | 0.35 | 0.25 | 0.60 | — | 3,698 | 3,698 | 0.15 | 0.11    | 0.11 | 3,733 |
| Average<br>Daily           |      | —    | —    |      | —       | —    | —    |      | —    |      | —    |   |       | _     | —    |         |      |       |
| 2024                       | 0.58 | 0.50 | 4.40 | 4.97 | 0.01    | 0.19 | 0.45 | 0.64 | 0.18 | 0.14 | 0.32 | — | 897   | 897   | 0.04 | 0.02    | 0.27 | 905   |
| 2025                       | 0.95 | 1.81 | 6.16 | 9.82 | 0.01    | 0.24 | 0.59 | 0.82 | 0.22 | 0.14 | 0.36 | — | 2,048 | 2,048 | 0.09 | 0.06    | 1.14 | 2,068 |
| 2026                       | 0.50 | 1.11 | 3.23 | 5.34 | 0.01    | 0.12 | 0.33 | 0.44 | 0.11 | 0.08 | 0.18 | — | 1,130 | 1,130 | 0.05 | 0.03    | 0.59 | 1,141 |
| Annual                     | —    | —    | —    | —    | —       | —    | —    | —    | —    | —    | —    | — | —     | —     | —    | _       | —    | —     |
| 2024                       | 0.11 | 0.09 | 0.80 | 0.91 | < 0.005 | 0.03 | 0.08 | 0.12 | 0.03 | 0.03 | 0.06 | — | 149   | 149   | 0.01 | < 0.005 | 0.05 | 150   |
| 2025                       | 0.17 | 0.33 | 1.13 | 1.79 | < 0.005 | 0.04 | 0.11 | 0.15 | 0.04 | 0.03 | 0.07 | — | 339   | 339   | 0.01 | 0.01    | 0.19 | 342   |
| 2026                       | 0.09 | 0.20 | 0.59 | 0.98 | < 0.005 | 0.02 | 0.06 | 0.08 | 0.02 | 0.01 | 0.03 | _ | 187   | 187   | 0.01 | 0.01    | 0.10 | 189   |

# 2.4. Operations Emissions Compared Against Thresholds

| Un/Mit.                   | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R   | CO2e  |
|---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|-----|-------|
| Daily,<br>Summer<br>(Max) | _    |      |      | _    |      |       |       |       |        |        | _      |      |       |       |      |      |     | _     |
| Unmit.                    | 0.79 | 2.99 | 1.87 | 6.70 | 0.01 | 0.15  | 0.00  | 0.15  | 0.15   | 0.00   | 0.15   | 83.8 | 3,245 | 3,329 | 8.55 | 0.04 | 753 | 4,307 |
| Mit.                      | 0.79 | 2.99 | 1.87 | 6.70 | 0.01 | 0.15  | 0.00  | 0.15  | 0.15   | 0.00   | 0.15   | 27.6 | 3,173 | 3,201 | 2.92 | 0.03 | 753 | 4,037 |
| %<br>Reduced              | —    | —    | _    | _    | _    | —     | _     | _     | _      | _      | _      | 67%  | 2%    | 4%    | 66%  | 8%   | _   | 6%    |
| Daily,<br>Winter<br>(Max) |      |      |      |      |      |       |       |       |        |        |        |      |       |       |      |      |     |       |

| Unmit.                    | 0.21 | 2.45 | 1.82 | 0.85 | 0.01    | 0.15 | 0.00 | 0.15 | 0.15 | 0.00 | 0.15 | 83.8 | 3,229 | 3,313 | 8.55 | 0.04 | 753 | 4,291 |
|---------------------------|------|------|------|------|---------|------|------|------|------|------|------|------|-------|-------|------|------|-----|-------|
| Mit.                      | 0.21 | 2.45 | 1.82 | 0.85 | 0.01    | 0.15 | 0.00 | 0.15 | 0.15 | 0.00 | 0.15 | 27.6 | 3,157 | 3,185 | 2.92 | 0.03 | 753 | 4,021 |
| %<br>Reduced              | _    | _    | _    | _    | _       | —    | _    | _    | —    | —    | —    | 67%  | 2%    | 4%    | 66%  | 8%   | _   | 6%    |
| Average<br>Daily<br>(Max) |      |      |      |      |         |      |      | _    |      |      |      |      |       |       |      |      |     | —     |
| Unmit.                    | 0.46 | 2.74 | 0.58 | 4.31 | < 0.005 | 0.04 | 0.00 | 0.04 | 0.05 | 0.00 | 0.05 | 83.8 | 1,623 | 1,707 | 8.52 | 0.03 | 753 | 2,683 |
| Mit.                      | 0.46 | 2.74 | 0.58 | 4.31 | < 0.005 | 0.04 | 0.00 | 0.04 | 0.05 | 0.00 | 0.05 | 27.6 | 1,551 | 1,579 | 2.89 | 0.03 | 753 | 2,413 |
| %<br>Reduced              | —    | —    | _    | —    | _       | —    | —    | —    | —    | —    | —    | 67%  | 4%    | 8%    | 66%  | 9%   | —   | 10%   |
| Annual<br>(Max)           | _    | _    | _    | _    | _       | _    | _    | _    | _    | _    | _    | _    |       |       | _    | _    | _   |       |
| Unmit.                    | 0.08 | 0.50 | 0.11 | 0.79 | < 0.005 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 13.9 | 269   | 283   | 1.41 | 0.01 | 125 | 444   |
| Mit.                      | 0.08 | 0.50 | 0.11 | 0.79 | < 0.005 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 4.57 | 257   | 261   | 0.48 | 0.01 | 125 | 400   |
| %<br>Reduced              | _    | _    | _    | _    | _       | _    | _    | _    | _    | _    | _    | 67%  | 4%    | 8%    | 66%  | 9%   | _   | 10%   |

# 2.5. Operations Emissions by Sector, Unmitigated

| Sector                    | TOG  | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O     | R    | CO2e  |
|---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------|
| Daily,<br>Summer<br>(Max) |      |      |      |      |         |       |       |       |        |        |        |      |       |       |      | —       |      | —     |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00    | 0.00 | 0.00  |
| Area                      | 0.74 | 2.97 | 1.42 | 6.43 | 0.01    | 0.11  | —     | 0.11  | 0.11   | —      | 0.11   | 0.00 | 1,752 | 1,752 | 0.03 | < 0.005 | —    | 1,754 |
| Energy                    | 0.05 | 0.03 | 0.45 | 0.27 | < 0.005 | 0.04  | —     | 0.04  | 0.04   | —      | 0.04   | —    | 1,434 | 1,434 | 0.10 | 0.01    | —    | 1,438 |
| Water                     | —    | —    | —    | —    | —       | —     | —     | -     | —      | —      | —      | 10.2 | 59.6  | 69.8  | 1.05 | 0.03    | —    | 103   |
| Waste                     | _    | _    | _    | _    | -       | _     | _     | _     | _      | _      | _      | 73.7 | 0.00  | 73.7  | 7.36 | 0.00    | _    | 258   |
| Refrig.                   | _    |      |      | _    | _       | _     |       | _     | _      |        | _      | _    |       |       | _    |         | 753  | 753   |

| Total                     | 0.79 | 2.99    | 1.87 | 6.70 | 0.01    | 0.15    | 0.00 | 0.15    | 0.15    | 0.00 | 0.15    | 83.8 | 3,245 | 3,329 | 8.55    | 0.04    | 753  | 4,307 |
|---------------------------|------|---------|------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|-------|
| Daily,<br>Winter<br>(Max) | _    | —       | —    | -    |         | _       | _    | _       |         | —    | _       |      |       |       |         |         |      | _     |
| Mobile                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.16 | 2.42    | 1.37 | 0.58 | 0.01    | 0.11    | _    | 0.11    | 0.11    | _    | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | _    | 1,738 |
| Energy                    | 0.05 | 0.03    | 0.45 | 0.27 | < 0.005 | 0.04    | _    | 0.04    | 0.04    | _    | 0.04    | —    | 1,434 | 1,434 | 0.10    | 0.01    | —    | 1,438 |
| Water                     | —    | —       | —    | —    | —       | —       | —    | —       | —       | —    | _       | 10.2 | 59.6  | 69.8  | 1.05    | 0.03    | —    | 103   |
| Waste                     | —    | —       | —    | —    | —       | —       | —    | —       | —       | —    | —       | 73.7 | 0.00  | 73.7  | 7.36    | 0.00    | —    | 258   |
| Refrig.                   | -    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | _    | _     | _     | _       | _       | 753  | 753   |
| Total                     | 0.21 | 2.45    | 1.82 | 0.85 | 0.01    | 0.15    | 0.00 | 0.15    | 0.15    | 0.00 | 0.15    | 83.8 | 3,229 | 3,313 | 8.55    | 0.04    | 753  | 4,291 |
| Average<br>Daily          | —    | _       | _    | _    | -       | -       | _    | _       | —       | _    | _       | _    | —     | —     | —       | -       | —    | _     |
| Mobile                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.41 | 2.72    | 0.13 | 4.05 | < 0.005 | 0.01    | _    | 0.01    | 0.01    | _    | 0.01    | 0.00 | 130   | 130   | < 0.005 | < 0.005 | —    | 130   |
| Energy                    | 0.05 | 0.03    | 0.45 | 0.27 | < 0.005 | 0.04    | _    | 0.04    | 0.04    | _    | 0.04    | —    | 1,434 | 1,434 | 0.10    | 0.01    | —    | 1,438 |
| Water                     | —    | _       | —    | _    | —       | —       | _    | _       | —       | _    | _       | 10.2 | 59.6  | 69.8  | 1.05    | 0.03    | —    | 103   |
| Waste                     | -    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | 73.7 | 0.00  | 73.7  | 7.36    | 0.00    | _    | 258   |
| Refrig.                   | —    | —       | —    | —    | —       | —       | —    | —       | —       | —    | —       | —    | —     | —     | —       | —       | 753  | 753   |
| Total                     | 0.46 | 2.74    | 0.58 | 4.31 | < 0.005 | 0.04    | 0.00 | 0.04    | 0.05    | 0.00 | 0.05    | 83.8 | 1,623 | 1,707 | 8.52    | 0.03    | 753  | 2,683 |
| Annual                    | -    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | _    | _     | _     | _       | _       | _    | _     |
| Mobile                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.07 | 0.50    | 0.02 | 0.74 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | _    | < 0.005 | 0.00 | 21.5  | 21.5  | < 0.005 | < 0.005 | _    | 21.5  |
| Energy                    | 0.01 | < 0.005 | 0.08 | 0.05 | < 0.005 | 0.01    | _    | 0.01    | 0.01    | _    | 0.01    | _    | 237   | 237   | 0.02    | < 0.005 | _    | 238   |
| Water                     | _    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | 1.68 | 9.87  | 11.5  | 0.17    | < 0.005 | _    | 17.1  |
| Waste                     | _    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | 12.2 | 0.00  | 12.2  | 1.22    | 0.00    | _    | 42.7  |
| Refrig.                   | _    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | _    | _     | _     | -       | _       | 125  | 125   |
| Total                     | 0.08 | 0.50    | 0.11 | 0.79 | < 0.005 | 0.01    | 0.00 | 0.01    | 0.01    | 0.00 | 0.01    | 13.9 | 269   | 283   | 1.41    | 0.01    | 125  | 444   |
|                           |      |         |      |      |         |         |      |         |         |      |         |      |       |       |         |         |      |       |

# 2.6. Operations Emissions by Sector, Mitigated

| Sector                    | TOG  | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Daily,<br>Summer<br>(Max) |      | —    | —    | -    | -       | -     | -     | -     | _      | _      | -      | -    | _     | —     | -       | -       | -    | —     |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.74 | 2.97 | 1.42 | 6.43 | 0.01    | 0.11  | —     | 0.11  | 0.11   | —      | 0.11   | 0.00 | 1,752 | 1,752 | 0.03    | < 0.005 | —    | 1,754 |
| Energy                    | 0.05 | 0.03 | 0.45 | 0.27 | < 0.005 | 0.04  | —     | 0.04  | 0.04   | —      | 0.04   | —    | 1,370 | 1,370 | 0.10    | 0.01    | —    | 1,374 |
| Water                     | —    | —    | _    | —    | —       | —     | —     | —     | —      | —      | —      | 9.21 | 51.4  | 60.6  | 0.95    | 0.02    | —    | 91.1  |
| Waste                     | —    | —    | _    | _    | —       | —     | —     | —     | —      | —      | —      | 18.4 | 0.00  | 18.4  | 1.84    | 0.00    | —    | 64.4  |
| Refrig.                   | —    | —    | -    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —     | —       | —       | 753  | 753   |
| Total                     | 0.79 | 2.99 | 1.87 | 6.70 | 0.01    | 0.15  | 0.00  | 0.15  | 0.15   | 0.00   | 0.15   | 27.6 | 3,173 | 3,201 | 2.92    | 0.03    | 753  | 4,037 |
| Daily,<br>Winter<br>(Max) |      |      |      | —    | _       | _     | _     | _     | _      | _      | _      | _    | _     | _     | —       | _       | _    | _     |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.16 | 2.42 | 1.37 | 0.58 | 0.01    | 0.11  | —     | 0.11  | 0.11   | —      | 0.11   | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | —    | 1,738 |
| Energy                    | 0.05 | 0.03 | 0.45 | 0.27 | < 0.005 | 0.04  | —     | 0.04  | 0.04   | —      | 0.04   | —    | 1,370 | 1,370 | 0.10    | 0.01    | —    | 1,374 |
| Water                     | —    | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | 9.21 | 51.4  | 60.6  | 0.95    | 0.02    | —    | 91.1  |
| Waste                     | —    | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | 18.4 | 0.00  | 18.4  | 1.84    | 0.00    | —    | 64.4  |
| Refrig.                   | —    | —    | -    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —     | —       | —       | 753  | 753   |
| Total                     | 0.21 | 2.45 | 1.82 | 0.85 | 0.01    | 0.15  | 0.00  | 0.15  | 0.15   | 0.00   | 0.15   | 27.6 | 3,157 | 3,185 | 2.92    | 0.03    | 753  | 4,021 |
| Average<br>Daily          |      | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —     | —       | —       | —    | —     |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | 0.41 | 2.72 | 0.13 | 4.05 | < 0.005 | 0.01  | —     | 0.01  | 0.01   | —      | 0.01   | 0.00 | 130   | 130   | < 0.005 | < 0.005 | —    | 130   |
| Energy                    | 0.05 | 0.03 | 0.45 | 0.27 | < 0.005 | 0.04  | _     | 0.04  | 0.04   | _      | 0.04   | _    | 1,370 | 1,370 | 0.10    | 0.01    | _    | 1,374 |
| Water                     | _    | _    | _    | _    | _       | _     | _     | _     | —      | _      | _      | 9.21 | 51.4  | 60.6  | 0.95    | 0.02    | _    | 91.1  |

| Waste   | —    | —       | —    | —    | —       | —       | —    | —       | —       | —    | —       | 18.4 | 0.00  | 18.4  | 1.84    | 0.00    | —    | 64.4  |
|---------|------|---------|------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|-------|
| Refrig. | —    | —       | —    | —    | —       | —       | —    | —       | —       | —    | —       | —    | —     | —     | —       | —       | 753  | 753   |
| Total   | 0.46 | 2.74    | 0.58 | 4.31 | < 0.005 | 0.04    | 0.00 | 0.04    | 0.05    | 0.00 | 0.05    | 27.6 | 1,551 | 1,579 | 2.89    | 0.03    | 753  | 2,413 |
| Annual  | _    | _       | _    | -    | -       | —       | —    | —       | —       | -    | -       | -    | —     | —     | _       | -       | —    | _     |
| Mobile  | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area    | 0.07 | 0.50    | 0.02 | 0.74 | < 0.005 | < 0.005 | —    | < 0.005 | < 0.005 | —    | < 0.005 | 0.00 | 21.5  | 21.5  | < 0.005 | < 0.005 | —    | 21.5  |
| Energy  | 0.01 | < 0.005 | 0.08 | 0.05 | < 0.005 | 0.01    | —    | 0.01    | 0.01    | —    | 0.01    | —    | 227   | 227   | 0.02    | < 0.005 | —    | 228   |
| Water   | _    | —       | _    | -    | —       | —       | —    | —       | —       | —    | -       | 1.52 | 8.51  | 10.0  | 0.16    | < 0.005 | —    | 15.1  |
| Waste   | _    | —       | _    | -    | —       | —       | —    | —       | —       | —    | -       | 3.05 | 0.00  | 3.05  | 0.30    | 0.00    | —    | 10.7  |
| Refrig. | _    | —       | _    | —    | —       | —       | —    | —       | —       | —    | -       | —    | —     | —     | —       | —       | 125  | 125   |
| Total   | 0.08 | 0.50    | 0.11 | 0.79 | < 0.005 | 0.01    | 0.00 | 0.01    | 0.01    | 0.00 | 0.01    | 4.57 | 257   | 261   | 0.48    | 0.01    | 125  | 400   |

# 3. Construction Emissions Details

### 3.1. Demolition (2024) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|---------------------------|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Onsite                    | _         | —    | _    | —    | —    | —     | —     | _     | —      | _      | _      | —    | —     | _     | —    | _    | —    | _     |
| Daily,<br>Summer<br>(Max) |           |      |      | -    |      |       |       |       |        |        |        | _    |       | —     |      |      |      | —     |
| Off-Road<br>Equipmen      | 3.12<br>t | 2.62 | 24.9 | 21.7 | 0.03 | 1.06  | _     | 1.06  | 0.98   |        | 0.98   | —    | 3,425 | 3,425 | 0.14 | 0.03 |      | 3,437 |
| Demolitio<br>n            | —         | —    | —    | _    | —    |       | 3.44  | 3.44  | —      | 0.52   | 0.52   | —    | —     | —     |      |      |      | _     |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) | _         |      | —    | _    |      |       |       |       |        | —      |        | _    |       | _     |      | _    |      |       |

| Average<br>Daily          | —         | —       | —       | _    | _       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
|---------------------------|-----------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmen      | 0.20<br>t | 0.16    | 1.57    | 1.37 | < 0.005 | 0.07    | _       | 0.07    | 0.06    | _       | 0.06    | _ | 216  | 216  | 0.01    | < 0.005 | _       | 217  |
| Demolitio<br>n            |           | _       | —       | —    | —       | —       | 0.22    | 0.22    | —       | 0.03    | 0.03    | — | —    | —    | —       | _       | —       | —    |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —         | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.03    | 0.29    | 0.25 | < 0.005 | 0.01    | —       | 0.01    | 0.01    | _       | 0.01    | - | 35.7 | 35.7 | < 0.005 | < 0.005 | _       | 35.9 |
| Demolitio<br>n            |           | _       | _       | _    | —       | _       | 0.04    | 0.04    | —       | 0.01    | 0.01    | — | —    | —    | —       | _       | —       | —    |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | —         | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Daily,<br>Summer<br>(Max) |           |         |         | -    | —       |         |         |         | _       | _       | —       | — | —    |      | _       |         | _       |      |
| Worker                    | 0.07      | 0.07    | 0.07    | 1.13 | 0.00    | 0.00    | 0.20    | 0.20    | 0.00    | 0.05    | 0.05    | - | 212  | 212  | 0.01    | 0.01    | 0.84    | 215  |
| Vendor                    | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.10      | 0.04    | 1.33    | 0.67 | 0.01    | 0.01    | 0.19    | 0.20    | 0.01    | 0.05    | 0.06    | _ | 771  | 771  | 0.06    | 0.12    | 1.65    | 811  |
| Daily,<br>Winter<br>(Max) | —         |         | _       | -    | —       | _       |         |         | _       | _       | —       | — | —    |      | _       | _       | _       | _    |
| Average<br>Daily          |           |         |         | —    | —       | _       | —       |         | —       | —       | —       | — | —    | —    | —       |         | —       |      |
| Worker                    | < 0.005   | < 0.005 | 0.01    | 0.06 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 12.8 | 12.8 | < 0.005 | < 0.005 | 0.02    | 13.0 |
| Vendor                    | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.01      | < 0.005 | 0.09    | 0.04 | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | — | 48.6 | 48.6 | < 0.005 | 0.01    | 0.04    | 51.1 |
| Annual                    | _         | _       | _       | _    |         | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005   | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.13 | 2.13 | < 0.005 | < 0.005 | < 0.005 | 2.15 |
|                           |           |         |         |      |         |         |         |         |         |         |         |   |      |      |         |         |         |      |

| Vendor  | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|---------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Hauling | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.05 | 8.05 | < 0.005 | < 0.005 | 0.01 | 8.45 |

# 3.2. Demolition (2024) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D  | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|---------|---------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | _         | —    | —    | —    | —       | —     | _     | —     | —      | —       | _       | —    | —     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           | -    | _    | _    |         | _     | —     | -     |        | _       |         | -    | _     | _     | _       | _       | _    | _     |
| Off-Road<br>Equipmen      | 3.12<br>t | 2.62 | 24.9 | 21.7 | 0.03    | 1.06  |       | 1.06  | 0.98   | —       | 0.98    | —    | 3,425 | 3,425 | 0.14    | 0.03    | —    | 3,437 |
| Demolitio<br>n            | —         | -    | —    | —    |         | _     | 2.20  | 2.20  |        | 0.33    | 0.33    | -    | —     | _     | -       | —       | _    | —     |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00    | 0.00    | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _    |      |      |         |       |       | _     |        |         |         | _    |       |       | _       |         |      |       |
| Average<br>Daily          |           | —    | —    | —    | —       | —     | —     | —     | —      | —       | —       | —    | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.20<br>t | 0.16 | 1.57 | 1.37 | < 0.005 | 0.07  | _     | 0.07  | 0.06   | —       | 0.06    | —    | 216   | 216   | 0.01    | < 0.005 | —    | 217   |
| Demolitio<br>n            |           | _    | _    | _    | _       | _     | 0.14  | 0.14  | _      | 0.02    | 0.02    | _    | _     | _     | _       | _       | _    | _     |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00    | 0.00    | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    |           | —    | —    | -    | —       | —     | —     | —     | —      | —       | —       | —    | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.03 | 0.29 | 0.25 | < 0.005 | 0.01  | _     | 0.01  | 0.01   | —       | 0.01    | -    | 35.7  | 35.7  | < 0.005 | < 0.005 | —    | 35.9  |
| Demolitio<br>n            |           | -    |      |      |         | _     | 0.03  | 0.03  |        | < 0.005 | < 0.005 | _    |       | _     | _       |         | _    | _     |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Offsite                   | —       | _       | _       | —    | _       | _       | —       | _       | —       | _       | —       | — | —    | —    | —       | —       | —       | _    |
| Daily,<br>Summer<br>(Max) | —       | _       | _       |      | _       | _       | _       | _       | _       | _       | _       | _ | _    | —    | _       | _       | _       |      |
| Worker                    | 0.07    | 0.07    | 0.07    | 1.13 | 0.00    | 0.00    | 0.20    | 0.20    | 0.00    | 0.05    | 0.05    | — | 212  | 212  | 0.01    | 0.01    | 0.84    | 215  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.10    | 0.04    | 1.33    | 0.67 | 0.01    | 0.01    | 0.19    | 0.20    | 0.01    | 0.05    | 0.06    | — | 771  | 771  | 0.06    | 0.12    | 1.65    | 811  |
| Daily,<br>Winter<br>(Max) | —       | _       | _       |      | _       | _       | -       | -       | —       | _       | _       | — | _    | —    | _       | —       | _       |      |
| Average<br>Daily          | _       | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | -       | —       | —       |      |
| Worker                    | < 0.005 | < 0.005 | 0.01    | 0.06 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | - | 12.8 | 12.8 | < 0.005 | < 0.005 | 0.02    | 13.0 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.01    | < 0.005 | 0.09    | 0.04 | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 48.6 | 48.6 | < 0.005 | 0.01    | 0.04    | 51.1 |
| Annual                    | -       | _       | _       | -    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.13 | 2.13 | < 0.005 | < 0.005 | < 0.005 | 2.15 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | < 0.005 | < 0.005 | 0.02    | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.05 | 8.05 | < 0.005 | < 0.005 | 0.01    | 8.45 |

# 3.3. Grading (2024) - Unmitigated

| Location                  | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite                    | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Summer<br>(Max) |     |     |     |    |     |       |       |       | —      | —      | —      |      | _     | _    | —   | —   | — | —    |

| Off-Road<br>Equipmen                             | 2.26<br>t | 1.90 | 18.2 | 18.8 | 0.03    | 0.84 | —    | 0.84 | 0.77 | -    | 0.77 | — | 2,958 | 2,958 | 0.12    | 0.02    | —    | 2,969 |
|--------------------------------------------------|-----------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------|
| Dust<br>From<br>Material<br>Movemen              | <br>:     |      | _    | _    | —       |      | 7.08 | 7.08 | _    | 3.42 | 3.42 |   |       | _     | —       |         |      |       |
| Onsite<br>truck                                  | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max)                        | _         |      | —    | -    | _       |      |      | _    | —    | -    | —    |   | _     | —     | —       |         |      | —     |
| Average<br>Daily                                 | —         |      | -    | -    | _       | _    |      | _    | -    | -    | —    | — | —     | _     | -       |         |      | —     |
| Off-Road<br>Equipmen                             | 0.15<br>t | 0.13 | 1.25 | 1.29 | < 0.005 | 0.06 |      | 0.06 | 0.05 | —    | 0.05 | _ | 203   | 203   | 0.01    | < 0.005 |      | 203   |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>:     |      |      | -    | -       |      | 0.49 | 0.49 | -    | 0.23 | 0.23 | _ |       |       | -       |         |      |       |
| Onsite<br>truck                                  | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                                           | —         | —    | —    | _    | _       | _    | _    | _    | —    | _    | —    | — | _     | —     | _       | _       | _    | _     |
| Off-Road<br>Equipmen                             | 0.03<br>t | 0.02 | 0.23 | 0.24 | < 0.005 | 0.01 | _    | 0.01 | 0.01 | —    | 0.01 | _ | 33.5  | 33.5  | < 0.005 | < 0.005 |      | 33.7  |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>!     |      |      | _    |         |      | 0.09 | 0.09 |      | 0.04 | 0.04 |   |       |       |         |         |      |       |
| Onsite<br>truck                                  | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                                          | _         | _    | _    | _    | _       | _    | _    | _    | _    | _    | _    | _ | _     | _     | _       | _       | _    | _     |
| Daily,<br>Summer<br>(Max)                        |           |      |      | _    | _       |      |      |      |      | _    | _    |   |       |       | _       |         |      |       |
| Worker                                           | 0.07      | 0.07 | 0.07 | 1.13 | 0.00    | 0.00 | 0.20 | 0.20 | 0.00 | 0.05 | 0.05 | — | 212   | 212   | 0.01    | 0.01    | 0.84 | 215   |
|                                                  |           |      |      |      |         |      |      |      |      |      |      |   |       |       |         |         |      |       |

| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Hauling                   | 0.02    | < 0.005 | 0.27    | 0.10    | < 0.005 | < 0.005 | 0.06    | 0.06    | < 0.005 | 0.02    | 0.02    | — | 221  | 221  | 0.01    | 0.04    | 0.51    | 232  |
| Daily,<br>Winter<br>(Max) |         | -       | -       | —       | _       |         | -       | _       |         |         | _       | - | _    |      |         |         |         |      |
| Average<br>Daily          | —       | -       | —       | —       | -       | _       | —       | -       | —       |         | _       | — | —    | _    |         | —       |         | _    |
| Worker                    | 0.01    | < 0.005 | 0.01    | 0.07    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 14.0 | 14.0 | < 0.005 | < 0.005 | 0.02    | 14.1 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | < 0.005 | < 0.005 | 0.02    | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 15.1 | 15.1 | < 0.005 | < 0.005 | 0.02    | 15.9 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.31 | 2.31 | < 0.005 | < 0.005 | < 0.005 | 2.34 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.51 | 2.51 | < 0.005 | < 0.005 | < 0.005 | 2.63 |

# 3.4. Grading (2024) - Mitigated

| Location                            | TOG       | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|-------------------------------------|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Onsite                              | —         | _    | —    | _    | —    | —     | —     | —     | —      | —      | _      | —    | —     | —     | —    | —    | —    | _     |
| Daily,<br>Summer<br>(Max)           | _         |      |      |      | _    | _     | _     | _     |        | _      |        | -    |       |       |      | _    |      |       |
| Off-Road<br>Equipmen                | 2.26<br>t | 1.90 | 18.2 | 18.8 | 0.03 | 0.84  | —     | 0.84  | 0.77   | —      | 0.77   | —    | 2,958 | 2,958 | 0.12 | 0.02 |      | 2,969 |
| Dust<br>From<br>Material<br>Movemen | <br>:     |      |      |      |      |       | 2.76  | 2.76  |        | 1.34   | 1.34   |      |       |       |      |      |      |       |
| Onsite<br>truck                     | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max)                        | _         | _       |      | —    |         | —       |      | _    |         |      |      |   |      |      | _       | —       | _    | —    |
|--------------------------------------------------|-----------|---------|------|------|---------|---------|------|------|---------|------|------|---|------|------|---------|---------|------|------|
| Average<br>Daily                                 | —         | _       | —    | —    | —       | —       | —    |      | —       | —    | —    | — |      | —    | —       | —       | —    | —    |
| Off-Road<br>Equipmen                             | 0.15<br>t | 0.13    | 1.25 | 1.29 | < 0.005 | 0.06    | —    | 0.06 | 0.05    | _    | 0.05 | — | 203  | 203  | 0.01    | < 0.005 | —    | 203  |
| Dust<br>From<br>Material<br>Movemen <sup>:</sup> | <br>:     |         |      |      |         |         | 0.19 | 0.19 |         | 0.09 | 0.09 |   |      |      |         |         |      |      |
| Onsite<br>truck                                  | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                                           | —         |         | —    | —    | —       | —       | —    | —    | —       | —    | —    | — | —    | —    | —       | —       |      | —    |
| Off-Road<br>Equipmen                             | 0.03<br>t | 0.02    | 0.23 | 0.24 | < 0.005 | 0.01    | _    | 0.01 | 0.01    | _    | 0.01 | _ | 33.5 | 33.5 | < 0.005 | < 0.005 |      | 33.7 |
| Dust<br>From<br>Material<br>Movemen:             |           | _       |      |      |         |         | 0.03 | 0.03 |         | 0.02 | 0.02 |   |      |      |         | _       | _    | _    |
| Onsite<br>truck                                  | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                                          | _         | _       | _    | _    | _       | _       | _    | _    | _       | _    | _    | _ | _    | _    | _       | _       |      | _    |
| Daily,<br>Summer<br>(Max)                        | _         | _       | _    | _    |         |         |      |      | _       | _    | _    |   |      |      | —       | _       | _    | _    |
| Worker                                           | 0.07      | 0.07    | 0.07 | 1.13 | 0.00    | 0.00    | 0.20 | 0.20 | 0.00    | 0.05 | 0.05 | — | 212  | 212  | 0.01    | 0.01    | 0.84 | 215  |
| Vendor                                           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                                          | 0.02      | < 0.005 | 0.27 | 0.10 | < 0.005 | < 0.005 | 0.06 | 0.06 | < 0.005 | 0.02 | 0.02 | — | 221  | 221  | 0.01    | 0.04    | 0.51 | 232  |
| Daily,<br>Winter<br>(Max)                        | _         |         |      |      |         |         |      |      |         |      |      |   |      |      |         |         |      | _    |
| Average<br>Daily                                 | _         | _       | _    | _    |         |         | _    | _    | _       | —    | —    |   | _    | —    | _       | _       | _    | _    |

| Worker  | 0.01    | < 0.005 | 0.01    | 0.07    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 14.0 | 14.0 | < 0.005 | < 0.005 | 0.02    | 14.1 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | < 0.005 | < 0.005 | 0.02    | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 15.1 | 15.1 | < 0.005 | < 0.005 | 0.02    | 15.9 |
| Annual  | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 2.31 | 2.31 | < 0.005 | < 0.005 | < 0.005 | 2.34 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.51 | 2.51 | < 0.005 | < 0.005 | < 0.005 | 2.63 |

# 3.5. Building Construction (2024) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | СО   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | _         | —    | —    | —    | —       | —     | —     | -     | —      | —      | —      | —    | -     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) | _         | _    | -    | _    | _       | _     | _     | _     | _      | _      | _      | -    | _     | _     | -       | _       | _    | _     |
| Daily,<br>Winter<br>(Max) |           | —    | —    | —    | —       | —     | _     | _     | _      | —      | _      | _    | _     | _     | _       | _       | —    | —     |
| Off-Road<br>Equipmen      | 1.44<br>t | 1.20 | 11.2 | 13.1 | 0.02    | 0.50  | _     | 0.50  | 0.46   |        | 0.46   | —    | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           |      | —    | —    | —       | —     | —     | —     |        |        | _      | —    | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.09<br>t | 0.07 | 0.68 | 0.80 | < 0.005 | 0.03  | _     | 0.03  | 0.03   | _      | 0.03   | _    | 145   | 145   | 0.01    | < 0.005 | —    | 146   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _    | _    | _    | _       | _     | _     | _     | _      | _      | _      | _    | _     | _     | _       | _       | _    | _     |
| Off-Road<br>Equipmen      | 0.02<br>t | 0.01 | 0.12 | 0.15 | < 0.005 | 0.01  | -     | 0.01  | 0.01   | _      | 0.01   | -    | 24.1  | 24.1  | < 0.005 | < 0.005 | _    | 24.2  |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Offsite                   | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | _ | —    | —    | —       | —       | —       | _    |
| Daily,<br>Summer<br>(Max) | _       |         | _       | _       | _       | _       | _       | _       | _       | _       |         |   |      |      | _       |         |         |      |
| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       |         |   |      |      | _       | _       |         | —    |
| Worker                    | 0.36    | 0.32    | 0.41    | 4.65    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 975  | 975  | 0.04    | 0.04    | 0.11    | 987  |
| Vendor                    | 0.03    | 0.01    | 0.46    | 0.22    | < 0.005 | 0.01    | 0.10    | 0.11    | 0.01    | 0.03    | 0.03    | — | 377  | 377  | 0.02    | 0.05    | 0.03    | 393  |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | —       | —       | —       | -       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       |      |
| Worker                    | 0.02    | 0.02    | 0.02    | 0.30    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | — | 60.0 | 60.0 | < 0.005 | < 0.005 | 0.11    | 60.9 |
| Vendor                    | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | — | 22.9 | 22.9 | < 0.005 | < 0.005 | 0.03    | 23.9 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 9.94 | 9.94 | < 0.005 | < 0.005 | 0.02    | 10.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 3.79 | 3.79 | < 0.005 | < 0.005 | < 0.005 | 3.95 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |   | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.6. Building Construction (2024) - Mitigated

| Location                  | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite                    | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Summer<br>(Max) |     |     |     | _  | -   |       |       | _     |        |        |        |      |       |      | _   | _   |   |      |

| Daily,<br>Winter<br>(Max) |           |         | _    | —    | —       |         | _    | —    | —       | —       | —       | _ | _     | _     | —       | _       | _    | _     |
|---------------------------|-----------|---------|------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|---------|------|-------|
| Off-Road<br>Equipmen      | 1.44<br>t | 1.20    | 11.2 | 13.1 | 0.02    | 0.50    | —    | 0.50 | 0.46    | —       | 0.46    | — | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           |         | —    | —    | —       |         | —    |      | —       | —       | —       | — | —     |       | —       |         | —    |       |
| Off-Road<br>Equipmen      | 0.09<br>t | 0.07    | 0.68 | 0.80 | < 0.005 | 0.03    | —    | 0.03 | 0.03    | -       | 0.03    | - | 145   | 145   | 0.01    | < 0.005 | —    | 146   |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _       | -    | —    | _       | _       | —    | _    | —       | —       | —       | _ | -     | _     | —       | _       | -    | _     |
| Off-Road<br>Equipmen      | 0.02<br>t | 0.01    | 0.12 | 0.15 | < 0.005 | 0.01    | _    | 0.01 | 0.01    | _       | 0.01    | _ | 24.1  | 24.1  | < 0.005 | < 0.005 | _    | 24.2  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | _         | —       | —    | -    | —       | —       | —    | —    | —       | —       | —       | - | —     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           |         | _    | -    | -       |         | _    |      | -       | -       | _       | - | _     |       | _       |         | _    |       |
| Daily,<br>Winter<br>(Max) |           |         |      |      | _       |         |      |      |         | _       |         | _ |       |       |         |         |      |       |
| Worker                    | 0.36      | 0.32    | 0.41 | 4.65 | 0.00    | 0.00    | 0.95 | 0.95 | 0.00    | 0.22    | 0.22    | — | 975   | 975   | 0.04    | 0.04    | 0.11 | 987   |
| Vendor                    | 0.03      | 0.01    | 0.46 | 0.22 | < 0.005 | 0.01    | 0.10 | 0.11 | 0.01    | 0.03    | 0.03    | — | 377   | 377   | 0.02    | 0.05    | 0.03 | 393   |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | _         | —       | —    | —    | —       | —       | —    | —    | —       | —       | —       | - | —     | —     | —       | —       | —    | —     |
| Worker                    | 0.02      | 0.02    | 0.02 | 0.30 | 0.00    | 0.00    | 0.06 | 0.06 | 0.00    | 0.01    | 0.01    | — | 60.0  | 60.0  | < 0.005 | < 0.005 | 0.11 | 60.9  |
| Vendor                    | < 0.005   | < 0.005 | 0.03 | 0.01 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 22.9  | 22.9  | < 0.005 | < 0.005 | 0.03 | 23.9  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
|                           |           |         |      |      |         |         |      |      |         |         |         |   |       |       |         |         |      |       |

| Annual  | —       |         | —       | _       | _       |         | _       | _       | —       |         | _       | _ | _    | —    | —       | —       | _       | —    |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 9.94 | 9.94 | < 0.005 | < 0.005 | 0.02    | 10.1 |
| Vendor  | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.79 | 3.79 | < 0.005 | < 0.005 | < 0.005 | 3.95 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.7. Building Construction (2025) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | _         | -    | -    | -    | -       | —     | -     | -     | -      | -      | -      | -    | -     | _     | -       | -       | —    | _     |
| Daily,<br>Summer<br>(Max) | _         | _    | -    | -    | -       | -     | -     | -     | -      | -      | -      | -    | -     | -     | -       | -       | -    | _     |
| Daily,<br>Winter<br>(Max) |           | —    | —    | _    | -       | -     | —     | -     | _      | -      | _      | -    | -     | —     | -       | —       | -    |       |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43  | -     | 0.43  | 0.40   | -      | 0.40   | -    | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | —         | _    | _    | -    | -       | -     | _     | -     | —      | _      | -      | -    | —     | _     | _       | -       | -    | _     |
| Off-Road<br>Equipmen      | 0.16<br>t | 0.13 | 1.21 | 1.51 | < 0.005 | 0.05  | -     | 0.05  | 0.05   | —      | 0.05   | _    | 277   | 277   | 0.01    | < 0.005 | —    | 278   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | —         | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.03<br>t | 0.02 | 0.22 | 0.27 | < 0.005 | 0.01  | -     | 0.01  | 0.01   | -      | 0.01   | -    | 45.8  | 45.8  | < 0.005 | < 0.005 | -    | 46.0  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | _         | —    | _    | _    | _       | —     | _     | —     | _      | _      | —      | _    | _     | _     | _       | _       | _    | _     |

| Daily,<br>Summer<br>(Max) |         |         |      | —       | —       |         | —       | —       |         |         | —       | — | —    | —    | —       | _       |      | —    |
|---------------------------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Winter<br>(Max) |         |         |      | _       | _       |         | _       | _       |         |         | _       | _ | _    |      |         |         |      | —    |
| Worker                    | 0.35    | 0.31    | 0.35 | 4.30    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 955  | 955  | 0.04    | 0.04    | 0.10 | 967  |
| Vendor                    | 0.03    | 0.01    | 0.44 | 0.21    | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | — | 371  | 371  | 0.02    | 0.05    | 0.03 | 387  |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _       | _       | _    | _       | _       | _       | -       | _       | _       | —       | -       | _ | _    | _    | _       | _       | _    | —    |
| Worker                    | 0.04    | 0.04    | 0.04 | 0.52    | 0.00    | 0.00    | 0.11    | 0.11    | 0.00    | 0.03    | 0.03    | — | 112  | 112  | 0.01    | < 0.005 | 0.18 | 113  |
| Vendor                    | < 0.005 | < 0.005 | 0.05 | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | — | 42.8 | 42.8 | < 0.005 | 0.01    | 0.05 | 44.7 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.10    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | — | 18.5 | 18.5 | < 0.005 | < 0.005 | 0.03 | 18.8 |
| Vendor                    | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 7.09 | 7.09 | < 0.005 | < 0.005 | 0.01 | 7.40 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.8. Building Construction (2025) - Mitigated

| Location                  | TOG        | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R | CO2e  |
|---------------------------|------------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------|
| Onsite                    | _          | —    | —    | —    | —    | _     | _     | _     | —      | —      | _      | _    | —     | _     | _    | _    | _ | _     |
| Daily,<br>Summer<br>(Max) |            | —    | -    | —    | _    |       |       |       | —      | _      | —      | _    | —     |       |      |      |   | —     |
| Daily,<br>Winter<br>(Max) |            |      | _    |      | _    |       |       |       | _      | _      | —      | _    |       |       |      |      |   | —     |
| Off-Road<br>Equipmer      | 1.35<br>it | 1.13 | 10.4 | 13.0 | 0.02 | 0.43  | _     | 0.43  | 0.40   | _      | 0.40   | _    | 2,398 | 2,398 | 0.10 | 0.02 | _ | 2,406 |

| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|---------------------------|-----------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Average<br>Daily          | _         | _       | _    | _       | _       | —       | _       | -       | _       | _       | _       | - | _    | _    | -       | _       | —    | _    |
| Off-Road<br>Equipmen      | 0.16<br>t | 0.13    | 1.21 | 1.51    | < 0.005 | 0.05    | —       | 0.05    | 0.05    | —       | 0.05    | — | 277  | 277  | 0.01    | < 0.005 | —    | 278  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —         | —       | —    | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Off-Road<br>Equipmen      | 0.03<br>t | 0.02    | 0.22 | 0.27    | < 0.005 | 0.01    | -       | 0.01    | 0.01    | _       | 0.01    | - | 45.8 | 45.8 | < 0.005 | < 0.005 | _    | 46.0 |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _         | _       | _    | _       | _       | _       | _       | -       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |           | —       | -    | —       | _       | _       | -       | -       | _       | _       | -       | — | -    | —    | -       |         |      | _    |
| Daily,<br>Winter<br>(Max) |           |         | _    |         | _       |         | _       | _       | _       | _       | _       | _ | _    | _    | _       |         |      | _    |
| Worker                    | 0.35      | 0.31    | 0.35 | 4.30    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 955  | 955  | 0.04    | 0.04    | 0.10 | 967  |
| Vendor                    | 0.03      | 0.01    | 0.44 | 0.21    | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | — | 371  | 371  | 0.02    | 0.05    | 0.03 | 387  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          |           | —       | —    | —       | —       | —       | —       | _       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Worker                    | 0.04      | 0.04    | 0.04 | 0.52    | 0.00    | 0.00    | 0.11    | 0.11    | 0.00    | 0.03    | 0.03    | — | 112  | 112  | 0.01    | < 0.005 | 0.18 | 113  |
| Vendor                    | < 0.005   | < 0.005 | 0.05 | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | — | 42.8 | 42.8 | < 0.005 | 0.01    | 0.05 | 44.7 |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _         | —       | —    | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Worker                    | 0.01      | 0.01    | 0.01 | 0.10    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 18.5 | 18.5 | < 0.005 | < 0.005 | 0.03 | 18.8 |
| Vendor                    | < 0.005   | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 7.09 | 7.09 | < 0.005 | < 0.005 | 0.01 | 7.40 |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|                           |           |         |      |         |         |         |         |         |         |         |         |   |      |      |         |         |      |      |

# 3.9. Building Construction (2025) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E  | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|---------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | —         | —    | —    | —    | —       | —     | —     | —     | —       | —      | —      | —    | —     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) | —         | —    |      |      | _       |       |       |       |         |        |        |      |       |       |         | _       |      |       |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43  |       | 0.43  | 0.40    |        | 0.40   | —    | 2,398 | 2,398 | 0.10    | 0.02    |      | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _    |      |      | -       |       |       |       |         |        |        | _    |       | _     |         | -       |      |       |
| Average<br>Daily          |           | _    | —    | _    | _       | _     | —     | _     | _       | —      | —      | _    | _     | —     | —       | _       | _    | —     |
| Off-Road<br>Equipmen      | 0.24<br>t | 0.20 | 1.86 | 2.32 | < 0.005 | 0.08  | —     | 0.08  | 0.07    | —      | 0.07   | —    | 427   | 427   | 0.02    | < 0.005 | —    | 428   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    |           | _    | _    | _    | _       | _     | _     | _     | _       | _      | _      | -    | _     | _     | _       | _       | _    | _     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.04 | 0.34 | 0.42 | < 0.005 | 0.01  | _     | 0.01  | 0.01    | _      | 0.01   | _    | 70.7  | 70.7  | < 0.005 | < 0.005 | _    | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   |           | —    | —    | —    | —       | —     | —     | —     | —       | —      | —      | —    | —     | —     | —       | —       | —    | _     |
| Daily,<br>Summer<br>(Max) |           | _    |      |      | -       |       |       |       |         |        |        | _    |       | _     | _       | -       |      |       |
| Worker                    | 0.35      | 0.31 | 0.32 | 5.07 | 0.00    | 0.00  | 0.95  | 0.95  | 0.00    | 0.22   | 0.22   | _    | 1,007 | 1,007 | 0.04    | 0.03    | 3.69 | 1,022 |
| Vendor                    | 0.03      | 0.01 | 0.42 | 0.21 | < 0.005 | 0.01  | 0.10  | 0.11  | < 0.005 | 0.03   | 0.03   | _    | 371   | 371   | 0.02    | 0.05    | 1.01 | 388   |
| Hauling                   | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |

| Daily,<br>Winter<br>(Max) | -       | -       | -    | -    | -       | -       | -       | -       | -       | -       | -       | - | -    | -    | -       | -       | -    | -    |
|---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Average<br>Daily          | _       | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | -    |
| Worker                    | 0.06    | 0.05    | 0.07 | 0.80 | 0.00    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | — | 173  | 173  | 0.01    | 0.01    | 0.28 | 175  |
| Vendor                    | < 0.005 | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | — | 66.0 | 66.0 | < 0.005 | 0.01    | 0.08 | 69.0 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | -       | _       | _    | -    | _       | _       | _       | -       | _       | _       | _       | - | _    | _    | _       | _       | _    | _    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.15 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | _ | 28.6 | 28.6 | < 0.005 | < 0.005 | 0.05 | 29.0 |
| Vendor                    | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 10.9 | 10.9 | < 0.005 | < 0.005 | 0.01 | 11.4 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.10. Building Construction (2025) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------|
| Onsite                    | —         | —    | —    | —    | —       | —     | —     | —     | —      | _      | —      | —    | —     | —     | —    | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           |      | _    |      |         |       |       |       |        |        | _      | _    |       | —     |      |         |      |       |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43  | —     | 0.43  | 0.40   | _      | 0.40   | -    | 2,398 | 2,398 | 0.10 | 0.02    | _    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _    | _    |      | _       | _     |       |       | _      |        | _      | _    |       |       |      |         | _    |       |
| Average<br>Daily          | _         | —    | -    | —    | —       | _     | _     | _     | —      | —      | -      | -    | —     | _     | _    | _       | _    | _     |
| Off-Road<br>Equipmen      | 0.24<br>t | 0.20 | 1.86 | 2.32 | < 0.005 | 0.08  | _     | 0.08  | 0.07   | _      | 0.07   | _    | 427   | 427   | 0.02 | < 0.005 | _    | 428   |

| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
|---------------------------|-----------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------|
| Annual                    | —         | —       | —    | —    | —       | —       | —       | —       | —       | —       | —       | — | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.04    | 0.34 | 0.42 | < 0.005 | 0.01    | —       | 0.01    | 0.01    | —       | 0.01    | — | 70.7  | 70.7  | < 0.005 | < 0.005 |      | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | _         | —       | —    | —    | —       | —       | _       | _       | —       | —       | —       | — | —     | —     | _       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) | _         | _       | -    | -    | _       | -       | -       | -       | -       | -       | _       | - | _     | _     | -       | _       |      | _     |
| Worker                    | 0.35      | 0.31    | 0.32 | 5.07 | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 1,007 | 1,007 | 0.04    | 0.03    | 3.69 | 1,022 |
| Vendor                    | 0.03      | 0.01    | 0.42 | 0.21 | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | — | 371   | 371   | 0.02    | 0.05    | 1.01 | 388   |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) | _         |         | -    | _    | _       | -       | -       | -       | -       | -       |         | _ | _     |       | -       |         |      | _     |
| Average<br>Daily          | —         | —       | _    | -    | _       | _       | -       | _       | _       | _       | _       | - | -     | _     | -       | —       | —    | -     |
| Worker                    | 0.06      | 0.05    | 0.07 | 0.80 | 0.00    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | — | 173   | 173   | 0.01    | 0.01    | 0.28 | 175   |
| Vendor                    | < 0.005   | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | — | 66.0  | 66.0  | < 0.005 | 0.01    | 0.08 | 69.0  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _     | _     | _       | _       | _    | _     |
| Worker                    | 0.01      | 0.01    | 0.01 | 0.15 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | _ | 28.6  | 28.6  | < 0.005 | < 0.005 | 0.05 | 29.0  |
| Vendor                    | < 0.005   | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 10.9  | 10.9  | < 0.005 | < 0.005 | 0.01 | 11.4  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
|                           |           |         |      |      |         |         |         |         |         |         |         |   |       |       |         |         |      |       |

### 3.11. Building Construction (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

PM10D PM10T PM2.5E PM2.5D PM2.5T TOG ROG NOx СО SO2 PM10E BCO2 NBCO2 CO2T CH4 N2O CO2e R Location

| Onsite                    | —         | —    | —    | —    | —       | —    | —    | —    | —       | —    | —    | — | —     | —     | —       | —       | —    | —     |
|---------------------------|-----------|------|------|------|---------|------|------|------|---------|------|------|---|-------|-------|---------|---------|------|-------|
| Daily,<br>Summer<br>(Max) | —         |      |      |      |         | _    | _    |      | _       |      |      | _ |       | —     |         |         |      | _     |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43 |      | 0.43 | 0.40    | —    | 0.40 | — | 2,398 | 2,398 | 0.10    | 0.02    |      | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) | —         |      |      |      |         |      |      |      | —       |      |      | _ |       |       |         |         |      |       |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43 | _    | 0.43 | 0.40    | —    | 0.40 | _ | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | —         |      | —    |      | —       |      |      |      | —       | —    | —    | — |       |       | —       |         |      | _     |
| Off-Road<br>Equipmen      | 0.24<br>t | 0.20 | 1.86 | 2.32 | < 0.005 | 0.08 |      | 0.08 | 0.07    | —    | 0.07 | _ | 427   | 427   | 0.02    | < 0.005 | —    | 428   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _    | _    | —    | _       | _    | —    | —    | _       | _    | _    | _ | _     | _     | _       | —       | _    | _     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.04 | 0.34 | 0.42 | < 0.005 | 0.01 | _    | 0.01 | 0.01    | _    | 0.01 | _ | 70.7  | 70.7  | < 0.005 | < 0.005 | _    | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | —         | —    | —    | _    | —       | _    | _    | _    | _       | -    | —    | — | _     | _     | -       | _       | _    | —     |
| Daily,<br>Summer<br>(Max) |           |      | —    | _    | _       |      |      | _    | _       | _    | —    |   |       |       | _       | _       |      | _     |
| Worker                    | 0.35      | 0.31 | 0.32 | 5.07 | 0.00    | 0.00 | 0.95 | 0.95 | 0.00    | 0.22 | 0.22 | _ | 1,007 | 1,007 | 0.04    | 0.03    | 3.69 | 1,022 |
| Vendor                    | 0.03      | 0.01 | 0.42 | 0.21 | < 0.005 | 0.01 | 0.10 | 0.11 | < 0.005 | 0.03 | 0.03 | _ | 371   | 371   | 0.02    | 0.05    | 1.01 | 388   |
| Hauling                   | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
|                           |           |      |      |      |         |      |      |      |         |      |      |   |       |       |         |         |      |       |

| Daily,<br>Winter<br>(Max) |         | _       | _    | _    | _       |         | _       | _       |         |         | -       |   |      |      |         |         |      |      |
|---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Worker                    | 0.35    | 0.31    | 0.35 | 4.30 | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 955  | 955  | 0.04    | 0.04    | 0.10 | 967  |
| Vendor                    | 0.03    | 0.01    | 0.44 | 0.21 | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | _ | 371  | 371  | 0.02    | 0.05    | 0.03 | 387  |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _       | _       | _    | -    | -       | —       | _       | _       | —       | _       | _       | _ | _    | _    | _       |         |      | _    |
| Worker                    | 0.06    | 0.05    | 0.07 | 0.80 | 0.00    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | _ | 173  | 173  | 0.01    | 0.01    | 0.28 | 175  |
| Vendor                    | < 0.005 | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | _ | 66.0 | 66.0 | < 0.005 | 0.01    | 0.08 | 69.0 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.15 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | _ | 28.6 | 28.6 | < 0.005 | < 0.005 | 0.05 | 29.0 |
| Vendor                    | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 10.9 | 10.9 | < 0.005 | < 0.005 | 0.01 | 11.4 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.12. Building Construction (2025) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|---------------------------|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Onsite                    | —         | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     |       | —    | —    | —    | —     |
| Daily,<br>Summer<br>(Max) |           | _    | _    |      | _    |       |       |       | _      |        |        |      |       |       | _    |      |      | —     |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02 | 0.43  | —     | 0.43  | 0.40   |        | 0.40   | —    | 2,398 | 2,398 | 0.10 | 0.02 |      | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | —    | _    |      | _    |       | _     |       | _      |        |        |      |       |       | _    |      |      |       |

| Off-Road<br>Equipmen      | 1.35<br>t | 1.13    | 10.4 | 13.0 | 0.02    | 0.43    | -    | 0.43 | 0.40    |         | 0.40 | — | 2,398 | 2,398 | 0.10    | 0.02    |      | 2,406 |
|---------------------------|-----------|---------|------|------|---------|---------|------|------|---------|---------|------|---|-------|-------|---------|---------|------|-------|
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | —         | _       | -    | -    | —       | _       | -    | —    | _       | _       | —    | _ |       | -     | _       | _       | _    | -     |
| Off-Road<br>Equipmen      | 0.24<br>t | 0.20    | 1.86 | 2.32 | < 0.005 | 0.08    | —    | 0.08 | 0.07    |         | 0.07 | — | 427   | 427   | 0.02    | < 0.005 |      | 428   |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | —         | _       | —    | —    | —       | _       | —    | —    | —       | _       | —    | — | _     | —     | —       | —       | _    | —     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.04    | 0.34 | 0.42 | < 0.005 | 0.01    | —    | 0.01 | 0.01    |         | 0.01 | _ | 70.7  | 70.7  | < 0.005 | < 0.005 |      | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | —         | _       | —    | -    | -       | —       | —    | _    | —       | _       | —    | — | _     | —     | —       | -       | _    | —     |
| Daily,<br>Summer<br>(Max) |           |         | _    | _    | _       |         | _    | _    | _       |         | _    |   |       | _     |         |         |      | _     |
| Worker                    | 0.35      | 0.31    | 0.32 | 5.07 | 0.00    | 0.00    | 0.95 | 0.95 | 0.00    | 0.22    | 0.22 | — | 1,007 | 1,007 | 0.04    | 0.03    | 3.69 | 1,022 |
| Vendor                    | 0.03      | 0.01    | 0.42 | 0.21 | < 0.005 | 0.01    | 0.10 | 0.11 | < 0.005 | 0.03    | 0.03 | — | 371   | 371   | 0.02    | 0.05    | 1.01 | 388   |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           |         | _    | _    | _       |         | _    | -    | _       | —       | _    |   |       | _     |         |         |      | —     |
| Worker                    | 0.35      | 0.31    | 0.35 | 4.30 | 0.00    | 0.00    | 0.95 | 0.95 | 0.00    | 0.22    | 0.22 | — | 955   | 955   | 0.04    | 0.04    | 0.10 | 967   |
| Vendor                    | 0.03      | 0.01    | 0.44 | 0.21 | < 0.005 | 0.01    | 0.10 | 0.11 | < 0.005 | 0.03    | 0.03 | — | 371   | 371   | 0.02    | 0.05    | 0.03 | 387   |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | —         | _       | -    | -    | -       | —       | -    | -    | —       | _       | -    | — | _     | -     | -       | —       | _    | -     |
| Worker                    | 0.06      | 0.05    | 0.07 | 0.80 | 0.00    | 0.00    | 0.17 | 0.17 | 0.00    | 0.04    | 0.04 | _ | 173   | 173   | 0.01    | 0.01    | 0.28 | 175   |
| Vendor                    | < 0.005   | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 66.0  | 66.0  | < 0.005 | 0.01    | 0.08 | 69.0  |
|                           |           |         |      |      |         |         |      |      |         |         |      |   |       |       |         |         |      |       |

| Hauling | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|---------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Annual  | —       | —       | —    | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Worker  | 0.01    | 0.01    | 0.01 | 0.15 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | — | 28.6 | 28.6 | < 0.005 | < 0.005 | 0.05 | 29.0 |
| Vendor  | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 10.9 | 10.9 | < 0.005 | < 0.005 | 0.01 | 11.4 |
| Hauling | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.13. Building Construction (2025) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | _         | _    | _    | _    | _       | _       | _     | -       | _       | _      | _       | -    | _     | _     | -       | _       | -    | _     |
| Daily,<br>Summer<br>(Max) |           |      |      | _    | _       |         |       | —       |         |        |         | _    |       | _     | _       |         | _    | _     |
| Daily,<br>Winter<br>(Max) |           |      |      |      |         |         |       | _       |         |        |         |      |       |       | _       |         |      | —     |
| Off-Road<br>Equipmen      | 1.35<br>t | 1.13 | 10.4 | 13.0 | 0.02    | 0.43    |       | 0.43    | 0.40    | —      | 0.40    | —    | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | —         |      | _    | —    | —       |         | _     | —       |         | _      | _       | _    |       | —     | —       | _       | —    | —     |
| Off-Road<br>Equipmen      | 0.08<br>t | 0.07 | 0.63 | 0.79 | < 0.005 | 0.03    |       | 0.03    | 0.02    |        | 0.02    | —    | 145   | 145   | 0.01    | < 0.005 | —    | 146   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    |           | —    | —    | —    | —       | —       | —     | _       | —       | —      | —       | -    | —     | _     | -       | —       | —    | _     |
| Off-Road<br>Equipmen      | 0.01<br>t | 0.01 | 0.12 | 0.14 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 | —    | 24.1  | 24.1  | < 0.005 | < 0.005 | —    | 24.2  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |

| Offsite                   | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | _    | —       | —       | _       | —    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Daily,<br>Summer<br>(Max) |         | _       |         |         |         |         |         |         |         | _       |         | _ | _    |      |         |         |         |      |
| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       |         |         | _       |         | _       | _       | _       | _ | _    |      |         |         |         | —    |
| Worker                    | 0.35    | 0.31    | 0.35    | 4.30    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 955  | 955  | 0.04    | 0.04    | 0.10    | 967  |
| Vendor                    | 0.03    | 0.01    | 0.44    | 0.21    | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | — | 371  | 371  | 0.02    | 0.05    | 0.03    | 387  |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | —       | —       | —       | —       | —       | —       | —       | -       | —       | —       | - | —    | —    | —       | _       | _       | —    |
| Worker                    | 0.02    | 0.02    | 0.02    | 0.27    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | — | 58.8 | 58.8 | < 0.005 | < 0.005 | 0.10    | 59.6 |
| Vendor                    | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | — | 22.5 | 22.5 | < 0.005 | < 0.005 | 0.03    | 23.5 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | _       | —       | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 9.73 | 9.73 | < 0.005 | < 0.005 | 0.02    | 9.86 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.73 | 3.73 | < 0.005 | < 0.005 | < 0.005 | 3.89 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

### 3.14. Building Construction (2025) - Mitigated

| Location                  | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite                    | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Summer<br>(Max) |     | _   |     |    | _   |       |       |       |        |        |        |      | —     |      |     | _   |   |      |
| Daily,<br>Winter<br>(Max) |     | _   |     | _  | _   |       |       |       |        |        |        | _    |       |      |     | _   | _ |      |

| Off-Road<br>Equipmen      | 1.35<br>t | 1.13    | 10.4    | 13.0 | 0.02    | 0.43    | -    | 0.43    | 0.40    | _       | 0.40    | — | 2,398 | 2,398 | 0.10    | 0.02    | —    | 2,406 |
|---------------------------|-----------|---------|---------|------|---------|---------|------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------|
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           |         | -       | -    | _       | _       | -    | _       | _       | _       | —       | _ | _     | _     | _       | _       | _    | _     |
| Off-Road<br>Equipmen      | 0.08<br>t | 0.07    | 0.63    | 0.79 | < 0.005 | 0.03    | -    | 0.03    | 0.02    | —       | 0.02    | — | 145   | 145   | 0.01    | < 0.005 | —    | 146   |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | —         | —       | —       | —    | —       | _       | —    | —       | _       | _       | —       | — | _     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.01<br>t | 0.01    | 0.12    | 0.14 | < 0.005 | < 0.005 | -    | < 0.005 | < 0.005 | —       | < 0.005 | — | 24.1  | 24.1  | < 0.005 | < 0.005 | —    | 24.2  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | —         | —       | —       | —    | —       | —       | —    | —       | —       | —       | —       | — | —     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           |         | _       | -    | _       |         | _    | _       |         |         |         |   |       |       |         | _       |      |       |
| Daily,<br>Winter<br>(Max) | _         |         | -       | -    | -       |         | -    | -       |         |         | —       |   |       | _     | _       | -       | _    |       |
| Worker                    | 0.35      | 0.31    | 0.35    | 4.30 | 0.00    | 0.00    | 0.95 | 0.95    | 0.00    | 0.22    | 0.22    | — | 955   | 955   | 0.04    | 0.04    | 0.10 | 967   |
| Vendor                    | 0.03      | 0.01    | 0.44    | 0.21 | < 0.005 | 0.01    | 0.10 | 0.11    | < 0.005 | 0.03    | 0.03    | — | 371   | 371   | 0.02    | 0.05    | 0.03 | 387   |
| Hauling                   | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           | _       | -       | -    | -       | _       | -    | -       | —       | —       | —       | _ | —     | _     | -       | -       | —    | _     |
| Worker                    | 0.02      | 0.02    | 0.02    | 0.27 | 0.00    | 0.00    | 0.06 | 0.06    | 0.00    | 0.01    | 0.01    | — | 58.8  | 58.8  | < 0.005 | < 0.005 | 0.10 | 59.6  |
| Vendor                    | < 0.005   | < 0.005 | 0.03    | 0.01 | < 0.005 | < 0.005 | 0.01 | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 22.5  | 22.5  | < 0.005 | < 0.005 | 0.03 | 23.5  |
| Hauling                   | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _       | _       | _    | _       | _       | _    | _       | _       | _       | —       | _ | _     | _     | _       | _       | _    | _     |
| Worker                    | < 0.005   | < 0.005 | < 0.005 | 0.05 | 0.00    | 0.00    | 0.01 | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 9.73  | 9.73  | < 0.005 | < 0.005 | 0.02 | 9.86  |
|                           |           |         |         | 0    |         |         |      |         | -       |         |         |   |       |       |         | 0       |      |       |

| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 3.73 | 3.73 | < 0.005 | < 0.005 | < 0.005 | 3.89 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.15. Building Construction (2026) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | —         | —    | —    | —    | —       | —     | —     | —     | —      | _      | —      | —    | —     | _     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           | —    | -    | -    | -       | _     | _     | -     | -      | —      | -      | -    | -     |       | _       | —       | -    |       |
| Daily,<br>Winter<br>(Max) |           | _    | _    | _    | _       |       |       | _     | _      |        | _      | _    | _     |       | _       |         | _    | —     |
| Off-Road<br>Equipmen      | 1.28<br>t | 1.07 | 9.85 | 13.0 | 0.02    | 0.38  | —     | 0.38  | 0.35   |        | 0.35   | _    | 2,397 | 2,397 | 0.10    | 0.02    | —    | 2,405 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           | —    | —    | —    | —       | —     | —     | —     | —      |        | —      | —    | —     |       | —       | —       | —    |       |
| Off-Road<br>Equipmen      | 0.15<br>t | 0.12 | 1.14 | 1.50 | < 0.005 | 0.04  | —     | 0.04  | 0.04   |        | 0.04   | —    | 277   | 277   | 0.01    | < 0.005 | —    | 278   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | —         | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —     | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.03<br>t | 0.02 | 0.21 | 0.27 | < 0.005 | 0.01  | —     | 0.01  | 0.01   |        | 0.01   | —    | 45.8  | 45.8  | < 0.005 | < 0.005 | —    | 46.0  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | —         | —    | —    | —    | —       | —     | —     | —     | —      | _      | —      | —    | —     | _     | —       | —       | —    | _     |
| Daily,<br>Summer<br>(Max) |           |      | _    |      |         |       |       | _     | _      |        | _      |      | _     |       |         |         | _    |       |

| Daily,<br>Winter<br>(Max) |         | -       | -    | _       | _       |         | -       |         |         |         |         |   |      | _    |         |         |      |      |
|---------------------------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Worker                    | 0.30    | 0.27    | 0.32 | 4.02    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 936  | 936  | 0.04    | 0.03    | 0.09 | 947  |
| Vendor                    | 0.03    | 0.01    | 0.42 | 0.20    | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | _ | 365  | 365  | 0.02    | 0.05    | 0.03 | 380  |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _       | _       | _    | _       | _       | —       | —       | —       | —       | —       | _       | _ | —    |      | _       | _       |      | _    |
| Worker                    | 0.03    | 0.03    | 0.04 | 0.49    | 0.00    | 0.00    | 0.11    | 0.11    | 0.00    | 0.03    | 0.03    | _ | 110  | 110  | < 0.005 | < 0.005 | 0.17 | 111  |
| Vendor                    | < 0.005 | < 0.005 | 0.05 | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 42.1 | 42.1 | < 0.005 | 0.01    | 0.05 | 44.0 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.09    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 18.2 | 18.2 | < 0.005 | < 0.005 | 0.03 | 18.4 |
| Vendor                    | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 6.97 | 6.97 | < 0.005 | < 0.005 | 0.01 | 7.28 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.16. Building Construction (2026) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|---------------------------|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Onsite                    | —         | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    |       | —     | —    | —    | —    | —     |
| Daily,<br>Summer<br>(Max) | —         | _    | _    | _    | _    |       | _     |       |        |        |        | _    |       |       |      | _    |      |       |
| Daily,<br>Winter<br>(Max) | —         | _    | _    | _    |      |       |       |       |        |        |        |      |       |       |      | _    |      |       |
| Off-Road<br>Equipmen      | 1.28<br>t | 1.07 | 9.85 | 13.0 | 0.02 | 0.38  | —     | 0.38  | 0.35   | —      | 0.35   | —    | 2,397 | 2,397 | 0.10 | 0.02 | _    | 2,405 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |

| Average<br>Daily          | —         | —       | —    | —       | —       | —       | —       |         |         | —       | —       | — | —    |      | —       | —       | _    | —    |
|---------------------------|-----------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Off-Road<br>Equipmen      | 0.15<br>t | 0.12    | 1.14 | 1.50    | < 0.005 | 0.04    | _       | 0.04    | 0.04    | —       | 0.04    | _ | 277  | 277  | 0.01    | < 0.005 | _    | 278  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —         | _       | —    | -       | —       | —       | —       | _       | _       | -       | —       | _ | —    | —    | _       | _       | _    | —    |
| Off-Road<br>Equipmen      | 0.03<br>t | 0.02    | 0.21 | 0.27    | < 0.005 | 0.01    |         | 0.01    | 0.01    | —       | 0.01    |   | 45.8 | 45.8 | < 0.005 | < 0.005 |      | 46.0 |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _         | _       | _    | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |           |         | —    | _       | _       |         |         |         |         | _       |         |   |      |      |         |         |      |      |
| Daily,<br>Winter<br>(Max) |           |         | —    | _       |         |         |         |         |         | _       |         |   |      |      |         |         |      |      |
| Worker                    | 0.30      | 0.27    | 0.32 | 4.02    | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | _ | 936  | 936  | 0.04    | 0.03    | 0.09 | 947  |
| Vendor                    | 0.03      | 0.01    | 0.42 | 0.20    | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | _ | 365  | 365  | 0.02    | 0.05    | 0.03 | 380  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _         | _       | -    | —       | —       | _       |         | _       |         | —       | _       |   | _    |      | _       |         |      |      |
| Worker                    | 0.03      | 0.03    | 0.04 | 0.49    | 0.00    | 0.00    | 0.11    | 0.11    | 0.00    | 0.03    | 0.03    | _ | 110  | 110  | < 0.005 | < 0.005 | 0.17 | 111  |
| Vendor                    | < 0.005   | < 0.005 | 0.05 | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 42.1 | 42.1 | < 0.005 | 0.01    | 0.05 | 44.0 |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _         | _       | _    | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Worker                    | 0.01      | 0.01    | 0.01 | 0.09    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 18.2 | 18.2 | < 0.005 | < 0.005 | 0.03 | 18.4 |
| Vendor                    | < 0.005   | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 6.97 | 6.97 | < 0.005 | < 0.005 | 0.01 | 7.28 |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|                           |           |         |      |         |         |         |         |         |         |         |         |   |      |      |         |         |      |      |

# 3.17. Building Construction (2026) - Unmitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E  | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|---------|--------|--------|------|-------|-------|---------|---------|------|-------|
| Onsite                    | —         | —    | —    | —    | —       | _     | —     | —     | —       | —      | —      | —    | —     | —     | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) | —         | —    |      |      | _       |       | _     | _     | _       |        | _      | _    |       | _     | _       |         |      |       |
| Off-Road<br>Equipmen      | 1.28<br>t | 1.07 | 9.85 | 13.0 | 0.02    | 0.38  | —     | 0.38  | 0.35    | —      | 0.35   | —    | 2,397 | 2,397 | 0.10    | 0.02    |      | 2,405 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _    | _    |      | _       |       | -     | -     | -       | _      | _      | _    | _     | -     | _       | _       |      |       |
| Average<br>Daily          |           | _    | —    | _    | _       | —     | —     | -     | —       | —      | —      | _    | —     | —     | —       | _       | _    | —     |
| Off-Road<br>Equipmen      | 0.23<br>t | 0.19 | 1.75 | 2.31 | < 0.005 | 0.07  | —     | 0.07  | 0.06    | —      | 0.06   | —    | 427   | 427   | 0.02    | < 0.005 | —    | 428   |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | —         | _    | —    | —    | —       | —     | —     | -     | —       | —      | —      | -    | —     | —     | —       | -       | —    | _     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.03 | 0.32 | 0.42 | < 0.005 | 0.01  | —     | 0.01  | 0.01    | —      | 0.01   | —    | 70.7  | 70.7  | < 0.005 | < 0.005 | —    | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   |           | —    | —    | —    | —       | —     | —     | —     | —       | —      | —      | —    | —     | —     | —       | —       | —    | _     |
| Daily,<br>Summer<br>(Max) |           | _    | _    |      | -       |       | -     | -     | -       | _      | _      | -    | _     | -     | -       | _       |      | _     |
| Worker                    | 0.30      | 0.27 | 0.28 | 4.71 | 0.00    | 0.00  | 0.95  | 0.95  | 0.00    | 0.22   | 0.22   | _    | 987   | 987   | 0.04    | 0.03    | 3.34 | 1,002 |
| Vendor                    | 0.03      | 0.01 | 0.40 | 0.19 | < 0.005 | 0.01  | 0.10  | 0.11  | < 0.005 | 0.03   | 0.03   | _    | 364   | 364   | 0.02    | 0.05    | 0.98 | 381   |
| Hauling                   | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   | 0.00   | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |

| Daily,<br>Winter<br>(Max) | -       | -       | -    | -    | -       | -       |         | -       |         | -       |         | - | -    |      | -       |         | -    |      |
|---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Average<br>Daily          | _       | _       | _    | _    | _       | _       | —       | _       | _       | _       | _       | _ | _    | —    | _       | _       | -    | _    |
| Worker                    | 0.05    | 0.05    | 0.06 | 0.75 | 0.00    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | — | 169  | 169  | 0.01    | 0.01    | 0.26 | 171  |
| Vendor                    | < 0.005 | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | — | 64.9 | 64.9 | < 0.005 | 0.01    | 0.08 | 67.8 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | _    | -    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.14 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | _ | 28.0 | 28.0 | < 0.005 | < 0.005 | 0.04 | 28.4 |
| Vendor                    | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 10.7 | 10.7 | < 0.005 | < 0.005 | 0.01 | 11.2 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.18. Building Construction (2026) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O     | R    | CO2e  |
|---------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------|
| Onsite                    | —         | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | _     | —    | —       | —    | —     |
| Daily,<br>Summer<br>(Max) |           | —    | -    | _    | _       | _     | _     |       | _      | _      | _      | _    | _     |       | _    |         | _    | —     |
| Off-Road<br>Equipmen      | 1.28<br>t | 1.07 | 9.85 | 13.0 | 0.02    | 0.38  | -     | 0.38  | 0.35   | -      | 0.35   | -    | 2,397 | 2,397 | 0.10 | 0.02    | -    | 2,405 |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _    | -    | _    | -       | _     | _     | _     | _      | _      | _      | _    | -     |       | _    | _       | -    |       |
| Average<br>Daily          | _         | —    | _    | -    | —       | -     | —     | —     | —      | -      | -      | -    | —     | —     | —    | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.23<br>t | 0.19 | 1.75 | 2.31 | < 0.005 | 0.07  | _     | 0.07  | 0.06   | -      | 0.06   | _    | 427   | 427   | 0.02 | < 0.005 | _    | 428   |

| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00  |
|---------------------------|-----------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|-------|
| Annual                    | —         | —       | —    | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —     |
| Off-Road<br>Equipmen      | 0.04<br>t | 0.03    | 0.32 | 0.42 | < 0.005 | 0.01    | —       | 0.01    | 0.01    | —       | 0.01    |   | 70.7 | 70.7 | < 0.005 | < 0.005 | —    | 70.9  |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | _         | —       | —    | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —     |
| Daily,<br>Summer<br>(Max) | _         | _       | -    | -    | -       | _       | _       | _       |         |         |         | _ | _    |      | -       |         | _    | -     |
| Worker                    | 0.30      | 0.27    | 0.28 | 4.71 | 0.00    | 0.00    | 0.95    | 0.95    | 0.00    | 0.22    | 0.22    | — | 987  | 987  | 0.04    | 0.03    | 3.34 | 1,002 |
| Vendor                    | 0.03      | 0.01    | 0.40 | 0.19 | < 0.005 | 0.01    | 0.10    | 0.11    | < 0.005 | 0.03    | 0.03    | — | 364  | 364  | 0.02    | 0.05    | 0.98 | 381   |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max) |           | _       | -    | -    | -       | _       | -       | -       | _       | _       |         | _ | _    | _    | -       | _       | _    | -     |
| Average<br>Daily          | —         | —       | _    | _    | _       | —       | _       | _       | _       | —       | _       | — | —    | _    | -       | _       | —    | -     |
| Worker                    | 0.05      | 0.05    | 0.06 | 0.75 | 0.00    | 0.00    | 0.17    | 0.17    | 0.00    | 0.04    | 0.04    | _ | 169  | 169  | 0.01    | 0.01    | 0.26 | 171   |
| Vendor                    | < 0.005   | < 0.005 | 0.08 | 0.04 | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | _ | 64.9 | 64.9 | < 0.005 | 0.01    | 0.08 | 67.8  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _         | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _     |
| Worker                    | 0.01      | 0.01    | 0.01 | 0.14 | 0.00    | 0.00    | 0.03    | 0.03    | 0.00    | 0.01    | 0.01    | _ | 28.0 | 28.0 | < 0.005 | < 0.005 | 0.04 | 28.4  |
| Vendor                    | < 0.005   | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 10.7 | 10.7 | < 0.005 | < 0.005 | 0.01 | 11.2  |
| Hauling                   | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00  |
|                           |           |         |      |      |         |         |         |         |         |         |         |   |      |      |         |         |      |       |

### 3.19. Paving (2024) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

PM10D PM10T PM2.5E PM2.5D PM2.5T TOG ROG NOx СО SO2 PM10E BCO2 NBCO2 CO2T CH4 N2O CO2e Location R

| Onsite                    | —         | _       | —    | —    | —       | _    | —    | —    | —    | —    | —    | — | —     | —     | —       | —       | —    | _     |
|---------------------------|-----------|---------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------|
| Daily,<br>Summer<br>(Max) |           | _       |      |      |         | _    | _    |      | _    |      |      | _ |       |       |         |         |      | _     |
| Daily,<br>Winter<br>(Max) |           | —       |      |      |         | —    |      |      |      |      |      | _ |       |       |         |         |      | —     |
| Off-Road<br>Equipmen      | 1.01<br>t | 0.85    | 7.81 | 10.0 | 0.01    | 0.39 | —    | 0.39 | 0.36 | —    | 0.36 | — | 1,512 | 1,512 | 0.06    | 0.01    | _    | 1,517 |
| Paving                    | —         | 0.11    | —    | —    | _       | —    | —    | —    | —    | —    | —    | — | —     | —     | —       | —       | —    | _     |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          |           | _       |      | _    |         | —    |      | —    | _    | _    | _    | _ |       | _     | _       | _       |      | _     |
| Off-Road<br>Equipmen      | 0.09<br>t | 0.08    | 0.73 | 0.93 | < 0.005 | 0.04 |      | 0.04 | 0.03 | _    | 0.03 | — | 141   | 141   | 0.01    | < 0.005 |      | 141   |
| Paving                    |           | 0.01    | _    | _    | _       | —    |      | _    | _    | _    | _    | _ | _     | _     | _       | _       | _    | _     |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    |           | —       | —    | —    | _       | —    |      | —    | —    | —    | —    | — | —     | —     | —       | —       | —    | _     |
| Off-Road<br>Equipmen      | 0.02<br>t | 0.01    | 0.13 | 0.17 | < 0.005 | 0.01 | _    | 0.01 | 0.01 | _    | 0.01 | — | 23.3  | 23.3  | < 0.005 | < 0.005 |      | 23.4  |
| Paving                    | —         | < 0.005 | —    | —    | _       | —    | —    | —    | —    | —    | —    | — | —     | —     | —       | —       | —    | _     |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | —         | —       | —    | —    | _       | —    | —    | —    | —    | —    | —    | — | —     | —     | —       | —       | —    | _     |
| Daily,<br>Summer<br>(Max) |           | _       |      |      |         | —    |      |      | —    |      |      |   |       |       |         |         |      |       |
| Daily,<br>Winter<br>(Max) |           |         |      |      |         |      |      |      |      |      |      | _ |       |       |         |         |      |       |
| Worker                    | 0.07      | 0.07    | 0.08 | 0.96 | 0.00    | 0.00 | 0.20 | 0.20 | 0.00 | 0.05 | 0.05 | — | 201   | 201   | 0.01    | 0.01    | 0.02 | 203   |

| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|------|------|
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily | _       | —       | -       | -    | —    | —    | -       | -       | —    | —       | —       | — | -    | —    | -       | _       | -    | —    |
| Worker           | 0.01    | 0.01    | 0.01    | 0.09 | 0.00 | 0.00 | 0.02    | 0.02    | 0.00 | < 0.005 | < 0.005 | — | 19.0 | 19.0 | < 0.005 | < 0.005 | 0.03 | 19.2 |
| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual           | —       | —       | —       | —    | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | -       | —       | —    | —    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 3.14 | 3.14 | < 0.005 | < 0.005 | 0.01 | 3.18 |
| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

# 3.20. Paving (2024) - Mitigated

| Location                  | TOG       | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
|---------------------------|-----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------|
| Onsite                    | _         | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     | —     | —    | —    | —    | —     |
| Daily,<br>Summer<br>(Max) | —         | _    |      | _    |      |       |       |       |        |        |        |      |       |       |      |      |      | —     |
| Daily,<br>Winter<br>(Max) | _         | _    |      | _    |      |       |       |       |        |        |        |      |       |       |      |      |      | —     |
| Off-Road<br>Equipmen      | 1.01<br>t | 0.85 | 7.81 | 10.0 | 0.01 | 0.39  |       | 0.39  | 0.36   |        | 0.36   | —    | 1,512 | 1,512 | 0.06 | 0.01 |      | 1,517 |
| Paving                    | —         | 0.11 | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     | —     | —    | —    | —    | —     |
| Onsite<br>truck           | 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |
| Average<br>Daily          |           | _    | _    | _    |      | _     |       |       |        |        |        | _    |       |       |      |      |      |       |

| Off-Road<br>Equipmen      | 0.09<br>t | 0.08    | 0.73    | 0.93 | < 0.005 | 0.04 | —       | 0.04    | 0.03 | —       | 0.03    | — | 141  | 141  | 0.01    | < 0.005 | —    | 141  |
|---------------------------|-----------|---------|---------|------|---------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|------|------|
| Paving                    |           | 0.01    | _       | -    | _       | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    |           | _       | _       | _    | _       | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      | 0.02<br>t | 0.01    | 0.13    | 0.17 | < 0.005 | 0.01 | _       | 0.01    | 0.01 | _       | 0.01    | — | 23.3 | 23.3 | < 0.005 | < 0.005 | —    | 23.4 |
| Paving                    |           | < 0.005 | _       | _    | _       | _    | _       | _       | _    | _       | _       | — | —    | —    | —       | _       | —    | _    |
| Onsite<br>truck           | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   |           | _       | _       | _    | _       | _    | _       | _       | _    | _       | —       | — | —    | —    | —       | _       | —    | _    |
| Daily,<br>Summer<br>(Max) | _         | _       | -       | -    | -       | -    | -       | -       | _    | -       | _       | _ | _    | _    | -       | _       | _    | _    |
| Daily,<br>Winter<br>(Max) |           | _       | -       | _    | -       | -    | -       | -       | -    | -       | -       | - | -    | -    | -       | -       | -    | _    |
| Worker                    | 0.07      | 0.07    | 0.08    | 0.96 | 0.00    | 0.00 | 0.20    | 0.20    | 0.00 | 0.05    | 0.05    | — | 201  | 201  | 0.01    | 0.01    | 0.02 | 203  |
| Vendor                    | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          |           |         | —       | —    |         | —    | —       | —       | —    | —       | —       |   | —    | —    | —       |         | —    |      |
| Worker                    | 0.01      | 0.01    | 0.01    | 0.09 | 0.00    | 0.00 | 0.02    | 0.02    | 0.00 | < 0.005 | < 0.005 | — | 19.0 | 19.0 | < 0.005 | < 0.005 | 0.03 | 19.2 |
| Vendor                    | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    |           | —       | —       | —    | —       | —    | —       | —       | —    | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Worker                    | < 0.005   | < 0.005 | < 0.005 | 0.02 | 0.00    | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 3.14 | 3.14 | < 0.005 | < 0.005 | 0.01 | 3.18 |
| Vendor                    | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00      | 0.00    | 0.00    | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|                           |           |         |         |      |         |      |         |         |      |         |         |   |      |      |         |         |      |      |

# 3.21. Architectural Coating (2025) - Unmitigated

| Location                      | TOG          | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------|--------------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                        | _            | —       | —    | —    | _       | —       | —     | _       | _       | —      | _       | —    | —     | —    | —       | _       | _    | _    |
| Daily,<br>Summer<br>(Max)     | _            | _       |      |      |         | —       |       |         |         |        | _       |      |       | _    |         |         |      |      |
| Daily,<br>Winter<br>(Max)     | _            | —       |      | _    |         |         |       |         |         |        | _       | _    |       | —    |         |         |      | _    |
| Off-Road<br>Equipmen          | 0.15<br>t    | 0.13    | 0.88 | 1.14 | < 0.005 | 0.03    | —     | 0.03    | 0.03    |        | 0.03    | —    | 134   | 134  | 0.01    | < 0.005 |      | 134  |
| Architect<br>ural<br>Coatings | _            | 6.04    |      |      |         | —       |       |         |         |        | _       |      |       | _    |         |         |      | —    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              | —            | —       |      | _    |         |         | —     | _       |         |        | —       | —    |       | _    |         |         | —    |      |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.05 | 0.07 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | _      | < 0.005 | —    | 7.68  | 7.68 | < 0.005 | < 0.005 | —    | 7.71 |
| Architect<br>ural<br>Coatings | _            | 0.35    |      |      |         | —       |       |         |         |        | _       |      |       | _    |         |         |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        |              | —       | _    | _    | —       | _       | —     | _       | —       | _      | —       | -    | —     | —    | —       | _       | —    | _    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | _    | 1.27  | 1.27 | < 0.005 | < 0.005 | _    | 1.28 |
| Architect<br>ural<br>Coatings |              | 0.06    |      |      |         |         | _     |         | _       | _      | _       | _    |       |      |         |         |      |      |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Offsite                   | —       | —       | —       | —    | —    | —    | _       | _       | —    | _       | —       | — | —    | —    | —       | —       | —       | —    |
| Daily,<br>Summer<br>(Max) | —       | _       | _       | _    | _    | _    | _       | -       | _    | _       | —       | — | _    | —    | -       | —       | —       | —    |
| Daily,<br>Winter<br>(Max) | _       | _       | _       |      | _    | —    | -       | _       | _    | _       | _       | — | _    | _    | -       | _       | _       | —    |
| Worker                    | 0.07    | 0.06    | 0.07    | 0.88 | 0.00 | 0.00 | 0.20    | 0.20    | 0.00 | 0.05    | 0.05    | — | 197  | 197  | 0.01    | 0.01    | 0.02    | 199  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | _       | -       | _    | -    | —    | —       | _       | _    | —       | -       | - | _    | -    | —       | —       | -       | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 11.5 | 11.5 | < 0.005 | < 0.005 | 0.02    | 11.6 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | -       | _       | _       | -    | _    | -    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.90 | 1.90 | < 0.005 | < 0.005 | < 0.005 | 1.93 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.22. Architectural Coating (2025) - Mitigated

| Location                  | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite                    | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Summer<br>(Max) |     |     |     | _  | -   |       |       | _     |        |        |        |      |       |      | _   | _   |   |      |

| _            | —       | —                                                                                                                                                                                                                                                                                                                                                    | —                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _       | — |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.15<br>t    | 0.13    | 0.88                                                                                                                                                                                                                                                                                                                                                 | 1.14                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —                       | 0.03    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03    | — | 134  | 134  | 0.01                                                                                                                                                                                                        | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                           | 134                                                                                                                                                                                                                                                                                                                                                                                |
|              | 6.04    |                                                                                                                                                                                                                                                                                                                                                      | _                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | _ |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00         | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                    | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00    | — | 0.00 | 0.00 | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                               |
|              | _       | —                                                                                                                                                                                                                                                                                                                                                    | —                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | — |      | —    |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.01<br>t    | 0.01    | 0.05                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                       | < 0.005 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.005 | — | 7.68 | 7.68 | < 0.005                                                                                                                                                                                                     | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                           | 7.71                                                                                                                                                                                                                                                                                                                                                                               |
|              | 0.35    |                                                                                                                                                                                                                                                                                                                                                      | -                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | _ |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.00         | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                    | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00    | — | 0.00 | 0.00 | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                               |
| —            | _       | -                                                                                                                                                                                                                                                                                                                                                    | -                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                       | _       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _       | _ | _    | —    | _                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                  |
| < 0.005<br>t | < 0.005 | 0.01                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                           | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                       | < 0.005 | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.005 | - | 1.27 | 1.27 | < 0.005                                                                                                                                                                                                     | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                           | 1.28                                                                                                                                                                                                                                                                                                                                                                               |
|              | 0.06    | -                                                                                                                                                                                                                                                                                                                                                    | -                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _       | - |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00         | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                    | 0.00    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00    | — | 0.00 | 0.00 | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                               |
| —            | —       | —                                                                                                                                                                                                                                                                                                                                                    | —                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                       | —       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —       | — | —    | —    | —                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —                                                                                                                                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                  |
| —            | —       |                                                                                                                                                                                                                                                                                                                                                      | _                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |   |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |
|              |         | _                                                                                                                                                                                                                                                                                                                                                    | _                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | _ |      |      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.07         | 0.06    | 0.07                                                                                                                                                                                                                                                                                                                                                 | 0.88                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                    | 0.20    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05    | — | 197  | 197  | 0.01                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                        | 199                                                                                                                                                                                                                                                                                                                                                                                |
|              |         | 0.15  0.13     6.04    0.00  0.00        0.01  0.01    0.01  0.01    0.01  0.01    0.01  0.01    0.01  0.01    0.00  0.00    0.00  0.00     -    4  0.005    0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00     -    4  0.00    0.00  0.00    0.00  0.00    0.00  0.00     -     -     -     -     -     -     -     -     -     -     -     - | 0.130.88-6.040.000.000.000.010.050.010.010.050.010.000.000.00< | Image: series of the series | Image: series of the series | 0.150.130.881.14< 0.005 |         | Image: series of the series | Image: series of the series |         |   |      |      | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. <td>nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn</td> <td>A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.</td> | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. |

| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily | —       | -       | —       | -    | _    | —    | —       | —       | —    | —       | —       | — | —    | —    | -       | _       | -       | —    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 11.5 | 11.5 | < 0.005 | < 0.005 | 0.02    | 11.6 |
| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual           | —       | —       | —       | -    | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | -       | —       | —       | —    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 1.90 | 1.90 | < 0.005 | < 0.005 | < 0.005 | 1.93 |
| Vendor           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.23. Architectural Coating (2025) - Unmitigated

| Location                      | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
|-------------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|------|------|
| Onsite                        | _         | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —       | —    | _    |
| Daily,<br>Summer<br>(Max)     | _         | _    |      | _    |         |       |       | _     |        |        |        | _    |       |      |      | _       |      | _    |
| Off-Road<br>Equipmen          | 0.15<br>t | 0.13 | 0.88 | 1.14 | < 0.005 | 0.03  | _     | 0.03  | 0.03   | —      | 0.03   | —    | 134   | 134  | 0.01 | < 0.005 | —    | 134  |
| Architect<br>ural<br>Coatings |           | 5.51 |      | _    |         |       |       | _     |        |        |        | _    |       | _    |      | _       | _    |      |
| Onsite<br>truck               | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     | _         | -    | _    | -    | _       | _     |       | -     | _      | _      | _      | -    |       | _    | _    | -       | _    | _    |
| Average<br>Daily              |           | _    |      | _    | _       | _     |       | _     | —      | _      | _      | _    |       | —    | _    | -       | —    | _    |

| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.06    | 0.07 | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | —       | < 0.005 | - | 8.41 | 8.41 | < 0.005 | < 0.005 | —       | 8.44 |
|-------------------------------|--------------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Architect<br>ural<br>Coatings | _            | 0.35    | _       | -    | -       | -       | -       | _       | -       | -       | -       | _ | _    | _    | -       | _       | _       | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                        | _            | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | - | -    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01    | 0.01 | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | _ | 1.39 | 1.39 | < 0.005 | < 0.005 | —       | 1.40 |
| Architect<br>ural<br>Coatings |              | 0.06    | -       | -    | -       | _       | -       | -       | -       | _       | -       | - | _    | _    | -       | —       | —       | —    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                       | _            | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max)     |              |         | -       | -    | -       | _       | -       | -       | -       | -       | -       | _ | _    | _    | -       | —       |         | —    |
| Worker                        | 0.07         | 0.06    | 0.06    | 1.04 | 0.00    | 0.00    | 0.20    | 0.20    | 0.00    | 0.05    | 0.05    | _ | 207  | 207  | 0.01    | 0.01    | 0.76    | 210  |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max)     |              |         | -       | -    | -       | -       | -       | -       | -       | -       | -       | - | -    | -    | -       | _       |         | -    |
| Average<br>Daily              | _            | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | —    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.06 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | - | 12.6 | 12.6 | < 0.005 | < 0.005 | 0.02    | 12.7 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                        | —            | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | —       | _    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.08 | 2.08 | < 0.005 | < 0.005 | < 0.005 | 2.11 |
|                               |              |         |         |      |         |         |         |         |         |         |         |   |      |      |         |         |         |      |

| Vendor  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------|
| Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

# 3.24. Architectural Coating (2025) - Mitigated

| Location                      | TOG          | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------|--------------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                        |              | —       | —    | —    | —       | —       | —     | —       | —       | —      | _       | —    | —     | —    | _       | —       | —    | _    |
| Daily,<br>Summer<br>(Max)     |              |         | _    | _    | _       |         |       |         |         |        |         |      |       |      |         |         |      | —    |
| Off-Road<br>Equipmen          | 0.15<br>t    | 0.13    | 0.88 | 1.14 | < 0.005 | 0.03    | —     | 0.03    | 0.03    |        | 0.03    | —    | 134   | 134  | 0.01    | < 0.005 |      | 134  |
| Architect<br>ural<br>Coatings | _            | 5.51    | _    | _    | _       |         |       |         |         |        | _       |      |       |      | _       |         |      | —    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     |              |         | _    | _    | _       |         |       |         |         |        |         |      |       |      |         |         |      |      |
| Average<br>Daily              |              | _       | -    | -    | -       | _       | —     | _       | —       |        | _       | —    | —     | _    | _       | —       | —    | _    |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.06 | 0.07 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | _    | 8.41  | 8.41 | < 0.005 | < 0.005 | _    | 8.44 |
| Architect<br>ural<br>Coatings |              | 0.35    | -    | -    | -       |         | _     |         | -       |        | -       | _    | -     |      | -       | _       |      | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        |              | _       | _    | -    | _       | —       | —     | _       | —       | _      | —       | —    | —     | _    | —       | —       | —    | _    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 | —    | 1.39  | 1.39 | < 0.005 | < 0.005 | _    | 1.40 |

| Architect<br>Coatings     | —       | 0.06    | _       | -    | —    | _    | _       | _       | —    | —       | —       | — | —    | —    | —       | —       | —       | —    |
|---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _    | _    | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) |         |         | _       | —    | _    | -    | _       | —       |      |         |         |   | _    | —    |         | _       |         | _    |
| Worker                    | 0.07    | 0.06    | 0.06    | 1.04 | 0.00 | 0.00 | 0.20    | 0.20    | 0.00 | 0.05    | 0.05    | — | 207  | 207  | 0.01    | 0.01    | 0.76    | 210  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) |         | _       | -       | -    | -    | -    | -       | -       | _    | _       | _       | _ |      |      |         |         |         | _    |
| Average<br>Daily          |         | —       | -       | -    | _    | -    | —       | —       | _    | —       | —       | _ | _    | —    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.06 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 12.6 | 12.6 | < 0.005 | < 0.005 | 0.02    | 12.7 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       | —       | —       | -    | _    | —    | —       | _       | —    | —       | _       | — | _    | _    | _       | _       | —       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 2.08 | 2.08 | < 0.005 | < 0.005 | < 0.005 | 2.11 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.25. Architectural Coating (2025) - Unmitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite   | _   | -   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

| Daily,<br>Summer<br>(Max)     | _            | _       | _    | _    | _       | _       |      | _       |         |      |         |   |      | _    |         | _       | _    |      |
|-------------------------------|--------------|---------|------|------|---------|---------|------|---------|---------|------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Winter<br>(Max)     | _            | _       |      | _    | _       | _       |      | —       |         |      |         | — |      | —    |         | _       | _    |      |
| Off-Road<br>Equipmen          | 0.15<br>t    | 0.13    | 0.88 | 1.14 | < 0.005 | 0.03    | —    | 0.03    | 0.03    | —    | 0.03    | — | 134  | 134  | 0.01    | < 0.005 | -    | 134  |
| Architect<br>ural<br>Coatings | _            | 5.71    | —    | —    | _       | _       | —    | —       |         | _    |         | — |      | —    | _       | _       | _    | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              | —            | -       | —    | —    | -       | —       | _    | —       | —       | —    |         | — | _    | —    | —       | —       | -    | —    |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.05 | 0.06 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | _    | < 0.005 | — | 7.32 | 7.32 | < 0.005 | < 0.005 | —    | 7.34 |
| Architect<br>ural<br>Coatings | —            | 0.31    |      | _    | _       | —       |      | _       |         |      |         |   |      | —    |         | —       | —    | —    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | —            | _       | —    | —    | _       | _       | —    | —       | —       | —    |         | — | —    | —    |         | —       | _    | _    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 |      | < 0.005 | < 0.005 | _    | < 0.005 | _ | 1.21 | 1.21 | < 0.005 | < 0.005 | —    | 1.22 |
| Architect<br>ural<br>Coatings | _            | 0.06    | _    | _    | _       | _       | _    | _       | _       | _    | _       | _ | _    | _    | _       | _       | _    | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                       | _            | _       | _    | _    | _       | _       | _    | _       |         | _    |         | _ |      | _    |         | _       | _    | _    |
| Daily,<br>Summer<br>(Max)     |              | _       |      |      | _       | _       |      | _       |         |      |         |   |      | _    |         | _       | _    |      |

| Daily,<br>Winter<br>(Max) | -       | -       | -       | -    | -    | -    | -       | -       | -    | -       | -       | _ | -    | _    | -       | _       | _       | —    |
|---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker                    | 0.07    | 0.06    | 0.07    | 0.88 | 0.00 | 0.00 | 0.20    | 0.20    | 0.00 | 0.05    | 0.05    | — | 197  | 197  | 0.01    | 0.01    | 0.02    | 199  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | _       | _       | _       | _    | —    | —    | _       | _       | _    | —       | —       | — | _    | —    | —       | —       | —       | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 10.9 | 10.9 | < 0.005 | < 0.005 | 0.02    | 11.1 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _    | _    | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.81 | 1.81 | < 0.005 | < 0.005 | < 0.005 | 1.83 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|                           |         |         |         |      |      |      |         |         |      |         |         |   |      |      |         |         |         |      |

# 3.26. Architectural Coating (2025) - Mitigated

| Location                      | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
|-------------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Onsite                        |           | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —    | _    | —       | — | _    |
| Daily,<br>Summer<br>(Max)     |           |      |      | _    | _       | _     | _     | _     | _      |        |        |      | _     |      | _    |         |   |      |
| Daily,<br>Winter<br>(Max)     |           |      |      |      | _       | _     | _     |       | _      |        |        |      | _     |      |      |         |   |      |
| Off-Road<br>Equipmen          | 0.15<br>t | 0.13 | 0.88 | 1.14 | < 0.005 | 0.03  | —     | 0.03  | 0.03   |        | 0.03   |      | 134   | 134  | 0.01 | < 0.005 |   | 134  |
| Architect<br>ural<br>Coatings |           | 5.71 |      | _    | _       | _     | -     | _     | -      |        |        |      | -     |      | _    |         | _ |      |

| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|-------------------------------|--------------|---------|---------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Average<br>Daily              | _            |         | _       | -    | _       |         | —    | _       | _       | -       | _       |   | _    | _    | _       | —       | —    | _    |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.05    | 0.06 | < 0.005 | < 0.005 | —    | < 0.005 | < 0.005 | —       | < 0.005 |   | 7.32 | 7.32 | < 0.005 | < 0.005 | —    | 7.34 |
| Architect<br>ural<br>Coatings |              | 0.31    |         | _    | _       | —       |      |         |         | _       | _       |   |      |      |         | _       |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | —            | _       | —       | —    | —       | —       | —    | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | —    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01    | 0.01 | < 0.005 | < 0.005 |      | < 0.005 | < 0.005 | —       | < 0.005 |   | 1.21 | 1.21 | < 0.005 | < 0.005 | —    | 1.22 |
| Architect<br>ural<br>Coatings |              | 0.06    |         | _    | _       | —       |      |         |         | _       | _       |   |      |      |         |         |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                       | —            | _       | —       | -    | -       | _       | _    | -       | —       | —       | -       | _ | —    | _    | _       | —       | —    | —    |
| Daily,<br>Summer<br>(Max)     |              |         | _       | -    | -       |         | _    | -       | _       | -       | -       |   |      | _    | _       | -       | -    | _    |
| Daily,<br>Winter<br>(Max)     |              |         | _       | —    | -       |         |      | _       |         | —       | -       |   |      |      | _       | _       | _    | _    |
| Worker                        | 0.07         | 0.06    | 0.07    | 0.88 | 0.00    | 0.00    | 0.20 | 0.20    | 0.00    | 0.05    | 0.05    | _ | 197  | 197  | 0.01    | 0.01    | 0.02 | 199  |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              |              | _       | _       | -    | -       | _       | _    | _       | _       | -       | _       | _ | _    | _    | _       | —       | -    | _    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.05 | 0.00    | 0.00    | 0.01 | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 10.9 | 10.9 | < 0.005 | < 0.005 | 0.02 | 11.1 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|                               |              |         |         |      |         |         |      |         |         |         |         |   |      |      |         |         |      |      |

| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual  | —       | —       | —       | —    | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 1.81 | 1.81 | < 0.005 | < 0.005 | < 0.005 | 1.83 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.27. Architectural Coating (2026) - Unmitigated

| Location                      | TOG       | ROG  | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------|-----------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                        | _         | —    | —    | —    | —       | —       | —     | —       | —       | —      | _       | —    | —     | _    | —       | _       | —    | _    |
| Daily,<br>Summer<br>(Max)     |           |      |      |      |         |         |       |         |         |        |         |      |       |      |         |         |      | —    |
| Daily,<br>Winter<br>(Max)     |           |      |      |      |         |         |       |         |         |        |         |      |       |      |         |         |      |      |
| Off-Road<br>Equipmen          | 0.15<br>t | 0.12 | 0.86 | 1.13 | < 0.005 | 0.02    | —     | 0.02    | 0.02    | _      | 0.02    | —    | 134   | 134  | 0.01    | < 0.005 | _    | 134  |
| Architect<br>ural<br>Coatings |           | 5.77 |      |      |         |         |       |         |         |        |         |      |       |      |         |         |      |      |
| Onsite<br>truck               | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              |           | —    | _    | —    | —       | _       | _     | —       | _       | _      | _       | —    | _     |      | —       | _       | —    | _    |
| Off-Road<br>Equipmen          | 0.01<br>t | 0.01 | 0.05 | 0.07 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 |        | < 0.005 | —    | 8.05  | 8.05 | < 0.005 | < 0.005 | _    | 8.07 |
| Architect<br>ural<br>Coatings |           | 0.35 |      | _    | _       |         |       |         |         |        |         | _    |       |      |         |         |      |      |
| Onsite<br>truck               | 0.00      | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | —            | —       | _       | —    | _       | _       | —       | —       | _       | _       | _       | — | _    | _    | —       | —       | _       | —    |
|-------------------------------|--------------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01    | 0.01 | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 | —       | < 0.005 | — | 1.33 | 1.33 | < 0.005 | < 0.005 |         | 1.34 |
| Architect<br>ural<br>Coatings |              | 0.06    |         |      |         |         |         |         |         |         |         |   |      |      |         |         |         |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                       | —            | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | _    |
| Daily,<br>Summer<br>(Max)     |              |         |         |      |         |         |         | _       |         |         |         |   |      |      |         |         |         |      |
| Daily,<br>Winter<br>(Max)     |              |         |         |      |         |         |         | _       |         |         |         |   |      |      |         |         |         |      |
| Worker                        | 0.06         | 0.05    | 0.07    | 0.83 | 0.00    | 0.00    | 0.20    | 0.20    | 0.00    | 0.05    | 0.05    | — | 193  | 193  | 0.01    | 0.01    | 0.02    | 195  |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily              | _            | _       | —       | —    | —       | —       | —       | -       | —       | —       | —       | — | _    | —    | —       | _       | —       | _    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.05 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 11.8 | 11.8 | < 0.005 | < 0.005 | 0.02    | 11.9 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                        | _            | _       | _       | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.95 | 1.95 | < 0.005 | < 0.005 | < 0.005 | 1.98 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|                               |              |         |         |      |         |         |         |         |         |         |         |   |      |      |         |         |         |      |

# 3.28. Architectural Coating (2026) - Mitigated

| Location                      | TOG          | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------|--------------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                        | —            | —       | —    | —    | —       | —       | —     | —       | —       | —      | —       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max)     | —            |         |      |      |         |         |       |         |         |        |         |      |       |      |         |         |      |      |
| Daily,<br>Winter<br>(Max)     | —            | —       |      |      |         |         | —     |         | —       |        |         |      |       | —    |         |         |      | _    |
| Off-Road<br>Equipmen          | 0.15<br>t    | 0.12    | 0.86 | 1.13 | < 0.005 | 0.02    |       | 0.02    | 0.02    | —      | 0.02    | —    | 134   | 134  | 0.01    | < 0.005 | _    | 134  |
| Architect<br>ural<br>Coatings | —            | 5.77    |      |      |         | _       |       |         |         | _      |         |      |       |      |         |         |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              | —            | —       | —    | —    | —       | —       | —     | —       | —       | —      | —       | —    | —     | —    | —       | —       | —    |      |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.05 | 0.07 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | —      | < 0.005 | —    | 8.05  | 8.05 | < 0.005 | < 0.005 | —    | 8.07 |
| Architect<br>ural<br>Coatings | _            | 0.35    |      | _    | _       | _       |       |         | _       | _      |         | _    |       | _    |         |         |      | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | —            | —       | —    | -    | -       | —       | —     | —       | —       | —      | —       | -    | —     | —    | —       | _       | —    | —    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | —      | < 0.005 | —    | 1.33  | 1.33 | < 0.005 | < 0.005 | _    | 1.34 |
| Architect<br>ural<br>Coatings | —            | 0.06    | _    | _    | _       | _       |       | _       |         | _      |         | _    |       |      |         |         |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                       | _            | _       | _    | _    | _       | _       | _     | _       | _       | _      | _       | _    | _     | _    | _       | _       | _    | _    |
|                               |              |         |      |      |         |         |       |         |         |        |         |      |       |      |         |         |      |      |

| Daily,<br>Summer<br>(Max) | —       | —       |         | _    | —    | —    |         |         |      |         | —       |   | —    | —    | —       |         | —       |      |
|---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Daily,<br>Winter<br>(Max) |         |         |         |      |      | —    |         |         |      |         |         |   | —    | —    | —       |         | —       |      |
| Worker                    | 0.06    | 0.05    | 0.07    | 0.83 | 0.00 | 0.00 | 0.20    | 0.20    | 0.00 | 0.05    | 0.05    | — | 193  | 193  | 0.01    | 0.01    | 0.02    | 195  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | —       | _       |         | _    | —    | —    |         | —       |      |         | _       | — | _    | —    | —       |         |         |      |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 11.8 | 11.8 | < 0.005 | < 0.005 | 0.02    | 11.9 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _    | _    | _    | —       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.95 | 1.95 | < 0.005 | < 0.005 | < 0.005 | 1.98 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.29. Architectural Coating (2026) - Unmitigated

| Location                      | TOG       | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
|-------------------------------|-----------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Onsite                        | _         | —    | _    | —    | —       | —     | _     | _     | —      | _      | —      | —    | —     | _    | _    | _       | _ | _    |
| Daily,<br>Summer<br>(Max)     |           | _    |      | _    | _       | _     |       |       | _      |        | _      | _    |       |      |      |         |   |      |
| Off-Road<br>Equipmen          | 0.15<br>t | 0.12 | 0.86 | 1.13 | < 0.005 | 0.02  | —     | 0.02  | 0.02   |        | 0.02   | —    | 134   | 134  | 0.01 | < 0.005 |   | 134  |
| Architect<br>ural<br>Coatings |           | 5.51 | _    | -    | -       | -     | _     |       | _      |        | _      | -    | _     |      | _    |         |   | _    |

| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
|-------------------------------|--------------|---------|------|------|---------|---------|------|---------|---------|------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Winter<br>(Max)     |              | _       | —    | —    | —       | _       | _    | —       | —       | _    | -       | — | —    | _    | —       | —       | _    | _    |
| Average<br>Daily              | —            | _       | -    | -    | -       | _       | —    | -       | —       | -    | _       | _ | -    | —    | -       | -       | —    |      |
| Off-Road<br>Equipmen          | 0.01<br>t    | 0.01    | 0.05 | 0.07 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | -    | < 0.005 | — | 8.41 | 8.41 | < 0.005 | < 0.005 | —    | 8.44 |
| Architect<br>ural<br>Coatings |              | 0.35    | —    | _    | _       | -       |      | -       |         | —    | -       | _ | _    |      | _       | _       |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | _            | _       | _    | -    | _       | _       | _    | -       | —       | _    | _       | - | _    | _    | _       | -       | _    | _    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 |      | < 0.005 | < 0.005 | —    | < 0.005 | _ | 1.39 | 1.39 | < 0.005 | < 0.005 | —    | 1.40 |
| Architect<br>ural<br>Coatings |              | 0.06    | _    | _    | _       | _       |      | _       |         | _    | -       | _ | _    |      | _       | _       |      |      |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                       | —            | —       | —    | —    | —       | —       | —    | —       | —       | —    | _       | — | —    | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max)     |              | —       | _    | _    | _       | _       |      | _       |         | _    | _       | _ | _    |      | _       | _       |      |      |
| Worker                        | 0.06         | 0.06    | 0.06 | 0.97 | 0.00    | 0.00    | 0.20 | 0.20    | 0.00    | 0.05 | 0.05    | — | 203  | 203  | 0.01    | 0.01    | 0.69 | 206  |
| Vendor                        | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     |              |         | _    | _    | _       | _       |      | _       |         | _    | _       | _ | _    |      | _       | _       |      |      |
| Average<br>Daily              | _            | _       | -    | _    | -       | _       | _    | _       | -       | -    | -       | _ | -    | _    | _       | -       | _    |      |
|                               |              |         |      |      |         |         |      |         |         |      |         |   |      |      |         |         |      |      |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | — | 12.3 | 12.3 | < 0.005 | < 0.005 | 0.02    | 12.5 |
|---------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual  | —       | —       | —       | —    | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 2.04 | 2.04 | < 0.005 | < 0.005 | < 0.005 | 2.07 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.30. Architectural Coating (2026) - Mitigated

|                               |           | · · · · · · · · · · · · · · · · · · · | -    | <u>,</u> |         | · · ·   | · · · · |         |         |        |         |      |       |      |         |         |      |      |
|-------------------------------|-----------|---------------------------------------|------|----------|---------|---------|---------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Location                      | TOG       | ROG                                   | NOx  | со       | SO2     | PM10E   | PM10D   | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                        | —         | —                                     | —    | _        | —       | —       | —       | —       | —       | —      | —       | —    | —     | _    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max)     |           | -                                     | -    | -        | -       | -       | _       | -       | —       | -      | -       | -    | _     |      | -       | —       | -    | —    |
| Off-Road<br>Equipmen          | 0.15<br>t | 0.12                                  | 0.86 | 1.13     | < 0.005 | 0.02    | —       | 0.02    | 0.02    | —      | 0.02    | —    | 134   | 134  | 0.01    | < 0.005 | —    | 134  |
| Architect<br>ural<br>Coatings |           | 5.51                                  | _    | _        | —       | —       | _       | _       | _       | _      | _       | _    | _     |      | _       | _       | _    | _    |
| Onsite<br>truck               | 0.00      | 0.00                                  | 0.00 | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     |           | _                                     | -    | -        | —       | _       | _       | _       | _       | _      | _       | _    | _     |      | -       | _       | _    | -    |
| Average<br>Daily              |           | —                                     | —    | —        | —       | —       | —       | —       | —       | —      | —       | —    | —     |      | —       | —       | —    | _    |
| Off-Road<br>Equipmen          | 0.01<br>t | 0.01                                  | 0.05 | 0.07     | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -      | < 0.005 | —    | 8.41  | 8.41 | < 0.005 | < 0.005 | -    | 8.44 |
| Architect<br>ural<br>Coatings |           | 0.35                                  | _    | _        | -       | _       | _       |         | _       | _      | _       |      | _     |      | _       | _       | _    | _    |

| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|-------------------------------|--------------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                        | —            | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Off-Road<br>Equipmen          | < 0.005<br>t | < 0.005 | 0.01    | 0.01 | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | _ | 1.39 | 1.39 | < 0.005 | < 0.005 | _       | 1.40 |
| Architect<br>ural<br>Coatings | _            | 0.06    | -       | _    | _       | -       | -       | -       | -       | _       | -       | - | -    | _    | -       | -       | -       | _    |
| Onsite<br>truck               | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                       | —            |         | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Daily,<br>Summer<br>(Max)     | —            |         | _       | -    | —       | -       | -       | -       | _       | —       | -       | _ | _    | —    | -       | _       | _       | _    |
| Worker                        | 0.06         | 0.06    | 0.06    | 0.97 | 0.00    | 0.00    | 0.20    | 0.20    | 0.00    | 0.05    | 0.05    | — | 203  | 203  | 0.01    | 0.01    | 0.69    | 206  |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max)     | —            |         | -       | -    | -       | -       | -       | -       | -       | -       | -       | - | -    | -    | -       | -       | -       | -    |
| Average<br>Daily              | _            | _       | _       | _    | _       | _       | -       | -       | -       | _       | —       | - | _    | _    | -       | -       | —       | -    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.05 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | — | 12.3 | 12.3 | < 0.005 | < 0.005 | 0.02    | 12.5 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                        | —            | —       | —       | —    | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker                        | < 0.005      | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 2.04 | 2.04 | < 0.005 | < 0.005 | < 0.005 | 2.07 |
| Vendor                        | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00         | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|                               |              |         |         |      |         |         |         |         |         |         |         |   |      |      |         |         |         |      |

# 4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

#### 4.1.1. Unmitigated

Mobile source emissions results are presented in Sections 2.6. No further detailed breakdown of emissions is available. 4.1.2. Mitigated

Mobile source emissions results are presented in Sections 2.5. No further detailed breakdown of emissions is available.

# 4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

| Land<br>Use                                     | TOG   | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R | CO2e |
|-------------------------------------------------|-------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|---|------|
| Daily,<br>Summer<br>(Max)                       |       | -   | -   | -  | -   | -     |       | -     | —      |        |        | -    | -     |      | -       | —       | — | -    |
| Apartme<br>nts<br>Mid Rise                      |       | _   | _   | _  | _   | _     |       | _     | _      |        |        | _    | 518   | 518  | 0.03    | < 0.005 | _ | 520  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t |     |     |    |     |       |       |       |        |        |        |      | 225   | 225  | 0.01    | < 0.005 |   | 225  |
| Automob<br>ile<br>Care<br>Center                |       | _   | _   | _  | _   | _     |       | _     |        |        |        | _    | 50.3  | 50.3 | < 0.005 | < 0.005 |   | 50.5 |
| Parking<br>Lot                                  | _     | _   | _   | -  | _   | —     | _     | _     | _      | _      | _      | _    | 81.6  | 81.6 | 0.01    | < 0.005 | _ | 81.9 |
| Total                                           |       | _   | _   | _  | _   | _     |       | _     | _      | _      | _      | _    | 875   | 875  | 0.05    | 0.01    | _ | 878  |

| Daily,<br>Winter<br>(Max)                       |       |   | _ | _ | _ | — | _ |   | — | — | _ | _ | _    | —    |         |         | — | _    |
|-------------------------------------------------|-------|---|---|---|---|---|---|---|---|---|---|---|------|------|---------|---------|---|------|
| Apartme<br>nts<br>Mid Rise                      |       |   |   |   |   |   |   |   | — | _ |   | — | 518  | 518  | 0.03    | < 0.005 |   | 520  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t |   |   | _ |   |   |   | _ | _ |   |   | _ | 225  | 225  | 0.01    | < 0.005 | _ | 225  |
| Automob<br>ile<br>Care<br>Center                |       |   |   |   |   |   |   |   |   |   |   |   | 50.3 | 50.3 | < 0.005 | < 0.005 |   | 50.5 |
| Parking<br>Lot                                  | _     | _ | — | — |   | _ | _ | _ | — | _ | _ | — | 81.6 | 81.6 | 0.01    | < 0.005 | _ | 81.9 |
| Total                                           | —     | — | — | — | — | — | — | — | — | — | — | — | 875  | 875  | 0.05    | 0.01    | — | 878  |
| Annual                                          | _     |   | — | — | — | — | — | — | — | — | — | — | —    | —    | —       | —       | — | —    |
| Apartme<br>nts<br>Mid Rise                      |       |   |   |   |   |   |   |   | _ |   |   |   | 85.8 | 85.8 | 0.01    | < 0.005 |   | 86.1 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t |   |   | _ | _ |   | _ | _ | _ |   | _ | _ | 37.2 | 37.2 | < 0.005 | < 0.005 | _ | 37.3 |
| Automob<br>ile<br>Care<br>Center                |       |   | _ |   |   |   | _ |   | _ | _ | — | _ | 8.32 | 8.32 | < 0.005 | < 0.005 | — | 8.36 |
| Parking<br>Lot                                  | _     |   | _ | _ |   | _ |   |   | _ | — | _ |   | 13.5 | 13.5 | < 0.005 | < 0.005 | — | 13.6 |
| Total                                           | _     | _ | _ | _ | _ | — | _ | _ | _ | _ | _ | _ | 145  | 145  | 0.01    | < 0.005 | — | 145  |

## 4.2.2. Electricity Emissions By Land Use - Mitigated

| Land<br>Use                                     | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R | CO2e |
|-------------------------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|---|------|
| Daily,<br>Summer<br>(Max)                       | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | _    | —       | —       | — | —    |
| Apartme<br>nts<br>Mid Rise                      | —   | —   | _   | _  | _   | _     | _     | _     |        |        |        | _    | 487   | 487  | 0.03    | < 0.005 | _ | 489  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | t   |     | _   | _  | _   | _     |       |       |        |        |        |      | 192   | 192  | 0.01    | < 0.005 | _ | 193  |
| Automob<br>ile<br>Care<br>Center                |     |     |     |    | _   |       |       |       |        |        |        |      | 50.1  | 50.1 | < 0.005 | < 0.005 |   | 50.3 |
| Parking<br>Lot                                  | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | 81.6  | 81.6 | 0.01    | < 0.005 | — | 81.9 |
| Total                                           | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | 811   | 811  | 0.05    | 0.01    | — | 814  |
| Daily,<br>Winter<br>(Max)                       | _   | —   | -   | —  | -   | -     | _     |       | —      |        | —      |      | _     |      | -       | —       | - | —    |
| Apartme<br>nts<br>Mid Rise                      | _   |     | _   | _  | _   | _     | _     |       |        |        |        |      | 487   | 487  | 0.03    | < 0.005 | _ | 489  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | t   |     |     |    |     |       |       |       |        |        |        |      | 192   | 192  | 0.01    | < 0.005 |   | 193  |

| Automob<br>ile<br>Care<br>Center                | _ | _ | _ | _ | _ |   | _ | _ | _ | _ | _ |   | 50.1 | 50.1 | < 0.005 | < 0.005 |   | 50.3 |
|-------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|------|------|---------|---------|---|------|
| Parking<br>Lot                                  | _ | — | — | — |   | _ | _ |   | _ | — | _ | _ | 81.6 | 81.6 | 0.01    | < 0.005 | _ | 81.9 |
| Total                                           | — | — | — | — | — | — | — | — | — | — | — | — | 811  | 811  | 0.05    | 0.01    | — | 814  |
| Annual                                          | — | — | — | — | — | — | — | — | — | — | — | — | —    | —    | —       | —       | — | —    |
| Apartme<br>nts<br>Mid Rise                      |   |   |   |   |   |   |   |   |   | — |   |   | 80.6 | 80.6 | 0.01    | < 0.005 |   | 80.9 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | t |   |   | _ | _ |   | _ | _ | _ | _ | _ |   | 31.9 | 31.9 | < 0.005 | < 0.005 |   | 32.0 |
| Automob<br>ile<br>Care<br>Center                |   |   |   |   |   |   |   |   |   |   |   |   | 8.30 | 8.30 | < 0.005 | < 0.005 |   | 8.33 |
| Parking<br>Lot                                  |   |   | _ |   |   | _ |   |   | _ | — |   |   | 13.5 | 13.5 | < 0.005 | < 0.005 | _ | 13.6 |
| Total                                           | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 134  | 134  | 0.01    | < 0.005 | _ | 135  |

# 4.2.3. Natural Gas Emissions By Land Use - Unmitigated

| Land<br>Use                | TOG  | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
|----------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Daily,<br>Summer<br>(Max)  |      |      | _    |      | _       |       |       |       | _      |        |        | _    |       |      |      |         |   | _    |
| Apartme<br>nts<br>Mid Rise | 0.03 | 0.02 | 0.27 | 0.12 | < 0.005 | 0.02  |       | 0.02  | 0.02   |        | 0.02   | -    | 345   | 345  | 0.03 | < 0.005 |   | 346  |

| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | 0.02<br>t | 0.01    | 0.14 | 0.12 | < 0.005  | 0.01    | _ | 0.01    | 0.01    |   | 0.01    | _ | 164  | 164  | 0.01    | < 0.005 |   | 165  |
|-------------------------------------------------|-----------|---------|------|------|----------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------|
| Automob<br>ile<br>Care<br>Center                | < 0.005   | < 0.005 | 0.04 | 0.03 | < 0.005  | < 0.005 | _ | < 0.005 | < 0.005 |   | < 0.005 |   | 49.3 | 49.3 | < 0.005 | < 0.005 |   | 49.5 |
| Parking<br>Lot                                  | 0.00      | 0.00    | 0.00 | 0.00 | 0.00     | 0.00    | - | 0.00    | 0.00    | _ | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | — | 0.00 |
| Total                                           | 0.05      | 0.03    | 0.45 | 0.27 | < 0.005  | 0.04    | — | 0.04    | 0.04    | — | 0.04    | — | 559  | 559  | 0.05    | < 0.005 | — | 560  |
| Daily,<br>Winter<br>(Max)                       |           |         | _    | _    | _        | _       | _ | _       |         |   |         |   |      |      |         |         |   | _    |
| Apartme<br>nts<br>Mid Rise                      | 0.03      | 0.02    | 0.27 | 0.12 | < 0.005  | 0.02    | _ | 0.02    | 0.02    |   | 0.02    |   | 345  | 345  | 0.03    | < 0.005 |   | 346  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | 0.02<br>t | 0.01    | 0.14 | 0.12 | < 0.005  | 0.01    |   | 0.01    | 0.01    | _ | 0.01    | _ | 164  | 164  | 0.01    | < 0.005 | _ | 165  |
| Automob<br>ile<br>Care<br>Center                | < 0.005   | < 0.005 | 0.04 | 0.03 | < 0.005  | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |   | 49.3 | 49.3 | < 0.005 | < 0.005 |   | 49.5 |
| Parking<br>Lot                                  | 0.00      | 0.00    | 0.00 | 0.00 | 0.00     | 0.00    | - | 0.00    | 0.00    | — | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | — | 0.00 |
| Total                                           | 0.05      | 0.03    | 0.45 | 0.27 | < 0.005  | 0.04    | _ | 0.04    | 0.04    | _ | 0.04    | _ | 559  | 559  | 0.05    | < 0.005 | _ | 560  |
| Annual                                          | _         | _       | _    | _    | <u> </u> | _       | _ | _       |         | _ | _       | _ | _    | _    | _       | _       | — | _    |
| Apartme<br>nts<br>Mid Rise                      | 0.01      | < 0.005 | 0.05 | 0.02 | < 0.005  | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |   | 57.2 | 57.2 | 0.01    | < 0.005 |   | 57.3 |

| Fast<br>Food<br>Restaurar<br>with<br>Drive<br>Thru | < 0.005<br>t | < 0.005 | 0.03 | 0.02 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 |   | 27.2 | 27.2 | < 0.005 | < 0.005 | _ | 27.3 |
|----------------------------------------------------|--------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------|
| Automob<br>ile<br>Care<br>Center                   | < 0.005      | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 |   | 8.17 | 8.17 | < 0.005 | < 0.005 | _ | 8.19 |
| Parking<br>Lot                                     | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    |   | 0.00    | 0.00    | _ | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | — | 0.00 |
| Total                                              | 0.01         | < 0.005 | 0.08 | 0.05 | < 0.005 | 0.01    | _ | 0.01    | 0.01    | _ | 0.01    | _ | 92.5 | 92.5 | 0.01    | < 0.005 | — | 92.8 |

# 4.2.4. Natural Gas Emissions By Land Use - Mitigated

| Land<br>Use                                     | TOG       | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R | CO2e |
|-------------------------------------------------|-----------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|---|------|
| Daily,<br>Summer<br>(Max)                       | _         |         |      | _    | _       | _       |       |         |         |        | _       | _    |       |      |         |         |   | —    |
| Apartme<br>nts<br>Mid Rise                      | 0.03      | 0.02    | 0.27 | 0.12 | < 0.005 | 0.02    |       | 0.02    | 0.02    |        | 0.02    | _    | 345   | 345  | 0.03    | < 0.005 |   | 346  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | 0.02<br>t | 0.01    | 0.14 | 0.12 | < 0.005 | 0.01    |       | 0.01    | 0.01    |        | 0.01    |      | 164   | 164  | 0.01    | < 0.005 |   | 165  |
| Automob<br>ile<br>Care<br>Center                | < 0.005   | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 |       | < 0.005 | < 0.005 |        | < 0.005 |      | 49.3  | 49.3 | < 0.005 | < 0.005 |   | 49.5 |
| Parking<br>Lot                                  | 0.00      | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | _     | 0.00    | 0.00    | _      | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | _ | 0.00 |

| Total                                           | 0.05         | 0.03    | 0.45 | 0.27 | < 0.005 | 0.04    | _ | 0.04    | 0.04    | _ | 0.04    | — | 559  | 559  | 0.05    | < 0.005 | — | 560  |
|-------------------------------------------------|--------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------|
| Daily,<br>Winter<br>(Max)                       | —            | _       | -    | -    |         |         | _ | _       | -       | _ | _       | _ |      | _    | _       |         | — | _    |
| Apartme<br>nts<br>Mid Rise                      | 0.03         | 0.02    | 0.27 | 0.12 | < 0.005 | 0.02    |   | 0.02    | 0.02    |   | 0.02    |   | 345  | 345  | 0.03    | < 0.005 | _ | 346  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | 0.02<br>t    | 0.01    | 0.14 | 0.12 | < 0.005 | 0.01    |   | 0.01    | 0.01    |   | 0.01    |   | 164  | 164  | 0.01    | < 0.005 |   | 165  |
| Automob<br>ile<br>Care<br>Center                | < 0.005      | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |   | 49.3 | 49.3 | < 0.005 | < 0.005 | _ | 49.5 |
| Parking<br>Lot                                  | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    |   | 0.00    | 0.00    |   | 0.00    |   | 0.00 | 0.00 | 0.00    | 0.00    | — | 0.00 |
| Total                                           | 0.05         | 0.03    | 0.45 | 0.27 | < 0.005 | 0.04    | — | 0.04    | 0.04    | — | 0.04    | — | 559  | 559  | 0.05    | < 0.005 | — | 560  |
| Annual                                          | —            | —       | —    | _    | —       | —       | — | —       | —       | — | —       | _ | —    | —    | —       | —       | — | _    |
| Apartme<br>nts<br>Mid Rise                      | 0.01         | < 0.005 | 0.05 | 0.02 | < 0.005 | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |   | 57.2 | 57.2 | 0.01    | < 0.005 |   | 57.3 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | < 0.005<br>t | < 0.005 | 0.03 | 0.02 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 27.2 | 27.2 | < 0.005 | < 0.005 | _ | 27.3 |
| Automob<br>ile<br>Care<br>Center                | < 0.005      | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |   | 8.17 | 8.17 | < 0.005 | < 0.005 |   | 8.19 |
| Parking<br>Lot                                  | 0.00         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | _ | 0.00    | 0.00    | _ | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | — | 0.00 |
| Total                                           | 0.01         | < 0.005 | 0.08 | 0.05 | < 0.005 | 0.01    | _ | 0.01    | 0.01    | _ | 0.01    | _ | 92.5 | 92.5 | 0.01    | < 0.005 | _ | 92.8 |
|                                                 |              |         |      |      |         |         |   |         | -       |   |         |   |      |      |         |         |   |      |

# 4.3. Area Emissions by Source

## 4.3.2. Unmitigated

| Source                         | TOG     | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R | CO2e  |
|--------------------------------|---------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|---|-------|
| Daily,<br>Summer<br>(Max)      |         | —       | —    | —    | _       | _       |       | _       | —       | _      |         | _    |       | —     |         |         |   | _     |
| Hearths                        | 0.16    | 0.08    | 1.37 | 0.58 | 0.01    | 0.11    | —     | 0.11    | 0.11    | —      | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | — | 1,738 |
| Consum<br>er<br>Products       |         | 2.17    | _    |      | _       | _       |       | _       | _       | _      |         | _    |       |       |         |         |   |       |
| Architect<br>ural<br>Coatings  |         | 0.17    | —    |      | _       | —       |       | -       | _       | _      |         | -    |       |       |         |         |   | —     |
| Landsca<br>pe<br>Equipme<br>nt | 0.58    | 0.55    | 0.06 | 5.85 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | —      | < 0.005 | _    | 16.2  | 16.2  | < 0.005 | < 0.005 |   | 16.2  |
| Total                          | 0.74    | 2.97    | 1.42 | 6.43 | 0.01    | 0.11    | —     | 0.11    | 0.11    | —      | 0.11    | 0.00 | 1,752 | 1,752 | 0.03    | < 0.005 | — | 1,754 |
| Daily,<br>Winter<br>(Max)      |         | —       | —    | —    | -       | —       | —     | -       | —       | —      | —       | -    | _     |       | —       |         |   | —     |
| Hearths                        | 0.16    | 0.08    | 1.37 | 0.58 | 0.01    | 0.11    | _     | 0.11    | 0.11    | _      | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | _ | 1,738 |
| Consum<br>er<br>Products       | _       | 2.17    | —    | _    | —       | —       | —     | -       | _       | —      | —       | —    | _     | _     | —       |         |   | _     |
| Architect<br>ural<br>Coatings  |         | 0.17    | _    | _    | _       | _       |       | _       | _       | _      |         | _    |       |       |         |         |   | _     |
| Total                          | 0.16    | 2.42    | 1.37 | 0.58 | 0.01    | 0.11    | _     | 0.11    | 0.11    | _      | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | _ | 1,738 |
| Annual                         | _       | _       | _    | _    | _       | _       | _     | _       | _       | _      | _       | _    | _     | _     | —       | _       | — | _     |
| Hearths                        | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | 0.00 | 19.7  | 19.7  | < 0.005 | < 0.005 |   | 19.7  |

| Consum<br>Products             |      | 0.40 | _    | _    | _       |         | _ | _       | _       | _ | _       | _    | _    | _    | _       | _       | _ |      |
|--------------------------------|------|------|------|------|---------|---------|---|---------|---------|---|---------|------|------|------|---------|---------|---|------|
| Architect<br>ural<br>Coatings  | _    | 0.03 | _    | _    | _       | _       | _ | _       | _       | — | _       | _    | —    | _    | —       | _       | _ | —    |
| Landsca<br>pe<br>Equipme<br>nt | 0.07 | 0.07 | 0.01 | 0.73 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _    | 1.83 | 1.83 | < 0.005 | < 0.005 | _ | 1.84 |
| Total                          | 0.07 | 0.50 | 0.02 | 0.74 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | 0.00 | 21.5 | 21.5 | < 0.005 | < 0.005 | _ | 21.5 |

# 4.3.1. Mitigated

| Source                         | TOG  | ROG  | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R | CO2e  |
|--------------------------------|------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|---|-------|
| Daily,<br>Summer<br>(Max)      | —    | -    | -    | -    | _       | —       | _     | -       | -       | _      | -       | -    | -     | —     | —       | —       | — | —     |
| Hearths                        | 0.16 | 0.08 | 1.37 | 0.58 | 0.01    | 0.11    | -     | 0.11    | 0.11    | —      | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | — | 1,738 |
| Consum<br>er<br>Products       | _    | 2.17 |      | _    |         | _       |       | -       | _       | _      | -       | -    | _     | —     | -       | _       | - | -     |
| Architect<br>ural<br>Coatings  | —    | 0.17 |      | _    |         | —       |       | _       | —       | _      | —       | -    | _     |       | -       | _       | _ | —     |
| Landsca<br>pe<br>Equipme<br>nt | 0.58 | 0.55 | 0.06 | 5.85 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | _      | < 0.005 | _    | 16.2  | 16.2  | < 0.005 | < 0.005 | — | 16.2  |
| Total                          | 0.74 | 2.97 | 1.42 | 6.43 | 0.01    | 0.11    | -     | 0.11    | 0.11    | —      | 0.11    | 0.00 | 1,752 | 1,752 | 0.03    | < 0.005 | — | 1,754 |
| Daily,<br>Winter<br>(Max)      |      | _    |      | _    |         |         |       | _       | _       | _      | _       | _    | _     |       | _       |         | — | _     |
| Hearths                        | 0.16 | 0.08 | 1.37 | 0.58 | 0.01    | 0.11    | _     | 0.11    | 0.11    | _      | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | _ | 1,738 |

| Consum<br>er                   | —       | 2.17    | —    | —    | —       | —       | — | —       | —       | — | —       | —    | —     | —     | —       | —       | — | _     |
|--------------------------------|---------|---------|------|------|---------|---------|---|---------|---------|---|---------|------|-------|-------|---------|---------|---|-------|
| Architect<br>ural<br>Coatings  |         | 0.17    |      | _    |         | _       |   |         |         | _ | _       | —    |       | _     |         | _       | — | _     |
| Total                          | 0.16    | 2.42    | 1.37 | 0.58 | 0.01    | 0.11    | — | 0.11    | 0.11    | — | 0.11    | 0.00 | 1,736 | 1,736 | 0.03    | < 0.005 | _ | 1,738 |
| Annual                         | —       | _       | —    | —    | _       | —       | — | _       | _       | — | —       | —    | _     | —     | —       | _       | _ |       |
| Hearths                        | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | 0.00 | 19.7  | 19.7  | < 0.005 | < 0.005 | _ | 19.7  |
| Consum<br>er<br>Products       |         | 0.40    |      |      |         | —       |   |         |         |   |         | _    |       |       |         |         | — |       |
| Architect<br>ural<br>Coatings  |         | 0.03    |      |      |         |         |   |         |         |   |         |      |       |       |         |         |   |       |
| Landsca<br>pe<br>Equipme<br>nt | 0.07    | 0.07    | 0.01 | 0.73 | < 0.005 | < 0.005 |   | < 0.005 | < 0.005 |   | < 0.005 |      | 1.83  | 1.83  | < 0.005 | < 0.005 |   | 1.84  |
| Total                          | 0.07    | 0.50    | 0.02 | 0.74 | < 0.005 | < 0.005 | — | < 0.005 | < 0.005 | — | < 0.005 | 0.00 | 21.5  | 21.5  | < 0.005 | < 0.005 | — | 21.5  |

# 4.4. Water Emissions by Land Use

# 4.4.2. Unmitigated

| Land<br>Use                | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|----------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)  |     |     |     |    | _   | _     |       |       | _      |        |        |      |       |      |      |      |   | —    |
| Apartme<br>nts<br>Mid Rise |     |     |     | —  | _   | —     |       |       | —      |        |        | 6.93 | 42.8  | 49.8 | 0.71 | 0.02 |   | 72.7 |

| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t |   | _ |   | _ |   |   |   |   | _ |   | 2.59 | 13.4 | 16.0 | 0.27 | 0.01    |   | 24.6 |
|-------------------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---------|---|------|
| Automob<br>ile<br>Care<br>Center                |        |   | — |   |   |   |   |   |   |   |   | 0.65 | 3.36 | 4.00 | 0.07 | < 0.005 |   | 6.15 |
| Parking<br>Lot                                  | —      |   | — | — | — |   |   |   |   | — |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | — | 0.00 |
| Total                                           |        | — | — | — | — | — | — | — | — | — | — | 10.2 | 59.6 | 69.8 | 1.05 | 0.03    | — | 103  |
| Daily,<br>Winter<br>(Max)                       | _      |   | _ |   | _ |   |   |   |   | — |   |      |      |      |      |         | — |      |
| Apartme<br>nts<br>Mid Rise                      | —      |   | _ |   |   |   |   |   |   |   |   | 6.93 | 42.8 | 49.8 | 0.71 | 0.02    |   | 72.7 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t  | _ |   | _ | _ | _ | _ | _ | _ | _ | _ | 2.59 | 13.4 | 16.0 | 0.27 | 0.01    | _ | 24.6 |
| Automob<br>ile<br>Care<br>Center                |        |   | — |   |   |   |   |   |   |   |   | 0.65 | 3.36 | 4.00 | 0.07 | < 0.005 |   | 6.15 |
| Parking<br>Lot                                  | —      | — | - | — | — | — | — | — | — | — | — | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | — | 0.00 |
| Total                                           | _      | — | — | — | — | — | — | _ | — | — | — | 10.2 | 59.6 | 69.8 | 1.05 | 0.03    | — | 103  |
| Annual                                          |        | — | — | — | — | — | — | — | — | — | — | —    | —    | _    | —    | —       | — | —    |
| Apartme<br>nts<br>Mid Rise                      |        | — | _ | — | _ |   |   |   |   |   |   | 1.15 | 7.09 | 8.24 | 0.12 | < 0.005 | — | 12.0 |

| Fast<br>Food<br>Restaurar<br>with<br>Drive<br>Thru | <br>t | _ | _ |   | _ | _ | _ | _ |   | _ |   | 0.43 | 2.22 | 2.65 | 0.04 | < 0.005 | _ | 4.07 |
|----------------------------------------------------|-------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---------|---|------|
| Automob<br>ile<br>Care<br>Center                   |       |   |   |   |   |   |   |   |   |   |   | 0.11 | 0.56 | 0.66 | 0.01 | < 0.005 |   | 1.02 |
| Parking<br>Lot                                     |       | _ |   | _ | _ |   | _ |   | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    |   | 0.00 |
| Total                                              |       | _ | _ | _ | _ | _ | _ | _ |   | _ | _ | 1.68 | 9.87 | 11.5 | 0.17 | < 0.005 |   | 17.1 |

# 4.4.1. Mitigated

| Land<br>Use                                     | TOG   | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
|-------------------------------------------------|-------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Daily,<br>Summer<br>(Max)                       | _     |     |     |    |     | _     |       |       |        |        |        | _    |       | —    |      |         |   | —    |
| Apartme<br>nts<br>Mid Rise                      |       |     |     |    |     | _     |       |       |        |        |        | 6.29 | 36.3  | 42.6 | 0.65 | 0.02    |   | 63.4 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t |     |     |    |     |       |       |       |        |        |        | 2.34 | 12.1  | 14.4 | 0.24 | 0.01    |   | 22.2 |
| Automob<br>ile<br>Care<br>Center                |       |     |     |    |     |       |       |       |        |        |        | 0.59 | 3.03  | 3.62 | 0.06 | < 0.005 |   | 5.55 |
| Parking<br>Lot                                  | _     | —   | —   | _  | —   | -     | —     | _     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00    | — | 0.00 |

| Total                                           | —      | — | — | — | — | — | — | — | — | _ | — | 9.21 | 51.4 | 60.6 | 0.95 | 0.02    | — | 91.1 |
|-------------------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---------|---|------|
| Daily,<br>Winter<br>(Max)                       | _      |   |   | _ |   |   |   |   |   |   |   |      |      |      |      |         |   |      |
| Apartme<br>nts<br>Mid Rise                      | —      |   |   | — | — | — |   | — |   |   |   | 6.29 | 36.3 | 42.6 | 0.65 | 0.02    | — | 63.4 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t |   |   | _ | _ | _ | _ | _ |   |   |   | 2.34 | 12.1 | 14.4 | 0.24 | 0.01    |   | 22.2 |
| Automob<br>ile<br>Care<br>Center                | _      |   |   |   | _ |   |   |   |   |   |   | 0.59 | 3.03 | 3.62 | 0.06 | < 0.005 |   | 5.55 |
| Parking<br>Lot                                  | —      |   | — | — | _ | — | — |   |   | — |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | _ | 0.00 |
| Total                                           | —      | — | — | — | — | — | — | — | — | — | — | 9.21 | 51.4 | 60.6 | 0.95 | 0.02    | — | 91.1 |
| Annual                                          | —      |   | — | — | — | — | — | — | — | — | — | _    | —    | _    | -    | —       | _ | —    |
| Apartme<br>nts<br>Mid Rise                      | _      |   |   | _ | _ |   |   |   |   |   |   | 1.04 | 6.01 | 7.05 | 0.11 | < 0.005 |   | 10.5 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t |   |   | _ | _ | _ | _ |   |   | _ |   | 0.39 | 2.00 | 2.39 | 0.04 | < 0.005 | _ | 3.67 |
| Automob<br>ile<br>Care<br>Center                |        |   |   |   |   |   |   |   |   |   |   | 0.10 | 0.50 | 0.60 | 0.01 | < 0.005 |   | 0.92 |
| Parking<br>Lot                                  |        |   | _ | — |   | — | — |   |   |   |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    |   | 0.00 |
| Total                                           | _      |   | — | _ | _ | — | _ | _ | _ | _ | _ | 1.52 | 8.51 | 10.0 | 0.16 | < 0.005 | _ | 15.1 |

# 4.5. Waste Emissions by Land Use

## 4.5.2. Unmitigated

| Land<br>Use                                     | TOG   | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|-------------------------------------------------|-------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)                       |       | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —    | — | —    |
| Apartme<br>nts<br>Mid Rise                      |       |     |     | —  | —   |       | _     |       | —      |        | —      | 38.6 | 0.00  | 38.6 | 3.86 | 0.00 |   | 135  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | t     |     |     |    |     |       |       |       |        |        |        | 27.6 | 0.00  | 27.6 | 2.76 | 0.00 |   | 96.7 |
| Automob<br>ile<br>Care<br>Center                |       |     |     | _  |     |       |       |       |        |        |        | 7.40 | 0.00  | 7.40 | 0.74 | 0.00 |   | 25.9 |
| Parking<br>Lot                                  |       | —   | —   | —  | —   | —     | —     | —     | —      | —      |        | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                                           |       | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | 73.7 | 0.00  | 73.7 | 7.36 | 0.00 | _ | 258  |
| Daily,<br>Winter<br>(Max)                       |       | _   | _   | —  | _   | _     | _     | _     | _      | —      | _      | —    | _     | _    | —    | —    | _ | _    |
| Apartme<br>nts<br>Mid Rise                      |       |     |     | _  |     |       |       |       |        |        |        | 38.6 | 0.00  | 38.6 | 3.86 | 0.00 |   | 135  |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t | —   |     |    |     | —     |       | —     |        | —      |        | 27.6 | 0.00  | 27.6 | 2.76 | 0.00 | — | 96.7 |

| Automob<br>Care<br>Center                       |       | _ |   | _ |   | — |   |   |   | — |   | 7.40 | 0.00 | 7.40 | 0.74 | 0.00 | _ | 25.9 |
|-------------------------------------------------|-------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------|
| Parking<br>Lot                                  | _     | — | — | — |   | — | — | — |   | — |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                                           | —     | — | — | — |   | — | — | — | — | — | — | 73.7 | 0.00 | 73.7 | 7.36 | 0.00 | — | 258  |
| Annual                                          | _     | — | — | — | — | — | — | _ | — | — | — | —    | —    | —    | —    | —    | — | _    |
| Apartme<br>nts<br>Mid Rise                      |       | _ |   |   |   |   |   |   |   | — |   | 6.40 | 0.00 | 6.40 | 0.64 | 0.00 | _ | 22.4 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t | _ |   | _ | _ | _ |   | _ | _ | _ | _ | 4.57 | 0.00 | 4.57 | 0.46 | 0.00 | _ | 16.0 |
| Automob<br>ile<br>Care<br>Center                |       |   |   | _ |   |   |   |   |   |   |   | 1.23 | 0.00 | 1.23 | 0.12 | 0.00 |   | 4.29 |
| Parking<br>Lot                                  |       | _ |   | _ |   | _ |   |   |   | — |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 |
| Total                                           | _     | _ | — | _ |   | _ | — | _ | _ | — | _ | 12.2 | 0.00 | 12.2 | 1.22 | 0.00 | — | 42.7 |

## 4.5.1. Mitigated

| Land<br>Use                | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|----------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)  | -   | -   | -   | -  | -   | _     | _     | _     | _      | —      | —      | -    | _     | —    | _    | _    | _ | _    |
| Apartme<br>nts<br>Mid Rise | _   | —   | _   | _  | _   |       |       |       |        |        |        | 9.66 | 0.00  | 9.66 | 0.97 | 0.00 |   | 33.8 |

| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t |   |   |   | _ |   | _ |   | _ |   |   | 6.91 | 0.00 | 6.91 | 0.69 | 0.00 |   | 24.2 |
|-------------------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------|
| Automob<br>ile<br>Care<br>Center                |        |   | — |   |   |   |   |   |   |   |   | 1.85 | 0.00 | 1.85 | 0.18 | 0.00 |   | 6.48 |
| Parking<br>Lot                                  |        |   | — | — | — | — |   | — | — | — |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                                           | —      | _ | — | — | — | — | — | — | — | — | — | 18.4 | 0.00 | 18.4 | 1.84 | 0.00 | — | 64.4 |
| Daily,<br>Winter<br>(Max)                       | _      | — | — | _ | — | _ | — | _ | — | _ | _ | —    | —    | —    | _    | _    | — | _    |
| Apartme<br>nts<br>Mid Rise                      |        |   | _ |   | — |   | — |   | — | _ |   | 9.66 | 0.00 | 9.66 | 0.97 | 0.00 |   | 33.8 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t  |   |   | _ | _ | _ | _ |   | _ |   |   | 6.91 | 0.00 | 6.91 | 0.69 | 0.00 | _ | 24.2 |
| Automob<br>ile<br>Care<br>Center                |        |   | _ |   |   |   |   |   |   |   |   | 1.85 | 0.00 | 1.85 | 0.18 | 0.00 |   | 6.48 |
| Parking<br>Lot                                  |        | — | _ | — | — | — | — | — | — | — | — | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                                           | _      | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 18.4 | 0.00 | 18.4 | 1.84 | 0.00 | _ | 64.4 |
| Annual                                          | —      |   | — | — | — | — | — | — | — | — | — | _    | —    | —    | —    | —    | — | —    |
| Apartme<br>nts<br>Mid Rise                      | —      | — | _ | — | _ | — | — | — | — | — | — | 1.60 | 0.00 | 1.60 | 0.16 | 0.00 | — | 5.60 |

| Fast<br>Food<br>Restaurar<br>with<br>Drive<br>Thru | <br>t | _ | _ | <br>_ | _ | _ | <br>  | _ |   | 1.14 | 0.00 | 1.14 | 0.11 | 0.00 | _ | 4.00 |
|----------------------------------------------------|-------|---|---|-------|---|---|-------|---|---|------|------|------|------|------|---|------|
| Automob<br>ile<br>Care<br>Center                   | _     |   |   | <br>  |   |   | <br>  |   |   | 0.31 | 0.00 | 0.31 | 0.03 | 0.00 | _ | 1.07 |
| Parking<br>Lot                                     | —     |   |   | <br>  |   | _ | <br>_ |   | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                                              |       |   | _ | <br>  | _ | _ | <br>_ | _ | _ | 3.05 | 0.00 | 3.05 | 0.30 | 0.00 | _ | 10.7 |

# 4.6. Refrigerant Emissions by Land Use

## 4.6.1. Unmitigated

| Land<br>Use                                     | TOG   | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R    | CO2e |
|-------------------------------------------------|-------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------|
| Daily,<br>Summer<br>(Max)                       | —     |     | -   | —  | _   | —     | -     | —     | _      | —      | —      | -    |       |      | —   |     |      | —    |
| Apartme<br>nts<br>Mid Rise                      |       |     | _   |    | _   | _     | _     |       | _      |        | _      | _    |       |      |     |     | 0.67 | 0.67 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t | _   |     |    | _   |       |       |       | —      |        |        |      | _     | _    | _   | _   | 6.96 | 6.96 |
| Automob<br>ile<br>Care<br>Center                |       |     | _   | _  | _   | _     | _     |       | _      |        |        | _    |       |      |     |     | 746  | 746  |

| Total                                           | _     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |   | _ | _ | _ | _ | 753  | 753  |
|-------------------------------------------------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|------|
| Daily,<br>Winter<br>(Max)                       |       | _ | _ | _ | _ | _ |   | — | _ | — | _ | _ | _ | _ | _ | — |      | _    |
| Apartme<br>nts<br>Mid Rise                      |       |   | _ |   |   |   |   | _ | _ | _ |   |   |   |   | _ | - | 0.67 | 0.67 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t |   | _ | _ |   | _ | _ |   | _ |   | _ |   |   |   |   |   | 6.96 | 6.96 |
| Automob<br>ile<br>Care<br>Center                |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   | — | 746  | 746  |
| Total                                           | —     | — | _ | _ | _ | _ | _ | - | _ | - | _ | — | _ | _ | - | _ | 753  | 753  |
| Annual                                          | _     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _    | _    |
| Apartme<br>nts<br>Mid Rise                      |       |   |   |   |   |   |   |   | _ | _ |   |   |   |   |   | — | 0.11 | 0.11 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | <br>t | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |   | 1.15 | 1.15 |
| Automob<br>ile<br>Care<br>Center                |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 123  | 123  |
| Total                                           |       | _ |   |   | _ |   |   |   | _ |   |   |   | _ |   |   |   | 125  | 125  |

# 4.6.2. Mitigated

| Land<br>Use                                     | TOG    | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R    | CO2e |
|-------------------------------------------------|--------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------|
| Daily,<br>Summer<br>(Max)                       | —      |     | —   | —  | _   | _     |       | —     | —      | —      |        |      | —     |      |     | _   | —    | —    |
| Apartme<br>nts<br>Mid Rise                      | _      |     | _   | _  | _   | _     | —     | _     |        | —      | _      | —    | _     |      | _   | _   | 0.67 | 0.67 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t | _   |     | _  | _   | _     |       |       |        |        | _      |      | _     | _    |     | _   | 6.96 | 6.96 |
| Automob<br>ile<br>Care<br>Center                |        |     |     | _  |     |       |       |       |        |        |        |      |       |      |     |     | 746  | 746  |
| Total                                           | —      | —   | _   | -  | _   | _     | _     | _     | _      | _      | —      | _    | —     | _    | —   | _   | 753  | 753  |
| Daily,<br>Winter<br>(Max)                       | _      |     | _   | -  |     |       |       |       |        | _      |        |      |       |      |     |     |      |      |
| Apartme<br>nts<br>Mid Rise                      |        |     |     | —  |     |       |       |       |        |        |        |      |       |      |     |     | 0.67 | 0.67 |
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | t      |     | -   | _  | _   |       |       | _     |        |        |        |      |       |      | _   | _   | 6.96 | 6.96 |
| Automob<br>ile<br>Care<br>Center                |        |     |     | _  |     |       |       |       |        |        |        |      |       |      |     |     | 746  | 746  |
| Total                                           | —      | _   | _   | _  | _   | _     | _     |       |        | _      | _      | _    |       |      | _   | _   | 753  | 753  |
| Annual                                          | _      | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     |      | —   | _   | _    | _    |

| Apartme<br>nts                                  | —      |   | — | — |   | — | — |   | — |   |   | — | — |   | — | — | 0.11 | 0.11 |
|-------------------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|------|
| Fast<br>Food<br>Restaurar<br>with Drive<br>Thru | —<br>t | _ |   | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |   |   |   | 1.15 | 1.15 |
| Automob<br>ile<br>Care<br>Center                | _      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 123  | 123  |
| Total                                           | _      | _ | _ | _ |   | _ | _ |   | _ |   | _ | _ | _ | _ | _ | _ | 125  | 125  |

# 4.7. Offroad Emissions By Equipment Type

# 4.7.1. Unmitigated

| Equipme<br>nt<br>Type     | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | _   | —   | —  | —   | —     | —     | —     |        | —      | —      | _    | —     | —    | _   | —   | — |      |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) |     | -   |     | -  |     |       |       |       |        |        |        | -    |       |      | -   |     | _ |      |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ |      |
| Annual                    | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ |      |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | —      | _      | _      | _    | _     | _    | _   | _   | _ |      |

| Equipme<br>nt<br>Type     | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     | —   | —   | —  | _   | —     | —     | —     | —      | —      |        |      | —     | —    | —   | —   | — | —    |
| Total                     | —   | —   | —   | —  | —   | _     | —     | —     | —      | —      | —      | —    | _     | —    | —   | —   | _ | -    |
| Daily,<br>Winter<br>(Max) |     |     |     |    |     | —     |       |       |        |        |        |      | —     | —    |     | _   | — | —    |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Annual                    |     |     | _   | _  | _   | _     |       | _     |        | _      |        | _    | _     | _    |     | _   | _ | _    |
| Total                     |     | _   | _   | _  | _   | _     | _     | _     | _      | _      |        | _    | _     | _    | _   | _   | _ | _    |

## Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

# 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

| Equipme<br>nt<br>Type     | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | _   | —   | _   | —  | _   | —     | —     | —     |        | —      | —      | —    | —     | _    | —   |     | — | —    |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) | _   | _   | _   | -  |     | _     |       |       |        |        |        | _    |       |      | _   |     |   | _    |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Annual                    | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     |        | _      | _      | _    | _     | _    | _   | _   | _ | _    |

#### 4.8.2. Mitigated

#### PM2.5E SO2 PM10E PM10D PM10T PM2.5D PM2.5T Equipme TOG ROG NOx со BCO2 NBCO2 CO2T CH4 N2O CO2e R nt Туре Daily, Summer (Max) Total \_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ Daily, Winter (Max) Total \_ \_\_\_\_ \_\_\_\_ \_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ Annual \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ Total \_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

# 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

| Equipme<br>nt<br>Type     | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     |     |     |    | —   |       | —     | —     |        | —      | —      | —    |       | —    | —   |     | — |      |
| Total                     | —   | —   | —   | —  | —   | _     | —     | —     |        | —      | —      | —    | —     | —    | —   | _   | — | —    |
| Daily,<br>Winter<br>(Max) |     |     |     |    |     |       | —     |       |        |        |        | _    |       | —    |     |     | — | _    |
| Total                     | _   | _   | _   | _  | —   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

| Annual | — |   | _ | _ | — |   | _ | — |   | _ | _ | — | — | _ | — |   | _ | _ |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total  | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |

#### 4.9.2. Mitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipme<br>nt<br>Type     | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | —   |     | —  |     | —     |       |       | —      | —      |        | —    | —     | —    |     | —   |   | —    |
| Total                     | —   | —   | —   | -  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) |     | _   | _   | _  |     | _     |       | _     | _      |        | _      | _    |       |      | _   | -   |   |      |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Annual                    | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   |   | _    |

# 4.10. Soil Carbon Accumulation By Vegetation Type

## 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

| Vegetatio<br>n            | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | —   | —   | —  | -   | —     | —     | —     | —      | -      | —      | —    | —     |      | —   | —   | — | —    |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     |      | _   | _   |   | _    |

| Daily,<br>Winter<br>(Max) | — | — | — | — |   | — | — |   | — | _ | — | — | — | _ | — | _ | _ | _ |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total                     | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | _ | _ | — |
| Annual                    | — | — | — | — | — | — | — | — | — |   | — | — | — | — | _ |   | _ | — |
| Total                     | — | _ | — | — | — | — |   | — | — | _ | — |   | — | _ |   | _ | _ | _ |

## 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

# Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land<br>Use               | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     |     |     |    |     |       |       |       |        | —      | _      |      | _     |      |     |     |   | _    |
| Total                     | —   | —   | —   | _  | _   | —     | —     | —     |        | —      | —      | —    | —     | —    | —   | _   |   | —    |
| Daily,<br>Winter<br>(Max) | _   |     |     |    |     |       |       |       |        |        |        |      | —     | _    |     |     |   | —    |
| Total                     | —   | _   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Annual                    | _   | _   | _   | _  | _   | —     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   |   | —    |
| Total                     | _   | _   | _   | _  | _   | —     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   |   | —    |

## 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species                   | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     | _   | -   | —  | -   | _     | —     | _     | —      |        | _      | -    |       |      | _   |     |   | —    |
| Avoided                   | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Subtotal                  | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

| Sequest                   | — | — | — | — | — | _ | — | — | — | — |          | — | — | — | — | — | — | _ |
|---------------------------|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|
| Subtotal                  | _ |   | _ | _ | _ | _ | _ | _ | _ | _ |          | _ |   | _ | _ | _ | _ | _ |
| Remove<br>d               |   |   | — | — | — | — |   |   |   | — |          | — |   | — |   | — | — | — |
| Subtotal                  | _ |   | — | _ | _ | _ | — | _ | _ | — | —        | _ | _ | _ | _ | _ | _ | _ |
| _                         | _ |   | _ | _ | _ | _ | _ | _ |   | _ | <u> </u> | _ |   | _ |   | _ | _ | _ |
| Daily,<br>Winter<br>(Max) |   |   |   | _ | — | _ | _ |   |   | — |          |   |   |   |   |   | — | _ |
| Avoided                   | — |   | — | — | — | — | — | — | — | — |          | — |   | — | — | — | — | _ |
| Subtotal                  |   |   | _ | _ | — | _ | _ |   |   | _ |          | _ |   | _ |   | _ | _ | _ |
| Sequest<br>ered           |   | — | — | — | — | — | — |   |   | — |          | — | — | — |   | — | — | — |
| Subtotal                  | _ |   | _ | _ | _ | _ | _ | _ |   | _ |          | _ |   | _ |   | _ | _ | _ |
| Remove<br>d               |   |   | _ | _ | _ | _ |   |   |   |   |          | _ |   | _ |   | _ | _ | _ |
| Subtotal                  | _ |   | _ | _ | _ | _ | _ | _ |   | _ |          | _ |   | _ |   | _ | _ | _ |
| _                         | _ |   | — | — | _ | _ | _ | _ |   | _ |          | — |   | _ |   | — | _ | _ |
| Annual                    |   |   | — | — | _ | _ | _ |   | _ | _ | _        | — |   | _ | _ | _ | _ | _ |
| Avoided                   |   |   | — | — | _ | _ |   |   |   | _ |          | — |   | _ |   | — | _ | _ |
| Subtotal                  | _ |   | _ | _ | _ | _ | _ | _ | _ | _ | _        | _ |   | _ |   | _ | _ | _ |
| Sequest<br>ered           |   |   | _ | — | — | _ |   |   |   | — |          | — |   | _ |   | — | _ | _ |
| Subtotal                  | _ |   | _ | _ | _ | _ | _ | _ | _ | _ | —        | _ | _ | _ | _ | _ | _ | _ |
| Remove<br>d               | _ |   | _ | _ | — | _ | _ | _ |   | — |          | _ |   | _ |   | — | — | _ |
| Subtotal                  |   |   | — | _ | — | _ |   |   |   | — |          | — |   | _ |   | — | _ | _ |
| _                         | _ |   | — | _ | _ | _ | _ | _ | _ | — | _        | _ |   | _ |   | _ | _ | _ |

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

| Vegetatio<br>n            | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     | —   | —   |    |     | —     | —     | —     |        | —      |        |      | —     | —    |     | —   | — | —    |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | _    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) |     |     |     |    |     |       |       |       |        | —      |        |      |       |      |     |     | _ | —    |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | _ | —    |
| Annual                    |     | _   | _   | _  |     | _     | —     | —     |        | —      | _      |      | —     | —    | _   | —   | _ | —    |
| Total                     |     | _   | _   | _  |     | _     | —     | —     |        | —      | _      |      | —     | —    | _   | —   | _ | —    |

## Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

## 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

| Land<br>Use               | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     | —   |     |    |     | —     |       |       |        |        |        |      |       |      |     |     | _ |      |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | _    |
| Daily,<br>Winter<br>(Max) |     | —   |     |    |     | —     |       | _     |        | _      |        |      |       |      |     | _   | — | _    |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | _      | —      | —      | —    | —     | —    | _   | —   | — | _    |
| Annual                    | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    |       |      | _   | _   | _ |      |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    |       |      | _   | _   | _ |      |

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

| Species                   | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | _   |     | —   | —  | _   | —     |       | —     |        | _      | —      |      | —     |      | —   | —   |   | _    |
| Avoided                   | _   | _   | _   | _  | _   | —     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Subtotal                  | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Sequest<br>ered           | —   |     | _   | _  | _   |       |       |       |        | _      | _      | _    | _     |      | _   | _   |   | _    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Remove<br>d               | —   | _   | _   | _  | —   | _     | _     | _     | _      | —      | _      | —    | _     | _    | _   | _   |   | _    |
| Subtotal                  | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
|                           | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Daily,<br>Winter<br>(Max) |     |     |     |    |     | —     |       |       | _      |        |        |      |       |      |     |     |   |      |
| Avoided                   | —   | —   | —   | —  | —   | —     | —     | —     | _      | —      | —      | —    | —     | —    | —   | _   | — | —    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      |        | —    | —     | —    | —   | —   | — | —    |
| Sequest<br>ered           | —   |     | —   | —  | _   |       |       | —     |        | —      | —      | —    | —     |      |     | —   |   | —    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | _      | —    | —     | —    | —   | —   | — | —    |
| Remove<br>d               | —   | —   | —   | —  | —   | —     | —     | —     | _      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | —     | _      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| _                         | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | _      | —    | —     | —    | —   | —   | — | —    |
| Annual                    | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Avoided                   | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      |        | —    | —     | —    | —   | —   | — | —    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Sequest<br>ered           | —   |     | _   | _  | —   |       |       | _     |        | —      | _      | —    | —     |      | _   | _   |   | —    |
| Subtotal                  | —   | _   | _   | _  |     | _     | _     | _     |        | _      | _      | _    | _     |      | _   |     |   | _    |
|                           |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |

| Remove   | _ | _ | — | _ | _ | _ | _ | _ | _ | _ | _ | — |   | _ | — | _ | — | — |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Subtotal | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
| _        | _ | _ | - | _ | _ | _ | — | _ | — | _ | _ | — |   | _ | _ | _ | — | — |

# 5. Activity Data

# 5.1. Construction Schedule

| Phase Name                       | Phase Type            | Start Date | End Date   | Days Per Week | Work Days per Phase | Phase Description |
|----------------------------------|-----------------------|------------|------------|---------------|---------------------|-------------------|
| Demolition                       | Demolition            | 5/1/2024   | 5/31/2024  | 5.00          | 23.0                | —                 |
| Grading                          | Grading               | 6/1/2024   | 7/5/2024   | 5.00          | 25.0                | —                 |
| Phase 1 Building<br>Construction | Building Construction | 12/1/2024  | 2/28/2025  | 5.00          | 65.0                | _                 |
| Phase 2 Building<br>Construction | Building Construction | 4/1/2025   | 06/30/2025 | 5.00          | 65.0                | —                 |
| Phase 3 Building<br>Construction | Building Construction | 8/1/2025   | 10/30/2025 | 5.00          | 65.0                | _                 |
| Phase 4 Building<br>Construction | Building Construction | 12/1/2025  | 2/28/2026  | 5.00          | 65.0                | _                 |
| Phase 5 Building<br>Construction | Building Construction | 4/1/2026   | 6/30/2026  | 5.00          | 65.0                | _                 |
| Paving                           | Paving                | 10/1/2024  | 11/15/2024 | 5.00          | 34.0                | —                 |
| Phase 1 Architectural<br>Coating | Architectural Coating | 3/1/2025   | 3/31/2025  | 5.00          | 21.0                | _                 |
| Phase 2 Architectural<br>Coating | Architectural Coating | 7/1/2025   | 7/31/2025  | 5.00          | 23.0                | _                 |
| Phase 3 Architectural<br>Coating | Architectural Coating | 11/1/2025  | 11/28/2025 | 5.00          | 20.0                | —                 |
| Phase 4 Architectural<br>Coating | Architectural Coating | 3/1/2026   | 3/31/2026  | 5.00          | 22.0                | _                 |
| Phase 5 Architectural<br>Coating | Architectural Coating | 7/1/2026   | 7/31/2026  | 5.00          | 23.0                | —                 |

# 5.2. Off-Road Equipment

# 5.2.1. Unmitigated

| Phase Name                       | Equipment Type                | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|----------------------------------|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition                       | Concrete/Industrial<br>Saws   | Diesel    | Average     | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition                       | Excavators                    | Diesel    | Average     | 3.00           | 8.00          | 36.0       | 0.38        |
| Demolition                       | Rubber Tired Dozers           | Diesel    | Average     | 2.00           | 8.00          | 367        | 0.40        |
| Grading                          | Excavators                    | Diesel    | Average     | 1.00           | 8.00          | 36.0       | 0.38        |
| Grading                          | Graders                       | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Grading                          | Rubber Tired Dozers           | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Grading                          | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 3.00           | 8.00          | 84.0       | 0.37        |
| Phase 1 Building<br>Construction | Cranes                        | Diesel    | Average     | 1.00           | 7.00          | 367        | 0.29        |
| Phase 1 Building<br>Construction | Forklifts                     | Diesel    | Average     | 3.00           | 8.00          | 82.0       | 0.20        |
| Phase 1 Building<br>Construction | Generator Sets                | Diesel    | Average     | 1.00           | 8.00          | 14.0       | 0.74        |
| Phase 1 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 3.00           | 7.00          | 84.0       | 0.37        |
| Phase 1 Building<br>Construction | Welders                       | Diesel    | Average     | 1.00           | 8.00          | 46.0       | 0.45        |
| Phase 2 Building<br>Construction | Cranes                        | Diesel    | Average     | 1.00           | 7.00          | 367        | 0.29        |
| Phase 2 Building<br>Construction | Forklifts                     | Diesel    | Average     | 3.00           | 8.00          | 82.0       | 0.20        |
| Phase 2 Building<br>Construction | Generator Sets                | Diesel    | Average     | 1.00           | 8.00          | 14.0       | 0.74        |
| Phase 2 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 3.00           | 7.00          | 84.0       | 0.37        |

| Phase 2 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
|----------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Phase 3 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 3 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 3 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 3 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 3 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Phase 4 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 4 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 4 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 4 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 4 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Phase 5 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 5 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 5 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 5 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 5 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Paving                           | Pavers                        | Diesel | Average | 2.00 | 8.00 | 81.0 | 0.42 |
| Paving                           | Paving Equipment | Diesel | Average | 2.00 | 8.00 | 89.0 | 0.36 |
|----------------------------------|------------------|--------|---------|------|------|------|------|
| Paving                           | Rollers          | Diesel | Average | 2.00 | 8.00 | 36.0 | 0.38 |
| Phase 1 Architectural<br>Coating | Air Compressors  | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 2 Architectural<br>Coating | Air Compressors  | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 3 Architectural<br>Coating | Air Compressors  | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 4 Architectural<br>Coating | Air Compressors  | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 5 Architectural<br>Coating | Air Compressors  | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |

## 5.2.2. Mitigated

| Phase Name                       | Equipment Type                | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|----------------------------------|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition                       | Concrete/Industrial<br>Saws   | Diesel    | Average     | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition                       | Excavators                    | Diesel    | Average     | 3.00           | 8.00          | 36.0       | 0.38        |
| Demolition                       | Rubber Tired Dozers           | Diesel    | Average     | 2.00           | 8.00          | 367        | 0.40        |
| Grading                          | Excavators                    | Diesel    | Average     | 1.00           | 8.00          | 36.0       | 0.38        |
| Grading                          | Graders                       | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Grading                          | Rubber Tired Dozers           | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Grading                          | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 3.00           | 8.00          | 84.0       | 0.37        |
| Phase 1 Building<br>Construction | Cranes                        | Diesel    | Average     | 1.00           | 7.00          | 367        | 0.29        |
| Phase 1 Building<br>Construction | Forklifts                     | Diesel    | Average     | 3.00           | 8.00          | 82.0       | 0.20        |
| Phase 1 Building<br>Construction | Generator Sets                | Diesel    | Average     | 1.00           | 8.00          | 14.0       | 0.74        |

| Phase 1 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
|----------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Phase 1 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Phase 2 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 2 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 2 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 2 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 2 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Phase 3 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 3 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 3 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 3 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 3 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Phase 4 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
| Phase 4 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 4 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 4 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 4 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |

| Phase 5 Building<br>Construction | Cranes                        | Diesel | Average | 1.00 | 7.00 | 367  | 0.29 |
|----------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Phase 5 Building<br>Construction | Forklifts                     | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Phase 5 Building<br>Construction | Generator Sets                | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Phase 5 Building<br>Construction | Tractors/Loaders/Backh<br>oes | Diesel | Average | 3.00 | 7.00 | 84.0 | 0.37 |
| Phase 5 Building<br>Construction | Welders                       | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Paving                           | Pavers                        | Diesel | Average | 2.00 | 8.00 | 81.0 | 0.42 |
| Paving                           | Paving Equipment              | Diesel | Average | 2.00 | 8.00 | 89.0 | 0.36 |
| Paving                           | Rollers                       | Diesel | Average | 2.00 | 8.00 | 36.0 | 0.38 |
| Phase 1 Architectural<br>Coating | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 2 Architectural<br>Coating | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 3 Architectural<br>Coating | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 4 Architectural<br>Coating | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |
| Phase 5 Architectural<br>Coating | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 37.0 | 0.48 |

## 5.3. Construction Vehicles

## 5.3.1. Unmitigated

| Phase Name | Тгір Туре | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------|-----------|-----------------------|----------------|---------------|
| Demolition | —         | —                     | —              | —             |
| Demolition | Worker    | 15.0                  | 18.5           | LDA,LDT1,LDT2 |
| Demolition | Vendor    | _                     | 10.2           | HHDT,MHDT     |

| Demolition                    | Hauling      | 40.7 | 5.00 | HHDT          |
|-------------------------------|--------------|------|------|---------------|
| Demolition                    | Onsite truck | _    | _    | HHDT          |
| Grading                       | _            | _    | _    | _             |
| Grading                       | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Grading                       | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Grading                       | Hauling      | 2.52 | 25.0 | HHDT          |
| Grading                       | Onsite truck | _    | _    | HHDT          |
| Phase 1 Building Construction | _            | _    | _    | _             |
| Phase 1 Building Construction | Worker       | 72.9 | 18.5 | LDA,LDT1,LDT2 |
| Phase 1 Building Construction | Vendor       | 11.7 | 10.2 | HHDT,MHDT     |
| Phase 1 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 1 Building Construction | Onsite truck | _    | _    | HHDT          |
| Paving                        | _            | _    | _    | _             |
| Paving                        | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Paving                        | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Paving                        | Hauling      | 0.00 | 20.0 | HHDT          |
| Paving                        | Onsite truck | _    | _    | HHDT          |
| Phase 1 Architectural Coating | _            | _    | _    | _             |
| Phase 1 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 1 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 1 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 1 Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Phase 2 Building Construction | _            | _    | _    | _             |
| Phase 2 Building Construction | Worker       | 72.9 | 18.5 | LDA,LDT1,LDT2 |
| Phase 2 Building Construction | Vendor       | 11.7 | 10.2 | HHDT,MHDT     |
| Phase 2 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 2 Building Construction | Onsite truck | _    | _    | HHDT          |

| Phase 3 Building Construction | _            | _    | _    | _             |
|-------------------------------|--------------|------|------|---------------|
| Phase 3 Building Construction | Worker       | 72.9 | 18.5 | LDA,LDT1,LDT2 |
| Phase 3 Building Construction | Vendor       | 11.7 | 10.2 | HHDT,MHDT     |
| Phase 3 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 3 Building Construction | Onsite truck | _    | _    | HHDT          |
| Phase 4 Building Construction | _            | _    | _    | _             |
| Phase 4 Building Construction | Worker       | 72.9 | 18.5 | LDA,LDT1,LDT2 |
| Phase 4 Building Construction | Vendor       | 11.7 | 10.2 | HHDT,MHDT     |
| Phase 4 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 4 Building Construction | Onsite truck | _    | _    | HHDT          |
| Phase 5 Building Construction | _            | _    | _    | _             |
| Phase 5 Building Construction | Worker       | 72.9 | 18.5 | LDA,LDT1,LDT2 |
| Phase 5 Building Construction | Vendor       | 11.7 | 10.2 | HHDT,MHDT     |
| Phase 5 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 5 Building Construction | Onsite truck | _    | _    | HHDT          |
| Phase 2 Architectural Coating | _            | _    | _    | _             |
| Phase 2 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 2 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 2 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 2 Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Phase 3 Architectural Coating | _            | _    | _    | _             |
| Phase 3 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 3 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 3 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 3 Architectural Coating | Onsite truck | —    | —    | HHDT          |
| Phase 4 Architectural Coating | —            | —    | —    | _             |
| Phase 4 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |

| Phase 4 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
|-------------------------------|--------------|------|------|---------------|
| Phase 4 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 4 Architectural Coating | Onsite truck | —    | _    | HHDT          |
| Phase 5 Architectural Coating | _            | _    | _    | —             |
| Phase 5 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 5 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 5 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 5 Architectural Coating | Onsite truck | —    | —    | HHDT          |

## 5.3.2. Mitigated

| Phase Name                    | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|-------------------------------|--------------|-----------------------|----------------|---------------|
| Demolition                    | _            | _                     | _              | —             |
| Demolition                    | Worker       | 15.0                  | 18.5           | LDA,LDT1,LDT2 |
| Demolition                    | Vendor       | _                     | 10.2           | HHDT,MHDT     |
| Demolition                    | Hauling      | 40.7                  | 5.00           | HHDT          |
| Demolition                    | Onsite truck | _                     | _              | HHDT          |
| Grading                       | _            | _                     | _              | _             |
| Grading                       | Worker       | 15.0                  | 18.5           | LDA,LDT1,LDT2 |
| Grading                       | Vendor       | _                     | 10.2           | HHDT,MHDT     |
| Grading                       | Hauling      | 2.52                  | 25.0           | HHDT          |
| Grading                       | Onsite truck | _                     | _              | HHDT          |
| Phase 1 Building Construction | _            | _                     | _              | _             |
| Phase 1 Building Construction | Worker       | 72.9                  | 18.5           | LDA,LDT1,LDT2 |
| Phase 1 Building Construction | Vendor       | 11.7                  | 10.2           | HHDT,MHDT     |
| Phase 1 Building Construction | Hauling      | 0.00                  | 20.0           | HHDT          |
| Phase 1 Building Construction | Onsite truck | _                     | _              | HHDT          |
| Paving                        | _            | _                     | —              | —             |

| Worker       | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vendor       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
| Hauling      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT                                                                                                                                                                                                                                                                                                                        |
| Onsite truck | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HHDT                                                                                                                                                                                                                                                                                                                        |
| _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                           |
| Worker       | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
| Vendor       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
| Hauling      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT                                                                                                                                                                                                                                                                                                                        |
| Onsite truck | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HHDT                                                                                                                                                                                                                                                                                                                        |
| _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                           |
| Worker       | 72.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
| Vendor       | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
| Hauling      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT                                                                                                                                                                                                                                                                                                                        |
| Onsite truck | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HHDT                                                                                                                                                                                                                                                                                                                        |
| _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                           |
| Worker       | 72.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
| Vendor       | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
| Hauling      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT                                                                                                                                                                                                                                                                                                                        |
| Onsite truck | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HHDT                                                                                                                                                                                                                                                                                                                        |
| _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                           |
| Worker       | 72.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
| Vendor       | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
| Hauling      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT                                                                                                                                                                                                                                                                                                                        |
| Onsite truck | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HHDT                                                                                                                                                                                                                                                                                                                        |
| _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                                                                                                                                                                                                                                                                                                                           |
| Worker       | 72.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LDA,LDT1,LDT2                                                                                                                                                                                                                                                                                                               |
| Vendor       | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHDT,MHDT                                                                                                                                                                                                                                                                                                                   |
|              | WorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerVendorHaulingOnsite truckWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorker | Worker15.0VendorHauling0.00Onsite truckWorker15.0VendorHauling0.00Onsite truckMorker2.9Vendor1.17Hauling0.00Onsite truckWorker1.17Hauling0.00Onsite truckWorker2.9Vendor1.17Hauling0.00Onsite truckWorker1.17Hauling0.00Onsite truckWorker2.9Morker1.7Hauling0.00Onsite truckWorker2.9Worker1.7Hauling0.00MorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorkerMorker <td< td=""><td>Worker15.018.5Vendor10.2Hauling0.0020.0Onsite truckWorker15.018.5Vendor-10.2Hauling0.0020.0Onsite truckMorker10.2Onsite truckWorker72.918.5Vendor11.710.2Onsite truckMorker11.710.2Onsite truckMorker11.710.2Norker2.918.5Vendor11.710.2MorkerMorker11.710.2Norker11.710.2NorkerMorkerNorkerMorkerMorkerMorkerMorkerMorker&lt;</td></td<> | Worker15.018.5Vendor10.2Hauling0.0020.0Onsite truckWorker15.018.5Vendor-10.2Hauling0.0020.0Onsite truckMorker10.2Onsite truckWorker72.918.5Vendor11.710.2Onsite truckMorker11.710.2Onsite truckMorker11.710.2Norker2.918.5Vendor11.710.2MorkerMorker11.710.2Norker11.710.2NorkerMorkerNorkerMorkerMorkerMorkerMorkerMorker< |

| Phase 5 Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
|-------------------------------|--------------|------|------|---------------|
| Phase 5 Building Construction | Onsite truck | _    | _    | ННДТ          |
| Phase 2 Architectural Coating | _            | _    | _    | _             |
| Phase 2 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 2 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 2 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 2 Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Phase 3 Architectural Coating | _            | _    | _    | _             |
| Phase 3 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 3 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 3 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 3 Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Phase 4 Architectural Coating | _            | _    | _    | _             |
| Phase 4 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 4 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 4 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 4 Architectural Coating | Onsite truck | _    | _    | HHDT          |
| Phase 5 Architectural Coating | _            | _    | _    | _             |
| Phase 5 Architectural Coating | Worker       | 15.0 | 18.5 | LDA,LDT1,LDT2 |
| Phase 5 Architectural Coating | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Phase 5 Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Phase 5 Architectural Coating | Onsite truck |      | —    | HHDT          |

## 5.4. Vehicles

#### 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

## 5.5. Architectural Coatings

| Phase Name                    | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Phase 1 Architectural Coating | 38,483                                   | 12,828                                   | 2,492                                           | 831                                             | 41.6                        |
| Phase 2 Architectural Coating | 38,483                                   | 12,828                                   | 2,492                                           | 831                                             | 41.6                        |
| Phase 3 Architectural Coating | 34,635                                   | 11,545                                   | 2,243                                           | 748                                             | 37.4                        |
| Phase 4 Architectural Coating | 38,483                                   | 12,828                                   | 2,492                                           | 831                                             | 41.6                        |
| Phase 5 Architectural Coating | 38,483                                   | 12,828                                   | 2,492                                           | 831                                             | 41.6                        |

## 5.6. Dust Mitigation

#### 5.6.1. Construction Earthmoving Activities

| Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (Building<br>Square Footage) | Acres Paved (acres) |
|------------|---------------------------------|---------------------------------|----------------------|--------------------------------------------------|---------------------|
| Demolition | 0.00                            | 0.00                            | 0.00                 | 81,400                                           | —                   |
| Grading    | 0.00                            | 500                             | 25.0                 | 0.00                                             | —                   |
| Paving     | 0.00                            | 0.00                            | 0.00                 | 0.00                                             | 1.47                |

#### 5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

## 5.7. Construction Paving

| Land Use                             | Area Paved (acres) | % Asphalt |
|--------------------------------------|--------------------|-----------|
| Apartments Mid Rise                  |                    | 0%        |
| Fast Food Restaurant with Drive Thru | 0.00               | 0%        |
| Automobile Care Center               | 0.00               | 0%        |
| Fast Food Restaurant with Drive Thru | 0.00               | 0%        |
| Parking Lot                          | 1.47               | 100%      |

## 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2 | CH4  | N2O     |
|------|--------------|-----|------|---------|
| 2024 | 0.00         | 532 | 0.03 | < 0.005 |
| 2025 | 0.00         | 532 | 0.03 | < 0.005 |
| 2026 | 0.00         | 532 | 0.03 | < 0.005 |

## 5.9. Operational Mobile Sources

#### 5.9.1. Unmitigated

| Land Use Type       | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|---------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| Total all Land Uses | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

#### 5.9.2. Mitigated

| Land Use Type       | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|---------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| Total all Land Uses | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

## 5.10. Operational Area Sources

#### 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

| Hearth Type         | Unmitigated (number) |
|---------------------|----------------------|
| Apartments Mid Rise |                      |
| Wood Fireplaces     | 0                    |
| Gas Fireplaces      | 82                   |
| Propane Fireplaces  | 0                    |
| 105                 | / 119                |

| Electric Fireplaces       | 0  |
|---------------------------|----|
| No Fireplaces             | 10 |
| Conventional Wood Stoves  | 0  |
| Catalytic Wood Stoves     | 0  |
| Non-Catalytic Wood Stoves | 0  |
| Pellet Wood Stoves        | 0  |

## 5.10.1.2. Mitigated

| Hearth Type               | Unmitigated (number) |
|---------------------------|----------------------|
| Apartments Mid Rise       |                      |
| Wood Fireplaces           | 0                    |
| Gas Fireplaces            | 82                   |
| Propane Fireplaces        | 0                    |
| Electric Fireplaces       | 0                    |
| No Fireplaces             | 10                   |
| Conventional Wood Stoves  | 0                    |
| Catalytic Wood Stoves     | 0                    |
| Non-Catalytic Wood Stoves | 0                    |
| Pellet Wood Stoves        | 0                    |

## 5.10.2. Architectural Coatings

| Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) |
|------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------|
| 188568                                   | 62,856                                   | 12,213                                       | 4,071                                        | 204                         |

## 5.10.3. Landscape Equipment

| Season | Unit      | Value |
|--------|-----------|-------|
|        | 106 / 119 |       |

| Snow Days   | day/yr | 0.00 |
|-------------|--------|------|
| Summer Days | day/yr | 250  |

#### 5.10.4. Landscape Equipment - Mitigated

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 250   |

## 5.11. Operational Energy Consumption

#### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use                             | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|--------------------------------------|----------------------|-----|--------|--------|-----------------------|
| Apartments Mid Rise                  | 355,586              | 532 | 0.0330 | 0.0040 | 1,077,364             |
| Fast Food Restaurant with Drive Thru | 121,206              | 532 | 0.0330 | 0.0040 | 402,961               |
| Automobile Care Center               | 34,495               | 532 | 0.0330 | 0.0040 | 153,916               |
| Fast Food Restaurant with Drive Thru | 32,899               | 532 | 0.0330 | 0.0040 | 109,375               |
| Parking Lot                          | 55,979               | 532 | 0.0330 | 0.0040 | 0.00                  |

#### 5.11.2. Mitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use                             | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|--------------------------------------|----------------------|-----|--------|--------|-----------------------|
| Apartments Mid Rise                  | 334,078              | 532 | 0.0330 | 0.0040 | 1,077,364             |
| Fast Food Restaurant with Drive Thru | 103,815              | 532 | 0.0330 | 0.0040 | 402,961               |
| Automobile Care Center               | 34,387               | 532 | 0.0330 | 0.0040 | 153,916               |

| Fast Food Restaurant with Drive Thru | 28,178 | 532 | 0.0330 | 0.0040 | 109,375 |
|--------------------------------------|--------|-----|--------|--------|---------|
| Parking Lot                          | 55,979 | 532 | 0.0330 | 0.0040 | 0.00    |

## 5.12. Operational Water and Wastewater Consumption

## 5.12.1. Unmitigated

| Land Use                             | Indoor Water (gal/year) | Outdoor Water (gal/year) |  |
|--------------------------------------|-------------------------|--------------------------|--|
| Apartments Mid Rise                  | 3,615,559               | 900,116                  |  |
| Fast Food Restaurant with Drive Thru | 1,062,368               | 0.00                     |  |
| Automobile Care Center               | 338,316                 | 0.00                     |  |
| Fast Food Restaurant with Drive Thru | 288,357                 | 0.00                     |  |
| Parking Lot                          | 0.00                    | 0.00                     |  |

## 5.12.2. Mitigated

| Land Use                             | Indoor Water (gal/year) | Outdoor Water (gal/year) |  |
|--------------------------------------|-------------------------|--------------------------|--|
| Apartments Mid Rise                  | 3,280,396               | 482,979                  |  |
| Fast Food Restaurant with Drive Thru | 959,318                 | 0.00                     |  |
| Automobile Care Center               | 305,499                 | 0.00                     |  |
| Fast Food Restaurant with Drive Thru | 260,386                 | 0.00                     |  |
| Parking Lot                          | 0.00                    | 0.00                     |  |

## 5.13. Operational Waste Generation

## 5.13.1. Unmitigated

| Land Use            | Waste (ton/year) | Cogeneration (kWh/year) |
|---------------------|------------------|-------------------------|
| Apartments Mid Rise | 71.7             | _                       |

| Fast Food Restaurant with Drive Thru | 40.3 | _ |
|--------------------------------------|------|---|
| Automobile Care Center               | 13.7 | _ |
| Fast Food Restaurant with Drive Thru | 10.9 | _ |
| Parking Lot                          | 0.00 | — |

## 5.13.2. Mitigated

| Land Use                             | Waste (ton/year) | Cogeneration (kWh/year) |  |
|--------------------------------------|------------------|-------------------------|--|
| Apartments Mid Rise                  | 17.9             |                         |  |
| Fast Food Restaurant with Drive Thru | 10.1             |                         |  |
| Automobile Care Center               | 3.43             |                         |  |
| Fast Food Restaurant with Drive Thru | 2.74             |                         |  |
| Parking Lot                          | 0.00             | _                       |  |

## 5.14. Operational Refrigeration and Air Conditioning Equipment

## 5.14.1. Unmitigated

| Land Use Type                        | Equipment Type                                                | Refrigerant | GWP   | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|--------------------------------------|---------------------------------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------|
| Apartments Mid Rise                  | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A      | 2,088 | < 0.005       | 2.50                 | 2.50              | 10.0           |
| Apartments Mid Rise                  | Household refrigerators and/or freezers                       | R-134a      | 1,430 | 0.12          | 0.60                 | 0.00              | 1.00           |
| Fast Food Restaurant with Drive Thru | Household refrigerators and/or freezers                       | R-134a      | 1,430 | 0.00          | 0.60                 | 0.00              | 1.00           |
| Fast Food Restaurant with Drive Thru | Other commercial A/C and heat pumps                           | R-410A      | 2,088 | 1.80          | 4.00                 | 4.00              | 18.0           |
| Fast Food Restaurant with Drive Thru | Walk-in refrigerators and freezers                            | R-404A      | 3,922 | < 0.005       | 7.50                 | 7.50              | 20.0           |
| Automobile Care Center               | Other commercial A/C and heat pumps                           | R-410A      | 2,088 | < 0.005       | 4.00                 | 4.00              | 18.0           |

| Automobile Care Center               | Supermarket<br>refrigeration and<br>condensing units | R-404A | 3,922 | 26.5    | 16.5 | 16.5 | 18.0 |
|--------------------------------------|------------------------------------------------------|--------|-------|---------|------|------|------|
| Fast Food Restaurant with Drive Thru | Household refrigerators and/or freezers              | R-134a | 1,430 | 0.00    | 0.60 | 0.00 | 1.00 |
| Fast Food Restaurant with Drive Thru | Other commercial A/C and heat pumps                  | R-410A | 2,088 | 1.80    | 4.00 | 4.00 | 18.0 |
| Fast Food Restaurant with Drive Thru | Walk-in refrigerators and freezers                   | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 |

## 5.14.2. Mitigated

| Land Use Type                        | Equipment Type                                                | Refrigerant | GWP   | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|--------------------------------------|---------------------------------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------|
| Apartments Mid Rise                  | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A      | 2,088 | < 0.005       | 2.50                 | 2.50              | 10.0           |
| Apartments Mid Rise                  | Household refrigerators and/or freezers                       | R-134a      | 1,430 | 0.12          | 0.60                 | 0.00              | 1.00           |
| Fast Food Restaurant with Drive Thru | Household refrigerators and/or freezers                       | R-134a      | 1,430 | 0.00          | 0.60                 | 0.00              | 1.00           |
| Fast Food Restaurant with Drive Thru | Other commercial A/C and heat pumps                           | R-410A      | 2,088 | 1.80          | 4.00                 | 4.00              | 18.0           |
| Fast Food Restaurant with Drive Thru | Walk-in refrigerators and freezers                            | R-404A      | 3,922 | < 0.005       | 7.50                 | 7.50              | 20.0           |
| Automobile Care Center               | Other commercial A/C and heat pumps                           | R-410A      | 2,088 | < 0.005       | 4.00                 | 4.00              | 18.0           |
| Automobile Care Center               | Supermarket<br>refrigeration and<br>condensing units          | R-404A      | 3,922 | 26.5          | 16.5                 | 16.5              | 18.0           |
| Fast Food Restaurant with Drive Thru | Household refrigerators and/or freezers                       | R-134a      | 1,430 | 0.00          | 0.60                 | 0.00              | 1.00           |
| Fast Food Restaurant with Drive Thru | Other commercial A/C and heat pumps                           | R-410A      | 2,088 | 1.80          | 4.00                 | 4.00              | 18.0           |

| Fast Food Restaurant | Walk-in refrigerators | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 |
|----------------------|-----------------------|--------|-------|---------|------|------|------|
| with Drive Thru      | and freezers          |        |       |         |      |      |      |

## 5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

| Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|----------------|-----------|-------------|----------------|---------------|------------|-------------|
|                |           |             |                |               |            |             |

#### 5.15.2. Mitigated

| Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load | d Factor |
|-----------------------------------------------------------------------------------|----------|
|-----------------------------------------------------------------------------------|----------|

## 5.16. Stationary Sources

#### 5.16.1. Emergency Generators and Fire Pumps

|  | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor |
|--|----------------|-----------|----------------|---------------|----------------|------------|-------------|
|--|----------------|-----------|----------------|---------------|----------------|------------|-------------|

#### 5.16.2. Process Boilers

| Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|

#### 5.17. User Defined

| Equipment Type | Fuel Туре |
|----------------|-----------|
| -              | —         |

## 5.18. Vegetation

#### 5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
|                          |                      |               |             |

#### 5.18.1.2. Mitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
|                          |                      |               |             |

#### 5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

| Biomass Cover Type | Initial Acres | Final Acres |
|--------------------|---------------|-------------|
|--------------------|---------------|-------------|

#### 5.18.1.2. Mitigated

| Biomass Cover Type    | Initial Acres | Final                        | Acres                        |
|-----------------------|---------------|------------------------------|------------------------------|
| 5.18.2. Sequestration |               |                              |                              |
| 5.18.2.1. Unmitigated |               |                              |                              |
| Тгее Туре             | Number        | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
|                       |               |                              |                              |

#### 5.18.2.2. Mitigated

| Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
|-----------|--------|------------------------------|------------------------------|
|           |        |                              |                              |

## 6. Climate Risk Detailed Report

## 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 23.4                        | annual days of extreme heat                |
| Extreme Precipitation        | 6.20                        | annual days with precipitation above 20 mm |
| Sea Level Rise               | 0.00                        | meters of inundation depth                 |
| Wildfire                     | 0.00                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about <sup>3</sup>/<sub>4</sub> an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

#### 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 3              | 0                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 0                 | 0                       | N/A                 |
| Wildfire                     | 1              | 0                 | 0                       | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 3              | 1                 | 1                       | 3                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 1                 | 1                       | 2                   |
| Wildfire                     | 1              | 1                 | 1                       | 2                   |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 1              | 1                 | 1                       | 2                   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

## 6.4. Climate Risk Reduction Measures

## 7. Health and Equity Details

## 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator           | Result for Project Census Tract |  |  |  |
|---------------------|---------------------------------|--|--|--|
| Exposure Indicators | _                               |  |  |  |
| AQ-Ozone            | 80.0                            |  |  |  |
| AQ-PM               | 75.4                            |  |  |  |
| AQ-DPM              | 36.9                            |  |  |  |
| 114 / 119           |                                 |  |  |  |

| Drinking Water                  | 66.3 |
|---------------------------------|------|
| Lead Risk Housing               | 78.7 |
| Pesticides                      | 0.00 |
| Toxic Releases                  | 72.3 |
| Traffic                         | 38.8 |
| Effect Indicators               |      |
| CleanUp Sites                   | 19.9 |
| Groundwater                     | 7.29 |
| Haz Waste Facilities/Generators | 60.2 |
| Impaired Water Bodies           | 0.00 |
| Solid Waste                     | 22.1 |
| Sensitive Population            |      |
| Asthma                          | 46.5 |
| Cardio-vascular                 | 37.4 |
| Low Birth Weights               | 61.7 |
| Socioeconomic Factor Indicators |      |
| Education                       | 52.9 |
| Housing                         | 54.1 |
| Linguistic                      | 62.7 |
| Poverty                         | 41.0 |
| Unemployment                    | 56.2 |

## 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator     | Result for Project Census Tract |
|---------------|---------------------------------|
| Economic      |                                 |
| Above Poverty | 55.61401258                     |

| Employed                                     | 77.67226999 |
|----------------------------------------------|-------------|
| Median HI                                    | 61.81188246 |
| Education                                    | _           |
| Bachelor's or higher                         | 37.08456307 |
| High school enrollment                       | 100         |
| Preschool enrollment                         | 12.24175542 |
| Transportation                               | _           |
| Auto Access                                  | 81.29090209 |
| Active commuting                             | 62.09418709 |
| Social                                       |             |
| 2-parent households                          | 42.62799949 |
| Voting                                       | 38.07262928 |
| Neighborhood                                 | _           |
| Alcohol availability                         | 51.23829077 |
| Park access                                  | 81.35506224 |
| Retail density                               | 67.63762351 |
| Supermarket access                           | 62.71012447 |
| Tree canopy                                  | 27.38354934 |
| Housing                                      | _           |
| Homeownership                                | 71.67971256 |
| Housing habitability                         | 44.53997177 |
| Low-inc homeowner severe housing cost burden | 26.76761196 |
| Low-inc renter severe housing cost burden    | 33.61991531 |
| Uncrowded housing                            | 41.84524573 |
| Health Outcomes                              | —           |
| Insured adults                               | 46.5161042  |
| Arthritis                                    | 0.0         |

| Asthma ER Admissions                  | 57.8 |
|---------------------------------------|------|
| High Blood Pressure                   | 0.0  |
| Cancer (excluding skin)               | 0.0  |
| Asthma                                | 0.0  |
| Coronary Heart Disease                | 0.0  |
| Chronic Obstructive Pulmonary Disease | 0.0  |
| Diagnosed Diabetes                    | 0.0  |
| Life Expectancy at Birth              | 25.3 |
| Cognitively Disabled                  | 62.4 |
| Physically Disabled                   | 34.8 |
| Heart Attack ER Admissions            | 60.3 |
| Mental Health Not Good                | 0.0  |
| Chronic Kidney Disease                | 0.0  |
| Obesity                               | 0.0  |
| Pedestrian Injuries                   | 89.8 |
| Physical Health Not Good              | 0.0  |
| Stroke                                | 0.0  |
| Health Risk Behaviors                 | —    |
| Binge Drinking                        | 0.0  |
| Current Smoker                        | 0.0  |
| No Leisure Time for Physical Activity | 0.0  |
| Climate Change Exposures              | —    |
| Wildfire Risk                         | 0.0  |
| SLR Inundation Area                   | 0.0  |
| Children                              | 55.0 |
| Elderly                               | 38.5 |
| English Speaking                      | 62.9 |

| Foreign-born                     | 45.0 |
|----------------------------------|------|
| Outdoor Workers                  | 39.4 |
| Climate Change Adaptive Capacity |      |
| Impervious Surface Cover         | 43.4 |
| Traffic Density                  | 41.7 |
| Traffic Access                   | 23.0 |
| Other Indices                    |      |
| Hardship                         | 55.5 |
| Other Decision Support           |      |
| 2016 Voting                      | 41.2 |

## 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 57.0                            |
| Healthy Places Index Score for Project Location (b)                                 | 53.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

## 8. User Changes to Default Data

| Screen                               | Justification                                                                                                                                                                                                                                          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                             | 97 residential units, 3,500 sqft drive-thru restaurants, 3,596 sqft car wash (Automobile Care Center),<br>950 sqft drive-thru coffee shop (Fast Food Restaurant with Drive Thru), 163 open stall parking<br>spaces. Total site acreage is 7.993 acres. |
| Construction: Construction Phases    | Per construction questionnaire                                                                                                                                                                                                                         |
| Construction: Trips and VMT          | Per construction questionnaire                                                                                                                                                                                                                         |
| Construction: Architectural Coatings | SCAQMD Rule 1113                                                                                                                                                                                                                                       |
| Operations: Vehicle Data             | Per traffic study, pass-by trips already accounted for in trip gen                                                                                                                                                                                     |
| Operations: Hearths                  | Per SCAQMD Rule 445, no wood-burning devices                                                                                                                                                                                                           |
| Operations: Architectural Coatings   | SCAQMD Rule 1113                                                                                                                                                                                                                                       |

# **APPENDIX C**

| Site Number: 1 (COV001)                                                                 | Site Number: 1 (COV001) |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Recorded By: Alicia Gonzale                                                             | ez                      |  |  |  |  |  |
| Job Number: 173379                                                                      |                         |  |  |  |  |  |
| Date: 08/14/19                                                                          |                         |  |  |  |  |  |
| Time: 10:32 a.m.                                                                        |                         |  |  |  |  |  |
| Location: North of property limit                                                       |                         |  |  |  |  |  |
| Source of Peak Noise: Traffic along Azusa Avenue and Cypress Street, car door slamming. |                         |  |  |  |  |  |
| Noise Data                                                                              |                         |  |  |  |  |  |
| Leq (dB) Lmax(dB) Lmin (dB) Peak (dB)                                                   |                         |  |  |  |  |  |
| 51.6 68.3 43.7 92.5                                                                     |                         |  |  |  |  |  |

| Equipment                                  |                                                                                        |                              |    |         |            |            |      |
|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|----|---------|------------|------------|------|
| Category                                   | Туре                                                                                   | Type Vendor Model Serial No. |    |         |            | Cert. Date | Note |
|                                            | Sound Level Meter                                                                      | Brüel & Kja                  | ær | 2250    | 3011133    | 04/08/2019 |      |
| Sound                                      | Microphone                                                                             | Brüel & Kja                  | ær | 4189    | 3086765    | 04/08/2019 |      |
| Sound                                      | Preamp                                                                                 | Brüel & Kja                  | ær | ZC 0032 | 25380      | 04/08/2019 |      |
|                                            | Calibrator                                                                             | Brüel & Kja                  | ær | 4231    | 2545667    | 04/08/2019 |      |
|                                            | Weather Data                                                                           |                              |    |         |            |            |      |
| Duration: 10 minutes Sky: Clear, no clouds |                                                                                        |                              |    |         |            |            |      |
|                                            | Note: dBA Offset = 0.01 Sensor Height (ft): 5 ft                                       |                              |    |         |            |            |      |
| Est.                                       | Est. Wind Ave Speed (mph / m/s) Temperature (degrees Fahrenheit) Barometer Pressure (i |                              |    |         | e (inches) |            |      |
| 2 mph 81° 29.                              |                                                                                        | 29.96                        |    |         |            |            |      |

## Photo of Measurement Location



#### 2250

| Instrument:      | 2250                 |
|------------------|----------------------|
| Application:     | BZ7225 Version 4.7.4 |
| Start Time:      | 08/14/2019 10:32:26  |
| End Time:        | 08/14/2019 10:42:26  |
| Elapsed Time:    | 00:10:00             |
| Bandwidth:       | 1/3-octave           |
| Max Input Level: | 142.11               |

|                         | Time | Frequency |
|-------------------------|------|-----------|
| Broadband (excl. Peak): | FSI  | AC        |
| Broadband Peak:         |      | С         |
| Spectrum:               | FS   | Z         |

| Instrument Serial Number: | 3011133    |
|---------------------------|------------|
| Microphone Serial Number: | 3086765    |
| Input:                    | Top Socket |
| Windscreen Correction:    | UA-1650    |
| Sound Field Correction:   | Free-field |

| Calibration Time: | 08/14/2019 07:24:47    |
|-------------------|------------------------|
| Calibration Type: | External reference     |
| Sensitivity:      | 43.6993539333344 mV/Pa |

#### COV001

|       | Start       | End         | Elapsed | Overload | LAeq | LAFmax | LAFmin |
|-------|-------------|-------------|---------|----------|------|--------|--------|
|       | time        | time        | time    | [%]      | [dB] | [dB]   | [dB]   |
| Value |             |             |         | 0.00     | 51.6 | 68.3   | 43.7   |
| Time  | 10:32:26 AM | 10:42:26 AM | 0:10:00 |          |      |        |        |
| Date  | 08/14/2019  | 08/14/2019  |         |          |      |        |        |







#### COV001

|       | Start       | Elapsed | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|-------|--------|--------|
|       | time        | time    | [dB]  | [dB]   | [dB]   |
| Value |             |         | 50.3  | 50.4   | 48.0   |
| Time  | 10:37:25 AM | 0:00:01 |       |        |        |
| Date  | 08/14/2019  |         |       |        |        |





## COV001 Periodic reports

|       | Start       | Elapsed | Overload | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|----------|-------|--------|--------|
|       | time        | time    | [%]      | [dB]  | [dB]   | [dB]   |
| Value |             |         | 0.00     | 53.4  | 68.3   | 43.7   |
| Time  | 10:32:26 AM | 0:10:00 |          |       |        |        |
| Date  | 08/14/2019  |         |          |       |        |        |





| Site Number: 2 (COV005)                                                                    |                  |           |           |  |  |
|--------------------------------------------------------------------------------------------|------------------|-----------|-----------|--|--|
| Recorded By: Alicia Gonzale                                                                | ez               |           |           |  |  |
| Job Number: 173379                                                                         |                  |           |           |  |  |
| Date: 08/14/19                                                                             |                  |           |           |  |  |
| Time: 11:41 a.m.                                                                           | Time: 11:41 a.m. |           |           |  |  |
| Location: 4647 North Cromwell Avenue                                                       |                  |           |           |  |  |
| Source of Peak Noise: Traffic along North Cromwell Avenue, birds, dog barking, train horn. |                  |           |           |  |  |
| Noise Data                                                                                 |                  |           |           |  |  |
| Leq (dB)                                                                                   | Lmax(dB)         | Lmin (dB) | Peak (dB) |  |  |
| 55.5                                                                                       | 76.7             | 37.5      | 98.8      |  |  |

| Equipment |                                                  |             |                 |                   |                   |            |
|-----------|--------------------------------------------------|-------------|-----------------|-------------------|-------------------|------------|
| Category  | Туре                                             | Vendor      | Model           | Serial No.        | Cert. Date        | Note       |
|           | Sound Level Meter                                | Brüel & Kja | er 2250         | 3011133           | 04/08/2019        |            |
| Sound     | Microphone                                       | Brüel & Kja | er 4189         | 3086765           | 04/08/2019        |            |
| Sound     | Preamp                                           | Brüel & Kja | er ZC 0032      | 25380             | 04/08/2019        |            |
|           | Calibrator                                       | Brüel & Kja | er 4231         | 2545667           | 04/08/2019        |            |
|           |                                                  |             | Weather Data    |                   |                   |            |
|           | Duration: 10 minutes Sky: Clear, no clouds       |             |                 |                   |                   |            |
|           | Note: dBA Offset = 0.01 Sensor Height (ft): 5 ft |             |                 |                   |                   |            |
| Est.      | Wind Ave Speed                                   | (mph / m/s) | Temperature (de | grees Fahrenheit) | Barometer Pressur | e (inches) |
| 4 mph     |                                                  | 85°         |                 | 29.96             |                   |            |

## Photo of Measurement Location



#### 2250

| Instrument:      | 2250                 |
|------------------|----------------------|
| Application:     | BZ7225 Version 4.7.4 |
| Start Time:      | 08/14/2019 11:41:41  |
| End Time:        | 08/14/2019 11:51:41  |
| Elapsed Time:    | 00:10:00             |
| Bandwidth:       | 1/3-octave           |
| Max Input Level: | 142.11               |

|                         | Time | Frequency |
|-------------------------|------|-----------|
| Broadband (excl. Peak): | FSI  | AC        |
| Broadband Peak:         |      | С         |
| Spectrum:               | FS   | Z         |

| Instrument Serial Number: | 3011133    |
|---------------------------|------------|
| Microphone Serial Number: | 3086765    |
| Input:                    | Top Socket |
| Windscreen Correction:    | UA-1650    |
| Sound Field Correction:   | Free-field |

| Calibration Time: | 08/14/2019 07:24:47    |
|-------------------|------------------------|
| Calibration Type: | External reference     |
| Sensitivity:      | 43.6993539333344 mV/Pa |

#### COV005

|       | Start       | End         | Elapsed | Overload | LAeq | LAFmax | LAFmin |
|-------|-------------|-------------|---------|----------|------|--------|--------|
|       | time        | time        | time    | [%]      | [dB] | [dB]   | [dB]   |
| Value |             |             |         | 0.00     | 55.5 | 76.7   | 37.5   |
| Time  | 11:41:41 AM | 11:51:41 AM | 0:10:00 |          |      |        |        |
| Date  | 08/14/2019  | 08/14/2019  |         |          |      |        |        |







#### COV005

|       | Start       | Elapsed | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|-------|--------|--------|
|       | time        | time    | [dB]  | [dB]   | [dB]   |
| Value |             |         | 41.7  | 41.6   | 40.7   |
| Time  | 11:46:40 AM | 0:00:01 |       |        |        |
| Date  | 08/14/2019  |         |       |        |        |




## COV005 Periodic reports

|       | Start       | Elapsed | Overload | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|----------|-------|--------|--------|
|       | time        | time    | [%]      | [dB]  | [dB]   | [dB]   |
| Value |             |         | 0.00     | 59.4  | 76.7   | 37.5   |
| Time  | 11:41:41 AM | 0:10:00 |          |       |        |        |
| Date  | 08/14/2019  |         |          |       |        |        |





| Site Number: | 3 (COV003 | ) |
|--------------|-----------|---|
|--------------|-----------|---|

Recorded By: Alicia Gonzalez

Job Number: 173379

Date: 08/14/19

Time: 11:07 a.m.

Location: Along Cypress Street

**Source of Peak Noise:** Traffic along Cypress Street, birds chirping, truck reversing beeps, conversations, car door slamming.

| Noise Data                         |      |      |      |  |  |
|------------------------------------|------|------|------|--|--|
| Leq (dB)Lmax(dB)Lmin (dB)Peak (dB) |      |      |      |  |  |
| 64.5                               | 79.6 | 44.7 | 99.8 |  |  |

| Equipment            |                   |                         |     |                                  |                          |                             |      |
|----------------------|-------------------|-------------------------|-----|----------------------------------|--------------------------|-----------------------------|------|
| Category             | Туре              | Vendor                  |     | Model                            | Serial No.               | Cert. Date                  | Note |
|                      | Sound Level Meter | Brüel & Kja             | ær  | 2250                             | 3011133                  | 04/08/2019                  |      |
| Sound                | Microphone        | Brüel & Kja             | ær  | 4189                             | 3086765                  | 04/08/2019                  |      |
| Sound                | Preamp            | Brüel & Kja             | ær  | ZC 0032                          | 25380                    | 04/08/2019                  |      |
|                      | Calibrator        | Brüel & Kja             | ær  | 4231                             | 2545667                  | 04/08/2019                  |      |
|                      |                   |                         | V   | Veather Data                     |                          |                             |      |
| Duration: 10 minutes |                   |                         |     |                                  | Sky: Clear, no clo       | uds                         |      |
|                      | Note: dBA Offset  | Note: dBA Offset = 0.01 |     |                                  | Sensor Height (ft): 5 ft |                             |      |
| Est.                 | Wind Ave Speed    | (mph / m/s)             | Ter | Temperature (degrees Fahrenheit) |                          | Barometer Pressure (inches) |      |
|                      | 4 mpl             | 4 mph                   |     | 85°                              |                          | 29.95                       |      |

### Photo of Measurement Location



#### 2250

| Instrument:      | 2250                 |
|------------------|----------------------|
| Application:     | BZ7225 Version 4.7.4 |
| Start Time:      | 08/14/2019 11:07:46  |
| End Time:        | 08/14/2019 11:17:46  |
| Elapsed Time:    | 00:10:00             |
| Bandwidth:       | 1/3-octave           |
| Max Input Level: | 142.11               |

|                         | Time | Frequency |
|-------------------------|------|-----------|
| Broadband (excl. Peak): | FSI  | AC        |
| Broadband Peak:         |      | С         |
| Spectrum:               | FS   | Z         |

| Instrument Serial Number: | 3011133    |
|---------------------------|------------|
| Microphone Serial Number: | 3086765    |
| Input:                    | Top Socket |
| Windscreen Correction:    | UA-1650    |
| Sound Field Correction:   | Free-field |

| Calibration Time: | 08/14/2019 07:24:47    |
|-------------------|------------------------|
| Calibration Type: | External reference     |
| Sensitivity:      | 43.6993539333344 mV/Pa |

#### COV003

|       | Start       | End         | Elapsed | Overload | LAeq | LAFmax | LAFmin |
|-------|-------------|-------------|---------|----------|------|--------|--------|
|       | time        | time        | time    | [%]      | [dB] | [dB]   | [dB]   |
| Value |             |             |         | 0.00     | 64.5 | 79.6   | 44.7   |
| Time  | 11:07:46 AM | 11:17:46 AM | 0:10:00 |          |      |        |        |
| Date  | 08/14/2019  | 08/14/2019  |         |          |      |        |        |







#### COV003

|       | Start       | Elapsed | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|-------|--------|--------|
|       | time        | time    | [dB]  | [dB]   | [dB]   |
| Value |             |         | 64.2  | 65.2   | 60.5   |
| Time  | 11:12:45 AM | 0:00:01 |       |        |        |
| Date  | 08/14/2019  |         |       |        |        |





## COV003 Periodic reports

|       | Start       | Elapsed | Overload | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|----------|-------|--------|--------|
|       | time        | time    | [%]      | [dB]  | [dB]   | [dB]   |
| Value |             |         | 0.00     | 65.9  | 79.6   | 44.7   |
| Time  | 11:07:46 AM | 0:10:00 |          |       |        |        |
| Date  | 08/14/2019  |         |          |       |        |        |





| Site Number: 4 (COV002)                                       |                                 |                                |         |  |  |  |
|---------------------------------------------------------------|---------------------------------|--------------------------------|---------|--|--|--|
| Recorded By: Alicia Gonzale                                   | ez                              |                                |         |  |  |  |
| Job Number: 173379                                            |                                 |                                |         |  |  |  |
| Date: 08/14/19                                                |                                 |                                |         |  |  |  |
| Time: 10:48 a.m.                                              |                                 |                                |         |  |  |  |
| Location: North of McDonald                                   | ds in grassy area along Azusa A | Avenue                         |         |  |  |  |
| Source of Peak Noise: Traffi                                  | c along Azusa Avenue, cars at   | McDonalds drive-thru, birds ch | irping. |  |  |  |
| Noise Data                                                    |                                 |                                |         |  |  |  |
| Leq (dB)         Lmax(dB)         Lmin (dB)         Peak (dB) |                                 |                                |         |  |  |  |
| 66.4                                                          | 82.9                            | 50.0                           | 104.0   |  |  |  |

| Equipment |                   |                            |    |                                  |                          |                             |      |
|-----------|-------------------|----------------------------|----|----------------------------------|--------------------------|-----------------------------|------|
| Category  | Туре              | Vendor                     | •  | Model                            | Serial No.               | Cert. Date                  | Note |
|           | Sound Level Meter | Brüel & Kj                 | ær | 2250                             | 3011133                  | 04/08/2019                  |      |
| Sound     | Microphone        | Brüel & Kj                 | ær | 4189                             | 3086765                  | 04/08/2019                  |      |
| Sound     | Preamp            | Brüel & Kj                 | ær | ZC 0032                          | 25380                    | 04/08/2019                  |      |
|           | Calibrator        | Brüel & Kj                 | ær | 4231                             | 2545667                  | 04/08/2019                  |      |
|           |                   |                            | V  | Veather Data                     |                          |                             |      |
|           | Duration: 10 min  | utes                       |    |                                  | Sky: Clear, no clo       | uds                         |      |
|           | Note: dBA Offset  | Note: dBA Offset = 0.01    |    |                                  | Sensor Height (ft): 5 ft |                             |      |
| Est.      | Wind Ave Speed    | Wind Ave Speed (mph / m/s) |    | Temperature (degrees Fahrenheit) |                          | Barometer Pressure (inches) |      |
|           | 2 mpl             | 2 mph                      |    | 81°                              |                          | 29.96                       |      |

## Photo of Measurement Location



#### 2250

| Instrument:      | 2250                 |
|------------------|----------------------|
| Application:     | BZ7225 Version 4.7.4 |
| Start Time:      | 08/14/2019 10:48:05  |
| End Time:        | 08/14/2019 10:58:05  |
| Elapsed Time:    | 00:10:00             |
| Bandwidth:       | 1/3-octave           |
| Max Input Level: | 142.11               |

|                         | Time | Frequency |
|-------------------------|------|-----------|
| Broadband (excl. Peak): | FSI  | AC        |
| Broadband Peak:         |      | С         |
| Spectrum:               | FS   | Z         |

| Instrument Serial Number: | 3011133    |
|---------------------------|------------|
| Microphone Serial Number: | 3086765    |
| Input:                    | Top Socket |
| Windscreen Correction:    | UA-1650    |
| Sound Field Correction:   | Free-field |

| Calibration Time: | 08/14/2019 07:24:47    |
|-------------------|------------------------|
| Calibration Type: | External reference     |
| Sensitivity:      | 43.6993539333344 mV/Pa |

#### COV002

|       | Start       | End         | Elapsed | Overload | LAeq | LAFmax | LAFmin |
|-------|-------------|-------------|---------|----------|------|--------|--------|
|       | time        | time        | time    | [%]      | [dB] | [dB]   | [dB]   |
| Value |             |             |         | 0.00     | 66.4 | 82.9   | 50.0   |
| Time  | 10:48:05 AM | 10:58:05 AM | 0:10:00 |          |      |        |        |
| Date  | 08/14/2019  | 08/14/2019  |         |          |      |        |        |







#### COV002

|       | Start       | Elapsed | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|-------|--------|--------|
|       | time        | time    | [dB]  | [dB]   | [dB]   |
| Value |             |         | 62.4  | 60.4   | 59.2   |
| Time  | 10:53:04 AM | 0:00:01 |       |        |        |
| Date  | 08/14/2019  |         |       |        |        |





## COV002 Periodic reports

|       | Start       | Elapsed | Overload | LAleq | LAFmax | LAFmin |
|-------|-------------|---------|----------|-------|--------|--------|
|       | time        | time    | [%]      | [dB]  | [dB]   | [dB]   |
| Value |             |         | 0.00     | 67.9  | 82.9   | 50.0   |
| Time  | 10:48:05 AM | 0:10:00 |          |       |        |        |
| Date  | 08/14/2019  |         |          |       |        |        |





# **APPENDIX D**

#### Tong, Frankie

From: Sent: To: Subject: Attachments: Veronica Flores-Ochoa <vflores-ochoa@c-vusd.org> Monday, June 12, 2023 1:49 PM Tong, Frankie EXTERNAL: Records Request Michael Baker Response 6.12.23.pdf

Good Afternoon,

In accordance with your May 18, 2023 request, attached please find **capacity & enrollment information for Cypress Elementary, Las Palmas Middle School, and Northview High School.** 

Thank you,

Veronica Flores-Ochoa

ADMINISTRATIVE SECRETARY CHIEF BUSINESS OFFICER'S OFFICE COVINA-VALLEY UNIFIED SCHOOL DISTRICT 519 E. BADILLO STREET, COVINA, CA 91723 626.974.7000 EXT: 800121

The capacity and enrollment are below. The capacity reflects the District's loading standards and current programs and uses.

#### <u>2022-23</u>

| Covina-Valley USD  | Capacity | Enrollment |
|--------------------|----------|------------|
| Cypress Elementary | 593      | 564        |
| Las Palmas Middle  | 1196     | 802        |
| Northview High     | 1510     | 1292       |

# **APPENDIX E**



# TRANSPORTATION IMPACT ANALYSIS Covina Village

City of Covina 125 E. College Street Covina, CA 91723

June 19, 2023

MBAKERINTL.COM

#### INTERNATIONAL

## **TABLE OF CONTENTS**

| 1 | EXE  | CUTIVE SUMMARY                                                     | 3  |
|---|------|--------------------------------------------------------------------|----|
| 2 | INTE | RODUCTION                                                          | 4  |
|   | 2.1  | Study Area                                                         | 4  |
| 3 | ANA  | ALYSIS METHODOLOGY                                                 | 8  |
| 4 | EXIS | STING CONDITIONS                                                   | 10 |
|   | 4.1  | Surrounding Roadway Network                                        |    |
|   | 4.2  | Existing Traffic Volumes                                           | 11 |
|   | 4.3  | Existing Peak Hour Study Intersection LOS                          | 11 |
| 5 | PRO  | POSED PROJECT                                                      | 14 |
|   | 5.1  | Project Forecast Trip Generation                                   | 14 |
|   | 5.2  | Trip Distribution and Trip Assignment of Proposed Project          | 15 |
| 6 | OPE  | NING YEAR 2026 WITHOUT PROJECT CONDITIONS                          | 19 |
|   | 6.1  | Opening Year 2026 Without Project Conditions                       |    |
|   | 6.2  | Opening Year 2026 Without Project Peak Hour Study Intersection LOS | 19 |
| 7 | OPE  | NING YEAR 2026 WITH PROJECT CONDITIONS                             | 23 |
|   | 7.1  | Opening Year 2026 With Project Conditions                          | 23 |
| 8 | FIND | DINGS AND RECOMMENDATIONS                                          | 25 |
|   |      |                                                                    |    |

## LIST OF EXHIBITS

| Exhibit 1 - Regional Project Location5                                          |
|---------------------------------------------------------------------------------|
| Exhibit 2 - Proposed Site Plan6                                                 |
| Exhibit 3- Study Area7                                                          |
| Exhibit 4 – Intersection Geometry                                               |
| Exhibit 5 – Existing AM/PM Peak Hour Traffic Volumes13                          |
| Exhibit 6A – Project Trip Distribution (Residential)16                          |
| Exhibit 6B – Project Trip Distribution (Commercial)17                           |
| Exhibit 7 - Project Only AM/PM Peak Hour Traffic Volumes18                      |
| Exhibit 8 – Cumulative Project Location Map20                                   |
| Exhibit 9 – Opening Year 2026 Without Project AM/PM Peak Hour Traffic Volumes21 |
| Exhibit 10 – Opening Year 2026 With Project AM/PM Peak Hour Volumes24           |

## LIST OF TABLES

| Table 1 - Level of Service Description & Delay Range                                  | 8  |
|---------------------------------------------------------------------------------------|----|
| Table 2 – Intersection Threshold Criteria                                             | 9  |
| Table 3 – Existing AM/PM Peak Hour Intersection LOS                                   | 11 |
| Table 4 - ITE Trip Generation Rates                                                   | 14 |
| Table 5 - Proposed Project Trip Generation                                            | 15 |
| Table 6 - Cumulative Project Trip Generation                                          | 19 |
| Table 7 – Opening Year 2026 Without Project AM/PM Peak Hour Intersection LOS          | 22 |
| Table 8 – Opening Year 2026 Without & With Project AM/PM Peak Hour Int LOS Comparison | 23 |

## APPENDICES

| Appendix A: TIA Scoping Agreement                               |
|-----------------------------------------------------------------|
| Appendix B: Traffic Count Data                                  |
| Appendix C: Existing Synchro Worksheets                         |
| Appendix D: Opening Year2026 Without Project Synchro Worksheets |
| Appendix E: Opening Year2026 With Project Synchro Worksheets    |

## **EXECUTIVE SUMMARY**

This study analyzes the forecast traffic conditions associated with the proposed redevelopment of the existing property located at 1000 N Azusa Avenue in the City of Covina. The proposed Covina Village (Project) plans to demolish the vacant grocery store shell and parking lot to construct 80 residential townhomes, 17 live-work townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area.

Multiple access points are proposed and are already provided to the project site as existing today. There is a single driveway from Cypress Street that exists but will be relocated easterly from existing location to accommodate the proposed layout. The project driveway on Cypress Street will allow a right-turn in, right-turn out, and left-turn into the site. A left turn out of the site will be prohibited by a raised center median and signage. Two other existing driveways from Azusa Avenue will remain near the projects site's commercial north and south edges, which are shared with surrounding business properties. A new full access right-in/right-out driveway is proposed central of the Azusa Avenue frontage. Internally, although commercial circulation through the residential area will be discouraged by directional signage and enhanced paving at residential entry points from commercial.

The Project is forecast to generate approximately 1,665 new daily trips which include approximately 236 AM peak hour trips and 178 PM peak hour trips. See **Section 5.1** for further discussion on trip generation.

This study evaluates traffic conditions that include AM and PM peak hour intersection level of service (LOS) analysis for the following scenarios:

- Existing Conditions;
- Opening Year 2026 Without Project Conditions;
- Opening Year 2026 With Project Conditions

#### 1.1.1.1 Level of Service Analysis Results

This study evaluates traffic conditions that include AM and PM peak hour intersections level of service (LOS) analysis. The results of the of the level of service analysis is as follows:

**Existing Conditions** - The results of the Existing conditions analysis show that all study intersections currently operate at acceptable levels of service (LOS D or better).

**Opening Year 2026 Without Project Conditions** - With the addition of cumulative project traffic, all study intersections continue to operate at acceptable levels of service (LOS D or better) for the Opening Year 2026 Without Project conditions.

**Opening Year 2026 With Project Conditions** - With the addition of project-related traffic, all study intersections continue to operate at acceptable levels of service (LOS D or better) for the Opening Year 2026 With Project conditions.



## 2 INTRODUCTION

This study analyzes the forecast traffic conditions associated with the proposed Project. The Project plans to demolish the vacant grocery store shell and parking lot to construct 80 residential townhomes, 17 livework townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area.

The project site would take access via four full-access driveways: three on N Azusa Avenue and one on Cypress Street.

According to the Institute of Transportation Engineers (ITE) Trip Generation Manual (11<sup>th</sup> Edition), the proposed project is forecast to generate approximately 1,665 new daily trips which include approximately 236 AM peak hour trips and 178 PM peak hour trips.

**Exhibit 1** shows the regional location of the project site and **Exhibit 2** shows the proposed site plan for the 1000 N Azusa Mixed Use Development Project.

#### 2.1 STUDY AREA

The study evaluates the following nine (9) intersections during the AM and PM peak hours in the vicinity of the project site:

- 1. N. Azusa Avenue / Arrow Highway
- 2. N. Azusa Avenue / Covina Boulevard
- 3. N. Azusa Avenue / Project Driveway 1
- 4. N. Azusa Avenue / Project Driveway 2
- 5. N. Azusa Avenue / Project Driveway 3
- 6. N. Azusa Avenue / Cypress Street
- 7. N. Azusa Avenue / W. San Bernardino Road
- 8. N. Azusa Avenue / Badillo Street
- 9. Cypress Street / Project Driveway 4

These nine intersections have been identified in coordination with City staff as potential locations impacted by the Project as shown in **Exhibit 3**. These study locations are analyzed for the following conditions:

- Existing Conditions;
- Opening Year 2026 Without Project Conditions;
- Opening Year 2026 With Project Conditions

Michael Baker coordinated with City staff on the study assumptions such as trip generation, trip distribution, study locations, scenarios, and study methodology. This scoping letter can be found in **Appendix A**.







**Regional Vicinity** 

April 2023

Exhibit 1



Exhibit 2

SP

 $\overline{\prime}$ Not to Scale

FOOTPRINT

2,835 S.F.

3,554 S.F.

3,690 S.F

4,105 S.F.

4,921 S.F.

467 SF





Michael Baker



## 3 ANALYSIS METHODOLOGY

Traffic operations at study intersections were analyzed in accordance with the City's Traffic Impact Analysis Guidelines (TIA Guidelines) dated May 2014. Study intersections were analyzed using the Highway Capacity Manual 6<sup>th</sup> Edition (HCM 6) methodology and Synchro Version 10. Michael Baker coordinated with City staff to obtain a list of cumulative projects that could potentially add traffic to the study area to be included in the Opening Year 2026 conditions. The scope of this traffic study has been coordinated with the City of Covina and included in **Appendix A**.

Level of Service (LOS) is commonly used as a qualitative description of intersection operation and is based on the capacity of the intersection and the volume of traffic using the intersection. The intersection analysis conforms to the operational analysis methodology outlined in *HCM 6* and performed utilizing the *Synchro 10* traffic analysis software.

The *HCM* analysis methodology describes the operation of an intersection using a range of level of service from LOS A (free-flow conditions) to LOS F (severely congested conditions), based on the corresponding stopped delay experienced per vehicle for study intersections as shown in **Table 1**.

For signalized intersections, signal timing data and parameters such as cycle lengths, splits, clearance intervals, etc. were obtained from the current signal timing sheets provided by City staff and incorporated into the Synchro model. Synchro reports average delays for a signalized intersection, which correspond to a particular LOS, to describe the overall operation of an intersection.

Unsignalized intersection LOS for all-way stops is based on the average delay for all approaches. Delay for one-way or two-way stop-controlled intersections is based on available gaps in traffic flow on the non-controlled approach and LOS is based on the approach with the worst delay.

| Level of Service | Control Delay (seconds/vehicle) |                            | Description                                                                                                                                  |  |
|------------------|---------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | Signalized Intersections        | Unsignalized Intersections | Description                                                                                                                                  |  |
| A                | ≤ 10.0                          | ≤ 10.0                     | Operates with very low delay and most vehicles do not stop.                                                                                  |  |
| В                | > 10.0 to 20.0                  | > 10.0 to 15.0             | Operates with good progression with some restricted movements.                                                                               |  |
| С                | > 21.0 to 35.0                  | >15.1 to 25.0              | Operates with significant number of vehicles stopping with some backup and light congestion.                                                 |  |
| D                | > 35.1 to 55.0                  | > 25.0 to 35.0             | Operates with noticeable congestion, longer delays occur, and many vehicles stop.                                                            |  |
| E                | >55.0 to 80.0                   | > 35.1 to 50.0             | Operates with significant delay, extensive queuing, and unfavorable progression.                                                             |  |
| F                | > 80.0                          | > 50.0                     | Operates at a level that is unacceptable to<br>most drivers. Arrival rates exceed capacity of<br>the intersection. Extensive queuing occurs. |  |

#### TABLE 1 - LEVEL OF SERVICE DESCRIPTION & DELAY RANGE

Source: Highway Capacity Manual (HCM) 6th Edition.



The City has determined that LOS A through D is considered acceptable operating conditions at study intersections. LOS E and F is considered deficient operating conditions. The substantial effects of project-generated traffic at the City of Covina study intersections was identified using the criteria set forth in the *City of Covina's Traffic Impact Analysis Guidelines* (May 2014). For purposes of this analysis, a substantial effect resulting from project-related traffic is determined based on the threshold criteria presented in **Table 2**. The City requires improvements of the project at the study location whenever project traffic exceeds the criteria below.

| Pre-Project V/C            | Level of Service | Project Related Increase in V/C   |  |  |  |  |
|----------------------------|------------------|-----------------------------------|--|--|--|--|
| Signalized Intersections   |                  |                                   |  |  |  |  |
| 0.71 to 0.80               | С                | Equal or greater than 0.04        |  |  |  |  |
| 0.81 to 0.90               | D                | Equal or greater than 0.02        |  |  |  |  |
| 0.91 or more               | E / F            | Equal or greater than 0.01        |  |  |  |  |
| Unsignalized Intersections |                  |                                   |  |  |  |  |
| < 25.0 seconds             | A / B / C        | LOS D or worse                    |  |  |  |  |
| >25.0 seconds              | D / E / F        | Equal or greater than 5.0 seconds |  |  |  |  |

#### TABLE 2 – INTERSECTION THRESHOLD CRITERIA



## 4 EXISTING CONDITIONS

#### 4.1 SURROUNDING ROADWAY NETWORK

The characteristics of the roadway system in the vicinity of the project site are described below:

<u>Arrow Highway</u> is a four-lane undivided roadway trending in the east-west direction. Within the study area, there are no bicycle facilities located along Arrow Highway. Most segments have sidewalks on both sides of the street and the posted speed limit is 45 MPH.

<u>Covina Boulevard</u> is a four-lane undivided roadway trending in the east-west direction. Covina Boulevard begins east of Azusa Avenue. Sidewalks are provided on both sides of the street and there are no bicycle facilities within the study area. On-street parking is allowed intermittently, and the posted speed limit is 35 MPH.

**<u>Cypress</u>** Street is a four-lane undivided roadway trending in the east-west direction. There are intermittent turn lanes provided into the Project Area. There are no bike facilities and sidewalks are provided on both sides of the street and on-street parking is allowed. The posted speed limit is 40 MPH.

<u>Azusa Avenue</u> is a four-lane roadway trending in the north-south direction. There is a raised median parallel to the project site. There are no bike facilities. However, sidewalks are provided on both sides of the street with marked crosswalks at signalized intersections. There is parking on both sides of the street. Along certain parts of the corridor. The posted speed limit is 40 MPH.

<u>San Bernardino Road</u> is a four-lane undivided roadway trending in the east-west direction. There are intermittent turn lanes that go into the Project Area. There are no bike facilities and sidewalks exist on both sides of the street. On-street parking is not permitted on San Bernardino Road east of N Rimsdale Avenue and transitions from a four-lane road to a two-lane road east of Hollenbeck Avenue. The posted speed limit is 35 MPH.

**Badillo Street** is a four-lane divided roadway trending in the east-west direction. There are bike lanes on both sides of the street with on-street parking. Sidewalks are provided on both sides of the street. The posted speed limit is 35 MPH.



## 4.2 EXISTING TRAFFIC VOLUMES

To determine the existing operations of the study intersections, peak hour intersection movement counts were collected on Wednesday, February 15, 2023. Morning (AM) peak period counts were collected between 7:00 AM to 9:00 AM and evening (PM) peak period counts were collected from 4:00 PM – 6:00 PM. The counts used in this analysis represent the highest hour within the peak periods counted for each intersection. Detailed count data is contained in **Appendix B**.

**Exhibit 4** shows the Existing study intersection lane geometry.

**Exhibit 5** shows the Existing AM and PM peak hour volumes at the study intersections.

## 4.3 EXISTING PEAK HOUR STUDY INTERSECTION LOS

**Table 3** summarizes existing conditions AM/PM peak hour level of service for all study intersections.Detailed analysis sheets are contained in **Appendix C**.

|                                         | Traffic<br>Control             | Existing Conditions      |                          |
|-----------------------------------------|--------------------------------|--------------------------|--------------------------|
| Study Intersection                      |                                | AM                       | PM                       |
|                                         |                                | Delay <sup>1</sup> - LOS | Delay <sup>1</sup> - LOS |
| 1 - N Azusa Ave. / Arrow Hwy.           | Signal                         | 41.1-D                   | 48.0 <b>-</b> D          |
| 2 - N Azusa Ave. / Covina Blvd.         | Signal                         | 50.7 - D                 | 29.4-C                   |
| 3 - N Azusa Ave. / Project Driveway 1   | OWSC                           | 11.4-B                   | 12.3 <b>-</b> B          |
| 4 - N Azusa Ave. / Project Driveway 2   | Does Not Exist Without Project |                          |                          |
| 5 - N Azusa Ave. / Project Driveway 3   | OWSC                           | 0-A                      | 0-A                      |
| 6 - N Azusa Ave. / Cypress St.          | Signal                         | 43.7-D                   | 38.7 <b>-</b> D          |
| 7 - N Azusa Ave. / W San Bernardino Rd. | Signal                         | 35.1-D                   | 33.5 <b>-</b> D          |
| 8 - N Azusa Ave. / Badillo St.          | Signal                         | 37.2 <b>-</b> D          | 35.1-D                   |
| 9 - Cypress St. / Project Driveway 4    | OWSC                           | 0-A                      | 0-A                      |

#### TABLE 3 – EXISTING AM/PM PEAK HOUR INTERSECTION LOS

Note: Deficient intersection operation indicated in **bold**.

<sup>1</sup> Average seconds of delay per vehicle.

OWSC = One-Way Stop Control

LOS = level of service.

As shown in **Table 2**, all study intersections are currently operating at an acceptable level of service for Existing conditions during the AM and PM peak hour. At N Azusa Avenue & Project Driveway 3 and Driveway 4, there is no traffic currently utilizing these driveways since the site is vacant. Therefore, the delay at these locations is reported as 0.







## **Intersection Geometry**

April 2023

INTERNATIONAL


### 5 PROPOSED PROJECT

The Project proposes to demolish and redevelop the existing property located at 1000 N. Azusa Avenue in the City of Covina. The property is currently improved with a vacant and abandoned grocery store shell and parking lot. The Project plans to construct 80 residential townhomes, 17 live-work townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area. The project is anticipated to be fully constructed in a single phase by Year 2026.

Multiple access points are proposed and are already provided to the project site. There is a single driveway from Cypress Street that exists but will be relocated easterly from existing location to accommodate the proposed layout. Two other existing driveways from Azusa Avenue will remain near the projects site's commercial north and south edges, which are shared with surrounding business properties. A new full access right-in/right-out driveway is proposed central of the Azusa Avenue frontage. Internally, although commercial circulation through the residential area will be discouraged by directional signage and enhanced paving at residential entry points from commercial.

The project site would take access via four full access driveways: three on N Azusa Avenue and one on Cypress Street. **Exhibit 3** shows the proposed project draft site plan.

### 5.1 PROJECT FORECAST TRIP GENERATION

**Table 4** provides the trip rates based on the *Institute of Transportation Engineers (ITE) Trip Generation Manual, 11<sup>th</sup> Edition.* In accordance with *ITE's Trip Generation Handbook, 3<sup>rd</sup> Edition,* pass-by trip reductions were applied for the commercial projects. As shown in **Table 5**, the Project is expected to generate 1,665 new daily trips with 236 trips during the AM peak hour (111 inbound and 125 outbound) and 178 trips during the PM peak hour (94 inbound and 84 outbound).

| Land Use                                    |     | Daily Tri | n Rata | AM Peak Hour Rate |          |          |   |       | ٩N   | PM Peak Hour Rate |     |     |     |
|---------------------------------------------|-----|-----------|--------|-------------------|----------|----------|---|-------|------|-------------------|-----|-----|-----|
|                                             |     |           |        | Total             |          | In : Out |   | Total |      | In : Out          |     | Out |     |
| Multifamily Housing (Mid-Rise)              | 221 | 4.289     | /DU    | 0.32              | 0.32 /DU |          | : | 77%   | 0.39 | /DU               | 61% | :   | 39% |
| Automated Car Wash <sup>2</sup>             |     | 781.00    | /CWT   | 49.00             | /CWT     | 50%      |   | 50%   | 77.5 | /cw               | 50% | :   | 50% |
| Coffee Shop w/ Drive Thru                   |     | 86.316    | /KSF   | 86.32             | /KSF     | 51%      | : | 49%   | 38.9 | /KSF              | 50% | :   | 50% |
| Fast Food Restaurant with Drive-Thru Window |     | 462.74    | /KSF   | 44.22             | /KSF     | 51%      | : | 49%   | 32.8 | /KSF              | 52% | :   | 48% |

#### **TABLE 4 - ITE TRIP GENERATION RATES**

<sup>1</sup> Source: ITE Trip Generation Manual, 11th Edition. Rates shown are based on fitted curve equation as applicable. Where fitted curve is not available, average rates were used.

<sup>2</sup>Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Manual, therefore, daily rates assumes 10% of PM peak hour. AM rates assume 6.2% of the daily rate.



| Land Lico                                           | In        | toncity           | Daily Trips | AM Pea  | ak Hour Trips     | PM Peak Hour Trips |          |  |
|-----------------------------------------------------|-----------|-------------------|-------------|---------|-------------------|--------------------|----------|--|
|                                                     |           | tensity           | Daily Trips | Total   | al In : Out Total |                    | In : Out |  |
| Multifamily Housing (Mid-Rise)                      | 97        | DU                | 416         | 31      | 7:24              | 38                 | 23 : 15  |  |
| Automated Car Wash 2                                | 1         | CWT               | 781         | 49      | 25 : 24           | 78                 | 39:39    |  |
| Car Wash Pass-By Trip Reduction (56% Daily, AM and  | l PM Peal | k) <sup>1,2</sup> | -437        | -27     | -14 -13           | -44                | -22 -22  |  |
| Sub-Total Trip Generation for Car \                 | Nash      |                   | 344         | 22      | 11 : 11           | 34                 | 17 : 17  |  |
| Coffee Shop w/ Drive Thru                           | KSF       | 507               | 82          | 42 : 40 | 37                | 19 : 19            |          |  |
| Coffee Shop Pass-By Trip Reduction (89% Daily, AM c | and PM Pe | eak)1             | -451        | -73     | -37 -36           | -33                | -17 -17  |  |
| Sub-Total Trip Generation for Coffe                 | Shop      |                   | 56          | 102     | 52 : 50           | 46                 | 23 : 23  |  |
| Fast Food Restaurant with Drive-Thru Window         | 3.500     | KSF               | 1664        | 159     | 81 : 78           | 118                | 61 : 57  |  |
| Fast Food Pass-By Trip Reduction (49% Daily, AM and | -815      | -78               | -40 -38     | -58     | -30 -28           |                    |          |  |
| Sub-Total Trip Generation for Fast Food wi          | Γhru      | 849               | 81          | 41 : 40 | 60                | 31 : 29            |          |  |
| TOTAL TRIP GENERATION                               | 1665      | 236               | 111 : 125   | 178     | 94 : 84           |                    |          |  |

#### TABLE 5 - PROPOSED PROJECT TRIP GENERATION

Notes:

<sup>1</sup>Pass-By Trip Rates taken from ITE's Trip Generation Handbook, 3rd Edition.

<sup>2</sup>Pass-By Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Handbook, therefore, a Gas/Service Station (LU Code 945) was used since both uses are similar in trip characteristics.

DU = Dwelling Unit

CWT = Car Wash Tunnels

KSF = 1,000 Square Feet

## 5.2 TRIP DISTRIBUTION AND TRIP ASSIGNMENT OF PROPOSED PROJECT

Project trips were assigned onto the surrounding roadway network based on the location of the Project relative to the area transportation network and nearby attractions such as freeways, prime arterials, shopping centers, employment centers, etc.

**Exhibits 6A and 6B** shows the trip distribution percentages from the project-related traffic within the study area for the residential and commercial uses respectively. The majority of the project traffic associated with the residential trips are assumed to use the project driveway on Cypress Street and the majority of project traffic associated with the commercial trips are assumed to use the three project driveways on Azusa Avenue.

**Exhibit 7** shows the forecast total project only AM/PM peak hour traffic volumes for both the residential and commercial trips based on the trip generation (Table 4) and trip distribution (Exhibits 6A & 6B).







# **Project Only Trip Distribution (Residential)**

April 2023

**Michael Baker** 

INTERNATIONAL





# **Project Only Trip Distribution (Commercial)**

April 2023

**Michael Baker** 

INTERNATIONAL



**Michael Baker** 

INTERNATIONAL



# **Project Only AM/PM Peak Hour Traffic Volumes**

April 2023 \\CARLCA1FS1.bkr.mbakercorp.com\HROOT\PDATA\193269 Covina Azusa Development\Traffic\Exhibits

## 6 OPENING YEAR 2026 WITHOUT PROJECT CONDITIONS

### 6.1 OPENING YEAR 2026 WITHOUT PROJECT CONDITIONS

Opening Year 2026 Without Project traffic volumes are derived by adding existing traffic volumes to the cumulative project only traffic volumes. Michael Baker coordinated with City staff to determine which cumulative (pending or approved) projects may contribute traffic to the project's study area. Based on a review of the list of cumulative projects, a total of ten (10) cumulative projects are included in the Opening Year 2026 conditions. **Table 6** presents the trip generation estimates for the ten cumulative projects.

**Exhibit 8** shows the location of each cumulative project included in the Opening Year 2026 analysis.

|                                                                               | Consulation Desirat                                 |                                              | Lond Hor                                | last an alter | 4.57      | ļ     | AM Peak Ho | ur       | PM Peak Hour |         |          |    |
|-------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------|---------------|-----------|-------|------------|----------|--------------|---------|----------|----|
| #                                                                             | Cumulative Project                                  | TTE Code                                     |                                         | Intensity     | ADT       | Total | Inbound    | Outbound | Total        | Inbound | Outbound |    |
|                                                                               |                                                     | 230                                          | Residential Townhome                    | 18 DU         |           |       |            |          |              |         |          |    |
| 1                                                                             | Hassen Development (Sites B1, B2, C) <sup>(1)</sup> | 710                                          | Office                                  | 1,030 SF      | 219       | 13    | 6          | 7        | 21           | 11      | 10       |    |
|                                                                               |                                                     | 820                                          | Retail                                  | 3,370 SF      |           |       |            |          |              |         |          |    |
|                                                                               |                                                     | 230                                          | Residential Townhome                    | 161 DU        |           |       |            |          |              |         |          |    |
| 2                                                                             | Hassen Development (2)                              | 932                                          | Restaurant                              | 3,800 SF      | 1,700     | 108   | 36         | 72       | 145          | 87      | 58       |    |
|                                                                               |                                                     | 820                                          | Retail                                  | 13,500 SF     |           |       |            |          |              |         |          |    |
|                                                                               |                                                     | 221                                          | Residential Townhome                    | 132 DU        |           |       |            |          |              |         |          |    |
| 3                                                                             | Covina Bowl Specific Plan <sup>(3)</sup>            | Covina Bowl Specific Plan <sup>(3)</sup> 710 |                                         | Office        | 11,050 SF | 1,081 | 133        | 60       | 73           | 97      | 50       | 47 |
|                                                                               |                                                     | 936                                          | Coffee Shop                             | 950 SF        |           |       |            |          |              |         | 1        |    |
| 4                                                                             | Vita Pakt- Trumark Homes                            | 220                                          | Multi-Family Housing (Low-Rise)         | 151 DU        | 1,043     | 70    | 17         | 53       | 85           | 54      | 31       |    |
| 5                                                                             | Avid Hotel                                          | 310                                          | Hotel                                   | 100 Rooms     | 660       | 43    | 24         | 19       | 46           | 24      | 22       |    |
| 6                                                                             | Bradford Park Properties                            | 220                                          | Multi-Family Housing (Low-Rise)         | 28 DU         | 255       | 32    | 8          | 24       | 33           | 21      | 12       |    |
| 7                                                                             | Sheldon                                             | 220                                          | Multi-Family Housing (Low-Rise)         | 38 DU         | 319       | 35    | 8          | 27       | 37           | 23      | 14       |    |
| 8                                                                             | Pollo Campero                                       | 934                                          | Fast Food Restaurant with Drive Through | 1,500 SF      | 701       | 67    | 34         | 33       | 50           | 26      | 24       |    |
| 9                                                                             | Logan Run, LLC                                      | 220                                          | Multi-Family Housing (Low-Rise)         | 80 DU         | 588       | 48    | 11         | 37       | 55           | 35      | 20       |    |
| 10 Covina Recreation Village <sup>(4)</sup> 495 Recreational Community Center |                                                     | 20,000 SF                                    | 1,704                                   | 62            | 41        | 21    | 218        | 105      | 113          |         |          |    |
|                                                                               | Тс                                                  | otal Cumula                                  |                                         | 8,270         | 611       | 245   | 366        | 787      | 436          | 351     |          |    |

#### TABLE 6 - CUMULATIVE PROJECT TRIP GENERATION

<sup>(1)</sup> Source: Covina Townhomes Project Traffic Impact Study (Linscott, Law & Greenspan, Oct. 9, 2017)

<sup>(2)</sup> Source: Covina Townhomes Project (Site A) Traffic Impact Study (Linscott, Law & Greenspan, May 9, 2018)

(3) Source: Covina Bowl Specific Plan Project Traffic Impact Study (Linscott, Law & Greenspan, July 1, 2020)

<sup>(4)</sup> Source: Covina Recreation Village Exemption Checklist (Environment Planning Development Solutions Inc, Jan 2022)

**Exhibit 9** shows the forecast Opening Year 2026 Without Project AM and PM peak hour volumes at the study intersections.

# 6.2 OPENING YEAR 2026 WITHOUT PROJECT PEAK HOUR STUDY INTERSECTION LOS

**Table 7** summarizes Opening Year 2026 Without and With Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in **Appendix D**.





# Michael Baker

# Cumulative Project Location Map

April 2023





### **Opening Year 2026 Without Project AM/PM Peak Hour Traffic Volumes**

April 2023

**Michael Baker** 

INTERNATIONAL

. \\CARLCA1FS1.bkr.mbakercorp.com\\HROOT\PDATA\193269 Covina Azusa Development\Traffic\Exhibits

|             |                               | Troffic | OY 2026 Wit              | hout Project             |
|-------------|-------------------------------|---------|--------------------------|--------------------------|
|             | Study Intersection            | Control | AM                       | PM                       |
|             |                               | Control | Delay <sup>1</sup> - LOS | Delay <sup>1</sup> - LOS |
| 1 - N Azusa | a Ave. / Arrow Hwy.           | Signal  | 41.4 <b>-</b> D          | 48.5 <b>-</b> D          |
| 2 - N Azusa | a Ave. / Covina Blvd.         | Signal  | 51.1-D                   | 29.8 <b>-</b> C          |
| 3 - N Azusa | a Ave. / Project Driveway 1   | OWSC    | 11.5 <b>-</b> B          | 12.4-B                   |
| 4 - N Azusa | a Ave. / Project Driveway 2   | Does N  | Not Exist Witho          | ut Project               |
| 5 - N Azusa | a Ave. / Project Driveway 3   | OWSC    | 0-A                      | 0-A                      |
| 6 - N Azusa | a Ave. / Cypress St.          | Signal  | 44.3-D                   | 39.6 <b>-</b> D          |
| 7 - N Azusa | a Ave. / W San Bernardino Rd. | Signal  | 39.0 <b>-</b> D          | 36.1-D                   |
| 8 - N Azusa | a Ave. / Badillo St.          | Signal  | 38.0 <b>-</b> D          | 35.9 <b>-</b> D          |
| 9 - Cypress | s St. / Project Driveway 4    | OWSC    | 0-A                      | 0-A                      |

#### TABLE 7 – OPENING YEAR 2026 WITHOUT PROJECT AM/PM PEAK HOUR INTERSECTION LOS

Note: Deficient intersection operation indicated in **bold**.

<sup>1</sup> Average seconds of delay per vehicle.

LOS = level of service.

OWSC = One-Way Stop Control

As shown in **Table 7**, all study intersections are forecast to operate at an acceptable level of service (LOS D or better) during the AM and PM peak hour. At N Azusa Avenue & Project Driveway 3 and Driveway 4, there is no traffic currently utilizing these driveways since the site is vacant. Therefore, the delay at these locations is reported as 0.

## 7 OPENING YEAR 2026 WITH PROJECT CONDITIONS

### 7.1 OPENING YEAR 2026 WITH PROJECT CONDITIONS

Opening Year 2026 With Project traffic volumes are derived by adding project-related traffic volumes to the Opening Year Without Project traffic volumes.

**Exhibit 10** shows the forecast Opening Year 2026 With Project AM and PM peak hour volumes at the study intersections.

**Table 8** provides a comparison of the Opening Year 2026 Without Project and Opening Year 2026 WithProject intersection LOS analysis. Detailed analysis sheets are contained in **Appendix E**.

| Study Intersection                         | OY 2026 Wit<br>Cond      | thout Project<br>itions  | OY 2026 W<br>Cond        | Adv<br>Fffe              | erse |    |
|--------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|----|
|                                            | AM                       | PM                       | AM                       | PM                       |      |    |
|                                            | Delay <sup>1</sup> - LOS | AM   | PM |
| 1 - N Azusa Ave. / Arrow Hwy.              | 41.4 - D                 | 48.0 - D                 | 41.6 - D                 | 48.0 - D                 | No   | No |
| 2 - N Azusa Ave. / Covina Blvd.            | 51.1 - D                 | 29.8 - C                 | 51.1 - D                 | 29.8 - C                 | No   | No |
| 3 - N Azusa Ave. / Project Driveway 1      | 11.5 - B                 | 12.4 - B                 | 12.4 - B                 | 13.1 - B                 | No   | No |
| 4 - N Azusa Ave. / Project Driveway 2      | Does Not Exis            | st W/O Project           | 12.3 - B                 | 12.9 - B                 | No   | No |
| 5 - N Azusa Ave. / Project Driveway 3      | 0 - A                    | 0 - A                    | 12.2 - B                 | 12.8 - B                 | No   | No |
| 6 - N Azusa Ave. / Cypress St.             | 44.3 - D                 | 39.6 - D                 | 45.7 - D                 | 42.6 - D                 | No   | No |
| 7 - N Azusa Ave. / W San Bernardino<br>Rd. | 37.1 - D                 | 36.1 - D                 | 36.5 - D                 | 35.5 - D                 | No   | No |
| 8 - N Azusa Ave. / Badillo St.             | 38.0 - D                 | 35.9 - D                 | 38.1 - D                 | 35.9 - D                 | No   | No |
| 9 - Cypress St. / Project Driveway 4       | 0 - A                    | 0 - A                    | 12.8 - B                 | 10.2 - B                 | No   | No |

# TABLE 8 – OPENING YEAR 2026 WITHOUT & WITH PROJECTAM/PM PEAK HOUR INTERSECTION LOS COMPARISON

Note: Deficient intersection operation indicated in **bold**.

<sup>1</sup> Seconds of delay per vehicle. LOS = level of service.

As shown in **Table 8**, all study intersections are forecast to operate at an acceptable level of service (LOS D or better) during both the AM and PM peak hour. Therefore, no improvements to the study intersections are required.







### **Opening Year 2026 Plus Project AM/PM Peak Hour Traffic Volumes**

April 2023

**Michael Baker** 

INTERNATIONAL

### 8 FINDINGS AND RECOMMENDATIONS

This study analyzes the forecast traffic conditions associated with the proposed development of the Covina Village (Project) in the City of Covina. The Project proposes to demolish and redevelop the existing property located at 1000 N. Azusa Avenue in the City of Covina. The property is currently improved with a vacant and abandoned grocery store shell and parking lot. The Project plans to construct 80 residential townhomes, 17 live-work townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area. The project is anticipated to be built out by Year 2026.

Multiple access points are proposed and are already provided to the project site as existing today. There is a single driveway from Cypress Street that exists but will be relocated easterly from existing location to accommodate the proposed layout. Two other existing driveways from Azusa Avenue will remain near the projects site's commercial north and south edges, which are shared with surrounding business properties. A new full access right-in/right-out driveway is proposed central of the Azusa Avenue frontage. Internally, although commercial circulation through the residential area will be discouraged by directional signage and enhanced paving at residential entry points from commercial.

With the pass-by trip reductions applied, the Project is expected to generate 1,665 new daily trips with 236 trips during the AM peak hour (111 inbound and 125 outbound) and 178 trips during the PM peak hour (94 inbound and 84 outbound). This study evaluates traffic conditions that include AM and PM peak hour intersection level of service (LOS) analysis for the following scenarios:

- Existing Conditions;
- Opening Year 2026 Without Project Conditions
- Opening Year 2026 Plus Project Conditions

#### 8.1.1.1 Level of Service Analysis Results

**Existing Conditions** - The results of the Existing conditions analysis show that all study intersections currently operate at acceptable levels of service (LOS C or better) during the AM and PM peak hour.

**Opening Year 2026 Without Project Conditions** - Without the addition of project related traffic and inclusion of cumulative project traffic with existing traffic, all study intersections continue to operate at acceptable levels of service (LOS D or better) for the Opening Year 2026 Without Project conditions during the AM and PM peak hour.

**Opening Year 2026 With Project Conditions** - With the addition of project-related traffic, all study intersections continue to operate at acceptable levels of service (LOS D or better) for the Opening Year 2026 With Project conditions during the AM and PM peak hour. Therefore, no improvements to the study intersections are required.



# Michael Baker

# Appendix A: TIA Scoping Agreement

# Michael Baker

Date: February 8, 2023

To: Mercy Lugo, City of Covina

Cc: Chad Brown, Melia Homes Frankie Tong, Michael Baker International

From: Jacob Swim, TE – Michael Baker International

#### Re: 1000 Azusa Avenue – Mixed Use Development – TIA Scoping Memo

Michael Baker International (Michael Baker) will be preparing a Transportation Impact Analysis (TIA) for the proposed Mixed-Use Development (Project) located at 1000 Azusa Avenue in the City of Covina. The Project plans to construct 80 residential townhomes, 17 live-work townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area.

This TIA scope of work was prepared in accordance with the City of Covina's adopted guidelines for analyzing Vehicle Miles Traveled (VMT) and also the *County of Los Angeles Traffic Impact Study Guidelines* for the operational analysis.

#### PROJECT DESCRIPTION

The Project proposes to demolish and redevelop the existing property located at 1000 N. Azusa Avenue in the City of Covina. The property is currently improved with a vacant and abandoned grocery store shell and parking lot. The Project plans to construct 80 residential townhomes, 17 live-work townhomes, 950 square foot coffee shop, 3,500 square foot fast-food restaurant with drive through window, and 3,596 square foot automated car wash with self-vacuum area. **Exhibit 1** provides the project site plan.

Multiple access points are proposed and are already provided to the project site as existing today. There is a single driveway from Cypress Street that exists but will be relocated easterly from existing location to accommodate the proposed layout. Two other existing driveways from Azusa Avenue will remain near the projects site's commercial north and south edges, which are shared with surrounding business properties. A new full access right-in/right-out driveway is proposed central of the Azusa Avenue frontage. Internally, although commercial circulation through the residential area will be discouraged by directional signage and enhanced paving at residential entry points from commercial.

#### TRIP GENERATION RATES

Michael Baker calculated the Project trip generation to estimate the net new trips associated with the Project. Trip rates from the *Institute of Transportation Engineers (ITE) Trip Generation Manual*, 11<sup>th</sup> Edition were utilized. **Table 1** provides a summary of the weekday daily and peak hour trip rates.

| Land Lico                                   |                   | Doily Tri      | n Data | AM Peak Hour Rate |          |          |   |       | PM Peak Hour Rate |          |     |     |     |
|---------------------------------------------|-------------------|----------------|--------|-------------------|----------|----------|---|-------|-------------------|----------|-----|-----|-----|
| Land Ose                                    | Code <sup>1</sup> | Dally TTP Rate |        | Total             |          | In : Out |   | Total |                   | In : Out |     | Out |     |
| Multifamily Housing (Mid-Rise)              | 221               | 4.289          | /DU    | 0.32              | 0.32 /DU |          |   | 77%   | 0.39              | /DU      | 61% | :   | 39% |
| Automated Car Wash <sup>2</sup>             |                   | 781.00         | /CWT   | 49.00             | /CWT     | 50%      | : | 50%   | 77.5              | /cw      | 50% | :   | 50% |
| Coffee Shop w/ Drive Thru                   |                   | 86.316         | /KSF   | 86.32             | /KSF     | 51%      | : | 49%   | 38.9              | /KSF     | 50% | :   | 50% |
| Fast Food Restaurant with Drive-Thru Window | 934               | 462.74         | /KSF   | 44.22             | /KSF     | 51%      | : | 49%   | 32.8              | /KSF     | 52% | :   | 48% |

#### TABLE 1: DRIVEWAY TRIP GENERATION RATES

<sup>1</sup> Source: ITE Trip Generation Manual, 11th Edition. Rates shown are based on fitted curve equation as applicable. Where fitted curve is not available, average rates were used.

<sup>2</sup>Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Manual, therefore, daily rates assumes 10% of PM peak hour. AM rates assume 6.2% of the daily rate.

#### FORECAST PROJECT TRIP GENERATION

**Table 2** provides a summary of the expected trips generated on a weekday by the Project using the trip rates previously shown in **Table 1** with trip adjustments applied. In accordance with ITE's Trip Generation Handbook, 3<sup>rd</sup> Edition, pass-by trip reductions can be applied for the commercial projects. With the pass-by trip reductions applied, the Project is expected to generate 1,665 new daily trips with 236 trips during the AM peak hour (111 inbound and 125 outbound) and 178 trips during the PM peak hour (94 inbound and 84 outbound).

| Land Lico                                           | In              | topcity           | Daily Tring | AM Pea    | ak Hour Trips | PM Peak Hour Trips |          |  |
|-----------------------------------------------------|-----------------|-------------------|-------------|-----------|---------------|--------------------|----------|--|
|                                                     |                 | tensity           | Daily Trips | Total     | In : Out      | Total              | In : Out |  |
| Multifamily Housing (Mid-Rise)                      | 97              | DU                | 416         | 31        | 7:24          | 38                 | 23 : 15  |  |
| Automated Car Wash 2                                | 1               | CWT               | 781         | 49        | 25 : 24       | 78                 | 39:39    |  |
| Car Wash Pass-By Trip Reduction (56% Daily, AM and  | PM Peal         | k) <sup>1,2</sup> | -437        | -27       | -14 -13       | -44                | -22 -22  |  |
| Sub-Total Trip Generation for Car \                 |                 | 344               | 22          | 11 : 11   | 34            | 17 : 17            |          |  |
| Coffee Shop w/ Drive Thru                           | 0.95            | KSF               | 507         | 82        | 42 : 40       | 37                 | 19 : 19  |  |
| Coffee Shop Pass-By Trip Reduction (89% Daily, AM c | and PM Pe       | eak) <sup>1</sup> | -451        | -73       | -37 -36       | -33                | -17 -17  |  |
| Sub-Total Trip Generation for Coffe                 | Shop            |                   | 56          | 102       | 52 : 50       | 46                 | 23 : 23  |  |
| Fast Food Restaurant with Drive-Thru Window         | 3.596           | KSF               | 1664        | 159       | 81 : 78       | 118                | 61 : 57  |  |
| Fast Food Pass-By Trip Reduction (49% Daily, AM and | k) <sup>1</sup> | -815              | -78         | -40 -38   | -58           | -30 -28            |          |  |
| Sub-Total Trip Generation for Fast Food wi          | Гhru            | 849               | 81          | 41 : 40   | 60            | 31 : 29            |          |  |
| TOTAL TRIP GENERATION                               |                 | 1665              | 236         | 111 : 125 | 178           | 94 : 84            |          |  |

#### TABLE 2: PROJECT DRIVEWAY TRIP GENERATION

#### Notes:

<sup>2</sup>Pass-By Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Handbook, therefore, a Gas/Service Station (LU Code 945) was used since both uses are similar in trip characteristics.

DU = Dwelling Unit

CWT = Car Wash Tunnels

KSF = 1,000 Square Feet

<sup>&</sup>lt;sup>1</sup>Pass-By Trip Rates taken from ITE's Trip Generation Handbook, 3rd Edition.

#### VEHICLE MILES TRAVELED (VMT) SCOPE

Michael Baker will determine if the project meets the VMT screening criteria in accordance with the City's criteria. If the project does not meet any of the screening criteria, a detailed transportation VMT analysis will be conducted.

#### TRANSPORTATION IMPACT ANALYSIS (TIA) SCOPE AND KEY ASSUMPTIONS

The following sections discuss key assumptions in the TIA such as study area, traffic counts, trip distribution and study scenarios.

#### Study Area

Intersections where 50 or more peak hour trips from the Project are added in any direction should be analyzed. As such, the following five (5) signalized intersections and four (4) project driveways will be analyzed in the TIA (refer to **Exhibit 2**):

#### Study Intersections:

- 1. N. Azusa Avenue / Arrow Highway
- 2. N. Azusa Avenue / Covina Boulevard
- 3. N. Azusa Avenue / Project Driveway 1
- 4. N. Azusa Avenue / Project Driveway 2
- 5. N. Azusa Avenue / Project Driveway 3
- 6. N. Azusa Avenue / Cypress Street
- 7. N. Azusa Avenue / W. San Bernardino Road
- 8. N. Azusa Avennue / Badillo Street
- 9. Cypress Street / Project Driveway 4

#### **Trip Distribution**

Trip distribution assumptions for the Project are based on the existing connections to regional highways, commercial and employment centers. For purposes of this analysis, 45% of project traffic is assumed to travel north on Azusa Avenue and 40% travels south. 5% of project traffic is assumed to travel west on Cypress Street and 10% of project traffic is assumed to travel east. **Exhibit 3** shows the general Project trip distribution in the study area.

#### **Data Collection**

Michael Baker will collect AM and PM peak hour traffic counts at the five (5) study intersections. Data collection will include pedestrian and bicycle counts at each study intersection.

#### Study Scenarios

The following scenarios will be evaluated in the TIA:

- Existing Conditions
- Opening Year 2026 Without Project Conditions
- Opening Year 2026 Plus Project Conditions

#### Analysis Methodology and Project Improvements

Traffic operations at study intersections will be analyzed in accordance with the City's Traffic Guidelines. Study intersections will be analyzed using the Highway Capacity Manual 6<sup>th</sup> Edition (HCM 6) methodology and Synchro Version 10. Michael Baker will coordinate with City staff on obtaining a list of cumulative projects that could potentially add traffic to the study area to be included in the Opening Year analysis conditions.



# COVINA, CA

EXHIBIT 1 - SITE PLAN

MELIA HOMES 8951 Research Drive, Suite 100 Irvine, CA 92618 (949) 759-4367

# 1000 AZUSA AVE - MIXED USE

60 30 Scale NOV. 17, 2022

# PROJECT SUMMARY

| SITE AREA -                                                      | 5.109 ACRES (222,530 S.F.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNITS -                                                          | 97 DWELLING UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DENSITY -                                                        | 19.0 DU/ACRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SITE ADDRESS -                                                   | 1000 NORTH AZUSA AVEN<br>COVINA, CA. 91722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A.P.N                                                            | 8421-001-016 & 8421-001-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FIRE SPRINKLERS-                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RESIDEN<br>Pool B                                                | JTIAL BUILDINGS = NFPA 13-D<br>UILDING = NON-SPRINKLERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 STORY - R3 OCC.                                                | <b>FYPE VB ROW TOWNHOMES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2-CAR ATTACHED C                                                 | GARAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNIT PLAN SUMMA                                                  | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3 STORY ROW TOW                                                  | /N/LIVE-WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13 - PLAN 1 1,337 S                                              | SF 2 BD+DEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21- PLAN 2 1,531 S                                               | SF 2 BD+DEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25 - PLAN 3 1,654 S                                              | SF 3 BD+DEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21 - PLAN 4 1,800 S                                              | SF 4 BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8 - PLAN 5 1,976 S                                               | F 3 BD + WORKSPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9 - PLAN 6 1,982 S                                               | F 3 BD + WORKSPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PARKING SUMMARY                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GARAGE STALLS PRO                                                | OVIDED 194 STALLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ON-SITE OPEN STAI                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SHARED I WE/WORK                                                 | OPENISTALLS A1 STALLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TOTAL PARKING PR                                                 | $\frac{1}{1} \frac{1}{1} \frac{1}$ |
| (2.93 STALLS/UNIT)                                               | CVIDED 204 STALLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BUILDING MIX                                                     | QUANTITY FOOTPRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TYPE A (3,2,4,1)                                                 | QTY = 5 2,835 S.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TYPE B (4,2,3,3,1                                                | a) $QTY = 8$ 3,554 S.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TYPE C (2.4.3.2.4                                                | 4) $QTY = 4$ 3.690 S.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TYPE D (5.6.6.5.6                                                | OTY = 1 4.105 S.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TYPE E (6.5.5.6.5                                                | (6) $QTY = 2$ 4.921 S.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOT COVERAGE                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIDG A = 2835 SF X                                               | 5 = 14 175 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BLDG $R = 2,000$ SF $X$<br>BLDG $R = 3.554$ SF $X$               | 8 - 28.432  SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLDG D = 0,001 SF X $BLDG C = 3.690 SF X$                        | 4 - 14760  SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BLDG C = 0,000 SF X<br>BLDG D = 4 105 SF X                       | 1 - 11,700  SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLDG $E = 4,100 \text{ SI } X$<br>BLDC $F = 4.921 \text{ SE } X$ | 2 - 98/2 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $POOI \ BIDC = 4,321 \ SI \ X$                                   | z = 0.04z SI<br>F X 1 - $167$ SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1000000000000000000000000000000000000                            | 71 781 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (71 781  SF)                                                     | 7292530 SF $-322 - 322%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OPENI SPACE SLIMM                                                | $\Delta PV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OPEN SPACE SUMME                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REQUIRED OPEN SP.                                                | ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COMMON OPEN SP.                                                  | ACE 32,980 SF (340 SF/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PRIVATE OPEN SPAC                                                | CE 5,820 SF (60 SF/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TOTAL OPEN SPACE                                                 | E 38,800 SF (400 SF/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROVIDED OPEN SP                                                 | ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COMMON OPEN SP.                                                  | ACE 45,874 SF (472.9 SF/UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PRIVATE OPEN SPAC                                                | CE 6,638 SF (68.4 SF/UNIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOTAL OPEN SPACE                                                 | E 52,512 SF (541.3 SF/UNΠ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KEYNOTES                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 PROPERTY LINE                                                  | ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 3-STORY ROW                                                    | TOWNHOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 3-STORY LIVE/W                                                 | <b>VORK ROW TOWNHOME</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4 STANDARD OP                                                    | EN PARKING STALL - 9' X 18' (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 PARALLEL PARK                                                  | ING STALL - 8' X 22' (TYP.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 ACCESSIBLE PAI                                                 | RKING STALL - 9' X 18' (TYP.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STANDARD                                                         | W/ 5' WIDE STRIPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6V VAN W/ 8' W                                                   | /IDE STRIPING (PASSENGER SID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 POOL BUILDING                                                  | r<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 COMMUNITY M                                                    | AILBOX LOCATION / PARCEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9 EXISTING BUILI                                                 | DING FOOTPRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 $\mathbb{R}^{e}$  5256 S. MISSION ROAD STE. 404 BONSALL, CA. 92003 760.724.1198



90





SP

CONCEPTUAL SITE PLAN

PENDING

TYP.) DE)

T) 15' DIM

15' DIM

NUE





**Michael Baker** INTERNATIONAL

Exhibit 2





# **Project Distribution**

Michael Baker

| Land Use Code and Title                              | Time Period                   | Table       | Figure      |
|------------------------------------------------------|-------------------------------|-------------|-------------|
| 565 Day Care Center                                  | Weekday, PM Peak Period       | F.2         | _           |
| 813 Free-Standing Discount Superstore                | Weekday, PM Peak Period       | F.3         | F.1/F.2     |
|                                                      | Saturday, Mid-day Peak Period | F.4         | F.3         |
| 814 Variety Store                                    | Weekday, PM Peak Period       | F.5         | _           |
| 815 Free-Standing Discount Store                     | Weekday, PM Peak Period       | F.6         | F.4/F.5     |
|                                                      | Saturday, Mid-day Peak Period | F.7         | F.6         |
| 816 Hardware/Paint Store                             | Weekday, PM Peak Period       | F.8         | —           |
| 820 Shopping Center                                  | Weekday, PM Peak Period       | F.9         | F.7/F.8     |
|                                                      | Saturday, Mid-day Peak Period | F.10        | F.9         |
| 843 Automobile Parts Sales                           | Weekday, PM Peak Period       | F.11        | —           |
| 848 Tire Store                                       | Weekday, PM Peak Period       | F.12        | _           |
| 850 Supermarket                                      | Weekday, PM Peak Period       | F.13        | F.10        |
| 851 Convenience Market (Open 24 Hours)               | Weekday, PM Peak Period       | F.14        | _           |
| 853 Convenience Market with Gasoline Pumps           | Weekday, AM Peak Period       | F.15        | F.11        |
|                                                      | Weekday, PM Peak Period       | F.16        | F.12/F.13   |
| 854 Discount Supermarket                             | Weekday, PM Peak Period       | F.17        | F.14        |
| 857 Discount Club                                    | Weekday, PM Peak Period       | F.18        | _           |
|                                                      | Saturday, Mid-day Peak Period | F.19        | _           |
| 862 Home Improvement Superstore                      | Weekday, PM Peak Period       | F.20        | _           |
| 863 Electronics Superstore                           | Weekday, PM Peak Period       | F.21        | _           |
| 880 Pharmacy/Drugstore without Drive-Through Window  | Weekday, PM Peak Period       | F.22        | _           |
| 881 Pharmacy/Drugstore with Drive-Through Window     | Weekday, PM Peak Period       | F.23        | _           |
| 890 Furniture Store                                  | Weekday, PM Peak Period       | F.24        | _           |
| 912 Drive-In Bank                                    | Weekday, AM Peak Period       | F.25        | _           |
|                                                      | Weekday, Mid-day Peak Period  | F.26        |             |
|                                                      | Saturday, Mid-day Peak Period | F 28        | 1.15        |
| 031 Quality Peetaurant                               | Weekday, PM Peak Period       | F 20        |             |
| 032 High-Turnover (Sit-Down) Pestaurant              | Weekday, PM Peak Period       | F 30        | <br>E 16    |
| 932 Fight Furlover (SiteDown) Restaurant             | Weekday, AM Peak Period       | F 31        |             |
|                                                      | Weekday, AM Peak Period       | F 32        | <b>F 17</b> |
| 938 Coffee/Doput Shop with Drive-Through Window, and | Weekday                       | 1.02        |             |
| No Indoor Seating (Coffee/Espresso Stand)            | Weekaay                       | F.33/F.34   | _           |
| 944 Gasoline/Service Station                         | Weekday, AM Peak Period       | F.35        | -           |
|                                                      | Weekday, PM Peak Period       | <b>F.36</b> | -           |
| 945 Gasoline/Service Station with Convenience Market | Weekday, AM Peak Period       | F.37        | F.18        |
|                                                      | Weekday, PM Peak Period       | F.38        | F.19        |

## Table E.1 Land Use Codes and Time Periods with Pass-By Data



### Table E.31 Pass-By and Non-Pass-By Trips Weekday, AM Peak Period Land Use Code 934—Fast-Food Restaurant with Drive-Through Window

|       | SIZE (1,000 |                        | WEEKDAY | NO OF      |                | DASS DV  | NON-P   | ASS-BY TRIPS | 6 (%) | ADJ. STREET |                                |
|-------|-------------|------------------------|---------|------------|----------------|----------|---------|--------------|-------|-------------|--------------------------------|
| SEATS | GFA)        | LOCATION               | DATE    | INTERVIEWS | TIME PERIOD    | TRIP (%) | PRIMARY | DIVERTED     | TOTAL | VOLUME      | SOURCE                         |
| —     | <5          | Chicago suburbs,<br>IL | 1987    | 84         | 7:00–9:00 a.m. | 44       | -       | _            | 56    | —           | Kenig, O'Hara,<br>Humes, Flock |
| 88    | 1.4         | Louisville area, KY    | 1993    | _          | 7:00–9:00 a.m. | 62       | 22      | 16           | 38    | 1,407       | Barton-Aschman<br>Assoc.       |
| 100   | 3.6         | Louisville, KY         | 1993    | _          | 7:00–9:00 a.m. | 32       | 47      | 21           | 68    | 437         | Barton-Aschman<br>Assoc.       |
| 87    | 4.2         | New Albany, IN         | 1993    | _          | 7:00–9:00 a.m. | 46       | 23      | 31           | 54    | 1,049       | Barton-Aschman<br>Assoc.       |
| 150   | 3.0         | Louisville area, KY    | 1993    | _          | 7:00–9:00 a.m. | 43       | 14      | 43           | 57    | 2,903       | Barton-Aschman<br>Assoc.       |
| _     | 3.3         | varies                 | 1996    | _          | 6:00–9:00 a.m. | 68       | _       | _            | 32    | _           | Oracle Engineering             |

Average Pass-By Trip Percentage: 49 "—" means no data were provided

# Table E.32 Pass-By and Non-Pass-By Trips Weekday, PM Peak PeriodLand Use Code 934—Fast-Food Restaurant with Drive-Through Window

|       | SIZE<br>(1,000<br>SQ. |                          | WEEKDAY        |                      |                | PASS-<br>BY | NON-PASS-BY TRIPS (%) |          | %)    | ADJ.<br>STREET<br>PEAK |                                |
|-------|-----------------------|--------------------------|----------------|----------------------|----------------|-------------|-----------------------|----------|-------|------------------------|--------------------------------|
| SEATS | FT.<br>GFA)           | LOCATION                 | SURVEY<br>DATE | NO. OF<br>INTERVIEWS | TIME PERIOD    | TRIP<br>(%) | PRIMARY               | DIVERTED | TOTAL | HOUR<br>VOLUME         | SOURCE                         |
| _     | ~2.6                  | Minn-St.<br>Paul, MN     | 1987           | 50                   | 3:00–7:00 p.m. | 25          | 27                    | 48       | 75    | _                      | _                              |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 80                   | 3:00–6:00 p.m. | 38          | _                     | _        | 62    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 100                  | 3:00–6:00 p.m. | 55          | _                     | _        | 45    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 159                  | 3:00–6:00 p.m. | 56          | _                     | —        | 44    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 225                  | 3:00–6:00 p.m. | 48          | _                     | _        | 52    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 88                   | 3:00–6:00 p.m. | 35          | _                     | _        | 65    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| _     | <5.0                  | Chicago<br>suburbs, IL   | 1987           | 84                   | 3:00–6:00 p.m. | 44          | _                     | _        | 56    | _                      | Kenig, O'Hara,<br>Humes, Flock |
| 88    | 1.3                   | Louisville<br>area, KY   | 1993           | _                    | 4:00–6:00 p.m. | 68          | 22                    | 10       | 32    | 2,055                  | Barton-<br>Aschman<br>Assoc.   |
| 120   | 1.9                   | Louisville<br>area, KY   | 1993           | 33                   | 4:00–6:00 p.m. | 67          | 24                    | 9        | 33    | 2,447                  | Barton-<br>Aschman<br>Assoc.   |
| 87    | 4.2                   | New Albany,<br>IN        | 1993           | _                    | 4:00–6:00 p.m. | 56          | 25                    | 19       | 44    | 1,632                  | Barton-<br>Aschman<br>Assoc.   |
| 150   | 3.0                   | Louisville<br>area, KY   | 1993           | _                    | 4:00–6:00 p.m. | 31          | 31                    | 38       | 69    | 4,250                  | Barton-<br>Aschman<br>Assoc.   |
| _     | 3.1                   | Kissimmee,<br>FL         | 1995           | 28                   | 2:00–6:00 p.m. | 71          | _                     | _        | 29    | _                      | TPD Inc.                       |
| _     | 3.1                   | Apopka, FL               | 1996           | 29                   | 2:00–6:00 p.m. | 38          | _                     | _        | 62    | _                      | TPD Inc.                       |
| _     | 2.8                   | Winter<br>Springs, FL    | 1995           | 47                   | 2:00–6:00 p.m. | 66          | _                     | _        | 34    | _                      | TPD Inc.                       |
| _     | 4.3                   | Longwood,<br>FL          | 1994           | 304                  | 2:00–6:00 p.m. | 62          | _                     | _        | 38    | _                      | TPD Inc.                       |
| _     | 3.2                   | Altamonte<br>Springs, FL | 1996           | 202                  | 2:00–6:00 p.m. | 40          | 39                    | 21       | 60    | _                      | TPD Inc.                       |
| _     | 2.9                   | Winter Park,<br>FL       | 1996           | 271                  | 2:00-6:00 p.m. | 41          | 41                    | 18       | 59    | _                      | TPD Inc.                       |
| _     | 3.3*                  | several                  | 1996           | varies               | 4:00–6:00 p.m. | 62          | _                     | _        | 38    | _                      | Oracle<br>Engineering          |

\*Average of several combined studies.

Average Pass-By Trip Percentage: 50

"-" means no data were provided

### Table E.33 Pass-By and Non-Pass-By Trips Weekday Land Use Code 938—Coffee/Donut Shop with Drive-Through Window and No Indoor Seating (Coffee/Espresso Stand)

| SIZE            |               | WEEKDAY        |                      | TEKDAY            |                     | NON     |          |       |                                |
|-----------------|---------------|----------------|----------------------|-------------------|---------------------|---------|----------|-------|--------------------------------|
| SQ. FT.<br>GFA) | LOCATION      | SURVEY<br>DATE | NO. OF<br>INTERVIEWS | TIME PERIOD       | PASS-BY<br>TRIP (%) | PRIMARY | DIVERTED | TOTAL | SOURCE                         |
| 0.1             | Vancouver, WA | Nov. 1997      | 69                   | 6:00 a.m6:00 p.m. | 83                  | _       | _        | 17    | Kittelson &<br>Associates Inc. |

"-" means no data were provided

### Table E.34 Pass-By and Non-Pass-By Trips Weekday Land Use Code 938—Coffee/Donut Shop with Drive-Through Window and No Indoor Seating (Coffee/Espresso Stand)

|           |               | WEEKDAY        |                      |                     |                     | NON     | -PASS-BY TRIPS | (%)   |                                |
|-----------|---------------|----------------|----------------------|---------------------|---------------------|---------|----------------|-------|--------------------------------|
| EMPLOYEES | LOCATION      | SURVEY<br>DATE | NO. OF<br>INTERVIEWS | TIME PERIOD         | PASS-BY<br>TRIP (%) | PRIMARY | DIVERTED       | TOTAL | SOURCE                         |
| 1         | Vancouver, WA | Nov. 1997      | 70                   | 6:00 a.m.–6:00 p.m. | 83                  | _       | _              | 17    | Kittelson &<br>Associates Inc. |
| 1         | Woodburn, OR  | Feb. 1998      | 109                  | 6:00 a.m.–6:00 p.m. | 95                  | _       | _              | 5     | Kittelson &<br>Associates Inc. |
| 1         | Vancouver, WA | Feb. 1998      | 83                   | 6:00 a.m.–1:00 p.m. | 89                  | _       | _              | 11    | Kittelson &<br>Associates Inc. |

Average Pass-By Trip Percentage: 89

"—" means no data were provided

# Table E.35 Pass-By and Non-Pass-By Trips Weekday, AM Peak PeriodLand Use Code 944—Gasoline/Service Station

| 0175                      |                                 |                     |                           |                      |                |                     | NON-    | PASS-BY TRIPS ( | %)    | ADJ.                   |        |
|---------------------------|---------------------------------|---------------------|---------------------------|----------------------|----------------|---------------------|---------|-----------------|-------|------------------------|--------|
| (1,000<br>SQ. FT.<br>GFA) | VEHICLE<br>FUELING<br>POSITIONS | LOCATION            | WEEKDAY<br>SURVEY<br>DATE | NO. OF<br>INTERVIEWS | TIME PERIOD    | PASS-BY<br>TRIP (%) | PRIMARY | DIVERTED        | TOTAL | PEAK<br>HOUR<br>VOLUME | SOURCE |
| 2.3                       | 6                               | Gaithersburg,<br>MD | 1992                      | 37                   | 7:00–9:00 a.m. | 32                  | 41      | 27              | 68    | 2,080                  | RBA    |
| 2.1                       | 6                               | Bethesda,<br>MD     | 1992                      | 26                   | 7:00–9:00 a.m. | 58                  | 23      | 19              | 42    | 2,080                  | RBA    |
| 1.7                       | 6                               | Wheaton, MD         | 1992                      | 21                   | 7:00–9:00 a.m. | 67                  | 14      | 19              | 33    | 900                    | RBA    |
| 2.0                       | 8                               | Gaithersburg,<br>MD | 1992                      | 46                   | 7:00–9:00 a.m. | 87                  | 13      | 0               | 13    | 2,235                  | RBA    |
| 1.2                       | 6                               | Damascus,<br>MD     | 1992                      | 21                   | 7:00–9:00 a.m. | 43                  | 28      | 29              | 57    | 870                    | RBA    |
| 0.3                       | 12                              | Wheaton, MD         | 1992                      | 36                   | 7:00–9:00 a.m. | 61                  | 8       | 31              | 39    | 3,480                  | RBA    |

#### Average Pass-By Trip Percentage: 58

"-" means no data were provided



# Table E.36 Pass-By and Non-Pass-By Trips Weekday, PM Peak PeriodLand Use Code 944—Gasoline/Service Station

| SIZE                   | VEHICLE              |                        | WEEKDAY |        |                |                     | NON-I   | PASS-BY TRIPS | (%)   | ADJ.<br>STREET |                                   |
|------------------------|----------------------|------------------------|---------|--------|----------------|---------------------|---------|---------------|-------|----------------|-----------------------------------|
| (1,000 SQ.<br>FT. GFA) | FUELING<br>POSITIONS | LOCATION               | DATE    | NO. OF | TIME PERIOD    | PASS-BY<br>TRIP (%) | PRIMARY | DIVERTED      | TOTAL | VOLUME         | SOURCE                            |
| _                      | _                    | Chicago<br>suburbs, IL | 1987    | 48     | 3:00–7:00 p.m. | 21                  | _       | _             | 79    | _              | Kenig,<br>O'Hara,<br>Humes, Flock |
| _                      | _                    | Chicago<br>suburbs, IL | 1987    | 34     | 3:00–6:00 p.m. | 25                  | _       | _             | 75    | _              | Kenig,<br>O'Hara,<br>Humes, Flock |
| _                      | _                    | Chicago<br>suburbs, IL | 1987    | 42     | 3:00–6:00 p.m. | 20                  | _       | _             | 80    | _              | Kenig,<br>O'Hara,<br>Humes, Flock |
| 2.3                    | 6                    | Gaithersburg,<br>MD    | 1992    | 55     | 4:00–6:00 p.m. | 40                  | 11      | 49            | 60    | 2,760          | RBA                               |
| 2.1                    | 6                    | Bethesda, MD           | 1992    | 30     | 4:00–6:00 p.m. | 53                  | 20      | 27            | 47    | 1,060          | RBA                               |
| 1.7                    | 6                    | Wheaton, MD            | 1992    | 18     | 4:00–6:00 p.m. | 61                  | 6       | 33            | 39    | 2,510          | RBA                               |
| 2.0                    | 8                    | Gaithersburg,<br>MD    | 1992    | 47     | 4:00–6:00 p.m. | 62                  | 23      | 15            | 38    | 2,635          | RBA                               |
| 1.2                    | 6                    | Damascus, MD           | 1992    | 26     | 4:00–6:00 p.m. | 58                  | 11      | 31            | 42    | 1,020          | RBA                               |
| 0.3                    | 12                   | Wheaton, MD            | 1992    | 52     | 4:00–6:00 p.m. | 38                  | 10      | 52            | 62    | 3,835          | RBA                               |

Average Pass-By Trip Percentage: 42

"---" means no data were provided

# Michael Baker

# Appendix B: Traffic Count Data

City of Covina N/S: North Azusa Avenue E/W: Arrow Highway Weather: Clear File Name : 01\_CVA\_Azusa\_Arrow AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      |          |         |            |      | (     | Groups | Printed-   | Total Vo | olume    |         |            |      |       |        |            |            |
|-------------|------|----------|---------|------------|------|-------|--------|------------|----------|----------|---------|------------|------|-------|--------|------------|------------|
|             | No   | orth Azu | usa Ave | enue       |      | Arrow | Highwa | ay         | No       | orth Azu | usa Ave | enue       |      | Arrow | Highwa | ay         |            |
|             |      | South    | hbound  |            |      | Wes   | tbound |            |          | North    | bound   |            |      | East  | bound  |            |            |
| Start Time  | Left | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Left     | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Int. Total |
| 07:00 AM    | 18   | 42       | 33      | 93         | 11   | 289   | 28     | 328        | 34       | 58       | 11      | 103        | 17   | 59    | 13     | 89         | 613        |
| 07:15 AM    | 19   | 79       | 38      | 136        | 6    | 221   | 25     | 252        | 40       | 86       | 9       | 135        | 15   | 95    | 10     | 120        | 643        |
| 07:30 AM    | 18   | 77       | 34      | 129        | 17   | 180   | 32     | 229        | 46       | 80       | 14      | 140        | 28   | 99    | 15     | 142        | 640        |
| 07:45 AM    | 18   | 141      | 43      | 202        | 12   | 183   | 21     | 216        | 75       | 84       | 29      | 188        | 36   | 132   | 19     | 187        | 793        |
| Total       | 73   | 339      | 148     | 560        | 46   | 873   | 106    | 1025       | 195      | 308      | 63      | 566        | 96   | 385   | 57     | 538        | 2689       |
|             |      |          |         |            |      |       |        |            |          |          |         |            |      |       |        |            |            |
| 08:00 AM    | 26   | 110      | 43      | 179        | 11   | 206   | 5      | 222        | 70       | 73       | 19      | 162        | 33   | 128   | 20     | 181        | 744        |
| 08:15 AM    | 17   | 60       | 29      | 106        | 17   | 176   | 15     | 208        | 50       | 111      | 29      | 190        | 52   | 106   | 38     | 196        | 700        |
| 08:30 AM    | 30   | 109      | 40      | 179        | 17   | 165   | 16     | 198        | 42       | 100      | 13      | 155        | 35   | 128   | 35     | 198        | 730        |
| 08:45 AM    | 36   | 78       | 14      | 128        | 18   | 160   | 21     | 199        | 34       | 101      | 33      | 168        | 18   | 88    | 10     | 116        | 611        |
| Total       | 109  | 357      | 126     | 592        | 63   | 707   | 57     | 827        | 196      | 385      | 94      | 675        | 138  | 450   | 103    | 691        | 2785       |
|             |      |          |         |            |      |       |        |            |          |          |         |            |      |       |        |            |            |
| Grand Total | 182  | 696      | 274     | 1152       | 109  | 1580  | 163    | 1852       | 391      | 693      | 157     | 1241       | 234  | 835   | 160    | 1229       | 5474       |
| Apprch %    | 15.8 | 60.4     | 23.8    |            | 5.9  | 85.3  | 8.8    |            | 31.5     | 55.8     | 12.7    |            | 19   | 67.9  | 13     |            |            |
| Total %     | 3.3  | 12.7     | 5       | 21         | 2    | 28.9  | 3      | 33.8       | 7.1      | 12.7     | 2.9     | 22.7       | 4.3  | 15.3  | 2.9    | 22.5       |            |

|               | No       | orth Azu | isa Ave | nue        |         | Arrow   | Highwa | ıy         | No   | orth Azu | usa Ave | nue        |      | Arrow | Highwa | ıy         |            |
|---------------|----------|----------|---------|------------|---------|---------|--------|------------|------|----------|---------|------------|------|-------|--------|------------|------------|
|               |          | South    | bound   |            |         | West    | bound  | -          |      | North    | nbound  |            |      | East  | bound  | -          |            |
| Start Time    | Left     | Thru     | Right   | App. Total | Left    | Thru    | Right  | App. Total | Left | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 07:  | :00 AM  | to 08:45   | AM - P  | eak 1 c | of 1   |            |      |          |         |            |      |       |        |            |            |
| Peak Hour for | Entire I | ntersec  | tion Be | gins at 0  | 7:45 AN | 1       |        |            |      |          |         |            |      |       |        |            |            |
| 07:45 AM      | 18       | 141      | 43      | 202        | 12      | 183     | 21     | 216        | 75   | 84       | 29      | 188        | 36   | 132   | 19     | 187        | 793        |
| 08:00 AM      | 26       | 110      | 43      | 179        | 11      | 206     | 5      | 222        | 70   | 73       | 19      | 162        | 33   | 128   | 20     | 181        | 744        |
| 08:15 AM      | 17       | 60       | 29      | 106        | 17      | 176     | 15     | 208        | 50   | 111      | 29      | 190        | 52   | 106   | 38     | 196        | 700        |
| 08:30 AM      | 30       | 109      | 40      | 179        | 17      | 165     | 16     | 198        | 42   | 100      | 13      | 155        | 35   | 128   | 35     | 198        | 730        |
| Total Volume  | 91       | 420      | 155     | 666        | 57      | 730     | 57     | 844        | 237  | 368      | 90      | 695        | 156  | 494   | 112    | 762        | 2967       |
| % App. Total  | 13.7     | 63.1     | 23.3    |            | 6.8     | 86.5    | 6.8    |            | 34.1 | 52.9     | 12.9    |            | 20.5 | 64.8  | 14.7   |            |            |
| PHF           | .758     | .745     | .901    | .824       | .838    | .886    | .679   | .950       | .790 | .829     | .776    | .914       | .750 | .936  | .737   | .962       | .935       |

City of Covina N/S: North Azusa Avenue E/W: Arrow Highway Weather: Clear File Name : 01\_CVA\_Azusa\_Arrow AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 07:45 AN | 1    | - 0  |      | 07:00 AN | 1    |      |      | 07:45 AN | Λ    |      |      | 07:45 AN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 18       | 141  | 43   | 202  | 11       | 289  | 28   | 328  | 75       | 84   | 29   | 188  | 36       | 132  | 19   | 187  |
| +15 mins.    | 26       | 110  | 43   | 179  | 6        | 221  | 25   | 252  | 70       | 73   | 19   | 162  | 33       | 128  | 20   | 181  |
| +30 mins.    | 17       | 60   | 29   | 106  | 17       | 180  | 32   | 229  | 50       | 111  | 29   | 190  | 52       | 106  | 38   | 196  |
| +45 mins.    | 30       | 109  | 40   | 179  | 12       | 183  | 21   | 216  | 42       | 100  | 13   | 155  | 35       | 128  | 35   | 198  |
| Total Volume | 91       | 420  | 155  | 666  | 46       | 873  | 106  | 1025 | 237      | 368  | 90   | 695  | 156      | 494  | 112  | 762  |
| % App. Total | 13.7     | 63.1 | 23.3 |      | 4.5      | 85.2 | 10.3 |      | 34.1     | 52.9 | 12.9 |      | 20.5     | 64.8 | 14.7 |      |
| PHF          | .758     | .745 | .901 | .824 | .676     | .755 | .828 | .781 | .790     | .829 | .776 | .914 | .750     | .936 | .737 | .962 |

City of Covina N/S: North Azusa Avenue E/W: Arrow Highway Weather: Clear File Name : 01\_CVA\_Azusa\_Arrow PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             | Groups Printed- Total Volume |          |         |            |      |       |        |            |      |          |         |            |      |       |        |            |            |
|-------------|------------------------------|----------|---------|------------|------|-------|--------|------------|------|----------|---------|------------|------|-------|--------|------------|------------|
|             | No                           | orth Azu | isa Ave | enue       |      | Arrow | Highwa | iy         | No   | orth Azu | isa Ave | nue        |      | Arrow | Highwa | iy         |            |
|             |                              | South    | nbound  |            |      | West  | tbound |            |      | North    | bound   |            |      | East  | bound  |            |            |
| Start Time  | Left                         | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Left | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Int. Total |
| 04:00 PM    | 46                           | 136      | 34      | 216        | 32   | 98    | 22     | 152        | 57   | 146      | 36      | 239        | 50   | 208   | 23     | 281        | 888        |
| 04:15 PM    | 45                           | 123      | 17      | 185        | 36   | 129   | 32     | 197        | 51   | 105      | 34      | 190        | 76   | 245   | 39     | 360        | 932        |
| 04:30 PM    | 61                           | 135      | 25      | 221        | 43   | 109   | 33     | 185        | 52   | 140      | 36      | 228        | 51   | 194   | 29     | 274        | 908        |
| 04:45 PM    | 52                           | 118      | 25      | 195        | 58   | 120   | 20     | 198        | 40   | 132      | 30      | 202        | 70   | 222   | 40     | 332        | 927        |
| Total       | 204                          | 512      | 101     | 817        | 169  | 456   | 107    | 732        | 200  | 523      | 136     | 859        | 247  | 869   | 131    | 1247       | 3655       |
|             |                              |          |         |            |      |       |        |            |      |          |         |            |      |       |        |            |            |
| 05:00 PM    | 42                           | 140      | 16      | 198        | 35   | 92    | 19     | 146        | 50   | 126      | 35      | 211        | 46   | 201   | 40     | 287        | 842        |
| 05:15 PM    | 45                           | 115      | 16      | 176        | 45   | 125   | 36     | 206        | 38   | 123      | 38      | 199        | 49   | 243   | 32     | 324        | 905        |
| 05:30 PM    | 60                           | 139      | 17      | 216        | 35   | 119   | 20     | 174        | 52   | 129      | 36      | 217        | 47   | 223   | 32     | 302        | 909        |
| 05:45 PM    | 55                           | 136      | 38      | 229        | 41   | 88    | 22     | 151        | 41   | 122      | 35      | 198        | 45   | 234   | 35     | 314        | 892        |
| Total       | 202                          | 530      | 87      | 819        | 156  | 424   | 97     | 677        | 181  | 500      | 144     | 825        | 187  | 901   | 139    | 1227       | 3548       |
|             |                              |          |         |            |      |       |        |            |      |          |         |            |      |       |        |            |            |
| Grand Total | 406                          | 1042     | 188     | 1636       | 325  | 880   | 204    | 1409       | 381  | 1023     | 280     | 1684       | 434  | 1770  | 270    | 2474       | 7203       |
| Apprch %    | 24.8                         | 63.7     | 11.5    |            | 23.1 | 62.5  | 14.5   |            | 22.6 | 60.7     | 16.6    |            | 17.5 | 71.5  | 10.9   |            |            |
| Total %     | 5.6                          | 14.5     | 2.6     | 22.7       | 4.5  | 12.2  | 2.8    | 19.6       | 5.3  | 14.2     | 3.9     | 23.4       | 6    | 24.6  | 3.7    | 34.3       |            |

|               | No       | rth Azu | isa Ave | enue       |         | Arrow   | Highwa | ıy         | No   | orth Azu | usa Ave | nue        |      | Arrow | Highwa | ıy         |            |
|---------------|----------|---------|---------|------------|---------|---------|--------|------------|------|----------|---------|------------|------|-------|--------|------------|------------|
|               |          | South   | nbound  |            |         | West    | bound  | -          |      | North    | nbound  |            |      | East  | bound  | -          |            |
| Start Time    | Left     | Thru    | Right   | App. Total | Left    | Thru    | Right  | App. Total | Left | Thru     | Right   | App. Total | Left | Thru  | Right  | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 04  | :00 PM  | to 05:45   | PM - P  | eak 1 c | of 1   |            |      |          |         |            |      |       |        |            |            |
| Peak Hour for | Entire I | ntersec | tion Be | gins at 0  | 4:00 PN | Λ       |        |            |      |          |         |            |      |       |        |            |            |
| 04:00 PM      | 46       | 136     | 34      | 216        | 32      | 98      | 22     | 152        | 57   | 146      | 36      | 239        | 50   | 208   | 23     | 281        | 888        |
| 04:15 PM      | 45       | 123     | 17      | 185        | 36      | 129     | 32     | 197        | 51   | 105      | 34      | 190        | 76   | 245   | 39     | 360        | 932        |
| 04:30 PM      | 61       | 135     | 25      | 221        | 43      | 109     | 33     | 185        | 52   | 140      | 36      | 228        | 51   | 194   | 29     | 274        | 908        |
| 04:45 PM      | 52       | 118     | 25      | 195        | 58      | 120     | 20     | 198        | 40   | 132      | 30      | 202        | 70   | 222   | 40     | 332        | 927        |
| Total Volume  | 204      | 512     | 101     | 817        | 169     | 456     | 107    | 732        | 200  | 523      | 136     | 859        | 247  | 869   | 131    | 1247       | 3655       |
| % App. Total  | 25       | 62.7    | 12.4    |            | 23.1    | 62.3    | 14.6   |            | 23.3 | 60.9     | 15.8    |            | 19.8 | 69.7  | 10.5   |            |            |
| PHF           | .836     | .941    | .743    | .924       | .728    | .884    | .811   | .924       | .877 | .896     | .944    | .899       | .813 | .887  | .819   | .866       | .980       |

City of Covina N/S: North Azusa Avenue E/W: Arrow Highway Weather: Clear File Name : 01\_CVA\_Azusa\_Arrow PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 05:00 PN | 1    |      |      | 04:30 PN | 1    |      |      | 04:00 PN | Λ    |      |      | 04:15 PN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 42       | 140  | 16   | 198  | 43       | 109  | 33   | 185  | 57       | 146  | 36   | 239  | 76       | 245  | 39   | 360  |
| +15 mins.    | 45       | 115  | 16   | 176  | 58       | 120  | 20   | 198  | 51       | 105  | 34   | 190  | 51       | 194  | 29   | 274  |
| +30 mins.    | 60       | 139  | 17   | 216  | 35       | 92   | 19   | 146  | 52       | 140  | 36   | 228  | 70       | 222  | 40   | 332  |
| +45 mins.    | 55       | 136  | 38   | 229  | 45       | 125  | 36   | 206  | 40       | 132  | 30   | 202  | 46       | 201  | 40   | 287  |
| Total Volume | 202      | 530  | 87   | 819  | 181      | 446  | 108  | 735  | 200      | 523  | 136  | 859  | 243      | 862  | 148  | 1253 |
| % App. Total | 24.7     | 64.7 | 10.6 |      | 24.6     | 60.7 | 14.7 |      | 23.3     | 60.9 | 15.8 |      | 19.4     | 68.8 | 11.8 |      |
| PHF          | .842     | .946 | .572 | .894 | .780     | .892 | .750 | .892 | .877     | .896 | .944 | .899 | .799     | .880 | .925 | .870 |

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Arrow Highway      |



#### PEDESTRIANS

|                |                    |               |                    |               | 1   |
|----------------|--------------------|---------------|--------------------|---------------|-----|
|                | North Leg          | East Leg      | South Leg          | West Leg      | 1   |
|                | North Azusa Avenue | Arrow Highway | North Azusa Avenue | Arrow Highway |     |
|                | Pedestrians        | Pedestrians   | Pedestrians        | Pedestrians   |     |
| 7:00 AM        | 1                  | 1             | 0                  | 3             | 5   |
| 7:15 AM        | 3                  | 2             | 3                  | 5             | 13  |
| 7:30 AM        | 7                  | 2             | 1                  | 8             | 18  |
| 7:45 AM        | 4                  | 2             | 1                  | 6             | 13  |
| 8:00 AM        | 7                  | 4             | 1                  | 4             | 16  |
| 8:15 AM        | 3                  | 3             | 0                  | 7             | 13  |
| 8:30 AM        | 4                  | 2             | 7                  | 5             | 18  |
| 8:45 AM        | 8                  | 2             | 2                  | 7             | 19  |
| TOTAL VOLUMES: | 37                 | 18            | 15                 | 45            | 115 |

|                | North Leg<br>North Azusa Avenue | East Leg<br>Arrow Highway | South Leg<br>North Azusa Avenue | West Leg<br>Arrow Highway |     |
|----------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-----|
|                | Pedestrians                     | Pedestrians               | Pedestrians                     | Pedestrians               |     |
| 4:00 PM        | 3                               | 7                         | 5                               | 8                         | 23  |
| 4:15 PM        | 4                               | 2                         | 3                               | 4                         | 13  |
| 4:30 PM        | 2                               | 5                         | 2                               | 1                         | 10  |
| 4:45 PM        | 6                               | 2                         | 5                               | 7                         | 20  |
| 5:00 PM        | 0                               | 2                         | 4                               | 8                         | 14  |
| 5:15 PM        | 1                               | 2                         | 6                               | 6                         | 15  |
| 5:30 PM        | 2                               | 1                         | 2                               | 7                         | 12  |
| 5:45 PM        | 3                               | 1                         | 0                               | 4                         | 8   |
| TOTAL VOLUMES: | 21                              | 22                        | 27                              | 45                        | 115 |

Counts Unlimited, Inc. PO Box 1178 Corona, CA 92878 951-268-6268

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Arrow Highway      |



#### BICYCLES

|                | Nor  | Southbound<br>th Azusa Ave | enue  | А    | Westbound<br>rrow Highwa | ау    | Nor  | Northbound<br>th Azusa Ave | l<br>enue | A    |      |       |    |
|----------------|------|----------------------------|-------|------|--------------------------|-------|------|----------------------------|-----------|------|------|-------|----|
|                | Left | Thru                       | Right | Left | Thru                     | Right | Left | Thru                       | Right     | Left | Thru | Right |    |
| 7:00 AM        | 0    | 0                          | 0     | 0    | 0                        | 1     | 0    | 0                          | 0         | 0    | 0    | 0     | 1  |
| 7:15 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 0  |
| 7:30 AM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 1  |
| 7:45 AM        | 0    | 0                          | 0     | 0    | 1                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 1  |
| 8:00 AM        | 0    | 0                          | 0     | 0    | 8                        | 0     | 0    | 1                          | 0         | 0    | 0    | 0     | 9  |
| 8:15 AM        | 0    | 0                          | 0     | 0    | 0                        | 1     | 0    | 0                          | 0         | 0    | 0    | 0     | 1  |
| 8:30 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 0  |
| 8:45 AM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 0  |
| TOTAL VOLUMES: | 0    | 1                          | 0     | 0    | 9                        | 2     | 0    | 1                          | 0         | 0    | 0    | 0     | 13 |

|                | Nor  | Southbound<br>th Azusa Ave | enue  | А    | Westbound<br>rrow Highwa | ау    | Nor  | Northbound<br>th Azusa Ave | l<br>enue | А    | ay   |       |    |
|----------------|------|----------------------------|-------|------|--------------------------|-------|------|----------------------------|-----------|------|------|-------|----|
|                | Left | Thru                       | Right | Left | Thru                     | Right | Left | Thru                       | Right     | Left | Thru | Right |    |
| 4:00 PM        | 0    | 0                          | 0     | 0    | 2                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 2  |
| 4:15 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 1                          | 0         | 1    | 1    | 0     | 3  |
| 4:30 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 1                          | 0         | 0    | 0    | 0     | 1  |
| 4:45 PM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 1                          | 0         | 0    | 0    | 0     | 2  |
| 5:00 PM        | 0    | 1                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 1  |
| 5:15 PM        | 0    | 0                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 0  |
| 5:30 PM        | 0    | 5                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 3    | 0     | 8  |
| 5:45 PM        | 0    | 2                          | 0     | 0    | 0                        | 0     | 0    | 0                          | 0         | 0    | 0    | 0     | 2  |
| TOTAL VOLUMES: | 0    | 9                          | 0     | 0    | 2                        | 0     | 0    | 3                          | 0         | 1    | 4    | 0     | 19 |

City of Covina N/S: North Azusa Avenue E/W: W Covina Boulevard Weather: Clear File Name : 02\_CVA\_Azusa\_Covina AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      | Groups Printed- Total Volume |         |            |      |        |       |            |      |          |         |            |      |      |       |            |            |
|-------------|------|------------------------------|---------|------------|------|--------|-------|------------|------|----------|---------|------------|------|------|-------|------------|------------|
|             | No   | orth Azu                     | isa Ave | nue        | W    | Covina | Boule | vard       | Nc   | orth Azu | isa Ave | enue       | W    | vard |       |            |            |
|             |      | South                        | nbound  |            |      | West   | bound |            |      | North    | bound   |            |      | East | bound |            |            |
| Start Time  | Left | Thru                         | Right   | App. Total | Left | Thru   | Right | App. Total | Left | Thru     | Right   | App. Total | Left | Thru | Right | App. Total | Int. Total |
| 07:00 AM    | 6    | 69                           | 3       | 78         | 66   | 0      | 42    | 108        | 4    | 79       | 8       | 91         | 3    | 3    | 4     | 10         | 287        |
| 07:15 AM    | 8    | 90                           | 0       | 98         | 65   | 1      | 48    | 114        | 7    | 85       | 12      | 104        | 9    | 1    | 6     | 16         | 332        |
| 07:30 AM    | 15   | 109                          | 3       | 127        | 84   | 6      | 51    | 141        | 9    | 112      | 27      | 148        | 3    | 6    | 10    | 19         | 435        |
| 07:45 AM    | 16   | 158                          | 4       | 178        | 63   | 4      | 63    | 130        | 20   | 113      | 35      | 168        | 4    | 6    | 11    | 21         | 497        |
| Total       | 45   | 426                          | 10      | 481        | 278  | 11     | 204   | 493        | 40   | 389      | 82      | 511        | 19   | 16   | 31    | 66         | 1551       |
|             |      |                              |         |            |      |        |       |            |      |          |         |            |      |      |       |            |            |
| 08:00 AM    | 16   | 148                          | 3       | 167        | 80   | 12     | 48    | 140        | 25   | 130      | 36      | 191        | 2    | 5    | 5     | 12         | 510        |
| 08:15 AM    | 12   | 143                          | 6       | 161        | 79   | 4      | 42    | 125        | 21   | 183      | 45      | 249        | 3    | 2    | 5     | 10         | 545        |
| 08:30 AM    | 18   | 132                          | 4       | 154        | 37   | 5      | 34    | 76         | 17   | 144      | 32      | 193        | 5    | 5    | 7     | 17         | 440        |
| 08:45 AM    | 14   | 113                          | 4       | 131        | 29   | 2      | 22    | 53         | 10   | 151      | 21      | 182        | 5    | 6    | 1     | 12         | 378        |
| Total       | 60   | 536                          | 17      | 613        | 225  | 23     | 146   | 394        | 73   | 608      | 134     | 815        | 15   | 18   | 18    | 51         | 1873       |
|             |      |                              |         |            |      |        |       |            |      |          |         |            |      |      |       |            |            |
| Grand Total | 105  | 962                          | 27      | 1094       | 503  | 34     | 350   | 887        | 113  | 997      | 216     | 1326       | 34   | 34   | 49    | 117        | 3424       |
| Apprch %    | 9.6  | 87.9                         | 2.5     |            | 56.7 | 3.8    | 39.5  |            | 8.5  | 75.2     | 16.3    |            | 29.1 | 29.1 | 41.9  |            |            |
| Total %     | 3.1  | 28.1                         | 0.8     | 32         | 14.7 | 1      | 10.2  | 25.9       | 3.3  | 29.1     | 6.3     | 38.7       | 1    | 1    | 1.4   | 3.4        |            |

|               | No       | orth Azu | isa Ave | nue        | W       | Covina  | Boule | vard       | No   | orth Azu | usa Ave | nue        | W    | vard |       |            |            |
|---------------|----------|----------|---------|------------|---------|---------|-------|------------|------|----------|---------|------------|------|------|-------|------------|------------|
|               |          | South    | bound   |            |         | West    | bound |            |      | North    | nbound  |            |      | East | bound |            |            |
| Start Time    | Left     | Thru     | Right   | App. Total | Left    | Thru    | Right | App. Total | Left | Thru     | Right   | App. Total | Left | Thru | Right | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 07:  | :00 AM  | to 08:45   | AM - P  | eak 1 c | of 1  |            |      |          |         |            |      |      |       |            |            |
| Peak Hour for | Entire I | ntersec  | tion Be | gins at 0  | 7:45 AN | 1       |       |            |      |          |         |            |      |      |       |            |            |
| 07:45 AM      | 16       | 158      | 4       | 178        | 63      | 4       | 63    | 130        | 20   | 113      | 35      | 168        | 4    | 6    | 11    | 21         | 497        |
| 08:00 AM      | 16       | 148      | 3       | 167        | 80      | 12      | 48    | 140        | 25   | 130      | 36      | 191        | 2    | 5    | 5     | 12         | 510        |
| 08:15 AM      | 12       | 143      | 6       | 161        | 79      | 4       | 42    | 125        | 21   | 183      | 45      | 249        | 3    | 2    | 5     | 10         | 545        |
| 08:30 AM      | 18       | 132      | 4       | 154        | 37      | 5       | 34    | 76         | 17   | 144      | 32      | 193        | 5    | 5    | 7     | 17         | 440        |
| Total Volume  | 62       | 581      | 17      | 660        | 259     | 25      | 187   | 471        | 83   | 570      | 148     | 801        | 14   | 18   | 28    | 60         | 1992       |
| % App. Total  | 9.4      | 88       | 2.6     |            | 55      | 5.3     | 39.7  |            | 10.4 | 71.2     | 18.5    |            | 23.3 | 30   | 46.7  |            |            |
| PHF           | .861     | .919     | .708    | .927       | .809    | .521    | .742  | .841       | .830 | .779     | .822    | .804       | .700 | .750 | .636  | .714       | .914       |

City of Covina N/S: North Azusa Avenue E/W: W Covina Boulevard Weather: Clear File Name : 02\_CVA\_Azusa\_Covina AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 07:45 AN | 1    |      |      | 07:30 AN | 1    |      |      | 08:00 AN | 1    |      |      | 07:15 AN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 16       | 158  | 4    | 178  | 84       | 6    | 51   | 141  | 25       | 130  | 36   | 191  | 9        | 1    | 6    | 16   |
| +15 mins.    | 16       | 148  | 3    | 167  | 63       | 4    | 63   | 130  | 21       | 183  | 45   | 249  | 3        | 6    | 10   | 19   |
| +30 mins.    | 12       | 143  | 6    | 161  | 80       | 12   | 48   | 140  | 17       | 144  | 32   | 193  | 4        | 6    | 11   | 21   |
| +45 mins.    | 18       | 132  | 4    | 154  | 79       | 4    | 42   | 125  | 10       | 151  | 21   | 182  | 2        | 5    | 5    | 12   |
| Total Volume | 62       | 581  | 17   | 660  | 306      | 26   | 204  | 536  | 73       | 608  | 134  | 815  | 18       | 18   | 32   | 68   |
| % App. Total | 9.4      | 88   | 2.6  |      | 57.1     | 4.9  | 38.1 |      | 9        | 74.6 | 16.4 |      | 26.5     | 26.5 | 47.1 |      |
| PHF          | .861     | .919 | .708 | .927 | .911     | .542 | .810 | .950 | .730     | .831 | .744 | .818 | .500     | .750 | .727 | .810 |

City of Covina N/S: North Azusa Avenue E/W: W Covina Boulevard Weather: Clear File Name : 02\_CVA\_Azusa\_Covina PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      | Groups Printed- Total Volume |         |            |      |        |       |            |      |          |         |            |      |        |       |            |            |
|-------------|------|------------------------------|---------|------------|------|--------|-------|------------|------|----------|---------|------------|------|--------|-------|------------|------------|
|             | No   | orth Azu                     | isa Ave | enue       | W    | Covina | Boule | vard       | No   | orth Azu | isa Ave | enue       | W    | Covina | Boule | vard       |            |
|             |      | South                        | nbound  |            |      | West   | bound |            |      | North    | bound   |            |      |        |       |            |            |
| Start Time  | Left | Thru                         | Right   | App. Total | Left | Thru   | Right | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right | App. Total | Int. Total |
| 04:00 PM    | 26   | 171                          | 10      | 207        | 21   | 9      | 29    | 59         | 14   | 198      | 44      | 256        | 3    | 7      | 11    | 21         | 543        |
| 04:15 PM    | 36   | 195                          | 10      | 241        | 28   | 8      | 47    | 83         | 17   | 164      | 39      | 220        | 7    | 6      | 8     | 21         | 565        |
| 04:30 PM    | 24   | 201                          | 5       | 230        | 30   | 8      | 35    | 73         | 12   | 176      | 40      | 228        | 3    | 3      | 4     | 10         | 541        |
| 04:45 PM    | 38   | 179                          | 9       | 226        | 27   | 8      | 28    | 63         | 25   | 168      | 27      | 220        | 6    | 6      | 5     | 17         | 526        |
| Total       | 124  | 746                          | 34      | 904        | 106  | 33     | 139   | 278        | 68   | 706      | 150     | 924        | 19   | 22     | 28    | 69         | 2175       |
|             |      |                              |         |            |      |        |       |            |      |          |         |            |      |        |       |            |            |
| 05:00 PM    | 34   | 213                          | 10      | 257        | 28   | 9      | 38    | 75         | 18   | 192      | 38      | 248        | 7    | 8      | 6     | 21         | 601        |
| 05:15 PM    | 30   | 174                          | 5       | 209        | 44   | 10     | 26    | 80         | 21   | 150      | 40      | 211        | 13   | 6      | 8     | 27         | 527        |
| 05:30 PM    | 37   | 201                          | 8       | 246        | 28   | 4      | 29    | 61         | 16   | 158      | 46      | 220        | 2    | 4      | 6     | 12         | 539        |
| 05:45 PM    | 46   | 184                          | 10      | 240        | 34   | 9      | 37    | 80         | 13   | 194      | 41      | 248        | 6    | 8      | 10    | 24         | 592        |
| Total       | 147  | 772                          | 33      | 952        | 134  | 32     | 130   | 296        | 68   | 694      | 165     | 927        | 28   | 26     | 30    | 84         | 2259       |
|             |      |                              |         |            |      |        |       |            |      |          |         |            |      |        |       |            |            |
| Grand Total | 271  | 1518                         | 67      | 1856       | 240  | 65     | 269   | 574        | 136  | 1400     | 315     | 1851       | 47   | 48     | 58    | 153        | 4434       |
| Apprch %    | 14.6 | 81.8                         | 3.6     |            | 41.8 | 11.3   | 46.9  |            | 7.3  | 75.6     | 17      |            | 30.7 | 31.4   | 37.9  |            |            |
| Total %     | 6.1  | 34.2                         | 1.5     | 41.9       | 5.4  | 1.5    | 6.1   | 12.9       | 3.1  | 31.6     | 7.1     | 41.7       | 1.1  | 1.1    | 1.3   | 3.5        |            |

|               | No       | rth Azu | sa Ave  | nue        | W       | Covina  | Boule | vard       | No   | orth Azu | usa Ave | enue       | W    | vard |       |            |            |
|---------------|----------|---------|---------|------------|---------|---------|-------|------------|------|----------|---------|------------|------|------|-------|------------|------------|
|               |          | South   | bound   |            |         | West    | bound |            |      | North    | nbound  |            |      | East | bound |            |            |
| Start Time    | Left     | Thru    | Right   | App. Total | Left    | Thru    | Right | App. Total | Left | Thru     | Right   | App. Total | Left | Thru | Right | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 04: | 00 PM   | to 05:45   | PM - P  | eak 1 c | of 1  |            |      |          |         |            |      |      |       |            |            |
| Peak Hour for | Entire I | ntersec | tion Be | gins at 0  | 5:00 PN | 1       |       |            |      |          |         |            |      |      |       |            |            |
| 05:00 PM      | 34       | 213     | 10      | 257        | 28      | 9       | 38    | 75         | 18   | 192      | 38      | 248        | 7    | 8    | 6     | 21         | 601        |
| 05:15 PM      | 30       | 174     | 5       | 209        | 44      | 10      | 26    | 80         | 21   | 150      | 40      | 211        | 13   | 6    | 8     | 27         | 527        |
| 05:30 PM      | 37       | 201     | 8       | 246        | 28      | 4       | 29    | 61         | 16   | 158      | 46      | 220        | 2    | 4    | 6     | 12         | 539        |
| 05:45 PM      | 46       | 184     | 10      | 240        | 34      | 9       | 37    | 80         | 13   | 194      | 41      | 248        | 6    | 8    | 10    | 24         | 592        |
| Total Volume  | 147      | 772     | 33      | 952        | 134     | 32      | 130   | 296        | 68   | 694      | 165     | 927        | 28   | 26   | 30    | 84         | 2259       |
| % App. Total  | 15.4     | 81.1    | 3.5     |            | 45.3    | 10.8    | 43.9  |            | 7.3  | 74.9     | 17.8    |            | 33.3 | 31   | 35.7  |            |            |
| PHF           | .799     | .906    | .825    | .926       | .761    | .800    | .855  | .925       | .810 | .894     | .897    | .934       | .538 | .813 | .750  | .778       | .940       |
City of Covina N/S: North Azusa Avenue E/W: W Covina Boulevard Weather: Clear File Name : 02\_CVA\_Azusa\_Covina PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 04:15 PN | 1    |      |      | 05:00 PN | 1    |      |      | 05:00 PN | 1    |      |      | 05:00 PN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 36       | 195  | 10   | 241  | 28       | 9    | 38   | 75   | 18       | 192  | 38   | 248  | 7        | 8    | 6    | 21   |
| +15 mins.    | 24       | 201  | 5    | 230  | 44       | 10   | 26   | 80   | 21       | 150  | 40   | 211  | 13       | 6    | 8    | 27   |
| +30 mins.    | 38       | 179  | 9    | 226  | 28       | 4    | 29   | 61   | 16       | 158  | 46   | 220  | 2        | 4    | 6    | 12   |
| +45 mins.    | 34       | 213  | 10   | 257  | 34       | 9    | 37   | 80   | 13       | 194  | 41   | 248  | 6        | 8    | 10   | 24   |
| Total Volume | 132      | 788  | 34   | 954  | 134      | 32   | 130  | 296  | 68       | 694  | 165  | 927  | 28       | 26   | 30   | 84   |
| % App. Total | 13.8     | 82.6 | 3.6  |      | 45.3     | 10.8 | 43.9 |      | 7.3      | 74.9 | 17.8 |      | 33.3     | 31   | 35.7 |      |
| PHF          | .868     | .925 | .850 | .928 | .761     | .800 | .855 | .925 | .810     | .894 | .897 | .934 | .538     | .813 | .750 | .778 |

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | W Covina Boulevard |



### PEDESTRIANS

|                | North Leg<br>North Avenue | East Leg<br>W Covina Boulevard | South Leg<br>North Azusa Avenue | West Leg<br>W Covina Boulevard |    |
|----------------|---------------------------|--------------------------------|---------------------------------|--------------------------------|----|
|                | Pedestrians               | Pedestrians                    | Pedestrians                     | Pedestrians                    |    |
| 7:00 AM        | 0                         | 1                              | 0                               | 2                              | 3  |
| 7:15 AM        | 2                         | 0                              | 0                               | 1                              | 3  |
| 7:30 AM        | 4                         | 1                              | 0                               | 2                              | 7  |
| 7:45 AM        | 1                         | 4                              | 0                               | 1                              | 6  |
| 8:00 AM        | 1                         | 8                              | 0                               | 7                              | 16 |
| 8:15 AM        | 2                         | 9                              | 0                               | 1                              | 12 |
| 8:30 AM        | 1                         | 3                              | 0                               | 1                              | 5  |
| 8:45 AM        | 1                         | 1                              | 0                               | 4                              | 6  |
| TOTAL VOLUMES: | 12                        | 27                             | 0                               | 19                             | 58 |

|                | North Leg<br>North Azusa Avenue | East Leg<br>W Covina Boulevard | South Leg<br>North Azusa Avenue | West Leg<br>W Covina Boulevard |    |
|----------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|----|
|                | Pedestrians                     | Pedestrians                    | Pedestrians                     | Pedestrians                    |    |
| 4:00 PM        | 1                               | 2                              | 0                               | 1                              | 4  |
| 4:15 PM        | 1                               | 4                              | 0                               | 1                              | 6  |
| 4:30 PM        | 3                               | 4                              | 0                               | 3                              | 10 |
| 4:45 PM        | 1                               | 0                              | 0                               | 4                              | 5  |
| 5:00 PM        | 2                               | 2                              | 0                               | 1                              | 5  |
| 5:15 PM        | 2                               | 3                              | 0                               | 5                              | 10 |
| 5:30 PM        | 1                               | 2                              | 0                               | 4                              | 7  |
| 5:45 PM        | 3                               | 0                              | 0                               | 1                              | 4  |
| TOTAL VOLUMES: | 14                              | 17                             | 0                               | 20                             | 51 |

Counts Unlimited, Inc. PO Box 1178 Corona, CA 92878 951-268-6268

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | W Covina Boulevard |



## BICYCLES

|                | Nor  | Southbound<br>th Azusa Ave | enue  | wo   | Westbound<br>Covina Boule | vard  | Nor  | Northbound<br>th Azusa Ave | I<br>enue | wo   | Eastbound<br>Covina Boule | vard  |   |
|----------------|------|----------------------------|-------|------|---------------------------|-------|------|----------------------------|-----------|------|---------------------------|-------|---|
|                | Left | Thru                       | Right | Left | Thru                      | Right | Left | Thru                       | Right     | Left | Thru                      | Right |   |
| 7:00 AM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 7:15 AM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 7:30 AM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 1                          | 0         | 0    | 0                         | 0     | 1 |
| 7:45 AM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 8:00 AM        | 0    | 0                          | 0     | 0    | 1                         | 0     | 0    | 2                          | 0         | 0    | 0                         | 0     | 3 |
| 8:15 AM        | 0    | 2                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 2 |
| 8:30 AM        | 0    | 0                          | 0     | 0    | 1                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 1 |
| 8:45 AM        | Ö    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| TOTAL VOLUMES: | 0    | 2                          | 0     | 0    | 2                         | 0     | 0    | 3                          | 0         | 0    | 0                         | 0     | 7 |

|                | Nor  | Southbound<br>th Azusa Ave | enue  | wo   | Westbound<br>Covina Boule | vard  | Nor  | Northbound<br>th Azusa Ave | l<br>enue | wo   | Eastbound<br>Covina Boule | vard  |    |
|----------------|------|----------------------------|-------|------|---------------------------|-------|------|----------------------------|-----------|------|---------------------------|-------|----|
|                | Left | Thru                       | Right | Left | Thru                      | Right | Left | Thru                       | Right     | Left | Thru                      | Right |    |
| 4:00 PM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 1         | 0    | 1                         | 0     | 2  |
| 4:15 PM        | 0    | 2                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 2  |
| 4:30 PM        | 0    | 2                          | 0     | 0    | 1                         | 0     | 0    | 0                          | 0         | 1    | 0                         | 0     | 4  |
| 4:45 PM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 2                          | 0         | 0    | 0                         | 0     | 2  |
| 5:00 PM        | 1    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 1  |
| 5:15 PM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0  |
| 5:30 PM        | 0    | 0                          | 0     | 0    | 0                         | 0     | 0    | 1                          | 0         | 0    | 0                         | 0     | 1  |
| 5:45 PM        | 1    | 0                          | 0     | 0    | 0                         | 1     | 0    | 0                          | 0         | 0    | 0                         | 0     | 2  |
| TOTAL VOLUMES: | 2    | 4                          | 0     | 0    | 1                         | 1     | 0    | 3                          | 1         | 1    | 1                         | 0     | 14 |

City of Covina N/S: North Azusa Avenue E/W: Cypress Street Weather: Clear File Name : 06\_CVA\_Azusa\_Cypress AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      |          |         |            |      |        | Groups   | Printed-   | Total Vo | olume    |         |            |      |        |          |            |            |
|-------------|------|----------|---------|------------|------|--------|----------|------------|----------|----------|---------|------------|------|--------|----------|------------|------------|
|             | No   | orth Azu | isa Ave | enue       |      | Cypres | ss Stree | et         | No       | orth Azu | isa Ave | nue        |      | Cypres | ss Stree | et         |            |
|             |      | South    | nbound  |            |      | West   | bound    |            |          | North    | bound   |            |      | East   | bound    |            |            |
| Start Time  | Left | Thru     | Right   | App. Total | Left | Thru   | Right    | App. Total | Left     | Thru     | Right   | App. Total | Left | Thru   | Right    | App. Total | Int. Total |
| 07:00 AM    | 1    | 90       | 59      | 150        | 16   | 200    | 5        | 221        | 24       | 76       | 5       | 105        | 9    | 37     | 19       | 65         | 541        |
| 07:15 AM    | 3    | 108      | 53      | 164        | 24   | 270    | 7        | 301        | 20       | 85       | 6       | 111        | 10   | 39     | 12       | 61         | 637        |
| 07:30 AM    | 5    | 139      | 76      | 220        | 15   | 212    | 8        | 235        | 23       | 123      | 7       | 153        | 27   | 71     | 21       | 119        | 727        |
| 07:45 AM    | 7    | 161      | 64      | 232        | 26   | 253    | 5        | 284        | 30       | 110      | 14      | 154        | 38   | 109    | 36       | 183        | 853        |
| Total       | 16   | 498      | 252     | 766        | 81   | 935    | 25       | 1041       | 97       | 394      | 32      | 523        | 84   | 256    | 88       | 428        | 2758       |
|             |      |          |         |            |      |        |          |            |          |          |         |            |      |        |          |            |            |
| 08:00 AM    | 19   | 188      | 67      | 274        | 26   | 159    | 7        | 192        | 28       | 152      | 11      | 191        | 30   | 114    | 34       | 178        | 835        |
| 08:15 AM    | 6    | 145      | 81      | 232        | 30   | 196    | 8        | 234        | 38       | 174      | 14      | 226        | 50   | 109    | 36       | 195        | 887        |
| 08:30 AM    | 11   | 145      | 44      | 200        | 15   | 124    | 8        | 147        | 41       | 154      | 18      | 213        | 37   | 72     | 32       | 141        | 701        |
| 08:45 AM    | 7    | 108      | 19      | 134        | 19   | 100    | 12       | 131        | 14       | 149      | 7       | 170        | 21   | 69     | 15       | 105        | 540        |
| Total       | 43   | 586      | 211     | 840        | 90   | 579    | 35       | 704        | 121      | 629      | 50      | 800        | 138  | 364    | 117      | 619        | 2963       |
|             |      |          |         |            |      |        |          |            |          |          |         |            |      |        |          |            |            |
| Grand Total | 59   | 1084     | 463     | 1606       | 171  | 1514   | 60       | 1745       | 218      | 1023     | 82      | 1323       | 222  | 620    | 205      | 1047       | 5721       |
| Apprch %    | 3.7  | 67.5     | 28.8    |            | 9.8  | 86.8   | 3.4      |            | 16.5     | 77.3     | 6.2     |            | 21.2 | 59.2   | 19.6     |            |            |
| Total %     | 1    | 18.9     | 8.1     | 28.1       | 3    | 26.5   | 1        | 30.5       | 3.8      | 17.9     | 1.4     | 23.1       | 3.9  | 10.8   | 3.6      | 18.3       |            |

|               | No        | orth Azu | isa Ave | enue       |         | Cypres  | s Stree | et         | No   | orth Azu | usa Ave | nue        |      | Cypres | ss Stree | ət         |            |
|---------------|-----------|----------|---------|------------|---------|---------|---------|------------|------|----------|---------|------------|------|--------|----------|------------|------------|
|               |           | South    | nbound  |            |         | West    | bound   |            |      | North    | nbound  |            |      | East   | bound    |            |            |
| Start Time    | Left      | Thru     | Right   | App. Total | Left    | Thru    | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right    | App. Total | Int. Total |
| Peak Hour Ana | alysis Fi | rom 07:  | :00 AM  | to 08:45   | AM - P  | eak 1 c | of 1    |            |      |          |         |            |      |        |          |            |            |
| Peak Hour for | Entire I  | ntersec  | tion Be | gins at 0  | 7:30 AN | 1       |         |            |      |          |         |            |      |        |          |            |            |
| 07:30 AM      | 5         | 139      | 76      | 220        | 15      | 212     | 8       | 235        | 23   | 123      | 7       | 153        | 27   | 71     | 21       | 119        | 727        |
| 07:45 AM      | 7         | 161      | 64      | 232        | 26      | 253     | 5       | 284        | 30   | 110      | 14      | 154        | 38   | 109    | 36       | 183        | 853        |
| 08:00 AM      | 19        | 188      | 67      | 274        | 26      | 159     | 7       | 192        | 28   | 152      | 11      | 191        | 30   | 114    | 34       | 178        | 835        |
| 08:15 AM      | 6         | 145      | 81      | 232        | 30      | 196     | 8       | 234        | 38   | 174      | 14      | 226        | 50   | 109    | 36       | 195        | 887        |
| Total Volume  | 37        | 633      | 288     | 958        | 97      | 820     | 28      | 945        | 119  | 559      | 46      | 724        | 145  | 403    | 127      | 675        | 3302       |
| % App. Total  | 3.9       | 66.1     | 30.1    |            | 10.3    | 86.8    | 3       |            | 16.4 | 77.2     | 6.4     |            | 21.5 | 59.7   | 18.8     |            |            |
| PHF           | .487      | .842     | .889    | .874       | .808    | .810    | .875    | .832       | .783 | .803     | .821    | .801       | .725 | .884   | .882     | .865       | .931       |

City of Covina N/S: North Azusa Avenue E/W: Cypress Street Weather: Clear File Name : 06\_CVA\_Azusa\_Cypress AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 07:30 AN | 1    |      |      | 07:00 AN | Λ    |      |      | 08:00 AN | Л    |      |      | 07:45 AN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 5        | 139  | 76   | 220  | 16       | 200  | 5    | 221  | 28       | 152  | 11   | 191  | 38       | 109  | 36   | 183  |
| +15 mins.    | 7        | 161  | 64   | 232  | 24       | 270  | 7    | 301  | 38       | 174  | 14   | 226  | 30       | 114  | 34   | 178  |
| +30 mins.    | 19       | 188  | 67   | 274  | 15       | 212  | 8    | 235  | 41       | 154  | 18   | 213  | 50       | 109  | 36   | 195  |
| +45 mins.    | 6        | 145  | 81   | 232  | 26       | 253  | 5    | 284  | 14       | 149  | 7    | 170  | 37       | 72   | 32   | 141  |
| Total Volume | 37       | 633  | 288  | 958  | 81       | 935  | 25   | 1041 | 121      | 629  | 50   | 800  | 155      | 404  | 138  | 697  |
| % App. Total | 3.9      | 66.1 | 30.1 |      | 7.8      | 89.8 | 2.4  |      | 15.1     | 78.6 | 6.2  |      | 22.2     | 58   | 19.8 |      |
| PHF          | .487     | .842 | .889 | .874 | .779     | .866 | .781 | .865 | .738     | .904 | .694 | .885 | .775     | .886 | .958 | .894 |

City of Covina N/S: North Azusa Avenue E/W: Cypress Street Weather: Clear File Name : 06\_CVA\_Azusa\_Cypress PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      | Groups Printed- Total Volume |         |            |      |        |          |            |      |          |         |            |      |        |         |            |            |
|-------------|------|------------------------------|---------|------------|------|--------|----------|------------|------|----------|---------|------------|------|--------|---------|------------|------------|
|             | No   | orth Azu                     | isa Ave | enue       |      | Cypres | ss Stree | et         | No   | orth Azu | isa Ave | enue       |      | Cypres | s Stree | et         |            |
|             |      | South                        | nbound  |            |      | West   | bound    |            |      | North    | nbound  |            |      | East   | bound   |            |            |
| Start Time  | Left | Thru                         | Right   | App. Total | Left | Thru   | Right    | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right   | App. Total | Int. Total |
| 04:00 PM    | 14   | 168                          | 44      | 226        | 24   | 78     | 9        | 111        | 13   | 188      | 27      | 228        | 44   | 150    | 21      | 215        | 780        |
| 04:15 PM    | 15   | 184                          | 46      | 245        | 32   | 85     | 7        | 124        | 23   | 172      | 22      | 217        | 42   | 156    | 24      | 222        | 808        |
| 04:30 PM    | 14   | 146                          | 54      | 214        | 23   | 75     | 9        | 107        | 25   | 162      | 21      | 208        | 43   | 132    | 27      | 202        | 731        |
| 04:45 PM    | 16   | 178                          | 41      | 235        | 27   | 84     | 6        | 117        | 31   | 190      | 19      | 240        | 33   | 160    | 21      | 214        | 806        |
| Total       | 59   | 676                          | 185     | 920        | 106  | 322    | 31       | 459        | 92   | 712      | 89      | 893        | 162  | 598    | 93      | 853        | 3125       |
|             |      |                              |         |            |      |        |          |            |      |          |         |            |      |        |         |            |            |
| 05:00 PM    | 19   | 179                          | 56      | 254        | 29   | 101    | 13       | 143        | 29   | 183      | 20      | 232        | 48   | 170    | 16      | 234        | 863        |
| 05:15 PM    | 26   | 165                          | 50      | 241        | 18   | 87     | 8        | 113        | 18   | 163      | 18      | 199        | 39   | 139    | 22      | 200        | 753        |
| 05:30 PM    | 13   | 186                          | 37      | 236        | 16   | 104    | 7        | 127        | 19   | 154      | 12      | 185        | 48   | 129    | 29      | 206        | 754        |
| 05:45 PM    | 16   | 176                          | 54      | 246        | 15   | 93     | 6        | 114        | 25   | 213      | 16      | 254        | 45   | 161    | 19      | 225        | 839        |
| Total       | 74   | 706                          | 197     | 977        | 78   | 385    | 34       | 497        | 91   | 713      | 66      | 870        | 180  | 599    | 86      | 865        | 3209       |
|             |      |                              |         |            |      |        |          |            |      |          |         |            |      |        |         |            |            |
| Grand Total | 133  | 1382                         | 382     | 1897       | 184  | 707    | 65       | 956        | 183  | 1425     | 155     | 1763       | 342  | 1197   | 179     | 1718       | 6334       |
| Apprch %    | 7    | 72.9                         | 20.1    |            | 19.2 | 74     | 6.8      |            | 10.4 | 80.8     | 8.8     |            | 19.9 | 69.7   | 10.4    |            |            |
| Total %     | 2.1  | 21.8                         | 6       | 29.9       | 2.9  | 11.2   | 1        | 15.1       | 2.9  | 22.5     | 2.4     | 27.8       | 5.4  | 18.9   | 2.8     | 27.1       |            |

|               | No       | rth Azu | isa Ave | nue        |         | Cypres  | s Stree | et         | No   | orth Azu | usa Ave | nue        |      | Cypres | s Stree | et         |            |
|---------------|----------|---------|---------|------------|---------|---------|---------|------------|------|----------|---------|------------|------|--------|---------|------------|------------|
|               |          | South   | bound   |            |         | West    | bound   |            |      | North    | nbound  |            |      | East   | bound   |            |            |
| Start Time    | Left     | Thru    | Right   | App. Total | Left    | Thru    | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right   | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 04: | :00 PM  | to 05:45   | PM - P  | eak 1 c | of 1    |            |      |          |         |            |      |        |         |            |            |
| Peak Hour for | Entire I | ntersec | tion Be | gins at 0  | 5:00 PN | Λ       |         |            |      |          |         |            |      |        |         |            |            |
| 05:00 PM      | 19       | 179     | 56      | 254        | 29      | 101     | 13      | 143        | 29   | 183      | 20      | 232        | 48   | 170    | 16      | 234        | 863        |
| 05:15 PM      | 26       | 165     | 50      | 241        | 18      | 87      | 8       | 113        | 18   | 163      | 18      | 199        | 39   | 139    | 22      | 200        | 753        |
| 05:30 PM      | 13       | 186     | 37      | 236        | 16      | 104     | 7       | 127        | 19   | 154      | 12      | 185        | 48   | 129    | 29      | 206        | 754        |
| 05:45 PM      | 16       | 176     | 54      | 246        | 15      | 93      | 6       | 114        | 25   | 213      | 16      | 254        | 45   | 161    | 19      | 225        | 839        |
| Total Volume  | 74       | 706     | 197     | 977        | 78      | 385     | 34      | 497        | 91   | 713      | 66      | 870        | 180  | 599    | 86      | 865        | 3209       |
| % App. Total  | 7.6      | 72.3    | 20.2    |            | 15.7    | 77.5    | 6.8     |            | 10.5 | 82       | 7.6     |            | 20.8 | 69.2   | 9.9     |            |            |
| PHF           | .712     | .949    | .879    | .962       | .672    | .925    | .654    | .869       | .784 | .837     | .825    | .856       | .938 | .881   | .741    | .924       | .930       |

City of Covina N/S: North Azusa Avenue E/W: Cypress Street Weather: Clear File Name : 06\_CVA\_Azusa\_Cypress PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 05:00 PN | 1    |      |      | 04:45 PN | 1    |      |      | 04:15 PN | Λ    |      |      | 04:15 PN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 19       | 179  | 56   | 254  | 27       | 84   | 6    | 117  | 23       | 172  | 22   | 217  | 42       | 156  | 24   | 222  |
| +15 mins.    | 26       | 165  | 50   | 241  | 29       | 101  | 13   | 143  | 25       | 162  | 21   | 208  | 43       | 132  | 27   | 202  |
| +30 mins.    | 13       | 186  | 37   | 236  | 18       | 87   | 8    | 113  | 31       | 190  | 19   | 240  | 33       | 160  | 21   | 214  |
| +45 mins.    | 16       | 176  | 54   | 246  | 16       | 104  | 7    | 127  | 29       | 183  | 20   | 232  | 48       | 170  | 16   | 234  |
| Total Volume | 74       | 706  | 197  | 977  | 90       | 376  | 34   | 500  | 108      | 707  | 82   | 897  | 166      | 618  | 88   | 872  |
| % App. Total | 7.6      | 72.3 | 20.2 |      | 18       | 75.2 | 6.8  |      | 12       | 78.8 | 9.1  |      | 19       | 70.9 | 10.1 |      |
| PHF          | .712     | .949 | .879 | .962 | .776     | .904 | .654 | .874 | .871     | .930 | .932 | .934 | .865     | .909 | .815 | .932 |

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Cypress Street     |



### PEDESTRIANS

|                | North Leg<br>North Azusa Avenue<br>Pedestrians | East Leg<br>Cypress Street<br>Pedestrians | South Leg<br>North Azusa Avenue<br>Pedestrians | West Leg<br>Cypress Street<br>Pedestrians |     |
|----------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-----|
| 7:00 AM        | 1                                              | 0                                         | 1                                              | 2                                         | 4   |
| 7:15 AM        | 1                                              | 0                                         | 0                                              | 1                                         | 2   |
| 7:30 AM        | 1                                              | 2                                         | 2                                              | 2                                         | 7   |
| 7:45 AM        | 11                                             | 1                                         | 4                                              | 7                                         | 23  |
| 8:00 AM        | 14                                             | 3                                         | 1                                              | 21                                        | 39  |
| 8:15 AM        | 14                                             | 5                                         | 13                                             | 46                                        | 78  |
| 8:30 AM        | 6                                              | 4                                         | 5                                              | 11                                        | 26  |
| 8:45 AM        | 5                                              | 2                                         | 3                                              | 8                                         | 18  |
| TOTAL VOLUMES: | 53                                             | 17                                        | 29                                             | 98                                        | 197 |

|                | North Leg          | East Leg       | South Leg          | West Leg       |     |
|----------------|--------------------|----------------|--------------------|----------------|-----|
|                | North Azusa Avenue | Cypress Street | North Azusa Avenue | Cypress Street |     |
|                | Pedestrians        | Pedestrians    | Pedestrians        | Pedestrians    |     |
| 4:00 PM        | 5                  | 1              | 3                  | 4              | 13  |
| 4:15 PM        | 2                  | 1              | 3                  | 8              | 14  |
| 4:30 PM        | 9                  | 2              | 2                  | 9              | 22  |
| 4:45 PM        | 5                  | 3              | 0                  | 11             | 19  |
| 5:00 PM        | 4                  | 0              | 0                  | 3              | 7   |
| 5:15 PM        | 1                  | 1              | 2                  | 5              | 9   |
| 5:30 PM        | 5                  | 2              | 2                  | 2              | 11  |
| 5:45 PM        | 0                  | 2              | 2                  | 1              | 5   |
| TOTAL VOLUMES: | 31                 | 12             | 14                 | 43             | 100 |

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Cypress Street     |



## BICYCLES

|                | Nor  | Southbound<br>th Azusa Ave | enue  | (    | Westbound<br>Cypress Stree | et    | Nor  | Northbound<br>th Azusa Ave | l<br>enue | (    | Eastbound<br>Cypress Stree | et    |    |
|----------------|------|----------------------------|-------|------|----------------------------|-------|------|----------------------------|-----------|------|----------------------------|-------|----|
|                | Left | Thru                       | Right | Left | Thru                       | Right | Left | Thru                       | Right     | Left | Thru                       | Right |    |
| 7:00 AM        | 0    | 0                          | 0     | 0    | 0                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 0  |
| 7:15 AM        | 0    | 1                          | 0     | 0    | 0                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 1  |
| 7:30 AM        | 0    | 1                          | 0     | 0    | 0                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 1  |
| 7:45 AM        | 1    | 0                          | 0     | 0    | 1                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 2  |
| 8:00 AM        | 0    | 2                          | 0     | 0    | 1                          | 0     | 0    | 1                          | 0         | 1    | 0                          | 0     | 5  |
| 8:15 AM        | 0    | 2                          | 0     | 0    | 3                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 5  |
| 8:30 AM        | 0    | 2                          | 0     | 0    | 0                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 1     | 3  |
| 8:45 AM        | 0    | 0                          | 0     | 0    | 0                          | 0     | 0    | 0                          | 0         | 0    | 0                          | 0     | 0  |
| TOTAL VOLUMES: | 1    | 8                          | 0     | 0    | 5                          | 0     | 0    | 1                          | 0         | 1    | 0                          | 1     | 17 |

|                | Nor  | Southbound | 200   |      | Westbound     | *     | Nor  | Northbound |       |      | Eastbound    | *     |   |
|----------------|------|------------|-------|------|---------------|-------|------|------------|-------|------|--------------|-------|---|
|                | INUI |            | ilue  |      | sypress stree |       | INUI |            | inue  |      | spress stree |       | 4 |
|                | Left | Thru       | Right | Left | Thru          | Right | Left | Thru       | Right | Left | Thru         | Right |   |
| 4:00 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 0          | 0     | 0    | 1            | 0     | 1 |
| 4:15 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 0          | 0     | 0    | 0            | 0     | 0 |
| 4:30 PM        | 0    | 0          | 0     | 0    | 1             | 0     | 0    | 0          | 0     | 0    | 0            | 0     | 1 |
| 4:45 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 1          | 0     | 1    | 0            | 0     | 2 |
| 5:00 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 0          | 0     | 0    | 0            | 0     | 0 |
| 5:15 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 0          | 0     | 0    | 0            | 0     | 0 |
| 5:30 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 1          | 0     | 2    | 0            | 0     | 3 |
| 5:45 PM        | 0    | 0          | 0     | 0    | 0             | 0     | 0    | 1          | 0     | 0    | 1            | 0     | 2 |
| TOTAL VOLUMES: | 0    | 0          | 0     | 0    | 1             | 0     | 0    | 3          | 0     | 3    | 2            | 0     | 9 |

City of Covina N/S: North Azusa Avenue E/W: West San Bernardino Road Weather: Clear File Name : 07\_CVA\_Azusa\_San B AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      | Groups Printed- Total Volume |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
|-------------|------|------------------------------|---------|------------|------|--------|---------|------------|------|----------|---------|------------|------|--------|---------|------------|------------|
|             | No   | orth Azu                     | isa Ave | enue       | West | San Be | rnardin | o Road     | No   | orth Azu | usa Ave | nue        | West | San Be | rnardin | io Road    |            |
|             |      | South                        | nbound  |            |      | West   | bound   |            |      | North    | nbound  |            |      | East   | bound   |            |            |
| Start Time  | Left | Thru                         | Right   | App. Total | Left | Thru   | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right   | App. Total | Int. Total |
| 07:00 AM    | 6    | 100                          | 16      | 122        | 23   | 95     | 4       | 122        | 18   | 82       | 7       | 107        | 18   | 27     | 15      | 60         | 411        |
| 07:15 AM    | 3    | 141                          | 33      | 177        | 19   | 116    | 7       | 142        | 23   | 116      | 9       | 148        | 15   | 36     | 21      | 72         | 539        |
| 07:30 AM    | 7    | 152                          | 19      | 178        | 28   | 164    | 8       | 200        | 29   | 102      | 9       | 140        | 33   | 45     | 25      | 103        | 621        |
| 07:45 AM    | 19   | 205                          | 42      | 266        | 30   | 129    | 6       | 165        | 35   | 129      | 13      | 177        | 36   | 100    | 35      | 171        | 779        |
| Total       | 35   | 598                          | 110     | 743        | 100  | 504    | 25      | 629        | 105  | 429      | 38      | 572        | 102  | 208    | 96      | 406        | 2350       |
|             |      |                              |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
| 08:00 AM    | 22   | 188                          | 45      | 255        | 22   | 120    | 12      | 154        | 31   | 148      | 12      | 191        | 40   | 90     | 23      | 153        | 753        |
| 08:15 AM    | 22   | 203                          | 46      | 271        | 25   | 70     | 7       | 102        | 28   | 185      | 17      | 230        | 35   | 70     | 32      | 137        | 740        |
| 08:30 AM    | 17   | 152                          | 30      | 199        | 37   | 74     | 8       | 119        | 25   | 147      | 14      | 186        | 22   | 48     | 21      | 91         | 595        |
| 08:45 AM    | 23   | 138                          | 19      | 180        | 25   | 56     | 9       | 90         | 36   | 139      | 20      | 195        | 27   | 50     | 27      | 104        | 569        |
| Total       | 84   | 681                          | 140     | 905        | 109  | 320    | 36      | 465        | 120  | 619      | 63      | 802        | 124  | 258    | 103     | 485        | 2657       |
|             |      |                              |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
| Grand Total | 119  | 1279                         | 250     | 1648       | 209  | 824    | 61      | 1094       | 225  | 1048     | 101     | 1374       | 226  | 466    | 199     | 891        | 5007       |
| Apprch %    | 7.2  | 77.6                         | 15.2    |            | 19.1 | 75.3   | 5.6     |            | 16.4 | 76.3     | 7.4     |            | 25.4 | 52.3   | 22.3    |            |            |
| Total %     | 2.4  | 25.5                         | 5       | 32.9       | 4.2  | 16.5   | 1.2     | 21.8       | 4.5  | 20.9     | 2       | 27.4       | 4.5  | 9.3    | 4       | 17.8       |            |

|               | No       | rth Azu | isa Ave | nue        | West    | San Be  | rnardin | o Road     | No   | orth Azu | usa Ave | nue        | West | San Be | ernardir | io Road    |            |
|---------------|----------|---------|---------|------------|---------|---------|---------|------------|------|----------|---------|------------|------|--------|----------|------------|------------|
|               |          | South   | nbound  |            |         | West    | bound   |            |      | North    | nbound  |            |      | East   | bound    |            |            |
| Start Time    | Left     | Thru    | Right   | App. Total | Left    | Thru    | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right    | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 07  | :00 AM  | to 08:45   | AM - P  | eak 1 c | of 1    |            |      |          |         |            |      |        |          |            |            |
| Peak Hour for | Entire I | ntersec | tion Be | gins at 0  | 7:30 AN | Λ       |         |            |      |          |         |            |      |        |          |            |            |
| 07:30 AM      | 7        | 152     | 19      | 178        | 28      | 164     | 8       | 200        | 29   | 102      | 9       | 140        | 33   | 45     | 25       | 103        | 621        |
| 07:45 AM      | 19       | 205     | 42      | 266        | 30      | 129     | 6       | 165        | 35   | 129      | 13      | 177        | 36   | 100    | 35       | 171        | 779        |
| 08:00 AM      | 22       | 188     | 45      | 255        | 22      | 120     | 12      | 154        | 31   | 148      | 12      | 191        | 40   | 90     | 23       | 153        | 753        |
| 08:15 AM      | 22       | 203     | 46      | 271        | 25      | 70      | 7       | 102        | 28   | 185      | 17      | 230        | 35   | 70     | 32       | 137        | 740        |
| Total Volume  | 70       | 748     | 152     | 970        | 105     | 483     | 33      | 621        | 123  | 564      | 51      | 738        | 144  | 305    | 115      | 564        | 2893       |
| % App. Total  | 7.2      | 77.1    | 15.7    |            | 16.9    | 77.8    | 5.3     |            | 16.7 | 76.4     | 6.9     |            | 25.5 | 54.1   | 20.4     |            |            |
| PHF           | .795     | .912    | .826    | .895       | .875    | .736    | .688    | .776       | .879 | .762     | .750    | .802       | .900 | .763   | .821     | .825       | .928       |

City of Covina N/S: North Azusa Avenue E/W: West San Bernardino Road Weather: Clear 
 File Name
 : 07\_CVA\_Azusa\_San B AM

 Site Code
 : 12223143

 Start Date
 : 2/15/2023

 Page No
 : 2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 07:45 AN | 1    |      |      | 07:15 AN | 1    |      |      | 08:00 AN | Л    |      |      | 07:30 AN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 19       | 205  | 42   | 266  | 19       | 116  | 7    | 142  | 31       | 148  | 12   | 191  | 33       | 45   | 25   | 103  |
| +15 mins.    | 22       | 188  | 45   | 255  | 28       | 164  | 8    | 200  | 28       | 185  | 17   | 230  | 36       | 100  | 35   | 171  |
| +30 mins.    | 22       | 203  | 46   | 271  | 30       | 129  | 6    | 165  | 25       | 147  | 14   | 186  | 40       | 90   | 23   | 153  |
| +45 mins.    | 17       | 152  | 30   | 199  | 22       | 120  | 12   | 154  | 36       | 139  | 20   | 195  | 35       | 70   | 32   | 137  |
| Total Volume | 80       | 748  | 163  | 991  | 99       | 529  | 33   | 661  | 120      | 619  | 63   | 802  | 144      | 305  | 115  | 564  |
| % App. Total | 8.1      | 75.5 | 16.4 |      | 15       | 80   | 5    |      | 15       | 77.2 | 7.9  |      | 25.5     | 54.1 | 20.4 |      |
| PHF          | .909     | .912 | .886 | .914 | .825     | .806 | .688 | .826 | .833     | .836 | .788 | .872 | .900     | .763 | .821 | .825 |

City of Covina N/S: North Azusa Avenue E/W: West San Bernardino Road Weather: Clear File Name : 07\_CVA\_Azusa\_San B PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      | Groups Printed- Total Volume |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
|-------------|------|------------------------------|---------|------------|------|--------|---------|------------|------|----------|---------|------------|------|--------|---------|------------|------------|
|             | No   | orth Azu                     | isa Ave | enue       | West | San Be | rnardin | o Road     | No   | orth Azu | isa Ave | nue        | West | San Be | rnardin | io Road    |            |
|             |      | South                        | nbound  |            |      | West   | bound   |            |      | North    | bound   |            |      | East   | bound   |            |            |
| Start Time  | Left | Thru                         | Right   | App. Total | Left | Thru   | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right   | App. Total | Int. Total |
| 04:00 PM    | 41   | 183                          | 35      | 259        | 34   | 73     | 17      | 124        | 38   | 164      | 17      | 219        | 41   | 102    | 26      | 169        | 771        |
| 04:15 PM    | 35   | 205                          | 37      | 277        | 30   | 75     | 11      | 116        | 31   | 183      | 16      | 230        | 41   | 104    | 39      | 184        | 807        |
| 04:30 PM    | 38   | 168                          | 30      | 236        | 32   | 57     | 9       | 98         | 24   | 152      | 19      | 195        | 34   | 115    | 30      | 179        | 708        |
| 04:45 PM    | 30   | 186                          | 38      | 254        | 27   | 70     | 14      | 111        | 20   | 191      | 13      | 224        | 48   | 114    | 30      | 192        | 781        |
| Total       | 144  | 742                          | 140     | 1026       | 123  | 275    | 51      | 449        | 113  | 690      | 65      | 868        | 164  | 435    | 125     | 724        | 3067       |
|             |      |                              |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
| 05:00 PM    | 38   | 193                          | 35      | 266        | 29   | 91     | 19      | 139        | 34   | 153      | 12      | 199        | 35   | 111    | 40      | 186        | 790        |
| 05:15 PM    | 30   | 195                          | 29      | 254        | 32   | 64     | 13      | 109        | 32   | 174      | 19      | 225        | 35   | 84     | 20      | 139        | 727        |
| 05:30 PM    | 38   | 170                          | 12      | 220        | 30   | 83     | 19      | 132        | 30   | 152      | 19      | 201        | 33   | 102    | 33      | 168        | 721        |
| 05:45 PM    | 30   | 206                          | 18      | 254        | 26   | 71     | 17      | 114        | 23   | 211      | 23      | 257        | 42   | 89     | 22      | 153        | 778        |
| Total       | 136  | 764                          | 94      | 994        | 117  | 309    | 68      | 494        | 119  | 690      | 73      | 882        | 145  | 386    | 115     | 646        | 3016       |
|             |      |                              |         |            |      |        |         |            |      |          |         |            |      |        |         |            |            |
| Grand Total | 280  | 1506                         | 234     | 2020       | 240  | 584    | 119     | 943        | 232  | 1380     | 138     | 1750       | 309  | 821    | 240     | 1370       | 6083       |
| Apprch %    | 13.9 | 74.6                         | 11.6    |            | 25.5 | 61.9   | 12.6    |            | 13.3 | 78.9     | 7.9     |            | 22.6 | 59.9   | 17.5    |            |            |
| Total %     | 4.6  | 24.8                         | 3.8     | 33.2       | 3.9  | 9.6    | 2       | 15.5       | 3.8  | 22.7     | 2.3     | 28.8       | 5.1  | 13.5   | 3.9     | 22.5       |            |

|               | No       | rth Azu | isa Ave | nue        | West    | San Be  | ernardin | o Road     | No   | orth Azu | usa Ave | nue        | West | San Be | ernardir | io Road    |            |
|---------------|----------|---------|---------|------------|---------|---------|----------|------------|------|----------|---------|------------|------|--------|----------|------------|------------|
|               |          | South   | nbound  |            |         | West    | tbound   |            |      | North    | nbound  |            |      | East   | bound    |            |            |
| Start Time    | Left     | Thru    | Right   | App. Total | Left    | Thru    | Right    | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right    | App. Total | Int. Total |
| Peak Hour Ana | alysis F | rom 04: | :00 PM  | to 05:45   | PM - P  | eak 1 c | of 1     |            |      |          |         |            |      |        |          |            |            |
| Peak Hour for | Entire I | ntersec | tion Be | gins at 0  | 4:15 PN | Λ       |          |            |      |          |         |            |      |        |          |            |            |
| 04:15 PM      | 35       | 205     | 37      | 277        | 30      | 75      | 11       | 116        | 31   | 183      | 16      | 230        | 41   | 104    | 39       | 184        | 807        |
| 04:30 PM      | 38       | 168     | 30      | 236        | 32      | 57      | 9        | 98         | 24   | 152      | 19      | 195        | 34   | 115    | 30       | 179        | 708        |
| 04:45 PM      | 30       | 186     | 38      | 254        | 27      | 70      | 14       | 111        | 20   | 191      | 13      | 224        | 48   | 114    | 30       | 192        | 781        |
| 05:00 PM      | 38       | 193     | 35      | 266        | 29      | 91      | 19       | 139        | 34   | 153      | 12      | 199        | 35   | 111    | 40       | 186        | 790        |
| Total Volume  | 141      | 752     | 140     | 1033       | 118     | 293     | 53       | 464        | 109  | 679      | 60      | 848        | 158  | 444    | 139      | 741        | 3086       |
| % App. Total  | 13.6     | 72.8    | 13.6    |            | 25.4    | 63.1    | 11.4     |            | 12.9 | 80.1     | 7.1     |            | 21.3 | 59.9   | 18.8     |            |            |
| PHF           | .928     | .917    | .921    | .932       | .922    | .805    | .697     | .835       | .801 | .889     | .789    | .922       | .823 | .965   | .869     | .965       | .956       |

City of Covina N/S: North Azusa Avenue E/W: West San Bernardino Road Weather: Clear File Name : 07\_CVA\_Azusa\_San B PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 04:15 PN | 1    |      |      | 05:00 PN | Λ    |      |       | 05:00 PN | Λ    |      |      | 04:15 PN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|-------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 35       | 205  | 37   | 277  | 29       | 91   | 19   | 139   | 34       | 153  | 12   | 199  | 41       | 104  | 39   | 184  |
| +15 mins.    | 38       | 168  | 30   | 236  | 32       | 64   | 13   | 109   | 32       | 174  | 19   | 225  | 34       | 115  | 30   | 179  |
| +30 mins.    | 30       | 186  | 38   | 254  | 30       | 83   | 19   | 132   | 30       | 152  | 19   | 201  | 48       | 114  | 30   | 192  |
| +45 mins.    | 38       | 193  | 35   | 266  | 26       | 71   | 17   | 114   | 23       | 211  | 23   | 257  | 35       | 111  | 40   | 186  |
| Total Volume | 141      | 752  | 140  | 1033 | 117      | 309  | 68   | 494   | 119      | 690  | 73   | 882  | 158      | 444  | 139  | 741  |
| % App. Total | 13.6     | 72.8 | 13.6 |      | 23.7     | 62.6 | 13.8 |       | 13.5     | 78.2 | 8.3  |      | 21.3     | 59.9 | 18.8 |      |
| PHF          | .928     | .917 | .921 | .932 | .914     | .849 | .895 | .888. | .875     | .818 | .793 | .858 | .823     | .965 | .869 | .965 |

| Location: | Covina                |
|-----------|-----------------------|
| N/S:      | North Azusa Avenue    |
| E/W:      | W San Bernardino Road |



### PEDESTRIANS

|                | North Leg<br>North Azusa Avenue | East Leg<br>W San Bernardino Road | South Leg<br>North Azusa Avenue | West Leg<br>W San Bernardino Road |    |
|----------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|----|
|                | Pedestrians                     | Pedestrians                       | Pedestrians                     | Pedestrians                       |    |
| 7:00 AM        | 1                               | 0                                 | 0                               | 3                                 | 4  |
| 7:15 AM        | 0                               | 1                                 | 1                               | 1                                 | 3  |
| 7:30 AM        | 1                               | 1                                 | 3                               | 2                                 | 7  |
| 7:45 AM        | 0                               | 3                                 | 1                               | 3                                 | 7  |
| 8:00 AM        | 0                               | 2                                 | 2                               | 0                                 | 4  |
| 8:15 AM        | 3                               | 2                                 | 2                               | 1                                 | 8  |
| 8:30 AM        | 0                               | 3                                 | 2                               | 1                                 | 6  |
| 8:45 AM        | 2                               | 4                                 | 4                               | 5                                 | 15 |
| TOTAL VOLUMES: | 7                               | 16                                | 15                              | 16                                | 54 |

|                | North Leg          | East Leg              | South Leg          | West Leg              |    |
|----------------|--------------------|-----------------------|--------------------|-----------------------|----|
|                | North Azusa Avenue | W San Bernardino Road | North Azusa Avenue | W San Bernardino Road |    |
|                | Pedestrians        | Pedestrians           | Pedestrians        | Pedestrians           |    |
| 4:00 PM        | 1                  | 0                     | 4                  | 11                    | 16 |
| 4:15 PM        | 2                  | 0                     | 2                  | 16                    | 20 |
| 4:30 PM        | 2                  | 0                     | 4                  | 5                     | 11 |
| 4:45 PM        | 1                  | 2                     | 1                  | 3                     | 7  |
| 5:00 PM        | 1                  | 1                     | 2                  | 3                     | 7  |
| 5:15 PM        | 4                  | 0                     | 0                  | 5                     | 9  |
| 5:30 PM        | 2                  | 1                     | 1                  | 3                     | 7  |
| 5:45 PM        | 1                  | 2                     | 3                  | 0                     | 6  |
| TOTAL VOLUMES: | 14                 | 6                     | 17                 | 46                    | 83 |

| Location: | Covina                |
|-----------|-----------------------|
| N/S:      | North Azusa Avenue    |
| E/W:      | W San Bernardino Road |



## BICYCLES

|                | Nor  | Southbound<br>th Azusa Ave | enue  | W Sai | Westbound<br>n Bernardino | Road  | Nor  | Northbound<br>th Azusa Ave | l<br>enue | W Sar | Eastbound<br>n Bernardinc | Road  |   |
|----------------|------|----------------------------|-------|-------|---------------------------|-------|------|----------------------------|-----------|-------|---------------------------|-------|---|
|                | Left | Thru                       | Right | Left  | Thru                      | Right | Left | Thru                       | Right     | Left  | Thru                      | Right |   |
| 7:00 AM        | 0    | 0                          | 0     | 0     | 0                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 0 |
| 7:15 AM        | 0    | 0                          | 0     | 0     | 0                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 0 |
| 7:30 AM        | 0    | 0                          | 0     | 0     | 0                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 0 |
| 7:45 AM        | 0    | 1                          | 0     | 0     | 1                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 2 |
| 8:00 AM        | 0    | 0                          | 0     | 0     | 0                         | 0     | 0    | 1                          | 0         | 0     | 0                         | 0     | 1 |
| 8:15 AM        | 0    | 0                          | 0     | 0     | 1                         | 0     | 0    | 0                          | 0         | 1     | 0                         | 0     | 2 |
| 8:30 AM        | 0    | 1                          | 0     | 1     | 0                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 2 |
| 8:45 AM        | Ö    | 0                          | 0     | 0     | 0                         | 0     | 0    | 0                          | 0         | 0     | 0                         | 0     | 0 |
| TOTAL VOLUMES: | 0    | 2                          | 0     | 1     | 2                         | 0     | 0    | 1                          | 0         | 1     | 0                         | 0     | 7 |

|                | Nor  | Southbound<br>th Azusa Ave | l<br>enue | W Sa | Westbound<br>n Bernardino | Road  | Nor  | Northbound<br>th Azusa Ave | l<br>enue | W Sa | Eastbound<br>n Bernardinc | Road  |   |
|----------------|------|----------------------------|-----------|------|---------------------------|-------|------|----------------------------|-----------|------|---------------------------|-------|---|
|                | Left | Thru                       | Right     | Left | Thru                      | Right | Left | Thru                       | Right     | Left | Thru                      | Right |   |
| 4:00 PM        | 0    | 1                          | 0         | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 1 |
| 4:15 PM        | 0    | 0                          | 0         | 0    | 0                         | 0     | 0    | 1                          | 0         | 0    | 0                         | 0     | 1 |
| 4:30 PM        | 0    | 0                          | 0         | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 4:45 PM        | 0    | 0                          | 0         | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 5:00 PM        | 0    | 0                          | 0         | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 5:15 PM        | 0    | 0                          | 0         | 0    | 0                         | 0     | 0    | 0                          | 0         | 0    | 0                         | 0     | 0 |
| 5:30 PM        | 1    | 0                          | 0         | 0    | 0                         | 0     | 1    | 0                          | 0         | 0    | 0                         | 0     | 2 |
| 5:45 PM        | 0    | 0                          | 0         | 0    | 1                         | 0     | 1    | 1                          | 0         | 0    | 0                         | 0     | 3 |
| TOTAL VOLUMES: | 1    | 1                          | 0         | 0    | 1                         | 0     | 2    | 2                          | 0         | 0    | 0                         | 0     | 7 |

City of Covina N/S: North Azusa Avenue E/W: Badillo Street Weather: Clear File Name : 08\_CVA\_Azusa\_Bad AM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      |          |         |            |      | (       | <u>Foups</u> | Printed-   | l otal Ve | olume    |         |            |      |         |        |            |            |
|-------------|------|----------|---------|------------|------|---------|--------------|------------|-----------|----------|---------|------------|------|---------|--------|------------|------------|
|             | No   | orth Azu | isa Ave | enue       |      | Badille | o Stree      | t          | No        | orth Azu | isa Ave | nue        |      | Badillo | Street | t          |            |
|             |      | South    | nbound  |            |      | West    | tbound       |            |           | North    | bound   |            |      | East    | bound  |            |            |
| Start Time  | Left | Thru     | Right   | App. Total | Left | Thru    | Right        | App. Total | Left      | Thru     | Right   | App. Total | Left | Thru    | Right  | App. Total | Int. Total |
| 07:00 AM    | 8    | 115      | 28      | 151        | 18   | 218     | 7            | 243        | 58        | 109      | 24      | 191        | 2    | 38      | 11     | 51         | 636        |
| 07:15 AM    | 14   | 119      | 34      | 167        | 18   | 268     | 2            | 288        | 54        | 133      | 9       | 196        | 10   | 58      | 13     | 81         | 732        |
| 07:30 AM    | 19   | 171      | 28      | 218        | 17   | 201     | 10           | 228        | 52        | 134      | 24      | 210        | 15   | 64      | 17     | 96         | 752        |
| 07:45 AM    | 12   | 179      | 34      | 225        | 26   | 188     | 7            | 221        | 61        | 128      | 40      | 229        | 14   | 133     | 34     | 181        | 856        |
| Total       | 53   | 584      | 124     | 761        | 79   | 875     | 26           | 980        | 225       | 504      | 97      | 826        | 41   | 293     | 75     | 409        | 2976       |
|             |      |          |         |            |      |         |              |            |           |          |         |            |      |         |        |            |            |
| 08:00 AM    | 31   | 194      | 43      | 268        | 19   | 149     | 10           | 178        | 71        | 181      | 32      | 284        | 17   | 90      | 25     | 132        | 862        |
| 08:15 AM    | 27   | 184      | 28      | 239        | 19   | 188     | 7            | 214        | 51        | 187      | 23      | 261        | 21   | 127     | 26     | 174        | 888        |
| 08:30 AM    | 30   | 182      | 26      | 238        | 20   | 111     | 17           | 148        | 57        | 165      | 22      | 244        | 8    | 85      | 19     | 112        | 742        |
| 08:45 AM    | 23   | 132      | 16      | 171        | 18   | 133     | 11           | 162        | 39        | 146      | 26      | 211        | 21   | 89      | 18     | 128        | 672        |
| Total       | 111  | 692      | 113     | 916        | 76   | 581     | 45           | 702        | 218       | 679      | 103     | 1000       | 67   | 391     | 88     | 546        | 3164       |
|             |      |          |         |            |      |         |              |            |           |          |         |            |      |         |        |            |            |
| Grand Total | 164  | 1276     | 237     | 1677       | 155  | 1456    | 71           | 1682       | 443       | 1183     | 200     | 1826       | 108  | 684     | 163    | 955        | 6140       |
| Apprch %    | 9.8  | 76.1     | 14.1    |            | 9.2  | 86.6    | 4.2          |            | 24.3      | 64.8     | 11      |            | 11.3 | 71.6    | 17.1   |            |            |
| Total %     | 2.7  | 20.8     | 3.9     | 27.3       | 2.5  | 23.7    | 1.2          | 27.4       | 7.2       | 19.3     | 3.3     | 29.7       | 1.8  | 11.1    | 2.7    | 15.6       |            |

|               | No        | rth Azu | isa Ave | nue        |         | Badille | o Stree | t          | No   | orth Azu | usa Ave | enue       |      | Badille | o Stree | t          |            |
|---------------|-----------|---------|---------|------------|---------|---------|---------|------------|------|----------|---------|------------|------|---------|---------|------------|------------|
|               |           | South   | nbound  |            |         | West    | bound   |            |      | North    | nbound  |            |      | East    | bound   |            |            |
| Start Time    | Left      | Thru    | Right   | App. Total | Left    | Thru    | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru    | Right   | App. Total | Int. Total |
| Peak Hour Ana | alysis Fi | rom 07  | :00 AM  | to 08:45   | AM - P  | eak 1 d | of 1    |            |      |          |         |            |      |         |         |            |            |
| Peak Hour for | Entire li | ntersec | tion Be | gins at 0  | 7:30 AN | 1       |         |            |      |          |         |            |      |         |         |            |            |
| 07:30 AM      | 19        | 171     | 28      | 218        | 17      | 201     | 10      | 228        | 52   | 134      | 24      | 210        | 15   | 64      | 17      | 96         | 752        |
| 07:45 AM      | 12        | 179     | 34      | 225        | 26      | 188     | 7       | 221        | 61   | 128      | 40      | 229        | 14   | 133     | 34      | 181        | 856        |
| 08:00 AM      | 31        | 194     | 43      | 268        | 19      | 149     | 10      | 178        | 71   | 181      | 32      | 284        | 17   | 90      | 25      | 132        | 862        |
| 08:15 AM      | 27        | 184     | 28      | 239        | 19      | 188     | 7       | 214        | 51   | 187      | 23      | 261        | 21   | 127     | 26      | 174        | 888        |
| Total Volume  | 89        | 728     | 133     | 950        | 81      | 726     | 34      | 841        | 235  | 630      | 119     | 984        | 67   | 414     | 102     | 583        | 3358       |
| % App. Total  | 9.4       | 76.6    | 14      |            | 9.6     | 86.3    | 4       |            | 23.9 | 64       | 12.1    |            | 11.5 | 71      | 17.5    |            |            |
| PHF           | .718      | .938    | .773    | .886       | .779    | .903    | .850    | .922       | .827 | .842     | .744    | .866       | .798 | .778    | .750    | .805       | .945       |

City of Covina N/S: North Azusa Avenue E/W: Badillo Street Weather: Clear

| File Name  | : 08_CVA_Azusa_Bad AM |
|------------|-----------------------|
| Site Code  | : 12223143            |
| Start Date | : 2/15/2023           |
| Page No    | : 2                   |



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 07:45 AN | 1    |      |      | 07:00 AN | 1    |      |      | 07:45 AN | Λ    |      |      | 07:45 AN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 12       | 179  | 34   | 225  | 18       | 218  | 7    | 243  | 61       | 128  | 40   | 229  | 14       | 133  | 34   | 181  |
| +15 mins.    | 31       | 194  | 43   | 268  | 18       | 268  | 2    | 288  | 71       | 181  | 32   | 284  | 17       | 90   | 25   | 132  |
| +30 mins.    | 27       | 184  | 28   | 239  | 17       | 201  | 10   | 228  | 51       | 187  | 23   | 261  | 21       | 127  | 26   | 174  |
| +45 mins.    | 30       | 182  | 26   | 238  | 26       | 188  | 7    | 221  | 57       | 165  | 22   | 244  | 8        | 85   | 19   | 112  |
| Total Volume | 100      | 739  | 131  | 970  | 79       | 875  | 26   | 980  | 240      | 661  | 117  | 1018 | 60       | 435  | 104  | 599  |
| % App. Total | 10.3     | 76.2 | 13.5 |      | 8.1      | 89.3 | 2.7  |      | 23.6     | 64.9 | 11.5 |      | 10       | 72.6 | 17.4 |      |
| PHF          | .806     | .952 | .762 | .905 | .760     | .816 | .650 | .851 | .845     | .884 | .731 | .896 | .714     | .818 | .765 | .827 |

City of Covina N/S: North Azusa Avenue E/W: Badillo Street Weather: Clear File Name : 08\_CVA\_Azusa\_Bad PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 1

|             |      |          |         |            |      | (       | Groups Printed- Total Volume |            |      |          |         |            |      |         |         |            |            |
|-------------|------|----------|---------|------------|------|---------|------------------------------|------------|------|----------|---------|------------|------|---------|---------|------------|------------|
|             | No   | orth Azu | isa Ave | enue       |      | Badille | o Stree                      | t          | No   | orth Azu | isa Ave | nue        |      | Badillo | o Stree | t          |            |
|             |      | South    | nbound  |            |      | West    | bound                        |            |      | North    | bound   |            |      | East    | bound   |            |            |
| Start Time  | Left | Thru     | Right   | App. Total | Left | Thru    | Right                        | App. Total | Left | Thru     | Right   | App. Total | Left | Thru    | Right   | App. Total | Int. Total |
| 04:00 PM    | 30   | 216      | 23      | 269        | 33   | 98      | 14                           | 145        | 41   | 187      | 22      | 250        | 27   | 147     | 32      | 206        | 870        |
| 04:15 PM    | 26   | 199      | 18      | 243        | 44   | 115     | 22                           | 181        | 44   | 174      | 30      | 248        | 19   | 170     | 34      | 223        | 895        |
| 04:30 PM    | 29   | 209      | 20      | 258        | 40   | 97      | 23                           | 160        | 28   | 162      | 28      | 218        | 27   | 122     | 36      | 185        | 821        |
| 04:45 PM    | 23   | 185      | 17      | 225        | 51   | 103     | 17                           | 171        | 36   | 169      | 13      | 218        | 24   | 156     | 35      | 215        | 829        |
| Total       | 108  | 809      | 78      | 995        | 168  | 413     | 76                           | 657        | 149  | 692      | 93      | 934        | 97   | 595     | 137     | 829        | 3415       |
|             |      |          |         |            |      |         |                              |            |      |          |         |            |      |         |         |            |            |
| 05:00 PM    | 37   | 232      | 31      | 300        | 40   | 128     | 17                           | 185        | 35   | 170      | 25      | 230        | 28   | 143     | 24      | 195        | 910        |
| 05:15 PM    | 17   | 183      | 16      | 216        | 29   | 116     | 11                           | 156        | 32   | 161      | 20      | 213        | 34   | 155     | 23      | 212        | 797        |
| 05:30 PM    | 35   | 227      | 21      | 283        | 41   | 91      | 10                           | 142        | 43   | 184      | 27      | 254        | 28   | 141     | 21      | 190        | 869        |
| 05:45 PM    | 20   | 183      | 14      | 217        | 38   | 122     | 17                           | 177        | 34   | 198      | 24      | 256        | 25   | 137     | 30      | 192        | 842        |
| Total       | 109  | 825      | 82      | 1016       | 148  | 457     | 55                           | 660        | 144  | 713      | 96      | 953        | 115  | 576     | 98      | 789        | 3418       |
|             |      |          |         |            |      |         |                              |            |      |          |         |            |      |         |         |            |            |
| Grand Total | 217  | 1634     | 160     | 2011       | 316  | 870     | 131                          | 1317       | 293  | 1405     | 189     | 1887       | 212  | 1171    | 235     | 1618       | 6833       |
| Apprch %    | 10.8 | 81.3     | 8       |            | 24   | 66.1    | 9.9                          |            | 15.5 | 74.5     | 10      |            | 13.1 | 72.4    | 14.5    |            |            |
| Total %     | 3.2  | 23.9     | 2.3     | 29.4       | 4.6  | 12.7    | 1.9                          | 19.3       | 4.3  | 20.6     | 2.8     | 27.6       | 3.1  | 17.1    | 3.4     | 23.7       |            |

|               | No        | orth Azu | isa Ave | nue        |         | Badille | o Stree | t          | No   | orth Azu | usa Ave | nue        |      | Badill | o Stree | t          |            |
|---------------|-----------|----------|---------|------------|---------|---------|---------|------------|------|----------|---------|------------|------|--------|---------|------------|------------|
|               |           | South    | nbound  |            |         | West    | bound   |            |      | North    | nbound  |            |      | East   | bound   |            |            |
| Start Time    | Left      | Thru     | Right   | App. Total | Left    | Thru    | Right   | App. Total | Left | Thru     | Right   | App. Total | Left | Thru   | Right   | App. Total | Int. Total |
| Peak Hour Ana | alysis Fi | rom 04   | :00 PM  | to 05:45   | PM - P  | eak 1 c | of 1    |            |      |          |         |            |      |        |         |            |            |
| Peak Hour for | Entire I  | ntersec  | tion Be | gins at 0  | 4:15 PN | 1       |         |            |      |          |         |            |      |        |         |            |            |
| 04:15 PM      | 26        | 199      | 18      | 243        | 44      | 115     | 22      | 181        | 44   | 174      | 30      | 248        | 19   | 170    | 34      | 223        | 895        |
| 04:30 PM      | 29        | 209      | 20      | 258        | 40      | 97      | 23      | 160        | 28   | 162      | 28      | 218        | 27   | 122    | 36      | 185        | 821        |
| 04:45 PM      | 23        | 185      | 17      | 225        | 51      | 103     | 17      | 171        | 36   | 169      | 13      | 218        | 24   | 156    | 35      | 215        | 829        |
| 05:00 PM      | 37        | 232      | 31      | 300        | 40      | 128     | 17      | 185        | 35   | 170      | 25      | 230        | 28   | 143    | 24      | 195        | 910        |
| Total Volume  | 115       | 825      | 86      | 1026       | 175     | 443     | 79      | 697        | 143  | 675      | 96      | 914        | 98   | 591    | 129     | 818        | 3455       |
| % App. Total  | 11.2      | 80.4     | 8.4     |            | 25.1    | 63.6    | 11.3    |            | 15.6 | 73.9     | 10.5    |            | 12   | 72.2   | 15.8    |            |            |
| PHF           | .777      | .889     | .694    | .855       | .858    | .865    | .859    | .942       | .813 | .970     | .800    | .921       | .875 | .869   | .896    | .917       | .949       |

City of Covina N/S: North Azusa Avenue E/W: Badillo Street Weather: Clear File Name : 08\_CVA\_Azusa\_Bad PM Site Code : 12223143 Start Date : 2/15/2023 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

|              | 04:15 PN | 1    |      |      | 04:15 PN | 1    |      |      | 05:00 PN | Λ    |      |      | 04:00 PN | 1    |      |      |
|--------------|----------|------|------|------|----------|------|------|------|----------|------|------|------|----------|------|------|------|
| +0 mins.     | 26       | 199  | 18   | 243  | 44       | 115  | 22   | 181  | 35       | 170  | 25   | 230  | 27       | 147  | 32   | 206  |
| +15 mins.    | 29       | 209  | 20   | 258  | 40       | 97   | 23   | 160  | 32       | 161  | 20   | 213  | 19       | 170  | 34   | 223  |
| +30 mins.    | 23       | 185  | 17   | 225  | 51       | 103  | 17   | 171  | 43       | 184  | 27   | 254  | 27       | 122  | 36   | 185  |
| +45 mins.    | 37       | 232  | 31   | 300  | 40       | 128  | 17   | 185  | 34       | 198  | 24   | 256  | 24       | 156  | 35   | 215  |
| Total Volume | 115      | 825  | 86   | 1026 | 175      | 443  | 79   | 697  | 144      | 713  | 96   | 953  | 97       | 595  | 137  | 829  |
| % App. Total | 11.2     | 80.4 | 8.4  |      | 25.1     | 63.6 | 11.3 |      | 15.1     | 74.8 | 10.1 |      | 11.7     | 71.8 | 16.5 |      |
| PHF          | .777     | .889 | .694 | .855 | .858     | .865 | .859 | .942 | .837     | .900 | .889 | .931 | .898     | .875 | .951 | .929 |

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Badillo Street     |



### PEDESTRIANS

|                | North Leg<br>North Azusa Avenue | East Leg<br>Badillo Street | South Leg<br>North Azusa Avenue | West Leg<br>Badillo Street |    |
|----------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----|
|                | Pedestrians                     | Pedestrians                | Pedestrians                     | Pedestrians                |    |
| 7:00 AM        | 1                               | 0                          | 0                               | 0                          | 1  |
| 7:15 AM        | 1                               | 0                          | 0                               | 1                          | 2  |
| 7:30 AM        | 1                               | 2                          | 0                               | 0                          | 3  |
| 7:45 AM        | 2                               | 0                          | 2                               | 2                          | 6  |
| 8:00 AM        | 2                               | 0                          | 0                               | 0                          | 2  |
| 8:15 AM        | 3                               | 0                          | 1                               | 2                          | 6  |
| 8:30 AM        | 0                               | 0                          | 1                               | 0                          | 1  |
| 8:45 AM        | 0                               | Ó                          | 0                               | 3                          | 3  |
| TOTAL VOLUMES: | 10                              | 2                          | 4                               | 8                          | 24 |

|                | North Leg<br>North Azusa Avenue | East Leg<br>Badillo Street | South Leg<br>North Azusa Avenue | West Leg<br>Badillo Street |    |
|----------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----|
|                | Pedestrians                     | Pedestrians                | Pedestrians                     | Pedestrians                |    |
| 4:00 PM        | 2                               | 0                          | 0                               | 5                          | 7  |
| 4:15 PM        | 4                               | 0                          | 1                               | 11                         | 16 |
| 4:30 PM        | 3                               | 2                          | 4                               | 4                          | 13 |
| 4:45 PM        | 2                               | 3                          | 1                               | 1                          | 7  |
| 5:00 PM        | 8                               | 4                          | 0                               | 0                          | 12 |
| 5:15 PM        | 2                               | 1                          | 0                               | 2                          | 5  |
| 5:30 PM        | 1                               | 3                          | 0                               | 2                          | 6  |
| 5:45 PM        | 0                               | 0                          | 0                               | 0                          | 0  |
| TOTAL VOLUMES: | 22                              | 13                         | 6                               | 25                         | 66 |

Counts Unlimited, Inc. PO Box 1178 Corona, CA 92878 951-268-6268

| Location: | Covina             |
|-----------|--------------------|
| N/S:      | North Azusa Avenue |
| E/W:      | Badillo Street     |



## BICYCLES

|                | Nor  | Southbound<br>th Azusa Ave | enue  | Westbound<br>Badillo Street |                 |   | Northbound<br>North Azusa Avenue |      |       |      |      |       |    |
|----------------|------|----------------------------|-------|-----------------------------|-----------------|---|----------------------------------|------|-------|------|------|-------|----|
|                | Left | Thru                       | Right | Left                        | Left Thru Right |   |                                  | Thru | Right | Left | Thru | Right |    |
| 7:00 AM        | 1    | 0                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 1  |
| 7:15 AM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 0  |
| 7:30 AM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 0  |
| 7:45 AM        | 0    | 2                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 2  |
| 8:00 AM        | 0    | 0                          | 0     | 0                           | 2               | 0 | 0                                | 1    | 0     | 0    | 0    | 0     | 3  |
| 8:15 AM        | 0    | 0                          | 0     | 1                           | 0               | 0 | 0                                | 0    | 0     | 0    | 1    | 1     | 3  |
| 8:30 AM        | 1    | 0                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 1  |
| 8:45 AM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0                                | 0    | 0     | 0    | 0    | 0     | 0  |
| TOTAL VOLUMES: | 2    | 2                          | 0     | 1                           | 2               | 0 | 0                                | 1    | 0     | 0    | 1    | 1     | 10 |

|                | Nor  | Southbound<br>th Azusa Ave | enue  | Westbound<br>Badillo Street |                 |   | Nor | Northbound<br>th Azusa Ave | l<br>enue |      | t    |       |    |
|----------------|------|----------------------------|-------|-----------------------------|-----------------|---|-----|----------------------------|-----------|------|------|-------|----|
|                | Left | Thru                       | Right | Left                        | Left Thru Right |   |     | Thru                       | Right     | Left | Thru | Right |    |
| 4:00 PM        | 0    | 1                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 0    | 1    | 0     | 2  |
| 4:15 PM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 1         | 0    | 0    | 0     | 1  |
| 4:30 PM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 0    | 0    | 0     | 0  |
| 4:45 PM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 0    | 0    | 0     | 0  |
| 5:00 PM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 0    | 2    | 0     | 2  |
| 5:15 PM        | 1    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 1    | 0    | 0     | 2  |
| 5:30 PM        | 1    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 0    | 0    | 0     | 1  |
| 5:45 PM        | 0    | 0                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 0         | 15   | 0    | 2     | 17 |
| TOTAL VOLUMES: | 2    | 1                          | 0     | 0                           | 0               | 0 | 0   | 0                          | 1         | 16   | 3    | 2     | 25 |

# Michael Baker

# Appendix C: Existing Synchro Worksheets

# HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                              | ٠    | -+       | 7    | 4    | -        | •    | 1    | t        | 1    | 5    | ţ        | ~    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ካካ   | <b>^</b> | 1    | 7    | <b>^</b> | 1    | ካካ   | <b>1</b> |      | ሻሻ   | <b>1</b> |      |
| Traffic Volume (veh/h)       | 156  | 494      | 112  | 57   | 730      | 57   | 237  | 368      | 90   | 91   | 420      | 155  |
| Future Volume (veh/h)        | 156  | 494      | 112  | 57   | 730      | 57   | 237  | 368      | 90   | 91   | 420      | 155  |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.95 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 162  | 515      | 117  | 60   | 768      | 60   | 260  | 404      | 99   | 111  | 512      | 189  |
| Peak Hour Factor             | 0.96 | 0.96     | 0.96 | 0.95 | 0.95     | 0.95 | 0.91 | 0.91     | 0.91 | 0.82 | 0.82     | 0.82 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 219  | 1000     | 574  | 77   | 928      | 414  | 326  | 1331     | 323  | 165  | 1075     | 395  |
| Arrive On Green              | 0.06 | 0.28     | 0.28 | 0.04 | 0.26     | 0.26 | 0.03 | 0.15     | 0.15 | 0.05 | 0.42     | 0.42 |
| Sat Flow, veh/h              | 3456 | 3554     | 1509 | 1781 | 3554     | 1585 | 3456 | 2835     | 688  | 3456 | 2544     | 935  |
| Grp Volume(v), veh/h         | 162  | 515      | 117  | 60   | 768      | 60   | 260  | 252      | 251  | 111  | 357      | 344  |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 1777     | 1509 | 1781 | 1777     | 1585 | 1728 | 1777     | 1747 | 1728 | 1777     | 1702 |
| Q Serve(g_s), s              | 5.5  | 14.6     | 6.3  | 4.0  | 24.4     | 3.5  | 9.0  | 15.1     | 15.3 | 3.8  | 17.4     | 17.6 |
| Cycle Q Clear(g_c), s        | 5.5  | 14.6     | 6.3  | 4.0  | 24.4     | 3.5  | 9.0  | 15.1     | 15.3 | 3.8  | 17.4     | 17.6 |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 0.39 | 1.00 |          | 0.55 |
| Lane Grp Cap(c), veh/h       | 219  | 1000     | 574  | 77   | 928      | 414  | 326  | 834      | 820  | 165  | 751      | 719  |
| V/C Ratio(X)                 | 0.74 | 0.52     | 0.20 | 0.77 | 0.83     | 0.14 | 0.80 | 0.30     | 0.31 | 0.67 | 0.48     | 0.48 |
| Avail Cap(c_a), veh/h        | 302  | 1111     | 621  | 156  | 1111     | 495  | 446  | 834      | 820  | 245  | 751      | 719  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.33 | 0.33     | 0.33 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.93 | 0.93     | 0.93 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 55.2 | 36.2     | 25.4 | 56.8 | 41.8     | 34.0 | 57.0 | 33.3     | 33.4 | 56.2 | 25.0     | 25.1 |
| Incr Delay (d2), s/veh       | 6.0  | 0.6      | 0.2  | 15.0 | 5.0      | 0.2  | 6.5  | 0.9      | 0.9  | 4.7  | 2.2      | 2.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 2.5  | 6.2      | 2.2  | 2.1  | 11.0     | 1.3  | 4.4  | 7.3      | 7.3  | 1.7  | 7.5      | 7.3  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 61.2 | 36.8     | 25.6 | 71.9 | 46.8     | 34.3 | 63.5 | 34.1     | 34.3 | 61.0 | 27.2     | 27.3 |
| LnGrp LOS                    | E    | D        | С    | E    | D        | С    | E    | С        | С    | E    | С        | C    |
| Approach Vol, veh/h          |      | 794      |      |      | 888      |      |      | 763      |      |      | 812      |      |
| Approach Delay, s/veh        |      | 40.2     |      |      | 47.6     |      |      | 44.2     |      |      | 31.9     |      |
| Approach LOS                 |      | D        |      |      | D        |      |      | D        |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 10.2 | 61.8     | 9.7  | 38.3 | 15.8     | 56.2 | 12.1 | 35.9     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 4.5  | 4.5      | 5.5  | 4.5  | 4.5      |      |      |          |      |
| Max Green Setting (Gmax), s  | 8.5  | 44.5     | 10.5 | 37.5 | 15.5     | 37.5 | 10.5 | 37.5     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 5.8  | 17.3     | 6.0  | 16.6 | 11.0     | 19.6 | 7.5  | 26.4     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.1  | 4.3      | 0.0  | 4.9  | 0.4      | 5.5  | 0.1  | 4.9      |      |      |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |          | 41.1 |      |          |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |          |      |      |          |      |

## Notes

User approved changes to right turn type.

# HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                              | ٠    | -         | 7    | 1    |           | •    | 1    | Ť                       | 1    | 5    | ţ           | ~    |
|------------------------------|------|-----------|------|------|-----------|------|------|-------------------------|------|------|-------------|------|
| Movement                     | EBL  | EBT       | EBR  | WBL  | WBT       | WBR  | NBL  | NBT                     | NBR  | SBL  | SBT         | SBR  |
| Lane Configurations          | ካካ   | <b>^</b>  | 1    | 5    | <b>^</b>  | 1    | ሻሻ   | <b>*</b> 1 <sub>2</sub> |      | ካካ   | <b>*</b> 1, |      |
| Traffic Volume (veh/h)       | 247  | 869       | 131  | 169  | 456       | 107  | 200  | 523                     | 136  | 204  | 512         | 101  |
| Future Volume (veh/h)        | 247  | 869       | 131  | 169  | 456       | 107  | 200  | 523                     | 136  | 204  | 512         | 101  |
| Initial Q (Qb), veh          | 0    | 0         | 0    | 0    | 0         | 0    | 0    | 0                       | 0    | 0    | 0           | 0    |
| Ped-Bike Adj(A pbT)          | 1.00 |           | 0.94 | 1.00 |           | 0.97 | 1.00 |                         | 0.96 | 1.00 |             | 0.96 |
| Parking Bus, Adj             | 1.00 | 1.00      | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00                    | 1.00 | 1.00 | 1.00        | 1.00 |
| Work Zone On Approach        |      | No        |      |      | No        |      |      | No                      |      |      | No          |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870      | 1870 | 1870 | 1870      | 1870 | 1870 | 1870                    | 1870 | 1870 | 1870        | 1870 |
| Adj Flow Rate, veh/h         | 284  | 999       | 151  | 184  | 496       | 116  | 222  | 581                     | 151  | 222  | 557         | 110  |
| Peak Hour Factor             | 0.87 | 0.87      | 0.87 | 0.92 | 0.92      | 0.92 | 0.90 | 0.90                    | 0.90 | 0.92 | 0.92        | 0.92 |
| Percent Heavy Veh, %         | 2    | 2         | 2    | 2    | 2         | 2    | 2    | 2                       | 2    | 2    | 2           | 2    |
| Cap, veh/h                   | 347  | 1119      | 599  | 212  | 1186      | 512  | 280  | 906                     | 235  | 278  | 960         | 189  |
| Arrive On Green              | 0.10 | 0.31      | 0.31 | 0.12 | 0.33      | 0.33 | 0.03 | 0.11                    | 0.11 | 0.08 | 0.33        | 0.33 |
| Sat Flow, veh/h              | 3456 | 3554      | 1495 | 1781 | 3554      | 1533 | 3456 | 2768                    | 717  | 3456 | 2939        | 578  |
| Grp Volume(v), veh/h         | 284  | 999       | 151  | 184  | 496       | 116  | 222  | 372                     | 360  | 222  | 336         | 331  |
| Grp Sat Flow(s), veh/h/ln    | 1728 | 1777      | 1495 | 1781 | 1777      | 1533 | 1728 | 1777                    | 1708 | 1728 | 1777        | 1740 |
| Q Serve( $q$ , $s$ ), $s$    | 9.7  | 32.1      | 8.1  | 12.2 | 13.0      | 6.5  | 7.7  | 24.1                    | 24.2 | 7.6  | 18.8        | 19.0 |
| Cycle Q Clear(q, c), s       | 9.7  | 32.1      | 8.1  | 12.2 | 13.0      | 6.5  | 7.7  | 24.1                    | 24.2 | 7.6  | 18.8        | 19.0 |
| Prop In Lane                 | 1.00 | •=        | 1.00 | 1.00 |           | 1.00 | 1.00 |                         | 0.42 | 1.00 |             | 0.33 |
| Lane Grp Cap(c), veh/h       | 347  | 1119      | 599  | 212  | 1186      | 512  | 280  | 582                     | 559  | 278  | 580         | 568  |
| V/C Ratio(X)                 | 0.82 | 0.89      | 0.25 | 0.87 | 0.42      | 0.23 | 0.79 | 0.64                    | 0.64 | 0.80 | 0.58        | 0.58 |
| Avail Cap(c, a), veh/h       | 461  | 1170      | 621  | 260  | 1214      | 524  | 302  | 582                     | 559  | 302  | 580         | 568  |
| HCM Platoon Ratio            | 1.00 | 1.00      | 1.00 | 1.00 | 1.00      | 1.00 | 0.33 | 0.33                    | 0.33 | 1.00 | 1.00        | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00      | 1.00 | 1.00 | 1.00      | 1.00 | 0.93 | 0.93                    | 0.93 | 1.00 | 1.00        | 1.00 |
| Uniform Delay (d), s/veh     | 52.9 | 39.2      | 24.4 | 51.9 | 31.0      | 28.8 | 57.4 | 46.7                    | 46.8 | 54.2 | 33.5        | 33.6 |
| Incr Delay (d2), s/veh       | 8.5  | 9.0       | 0.3  | 22.0 | 0.3       | 0.3  | 11.8 | 5.0                     | 5.2  | 13.2 | 4.2         | 4.3  |
| Initial Q Delav(d3).s/veh    | 0.0  | 0.0       | 0.0  | 0.0  | 0.0       | 0.0  | 0.0  | 0.0                     | 0.0  | 0.0  | 0.0         | 0.0  |
| %ile BackOfQ(50%).veh/ln     | 4.5  | 14.8      | 2.8  | 6.6  | 5.4       | 2.4  | 3.9  | 12.3                    | 11.9 | 3.7  | 8.6         | 8.5  |
| Unsig, Movement Delay, s/veh |      |           |      | 0.0  | ••••      |      | 0.0  |                         |      | •••• | 0.0         | 0.0  |
| LnGrp Delav(d).s/veh         | 61.4 | 48.2      | 24.7 | 73.9 | 31.3      | 29.1 | 69.2 | 51.7                    | 52.0 | 67.4 | 37.7        | 37.9 |
| LnGrp LOS                    | E    | D         | C    | F    | C         | C    | E    | D                       | D    | E    | D           | D    |
| Approach Vol. veh/h          |      | 1434      |      |      | 796       |      |      | 954                     |      |      | 889         |      |
| Approach Delay s/veh         |      | 48.3      |      |      | 40.8      |      |      | 55.9                    |      |      | 45.2        |      |
| Approach LOS                 |      | 10.0<br>D |      |      | 10.0<br>D |      |      | 50.0<br>F               |      |      | D           |      |
|                              | 4    | 0         | •    |      | -         | •    | -    | -                       |      |      |             |      |
| Timer - Assigned Phs         | 1    | 2         | 3    | 4    | 5         | 6    | 1    | 8                       |      |      |             |      |
| Phs Duration (G+Y+Rc), s     | 14.1 | 44.8      | 18.8 | 42.3 | 14.2      | 44.7 | 16.5 | 44.5                    |      |      |             |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5       | 4.5  | 4.5  | 4.5       | 5.5  | 4.5  | 4.5                     |      |      |             |      |
| Max Green Setting (Gmax), s  | 10.5 | 33.5      | 17.5 | 39.5 | 10.5      | 33.5 | 16.0 | 41.0                    |      |      |             |      |
| Max Q Clear Time (g_c+I1), s | 9.6  | 26.2      | 14.2 | 34.1 | 9.7       | 21.0 | 11.7 | 15.0                    |      |      |             |      |
| Green Ext Time (p_c), s      | 0.1  | 3.2       | 0.1  | 3.6  | 0.1       | 4.2  | 0.4  | 5.1                     |      |      |             |      |
| Intersection Summary         |      |           |      |      |           |      |      |                         |      |      |             |      |
| HCM 6th Ctrl Delay           |      |           | 48.0 |      |           |      |      |                         |      |      |             |      |
| HCM 6th LOS                  |      |           | D    |      |           |      |      |                         |      |      |             |      |

Notes

User approved changes to right turn type.

# HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ٠    |      | $\mathbf{r}$ | 1     | +     | •    | 1    | Ť    | 1    | 6    | ţ          | ~    |
|------------------------------|------|------|--------------|-------|-------|------|------|------|------|------|------------|------|
| Movement                     | EBL  | EBT  | EBR          | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT        | SBR  |
| Lane Configurations          |      | 4    |              |       | t)    | 1    | ۲    | **   | 1    | 5    | <b>†</b> Ъ |      |
| Traffic Volume (veh/h)       | 14   | 18   | 28           | 259   | 25    | 187  | 83   | 570  | 148  | 62   | 581        | 17   |
| Future Volume (veh/h)        | 14   | 18   | 28           | 259   | 25    | 187  | 83   | 570  | 148  | 62   | 581        | 17   |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0          | 0    |
| Ped-Bike Adj(A pbT)          | 1.00 |      | 0.99         | 1.00  |       | 0.98 | 1.00 |      | 0.97 | 1.00 |            | 0.94 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00  | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00       | 1.00 |
| Work Zone On Approach        |      | No   |              |       | No    |      |      | No   |      |      | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870         | 1870  | 1870  | 1870 | 1870 | 1870 | 1945 | 1870 | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 20   | 25   | 39           | 308   | 30    | 223  | 104  | 712  | 185  | 67   | 625        | 18   |
| Peak Hour Factor             | 0.71 | 0.71 | 0.71         | 0.84  | 0.84  | 0.84 | 0.80 | 0.80 | 0.80 | 0.93 | 0.93       | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2            | 2     | 2     | 2    | 2    | 2    | 2    | 2    | 2          | 2    |
| Cap, veh/h                   | 37   | 49   | 43           | 251   | 19    | 679  | 230  | 1397 | 626  | 86   | 1100       | 32   |
| Arrive On Green              | 0.44 | 0.44 | 0.44         | 0.44  | 0.44  | 0.44 | 0.26 | 0.79 | 0.79 | 0.02 | 0.10       | 0.10 |
| Sat Flow, veh/h              | 0    | 112  | 97           | 442   | 43    | 1552 | 1781 | 3554 | 1593 | 1781 | 3519       | 101  |
| Grp Volume(v), veh/h         | 84   | 0    | 0            | 338   | 0     | 223  | 104  | 712  | 185  | 67   | 315        | 328  |
| Grp Sat Flow(s),veh/h/ln     | 209  | 0    | 0            | 485   | 0     | 1552 | 1781 | 1777 | 1593 | 1781 | 1777       | 1844 |
| Q Serve(g_s), s              | 0.0  | 0.0  | 0.0          | 0.0   | 0.0   | 11.3 | 5.9  | 8.6  | 3.9  | 4.5  | 20.3       | 20.3 |
| Cycle Q Clear(g_c), s        | 52.5 | 0.0  | 0.0          | 52.5  | 0.0   | 11.3 | 5.9  | 8.6  | 3.9  | 4.5  | 20.3       | 20.3 |
| Prop In Lane                 | 0.24 |      | 0.46         | 0.91  |       | 1.00 | 1.00 |      | 1.00 | 1.00 |            | 0.05 |
| Lane Grp Cap(c), veh/h       | 129  | 0    | 0            | 269   | 0     | 679  | 230  | 1397 | 626  | 86   | 555        | 576  |
| V/C Ratio(X)                 | 0.65 | 0.00 | 0.00         | 1.25  | 0.00  | 0.33 | 0.45 | 0.51 | 0.30 | 0.78 | 0.57       | 0.57 |
| Avail Cap(c_a), veh/h        | 129  | 0    | 0            | 269   | 0     | 679  | 230  | 1397 | 626  | 171  | 555        | 576  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00  | 1.00  | 1.00 | 2.00 | 2.00 | 2.00 | 0.33 | 0.33       | 0.33 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00         | 1.00  | 0.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.87 | 0.87       | 0.87 |
| Uniform Delay (d), s/veh     | 28.8 | 0.0  | 0.0          | 39.3  | 0.0   | 22.2 | 40.9 | 8.7  | 8.2  | 58.4 | 46.1       | 46.1 |
| Incr Delay (d2), s/veh       | 12.6 | 0.0  | 0.0          | 141.2 | 0.0   | 0.4  | 6.3  | 1.3  | 1.2  | 4.8  | 3.6        | 3.5  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.9  | 0.0  | 0.0          | 18.8  | 0.0   | 4.2  | 2.8  | 2.5  | 1.4  | 2.2  | 10.2       | 10.6 |
| Unsig. Movement Delay, s/veh |      |      |              |       |       |      |      |      |      |      |            |      |
| LnGrp Delay(d),s/veh         | 41.4 | 0.0  | 0.0          | 180.5 | 0.0   | 22.6 | 47.2 | 10.0 | 9.4  | 63.2 | 49.7       | 49.6 |
| LnGrp LOS                    | D    | A    | A            | F     | A     | С    | D    | В    | A    | E    | D          | D    |
| Approach Vol, veh/h          |      | 84   |              |       | 561   |      |      | 1001 |      |      | 710        |      |
| Approach Delay, s/veh        |      | 41.4 |              |       | 117.7 |      |      | 13.8 |      |      | 51.0       |      |
| Approach LOS                 |      | D    |              |       | F     |      |      | В    |      |      | D          |      |
| Timer - Assigned Phs         | 1    | 2    |              | 4     | 5     | 6    |      | 8    |      |      |            |      |
| Phs Duration (G+Y+Rc), s     | 10.3 | 52.7 |              | 57.0  | 20.0  | 43.0 |      | 57.0 |      |      |            |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |              | 4.5   | 4.5   | 5.5  |      | 4.5  |      |      |            |      |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |              | 52.5  | 15.5  | 37.5 |      | 52.5 |      |      |            |      |
| Max Q Clear Time (g c+l1), s | 6.5  | 10.6 |              | 54.5  | 7.9   | 22.3 |      | 54.5 |      |      |            |      |
| Green Ext Time (p_c), s      | 0.0  | 8.6  |              | 0.0   | 0.0   | 4.5  |      | 0.0  |      |      |            |      |
| Intersection Summary         |      |      |              |       |       |      |      |      |      |      |            |      |
| HCM 6th Ctrl Delay           |      |      | 50.7         |       |       |      |      |      |      |      |            |      |
| HCM 6th LOS                  |      |      | D            |       |       |      |      |      |      |      |            |      |

# HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ٠    |      | 7    | 1    |      | •    | 1    | t    | 1    | 1     | Ļ        | ~    |
|------------------------------|------|------|------|------|------|------|------|------|------|-------|----------|------|
| Movement                     | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations          |      | 4    |      |      | đ    | 1    | 5    | **   | 1    | 5     | <b>1</b> |      |
| Traffic Volume (veh/h)       | 28   | 26   | 30   | 134  | 32   | 130  | 68   | 694  | 165  | 147   | 772      | 33   |
| Future Volume (veh/h)        | 28   | 26   | 30   | 134  | 32   | 130  | 68   | 694  | 165  | 147   | 772      | 33   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.97 | 0.99 |      | 0.97 | 1.00 |      | 0.99 | 1.00  |          | 0.96 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00     | 1.00 |
| Work Zone On Approach        |      | No   |      |      | No   |      |      | No   |      |       | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1945 | 1870  | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 36   | 33   | 38   | 144  | 34   | 140  | 73   | 746  | 177  | 158   | 830      | 35   |
| Peak Hour Factor             | 0.78 | 0.78 | 0.78 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93  | 0.93     | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2        | 2    |
| Cap, veh/h                   | 67   | 62   | 49   | 232  | 46   | 431  | 230  | 1786 | 817  | 171   | 1627     | 69   |
| Arrive On Green              | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.26 | 1.00 | 1.00 | 0.03  | 0.15     | 0.15 |
| Sat Flow, veh/h              | 97   | 219  | 174  | 633  | 162  | 1535 | 1781 | 3554 | 1626 | 1781  | 3468     | 146  |
| Grp Volume(v), veh/h         | 107  | 0    | 0    | 178  | 0    | 140  | 73   | 746  | 177  | 158   | 425      | 440  |
| Grp Sat Flow(s),veh/h/ln     | 491  | 0    | 0    | 795  | 0    | 1535 | 1781 | 1777 | 1626 | 1781  | 1777     | 1837 |
| Q Serve(g_s), s              | 3.9  | 0.0  | 0.0  | 0.0  | 0.0  | 8.7  | 4.0  | 0.0  | 0.0  | 10.6  | 26.4     | 26.4 |
| Cycle Q Clear(g_c), s        | 31.0 | 0.0  | 0.0  | 27.2 | 0.0  | 8.7  | 4.0  | 0.0  | 0.0  | 10.6  | 26.4     | 26.4 |
| Prop In Lane                 | 0.34 |      | 0.36 | 0.81 |      | 1.00 | 1.00 |      | 1.00 | 1.00  |          | 0.08 |
| Lane Grp Cap(c), veh/h       | 178  | 0    | 0    | 277  | 0    | 431  | 230  | 1786 | 817  | 171   | 834      | 862  |
| V/C Ratio(X)                 | 0.60 | 0.00 | 0.00 | 0.64 | 0.00 | 0.32 | 0.32 | 0.42 | 0.22 | 0.93  | 0.51     | 0.51 |
| Avail Cap(c_a), veh/h        | 410  | 0    | 0    | 496  | 0    | 672  | 230  | 1786 | 817  | 171   | 834      | 862  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 0.33  | 0.33     | 0.33 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.87  | 0.87     | 0.87 |
| Uniform Delay (d), s/veh     | 41.0 | 0.0  | 0.0  | 40.6 | 0.0  | 34.1 | 40.2 | 0.0  | 0.0  | 57.7  | 38.1     | 38.1 |
| Incr Delay (d2), s/veh       | 4.6  | 0.0  | 0.0  | 3.5  | 0.0  | 0.6  | 3.6  | 0.7  | 0.6  | 43.1  | 1.9      | 1.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 3.4  | 0.0  | 0.0  | 5.2  | 0.0  | 3.3  | 1.9  | 0.2  | 0.1  | 7.1   | 13.0     | 13.4 |
| Unsig. Movement Delay, s/veh |      |      |      |      |      |      |      |      |      |       |          |      |
| LnGrp Delay(d),s/veh         | 45.6 | 0.0  | 0.0  | 44.1 | 0.0  | 34.8 | 43.8 | 0.7  | 0.6  | 100.7 | 40.0     | 39.9 |
| LnGrp LOS                    | D    | Α    | Α    | D    | Α    | С    | D    | Α    | Α    | F     | D        | D    |
| Approach Vol, veh/h          |      | 107  |      |      | 318  |      |      | 996  |      |       | 1023     |      |
| Approach Delay, s/veh        |      | 45.6 |      |      | 40.0 |      |      | 3.9  |      |       | 49.4     |      |
| Approach LOS                 |      | D    |      |      | D    |      |      | А    |      |       | D        |      |
| Timer - Assigned Phs         | 1    | 2    |      | 4    | 5    | 6    |      | 8    |      |       |          |      |
| Phs Duration (G+Y+Rc), s     | 16.0 | 65.8 |      | 38.2 | 20.0 | 61.8 |      | 38.2 |      |       |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |      | 4.5  | 4.5  | 5.5  |      | 4.5  |      |       |          |      |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |      | 52.5 | 15.5 | 37.5 |      | 52.5 |      |       |          |      |
| Max Q Clear Time (g c+l1), s | 12.6 | 2.0  |      | 33.0 | 6.0  | 28.4 |      | 29.2 |      |       |          |      |
| Green Ext Time (p_c), s      | 0.0  | 9.5  |      | 0.7  | 0.0  | 4.5  |      | 2.2  |      |       |          |      |
| Intersection Summary         |      |      |      |      |      |      |      |      |      |       |          |      |
| HCM 6th Ctrl Delay           |      |      | 29.4 |      |      |      |      |      |      |       |          |      |
| HCM 6th LOS                  |      |      | С    |      |      |      |      |      |      |       |          |      |

| Int Delay, s/veh       | 0    |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|--|
| Movement               | WBL  | WBR  | NBT  | NBR  | SBL  | SBT  |  |
| Lane Configurations    |      | 1    | **   | 1    | 5    | **   |  |
| Traffic Vol, veh/h     | 0    | 6    | 801  | 4    | 4    | 958  |  |
| Future Vol, veh/h      | 0    | 6    | 801  | 4    | 4    | 958  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized         | -    | None | -    | None | -    | None |  |
| Storage Length         | -    | 0    | -    | 150  | 80   | -    |  |
| Veh in Median Storage  | ,# 0 | -    | 0    | -    | -    | 0    |  |
| Grade, %               | 0    | -    | 0    | -    | -    | 0    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 7    | 871  | 4    | 4    | 1041 |  |

| Major/Minor          | Minor1 | N    | lajor1 | Ν | lajor2 |   |  |
|----------------------|--------|------|--------|---|--------|---|--|
| Conflicting Flow All | -      | 436  | 0      | 0 | 875    | 0 |  |
| Stage 1              | -      | -    | -      | - | -      | - |  |
| Stage 2              | -      | -    | -      | - | -      | - |  |
| Critical Hdwy        | -      | 6.94 | -      | - | 4.14   | - |  |
| Critical Hdwy Stg 1  | -      | -    | -      | - | -      | - |  |
| Critical Hdwy Stg 2  | -      | -    | -      | - | -      | - |  |
| Follow-up Hdwy       | -      | 3.32 | -      | - | 2.22   | - |  |
| Pot Cap-1 Maneuver   | 0      | 568  | -      | - | 767    | - |  |
| Stage 1              | 0      | -    | -      | - | -      | - |  |
| Stage 2              | 0      | -    | -      | - | -      | - |  |
| Platoon blocked, %   |        |      | -      | - |        | - |  |
| Mov Cap-1 Maneuver   | · -    | 568  | -      | - | 767    | - |  |
| Mov Cap-2 Maneuver   | · -    | -    | -      | - | -      | - |  |
| Stage 1              | -      | -    | -      | - | -      | - |  |
| Stage 2              | -      | -    | -      | - | -      | - |  |
|                      |        |      |        |   |        |   |  |
| Approach             | WB     |      | NB     |   | SB     |   |  |
| HCM Control Delay, s | 11.4   |      | 0      |   | 0      |   |  |
| HCM LOS              | В      |      |        |   |        |   |  |
|                      |        |      |        |   |        |   |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBL   | SBT |  |
|-----------------------|-----|----------|-------|-----|--|
| Capacity (veh/h)      | -   | - 568    | 767   | -   |  |
| HCM Lane V/C Ratio    | -   | - 0.011  | 0.006 | -   |  |
| HCM Control Delay (s) | -   | - 11.4   | 9.7   | -   |  |
| HCM Lane LOS          | -   | - B      | А     | -   |  |
| HCM 95th %tile Q(veh) | -   | - 0      | 0     | -   |  |

| Int Delay, s/veh       | 0.2  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | WBL  | WBR  | NBT  | NBR  | SBL  | SBT  |
| Lane Configurations    |      | 1    | **   | 1    | 7    | **   |
| Traffic Vol, veh/h     | 0    | 17   | 927  | 8    | 8    | 977  |
| Future Vol, veh/h      | 0    | 17   | 927  | 8    | 8    | 977  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | 0    | -    | 150  | 80   | -    |
| Veh in Median Storage  | ,# 0 | -    | 0    | -    | -    | 0    |
| Grade, %               | 0    | -    | 0    | -    | -    | 0    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0    | 18   | 1008 | 9    | 9    | 1062 |

| Major/Minor          | Minor1 | М    | ajor1 | Ν | lajor2 |   |  |
|----------------------|--------|------|-------|---|--------|---|--|
| Conflicting Flow All | -      | 504  | 0     | 0 | 1017   | 0 |  |
| Stage 1              | -      | -    | -     | - | -      | - |  |
| Stage 2              | -      | -    | -     | - | -      | - |  |
| Critical Hdwy        | -      | 6.94 | -     | - | 4.14   | - |  |
| Critical Hdwy Stg 1  | -      | -    | -     | - | -      | - |  |
| Critical Hdwy Stg 2  | -      | -    | -     | - | -      | - |  |
| Follow-up Hdwy       | -      | 3.32 | -     | - | 2.22   | - |  |
| Pot Cap-1 Maneuver   | 0      | 513  | -     | - | 678    | - |  |
| Stage 1              | 0      | -    | -     | - | -      | - |  |
| Stage 2              | 0      | -    | -     | - | -      | - |  |
| Platoon blocked, %   |        |      | -     | - |        | - |  |
| Mov Cap-1 Maneuver   | -      | 513  | -     | - | 678    | - |  |
| Mov Cap-2 Maneuver   | -      | -    | -     | - | -      | - |  |
| Stage 1              | -      | -    | -     | - | -      | - |  |
| Stage 2              | -      | -    | -     | - | -      | - |  |
|                      |        |      |       |   |        |   |  |
| Approach             | WB     |      | NB    |   | SB     |   |  |
| HCM Control Delay, s | 12.3   |      | 0     |   | 0.1    |   |  |

HCM LOS В

| Minor Lane/Major Mvmt | NBT | NBRWBLn | I SBL   | SBT |
|-----------------------|-----|---------|---------|-----|
| Capacity (veh/h)      | -   | - 51    | 678     | -   |
| HCM Lane V/C Ratio    | -   | - 0.03  | 6 0.013 | -   |
| HCM Control Delay (s) | -   | - 12.   | 3 10.4  | -   |
| HCM Lane LOS          | -   | -       | 3 B     | -   |
| HCM 95th %tile Q(veh) | -   | - 0.    | 1 0     | -   |

| 0    |                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBL  | WBR                                                | NBT                                                                           | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 1                                                  | <b>≜</b> ₽                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0    | 0                                                  | 805                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0    | 0                                                  | 805                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0    | 0                                                  | 0                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stop | Stop                                               | Free                                                                          | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -    | None                                               | -                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -    | 0                                                  | -                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,# 0 | -                                                  | 0                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0    | -                                                  | 0                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 92   | 92                                                 | 92                                                                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    | 2                                                  | 2                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0    | 0                                                  | 875                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 0<br>WBL<br>0<br>Stop<br>-<br>,# 0<br>92<br>2<br>0 | 0<br>WBL WBR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>WBL WBR NBT<br>↑ ↑↑<br>0 00 805<br>0 00 805<br>0 0 0<br>Stop Stop Free<br>1 None -<br>↑ 0 -<br>↓ 0<br>0 -<br>↓ 0 | 0         NBR         NBR           WBL         WBR         NBT         NBR           1         1         1         1           0         0         805         0           0         0         805         0           0         0         805         0           0         0         805         0           0         0         805         0           Stop         Stop         Free         Free           0         0         -         None           -         0         -         0           4         0         -         0           92         92         92         92           92         2         2         2           0         0         875         0 | WBL         WBR         NBT         NBR         SBL           Image: Im | WBL         WBR         NBT         NBR         SBL         SBT           MBL         MBR         NBT         NBR         SBL         SBT           MBL         MBR         MBC         NBR         SBL         SBT           MBL         MBR         MBR         MBR         MBR         SBL         SBT           MBL         MBR         MBR         MBR         MBR         MBR         SBL         SBT           MBL         MBR         MBR         MBR         MBR         MBR         MBR         MBR           MBL         MBR         MBR         MBR         MBR         MBR         MBR         MBR         MBR         MBR           MBL         MBR         MBR         MBR         MBR         MBR         MBR         MBR           MBR         MBR         MBR         MBR         MBR         MBR         MBR         MBR         MBR         MBR |

| Major/Minor          | Minor1 | Μ    | ajor1 | Ma | jor2 |   |  |  |  |
|----------------------|--------|------|-------|----|------|---|--|--|--|
| Conflicting Flow All | -      | 438  | 0     | 0  | -    | - |  |  |  |
| Stage 1              | -      | -    | -     | -  | -    | - |  |  |  |
| Stage 2              | -      | -    | -     | -  | -    | - |  |  |  |
| Critical Hdwy        | -      | 6.94 | -     | -  | -    | - |  |  |  |
| Critical Hdwy Stg 1  | -      | -    | -     | -  | -    | - |  |  |  |
| Critical Hdwy Stg 2  | -      | -    | -     | -  | -    | - |  |  |  |
| Follow-up Hdwy       | -      | 3.32 | -     | -  | -    | - |  |  |  |
| Pot Cap-1 Maneuver   | 0      | 567  | -     | -  | 0    | - |  |  |  |
| Stage 1              | 0      | -    | -     | -  | 0    | - |  |  |  |
| Stage 2              | 0      | -    | -     | -  | 0    | - |  |  |  |
| Platoon blocked, %   |        |      | -     | -  |      | - |  |  |  |
| Mov Cap-1 Maneuver   |        | 567  | -     | -  | -    | - |  |  |  |
| Mov Cap-2 Maneuver   |        | -    | -     | -  | -    | - |  |  |  |
| Stage 1              | -      | -    | -     | -  | -    | - |  |  |  |
| Stage 2              | -      | -    | -     | -  | -    | - |  |  |  |
|                      |        |      |       |    |      |   |  |  |  |
| Approach             | WB     |      | NB    |    | SB   |   |  |  |  |
| HCM Control Delay, s | s 0    |      | 0     |    | 0    |   |  |  |  |

HCM LOS А

| Minor Lane/Major Mvmt | NBT | NBRW | 3Ln1 | SBT |
|-----------------------|-----|------|------|-----|
| Capacity (veh/h)      | -   | -    | -    | -   |
| HCM Lane V/C Ratio    | -   | -    | -    | -   |
| HCM Control Delay (s) | -   | -    | 0    | -   |
| HCM Lane LOS          | -   | -    | Α    | -   |
| HCM 95th %tile Q(veh) | -   | -    | -    | -   |

| Movement         WBL         WBR         NBT         NBR         SBL         SBT           Lane Configurations         Image: Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Int Delay, s/veh       | 0    |      |            |      |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|------------|------|------|------|--|
| Lane Configurations       Image: https://www.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.constraints.consta.constraint | Movement               | WBL  | WBR  | NBT        | NBR  | SBL  | SBT  |  |
| Traffic Vol, veh/h       0       0       935       0       0       977         Future Vol, veh/h       0       0       935       0       0       977         Conflicting Peds, #/hr       0       0       0       0       0       0         Sign Control       Stop       Stop       Free       Free       Free       Free         RT Channelized       -       None       -       None       -       None         Storage Length       -       0       -       -       -       -         Veh in Median Storage, #       0       -       0       -       -       0         Grade, %       0       -       0       -       -       0         Peak Hour Factor       92       92       92       92       92       92         Heavy Vehicles, %       2       2       2       2       2       2       2         Mvmt Flow       0       0       1016       0       0       1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lane Configurations    |      | 1    | <b>A</b> P |      |      | **   |  |
| Future Vol, veh/h       0       0       935       0       0       977         Conflicting Peds, #/hr       0       0       0       0       0       0       0         Sign Control       Stop       Stop       Free       Free       Free       Free       Free         RT Channelized       -       None       -       None       -       None         Storage Length       -       0       -       -       -         Veh in Median Storage, #       0       -       0       -       -         Grade, %       0       -       0       -       0         Peak Hour Factor       92       92       92       92       92         Heavy Vehicles, %       2       2       2       2       2         Mvmt Flow       0       0       1016       0       0       1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Traffic Vol, veh/h     | 0    | 0    | 935        | 0    | 0    | 977  |  |
| Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Future Vol, veh/h      | 0    | 0    | 935        | 0    | 0    | 977  |  |
| Sign ControlStopStopFreeFreeFreeFreeFreeRT Channelized-None-None-NoneStorage Length-0Veh in Median Storage, #0-0-0Grade, %0-0-0Peak Hour Factor92929292Heavy Vehicles, %22222Mvmt Flow001016001062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conflicting Peds, #/hr | 0    | 0    | 0          | 0    | 0    | 0    |  |
| RT Channelized       -       None       -       None         Storage Length       -       0       -       -       -         Veh in Median Storage, #       0       -       0       -       0         Grade, %       0       -       0       -       0         Peak Hour Factor       92       92       92       92       92         Heavy Vehicles, %       2       2       2       2       2         Mvmt Flow       0       0       1016       0       0       1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sign Control           | Stop | Stop | Free       | Free | Free | Free |  |
| Storage Length       -       0       -       -       -       -         Veh in Median Storage, #       0       -       0       -       -       0         Grade, %       0       -       0       -       -       0         Peak Hour Factor       92       92       92       92       92         Heavy Vehicles, %       2       2       2       2       2         Mvmt Flow       0       0       1016       0       0       1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT Channelized         | -    | None | -          | None | -    | None |  |
| Veh in Median Storage, #       0       -       0       -       0         Grade, %       0       -       0       -       0         Peak Hour Factor       92       92       92       92       92         Heavy Vehicles, %       2       2       2       2       2         Mvmt Flow       0       0       1016       0       1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Storage Length         | -    | 0    | -          | -    | -    | -    |  |
| Grade, %         0         -         0         -         -         0           Peak Hour Factor         92         92         92         92         92         92           Heavy Vehicles, %         2         2         2         2         2         2           Mvmt Flow         0         0         1016         0         0         1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Veh in Median Storage  | ,# 0 | -    | 0          | -    | -    | 0    |  |
| Peak Hour Factor         92         92         92         92         92         92           Heavy Vehicles, %         2         2         2         2         2         2           Mvmt Flow         0         0         1016         0         0         1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grade, %               | 0    | -    | 0          | -    | -    | 0    |  |
| Heavy Vehicles, %         2         2         2         2         2         2         2           Mvmt Flow         0         0         1016         0         0         1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak Hour Factor       | 92   | 92   | 92         | 92   | 92   | 92   |  |
| Mvmt Flow 0 0 1016 0 0 1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heavy Vehicles, %      | 2    | 2    | 2          | 2    | 2    | 2    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mvmt Flow              | 0    | 0    | 1016       | 0    | 0    | 1062 |  |

| Major/Minor          | Minor1 | M    | lajor1 | Ма | ajor2 |   |
|----------------------|--------|------|--------|----|-------|---|
| Conflicting Flow All | -      | 508  | 0      | 0  | -     | - |
| Stage 1              | -      | -    | -      | -  | -     | - |
| Stage 2              | -      | -    | -      | -  | -     | - |
| Critical Hdwy        | -      | 6.94 | -      | -  | -     | - |
| Critical Hdwy Stg 1  | -      | -    | -      | -  | -     | - |
| Critical Hdwy Stg 2  | -      | -    | -      | -  | -     | - |
| Follow-up Hdwy       | -      | 3.32 | -      | -  | -     | - |
| Pot Cap-1 Maneuver   | 0      | 510  | -      | -  | 0     | - |
| Stage 1              | 0      | -    | -      | -  | 0     | - |
| Stage 2              | 0      | -    | -      | -  | 0     | - |
| Platoon blocked, %   |        |      | -      | -  |       | - |
| Mov Cap-1 Maneuver   | · -    | 510  | -      | -  | -     | - |
| Mov Cap-2 Maneuver   | • -    | -    | -      | -  | -     | - |
| Stage 1              | -      | -    | -      | -  | -     | - |
| Stage 2              | -      | -    | -      | -  | -     | - |
|                      |        |      |        |    |       |   |
| Approach             | WB     |      | NB     |    | SB    |   |
| HCM Control Delay, s | s 0    |      | 0      |    | 0     |   |

HCM LOS А

| Minor Lane/Major Mvmt | NBT | NBRW | 3Ln1 | SBT |
|-----------------------|-----|------|------|-----|
| Capacity (veh/h)      | -   | -    | -    | -   |
| HCM Lane V/C Ratio    | -   | -    | -    | -   |
| HCM Control Delay (s) | -   | -    | 0    | -   |
| HCM Lane LOS          | -   | -    | Α    | -   |
| HCM 95th %tile Q(veh) | -   | -    | -    | -   |

# HCM 6th Signalized Intersection Summary 6: N Azusa Ave/Azusa Ave & Cypress St

|                              | ٠    | -                       | 7    | 1    |             | •    | 1    | t    | 1    | 6    | ţ    | ~    |
|------------------------------|------|-------------------------|------|------|-------------|------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT                     | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | 5    | <b>*</b> 1 <sub>2</sub> |      | 5    | <b>4</b> 14 |      | 5    | **   | 1    | 5    | **   | 1    |
| Traffic Volume (veh/h)       | 145  | 403                     | 127  | 97   | 820         | 28   | 119  | 559  | 46   | 37   | 633  | 288  |
| Future Volume (veh/h)        | 145  | 403                     | 127  | 97   | 820         | 28   | 119  | 559  | 46   | 37   | 633  | 288  |
| Initial Q (Qb), veh          | 0    | 0                       | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A pbT)          | 1.00 |                         | 0.94 | 1.00 |             | 0.93 | 1.00 |      | 0.91 | 1.00 |      | 0.89 |
| Parking Bus, Adj             | 1.00 | 1.00                    | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No                      |      |      | No          |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870                    | 1870 | 1870 | 1870        | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 167  | 463                     | 146  | 117  | 988         | 34   | 149  | 699  | 58   | 43   | 728  | 331  |
| Peak Hour Factor             | 0.87 | 0.87                    | 0.87 | 0.83 | 0.83        | 0.83 | 0.80 | 0.80 | 0.80 | 0.87 | 0.87 | 0.87 |
| Percent Heavy Veh, %         | 2    | 2                       | 2    | 2    | 2           | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 194  | 894                     | 279  | 142  | 1075        | 37   | 177  | 1371 | 558  | 55   | 1127 | 448  |
| Arrive On Green              | 0.11 | 0.34                    | 0.34 | 0.08 | 0.31        | 0.31 | 0.03 | 0.13 | 0.13 | 0.06 | 0.63 | 0.63 |
| Sat Flow, veh/h              | 1781 | 2622                    | 818  | 1781 | 3495        | 120  | 1781 | 3554 | 1447 | 1781 | 3554 | 1414 |
| Grp Volume(v), veh/h         | 167  | 312                     | 297  | 117  | 502         | 520  | 149  | 699  | 58   | 43   | 728  | 331  |
| Grp Sat Flow(s).veh/h/ln     | 1781 | 1777                    | 1663 | 1781 | 1777        | 1839 | 1781 | 1777 | 1447 | 1781 | 1777 | 1414 |
| Q Serve(q s), s              | 11.1 | 16.9                    | 17.2 | 7.8  | 32.7        | 32.7 | 10.0 | 22.0 | 4.3  | 2.9  | 15.2 | 19.3 |
| Cycle Q Clear(q c), s        | 11.1 | 16.9                    | 17.2 | 7.8  | 32.7        | 32.7 | 10.0 | 22.0 | 4.3  | 2.9  | 15.2 | 19.3 |
| Prop In Lane                 | 1.00 |                         | 0.49 | 1.00 |             | 0.07 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 194  | 606                     | 567  | 142  | 547         | 566  | 177  | 1371 | 558  | 55   | 1127 | 448  |
| V/C Ratio(X)                 | 0.86 | 0.52                    | 0.52 | 0.82 | 0.92        | 0.92 | 0.84 | 0.51 | 0.10 | 0.78 | 0.65 | 0.74 |
| Avail Cap(c a), veh/h        | 223  | 606                     | 567  | 229  | 563         | 582  | 209  | 1371 | 558  | 107  | 1127 | 448  |
| HCM Platoon Ratio            | 1.00 | 1.00                    | 1.00 | 1.00 | 1.00        | 1.00 | 0.33 | 0.33 | 0.33 | 2.00 | 2.00 | 2.00 |
| Upstream Filter(I)           | 1.00 | 1.00                    | 1.00 | 1.00 | 1.00        | 1.00 | 0.84 | 0.84 | 0.84 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh     | 52.6 | 31.6                    | 31.7 | 54.4 | 40.1        | 40.1 | 57.1 | 41.8 | 34.0 | 55.9 | 17.8 | 18.5 |
| Incr Delay (d2), s/veh       | 22.6 | 1.0                     | 1.2  | 5.5  | 20.3        | 19.8 | 17.2 | 1.1  | 0.3  | 8.7  | 2.9  | 10.4 |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0                     | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 6.1  | 7.2                     | 6.9  | 3.6  | 16.9        | 17.4 | 5.5  | 10.7 | 1.5  | 1.4  | 4.7  | 5.2  |
| Unsig. Movement Delay, s/veh |      |                         |      |      |             |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 75.1 | 32.7                    | 32.9 | 59.9 | 60.4        | 59.9 | 74.3 | 42.9 | 34.3 | 64.6 | 20.6 | 28.9 |
| LnGrp LOS                    | E    | С                       | С    | E    | E           | E    | Е    | D    | С    | Е    | С    | С    |
| Approach Vol, veh/h          |      | 776                     |      |      | 1139        |      |      | 906  |      |      | 1102 |      |
| Approach Delay, s/veh        |      | 41.9                    |      |      | 60.1        |      |      | 47.5 |      |      | 24.8 |      |
| Approach LOS                 |      | D                       |      |      | Е           |      |      | D    |      |      | С    |      |
| Timer - Assigned Phs         | 1    | 2                       | 3    | 4    | 5           | 6    | 7    | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 8.2  | 51.8                    | 14.1 | 45.9 | 16.4        | 43.6 | 18.1 | 41.9 |      |      |      |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5                     | 4.5  | 5.0  | 4.5         | 5.5  | 5.0  | 5.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 7.2  | 39.8                    | 15.4 | 38.1 | 14.1        | 32.9 | 15.0 | 38.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 4.9  | 24.0                    | 9.8  | 19.2 | 12.0        | 21.3 | 13.1 | 34.7 |      |      |      |      |
| Green Ext Time (p_c), s      | 0.0  | 5.7                     | 0.0  | 4.8  | 0.0         | 6.1  | 0.0  | 2.2  |      |      |      |      |
| Intersection Summary         |      |                         |      |      |             |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |                         | 43.7 |      |             |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |                         | D    |      |             |      |      |      |      |      |      |      |

# HCM 6th Signalized Intersection Summary 6: N Azusa Ave/Azusa Ave & Cypress St

|                               | ٠    | -        | 7    | 1    | +        | *    | 1     | t        | 1    | 6     | ţ        | ~    |
|-------------------------------|------|----------|------|------|----------|------|-------|----------|------|-------|----------|------|
| Movement                      | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT      | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations           | 7    | <b>1</b> |      | 7    | <b>1</b> |      | 7     | <b>^</b> | 1    | ٦     | <b>^</b> | 1    |
| Traffic Volume (veh/h)        | 180  | 599      | 86   | 79   | 385      | 34   | 91    | 713      | 66   | 74    | 706      | 197  |
| Future Volume (veh/h)         | 180  | 599      | 86   | 79   | 385      | 34   | 91    | 713      | 66   | 74    | 706      | 197  |
| Initial Q (Qb), veh           | 0    | 0        | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0     | 0        | 0    |
| Ped-Bike Adj(A pbT)           | 1.00 |          | 0.94 | 1.00 |          | 0.97 | 1.00  |          | 0.98 | 1.00  |          | 0.98 |
| Parking Bus, Adj              | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 |
| Work Zone On Approach         |      | No       |      |      | No       |      |       | No       |      |       | No       |      |
| Adj Sat Flow, veh/h/ln        | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870  | 1870     | 1870 | 1870  | 1870     | 1870 |
| Adj Flow Rate, veh/h          | 196  | 651      | 93   | 91   | 443      | 39   | 106   | 829      | 77   | 77    | 735      | 205  |
| Peak Hour Factor              | 0.92 | 0.92     | 0.92 | 0.87 | 0.87     | 0.87 | 0.86  | 0.86     | 0.86 | 0.96  | 0.96     | 0.96 |
| Percent Heavy Veh, %          | 2    | 2        | 2    | 2    | 2        | 2    | 2     | 2        | 2    | 2     | 2        | 2    |
| Cap, veh/h                    | 224  | 859      | 122  | 114  | 697      | 61   | 111   | 1608     | 701  | 77    | 1540     | 672  |
| Arrive On Green               | 0.13 | 0.28     | 0.28 | 0.06 | 0.21     | 0.21 | 0.02  | 0.15     | 0.15 | 0.09  | 0.87     | 0.87 |
| Sat Flow, veh/h               | 1781 | 3094     | 441  | 1781 | 3296     | 289  | 1781  | 3554     | 1549 | 1781  | 3554     | 1551 |
| Grp Volume(v), veh/h          | 196  | 373      | 371  | 91   | 238      | 244  | 106   | 829      | 77   | 77    | 735      | 205  |
| Grp Sat Flow(s).veh/h/ln      | 1781 | 1777     | 1758 | 1781 | 1777     | 1808 | 1781  | 1777     | 1549 | 1781  | 1777     | 1551 |
| Q Serve(q s), s               | 13.0 | 23.1     | 23.2 | 6.0  | 14.6     | 14.8 | 7.1   | 25.8     | 5.2  | 5.2   | 5.6      | 2.9  |
| Cycle Q Clear(q c), s         | 13.0 | 23.1     | 23.2 | 6.0  | 14.6     | 14.8 | 7.1   | 25.8     | 5.2  | 5.2   | 5.6      | 2.9  |
| Prop In Lane                  | 1.00 |          | 0.25 | 1.00 |          | 0.16 | 1.00  |          | 1.00 | 1.00  |          | 1.00 |
| Lane Grp Cap(c), veh/h        | 224  | 493      | 488  | 114  | 376      | 382  | 111   | 1608     | 701  | 77    | 1540     | 672  |
| V/C Ratio(X)                  | 0.87 | 0.76     | 0.76 | 0.80 | 0.63     | 0.64 | 0.95  | 0.52     | 0.11 | 1.00  | 0.48     | 0.30 |
| Avail Cap(c a), veh/h         | 453  | 675      | 668  | 229  | 444      | 452  | 111   | 1608     | 701  | 77    | 1540     | 672  |
| HCM Platoon Ratio             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.33  | 0.33     | 0.33 | 2.00  | 2.00     | 2.00 |
| Upstream Filter(I)            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.82  | 0.82     | 0.82 | 1.00  | 1.00     | 1.00 |
| Uniform Delay (d), s/veh      | 51.5 | 39.7     | 39.7 | 55.4 | 43.1     | 43.1 | 58.6  | 38.9     | 30.1 | 54.8  | 4.9      | 4.7  |
| Incr Delay (d2), s/veh        | 4.2  | 4.2      | 4.3  | 4.7  | 2.9      | 3.0  | 62.0  | 1.0      | 0.3  | 101.5 | 1.1      | 1.2  |
| Initial Q Delay(d3),s/veh     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln      | 5.9  | 10.4     | 10.3 | 2.8  | 6.6      | 6.8  | 5.2   | 12.5     | 2.0  | 4.4   | 1.6      | 1.0  |
| Unsig. Movement Delay, s/veh  |      |          |      |      |          |      |       |          |      |       |          |      |
| LnGrp Delay(d),s/veh          | 55.7 | 43.8     | 44.0 | 60.1 | 46.0     | 46.1 | 120.6 | 39.9     | 30.4 | 156.3 | 6.0      | 5.9  |
| LnGrp LOS                     | Е    | D        | D    | Е    | D        | D    | F     | D        | С    | F     | А        | А    |
| Approach Vol. veh/h           |      | 940      |      |      | 573      |      |       | 1012     |      |       | 1017     |      |
| Approach Delay, s/veh         |      | 46.4     |      |      | 48.3     |      |       | 47.6     |      |       | 17.3     |      |
| Approach LOS                  |      | D        |      |      | D        |      |       | D        |      |       | В        |      |
| Timer - Assigned Phs          | 1    | 2        | 3    | 4    | 5        | 6    | 7     | 8        |      |       |          |      |
| Phs Duration (G+Y+Rc), s      | 9.7  | 59.8     | 12.2 | 38.3 | 12.0     | 57.5 | 20.1  | 30.4     |      |       |          |      |
| Change Period (Y+Rc), s       | 4.5  | 5.5      | 4.5  | 5.0  | 4.5      | 5.5  | 5.0   | 5.0      |      |       |          |      |
| Max Green Setting (Gmax), s   | 5.2  | 34.3     | 15.4 | 45.6 | 7.5      | 32.0 | 30.5  | 30.0     |      |       |          |      |
| Max Q Clear Time (q. c+11), s | 7.2  | 27.8     | 8.0  | 25.2 | 9.1      | 7.6  | 15.0  | 16.8     |      |       |          |      |
| Green Ext Time (p_c), s       | 0.0  | 3.7      | 0.0  | 6.1  | 0.0      | 8.3  | 0.1   | 3.0      |      |       |          |      |
| Intersection Summary          |      |          |      |      |          |      |       |          |      |       |          |      |
| HCM 6th Ctrl Delav            |      |          | 38.7 |      |          |      |       |          |      |       |          |      |
| HCM 6th LOS                   |      |          | D    |      |          |      |       |          |      |       |          |      |

# HCM 6th Signalized Intersection Summary 7: N Azusa Ave & W San Bernardino Rd

|                              | ٠    | -        | 7    | 1    |          | •    | 1    | t    | 1    | 6    | ţ    | ~        |
|------------------------------|------|----------|------|------|----------|------|------|------|------|------|------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          | 5    | <b>1</b> |      | 5    | <b>1</b> |      | 5    | **   | 1    | 5    | **   | 1        |
| Traffic Volume (veh/h)       | 144  | 305      | 115  | 105  | 483      | 33   | 123  | 564  | 51   | 70   | 748  | 152      |
| Future Volume (veh/h)        | 144  | 305      | 115  | 105  | 483      | 33   | 123  | 564  | 51   | 70   | 748  | 152      |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 173  | 367      | 139  | 135  | 619      | 42   | 154  | 705  | 64   | 78   | 831  | 169      |
| Peak Hour Factor             | 0.83 | 0.83     | 0.83 | 0.78 | 0.78     | 0.78 | 0.80 | 0.80 | 0.80 | 0.90 | 0.90 | 0.90     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2        |
| Cap, veh/h                   | 200  | 584      | 218  | 162  | 706      | 48   | 178  | 1667 | 743  | 99   | 1508 | 673      |
| Arrive On Green              | 0.11 | 0.23     | 0.23 | 0.09 | 0.21     | 0.21 | 0.20 | 0.94 | 0.94 | 0.07 | 0.56 | 0.56     |
| Sat Flow, veh/h              | 1781 | 2532     | 945  | 1781 | 3377     | 229  | 1781 | 3554 | 1585 | 1781 | 3554 | 1585     |
| Grp Volume(v), veh/h         | 173  | 256      | 250  | 135  | 325      | 336  | 154  | 705  | 64   | 78   | 831  | 169      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1700 | 1781 | 1777     | 1829 | 1781 | 1777 | 1585 | 1781 | 1777 | 1585     |
| Q Serve(g_s), s              | 11.5 | 15.5     | 15.9 | 8.9  | 21.3     | 21.3 | 10.0 | 2.4  | 0.3  | 5.2  | 17.7 | 6.5      |
| Cycle Q Clear(g_c), s        | 11.5 | 15.5     | 15.9 | 8.9  | 21.3     | 21.3 | 10.0 | 2.4  | 0.3  | 5.2  | 17.7 | 6.5      |
| Prop In Lane                 | 1.00 |          | 0.56 | 1.00 |          | 0.13 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Lane Grp Cap(c), veh/h       | 200  | 409      | 392  | 162  | 371      | 382  | 178  | 1667 | 743  | 99   | 1508 | 673      |
| V/C Ratio(X)                 | 0.86 | 0.62     | 0.64 | 0.83 | 0.88     | 0.88 | 0.86 | 0.42 | 0.09 | 0.79 | 0.55 | 0.25     |
| Avail Cap(c_a), veh/h        | 252  | 409      | 392  | 258  | 400      | 412  | 223  | 1667 | 743  | 177  | 1508 | 673      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00 | 2.00 | 1.33 | 1.33 | 1.33     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.89 | 0.89 | 0.89 | 0.51 | 0.51 | 0.51     |
| Uniform Delay (d), s/veh     | 52.4 | 41.5     | 41.7 | 53.7 | 46.0     | 46.0 | 47.2 | 2.1  | 2.0  | 54.9 | 18.9 | 16.5     |
| Incr Delay (d2), s/veh       | 18.5 | 3.5      | 4.0  | 6.3  | 19.0     | 18.8 | 18.8 | 0.7  | 0.2  | 2.7  | 0.7  | 0.5      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/In     | 6.1  | 7.2      | 7.1  | 4.3  | 11.3     | 11.7 | 4.9  | 0.8  | 0.2  | 2.3  | 6.2  | 2.3      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 70.8 | 45.0     | 45.6 | 59.9 | 65.0     | 64.8 | 66.0 | 2.8  | 2.2  | 57.6 | 19.7 | 16.9     |
| LnGrp LOS                    | E    | D        | D    | E    | E        | E    | E    | A    | A    | E    | В    | <u> </u> |
| Approach Vol, veh/h          |      | 679      |      |      | 796      |      |      | 923  |      |      | 1078 |          |
| Approach Delay, s/veh        |      | 51.8     |      |      | 64.1     |      |      | 13.3 |      |      | 22.0 |          |
| Approach LOS                 |      | D        |      |      | E        |      |      | В    |      |      | С    |          |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5        | 6    | 7    | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 10.7 | 61.8     | 14.9 | 32.7 | 16.0     | 56.4 | 17.5 | 30.1 |      |      |      |          |
| Change Period (Y+Rc), s      | 4.0  | 5.5      | 4.0  | 5.0  | 4.0      | 5.5  | 4.0  | 5.0  |      |      |      |          |
| Max Green Setting (Gmax), s  | 11.9 | 45.6     | 17.4 | 26.6 | 15.0     | 42.5 | 17.0 | 27.0 |      |      |      |          |
| Max Q Clear Time (q c+l1), s | 7.2  | 4.4      | 10.9 | 17.9 | 12.0     | 19.7 | 13.5 | 23.3 |      |      |      |          |
| Green Ext Time (p_c), s      | 0.0  | 8.1      | 0.1  | 2.6  | 0.1      | 8.8  | 0.1  | 1.7  |      |      |      |          |
| Intersection Summary         |      |          |      |      |          |      |      |      |      |      |      |          |
| HCM 6th Ctrl Delay           |      |          | 35.1 |      |          |      |      |      |      |      |      |          |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |      |      |      |      |          |

# HCM 6th Signalized Intersection Summary 7: N Azusa Ave & W San Bernardino Rd

|                              | ٠    | -+       | $\mathbf{r}$ | 1    | +        | *    | 1    | t        | 1    | 1    | ŧ        | ~    |
|------------------------------|------|----------|--------------|------|----------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | 7    | <b>1</b> |              | 5    | <b>1</b> |      | 5    | <b>^</b> | 1    | 5    | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 158  | 444      | 139          | 118  | 293      | 53   | 109  | 679      | 60   | 141  | 752      | 140  |
| Future Volume (veh/h)        | 158  | 444      | 139          | 118  | 293      | 53   | 109  | 679      | 60   | 141  | 752      | 140  |
| Initial Q (Qb), veh          | 0    | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.93         | 1.00 |          | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |              |      | No       |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870         | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 163  | 458      | 143          | 140  | 349      | 63   | 118  | 738      | 65   | 152  | 809      | 151  |
| Peak Hour Factor             | 0.97 | 0.97     | 0.97         | 0.84 | 0.84     | 0.84 | 0.92 | 0.92     | 0.92 | 0.93 | 0.93     | 0.93 |
| Percent Heavy Veh, %         | 2    | 2        | 2            | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 190  | 540      | 167          | 167  | 578      | 103  | 142  | 1589     | 692  | 177  | 1658     | 724  |
| Arrive On Green              | 0.11 | 0.21     | 0.21         | 0.09 | 0.19     | 0.19 | 0.16 | 0.89     | 0.89 | 0.13 | 0.62     | 0.62 |
| Sat Flow, veh/h              | 1781 | 2623     | 810          | 1781 | 3001     | 535  | 1781 | 3554     | 1547 | 1781 | 3554     | 1551 |
| Grp Volume(v), veh/h         | 163  | 309      | 292          | 140  | 205      | 207  | 118  | 738      | 65   | 152  | 809      | 151  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1656         | 1781 | 1777     | 1760 | 1781 | 1777     | 1547 | 1781 | 1777     | 1551 |
| Q Serve(g_s), s              | 10.8 | 20.0     | 20.4         | 9.3  | 12.6     | 12.9 | 7.7  | 4.5      | 0.6  | 10.0 | 14.9     | 5.1  |
| Cycle Q Clear(g_c), s        | 10.8 | 20.0     | 20.4         | 9.3  | 12.6     | 12.9 | 7.7  | 4.5      | 0.6  | 10.0 | 14.9     | 5.1  |
| Prop In Lane                 | 1.00 |          | 0.49         | 1.00 |          | 0.30 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 190  | 366      | 341          | 167  | 342      | 339  | 142  | 1589     | 692  | 177  | 1658     | 724  |
| V/C Ratio(X)                 | 0.86 | 0.84     | 0.86         | 0.84 | 0.60     | 0.61 | 0.83 | 0.46     | 0.09 | 0.86 | 0.49     | 0.21 |
| Avail Cap(c_a), veh/h        | 252  | 394      | 367          | 258  | 400      | 396  | 223  | 1589     | 692  | 177  | 1658     | 724  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00 | 1.33 | 1.33     | 1.33 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 0.83 | 0.83     | 0.83 | 0.51 | 0.51     | 0.51 |
| Uniform Delay (d), s/veh     | 52.7 | 45.8     | 46.0         | 53.5 | 44.2     | 44.3 | 49.6 | 3.7      | 3.5  | 51.3 | 15.0     | 13.1 |
| Incr Delay (d2), s/veh       | 15.8 | 15.3     | 18.0         | 7.9  | 2.5      | 2.8  | 6.4  | 0.8      | 0.2  | 18.4 | 0.5      | 0.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 5.7  | 10.4     | 10.1         | 4.5  | 5.8      | 5.9  | 3.4  | 1.3      | 0.2  | 5.2  | 5.1      | 1.8  |
| Unsig. Movement Delay, s/veh |      |          |              |      |          |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 68.5 | 61.1     | 63.9         | 61.4 | 46.7     | 47.1 | 56.1 | 4.6      | 3.8  | 69.7 | 15.5     | 13.4 |
| LnGrp LOS                    | E    | E        | E            | E    | D        | D    | E    | A        | A    | E    | В        | B    |
| Approach Vol, veh/h          |      | 764      |              |      | 552      |      |      | 921      |      |      | 1112     |      |
| Approach Delay, s/veh        |      | 63.8     |              |      | 50.6     |      |      | 11.1     |      |      | 22.6     |      |
| Approach LOS                 |      | E        |              |      | D        |      |      | В        |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 15.9 | 59.2     | 15.3         | 29.7 | 13.6     | 61.5 | 16.8 | 28.1     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.0  | 5.5      | 4.0          | 5.0  | 4.0      | 5.5  | 4.0  | 5.0      |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.9 | 45.6     | 17.4         | 26.6 | 15.0     | 42.5 | 17.0 | 27.0     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 12.0 | 6.5      | 11.3         | 22.4 | 9.7      | 16.9 | 12.8 | 14.9     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 8.5      | 0.1          | 1.8  | 0.1      | 8.9  | 0.1  | 2.6      |      |      |          |      |
| Intersection Summary         |      |          |              |      |          |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |          | 33.5         |      |          |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |          | С            |      |          |      |      |          |      |      |          |      |

# HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ٠    | -+       | 7    | 1    | +        | *    | 1    | t        | 1    | 1    | ŧ        | ~        |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | 7    | <b>^</b> | 1    | 7    | <b>^</b> | 1    | 5    | <b>^</b> | 1    | 7    | <b>^</b> | 1        |
| Traffic Volume (veh/h)       | 67   | 414      | 102  | 81   | 726      | 34   | 235  | 630      | 119  | 89   | 728      | 133      |
| Future Volume (veh/h)        | 67   | 414      | 102  | 81   | 726      | 34   | 235  | 630      | 119  | 89   | 728      | 133      |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 83   | 511      | 126  | 88   | 789      | 37   | 264  | 708      | 134  | 100  | 818      | 149      |
| Peak Hour Factor             | 0.81 | 0.81     | 0.81 | 0.92 | 0.92     | 0.92 | 0.89 | 0.89     | 0.89 | 0.89 | 0.89     | 0.89     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        |
| Cap, veh/h                   | 105  | 860      | 384  | 111  | 872      | 389  | 291  | 1649     | 735  | 123  | 1314     | 586      |
| Arrive On Green              | 0.06 | 0.24     | 0.24 | 0.06 | 0.25     | 0.25 | 0.16 | 0.46     | 0.46 | 0.14 | 0.74     | 0.74     |
| Sat Flow, veh/h              | 1781 | 3554     | 1585 | 1781 | 3554     | 1585 | 1781 | 3554     | 1585 | 1781 | 3554     | 1585     |
| Grp Volume(v), veh/h         | 83   | 511      | 126  | 88   | 789      | 37   | 264  | 708      | 134  | 100  | 818      | 149      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1585 | 1781 | 1777     | 1585 | 1781 | 1777     | 1585 | 1781 | 1777     | 1585     |
| Q Serve(g_s), s              | 5.5  | 15.3     | 7.9  | 5.8  | 25.8     | 2.2  | 17.5 | 16.0     | 5.9  | 6.5  | 13.3     | 3.6      |
| Cycle Q Clear(g_c), s        | 5.5  | 15.3     | 7.9  | 5.8  | 25.8     | 2.2  | 17.5 | 16.0     | 5.9  | 6.5  | 13.3     | 3.6      |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 105  | 860      | 384  | 111  | 872      | 389  | 291  | 1649     | 735  | 123  | 1314     | 586      |
| V/C Ratio(X)                 | 0.79 | 0.59     | 0.33 | 0.80 | 0.90     | 0.10 | 0.91 | 0.43     | 0.18 | 0.81 | 0.62     | 0.25     |
| Avail Cap(c_a), veh/h        | 126  | 888      | 396  | 141  | 918      | 409  | 319  | 1649     | 735  | 200  | 1314     | 586      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.75 | 0.75     | 0.75     |
| Uniform Delay (d), s/veh     | 55.7 | 40.2     | 37.4 | 55.5 | 43.9     | 35.0 | 49.3 | 21.5     | 18.8 | 50.9 | 11.6     | 10.3     |
| Incr Delay (d2), s/veh       | 24.1 | 1.0      | 0.5  | 21.1 | 11.9     | 0.1  | 26.7 | 0.8      | 0.5  | 9.1  | 1.7      | 0.8      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/In     | 3.2  | 6.8      | 3.1  | 3.3  | 12.7     | 0.9  | 9.8  | 6.6      | 2.3  | 3.0  | 3.6      | 1.3      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 79.8 | 41.3     | 37.9 | 76.6 | 55.9     | 35.1 | 76.0 | 22.3     | 19.4 | 60.1 | 13.3     | 11.1     |
| LnGrp LOS                    | E    | D        | D    | E    | E        | D    | E    | С        | В    | E    | В        | <u> </u> |
| Approach Vol, veh/h          |      | 720      |      |      | 914      |      |      | 1106     |      |      | 1067     |          |
| Approach Delay, s/veh        |      | 45.1     |      |      | 57.0     |      |      | 34.8     |      |      | 17.4     |          |
| Approach LOS                 |      | D        |      |      | E        |      |      | С        |      |      | В        |          |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 12.8 | 61.2     | 12.0 | 34.1 | 24.1     | 49.9 | 11.6 | 34.5     |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 5.0  | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |          |
| Max Green Setting (Gmax), s  | 13.5 | 47.5     | 9.5  | 30.0 | 21.5     | 39.5 | 8.5  | 31.0     |      |      |          |          |
| Max Q Clear Time (g_c+l1), s | 8.5  | 18.0     | 7.8  | 17.3 | 19.5     | 15.3 | 7.5  | 27.8     |      |      |          |          |
| Green Ext Time (p_c), s      | 0.1  | 5.5      | 0.0  | 3.1  | 0.2      | 6.2  | 0.0  | 1.6      |      |      |          |          |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delay           |      |          | 37.2 |      |          |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |          |      |      |          |          |

# HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ٠    | -+       | 7    | 1    | +        | *    | 1    | t        | 1    | 1    | ŧ        | ~        |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | 7    | <b>^</b> | 1        |
| Traffic Volume (veh/h)       | 98   | 591      | 129  | 175  | 443      | 79   | 143  | 675      | 96   | 115  | 825      | 86       |
| Future Volume (veh/h)        | 98   | 591      | 129  | 175  | 443      | 79   | 143  | 675      | 96   | 115  | 825      | 86       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.95 | 1.00 |          | 0.99 | 1.00 |          | 0.98 | 1.00 |          | 0.97     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 107  | 642      | 140  | 186  | 471      | 84   | 155  | 734      | 104  | 134  | 959      | 100      |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.94 | 0.94     | 0.94 | 0.92 | 0.92     | 0.92 | 0.86 | 0.86     | 0.86     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        |
| Cap, veh/h                   | 133  | 781      | 331  | 214  | 943      | 415  | 182  | 1450     | 636  | 159  | 1404     | 608      |
| Arrive On Green              | 0.07 | 0.22     | 0.22 | 0.12 | 0.27     | 0.27 | 0.10 | 0.41     | 0.41 | 0.18 | 0.79     | 0.79     |
| Sat Flow, veh/h              | 1781 | 3554     | 1505 | 1781 | 3554     | 1562 | 1781 | 3554     | 1558 | 1781 | 3554     | 1539     |
| Grp Volume(v), veh/h         | 107  | 642      | 140  | 186  | 471      | 84   | 155  | 734      | 104  | 134  | 959      | 100      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1505 | 1781 | 1777     | 1562 | 1781 | 1777     | 1558 | 1781 | 1777     | 1539     |
| Q Serve(g_s), s              | 7.1  | 20.6     | 9.6  | 12.3 | 13.5     | 5.0  | 10.3 | 18.5     | 5.1  | 8.7  | 14.7     | 1.9      |
| Cycle Q Clear(g_c), s        | 7.1  | 20.6     | 9.6  | 12.3 | 13.5     | 5.0  | 10.3 | 18.5     | 5.1  | 8.7  | 14.7     | 1.9      |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 133  | 781      | 331  | 214  | 943      | 415  | 182  | 1450     | 636  | 159  | 1404     | 608      |
| V/C Ratio(X)                 | 0.81 | 0.82     | 0.42 | 0.87 | 0.50     | 0.20 | 0.85 | 0.51     | 0.16 | 0.84 | 0.68     | 0.16     |
| Avail Cap(c_a), veh/h        | 220  | 829      | 351  | 260  | 943      | 415  | 215  | 1450     | 636  | 246  | 1404     | 608      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.75 | 0.75     | 0.75     |
| Uniform Delay (d), s/veh     | 54.7 | 44.6     | 40.3 | 51.9 | 37.3     | 34.2 | 53.0 | 26.5     | 22.5 | 48.4 | 9.1      | 7.8      |
| Incr Delay (d2), s/veh       | 10.8 | 6.4      | 0.9  | 22.4 | 0.4      | 0.2  | 23.4 | 1.3      | 0.6  | 11.0 | 2.0      | 0.4      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 3.6  | 9.8      | 3.6  | 6.8  | 5.9      | 1.9  | 5.7  | 7.8      | 2.0  | 4.0  | 3.5      | 0.7      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 65.5 | 51.0     | 41.1 | 74.2 | 37.7     | 34.5 | 76.4 | 27.8     | 23.1 | 59.4 | 11.2     | 8.2      |
| LnGrp LOS                    | E    | D        | D    | E    | D        | С    | E    | С        | С    | E    | В        | <u>A</u> |
| Approach Vol, veh/h          |      | 889      |      |      | 741      |      |      | 993      |      |      | 1193     |          |
| Approach Delay, s/veh        |      | 51.2     |      |      | 46.5     |      |      | 34.9     |      |      | 16.4     |          |
| Approach LOS                 |      | D        |      |      | D        |      |      | С        |      |      | В        |          |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 15.2 | 54.5     | 18.9 | 31.4 | 16.8     | 52.9 | 13.4 | 36.9     |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 5.0  | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |          |
| Max Green Setting (Gmax), s  | 16.6 | 38.4     | 17.5 | 28.0 | 14.5     | 40.5 | 14.8 | 30.7     |      |      |          |          |
| Max Q Clear Time (g_c+l1), s | 10.7 | 20.5     | 14.3 | 22.6 | 12.3     | 16.7 | 9.1  | 15.5     |      |      |          |          |
| Green Ext Time (p_c), s      | 0.1  | 4.8      | 0.1  | 2.2  | 0.1      | 7.3  | 0.1  | 3.0      |      |      |          |          |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delay           |      |          | 35.1 |      |          |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |          |      |      |          |          |
# Michael Baker

# Appendix D: Opening Year 2026 Without Project Synchro Worksheets

### HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                              | ٠    | -+       | $\mathbf{r}$ | 1    | +        | •    | 1    | Ť        | 1    | 1    | ŧ          | ~        |
|------------------------------|------|----------|--------------|------|----------|------|------|----------|------|------|------------|----------|
| Movement                     | EBL  | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT        | SBR      |
| Lane Configurations          | ካካ   | <b>^</b> | 1            | 5    | <b>^</b> | 1    | ሻሻ   | <b>1</b> |      | ካካ   | <b>†</b> Ъ |          |
| Traffic Volume (veh/h)       | 164  | 502      | 118          | 67   | 730      | 57   | 238  | 381      | 91   | 92   | 440        | 155      |
| Future Volume (veh/h)        | 164  | 502      | 118          | 67   | 730      | 57   | 238  | 381      | 91   | 92   | 440        | 155      |
| Initial Q (Qb), veh          | 0    | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0          | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.95         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |            | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00       | 1.00     |
| Work Zone On Approach        |      | No       |              |      | No       |      |      | No       |      |      | No         |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870         | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870       | 1870     |
| Adj Flow Rate, veh/h         | 171  | 523      | 123          | 71   | 768      | 60   | 262  | 419      | 100  | 112  | 537        | 189      |
| Peak Hour Factor             | 0.96 | 0.96     | 0.96         | 0.95 | 0.95     | 0.95 | 0.91 | 0.91     | 0.91 | 0.82 | 0.82       | 0.82     |
| Percent Heavy Veh, %         | 2    | 2        | 2            | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2          | 2        |
| Cap, veh/h                   | 228  | 982      | 567          | 91   | 928      | 414  | 328  | 1330     | 315  | 166  | 1082       | 379      |
| Arrive On Green              | 0.07 | 0.28     | 0.28         | 0.05 | 0.26     | 0.26 | 0.03 | 0.15     | 0.15 | 0.05 | 0.42       | 0.42     |
| Sat Flow, veh/h              | 3456 | 3554     | 1508         | 1781 | 3554     | 1585 | 3456 | 2851     | 675  | 3456 | 2580       | 905      |
| Grp Volume(v), veh/h         | 171  | 523      | 123          | 71   | 768      | 60   | 262  | 260      | 259  | 112  | 369        | 357      |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 1777     | 1508         | 1781 | 1777     | 1585 | 1728 | 1777     | 1749 | 1728 | 1777       | 1708     |
| Q Serve(g_s), s              | 5.8  | 15.0     | 6.7          | 4.7  | 24.4     | 3.5  | 9.0  | 15.6     | 15.8 | 3.8  | 18.3       | 18.4     |
| Cycle Q Clear(g_c), s        | 5.8  | 15.0     | 6.7          | 4.7  | 24.4     | 3.5  | 9.0  | 15.6     | 15.8 | 3.8  | 18.3       | 18.4     |
| Prop In Lane                 | 1.00 |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 0.39 | 1.00 |            | 0.53     |
| Lane Grp Cap(c), veh/h       | 228  | 982      | 567          | 91   | 928      | 414  | 328  | 829      | 816  | 166  | 745        | 716      |
| V/C Ratio(X)                 | 0.75 | 0.53     | 0.22         | 0.78 | 0.83     | 0.14 | 0.80 | 0.31     | 0.32 | 0.68 | 0.50       | 0.50     |
| Avail Cap(c_a), veh/h        | 302  | 1111     | 622          | 156  | 1111     | 495  | 446  | 829      | 816  | 245  | 745        | 716      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 0.33 | 0.33     | 0.33 | 1.00 | 1.00       | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 0.92 | 0.92     | 0.92 | 1.00 | 1.00       | 1.00     |
| Uniform Delay (d), s/veh     | 55.1 | 36.9     | 25.8         | 56.3 | 41.8     | 34.0 | 57.0 | 33.7     | 33.8 | 56.2 | 25.5       | 25.6     |
| Incr Delay (d2), s/veh       | 7.0  | 0.6      | 0.3          | 13.4 | 5.0      | 0.2  | 6.6  | 0.9      | 0.9  | 4.7  | 2.3        | 2.5      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0        | 0.0      |
| %ile BackOfQ(50%),veh/In     | 2.7  | 6.4      | 2.4          | 2.4  | 11.0     | 1.3  | 4.4  | 7.6      | 7.6  | 1.8  | 8.0        | 7.7      |
| Unsig. Movement Delay, s/veh |      |          |              |      |          |      |      |          |      |      |            |          |
| LnGrp Delay(d),s/veh         | 62.1 | 37.5     | 26.1         | 69.6 | 46.8     | 34.3 | 63.6 | 34.6     | 34.7 | 61.0 | 27.9       | 28.0     |
| LnGrp LOS                    | E    | D        | С            | E    | D        | С    | E    | С        | С    | E    | С          | <u> </u> |
| Approach Vol, veh/h          |      | 817      |              |      | 899      |      |      | 781      |      |      | 838        |          |
| Approach Delay, s/veh        |      | 40.9     |              |      | 47.7     |      |      | 44.4     |      |      | 32.4       |          |
| Approach LOS                 |      | D        |              |      | D        |      |      | D        |      |      | С          |          |
| Timer - Assigned Phs         | 1    | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |            |          |
| Phs Duration (G+Y+Rc), s     | 10.3 | 61.5     | 10.6         | 37.7 | 15.9     | 55.8 | 12.4 | 35.9     |      |      |            |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5          | 4.5  | 4.5      | 5.5  | 4.5  | 4.5      |      |      |            |          |
| Max Green Setting (Gmax), s  | 8.5  | 44.5     | 10.5         | 37.5 | 15.5     | 37.5 | 10.5 | 37.5     |      |      |            |          |
| Max Q Clear Time (g_c+I1), s | 5.8  | 17.8     | 6.7          | 17.0 | 11.0     | 20.4 | 7.8  | 26.4     |      |      |            |          |
| Green Ext Time (p_c), s      | 0.1  | 4.4      | 0.0          | 5.0  | 0.4      | 5.5  | 0.1  | 4.9      |      |      |            |          |
| Intersection Summary         |      |          |              |      |          |      |      |          |      |      |            |          |
| HCM 6th Ctrl Delay           |      |          | 41.4         |      |          |      |      |          |      |      |            |          |
| HCM 6th LOS                  |      |          | D            |      |          |      |      |          |      |      |            |          |

#### Notes

User approved changes to right turn type.

## HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                              | ٠    |          | 7    | 1    | -    | •    | 1    | Ť        | 1    | 1    | ţ        | ~    |
|------------------------------|------|----------|------|------|------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ካካ   | <b>^</b> | 1    | 5    | **   | 1    | ሻሻ   | <b>1</b> |      | ካካ   | <b>1</b> |      |
| Traffic Volume (veh/h)       | 253  | 875      | 136  | 177  | 456  | 107  | 201  | 532      | 137  | 206  | 529      | 101  |
| Future Volume (veh/h)        | 253  | 875      | 136  | 177  | 456  | 107  | 201  | 532      | 137  | 206  | 529      | 101  |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.94 | 1.00 |      | 0.97 | 1.00 |          | 0.96 | 1.00 |          | 0.96 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No   |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 291  | 1006     | 156  | 192  | 496  | 116  | 223  | 591      | 152  | 224  | 575      | 110  |
| Peak Hour Factor             | 0.87 | 0.87     | 0.87 | 0.92 | 0.92 | 0.92 | 0.90 | 0.90     | 0.90 | 0.92 | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 355  | 1123     | 601  | 220  | 1197 | 517  | 281  | 891      | 229  | 280  | 949      | 181  |
| Arrive On Green              | 0.10 | 0.32     | 0.32 | 0.12 | 0.34 | 0.34 | 0.03 | 0.11     | 0.11 | 0.08 | 0.32     | 0.32 |
| Sat Flow, veh/h              | 3456 | 3554     | 1496 | 1781 | 3554 | 1534 | 3456 | 2774     | 711  | 3456 | 2956     | 564  |
| Grp Volume(v), veh/h         | 291  | 1006     | 156  | 192  | 496  | 116  | 223  | 378      | 365  | 224  | 345      | 340  |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 1777     | 1496 | 1781 | 1777 | 1534 | 1728 | 1777     | 1709 | 1728 | 1777     | 1743 |
| Q Serve(g_s), s              | 9.9  | 32.4     | 8.4  | 12.7 | 12.9 | 6.5  | 7.7  | 24.5     | 24.7 | 7.6  | 19.6     | 19.8 |
| Cycle Q Clear(g_c), s        | 9.9  | 32.4     | 8.4  | 12.7 | 12.9 | 6.5  | 7.7  | 24.5     | 24.7 | 7.6  | 19.6     | 19.8 |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 0.42 | 1.00 |          | 0.32 |
| Lane Grp Cap(c), veh/h       | 355  | 1123     | 601  | 220  | 1197 | 517  | 281  | 571      | 549  | 280  | 570      | 559  |
| V/C Ratio(X)                 | 0.82 | 0.90     | 0.26 | 0.87 | 0.41 | 0.22 | 0.79 | 0.66     | 0.67 | 0.80 | 0.60     | 0.61 |
| Avail Cap(c_a), veh/h        | 478  | 1170     | 621  | 260  | 1197 | 517  | 302  | 571      | 549  | 305  | 570      | 559  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.33     | 0.33 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 | 0.93     | 0.93 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 52.8 | 39.2     | 24.3 | 51.7 | 30.7 | 28.5 | 57.4 | 47.4     | 47.4 | 54.2 | 34.3     | 34.4 |
| Incr Delay (d2), s/veh       | 8.1  | 9.3      | 0.3  | 23.6 | 0.3  | 0.3  | 12.0 | 5.5      | 5.8  | 13.2 | 4.7      | 4.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 4.6  | 14.9     | 2.9  | 7.0  | 5.4  | 2.4  | 3.9  | 12.5     | 12.2 | 3.8  | 9.0      | 8.9  |
| Unsig. Movement Delay, s/veh |      |          |      |      |      |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 60.9 | 48.4     | 24.7 | 75.2 | 31.0 | 28.9 | 69.4 | 52.9     | 53.3 | 67.4 | 39.0     | 39.2 |
| LnGrp LOS                    | Е    | D        | С    | Е    | С    | С    | Е    | D        | D    | E    | D        | D    |
| Approach Vol, veh/h          |      | 1453     |      |      | 804  |      |      | 966      |      |      | 909      |      |
| Approach Delay, s/veh        |      | 48.4     |      |      | 41.3 |      |      | 56.8     |      |      | 46.1     |      |
| Approach LOS                 |      | D        |      |      | D    |      |      | Е        |      |      | D        |      |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5    | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 14.2 | 44.1     | 19.3 | 42.4 | 14.3 | 44.0 | 16.8 | 44.9     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 4.5  | 4.5  | 5.5  | 4.5  | 4.5      |      |      |          |      |
| Max Green Setting (Gmax), s  | 10.6 | 33.4     | 17.5 | 39.5 | 10.5 | 33.5 | 16.6 | 40.4     |      |      |          |      |
| Max Q Clear Time (q c+l1), s | 9.6  | 26.7     | 14.7 | 34.4 | 9.7  | 21.8 | 11.9 | 14.9     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.1  | 3.1      | 0.1  | 3.5  | 0.1  | 4.2  | 0.4  | 5.0      |      |      |          |      |
| Intersection Summarv         |      |          |      |      |      |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delav           |      |          | 48.5 |      |      |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |          | D    |      |      |      |      |          |      |      |          |      |
| Notes                        |      |          |      |      |      |      |      |          |      |      |          |      |

User approved changes to right turn type.

## HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ٠    | -+   | 7    | 1     | -     | •    | 1    | Ť        | 1    | 1    | ŧ        | ~    |
|------------------------------|------|------|------|-------|-------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT  | EBR  | WBL   | WBT   | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          |      | 4    |      |       | 4     | 1    | 7    | <b>^</b> | 1    | 7    | <b>1</b> |      |
| Traffic Volume (veh/h)       | 14   | 18   | 28   | 260   | 25    | 188  | 83   | 585      | 148  | 63   | 594      | 17   |
| Future Volume (veh/h)        | 14   | 18   | 28   | 260   | 25    | 188  | 83   | 585      | 148  | 63   | 594      | 17   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0     | 0     | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.99 | 1.00  |       | 0.98 | 1.00 |          | 0.97 | 1.00 |          | 0.95 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No   |      |       | No    |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870 | 1870  | 1870  | 1870 | 1870 | 1870     | 1945 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 20   | 25   | 39   | 310   | 30    | 224  | 104  | 731      | 185  | 68   | 639      | 18   |
| Peak Hour Factor             | 0.71 | 0.71 | 0.71 | 0.84  | 0.84  | 0.84 | 0.80 | 0.80     | 0.80 | 0.93 | 0.93     | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 37   | 49   | 43   | 251   | 19    | 679  | 230  | 1395     | 625  | 88   | 1101     | 31   |
| Arrive On Green              | 0.44 | 0.44 | 0.44 | 0.44  | 0.44  | 0.44 | 0.26 | 0.79     | 0.79 | 0.02 | 0.10     | 0.10 |
| Sat Flow, veh/h              | 0    | 112  | 97   | 442   | 43    | 1552 | 1781 | 3554     | 1593 | 1781 | 3524     | 99   |
| Grp Volume(v), veh/h         | 84   | 0    | 0    | 340   | 0     | 224  | 104  | 731      | 185  | 68   | 322      | 335  |
| Grp Sat Flow(s),veh/h/ln     | 209  | 0    | 0    | 485   | 0     | 1552 | 1781 | 1777     | 1593 | 1781 | 1777     | 1846 |
| Q Serve(q s), s              | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 11.4 | 5.9  | 9.0      | 3.9  | 4.6  | 20.7     | 20.8 |
| Cycle Q Clear(q c), s        | 52.5 | 0.0  | 0.0  | 52.5  | 0.0   | 11.4 | 5.9  | 9.0      | 3.9  | 4.6  | 20.7     | 20.8 |
| Prop In Lane                 | 0.24 |      | 0.46 | 0.91  |       | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 0.05 |
| Lane Grp Cap(c), veh/h       | 129  | 0    | 0    | 269   | 0     | 679  | 230  | 1395     | 625  | 88   | 555      | 577  |
| V/C Ratio(X)                 | 0.65 | 0.00 | 0.00 | 1.26  | 0.00  | 0.33 | 0.45 | 0.52     | 0.30 | 0.78 | 0.58     | 0.58 |
| Avail Cap(c a), veh/h        | 129  | 0    | 0    | 269   | 0     | 679  | 230  | 1395     | 625  | 171  | 555      | 577  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 | 2.00 | 2.00     | 2.00 | 0.33 | 0.33     | 0.33 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00 | 1.00  | 0.00  | 1.00 | 1.00 | 1.00     | 1.00 | 0.85 | 0.85     | 0.85 |
| Uniform Delay (d), s/veh     | 28.8 | 0.0  | 0.0  | 39.3  | 0.0   | 22.2 | 40.9 | 8.8      | 8.3  | 58.4 | 46.3     | 46.3 |
| Incr Delay (d2), s/veh       | 12.6 | 0.0  | 0.0  | 144.3 | 0.0   | 0.4  | 6.3  | 1.4      | 1.2  | 4.7  | 3.7      | 3.6  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.9  | 0.0  | 0.0  | 19.0  | 0.0   | 4.2  | 2.8  | 2.6      | 1.4  | 2.2  | 10.4     | 10.8 |
| Unsig. Movement Delay, s/veh |      |      |      |       |       |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 41.4 | 0.0  | 0.0  | 183.6 | 0.0   | 22.6 | 47.2 | 10.2     | 9.5  | 63.0 | 50.0     | 49.9 |
| LnGrp LOS                    | D    | А    | А    | F     | А     | С    | D    | В        | А    | E    | D        | D    |
| Approach Vol. veh/h          |      | 84   |      |       | 564   |      |      | 1020     |      |      | 725      |      |
| Approach Delay, s/yeh        |      | 41.4 |      |       | 119.7 |      |      | 13.9     |      |      | 51.2     |      |
| Approach LOS                 |      | D    |      |       | F     |      |      | В        |      |      | D        |      |
| Timer - Assigned Phs         | 1    | 2    |      | 4     | 5     | 6    |      | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 10.4 | 52.6 |      | 57.0  | 20.0  | 43.0 |      | 57.0     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |      | 4.5   | 4.5   | 5.5  |      | 4.5      |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |      | 52.5  | 15.5  | 37.5 |      | 52.5     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 6.6  | 11.0 |      | 54.5  | 7.9   | 22.8 |      | 54.5     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 8.8  |      | 0.0   | 0.0   | 4.5  |      | 0.0      |      |      |          |      |
| Intersection Summary         |      |      |      |       |       |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |      | 51.1 |       |       |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |      | D    |       |       |      |      |          |      |      |          |      |

## HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ٠    | -+   | $\mathbf{r}$ | 1    | +    | •    | 1    | Ť        | 1    | 1    | ŧ        | ~    |
|------------------------------|------|------|--------------|------|------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          |      | 4    |              |      | ŧ    | 1    | 7    | <b>^</b> | 1    | 7    | <b>1</b> |      |
| Traffic Volume (veh/h)       | 28   | 26   | 30           | 135  | 32   | 131  | 68   | 706      | 166  | 150  | 826      | 33   |
| Future Volume (veh/h)        | 28   | 26   | 30           | 135  | 32   | 131  | 68   | 706      | 166  | 150  | 826      | 33   |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.97         | 0.99 |      | 0.97 | 1.00 |          | 0.99 | 1.00 |          | 0.96 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No   |              |      | No   |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870         | 1870 | 1870 | 1870 | 1870 | 1870     | 1945 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 36   | 33   | 38           | 145  | 34   | 141  | 73   | 759      | 178  | 161  | 888      | 35   |
| Peak Hour Factor             | 0.78 | 0.78 | 0.78         | 0.93 | 0.93 | 0.93 | 0.93 | 0.93     | 0.93 | 0.93 | 0.93     | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2            | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 67   | 62   | 49           | 233  | 45   | 434  | 230  | 1779     | 814  | 171  | 1626     | 64   |
| Arrive On Green              | 0.28 | 0.28 | 0.28         | 0.28 | 0.28 | 0.28 | 0.26 | 1.00     | 1.00 | 0.03 | 0.15     | 0.15 |
| Sat Flow, veh/h              | 96   | 218  | 173          | 632  | 160  | 1536 | 1781 | 3554     | 1626 | 1781 | 3479     | 137  |
| Grp Volume(v), veh/h         | 107  | 0    | 0            | 179  | 0    | 141  | 73   | 759      | 178  | 161  | 454      | 469  |
| Grp Sat Flow(s),veh/h/ln     | 487  | 0    | 0            | 793  | 0    | 1536 | 1781 | 1777     | 1626 | 1781 | 1777     | 1839 |
| Q Serve(g_s), s              | 3.9  | 0.0  | 0.0          | 0.0  | 0.0  | 8.7  | 4.0  | 0.0      | 0.0  | 10.8 | 28.3     | 28.3 |
| Cycle Q Clear(g_c), s        | 31.2 | 0.0  | 0.0          | 27.4 | 0.0  | 8.7  | 4.0  | 0.0      | 0.0  | 10.8 | 28.3     | 28.3 |
| Prop In Lane                 | 0.34 |      | 0.36         | 0.81 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 0.07 |
| Lane Grp Cap(c), veh/h       | 178  | 0    | 0            | 278  | 0    | 434  | 230  | 1779     | 814  | 171  | 830      | 860  |
| V/C Ratio(X)                 | 0.60 | 0.00 | 0.00         | 0.64 | 0.00 | 0.32 | 0.32 | 0.43     | 0.22 | 0.94 | 0.55     | 0.55 |
| Avail Cap(c_a), veh/h        | 407  | 0    | 0            | 494  | 0    | 672  | 230  | 1779     | 814  | 171  | 830      | 860  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 2.00 | 2.00     | 2.00 | 0.33 | 0.33     | 0.33 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00         | 1.00 | 0.00 | 1.00 | 1.00 | 1.00     | 1.00 | 0.71 | 0.71     | 0.71 |
| Uniform Delay (d), s/veh     | 40.9 | 0.0  | 0.0          | 40.5 | 0.0  | 34.0 | 40.2 | 0.0      | 0.0  | 57.8 | 39.0     | 39.0 |
| Incr Delay (d2), s/veh       | 4.6  | 0.0  | 0.0          | 3.5  | 0.0  | 0.6  | 3.6  | 0.8      | 0.6  | 42.1 | 1.8      | 1.8  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 3.4  | 0.0  | 0.0          | 5.2  | 0.0  | 3.3  | 1.9  | 0.2      | 0.1  | 7.1  | 13.9     | 14.3 |
| Unsig. Movement Delay, s/veh |      |      |              |      |      |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 45.5 | 0.0  | 0.0          | 44.0 | 0.0  | 34.6 | 43.8 | 0.8      | 0.6  | 99.8 | 40.8     | 40.8 |
| LnGrp LOS                    | D    | А    | А            | D    | А    | С    | D    | А        | А    | F    | D        | D    |
| Approach Vol, veh/h          |      | 107  |              |      | 320  |      |      | 1010     |      |      | 1084     |      |
| Approach Delay, s/veh        |      | 45.5 |              |      | 39.9 |      |      | 3.8      |      |      | 49.6     |      |
| Approach LOS                 |      | D    |              |      | D    |      |      | А        |      |      | D        |      |
| Timer - Assigned Phs         | 1    | 2    |              | 4    | 5    | 6    |      | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 16.0 | 65.6 |              | 38.4 | 20.0 | 61.6 |      | 38.4     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |              | 4.5  | 4.5  | 5.5  |      | 4.5      |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |              | 52.5 | 15.5 | 37.5 |      | 52.5     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 12.8 | 2.0  |              | 33.2 | 6.0  | 30.3 |      | 29.4     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 9.7  |              | 0.7  | 0.0  | 4.0  |      | 2.3      |      |      |          |      |
| Intersection Summary         |      |      |              |      |      |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |      | 29.8         |      |      |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |      | С            |      |      |      |      |          |      |      |          |      |

| Int Delay, s/veh       | 0.1    |      |      |      |      |      |
|------------------------|--------|------|------|------|------|------|
| Movement               | WBL    | WBR  | NBT  | NBR  | SBL  | SBT  |
| Lane Configurations    |        | 1    | **   | 1    | 5    | **   |
| Traffic Vol, veh/h     | 0      | 6    | 816  | 4    | 5    | 971  |
| Future Vol, veh/h      | 0      | 6    | 816  | 4    | 5    | 971  |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop   | Stop | Free | Free | Free | Free |
| RT Channelized         | -      | None | -    | None | -    | None |
| Storage Length         | -      | 0    | -    | 150  | 80   | -    |
| Veh in Median Storage  | e, # 0 | -    | 0    | -    | -    | 0    |
| Grade, %               | 0      | -    | 0    | -    | -    | 0    |
| Peak Hour Factor       | 92     | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2      | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0      | 7    | 887  | 4    | 5    | 1055 |

| Major/Minor          | Minor1 | Μ    | lajor1 | Ν | 1ajor2 |   |  |  |
|----------------------|--------|------|--------|---|--------|---|--|--|
| Conflicting Flow All | -      | 444  | 0      | 0 | 891    | 0 |  |  |
| Stage 1              | -      | -    | -      | - | -      | - |  |  |
| Stage 2              | -      | -    | -      | - | -      | - |  |  |
| Critical Hdwy        | -      | 6.94 | -      | - | 4.14   | - |  |  |
| Critical Hdwy Stg 1  | -      | -    | -      | - | -      | - |  |  |
| Critical Hdwy Stg 2  | -      | -    | -      | - | -      | - |  |  |
| Follow-up Hdwy       | -      | 3.32 | -      | - | 2.22   | - |  |  |
| Pot Cap-1 Maneuver   | 0      | 561  | -      | - | 757    | - |  |  |
| Stage 1              | 0      | -    | -      | - | -      | - |  |  |
| Stage 2              | 0      | -    | -      | - | -      | - |  |  |
| Platoon blocked, %   |        |      | -      | - |        | - |  |  |
| Mov Cap-1 Maneuver   | • -    | 561  | -      | - | 757    | - |  |  |
| Mov Cap-2 Maneuver   | · _    | -    | -      | - | -      | - |  |  |
| Stage 1              | -      | -    | -      | - | -      | - |  |  |
| Stage 2              | -      | -    | -      | - | -      | - |  |  |
|                      |        |      |        |   |        |   |  |  |
| Approach             | WB     |      | NB     |   | SB     |   |  |  |
| HCM Control Delay, s | 11.5   |      | 0      |   | 0.1    |   |  |  |
| HCM LOS              | В      |      |        |   |        |   |  |  |

| Minor Lane/Major Mvmt | NBT | NBRV | VBLn1 | SBL   | SBT |  |
|-----------------------|-----|------|-------|-------|-----|--|
| Capacity (veh/h)      | -   | -    | 561   | 757   | -   |  |
| HCM Lane V/C Ratio    | -   | -    | 0.012 | 0.007 | -   |  |
| HCM Control Delay (s) | -   | -    | 11.5  | 9.8   | -   |  |
| HCM Lane LOS          | -   | -    | В     | А     | -   |  |
| HCM 95th %tile Q(veh) | -   | -    | 0     | 0     | -   |  |

Int Delay, s/veh

| Int Delay, s/veh       | 0.2   |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Movement               | WBL   | WBR  | NBT  | NBR  | SBL  | SBT  |
| Lane Configurations    |       | 1    | **   | 1    | 5    | **   |
| Traffic Vol, veh/h     | 0     | 17   | 939  | 8    | 10   | 989  |
| Future Vol, veh/h      | 0     | 17   | 939  | 8    | 10   | 989  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop  | Stop | Free | Free | Free | Free |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | 0    | -    | 150  | 80   | -    |
| Veh in Median Storage  | , # 0 | -    | 0    | -    | -    | 0    |
| Grade, %               | 0     | -    | 0    | -    | -    | 0    |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0     | 18   | 1021 | 9    | 11   | 1075 |

| Major/Minor          | Minor1 | Μ    | ajor1 | Ν | /lajor2 |   |  |  |  |  |
|----------------------|--------|------|-------|---|---------|---|--|--|--|--|
| Conflicting Flow All | -      | 511  | 0     | 0 | 1030    | 0 |  |  |  |  |
| Stage 1              | -      | -    | -     | - | -       | - |  |  |  |  |
| Stage 2              | -      | -    | -     | - | -       | - |  |  |  |  |
| Critical Hdwy        | -      | 6.94 | -     | - | 4.14    | - |  |  |  |  |
| Critical Hdwy Stg 1  | -      | -    | -     | - | -       | - |  |  |  |  |
| Critical Hdwy Stg 2  | -      | -    | -     | - | -       | - |  |  |  |  |
| Follow-up Hdwy       | -      | 3.32 | -     | - | 2.22    | - |  |  |  |  |
| Pot Cap-1 Maneuver   | 0      | 508  | -     | - | 670     | - |  |  |  |  |
| Stage 1              | 0      | -    | -     | - | -       | - |  |  |  |  |
| Stage 2              | 0      | -    | -     | - | -       | - |  |  |  |  |
| Platoon blocked, %   |        |      | -     | - |         | - |  |  |  |  |
| Mov Cap-1 Maneuver   | · -    | 508  | -     | - | 670     | - |  |  |  |  |
| Mov Cap-2 Maneuver   | · _    | -    | -     | - | -       | - |  |  |  |  |
| Stage 1              | -      | -    | -     | - | -       | - |  |  |  |  |
| Stage 2              | -      | -    | -     | - | -       | - |  |  |  |  |
|                      |        |      |       |   |         |   |  |  |  |  |
| Approach             | WB     |      | NB    |   | SB      |   |  |  |  |  |
| HCM Control Delay, s | 12.4   |      | 0     |   | 0.1     |   |  |  |  |  |

HCM LOS В

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBL   | SBT |  |
|-----------------------|-----|----------|-------|-----|--|
| Capacity (veh/h)      | -   | - 508    | 670   | -   |  |
| HCM Lane V/C Ratio    | -   | - 0.036  | 0.016 | -   |  |
| HCM Control Delay (s) | -   | - 12.4   | 10.5  | -   |  |
| HCM Lane LOS          | -   | - B      | В     | -   |  |
| HCM 95th %tile Q(veh) | -   | - 0.1    | 0     | -   |  |

| Int Delay, s/veh       | 0     |      |            |      |      |      |  |  |
|------------------------|-------|------|------------|------|------|------|--|--|
| Movement               | WBL   | WBR  | NBT        | NBR  | SBL  | SBT  |  |  |
| Lane Configurations    |       | 1    | <b>≜</b> ₽ |      |      | **   |  |  |
| Traffic Vol, veh/h     | 0     | 0    | 820        | 0    | 0    | 971  |  |  |
| Future Vol, veh/h      | 0     | 0    | 820        | 0    | 0    | 971  |  |  |
| Conflicting Peds, #/hr | 0     | 0    | 0          | 0    | 0    | 0    |  |  |
| Sign Control           | Stop  | Stop | Free       | Free | Free | Free |  |  |
| RT Channelized         | -     | None | -          | None | -    | None |  |  |
| Storage Length         | -     | 0    | -          | -    | -    | -    |  |  |
| Veh in Median Storage  | , # 0 | -    | 0          | -    | -    | 0    |  |  |
| Grade, %               | 0     | -    | 0          | -    | -    | 0    |  |  |
| Peak Hour Factor       | 92    | 92   | 92         | 92   | 92   | 92   |  |  |
| Heavy Vehicles, %      | 2     | 2    | 2          | 2    | 2    | 2    |  |  |
| Mvmt Flow              | 0     | 0    | 891        | 0    | 0    | 1055 |  |  |

| Major/Minor          | Minor1 | Ν    | 1ajor1 | Ma | jor2 |   |  |  |  |
|----------------------|--------|------|--------|----|------|---|--|--|--|
| Conflicting Flow All | -      | 446  | 0      | 0  | -    | - |  |  |  |
| Stage 1              | -      | -    | -      | -  | -    | - |  |  |  |
| Stage 2              | -      | -    | -      | -  | -    | - |  |  |  |
| Critical Hdwy        | -      | 6.94 | -      | -  | -    | - |  |  |  |
| Critical Hdwy Stg 1  | -      | -    | -      | -  | -    | - |  |  |  |
| Critical Hdwy Stg 2  | -      | -    | -      | -  | -    | - |  |  |  |
| Follow-up Hdwy       | -      | 3.32 | -      | -  | -    | - |  |  |  |
| Pot Cap-1 Maneuver   | 0      | 560  | -      | -  | 0    | - |  |  |  |
| Stage 1              | 0      | -    | -      | -  | 0    | - |  |  |  |
| Stage 2              | 0      | -    | -      | -  | 0    | - |  |  |  |
| Platoon blocked, %   |        |      | -      | -  |      | - |  |  |  |
| Mov Cap-1 Maneuver   | -      | 560  | -      | -  | -    | - |  |  |  |
| Mov Cap-2 Maneuver   | -      | -    | -      | -  | -    | - |  |  |  |
| Stage 1              | -      | -    | -      | -  | -    | - |  |  |  |
| Stage 2              | -      | -    | -      | -  | -    | - |  |  |  |
|                      |        |      |        |    |      |   |  |  |  |
| Approach             | WB     |      | NB     |    | SB   |   |  |  |  |
| HCM Control Delay, s | 0      |      | 0      |    | 0    |   |  |  |  |

HCM LOS А

| Minor Lane/Major Mvmt | NBT | NBRW | BLn1 | SBT |
|-----------------------|-----|------|------|-----|
| Capacity (veh/h)      | -   | -    | -    | -   |
| HCM Lane V/C Ratio    | -   | -    | -    | -   |
| HCM Control Delay (s) | -   | -    | 0    | -   |
| HCM Lane LOS          | -   | -    | А    | -   |
| HCM 95th %tile Q(veh) | -   | -    | -    | -   |

| Int Delay, s/veh       | 0      |      |          |      |      |      |  |
|------------------------|--------|------|----------|------|------|------|--|
| Movement               | WBL    | WBR  | NBT      | NBR  | SBL  | SBT  |  |
| Lane Configurations    |        | 1    | <b>1</b> |      |      | **   |  |
| Traffic Vol, veh/h     | 0      | 0    | 947      | 0    | 0    | 989  |  |
| Future Vol, veh/h      | 0      | 0    | 947      | 0    | 0    | 989  |  |
| Conflicting Peds, #/hr | 0      | 0    | 0        | 0    | 0    | 0    |  |
| Sign Control           | Stop   | Stop | Free     | Free | Free | Free |  |
| RT Channelized         | -      | None | -        | None | -    | None |  |
| Storage Length         | -      | 0    | -        | -    | -    | -    |  |
| Veh in Median Storage  | e, # 0 | -    | 0        | -    | -    | 0    |  |
| Grade, %               | 0      | -    | 0        | -    | -    | 0    |  |
| Peak Hour Factor       | 92     | 92   | 92       | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2      | 2    | 2        | 2    | 2    | 2    |  |
| Mvmt Flow              | 0      | 0    | 1029     | 0    | 0    | 1075 |  |

| Major/Minor          | Minor1 | M    | ajor1 | Ма | ajor2 |   |
|----------------------|--------|------|-------|----|-------|---|
| Conflicting Flow All | -      | 515  | 0     | 0  | -     | - |
| Stage 1              | -      | -    | -     | -  | -     | - |
| Stage 2              | -      | -    | -     | -  | -     | - |
| Critical Hdwy        | -      | 6.94 | -     | -  | -     | - |
| Critical Hdwy Stg 1  | -      | -    | -     | -  | -     | - |
| Critical Hdwy Stg 2  | -      | -    | -     | -  | -     | - |
| Follow-up Hdwy       | -      | 3.32 | -     | -  | -     | - |
| Pot Cap-1 Maneuver   | 0      | 505  | -     | -  | 0     | - |
| Stage 1              | 0      | -    | -     | -  | 0     | - |
| Stage 2              | 0      | -    | -     | -  | 0     | - |
| Platoon blocked, %   |        |      | -     | -  |       | - |
| Mov Cap-1 Maneuver   | · -    | 505  | -     | -  | -     | - |
| Mov Cap-2 Maneuver   | · -    | -    | -     | -  | -     | - |
| Stage 1              | -      | -    | -     | -  | -     | - |
| Stage 2              | -      | -    | -     | -  | -     | - |
|                      |        |      |       |    |       |   |
| Approach             | WB     |      | NB    |    | SB    |   |
| HCM Control Delay, s | 0      |      | 0     |    | 0     |   |

HCM LOS А

| Minor Lane/Major Mvmt | NBT | NBRW | BLn1 | SBT |
|-----------------------|-----|------|------|-----|
| Capacity (veh/h)      | -   | -    | -    | -   |
| HCM Lane V/C Ratio    | -   | -    | -    | -   |
| HCM Control Delay (s) | -   | -    | 0    | -   |
| HCM Lane LOS          | -   | -    | А    | -   |
| HCM 95th %tile Q(veh) | -   | -    | -    | -   |

|                              | ٠    | -+       | 7    | 1    | +           | *    | 1    | t        | 1    | 1    | ŧ        | ~        |
|------------------------------|------|----------|------|------|-------------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT         | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | 7    | <b>1</b> |      | 7    | <b>*</b> 1- |      | 7    | <b>^</b> | 1    | 5    | <b>^</b> | 1        |
| Traffic Volume (veh/h)       | 145  | 410      | 129  | 102  | 831         | 28   | 121  | 574      | 52   | 38   | 646      | 288      |
| Future Volume (veh/h)        | 145  | 410      | 129  | 102  | 831         | 28   | 121  | 574      | 52   | 38   | 646      | 288      |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0           | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.96 | 1.00 |             | 0.93 | 1.00 |          | 0.97 | 1.00 |          | 0.89     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No          |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870        | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 167  | 471      | 148  | 123  | 1001        | 34   | 151  | 718      | 65   | 44   | 743      | 331      |
| Peak Hour Factor             | 0.87 | 0.87     | 0.87 | 0.83 | 0.83        | 0.83 | 0.80 | 0.80     | 0.80 | 0.87 | 0.87     | 0.87     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2           | 2    | 2    | 2        | 2    | 2    | 2        | 2        |
| Cap, veh/h                   | 194  | 895      | 279  | 149  | 1082        | 37   | 179  | 1362     | 592  | 56   | 1117     | 444      |
| Arrive On Green              | 0.11 | 0.34     | 0.34 | 0.08 | 0.31        | 0.31 | 0.03 | 0.13     | 0.13 | 0.06 | 0.63     | 0.63     |
| Sat Flow, veh/h              | 1781 | 2639     | 822  | 1781 | 3497        | 119  | 1781 | 3554     | 1544 | 1781 | 3554     | 1412     |
| Grp Volume(v), veh/h         | 167  | 316      | 303  | 123  | 509         | 526  | 151  | 718      | 65   | 44   | 743      | 331      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1684 | 1781 | 1777        | 1839 | 1781 | 1777     | 1544 | 1781 | 1777     | 1412     |
| Q Serve(g_s), s              | 11.1 | 17.1     | 17.4 | 8.2  | 33.2        | 33.2 | 10.1 | 22.7     | 4.5  | 2.9  | 16.0     | 19.7     |
| Cycle Q Clear(g_c), s        | 11.1 | 17.1     | 17.4 | 8.2  | 33.2        | 33.2 | 10.1 | 22.7     | 4.5  | 2.9  | 16.0     | 19.7     |
| Prop In Lane                 | 1.00 |          | 0.49 | 1.00 |             | 0.06 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 194  | 602      | 571  | 149  | 550         | 569  | 179  | 1362     | 592  | 56   | 1117     | 444      |
| V/C Ratio(X)                 | 0.86 | 0.52     | 0.53 | 0.83 | 0.93        | 0.93 | 0.84 | 0.53     | 0.11 | 0.78 | 0.67     | 0.75     |
| Avail Cap(c_a), veh/h        | 223  | 602      | 571  | 235  | 563         | 582  | 215  | 1362     | 592  | 107  | 1117     | 444      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 0.33 | 0.33     | 0.33 | 2.00 | 2.00     | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 0.82 | 0.82     | 0.82 | 1.00 | 1.00     | 1.00     |
| Uniform Delay (d), s/veh     | 52.6 | 31.9     | 32.0 | 54.1 | 40.1        | 40.1 | 57.1 | 42.2     | 34.3 | 55.8 | 18.3     | 18.9     |
| Incr Delay (d2), s/veh       | 22.6 | 1.1      | 1.2  | 6.6  | 21.4        | 20.9 | 16.2 | 1.2      | 0.3  | 8.5  | 3.1      | 10.9     |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/In     | 6.1  | 7.4      | 7.1  | 3.9  | 17.3        | 17.8 | 5.6  | 11.0     | 1.7  | 1.4  | 4.9      | 5.4      |
| Unsig. Movement Delay, s/veh |      |          |      |      |             |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 75.1 | 33.0     | 33.2 | 60.8 | 61.5        | 61.0 | 73.3 | 43.4     | 34.6 | 64.3 | 21.4     | 29.8     |
| LnGrp LOS                    | E    | С        | С    | E    | E           | E    | E    | D        | С    | E    | С        | <u> </u> |
| Approach Vol, veh/h          |      | 786      |      |      | 1158        |      |      | 934      |      |      | 1118     |          |
| Approach Delay, s/veh        |      | 42.0     |      |      | 61.2        |      |      | 47.6     |      |      | 25.6     |          |
| Approach LOS                 |      | D        |      |      | E           |      |      | D        |      |      | С        |          |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5           | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 8.3  | 51.5     | 14.5 | 45.7 | 16.6        | 43.2 | 18.1 | 42.1     |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 5.0  | 4.5         | 5.5  | 5.0  | 5.0      |      |      |          |          |
| Max Green Setting (Gmax), s  | 7.2  | 39.8     | 15.8 | 37.7 | 14.5        | 32.5 | 15.0 | 38.0     |      |      |          |          |
| Max Q Clear Time (g_c+I1), s | 4.9  | 24.7     | 10.2 | 19.4 | 12.1        | 21.7 | 13.1 | 35.2     |      |      |          |          |
| Green Ext Time (p_c), s      | 0.0  | 5.7      | 0.0  | 4.8  | 0.0         | 5.9  | 0.0  | 1.9      |      |      |          |          |
| Intersection Summary         |      |          |      |      |             |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delay           |      |          | 44.3 |      |             |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |          | D    |      |             |      |      |          |      |      |          |          |

|                              | ٠    |                         | $\mathbf{r}$ | 1    | -                       | •    | 1     | t    | ۲    | 1     | ŧ    | ~    |
|------------------------------|------|-------------------------|--------------|------|-------------------------|------|-------|------|------|-------|------|------|
| Movement                     | EBL  | EBT                     | EBR          | WBL  | WBT                     | WBR  | NBL   | NBT  | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations          | 5    | <b>*</b> 1 <sub>2</sub> |              | 5    | <b>*</b> 1 <sub>2</sub> |      | 5     | **   | 1    | 5     | **   | 1    |
| Traffic Volume (veh/h)       | 180  | 619                     | 88           | 83   | 399                     | 34   | 93    | 725  | 70   | 76    | 718  | 197  |
| Future Volume (veh/h)        | 180  | 619                     | 88           | 83   | 399                     | 34   | 93    | 725  | 70   | 76    | 718  | 197  |
| Initial Q (Qb), veh          | 0    | 0                       | 0            | 0    | 0                       | 0    | 0     | 0    | 0    | 0     | 0    | 0    |
| Ped-Bike Adj(A pbT)          | 1.00 |                         | 0.94         | 1.00 |                         | 0.97 | 1.00  |      | 0.98 | 1.00  |      | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00                    | 1.00         | 1.00 | 1.00                    | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 |
| Work Zone On Approach        |      | No                      |              |      | No                      |      |       | No   |      |       | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870                    | 1870         | 1870 | 1870                    | 1870 | 1870  | 1870 | 1870 | 1870  | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 196  | 673                     | 96           | 95   | 459                     | 39   | 108   | 843  | 81   | 79    | 748  | 205  |
| Peak Hour Factor             | 0.92 | 0.92                    | 0.92         | 0.87 | 0.87                    | 0.87 | 0.86  | 0.86 | 0.86 | 0.96  | 0.96 | 0.96 |
| Percent Heavy Veh, %         | 2    | 2                       | 2            | 2    | 2                       | 2    | 2     | 2    | 2    | 2     | 2    | 2    |
| Cap, veh/h                   | 224  | 857                     | 122          | 119  | 706                     | 60   | 111   | 1602 | 698  | 77    | 1534 | 669  |
| Arrive On Green              | 0.13 | 0.28                    | 0.28         | 0.07 | 0.21                    | 0.21 | 0.02  | 0.15 | 0.15 | 0.09  | 0.86 | 0.86 |
| Sat Flow, veh/h              | 1781 | 3094                    | 441          | 1781 | 3307                    | 280  | 1781  | 3554 | 1549 | 1781  | 3554 | 1551 |
| Grp Volume(v), veh/h         | 196  | 386                     | 383          | 95   | 246                     | 252  | 108   | 843  | 81   | 79    | 748  | 205  |
| Grp Sat Flow(s).veh/h/ln     | 1781 | 1777                    | 1758         | 1781 | 1777                    | 1810 | 1781  | 1777 | 1549 | 1781  | 1777 | 1551 |
| Q Serve(q s), s              | 13.0 | 24.1                    | 24.2         | 6.3  | 15.2                    | 15.3 | 7.3   | 26.3 | 5.4  | 5.2   | 6.0  | 2.9  |
| Cycle Q Clear(q c), s        | 13.0 | 24.1                    | 24.2         | 6.3  | 15.2                    | 15.3 | 7.3   | 26.3 | 5.4  | 5.2   | 6.0  | 2.9  |
| Prop In Lane                 | 1.00 |                         | 0.25         | 1.00 |                         | 0.15 | 1.00  |      | 1.00 | 1.00  |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 224  | 492                     | 487          | 119  | 379                     | 386  | 111   | 1602 | 698  | 77    | 1534 | 669  |
| V/C Ratio(X)                 | 0.87 | 0.78                    | 0.79         | 0.80 | 0.65                    | 0.65 | 0.97  | 0.53 | 0.12 | 1.02  | 0.49 | 0.31 |
| Avail Cap(c a), veh/h        | 453  | 675                     | 668          | 229  | 444                     | 452  | 111   | 1602 | 698  | 77    | 1534 | 669  |
| HCM Platoon Ratio            | 1.00 | 1.00                    | 1.00         | 1.00 | 1.00                    | 1.00 | 0.33  | 0.33 | 0.33 | 2.00  | 2.00 | 2.00 |
| Upstream Filter(I)           | 1.00 | 1.00                    | 1.00         | 1.00 | 1.00                    | 1.00 | 0.82  | 0.82 | 0.82 | 1.00  | 1.00 | 1.00 |
| Uniform Delay (d), s/veh     | 51.5 | 40.1                    | 40.1         | 55.2 | 43.1                    | 43.1 | 58.7  | 39.2 | 30.4 | 54.8  | 5.1  | 4.9  |
| Incr Delay (d2), s/veh       | 4.2  | 5.2                     | 5.3          | 4.6  | 3.3                     | 3.3  | 67.5  | 1.0  | 0.3  | 109.0 | 1.1  | 1.2  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0                     | 0.0          | 0.0  | 0.0                     | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 5.9  | 10.9                    | 10.9         | 2.9  | 6.9                     | 7.1  | 5.4   | 12.7 | 2.1  | 4.5   | 1.7  | 1.0  |
| Unsig. Movement Delay, s/veh |      |                         |              |      |                         |      |       |      |      |       |      |      |
| LnGrp Delay(d),s/veh         | 55.7 | 45.3                    | 45.4         | 59.9 | 46.4                    | 46.5 | 126.2 | 40.3 | 30.6 | 163.8 | 6.2  | 6.0  |
| LnGrp LOS                    | E    | D                       | D            | Е    | D                       | D    | F     | D    | С    | F     | А    | А    |
| Approach Vol, veh/h          |      | 965                     |              |      | 593                     |      |       | 1032 |      |       | 1032 |      |
| Approach Delay, s/veh        |      | 47.4                    |              |      | 48.6                    |      |       | 48.5 |      |       | 18.2 |      |
| Approach LOS                 |      | D                       |              |      | D                       |      |       | D    |      |       | В    |      |
| Timer - Assigned Phs         | 1    | 2                       | 3            | 4    | 5                       | 6    | 7     | 8    |      |       |      |      |
| Phs Duration (G+Y+Rc), s     | 9.7  | 59.6                    | 12.5         | 38.2 | 12.0                    | 57.3 | 20.1  | 30.6 |      |       |      |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5                     | 4.5          | 5.0  | 4.5                     | 5.5  | 5.0   | 5.0  |      |       |      |      |
| Max Green Setting (Gmax), s  | 5.2  | 34.3                    | 15.4         | 45.6 | 7.5                     | 32.0 | 30.5  | 30.0 |      |       |      |      |
| Max Q Clear Time (g_c+I1), s | 7.2  | 28.3                    | 8.3          | 26.2 | 9.3                     | 8.0  | 15.0  | 17.3 |      |       |      |      |
| Green Ext Time (p_c), s      | 0.0  | 3.5                     | 0.0          | 6.2  | 0.0                     | 8.4  | 0.1   | 3.1  |      |       |      |      |
| Intersection Summary         |      |                         |              |      |                         |      |       |      |      |       |      |      |
| HCM 6th Ctrl Delay           |      |                         | 39.6         |      |                         |      |       |      |      |       |      |      |
| HCM 6th LOS                  |      |                         | D            |      |                         |      |       |      |      |       |      |      |

|                              | ≯    | -           | $\mathbf{i}$ | •    | -           | *    | 1    | 1        | 1    | 1    | Ŧ        | ~    |
|------------------------------|------|-------------|--------------|------|-------------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT         | EBR          | WBL  | WBT         | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ۲    | <b>≜1</b> ≱ |              | 7    | <b>≜1</b> ≱ |      | ň    | <b>^</b> | 1    | ľ    | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 160  | 324         | 115          | 105  | 510         | 37   | 123  | 572      | 51   | 74   | 753      | 165  |
| Future Volume (veh/h)        | 160  | 324         | 115          | 105  | 510         | 37   | 123  | 572      | 51   | 74   | 753      | 165  |
| Initial Q (Qb), veh          | 0    | 0           | 0            | 0    | 0           | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |             | 0.98         | 1.00 |             | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No          |              |      | No          |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870        | 1870         | 1870 | 1870        | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 193  | 390         | 139          | 135  | 654         | 47   | 154  | 715      | 64   | 82   | 837      | 183  |
| Peak Hour Factor             | 0.83 | 0.83        | 0.83         | 0.78 | 0.78        | 0.78 | 0.80 | 0.80     | 0.80 | 0.90 | 0.90     | 0.90 |
| Percent Heavy Veh, %         | 2    | 2           | 2            | 2    | 2           | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 220  | 638         | 224          | 162  | 726         | 52   | 178  | 1592     | 694  | 104  | 1443     | 632  |
| Arrive On Green              | 0.12 | 0.25        | 0.25         | 0.09 | 0.22        | 0.22 | 0.20 | 0.90     | 0.90 | 0.08 | 0.54     | 0.54 |
| Sat Flow, veh/h              | 1781 | 2563        | 901          | 1781 | 3356        | 241  | 1781 | 3554     | 1550 | 1781 | 3554     | 1556 |
| Grp Volume(v), veh/h         | 193  | 269         | 260          | 135  | 346         | 355  | 154  | 715      | 64   | 82   | 837      | 183  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777        | 1687         | 1781 | 1777        | 1821 | 1781 | 1777     | 1550 | 1781 | 1777     | 1556 |
| Q Serve(g_s), s              | 12.8 | 16.1        | 16.4         | 8.9  | 22.7        | 22.8 | 10.0 | 4.2      | 0.6  | 5.4  | 18.9     | 7.7  |
| Cycle Q Clear(g_c), s        | 12.8 | 16.1        | 16.4         | 8.9  | 22.7        | 22.8 | 10.0 | 4.2      | 0.6  | 5.4  | 18.9     | 7.7  |
| Prop In Lane                 | 1.00 |             | 0.53         | 1.00 |             | 0.13 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 220  | 442         | 420          | 162  | 384         | 394  | 178  | 1592     | 694  | 104  | 1443     | 632  |
| V/C Ratio(X)                 | 0.88 | 0.61        | 0.62         | 0.83 | 0.90        | 0.90 | 0.86 | 0.45     | 0.09 | 0.79 | 0.58     | 0.29 |
| Avail Cap(c_a), veh/h        | 252  | 442         | 420          | 258  | 400         | 410  | 223  | 1592     | 694  | 177  | 1443     | 632  |
| HCM Platoon Ratio            | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 2.00 | 2.00     | 2.00 | 1.33 | 1.33     | 1.33 |
| Upstream Filter(I)           | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 0.87 | 0.87     | 0.87 | 0.63 | 0.63     | 0.63 |
| Uniform Delay (d), s/veh     | 51.7 | 39.9        | 40.0         | 53.7 | 45.8        | 45.8 | 47.2 | 3.7      | 3.5  | 54.7 | 20.8     | 18.2 |
| Incr Delay (d2), s/veh       | 23.3 | 2.8         | 3.3          | 6.3  | 22.8        | 22.7 | 18.5 | 0.8      | 0.2  | 3.2  | 1.1      | 0.7  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0         | 0.0          | 0.0  | 0.0         | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 7.1  | 7.4         | 7.2          | 4.3  | 12.4        | 12.7 | 4.9  | 1.2      | 0.2  | 2.5  | 6.8      | 2.8  |
| Unsig. Movement Delay, s/veh |      |             |              |      |             |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 75.0 | 42.7        | 43.3         | 59.9 | 68.5        | 68.4 | 65.7 | 4.5      | 3.7  | 57.9 | 21.8     | 18.9 |
| LnGrp LOS                    | E    | D           | D            | E    | E           | E    | E    | Α        | Α    | E    | С        | B    |
| Approach Vol, veh/h          |      | 722         |              |      | 836         |      |      | 933      |      |      | 1102     |      |
| Approach Delay, s/veh        |      | 51.6        |              |      | 67.1        |      |      | 14.5     |      |      | 24.0     |      |
| Approach LOS                 |      | D           |              |      | Е           |      |      | В        |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2           | 3            | 4    | 5           | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 11.0 | 59.3        | 14.9         | 34.9 | 16.0        | 54.2 | 18.8 | 31.0     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.0  | 5.5         | 4.0          | 5.0  | 4.0         | 5.5  | 4.0  | 5.0      |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.9 | 45.6        | 17.4         | 26.6 | 15.0        | 42.5 | 17.0 | 27.0     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 7.4  | 6.2         | 10.9         | 18.4 | 12.0        | 20.9 | 14.8 | 24.8     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 8.2         | 0.1          | 2.7  | 0.1         | 8.8  | 0.1  | 1.2      |      |      |          |      |
| Intersection Summary         |      |             |              |      |             |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |             | 37.1         |      |             |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |             | D            |      |             |      |      |          |      |      |          |      |

|                              | ٠    |             | 7    | 1    | +           | *    | 1    | Ť    | 1    | 1    | ţ    | ~        |
|------------------------------|------|-------------|------|------|-------------|------|------|------|------|------|------|----------|
| Movement                     | EBL  | EBT         | EBR  | WBL  | WBT         | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          | 5    | <b>*</b> 1, |      | 5    | <b>*</b> 1, |      | 5    | **   | 1    | 5    | **   | 7        |
| Traffic Volume (veh/h)       | 170  | 479         | 139  | 118  | 321         | 57   | 109  | 686  | 60   | 146  | 758  | 151      |
| Future Volume (veh/h)        | 170  | 479         | 139  | 118  | 321         | 57   | 109  | 686  | 60   | 146  | 758  | 151      |
| Initial Q (Qb), veh          | 0    | 0           | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |             | 0.93 | 1.00 |             | 0.98 | 1.00 |      | 0.98 | 1.00 |      | 0.98     |
| Parking Bus, Adj             | 1.00 | 1.00        | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No          |      |      | No          |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870        | 1870 | 1870 | 1870        | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 175  | 494         | 143  | 140  | 382         | 68   | 118  | 746  | 65   | 157  | 815  | 162      |
| Peak Hour Factor             | 0.97 | 0.97        | 0.97 | 0.84 | 0.84        | 0.84 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93     |
| Percent Heavy Veh, %         | 2    | 2           | 2    | 2    | 2           | 2    | 2    | 2    | 2    | 2    | 2    | 2        |
| Cap, veh/h                   | 202  | 560         | 161  | 167  | 569         | 100  | 142  | 1577 | 686  | 177  | 1646 | 719      |
| Arrive On Green              | 0.11 | 0.21        | 0.21 | 0.09 | 0.19        | 0.19 | 0.16 | 0.89 | 0.89 | 0.13 | 0.62 | 0.62     |
| Sat Flow, veh/h              | 1781 | 2677        | 768  | 1781 | 3007        | 530  | 1781 | 3554 | 1547 | 1781 | 3554 | 1551     |
| Grp Volume(v), veh/h         | 175  | 326         | 311  | 140  | 224         | 226  | 118  | 746  | 65   | 157  | 815  | 162      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777        | 1668 | 1781 | 1777        | 1761 | 1781 | 1777 | 1547 | 1781 | 1777 | 1551     |
| Q Serve(g_s), s              | 11.6 | 21.4        | 21.7 | 9.3  | 14.0        | 14.3 | 7.7  | 4.9  | 0.6  | 10.4 | 15.2 | 5.6      |
| Cycle Q Clear(g_c), s        | 11.6 | 21.4        | 21.7 | 9.3  | 14.0        | 14.3 | 7.7  | 4.9  | 0.6  | 10.4 | 15.2 | 5.6      |
| Prop In Lane                 | 1.00 |             | 0.46 | 1.00 |             | 0.30 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Lane Grp Cap(c), veh/h       | 202  | 371         | 349  | 167  | 336         | 333  | 142  | 1577 | 686  | 177  | 1646 | 719      |
| V/C Ratio(X)                 | 0.87 | 0.88        | 0.89 | 0.84 | 0.67        | 0.68 | 0.83 | 0.47 | 0.09 | 0.89 | 0.50 | 0.23     |
| Avail Cap(c_a), veh/h        | 252  | 394         | 370  | 258  | 400         | 396  | 223  | 1577 | 686  | 177  | 1646 | 719      |
| HCM Platoon Ratio            | 1.00 | 1.00        | 1.00 | 1.00 | 1.00        | 1.00 | 2.00 | 2.00 | 2.00 | 1.33 | 1.33 | 1.33     |
| Upstream Filter(I)           | 1.00 | 1.00        | 1.00 | 1.00 | 1.00        | 1.00 | 0.83 | 0.83 | 0.83 | 0.78 | 0.78 | 0.78     |
| Uniform Delay (d), s/veh     | 52.3 | 46.0        | 46.1 | 53.5 | 45.1        | 45.2 | 49.6 | 4.0  | 3.8  | 51.4 | 15.3 | 13.4     |
| Incr Delay (d2), s/veh       | 19.0 | 19.7        | 22.4 | 7.9  | 4.1         | 4.5  | 6.4  | 0.8  | 0.2  | 31.1 | 0.8  | 0.6      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0         | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/In     | 6.2  | 11.4        | 11.1 | 4.5  | 6.6         | 6.7  | 3.4  | 1.4  | 0.3  | 5.9  | 5.3  | 2.0      |
| Unsig. Movement Delay, s/veh |      |             |      |      |             |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 71.3 | 65.7        | 68.5 | 61.4 | 49.2        | 49.7 | 56.1 | 4.9  | 4.0  | 82.6 | 16.1 | 14.0     |
| LnGrp LOS                    | E    | E           | E    | E    | D           | D    | E    | A    | A    | F    | В    | <u> </u> |
| Approach Vol, veh/h          |      | 812         |      |      | 590         |      |      | 929  |      |      | 1134 |          |
| Approach Delay, s/veh        |      | 68.0        |      |      | 52.3        |      |      | 11.3 |      |      | 25.0 |          |
| Approach LOS                 |      | E           |      |      | D           |      |      | В    |      |      | С    |          |
| Timer - Assigned Phs         | 1    | 2           | 3    | 4    | 5           | 6    | 7    | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 15.9 | 58.8        | 15.3 | 30.1 | 13.6        | 61.1 | 17.6 | 27.7 |      |      |      |          |
| Change Period (Y+Rc), s      | 4.0  | 5.5         | 4.0  | 5.0  | 4.0         | 5.5  | 4.0  | 5.0  |      |      |      |          |
| Max Green Setting (Gmax), s  | 11.9 | 45.6        | 17.4 | 26.6 | 15.0        | 42.5 | 17.0 | 27.0 |      |      |      |          |
| Max Q Clear Time (g_c+I1), s | 12.4 | 6.9         | 11.3 | 23.7 | 9.7         | 17.2 | 13.6 | 16.3 |      |      |      |          |
| Green Ext Time (p_c), s      | 0.0  | 8.6         | 0.1  | 1.4  | 0.1         | 9.0  | 0.1  | 2.6  |      |      |      |          |
| Intersection Summary         |      |             |      |      |             |      |      |      |      |      |      |          |
| HCM 6th Ctrl Delay           |      |             | 36.1 |      |             |      |      |      |      |      |      |          |
| HCM 6th LOS                  |      |             | D    |      |             |      |      |      |      |      |      |          |

## HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ٠    | -+       | 7    | 1    | +        | *    | 1    | t        | 1    | 1    | ŧ        | ~    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | 5    | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 69   | 429      | 116  | 81   | 736      | 34   | 246  | 630      | 119  | 89   | 728      | 134  |
| Future Volume (veh/h)        | 69   | 429      | 116  | 81   | 736      | 34   | 246  | 630      | 119  | 89   | 728      | 134  |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 85   | 530      | 143  | 88   | 800      | 37   | 276  | 708      | 134  | 100  | 818      | 151  |
| Peak Hour Factor             | 0.81 | 0.81     | 0.81 | 0.92 | 0.92     | 0.92 | 0.89 | 0.89     | 0.89 | 0.89 | 0.89     | 0.89 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 107  | 872      | 380  | 111  | 879      | 386  | 302  | 1637     | 719  | 123  | 1280     | 559  |
| Arrive On Green              | 0.06 | 0.25     | 0.25 | 0.06 | 0.25     | 0.25 | 0.17 | 0.46     | 0.46 | 0.14 | 0.72     | 0.72 |
| Sat Flow, veh/h              | 1781 | 3554     | 1548 | 1781 | 3554     | 1559 | 1781 | 3554     | 1561 | 1781 | 3554     | 1551 |
| Grp Volume(v), veh/h         | 85   | 530      | 143  | 88   | 800      | 37   | 276  | 708      | 134  | 100  | 818      | 151  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1548 | 1781 | 1777     | 1559 | 1781 | 1777     | 1561 | 1781 | 1777     | 1551 |
| Q Serve(g_s), s              | 5.7  | 15.9     | 9.2  | 5.8  | 26.2     | 2.2  | 18.3 | 16.1     | 6.1  | 6.5  | 14.3     | 4.1  |
| Cycle Q Clear(g_c), s        | 5.7  | 15.9     | 9.2  | 5.8  | 26.2     | 2.2  | 18.3 | 16.1     | 6.1  | 6.5  | 14.3     | 4.1  |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 107  | 872      | 380  | 111  | 879      | 386  | 302  | 1637     | 719  | 123  | 1280     | 559  |
| V/C Ratio(X)                 | 0.79 | 0.61     | 0.38 | 0.80 | 0.91     | 0.10 | 0.91 | 0.43     | 0.19 | 0.81 | 0.64     | 0.27 |
| Avail Cap(c_a), veh/h        | 126  | 888      | 387  | 141  | 918      | 403  | 319  | 1637     | 719  | 200  | 1280     | 559  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.73 | 0.73     | 0.73 |
| Uniform Delay (d), s/veh     | 55.7 | 40.2     | 37.6 | 55.5 | 43.9     | 34.8 | 48.9 | 21.8     | 19.1 | 50.9 | 12.7     | 11.3 |
| Incr Delay (d2), s/veh       | 24.9 | 1.2      | 0.6  | 21.1 | 12.6     | 0.1  | 28.4 | 0.8      | 0.6  | 8.9  | 1.8      | 0.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 3.3  | 7.1      | 3.6  | 3.3  | 13.0     | 0.9  | 10.3 | 6.7      | 2.3  | 3.0  | 3.9      | 1.4  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 80.6 | 41.3     | 38.3 | 76.6 | 56.5     | 34.9 | 77.4 | 22.6     | 19.7 | 59.8 | 14.5     | 12.2 |
| LnGrp LOS                    | F    | D        | D    | E    | E        | С    | E    | С        | В    | E    | В        | B    |
| Approach Vol, veh/h          |      | 758      |      |      | 925      |      |      | 1118     |      |      | 1069     |      |
| Approach Delay, s/veh        |      | 45.1     |      |      | 57.5     |      |      | 35.8     |      |      | 18.4     |      |
| Approach LOS                 |      | D        |      |      | E        |      |      | D        |      |      | В        |      |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 12.8 | 60.8     | 12.0 | 34.4 | 24.9     | 48.7 | 11.7 | 34.7     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5  | 5.0  | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |      |
| Max Green Setting (Gmax), s  | 13.5 | 47.5     | 9.5  | 30.0 | 21.5     | 39.5 | 8.5  | 31.0     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 8.5  | 18.1     | 7.8  | 17.9 | 20.3     | 16.3 | 7.7  | 28.2     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.1  | 5.5      | 0.0  | 3.2  | 0.1      | 6.2  | 0.0  | 1.4      |      |      |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |          | 38.0 |      |          |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |          |      |      |          |      |

## HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ٠    | -+       | $\mathbf{r}$ | 1    | +        | *    | 1    | t        | 1    | 1    | ŧ        | ~        |
|------------------------------|------|----------|--------------|------|----------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | 7    | <b>^</b> | 1            | 7    | <b>^</b> | 1    | 7    | <b>^</b> | 1    | 5    | <b>^</b> | 1        |
| Traffic Volume (veh/h)       | 99   | 600      | 138          | 175  | 456      | 79   | 153  | 675      | 96   | 115  | 825      | 86       |
| Future Volume (veh/h)        | 99   | 600      | 138          | 175  | 456      | 79   | 153  | 675      | 96   | 115  | 825      | 86       |
| Initial Q (Qb), veh          | 0    | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.95         | 1.00 |          | 0.99 | 1.00 |          | 0.98 | 1.00 |          | 0.97     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |              |      | No       |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870         | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 108  | 652      | 150          | 186  | 485      | 84   | 166  | 734      | 104  | 134  | 959      | 100      |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92         | 0.94 | 0.94     | 0.94 | 0.92 | 0.92     | 0.92 | 0.86 | 0.86     | 0.86     |
| Percent Heavy Veh, %         | 2    | 2        | 2            | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        |
| Cap, veh/h                   | 134  | 785      | 333          | 214  | 946      | 416  | 193  | 1445     | 634  | 159  | 1378     | 597      |
| Arrive On Green              | 0.08 | 0.22     | 0.22         | 0.12 | 0.27     | 0.27 | 0.11 | 0.41     | 0.41 | 0.18 | 0.78     | 0.78     |
| Sat Flow, veh/h              | 1781 | 3554     | 1506         | 1781 | 3554     | 1562 | 1781 | 3554     | 1558 | 1781 | 3554     | 1539     |
| Grp Volume(v), veh/h         | 108  | 652      | 150          | 186  | 485      | 84   | 166  | 734      | 104  | 134  | 959      | 100      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1506         | 1781 | 1777     | 1562 | 1781 | 1777     | 1558 | 1781 | 1777     | 1539     |
| Q Serve(g_s), s              | 7.2  | 21.0     | 10.3         | 12.3 | 13.9     | 5.0  | 11.0 | 18.5     | 5.1  | 8.7  | 15.8     | 2.0      |
| Cycle Q Clear(g_c), s        | 7.2  | 21.0     | 10.3         | 12.3 | 13.9     | 5.0  | 11.0 | 18.5     | 5.1  | 8.7  | 15.8     | 2.0      |
| Prop In Lane                 | 1.00 |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 134  | 785      | 333          | 214  | 946      | 416  | 193  | 1445     | 634  | 159  | 1378     | 597      |
| V/C Ratio(X)                 | 0.81 | 0.83     | 0.45         | 0.87 | 0.51     | 0.20 | 0.86 | 0.51     | 0.16 | 0.84 | 0.70     | 0.17     |
| Avail Cap(c_a), veh/h        | 220  | 829      | 351          | 260  | 946      | 416  | 215  | 1445     | 634  | 246  | 1378     | 597      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.79 | 0.79     | 0.79     |
| Uniform Delay (d), s/veh     | 54.6 | 44.6     | 40.4         | 51.9 | 37.4     | 34.2 | 52.6 | 26.6     | 22.6 | 48.4 | 10.0     | 8.5      |
| Incr Delay (d2), s/veh       | 10.8 | 6.8      | 1.0          | 22.4 | 0.5      | 0.2  | 26.0 | 1.3      | 0.6  | 11.5 | 2.3      | 0.5      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/In     | 3.6  | 10.0     | 3.9          | 6.8  | 6.1      | 1.9  | 6.2  | 7.9      | 2.0  | 4.0  | 3.8      | 0.7      |
| Unsig. Movement Delay, s/veh |      |          |              |      |          |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 65.4 | 51.4     | 41.4         | 74.2 | 37.9     | 34.4 | 78.6 | 27.9     | 23.2 | 59.9 | 12.3     | 8.9      |
| LnGrp LOS                    | E    | D        | D            | E    | D        | С    | E    | С        | С    | E    | В        | <u> </u> |
| Approach Vol, veh/h          |      | 910      |              |      | 755      |      |      | 1004     |      |      | 1193     |          |
| Approach Delay, s/veh        |      | 51.4     |              |      | 46.5     |      |      | 35.8     |      |      | 17.4     |          |
| Approach LOS                 |      | D        |              |      | D        |      |      | D        |      |      | В        |          |
| Timer - Assigned Phs         | 1    | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 15.2 | 54.3     | 18.9         | 31.5 | 17.5     | 52.0 | 13.5 | 36.9     |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5          | 5.0  | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |          |
| Max Green Setting (Gmax), s  | 16.6 | 38.4     | 17.5         | 28.0 | 14.5     | 40.5 | 14.8 | 30.7     |      |      |          |          |
| Max Q Clear Time (g_c+I1), s | 10.7 | 20.5     | 14.3         | 23.0 | 13.0     | 17.8 | 9.2  | 15.9     |      |      |          |          |
| Green Ext Time (p_c), s      | 0.1  | 4.8      | 0.1          | 2.2  | 0.1      | 7.1  | 0.1  | 3.1      |      |      |          |          |
| Intersection Summary         |      |          |              |      |          |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delay           |      |          | 35.9         |      |          |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |          | D            |      |          |      |      |          |      |      |          |          |

# Michael Baker

## Appendix E: Opening Year 2026 With Project Synchro Worksheets

## HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                              | ۶    | -          | $\mathbf{\hat{z}}$ | 4    | +          | •    | •    | Ť    | ۲    | 5    | Ŧ    | ~        |
|------------------------------|------|------------|--------------------|------|------------|------|------|------|------|------|------|----------|
| Movement                     | EBL  | EBT        | EBR                | WBL  | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          | ኘኘ   | <u>†</u> † | 1                  | ۲.   | <u>†</u> † | 1    | ሻሻ   | A1⊅  |      | ኘኘ   | A1⊅  |          |
| Traffic Volume (veh/h)       | 164  | 502        | 123                | 72   | 730        | 57   | 244  | 424  | 97   | 92   | 478  | 155      |
| Future Volume (veh/h)        | 164  | 502        | 123                | 72   | 730        | 57   | 244  | 424  | 97   | 92   | 478  | 155      |
| Initial Q (Qb), veh          | 0    | 0          | 0                  | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |            | 0.95               | 1.00 |            | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00       | 1.00               | 1.00 | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No         |                    |      | No         |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870       | 1870               | 1870 | 1870       | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 171  | 523        | 128                | 76   | 768        | 60   | 268  | 466  | 107  | 112  | 583  | 189      |
| Peak Hour Factor             | 0.96 | 0.96       | 0.96               | 0.95 | 0.95       | 0.95 | 0.91 | 0.91 | 0.91 | 0.82 | 0.82 | 0.82     |
| Percent Heavy Veh, %         | 2    | 2          | 2                  | 2    | 2          | 2    | 2    | 2    | 2    | 2    | 2    | 2        |
| Cap, veh/h                   | 228  | 970        | 564                | 97   | 928        | 414  | 334  | 1340 | 306  | 166  | 1103 | 357      |
| Arrive On Green              | 0.07 | 0.27       | 0.27               | 0.05 | 0.26       | 0.26 | 0.03 | 0.15 | 0.15 | 0.05 | 0.42 | 0.42     |
| Sat Flow, veh/h              | 3456 | 3554       | 1507               | 1781 | 3554       | 1585 | 3456 | 2874 | 655  | 3456 | 2640 | 854      |
| Grp Volume(v), veh/h         | 171  | 523        | 128                | 76   | 768        | 60   | 268  | 287  | 286  | 112  | 392  | 380      |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 1777       | 1507               | 1781 | 1777       | 1585 | 1728 | 1777 | 1752 | 1728 | 1777 | 1717     |
| Q Serve(g_s), s              | 5.8  | 15.1       | 7.0                | 5.1  | 24.4       | 3.5  | 9.2  | 17.3 | 17.5 | 3.8  | 19.8 | 19.9     |
| Cycle Q Clear(g_c), s        | 5.8  | 15.1       | 7.0                | 5.1  | 24.4       | 3.5  | 9.2  | 17.3 | 17.5 | 3.8  | 19.8 | 19.9     |
| Prop In Lane                 | 1.00 |            | 1.00               | 1.00 |            | 1.00 | 1.00 |      | 0.37 | 1.00 |      | 0.50     |
| Lane Grp Cap(c), veh/h       | 228  | 970        | 564                | 97   | 928        | 414  | 334  | 829  | 817  | 166  | 742  | 717      |
| V/C Ratio(X)                 | 0.75 | 0.54       | 0.23               | 0.78 | 0.83       | 0.14 | 0.80 | 0.35 | 0.35 | 0.68 | 0.53 | 0.53     |
| Avail Cap(c_a), veh/h        | 302  | 1111       | 624                | 156  | 1111       | 495  | 446  | 829  | 817  | 245  | 742  | 717      |
| HCM Platoon Ratio            | 1.00 | 1.00       | 1.00               | 1.00 | 1.00       | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00       | 1.00               | 1.00 | 1.00       | 1.00 | 0.91 | 0.91 | 0.91 | 1.00 | 1.00 | 1.00     |
| Uniform Delay (d), s/veh     | 55.1 | 37.2       | 26.1               | 56.0 | 41.8       | 34.0 | 57.0 | 34.4 | 34.5 | 56.2 | 26.1 | 26.1     |
| Incr Delay (d2), s/veh       | 7.0  | 0.7        | 0.3                | 12.9 | 5.0        | 0.2  | 6.9  | 1.0  | 1.1  | 4.7  | 2.7  | 2.8      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0        | 0.0                | 0.0  | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 2.7  | 6.4        | 2.5                | 2.6  | 11.0       | 1.3  | 4.5  | 8.5  | 8.4  | 1.8  | 8.6  | 8.4      |
| Unsig. Movement Delay, s/veh |      |            |                    |      |            |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 62.1 | 37.9       | 26.4               | 68.9 | 46.8       | 34.3 | 63.9 | 35.5 | 35.6 | 61.0 | 28.8 | 28.9     |
| LnGrp LOS                    | E    | D          | С                  | E    | D          | С    | E    | D    | D    | E    | С    | <u> </u> |
| Approach Vol, veh/h          |      | 822        |                    |      | 904        |      |      | 841  |      |      | 884  |          |
| Approach Delay, s/veh        |      | 41.1       |                    |      | 47.8       |      |      | 44.6 |      |      | 32.9 |          |
| Approach LOS                 |      | D          |                    |      | D          |      |      | D    |      |      | С    |          |
| Timer - Assigned Phs         | 1    | 2          | 3                  | 4    | 5          | 6    | 7    | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 10.3 | 61.5       | 11.0               | 37.3 | 16.1       | 55.6 | 12.4 | 35.9 |      |      |      |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5        | 4.5                | 4.5  | 4.5        | 5.5  | 4.5  | 4.5  |      |      |      |          |
| Max Green Setting (Gmax), s  | 8.5  | 44.5       | 10.5               | 37.5 | 15.5       | 37.5 | 10.5 | 37.5 |      |      |      |          |
| Max Q Clear Time (g_c+l1), s | 5.8  | 19.5       | 7.1                | 17.1 | 11.2       | 21.9 | 7.8  | 26.4 |      |      |      |          |
| Green Ext Time (p_c), s      | 0.1  | 4.9        | 0.0                | 5.0  | 0.3        | 5.7  | 0.1  | 4.9  |      |      |      |          |
| Intersection Summary         |      |            |                    |      |            |      |      |      |      |      |      |          |
| HCM 6th Ctrl Delay           |      |            | 41.6               |      |            |      |      |      |      |      |      |          |
| HCM 6th LOS                  |      |            | л.0<br>П           |      |            |      |      |      |      |      |      |          |
|                              |      |            | U                  |      |            |      |      |      |      |      |      |          |

#### Notes

User approved changes to right turn type.

## HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ۶    | -    | $\mathbf{\hat{z}}$ | 4     | +     | •    | ٩.    | 1       | ۲    | 1    | Ļ           | ~    |
|------------------------------|------|------|--------------------|-------|-------|------|-------|---------|------|------|-------------|------|
| Movement                     | EBL  | EBT  | EBR                | WBL   | WBT   | WBR  | NBL   | NBT     | NBR  | SBL  | SBT         | SBR  |
| Lane Configurations          |      | \$   |                    |       | र्स   | 1    | ۲     | <u></u> | 1    | ľ    | <b>↑</b> 1≱ |      |
| Traffic Volume (veh/h)       | 14   | 18   | 28                 | 260   | 25    | 188  | 136   | 641     | 148  | 63   | 644         | 17   |
| Future Volume (veh/h)        | 14   | 18   | 28                 | 260   | 25    | 188  | 136   | 641     | 148  | 63   | 644         | 17   |
| Initial Q (Qb), veh          | 0    | 0    | 0                  | 0     | 0     | 0    | 0     | 0       | 0    | 0    | 0           | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00               | 1.00  |       | 0.98 | 1.00  |         | 0.97 | 1.00 |             | 0.95 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00               | 1.00  | 1.00  | 1.00 | 1.00  | 1.00    | 1.00 | 1.00 | 1.00        | 1.00 |
| Work Zone On Approach        |      | No   |                    |       | No    |      |       | No      |      |      | No          |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870               | 1870  | 1870  | 1870 | 1870  | 1870    | 1945 | 1870 | 1870        | 1870 |
| Adj Flow Rate, veh/h         | 20   | 25   | 39                 | 310   | 30    | 224  | 170   | 801     | 185  | 68   | 692         | 18   |
| Peak Hour Factor             | 0.71 | 0.71 | 0.71               | 0.84  | 0.84  | 0.84 | 0.80  | 0.80    | 0.80 | 0.93 | 0.93        | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2                  | 2     | 2     | 2    | 2     | 2       | 2    | 2    | 2           | 2    |
| Cap, veh/h                   | 37   | 49   | 43                 | 251   | 19    | 679  | 230   | 1395    | 625  | 88   | 1104        | 29   |
| Arrive On Green              | 0.44 | 0.44 | 0.44               | 0.44  | 0.44  | 0.44 | 0.26  | 0.79    | 0.79 | 0.02 | 0.10        | 0.10 |
| Sat Flow, veh/h              | 0    | 113  | 98                 | 444   | 43    | 1552 | 1781  | 3554    | 1593 | 1781 | 3533        | 92   |
| Grp Volume(v), veh/h         | 84   | 0    | 0                  | 340   | 0     | 224  | 170   | 801     | 185  | 68   | 348         | 362  |
| Grp Sat Flow(s),veh/h/ln     | 210  | 0    | 0                  | 486   | 0     | 1552 | 1781  | 1777    | 1593 | 1781 | 1777        | 1848 |
| Q Serve(g_s), s              | 0.0  | 0.0  | 0.0                | 0.0   | 0.0   | 11.4 | 10.5  | 10.6    | 3.9  | 4.6  | 22.5        | 22.5 |
| Cycle Q Clear(g_c), s        | 52.5 | 0.0  | 0.0                | 52.5  | 0.0   | 11.4 | 10.5  | 10.6    | 3.9  | 4.6  | 22.5        | 22.5 |
| Prop In Lane                 | 0.24 |      | 0.46               | 0.91  |       | 1.00 | 1.00  |         | 1.00 | 1.00 |             | 0.05 |
| Lane Grp Cap(c), veh/h       | 129  | 0    | 0                  | 270   | 0     | 679  | 230   | 1395    | 625  | 88   | 555         | 577  |
| V/C Ratio(X)                 | 0.65 | 0.00 | 0.00               | 1.26  | 0.00  | 0.33 | 0.74  | 0.57    | 0.30 | 0.78 | 0.63        | 0.63 |
| Avail Cap(c_a), veh/h        | 129  | 0    | 0                  | 270   | 0     | 679  | 230   | 1395    | 625  | 171  | 555         | 577  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00               | 1.00  | 1.00  | 1.00 | 2.00  | 2.00    | 2.00 | 0.33 | 0.33        | 0.33 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00               | 1.00  | 0.00  | 1.00 | 1.00  | 1.00    | 1.00 | 0.82 | 0.82        | 0.82 |
| Uniform Delay (d), s/veh     | 28.8 | 0.0  | 0.0                | 39.3  | 0.0   | 22.2 | 42.6  | 9.0     | 8.3  | 58.4 | 47.1        | 47.1 |
| Incr Delay (d2), s/veh       | 12.4 | 0.0  | 0.0                | 142.7 | 0.0   | 0.4  | 19.0  | 1.7     | 1.2  | 4.5  | 4.3         | 4.2  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0                | 0.0   | 0.0   | 0.0  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0         | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.8  | 0.0  | 0.0                | 18.9  | 0.0   | 4.2  | 5.3   | 2.9     | 1.4  | 2.2  | 11.4        | 11.8 |
| Unsig. Movement Delay, s/veh |      |      |                    |       |       |      | • • = |         | • -  |      |             |      |
| LnGrp Delay(d),s/veh         | 41.2 | 0.0  | 0.0                | 182.1 | 0.0   | 22.6 | 61.7  | 10.7    | 9.5  | 62.9 | 51.4        | 51.3 |
| LnGrp LOS                    | D    | A    | A                  | F     | A     | С    | E     | В       | A    | E    | D           | D    |
| Approach Vol, veh/h          |      | 84   |                    |       | 564   |      |       | 1156    |      |      | 778         |      |
| Approach Delay, s/veh        |      | 41.2 |                    |       | 118.7 |      |       | 18.0    |      |      | 52.4        |      |
| Approach LOS                 |      | D    |                    |       | F     |      |       | В       |      |      | D           |      |
| Timer - Assigned Phs         | 1    | 2    |                    | 4     | 5     | 6    |       | 8       |      |      |             |      |
| Phs Duration (G+Y+Rc), s     | 10.4 | 52.6 |                    | 57.0  | 20.0  | 43.0 |       | 57.0    |      |      |             |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |                    | 4.5   | 4.5   | 5.5  |       | 4.5     |      |      |             |      |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |                    | 52.5  | 15.5  | 37.5 |       | 52.5    |      |      |             |      |
| Max Q Clear Time (g_c+I1), s | 6.6  | 12.6 |                    | 54.5  | 12.5  | 24.5 |       | 54.5    |      |      |             |      |
| Green Ext Time (p_c), s      | 0.0  | 9.5  |                    | 0.0   | 0.0   | 4.6  |       | 0.0     |      |      |             |      |
| Intersection Summary         |      |      |                    |       |       |      |       |         |      |      |             |      |
| HCM 6th Ctrl Delay           |      |      | 51.1               |       |       |      |       |         |      |      |             |      |
| HCM 6th LOS                  |      |      | D                  |       |       |      |       |         |      |      |             |      |

| Int Delay, s/veh       | 0.5  |      |      |      |      |          |
|------------------------|------|------|------|------|------|----------|
| Movement               | WBL  | WBR  | NBT  | NBR  | SBL  | SBT      |
| Lane Configurations    |      | 1    | - 11 | 1    | ۲,   | <b>^</b> |
| Traffic Vol, veh/h     | 0    | 37   | 894  | 4    | 52   | 1027     |
| Future Vol, veh/h      | 0    | 37   | 894  | 4    | 52   | 1027     |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0        |
| Sign Control           | Stop | Stop | Free | Free | Free | Free     |
| RT Channelized         | -    | None | -    | None | -    | None     |
| Storage Length         | -    | 0    | -    | 150  | 80   | -        |
| Veh in Median Storage  | ,# 0 | -    | 0    | -    | -    | 0        |
| Grade, %               | 0    | -    | 0    | -    | -    | 0        |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92       |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2        |
| Mvmt Flow              | 0    | 40   | 972  | 4    | 57   | 1116     |

| Major/Minor          | Minor1 | Ν    | /lajor1 | Ν | lajor2 |   |
|----------------------|--------|------|---------|---|--------|---|
| Conflicting Flow All | -      | 486  | 0       | 0 | 976    | 0 |
| Stage 1              | -      | -    | -       | - | -      | - |
| Stage 2              | -      | -    | -       | - | -      | - |
| Critical Hdwy        | -      | 6.94 | -       | - | 4.14   | - |
| Critical Hdwy Stg 1  | -      | -    | -       | - | -      | - |
| Critical Hdwy Stg 2  | -      | -    | -       | - | -      | - |
| Follow-up Hdwy       | -      | 3.32 | -       | - | 2.22   | - |
| Pot Cap-1 Maneuver   | 0      | 527  | -       | - | 703    | - |
| Stage 1              | 0      | -    | -       | - | -      | - |
| Stage 2              | 0      | -    | -       | - | -      | - |
| Platoon blocked, %   |        |      | -       | - |        | - |
| Mov Cap-1 Maneuver   | · –    | 527  | -       | - | 703    | - |
| Mov Cap-2 Maneuver   | · _    | -    | -       | - | -      | - |
| Stage 1              | -      | -    | -       | - | -      | - |
| Stage 2              | -      | -    | -       | - | -      | - |
|                      |        |      |         |   |        |   |
| Approach             | \\/D   |      | ND      |   | CD     |   |

| Approach             | WB   | NB | SB  |  |
|----------------------|------|----|-----|--|
| HCM Control Delay, s | 12.4 | 0  | 0.5 |  |
| HCMLOS               | В    |    |     |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBL  | SBT |  |
|-----------------------|-----|----------|------|-----|--|
| Capacity (veh/h)      | -   | - 527    | 703  | -   |  |
| HCM Lane V/C Ratio    | -   | - 0.076  | 0.08 | -   |  |
| HCM Control Delay (s) | -   | - 12.4   | 10.6 | -   |  |
| HCM Lane LOS          | -   | - B      | В    | -   |  |
| HCM 95th %tile Q(veh) | -   | - 0.2    | 0.3  | -   |  |

| Int Delay, s/veh       | 0.2  |      |               |      |      |          |  |
|------------------------|------|------|---------------|------|------|----------|--|
| Movement               | WBL  | WBR  | NBT           | NBR  | SBL  | SBT      |  |
| Lane Configurations    |      | 1    | _ <b>≜</b> î≽ |      |      | <b>^</b> |  |
| Traffic Vol, veh/h     | 0    | 35   | 862           | 26   | 0    | 1027     |  |
| Future Vol, veh/h      | 0    | 35   | 862           | 26   | 0    | 1027     |  |
| Conflicting Peds, #/hr | 0    | 0    | 0             | 0    | 0    | 0        |  |
| Sign Control           | Stop | Stop | Free          | Free | Free | Free     |  |
| RT Channelized         | -    | None | -             | None | -    | None     |  |
| Storage Length         | -    | 0    | -             | -    | -    | -        |  |
| Veh in Median Storage  | ,# 0 | -    | 0             | -    | -    | 0        |  |
| Grade, %               | 0    | -    | 0             | -    | -    | 0        |  |
| Peak Hour Factor       | 92   | 92   | 92            | 92   | 92   | 92       |  |
| Heavy Vehicles, %      | 2    | 2    | 2             | 2    | 2    | 2        |  |
| Mvmt Flow              | 0    | 38   | 937           | 28   | 0    | 1116     |  |

| Major/Minor          | Minor1 | N    | lajor1 | Ма | ajor2 |   |  |  |  |
|----------------------|--------|------|--------|----|-------|---|--|--|--|
| Conflicting Flow All | -      | 483  | 0      | 0  | -     | - |  |  |  |
| Stage 1              | -      | -    | -      | -  | -     | - |  |  |  |
| Stage 2              | -      | -    | -      | -  | -     | - |  |  |  |
| Critical Hdwy        | -      | 6.94 | -      | -  | -     | - |  |  |  |
| Critical Hdwy Stg 1  | -      | -    | -      | -  | -     | - |  |  |  |
| Critical Hdwy Stg 2  | -      | -    | -      | -  | -     | - |  |  |  |
| Follow-up Hdwy       | -      | 3.32 | -      | -  | -     | - |  |  |  |
| Pot Cap-1 Maneuver   | 0      | 530  | -      | -  | 0     | - |  |  |  |
| Stage 1              | 0      | -    | -      | -  | 0     | - |  |  |  |
| Stage 2              | 0      | -    | -      | -  | 0     | - |  |  |  |
| Platoon blocked, %   |        |      | -      | -  |       | - |  |  |  |
| Mov Cap-1 Maneuver   | · -    | 530  | -      | -  | -     | - |  |  |  |
| Mov Cap-2 Maneuver   |        | -    | -      | -  | -     | - |  |  |  |
| Stage 1              | -      | -    | -      | -  | -     | - |  |  |  |
| Stage 2              | -      | -    | -      | -  | -     | - |  |  |  |
|                      |        |      |        |    |       |   |  |  |  |
|                      |        |      |        |    | ~ ~   |   |  |  |  |

| Approach             | WB   | NB | SB |  |
|----------------------|------|----|----|--|
| HCM Control Delay, s | 12.3 | 0  | 0  |  |
| HCM LOS              | В    |    |    |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 530    | -   |
| HCM Lane V/C Ratio    | -   | - 0.072  | -   |
| HCM Control Delay (s) | -   | - 12.3   | -   |
| HCM Lane LOS          | -   | - B      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.2    | -   |

| Int Delay, s/veh       | 0.2  |      |             |      |      |      |  |  |
|------------------------|------|------|-------------|------|------|------|--|--|
| Movement               | WBL  | WBR  | NBT         | NBR  | SBL  | SBT  |  |  |
| Lane Configurations    |      | 1    | <b>∱</b> î≽ |      |      | - 11 |  |  |
| Traffic Vol, veh/h     | 0    | 30   | 858         | 26   | 0    | 1027 |  |  |
| Future Vol, veh/h      | 0    | 30   | 858         | 26   | 0    | 1027 |  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0           | 0    | 0    | 0    |  |  |
| Sign Control           | Stop | Stop | Free        | Free | Free | Free |  |  |
| RT Channelized         | -    | None | -           | None | -    | None |  |  |
| Storage Length         | -    | 0    | -           | -    | -    | -    |  |  |
| Veh in Median Storage, | # 0  | -    | 0           | -    | -    | 0    |  |  |
| Grade, %               | 0    | -    | 0           | -    | -    | 0    |  |  |
| Peak Hour Factor       | 92   | 92   | 92          | 92   | 92   | 92   |  |  |
| Heavy Vehicles, %      | 2    | 2    | 2           | 2    | 2    | 2    |  |  |
| M∨mt Flow              | 0    | 33   | 933         | 28   | 0    | 1116 |  |  |

| Major/Minor          | Minor1 | Ν    | lajor1 | Ма | ajor2 |   |
|----------------------|--------|------|--------|----|-------|---|
| Conflicting Flow All | -      | 481  | 0      | 0  | -     | - |
| Stage 1              | -      | -    | -      | -  | -     | - |
| Stage 2              | -      | -    | -      | -  | -     | - |
| Critical Hdwy        | -      | 6.94 | -      | -  | -     | - |
| Critical Hdwy Stg 1  | -      | -    | -      | -  | -     | - |
| Critical Hdwy Stg 2  | -      | -    | -      | -  | -     | - |
| Follow-up Hdwy       | -      | 3.32 | -      | -  | -     | - |
| Pot Cap-1 Maneuver   | 0      | 531  | -      | -  | 0     | - |
| Stage 1              | 0      | -    | -      | -  | 0     | - |
| Stage 2              | 0      | -    | -      | -  | 0     | - |
| Platoon blocked, %   |        |      | -      | -  |       | - |
| Mov Cap-1 Maneuver   | · -    | 531  | -      | -  | -     | - |
| Mov Cap-2 Maneuver   | · _    | -    | -      | -  | -     | - |
| Stage 1              | -      | -    | -      | -  | -     | - |
| Stage 2              | -      | -    | -      | -  | -     | - |
|                      |        |      |        |    |       |   |
| Ammunanah            |        |      | ND     |    | CD    |   |

| Approach             | WB   | NB | SB |  |
|----------------------|------|----|----|--|
| HCM Control Delay, s | 12.2 | 0  | 0  |  |
| HCM LOS              | В    |    |    |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 531    | -   |
| HCM Lane V/C Ratio    | -   | - 0.061  | -   |
| HCM Control Delay (s) | -   | - 12.2   | -   |
| HCM Lane LOS          | -   | - B      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.2    | -   |

|                              | ≯    | -    | $\mathbf{r}$ | •    | -    | •    | 1    | 1       | 1    | 1    | Ŧ       | ~    |
|------------------------------|------|------|--------------|------|------|------|------|---------|------|------|---------|------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT  | WBR  | NBL  | NBT     | NBR  | SBL  | SBT     | SBR  |
| Lane Configurations          | ۲    | A1⊅  |              | ۲.   | A1⊅  |      | ۲    | <u></u> | 1    | ۲    | <u></u> | 1    |
| Traffic Volume (veh/h)       | 150  | 410  | 129          | 112  | 837  | 45   | 121  | 616     | 55   | 53   | 686     | 288  |
| Future Volume (veh/h)        | 150  | 410  | 129          | 112  | 837  | 45   | 121  | 616     | 55   | 53   | 686     | 288  |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0       | 0    | 0    | 0       | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.96         | 1.00 |      | 0.94 | 1.00 |         | 0.97 | 1.00 |         | 0.89 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00    | 1.00 | 1.00 | 1.00    | 1.00 |
| Work Zone On Approach        |      | No   |              |      | No   |      |      | No      |      |      | No      |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870         | 1870 | 1870 | 1870 | 1870 | 1870    | 1870 | 1870 | 1870    | 1870 |
| Adj Flow Rate, veh/h         | 172  | 471  | 148          | 135  | 1008 | 54   | 151  | 770     | 69   | 61   | 789     | 331  |
| Peak Hour Factor             | 0.87 | 0.87 | 0.87         | 0.83 | 0.83 | 0.83 | 0.80 | 0.80    | 0.80 | 0.87 | 0.87    | 0.87 |
| Percent Heavy Veh, %         | 2    | 2    | 2            | 2    | 2    | 2    | 2    | 2       | 2    | 2    | 2       | 2    |
| Cap, veh/h                   | 199  | 907  | 282          | 161  | 1087 | 58   | 179  | 1278    | 555  | 78   | 1076    | 426  |
| Arrive On Green              | 0.11 | 0.34 | 0.34         | 0.09 | 0.32 | 0.32 | 0.03 | 0.12    | 0.12 | 0.09 | 0.61    | 0.61 |
| Sat Flow, veh/h              | 1781 | 2639 | 822          | 1781 | 3416 | 183  | 1781 | 3554    | 1543 | 1781 | 3554    | 1406 |
| Grp Volume(v), veh/h         | 172  | 316  | 303          | 135  | 524  | 538  | 151  | 770     | 69   | 61   | 789     | 331  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777 | 1685         | 1781 | 1777 | 1823 | 1781 | 1777    | 1543 | 1781 | 1777    | 1406 |
| Q Serve(g_s), s              | 11.4 | 17.0 | 17.3         | 8.9  | 34.2 | 34.3 | 10.1 | 24.7    | 4.8  | 4.0  | 18.9    | 21.0 |
| Cycle Q Clear(g_c), s        | 11.4 | 17.0 | 17.3         | 8.9  | 34.2 | 34.3 | 10.1 | 24.7    | 4.8  | 4.0  | 18.9    | 21.0 |
| Prop In Lane                 | 1.00 |      | 0.49         | 1.00 |      | 0.10 | 1.00 |         | 1.00 | 1.00 |         | 1.00 |
| Lane Grp Cap(c), veh/h       | 199  | 610  | 579          | 161  | 565  | 580  | 179  | 1278    | 555  | 78   | 1076    | 426  |
| V/C Ratio(X)                 | 0.86 | 0.52 | 0.52         | 0.84 | 0.93 | 0.93 | 0.84 | 0.60    | 0.12 | 0.78 | 0.73    | 0.78 |
| Avail Cap(c_a), veh/h        | 223  | 610  | 579          | 240  | 577  | 592  | 209  | 1278    | 555  | 135  | 1076    | 426  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 0.33 | 0.33    | 0.33 | 2.00 | 2.00    | 2.00 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 0.79 | 0.79    | 0.79 | 1.00 | 1.00    | 1.00 |
| Uniform Delay (d), s/veh     | 52.4 | 31.4 | 31.5         | 53.7 | 39.6 | 39.6 | 57.1 | 44.7    | 36.0 | 54.2 | 20.2    | 20.6 |
| Incr Delay (d2), s/veh       | 24.0 | 1.0  | 1.2          | 9.7  | 21.4 | 21.1 | 16.8 | 1.7     | 0.4  | 6.3  | 4.4     | 13.0 |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0     | 0.0  | 0.0  | 0.0     | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 6.3  | 7.3  | 7.0          | 4.4  | 17.8 | 18.2 | 5.6  | 12.0    | 1.9  | 1.9  | 5.7     | 5.8  |
| Unsig. Movement Delay, s/veh |      |      |              |      |      |      |      |         |      |      |         |      |
| LnGrp Delay(d),s/veh         | 76.3 | 32.5 | 32.7         | 63.4 | 61.0 | 60.6 | 73.9 | 46.4    | 36.3 | 60.5 | 24.6    | 33.7 |
| LnGrp LOS                    | E    | С    | С            | E    | E    | E    | E    | D       | D    | E    | С       | C    |
| Approach Vol, veh/h          |      | 791  |              |      | 1197 |      |      | 990     |      |      | 1181    |      |
| Approach Delay, s/veh        |      | 42.1 |              |      | 61.1 |      |      | 49.9    |      |      | 29.0    |      |
| Approach LOS                 |      | D    |              |      | Е    |      |      | D       |      |      | С       |      |
| Timer - Assigned Phs         | 1    | 2    | 3            | 4    | 5    | 6    | 7    | 8       |      |      |         |      |
| Phs Duration (G+Y+Rc), s     | 9.7  | 48.7 | 15.4         | 46.2 | 16.6 | 41.8 | 18.4 | 43.2    |      |      |         |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5  | 4.5          | 5.0  | 4.5  | 5.5  | 5.0  | 5.0     |      |      |         |      |
| Max Green Setting (Gmax), s  | 9.1  | 36.9 | 16.2         | 38.3 | 14.1 | 31.9 | 15.0 | 39.0    |      |      |         |      |
| Max Q Clear Time (g_c+l1), s | 6.0  | 26.7 | 10.9         | 19.3 | 12.1 | 23.0 | 13.4 | 36.3    |      |      |         |      |
| Green Ext Time (p_c), s      | 0.0  | 4.8  | 0.0          | 4.9  | 0.0  | 5.3  | 0.0  | 1.9     |      |      |         |      |
| Intersection Summary         |      |      |              |      |      |      |      |         |      |      |         |      |
| HCM 6th Ctrl Delay           |      |      | 45.7         |      |      |      |      |         |      |      |         |      |
| HCM 6th LOS                  |      |      | D            |      |      |      |      |         |      |      |         |      |

|                              | ≯    | -    | $\rightarrow$ | 1    | -           | •    | 1    | 1       | 1    | 1    | Ŧ        | ~    |
|------------------------------|------|------|---------------|------|-------------|------|------|---------|------|------|----------|------|
| Movement                     | EBL  | EBT  | EBR           | WBL  | WBT         | WBR  | NBL  | NBT     | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ľ    | A12∍ |               | ľ    | <b>∱1</b> } |      | 1    | <u></u> | 1    | 1    | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 160  | 324  | 115           | 105  | 510         | 37   | 123  | 617     | 51   | 74   | 803      | 165  |
| Future Volume (veh/h)        | 160  | 324  | 115           | 105  | 510         | 37   | 123  | 617     | 51   | 74   | 803      | 165  |
| Initial Q (Qb), veh          | 0    | 0    | 0             | 0    | 0           | 0    | 0    | 0       | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.98          | 1.00 |             | 0.98 | 1.00 |         | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00          | 1.00 | 1.00        | 1.00 | 1.00 | 1.00    | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No   |               |      | No          |      |      | No      |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870          | 1870 | 1870        | 1870 | 1870 | 1870    | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 193  | 390  | 139           | 135  | 654         | 47   | 154  | 771     | 64   | 82   | 892      | 183  |
| Peak Hour Factor             | 0.83 | 0.83 | 0.83          | 0.78 | 0.78        | 0.78 | 0.80 | 0.80    | 0.80 | 0.90 | 0.90     | 0.90 |
| Percent Heavy Veh, %         | 2    | 2    | 2             | 2    | 2           | 2    | 2    | 2       | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 220  | 638  | 224           | 162  | 726         | 52   | 178  | 1592    | 694  | 104  | 1443     | 632  |
| Arrive On Green              | 0.12 | 0.25 | 0.25          | 0.09 | 0.22        | 0.22 | 0.20 | 0.90    | 0.90 | 0.08 | 0.54     | 0.54 |
| Sat Flow, veh/h              | 1781 | 2563 | 901           | 1781 | 3356        | 241  | 1781 | 3554    | 1550 | 1781 | 3554     | 1556 |
| Grp Volume(v), veh/h         | 193  | 269  | 260           | 135  | 346         | 355  | 154  | 771     | 64   | 82   | 892      | 183  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777 | 1687          | 1781 | 1777        | 1821 | 1781 | 1777    | 1550 | 1781 | 1777     | 1556 |
| Q Serve(g_s), s              | 12.8 | 16.1 | 16.4          | 8.9  | 22.7        | 22.8 | 10.0 | 4.8     | 0.6  | 5.4  | 20.8     | 7.7  |
| Cycle Q Clear(g_c), s        | 12.8 | 16.1 | 16.4          | 8.9  | 22.7        | 22.8 | 10.0 | 4.8     | 0.6  | 5.4  | 20.8     | 7.7  |
| Prop In Lane                 | 1.00 |      | 0.53          | 1.00 |             | 0.13 | 1.00 |         | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 220  | 442  | 420           | 162  | 384         | 394  | 178  | 1592    | 694  | 104  | 1443     | 632  |
| V/C Ratio(X)                 | 0.88 | 0.61 | 0.62          | 0.83 | 0.90        | 0.90 | 0.86 | 0.48    | 0.09 | 0.79 | 0.62     | 0.29 |
| Avail Cap(c_a), veh/h        | 252  | 442  | 420           | 258  | 400         | 410  | 223  | 1592    | 694  | 177  | 1443     | 632  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00          | 1.00 | 1.00        | 1.00 | 2.00 | 2.00    | 2.00 | 1.33 | 1.33     | 1.33 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00          | 1.00 | 1.00        | 1.00 | 0.85 | 0.85    | 0.85 | 0.55 | 0.55     | 0.55 |
| Uniform Delay (d), s/veh     | 51.7 | 39.9 | 40.0          | 53.7 | 45.8        | 45.8 | 47.2 | 3.7     | 3.5  | 54.7 | 21.2     | 18.2 |
| Incr Delay (d2), s/veh       | 23.3 | 2.8  | 3.3           | 6.3  | 22.8        | 22.7 | 18.1 | 0.9     | 0.2  | 2.8  | 1.1      | 0.6  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0           | 0.0  | 0.0         | 0.0  | 0.0  | 0.0     | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 7.1  | 7.4  | 7.2           | 4.3  | 12.4        | 12.7 | 4.8  | 1.3     | 0.2  | 2.4  | 7.5      | 2.8  |
| Unsig. Movement Delay, s/veh |      |      |               |      |             |      |      |         |      |      |          |      |
| LnGrp Delay(d),s/veh         | 75.0 | 42.7 | 43.3          | 59.9 | 68.5        | 68.4 | 65.3 | 4.6     | 3.7  | 57.5 | 22.3     | 18.8 |
| LnGrp LOS                    | E    | D    | D             | E    | E           | E    | E    | Α       | А    | E    | С        | B    |
| Approach Vol, veh/h          |      | 722  |               |      | 836         |      |      | 989     |      |      | 1157     |      |
| Approach Delay, s/veh        |      | 51.6 |               |      | 67.1        |      |      | 14.0    |      |      | 24.2     |      |
| Approach LOS                 |      | D    |               |      | E           |      |      | В       |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2    | 3             | 4    | 5           | 6    | 7    | 8       |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 11.0 | 59.3 | 14.9          | 34.9 | 16.0        | 54.2 | 18.8 | 31.0    |      |      |          |      |
| Change Period (Y+Rc), s      | 4.0  | 5.5  | 4.0           | 5.0  | 4.0         | 5.5  | 4.0  | 5.0     |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.9 | 45.6 | 17.4          | 26.6 | 15.0        | 42.5 | 17.0 | 27.0    |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 7.4  | 6.8  | 10.9          | 18.4 | 12.0        | 22.8 | 14.8 | 24.8    |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 8.9  | 0.1           | 2.7  | 0.1         | 8.9  | 0.1  | 1.2     |      |      |          |      |
| Intersection Summary         |      |      |               |      |             |      |      |         |      |      |          |      |
| HCM 6th Ctrl Delay           |      |      | 36.5          |      |             |      |      |         |      |      |          |      |
| HCM 6th LOS                  |      |      | D             |      |             |      |      |         |      |      |          |      |

## HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ۶    | -        | $\mathbf{r}$ | •        | -        | *    | 1    | 1        | 1    | 1    | Ŧ        | ~    |
|------------------------------|------|----------|--------------|----------|----------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR          | WBL      | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ۲.   | <b>^</b> | 1            | <u> </u> | <b>^</b> | 1    | ሻ    | <b>^</b> | 1    | ٦    | <u>^</u> | 1    |
| Traffic Volume (veh/h)       | 74   | 429      | 116          | 81       | 736      | 39   | 246  | 663      | 119  | 95   | 765      | 140  |
| Future Volume (veh/h)        | 74   | 429      | 116          | 81       | 736      | 39   | 246  | 663      | 119  | 95   | 765      | 140  |
| Initial Q (Qb), veh          | 0    | 0        | 0            | 0        | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.98         | 1.00     |          | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00         | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |              |          | No       |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870         | 1870     | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 91   | 530      | 143          | 88       | 800      | 42   | 276  | 745      | 134  | 107  | 860      | 157  |
| Peak Hour Factor             | 0.81 | 0.81     | 0.81         | 0.92     | 0.92     | 0.92 | 0.89 | 0.89     | 0.89 | 0.89 | 0.89     | 0.89 |
| Percent Heavy Veh, %         | 2    | 2        | 2            | 2        | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 114  | 886      | 386          | 111      | 879      | 386  | 302  | 1609     | 707  | 131  | 1267     | 553  |
| Arrive On Green              | 0.06 | 0.25     | 0.25         | 0.06     | 0.25     | 0.25 | 0.17 | 0.45     | 0.45 | 0.15 | 0.71     | 0.71 |
| Sat Flow, veh/h              | 1781 | 3554     | 1548         | 1781     | 3554     | 1559 | 1781 | 3554     | 1561 | 1781 | 3554     | 1551 |
| Grp Volume(v), veh/h         | 91   | 530      | 143          | 88       | 800      | 42   | 276  | 745      | 134  | 107  | 860      | 157  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1548         | 1781     | 1777     | 1559 | 1781 | 1777     | 1561 | 1781 | 1777     | 1551 |
| Q Serve(g_s), s              | 6.0  | 15.8     | 9.2          | 5.8      | 26.2     | 2.5  | 18.3 | 17.4     | 6.2  | 7.0  | 16.2     | 4.4  |
| Cycle Q Clear(g_c), s        | 6.0  | 15.8     | 9.2          | 5.8      | 26.2     | 2.5  | 18.3 | 17.4     | 6.2  | 7.0  | 16.2     | 4.4  |
| Prop In Lane                 | 1.00 |          | 1.00         | 1.00     |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 114  | 886      | 386          | 111      | 879      | 386  | 302  | 1609     | 707  | 131  | 1267     | 553  |
| V/C Ratio(X)                 | 0.80 | 0.60     | 0.37         | 0.80     | 0.91     | 0.11 | 0.91 | 0.46     | 0.19 | 0.82 | 0.68     | 0.28 |
| Avail Cap(c_a), veh/h        | 126  | 888      | 387          | 141      | 918      | 403  | 319  | 1609     | 707  | 200  | 1267     | 553  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00         | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00         | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.69 | 0.69     | 0.69 |
| Uniform Delay (d), s/veh     | 55.4 | 39.8     | 37.3         | 55.5     | 43.9     | 34.9 | 48.9 | 22.7     | 19.7 | 50.4 | 13.4     | 11.7 |
| Incr Delay (d2), s/veh       | 27.3 | 1.1      | 0.6          | 21.1     | 12.6     | 0.1  | 28.4 | 1.0      | 0.6  | 10.2 | 2.0      | 0.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0          | 0.0      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 3.6  | 7.0      | 3.6          | 3.3      | 13.0     | 1.0  | 10.3 | 7.2      | 2.4  | 3.2  | 4.3      | 1.5  |
| Unsig. Movement Delay, s/veh |      |          |              |          |          |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 82.7 | 40.9     | 37.9         | 76.6     | 56.4     | 35.0 | 77.4 | 23.7     | 20.3 | 60.6 | 15.5     | 12.6 |
| LnGrp LOS                    | F    | D        | D            | E        | E        | D    | E    | С        | С    | E    | В        | B    |
| Approach Vol, veh/h          |      | 764      |              |          | 930      |      |      | 1155     |      |      | 1124     |      |
| Approach Delay, s/veh        |      | 45.3     |              |          | 57.4     |      |      | 36.1     |      |      | 19.4     |      |
| Approach LOS                 |      | D        |              |          | E        |      |      | D        |      |      | В        |      |
| Timer - Assigned Phs         | 1    | 2        | 3            | 4        | 5        | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 13.3 | 59.8     | 12.0         | 34.9     | 24.9     | 48.3 | 12.2 | 34.7     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5          | 5.0      | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |      |
| Max Green Setting (Gmax), s  | 13.5 | 47.5     | 9.5          | 30.0     | 21.5     | 39.5 | 8.5  | 31.0     |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 9.0  | 19.4     | 7.8          | 17.8     | 20.3     | 18.2 | 8.0  | 28.2     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.1  | 5.8      | 0.0          | 3.3      | 0.1      | 6.4  | 0.0  | 1.5      |      |      |          |      |
| Intersection Summary         |      |          |              |          |          |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |          | 38.1         |          |          |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |          | D            |          |          |      |      |          |      |      |          |      |

| Int Delay, s/veh       | 0.3      |      |               |      |      |      |  |  |
|------------------------|----------|------|---------------|------|------|------|--|--|
| Movement               | EBL      | EBT  | WBT           | WBR  | SBL  | SBR  |  |  |
| Lane Configurations    | <u>ک</u> | - 11 | - <b>†</b> 1- |      | Y    |      |  |  |
| Traffic Vol, veh/h     | 6        | 511  | 966           | 6    | 0    | 28   |  |  |
| Future Vol, veh/h      | 6        | 511  | 966           | 6    | 0    | 28   |  |  |
| Conflicting Peds, #/hr | 0        | 0    | 0             | 0    | 0    | 0    |  |  |
| Sign Control           | Free     | Free | Free          | Free | Stop | Stop |  |  |
| RT Channelized         | -        | None | -             | None | -    | None |  |  |
| Storage Length         | 50       | -    | -             | -    | 0    | -    |  |  |
| Veh in Median Storage  | , # -    | 0    | 0             | -    | 0    | -    |  |  |
| Grade, %               | -        | 0    | 0             | -    | 0    | -    |  |  |
| Peak Hour Factor       | 92       | 92   | 92            | 92   | 92   | 92   |  |  |
| Heavy Vehicles, %      | 2        | 2    | 2             | 2    | 2    | 2    |  |  |
| Mvmt Flow              | 7        | 555  | 1050          | 7    | 0    | 30   |  |  |

| Major/Minor          | Major1 | Ν    | /lajor2 | [          | Minor2 |         |  |
|----------------------|--------|------|---------|------------|--------|---------|--|
| Conflicting Flow All | 1057   | 0    | -       | 0          | 1346   | 529     |  |
| Stage 1              | -      | -    | -       | -          | 1054   | -       |  |
| Stage 2              | -      | -    | -       | -          | 292    | -       |  |
| Critical Hdwy        | 4.14   | -    | -       | -          | 6.84   | 6.94    |  |
| Critical Hdwy Stg 1  | -      | -    | -       | -          | 5.84   | -       |  |
| Critical Hdwy Stg 2  | -      | -    | -       | -          | 5.84   | -       |  |
| Follow-up Hdwy       | 2.22   | -    | -       | -          | 3.52   | 3.32    |  |
| Pot Cap-1 Maneuver   | 655    | -    | -       | -          | 143    | 494     |  |
| Stage 1              | -      | -    | -       | -          | 296    | -       |  |
| Stage 2              | -      | -    | -       | -          | 732    | -       |  |
| Platoon blocked, %   |        | -    | -       | -          |        |         |  |
| Mov Cap-1 Maneuver   | 655    | -    | -       | -          | 141    | 494     |  |
| Mov Cap-2 Maneuver   | -      | -    | -       | -          | 239    | -       |  |
| Stage 1              | -      | -    | -       | -          | 293    | -       |  |
| Stage 2              | -      | -    | -       | -          | 732    | -       |  |
|                      |        |      |         |            |        |         |  |
| Approach             | EB     |      | WB      |            | SB     |         |  |
| HCM Control Delay, s | 0.1    |      | 0       |            | 12.8   |         |  |
| HCM LOS              | ••••   |      |         |            | B      |         |  |
|                      |        |      |         |            |        |         |  |
| N                    |        |      | EDT     |            |        | 201 - 4 |  |
| winor Lane/Wajor Mvr | nt     | EBL  | ERI     | <b>WRI</b> | WRK 8  | SBLN1   |  |
| Capacity (veh/h)     |        | 655  | -       | -          | -      | 494     |  |
| HCM Lane V/C Ratio   |        | 0.01 | -       | -          | -      | 0.062   |  |
| HCM Control Delay (s | 5)     | 10.6 | -       | -          | -      | 12.8    |  |
| HCM Lane LOS         |        | В    | -       | -          | -      | B       |  |
| HCM 95th %tile Q(ver | ו)     | 0    | -       | -          | -      | 0.2     |  |

## HCM 6th Signalized Intersection Summary 1: N Azusa Ave & Arrow Hwy

|                                 | ۶    | -        | $\mathbf{\hat{z}}$ | 4    | +        | ×    | 1    | Ť           | ۲    | 1    | ŧ           | ~    |
|---------------------------------|------|----------|--------------------|------|----------|------|------|-------------|------|------|-------------|------|
| Movement                        | EBL  | EBT      | EBR                | WBL  | WBT      | WBR  | NBL  | NBT         | NBR  | SBL  | SBT         | SBR  |
| Lane Configurations             | ሻሻ   | <b>^</b> | 1                  | ۲    | <b>^</b> | 1    | ሻሻ   | <b>4</b> 12 |      | ሻሻ   | <b>4</b> 15 |      |
| Traffic Volume (veh/h)          | 253  | 875      | 141                | 182  | 456      | 107  | 205  | 561         | 141  | 206  | 562         | 101  |
| Future Volume (veh/h)           | 253  | 875      | 141                | 182  | 456      | 107  | 205  | 561         | 141  | 206  | 562         | 101  |
| Initial Q (Qb), veh             | 0    | 0        | 0                  | 0    | 0        | 0    | 0    | 0           | 0    | 0    | 0           | 0    |
| Ped-Bike Adj(A_pbT)             | 1.00 |          | 0.94               | 1.00 |          | 0.97 | 1.00 |             | 0.96 | 1.00 |             | 0.96 |
| Parking Bus, Adj                | 1.00 | 1.00     | 1.00               | 1.00 | 1.00     | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00        | 1.00 |
| Work Zone On Approach           |      | No       |                    |      | No       |      |      | No          |      |      | No          |      |
| Adj Sat Flow, veh/h/ln          | 1870 | 1870     | 1870               | 1870 | 1870     | 1870 | 1870 | 1870        | 1870 | 1870 | 1870        | 1870 |
| Adj Flow Rate, veh/h            | 291  | 1006     | 162                | 198  | 496      | 116  | 228  | 623         | 157  | 224  | 611         | 110  |
| Peak Hour Factor                | 0.87 | 0.87     | 0.87               | 0.92 | 0.92     | 0.92 | 0.90 | 0.90        | 0.90 | 0.92 | 0.92        | 0.92 |
| Percent Heavy Veh, %            | 2    | 2        | 2                  | 2    | 2        | 2    | 2    | 2           | 2    | 2    | 2           | 2    |
| Cap, veh/h                      | 355  | 1123     | 604                | 226  | 1210     | 522  | 286  | 885         | 223  | 280  | 944         | 169  |
| Arrive On Green                 | 0.10 | 0.32     | 0.32               | 0.13 | 0.34     | 0.34 | 0.03 | 0.10        | 0.10 | 0.08 | 0.32        | 0.32 |
| Sat Flow, veh/h                 | 3456 | 3554     | 1496               | 1781 | 3554     | 1534 | 3456 | 2787        | 701  | 3456 | 2989        | 537  |
| Grp Volume(v), veh/h            | 291  | 1006     | 162                | 198  | 496      | 116  | 228  | 397         | 383  | 224  | 363         | 358  |
| Grp Sat Flow(s),veh/h/ln        | 1728 | 1777     | 1496               | 1781 | 1777     | 1534 | 1728 | 1777        | 1711 | 1728 | 1777        | 1749 |
| Q Serve(g_s), s                 | 9.9  | 32.4     | 8.8                | 13.1 | 12.8     | 6.5  | 7.9  | 25.9        | 26.0 | 7.6  | 21.0        | 21.2 |
| Cycle Q Clear(g_c), s           | 9.9  | 32.4     | 8.8                | 13.1 | 12.8     | 6.5  | 7.9  | 25.9        | 26.0 | 7.6  | 21.0        | 21.2 |
| Prop In Lane                    | 1.00 |          | 1.00               | 1.00 |          | 1.00 | 1.00 |             | 0.41 | 1.00 |             | 0.31 |
| Lane Grp Cap(c), veh/h          | 355  | 1123     | 604                | 226  | 1210     | 522  | 286  | 564         | 543  | 280  | 561         | 552  |
| V/C Ratio(X)                    | 0.82 | 0.90     | 0.27               | 0.88 | 0.41     | 0.22 | 0.80 | 0.70        | 0.71 | 0.80 | 0.65        | 0.65 |
| Avail Cap(c_a), veh/h           | 478  | 1170     | 624                | 275  | 1226     | 529  | 311  | 564         | 543  | 305  | 561         | 552  |
| HCM Platoon Ratio               | 1.00 | 1.00     | 1.00               | 1.00 | 1.00     | 1.00 | 0.33 | 0.33        | 0.33 | 1.00 | 1.00        | 1.00 |
| Upstream Filter(I)              | 1.00 | 1.00     | 1.00               | 1.00 | 1.00     | 1.00 | 0.92 | 0.92        | 0.92 | 1.00 | 1.00        | 1.00 |
| Uniform Delay (d), s/veh        | 52.8 | 39.2     | 24.3               | 51.4 | 30.3     | 28.2 | 57.4 | 48.2        | 48.3 | 54.2 | 35.3        | 35.3 |
| Incr Delay (d2), s/veh          | 8.1  | 9.3      | 0.3                | 22.4 | 0.3      | 0.3  | 11.7 | 6.6         | 6.9  | 13.2 | 5.7         | 5.8  |
| Initial Q Delay(d3),s/veh       | 0.0  | 0.0      | 0.0                | 0.0  | 0.0      | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0         | 0.0  |
| %ile BackOfQ(50%),veh/ln        | 4.6  | 14.9     | 3.1                | 7.1  | 5.4      | 2.4  | 4.0  | 13.3        | 12.9 | 3.8  | 9.7         | 9.7  |
| Unsig. Movement Delay, s/veh    |      |          |                    |      |          |      |      |             |      |      |             |      |
| LnGrp Delay(d),s/veh            | 60.9 | 48.4     | 24.7               | 73.9 | 30.7     | 28.5 | 69.0 | 54.8        | 55.2 | 67.4 | 40.9        | 41.1 |
| LnGrp LOS                       | E    | D        | С                  | E    | С        | С    | E    | D           | Е    | E    | D           | D    |
| Approach Vol, veh/h             |      | 1459     |                    |      | 810      |      |      | 1008        |      |      | 945         |      |
| Approach Delay, s/veh           |      | 48.3     |                    |      | 40.9     |      |      | 58.2        |      |      | 47.3        |      |
| Approach LOS                    |      | D        |                    |      | D        |      |      | E           |      |      | D           |      |
| Timer - Assianed Phs            | 1    | 2        | 3                  | 4    | 5        | 6    | 7    | 8           |      |      |             |      |
| Phs Duration (G+Y+Rc) s         | 14.2 | 43.6     | 19.7               | 42.4 | 14.4     | 43.4 | 16.8 | 45.4        |      |      |             |      |
| Change Period (Y+Rc) s          | 4.5  | 5.5      | 4.5                | 4.5  | 4.5      | 5.5  | 4.5  | 4.5         |      |      |             |      |
| Max Green Setting (Gmax) s      | 10.6 | 32.4     | 18.5               | 39.5 | 10.8     | 32.2 | 16.6 | 41.4        |      |      |             |      |
| Max Q Clear Time (q. $c+11$ ) s | 9.6  | 28.0     | 15.0               | 34.4 | 9.9      | 23.2 | 11.9 | 14.8        |      |      |             |      |
| Green Ext Time (n_c) s          | 0.1  | 2.3      | 0.2                | 3.5  | 0.1      | 37   | 0.4  | 5.1         |      |      |             |      |
|                                 | 5.1  | 2.0      | 0.2                | 5.0  |          | 5.1  | 5.1  | <b>.</b>    |      |      |             |      |
|                                 |      |          | 40.0               |      |          |      |      |             |      |      |             |      |
| HCM 6th Ctrl Delay              |      |          | 49.0               |      |          |      |      |             |      |      |             |      |
| HUM 6th LUS                     |      |          | D                  |      |          |      |      |             |      |      |             |      |

#### Notes

User approved changes to right turn type.

## HCM 6th Signalized Intersection Summary 2: N Azusa Ave & Covina Blvd

|                              | ۶    | -    | $\mathbf{r}$ | 1    | -    | •    | •    | 1    | 1    | 1    | Ŧ           | ~        |
|------------------------------|------|------|--------------|------|------|------|------|------|------|------|-------------|----------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT         | SBR      |
| Lane Configurations          |      | 4    |              |      | स्   | 1    | 5    | 44   | 1    | 5    | <b>≜</b> 16 |          |
| Traffic Volume (veh/h)       | 28   | 26   | 30           | 135  | 32   | 131  | 105  | 744  | 166  | 150  | 826         | 33       |
| Future Volume (veh/h)        | 28   | 26   | 30           | 135  | 32   | 131  | 105  | 744  | 166  | 150  | 826         | 33       |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.97         | 0.99 |      | 0.97 | 1.00 |      | 0.99 | 1.00 |             | 0.96     |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00        | 1.00     |
| Work Zone On Approach        |      | No   |              |      | No   |      |      | No   |      |      | No          |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870         | 1870 | 1870 | 1870 | 1870 | 1870 | 1945 | 1870 | 1870        | 1870     |
| Adj Flow Rate, veh/h         | 36   | 33   | 38           | 145  | 34   | 141  | 113  | 800  | 178  | 161  | 888         | 35       |
| Peak Hour Factor             | 0.78 | 0.78 | 0.78         | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93        | 0.93     |
| Percent Heavy Veh, %         | 2    | 2    | 2            | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2           | 2        |
| Cap, veh/h                   | 67   | 62   | 49           | 233  | 45   | 434  | 230  | 1779 | 814  | 171  | 1626        | 64       |
| Arrive On Green              | 0.28 | 0.28 | 0.28         | 0.28 | 0.28 | 0.28 | 0.26 | 1.00 | 1.00 | 0.03 | 0.15        | 0.15     |
| Sat Flow, veh/h              | 96   | 218  | 173          | 632  | 160  | 1536 | 1781 | 3554 | 1626 | 1781 | 3479        | 137      |
| Grp Volume(v), veh/h         | 107  | 0    | 0            | 179  | 0    | 141  | 113  | 800  | 178  | 161  | 454         | 469      |
| Grp Sat Flow(s),veh/h/ln     | 487  | 0    | 0            | 793  | 0    | 1536 | 1781 | 1777 | 1626 | 1781 | 1777        | 1839     |
| Q Serve(g_s), s              | 3.9  | 0.0  | 0.0          | 0.0  | 0.0  | 8.7  | 6.5  | 0.0  | 0.0  | 10.8 | 28.3        | 28.3     |
| Cycle Q Clear(g_c), s        | 31.2 | 0.0  | 0.0          | 27.4 | 0.0  | 8.7  | 6.5  | 0.0  | 0.0  | 10.8 | 28.3        | 28.3     |
| Prop In Lane                 | 0.34 |      | 0.36         | 0.81 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |             | 0.07     |
| Lane Grp Cap(c), veh/h       | 178  | 0    | 0            | 278  | 0    | 434  | 230  | 1779 | 814  | 171  | 830         | 860      |
| V/C Ratio(X)                 | 0.60 | 0.00 | 0.00         | 0.64 | 0.00 | 0.32 | 0.49 | 0.45 | 0.22 | 0.94 | 0.55        | 0.55     |
| Avail Cap(c_a), veh/h        | 407  | 0    | 0            | 494  | 0    | 672  | 230  | 1779 | 814  | 171  | 830         | 860      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 0.33 | 0.33        | 0.33     |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00         | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.70        | 0.70     |
| Uniform Delay (d), s/veh     | 40.9 | 0.0  | 0.0          | 40.5 | 0.0  | 34.0 | 41.2 | 0.0  | 0.0  | 57.8 | 39.0        | 39.0     |
| Incr Delay (d2), s/veh       | 4.6  | 0.0  | 0.0          | 3.5  | 0.0  | 0.6  | 7.3  | 0.8  | 0.6  | 41.7 | 1.8         | 1.7      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0         | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 3.4  | 0.0  | 0.0          | 5.2  | 0.0  | 3.3  | 3.1  | 0.2  | 0.1  | 7.1  | 13.8        | 14.3     |
| Unsig. Movement Delay, s/veh |      |      |              |      |      |      |      |      |      |      |             |          |
| LnGrp Delay(d),s/veh         | 45.5 | 0.0  | 0.0          | 44.0 | 0.0  | 34.6 | 48.5 | 0.8  | 0.6  | 99.5 | 40.8        | 40.7     |
| LnGrp LOS                    | D    | A    | A            | D    | A    | С    | D    | A    | A    | F    | D           | <u> </u> |
| Approach Vol, veh/h          |      | 107  |              |      | 320  |      |      | 1091 |      |      | 1084        |          |
| Approach Delay, s/veh        |      | 45.5 |              |      | 39.9 |      |      | 5.7  |      |      | 49.5        |          |
| Approach LOS                 |      | D    |              |      | D    |      |      | А    |      |      | D           |          |
| Timer - Assigned Phs         | 1    | 2    |              | 4    | 5    | 6    |      | 8    |      |      |             |          |
| Phs Duration (G+Y+Rc), s     | 16.0 | 65.6 |              | 38.4 | 20.0 | 61.6 |      | 38.4 |      |      |             |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5  |              | 4.5  | 4.5  | 5.5  |      | 4.5  |      |      |             |          |
| Max Green Setting (Gmax), s  | 11.5 | 41.5 |              | 52.5 | 15.5 | 37.5 |      | 52.5 |      |      |             |          |
| Max Q Clear Time (g_c+I1), s | 12.8 | 2.0  |              | 33.2 | 8.5  | 30.3 |      | 29.4 |      |      |             |          |
| Green Ext Time (p_c), s      | 0.0  | 10.3 |              | 0.7  | 0.0  | 4.0  |      | 2.3  |      |      |             |          |
| Intersection Summary         |      |      |              |      |      |      |      |      |      |      |             |          |
| HCM 6th Ctrl Delay           |      |      | 29.8         |      |      |      |      |      |      |      |             |          |
| HCM 6th LOS                  |      |      | С            |      |      |      |      |      |      |      |             |          |

| Int Delay, s/veh       | 0.4  |      |      |      |          |      |  |
|------------------------|------|------|------|------|----------|------|--|
| Movement               | WBL  | WBR  | NBT  | NBR  | SBL      | SBT  |  |
| Lane Configurations    |      | 1    | - 11 | 1    | <u>۲</u> | - 11 |  |
| Traffic Vol, veh/h     | 0    | 39   | 992  | 8    | 43       | 1035 |  |
| Future Vol, veh/h      | 0    | 39   | 992  | 8    | 43       | 1035 |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0        | 0    |  |
| Sign Control           | Stop | Stop | Free | Free | Free     | Free |  |
| RT Channelized         | -    | None | -    | None | -        | None |  |
| Storage Length         | -    | 0    | -    | 150  | 80       | -    |  |
| Veh in Median Storage, | ,#0  | -    | 0    | -    | -        | 0    |  |
| Grade, %               | 0    | -    | 0    | -    | -        | 0    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92       | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2        | 2    |  |
| Mvmt Flow              | 0    | 42   | 1078 | 9    | 47       | 1125 |  |

| Major/Minor          | Minor1 | Ν    | 1ajor1 | Ν | lajor2 |   |
|----------------------|--------|------|--------|---|--------|---|
| Conflicting Flow All | -      | 539  | 0      | 0 | 1087   | 0 |
| Stage 1              | -      | -    | -      | - | -      | - |
| Stage 2              | -      | -    | -      | - | -      | - |
| Critical Hdwy        | -      | 6.94 | -      | - | 4.14   | - |
| Critical Hdwy Stg 1  | -      | -    | -      | - | -      | - |
| Critical Hdwy Stg 2  | -      | -    | -      | - | -      | - |
| Follow-up Hdwy       | -      | 3.32 | -      | - | 2.22   | - |
| Pot Cap-1 Maneuver   | 0      | 487  | -      | - | 638    | - |
| Stage 1              | 0      | -    | -      | - | -      | - |
| Stage 2              | 0      | -    | -      | - | -      | - |
| Platoon blocked, %   |        |      | -      | - |        | - |
| Mov Cap-1 Maneuver   | -      | 487  | -      | - | 638    | - |
| Mov Cap-2 Maneuver   | -      | -    | -      | - | -      | - |
| Stage 1              | -      | -    | -      | - | -      | - |
| Stage 2              | -      | -    | -      | - | -      | - |
|                      |        |      |        |   |        |   |
| Approach             | WB     |      | NB     |   | SB     |   |

| Approach             | WB   | NB | SB  |  |
|----------------------|------|----|-----|--|
| HCM Control Delay, s | 13.1 | 0  | 0.4 |  |
| HCM LOS              | В    |    |     |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBL   | SBT |  |
|-----------------------|-----|----------|-------|-----|--|
| Capacity (veh/h)      | -   | - 487    | 638   | -   |  |
| HCM Lane V/C Ratio    | -   | - 0.087  | 0.073 | -   |  |
| HCM Control Delay (s) | -   | - 13.1   | 11.1  | -   |  |
| HCM Lane LOS          | -   | - B      | В     | -   |  |
| HCM 95th %tile Q(veh) | -   | - 0.3    | 0.2   | -   |  |

| Int Delay, s/veh       | 0.1  |      |               |      |      |              |  |
|------------------------|------|------|---------------|------|------|--------------|--|
| Movement               | WBL  | WBR  | NBT           | NBR  | SBL  | SBT          |  |
| Lane Configurations    |      | 1    | - <b>†</b> 1- |      |      | - <b>†</b> † |  |
| Traffic Vol, veh/h     | 0    | 24   | 976           | 18   | 0    | 1035         |  |
| Future Vol, veh/h      | 0    | 24   | 976           | 18   | 0    | 1035         |  |
| Conflicting Peds, #/hr | 0    | 0    | 0             | 0    | 0    | 0            |  |
| Sign Control           | Stop | Stop | Free          | Free | Free | Free         |  |
| RT Channelized         | -    | None | -             | None | -    | None         |  |
| Storage Length         | -    | 0    | -             | -    | -    | -            |  |
| Veh in Median Storage, | # 0  | -    | 0             | -    | -    | 0            |  |
| Grade, %               | 0    | -    | 0             | -    | -    | 0            |  |
| Peak Hour Factor       | 92   | 92   | 92            | 92   | 92   | 92           |  |
| Heavy Vehicles, %      | 2    | 2    | 2             | 2    | 2    | 2            |  |
| Mvmt Flow              | 0    | 26   | 1061          | 20   | 0    | 1125         |  |

| Major/Minor          | Minor1 | Ν    | /lajor1 | Ma | ijor2 |   |  |  |
|----------------------|--------|------|---------|----|-------|---|--|--|
| Conflicting Flow All | -      | 541  | 0       | 0  | -     | - |  |  |
| Stage 1              | -      | -    | -       | -  | -     | - |  |  |
| Stage 2              | -      | -    | -       | -  | -     | - |  |  |
| Critical Hdwy        | -      | 6.94 | -       | -  | -     | - |  |  |
| Critical Hdwy Stg 1  | -      | -    | -       | -  | -     | - |  |  |
| Critical Hdwy Stg 2  | -      | -    | -       | -  | -     | - |  |  |
| Follow-up Hdwy       | -      | 3.32 | -       | -  | -     | - |  |  |
| Pot Cap-1 Maneuver   | 0      | 485  | -       | -  | 0     | - |  |  |
| Stage 1              | 0      | -    | -       | -  | 0     | - |  |  |
| Stage 2              | 0      | -    | -       | -  | 0     | - |  |  |
| Platoon blocked, %   |        |      | -       | -  |       | - |  |  |
| Mov Cap-1 Maneuver   | · -    | 485  | -       | -  | -     | - |  |  |
| Mov Cap-2 Maneuver   | · -    | -    | -       | -  | -     | - |  |  |
| Stage 1              | -      | -    | -       | -  | -     | - |  |  |
| Stage 2              | -      | -    | -       | -  | -     | - |  |  |
|                      |        |      |         |    |       |   |  |  |
|                      |        |      |         |    |       |   |  |  |

| Approach             | WB   | NB | SB |  |
|----------------------|------|----|----|--|
| HCM Control Delay, s | 12.8 | 0  | 0  |  |
| HCM LOS              | В    |    |    |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 485    | -   |
| HCM Lane V/C Ratio    | -   | - 0.054  | -   |
| HCM Control Delay (s) | -   | - 12.8   | -   |
| HCM Lane LOS          | -   | - B      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.2    | -   |

| Int Delay, s/veh       | 0.1  |      |               |      |      |          |  |  |
|------------------------|------|------|---------------|------|------|----------|--|--|
| Movement               | WBL  | WBR  | NBT           | NBR  | SBL  | SBT      |  |  |
| Lane Configurations    |      | 1    | _ <b>≜</b> î≽ |      |      | <b>^</b> |  |  |
| Traffic Vol, veh/h     | 0    | 21   | 973           | 18   | 0    | 1035     |  |  |
| Future Vol, veh/h      | 0    | 21   | 973           | 18   | 0    | 1035     |  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0             | 0    | 0    | 0        |  |  |
| Sign Control           | Stop | Stop | Free          | Free | Free | Free     |  |  |
| RT Channelized         | -    | None | -             | None | -    | None     |  |  |
| Storage Length         | -    | 0    | -             | -    | -    | -        |  |  |
| Veh in Median Storage, | # 0  | -    | 0             | -    | -    | 0        |  |  |
| Grade, %               | 0    | -    | 0             | -    | -    | 0        |  |  |
| Peak Hour Factor       | 92   | 92   | 92            | 92   | 92   | 92       |  |  |
| Heavy Vehicles, %      | 2    | 2    | 2             | 2    | 2    | 2        |  |  |
| Mvmt Flow              | 0    | 23   | 1058          | 20   | 0    | 1125     |  |  |

| Major/Minor          | Minor1 | Ν    | lajor1 | Ma | ajor2 |   |  |
|----------------------|--------|------|--------|----|-------|---|--|
| Conflicting Flow All | -      | 539  | 0      | 0  | -     | - |  |
| Stage 1              | -      | -    | -      | -  | -     | - |  |
| Stage 2              | -      | -    | -      | -  | -     | - |  |
| Critical Hdwy        | -      | 6.94 | -      | -  | -     | - |  |
| Critical Hdwy Stg 1  | -      | -    | -      | -  | -     | - |  |
| Critical Hdwy Stg 2  | -      | -    | -      | -  | -     | - |  |
| Follow-up Hdwy       | -      | 3.32 | -      | -  | -     | - |  |
| Pot Cap-1 Maneuver   | 0      | 487  | -      | -  | 0     | - |  |
| Stage 1              | 0      | -    | -      | -  | 0     | - |  |
| Stage 2              | 0      | -    | -      | -  | 0     | - |  |
| Platoon blocked, %   |        |      | -      | -  |       | - |  |
| Mov Cap-1 Maneuver   | · -    | 487  | -      | -  | -     | - |  |
| Mov Cap-2 Maneuver   |        | -    | -      | -  | -     | - |  |
| Stage 1              | -      | -    | -      | -  | -     | - |  |
| Stage 2              | -      | -    | -      | -  | -     | - |  |
|                      |        |      |        |    |       |   |  |
| A I                  |        |      | ND     |    | 00    |   |  |

| Approach             | WB   | NB | SB |  |
|----------------------|------|----|----|--|
| HCM Control Delay, s | 12.8 | 0  | 0  |  |
| HCM LOS              | В    |    |    |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 487    | -   |
| HCM Lane V/C Ratio    | -   | - 0.047  | -   |
| HCM Control Delay (s) | -   | - 12.8   | -   |
| HCM Lane LOS          | -   | - B      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.1    | -   |

|                              | ≯    | -           | $\mathbf{r}$ | 1    | +           | •    | 1     | 1       | 1    | 1     | Ŧ       | ~        |
|------------------------------|------|-------------|--------------|------|-------------|------|-------|---------|------|-------|---------|----------|
| Movement                     | EBL  | EBT         | EBR          | WBL  | WBT         | WBR  | NBL   | NBT     | NBR  | SBL   | SBT     | SBR      |
| Lane Configurations          | ۲    | <b>↑</b> 1≱ |              | ľ    | <b>↑</b> 1≱ |      | ۲     | <u></u> | 1    | ۲     | <u></u> | 1        |
| Traffic Volume (veh/h)       | 184  | 620         | 88           | 89   | 403         | 46   | 93    | 753     | 79   | 94    | 746     | 197      |
| Future Volume (veh/h)        | 184  | 620         | 88           | 89   | 403         | 46   | 93    | 753     | 79   | 94    | 746     | 197      |
| Initial Q (Qb), veh          | 0    | 0           | 0            | 0    | 0           | 0    | 0     | 0       | 0    | 0     | 0       | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |             | 0.94         | 1.00 |             | 0.97 | 1.00  |         | 0.98 | 1.00  |         | 0.98     |
| Parking Bus, Adj             | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 1.00  | 1.00    | 1.00 | 1.00  | 1.00    | 1.00     |
| Work Zone On Approach        |      | No          |              |      | No          |      |       | No      |      |       | No      |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870        | 1870         | 1870 | 1870        | 1870 | 1870  | 1870    | 1870 | 1870  | 1870    | 1870     |
| Adj Flow Rate, veh/h         | 200  | 674         | 96           | 102  | 463         | 53   | 108   | 876     | 92   | 98    | 777     | 205      |
| Peak Hour Factor             | 0.92 | 0.92        | 0.92         | 0.87 | 0.87        | 0.87 | 0.86  | 0.86    | 0.86 | 0.96  | 0.96    | 0.96     |
| Percent Heavy Veh, %         | 2    | 2           | 2            | 2    | 2           | 2    | 2     | 2       | 2    | 2     | 2       | 2        |
| Cap, veh/h                   | 228  | 858         | 122          | 126  | 691         | 79   | 111   | 1585    | 691  | 77    | 1517    | 662      |
| Arrive On Green              | 0.13 | 0.28        | 0.28         | 0.07 | 0.22        | 0.22 | 0.02  | 0.15    | 0.15 | 0.09  | 0.85    | 0.85     |
| Sat Flow, veh/h              | 1781 | 3095        | 440          | 1781 | 3204        | 365  | 1781  | 3554    | 1549 | 1781  | 3554    | 1551     |
| Grp Volume(v), veh/h         | 200  | 386         | 384          | 102  | 256         | 260  | 108   | 876     | 92   | 98    | 777     | 205      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777        | 1758         | 1781 | 1777        | 1792 | 1781  | 1777    | 1549 | 1781  | 1777    | 1551     |
| Q Serve(g_s), s              | 13.2 | 24.1        | 24.2         | 6.8  | 15.8        | 16.0 | 7.3   | 27.5    | 6.2  | 5.2   | 6.8     | 3.1      |
| Cycle Q Clear(g_c), s        | 13.2 | 24.1        | 24.2         | 6.8  | 15.8        | 16.0 | 7.3   | 27.5    | 6.2  | 5.2   | 6.8     | 3.1      |
| Prop In Lane                 | 1.00 |             | 0.25         | 1.00 |             | 0.20 | 1.00  |         | 1.00 | 1.00  |         | 1.00     |
| Lane Grp Cap(c), veh/h       | 228  | 492         | 487          | 126  | 383         | 387  | 111   | 1585    | 691  | 77    | 1517    | 662      |
| V/C Ratio(X)                 | 0.88 | 0.79        | 0.79         | 0.81 | 0.67        | 0.67 | 0.97  | 0.55    | 0.13 | 1.27  | 0.51    | 0.31     |
| Avail Cap(c_a), veh/h        | 453  | 675         | 668          | 229  | 444         | 448  | 111   | 1585    | 691  | 77    | 1517    | 662      |
| HCM Platoon Ratio            | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 0.33  | 0.33    | 0.33 | 2.00  | 2.00    | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00        | 1.00         | 1.00 | 1.00        | 1.00 | 0.78  | 0.78    | 0.78 | 1.00  | 1.00    | 1.00     |
| Uniform Delay (d), s/veh     | 51.4 | 40.1        | 40.1         | 54.9 | 43.1        | 43.2 | 58.7  | 40.0    | 31.0 | 54.8  | 5.5     | 5.3      |
| Incr Delay (d2), s/veh       | 4.2  | 5.2         | 5.3          | 4.5  | 3.8         | 3.9  | 65.7  | 1.1     | 0.3  | 191.1 | 1.2     | 1.2      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0         | 0.0          | 0.0  | 0.0         | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   | 0.0     | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 6.1  | 11.0        | 10.9         | 3.1  | 7.2         | 7.4  | 5.4   | 13.3    | 2.4  | 6.3   | 1.9     | 1.1      |
| Unsig. Movement Delay, s/veh |      |             |              |      |             |      |       |         |      |       |         |          |
| LnGrp Delay(d),s/veh         | 55.6 | 45.2        | 45.4         | 59.5 | 46.9        | 47.1 | 124.4 | 41.1    | 31.3 | 245.9 | 6.8     | 6.5      |
| LnGrp LOS                    | E    | D           | D            | E    | D           | D    | F     | D       | С    | F     | A       | <u> </u> |
| Approach Vol, veh/h          |      | 970         |              |      | 618         |      |       | 1076    |      |       | 1080    |          |
| Approach Delay, s/veh        |      | 47.4        |              |      | 49.1        |      |       | 48.6    |      |       | 28.4    |          |
| Approach LOS                 |      | D           |              |      | D           |      |       | D       |      |       | С       |          |
| Timer - Assigned Phs         | 1    | 2           | 3            | 4    | 5           | 6    | 7     | 8       |      |       |         |          |
| Phs Duration (G+Y+Rc), s     | 9.7  | 59.0        | 13.0         | 38.3 | 12.0        | 56.7 | 20.4  | 30.9    |      |       |         |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5         | 4.5          | 5.0  | 4.5         | 5.5  | 5.0   | 5.0     |      |       |         |          |
| Max Green Setting (Gmax), s  | 5.2  | 34.3        | 15.4         | 45.6 | 7.5         | 32.0 | 30.5  | 30.0    |      |       |         |          |
| Max Q Clear Time (g_c+l1), s | 7.2  | 29.5        | 8.8          | 26.2 | 9.3         | 8.8  | 15.2  | 18.0    |      |       |         |          |
| Green Ext Time (p_c), s      | 0.0  | 3.0         | 0.0          | 6.2  | 0.0         | 8.6  | 0.1   | 3.1     |      |       |         |          |
| Intersection Summary         |      |             |              |      |             |      |       |         |      |       |         |          |
| HCM 6th Ctrl Delay           |      |             | 42.6         |      |             |      |       |         |      |       |         |          |
| HCM 6th LOS                  |      |             | D            |      |             |      |       |         |      |       |         |          |

|                              | ≯    | -    | $\mathbf{i}$ | •    | -           | •    | 1    | 1        | 1    | 1    | Ŧ        | ~    |
|------------------------------|------|------|--------------|------|-------------|------|------|----------|------|------|----------|------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT         | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | ሻ    | A    |              | ۲    | <b>∱1</b> ≽ |      | ٦    | <b>^</b> | 1    | ٦    | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 170  | 479  | 139          | 118  | 321         | 57   | 109  | 723      | 60   | 146  | 792      | 151  |
| Future Volume (veh/h)        | 170  | 479  | 139          | 118  | 321         | 57   | 109  | 723      | 60   | 146  | 792      | 151  |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0           | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 0.93         | 1.00 |             | 0.98 | 1.00 |          | 0.98 | 1.00 |          | 0.98 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00        | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No   |              |      | No          |      |      | No       |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870         | 1870 | 1870        | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 175  | 494  | 143          | 140  | 382         | 68   | 118  | 786      | 65   | 157  | 852      | 162  |
| Peak Hour Factor             | 0.97 | 0.97 | 0.97         | 0.84 | 0.84        | 0.84 | 0.92 | 0.92     | 0.92 | 0.93 | 0.93     | 0.93 |
| Percent Heavy Veh, %         | 2    | 2    | 2            | 2    | 2           | 2    | 2    | 2        | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 202  | 560  | 161          | 167  | 569         | 100  | 142  | 1577     | 686  | 177  | 1646     | 719  |
| Arrive On Green              | 0.11 | 0.21 | 0.21         | 0.09 | 0.19        | 0.19 | 0.16 | 0.89     | 0.89 | 0.13 | 0.62     | 0.62 |
| Sat Flow, veh/h              | 1781 | 2677 | 768          | 1781 | 3007        | 530  | 1781 | 3554     | 1547 | 1781 | 3554     | 1551 |
| Grp Volume(v), veh/h         | 175  | 326  | 311          | 140  | 224         | 226  | 118  | 786      | 65   | 157  | 852      | 162  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777 | 1668         | 1781 | 1777        | 1761 | 1781 | 1777     | 1547 | 1781 | 1777     | 1551 |
| Q Serve(g_s), s              | 11.6 | 21.4 | 21.7         | 9.3  | 14.0        | 14.3 | 7.7  | 5.4      | 0.6  | 10.4 | 16.2     | 5.6  |
| Cycle Q Clear(g_c), s        | 11.6 | 21.4 | 21.7         | 9.3  | 14.0        | 14.3 | 7.7  | 5.4      | 0.6  | 10.4 | 16.2     | 5.6  |
| Prop In Lane                 | 1.00 |      | 0.46         | 1.00 |             | 0.30 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 202  | 371  | 349          | 167  | 336         | 333  | 142  | 1577     | 686  | 177  | 1646     | 719  |
| V/C Ratio(X)                 | 0.87 | 0.88 | 0.89         | 0.84 | 0.67        | 0.68 | 0.83 | 0.50     | 0.09 | 0.89 | 0.52     | 0.23 |
| Avail Cap(c_a), veh/h        | 252  | 394  | 370          | 258  | 400         | 396  | 223  | 1577     | 686  | 177  | 1646     | 719  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00        | 1.00 | 2.00 | 2.00     | 2.00 | 1.33 | 1.33     | 1.33 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00         | 1.00 | 1.00        | 1.00 | 0.81 | 0.81     | 0.81 | 0.75 | 0.75     | 0.75 |
| Uniform Delay (d), s/veh     | 52.3 | 46.0 | 46.1         | 53.5 | 45.1        | 45.2 | 49.6 | 4.1      | 3.8  | 51.4 | 15.5     | 13.4 |
| Incr Delay (d2), s/veh       | 19.0 | 19.7 | 22.4         | 7.9  | 4.1         | 4.5  | 6.3  | 0.9      | 0.2  | 30.3 | 0.9      | 0.5  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0         | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 6.2  | 11.4 | 11.1         | 4.5  | 6.6         | 6.7  | 3.4  | 1.5      | 0.2  | 5.9  | 5.5      | 2.0  |
| Unsig. Movement Delay, s/veh |      |      |              |      |             |      |      |          |      |      |          |      |
| LnGrp Delay(d),s/veh         | 71.3 | 65.7 | 68.5         | 61.4 | 49.2        | 49.7 | 55.9 | 5.0      | 4.0  | 81.7 | 16.4     | 14.0 |
| LnGrp LOS                    | E    | E    | E            | E    | D           | D    | E    | Α        | Α    | F    | В        | B    |
| Approach Vol, veh/h          |      | 812  |              |      | 590         |      |      | 969      |      |      | 1171     |      |
| Approach Delay, s/veh        |      | 68.0 |              |      | 52.3        |      |      | 11.1     |      |      | 24.8     |      |
| Approach LOS                 |      | E    |              |      | D           |      |      | В        |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2    | 3            | 4    | 5           | 6    | 7    | 8        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 15.9 | 58.8 | 15.3         | 30.1 | 13.6        | 61.1 | 17.6 | 27.7     |      |      |          |      |
| Change Period (Y+Rc), s      | 4.0  | 5.5  | 4.0          | 5.0  | 4.0         | 5.5  | 4.0  | 5.0      |      |      |          |      |
| Max Green Setting (Gmax), s  | 11.9 | 45.6 | 17.4         | 26.6 | 15.0        | 42.5 | 17.0 | 27.0     |      |      |          |      |
| Max Q Clear Time (g_c+l1), s | 12.4 | 7.4  | 11.3         | 23.7 | 9.7         | 18.2 | 13.6 | 16.3     |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 9.1  | 0.1          | 1.4  | 0.1         | 9.3  | 0.1  | 2.6      |      |      |          |      |
| Intersection Summary         |      |      |              |      |             |      |      |          |      |      |          |      |
| HCM 6th Ctrl Delay           |      |      | 35.5         |      |             |      |      |          |      |      |          |      |
| HCM 6th LOS                  |      |      | D            |      |             |      |      |          |      |      |          |      |

## HCM 6th Signalized Intersection Summary 8: N Azusa Ave & Badillo St

|                              | ≯    | -        | $\mathbf{r}$ | 4    | -        | *    | 1    | 1        | 1    | 1    | Ŧ        | ~        |
|------------------------------|------|----------|--------------|------|----------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | ٦    | <b>^</b> | 1            | ۲    | <b>^</b> | 1    | ٦    | <b>^</b> | 1    | ٦    | <b>^</b> | 1        |
| Traffic Volume (veh/h)       | 104  | 600      | 138          | 175  | 456      | 84   | 153  | 703      | 96   | 119  | 851      | 92       |
| Future Volume (veh/h)        | 104  | 600      | 138          | 175  | 456      | 84   | 153  | 703      | 96   | 119  | 851      | 92       |
| Initial Q (Qb), veh          | 0    | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.95         | 1.00 |          | 0.99 | 1.00 |          | 0.98 | 1.00 |          | 0.97     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |              |      | No       |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870         | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 113  | 652      | 150          | 186  | 485      | 89   | 166  | 764      | 104  | 138  | 990      | 107      |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92         | 0.94 | 0.94     | 0.94 | 0.92 | 0.92     | 0.92 | 0.86 | 0.86     | 0.86     |
| Percent Heavy Veh, %         | 2    | 2        | 2            | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        |
| Cap, veh/h                   | 139  | 785      | 333          | 214  | 935      | 411  | 193  | 1437     | 630  | 164  | 1378     | 597      |
| Arrive On Green              | 0.08 | 0.22     | 0.22         | 0.12 | 0.26     | 0.26 | 0.11 | 0.40     | 0.40 | 0.18 | 0.78     | 0.78     |
| Sat Flow, veh/h              | 1781 | 3554     | 1506         | 1781 | 3554     | 1562 | 1781 | 3554     | 1558 | 1781 | 3554     | 1539     |
| Grp Volume(v), veh/h         | 113  | 652      | 150          | 186  | 485      | 89   | 166  | 764      | 104  | 138  | 990      | 107      |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1506         | 1781 | 1777     | 1562 | 1781 | 1777     | 1558 | 1781 | 1777     | 1539     |
| Q Serve(g_s), s              | 7.5  | 21.0     | 10.3         | 12.3 | 14.0     | 5.3  | 11.0 | 19.6     | 5.1  | 9.0  | 16.9     | 2.2      |
| Cycle Q Clear(g_c), s        | 7.5  | 21.0     | 10.3         | 12.3 | 14.0     | 5.3  | 11.0 | 19.6     | 5.1  | 9.0  | 16.9     | 2.2      |
| Prop In Lane                 | 1.00 |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 139  | 785      | 333          | 214  | 935      | 411  | 193  | 1437     | 630  | 164  | 1378     | 597      |
| V/C Ratio(X)                 | 0.81 | 0.83     | 0.45         | 0.87 | 0.52     | 0.22 | 0.86 | 0.53     | 0.17 | 0.84 | 0.72     | 0.18     |
| Avail Cap(c_a), veh/h        | 220  | 829      | 351          | 260  | 935      | 411  | 215  | 1437     | 630  | 246  | 1378     | 597      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 2.00 | 2.00     | 2.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 0.77 | 0.77     | 0.77     |
| Uniform Delay (d), s/veh     | 54.4 | 44.6     | 40.4         | 51.9 | 37.7     | 34.6 | 52.6 | 27.1     | 22.8 | 48.2 | 10.1     | 8.5      |
| Incr Delay (d2), s/veh       | 11.7 | 6.8      | 1.0          | 22.4 | 0.5      | 0.3  | 26.0 | 1.4      | 0.6  | 12.1 | 2.5      | 0.5      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 3.8  | 10.0     | 3.9          | 6.8  | 6.2      | 2.1  | 6.2  | 8.3      | 2.0  | 4.1  | 3.9      | 0.8      |
| Unsig. Movement Delay, s/veh |      |          |              |      |          |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 66.1 | 51.4     | 41.4         | 74.2 | 38.2     | 34.8 | 78.6 | 28.5     | 23.4 | 60.3 | 12.6     | 9.0      |
| LnGrp LOS                    | E    | D        | D            | E    | D        | С    | E    | С        | С    | E    | В        | <u> </u> |
| Approach Vol, veh/h          |      | 915      |              |      | 760      |      |      | 1034     |      |      | 1235     |          |
| Approach Delay, s/veh        |      | 51.6     |              |      | 46.6     |      |      | 36.0     |      |      | 17.7     |          |
| Approach LOS                 |      | D        |              |      | D        |      |      | D        |      |      | В        |          |
| Timer - Assigned Phs         | 1    | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 15.5 | 54.0     | 18.9         | 31.5 | 17.5     | 52.0 | 13.9 | 36.6     |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 5.5      | 4.5          | 5.0  | 4.5      | 5.5  | 4.5  | 5.0      |      |      |          |          |
| Max Green Setting (Gmax), s  | 16.6 | 38.4     | 17.5         | 28.0 | 14.5     | 40.5 | 14.8 | 30.7     |      |      |          |          |
| Max Q Clear Time (g_c+l1), s | 11.0 | 21.6     | 14.3         | 23.0 | 13.0     | 18.9 | 9.5  | 16.0     |      |      |          |          |
| Green Ext Time (p_c), s      | 0.1  | 4.9      | 0.1          | 2.2  | 0.1      | 7.3  | 0.1  | 3.1      |      |      |          |          |
| Intersection Summary         |      |          |              |      |          |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delay           |      |          | 35.9         |      |          |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |          | D            |      |          |      |      |          |      |      |          |          |

| Int Delay, s/veh       | 0.2        |      |             |      |      |      |  |  |  |  |
|------------------------|------------|------|-------------|------|------|------|--|--|--|--|
| Movement               | EBL        | EBT  | WBT         | WBR  | SBL  | SBR  |  |  |  |  |
| Lane Configurations    | <u>الا</u> | - 11 | <b>∱</b> î≽ |      | ۰¥   |      |  |  |  |  |
| Traffic Vol, veh/h     | 20         | 772  | 520         | 6    | 0    | 17   |  |  |  |  |
| Future Vol, veh/h      | 20         | 772  | 520         | 6    | 0    | 17   |  |  |  |  |
| Conflicting Peds, #/hr | 0          | 0    | 0           | 0    | 0    | 0    |  |  |  |  |
| Sign Control           | Free       | Free | Free        | Free | Stop | Stop |  |  |  |  |
| RT Channelized         | -          | None | -           | None | -    | None |  |  |  |  |
| Storage Length         | 50         | -    | -           | -    | 0    | -    |  |  |  |  |
| Veh in Median Storage  | ,# -       | 0    | 0           | -    | 0    | -    |  |  |  |  |
| Grade, %               | -          | 0    | 0           | -    | 0    | -    |  |  |  |  |
| Peak Hour Factor       | 92         | 92   | 92          | 92   | 92   | 92   |  |  |  |  |
| Heavy Vehicles, %      | 2          | 2    | 2           | 2    | 2    | 2    |  |  |  |  |
| Mvmt Flow              | 22         | 839  | 565         | 7    | 0    | 18   |  |  |  |  |

| Major/Minor          | Major1 | Ν     | /lajor2 | I   | Minor2 |       |
|----------------------|--------|-------|---------|-----|--------|-------|
| Conflicting Flow All | 572    | 0     | -       | 0   | 1033   | 286   |
| Stage 1              | -      | -     | -       | -   | 569    | -     |
| Stage 2              | -      | -     | -       | -   | 464    | -     |
| Critical Hdwy        | 4.14   | -     | -       | -   | 6.84   | 6.94  |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | 5.84   | -     |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | 5.84   | -     |
| Follow-up Hdwy       | 2.22   | -     | -       | -   | 3.52   | 3.32  |
| Pot Cap-1 Maneuver   | 997    | -     | -       | -   | 228    | 711   |
| Stage 1              | -      | -     | -       | -   | 530    | -     |
| Stage 2              | -      | -     | -       | -   | 599    | -     |
| Platoon blocked, %   |        | -     | -       | -   |        |       |
| Mov Cap-1 Maneuver   | 997    | -     | -       | -   | 223    | 711   |
| Mov Cap-2 Maneuver   |        | -     | -       | -   | 354    | -     |
| Stage 1              | -      | -     | -       | -   | 518    | -     |
| Stage 2              | -      | -     | -       | -   | 599    | -     |
|                      |        |       |         |     |        |       |
| Approach             | EB     |       | WB      |     | SB     |       |
| HCM Control Delay s  | 02     |       | 0       |     | 10.2   |       |
| HCM LOS              | 0.2    |       | Ū       |     | B      |       |
|                      |        |       |         |     | 5      |       |
|                      |        |       |         |     |        |       |
| Minor Lane/Major Mvr | mt     | EBL   | EBT     | WBT | WBR S  | SBLn1 |
| Capacity (veh/h)     |        | 997   | -       | -   | -      | 711   |
| HCM Lane V/C Ratio   |        | 0.022 | -       | -   | -      | 0.026 |
| HCM Control Delay (s | s)     | 8.7   | -       | -   | -      | 10.2  |
| HCM Lane LOS         |        | A     | -       | -   | -      | В     |
| HCM 95th %tile Q(vel | h)     | 0.1   | -       | -   | -      | 0.1   |

## **APPENDIX F**



July 10, 2023

**City of Covina** 125 E. College Street Covina, CA 91723

#### Subject: Vehicle Miles Traveled Analysis for Covina Village Project

Michael Baker International (Michael Baker) has conducted a Vehicle Miles Traveled (VMT) analysis for Covina Village (Project) located at 1000 N. Azusa Avenue in the City of Covina. The Project is a mixed-used development consisting of 80 residential townhomes; 17 live-work townhomes; 950 square-foot coffee shop; 3,500 square-foot fast food restaurant with drive through, and 3,596 square-foot automated car wash and self-vacuum area. **Figure 1** shows the project site plan. The following summarizes the VMT analysis methodology and findings.

#### Background - SB743 and VMT

In December 2018, new California Environmental Quality Act (CEQA) guidelines were approved that shift traffic analysis from delay and operations to VMT when evaluating Transportation Impacts under CEQA. This change in methodology is a result of Senate Bill 743 (SB743), which was signed into law in September 2013. SB743 "creates a process to change the way that transportation impacts are analyzed under CEQA. Specifically, SB 743 requires OPR to amend the CEQA Guidelines to provide an alternative to LOS for evaluating transportation impacts. Particularly within areas served by transit, those alternative criteria must 'promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses.'<sup>1</sup>"<sup>2</sup>

Measurements of transportation impacts may include "vehicle miles traveled, vehicle miles traveled per capita, automobile trip generation rates, or automobile trips generated." <sup>3</sup> According to SB743, projects should aim to reduce VMT and mitigate potential VMT impacts through the implementation of TDM strategies. Agencies must fully implement the new CEQA guidelines for Transportation by July 1, 2020.

As part of the development of the new CEQA guidelines, the Governor's Office of Planning and Research (OPR) prepared a **Technical Advisory on Evaluating Transportation Impacts in CEQA, December 2018** (Technical Advisory). The Technical Advisory provides guidance for local jurisdictions in developing methodologies and thresholds for evaluating VMT. The Technical Advisory provides VMT thresholds for residential, employment and other uses. For all projects, the Technical Advisory recommends establishing the VMT threshold at 85% or less of an adopted VMT baseline including VMT/capita for residential projects, VMT/employee for employment projects and total VMT for all other uses.

<sup>&</sup>lt;sup>3</sup> Public Resources Code Section 21099(b)(1)



<sup>&</sup>lt;sup>1</sup> Public Resources Code Section 21099(b)(1)

<sup>&</sup>lt;sup>2</sup> Office of Planning and Research, http://www.opr.ca.gov/ceqa/updates/sb-743/
#### INTERNATIONAL





Michael Baker

#### INTERNATIONAL

#### City of Covina VMT Guidelines

On March 17, 2020, the City of Covina approved a Memorandum of Agreement (MOA) with the San Gabriel Valley Council of Governments (SGVCOG) to participate in the San Gabriel Valley Regional VMT Analysis Model, along with 25 other cities in the San Gabriel Valley. Fehr & Peers was selected by SGVCOG to complete the San Gabriel Valley Regional VMT Analysis Model. City staff will utilize this model to analyze project related VMT to determine whether transportation impacts from proposed developments will constitute a significant environmental impact under CEQA.

On June 9, 2020, Planning Commission recommended that Resolution No. 2020-011PC be forwarded to City Council to adopt VMT thresholds of significance for the purposes of analyzing transportation impacts under CEQA. The VMT screening criteria, VMT maps, and thresholds of significance were outlined in the June 9<sup>th</sup> Planning Commission staff report.

The City of Covina established a baseline VMT using the VMT rates for the SGVCOG's Southeast Subarea where the City of Covina is located. A project's VMT will be compared to the baseline VMT when determining potential significant impacts. For land use projects, the City has decided a significant VMT impact occurs when a project VMT (per capita, per employee, or per service population) is higher than 85% of the baseline VMT.

For purposes of this analysis, the VMT screening criteria, online VMT tool, and thresholds of significance outlined in the *City of Covina Transportation Study Guidelines for Vehicle Miles Traveled and Level of Service Assessment* dated October 2020 was utilized to evaluate VMT impacts for the Project.

#### **Project Trip Generation**

The Project proposes to demolish and redevelop the existing property located at 1000 N. Azusa Avenue. The property includes a vacant and unoccupied grocery store and parking lot. The Project plans to construct 80 residential townhomes, 17 live-work townhomes, 950 square-foot coffee shop, 3,500 square-foot fast-food restaurant with drive through window, and 3,596 square-foot automated car wash with self-vacuum area. Trip rates from the *Institute of Transportation Engineers (ITE) Trip Generation Manual, 11<sup>th</sup> Edition* were utilized to estimate the number of existing and project-related traffic. Pass-by trip reductions were also applied for the commercial projects in accordance with *ITE's Trip Generation Handbook, 3<sup>rd</sup> Edition*. **Table 1** shows the trip rates used to calculate the trip generation of the site.

| Land Lico                                   |                   | Daily Trip Pata                  |      | AM Peak Hour Rate |      |     |   | PM Peak Hour Rate |      |      |     |     |     |
|---------------------------------------------|-------------------|----------------------------------|------|-------------------|------|-----|---|-------------------|------|------|-----|-----|-----|
| Land Ose                                    | Code <sup>1</sup> | ode <sup>1</sup> Daily Trip Rate |      | Tot               | al   | In  | : | Out               | Tot  | tal  | In  | :   | Out |
| Multifamily Housing (Mid-Rise)              | 221               | 4.289                            | /DU  | 0.32              | /DU  | 23% | : | 77%               | 0.39 | /DU  | 61% | ••• | 39% |
| Automated Car Wash <sup>2</sup>             | 948               | 781.00                           | /CWT | 49.00             | /CWT | 50% | : | 50%               | 77.5 | /cw  | 50% | :   | 50% |
| Coffee Shop w/ Drive Thru                   | 937               | 86.316                           | /KSF | 86.32             | /KSF | 51% | : | 49%               | 38.9 | /KSF | 50% |     | 50% |
| Fast Food Restaurant with Drive-Thru Window | 934               | 475.43                           | /KSF | 45.43             | /KSF | 51% | : | 49%               | 33.7 | /KSF | 52% | :   | 48% |
| Supermarket                                 | 850               | 93.84                            | /KSF | 2.86              | /KSF | 59% | : | 41%               | 8.95 | /KSF | 50% | :   | 50% |

#### Table 1 – ITE Trip Generation Rates

<sup>1</sup> Source: ITE Trip Generation Manual, 11th Edition. Rates shown are based on fitted curve equation as applicable. Where fitted curve is not available, average rates were used.

<sup>2</sup>Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Manual, therefore, daily rates assumes 10% of PM peak hour. AM rates assume 6 .2% of the daily rate.



As shown in **Table 2**, the Project is expected to generate 1,665 daily vehicle trips with 236 AM and 178 PM peak hour trips. The existing 81,330 square-foot grocery store generated 4,685 daily vehicle trips with 233 AM and 418 PM peak hour trips. The net new trips generated by the Project is forecast to be 3,020 fewer daily vehicle trips with 3 additional AM peak hour trips and 240 fewer PM peak hour trips when compared to the trips previously generated at the site.

| Land Lico                                           |                   | oncity            | Daily Tring | AM Pea    | ak Hour Trips | <b>PM Peak Hour Trips</b> |             |  |
|-----------------------------------------------------|-------------------|-------------------|-------------|-----------|---------------|---------------------------|-------------|--|
|                                                     | intensity         |                   | Daily Trips | Total     | In : Out      | Total                     | In : Out    |  |
|                                                     | OSED PROJE        | СТ                |             |           |               |                           |             |  |
| Multifamily Housing (Mid-Rise)                      | 97                | DU                | 416         | 31        | 7:24          | 38                        | 23 : 15     |  |
| Automated Car Wash 2                                | 1                 | CWT               | 781         | 49        | 25 : 24       | 78                        | 39:39       |  |
| Car Wash Pass-By Trip Reduction (56% Daily, AM and  | l PM Peal         | k) <sup>1,2</sup> | -437        | -27       | -14 : -13     | -44                       | -22 : -22   |  |
| Sub-Total Trip Generation for Car W                 | Vash              |                   | 344         | 22        | 11 : 11       | 34                        | 17 : 17     |  |
| Coffee Shop w/ Drive Thru                           | 0.95              | KSF               | 507         | 82        | 42 : 40       | 37                        | 19 : 19     |  |
| Coffee Shop Pass-By Trip Reduction (89% Daily, AM c | eak) <sup>1</sup> | -451              | -73         | -37 : -36 | -33           | -17 : -17                 |             |  |
| Sub-Total Trip Generation for Coffe                 | 56                | 102               | 52 : 50     | 46        | 23 : 23       |                           |             |  |
| Fast Food Restaurant with Drive-Thru Window         | 3.500             | KSF               | 1664        | 159       | 81 : 78       | 118                       | 61 : 57     |  |
| Fast Food Pass-By Trip Reduction (49% Daily, AM and | l PM Peal         | k) <sup>1</sup>   | -815        | -78       | -40 : -38     | -58                       | -30 : -28   |  |
| Sub-Total Trip Generation for Fast Food wit         | h Drive-T         | hru               | 849         | 81        | 41 : 40       | 60                        | 31 : 29     |  |
| Sub-Total Trip Generation (Proposed                 | Project)          |                   | 1665        | 236       | 111 : 125     | 178                       | 94 : 84     |  |
|                                                     | EX                | ISTING USE        |             |           |               |                           |             |  |
| Supermarket                                         | 81.33             | KSF               | 7,321       | 233       | 137 : 96      | 654                       | 327 : 327   |  |
| Supermarket Pass-By Trip Reduction (36% Daily and a | -2636             | 0                 | 0:0         | -235      | -118 : -118   |                           |             |  |
| Sub-Total Trip Generation for Existin               | 4685              | 233               | 137 : 96    | 418       | 209 : 209     |                           |             |  |
| TOTAL NET NEW TRIP GENERATION (Proposed Pro         | oject - Ex        | isting Use)       | -3020       | 3         | -26 : 29      | -240                      | -115 : -125 |  |

#### Table 2 – Covina Village Trip Generation

Notes:

<sup>1</sup>Pass-By Trip Rates taken from ITE's Trip Generation Handbook, 3rd Edition.

<sup>2</sup>Pass-By Trip Rates for an Automated Car Wash are not available in the ITE Trip Generation Handbook, therefore, a Gas/Service Station (LU Code 945) was used since both uses are similar in trip characteristics.

DU = Dwelling Unit

CWT = Car Wash Tunnels

KSF = 1,000 Square Feet

#### VMT Screening Criteria

The City of Covina uses VMT screening criteria to streamline land use project review for VMT impacts. If a project does not pass the initial screening test, a full VMT analysis is warranted. Three screening criteria have been considered:

- Project Type Screening
- Transit Priority Area (TPA) Screening, and
- Low VMT Area Screening.

If the project is "screened out" based on any one of the three criteria, a full VMT analysis is not required, and the project is presumed to have a less-than-significant VMT impact. Since the project includes both residential and retail uses, each of the land uses are evaluated separately.



The project was evaluated against the screening criteria using the SGVCOG VMT Evaluation Tool at: <u>https://apps.fehrandpeers.com/SGVCOGVMT</u> and the findings are summarized in the following sections.

#### Project Type Screening

The City of Covina has identified local serving project types that may be presumed to have a less-thansignificant impact. Local serving projects are more likely to serve the local population and reduce the need for people to drive further away, thus reduce VMT. Examples include local serving K-12 schools, local parks, day care centers, new retail buildings less than 50,000 square-feet, projects that generate less than 110 daily vehicle trips, community institutions (public libraries, fire stations), etc. Each of the land uses proposed as part of the mixed-use project were evaluated separately.

**Residential:** Based on the trip generation table, the residential component of the project generates 4,269 fewer daily trips (4,685 - 416) due to the existing grocery store which does not exceed the 110 daily vehicle trip threshold. Therefore, the residential component of this project is screened out based on the Project Type Screening.

Project Type Screening Criteria Met (Residential): YES

**Retail:** According to the site plan, the retail portion of the project includes a 950 square-foot coffee shop; 3,500 square-foot fast food restaurant with drive through, and 3,596 square-foot automated car wash and self-vacuum area for a total of 8,046 square feet of retail. These land uses for the project are consistent with the local serving project types and the total square footage of the retail falls below the 50,000 square foot "Project Type" screening criteria for new retail buildings. Therefore, the retail component of the project would be screened out and determined to have a less-than-significant impact.

Project Type Screening Criteria Met (Retail): YES

#### Transit Priority Area (TPA) Screening:

Projects located within a Transit Priority Area (TPA) may be presumed to have a less-than-significant impact and would not be required to prepare a full VMT analysis. TPA's are defined as locations within ½ mile around an existing major stop or an existing stop along a high-quality transit corridor per the definitions below:

<u>Major Transit Stop</u><sup>4</sup> – a site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods.

**Figure 2** shows the TPA's within the City of Covina indicated by the light brown shaded areas. As shown, the proposed project is located within a TPA.

<sup>&</sup>lt;sup>4</sup> Public Resource Code, 21064.3





#### Figure 2 – City of Covina Transit Priority Area



<u>High-Quality Transit Corridor</u><sup>5</sup> – a corridor with fixed route bus service with service intervals no longer than 15 minutes during the peak commute hours.

Foothill Transit operates the local bus service in the City of Covina. Foothill Transit Route 280 travels along Azusa Avenue adjacent to the project site. The nearest bus stop is located on the northeast corner of Azusa Avenue / Cypress Street approximately 300-foot walking distance from the project site. Service is provided Monday through Friday, weekends and holidays. According to the Foothill Transit website, the average headway during the weekday are 15 minutes from 7:00 AM to 9:00 AM and from 2:00 PM to 7:00 PM with 20 to 30 minutes headways outside the peak periods.

Although the project is located within a TPA, additional criterion needs to be evaluated. For the project, if any of the following criteria are met, then the project <u>may not be screened out despite being located within a TPA</u>:

- Does the project have a Floor Area Ratio (FAR) of less than 0.75?
   Response: Yes. The project has a FAR of 0.322 (71,781 SF / 222,530 SF).
- 2.) Does the project include more parking for use by residents, customers, or employees of the project than required by the City?
  Reserves Yes For the residential expression the project is required to provide 241 perkins.

**Response:** Yes. For the residential component, the project is required to provide 241 parking spaces and is providing 284 spaces. This translates to 43 more parking spaces than required by the City's Municipal Code. For the commercial component, the project is required to provide 53 parking spaces and the project is providing 73 spaces which is 20 more parking spaces than required.

3.) Is the project inconsistent with the applicable Sustainable Communities Strategy?

**Response:** No. The project is not inconsistent. The project is consistent with the Connect SoCal 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), adopted 2020 by the Southern California Association of Governments (SCAG). The project appears to be consistent with the goals and policies outlined in this document. For example, one of the RTP/SCS strategies is to "Plan for additional housing and jobs near transit." This project is located along a transit corridor and within walking distance to nearby retail and commercial uses.

4.) Does the project replace affordable residential units with a smaller number of moderate or high-income residential units?
 Response: No. The existing site is vacant and contains remnant site improvements including an 81,333 SF building formerly occupied by an Albertson's grocery store.

The project is located within a TPA, however the project does not meet the TPA screening criteria as outlined in the OPR Technical Advisory (e.g. minimum FAR requirement is not met and the project provides more parking spaces than required by the City). Therefore, the TPA screening criteria is not fully met.

<sup>&</sup>lt;sup>5</sup> Public Resource Code, 21155



TPA Screening Criteria Met: NO

#### Low VMT Area Screening:

Projects that are located within a low VMT areas would be screened out and a full VMT analysis would not be required. In addition, projects within these low VMT areas may be presumed to have a less-thansignificant impact. Low VMT is defined as areas of the City where the VMT falls below the City's adopted threshold of significance.

The San Gabriel Valley Regional VMT Analysis Model was used to measure VMT performance for individual traffic analysis zones (TAZ) within the City of Covina. TAZ's are geographic polygons similar to Census block groups used to represent areas of homogenous travel behavior. Based on the results of the model, TAZ's within the City are categorized as follows:

- 15% or more below Subarea Average VMT
- 0 to 15% below Subarea Average VMT, or
- higher than Subarea Average VMT

The SGVCOG VMT Evaluation Online Tool was used to determine if the residential and retail portions of the project screened out. 15% or more below the Subarea Average VMT is determined to be "less-than-significant" as it falls below the City's established threshold of significance.

Since the project consists of both residential and retail, the residential component of the project was compared to the residential home-based VMT per capita metric (17.48) and the retail component of the project was compared to the commercial home-based work VMT per worker metric (19.75).

**Residential:** In the SGVCOG VMT Evaluation Tool Report, the home-based VMT per capita is 17.48. The residential VMT screening results show the Project VMT rate at 14.7 with the project and Tier 1 VMT reductions. The Tier 1 VMT reduction demonstrates the residential density of the project at 5.75 is higher than existing residential density at 5.21. As shown, the residential VMT rate at 14.7 passes the Low VMT Screening Analysis. Therefore, the residential component of the project is screened out.

Low VMT Area Screening Criteria Met (Residential Component): YES

**Retail:** In the SGVCOG VMT Evaluation Tool Report, the home-based work VMT per worker is 19.75. The commercial VMT screening results show the Project VMT rate at 16.0 with the project. As shown, the commercial VMT rate at 16.0 passes the Low VMT Screening Analysis. Therefore, the retail component of the project is screened out.

Low VMT Area Screening Criteria Met (Retail Component): YES

The SGVCOG VMT Evaluation Tool Report for this project is provided as an attachment to this memorandum.



#### Conclusion

The purpose of this VMT analysis was to determine if the Covina Village project would result in a VMT impact according to the CEQA guidelines and the City's VMT screening criteria. Based on the City's *Transportation Study Guidelines* (October 2020), if the project meets the criteria of any of the identified screening criteria, the project can be determined to have a less than significant impact if substantial evidence is provided. Michael Baker reviewed the Project Type, TPA and Low VMT Area screening criteria and determined the following:

- Project Type: The retail component of the project falls below the 50,000 square foot Project Type Screening threshold for new retail projects. Therefore, the retail component of the project is screened out. The residential component generates less than 110 vehicle trips per day based on the existing trip credit of the grocery store; therefore, the residential component was screened out based on Project Type.
- Transit Priority Area (TPA): Using the SGVCOG VMT Evaluation Tool online, the project is located within a TPA. Additional criteria are required for projects located within TPA's such as minimum FAR's, parking requirements, consistency with the SCS and affordable housing considerations. The project did not meet the additional TPA criteria as the minimum FAR requirement is not met and the project is providing more parking spaces than required by the City.
- Low VMT Area: The project passes the Low VMT Screening Analysis for both the residential and retail components of the project according to the online SGVCOG VMT Evaluation Tool Report.

Based on the findings that the Project Type and Low VMT Area screening criteria are met, the retail component of the project is considered to have a less-than-significant VMT impact and no mitigation measures or further analysis is required.

The residential component of the project meets the Project Type and Low VMT Area screening criteria. Therefore, the residential portion of the project is considered to have a less-than-significant VMT impact and no mitigation measures or further analysis is required.



## SGVCOG VMT Evaluation Tool Report



## **Project Details**

Timestamp of Analysis: July 06, 2023, 11:36:50 AM

| Project Name: Covina Village | Project Name: | Covina Village |
|------------------------------|---------------|----------------|
|------------------------------|---------------|----------------|

Project Description: 80 townhomes, 17 live/work units, 950 SF coffee shop, 3500 SF fast food, 3596 SF car wash (8 KSF commercial)

## **Project Location**





## Analysis Details

Data Version: SCAG Regional Travel Demand Model 2016 RTP Base Year 2012

Analysis Methodology: TAZ

Baseline Year: 2023

## Project Land Use

| Residential:                                      |     |
|---------------------------------------------------|-----|
| Single Family DU:                                 |     |
| Multifamily DU:                                   | 97  |
| Total DUs:                                        | 97  |
| Non-Residential:                                  |     |
| Office KSF:                                       |     |
| Local Serving Retail KSF:                         | 8   |
| Industrial KSF:                                   |     |
| Residential Affordability (percent of all units): |     |
| Extremely Low Income:                             | 0 % |
| Very Low Income:                                  | 0 % |
| Low Income:                                       | 0 % |
| Dorking                                           |     |

Parking: Motor Vehicle Parking: Bicycle Parking:



## Residential Vehicle Miles Traveled (VMT) Screening Results

| Land Use Type 1:                                       |                                                              | Residential     |                                                            |                                                    |  |
|--------------------------------------------------------|--------------------------------------------------------------|-----------------|------------------------------------------------------------|----------------------------------------------------|--|
| VMT Without Project 1:                                 |                                                              | Home            | e-based VMT per Capita                                     |                                                    |  |
| VMT Baseline Description 1:                            |                                                              | Subarea Average |                                                            |                                                    |  |
| VMT Baseline Value 1:                                  |                                                              | 17.48           | }                                                          |                                                    |  |
| VMT Threshold Description 1:                           |                                                              | -15%            |                                                            |                                                    |  |
| Land Use 1 has been Pre-Screened                       | by the Local Jurisdiction:                                   | N/A             |                                                            |                                                    |  |
|                                                        | Without Project                                              |                 | With Project & Tier 1-3 VMT<br>Reductions                  | With Project & All VMT Reductions                  |  |
| Project Generated Vehicle Miles<br>Traveled (VMT) Rate | 15.1                                                         |                 | 14.7                                                       | 14.7                                               |  |
| Low VMT Screening Analysis                             | No (Fail)                                                    |                 | Yes (Pass)                                                 | Yes (Pass)                                         |  |
| 16<br>14<br>12<br>10<br>8<br>4<br>2<br>0               | 14.86<br>9.1<br>15.1<br>VMT Metric Value<br>Before Project 1 | VMT: 14         | 14.7<br>VMT With Project and<br>Tier 1-3 VMT<br>Reductions | 14.7<br>VMT With Project and<br>All VMT Reductions |  |
|                                                        |                                                              | VIVII. 14       |                                                            |                                                    |  |

## Commercial Vehicle Miles Traveled (VMT) Screening Results

| Land Use Type 2:                                            |                                                          | Comr                           | nercial                                                                                   |                                                                              |
|-------------------------------------------------------------|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| VMT Without Project 2:                                      |                                                          | Home-based Work VMT per Worker |                                                                                           |                                                                              |
| VMT Baseline Description 2:                                 |                                                          | Suba                           | rea                                                                                       |                                                                              |
| VMT Baseline Value 2:                                       |                                                          | 19.75                          | 5                                                                                         |                                                                              |
| VMT Threshold Description 2:                                |                                                          | -15%                           |                                                                                           |                                                                              |
| Land Use 2 has been Pre-Screened                            | by the Local Jurisdiction:                               | N/A                            |                                                                                           |                                                                              |
|                                                             | Without Project                                          |                                | With Project & Tier 1-3 VMT<br>Reductions                                                 | With Project & All VMT Reductions                                            |
| Project Generated Vehicle Miles<br>Traveled (VMT) Rate      | 16                                                       |                                | 16                                                                                        | 16                                                                           |
| Low VMT Screening Analysis                                  | Yes (Pass)                                               |                                | Yes (Pass)                                                                                | Yes (Pass)                                                                   |
| 18<br>16<br>14<br>12<br>10<br>10<br>10<br>10<br>4<br>2<br>0 | 9.6<br>9.6<br>16<br>VMT Metric Value<br>Before Project 2 | VMT: 16                        | 16<br>VMT With Project and<br>Tier 1-3 VMT<br>Reductions<br>5.79 Land Use 2 Max Reduction | 16<br>VMT With Project and<br>All VMT Reductions<br>Possible: 9.6 VMT Values |
|                                                             |                                                          | vivii. IC                      |                                                                                           |                                                                              |

# SGVCOG VMT Evaluation Tool Report



## Tier 1 Project Characteristics

## PC01 Increase Residential Density

| Existing Residential Density:     | 5.21 |
|-----------------------------------|------|
| With Project Residential Density: | 5.75 |

# **APPENDIX G**



TRAFFIC ENGINEERING, INC. TRAFFIC ENGINEERING & TRANSPORTATION PLANNING CONSULTANTS

March 28, 2023

Jennifer Colicchio PKL INVESTMNETS LLS 2863 Maricopa Street Torrance, CA 90503

#### Subject: Covina Village Queue Study – City of Covina

Dear Jennifer Colicchio:

*TJW ENGINEERING, INC. (TJW)* is pleased to submit this queue study for the proposed Project located at 1000 North Azusa Avenue in the City of Covina. The purpose of this study is to assess if drive-through demand can be accommodated by the Project.

#### Project Description

The Project consists of the following uses:

- Residential Development
  - $\circ$  80 townhome units
  - 17 live/work units
- Commercial Development
  - Single-tunnel drive-through car wash (Quick Quack)
  - o 950 square foot coffee shop with drive-through (Dutch Bros. Coffee)
  - o 3,500 square foot restaurant with drive-through

Queue analysis has been conducted for commercial uses only. The proposed site plan is shown in **Appendix A**.

#### Drive-Through Queue Analysis Methodology

Queue observations at 3 comparable sites were conducted for each commercial land use, with data collected in 5-minute increments. The sites are as follows:

- Car Wash
  - Covina Express Car Wash, 154 E. Arrow Hwy., Covina, CA
  - Fast5Xpress Car Wash, 935 E. Huntington Dr., Monrovia, CA
  - Whittier Express Car Wash, 13945 Telegraph Rd., Whittier, CA
- Dutch Bros. Coffee
  - 13322 Limonite Ave., Eastvale, CA
  - o 32690 Yucaipa Blvd., Yucaipa, CA
  - 15211 Hook Blvd., Victorville, CA
- Panera Bread With Drive-Through (Restaurant with Drive-Through Comparable)
  - o 1054 W. Gladstone St., San Dimas, CA
  - o 423 S. Associated Rd., Brea, CA
  - $\circ \quad$  1750 S. State College Blvd., Anaheim, CA

Car Wash sites were observed from 7:00 AM-8:00 PM (except for the Whittier site, which is open from 8:00 AM-5:00 PM) on Wednesday January 11, Thursday January 12, Saturday January 21, and Saturday January 28, 2023. Panera Bread sites were observed from 11:00 AM-2:00 PM and 4:00-7:00 PM on Wednesday January 11, Thursday January 12, and Saturday January 21, 2023. Dutch Bros. Coffee sites were observed from 6:00-9:00 AM, 11:00 AM-2:00 PM, and 4:00-7:00 PM on Wednesday January 21, 2023.

The data has been utilized to determine the 85<sup>th</sup> percentile queue length, which is typically used to determine the appropriate vehicle stacking capacity needed for land uses with drive-throughs.

#### Drive-Through Queue Observation Results

Based on the collected data, **Table 1**, **Table 2**, and **Table 3** show the number of times a certain queue length occurred, and the probability of that queue length being exceeded for the car wash, Dutch Bros. Coffee, and restaurant sites, respectively. Complete observation data is provided in **Appendix B**.

It should be noted that the Eastvale Dutch Bros. Coffee site experienced much larger queues on the observed Saturday compared to the 5 other sets of Dutch Bros. Coffee data. Without the Saturday Eastvale Dutch Bros. Coffee data included, the 85<sup>th</sup> percentile queue would be 10 vehicles. In an effort to provide a conservative analysis, the 85<sup>th</sup> percentile calculation includes the data and results in an 85<sup>th</sup> percentile queue of 19 vehicles.



| Queue Length<br>(Vehicles)                 | Number of<br>Occurrences | Total Number of<br>Data Points | Probability of<br>Exceeding<br>Queue Length |  |  |
|--------------------------------------------|--------------------------|--------------------------------|---------------------------------------------|--|--|
| 0                                          | 199                      | 199                            | 53.29%                                      |  |  |
| 1                                          | 89                       | 288                            | 32.39%                                      |  |  |
| 2                                          | 50                       | 338                            | 20.66%                                      |  |  |
| 3                                          | 23                       | 361                            | 15.26%                                      |  |  |
| 4                                          | 12                       | 373                            | 12.44%                                      |  |  |
| 5                                          | 8                        | 381                            | 10.56%                                      |  |  |
| 6                                          | 19                       | 400                            | 6.10%                                       |  |  |
| 7                                          | 6                        | 406                            | 4.69%                                       |  |  |
| 8                                          | 3                        | 409                            | 3.99%                                       |  |  |
| 9                                          | 2                        | 411                            | 3.52%                                       |  |  |
| 10                                         | 3                        | 414                            | 2.82%                                       |  |  |
| 11                                         | 2                        | 416                            | 2.35%                                       |  |  |
| 12                                         | 3                        | 419                            | 1.64%                                       |  |  |
| 13                                         | 4                        | 423                            | 0.70%                                       |  |  |
| 14                                         | 3                        | 426                            | 0.00%                                       |  |  |
| 85th Percentile Info                       |                          |                                |                                             |  |  |
| Queue Length: 4 Vehicles Data Point: 363rd |                          |                                |                                             |  |  |

Table 1Car Wash Drive-Through Queue Analysis



| Probability of                              |             |                        |           |  |  |
|---------------------------------------------|-------------|------------------------|-----------|--|--|
| Queue Length                                | Number of   | <b>Total Number of</b> |           |  |  |
| (Vehicles)                                  | Occurrences | Data Points            | Exceeding |  |  |
| 0                                           | 11          | 11                     |           |  |  |
| 0                                           | 11          | 20                     | 96.78%    |  |  |
| 1                                           | 15          | 26                     | 92.40%    |  |  |
| 2                                           | 29          | 55                     | 83.92%    |  |  |
| 3                                           | 3/          | 92                     | /3.10%    |  |  |
| 4                                           | 30          | 122                    | 64.33%    |  |  |
| 5                                           | 29          | 151                    | 55.85%    |  |  |
| 6                                           | 19          | 170                    | 50.29%    |  |  |
| 7                                           | 24          | 194                    | 43.27%    |  |  |
| 8                                           | 14          | 208                    | 39.18%    |  |  |
| 9                                           | 14          | 222                    | 35.09%    |  |  |
| 10                                          | 18          | 240                    | 29.82%    |  |  |
| 11                                          | 15          | 255                    | 25.44%    |  |  |
| 12                                          | 7           | 262                    | 23.39%    |  |  |
| 13                                          | 5           | 267                    | 21.93%    |  |  |
| 14                                          | 5           | 272                    | 20.47%    |  |  |
| 15                                          | 4           | 276                    | 19.30%    |  |  |
| 16                                          | 2           | 278                    | 18.71%    |  |  |
| 17                                          | 3           | 281                    | 17.84%    |  |  |
| 18                                          | 7           | 288                    | 15.79%    |  |  |
| 19                                          | 5           | 293                    | 14.33%    |  |  |
| 20                                          | 6           | 299                    | 12.57%    |  |  |
| 21                                          | 5           | 304                    | 11.11%    |  |  |
| 22                                          | 3           | 307                    | 10.23%    |  |  |
| 23                                          | 4           | 311                    | 9.06%     |  |  |
| 20                                          | 4           | 315                    | 7 89%     |  |  |
| 25                                          | 4           | 319                    | 6 73%     |  |  |
| 25                                          | 3           | 322                    | 5.85%     |  |  |
| 20                                          | 3           | 325                    | J.85%     |  |  |
| 27                                          | 0           | 325                    | 4.97%     |  |  |
| 20                                          | 1           | 325                    | 4.57%     |  |  |
| 29                                          | <u>ר</u>    | 270                    | 4.00%     |  |  |
| 3U<br>21                                    | 2           | 320<br>221             | 4.03%     |  |  |
| 22                                          | 2           | 224                    | 3.22%     |  |  |
| 32                                          | 3           | 334<br>225             | 2.34%     |  |  |
| 33                                          |             | 335                    | 2.05%     |  |  |
| 34                                          | 1           | 336                    | 1.75%     |  |  |
| 35                                          | 1           | 33/                    | 1.46%     |  |  |
| 36                                          | 2           | 339                    | 0.88%     |  |  |
| 37                                          | 2           | 341                    | 0.29%     |  |  |
| 38                                          | 1           | 342                    | 0.00%     |  |  |
|                                             | 85th Perce  | entile info            |           |  |  |
| Oueue Length: 19 Vehicles Data Point: 291st |             |                        |           |  |  |

Table 2Dutch Bros. Coffee Drive-Through Queue Analysis



| Queue Length<br>(Vehicles) | Number of<br>Occurrences | Total Number of<br>Data Points | Probability of<br>Exceeding<br>Queue Length |  |  |
|----------------------------|--------------------------|--------------------------------|---------------------------------------------|--|--|
| 0                          | 50                       | 50                             | 78.07%                                      |  |  |
| 1                          | 60                       | 110                            | 51.75%                                      |  |  |
| 2                          | 48                       | 158                            | 30.70%                                      |  |  |
| 3                          | 25                       | 183                            | 19.74%                                      |  |  |
| 4                          | 25                       | 208                            | 8.77%                                       |  |  |
| 5                          | 14                       | 222                            | 2.63%                                       |  |  |
| 6                          | 5                        | 227                            | 0.44%                                       |  |  |
| 7                          | 1                        | 228                            | 0.00%                                       |  |  |
| 85th Percentile Info       |                          |                                |                                             |  |  |
| Queue Length:              | 4 Vehicles               | Data Point:                    | 194th                                       |  |  |

 Table 3

 Restaurant With Drive-Through Queue Analysis

Based on the observed queue data, the 85<sup>th</sup> percentile queue length for the car wash is 4 vehicles which occurred at the 363<sup>rd</sup> data point. In short, 85% of instances will show 4 vehicles or less within the queue. The maximum observed queue was 14 vehicles, which occurred 3 times.

Based on the observed queue data, the 85<sup>th</sup> percentile queue length for the Dutch Bros. Coffee is 19 vehicles which occurred at the 291st data point. In short, 85% of instances will show 19 vehicles or less within the queue. The maximum observed queue was 38 vehicles, which occurred once. As mentioned previously, the Eastvale Dutch Bros. Coffee site experienced much larger queues on the observed Saturday compared to the 5 other sets of Dutch Bros. Coffee data. Without the Saturday Eastvale Dutch Bros. Coffee data included, the maximum observed queue would be a one-time occurrence of 25 vehicles.

Based on the observed queue data, the 85<sup>th</sup> percentile queue length for the restaurant with drive-through is 4 vehicles which occurred at the 194<sup>th</sup> data point. In short, 85% of instances will show 4 vehicles or less within the queue. The maximum observed queue was 7 vehicles, which occurred once.

#### Drive-Through Queue Capacities

As shown in **Appendix B**, the car wash drive-through lanes will have room for approximately 21 vehicles before it spills into the nearest drive aisle. This amounts to 17 vehicles more than the 85<sup>th</sup> percentile queue. As such, the Quick Quack Car Wash drive-through queue is not expected to affect neighboring business operations and circulation.

As also shown in **Appendix B**, the Dutch Bros. Coffee drive-through lanes will have room for approximately 23 vehicles before it spills into the nearest drive aisle. This amounts to 4 vehicles more than the 85<sup>th</sup>



percentile queue. As such, the Dutch Bros. Coffee drive-through queue is not expected to affect neighboring business operations and circulation.

As also shown in **Appendix B**, the restaurant drive-through lanes will have room for approximately 15 vehicles before it spills into the nearest drive aisle. This amounts to 11 vehicles more than the 85<sup>th</sup> percentile queue. As such, the restaurant drive-through queue is not expected to affect neighboring business operations and circulation.

#### Dutch Bros. Coffee Circulation Analysis

The Dutch Bros. Coffee drive-through lane capacity of 23 vehicles is expected to accommodate the 85<sup>th</sup> percentile queue of 19 vehicles before spilling into the nearest drive aisle. If the queue were to exceed 23 vehicles, approximately 32 vehicles could be accommodated before spilling onto Azusa Avenue.

As mentioned previously, the Eastvale Dutch Bros. Coffee site experienced much larger queues on the observed Saturday compared to the 5 other observed sites/days. Without the Saturday Eastvale Dutch Bros. Coffee data included, the maximum observed queue would be a one-time occurrence of 25 vehicles. Because approximately 32 vehicles could be accommodated before spilling onto Azusa Avenue, the Dutch Bros. Coffee drive-through queue is not expected to affect through traffic on Azusa Avenue.

With the Saturday Eastvale Dutch Bros. Coffee data included, there is a 2% chance that the queue would be comprised of more than 32 vehicles. In short, 98% of instances will show 32 vehicles or less within the queue.

#### Dutch Bros. Coffee Contingency Plan

In the event that the Dutch Bros. Coffee queue reaches the drive-through lane capacity (23 vehicles), a contingency plan is recommended to be utilized. It is recommended that Dutch Bros. Coffee employees use cones and temporary signage to close off the Dutch Bros. Coffee driveway inbound access, and use signage to direct customers to enter at the southern Quick Quack Car Wash driveway. This will allow vehicles to queue on site instead of affecting circulation along Azusa Avenue. The queue would form in the drive aisle where the live/work shared parking spaces are located. Based on the queue data, the maximum queue occurred on a Saturday. Because the office space of the live/work units will likely not be open during the weekend, the queue is not anticipated to affect office operations within the live/work units with the contingency plan in place.



#### <u>Summary</u>

The 85<sup>th</sup> percentile queue length for the car wash is 4 vehicles and the maximum observed queue was 14 vehicles. The car wash drive-through lanes will have room for approximately 21 vehicles before it spills into the nearest drive aisle. As such, the Quick Quack Car Wash drive-through queue is not expected to affect neighboring business operations and circulation.

The 85<sup>th</sup> percentile queue length for the restaurant is 4 vehicles and the maximum observed queue was 7 vehicles. The restaurant drive-through lanes will have room for approximately 15 vehicles before it spills into the nearest drive aisle. As such, the restaurant drive-through queue is not expected to affect neighboring business operations and circulation.

The 85<sup>th</sup> percentile queue length for the Dutch Bros. Coffee is 19 vehicles and the maximum observed queue was 38 vehicles. The Dutch Bros. Coffee drive-through lanes will have room for approximately 23 vehicles before it spills into the nearest drive aisle.

The Eastvale Dutch Bros. Coffee site experienced much larger queues on the observed Saturday compared to the 5 other observed sites/days. Without the Saturday Eastvale Dutch Bros. Coffee data included, the maximum observed queue would be a one-time occurrence of 25 vehicles. With the Saturday Eastvale Dutch Bros. Coffee data included, there is a 2% chance that the queue would be comprised of more than 32 vehicles.

In the event that the Dutch Bros. Coffee queue reaches the drive-through lane capacity (23 vehicles), a contingency plan is recommended to be utilized. It is recommended that Dutch Bros. Coffee employees use cones and temporary signage to close off the Dutch Bros. Coffee driveway inbound access, and use signage to direct customers to enter at the southern Quick Quack Car Wash driveway. This will allow vehicles to queue on site instead of affecting circulation along Azusa Avenue. The queue would form in the drive aisle where the live/work shared parking spaces are located. Based on the queue data, the maximum queue occurred on a Saturday. Because the office space of the live/work units will likely not be open during the weekend, the queue is not anticipated to affect office operations within the live/work units with the contingency plan in place.



Please contact us at (949) 878-3509 if you have any questions regarding this analysis.

Sincerely,

Though

Thomas Wheat, PE, TE President

Registered Civil Engineer #69467 Registered Traffic Engineer #2565



David Chew, PTP Transportation Planner

But abut

Brandon Alvarado, EIT Transportation Planner



APPENDIX A

PROJECT SITE PLAN





RETAIL / COMMERCIAL + LIVE WORK + TOWNHOMES TENTATIVE TRACT MAP NO. 82315 & TENTATIVE PARCEL MAP NO. 84018 845 WEST CYPRESS STREET & 1000 NORTH AZUSA AVENUE IN THE CITY OF COVINA, COUNTY OF LOS ANGELES, STATE OF CALIFORNIA

| PROJECT SUMMARY:                                                                                                                                                                                                         |                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| OWNER (TTM NO. 82315):                                                                                                                                                                                                   | MELIA HOMES<br>8951 RESEARCH DRIVE, SUITE 100<br>IRVINE, CA 92618                                                  |
| OWNER (TPM NO. 84018):                                                                                                                                                                                                   | PKL INVESTMENTS, LLC<br>2863 MARICOPA STREET<br>TORRANCE, CA 90503                                                 |
| ENGINEER:                                                                                                                                                                                                                | LAND DEVELOPMENT CONSULTANTS<br>1520 BROOKHOLLOW DRIVE, SUITE 33<br>SANTA ANA, CA 92705                            |
| ARCHITECT:                                                                                                                                                                                                               | SUMMA ARCHITECTURE<br>5256 S. MISSION ROAD, SUITE 404<br>BONSALL, CA 92003                                         |
| SOILS ENGINEER:                                                                                                                                                                                                          | GEOTEK, INC.<br>1548 N. MAPLE STREET<br>CORONA, CA 92878                                                           |
| PROJECT LOCATION:                                                                                                                                                                                                        | 1000 NORTH AZUSA AVENUE<br>845 WEST CYPRESS STREET<br>COVINA, CA 91722                                             |
| APNs:                                                                                                                                                                                                                    | 8421-001-016 & 8421-001-061                                                                                        |
| FLOOD ZONE:                                                                                                                                                                                                              | ZONE "X" (FLOOD INSURANCE RATE MAP)<br>COMMUNITY PANEL No. 06037C1700F                                             |
| EXISTING GENERAL PLAN:                                                                                                                                                                                                   | GENERAL COMMERCIAL                                                                                                 |
| PROPOSED GENERAL PLAN:                                                                                                                                                                                                   | COVINA VILLAGE SPECIFIC PLAN                                                                                       |
| EXISTING ZONING:                                                                                                                                                                                                         | COMMERCIAL ZONE (HIGHWAY) (C-4)                                                                                    |
| PROPOSED ZONING:                                                                                                                                                                                                         | SPECIFIC PLAN                                                                                                      |
| PROJECT SITE AREA:                                                                                                                                                                                                       | 348,165 SF = 7.993 ACRES                                                                                           |
| STREET DEDICATION:                                                                                                                                                                                                       | 3,379  SF = 0.078  ACRES                                                                                           |
| NET SHE AREA.                                                                                                                                                                                                            | 344,700 31 - 7.913 ACKES                                                                                           |
| TTM NO. 82315 (RESIDENTIAL):<br>97 UNITS<br><u>3 STORY ROW TOWN/LIVE-WORK</u><br>13 - PLAN 1 1,337 SF<br>21 - PLAN 2 1,531 SF<br>25 - PLAN 3 1,654 SF<br>21 - PLAN 4 1,800 SF<br>8 - PLAN 5 1,976 SF<br>0 DLAN 6 1082 SE | 222,530 SF = 5.109 ACRES<br>2 BD + DEN<br>2 BD + DEN<br>3 BD + DEN<br>4 BD<br>3 BD + WORKSPACE<br>3 BD + WORKSPACE |
| PARKING SUMMARY<br>GARAGE STALLS PROVIDED<br>ON-SITE OPEN STALLS<br>SHARED LIVE/WORK OPEN STALL<br>TOTAL PARKING PROVIDED<br>(2.93 STALLS/UNIT)                                                                          | 194 STALLS<br>49 STALLS<br><u>S 41 STALLS</u><br>284 STALLS                                                        |
| COMMON OPEN SPACE38PRIVATE OPEN SPACE1TOTAL OPEN SPACE49                                                                                                                                                                 | B,877 SF (400.8 SF/UNIT)<br>10,191 SF (105.0 SF/UNIT)<br>9,068 SF (505.8 SF/UNIT)                                  |
| TPM NO. 84018 (COMMERCIAL):<br>PARCEL 1: (QUICK QUACK CAR V<br>PARCEL 2: (DUTCH BROS)<br>PARCEL 3: (TBD)                                                                                                                 | WASH) 122,256 SF = 2.806 ACRES<br>58,430 SF = 1.341 ACRES<br>29,584 SF = 0.679 ACRES<br>34,242 SF = 0.786 ACRES    |
| PARCEL 1 BUILDING (QUICK QUA<br>PARCEL 2 BUILDING (DUTCH BRC<br>PARCEL 3 BUILDING (TBD):                                                                                                                                 | CK): 3,596 SF<br>OS): 950 SF<br>3,500 SF                                                                           |
| PARKING SUMMARY:VACUUM:15 SPACNON-STANDARD:4 SPACSTANDARD:51 SPACSHARED LIVE/WORK:41 SPAC                                                                                                                                | ES (14' X 19')<br>ES<br>ES (9' X 18')<br>ES (9' X 18')                                                             |
| IUTAL: 111 SPACE                                                                                                                                                                                                         | 25                                                                                                                 |

40' 0 40' 80' 120 SCALE: 1"=40' APPENDIX B

QUEUE OBSERVATION DATA AND QUEUE VISUALIZATION

LOCATION: Covina Express Car Wash, 154 E Arrow Hwy CITY: Covina, CA

DAY: Thursday DATE: 1/12/2023

|                | Tunnel Entrance     | Payment Kiosk           | Car Wash Entrance   |        |
|----------------|---------------------|-------------------------|---------------------|--------|
| TIME           | to<br>Payment Kiosk | to<br>Car Wash Entrance | into<br>Parking Lot | TOTAL  |
| 7:00           | 0                   | 0                       | 0                   | 0      |
| 7:10           | 0                   | 0                       | 0                   | 0      |
| 7:20           | 0                   | 1                       | 0                   | 1      |
| 7:30           | 0                   | 1                       | 0                   | 1      |
| 7:50           | 0                   | 0                       | 0                   | 0      |
| 8:00           | 0                   | 0                       | 0                   | 0      |
| 8:10           | 0                   | 0                       | 0                   | 0      |
| 8:20           | 0                   | 0                       | 0                   | 0      |
| 8:30           | 0                   | 2                       | 0                   | 2      |
| 8:50           | 1                   | 1                       | 0                   | 2      |
| 9:00           | 0                   | 0                       | 0                   | 0      |
| 9:10           | 1                   | 0                       | 0                   | 1      |
| 9:20           | 0                   | 0                       | 0                   | 0      |
| 9:30           | 1                   | 0                       | 0                   | 1      |
| 9:50           | 0                   | 0                       | 0                   | 0      |
| 10:00          | 0                   | 0                       | 0                   | 0      |
| 10:10          | 0                   | 0                       | 0                   | 0      |
| 10:20          | 0                   | 1                       | 0                   | 1      |
| 10:30          | 0<br>0              | 0                       | 0                   | 0<br>0 |
| 10:50          | 0                   | 0                       | 0                   | 0      |
| 11:00          | 1                   | 1                       | 0                   | 2      |
| 11:10          | 0                   | 0                       | 0                   | 0      |
| 11:20          | 0                   | 1                       | 0                   | 1      |
| 11:30          | 0                   | 0                       | 0                   | 0      |
| 11:40          | 0                   | 0                       | 0                   | 0      |
| 12:00          | 0                   | 0                       | 0                   | 0      |
| 12:10          | 0                   | 0                       | 0                   | 0      |
| 12:20          | 1                   | 0                       | 0                   | 1      |
| 12:30          | 0                   | 1                       | 0                   | 1      |
| 12:40          | 0                   | 0                       | 0                   | 0      |
| 13:00          | 0                   | 0                       | 0                   | 0      |
| 13:10          | 0                   | 0                       | 0                   | 0      |
| 13:20          | 0                   | 1                       | 0                   | 1      |
| 13:30          | 0                   | 1                       | 0                   | 1      |
| 13:40          | 2<br>1              | 0                       | 0                   | 3      |
| 14:00          | 0                   | 0                       | 0                   | 0      |
| 14:10          | 0                   | 0                       | 0                   | 0      |
| 14:20          | 0                   | 0                       | 0                   | 0      |
| 14:30          | 0                   | 0                       | 0                   | 0      |
| 14:40          | 0                   | 1                       | 0                   | 0      |
| 15:00          | 0                   | 0                       | 0                   | 0      |
| 15:10          | 0                   | 1                       | 0                   | 1      |
| 15:20          | 0                   | 0                       | 0                   | 0      |
| 15:30          | 0                   | 0                       | 0                   | 0      |
| 15:40          | 0                   | 0                       | 0                   | 0      |
| 16:00          | 0                   | 0                       | 0                   | 0      |
| 16:10          | 1                   | 0                       | 0                   | 1      |
| 16:20          | 0                   | 0                       | 0                   | 0      |
| 16:30          | 0                   | 0                       | 0                   | 0      |
| 16:40<br>16:50 | 0                   | U<br>1                  | 0                   | U<br>1 |
| 17:00          | 0                   | 0                       | 0                   | 0      |
| 17:10          | 0                   | 0                       | 0                   | 0      |
| 17:20          | 1                   | 2                       | 0                   | 3      |
| 17:30          | 0                   | 0                       | 0                   | 0      |
| 17:40          | 0                   | 1                       | 0                   | 1      |
| 18:00          | 0                   | 1                       | 0                   | 1      |
| 18:10          | 0                   | 0                       | 0                   | 0      |
| 18:20          | 0                   | 1                       | 0                   | 1      |
| 18:30          | 0                   | 1                       | 0                   | 1      |
| 18:40          | U<br>1              | 0                       | 0                   | U<br>1 |
| 19:00          | 0                   | 0                       | 0                   | 0      |
| 19:10          | 0                   | 0                       | 0                   | 0      |
| 19:20          | 0                   | 0                       | 0                   | 0      |
| 19:30          | 0                   | 0                       | 0                   | 0      |
| 19:40          | 0                   | 0                       | 0                   | 0      |
| 20:00          | 0                   | 0                       | 0                   | 0      |

LOCATION:Covina Express Car Wash, 154 E Arrow HwyCITY:Covina, CA

DAY: Saturday DATE: 1/21/2023

|                | Tunnel Entrance     | Payment Kiosk           | Car Wash Entrance   |          |
|----------------|---------------------|-------------------------|---------------------|----------|
| TIME           | to<br>Payment Kiosk | to<br>Car Wash Entrance | into<br>Parking Lot | TOTAL    |
| 7:00           |                     |                         |                     | 0        |
| 7:10           | 0                   | 0                       | 0                   | 0        |
| 7:20           | 0                   | 1                       | 0                   | 1        |
| 7:30           | 0                   | 0                       | 0                   | 0        |
| 7:40           | 0                   | 0                       | 0                   | 0        |
| 8:00           | 0                   | 0                       | 0                   | 0        |
| 8:10           | 0                   | 0                       | 0                   | 0        |
| 8:20           | 0                   | 0                       | 0                   | 0        |
| 8:30           | 0                   | 0                       | 0                   | 0        |
| 8:40           | 0                   | 2                       | 0                   | <u> </u> |
| 9:00           | 0                   | 4                       | 0                   | 4        |
| 9:10           | 0                   | 1                       | 0                   | 1        |
| 9:20           | 0                   | 0                       | 0                   | 0        |
| 9:30           | 0                   | 0                       | 0                   | 0        |
| 9:40           | 2                   | 2                       | 0                   | 4        |
| 10:00          | 2                   | 1                       | 0                   | 3        |
| 10:10          | 1                   | 2                       | 0                   | 3        |
| 10:20          | 1                   | 0                       | 0                   | 1        |
| 10:30          | 0                   | 1                       | 0                   | 1        |
| 10:40          | 1                   | 1<br>2                  | 0                   | <u>з</u> |
| 11:00          | 0                   | 1                       | 0                   |          |
| 11:10          | 0                   | 2                       | 0                   | 2        |
| 11:20          | 3                   | 3                       | 0                   | 6        |
| 11:30          | 3                   | 5                       | 0                   | 8        |
| 11:40          | 3                   | 4                       | 0                   | 7        |
| 11:50          | 3                   | 4 4                     | 0                   | 7        |
| 12:10          | 3                   | 3                       | 0                   | 6        |
| 12:20          | 2                   | 4                       | 0                   | 6        |
| 12:30          | 3                   | 3                       | 0                   | 6        |
| 12:40          | 3                   | 3                       | 0                   | 6        |
| 12:50          | 2                   | 1                       | 0                   | 3        |
| 13:10          | 0                   | 1                       | 0                   | 1        |
| 13:20          | 2                   | 5                       | 0                   | 7        |
| 13:30          | 3                   | 3                       | 0                   | 6        |
| 13:40          | 0                   | 0                       | 0                   | 0        |
| 13:50          | 0                   | 1                       | 0                   | 1        |
| 14:10          | 1                   | 2                       | 0                   | 3        |
| 14:20          | 2                   | 1                       | 0                   | 3        |
| 14:30          | 3                   | 2                       | 0                   | 5        |
| 14:40          | 3                   | 3                       | 0                   | 6        |
| 14:50          | 0                   | 1                       | 0                   | 1        |
| 15:10          | 0                   | 1                       | 0                   | 1        |
| 15:20          | 2                   | 3                       | 0                   | 5        |
| 15:30          | 0                   | 0                       | 0                   | 0        |
| 15:40          | 2                   | 0                       | 0                   | 2        |
| 15:50          | 2                   | 0                       | 0                   | 2        |
| 16:00          | 1                   | U<br>1                  | 0                   | 2        |
| 16:20          | 1                   | 0                       | 0                   | - 1      |
| 16:30          | 0                   | 0                       | 0                   | 0        |
| 16:40          | 0                   | 0                       | 0                   | 0        |
| 16:50          |                     | 0                       | 0                   | 1        |
| 17:10          | 0                   | 1                       | 0                   | 1        |
| 17:20          | 2                   | 1                       | 0                   | 3        |
| 17:30          | 1                   | 0                       | 0                   | 1        |
| 17:40          | 0                   | 0                       | 0                   | 0        |
| 1/:50          | 0                   | 0                       | 0                   | 0        |
| 18:10          | 0                   | 0                       | 0                   | 0        |
| 18:20          | 0                   | 0                       | 0                   | 0        |
| 18:30          | 1                   | 1                       | 0                   | 2        |
| 18:40          | 0                   | 0                       | 0                   | 0        |
| 18:50          | 0                   | 0                       | 0                   | 0        |
| 19:00<br>19:10 | 0<br>0              | 0                       | 0                   | 0<br>0   |
| 19:20          | 0                   | 0                       | 0                   | 0        |
| 19:30          | 0                   | 0                       | 0                   | 0        |
| 19:40          | 0                   | 0                       | 0                   | 0        |
| 19:50          | 0                   | 0                       | 0                   | 0        |
| 20:00          | 0                   | 0                       | 0                   | 0        |

LOCATION:Fast5Xpress Car Wash, 935 E Huntington DrCITY:Monrovia, CA

DAY: Thursday DATE: 1/12/2023

|                | Tunnel Entrance | Payment Kiosk     | Car Wash Entrance |        |
|----------------|-----------------|-------------------|-------------------|--------|
| TIME           | to              | to                | into              | TOTAL  |
| 7.00           | Payment Kiosk   | Car Wash Entrance | Parking Lot       | -      |
| 7:00           | 0               | 0                 | 0                 | 0      |
| 7:20           | 0               | 0                 | 0                 | 0      |
| 7:30           | 0               | 0                 | 0                 | 0      |
| 7:40           | 0               | 0                 | 0                 | 0      |
| 7:50           | 0               | 0                 | 0                 | 0      |
| 8:00           | 0               | 1                 | 0                 | 0      |
| 8:20           | 0               | 1                 | 0                 | 1      |
| 8:30           | 0               | 0                 | 0                 | 0      |
| 8:40           | 0               | 0                 | 0                 | 0      |
| 8:50           | 0               | 0                 | 0                 | 0      |
| 9:10           | 1               | 0                 | 0                 | 1      |
| 9:20           | 1               | 1                 | 0                 | 2      |
| 9:30           | 1               | 0                 | 0                 | 1      |
| 9:40           | 0               | 0                 | 0                 | 0      |
| 9:50           | 1               | 1                 | 0                 | 2      |
| 10:10          | 1               | 0                 | 0                 | 1      |
| 10:20          | 2               | 1                 | 0                 | 3      |
| 10:30          | 3               | 2                 | 0                 | 5      |
| 10:40          | 1               | 2                 | 0                 | 3      |
| 10:50          | 0               | 0                 | 0                 | 0      |
| 11:00          | 2               | <br>              | 0                 | 2      |
| 11:20          | 1               | 0                 | 0                 | 1      |
| 11:30          | 1               | 2                 | 0                 | 3      |
| 11:40          | 0               | 2                 | 0                 | 2      |
| 11:50          | 0               | 0                 | 0                 | 0      |
| 12:00          | 1               | 0                 | 0                 | 1      |
| 12:20          | 1               | 1                 | 0                 | 2      |
| 12:30          | 2               | 0                 | 0                 | 2      |
| 12:40          | 1               | 3                 | 0                 | 4      |
| 12:50          | 2               | 1                 | 0                 | 3      |
| 13:00          | 0               | 0                 | 0                 | 0      |
| 13:20          | 1               | 1                 | 0                 | 2      |
| 13:30          | 0               | 0                 | 0                 | 0      |
| 13:40          | 1               | 0                 | 0                 | 1      |
| 13:50          | 0               | 1                 | 0                 | 1      |
| 14:00          | 1               | 0                 | 0                 | 1      |
| 14:10          | 0               | 1                 | 0                 | 1      |
| 14:30          | 0               | 0                 | 0                 | 0      |
| 14:40          | 0               | 2                 | 0                 | 2      |
| 14:50          | 2               | 2                 | 0                 | 4      |
| 15:00          | 0               | 1                 | 0                 | 1      |
| 15:10          | 0               | 2                 | 0                 | 3      |
| 15:30          | 2               | 0                 | 0                 | 2      |
| 15:40          | 1               | 2                 | 0                 | 3      |
| 15:50          | 1               | 0                 | 0                 | 1      |
| 16:00          | 0               | 0                 | 0                 | 0      |
| 16:10<br>16:20 | 3<br>2          | <u> </u>          | 0                 | 5<br>2 |
| 16:30          | 1               | 0                 | 0                 | 1      |
| 16:40          | 0               | 4                 | 0                 | 4      |
| 16:50          | 1               | 0                 | 0                 | 1      |
| 17:00          | 3               | 1                 | 0                 | 4      |
| 17:10          | <u>3</u>        | 1                 | 0                 | 4      |
| 17:30          | 1               | 1                 | 0                 | 2      |
| 17:40          | 1               | 1                 | 0                 | 2      |
| 17:50          | 0               | 1                 | 0                 | 1      |
| 18:00          | 0               | 1                 | 0                 | 1      |
| 18:10          | 1               | U<br>1            | 0                 | 1      |
| 18:30          | 1               | 0                 | 0                 | 1      |
| 18:40          | 0               | 0                 | 0                 | 0      |
| 18:50          | 0               | 0                 | 0                 | 0      |
| 19:00          | 0               | 0                 | 0                 | 0      |
| 19:10          | 0               | 0                 | 0                 | 0      |
| 19:20          | 0               | 0                 | 0                 | 0      |
| 19:40          | 0               | 0                 | 0                 | 0      |
| 19:50          | 0               | 0                 | 0                 | 0      |
| 20:00          | 0               | 0                 | 0                 | 0      |

LOCATION:Fast5Xpress Car Wash, 935 E Huntington DrCITY:Monrovia, CA

DAY: Saturday DATE: 1/21/2023

|                | Tunnel Entrance      | Payment Kiosk           | Car Wash Entrance   |               |
|----------------|----------------------|-------------------------|---------------------|---------------|
| TIME           | to<br>Dournant Kiesk | to<br>Car Wash Entrance | into<br>Darking Let | TOTAL         |
| 7:00           | Payment Klosk        | Car wash Entrance       | Parking Lot         | 6             |
| 7:10           | 1                    | 1                       | 0                   | 2             |
| 7:20           | 0                    | 2                       | 0                   | 2             |
| 7:30           | 1                    | 0                       | 0                   | 1             |
| 7:40           | 0                    | 1                       | 0                   | 1             |
| 7:50           | 1                    | 1                       | 0                   | 2             |
| 8:00           | 2                    | 1                       | 0                   | 3             |
| 8:20           | 3                    | 1                       | 0                   | 4             |
| 8:30           | 1                    | 0                       | 0                   | 1             |
| 8:40           | 3                    | 2                       | 0                   | 5             |
| 8:50           | 1                    | 1                       | 0                   | 2             |
| 9:00           | 2                    | 4                       | 0                   | 6             |
| 9:10           | 0                    | 1                       | 0                   | 2             |
| 9:30           | 0                    | 4                       | 0                   | 4             |
| 9:40           | 1                    | 0                       | 0                   | 1             |
| 9:50           | 3                    | 3                       | 0                   | 6             |
| 10:00          | 3                    | 4                       | 0                   | 7             |
| 10:10          | 3                    | 3                       | 0                   | 6             |
| 10:30          | 2                    | 3                       | 0                   | 5             |
| 10:40          | 1                    | 1                       | 0                   | 2             |
| 10:50          | 2                    | 4                       | 0                   | 6             |
| 11:00          | 2                    | 4                       | 0                   | 6             |
| 11:10          | 2                    | 4                       | 0                   | 6             |
| 11:20          | 2                    | <u>ل</u>                | 0                   | <u>ک</u>      |
| 11:40          | 3                    | 3                       | 0                   | 6             |
| 11:50          | 2                    | 8                       | 0                   | 10            |
| 12:00          | 2                    | 9                       | 0                   | 11            |
| 12:10          | 2                    | 10                      | 0                   | 12            |
| 12:20          | 3                    | 11                      | 0                   | 14            |
| 12:30          | 2                    | 11                      | 0                   | 13            |
| 12:50          | 3                    | 6                       | 0                   | 9             |
| 13:00          | 1                    | 3                       | 0                   | 4             |
| 13:10          | 2                    | 6                       | 0                   | 8             |
| 13:20          | 2                    | 10                      | 0                   | 12            |
| 13:30          | 2                    | 4                       | 0                   | 6             |
| 13:50          | 2                    | 8                       | 0                   | 10            |
| 14:00          | 3                    | 10                      | 0                   | 13            |
| 14:10          | 4                    | 9                       | 0                   | 13            |
| 14:20          | 3                    | 11                      | 0                   | 14            |
| 14:30          | 3                    | 6                       | 0                   | 9             |
| 14:40          | 1                    | 5                       | 0                   | 6             |
| 15:00          | 3                    | 11                      | 0                   | 14            |
| 15:10          | 2                    | 4                       | 0                   | 6             |
| 15:20          | 2                    | 5                       | 0                   | 7             |
| 15:30          | 1                    | 10                      | 0                   | 11            |
| 15:40          | 3                    | 10                      | 0                   | 13            |
| 15:50<br>16:00 | <u>३</u>             | 3<br>2                  | 0                   | <u>р</u><br>2 |
| 16:10          | 2                    | 0                       | 0                   | 2             |
| 16:20          | 2                    | 0                       | 0                   | 2             |
| 16:30          | 0                    | 0                       | 0                   | 0             |
| 16:40          | 2                    | 0                       | 0                   | 2             |
| 10:50          | 1                    | 1                       | 0                   | 3<br>1        |
| 17:10          | 0                    | 0                       | 0                   | 0             |
| 17:20          | 2                    | 0                       | 0                   | 2             |
| 17:30          | 1                    | 1                       | 0                   | 2             |
| 17:40          | 0                    | 0                       | 0                   | 0             |
| 1/:50          | 0                    | 0                       | 0                   | 0             |
| 18:10          | 0                    | 0                       | 0                   | 0             |
| 18:20          | 1                    | 0                       | 0                   | 1             |
| 18:30          | 1                    | 1                       | 0                   | 2             |
| 18:40          | 1                    | 1                       | 0                   | 2             |
| 18:50          | 0                    | 0                       | 0                   | 0             |
| 19:00          | 0                    | 0                       | 0                   | 0             |
| 19:20          | 0                    | 0                       | 0                   | 0             |
| 19:30          | 0                    | 0                       | 0                   | 0             |
| 19:40          | 0                    | 0                       | 0                   | 0             |
| 19:50          | 0                    | 0                       | 0                   | 0             |
| 20:00          | 0                    | 0                       | 0                   | 0             |

LOCATION:Whittier Express Car Wash, 13945 Telegraph RdCITY:Whittier, CA

DAY: Wednesday DATE: 1/11/2023

|       | Tunnel Entrance | Payment Kiosk     | Car Wash Entrance |       |
|-------|-----------------|-------------------|-------------------|-------|
| TIME  | to              | to                | into              | TOTAL |
|       | Payment Kiosk   | Car Wash Entrance | Parking Lot       |       |
| 8:00  | 0               | 0                 | 0                 | 0     |
| 8:10  | 0               | 0                 | 0                 | 0     |
| 8:20  | 0               | 0                 | 0                 | 0     |
| 8:30  | 0               | 0                 | 0                 | 0     |
| 8:40  | 0               | 0                 | 0                 | 0     |
| 8:50  | 0               | 0                 | 0                 | 0     |
| 9:00  | 0               | 0                 | 0                 | 0     |
| 9:10  | 0               | 0                 | 0                 | 0     |
| 9:20  | 0               | 0                 | 0                 | 0     |
| 9:30  | 0               | 0                 | 0                 | 0     |
| 9:40  | 1               | 0                 | 0                 | 1     |
| 9:50  | 0               | 0                 | 0                 | 0     |
| 10:00 | 0               | 0                 | 0                 | 0     |
| 10:10 | 0               | 0                 | 0                 | 0     |
| 10:20 | 0               | 0                 | 0                 | 0     |
| 10:30 | 0               | 0                 | 0                 | 0     |
| 10:40 | 0               | 1                 | 0                 | 1     |
| 10:50 | 0               | 0                 | 1                 | 1     |
| 11:00 | 0               | 0                 | 0                 | 0     |
| 11:10 | 0               | 0                 | 0                 | 0     |
| 11:20 | 0               | 0                 | 0                 | 0     |
| 11:30 | 0               | 0                 | 0                 | 0     |
| 11:40 | 0               | 0                 | 0                 | 0     |
| 11:50 | 0               | 0                 | 0                 | 0     |
| 12:00 | 0               | 0                 | 0                 | 0     |
| 12:10 | 0               | 0                 | 0                 | 0     |
| 12:20 | 0               | 0                 | 0                 | 0     |
| 12:30 | 0               | 0                 | 0                 | 0     |
| 12:40 | 1               | 1                 | 0                 | 2     |
| 12:50 | 0               | 0                 | 0                 | 0     |
| 13:00 | 0               | 0                 | 0                 | 0     |
| 13:10 | 0               | 0                 | 0                 | 0     |
| 13:20 | 1               | 0                 | 0                 | 1     |
| 13:30 | 0               | 0                 | 0                 | 0     |
| 13:40 | 0               | 0                 | 0                 | 0     |
| 13:50 | 0               | 0                 | 0                 | 0     |
| 14:00 | 1               | 0                 | 0                 | 1     |
| 14:10 | 0               | 0                 | 0                 | 0     |
| 14:20 | 0               | 0                 | 0                 | 0     |
| 14:30 | 1               | 1                 | 0                 | 2     |
| 14:40 | 0               | 3                 | 0                 | 3     |
| 14:50 | 0               | 0                 | 0                 | 0     |
| 15:00 | 0               | 0                 | 0                 | 0     |
| 15:10 | 0               | 0                 | 0                 | 0     |
| 15:20 | 1               | 0                 | 0                 | 1     |
| 15:30 | 0               | 2                 | 0                 | 2     |
| 15:40 | 0               | 0                 | 0                 | 0     |
| 15:50 | 0               | 0                 | 0                 | 0     |
| 16:00 | 0               | 0                 | 0                 | 0     |
| 16:10 | 0               | 0                 | 0                 | 0     |
| 16:20 | 0               | 0                 | 0                 | 0     |
| 16:30 | 0               | 2                 | 0                 | 2     |
| 16:40 | 0               | 0                 | 0                 | 0     |
| 16:50 | 0               | 0                 | 0                 | 0     |
| 17:00 | 0               | 0                 | 0                 | 0     |

Counts Unlimited, Inc. PO Box 1178 Corona, CA 92878 951-268-6268

LOCATION:Whittier Express Car Wash, 13945 Telegraph RdCITY:Whittier, CA

DAY: Saturday DATE: 1/28/2023

|       | Tunnel Entrance | Payment Kiosk     | Car Wash Entrance |       |
|-------|-----------------|-------------------|-------------------|-------|
| TIME  | to              | to                | into              | TOTAL |
|       | Payment Kiosk   | Car Wash Entrance | Parking Lot       |       |
| 8:00  | 0               | 0                 | 0                 | 0     |
| 8:10  | 0               | 0                 | 0                 | 0     |
| 8:20  | 0               | 0                 | 0                 | 0     |
| 8:30  | 0               | 0                 | 0                 | 0     |
| 8:40  | 1               | 0                 | 0                 | 1     |
| 8:50  | 0               | 0                 | 0                 | 0     |
| 9:00  | 0               | 0                 | 0                 | 0     |
| 9:10  | 0               | 0                 | 0                 | 0     |
| 9:20  | 1               | 0                 | 0                 | 1     |
| 9:30  | 0               | 0                 | 0                 | 0     |
| 9:40  | 1               | 0                 | 0                 | 1     |
| 9:50  | 0               | 0                 | 0                 | 0     |
| 10:00 | 1               | 0                 | 0                 | 1     |
| 10:10 | 0               | 0                 | 0                 | 0     |
| 10:20 | 2               | 0                 | 0                 | 2     |
| 10:30 | 0               | 0                 | 0                 | 0     |
| 10:40 | 1               | 0                 | 0                 | 1     |
| 10:50 | 0               | 0                 | 0                 | 0     |
| 11:00 | 0               | 0                 | 0                 | 0     |
| 11:10 | 0               | 0                 | 0                 | 0     |
| 11:20 | 0               | 0                 | 0                 | 0     |
| 11:30 | 0               | 0                 | 0                 | 0     |
| 11:40 | 0               | 0                 | 0                 | 0     |
| 11:50 | 1               | 0                 | 0                 | 1     |
| 12:00 | 1               | 2                 | 0                 | 3     |
| 12:10 | 0               | 0                 | 0                 | 0     |
| 12:20 | 2               | 1                 | 0                 | 3     |
| 12:30 | 2               | 0                 | 0                 | 2     |
| 12:40 | 1               | 0                 | 0                 | 1     |
| 12:50 | 1               | 1                 | 0                 | 2     |
| 13:00 | 0               | 2                 | 0                 | 2     |
| 13:10 | 0               | 1                 | 0                 | 1     |
| 13:20 | 0               | 2                 | 0                 | 2     |
| 13:30 | 1               | 0                 | 0                 | 1     |
| 13:40 | 0               | 0                 | 0                 | 0     |
| 13:50 | 0               | 0                 | 0                 | 0     |
| 14:00 | 0               | 0                 | 0                 | 0     |
| 14:10 | 0               | 0                 | 0                 | 0     |
| 14:20 | 1               | 0                 | 0                 | 1     |
| 14:30 | 0               | 0                 | 0                 | 0     |
| 14:40 | 0               | 1                 | 0                 | 1     |
| 14:50 | 0               | 0                 | 0                 | 0     |
| 15:00 | 1               | 0                 | 0                 | 1     |
| 15:10 | 0               | 0                 | 0                 | 0     |
| 15:20 | 0               | 0                 | 0                 | 0     |
| 15:30 | 0               |                   | 0                 | 1     |
| 15:40 | 0               | 0                 | 0                 | U     |
| 15:50 |                 | 0                 | 0                 | 1     |
| 16:00 | 0               | 0                 | U                 | Ű     |
| 16:10 | 0               | 0                 | U                 | U     |
| 16:20 | 0               | 0                 | 0                 | U     |
| 16:30 | 0               | 0                 | 0                 | Ű     |
| 16:40 | 0               | 0                 | 0                 | Ű     |
| 16:50 |                 | 0                 | 0                 | Ű     |
| 17:00 | U               | U                 | U                 | U     |

Counts Unlimited, Inc. PO Box 1178 Corona, CA 92878 951-268-6268

LOCATION:Dutch Bros, 13322 Limonite AveCITY:Eastvale, CA

DAY: Wednesday DATE: 1/11/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 1                               | 2                             | 0                          | 3     |
| 6:10 | 2                               | 3                             | 0                          | 5     |
| 6:20 | 1                               | 4                             | 0                          | 5     |
| 6:30 | 2                               | 0                             | 0                          | 2     |
| 6:40 | 2                               | 0                             | 0                          | 2     |
| 6:50 | 0                               | 0                             | 0                          | 0     |
| 7:00 | 1                               | 3                             | 0                          | 4     |
| 7:10 | 1                               | 10                            | 0                          | 11    |
| 7:20 | 1                               | 6                             | 0                          | 7     |
| 7:30 | 1                               | 6                             | 0                          | 7     |
| 7:40 | 1                               | 4                             | 0                          | 5     |
| 7:50 | 1                               | 2                             | 0                          | 3     |
| 8:00 | 0                               | 1                             | 0                          | 1     |
| 8:10 | 2                               | 5                             | 0                          | 7     |
| 8:20 | 1                               | 3                             | 0                          | 4     |
| 8:30 | 1                               | 3                             | 0                          | 4     |
| 8:40 | 2                               | 6                             | 0                          | 8     |
| 8:50 | 1                               | 6                             | 0                          | 7     |
| 9:00 | 1                               | 6                             | 0                          | 7     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 1                               | 7                             | 0                          | 8     |
| 11:10 | 1                               | 4                             | 0                          | 5     |
| 11:20 | 1                               | 5                             | 0                          | 6     |
| 11:30 | 1                               | 5                             | 0                          | 6     |
| 11:40 | 1                               | 1                             | 0                          | 2     |
| 11:50 | 1                               | 11                            | 0                          | 12    |
| 12:00 | 1                               | 13                            | 0                          | 14    |
| 12:10 | 1                               | 9                             | 0                          | 10    |
| 12:20 | 1                               | 11                            | 0                          | 12    |
| 12:30 | 1                               | 4                             | 0                          | 5     |
| 12:40 | 2                               | 10                            | 0                          | 12    |
| 12:50 | 1                               | 5                             | 0                          | 6     |
| 13:00 | 1                               | 8                             | 0                          | 9     |
| 13:10 | 1                               | 9                             | 0                          | 10    |
| 13:20 | 2                               | 7                             | 0                          | 9     |
| 13:30 | 1                               | 9                             | 0                          | 10    |
| 13:40 | 1                               | 6                             | 0                          | 7     |
| 13:50 | 2                               | 2                             | 0                          | 4     |
| 14:00 | 1                               | 6                             | 0                          | 7     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 2                               | 4                             | 0                          | 6     |
| 16:10 | 1                               | 10                            | 0                          | 11    |
| 16:20 | 1                               | 10                            | 0                          | 11    |
| 16:30 | 1                               | 9                             | 0                          | 10    |
| 16:40 | 1                               | 11                            | 0                          | 12    |
| 16:50 | 1                               | 7                             | 0                          | 8     |
| 17:00 | 2                               | 4                             | 0                          | 6     |
| 17:10 | 1                               | 0                             | 0                          | 1     |
| 17:20 | 0                               | 2                             | 0                          | 2     |
| 17:30 | 1                               | 5                             | 0                          | 6     |
| 17:40 | 1                               | 5                             | 0                          | 6     |
| 17:50 | 0                               | 0                             | 0                          | 0     |
| 18:00 | 1                               | 3                             | 0                          | 4     |
| 18:10 | 1                               | 1                             | 0                          | 2     |
| 18:20 | 1                               | 2                             | 0                          | 3     |
| 18:30 | 2                               | 2                             | 0                          | 4     |
| 18:40 | 1                               | 2                             | 0                          | 3     |
| 18:50 | 1                               | 5                             | 0                          | 6     |
| 19:00 | 1                               | 5                             | 0                          | 6     |

LOCATION:Dutch Bros, 13322 Limonite AveCITY:Eastvale, CA

DAY: Saturday DATE: 1/21/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 1                               | 7                             | 0                          | 8     |
| 6:10 | 1                               | 9                             | 0                          | 10    |
| 6:20 | 1                               | 8                             | 0                          | 9     |
| 6:30 | 1                               | 9                             | 0                          | 10    |
| 6:40 | 1                               | 10                            | 0                          | 11    |
| 6:50 | 1                               | 13                            | 0                          | 14    |
| 7:00 | 1                               | 17                            | 0                          | 18    |
| 7:10 | 1                               | 19                            | 0                          | 20    |
| 7:20 | 1                               | 18                            | 0                          | 19    |
| 7:30 | 1                               | 17                            | 0                          | 18    |
| 7:40 | 1                               | 17                            | 0                          | 18    |
| 7:50 | 1                               | 19                            | 0                          | 20    |
| 8:00 | 1                               | 20                            | 2                          | 23    |
| 8:10 | 1                               | 20                            | 2                          | 23    |
| 8:20 | 1                               | 20                            | 2                          | 23    |
| 8:30 | 1                               | 17                            | 0                          | 18    |
| 8:40 | 1                               | 19                            | 4                          | 24    |
| 8:50 | 1                               | 20                            | 4                          | 25    |
| 9:00 | 1                               | 18                            | 0                          | 19    |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 1                               | 19                            | 17                         | 37    |
| 11:10 | 1                               | 20                            | 16                         | 37    |
| 11:20 | 1                               | 20                            | 15                         | 36    |
| 11:30 | 1                               | 20                            | 12                         | 33    |
| 11:40 | 1                               | 20                            | 11                         | 32    |
| 11:50 | 1                               | 18                            | 13                         | 32    |
| 12:00 | 1                               | 19                            | 12                         | 32    |
| 12:10 | 1                               | 20                            | 15                         | 36    |
| 12:20 | 1                               | 20                            | 13                         | 34    |
| 12:30 | 1                               | 19                            | 11                         | 31    |
| 12:40 | 1                               | 20                            | 6                          | 27    |
| 12:50 | 1                               | 20                            | 5                          | 26    |
| 13:00 | 1                               | 19                            | 2                          | 22    |
| 13:10 | 1                               | 17                            | 11                         | 29    |
| 13:20 | 1                               | 17                            | 12                         | 30    |
| 13:30 | 1                               | 18                            | 0                          | 19    |
| 13:40 | 1                               | 19                            | 0                          | 20    |
| 13:50 | 2                               | 20                            | 1                          | 23    |
| 14:00 | 1                               | 19                            | 4                          | 24    |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 1                               | 20                            | 17                         | 38    |
| 16:10 | 1                               | 20                            | 14                         | 35    |
| 16:20 | 1                               | 20                            | 9                          | 30    |
| 16:30 | 2                               | 20                            | 3                          | 25    |
| 16:40 | 1                               | 20                            | 4                          | 25    |
| 16:50 | 1                               | 20                            | 1                          | 22    |
| 17:00 | 1                               | 20                            | 10                         | 31    |
| 17:10 | 1                               | 20                            | 6                          | 27    |
| 17:20 | 1                               | 19                            | 2                          | 22    |
| 17:30 | 1                               | 20                            | 3                          | 24    |
| 17:40 | 1                               | 20                            | 0                          | 21    |
| 17:50 | 1                               | 20                            | 5                          | 26    |
| 18:00 | 1                               | 19                            | 1                          | 21    |
| 18:10 | 1                               | 19                            | 7                          | 27    |
| 18:20 | 1                               | 20                            | 10                         | 31    |
| 18:30 | 1                               | 20                            | 5                          | 26    |
| 18:40 | 1                               | 19                            | 0                          | 20    |
| 18:50 | 1                               | 17                            | 0                          | 18    |
| 19:00 | 1                               | 18                            | 0                          | 19    |

LOCATION:Dutch Bros, 32690 Yucaipa BoulevardCITY:Yucaipa, CA

DAY: Wednesday DATE: 1/11/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 1                               | 0                             | 0                          | 1     |
| 6:10 | 2                               | 1                             | 0                          | 3     |
| 6:20 | 3                               | 1                             | 0                          | 4     |
| 6:30 | 3                               | 2                             | 0                          | 5     |
| 6:40 | 4                               | 0                             | 0                          | 4     |
| 6:50 | 2                               | 0                             | 0                          | 2     |
| 7:00 | 1                               | 0                             | 0                          | 1     |
| 7:10 | 3                               | 0                             | 0                          | 3     |
| 7:20 | 2                               | 1                             | 0                          | 3     |
| 7:30 | 4                               | 1                             | 0                          | 5     |
| 7:40 | 1                               | 0                             | 0                          | 1     |
| 7:50 | 1                               | 0                             | 0                          | 1     |
| 8:00 | 2                               | 3                             | 0                          | 5     |
| 8:10 | 4                               | 7                             | 0                          | 11    |
| 8:20 | 6                               | 4                             | 0                          | 10    |
| 8:30 | 3                               | 0                             | 0                          | 3     |
| 8:40 | 4                               | 2                             | 0                          | 6     |
| 8:50 | 2                               | 3                             | 0                          | 5     |
| 9:00 | 1                               | 1                             | 0                          | 2     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 5                               | 2                             | 0                          | 7     |
| 11:10 | 6                               | 9                             | 0                          | 15    |
| 11:20 | 5                               | 11                            | 2                          | 18    |
| 11:30 | 5                               | 13                            | 0                          | 18    |
| 11:40 | 4                               | 6                             | 0                          | 10    |
| 11:50 | 6                               | 2                             | 0                          | 8     |
| 12:00 | 2                               | 1                             | 0                          | 3     |
| 12:10 | 3                               | 2                             | 0                          | 5     |
| 12:20 | 5                               | 2                             | 0                          | 7     |
| 12:30 | 5                               | 3                             | 0                          | 8     |
| 12:40 | 2                               | 1                             | 0                          | 3     |
| 12:50 | 1                               | 2                             | 0                          | 3     |
| 13:00 | 1                               | 0                             | 0                          | 1     |
| 13:10 | 3                               | 9                             | 0                          | 12    |
| 13:20 | 4                               | 5                             | 0                          | 9     |
| 13:30 | 4                               | 2                             | 0                          | 6     |
| 13:40 | 5                               | 6                             | 0                          | 11    |
| 13:50 | 4                               | 5                             | 0                          | 9     |
| 14:00 | 1                               | 2                             | 0                          | 3     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 5                               | 6                             | 0                          | 11    |
| 16:10 | 4                               | 3                             | 0                          | 7     |
| 16:20 | 5                               | 5                             | 0                          | 10    |
| 16:30 | 4                               | 6                             | 0                          | 10    |
| 16:40 | 5                               | 2                             | 0                          | 7     |
| 16:50 | 5                               | 2                             | 0                          | 7     |
| 17:00 | 5                               | 5                             | 0                          | 10    |
| 17:10 | 2                               | 5                             | 0                          | 7     |
| 17:20 | 5                               | 6                             | 0                          | 11    |
| 17:30 | 5                               | 6                             | 0                          | 11    |
| 17:40 | 6                               | 3                             | 0                          | 9     |
| 17:50 | 1                               | 1                             | 0                          | 2     |
| 18:00 | 2                               | 2                             | 0                          | 4     |
| 18:10 | 3                               | 1                             | 0                          | 4     |
| 18:20 | 4                               | 0                             | 0                          | 4     |
| 18:30 | 1                               | 8                             | 0                          | 9     |
| 18:40 | 5                               | 2                             | 0                          | 7     |
| 18:50 | 2                               | 2                             | 0                          | 4     |
| 19:00 | 1                               | 1                             | 0                          | 2     |

LOCATION:Dutch Bros, 32690 Yucaipa BoulevardCITY:Yucaipa, CA

DAY: Saturday DATE: 1/21/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 1                               | 0                             | 0                          | 1     |
| 6:10 | 2                               | 0                             | 0                          | 2     |
| 6:20 | 1                               | 0                             | 0                          | 1     |
| 6:30 | 3                               | 1                             | 0                          | 4     |
| 6:40 | 1                               | 1                             | 0                          | 2     |
| 6:50 | 2                               | 1                             | 0                          | 3     |
| 7:00 | 4                               | 1                             | 0                          | 5     |
| 7:10 | 4                               | 0                             | 0                          | 4     |
| 7:20 | 5                               | 0                             | 0                          | 5     |
| 7:30 | 2                               | 2                             | 0                          | 4     |
| 7:40 | 3                               | 2                             | 0                          | 5     |
| 7:50 | 1                               | 1                             | 0                          | 2     |
| 8:00 | 3                               | 5                             | 0                          | 8     |
| 8:10 | 4                               | 6                             | 0                          | 10    |
| 8:20 | 5                               | 5                             | 0                          | 10    |
| 8:30 | 4                               | 4                             | 0                          | 8     |
| 8:40 | 5                               | 10                            | 0                          | 15    |
| 8:50 | 4                               | 12                            | 0                          | 16    |
| 9:00 | 5                               | 10                            | 0                          | 15    |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 4                               | 5                             | 0                          | 9     |
| 11:10 | 5                               | 6                             | 0                          | 11    |
| 11:20 | 3                               | 11                            | 0                          | 14    |
| 11:30 | 5                               | 12                            | 0                          | 17    |
| 11:40 | 5                               | 9                             | 0                          | 14    |
| 11:50 | 2                               | 5                             | 0                          | 7     |
| 12:00 | 4                               | 8                             | 0                          | 12    |
| 12:10 | 4                               | 10                            | 1                          | 15    |
| 12:20 | 5                               | 12                            | 2                          | 19    |
| 12:30 | 5                               | 12                            | 4                          | 21    |
| 12:40 | 4                               | 13                            | 3                          | 20    |
| 12:50 | 4                               | 14                            | 2                          | 20    |
| 13:00 | 4                               | 12                            | 1                          | 17    |
| 13:10 | 5                               | 14                            | 2                          | 21    |
| 13:20 | 4                               | 13                            | 0                          | 17    |
| 13:30 | 3                               | 12                            | 1                          | 16    |
| 13:40 | 4                               | 11                            | 6                          | 21    |
| 13:50 | 4                               | 12                            | 8                          | 24    |
| 14:00 | 4                               | 15                            | 6                          | 25    |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 5                               | 8                             | 0                          | 13    |
| 16:10 | 5                               | 8                             | 0                          | 13    |
| 16:20 | 3                               | 4                             | 0                          | 7     |
| 16:30 | 5                               | 4                             | 0                          | 9     |
| 16:40 | 5                               | 6                             | 0                          | 11    |
| 16:50 | 5                               | 8                             | 0                          | 13    |
| 17:00 | 5                               | 6                             | 0                          | 11    |
| 17:10 | 4                               | 6                             | 0                          | 10    |
| 17:20 | 4                               | 7                             | 0                          | 11    |
| 17:30 | 1                               | 1                             | 0                          | 2     |
| 17:40 | 5                               | 4                             | 0                          | 9     |
| 17:50 | 4                               | 6                             | 0                          | 10    |
| 18:00 | 5                               | 5                             | 0                          | 10    |
| 18:10 | 5                               | 6                             | 0                          | 11    |
| 18:20 | 5                               | 8                             | 0                          | 13    |
| 18:30 | 5                               | 4                             | 0                          | 9     |
| 18:40 | 5                               | 8                             | 0                          | 13    |
| 18:50 | 4                               | 8                             | 0                          | 12    |
| 19:00 | 5                               | 9                             | 0                          | 14    |

LOCATION:Dutch Bros, 15211 Hook BoulevardCITY:Victorville, CA

DAY: Wednesday DATE: 1/11/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 0                               | 0                             | 0                          | 0     |
| 6:10 | 2                               | 1                             | 0                          | 3     |
| 6:20 | 0                               | 0                             | 0                          | 0     |
| 6:30 | 0                               | 0                             | 0                          | 0     |
| 6:40 | 2                               | 0                             | 0                          | 2     |
| 6:50 | 4                               | 0                             | 0                          | 4     |
| 7:00 | 2                               | 0                             | 0                          | 2     |
| 7:10 | 2                               | 0                             | 0                          | 2     |
| 7:20 | 4                               | 0                             | 0                          | 4     |
| 7:30 | 4                               | 0                             | 0                          | 4     |
| 7:40 | 5                               | 1                             | 0                          | 6     |
| 7:50 | 3                               | 1                             | 0                          | 4     |
| 8:00 | 5                               | 4                             | 0                          | 9     |
| 8:10 | 5                               | 1                             | 0                          | 6     |
| 8:20 | 5                               | 3                             | 0                          | 8     |
| 8:30 | 7                               | 2                             | 0                          | 9     |
| 8:40 | 6                               | 4                             | 0                          | 10    |
| 8:50 | 5                               | 2                             | 0                          | 7     |
| 9:00 | 3                               | 0                             | 0                          | 3     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 4                               | 1                             | 0                          | 5     |
| 11:10 | 3                               | 0                             | 0                          | 3     |
| 11:20 | 4                               | 1                             | 0                          | 5     |
| 11:30 | 2                               | 1                             | 0                          | 3     |
| 11:40 | 4                               | 0                             | 0                          | 4     |
| 11:50 | 0                               | 0                             | 0                          | 0     |
| 12:00 | 4                               | 1                             | 0                          | 5     |
| 12:10 | 4                               | 0                             | 0                          | 4     |
| 12:20 | 4                               | 0                             | 0                          | 4     |
| 12:30 | 5                               | 0                             | 0                          | 5     |
| 12:40 | 1                               | 0                             | 0                          | 1     |
| 12:50 | 0                               | 0                             | 0                          | 0     |
| 13:00 | 0                               | 0                             | 0                          | 0     |
| 13:10 | 5                               | 0                             | 0                          | 5     |
| 13:20 | 3                               | 0                             | 0                          | 3     |
| 13:30 | 2                               | 1                             | 0                          | 3     |
| 13:40 | 2                               | 0                             | 0                          | 2     |
| 13:50 | 0                               | 0                             | 0                          | 0     |
| 14:00 | 2                               | 0                             | 0                          | 2     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 3                               | 1                             | 0                          | 4     |
| 16:10 | 2                               | 1                             | 0                          | 3     |
| 16:20 | 3                               | 0                             | 0                          | 3     |
| 16:30 | 1                               | 0                             | 0                          | 1     |
| 16:40 | 2                               | 0                             | 0                          | 2     |
| 16:50 | 2                               | 0                             | 0                          | 2     |
| 17:00 | 3                               | 0                             | 0                          | 3     |
| 17:10 | 5                               | 2                             | 0                          | 7     |
| 17:20 | 6                               | 1                             | 0                          | 7     |
| 17:30 | 4                               | 2                             | 0                          | 6     |
| 17:40 | 5                               | 1                             | 0                          | 6     |
| 17:50 | 5                               | 0                             | 0                          | 5     |
| 18:00 | 2                               | 1                             | 0                          | 3     |
| 18:10 | 5                               | 1                             | 0                          | 6     |
| 18:20 | 4                               | 0                             | 0                          | 4     |
| 18:30 | 3                               | 0                             | 0                          | 3     |
| 18:40 | 2                               | 0                             | 0                          | 2     |
| 18:50 | 2                               | 0                             | 0                          | 2     |
| 19:00 | 3                               | 0                             | 0                          | 3     |

LOCATION:Dutch Bros, 15211 Hook BoulevardCITY:Victorville, CA

DAY: Saturday DATE: 1/21/2023

| TIME | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|------|---------------------------------|-------------------------------|----------------------------|-------|
| 6:00 | 0                               | 0                             | 0                          | 0     |
| 6:10 | 0                               | 0                             | 0                          | 0     |
| 6:20 | 1                               | 0                             | 0                          | 1     |
| 6:30 | 1                               | 0                             | 0                          | 1     |
| 6:40 | 2                               | 0                             | 0                          | 2     |
| 6:50 | 1                               | 0                             | 0                          | 1     |
| 7:00 | 2                               | 2                             | 0                          | 4     |
| 7:10 | 3                               | 0                             | 0                          | 3     |
| 7:20 | 2                               | 0                             | 0                          | 2     |
| 7:30 | 3                               | 0                             | 0                          | 3     |
| 7:40 | 3                               | 0                             | 0                          | 3     |
| 7:50 | 5                               | 0                             | 0                          | 5     |
| 8:00 | 1                               | 1                             | 0                          | 2     |
| 8:10 | 5                               | 0                             | 0                          | 5     |
| 8:20 | 6                               | 3                             | 0                          | 9     |
| 8:30 | 3                               | 0                             | 0                          | 3     |
| 8:40 | 1                               | 0                             | 0                          | 1     |
| 8:50 | 4                               | 0                             | 0                          | 4     |
| 9:00 | 6                               | 1                             | 0                          | 7     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 5                               | 6                             | 0                          | 11    |
| 11:10 | 4                               | 6                             | 0                          | 10    |
| 11:20 | 3                               | 4                             | 0                          | 7     |
| 11:30 | 2                               | 0                             | 0                          | 2     |
| 11:40 | 5                               | 3                             | 0                          | 8     |
| 11:50 | 4                               | 2                             | 0                          | 6     |
| 12:00 | 5                               | 2                             | 0                          | 7     |
| 12:10 | 3                               | 0                             | 0                          | 3     |
| 12:20 | 3                               | 3                             | 0                          | 6     |
| 12:30 | 3                               | 2                             | 0                          | 5     |
| 12:40 | 2                               | 3                             | 0                          | 5     |
| 12:50 | 4                               | 1                             | 0                          | 5     |
| 13:00 | 4                               | 1                             | 0                          | 5     |
| 13:10 | 3                               | 1                             | 0                          | 4     |
| 13:20 | 3                               | 0                             | 0                          | 3     |
| 13:30 | 5                               | 2                             | 0                          | 7     |
| 13:40 | 5                               | 2                             | 0                          | 7     |
| 13:50 | 2                               | 0                             | 0                          | 2     |
| 14:00 | 4                               | 2                             | 0                          | 6     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 4                               | 4                             | 0                          | 8     |
| 16:10 | 5                               | 3                             | 0                          | 8     |
| 16:20 | 5                               | 0                             | 0                          | 5     |
| 16:30 | 3                               | 0                             | 0                          | 3     |
| 16:40 | 4                               | 0                             | 0                          | 4     |
| 16:50 | 3                               | 0                             | 0                          | 3     |
| 17:00 | 5                               | 3                             | 0                          | 8     |
| 17:10 | 3                               | 0                             | 0                          | 3     |
| 17:20 | 3                               | 0                             | 0                          | 3     |
| 17:30 | 5                               | 0                             | 0                          | 5     |
| 17:40 | 4                               | 0                             | 0                          | 4     |
| 17:50 | 2                               | 1                             | 0                          | 3     |
| 18:00 | 2                               | 0                             | 0                          | 2     |
| 18:10 | 2                               | 0                             | 0                          | 2     |
| 18:20 | 5                               | 0                             | 0                          | 5     |
| 18:30 | 6                               | 2                             | 0                          | 8     |
| 18:40 | 3                               | 2                             | 0                          | 5     |
| 18:50 | 3                               | 0                             | 0                          | 3     |
| 19:00 | 3                               | 1                             | 0                          | 4     |
LOCATION:Panera Bread, 1054 W Gladstone StreetCITY:San Dimas, CA

DAY: Thursday DATE: 1/12/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 0                               | 1                             | 0                          | 1     |
| 11:10 | 2                               | 0                             | 0                          | 2     |
| 11:20 | 1                               | 2                             | 0                          | 3     |
| 11:30 | 1                               | 0                             | 0                          | 1     |
| 11:40 | 2                               | 0                             | 0                          | 2     |
| 11:50 | 2                               | 1                             | 0                          | 3     |
| 12:00 | 0                               | 1                             | 0                          | 1     |
| 12:10 | 2                               | 0                             | 0                          | 2     |
| 12:20 | 1                               | 1                             | 0                          | 2     |
| 12:30 | 2                               | 1                             | 0                          | 3     |
| 12:40 | 1                               | 3                             | 0                          | 4     |
| 12:50 | 1                               | 3                             | 0                          | 4     |
| 13:00 | 1                               | 0                             | 0                          | 1     |
| 13:10 | 0                               | 0                             | 0                          | 0     |
| 13:20 | 3                               | 2                             | 0                          | 5     |
| 13:30 | 3                               | 2                             | 0                          | 5     |
| 13:40 | 1                               | 0                             | 0                          | 1     |
| 13:50 | 0                               | 1                             | 0                          | 1     |
| 14:00 | 0                               | 0                             | 0                          | 0     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 2                               | 2                             | 0                          | 4     |
| 16:10 | 2                               | 0                             | 0                          | 2     |
| 16:20 | 2                               | 3                             | 0                          | 5     |
| 16:30 | 3                               | 3                             | 0                          | 6     |
| 16:40 | 1                               | 1                             | 0                          | 2     |
| 16:50 | 0                               | 0                             | 0                          | 0     |
| 17:00 | 0                               | 1                             | 0                          | 1     |
| 17:10 | 1                               | 2                             | 0                          | 3     |
| 17:20 | 3                               | 1                             | 0                          | 4     |
| 17:30 | 1                               | 2                             | 0                          | 3     |
| 17:40 | 1                               | 0                             | 0                          | 1     |
| 17:50 | 2                               | 2                             | 0                          | 4     |
| 18:00 | 0                               | 1                             | 0                          | 1     |
| 18:10 | 1                               | 1                             | 0                          | 2     |
| 18:20 | 1                               | 2                             | 0                          | 3     |
| 18:30 | 1                               | 3                             | 0                          | 4     |
| 18:40 | 1                               | 3                             | 0                          | 4     |
| 18:50 | 3                               | 1                             | 0                          | 4     |
| 19:00 | 0                               | 1                             | 0                          | 1     |

LOCATION:Panera Bread, 1054 W Gladstone StreetCITY:San Dimas, CA

DAY: Saturday DATE: 1/21/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 0                               | 0                             | 0                          | 0     |
| 11:10 | 0                               | 0                             | 0                          | 0     |
| 11:20 | 1                               | 0                             | 0                          | 1     |
| 11:30 | 0                               | 0                             | 0                          | 0     |
| 11:40 | 0                               | 0                             | 0                          | 0     |
| 11:50 | 1                               | 0                             | 0                          | 1     |
| 12:00 | 1                               | 1                             | 0                          | 2     |
| 12:10 | 0                               | 0                             | 0                          | 0     |
| 12:20 | 0                               | 0                             | 0                          | 0     |
| 12:30 | 1                               | 2                             | 0                          | 3     |
| 12:40 | 3                               | 1                             | 0                          | 4     |
| 12:50 | 2                               | 0                             | 0                          | 2     |
| 13:00 | 1                               | 0                             | 0                          | 1     |
| 13:10 | 0                               | 0                             | 0                          | 0     |
| 13:20 | 0                               | 0                             | 0                          | 0     |
| 13:30 | 2                               | 0                             | 0                          | 2     |
| 13:40 | 0                               | 0                             | 0                          | 0     |
| 13:50 | 2                               | 0                             | 0                          | 2     |
| 14:00 | 3                               | 1                             | 0                          | 4     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 1                               | 0                             | 0                          | 1     |
| 16:10 | 2                               | 0                             | 0                          | 2     |
| 16:20 | 0                               | 0                             | 0                          | 0     |
| 16:30 | 0                               | 0                             | 0                          | 0     |
| 16:40 | 1                               | 0                             | 0                          | 1     |
| 16:50 | 1                               | 1                             | 0                          | 2     |
| 17:00 | 0                               | 0                             | 0                          | 0     |
| 17:10 | 0                               | 0                             | 0                          | 0     |
| 17:20 | 2                               | 2                             | 0                          | 4     |
| 17:30 | 2                               | 0                             | 0                          | 2     |
| 17:40 | 1                               | 1                             | 0                          | 2     |
| 17:50 | 2                               | 0                             | 0                          | 2     |
| 18:00 | 0                               | 1                             | 0                          | 1     |
| 18:10 | 0                               | 0                             | 0                          | 0     |
| 18:20 | 0                               | 0                             | 0                          | 0     |
| 18:30 | 2                               | 0                             | 0                          | 2     |
| 18:40 | 3                               | 2                             | 0                          | 5     |
| 18:50 | 2                               | 3                             | 0                          | 5     |
| 19:00 | 4                               | 1                             | 0                          | 5     |

LOCATION:Panera Bread, 423 S Associated RdCITY:Brea, CA

DAY: Thursday DATE: 1/12/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 2                               | 0                             | 0                          | 2     |
| 11:10 | 2                               | 0                             | 0                          | 2     |
| 11:20 | 1                               | 0                             | 0                          | 1     |
| 11:30 | 0                               | 0                             | 0                          | 0     |
| 11:40 | 3                               | 0                             | 0                          | 3     |
| 11:50 | 1                               | 0                             | 0                          | 1     |
| 12:00 | 1                               | 0                             | 0                          | 1     |
| 12:10 | 1                               | 0                             | 0                          | 1     |
| 12:20 | 2                               | 1                             | 0                          | 3     |
| 12:30 | 0                               | 2                             | 0                          | 2     |
| 12:40 | 1                               | 1                             | 0                          | 2     |
| 12:50 | 3                               | 2                             | 0                          | 5     |
| 13:00 | 0                               | 0                             | 0                          | 0     |
| 13:10 | 0                               | 1                             | 0                          | 1     |
| 13:20 | 2                               | 0                             | 0                          | 2     |
| 13:30 | 3                               | 0                             | 0                          | 3     |
| 13:40 | 2                               | 0                             | 0                          | 2     |
| 13:50 | 1                               | 0                             | 0                          | 1     |
| 14:00 | 2                               | 0                             | 0                          | 2     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 2                               | 0                             | 0                          | 2     |
| 16:10 | 3                               | 0                             | 0                          | 3     |
| 16:20 | 1                               | 0                             | 0                          | 1     |
| 16:30 | 1                               | 0                             | 0                          | 1     |
| 16:40 | 0                               | 1                             | 0                          | 1     |
| 16:50 | 3                               | 0                             | 0                          | 3     |
| 17:00 | 1                               | 0                             | 0                          | 1     |
| 17:10 | 0                               | 2                             | 0                          | 2     |
| 17:20 | 3                               | 1                             | 0                          | 4     |
| 17:30 | 0                               | 0                             | 0                          | 0     |
| 17:40 | 4                               | 0                             | 0                          | 4     |
| 17:50 | 4                               | 1                             | 0                          | 5     |
| 18:00 | 2                               | 1                             | 0                          | 3     |
| 18:10 | 1                               | 1                             | 0                          | 2     |
| 18:20 | 2                               | 1                             | 0                          | 3     |
| 18:30 | 0                               | 0                             | 0                          | 0     |
| 18:40 | 1                               | 1                             | 0                          | 2     |
| 18:50 | 3                               | 0                             | 0                          | 3     |
| 19:00 | 3                               | 1                             | 0                          | 4     |

LOCATION:Panera Bread, 423 S Associated RdCITY:Brea, CA

DAY: Saturday DATE: 1/21/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 4                               | 0                             | 0                          | 4     |
| 11:10 | 4                               | 3                             | 0                          | 7     |
| 11:20 | 4                               | 2                             | 0                          | 6     |
| 11:30 | 4                               | 0                             | 0                          | 4     |
| 11:40 | 1                               | 0                             | 0                          | 1     |
| 11:50 | 1                               | 0                             | 0                          | 1     |
| 12:00 | 0                               | 0                             | 0                          | 0     |
| 12:10 | 3                               | 2                             | 0                          | 5     |
| 12:20 | 4                               | 1                             | 0                          | 5     |
| 12:30 | 3                               | 0                             | 0                          | 3     |
| 12:40 | 3                               | 1                             | 0                          | 4     |
| 12:50 | 3                               | 1                             | 0                          | 4     |
| 13:00 | 2                               | 0                             | 0                          | 2     |
| 13:10 | 0                               | 1                             | 0                          | 1     |
| 13:20 | 3                               | 0                             | 0                          | 3     |
| 13:30 | 2                               | 1                             | 0                          | 3     |
| 13:40 | 1                               | 1                             | 0                          | 2     |
| 13:50 | 3                               | 0                             | 0                          | 3     |
| 14:00 | 2                               | 0                             | 0                          | 2     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 1                               | 0                             | 0                          | 1     |
| 16:10 | 1                               | 1                             | 0                          | 2     |
| 16:20 | 0                               | 0                             | 0                          | 0     |
| 16:30 | 3                               | 1                             | 0                          | 4     |
| 16:40 | 1                               | 1                             | 0                          | 2     |
| 16:50 | 2                               | 0                             | 0                          | 2     |
| 17:00 | 1                               | 0                             | 0                          | 1     |
| 17:10 | 1                               | 0                             | 0                          | 1     |
| 17:20 | 2                               | 1                             | 0                          | 3     |
| 17:30 | 1                               | 0                             | 0                          | 1     |
| 17:40 | 0                               | 0                             | 0                          | 0     |
| 17:50 | 1                               | 2                             | 0                          | 3     |
| 18:00 | 3                               | 2                             | 0                          | 5     |
| 18:10 | 2                               | 0                             | 0                          | 2     |
| 18:20 | 0                               | 0                             | 0                          | 0     |
| 18:30 | 1                               | 1                             | 0                          | 2     |
| 18:40 | 2                               | 0                             | 0                          | 2     |
| 18:50 | 0                               | 0                             | 0                          | 0     |
| 19:00 | 2                               | 2                             | 0                          | 4     |

LOCATION:Panera Bread, 1750 S State College BlvdCITY:Anaheim, CA

DAY: Wednesday DATE: 1/11/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 0                               | 1                             | 0                          | 1     |
| 11:10 | 1                               | 0                             | 0                          | 1     |
| 11:20 | 2                               | 0                             | 0                          | 2     |
| 11:30 | 0                               | 1                             | 0                          | 1     |
| 11:40 | 0                               | 0                             | 0                          | 0     |
| 11:50 | 0                               | 0                             | 0                          | 0     |
| 12:00 | 3                               | 1                             | 0                          | 4     |
| 12:10 | 3                               | 0                             | 0                          | 3     |
| 12:20 | 2                               | 0                             | 0                          | 2     |
| 12:30 | 0                               | 0                             | 0                          | 0     |
| 12:40 | 4                               | 2                             | 0                          | 6     |
| 12:50 | 4                               | 2                             | 0                          | 6     |
| 13:00 | 2                               | 3                             | 0                          | 5     |
| 13:10 | 2                               | 0                             | 0                          | 2     |
| 13:20 | 4                               | 2                             | 0                          | 6     |
| 13:30 | 3                               | 1                             | 0                          | 4     |
| 13:40 | 1                               | 0                             | 0                          | 1     |
| 13:50 | 0                               | 0                             | 0                          | 0     |
| 14:00 | 1                               | 0                             | 0                          | 1     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 0                               | 0                             | 0                          | 0     |
| 16:10 | 1                               | 0                             | 0                          | 1     |
| 16:20 | 1                               | 0                             | 0                          | 1     |
| 16:30 | 1                               | 0                             | 0                          | 1     |
| 16:40 | 1                               | 0                             | 0                          | 1     |
| 16:50 | 2                               | 3                             | 0                          | 5     |
| 17:00 | 2                               | 0                             | 0                          | 2     |
| 17:10 | 0                               | 0                             | 0                          | 0     |
| 17:20 | 2                               | 0                             | 0                          | 2     |
| 17:30 | 2                               | 0                             | 0                          | 2     |
| 17:40 | 0                               | 0                             | 0                          | 0     |
| 17:50 | 1                               | 0                             | 0                          | 1     |
| 18:00 | 0                               | 0                             | 0                          | 0     |
| 18:10 | 0                               | 2                             | 0                          | 2     |
| 18:20 | 4                               | 0                             | 0                          | 4     |
| 18:30 | 3                               | 1                             | 0                          | 4     |
| 18:40 | 3                               | 2                             | 0                          | 5     |
| 18:50 | 1                               | 0                             | 0                          | 1     |
| 19:00 | 0                               | 0                             | 0                          | 0     |

LOCATION:Panera Bread, 1750 S State College BlvdCITY:Anaheim, CA

DAY: Saturday DATE: 1/21/2023

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 11:00 | 0                               | 0                             | 0                          | 0     |
| 11:10 | 0                               | 0                             | 0                          | 0     |
| 11:20 | 0                               | 0                             | 0                          | 0     |
| 11:30 | 1                               | 1                             | 0                          | 2     |
| 11:40 | 0                               | 0                             | 0                          | 0     |
| 11:50 | 0                               | 0                             | 0                          | 0     |
| 12:00 | 0                               | 0                             | 0                          | 0     |
| 12:10 | 3                               | 0                             | 0                          | 3     |
| 12:20 | 0                               | 1                             | 0                          | 1     |
| 12:30 | 2                               | 0                             | 0                          | 2     |
| 12:40 | 1                               | 0                             | 0                          | 1     |
| 12:50 | 0                               | 0                             | 0                          | 0     |
| 13:00 | 1                               | 0                             | 0                          | 1     |
| 13:10 | 2                               | 1                             | 0                          | 3     |
| 13:20 | 1                               | 0                             | 0                          | 1     |
| 13:30 | 0                               | 0                             | 0                          | 0     |
| 13:40 | 0                               | 0                             | 0                          | 0     |
| 13:50 | 1                               | 0                             | 0                          | 1     |
| 14:00 | 1                               | 0                             | 0                          | 1     |

| TIME  | PickUp Window<br>To Order Board | Order Board<br>to DT Entrance | DT Entrance<br>into Street | TOTAL |
|-------|---------------------------------|-------------------------------|----------------------------|-------|
| 16:00 | 1                               | 0                             | 0                          | 1     |
| 16:10 | 1                               | 0                             | 0                          | 1     |
| 16:20 | 0                               | 1                             | 0                          | 1     |
| 16:30 | 2                               | 1                             | 0                          | 3     |
| 16:40 | 1                               | 0                             | 0                          | 1     |
| 16:50 | 0                               | 0                             | 0                          | 0     |
| 17:00 | 0                               | 0                             | 0                          | 0     |
| 17:10 | 1                               | 0                             | 0                          | 1     |
| 17:20 | 0                               | 1                             | 0                          | 1     |
| 17:30 | 1                               | 0                             | 0                          | 1     |
| 17:40 | 0                               | 1                             | 0                          | 1     |
| 17:50 | 1                               | 0                             | 0                          | 1     |
| 18:00 | 0                               | 0                             | 0                          | 0     |
| 18:10 | 1                               | 0                             | 0                          | 1     |
| 18:20 | 0                               | 0                             | 0                          | 0     |
| 18:30 | 0                               | 0                             | 0                          | 0     |
| 18:40 | 1                               | 3                             | 0                          | 4     |
| 18:50 | 2                               | 0                             | 0                          | 2     |
| 19:00 | 2                               | 0                             | 0                          | 2     |





ADDITIONAL CAPACITY

# DRIVE-THROUGH CAPACITY

