APPENDIX E TRANSPORTATION IMPACT ANALYSIS

699 Serramonte Faculty \& Staff Housing

Transportation Impact Analysis

Prepared for:
Jefferson Union High School District

September 26, 2019

Hexagon Office: 5776 Stoneridge Mall Road, Suite 175
Pleasanton, CA 94588
Hexagon Job Number: 18BW15
Phone: 925.225.1439

Table of Contents

Executive Summary ii

1. Introduction 1
2. Existing Conditions 8
3. Project Characteristics 16
4. Existing Plus Project Conditions 19
5. Cumulative Conditions 22
6. Other Transportation Issues 26
Appendices
Appendix A: Traffic Counts
Appendix B: Level of Service Calculations
Appendix C: Traffic Signal Warrant Calculations
List of Tables
Table 1 Signalized Intersection Level of Service Definitions Based on Control Delay 5
Table 2 Unsignalized Intersection Level of Service Definitions Based on Control Delay 6
Table 3 Existing Intersection Levels of Service 13
Table 4 Project Trip Generation Estimates 16
Table 5 Existing Plus Project Intersection Levels of Service 20
Table 6 Cumulative Intersection Levels of Service 25
Table 7 Summary of Peak Hour Signal Warrant Results 27
Table 8 Off-Site Vehicle Queuing Analysis 28
Table 9 Site Driveway Vehicle Queuing Analysis 29
List of Figures
Figure 1 Site Location and Study Intersections 2
Figure 2 Project Site Plan 3
Figure 3 Existing Transit Services 11
Figure 4 Existing Lane Configurations 14
Figure 5 Existing Traffic Volumes 15
Figure 6 Project Trip Distribution and Assignment 18
Figure 7 Existing Plus Project Traffic Volumes 21
Figure 8 Cumulative No Project Traffic Volumes 23
Figure 9 Cumulative With Project Traffic Volumes 24

Executive Summary

The purpose of this report is to document the findings of the transportation impact analysis conducted for the proposed Jefferson Union High School District (JUHSD) faculty and staff housing project at 699 Serramonte Boulevard in Daly City. The project, as proposed, would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps. There are no traffic-generating uses currently on the project site.

The potential impacts of the project were evaluated following the standards and methodologies set forth by the City of Daly City and City/County Association of Governments of San Mateo County, the administering agency for the Congestion Management Program (CMP) of San Mateo County. The study includes an analysis of commute AM, school PM and commute PM peak-hour traffic conditions during weekdays at 5 study intersections in the vicinity of the project site. Potential impacts to pedestrians, bikes, transit service, and vehicle queues were also considered. The project is anticipated to generate fewer than 100 trips in any of the peak hours during the peak periods specified. Per the County CMP requirements, a CMP analysis was therefore not required.

Based on trip generation rates recommended by the Institute of Transportation Engineers and data provided by the District for faculty/staff housing, it is estimated that the proposed project would generate 92 new vehicle trips during the commute AM peak hour and 68 new vehicle trips during each of the school PM and commute PM peak hours.

The proposed project would not result in any impacts to level of service, vehicle queues, pedestrians, bikes or transit with the implementation of the following recommendations:

Recommendation 1: A traffic signal is warranted at the intersection of SR-1 southbound ramps and Clarinada Avenue. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 35 AM, 22 school PM, and 22 PM peak-hour trips.

Recommendation 2: A traffic signal with crosswalks across Serramonte Boulevard is warranted at the intersection of SR-1 northbound ramps and Serramonte Boulevard. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 92 AM, 68 school PM, and 68 PM peak-hour trips to the intersection.

Recommendation 3: The project shall ensure that, in the final design, alignments of the drive aisles and the corner radii on site are adequate for circulation of trucks, garbage collection, and emergency vehicles, subject to review city staff/Republic Services. The northern east-west drive aisle should be designated one-way outbound (westbound) only.

Recommendation 4: The project shall provide bicycle parking on site in accordance with City requirements. The number, type and location of bicycle facilities provided by the project will be subject to review by city staff.

Recommendation 5: Prior to final design, the project applicant shall work with City of Daly City and SamTrans staff to consider the desirability of upgrades to the existing bus stop along the project frontage.

1.
 Introduction

This report presents the results of the transportation impact analysis conducted for the proposed Jefferson Union High School District (JUHSD) faculty and staff housing project at 699 Serramonte Boulevard in Daly City. The project, as proposed, would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps. The project site and the surrounding study area are shown on Figure 1. The project site plan is shown on Figure 2.

Scope of Study

The potential impacts of the project were evaluated relative to the applicable level of service standards and methodologies in order to satisfy the requirements of the California Environmental Quality Act (CEQA), the City of Daly City, and the County Congestion Management Program (CMP). The City/County Association of Governments (C/CAG) of San Mateo County administers the CMP.

The study includes an analysis of peak-hour intersection levels of service, vehicle queuing, site access, and on-site circulation. The traffic analysis evaluated conditions at one signalized and four unsignalized intersections in the vicinity of the project site. The study intersections included:

1. St. Francis Boulevard and Clarinada Avenue*
2. SR 1 SB Ramps and Clarinada Avenue*
3. St. Francis Boulevard and Higate Drive/Serramonte Boulevard*
4. SR 1 NB Ramps/Project Driveway and Serramonte Boulevard*
5. Callan Boulevard and Serramonte Boulevard
*denotes unsignalized intersection
Traffic conditions at the study locations were analyzed for the weekday AM and PM peak hours. The AM peak hour of traffic is typically between 7:00 AM and 9:00 AM and the PM peak hour is typically between 4:00 PM and 6:00 PM. These periods represent the most congested traffic conditions on the surrounding street network during a typical weekday. Traffic conditions were also analyzed for the school PM peak hour, which occurs between 2:00 PM and 4:00 PM.
The project is anticipated to generate fewer than 100 trips in any of the peak hours during the peak periods specified. Per the County CMP requirements, a CMP analysis was therefore not required.

Hexagon Transportation Consultants, Inc.

Figure 1
Site Location and Study Intersections

Figure 2
Conceptual Site Plan

Traffic conditions were evaluated for the following scenarios:
Scenario 1: Existing Conditions. Existing conditions were represented by existing traffic volumes on the existing roadway network. Existing traffic volumes were obtained from recent traffic counts.

Scenario 2: Existing Plus Project Conditions. Existing plus Project conditions represent existing peak-hour traffic volumes with the addition of project traffic from the new faculty and staff housing units. Existing plus project conditions were evaluated relative to existing conditions in order to identify potential impacts associated solely with the proposed project.

Scenario 3: Cumulative No Project Conditions. Cumulative No Project conditions were represented by Cumulative No Project traffic volumes on the existing roadway network with the addition of funded transportation improvements. Cumulative No Project traffic volumes were obtained from the Daly City Travel Demand Forecast model. The Cumulative No Project traffic volumes reflect all approved and pending development in the City.

Scenario 4: Cumulative Plus Project Conditions. Cumulative plus Project conditions were represented by Cumulative plus Project traffic volumes on the existing roadway network with the addition of funded transportation improvements. Cumulative plus Project traffic volumes were estimated by adding to the Cumulative No Project traffic volumes the traffic from the new faculty and staff housing units. Cumulative plus Project conditions were evaluated relative to Cumulative No Project conditions in order to determine potential cumulative project impacts.

Methodology

This section presents the methods used to determine the traffic conditions for each scenario described above. It includes descriptions of the data requirements, the analysis methodologies, and the applicable level of service standards.

Data Requirements

The data required for the analysis were obtained from traffic counts, published data, public documents, previous traffic studies, the City's traffic model, and field observations. The following data were collected from these sources:

- existing traffic volumes
- existing traffic conditions
- lane configurations
- signal phasing
- existing bicycle facilities
- existing transit service
- cumulative traffic volumes

Level of Service Standards and Analysis Methodologies

Traffic conditions at the study locations were evaluated using level of service (LOS). Level of Service is a qualitative description of operating conditions ranging from LOS A, or free-flow conditions with little or no delay, to LOS F, or congested conditions with excessive delays. The analysis methods are described in detail below.

Signalized Intersections

The City of Daly City evaluates level of service at signalized intersections based on the HCM level of service methodology using Synchro software. The HCM method evaluates signalized intersection

Hexagon Transportation Consultants, Inc.
\| Page
operations based on average control delay time for all vehicles at the intersection. Control delay is the amount of delay that is attributed to the type of traffic control device at the intersection, and includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The correlation between average delay and level of service is shown in Table 1. The City of Daly City has a level of service standard for signalized intersections of LOS D or better.

Table 1
Signalized Intersection Level of Service Definitions Based on Control Delay

Level of Service	Description	Average Control Delay Per Vehicle (sec.)
A	Signal progression is extremely favorable. Most vehicles arrive during the green phase and do not stop at all. Short cycle lengths may also contribute to the very low vehicle delay.	10.0 or less
B	Operations characterized by good signal progression and/or short cycle lengths. More vehicles stop than with LOS A, causing higher levels of average vehicle delay.	10.1 to 20.0
C	Higher delays may result from fair signal progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, though some vehicles maystill pass through the intersection without stopping.	20.1 to 35.0
D	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal progression, long cycle lengths, or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.	35.1 to 55.0

E values generally indicate poor signal progression, long cycle lengths, and high volume-to-capacity (V/C) ratios. Individual cycle failures occur 55.1 to 80.0 frequently.

This level of delay is considered unacceptable by most drivers. This condition often occurs with oversaturation, that is, when arrival flow
F rates exceed the capacity of the intersection. Poor progression and long greater than 80.0 cycle lengths may also be major contributing causes of such delay levels.

Source: Transportation Research Board, Highway Capacity Manual .

Significance criteria are used to establish what constitutes an impact. For this analysis, the criteria used to determine significant impacts are based on CEQA Guidelines and the LOS standards of Daly City. Based on these criteria, for signalized intersections in Daly City, the project would result in a significant impact if, for any peak hour under evaluation:

- the addition of project traffic would increase peak hour traffic volumes such that signalized intersection levels of service degrade to below LOS D.
- the project adds traffic at a signalized intersection that is already operating at LOS E or F.

A significant impact at a signalized intersection is said to be satisfactorily mitigated when measures are implemented that would restore intersection levels of service to an acceptable level of service or restore the intersection to operating levels that are equal to or better than no project conditions.

[^0]
Unsignalized Intersections

Unlike signalized intersections, which typically represent constraint points for the roadway network, unsignalized intersections rarely limit the potential capacity of a roadway. The determination of appropriate improvements to unsignalized intersections typically includes a qualitative and quantitative analysis of movement delay, traffic signal warrants, movement traffic volumes, availability of alternate routes, and intersection safety. For this reason, improvements to unsignalized intersections are frequently determined on the basis of professional engineering judgment. The City of Daly City does not apply significance thresholds to unsignalized intersections.

All four unsignalized intersections are all-way stop controlled. For all-way stop-controlled intersections, the average control delay time for all vehicles at the intersection was reported. The correlation between average delay and level of service is shown in Table 2.

Table 2
Unsignalized Intersection Level of Service Definitions Based on Control Delay

Level of Service	Description	Average Delay Per Vehicle (Sec.)
A	Little or no traffic delay	10.0 or less
B	Short traffic delays	10.1 to 15.0
C	Average traffic delays	15.1 to 25.0
D	Very long traffic delays	25.1 to 35.0
E	Extreme traffic delays	35.1 to 50.0
F	greater than 50.0	
Source: Transportation Research Board, Highway Capacity Manual (HCM).		

Signal Warrant Methodology

The level of service analysis at unsignalized intersections is supplemented with an assessment of the need for signalization of the intersections. For this study, the need for signalization is assessed, in part, on the basis of the operating conditions at the intersections (i.e., level of service) and on the peak hour volume signal warrant - warrant \#3 - described in the California Manual on Uniform Traffic Control Devices (MUTCD). This method provides an indication of whether traffic conditions and peak hour traffic levels are, or would be, sufficient to justify installation of a traffic signal.

Caltrans LOS Standard

Some of the study intersections are maintained by Caltrans and are State highway facilities. As stated in the Caltrans' Guide for the preparation of Traffic Impact Studies: "Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and "D" on State highway facilities, however, Caltrans acknowledges that it may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. If an existing State highway facility is operating at less than the appropriate target LOS, the existing Measure of Effectiveness (MOE) should be maintained." Because Daly City is the lead agency for this project, the LOS standards and impact criteria used in this report were based on Daly City standards. This approach is consistent with previous traffic impact analyses conducted in Daly City, and is also consistent with CEQA law.

Vehicle Queuing

A vehicle queuing analysis was performed for high-demand movements at the study intersections. Vehicle queues were estimated using a Poisson probability distribution, which estimates the probability of " n " vehicles for a vehicle movement using the following formula:

$$
P(x=n)=\frac{\lambda^{n} e^{-(\lambda)}}{n!}
$$

Where:
$P(x=n)=$ probability of " n " vehicles in queue
$\mathrm{n}=$ number of vehicles in the queue
$\lambda=$ Average number of vehicles in the queue per lane (vehicles per hour /signal cycles per hour)

The basis of the analysis is as follows: (1) the Poisson probability distribution is used to estimate the $95^{\text {th }}$-percentile maximum number of queued vehicles per signal cycle for a particular movement; (2) the estimated maximum number of vehicles in the queue is translated into a queue length, assuming 25 feet per vehicle; and (3) the estimated maximum queue length is compared to the existing or planned available storage capacity for the movement.

Report Organization

The remainder of this report is divided into five chapters. Chapter 2 describes the existing roadway network, transit service, existing bicycle and pedestrian facilities, and existing traffic conditions. Chapter 3 explains the method used to estimate project traffic. Chapter 4 describes the potential project impacts on the transportation system under Existing plus Project traffic conditions. Chapter 5 presents Cumulative traffic conditions without and with project traffic. Chapter 6 describes the evaluation of other transportation related issues, including site access and circulation.

2.

Existing Conditions

This chapter describes the existing conditions for all of the major transportation facilities in the vicinity of the site, including the roadway network, bicycle and pedestrian facilities, and transit service.

Existing Roadway Network

The existing roadways in the project vicinity are Interstate 280, State Route 35, State Route 1 , Serramonte Boulevard, Callan Boulevard, Saint Francis Boulevard, Clarinada Avenue, and Campus Drive. These roadways are described below.

Interstate 280 (I-280) is a north-south freeway that extends from San Francisco to San Jose. In the project vicinity, it has four lanes in each direction and has a posted speed limit of 65 mph . The project is served by an interchange at Serramonte Boulevard. The Serramonte Boulevard interchange provides access to and from I-280 north of the site, via southbound off-ramps from, and northbound on-ramps to, I-280.
State Route 1 (SR-1) is a north-south freeway that runs along most of the Pacific coast of California. It provides regional access to the project site from San Francisco to the north via its interchange with I-280. It is a four- to eight-lane facility in the vicinity of the project with a posted speed limit of 65 mph . The project is served by a hook-ramp interchange on SR-1. The northbound SR-1 off- and on-ramps at Serramonte Boulevard provide direct access into and out of the site at the SR 1 NB ramps/Project Driveway \& Serramonte Boulevard intersection. Access to and from southbound SR-1 is provided by the southbound SR-1 on- and off-ramps at Clarinada Avenue.

State Route 35 (Skyline Boulevard) is a north-south state highway that extends from Sloat Boulevard in San Francisco to Highway 17 in Santa Cruz. Skyline Boulevard provides access to the project site via interchange with SR-1.

Serramonte Boulevard is a four-lane, east-west street that extends from Hillside Boulevard (in the Town of Colma) in the east, to St. Francis Boulevard in the west. The exception is the 600foot segment of Serramonte Boulevard between St. Francis Boulevard and the SR 1 NB ramps/Campus Drive/Project Driveway intersection, which is two-lanes wide. Serramonte Boulevard provides direct access to the project site via the project driveway located directly opposite the SR-1 northbound ramps. The posted speed limit is 30 mph in the project vicinity.

8
Page

Callan Boulevard is a two- to four-lane, north-south street that connects Southgate Avenue and Serramonte Boulevard to residential land uses south of Hickey Boulevard. Callan Boulevard is four lanes north of Serramonte Boulevard and two lanes south of Serramonte Boulevard. South of Hickey Boulevard, Callan Boulevard has two lanes with a two-way center left-turn lane.

Clarinada Avenue is a two- to four-lane, east-west street that connects residential land uses west of St. Francis Boulevard with Callan Boulevard and Serramonte Center other commercial uses to the east. It also provides ramp access to and from southbound SR-1.

Campus Drive is a two-lane, north-south private street that provides access to both Serramonte Boulevard to the north and Hickey Boulevard to the south. It provides direct access to the project site via Serramonte Boulevard and the SR-1 northbound ramps. Campus Drive had at one time connected Serramonte Boulevard to Hickey Boulevard and had intersected Serramonte Boulevard opposite the intersection at Kent Court. However, Campus Drive was redesigned to prohibit access between Serramonte Boulevard and Hickey Boulevard, and was realigned to intersect Serramonte Boulevard opposite the SR-1 northbound ramps.

Existing Bicycle and Pedestrian Facilities

According to the Daly City Bicycle Master Plan (2013), in the project vicinity, there are existing Class Il bike lanes on the following street segments:

- Serramonte Boulevard between Callan Boulevard and Gellert Boulevard
- Callan Boulevard from Serramonte Boulevard to the southern city limit at King Drive
- Southgate Avenue west of St. Francis Boulevard
- Gellert Boulevard south of Hickey Boulevard
- Junipero Serra Boulevard from D Street to Hickey Boulevard

The following street segments are existing Class III bike routes:

- Callan Boulevard between Serramonte Boulevard and Southgate Avenue
- Gellert Boulevard between Serramonte Boulevard and Hickey Boulevard
- Southgate Avenue between St. Francis Boulevard and Junipero Serra Boulevard
- St. Francis Boulevard from Belhaven Avenue to Serramonte Boulevard
- St. Francis Boulevard from Southgate Avenue to Belhaven Avenue
- Serramonte Boulevard between Gellert Boulevard and Junipero Serra Boulevard
- Hickey Boulevard between SR 35 and City Limits
- Serramonte Boulevard between St. Francis Boulevard and Callan Boulevard

Pedestrian access to the site is provided by sidewalks along the site frontage on Serramonte Boulevard, and on all other streets in the vicinity of the site, including St. Francis Boulevard, Callan Boulevard, and Clarinada Avenue. The exception is the south side of Serramonte Boulevard between Callan Boulevard and Gellert Boulevard, which has no sidewalk. Most of the study intersections have pedestrian crosswalks and curb ramps, and the signalized study intersection at Callan Boulevard and Serramonte Boulevard also has pedestrian-actuated pedestrian-crossing phases. The exceptions are the two all-way stop freeway ramp intersections. Neither the intersection of SR 1 southbound ramps and Clarinada Avenue nor the intersection of SR 1 northbound ramps and Serramonte Boulevard have crosswalks or curb ramps. Pedestrians walking on the south side of Clarinada Avenue at the ramp intersection have no crosswalk or curb ramps to the other side, and there are no crosswalks to cross Clarinada Avenue. The same is the case on the north side of Serramonte Boulevard at the ramp intersection, the south leg of which is the site driveway.

Existing Transit Service

Existing transit service to the study area is provided by the San Mateo County Transit District (SamTrans). Figure 3 shows the existing transit service routes in the study area.

SamTrans provides bus service near the project site via Routes 16, 24, 28, 112, 120, 121, 122 and 130. The Serramonte Transit Center is located in the Serramonte Shopping Center, approximately 0.5 miles from the project site. The transit center serves Routes 16, 28, 112, 120, 121, 122 and 130. These are described below.

Route 16 operates only on school days between Serramonte Shopping Center and Terra Nova High School in Pacifica, via Serramonte Boulevard and Callan Boulevard, with two daily southbound AM departures and one daily northbound PM departure. The closest bus stop for Route 16 is located at Serramonte Boulevard and Callan Boulevard, approximately 750 feet (0.14 miles) away from the proposed project site.

Route 24 operates only on school days between Summit Shasta High School and Old County Road/San Francisco Avenue in Brisbane, with one daily westbound AM departure and one daily eastbound PM departure. The closest bus stop for Route 24 is located on Serramonte Boulevard at the project site driveway.

Route 28 operates only on school days between Serramonte Shopping Center and South San Francisco High School with two daily southbound AM departures and one daily northbound PM departure. The nearest bus stop for Route 28 is at the Serramonte Shopping Center, located 0.5 miles away.

Route 112 operates between the Colma BART station and the Linda Mar Shopping Center in Pacifica, with 60-minute headways on weekdays and weekends. The closest bus stop for Route 112 is 0.36 miles away at the corner of Campus Drive and Hickey Boulevard.

Route 120 operates between the Colma BART station and Brunswick Street/Templeton Avenue, with stops at the Daly City BART station and Serramonte Shopping Center. It runs on 10-minute headways during commute periods and 10 - to 30 -minute headways during non-commute periods on weekdays. Route 120 also provides weekend service with 15 - to 45 -minute headways. The nearest Route 120 bus stop is located on Serramonte Boulevard at the project site driveway.

Route 121 operates between Skyline College in San Bruno and Pope Street/Bellevue Avenue, with stops at the Daly City BART station, Colma BART station, and Serramonte Shopping Center with 30minute headways on weekdays and 60 -minute headways on weekends. The closest bus stop for Route 121 is located at Serramonte Boulevard and Callan Boulevard, approximately 750 feet (0.14 miles) away from the proposed project site.

Route 122 operates between the South San Francisco BART station and Stonestown Shopping Center, with stops at the Colma BART station and Serramonte Shopping Center, with 20- to 30minute headways during commute periods and 30 -minute headways during non-commute periods on weekdays and during all hours of service on weekends. The nearest bus stop for Route 122 is at the Serramonte Shopping Center, located 0.5 miles away.

Route 130 operates between Airport Boulevard/Linden Avenue (in South San Francisco) and the Daly City BART station, with stops at the Serramonte Shopping Center, Colma BART station and South San Francisco BART station, with 10- to 15 -minute headways on weekdays. Route 130 also provides weekend service. The nearest bus stop for Route 130 is at the Serramonte Shopping Center, located 0.5 miles away.

Figure 3
Existing Transit Services

The Colma BART station is located approximately two miles northeast of the project site. The South San Francisco BART station is located approximately two miles east of the project site. BART trains provide access to a variety of locations in the Bay Area including San Francisco, Oakland, Dublin, Fremont, Pittsburg, and Richmond. Trains run on approximately 15 minute headways during commute hours. There are also a number of bus routes operated by SamTrans that stop at the Colma and South San Francisco BART stations.

Existing Intersection Lane Configurations and Traffic Volumes

The existing lane configurations at the study intersections were obtained from field observations. The existing intersection lane configurations are shown on Figure 4. The existing peak hour traffic volumes at the study intersections were obtained from turning movement counts conducted in October 2018. The peak hour traffic volumes are shown on Figure 5. The intersection traffic count data are included in Appendix A.

Existing Signalized Intersection Levels of Service

The results of the signalized intersection level of service analysis under existing conditions are summarized in Table 3. The results indicate that the signalized intersection of Callan Boulevard/Serramonte Boulevard currently operates at an acceptable LOS C during all peak hours. The level of service calculation sheets are included in Appendix B.

Existing Unsignalized Intersection Levels of Service

The results of the unsignalized intersection level of service analysis under existing conditions are summarized in Table 3. The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue currently operates at an LOS E during the PM peak hour. All other study intersections operate at LOS D or better during all peak hours.

Observed Existing Traffic Conditions

Traffic conditions in the field were observed in order to identify existing operational deficiencies and to confirm the accuracy of calculated levels of service. The purpose of this effort was (1) to identify any existing traffic problems that may not be directly related to intersection level of service, and (2) to identify any locations where the level of service calculation does not accurately reflect level of service in the field. Overall, the level of service analysis appears to accurately reflect actual existing traffic conditions. Field observations showed that operational problems currently occur at some of the study intersections. These are described below.
Callan Boulevard and Serramonte Boulevard. During the AM peak hour, the left-turn queue from northbound Callan Boulevard to westbound Serramonte Boulevard sometimes extends out of the leftturn pocket and into the adjacent through lane. Though, on those occasions, the queue blocks the northbound through lane on Callan Boulevard, vehicles are able to go around so that operations are generally unaffected. Not all northbound left-turning vehicles clear the intersection in a single cycle.

SR-1 Ramps and Serramonte Boulevard. During the AM peak hour, the queue for the eastbound left turn on Serramonte Boulevard to the SR-1 on-ramp sometimes spills out of the left turn pocket and extends to the intersection at Campus Drive.

Table 3
Existing Intersection Levels of Service

	Study Intersection	Traffic Control ${ }^{1}$	Peak Hour ${ }^{2}$	$\begin{aligned} & \mathrm{LOS} \\ & \mathrm{Std}^{2} \end{aligned}$	Avg. Delay ${ }^{3}$	LOS 4
1	St. Francis Blvd \& Clarinada Ave	AWSC^{5}	AM	--	13.8	B
			SPM	--	13.4	B
			PM	--	15.8	C
2	SR 1 SB ramps \& Clarinada Ave	AWSC ${ }^{5}$	AM	--	13.9	B
			SPM	--	19.6	C
			PM	--	45.4	E
3	St. Francis Blvd \& Serramonte BI	AWSC ${ }^{5}$	AM	--	14.7	B
			SPM	--	11.1	B
			PM	--	10.8	B
4	SR 1 NB ramps \& Serramonte BI	AWSC^{5}	AM	--	28.7	D
			SPM	--	13.1	B
			PM	--	17.0	C
5	Callan Blvd and Serramonte Blvd	signal	AM	D	25.6	C
			SPM	D	23.8	C
			PM	D	25.2	C

${ }^{1}$ The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.
${ }^{2}$ SPM = school PM peak hour.
${ }^{3}$ Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.
${ }^{4}$ Level of service was calculated based on the HCM methodology using Synchro software.
${ }^{5}$ AWSC - All Way Stop Control.
$\square=$ LOS E or F conditions

699 Serramonte Faculty and Staff Housing

Figure 4
Existing Intersection Lane Configurations

CHExagon

699 Serramonte Faculty and Staff Housing

Figure 5
Existing Traffic Volumes

3.

Project Characteristics

This chapter describes the method by which project traffic is estimated. The proposed Jefferson Union High School District (JUHSD) faculty and staff housing project would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps.

Project Traffic Estimates

The trip generation of the project was estimated using (1) trip rates from the latest edition of the Institute of Transportation Engineers Trip Generation Manual (10th edition) and (2) data provided by the District for faculty/staff housing.

The housing facility will be occupied primarily by the district workforce, comprising school faculty and their spouses, and support staff. Based on the bell schedules of the district's high schools, faculty/school staff would typically arrive at their schools within a one-hour window between 7:00 AM and 8:00 AM, which is a narrower time frame than the typical 7:00 to 9:00 AM window represented by the ITE Trip Generation rates. This compressed departure time frame would cause the faculty/school staff trip rates to be higher than those of their spouses, which are assumed to follow the typical 7:00 to 9:00 AM departure window. Because of this, the trips generated by faculty/school staff were calculated separately using data provided by the District, as shown in Table 4.

Table 4
Project Trip Generation Estimates

	Commute AM Peak Hour			School PM Peak Hour			Commute PM Peak Hour		
Land Use	Total Trips			Total Trips	In	Out	Total Trips	In	Out
Trips generated by Faculty	74	7	66	46	41	5	46	41	5
Trips generated by Faculty Spouses	18	4	14	23	14	8	23	14	8
Total Trips		12	80	68	55	13	68	55	13
Numbers may not add due to rounding									

The project trip distribution was determined based on the locations of schools where the faculty and school staff would work and previous studies in the project vicinity. The addresses of the schools are listed below:

- Jefferson High School
- Oceana High School
- Serramonte Del Rey (Adult School)
- Terra Nova High School
- Thornton High School
- Westmoor High School

6996 Mission St, Daly City, CA 94014
401 Paloma Avenue, Pacifica, CA 94044
699 Serramonte Boulevard, Daly City, CA 94015
1450 Terra Nova Boulevard, Pacifica, CA 94044
$1151^{\text {st }}$ Avenue, Daly City, CA 94014
131 Westmoor Avenue, Daly City, CA 94015

Project trips were assigned to the roadway network based on the project trip distribution. The project trip distribution and trip assignment are shown on Figure 6.

699 Serramonte Faculty and Staff Housing

Figure 6
Project Trip Distribution and Trip Assignment

4.

Existing Plus Project Conditions

This chapter describes existing plus project traffic conditions. Existing plus project traffic conditions represent the traffic conditions that would occur if the project were constructed and occupied today. This scenario is used to determine project-specific impacts.

Existing Plus Project Traffic Volumes and Transportation Network

It is assumed in this analysis that the roadway network and the study intersection lane configurations under existing plus project conditions would be the same as those described under existing conditions. To estimate traffic for existing plus project conditions, project generated traffic was added to existing traffic at each intersection movement. The existing plus project traffic volumes at the study intersections are shown graphically on Figure 7.

Existing Plus Project Signalized Intersection Levels of Service

The results of the signalized intersection level of service analysis under existing plus project conditions are summarized in Table 5. The results indicate that the signalized intersection of Callan Boulevard/Serramonte Boulevard would continue to operate at an acceptable LOS C during all peak hours. According to the City of Daly City level of service standards, the proposed project would not result in any adverse LOS impacts to the intersection. The level of service calculation sheets are included in Appendix B.

Existing Plus Project Unsignalized Intersection Levels of Service

The results of the unsignalized intersection level of service analysis under existing plus project conditions are summarized in Table 5. The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue would continue to operate at an LOS E during the PM peak hour. The level of service at the SR-1 northbound ramps/Serramonte Boulevard intersection would degrade from an LOS D under existing conditions to an LOS E under existing plus project conditions. All other study intersections operate at LOS C or better during all peak hours.

Table 5
Existing Plus Project Intersection Levels of Service

Study No. Intersection		Traffic Control ${ }^{1}$	Peak Hour ${ }^{2}$	Existing		Existing + Project			with Improvement 6		
		Avg. Delay ${ }^{3}$		LOS 4	Avg. Delay ${ }^{3}$	LOS^{4}	Incr. In Avg. Delay	Avg. Delay ${ }^{3}$	LOS^{4}		
1	St. Francis Blvd \& Clarinada Ave		AWSC ${ }^{5}$	AM	13.8	B	14.7	B	0.9		
			SPM	13.4	B	14.0	B	0.6			
			PM	15.8	C	16.7	C	0.9			
2	SR 1 SB ramps \& Clarinada Ave	AWSC ${ }^{5}$	AM	13.9	B	14.4	B	0.5			
			SPM	19.6	C	20.5	C	0.9			
			PM	45.4	E	48.8	E	3.4	14.5	B	
3	St. Francis Blvd \& Serramonte BI	AWSC ${ }^{5}$	AM	14.7	B	15.4	C	0.7			
			SPM	11.1	B	11.8	B	0.7			
			PM	10.8	B	11.2	B	0.4			
4	SR 1 NB ramps \& Serramonte BI	AWSC ${ }^{5}$	AM	28.7	D	35.8	E	7.1	20.6	C	
			SPM	13.1	B	13.9	B	0.8			
			PM	17.0	C	18.7	C	1.7			
5	Callan Blvd and Serramonte BI	signal	AM	25.6	C	26.7	C	1.1			
			SPM	23.8	C	23.5	C	-0.3			
			PM	25.2	C	25.5	C	0.3			

[^1]```
 = LOS E or F conditions
```

The City does not have a threshold of significance for level of service for unsignalized intersections. An evaluation of traffic signal warrants can further guide the decision whether to install a traffic signal. The traffic signal warrant analysis is described in Chapter 6.

699 Serramonte Faculty and Staff Housing


Figure 7
Existing Plus Project Traffic Volumes

## 5. Cumulative Conditions

This chapter presents a summary of the traffic conditions that would occur under cumulative conditions. For this analysis, cumulative conditions represent traffic conditions assuming the buildout of the Daly City General Plan to year 2035. Cumulative no project and with project traffic volumes were obtained from the Daly City Travel Demand Forecast (TDF) model. The Daly City TDF model includes various local and regional improvements outside of the project area. Included in this chapter is a summary of cumulative intersection impacts caused by the project.

## Cumulative Transportation Network and Traffic Volumes

While there are various regional transportation improvements planned by the year 2035, it is assumed in this analysis that the transportation network in the project vicinity under cumulative conditions would be the same as that described under existing conditions. However, the City's General Plan identifies the following planned improvements:

- St. Francis Boulevard and Clarinada Avenue- install a traffic signal
- SR 1 SB Ramps and Clarinada Avenue- install a traffic signal
- SR 1 NB Ramps/Project Driveway and Serramonte Boulevard- install a traffic signal

Traffic volumes for cumulative conditions were obtained from the Daly City TDF model based on the Year 2035 General Plan Buildout land uses. The 2035 forecasts represent volumes under Cumulative No Project conditions. Cumulative with Project volumes were determined by adding to the Cumulative No Project volumes the estimated project trips. The cumulative traffic volumes with and without the proposed project are shown on Figures 8 and 9.

## Cumulative Signalized Intersection Levels of Service

The signalized intersection level of service results under cumulative conditions are summarized in Table 6. The results show that, measured against the City of Daly City level of service standard, the signalized study intersection of Callan Boulevard and Serramonte Boulevard would operate at an acceptable LOS C under cumulative conditions both without and with the project. The level of service calculation sheets are included in Appendix B.

699 Serramonte Faculty and Staff Housing


Figure 8
Cumulative No Project Traffic Volumes

699 Serramonte Faculty and Staff Housing


Figure 9
Cumulative With Project Traffic Volumes

Table 6
Cumulative Intersection Levels of Service

| Study |  | Traffic Control ${ }^{1}$ | Peak <br> Hour ${ }^{2}$ | No Project |  | With Project |  |  | with Improvement $^{6}$ |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | Avg. Delay ${ }^{3}$ |  | LOS $^{4}$ | Avg. Delay ${ }^{3}$ | $\operatorname{LOS}^{4}$ | Incr. In Avg. Delay | Avg. Delay ${ }^{3}$ | LOS $^{4}$ |
| 1 St. Francis Blvd \& Clarinada Ave |  |  | AWSC ${ }^{5}$ | AM | 21.7 | C | 24.3 | C | 2.6 |  |  |
|  |  |  | SPM | 13.5 | B | 14.0 | B | 0.5 |  |  |
|  |  |  | PM | 16.2 | C | 17.2 | C | 1.0 |  |  |
| 2 | SR 1 SB ramps \& Clarinada Ave | $A W S S C^{5}$ | AM | 148.5 | F | 157.8 | F | 9.3 | 39.2 | D |
|  |  |  | SPM | 39.5 | E | 41.7 | E | 2.2 | 17.3 | B |
|  |  |  | PM | 76.0 | F | 79.7 | F | 3.7 | 21.4 | C |
| 3 | St. Francis Blvd \& Serramonte BI | $A W S S C^{5}$ | AM | 17.2 | C | 18.8 | C | 1.6 |  |  |
|  |  |  | SPM | 14.7 | B | 15.7 | C | 1.0 |  |  |
|  |  |  | PM | 13.7 | B | 14.6 | B | 0.9 |  |  |
|  | SR 1 NB ramps \& Serramonte BI | $\mathrm{AWSC}^{5}$ | AM | 122.2 | F | 139.0 | F | 16.8 | 54.0 | D |
|  |  |  | SPM | 20.8 | C | 23.2 | C | 2.4 |  |  |
|  |  |  | PM | 46.1 | E | 51.8 | F | 5.7 | 24.6 | C |
| 5 | Callan Blvd and Serramonte BI | signal | AM | 29.5 | C | 29.9 | C | 0.4 |  |  |
|  |  |  | SPM | 25.8 | C | 24.9 | C | -0.9 |  |  |
|  |  |  | PM | 27.8 | C | 28.1 | C | 0.3 |  |  |

${ }^{1}$ The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.
${ }^{2}$ SPM = school PM peak hour.
${ }^{3}$ Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.
${ }^{4}$ Level of service was calculated based on the HCM methodology using Synchro software.
${ }^{5}$ AWSC - All Way Stop Control.
${ }^{6}$ In all cases, the recommended improvement is signalization of the existing 4-way stop. The level of service criteria (thresholds) therefore apply to those for signalized intersections.
$\square=$ LOS E or F conditions

## Cumulative Unsignalized Intersection Levels of Service

The results of the unsignalized intersection level of service analysis under cumulative conditions are summarized in Table 6. The level of service calculation sheets are included in Appendix B.
The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue would operate at LOS E or worse during all peak hours both without and with the project. It also shows that the unsignalized intersection of SR-1 northbound ramps/Serramonte Boulevard would operate at LOS E or worse during the AM and PM peak hours both without and with the project. The other unsignalized study intersections would operate at LOS C or better during all peak hours under cumulative conditions without and with the project.

The City does not have a threshold of significance for level of service for unsignalized intersections. An evaluation of traffic signal warrants can further guide the decision whether to install a traffic signal. The traffic signal warrant analysis is described in the next chapter.

## 6. Other Transportation Issues

This chapter presents an analysis of other transportation issues associated with the project site, including:

- Traffic Signal Warrants
- Vehicle Queuing Analysis
- Pedestrian, Bicycles and Transit Analysis
- Site Access and Circulation

Unlike the level of service impact methodology, which is adopted by the City Council, the analyses of non-LOS issues are based on professional judgment in accordance with the standards and methods employed by the traffic engineering community.

## Traffic Signal Warrants

The level of service analysis for the unsignalized intersections was supplemented with an assessment of the need for signalization of the intersections. For this study, the need for signalization is assessed on the basis of the peak-hour volume signal warrant - warrant \#3 described in the California Manual on Uniform Traffic Control Devices (MUTCD). This method provides an indication of whether traffic conditions and peak-hour traffic levels are, or would be, sufficient to justify installation of a traffic signal.

The peak-hour volume signal warrant analysis was conducted for the four unsignalized intersections under existing and existing plus project conditions. The results are summarized in Table 7. All signal warrant calculation sheets are included in Appendix C. The results are described below.

SR-1 southbound ramps and Clarinada Avenue. The results show that, at the intersection of SR-1 southbound ramps and Clarinada Avenue, the warrant would be met for all peak hours under all study scenarios. The warrants would be met principally because of the high volumes of traffic from the offramps.

Recommendation 1: A traffic signal is warranted at the intersection of SR-1 southbound ramps and Clarinada Avenue. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 35 AM, 22 school PM, and 22 PM peak-hour trips to the intersection.

SR-1 northbound ramps and Serramonte Boulevard. The results show that, at the intersection of SR-1 northbound ramps and Serramonte Boulevard, the warrant would be met for all peak hours under all study scenarios. The warrants would be met principally because of the high volumes of traffic from the off-ramps.

Recommendation 2: A traffic signal with crosswalks across Serramonte Boulevard is warranted at the intersection of SR-1 northbound ramps and Serramonte Boulevard. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 92 AM, 68 school PM, and 68 PM peak-hour trips to the intersection.

Table 7
Summary of Peak Hour Signal Warrant Results

| No. Study Intersection |  | Peak <br> Hour ${ }^{1}$ | Signal Warrant Met? |  |  |  | |
|---|---|---|---|---|---|---|---|
|  |  | Existing | Cumulative |  |
|  |  | No Project | With Project | No Project | With Project |
|  | St. Francis Blvd \& Clarinada Ave |  | AM | no | no | no | no |
|  |  |  | SPM | no | no | no | no |
|  |  | PM | no | no | no | no |
|  | SR 1 SB ramps \& Clarinada Ave | AM | yes | yes | yes | yes |
|  |  | SPM | yes | yes | yes | yes |
|  |  | PM | yes | yes | yes | yes |
|  | St. Francis Blvd \& Serramonte Blvd | AM | no | no | no | no |
|  |  | SPM | no | no | no | no |
|  |  | PM | no | no | no | no |
|  | SR 1 NB ramps / project driveway \& Serramonte Blvd | AM | yes | yes | yes | yes |
|  |  | SPM | yes | yes | yes | yes |
|  |  | PM | yes | yes | yes | yes |
| ${ }^{1}$ SPM = School PM peak hour |  |  |  |  |  |  |

## Vehicle Queuing Analysis

There are no established thresholds under CEQA or policy adopted by Daly City for determining significance impacts for vehicle queuing. A vehicle queuing analysis can be useful in determining the adequacy of existing vehicle storage capacity at intersections in the vicinity of the site. Accordingly, a vehicle queuing analysis was conducted for the high demand turn movements where the project would add traffic.

Vehicle queues were estimated using a Poisson probability distribution. The basis of the analysis is as follows: (1) the Poisson probability distribution is used to estimate the $95^{\text {th }}$ percentile maximum number of queued vehicles per signal cycle for a particular movement; (2) the estimated maximum number of vehicles in the queue is translated into a queue length, assuming 25 feet per vehicle; and (3) the estimated maximum queue length is compared to the existing or planned available storage capacity for the movement. This analysis thus provides a basis for estimating future storage requirements at intersections.

Vehicle queuing was evaluated at the following off-site locations: eastbound left-turn pocket at the intersection of Callan Boulevard and Serramonte Boulevard, and the westbound left-turn pocket at the intersection of SR-1 southbound ramps and Clarinada Avenue. The vehicle queuing estimates for these off-site intersections are shown in Table 8. Vehicle queuing was evaluated at the site driveway

27 Page Hexagon Transportation Consultants, Inc.
intersection for the movement of the northbound shared left/thru/right-turn lane (site driveway). The vehicle queuing estimates for this site driveway intersection movement is shown in Table 9.

Table 8 shows that the estimated maximum vehicle queues under existing and existing plus project conditions would not exceed the existing vehicle storage capacity at either the eastbound left-turn pocket at the intersection of Callan Boulevard and Serramonte Boulevard or the westbound left-turn pocket at the intersection of SR-1 southbound ramps and Clarinada Avenue during any of the peak hours.

Table 9 shows the existing and projected maximum vehicle queues for the northbound movement at the site driveway intersection. This is discussed in detail in the "Site Access and On-Site Circulation" section of this chapter.

Table 8

## Off-Site Vehicle Queuing Analysis

| Measurement | \#5 Callan Blvd \& Serramonte Blvd ${ }^{1}$ |  |  | \#2 SB SR-1 ramps <br> \& Clarinada Ave ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eastbound Left-Turn |  |  | Westbound Left-Turn |  |  |
|  | AM | SPM | PM | AM | SPM | PM |
| Existing |  |  |  |  |  |  |
| Cycle/Delay ${ }^{3}$ (sec) | 60 | 60 | 60 | 11.9 | 18.5 | 19.1 |
| Volume (yph) | 102 | 59 | 64 | 80 | 234 | 226 |
| Avg. Queue (veh) | 1.7 | 1.0 | 1.1 | 0.3 | 1.2 | 1.2 |
| Avg. Queue (ft.) ${ }^{4}$ | 43 | 25 | 27 | 7 | 30 | 30 |
| 95th \%. Queue (veh) | 4 | 3 | 3 | 1 | 3 | 3 |
| 95th \%. Queue (ft.) ${ }^{4}$ | 100 | 75 | 75 | 25 | 75 | 75 |
| Storage | 160 | 160 | 160 | 150 | 150 | 150 |
| Adequate (Y/N) | Y | Y | Y | Y | Y | Y |
| Existing + Project |  |  |  |  |  |  |
| Cycle/Delay ${ }^{3}$ (sec) | 60 | 60 | 60 | 12.5 | 18.9 | 19.4 |
| Volume (vph) | 120 | 61 | 66 | 98 | 236 | 228 |
| Avg. Queue (veh) | 2.0 | 1.0 | 1.1 | 0.3 | 1.2 | 1.2 |
| Avg. Queue (ft.) ${ }^{4}$ | 50 | 25 | 28 | 9 | 31 | 31 |
| 95th \%. Queue (veh) | 5 | 3 | 3 | 1 | 3 | 3 |
| 95th \%. Queue (ft.) ${ }^{4}$ | 125 | 75 | 75 | 25 | 75 | 75 |
| Storage | 160 | 160 | 160 | 150 | 150 | 150 |
| Adequate (Y/N) | Y | Y | Y | Y | Y | Y |

${ }^{1}$ Callan Boulevard \& Serramonte Boulevard is a signalized intersection.
${ }^{2}$ SB SR 1 ramps \& Clarinada Avenue is an unsignalized intersection.
${ }^{3}$ Vehicle queue calculations based on cycle length for signalized intersections and movement delay for unsignalized intersections.
${ }^{4}$ Assumes 25 feet per vehicle queued.

Table 9
Site Driveway Vehicle Queuing Analysis

| Measurement | Site Driveway at Serramonte Boulevard Northbound shared Left/Thru/Right ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | AM | SPM | PM |
| Existing |  |  |  |
| Delay ${ }^{1}$ (sec) | 14.3 | 10.9 | 14.4 |
| Volume (vph) | 96 | 36 | 132 |
| Avg. Queue (veh) | 0.4 | 0.1 | 0.5 |
| Avg. Queue (ft.) ${ }^{2}$ | 10 | 3 | 13 |
| 95th \%. Queue (veh) | 2 | 1 | 2 |
| 95th \%. Queue (ft.) ${ }^{2}$ | 50 | 25 | 50 |
| Storage | 50 | 50 | 50 |
| Adequate (Y/N) | Y | Y | Y |
| Existing + Project |  |  |  |
| Delay ${ }^{1}$ (sec) | 19.2 | 11.4 | 15.5 |
| Volume (vph) | 183 | 50 | 145 |
| Avg. Queue (veh) | 1.0 | 0.2 | 0.6 |
| Avg. Queue (ft.) ${ }^{2}$ | 24 | 4 | 16 |
| 95th \%. Queue (veh) | 3 | 1 | 2 |
| 95th \%. Queue (ft.) ${ }^{2}$ | 75 | 25 | 50 |
| Storage | 130 | 130 | 130 |
| Adequate (Y/N) | Y | Y | Y |

${ }^{1}$ Vehicle queue calculations based on movement delay for unsignalized intersections.
${ }^{2}$ Assumes 25 feet per vehicle queued.
${ }^{3}$ Under existing conditions, the northbound shared leftthru/right-turn lane on the drive aisle at the existing school site extends 50 feet back from the northbound stop bar to the intersecting parking aisle at the east lot. Per the proposed site plan, the northbound shared leftthru/right-turn lane would extend 130 feet back to the relocated southern east-west parking aisle at the east lot.

## Pedestrian, Bicycle, and Transit Analysis

Pedestrian Facilities. Existing observations at the study intersections showed a moderate amount of pedestrian activity. Pedestrian activity at the St. Francis Boulevard/Clarinada intersection is fairly heavy for a non-CBD area, ranging between 40 and 80 pedestrian crossings per hour. Pedestrian volumes at the Callan Boulevard/Serramonte Boulevard intersection are moderate, ranging between 25 and 50 pedestrian crossings per hour. Pedestrian volumes directly in front of the project site were fairly light, ranging from 10 to 25 pedestrian crossings per hour.

Overall, the volume of pedestrian trips generated by the project is expected to be relatively low and not exceed the carrying capacity of the sidewalks and crosswalks nearby. Nearly all of the streets in the project vicinity have sidewalks and crosswalks at intersections. Currently, there is an existing bus stop on the north side of Serramonte Boulevard, opposite the project site, just west of the SR 1 ramps. There is no crosswalk across Serramonte Boulevard at the SR 1 ramps intersection, and it is anticipated that the project would add to the demand for this crossing. With the implementation of Recommendation 1, the installation of a traffic signal, pedestrian crosswalks
should be added at this intersection, improving pedestrian access between the existing bus stop and the project site.

Bicycle Facilities. According to the U.S. Census and City of Daly City General Plan, approximately one percent of the proposed project's users could be expected to commute via bike to and from the project site. For the proposed project, this would equate to approximately one new bike trip during each of the AM, school PM, and PM peak hours. The low volume of bicycle trips generated by the project would not exceed the bicycle-carrying capacity of the streets surrounding the site, and the increase in bicycle trips would not, by itself, require new off-site bicycle facilities. Daly City has installed bike facilities on Serramonte Boulevard along the project frontage.

Transit Service. Transit service in the project vicinity is currently provided by SamTrans. The nearest bus service is provided by Lines 24 and 120, with bus stops directly fronting the project site. According to the U.S. Census, bus trips comprise approximately 11 percent of the total commute mode share in the City of Daly City. For the proposed project, this would equate to 10 new transit trips during the AM peak hour and 7 new transit trips during each of the school PM and PM peak commute hours. This volume of riders would not exceed the carrying capacity of the existing bus service near the project site. Therefore, the proposed project would not create an adverse impact to transit service in the area.

According to the CEQA Guidelines, a project would create an impact to bicycle, transit or pedestrians on the transportation system if it: (1) conflicts with a program, plan, ordinance or policy addressing the circulation system, including transit, bicycle and pedestrian facilities; or (2) substantially increases hazards due to a geometric design feature; or (3) would create demand in excess of capacity. The project would not alter any existing or planned bicycle, pedestrian or transit facilities nor would it create demand in excess of capacity. However, it is recommended that a crosswalk be installed across Serramonte Boulevard at SR 1 in conjunction with the City's planned traffic signal installation to facilitate the project's pedestrian access to existing bus service. Therefore, the proposed project would not cause a significant impact to bicycle, pedestrian, or transit operations in the study area.

## Site Access and On-Site Circulation

This section describes site access and on-site circulation for the proposed project. This review is based on the site plan dated July 9, 2019 (see Figure 2). The site plan is largely conceptual, being that it doesn't provide all necessary labels and dimensions.

## Site Access Design

The site is located on the southwest corner of the SR-1 NB ramps/Serramonte Boulevard intersection. Site access would be provided by a single project driveway located at the south leg of the SR-1 northbound ramps/Serramonte Boulevard intersection. There is currently a driveway at this location that provides access to the existing education center on the parcel directly east of, and adjacent to, the site. The site driveway is located 175 feet east of Kent Court, and directly opposite the northbound SR-1 ramps. The distance to Callan Boulevard, the nearest street east of the site driveway, is approximately 600 feet. Along the site frontage, west of the site driveway, Serramonte Boulevard is two lanes wide with on-street parking on the north side. East of the site driveway, Serramonte Boulevard is four lanes wide with on-street parking on both sides. The proposed site driveway would have one lane in each direction, with the northbound approach functioning as a single shared left/thru/right-turn lane.

## Access Operations

The results of the level of service and signal warrant analyses for the Site Driveway/Serramonte Boulevard intersection were reported previously. As shown on Figure 6, the project would add to the northbound approach of the Site Driveway/Serramonte Boulevard intersection 80 trips in the AM peak hour, and 13 trips in each of the school PM and PM commute peak hours. The project
Hexagon Transportation Consultants, Inc. $30 \mid \mathrm{Pagge}$
would add to the westbound left turn movement from Serramonte Boulevard into the site 3 trips in the AM peak hour, and 12 trips in each of the school PM and PM commute peak hours.

One measure of storage capacity for the northbound (outbound) driveway approach at the Serramonte Boulevard intersection could be based on the distance to the nearest intersecting east-west parking aisle upstream (south) of the intersection stop bar at Serramonte Boulevard. Under existing conditions, this distance- the distance to the parking lot's northern east-west parking aisle, and the point at which vehicles would obstruct this aisle- is 50 feet. By this same measure, with new crosswalk striping and modified curb radius into the east-west parking aisle, the main north-south drive aisle would provide an effective storage capacity of 40 feet on the northbound approach under project conditions. However, were the northern east-west parking aisle to be obstructed, vehicles in the parking lot could still exit their parking spaces and exit the parking lot via the parking lot's southern east-west parking aisle, which is located 130 feet south of the intersection at Serramonte Boulevard. The same holds for southbound vehicles turning left into the east parking lot. Therefore, if the measure of storage capacity were based on ensuring that vehicles could enter and exit the east parking lot, the effective storage capacity would be considered 130 feet.

Driveway Queuing. The results of the vehicle queuing analysis at the site driveway are shown in Table 9. For the northbound shared left/thru/right-turn lane, the analysis showed that, under existing conditions, the available storage of 50 feet accommodates the estimated maximum vehicle queue of 50 feet in the AM and PM peak hours and the 25 -foot maximum vehicle queue during the school PM peak hour. Under existing plus project conditions, the estimated maximum vehicle queues were projected to be 75 feet in the AM peak hour and 25- to 50-feet in the school PM and PM commute peak hours. As explained above, the effective storage capacity for this movement was assumed to be 130 feet, but vehicle queues in excess of 50 feet would block the subject east/west drive aisle. Given that the vehicle queuing analysis is based on the worst-case, $95^{\text {th }}$-percentile maximum queues which, by definition, occur infrequently, and given the very low volume of traffic in the east/west drive aisle, the occasional blockage of the east-west drive aisle would likely not create an operational problem. Nevertheless, it would be beneficial to restrict southbound left turns into the northern east-west drive aisle, thereby directing the southbound left turns to enter at the southern east-drive aisle.

Westbound left turns into the site are made from the westbound shared through/left-turn lane on Serramonte Boulevard. Since there is no left-turn pocket, the effective storage capacity for the westbound left turn is 600 feet- the distance to the Callan Boulevard intersection.

Signal Warrant. As reported previously, the peak-hour signal warrant is and would be met for the site driveway intersection at Serramonte Boulevard under all scenarios during all 3 peak hours studied. Signalization of the intersection is planned under the City's General Plan.

Sight Distance. The issue of sight distance at the site driveway is relevant primarily when the site driveway is the minor street at a two-way-stop controlled intersection. That is not the case for the proposed project. The site driveway intersection at Serramonte Boulevard currently operates under all-way-stop control and is planned to operate under signal control.

The factors affecting sight distance at the site driveway are the vertical curve on Serramonte Boulevard and the on-street parking on the south side of Serramonte Boulevard east of the driveway. Serramonte Boulevard slopes upward from the driveway in the west direction. With no on-street parking on the south side of Serramonte Boulevard west of the driveway, the line of sight looking west is unimpeded and would remain so after completion of the project, provided there are no monument signs or landscaping installed that would obstruct it. East of the site driveway, Serramonte Boulevard slopes downward, away from the driveway in the east direction, limiting the line of sight to approximately 100 to 220 feet, depending on on-street parking obstructions. The on-street parking on the south side of Serramonte Boulevard potentially limits sight distance to the east. However, because the intersection would operate under all-way stop or signal control, the limited sight distance does not pose a safety issue.

## On-Site Circulation

The project access driveway on Serramonte Boulevard provides direct access to the on-site circulation via the main north-south drive aisle. The main north-south drive aisle extends approximately 260 feet southward from Serramonte Boulevard to a ninety-degree curve that extends westward about 265 feet on the main east-west drive aisle along the south frontage of the site where it connects to Campus Drive via a three-legged intersection. From the junction with Campus Drive, the main east-west drive aisle extends northwestward about 100 feet toward the project's west parking lot. The east parking lot is accessed from the main north-south drive aisle via the two previously mentioned east-west parking aisles. At its east end, the east lot also connects to the existing Perimeter Road.

All aisles on site have two lanes and serve two-way traffic. The main north-south drive aisle is approximately 34 feet wide from Serramonte Boulevard to and past the passenger loading area, until the pedestrian crossing, where the main north-south drive aisle widens to about 39 feet. The drive aisle continues 39 feet wide from the pedestrian crossing to the curve, where it narrows to 26 feet. The main east-west drive aisle is 26 feet wide from that point westward to the three-legged intersection at Campus Drive. The main east-west drive aisle is 24 feet wide between Campus Drive and the west parking lot. South of the main east-west drive aisle, Campus Drive is shown to be about 22 feet wide. There is no public access to this section of Campus Drive.

Several perpendicular parking spaces are located on the east side of the main north-south drive aisle, at the south end before the curve. Though the perpendicular parking is located in close proximity to the curve, the design of the curve and the location of the parking are such that adequate sight distance would be provided. Parallel parking would be provided on the north side of the main east-west drive aisle, at the west end before the three-legged intersection at Campus Drive. Because of the low volumes and speeds on the main east-west drive aisle, the proximity of the parallel parking to the intersection is not likely to pose any problems with operations at the intersection.

A passenger loading area would be located on the west side of the main north-south drive aisle, fronting the main pedestrian entry leading to the courtyard. The passenger loading area is of sufficient width and length to accommodate one to two cars without obstructing the southbound lane of the main north-south drive aisle. Vehicles would exit the passenger loading area southbound, turn left into the southern east-west drive aisle, circulate around to the northern eastwest drive aisle back to the main north-south drive aisle, then turn right to access Serramonte Boulevard.

Circulation in the west parking lot consists of a single loop with 26 -foot wide, two-way aisles with perpendicular ( 90 -degree) parking along both sides, with the exception of the west side of the western north-south aisle, which provides a car barn with puzzle lifts. The three-level puzzle lift parking system would stack three vehicles in each parking stall. Upon arriving at the lot, residents would utilize a remote control to open their designated, secured, parking bay. The parking slots would shift to find an open space. The operation requires a short wait time to complete, depending if the shift is laterally only, requires raising and/or lowering, or if a shift is even needed. Based on Hexagon's prior observations of an existing two-level lift system, it was determined that the time to access a vehicle in the puzzle lift system can vary from 30 seconds to one minute and 45 seconds, depending on the configuration of vehicles within the system. It is anticipated that the proposed lift system would have adequate capacity to accommodate the number of trips into and out of the proposed parking lot, and the lift is far enough away from the public street that any minor inconveniences would be limited to the parking lot only.

The loop circulation layout in the west lot provides a simple circulation pattern with no dead-end aisles and parking spaces that are generally easy to access. The site plan shows that, conceptually, the alignments of the drive aisles on site, and the radii of the corners and curbs appear to be adequate to accommodate the circulation of trucks, garbage collection, and emergency vehicles.

32
Page

A review of the east parking lot was not conducted as it will remain unchanged from its existing layout.

Recommendation 3: The project shall ensure that, in the final design, the alignments of the drive aisles and the corner radii on site are adequate for circulation of trucks, garbage collection, and emergency vehicles, subject to review by city staff/Republic Services. The northern east-west drive aisle should be designated one-way outbound (westbound) only.

Pedestrian circulation on site and pedestrian access to off-site pedestrian facilities appear adequate. Three on-site walkways connect to Serramonte Boulevard at the northeast corner of the site. The site plan shows walkways along the perimeter of the site, between the buildings on site, fronting the west parking lot, and on the east side of the main north-south drive aisle on the section adjacent to the aforementioned perpendicular parking. Crosswalks would be provided at three locations: across the south leg of the site access driveway at Serramonte Boulevard; mid-block on the main north-south drive aisle (just south of the southern east-west parking aisle of the east lot); and at the bend where the main north-south drive aisle meets the main east-west drive aisle.

The project site plan shows a bike parking pen on the west side of the site, but the bike parking supply has not yet been finalized. The City requires bike parking in the following amounts:

- Long Term Bike Parking: 5\% of the resident vehicular parking spaces
- Short Term Bike Parking: 5\% of the visitor vehicular parking spaces

Recommendation 4: The project shall provide bicycle parking on site in accordance with City requirements. The number, type and location of bicycle facilities provided by the project will be subject to review by city staff.

While the project would not create a significant impact to transit operations, the existing bus stop along the site frontage (on the south side of Serramonte Boulevard) west of the site driveway does not currently provide a bench or shelter. In order to encourage transit usage, and as part of the project's enhancement to the site's frontage along Serramonte Boulevard, the project should consider installing a bus shelter or bench. Providing an upgrade to the bus stop, be it a bench or shelter, would encourage transit ridership.

Recommendation 5: Prior to final design, the project applicant shall work with City of Daly City and SamTrans staff to consider the desirability of upgrades to the existing bus stop along the project frontage.

## Technical Appendices

Hexigon Transportation Consultants, Inc.

## Appendix A

## Traffic Counts

Hexigon Transportation Consultants, Inc.


Two-Hour Count Summaries

| Interval Start |  | Clarinada Ave |  |  |  | Clarinada Ave |  |  |  | St Francis Blvd |  |  |  | St Francis Blvd |  |  |  | $\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$ | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 7:00 | AM | 0 | 0 | 8 | 18 | 0 | 11 | 10 | 22 | 0 | 2 | 8 | 2 | 0 | 4 | 56 | 0 | 141 | 0 |
| 7:15 | AM | 0 | 0 | 14 | 11 | 0 | 13 | 16 | 30 | 0 | 3 | 12 | 6 | 0 | 12 | 38 | 0 | 155 | 0 |
| 7:30 | AM | 0 | 1 | 11 | 8 | 0 | 16 | 33 | 41 | 0 | 2 | 23 | 9 | 0 | 15 | 49 | 2 | 210 | 0 |
| 7:45 | AM | 0 | 0 | 20 | 16 | 0 | 24 | 42 | 65 | 1 | 4 | 23 | 16 | 0 | 18 | 53 | 0 | 282 | 788 |
| 8:00 | AM | 0 | 2 | 31 | 18 | 1 | 29 | 38 | 49 | 0 | 3 | 32 | 8 | 0 | 23 | 53 | 1 | 288 | 935 |
| 8:15 | AM | 0 | 1 | 23 | 15 | 0 | 12 | 28 | 47 | 0 | 3 | 39 | 17 | 0 | 35 | 49 | 0 | 269 | 1,049 |
| 8:30 | AM | 0 | 1 | 10 | 10 | 0 | 13 | 12 | 31 | 0 | 1 | 27 | 14 | 0 | 29 | 55 | 0 | 203 | 1,042 |
| 8:45 | AM | 0 | 2 | 12 | 7 | 1 | 18 | 14 | 30 | 0 | 2 | 24 | 12 | 0 | 14 | 43 | 1 | 180 | 940 |
| Count | Total | 0 | 7 | 129 | 103 | 2 | 136 | 193 | 315 | 1 | 20 | 188 | 84 | 0 | 150 | 396 | 4 | 1,728 | 0 |
|  | All | 0 | 4 | 85 | 57 | 1 | 81 | 141 | 202 | 1 | 12 | 117 | 50 | 0 | 91 | 204 | 3 | 1,049 | 0 |
| Peak | HV | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 7 | 1 | 0 | 0 | 7 | 0 | 19 | 0 |
|  | HV\% | - | 0\% | 0\% | 2\% | 0\% | 1\% | 0\% | 1\% | 0\% | 0\% | 6\% | 2\% | - | 0\% | 3\% | 0\% | 2\% | 0 |


| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 7:00 AM | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 1 | 4 | 11 |
| 7:15 AM | 0 | 2 | 2 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 4 |
| 7:30 AM | 0 | 1 | 2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 3 |
| 7:45 AM | 0 | 1 | 1 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 1 | 3 | 12 |
| 8:00 AM | 1 | 1 | 2 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 7 | 3 | 18 |
| 8:15 AM | 0 | 0 | 3 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 6 |
| 8:30 AM | 0 | 1 | 2 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 2 | 0 | 7 |
| 8:45 AM | 0 | 2 | 4 | 1 | 7 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 6 |
| Count Total | 1 | 8 | 17 | 12 | 38 | 0 | 0 | 0 | 1 | 1 | 21 | 17 | 16 | 13 | 67 |
| Peak Hour | 1 | 3 | 8 | 7 | 19 | 0 | 0 | 0 | 0 | 0 | 14 | 9 | 10 | 6 | 39 |



Two-Hour Count Summaries

| Interval Start |  | Clarinada Ave |  |  |  | Clarinada Ave |  |  |  | St Francis Blvd |  |  |  | St Francis Blvd |  |  |  | $\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$ | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 2:00 | PM | 0 | 0 | 2 | 10 | 1 | 18 | 24 | 65 | 1 | 1 | 18 | 3 | 0 | 16 | 43 | 0 | 202 | 0 |
| 2:15 | PM | 0 | 1 | 13 | 10 | 0 | 14 | 30 | 45 | 0 | 3 | 21 | 6 | 0 | 29 | 28 | 1 | 201 | 0 |
| 2:30 | PM | 0 | 1 | 4 | 8 | 0 | 12 | 38 | 55 | 0 | 2 | 23 | 7 | 0 | 13 | 32 | 2 | 197 | 0 |
| 2:45 | PM | 0 | 0 | 9 | 5 | 0 | 16 | 51 | 65 | 0 | 2 | 33 | 14 | 0 | 17 | 34 | 0 | 246 | 846 |
| 3:00 | PM | 0 | 0 | 25 | 7 | 0 | 16 | 39 | 71 | 0 | 2 | 35 | 6 | 0 | 33 | 54 | 0 | 288 | 932 |
| 3:15 | PM | 0 | 1 | 17 | 9 | 0 | 24 | 43 | 55 | 0 | 3 | 32 | 11 | 0 | 32 | 44 | 1 | 272 | 1,003 |
| 3:30 | PM | 0 | 0 | 16 | 5 | 2 | 18 | 37 | 58 | 0 | 4 | 24 | 11 | 0 | 17 | 44 | 2 | 238 | 1,044 |
| 3:45 | PM | 0 | 1 | 12 | 5 | 0 | 20 | 36 | 65 | 0 | 5 | 18 | 11 | 1 | 14 | 39 | 1 | 228 | 1,026 |
| Count | Total | 0 | 4 | 98 | 59 | 3 | 138 | 298 | 479 | 1 | 22 | 204 | 69 | 1 | 171 | 318 | 7 | 1,872 | 0 |
|  | All | 0 | 1 | 67 | 26 | 2 | 74 | 170 | 249 | 0 | 11 | 124 | 42 | 0 | 99 | 176 | 3 | 1,044 | 0 |
| Hour | HV | 0 | 0 | 2 | 0 | 0 | 3 | 2 | 3 | 0 | 0 | 9 | 2 | 0 | 1 | 10 | 0 | 32 | 0 |
|  | HV\% | - | 0\% | 3\% | 0\% | 0\% | 4\% | 1\% | 1\% | - | 0\% | 7\% | 5\% | - | 1\% | 6\% | 0\% | 3\% | 0 |


| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 2:00 PM | 0 | 3 | 2 | 2 | 7 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 1 | 3 | 12 |
| 2:15 PM | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 4 | 0 | 9 |
| 2:30 PM | 0 | 3 | 1 | 3 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
| 2:45 PM | 0 | 4 | 5 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 6 |
| 3:00 PM | 1 | 0 | 2 | 4 | 7 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 4 | 3 | 11 |
| 3:15 PM | 0 | 3 | 2 | 4 | 9 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 1 | 20 | 32 |
| 3:30 PM | 1 | 1 | 2 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 14 | 2 | 6 | 6 | 28 |
| 3:45 PM | 0 | 2 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 6 |
| Count Total | 2 | 16 | 15 | 19 | 52 | 0 | 0 | 0 | 1 | 1 | 36 | 18 | 17 | 35 | 106 |
| Peak Hour | 2 | 8 | 11 | 11 | 32 | 0 | 0 | 0 | 1 | 1 | 27 | 8 | 11 | 31 | 77 |



Two-Hour Count Summaries


CA-1 SB Ramps
Clarinada Ave

Date: 10-18-2018
Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Two-Hour Count Summaries

| Interval Start |  | Clarinada Ave |  |  |  | Clarinada Ave |  |  |  | CA-1 SB Ramps |  |  |  | 0 |  |  |  | 15-min Total | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 7:00 | AM | 0 | 0 | 10 | 7 | 6 | 11 | 6 | 0 | 0 | 31 | 0 | 28 | 0 | 0 | 0 | 0 | 99 | 0 |
| 7:15 | AM | 0 | 0 | 11 | 22 | 1 | 10 | 11 | 0 | 0 | 48 | 0 | 39 | 0 | 0 | 0 | 0 | 142 | 0 |
| 7:30 | AM | 1 | 0 | 9 | 29 | 4 | 15 | 11 | 0 | 0 | 62 | 0 | 53 | 0 | 0 | 0 | 0 | 184 | 0 |
| 7:45 | AM | 1 | 0 | 23 | 29 | 4 | 18 | 31 | 0 | 0 | 85 | 0 | 51 | 0 | 0 | 0 | 0 | 242 | 667 |
| 8:00 | AM | 2 | 0 | 23 | 34 | 2 | 12 | 26 | 0 | 0 | 85 | 0 | 87 | 0 | 0 | 0 | 0 | 271 | 839 |
| 8:15 | AM | 0 | 0 | 39 | 38 | 3 | 13 | 23 | 0 | 0 | 75 | 0 | 69 | 0 | 0 | 0 | 0 | 260 | 957 |
| 8:30 | AM | 1 | 0 | 25 | 32 | 3 | 15 | 13 | 0 | 0 | 47 | 0 | 50 | 0 | 0 | 0 | 0 | 186 | 959 |
| 8:45 | AM | 0 | 0 | 13 | 24 | 3 | 22 | 14 | 0 | 0 | 47 | 0 | 59 | 0 | 0 | 0 | 0 | 182 | 899 |
| Count | Total | 5 | 0 | 153 | 215 | 26 | 116 | 135 | 0 | 0 | 480 | 0 | 436 | 0 | 0 | 0 | 0 | 1,566 | 0 |
|  | All | 4 | 0 | 110 | 133 | 12 | 58 | 93 | 0 | 0 | 292 | 0 | 257 | 0 | 0 | 0 | 0 | 959 | 0 |
| Peak <br> Hour | HV | 0 | 0 | 1 | 3 | 1 | 2 | 2 | 0 | 0 | 2 | 0 | 8 | 0 | 0 | 0 | 0 | 19 | 0 |
|  | HV\% | 0\% | - | 1\% | 2\% | 8\% | 3\% | 2\% | - | - | 1\% | - | 3\% | - | - | - | - | 2\% | 0 |

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 7:00 AM | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 6 |
| 7:15 AM | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 |
| 7:30 AM | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 6 |
| 7:45 AM | 1 | 2 | 3 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 |
| 8:00 AM | 1 | 1 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
| 8:15 AM | 0 | 2 | 3 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 1 | 6 |
| 8:30 AM | 2 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
| 8:45 AM | 0 | 0 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
| Count Total | 4 | 5 | 24 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 20 | 9 | 32 |
| Peak Hr | 4 | 5 | 10 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 10 | 3 | 15 |

## CA-1 SB Ramps Clarinada Ave

Date: 10-18-2018
Count Period: 2:00 PM to 4:00 PM Peak Hour: 3:00 PM to 4:00 PM


Two-Hour Count Summaries

| Interval Start |  | Clarinada Ave |  |  |  | Clarinada Ave |  |  |  | CA-1 SB Ramps |  |  |  | 0 |  |  |  | 15-min Total | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 2:00 | PM | 0 | 0 | 8 | 15 | 3 | 32 | 21 | 0 | 0 | 89 | 0 | 42 | 0 | 0 | 0 | 0 | 210 | 0 |
| 2:15 | PM | 1 | 0 | 22 | 27 | 6 | 46 | 15 | 0 | 0 | 76 | 0 | 60 | 0 | 0 | 0 | 0 | 253 | 0 |
| 2:30 | PM | 0 | 0 | 13 | 19 | 1 | 36 | 22 | 0 | 0 | 71 | 0 | 28 | 0 | 0 | 0 | 0 | 190 | 0 |
| 2:45 | PM | 3 | 0 | 10 | 17 | 1 | 45 | 35 | 0 | 0 | 90 | 0 | 52 | 0 | 0 | 0 | 0 | 253 | 906 |
| 3:00 | PM | 1 | 0 | 22 | 28 | 2 | 61 | 29 | 0 | 0 | 96 | 0 | 53 | 0 | 0 | 0 | 0 | 292 | 988 |
| 3:15 | PM | 3 | 0 | 43 | 32 | 4 | 49 | 28 | 0 | 0 | 95 | 0 | 57 | 0 | 0 | 0 | 0 | 311 | 1,046 |
| 3:30 | PM | 1 | 0 | 20 | 27 | 3 | 51 | 22 | 0 | 0 | 97 | 0 | 70 | 0 | 0 | 0 | 0 | 291 | 1,147 |
| 3:45 | PM | 1 | 0 | 8 | 29 | 6 | 44 | 41 | 0 | 0 | 89 | 0 | 61 | 0 | 0 | 0 | 0 | 279 | 1,173 |
| Count | Total | 10 | 0 | 146 | 194 | 26 | 364 | 213 | 0 | 0 | 703 | 0 | 423 | 0 | 0 | 0 | 0 | 2,079 | 0 |
|  | All | 6 | 0 | 93 | 116 | 15 | 205 | 120 | 0 | 0 | 377 | 0 | 241 | 0 | 0 | 0 | 0 | 1,173 | 0 |
| Peak <br> Hour | HV | 0 | 0 | 3 | 2 | 0 | 0 | 2 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 17 | 0 |
|  | HV\% | 0\% | - | 3\% | 2\% | 0\% | 0\% | 2\% | - | - | 1\% | - | 2\% | - | - | - | - | 1\% | 0 |


| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 2:00 PM | 0 | 3 | 3 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
| 2:15 PM | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 |
| 2:30 PM | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 |
| 2:45 PM | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
| 3:00 PM | 1 | 0 | 2 | 0 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
| 3:15 PM | 2 | 1 | 5 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 10 | 5 | 17 |
| 3:30 PM | 2 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 2 | 7 |
| 3:45 PM | 0 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 5 |
| Count Total | 5 | 5 | 22 | 0 | 32 | 1 | 0 | 0 | 0 | 1 | 2 | 2 | 31 | 8 | 43 |
| Peak Hr | 5 | 2 | 10 | 0 | 17 | 1 | 0 | 0 | 0 | 1 | 2 | 2 | 20 | 7 | 31 |



St Francis Blvd
Higate Dr/Serramonte Blvd


Two-Hour Count Summaries

| Interval Start |  | Higate Dr |  |  |  | Serramonte BIvd |  |  |  | St Francis Blvd |  |  |  | St Francis Blvd |  |  |  | $\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$ | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 7:00 | AM | 0 | 0 | 60 | 0 | 0 | 0 | 8 | 12 | 0 | 0 | 0 | 6 | 0 | 88 | 2 | 0 | 176 | 0 |
| 7:15 | AM | 0 | 2 | 77 | 0 | 0 | 1 | 5 | 18 | 0 | 0 | 1 | 13 | 0 | 59 | 1 | 2 | 179 | 0 |
| 7:30 | AM | 0 | 3 | 61 | 0 | 0 | 4 | 12 | 31 | 0 | 0 | 1 | 14 | 0 | 65 | 2 | 2 | 195 | 0 |
| 7:45 | AM | 0 | 5 | 75 | 1 | 1 | 1 | 26 | 30 | 0 | 2 | 3 | 9 | 0 | 81 | 6 | 3 | 243 | 793 |
| 8:00 | AM | 1 | 2 | 79 | 0 | 0 | 1 | 21 | 37 | 0 | 1 | 2 | 10 | 0 | 97 | 3 | 2 | 256 | 873 |
| 8:15 | AM | 0 | 1 | 63 | 1 | 0 | 2 | 26 | 47 | 0 | 0 | 7 | 12 | 0 | 72 | 4 | 1 | 236 | 930 |
| 8:30 | AM | 0 | 2 | 55 | 1 | 0 | 1 | 5 | 38 | 0 | 0 | 2 | 11 | 0 | 73 | 2 | 0 | 190 | 925 |
| 8:45 | AM | 0 | 1 | 36 | 0 | 0 | 2 | 6 | 35 | 0 | 0 | 0 | 3 | 0 | 60 | 8 | 2 | 153 | 835 |
| Count | Total | 1 | 16 | 506 | 3 | 1 | 12 | 109 | 248 | 0 | 3 | 16 | 78 | 0 | 595 | 28 | 12 | 1,628 | 0 |
|  | All | 1 | 11 | 278 | 2 | 1 | 8 | 85 | 145 | 0 | 3 | 13 | 45 | 0 | 315 | 15 | 8 | 930 | 0 |
| Peak | HV | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 7 | 0 | 0 | 1 | 0 | 0 | 10 | 1 | 0 | 23 | 0 |
|  | HV\% | 0\% | 0\% | 1\% | 0\% | 0\% | 0\% | 2\% | 5\% | - | 0\% | 8\% | 0\% | - | 3\% | 7\% | 0\% | 2\% | 0 |


| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 7:00 AM | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 4 |
| 7:15 AM | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7:30 AM | 0 | 2 | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 4 | 9 |
| 7:45 AM | 0 | 2 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 6 |
| 8:00 AM | 2 | 2 | 0 | 4 | 8 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 4 |
| 8:15 AM | 0 | 3 | 1 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 6 |
| 8:30 AM | 0 | 3 | 0 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 3 | 7 |
| 8:45 AM | 1 | 5 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 2 | 8 |
| Count Total | 3 | 20 | 1 | 16 | 40 | 0 | 0 | 0 | 0 | 0 | 10 | 14 | 9 | 11 | 44 |
| Peak Hour | 2 | 9 | 1 | 11 | 23 | 0 | 0 | 0 | 0 | 0 | 7 | 8 | 6 | 4 | 25 |

St Francis Blvd
Higate Dr/Serramonte Blvd


Two-Hour Count Summaries

| Interval Start |  | Higate Dr |  |  |  | Serramonte BIvd |  |  |  | St Francis Blvd |  |  |  | St Francis Blvd |  |  |  | $\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$ | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH | RT |  |  |
| 2:00 | PM | 0 | 2 | 27 | 0 | 0 | 3 | 17 | 18 | 0 | 0 | 1 | 4 | 0 | 62 | 3 | 4 | 141 | 0 |
| 2:15 | PM | 0 | 1 | 20 | 0 | 1 | 3 | 5 | 25 | 0 | 0 | 4 | 7 | 0 | 46 | 6 | 3 | 121 | 0 |
| 2:30 | PM | 0 | 0 | 36 | 0 | 0 | 2 | 15 | 29 | 0 | 0 | 1 | 2 | 0 | 40 | 4 | 1 | 130 | 0 |
| 2:45 | PM | 0 | 2 | 26 | 1 | 0 | 3 | 25 | 45 | 0 | 0 | 1 | 6 | 0 | 50 | 5 | 8 | 172 | 564 |
| 3:00 | PM | 0 | 0 | 44 | 0 | 0 | 2 | 26 | 41 | 0 | 2 | 2 | 4 | 0 | 60 | 5 | 4 | 190 | 613 |
| 3:15 | PM | 0 | 2 | 47 | 2 | 1 | 3 | 24 | 42 | 0 | 0 | 2 | 5 | 0 | 64 | 4 | 4 | 200 | 692 |
| 3:30 | PM | 0 | 0 | 24 | 0 | 0 | 2 | 23 | 41 | 0 | 0 | 1 | 4 | 0 | 65 | 5 | 0 | 165 | 727 |
| 3:45 | PM | 0 | 1 | 30 | 1 | 0 | 2 | 15 | 31 | 0 | 0 | 1 | 7 | 0 | 58 | 3 | 6 | 155 | 710 |
| Count | Total | 0 | 8 | 254 | 4 | 2 | 20 | 150 | 272 | 0 | 2 | 13 | 39 | 0 | 445 | 35 | 30 | 1,274 | 0 |
|  | All | 0 | 4 | 141 | 3 | 1 | 10 | 98 | 169 | 0 | 2 | 6 | 19 | 0 | 239 | 19 | 16 | 727 | 0 |
| Peak | HV | 0 | 1 | 1 | 0 | 0 | 0 |  | 8 | 0 | 0 | 2 | 0 | 0 | 15 | 1 | 0 | 29 | 0 |
|  | HV\% | - | 25\% | 1\% | 0\% | 0\% | 0\% | 1\% | 5\% | - | 0\% | 33\% | 0\% | - | 6\% | 5\% | 0\% | 4\% | 0 |


| Interval Start | Heavy Vehicle Totals |  |  |  |  | Bicycles |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EB | WB | NB | SB | Total | EB | WB | NB | SB | Total | East | West | North | South | Total |
| 2:00 PM | 0 | 2 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2:15 PM | 1 | 3 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 2:30 PM | 0 | 1 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
| 2:45 PM | 1 | 4 | 0 | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3:00 PM | 0 | 2 | 1 | 5 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 |
| 3:15 PM | 1 | 1 | 1 | 6 | 9 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 6 |
| 3:30 PM | 0 | 2 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 2 | 6 |
| 3:45 PM | 1 | 1 | 0 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 3 |
| Count Total | 4 | 16 | 2 | 26 | 48 | 0 | 0 | 0 | 0 | 0 | 10 | 3 | 2 | 5 | 20 |
| Peak Hour | 2 | 9 | 2 | 16 | 29 | 0 | 0 | 0 | 0 | 0 | 7 | 3 | 1 | 3 | 14 |

St Francis Blvd
Higate Dr/Serramonte Blvd


Two-Hour Count Summaries

| Interval Start |  | Higate Dr |  |  |  |  | Serramonte Blvd |  |  |  | St Francis Blvd |  |  |  | St Francis Blvd |  |  |  | 15-min Total | Rolling One Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Eastbound |  |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |  |  |
|  |  | UT | LT | TH |  | RT | UT | LT | TH | RT | UT | LT | TH | RT | UT | LT | TH | RT |  |  |
| 4:00 | PM | 0 | 0 | 21 |  | 1 | 0 | 1 | 15 | 36 | 0 | 1 | 3 | 4 | 0 | 41 | 6 | 7 | 136 | 0 |
| 4:15 | PM | 0 | 1 | 33 |  | 1 | 0 | 2 | 13 | 31 | 0 | 2 | 1 | 3 | 0 | 45 | 4 | 5 | 141 | 0 |
| 4:30 | PM | 0 | 0 | 35 |  | 0 | 0 | 3 | 18 | 46 | 0 | 0 | 1 | 8 | 0 | 57 | 5 | 6 | 179 | 0 |
| 4:45 | PM | 0 | 1 | 28 |  | 0 | 0 | 6 | 18 | 35 | 0 | 0 | 0 | 6 | 0 | 43 | 6 | 2 | 145 | 601 |
| 5:00 | PM | 0 | 3 | 32 |  | 0 | 1 | 5 | 28 | 34 | 0 | 1 | 0 | 4 | 0 | 59 | 8 | 8 | 183 | 648 |
| 5:15 | PM | 0 | 3 | 39 |  | 0 | 0 | 4 | 21 | 44 | 0 | 0 | 7 | 3 | 0 | 55 | 10 | 6 | 192 | 699 |
| 5:30 | PM | 0 | 0 | 37 |  | 0 | 0 | 7 | 11 | 43 | 0 | 0 | 1 | 2 | 0 | 48 | 3 | 7 | 159 | 679 |
| 5:45 | PM | 0 | 3 | 21 |  | 0 | 0 | 4 | 21 | 54 | 0 | 0 | 1 | 8 | 0 | 63 | 8 | 3 | 186 | 720 |
| Count | Total | 0 | 11 | 246 |  | 2 | 1 | 32 | 145 | 323 | 0 | 4 | 14 | 38 | 0 | 411 | 50 | 44 | 1,321 | 0 |
|  | All | 0 | 9 | 129 |  | 0 | 1 | 20 | 81 | 175 | 0 | 1 | 9 | 17 | 0 | 225 | 29 | 24 | 720 | 0 |
| Peak <br> Hour | HV | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 20 | 0 |
|  | HV\% | - | 11\% | 0\% |  | - | 0\% | 0\% | 0\% | 4\% | - | 0\% | 0\% | 0\% | - | 5\% | 0\% | 0\% | 3\% | 0 |
| Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Interval Start |  | Heavy Vehicle Totals |  |  |  |  |  |  | Bicycles |  |  |  |  |  | Pedestrians (Crossing Leg) |  |  |  |  |  |
|  |  | EB | WB |  | NB |  | SB | Total | EB | WB |  | NB | SB | Total | East |  | West | North | South | Total |
| 4:00 | PM | 0 | 3 |  | 0 |  | 4 | 7 | 0 | 0 |  | 0 | 0 | 0 | 1 |  | 0 | 0 | 0 | 1 |
| 4:15 | PM | 1 | 1 |  | 0 |  | 3 | 5 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| 4:30 | PM | 0 | 3 |  | 0 |  | 3 | 6 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 | 3 | 2 | 5 |
| 4:45 | PM | 0 | 1 |  | 0 |  | 1 | 2 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| 5:00 | PM | 1 | 2 |  | 0 |  | 4 | 7 | 0 | 0 |  | 0 | 0 | 0 | 1 |  | 0 | 0 | 1 | 2 |
| 5:15 | PM | 0 | 2 |  | 0 |  | 4 | 6 | 0 | 0 |  | 0 | 1 | 1 | 0 |  | 2 | 1 | 2 | 5 |
| 5:30 | PM | 0 | 2 |  | 0 |  | 1 | 3 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 1 | 0 | 1 | 2 |
| 5:45 | PM | 0 | 1 |  | 0 |  | 3 | 4 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 | 1 |
| Count | Total | 2 | 15 |  | 0 |  | 23 | 40 | 0 | 0 |  | 0 | 1 | 1 | 2 |  | 3 | 4 | 7 | 16 |
| Peak | Hour | 1 | 7 |  | 0 |  | 12 | 20 | 0 | 0 |  | 0 | 1 | 1 | 1 |  | 3 | 1 | 5 | 10 |








## Appendix B

Intersection Level of Service Calculations

Hexigon Transportation Consultants, Inc.

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 13.8 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4) |  |  | $\uparrow$ | F |  | * |  |  | * |  |
| Traffic Vol, veh/h | 4 | 85 | 57 | 82 | 141 | 202 | 13 | 117 | 50 | 91 | 204 | 3 |
| Future Vol, veh/h | 4 | 85 | 57 | 82 | 141 | 202 | 13 | 117 | 50 | 91 | 204 | 3 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 4 | 93 | 63 | 90 | 155 | 222 | 14 | 129 | 55 | 100 | 224 | 3 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SE |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 11.8 |  |  | 13.2 |  |  | 12.5 |  |  | 16.4 |  |  |
| HCMLOS | B |  |  | B |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $7 \%$ | $3 \%$ | $37 \%$ | $0 \%$ | $31 \%$ |
| Vol Thru, $\%$ | $65 \%$ | $58 \%$ | $63 \%$ | $0 \%$ | $68 \%$ |
| Vol Right, $\%$ | $28 \%$ | $39 \%$ | $0 \%$ | $100 \%$ | $1 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 180 | 146 | 223 | 202 | 298 |
| LT Vol | 13 | 4 | 82 | 0 | 91 |
| Through Vol | 117 | 85 | 141 | 0 | 204 |
| RT Vol | 50 | 57 | 0 | 202 | 3 |
| Lane Flow Rate | 198 | 160 | 245 | 222 | 327 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.343 | 0.282 | 0.449 | 0.351 | 0.55 |
| Departure Headway (Hd) | 6.235 | 6.321 | 6.697 | 5.796 | 6.152 |
| Convergence, YIN | Yes | Yes | Yes | Yes | $Y e s$ |
| Cap | 580 | 571 | 542 | 624 | 589 |
| Service Time | 4.235 | 4.335 | 4.397 | 3.496 | 4.152 |
| HCM Lane VIC Ratio | 0.341 | 0.28 | 0.452 | 0.356 | 0.555 |
| HCM Control Delay | 12.5 | 11.8 | 14.7 | 11.6 | 16.4 |
| HCM Lane LOS | $B$ | $B$ | $B$ | $B$ | $C$ |
| HCM 95th-Hile Q | 1.5 | 1.2 | 2.3 | 1.6 | 3.3 |



| Lane | NBL11 | NBLn2 | EBLn1 | EBLD2 | WBLn1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% |
| Vol Thru, \% | 0\% | 0\% | 100\% | 22\% | 0\% | 100\% | 100\% |
| Vol Right, \% | 0\% | 100\% | 0\% | 78\% | 0\% | 0\% | 0\% |
| Sign Control | Stop |
| Trafic Vol by Lane | 292 | 257 | 76 | 171 | 70 | 47 | 47 |
| LT Vol | 292 | 0 | 0 | 0 | 70 | 0 | 0 |
| Through Vol | 0 | 0 | 76 | 38 | 0 | 47 | 47 |
| RT Vol | 0 | 257 | 0 | 133 | 0 | 0 | 0 |
| Lane Flow Rate | 332 | 292 | 86 | 194 | 80 | 53 | 53 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 0.605 | 0.434 | 0.165 | 0.342 | 0.168 | 0.104 | 0.078 |
| Departure Headway (Hd) | 6.559 | 5.355 | 6.885 | 6.328 | 7.591 | 7.081 | 5.311 |
| Convergence, Y/N | Yes |
| Cap | 551 | 672 | 520 | 567 | 471 | 505 | 671 |
| Service Time | 4.303 | 3.099 | 4.645 | 4.088 | 5.358 | 4.847 | 3.076 |
| HCM Lane V/C Ratio | 0.603 | 0.435 | 0.165 | 0.342 | 0.17 | 0.105 | 0.079 |
| HCM Control Delay | 18.9 | 12.2 | 11 | 12.4 | 11.9 | 10.7 | 8.5 |
| HCM Lane LOS | C | B | B | B | B | B | A |
| HCM 95th-tile Q | 4 | 2.2 | 0.6 | 1.5 | 0.6 | 0.3 | 0.3 |

Existing AM
3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/ven | 14.7 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4 |  |  | 4 |  |  | \& |  |  | * |  |
| Traffic Vol, vehih | 12 | 278 | 2 | 9 | 85 | 145 | 3 | 13 | 45 | 315 | 15 | 8 |
| Future Vol, veh/h | 12 | 278 | 2 | 9 | 85 | 145 | 3 | 13 | 45 | 315 | 15 | 8 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 13 | 305 | 2 | 10 | 93 | 159 | 3 | 14 | 49 | 346 | 16 | 9 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | E8 |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 14.6 |  |  | 12.1 |  |  | 9.7 |  |  | 17.4 |  |  |
| HCM LOS | B |  |  | B |  |  | A |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $5 \%$ | $4 \%$ | $4 \%$ | $93 \%$ |
| Vol Thru, \% | $21 \%$ | $95 \%$ | $36 \%$ | $4 \%$ |
| Vol Right, \% | $74 \%$ | $1 \%$ | $61 \%$ | $2 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 61 | 292 | 239 | 338 |
| LT Vol | 3 | 12 | 9 | 315 |
| Through Vol | 13 | 278 | 85 | 15 |
| RT Vol | 45 | 2 | 145 | 8 |
| Lane Flow Rate | 67 | 321 | 263 | 371 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree or Util (X) | 0.11 | 0.508 | 0.398 | 0.602 |
| Departure Headway (Hd) | 5.891 | 5.701 | 5.461 | 5.839 |
| Convergence, YN | $Y e s$ | Yes | Yes | Yes |
| Cap | 803 | 629 | 654 | 617 |
| Service Time | 3.984 | 3.769 | 3.534 | 3.902 |
| HCM Lane VIC Ratio | 0.111 | 0.51 | 0.402 | 0.601 |
| HCM Control Delay | 9.7 | 14.6 | 12.1 | 17.4 |
| HCM Lane LOS | A | $B$ | 8 | $C$ |
| HCM 95th-tile Q | 0.4 | 2.9 | 1.9 | 4 |

Existing AM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | ---: | :--- | :--- |
| Intersection Delay, s/veh | 28.7 |  |
| Intersection LOS | D |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 7 | $\hat{\beta}$ |  |  | А ${ }^{\text {¢ }}$ |  |  | * |  |  | $\stackrel{1}{4}$ | F |
| Traffic Vol, veh/h | 402 | 225 | 33 | 53 | 131 | 211 | 16 | 38 | 33 | 193 | 37 | 95 |
| Future Vol, vehilh | 402 | 225 | 33 | 53 | 131 | 211 | 16 | 38 | 33 | 193 | 37 | 95 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 442 | 247 | 36 | 58 | 144 | 232 | 18 | 42 | 36 | 212 | 41 | 104 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 2 |  |  | 2 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 2 |  |  | 1 |  |  | 2 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 2 |  |  | 2 |  |  | 2 |  |  |
| HCM Control Delay | 41.5 |  |  | 18.1 |  |  | 14.3 |  |  | 19.6 |  |  |
| HCMLOS | E |  |  | C |  |  | B |  |  | C |  |  |


| Lane | NBLn 1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLT1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 18\% | 100\% | 0\% | 45\% | 0\% | 84\% | 0\% |
| Vol Thru, \% | 44\% | 0\% | 87\% | 55\% | 24\% | 16\% | 0\% |
| Vol Right, \% | 38\% | 0\% | 13\% | 0\% | 76\% | 0\% | 100\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 87 | 402 | 258 | 119 | 277 | 230 | 95 |
| LT Vol | 16 | 402 | 0 | 53 | 0 | 193 | 0 |
| Through Vol | 38 | 0 | 225 | 66 | 66 | 37 | 0 |
| RT Vol | 33 | 0 | 33 | 0 | 211 | 0 | 95 |
| Lane Flow Rate | 96 | 442 | 284 | 130 | 304 | 253 | 104 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util ( X ) | 0.229 | 0.943 | 0.558 | 0.286 | 0.6 | 0.592 | 0.211 |
| Departure Headway (Hd) | 8.631 | 7.687 | 7.082 | 7.893 | 7.113 | 8.436 | 7.285 |
| Convergence, Y $\mathbb{N}$ | Yes |
| Cap | 415 | 473 | 510 | 454 | 507 | 427 | 493 |
| Service Time | 6.699 | 5.438 | 4.833 | 5.649 | 4.868 | 6.188 | 5.036 |
| HCM Lane V/C Ratio | 0.231 | 0.934 | 0.557 | 0.286 | 0.6 | 0.593 | 0.211 |
| HCM Control Delay | 14.3 | 56.3 | 18.5 | 13.8 | 20 | 22.8 | 12 |
| HCM Lane LOS | B | F | C | B | C | C | B |
| HCM 95th-tile Q | 0.9 | 11.3 | 3.4 | 1.2 | 3.9 | 3.7 | 0.8 |

Existing AM
5：Callan Blvd \＆Serramonte Blvd

|  | ＊ | $\rightarrow$ | $\nabla$ | 5 | 4 | 4 | 4 | $\dagger$ | $p$ | $\dagger$ | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 个个 |  | 9 | 瑯 |  | \％ | क |  | k | $\uparrow$ | F |
| Traffic Volume（vph） | 92 | 266 | 141. | 41 | 61 | 43 | 187 | 319 | 82 | 122 | 290 | 110 |
| Future Volume（vpi） | 92 | 266 | 141 | 41 | 61 | 43 | 187 | 319 | 82 | 122 | 290 | 110 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Util．Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb，ped／bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 0.98 |
| Flpb，ped／bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frt | 1.00 | 0.95 |  | 1.00 | 0.94 |  | 1.00 | 0.97 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（prot） | 1770 | 33.21 |  | 1770 | 3296 |  | 1770 | 1798 |  | 1770 | 1863 | 1553 |
| Flt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（perm） | 1770 | 3321 |  | 1770 | 3296 |  | 1770 | 1798 |  | 1770 | 1863 | 1553 |
| Peak－hour factor，PHF： | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Adj．Flow（vph） | 102 | 296 | 157 | 46 | 68 | 48 | 208 | 354 | 91 | 136 | 322 | 122 |
| RTOR Reduction（vph） | 0 | 120 | 0 | 0 | 40 | 0 | 0 | 14 | 0 | 0 | 0 | 87 |
| Lane Group Flow（vph） | 102 | 333 | 0 | 46 | 76 | 0 | 208 | 431 | 0 | 136 | 322 | 35 |
| Contl．Peds．（\＃hr） | 5 |  | 6 | 6 |  | 5 | 7 |  | 9 | 9 |  | 7 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Acluated Green，G（s） | 4.8 | 12.5 |  | 1.4 | 9.1 |  | 8.3 | 18.2 |  | 5.2 | 15.1 | 15.1 |
| Effective Green，g（s） | 4.8 | 12.5 |  | 1.4 | 9.1 |  | 8.3 | 18.2 |  | 5.2 | 15.1 | 15.1 |
| Actuated g／C Ratio | 0.09 | 0.23 |  | 0.03 | 0.17 |  | 0.1 ¢ | 0.34 |  | 0.10 | 0.28 | 0.28 |
| Clearance Time（ s ） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap（vph） | 159 | 778 |  | 46 | 562 |  | 275 | 613 |  | 172 | 527 | 439 |
| v／s Ratio Prot | c0．06 | c0．10 |  | 0.03 | 0.02 |  | c0．12 | c0．24 |  | 0.08 | 0.17 |  |
| v／s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| v／c Ratio | 0.64 | 0.43 |  | 1.00 | 0.14 |  | 0.76 | 0.70 |  | 0.79 | 0.61 | 0.08 |
| Uniform Delay，d1 | 23.4 | 17.4 |  | 25.9 | 18.8 |  | 21.5 | 15.2 |  | 23.5 | 16.6 | 14.0 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay，d2 | 8.5 | 0.4 |  | 132.7 | 0.1 |  | 11.2 | 3.6 |  | 21.4 | 2.1 | 0.1 |
| Delay（s） | 32.0 | 17.7 |  | 158.6 | 18.9 |  | 32.8 | 18.8 |  | 45.0 | 18.7 | 14.1 |
| Level of Service | C | B |  | F | B |  | C | B |  | D | B | B |
| Approach Delay（s） |  | 20.4 |  |  | 58.6 |  |  | 23.3 |  |  | 23.9 |  |
| Approach LOS |  | C |  |  | E |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 25.6 | HCM 2000 Level of Service | C |  |
| HCM 2000 Volume to Capacity ratio | 0.67 |  | 16.0 |  |
| Actuated Cycle Length（s） | 53.3 | Sum of lost time（s） | B |  |
| Intersection Capacity Utilization | $57.7 \%$ | ICU Level of Service |  |  |
| Analysis Period（min） | 15 |  |  |  |
| C Critical Lane Group |  |  |  |  |



| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4 |  |  | * | \% |  | 4 |  |  | * |  |
| Traffic Vol, veh/h | 1 | 67 | 26 | 76 | 170 | 249 | 11 | 124 | 42 | 99 | 176 | 3 |
| Future Vol, veh/h | 1 | 67 | 26 | 76 | 170 | 249 | 11 | 124 | 42 | 99 | 176 | 3 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 1 | 74 | 29 | 84 | 187 | 274 | 12 | 136 | 46 | 109 | 193 | 3 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | E8 |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 10.7 |  |  | 13.5 |  |  | 12 |  |  | 15.1 |  |  |
| HCM LOS | B |  |  | B |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $6 \%$ | $1 \%$ | $31 \%$ | $0 \%$ | $36 \%$ |
| Vol Thru, $\%$ | $70 \%$ | $71 \%$ | $69 \%$ | $0 \%$ | $63 \%$ |
| Vol Right, \% | $24 \%$ | $28 \%$ | $0 \%$ | $100 \%$ | $1 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 177 | 94 | 246 | 249 | 278 |
| LT Vol | 11 | 1 | 76 | 0 | 99 |
| Through Vol | 124 | 67 | 170 | 0 | 176 |
| RT Vol | 42 | 26 | 0 | 249 | 3 |
| Lane Flow Rate | 195 | 103 | 270 | 274 | 305 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.326 | 0.18 | 0.478 | 0.418 | 0.508 |
| Departure Headway (Hd) | 6.03 | 6.257 | 6.372 | 5.504 | 5.991 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 593 | 569 | 565 | 651 | 599 |
| Service Time | 4.103 | 4.343 | 4.133 | 3.264 | 4.056 |
| HCM Lane VIC Ratio | 0.329 | 0.181 | 0.478 | 0.421 | 0.509 |
| HCM Control Deilay | 12 | 10.7 | 14.9 | 12.2 | 15.1 |
| HCM Lane LOS | $B$ | $B$ | $B$ | $B$ | C |
| HCM 95th-tile Q | 1.4 | 0.7 | 2.6 | 2.1 | 2.9 |


| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, siveh | 19.6 |  |
| Intersection LOS | $C$ |  |


| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 性 |  | \% | 平4 | \% | F |
| Traffic Vol, veh/h | 99 | 116 | 220 | 120 | 377 | 241 |
| Future Vol, veh/h | 99 | 116 | 220 | 120 | 377 | 241 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 105 | 123 | 234 | 128 | 401 | 256 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Left |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 12.8 |  | 15.5 |  | 24.2 |  |
| HCM LOS | B |  | 0 |  | C |  |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% |
| Vol Thru, \% | 0\% | 0\% | 100\% | 22\% | 0\% | 100\% | 100\% |
| Vol Right, \% | 0\% | 100\% | 0\% | 78\% | 0\% | 0\% | 0\% |
| Sign Control | Stop |
| Trafic Vol by Lane | 377 | 241 | 66 | 149 | 220 | 60 | 60 |
| LT Vol | 377 | 0 | 0 | 0 | 220 | 0 | 0 |
| Through Vol | 0 | 0 | 66 | 33 | 0 | 60 | 60 |
| RT Vol | 0 | 241 | 0 | 116 | 0 | 0 | 0 |
| Lane Flow Rate | 401 | 256 | 70 | 159 | 234 | 64 | 64 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 0.787 | 0.417 | 0.151 | 0.316 | 0.511 | 0.13 | 0.099 |
| Departure Headway (Hd) | 7.169 | 5.961 | 7.737 | 7.175 | 7.866 | 7.355 | 5.581 |
| Convergence, Y/N | Yes |
| Cap | 509 | 608 | 466 | 504 | 461 | 490 | 646 |
| Service Time | 4.869 | 3.661 | 5.449 | 4.887 | 5.566 | 5.055 | 3.281 |
| HCM Lane VIC Ratio | 0.788 | 0.421 | 0.15 | 0.315 | 0.508 | 0.131 | 0.099 |
| HCM Control Delay | 31.5 | 12.9 | 11.8 | 13.2 | 18.5 | 11.2 | 8.9 |
| HCM Lane LOS | D | B | B | B | C | B | A |
| HCM 95th-tile Q | 7.2 | 2.1 | 0.5 | 1.3 | 2.8 | 0.4 | 0.3 |


| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, siveh | 11.1 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4 |  |  | * |  |  | * |  |  | * |  |
| Traffic Vol, veh/h | 4 | 141 | 3 | 11 | 98 | 169 | 2 | 6 | 19 | 239 | 19 | 16 |
| Future Vol, veh/h | 4 | 141 | 3 | 11 | 98 | 169 | 2 | 6 | 19 | 239 | 19 | 16 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 4 | 155 | 3 | 12 | 108 | 186 | 2 | 7 | 21 | 263 | 21 | 18 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 9.9 |  |  | 10.8 |  |  | 8.4 |  |  | 12.3 |  |  |
| HCM LOS | A |  |  | B |  |  | A |  |  | B |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $7 \%$ | $3 \%$ | $4 \%$ | $87 \%$ |
| Vol Thru, \% | $22 \%$ | $95 \%$ | $35 \%$ | $7 \%$ |
| Vol Right, \% | $70 \%$ | $2 \%$ | $61 \%$ | $6 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 27 | 148 | 278 | 274 |
| LT Vol | 2 | 4 | 11 | 239 |
| Through Vol | 6 | 141 | 98 | 19 |
| RT Vol | 19 | 3 | 169 | 16 |
| Lane Flow Rate | 30 | 163 | 305 | 301 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.043 | 0.234 | 0.396 | 0.435 |
| Departure Headuway (Hd) | 5.212 | 5.173 | 4.663 | 5.2 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 691 | 685 | 764 | 683 |
| Service Time | 3.212 | 3.271 | 2.745 | 3.298 |
| HCM Lane VIC Ratio | 0.043 | 0.238 | 0.399 | 0.441 |
| HCM Control Delay | 8.4 | 9.9 | 10.8 | 12.3 |
| HCM Lane LOS | A | A | B | B |
| HCM 95th-tile Q | 0.1 | 0.9 | 1.9 | 2.2 |

Existing School PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, siveh | 13.1 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Configurations | $\boldsymbol{T}$ | $\boldsymbol{r}$ |  |  | $\uparrow \uparrow$ |  |  | 4 |  | 4 | 4 | $\mathbf{N}$ |
| Traffic Vol, veh/h | 224 | 188 | 10 | 20 | 168 | 176 | 12 | 8 | 15 | 193 | 3 | 102 |
| Future Vol, veh/h | 224 | 188 | 10 | 20 | 168 | 176 | 12 | 8 | 15 | 193 | 3 | 102 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 233 | 196 | 10 | 21 | 175 | 183 | 13 | 3 | 16 | 201 | 3 | 106 |
| Number ol Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | W8 | EB |
| Conflicting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 13.6 | 12.6 | 10.9 | 13.4 |
| HCM LOS | B | B | B | B |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $34 \%$ | $100 \%$ | $0 \%$ | $19 \%$ | $0 \%$ | $98 \%$ | $0 \%$ |
| Vol Thru, \% | $23 \%$ | $0 \%$ | $95 \%$ | $81 \%$ | $32 \%$ | $2 \%$ | $0 \%$ |
| Vol Right, \% | $43 \%$ | $0 \%$ | $5 \%$ | $0 \%$ | $68 \%$ | $0 \%$ | $100 \%$ |
| Sign Control | Stop | Stop | Slop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 35 | 224 | 198 | 104 | 260 | 196 | 102 |
| LT Vol | 12 | 224 | 0 | 20 | 0 | 193 | 0 |
| Through Vol | 8 | 0 | 188 | 84 | 84 | 3 | 0 |
| RT Vol | 15 | 0 | 10 | 0 | 176 | 0 | 102 |
| Lane Flow Rate | 36 | 233 | 206 | 108 | 271 | 204 | 106 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.073 | 0.437 | 0.355 | 0.195 | 0.443 | 0.412 | 0.179 |
| Departure Headway (Hd) | 7.208 | 6.747 | 6.203 | 6.465 | 5.885 | 7.262 | 6.05 |
| Convergence, YN | Yes |
| Cap | 494 | 532 | 578 | 554 | 009 | 494 | 591 |
| Service Time | 5.299 | 4.51 | 3.905 | 4.228 | 3.648 | 5.024 | 3.812 |
| HCM Lane VIC Ratio | 0.073 | 0.438 | 0.356 | 0.195 | 0.445 | 0.413 | 0.179 |
| HCM Control Delay | 10.9 | 14.7 | 12.4 | 10.8 | 13.3 | 15.1 | 10.1 |
| HCM Lane LOS | $B$ | $B$ | $B$ | $B$ | $B$ | $C$ | $B$ |
| HCM 95th-tile Q | 0.2 | 2.2 | 1.6 | 0.7 | 2.3 | 2 | 0.6 |

Existing School PM
5：Callan Blvd \＆Serramonte Blvd
03／25／2019

|  | $t$ | $\rightarrow$ | $\rangle$ | $\checkmark$ | $\leftarrow$ | 4 | 4 | $\uparrow$ | $p$ | $\checkmark$ | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 7 | 个t |  | \％ | 个令 |  | 9 | F |  | 1 | $\uparrow$ | $F$ |
| Traffic Volume（vph） | 58 | 244 | 96 | 126 | 151 | 204 | 146 | 271 | 114 | 119 | 252 | 80 |
| Future Volume（vph） | 58 | 244 | 96 | 125 | 151 | 204 | 146 | 271 | 114 | 119 | 252 | 80 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Util．Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb，ped／bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb，ped／bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Fit | 1.00 | 0.96 |  | 1.00 | 0.91 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（prot） | 1770 | 3341 |  | 1770 | 3189 |  | 1770 | 1769 |  | 1770 | 1863 | 1554 |
| FIt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（perm） | 1770 | 3341 |  | 1770 | 3189 |  | 1770 | 1769 |  | 1770 | 1863 | 1554 |
| Peak－hour factor，PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj．Flow（voh） | 59 | 249 | 98 | 129 | 154 | 208 | 149 | 277 | 116 | 121 | 257 | 82 |
| RTOR Reduction（vph） | 0 | 75 | 0 | 0 | 160 | ， | 0 | 23 | ， | 0 | 0 | 59 |
| Lane Group Flow（vph） | 59 | 272 | 0 | 129 | 202 | 0 | 149 | 370 | 0 | 121 | 257 | 23 |
| Confi．Peds．（\＃hr） | 13 |  | 19 | 19 |  | 13 | 7 |  | － | 9 |  | 7 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | ， |  | 3 | 8 |  | 5 | 2 |  | ， | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Actuated Green，G（s） | 2.7 | 10.4 |  | 4.4 | 12.1 |  | 6.3 | 16.7 |  | 4.4 | 14.8 | 14.8 |
| Effective Green， $\mathrm{g}(\mathrm{s})$ | 2.7 | 10.4 |  | 4.4 | 12.1 |  | 6.3 | 16.7 |  | 4.4 | 14.8 | 14.8 |
| Actuated g／C Ratio | 0.05 | 0.20 |  | 0.08 | 0.23 |  | 0.12 | 0.32 |  | 0.08 | 0.29 | 0.29 |
| Clearance Time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap（vph） | 92 | 669 |  | 150 | 743 |  | 214 | 569 |  | 150 | 531 | 443 |
| v／s Ratio Prot | 0.03 | c0．08 |  | c0．07 | 0.06 |  | c0．08 | c0． 21 |  | 0.07 | 0.14 |  |
| v／s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| V／C Ratio | 0.64 | 0.41 |  | 0.86 | 0.27 |  | 0.70 | 0.65 |  | 0.81 | 0.48 | 0.05 |
| Uniform Delay d1 | 24.1 | 18.1 |  | 23.4 | 16.3 |  | 21.9 | 15.1 |  | 23.3 | 15.4 | 13.5 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay，d2 | 14.3 | 0.4 |  | 35.7 | 0.2 |  | 9.4 | 2.7 |  | 28.2 | 0.7 | 0.0 |
| Delay（s） | 38.4 | 18.5 |  | 59.2 | 16.5 |  | 31.3 | 17.8 |  | 49.5 | 16.1 | 13.5 |
| Level of Service | D | B |  | E | B |  | c | B |  | 0 | B | B |
| Approach Delay（s） |  | 21.4 |  |  | 27.7 |  |  | 21.5 |  |  | 24.4 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM 2000 Control Delay | 23.8 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.63 |  | 16.0 |
| Actuated Cycle Length（s） | 51.9 | Sum of lost time（s） | B |
| Intersection Capacity Utilization | $60.1 \%$ | ICU Level of Service |  |
| Analysis Period（min） | 15 |  |  |
| C Critical Lane Group |  |  |  |

Existing PM
1: St Francis Blvd \& Clarinada Ave


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4 |  |  | * | 「゙ |  | 4 |  |  | * |  |
| Traffic Vol, veh/h | 4 | 48 | 23 | 107 | 209 | 322 | 23 | 135 | 37 | 64 | 145 | 7 |
| Future Vol, veh/h | 4 | 48 | 23 | 107 | 209 | 322 | 23 | 135 | 37 | 64 | 145 | 7 |
| Peak Hour Factor | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 5 | 56 | 27 | 124 | 243 | 374 | 27 | 157 | 43 | 74 | 169 | 8 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 10.7 |  |  | 17.7 |  |  | 13.4 |  |  | 14.3 |  |  |
| HCMLOS | B |  |  | c |  |  | B |  |  | B |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Leff, \% | 12\% | 5\% | 34\% | 0\% | 30\% |
| Vol Thru, \% | 69\% | 64\% | 66\% | 0\% | 67\% |
| Vol Right, \% | 19\% | 31\% | 0\% | 100\% | 3\% |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 195 | 75 | 316 | 322 | 216 |
| LTVol | 23 | 4 | 107 | 0 | 64 |
| Through Vol | 135 | 48 | 209 | 0 | 145 |
| RT Vol | 37 | 23 | 0 | 322 | 7 |
| Lane Flow Rate | 227 | 87 | 367 | 374 | 251 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util ( $X$ ) | 0.394 | 0.156 | 0.649 | 0.569 | 0.441 |
| Departure Headway (Hd) | 6.257 | 6.451 | 6.355 | 5.472 | 6.326 |
| Convergence, $\mathrm{Y} / \mathrm{N}$ | Yes | Yes | Yes | Yes | Yes |
| Cap | 571 | 551 | 566 | 655 | 568 |
| Service Time | 4.326 | 4.543 | 4.116 | 3.233 | 4.393 |
| HCM Lane VIC Ratio | 0.398 | 0.158 | 0.648 | 0.571 | 0.442 |
| HCM Control Delay | 13.4 | 10.7 | 20.2 | 15.3 | 14.3 |
| HCM Lane LOS | B | B | C | C | B |
| HCM 95th-tile Q | 1.9 | 0.5 | 4.7 | 3.6 | 2.2 |

## Existing PM

2: SR 1 SB Ramps \& Clarinada Ave


| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 个 ${ }^{\text {F }}$ |  | \% | 性 | \% | F |
| Traffic Vol, veh/h | 73 | 89 | 203 | 125 | 505 | 315 |
| Future Vol, veh/h | 73 | 89 | 203 | 125 | 505 | 315 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 81 | 99 | 226 | 139 | 561 | 350 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | E8 |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Left |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicing Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 12.9 |  | 15.9 |  | 63.7 |  |
| HCM LOS | B |  | C |  | F |  |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn 1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% |
| Vol Thru, \% | 0\% | 0\% | 100\% | 21\% | 0\% | 100\% | 100\% |
| Vol Right, \% | 0\% | 100\% | 0\% | 79\% | 0\% | 0\% | 10\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 505 | 315 | 49 | 113 | 203 | 03 | 63 |
| LT Vol | 505 | 0 | 0 | 0 | 203 | 0 | 0 |
| Through Vol | 0 | 0 | 49 | 24 | 0 | 63 | 63 |
| RT Vol | 0 | 315 | 0 | 89 | 0 | 0 | 0 |
| Lane Flow Rate | 561 | 350 | 54 | 126 | 226 | 69 | 69 |
| Geometry Gro | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 1.094 | 0.565 | 0.12 | 0.26 | 0.502 | 0.145 | 0.171 |
| Departure Headway (Hd) | 7.021 | 5.814 | 8.34 | 7.77 | 8.304 | 7.791 | 6.013 |
| Convergence, Y/N | Yes |
| Cap | 522 | 623 | 433 | 465 | 438 | 463 | 600 |
| Service Time | 4.748 | 3.541 | 6.04 | 5.47 | 6.004 | 5.491 | 3.713 |
| HCM Lane VIC Ratio | 1.075 | 0.562 | 0.125 | 0.271 | 0.516 | 0.149 | 0.115 |
| HCM Control Delay | 93.5 | 15.9 | 12.2 | 13.2 | 19.1 | 11.8 | 9.5 |
| HCM Lane LOS | F | c | B | B | C | B | A |
| HCM 95ih-tile Q | 17.8 | 3.5 | 0.4 | 1 | 2.7 | 0.5 | 0.4 |

## Existing PM

3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.8 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | 4 |  |  | * |  |  | * |  |
| Traffic Vol, veh/h | 9 | 129 | 0 | 21 | 81 | 175 | 1 | 9 | 17 | 225 | 29 | 24 |
| Future Vol, veh/h | 9 | 128 | 0 | 21 | 81 | 175 | 1 | 9 | 17 | 225 | 29 | 24 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heary Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 10 | 137 | 0 | 22 | 86 | 186 | 1 | 10 | 18 | 239 | 31 | 26 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | W8 |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | W8 |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 9.6 |  |  | 10.5 |  |  | 8.4 |  |  | 11.9 |  |  |
| HCM LOS | A |  |  | B |  |  | A |  |  | B |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $4 \%$ | $7 \%$ | $8 \%$ | $81 \%$ |
| Vol Thru, \% | $33 \%$ | $93 \%$ | $29 \%$ | $10 \%$ |
| Vol Right, \% | $63 \%$ | $0 \%$ | $63 \%$ | $9 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 27 | 138 | 277 | 278 |
| LT Vol | 1 | 9 | 21 | 225 |
| Through Vol | 9 | 129 | 81 | 29 |
| RT Vol | 17 | 0 | 175 | 24 |
| Lane Flow Rate | 29 | 147 | 295 | 296 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.041 | 0.21 | 0.377 | 0.419 |
| Departure Headway (Hd) | 5.142 | 5.147 | 4.606 | 5.103 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 701 | 690 | 775 | 698 |
| Service Time | 3.142 | 3.233 | 2.677 | 3.189 |
| HCM Lane VIC Ratio | 0.041 | 0.213 | 0.381 | 0.424 |
| HCM Control Delay | 8.4 | 9.6 | 10.5 | 11.9 |
| HCM Lane LOS | A | A | $B$ | B |
| HCM 95th-tile Q | 0.1 | 0.8 | 1.8 | 2.1 |

Existing PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |
| :--- | :--- |
| Intersection Delay, s/veh | 17 |
| Intersection LOS | C |


| Movement | EBL | EBT | EBR | WBL. | WBT | WBR | NBL | NBT | NBR | SBI | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \% | $\hat{\dagger}$ |  |  | * $\hat{\%}$ |  |  | * |  |  | * | F |
| Traffic Vol, veh/h | 195 | 142 | 46 | 114 | 196 | 197 | 26 | 48 | 53 | 216 | 35 | 106 |
| Future Vol, veh/h | 195 | 142 | 46 | 114 | 196 | 197 | 26 | 48 | 53 | 216 | 35 | 106 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 203 | 148 | 48 | 119 | 20.4 | 205 | 27 | 50 | 55 | 225 | 36 | 110 |
| Number of Lanes | 1 | 1 | 0 | 0 |  | 0 | 0 | 1 | 0 | 0 | 1 |  |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Leff | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conficting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 15.8 | 17.5 | 14.4 | 18.5 |
| HCM LOS | C | C | B | C |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $20 \%$ | $100 \%$ | $0 \%$ | $54 \%$ | $0 \%$ | $86 \%$ | $0 \%$ |
| Vol Thru, $\%$ | $38 \%$ | $0 \%$ | $76 \%$ | $46 \%$ | $33 \%$ | $14 \%$ | $0 \%$ |
| Vol Right, \% | $42 \%$ | $0 \%$ | $24 \%$ | $0 \%$ | $67 \%$ | $0 \%$ | $100 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 127 | 195 | 188 | 212 | 295 | 251 | 106 |
| LT Vol | 26 | 195 | 0 | 114 | 0 | 210 | 0 |
| Through Vol | 48 | 0 | 142 | 98 | 98 | 35 | 0 |
| RT Vol | 53 | 0 | 46 | 0 | 197 | 0 | 106 |
| Lane Flow Rate | 132 | 203 | 196 | 221 | 307 | 261 | 110 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.295 | 0.447 | 0.393 | 0.46 | 0.576 | 0.583 | 0.211 |
| Departure Headway (Hd) | 8.031 | 7.918 | 7.228 | 7.506 | 6.75 | 8.034 | 6.875 |
| Convergence, YIN | Yes |
| Cap | 447 | 455 | 497 | 479 | 535 | 450 | 521 |
| Service Time | 6.095 | 5.671 | 4.98 | 5.256 | 4.5 | 5.384 | 4.625 |
| HCM Lane VIC Ratio | 0.295 | 0.446 | 0.394 | 0.461 | 0.574 | 0.58 | 0.211 |
| HCM Control Delay | 14.4 | 17 | 14.6 | 16.5 | 18.3 | 21.5 | 11.5 |
| HCM Lane LOS | $B$ | $C$ | $B$ | $C$ | $C$ | $C$ | $B$ |
| HCM 95th-tile Q | 1.2 | 2.3 | 1.9 | 2.4 | 3.6 | 3.6 | 0.8 |

Existing $P M$
5：Callan Blvd \＆Serramonte Blvd

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 5 | 个个 |  | ＊ | 車 ${ }^{\text {c }}$ |  | 1 | $\hat{\beta}$ |  | 1 | $\uparrow$ | ${ }^{\text {F }}$ |
| Traffic Volume（vph） | 63 | 264 | 87 | 127 | 211 | 205 | 197 | 246 | 103 | 130 | 274 | 116 |
| Future Volume（vph） | 63 | 264 | 87 | 127 | 211 | 205 | 197 | 246 | 103 | 130 | 274 | 116 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Totai Lost time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Util．Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpd，ped／bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb，ped／bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Fir | 1.00 | 0.96 |  | 1.00 | 0.93 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（prot） | 1770 | 3382 |  | 1770 | 3244 |  | 1770 | 1769 |  | 1770 | 1863 | 1558 |
| Flt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satci．Fiow（perm） | 1770 | 3382 |  | 1770 | 3244 |  | 1770 | 1769 |  | 1770 | 1863 | 1558 |
| Peak－hour factor，PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj．Flow（vph） | 64 | 269 | 89 | 130 | 215 | 209 | 201 | 251 | 105 | 133 | 280 | 118 |
| RTOR Reduction（vph） | 0 | 58 | 0 | 0 | 155 | 0 | 0 | 24 | 0 | 0 | 0 | 87 |
| Lane Group Flow（vph） | 64 | 300 | 0 | 130 | 269 | 0 | 201 | 332 | 0 | 133 | 280 | 31 |
| Contl．Peds．（\＃／hr） | 9 |  | 6 | 6 |  | 9 | 4 |  | 10 | 10 |  | 4 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Actuated Green，G（s） | 2.8 | 11.7 |  | 5.1 | 14.0 |  | 7.1 | 16.0 |  | 5.4 | 14.3 | 14.3 |
| Effective Green， 9 （s） | 2.8 | 11.7 |  | 5.1 | 14.0 |  | 7.1 | 16.0 |  | 5.4 | 14.3 | 14.3 |
| Actuated g／C Ratio | 0.05 | 0.22 |  | 0.09 | 0.26 |  | 0.13 | 0.30 |  | 0.10 | 0.26 | 0.26 |
| Clearance Time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap（vph） | 91 | 730 |  | 166 | 837 |  | 231 | 522 |  | 176 | 491 | 411 |
| v／s Ratio Prot | 0.04 | c0．09 |  | c0．07 | 0.08 |  | c0．11 | c0．19 |  | 0.08 | 0.15 |  |
| v／s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| V／c Ratio | 0.70 | 0.41 |  | 0.78 | 0.32 |  | 0.87 | 0.64 |  | 0.76 | 0.57 | 0.08 |
| Uniform Delay，d1 | 25.3 | 18.3 |  | 24.0 | 16.3 |  | 23.1 | 16.6 |  | 23.8 | 17.3 | 15.0 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay，d2 | 21.8 | 0.4 |  | 21.0 | 0.2 |  | 28.0 | 2.5 |  | 16.7 | 1.6 | 0.1 |
| Delay（s） | 47.1 | 18.7 |  | 45.0 | 16.5 |  | 51.1 | 19.1 |  | 40.5 | 18.9 | 15.1 |
| Level of Service | 0 | B |  | D | B |  | D | B |  | D | B | B |
| Approach Delay（s） |  | 23.0 |  |  | 23.2 |  |  | 30.6 |  |  | 23.5 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 25.2 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.64 |  |  |
| Actuated Cycle Length（s） | 54.2 | Sum of lost time（s） | 16.0 |
| Intersection Capacity Utilization | $57.9 \%$ | ICU Level of Service | B |
| Analysis Period（min） | 15 |  |  |
| C Critical Lane Group |  |  |  |



| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | ¢ |  |  | $\hat{4}$ | F |  | ¢ |  |  | ${ }_{\text {¢ }}$ |  |
| Traffic Vol, veh/h | 4 | 85 | 57 | 84 | 141 | 202 | 13 | 136 | 66 | 91 | 206 | 3 |
| Future Vol, veh/h | 4 | 85 | 57 | 84 | 141 | 202 | 13 | 136 | 66 | 91 | 206 | 3 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | , | 2 | 2 | 2 |
| Mvmt Fiow | 4 | 93 | 63 | 92 | 155 | 222 | 14 | 149 | 73 | 100 | 226 | 3 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicing Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 12.3 |  |  | 13.9 |  |  | 13.7 |  |  | 17.6 |  |  |
| HCMLOS | B |  |  | B |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $6 \%$ | $3 \%$ | $37 \%$ | $0 \%$ | $30 \%$ |
| Vol Thru, \% | $63 \%$ | $58 \%$ | $63 \%$ | $0 \%$ | $69 \%$ |
| Vol Right, \% | $31 \%$ | $39 \%$ | $0 \%$ | $100 \%$ | $1 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 215 | 146 | 225 | 202 | 300 |
| LT Vol | 13 | 4 | 84 | 0 | 91 |
| Through Vol | 136 | 85 | 141 | 0 | 206 |
| RT Vol | 66 | 57 | 0 | 202 | 3 |
| Lane Flow Rate | 236 | 160 | 247 | 222 | 330 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.412 | 0.291 | 0.472 | 0.368 | 0.577 |
| Departure Headway (Hd) | 6.272 | 6.524 | 6.866 | 5.962 | 6.296 |
| Convergence, YN | Yes | Yes | Yes | Yes | Yes |
| Cap | 572 | 549 | 527 | 606 | 574 |
| Service Time | 4.324 | 4.583 | 4.589 | 3.684 | 4.316 |
| HCM Lane VIC Ratio | 0.413 | 0.291 | 0.469 | 0.366 | 0.575 |
| HCM Control Delay | 13.7 | 12.3 | 15.6 | 12.1 | 17.6 |
| HCM Lane LS | $B$ | $B$ | $C$ | $B$ | $C$ |
| HCM 95th-file Q | 2 | 1.2 | 2.5 | 1.7 | 3.7 |

Existing + Project AM
2: SR 1 SB Ramps \& Clarinada Ave


| Lane | NBL 1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol L.eft, \% | 100\% | 0\% | 0\% | 0\% | 400\% | 0\% | 0\% |
| Vol Thru, \% | 0\% | 0\% | 100\% | 20\% | 0\% | 100\% | 100\% |
| Vol Right, \% | 0\% | 100\% | 0\% | 80\% | 0\% | 0\% | 0\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 294 | 258 | 76 | 187 | 86 | 47 | 47 |
| LTVol | 294 | 0 | 0 | 0 | 86 | 0 | 0 |
| Through Vol | 0 | 0 | 76 | 38 | 0 | 47 | 47 |
| RT Vol | 0 | 258 | 0 | 149 | 0 | 0 | 0 |
| Lane Flow Rate | 334 | 293 | 86 | 212 | 98 | 53 | 53 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util ( $X$ ) | 0.621 | 0.447 | 0.167 | 0.378 | 0.208 | 0.105 | 0.079 |
| Departure Headway (Hd) | 6.689 | 5.484 | 6.981 | 6.41 | 7.68 | 7.169 | 5.398 |
| Convergence, Y/N | Yes |
| Cap | 538 | 654 | 512 | 559 | 466 | 498 | 659 |
| Service Time | 4.438 | 3.233 | 4.746 | 4.175 | 5.452 | 4.941 | 3.169 |
| HCM Lane V/C Ratio | 0.621 | 0.448 | 0.168 | 0.379 | 0.21 | 0.106 | 0.08 |
| HCM Control Delay | 19.8 | 12.6 | 11.2 | 13.1 | 12.5 | 10.8 | 8.6 |
| HCM Lane LOS | C | B | B | B | B | 8 | A |
| HCM 95th-tile Q | 4.2 | 2.3 | 0.6 | 1.8 | 0.8 | 0.3 | 0.3 |

Existing + Project AM
3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 15.4 |  |
| Intersection LOS | C |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | * |  |  | 4 |  |  | * |  |
| Traffic Vol, veh/h | 12 | 278 | 2 | 9 | 85 | 180 | 3 | 13 | 45 | 319 | 15 | 8 |
| Fulure Vol, veh/h | 12 | 278 | 2 | 9 | 85 | 180 | 3 | 13 | 45 | 319 | 15 | 8 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 13 | 305 | 2 | 10 | 93 | 198 | 3 | 14 | 49 | 351 | 16 | 9 |
| Number of Lanes | 0 | 1 | O | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |


| Approach | EB | WB | NB | SB |
| :--- | :---: | ---: | ---: | :---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 1 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 1 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conflicting Lanes Right | 1 | 1 | 1 | 1 |
| HCM Control Delay | 15.1 | 13.2 | 10 | 18.4 |
| HCM LOS | $C$ | $B$ | A | C |


| Lane | NBLn1 | EBLn1 | WBLT1 | SBLI 1 |
| :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 5\% | 4\% | 3\% | 93\% |
| Vol Thru, \% | 21\% | 95\% | 31\% | 4\% |
| Vol Right, \% | 74\% | 1\% | 66\% | 2\% |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 61 | 292 | 274 | 342 |
| LT Vol | 3 | 12 | 9 | 319 |
| Through Vol | 13 | 278 | 85 | 15 |
| RT Vol | 45 | 2 | 180 | 8 |
| Lane Flow Rate | 67 | 321 | 301 | 376 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util ( X ) | 0.115 | 0.518 | 0.458 | 0.622 |
| Departure Headway (Hd) | 6.165 | 5.807 | 5.479 | 5.954 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 585 | 616 | 650 | 601 |
| Service Time | 4.165 | 3.894 | 3.568 | 4.03 |
| HCM Lane VIC Ratio | 0.115 | 0.521 | 0.463 | 0.626 |
| HCM Control Delay | 10 | 15.1 | 13.2 | 18.4 |
| HCM Lane LOS | A | C | B | C |
| HCM 95th-tile Q | 0.4 | 3 | 2.4 | 4.3 |

Existing + Project AM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/ven | 35.8 |  |
| Intersection LOS | E |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 4 | $\uparrow$ |  |  | $4 \hat{4}$ |  |  | 4 |  |  | 4 | F |
| Traffic Vol, veh/h | 402 | 225 | 37 | 56 | 131 | 211 | 51 | 61 | 55 | 193 | 42 | 95 |
| Future Vol, veh/h | 402 | 225 | 37 | 56 | 131 | 211 | 51 | 61 | 55 | 193 | 42 | 95 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 442 | 247 | 41 | 62 | 144 | 232 | 56 | 67 | 60 | 212 | 46 | 104 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 2 |  |  | 2 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 2 |  |  | 1 |  |  | 2 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 2 |  |  | 2 |  |  | 2 |  |  |
| HCM Control Delay | 55.4 |  |  | 21.2 |  |  | 19.2 |  |  | 22.3 |  |  |
| HCM LOS | F |  |  | C |  |  | C |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 31\% | 100\% | 0\% | 46\% | 0\% | 82\% | 0\% |
| Vol Thru, \% | 37\% | 0\% | 86\% | 54\% | 24\% | 18\% | 0\% |
| Vol Right, \% | 33\% | 0\% | 14\% | 0\% | 76\% | 0\% | 100\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 167 | 402 | 282 | 122 | 277 | 235 | 95 |
| LTVol | 51 | 402 | 0 | 56 | 0 | 193 | 0 |
| Through Vol | 61 | 0 | 225 | 66 | 66 | 42 | 0 |
| RT Vol | 55 | 0 | 37 | 0 | 211 | 0 | 95 |
| Lane Flow Rate | 184 | 442 | 288 | 134 | 304 | 258 | 104 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.45 | 1.018 | 0.614 | 0.312 | 0.652 | 0.634 | 0.226 |
| Departure Headway (Hd) | 9.024 | 8.292 | 7.674 | 8.586 | 7.73 | 9.027 | 7.806 |
| Convergence, Y/N | Yes |
| Cap | 402 | 437 | 469 | 422 | 468 | 403 | 458 |
| Service Time | 7.024 | 6.051 | 5.432 | 6.286 | 5.492 | 6.727 | 5.577 |
| HCM Lane VIC Ratio | 0.458 | 1.011 | 0.614 | 0.318 | 0.65 | 0.64 | 0.227 |
| HCM Control Delay | 19.2 | 77.1 | 22 | 15.1 | 23.9 | 26.1 | 12.9 |
| HCM Lane LOS | C | F | C | C | C | D | B |
| HCM 95th-ile Q | 2.3 | 13.3 | 4 | 1.3 | 4.6 | 4.2 | 0.9 |



| Intersection |  |
| :--- | ---: | :--- |
| Intersection Delay, slveh | 14 |
| Intersection LOS | B |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Configurations |  | 4 |  |  | 4 | $\pi$ |  | 4 |  | 4 | 4 |  |
| Traffic Vol, veh/h | 1 | 67 | 26 | 85 | 170 | 249 | 11 | 128 | 45 | 99 | 189 | 3 |
| Future Vol, veh/h | 1 | 67 | 26 | 85 | 170 | 249 | 11 | 128 | 45 | 99 | 189 | 3 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, $\%$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 1 | 74 | 29 | 93 | 187 | 274 | 12 | 141 | 49 | 109 | 208 | 3 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |


| Approach | EB | WB | NB | SB |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |  |
| Opposing Lanes | 2 | 1 | 1 | 1 |  |
| Conflicting Approach Left | SB | NB | EB | WB |  |
| Conflicting Lanes Left | 1 | 1 | 1 | 2 |  |
| Conflicting Approach Right | NB | SB | WB | EB |  |
| Conflicting Lanes Right | 1 | 1 | 2 | 1 |  |
| HCM Control Delay | 10.9 | 14.1 | 12.4 | 16 |  |
| HCMLOS | B | B | B | C |  |


| Lane | NBLn 1 | EBLn1 | WBLn1 | WBLn2 | SBLn 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 6\% | 1\% | 33\% | 0\% | 34\% |
| Vol Thru, \% | 70\% | 71\% | 67\% | 0\% | 65\% |
| Vol Right, \% | 24\% | 28\% | 0\% | 100\% | 1\% |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Trafic Vol by Lane | 184 | 94 | 255 | 249 | 291 |
| LT Vol | 11 | 1 | 85 | 0 | 99 |
| Through Vol | 128 | 67 | 170 | 0 | 189 |
| RT Vol | 45 | 26 | 0 | 249 | 3 |
| Lane Flow Rate | 202 | 103 | 280 | 274 | 320 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.343 | 0.183 | 0.503 | 0.424 | 0.537 |
| Departure Headway (Hd) | 6.101 | 6.375 | 6.464 | 5.583 | 6.046 |
| Convergence, $\mathrm{Y} \mathbb{N}$ | Yes | Yes | Yes | Yes | Yes |
| Cap | 586 | 558 | 555 | 640 | 595 |
| Service Time | 4.181 | 4.472 | 4.233 | 3.352 | 4.117 |
| HCM Lane VIC Ratio | 0.345 | 0.185 | 0.505 | 0.428 | 0.538 |
| HCM Control Delay | 12.4 | 10.9 | 15.7 | 12.4 | 16 |
| HCM Lane LOS | B | B | C | B | C |
| HCM 95th-tile Q | 1.5 | 0.7 | 2.8 | 2.1 | 3.2 |



| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Configurations | $\uparrow \uparrow$ |  | 1 | $1 \uparrow$ | 1 | 7 |
| Traffic Vol, veh/h | 99 | 119 | 222 | 120 | 386 | 249 |
| Future Vol, veh/h | 99 | 119 | 222 | 120 | $38 \overline{6}$ | 249 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 105 | 127 | 236 | 128 | 411 | 265 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |


| Approach | EB | WB | NB |
| :--- | ---: | ---: | ---: |
| Opposing Approach | WB | EB |  |
| Opposing Lanes | 3 | 2 | 0 |
| Conficting Approach Left |  | NB | EB |
| Conflicting Lanes Left | 0 | 2 | 2 |
| Conflicting Approach Right | NB |  | WB |
| Conflicting Lanes Right | 2 | 0 | 3 |
| HCM Control Delay | 12.9 | 15.8 | 25.7 |
| HCM LOS | B | C | D |



Existing+Project School PM 3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/ven | 11.8 |  |
| Intersection LOS | B |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Configurations |  | 4 |  |  | 4 |  |  | 4 |  |  | 4 |
| Traffic Vol, veh/h | 4 | 141 | 3 | 11 | 98 | 176 | 2 | 6 | 19 | 261 | 19 |
| Future Vol, veh/h | 4 | 141 | 3 | 11 | 98 | 176 | 2 | 6 | 19 | 261 | 19 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, $\%$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 4 | 155 | 3 | 12 | 108 | 193 | 2 | 7 | 21 | 287 | 21 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 18 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 1 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 1 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conflicting Lanes Right | 1 | 1 | 1 | 1 |
| HCM Control Delay | 10.1 | 11.3 | 8.6 | 13.3 |
| HCM LOS | B | B | A | B |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $7 \%$ | $3 \%$ | $4 \%$ | $88 \%$ |
| Vol Thru, \% | $22 \%$ | $95 \%$ | $34 \%$ | $6 \%$ |
| Vol Right, \% | $70 \%$ | $2 \%$ | $62 \%$ | $5 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 27 | 148 | 285 | 296 |
| LT Vol | 2 | 4 | 11 | 261 |
| Through Vol | 6 | 141 | 98 | 19 |
| RT Vol | 19 | 3 | 176 | 16 |
| Lane Flow Rate | 30 | 16.3 | 313 | 325 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.044 | 0.242 | 0.422 | 0.482 |
| Departure Headway (Hd) | 5.295 | 5.366 | 4.846 | 5.334 |
| Convergence, YN | Yes | Yes | Yes | Yes |
| Cap | 675 | 668 | 749 | 677 |
| Service Time | 3.339 | 3.401 | 2.846 | 3.365 |
| HCM Lane VIC Ratio | 0.044 | 0.244 | 0.418 | 0.48 |
| HCM Control Delay | 8.6 | 10.1 | 11.3 | 13.3 |
| HCM Lane LOS | A | B | B | B |
| HCM 95th-ile Q | 0.1 | 0.9 | 2.1 | 2.6 |

Existing+Project School PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |
| :---: | :---: |
| Intersection Delay, s/veh | 13.9 |
| Intersection LOS | B |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{1}$ | F |  |  | + ${ }^{\text {a }}$ |  |  | * |  |  | $\uparrow$ | F |
| Traffic Vol, veh/h | 224 | 188 | 32 | 32 | 168 | 176 | 19 | 11 | 18 | 193 | 24 | 102 |
| Future Vol, vehih | 224 | 188 | 32 | 32 | 168 | 176 | 19 | 11 | 18 | 193 | 24 | 102 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 233 | 196 | 33 | 33 | 175 | 183 | 20 | 11 | 19 | 201 | 25 | 106 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | , |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conflicting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 14.4 | 13.2 | 11.4 | 14.5 |
| HCM LOS | B | B | B | B |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn 1 | WBLn2 | SBLn1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 40\% | 100\% | 0\% | 28\% | 0\% | 89\% | 0\% |
| Vol Thru, \% | 23\% | 0\% | 85\% | 72\% | 32\% | 11\% | 0\% |
| Vol Right, \% | 38\% | 0\% | 15\% | 0\% | 68\% | 0\% | 100\% |
| Sign Control | Stop | Stop | Slop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 48 | 224 | 220 | 116 | 260 | 217 | 102 |
| LT Vol | 19 | 224 | 0 | 32 | 0 | 193 | 0 |
| Through Vol | 11 | 0 | 188 | 84 | 84 | 24 | 0 |
| RT Vol | 18 | 0 | 32 | 0 | 176 | 0 | 102. |
| Lane Flow Rate | 50 | 233 | 229 | 121 | 271 | 226 | 106 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util ( $X$ ) | 0.105 | 0.45 | 0.403 | 0.225 | 0.458 | 0.462 | 0.183 |
| Departure Headway (Hd) | 7.551 | 6.937 | 6.324 | 6.708 | 6.084 | 7.362 | 6.197 |
| Convergence, Y/N | Yes |
| Cap | 478 | 516 | 566 | 532 | 588 | 488 | 575 |
| Service Time | 5.551 | 4.717 | 4.103 | 4.491 | 3.867 | 5.142 | 3.977 |
| HCM Lane V/C Ratio | 0.105 | 0.452 | 0.405 | 0.227 | 0.461 | 0.463 | 0.184 |
| HCM Control Delay | 11.4 | 15.3 | 13.4 | 11.5 | 14 | 16.4 | 10.4 |
| HCM Lane LOS | B | C | B | B | B | c | B |
| HCM 95th-tile Q | 0.3 | 2.3 | 1.9 | 0.9 | 2.4 | 2.4 | 0.7 |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{7}$ | 个t |  | ＊ | 舟仿 |  | \％ | $\hat{\beta}$ |  | 7 | $\uparrow$ | F |
| Traffic Volume（vph） | 60 | 245 | 96 | 126 | 153 | 204 | 148 | 271 | 114 | 119 | 252 | 88 |
| Future Volume（vph） | 60 | 245 | 90 | 126 | 153 | 204 | 148 | 271 | 114 | 119 | 252 | 88 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Util．Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb，ped／bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb，ped／bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Fri | 1.00 | 0.96 |  | 1.00 | 0.91 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Said．Flow（prot） | 1770 | 3341 |  | 1770 | 3190 |  | 1770 | 1769 |  | 1770 | 1863 | 1553 |
| Flt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Fiow（perm） | 1770 | 3341 |  | 1770 | 3190 |  | 1770 | 1769 |  | 1770 | 1863 | 1553 |
| Peak－hour factor，PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj．Flow（vph） | 61 | 250 | 98 | 129 | 156 | 208 | 151 | 277 | 116 | 121 | 257 | 90 |
| RTOR Reduction（vph） | 0 | 74 | 0 | 0 | 155 | 0 | 0 | 24 | 0 | 0 | 0 | 65 |
| Lane Group Fiow（vph） | 61 | 274 | 0 | 129 | 209 | 0 | 151 | 369 | 0 | 121 | 257 | 25 |
| Confl．Peds．（\＃\％hr） | 13 |  | 19 | 19 |  | 13 | 7 |  | 9 | 9 |  | 7 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Actuated Green，G（s） | 2.8 | 11.3 |  | 5.1 | 13.6 |  | 6.1 | 16.4 |  | 4.6 | 14.9 | 14.9 |
| Effective Green， $\mathrm{g}(\mathrm{s})$ | 2.8 | 11.3 |  | 5.1 | 13.6 |  | 6.1 | 16.4 |  | 4.6 | 14.9 | 14.9 |
| Actuated g／C Ratio | 0.05 | 0.21 |  | 0.10 | 0.25 |  | 0.11 | 0.31 |  | 0.09 | 0.28 | 0.28 |
| Clearance Time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap（vph） | 92 | 706 |  | 169 | 812 |  | 202 | 543 |  | 152 | 519 | 433 |
| v／s Ratio Prot | 0.03 | c0．08 |  | c0．07 | 0.07 |  | c0．09 | c0． 21 |  | 0.07 | 0.14 |  |
| v／s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| vic Ratio | 0.66 | 0.39 |  | 0.76 | 0.26 |  | 0.75 | 0.68 |  | 0.80 | 0.50 | 0.06 |
| Uniform Delay，di | 24.8 | 18.9 |  | 23.6 | 15.9 |  | 22.9 | 16.2 |  | 23.9 | 16.1 | 14.1 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay，d2 | 16.5 | 0.4 |  | 18.3 | 0.2 |  | 14.0 | 3.4 |  | 24.3 | 0.7 | 0.1 |
| Delay（s） | 41.4 | 18.4 |  | 41.9 | 16.0 |  | 36.9 | 19.6 |  | 48.3 | 16.8 | 14.2 |
| Level of Service | D | B |  | D | B |  | D | B |  | D | B | B |
| Approach Delay（s） |  | 21.9 |  |  | 22.8 |  |  | 24.4 |  |  | 24.5 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | :--- |
| HCM 2000 Control Delay | 23.5 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.62 |  |  |
| Actuated Cycle Length（s） | 53.4 | Sum of lost time（s） | 16.0 |
| Intersection Capacity Utilization | $60.1 \%$ | ICU Level of Service | B |
| Analysis Period（min） | 15 |  |  |
| C Critical Lane Group |  |  |  |


| Intersection |  |
| :--- | ---: |
| Intersection Delay, s/veh | 16.7 |
| Intersection LOS | C |
|  |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | 4 | F |  | $\uparrow$ |  |  | 4 |  |
| Traffic Vol, veh/h | 4 | 48 | 23 | 116 | 209 | 322 | 23 | 139 | 40 | 64 | 158 | 7 |
| Future Vol, veh/h | 4 | 48 | 23 | 116 | 209 | 322 | 23 | 139 | 40 | 64 | 158 | 7 |
| Peak Hour Factor | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmi Flow | 5 | 56 | 27 | 135 | 243 | 374 | 27 | 162 | 47 | 74 | 184 | 8 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Lefl | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 11 |  |  | 18.8 |  |  | 13.8 |  |  | 15.1 |  |  |
| HCM LOS | B |  |  | C |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $11 \%$ | $5 \%$ | $36 \%$ | $0 \%$ | $28 \%$ |
| Vol Thru, \% | $69 \%$ | $64 \%$ | $64 \%$ | $0 \%$ | $69 \%$ |
| Vol Right, \% | $20 \%$ | $31 \%$ | $0 \%$ | $100 \%$ | $3 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 202 | 75 | 325 | 322 | 229 |
| LT Vol | 23 | 4 | 116 | 0 | 64 |
| Through Vol | 139 | 48 | 209 | 0 | 158 |
| RT Vol | 40 | 23 | 0 | 322 | 7 |
| Lane Flow Rate | 235 | 87 | 378 | 374 | 266 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.413 | 0.162 | 0.677 | 0.578 | 0.472 |
| Departure Headway (Hd) | 6.328 | 6.684 | 6.453 | 5.56 | 6.384 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 566 | 540 | 559 | 644 | 562 |
| Service Time | 4.408 | 4.684 | 4.223 | 3.329 | 4.48 |
| HCM Lane VIC Ratio | 0.415 | 0.161 | 0.676 | 0.581 | 0.473 |
| HCM Control Delay | 13.8 | 11 | 21.8 | 15.7 | 15.1 |
| HCM Lane LOS | $B$ | $B$ | $C$ | $C$ | $C$ |
| HCM 95th-tile Q | 2 | 0.6 | 5.1 | 3.7 | 2.5 |

Existing + Project PM
2: SR 1 SB Ramps \& Clarinada Ave


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 100\% | 0\% | 0\% | 0\% | 100\% | 0\% | 0\% |
| Vol Thru, \% | 0\% | 0\% | 100\% | 21\% | 0\% | 100\% | 100\% |
| Vol Right, \% | 0\% | 100\% | 0\% | 79\% | 0\% | 0\% | 0\% |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Slop | Stop |
| Trafic Vol by Lane | 514 | 323 | 49 | 116 | 205 | 63 | 63 |
| LT Vol | 514 | 0 | 0 | 0 | 205 | 0 | 0 |
| Through Vol | 0 | 0 | 49 | 24 | 0 | 63 | 63 |
| RT Vol | 0 | 323 | 0 | 92 | 0 | 0 | 0 |
| Lane Flow Rate | 571 | 359 | 54 | 129 | 228 | 69 | 69 |
| Geometry Gro | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util ( $X$ ) | 1.118 | 0.582 | 0.119 | 0.268 | 0.509 | 0.146 | 0.112 |
| Departure Headway (Hd) | 7.05 | 5.843 | 8.394 | 7.819 | 8.355 | 7.842 | 6.063 |
| Convergence, Y/N | Yes |
| Cap | 520 | 617 | 430 | 463 | 435 | 460 | 595 |
| Service Time | 4.773 | 3.567 | 6.094 | 5.519 | 6.055 | 5.542 | 3.763 |
| HCM Lane VIC Ratio | 1.098 | 0.582 | 0.126 | 0.279 | 0.524 | 0.15 | 0.116 |
| HCM Control Delay | 101.6 | 16.4 | 12.2 | 13.4 | 19.4 | 11.9 | 9.5 |
| HCM Lane LOS | F | C | B | B | C | B | A |
| HCM 95th-tile Q | 18.8 | 3.7 | 0.4 | 1.1 | 2.8 | 0.5 | 0.4 |


| Intersection |  |
| :--- | ---: |
| Intersection Delay, siveh | 11.2 |
| Intersection LOS | 8 |


| Movement | EBL | EBT | EBR | WBL. | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Contigurations |  | $\stackrel{ }{*}$ |  |  | ${ }_{*}$ |  |  | \& |  |  | ¢ |  |
| Traffic Vol, veh/h | 9 | 129 | 0 | 21 | 81 | 182 | 1 | 9 | 17 | 247 | 29 | 24 |
| Future Vol, veinh | 9 | 129 | 0 | 21 | 81 | 182 | 1 | 9 | 17 | 247 | 29 | 24 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 10 | 137 | 0 | 22 | 86 | 194 | 1 | 10 | 18 | 263 | 31 | 26 |
| Number of Lanes | 0 | i | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 1 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 1 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conflicting Lanes Right | 1 | 1 | 1 | 1 |
| HCM Conirol Deiay | 9.8 | 10.8 | 8.5 | 12.5 |
| HCM LOS | A | B | A | B |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :---: | :---: | :---: | :---: | :---: |
| Vol Leff, \% | 4\% | 7\% | $7 \%$ | 82\% |
| Vol Thru, \% | 33\% | 93\% | 29\% | 10\% |
| Vol Right, \% | $63 \%$ | 0\% | 64\% | 8\% |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 27 | 138 | 284 | 300 |
| LTVOI | 1 | 9 | 21 | 247 |
| Through Vol | 9 | 129 | 81 | 29 |
| RT Vol | 17 | 0 | 182 | 24 |
| Lane Flow Rate | 29 | 147 | 302 | 319 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util ( $X$ ) | 0.042 | 0.213 | 0.392 | 0.455 |
| Departure Headway (Hd) | 5.222 | 5.229 | 4.669 | 5.135 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 690 | 678 | 761 | 693 |
| Service Time | 3.222 | 3.327 | 2.749 | 3.23 |
| HCM Lane VIC Ratio | 0.042 | 0.217 | 0.397 | 0.46 |
| HCM Control Delay | 8.5 | 9.8 | 10.8 | 12.5 |
| HCM Lane LOS | A | A | B | B |
| HCM 95th-tile Q | 0.1 | 0.8 | 1.9 | 2.4 |

Existing + Project PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, siveh | 18.7 |  |
| Intersection LOS | C |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 7 | $\hat{\beta}$ |  |  | А ${ }^{\text {¢ }}$ |  |  | ¢ |  |  | $\uparrow$ | F |
| Traffic Vol, veh/h | 195 | 142 | 68 | 126 | 196 | 197 | 33 | 51 | 56 | 216 | 56 | 106 |
| Future Vöil, veh/h | 195 | 142 | 68 | 126 | 196 | 197 | 33 | 51 | 56 | 216 | 56 | 106 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Venhicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 203 | 148 | 71 | 131 | 204 | 205 | 34 | 53 | 58 | 225 | 58 | 110 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 |  |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conflicting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 16.9 | 19.1 | 15.5 | 21.2 |
| HCM LOS | C | C | C | C |


| Lane | NBL_1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn 1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Leff, \% | 24\% | 100\% | 0\% | $56 \%$ | 0\% | 79\% | 0\% |
| Vol Thru, \% | 36\% | 0\% | 68\% | 44\% | 33\% | 21\% | 0\% |
| Vol Right, \% | 40\% | 0\% | $32 \%$ | 0\% | 67\% | 0\% | 100\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 140 | 195 | 210 | 224 | 295 | 272 | 106 |
| LT Vol | 33 | 195 | 0 | 126 | 0 | 216 | 0 |
| Through Vol | 51 | 0 | 142 | 98 | 98 | 56 | 0 |
| RT Vol | 56 | 0 | 68 | 0 | 197 | 0 | 106 |
| Lane Flow Rate | 146 | 203 | 219 | 233 | 307 | 283 | 110 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.338 | 0.46 | 0.45 | 0.503 | 0.597 | 0.645 | 0.217 |
| Departure Headway (Hd) | 8.29 | 8.158 | 7.409 | 7.766 | 6.996 | 8.191 | 7.065 |
| Convergence, Y/N | Yes |
| Cap | 433 | 441 | 486 | 462 | 513 | 439 | 507 |
| Service Time | 6.368 | 5.926 | 5.177 | 5.532 | 4.761 | 5.954 | 4.827 |
| HCM Lane VIC Ratio | 0.337 | 0.46 | 0.451 | 0.504 | 0.598 | 0.645 | 0.217 |
| HCM Control Delay | 15.5 | 17.7 | 16.2 | 18.2 | 19.7 | 24.8 | 11.8 |
| HCM Lane LOS | C | C | C | C | C | C | B |
| HCM 95th-tile Q | 1.5 | 2.4 | 2.3 | 2.8 | 3.9 | 4.4 | 0.8 |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 7 | 个家 |  | \％ | 綰 |  | 7 | $\hat{0}$ |  | 1 | $\uparrow$ | F |
| Traffic Volume（vph） | 65 | 265 | 87 | 127 | 213 | 205 | 199 | 246 | 103 | 130 | 274 | 124 |
| Future Volume（vph） | 65 | 265 | 87 | 127 | 213 | 205 | 199 | 246 | 103 | 130 | 274 | 124 |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Uili．Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb，ped／bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb，ped／bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frt | 1.00 | 0.96 |  | 1.00 | 0.93 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（prot） | 1770 | 3382 |  | 1770 | 3245 |  | 1770 | 1769 |  | 1770 | 1863 | 1558 |
| Flt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd．Flow（perm） | 1770 | 3382 |  | 1770 | 3245 |  | 1770 | 1769 |  | 1770 | 1863 | 1558 |
| Peak－hour factor，PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj．Flow（vph） | 66 | 270 | 89 | 130 | 217 | 209 | 203 | 251 | 105 | 133 | 280 | 127 |
| RTOR Reduction（vph） | 0 | 57 | 0 | 0 | 155 | 0 | 0 | 24 | 0 | 0 | 0 | 94 |
| Lane Group Flow（vph） | 66 | 302 | 0 | 130 | 271 | 0 | 203 | 332 | 0 | 133 | 280 | 33 |
| Confl．Peds．（\＃／hr） | 9 |  | 6 | 6 |  | 9 | 4 |  | 10 | 10 |  | 4 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prol | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Acluated Green，G（s） | 2.8 | 11.8 |  | 5.1 | 14.1 |  | 7.1 | 16.0 |  | 5.4 | 14.3 | 14.3 |
| Effective Green， g （s） | 2.8 | 11.8 |  | 5.1 | 14.1 |  | 7.1 | 16.0 |  | 5.4 | 14.3 | 14.3 |
| Actuated g／＇R Ratio | 0.05 | 0.22 |  | 0.09 | 0.26 |  | 0.13 | 0.29 |  | 0.10 | 0.26 | 0.26 |
| Clearance Time（s） | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension（s） | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap（vph） | 91 | 734 |  | 166 | 842 |  | 231 | 521 |  | 176 | 490 | 410 |
| $v / s$ Ratio Prot | 0.04 | c0．09 |  | c0．07 | 0.08 |  | c0．11 | c0．19 |  | 0.08 | 0.15 |  |
| v／s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| vic Ratio | 0.73 | 0.41 |  | 0.78 | 0.32 |  | 0.88 | 0.64 |  | 0.76 | 0.57 | 0.08 |
| Uniform Delay，d1 | 25.4 | 18.3 |  | 24.1 | 16.2 |  | 23.2 | 16.6 |  | 23.8 | 17.3 | 15.1 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| incrementai Deiay，d2 | 24.7 | 0.4 |  | 21.0 | 0.2 |  | 29.2 | 2.6 |  | 16.7 | 1.6 | 0.1 |
| Delay（s） | 50.1 | 18.6 |  | 45.1 | 16.5 |  | 52.3 | 19.2 |  | 40.6 | 19.0 | 15.1 |
| Level of Service | D | B |  | D | B |  | D | B |  | D | $\bar{B}$ | B |
| Approach Delay（s） |  | 23.5 |  |  | 23.2 |  |  | 31.2 |  |  | 23.4 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 25.5 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.64 |  | 16.0 |
| Actuated Cycle Length（s） | 54.3 | Sum of lost time（s） | B |
| Intersection Capacity Utilization | $57.9 \%$ | ICU Level of Service |  |
| Analysis Period（min） | 15 |  |  |
| C Critical Lane Group |  |  |  |



| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | - | F |  | * |  |  | * |  |
| Traffic Vol, veh/h | 3 | 102 | 34 | 93 | 248 | 236 | 110 | 154 | 56 | 58 | 208 | 2 |
| Future Vol, veh/h | 3 | 102 | 34 | 93 | 248 | 236 | 110 | 154 | 56 | 58 | 208 | 2 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 3 | 112 | 37 | 102 | 273 | 259 | 121 | 169 | 62 | 64 | 229 | 2 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 14.2 |  |  | 23.6 |  |  | 23.3 |  |  | 19.8 |  |  |
| HCM LOS | B |  |  | C |  |  | C |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $34 \%$ | $2 \%$ | $27 \%$ | $0 \%$ | $22 \%$ |
| Vol Thru, \% | $48 \%$ | $73 \%$ | $73 \%$ | $0 \%$ | $78 \%$ |
| Vol Right, $\%$ | $17 \%$ | $24 \%$ | $0 \%$ | $100 \%$ | $1 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Siop |
| Traffic Vol by Lane | 320 | 139 | 341 | 230 | 268 |
| LT Vol | 110 | 3 | 93 | 0 | 58 |
| Through Vol | 154 | 102 | 248 | 0 | 208 |
| RT Vol | 50 | 34 | 0 | 236 | 2 |
| Lane Flow Rate | 352 | 153 | 375 | 259 | 295 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.675 | 0.32 | 0.76 | 0.464 | 0.583 |
| Departure Headway (Hd) | 6.907 | 7.537 | 7.297 | 6.44 | 7.129 |
| Convergence, YMN | Yes | Yes | Yes | Yes | Yes |
| Cap | 520 | 474 | 495 | 558 | 504 |
| Service Time: | 4.979 | 5.636 | 5.07 | 4.213 | 5.207 |
| HCM Lane VIC Ratio | 0.677 | 0.323 | 0.758 | 0.464 | 0.585 |
| HCM Control Delay | 23.3 | 14.2 | 29.8 | 14.7 | 19.8 |
| HCM Lane LOS | C | B | $D$ | $B$ | C |
| HCM 95th-tile Q | 5 | 1.4 | 6.6 | 2.4 | 3.7 |

Intersection Delay, slveh 148.5
Intersection LOS F

| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 舟 ${ }^{5}$ |  | 1 | 44 | 1 | 「 |
| Trafic Vol, veh/h | 87 | 118 | 544 | 29 | 546 | 326 |
| Future Vol, veh/h | 87 | 118 | 544 | 29 | 546 | 326 |
| Peak Hour Factor | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvimt Flow | 99 | 134 | 618 | 33 | 620 | 370 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Left |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conficting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 16.4 |  | 217.6 |  | 134.1 |  |
| HCM LOS | C |  | F |  | F |  |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left. $\%$ | $100 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $100 \%$ | $0 \%$ | $0 \%$ |
| Vol Thru, $\%$ | $0 \%$ | $0 \%$ | $100 \%$ | $20 \%$ | $0 \%$ | $100 \%$ | $100 \%$ |
| Vol Right, $\%$ | $0 \%$ | $100 \%$ | $0 \%$ | $80 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 546 | 326 | 58 | 147 | 544 | 15 | 15 |
| LT Vol | 546 | 0 | 0 | 0 | 544 | 0 | 0 |
| Through Vol | 0 | 0 | 58 | 29 | 0 | 15 | 15 |
| RT Vol | 0 | 326 | 0 | 118 | 0 | 0 | 0 |
| Lane Flow Rate | 620 | 370 | 66 | 167 | 618 | 16 | 16 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Utill (X) | 1.355 | 0.686 | 0.155 | 0.367 | 1.424 | 0.036 | 0.028 |
| Departure Headway (Hd) | 8.694 | 7.473 | 9.838 | 9.244 | 8.869 | 8.354 | 6.569 |
| Convergence, YN | Yes |
| Cap | 422 | 489 | 367 | 393 | 414 | 431 | 548 |
| Service Time | 6.394 | 5.173 | 7.538 | 6.944 | 6.569 | 6.054 | 4.269 |
| HCM Lane VIC Ratio | 1.469 | 0.757 | 0.18 | 0.425 | 1.493 | 0.037 | 0.029 |
| HCM Control Delay | 199.3 | 25 | 14.3 | 17.2 | 228.6 | 11.4 | 9.5 |
| HCM Lane LOS | F | $C$ | $B$ | $C$ | $F$ | $B$ | A |
| HCM 95th-tile Q | 26.4 | 5.2 | 0.5 | 1.7 | 29 | 0.1 | 0.1 |


| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 17.2 |  |
| Intersection LOS | $C$ |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | ${ }_{*}^{*}$ |  |  | * |  |  | 4 |  |
| Traffic Vol, veh/h | 6 | 262 | 12 | 16 | 83 | 254 | 2 | 38 | 42 | 304 | 6 | 23 |
| Future Vol, veh/h | 6 | 262 | 12 | 16 | 83 | 254 | 2 | 38 | 42 | 304 | 6 | 23 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 7 | 288 | 13 | 18 | 91 | 279 | 2 | 42 | 46 | 334 | 7 | 25 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 15.9 |  |  | 17.1 |  |  | 11 |  |  | 20 |  |  |
| HCM LOS | C |  |  | C |  |  | B |  |  | C |  |  |


| Lane | NBL.n.1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $2 \%$ | $2 \%$ | $5 \%$ | $91 \%$ |
| Vol Thru, \% | $46 \%$ | $94 \%$ | $24 \%$ | $2 \%$ |
| Vol Right, \% | $51 \%$ | $4 \%$ | $72 \%$ | $7 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 82 | 280 | 353 | 333 |
| LT Vol | 2 | 6 | 16 | 304 |
| Through Vol | 38 | 262 | 83 | 6 |
| RT Vol | 42 | 12 | 254 | 23 |
| Lane Flow Rate | 90 | 308 | 388 | 366 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.165 | 0.526 | 0.608 | 0.641 |
| Departure Headway (Hd) | 6.609 | 6.158 | 5.646 | 6.307 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 541 | 585 | 640 | 571 |
| Service Time | 4.673 | 4.202 | 3.686 | 4.35 |
| HCM Lane VIC Ratio | 0.166 | 0.526 | 0.606 | 0.641 |
| HCM Control Delay | 11 | 15.9 | 17.1 | 20 |
| HCM Lane LOS | $B$ | $C$ | $C$ | $C$ |
| HCM 95th-ile Q | 0.6 | 3.1 | 4.1 | 4.5 |

Cumulative No Project AM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, s/veh | 122.2 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | $F$ |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }_{1}$ | $\dagger$ |  |  | - $\uparrow$ |  |  | $\uparrow$ |  |  | - | 「 |
| Traffic Vol, veh/h | 446 | 112 | 51 | 157 | 274 | 378 | 31 | 111 | 161 | 191 | 95 | 106 |
| Future Vol, veh/h | 446 | 112 | 51 | 157 | 274 | 378 | 31 | 111 | 161 | 191 | 95 | 106 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 490 | 123 | 50 | 173 | 301 | 415 | 34 | 122 | 177 | 210 | 104 | 116 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 2 |  |  | 2 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 2 |  |  | 1 |  |  | 2 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 2 |  |  | 2 |  |  | 2 |  |  |
| HCM Control Delay | 156 |  |  | 158.5 |  |  | 57.7 |  |  | 44.6 |  |  |
| HCM LOS | F |  |  | F |  |  | F |  |  | E |  |  |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 10\% | 100\% | 0\% | 53\% | 0\% | 67\% | 0\% |
| Vol Thru, \% | 37\% | 0\% | 69\% | 47\% | 27\% | 33\% | 0\% |
| Vol Right, \% | 53\% | 0\% | 31\% | 0\% | 73\% | 0\% | 100\% |
| Sign Control | Stop | Stop | Stop | Stop | Siop | Stop | Stop |
| Traffic Vol by Lane | 303 | 446 | 163 | 294 | 515 | 286 | 106 |
| LT Vol | 31 | 446 | 0 | 157 | 0 | 191 | 0 |
| Through Vol | 111 | 0 | 112 | 137 | 137 | 95 | 0 |
| RT Vol | 161 | 0 | 51 | 0 | 378 | 0 | 106 |
| Lane Flow Rale | 333 | 490 | 179 | 323 | 566 | 314 | 116 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util ( X ) | 0.887 | 1.355 | 0.459 | 0.867 | 1.395 | 0.866 | 0.288 |
| Departure Headway (Hd) | 10.531 | 10.349 | 9.591 | 10.293 | 9.468 | 10.852 | 9.762 |
| Convergence, Y/N | Yes |
| Cap | 346 | 353 | 378 | 355 | 390 | 336 | 370 |
| Service Time | 8.531 | 8.049 | 7.291 | 7.993 | 7.168 | 8.552 | 7.462 |
| HCM Lane V/C Ratio | 0.962 | 1.388 | 0.474 | 0.91 | 1.459 | 0.935 | 0.314 |
| HCM Control Delay | 57.7 | 205.6 | 20.2 | 53.1 | 218.7 | 55.1 | 16.4 |
| HCM Lane LOS | F | F | C | F | F | F | C |
| HCM 95th-tile Q | 8.5 | 23.1 | 2.3 | 8.1 | 26.3 | 8 | 1.2 |

Cumulative No Project AM
5: Callan Blvd \& Serramonte Blvd


Cumulative NP School PM
1: St Francis Blvd \& Clarinada Ave

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, siveh | 13.5 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | 4 | 「 |  | \& |  |  | \& |  |
| Traffic Vol, veh/h | 5 | 28 | 42 | 78 | 183 | 288 | 41 | 124 | 47 | 30 | 199 | 5 |
| Future Vol, veh/h | 5 | 28 | 42 | 78 | 183 | 288 | 41 | 124 | 47 | 30 | 199 | 5 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 5 | 31 | 46 | 86 | 201 | 316 | 45 | 136 | 52 | 33 | 219 | 5 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SE |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Coritrol Delay | 10.2 |  |  | 14.1 |  |  | 12.8 |  |  | 13.6 |  |  |
| HCM LOS | B |  |  | B |  |  | B |  |  | B |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $19 \%$ | $7 \%$ | $30 \%$ | $0 \%$ | $13 \%$ |
| Vol Thru, \% | $58 \%$ | $37 \%$ | $70 \%$ | $0 \%$ | $85 \%$ |
| Voll Right, \% | $22 \%$ | $56 \%$ | $0 \%$ | $100 \%$ | $2 \%$ |
| Sign Control | Stop | Stop | Stop | Stap | Stop |
| Traffic Vol by Lane | 212 | 75 | 261 | 288 | 234 |
| LT Vol | 41 | 5 | 78 | 0 | 30 |
| Through Vol | 124 | 28 | 183 | 0 | 199 |
| RT Vol | 47 | 42 | 0 | 288 | 5 |
| Lane Flow Rate | 233 | 82 | 287 | 316 | 257 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.387 | 0.14 | 0.501 | 0.477 | 0.431 |
| Departure Headway (Hd) | 5.986 | 6.12 | 6.292 | 5.43 | 6.037 |
| Convergence, YiN | Yes | Yes | Yes | Yes | Yes |
| Cap | 599 | 582 | 571 | 661 | 594 |
| Service Time | 4.047 | 4.201 | 4.046 | 3.183 | 4.098 |
| HCM Lane VIC Ratio | 0.389 | 0.141 | 0.503 | 0.478 | 0.433 |
| HCM Control Delay | 12.8 | 10.2 | 15.2 | 13.1 | 13.6 |
| HCM Lane LOS | B | 8 | C | B | $B$ |
| HCM 95th-tile Q | 1.8 | 0.5 | 2.8 | 2.6 | 2.2 |

Cumulative NP School PM
2: SR 1 SB Ramps \& Clarinada Ave


| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 个家 |  | 7 | ¢ $\uparrow$ | \% | $\overline{7}$ |
| Traffic Vol, veh/h | 39 | 77 | 361 | 87 | 461 | 307 |
| Future Vol, vehih | 39 | 77 | 361 | 87 | 461 | 307 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumi flow | 41 | 82 | 384 | 93 | 490 | 327 |
| Number of Lanes | 2 | , | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conficting Approach Left |  |  | NB |  | EB |  |
| Conficicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 12.6 |  | 36 |  | 45.6 |  |
| HCMLOS | B |  | E |  | E |  |



Cumulative NP School PM
3: St Francis Blvd \& Serramonte Blvd


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | ¢ |  |  | \& |  |  | ¢ |  |  | ¢ |  |
| Traffic Vol, vehih | 10 | 138 | 2 | 29 | 96 | 211 | 3 | 29 | 24 | 285 | 11 | 72 |
| Future Vol, veh/h | 10 | 138 | 2 | 29 | 96 | 211 | 3 | 29 | 24 | 285 | 11 | 72 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 11 | 152 | 2 | 32 | 105 | 232 | 3 | 32 | 26 | 313 | 12 | 79 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposin Lanes | 1 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 1 |
| Conflicing Approach Right | NB | 1 | 1 | WB |
| Conflicting Lanes Right | 11.1 | 14.2 | 1 | EB |
| HCM Control Delay | $B$ | $B$ | 9.7 | 1 |
| HCM LOS | B | A | 17.3 |  |


| Lane | NBLn1 | EBLn1 | WBLL1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $5 \%$ | $7 \%$ | $9 \%$ | $77 \%$ |
| Vol Tru, \% | $52 \%$ | $92 \%$ | $29 \%$ | $3 \%$ |
| Vol Right \% | $43 \%$ | $1 \%$ | $63 \%$ | $20 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Trafic Vol by Lane | 56 | 150 | 336 | 368 |
| LT Vol | 3 | 10 | 29 | 285 |
| Through Vol | 29 | 138 | 96 | 11 |
| RT Vol | 64 | 2 | 211 | 72 |
| Lane Flow Rate | 1 | 165 | 369 | 404 |
| Geometry Grp | 1 | 1 | 1 |  |
| Degree of Util (X) | 0.101 | 0.27 | 0.535 | 0.622 |
| Departure Headway (Hd) | 5.904 | 5.892 | 5.213 | 5.534 |
| Convergence, YN | Yes | Yes | Yes | Yes |
| Cap | 602 | 607 | 690 | 651 |
| Service Time | 3.984 | 3.96 | 3.269 | 3.584 |
| HCM Lane VIC Ratio | 0.103 | 0.272 | 0.535 | 0.621 |
| HCM Control Delay | 9.7 | 11.1 | 14.2 | 17.3 |
| HCCM Lane LOS | A | $B$ | $B$ | C |
| HCM S5th-tile Q | 0.3 | 1.1 | 3.2 | 4.3 |
|  |  |  |  |  |

Cumulative NP School PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | :---: | :---: |
| Intersection Deiay, s/veh | 20.8 |  |
| Intersection LOS | C |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NEIR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{*}$ | 个 |  |  | * ${ }_{\text {¢ }}$ |  |  | * |  |  | 4 | F |
| Traffic Vol, veh/h | 208 | 106 | 38 | 95 | 190 | 296 | 33 | 57 | 108 | 212 | 15 | 73 |
| Future Vol, veh/h | 208 | 106 | 38 | 95 | 190 | 296 | 33 | 57 | 108 | 212 | 15 | 73 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 217 | 110 | 40 | 99 | 198 | 308 | 34 | 59 | 113 | 221 | 16 | 76 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 |  |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Coñflicting Approach Rigint | NB | SB | WB |  |
| Conflicting Lanes Right | 1 | 2 | 2 | EB |
| HCM Control Deiay | 16.9 | 25.2 | 17.8 | 2 |
| HCM LOS | C | D | C | 19 |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $17 \%$ | $100 \%$ | $0 \%$ | $50 \%$ | $0 \%$ | $93 \%$ | $0 \%$ |
| Vol Thru, \% | $29 \%$ | $0 \%$ | $74 \%$ | $50 \%$ | $24 \%$ | $7 \%$ | $0 \%$ |
| Vol Right, \% | $55 \%$ | $0 \%$ | $26 \%$ | $0 \%$ | $76 \%$ | $0 \%$ | $100 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 198 | 208 | 144 | 190 | 391 | 227 | 73 |
| LT Vol | 33 | 208 | 0 | 95 | 0 | 212 | 0 |
| Through Vol | 57 | 0 | 106 | 95 | 95 | 15 | 0 |
| RT Vol | 108 | 0 | 38 | 0 | 296 | 0 | 73 |
| Lane Flow Rate | 206 | 217 | 150 | 198 | 407 | 236 | 76 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.46 | 0.498 | 0.315 | 0.421 | 0.776 | 0.557 | 0.154 |
| Departure Headway (Hd) | 8.033 | 8.273 | 7.566 | 7.661 | 6.859 | 8.487 | 7.285 |
| Convergence, YIN | Yes |
| Cap | 448 | 433 | 473 | 469 | 525 | 423 | 490 |
| Service Time | 6.116 | 6.053 | 5.345 | 5.432 | 4.629 | 6.263 | 5.06 |
| HCM Lane VIC Ratio | 0.46 | 0.501 | 0.317 | 0.422 | 0.775 | 0.558 | 0.155 |
| HCM Control Delay | 17.8 | 19.1 | 13.8 | 15.9 | 29.7 | 21.5 | 11.4 |
| HCM Lane LOS | $C$ | $C$ | $B$ | $C$ | $D$ | $C$ | B |
| HCM 95th-tile Q | 2.4 | 2.7 | 1.3 | 2.1 | 7 | 3.3 | 0.5 |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{1}$ | 令 |  | \% | 4 ${ }^{2}$ |  | \% | 个 |  | \% | $\uparrow$ | F |
| Traffic Volume (vph) | 93 | 329 | 66 | 212 | 381 | 288 | 157 | 188 | 72 | 162 | 255 | 121 |
| Future Volume (vph) | 93 | 329 | 65 | 212 | 381 | 288 | 157 | 188 | 72 | 162 | 255 | 121 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Uill Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb, ped/bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb, ped/bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Fri | 1.00 | 0.98 |  | 1.00 | 0.94 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd. Flow (prot) | 1770 | 3433 |  | 1770 | 3280 |  | 1770 | 1775 |  | 1770 | 1863 | 1558 |
| Fll Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd. Flow (perm) | 1770 | 3433 |  | 1770 | 3280 |  | 1770 | 1775 |  | 1770 | 1863 | 1558 |
| Peak-hour factor, PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj. Flow (vph) | 95 | 336 | 67 | 216 | 389 | 294 | 160 | 192 | 73 | 165 | 260 | 123 |
| RTOR Reduction (vph) | 0 | 26 | 0 | 0 | 203 | 0 | 0 | 23 | 0 | 0 | 0 | 94 |
| Lane Group Flow (vph) | 95 | 377 | 0 | 216 | 480 | 0 | 160 | 242 | 0 | 165 | 260 | 29 |
| Confl. Peds. (\#/hr) | 9 |  | 6 | 6 |  | 9 | 4 |  | 10 | 10 |  | 4 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | 6 |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Actuated Green, G (s) | 6.4 | 13.5 |  | 9.1 | 16.2 |  | 6.1 | 12.6 |  | 7.1 | 13.6 | 13.6 |
| Effective Green, g (s) | 6.4 | 13.5 |  | 9.1 | 16.2 |  | 6.1 | 12.6 |  | 7.1 | 13.6 | 13.6 |
| Actuated g/C Ratio | 0.11 | 0.23 |  | 0.16 | 0.28 |  | 0.10 | 0.22 |  | 0.12 | 0.23 | 0.23 |
| Clearance Time (s) | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 194 | 794 |  | 276 | 911 |  | 185 | 383 |  | 215 | 434 | 363 |
| v/s Ratio Prot | 0.05 | 0.11 |  | c0.12 | c0.15 |  | 0.09 | 0.14 |  | c0.09 | c0.14 |  |
| v/s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| V/C Ratio | 0.49 | 0.47 |  | 0.78 | 0.53 |  | 0.86 | 0.63 |  | 0.77 | 0.60 | 0.08 |
| Uniform Delay, ${ }^{\text {d }}$ | 24.4 | 19.3 |  | 23.6 | 17.8 |  | 25.7 | 20.7 |  | 24.8 | 19.9 | 17.5 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2 | 1.9 | 0.4 |  | 13.5 | 0.6 |  | 31.7 | 3.4 |  | 15.1 | 2.2 | 0.9 |
| Delay (s) | 26.4 | 19.8 |  | 37.1 | 18.4 |  | 57.4 | 24.1 |  | 39.9 | 22.1 | 17.6 |
| Level of Service | C | B |  | D | 8 |  | E | C |  | D | C | B |
| Approach Delay (s) |  | 21.0 |  |  | 22.9 |  |  | 36.7 |  |  | 26.5 |  |
| Approach LOS |  | C |  |  | C |  |  | D |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 25.8 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.67 |  |  |
| Actuated Cycie Length (s) | 58.3 | Sum of lost time (s) | 16.0 |
| Intersection Capacity Utilization | $62.2 \%$ | ICU Level of Service | B |
| Annalysis Period (min) | 15 |  |  |
| c Critical Lane Group |  |  |  |

Cumulative NP PM
1: St Francis Blvd \& Clarinada Ave

| Intersection |  |
| :--- | ---: | :--- |
| Intersection Delay, siveh | 16.2 |
| Intersection LOS | C |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | - | F |  | 4 |  |  | 4 |  |
| Traffic Vol, veh/h | 5 | 31 | 45 | 84 | 197 | 310 | 44 | 133 | 51 | 32 | 214 | 5 |
| Future Vol, veh/h | 5 | 31 | 45 | 84 | 197 | 310 | 44 | 133 | 51 | 32 | 214 | 5 |
| Peak Hour Factor | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 6 | 36 | 52 | 98 | 229 | 360 | 51 | 155 | 59 | 37 | 249 | 6 |
| Number of Lannes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 11.1 |  |  | 17.4 |  |  | 14.9 |  |  | 16.2 |  |  |
| HCM LOS | B |  |  | c |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $19 \%$ | $6 \%$ | $30 \%$ | $0 \%$ | $13 \%$ |
| Vol Thru, \% | $58 \%$ | $38 \%$ | $70 \%$ | $0 \%$ | $85 \%$ |
| Vol Right, \% | $22 \%$ | $56 \%$ | $0 \%$ | $100 \%$ | $2 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 228 | 81 | 281 | 310 | 251 |
| LT Vol | 44 | 5 | 84 | 0 | 32 |
| Through Vol | 133 | 31 | 197 | 0 | 214 |
| RT Vol | 51 | 45 | 0 | 310 | 5 |
| Lane Flow Rate | 265 | 94 | 327 | 360 | 292 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.466 | 0.176 | 0.599 | 0.574 | 0.516 |
| Departure Headway (Hd) | 6.328 | 6.715 | 6.598 | 5.733 | 6.37 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 565 | 538 | 542 | 624 | 560 |
| Service Time | 4.426 | 4.715 | 4.384 | 3.519 | 4.466 |
| HCM Lane VIC Ratio | 0.469 | 0.175 | 0.603 | 0.577 | 0.521 |
| HCM Control Delay | 14.9 | 11.1 | 18.9 | 16.1 | 16.2 |
| HCM Lane LOS | $B$ | $B$ | $C$ | $C$ | $C$ |
| HCM 95tn-tile Q | 2.5 | 0.6 | 3.9 | $3 . \hat{6}$ | 2.9 |


| Intersection |  |
| :--- | ---: | :--- |
| Intersection Deiay，siveh | 76 |
| Intersection LOS | F |


| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Contigurations | 㗽 |  | \％ | 平个 | 7 | 「 |
| Traffic Vol，veh／h | 44 | 86 | 403 | 97 | 515 | 343 |
| Future Vol，veh／h | 44 | 86 | 403 | 97 | 515 | 343 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles，\％ | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 49 | 96 | 448 | 108 | 572 | 381 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Leff |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 13.8 |  | 58.9 |  | 95.4 |  |
| HCM LOS | B |  | F |  | F |  |


| Lane | NBLn 1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left，\％ | 100\％ | 0\％ | 0\％ | 0\％ | 100\％ | 0\％ | 0\％ |
| Vol Thru，\％ | 0\％ | 0\％ | 100\％ | 15\％ | 0\％ | 100\％ | 100\％ |
| Vol Right，\％ | 0\％ | 100\％ | 0\％ | 85\％ | 0\％ | 0\％ | $0 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 515 | 343 | 29 | 101 | 403 | 49 | 49 |
| LT Vol | 515 | 0 | 0 | 0 | 403 | 0 | 0 |
| Through Vol | 0 | 0 | 29 | 15 | 0 | 49 | 49 |
| RT Vol | 0 | 343 | 0 | 86 | 0 | 0 | 0 |
| Lane Flow Rate | 572 | 381 | 33 | 112 | 448 | 54 | 54 |
| Geometry Gro | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Uiil（ $X$ ） | 1.226 | 0.689 | 0.078 | 0.25 | 0.991 | 0.112 | 0.087 |
| Departure Headway（Hd） | 7.716 | 6.507 | 9.18 | 8.554 | 8.45 | 7.937 | 6.159 |
| Convergence，YN | Yes |
| Cap | 475 | 560 | 393 | 423 | 434 | 454 | 585 |
| Service Time | 5.424 | 4.214 | 6.88 | 6.254 | 6.15 | 5.637 | 3.859 |
| HCM Lane VIC Ratio | 1.204 | 0.68 | 0.084 | 0.265 | 1.032 | 0.119 | 0.092 |
| HCM Control Delay | 144 | 22.4 | 12.7 | 14.1 | 70.5 | 11.6 | 9.4 |
| HCM Lane LOS | F | c | B | B | F | B | A |
| HCM 95th－tile Q | 22.6 | 5.3 | 0.3 | 1 | 12.3 | 0.4 | 0.3 |

Cumulative NP PM
3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Deiay, siveh | 13.7 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | ${ }_{\text {¢ }}$ |  |  | * |  |
| Traffic Vol, veh/h | 10 | 137 | 2 | 29 | 95 | 209 | 3 | 28 | 24 | 282 | 11 | 71 |
| Future Voi, veh'h | 10 | 137 | 2 | 29 | 95 | 209 | 3 | 28 | 24 | 282 | 11 | 71 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 11 | 146 | 2 | 31 | 101 | 222 | 3 | 30 | 26 | 300 | 12 | 76 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Confilicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay HCMLOS | 10.8 |  |  | 13.3 |  |  | 9.4 |  |  | 16 |  |  |
|  | B |  |  | 8 |  |  | A |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 5\% | 7\% | 9\% | 77\% |
| Vol Thru, \% | 51\% | 92\% | 29\% | 3\% |
| Vol Right, \% | 44\% | 1\% | 63\% | 20\% |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 55 | 149 | 333 | 364 |
| LTV Vol | 3 | 10 | 29 | 282 |
| Through Vol | 28 | 137 | 95 | 11 |
| RT Vol | 24 |  | 209 | 71 |
| Lane Flow Rate | 59 | 159 | 354 | 387 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util ( $X$ ) | 0.094 | 0.254 | 0.504 | 0.586 |
| Departure Headway (Hd) | 5.764 | 5.772 | 5.117 | 5.448 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 618 | 620 | 701 | 662 |
| Service Time | 3.83 | 3.831 | 3.165 | 3.491 |
| HCM Lane V/C Ratio | 0.095 | 0.256 | 0.505 | 0.585 |
| HCM Control Delay | 9.4 | 10.8 | 13.3 | 16 |
| HCM Lane LOS | A | B | B | c |
| HCM 95th-tile Q | 0.3 | 1 | 2.9 | 3.8 |



| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 7 | F |  |  | * ${ }^{\text {¢ }}$ |  |  | A |  |  | $\uparrow$ | $\overline{7}$ |
| Traffic Vol, veh/h | 255 | 130 | 47 | 117 | 233 | 363 | 40 | 70 | 133 | 260 | 19 | 90 |
| Future Vol, veh/h | 255 | 130 | 47 | 117 | 233 | 363 | 40 | 70 | 133 | 260 | 19 | 90 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 266 | 135 | 49 | 122 | 243 | 378 | 42 | 73 | 139 | 271 | 20 | 94 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 |  |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opoosing Lanes | 2 | 2 | 2 | 1 |
| Conflicing Approach Left | SB | NB | EB | WB |
| Conficting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | WB | EB |
| Conficting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 24.7 | 74 | 26.4 | 30 |
| HCMLOS | C | F | $D$ | D |



Cumulative NP PM
5: Callan Blvd \& Serramonte Blvd


Cumulative+Project AM
1: St Francis Blvd \& Clarinada Ave
Intersection
Intersection Delay, s/veh $\quad 24.3$
Intersection LOS

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | $\uparrow$ | 「 |  | 4. |  |  | 4 |  |
| Traffic Vol, vehh | 3 | 102 | 34 | 95 | 248 | 236 | 110 | 173 | 72 | 58 | 210 | 2 |
| Future Vol, veh/h | 3 | 102 | 34 | 95 | 248 | 236 | 110 | 173 | 72. | 58 | 210 | 2 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2. | 2 | 2 | 2 |
| Mumt Flow | 3 | 112 | 37 | 104 | 273 | 259 | 121 | 190 | 79 | 64 | 231 | 2 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 2 |
| Conflicting Approach Right | NB | SB | WB |  |
| Conflicting Lanes Right | 1 | 1 | 2 | EB |
| HCM Control Delay | 14.8 | 25.5 | 28.6 | 1 |
| HCM LOS | B | D | D | 21 |
|  |  |  | C |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $31 \%$ | $2 \%$ | $28 \%$ | $0 \%$ | $21 \%$ |
| Vol Thru, \% | $49 \%$ | $73 \%$ | $72 \%$ | $0 \%$ | $78 \%$ |
| Vol Right, \% | $20 \%$ | $24 \%$ | $0 \%$ | $100 \%$ | $1 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 355 | 139 | 343 | 236 | 270 |
| LT Vol | 110 | 3 | 95 | 0 | 58 |
| Through Vol | 173 | 102 | 248 | 0 | 210 |
| RT Vol | 72 | 34 | 0 | 236 | 2 |
| Lane Flow Rate | 390 | 153 | 377 | 259 | 297 |
| Geometry Gra | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.754 | 0.335 | 0.783 | 0.477 | 0.602 |
| Departure Headway (Hd) | 6.96 | 7.905 | 7.483 | 6.622 | 7.306 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 515 | 458 | 482 | 539 | 490 |
| Service Time | 5.051 | 5.905 | 5.274 | 4.413 | 5.406 |
| HCM Lane VIC Ratio | 0.757 | 0.334 | 0.782 | 0.481 | 0.606 |
| HCM Control Delay | 28.6 | 14.8 | 32.5 | 15.4 | 21 |
| HCM Lane LOS | $D$ | $B$ | $D$ | $C$ | $C$ |
| HCM 95th-tile Q | 6.5 | 1.5 | 7 | 2.6 | 3.9 |

Cumulative＋Project AM
2：SR 1 SB Ramps \＆Clarinada Ave

| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Delay，siveh | 157.8 |  |  |  |  |  |
| Intersection LOS | F |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | 性的 |  | 1 | 中4 | 1 | F |
| Traffic Vol，veh／h | 87 | 134 | 560 | 29 | 548 | 327 |
| Future Vol，veh／h | 87 | 134 | 560 | 29 | 548 | 327 |
| Peak Hour Factor | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
| Heavy Vehicles，\％ | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 99 | 152 | 636 | 33 | 623 | 372 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Left |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 17.3 |  | 239.3 |  | 138.5 |  |
| HCMLOS | C |  | F |  | F |  |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left，\％ | $100 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $100 \%$ | $0 \%$ | $0 \%$ |
| Vol Thru，\％ | $0 \%$ | $0 \%$ | $100 \%$ | $18 \%$ | $0 \%$ | $100 \%$ | $100 \%$ |
| Vol Right，$\%$ | $0 \%$ | $100 \%$ | $0 \%$ | $82 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 548 | 327 | 58 | 163 | 560 | 15 | 15 |
| LT Vol | 548 | 0 | 0 | 0 | 560 | 0 | 0 |
| Through Vol | 0 | 0 | 58 | 29 | 0 | 15 | 15 |
| RT Vol | 0 | 327 | 0 | 134 | 0 | 0 | 0 |
| Lane Flow Rate | 623 | 372 | 66 | 185 | 636 | 16 | 16 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Uil（X） | 1.369 | 0.694 | 0.155 | 0.407 | 1.477 | 0.036 | 0.028 |
| Departure Headway（Hd） | 8.844 | 7.62 | 9.931 | 9.322 | 8.943 | 8.428 | 6.641 |
| Convergence，Y／N | Yes |
| Cap | 417 | 479 | 364 | 389 | 414 | 427 | 542 |
| Service Time | 6.544 | 5.32 | 7.631 | 7.022 | 6.643 | 6.128 | 4.341 |
| HCM Lane VIC Ratio | 1.494 | 0.777 | 0.181 | 0.476 | 1.536 | 0.037 | 0.03 |
| HCM Control Delay | 205.7 | 25.9 | 14.4 | 18.3 | 251.1 | 11.4 | 9.5 |
| HCM Lane LOS | F | $D$ | $B$ | $C$ | F | B | A |
| HCM 95th－tile Q | 26.6 | 5.3 | 0.5 | 1.9 | 31.2 | 0.1 | 0.1 |


| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 18.8 |  |
| Intersection LOS | C |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | * |  |  | \$ |  |  | *) |  |  | 4 |  |
| Traffic Vol, veh/h | 6 | 262 | 12 | 16 | 83 | 289 | 2 | 38 | 42 | 308 | 6 | 23 |
| Future Vol, veh/h | 6 | 262 | 12 | 16 | 83 | 289 | 2 | 38 | 42 | 308 | 6 | 23 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 7 | 288 | 13 | 18 | 91 | 318 | 2 | 42 | 46 | 338 | 7 | 25 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | 도 |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 16.5 |  |  | 19.8 |  |  | 11.3 |  |  | 21.3 |  |  |
| HCM LOS | C |  |  | C |  |  | B |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $2 \%$ | $2 \%$ | $4 \%$ | $91 \%$ |
| Vol Thru, \% | $46 \%$ | $94 \%$ | $21 \%$ | $2 \%$ |
| Vol Right, $\%$ | $51 \%$ | $4 \%$ | $74 \%$ | $7 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 82 | 280 | 388 | 337 |
| LT Vol | 2 | 6 | 16 | 308 |
| Through Vol | 38 | 262 | 83 | 6 |
| RT Vol | 42 | 12 | 289 | 23 |
| Lane Flow Rate | 90 | 308 | 426 | 370 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.17 | 0.538 | 0.674 | 0.663 |
| Departure Headway (Hd) | 6.804 | 6.293 | 5.694 | 6.444 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 524 | 572 | 635 | 559 |
| Service Time | 4.882 | 4.347 | 3.743 | 4.496 |
| HCM Lane V/C Ratio | 0.172 | 0.538 | 0.671 | 0.662 |
| HCM Control Delay | 11.3 | 16.5 | 19.8 | 21.3 |
| HCM Lane LOS | $B$ | $C$ | $C$ | $C$ |
| HCM 95th-lile Q | 0.6 | 3.2 | 5.2 | 4.9 |

Intersection
Intersection Delay, s/veh 139
intersection LOS

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \% | $\hat{\beta}$ |  |  | 4 $\uparrow$ |  |  | * |  |  | 4 | F |
| Traffic Vol, veh/h | 446 | 112 | 55 | 160 | 274 | 378 | 66 | 134 | 183 | 191 | 100 | 106 |
| Future Vol, veh/h | 446 | 112 | 55 | 160 | 274 | 378 | 66 | 134 | 183 | 191 | 100 | 106 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 490 | 123 | 60 | 176 | 301 | 415 | 73 | 147 | 201 | 210 | 110 | 116 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | E8 |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 2 |  |  | 2 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 2 |  |  | 1 |  |  | 2 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 2 |  |  | 2 |  |  | 2 |  |  |
| HCM Control Delay | 163.6 |  |  | 170.2 |  |  | 124.8 |  |  | 50.9 |  |  |
| HCM LOS | F |  |  | F |  |  | F |  |  | F |  |  |


| Lane | NBLn1 | EBLn1 | EBLLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $17 \%$ | $100 \%$ | $0 \%$ | $54 \%$ | $0 \%$ | $66 \%$ | $0 \%$ |
| Vol Thru, $\%$ | $35 \%$ | $0 \%$ | $67 \%$ | $46 \%$ | $27 \%$ | $34 \%$ | $0 \%$ |
| Vol Right, $\%$ | $48 \%$ | $0 \%$ | $33 \%$ | $0 \%$ | $73 \%$ | $0 \%$ | $100 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 383 | 446 | 167 | 297 | 515 | 291 | 106 |
| LT Vol | 66 | 446 | 0 | 160 | 0 | 191 | 0 |
| Through Vol | 134 | 0 | 112 | 137 | 137 | 100 | 0 |
| RT Vol | 183 | 0 | 55 | 0 | 378 | 0 | 106 |
| Lane Flow Rate | 421 | 490 | 184 | 326 | 566 | 320 | 116 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 1.138 | 1.378 | 0.479 | 0.894 | 1.426 | 0.903 | 0.296 |
| Departure Headway (Hd) | 10.656 | 10.83 | 10.056 | 10.907 | 10.075 | 11.267 | 10.179 |
| Convergence, Y/N | Yes |
| Cap | 345 | 338 | 362 | 336 | 368 | 323 | 355 |
| Service Time | 8.656 | 8.53 | $7.75 \hat{6}$ | 8.607 | 7.775 | 8.967 | 7.879 |
| HCM Lane V/C, Ratio | 1.22 | 1.45 | 0.508 | 0.97 | 1.538 | 0.991 | 0.327 |
| HCM Control Delay | 124.8 | 216.7 | 21.7 | 60.2 | 233.7 | 63.2 | 17.1 |
| HCM Lane LOS | F | F | C | F | F | F | C |
| HCM 95th-ile Q | 15.3 | 23.1 | 2.5 | 8.6 | 26.3 | 8.6 | 1.2 |

Cumulative+Project AM
5: Callan Blvd \& Serramonte Blvd



| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | 4 |  |  | 4 | F |  | 4 |  |  | * |  |
| Traffic Vol, veh/h | 5 | 28 | 42 | 87 | 183 | 288 | 41 | 128 | 50 | 30 | 212 | 5 |
| Future Vol, veh/h | 5 | 28 | 42 | 87 | 183 | 288 | 41 | 128 | 50 | 30 | 212 | 5 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 5 | 31 | 46 | 96 | 201 | 316 | 45 | 141 | 55 | 33 | 233 | 5 |
| Number of Lanes | 0 | 1 | 0 | 0 | , | 1 | 0 | 1 | 0 | , | 1 | 0 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 1 | 1 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 1 | 1 | 1 | 2 |
| Conflicting Approach Right | NB | SB | EB |  |
| Conflicting Lanes Right | 1 | 1 | 2 | 1 |
| HCM Control Delay | 10.4 | 14.7 | 13.2 | 14.3 |
| HCM LOS | B | B | B | B |


| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $19 \%$ | $7 \%$ | $32 \%$ | $0 \%$ | $12 \%$ |
| Vol Thru, \% | $58 \%$ | $37 \%$ | $68 \%$ | $0 \%$ | $86 \%$ |
| Vol Right, \% | $23 \%$ | $56 \%$ | $0 \%$ | $100 \%$ | $2 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 219 | 75 | 270 | 288 | 247 |
| LT Vol | 41 | 5 | 87 | 0 | 30 |
| Through Vol | 128 | 28 | 183 | 0 | 212 |
| RT Vol | 50 | 42 | 0 | 288 | 5 |
| Lane Flow Raie | 241 | 82 | 297 | 316 | 271 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.405 | 0.143 | 0.526 | 0.484 | 0.459 |
| Departure Headway (Hd) | 6.051 | 6.238 | 6.382 | 5.507 | 6.093 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 592 | 570 | 564 | 652 | 589 |
| Service Time | 4.12 | 4.33 | 4.144 | 3.269 | 4.161 |
| HCM Lane VIC Ratio | 0.407 | 0.144 | 0.527 | 0.485 | 0.46 |
| HCM Control Delay | 13.2 | 10.4 | 16.1 | 13.4 | 14.3 |
| HCM Lane LOS | $B$ | $B$ | $C$ | $B$ | $B$ |
| HCM 95th-tile Q | 2 | 0.5 | 3 | 2.6 | 2.4 |

Intersection
Intersection Delay, s/veh $\quad 41.7$
Intersection LOS

| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Lane Configurations | 46 |  | 1 | $4 \uparrow$ | 1 | F |
| Traffic Vol, veh/h | 39 | 80 | 363 | 87 | 470 | 315 |
| Future Vol, véh/h | 39 | 80 | 363 | 87 | 470 | 315 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt. Flow | 41 | 85 | 386 | 93 | 500 | 335 |
| Numiner of Lanes | 2 | 0 | 1 | 2 | $\mathbf{1}$ | 1 |


| Approach | EB | WB | NB |
| :--- | ---: | ---: | ---: |
| Opposing Approach | WB | EB |  |
| Opposing Lanes | 3 | 2 | 0 |
| Conflicting Approach Left |  | NB | EB |
| Conflicting Lanes Left | 0 | 2 | 2 |
| Conflicting Approach Right | NB |  | WB |
| Conflicting Lanes Right | 2 | 0 | 3 |
| HCM Control Delay | 12.7 | 36.2 | 49.3 |
| HCM LOS | B | E | E |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $100 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $100 \%$ | $0 \%$ | $0 \%$ |
| Vol Thru, $\%$ | $0 \%$ | $0 \%$ | $100 \%$ | $14 \%$ | $0 \%$ | $100 \%$ | $100 \%$ |
| Vol Right, $\%$ | $0 \%$ | $100 \%$ | $0 \%$ | $86 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 470 | 315 | 26 | 93 | 363 | 44 | 44 |
| LT Vol | 470 | 0 | 0 | 0 | 363 | 0 | 0 |
| Through Vol | 0 | 0 | 26 | 13 | 0 | 44 | 44 |
| RT Vol | 0 | 315 | 0 | 80 | 0 | 0 | 0 |
| Lane Flow Rate | 500 | 335 | 28 | 99 | 386 | 46 | 46 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 1.013 | 0.567 | 0.064 | 0.216 | 0.854 | 0.096 | 0.073 |
| Departure Headway (Hd) | 7.297 | 6.091 | 8.628 | 8.001 | 7.96 | 7.448 | 5.675 |
| Convergence, Y/N | Yes |
| Cap | 495 | 586 | 418 | 451 | 452 | 478 | 625 |
| Service Time | 5.09 | 3.884 | 6.328 | 5.701 | 5.755 | 5.243 | 3.469 |
| HCM Lane VIC Ratio | 1.01 | 0.572 | 0.067 | 0.22 | 0.854 | 0.096 | 0.074 |
| HCM Control Delay | 71.1 | 10.7 | 11.9 | 12.9 | 42.5 | 11 | 8.9 |
| HCM Lane LOS | F | C | $B$ | $B$ | E | B | A |
| HCM 95th-file Q | 14 | 3.5 | 0.2 | 0.8 | 8.6 | 0.3 | 0.2 |

Cumulative+Project School PM
3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, s/veh | 15.7 |  |  |  |  |  |  |  |  |  |  |  |
| Intersection LOS | C |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | * |  |  | \& |  |  | * |  |
| Traffic Vol, veh/h | 10 | 138 | 2 | 29 | 96 | 218 | 3 | 29 | 24 | 307 | 11 | 72 |
| Future Vol, vehith | 10 | 138 | 2 | 29 | 96 | 218 | 3 | 29 | 24 | 307 | 11 | 72 |
| Peak Hour Factor | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 11 | 152 | 2 | 32 | 105 | 240 | 3 | 32 | 26 | 337 | 12 | 79 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conllicting Approach Right | NB |  |  | SB |  |  | W8 |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 11.4 |  |  | 14.8 |  |  | 9.8 |  |  | 19.1 |  |  |
| HCMLOS | B |  |  | B |  |  | A |  |  | C |  |  |


| Lane | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $5 \%$ | $7 \%$ | $8 \%$ | $79 \%$ |
| Vol Thru, \% | $52 \%$ | $92 \%$ | $28 \%$ | $3 \%$ |
| Vol Right, \% | $43 \%$ | $1 \%$ | $64 \%$ | $18 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 56 | 150 | 343 | 390 |
| LT Vol | 3 | 10 | 29 | 307 |
| Through Vol | 29 | 138 | 96 | 11 |
| RT Vol | 24 | 2 | 218 | 72 |
| Lane Flow Rate | 62 | 165 | 377 | 429 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.103 | 0.275 | 0.555 | 0.665 |
| Departure Headway (Hd) | 6.006 | 6.005 | 5.298 | 5.585 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 591 | 595 | 678 | 643 |
| Service Time | 4.096 | 4.083 | 3.361 | 3.641 |
| HCM Lane VIC Ratio | 0.105 | 0.277 | 0.556 | 0.607 |
| HCM Control Delay | 9.8 | 11.4 | 14.8 | 19.1 |
| HCM Lane LOS | A | $B$ | $B$ | C |
| HCM 95th-tile Q | 0.3 | 1.1 | 3.4 | 5 |

Cumulative+Project School PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh $\quad 23.2$ |  |
| Intersection LOS | C |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 年 | $\hat{\beta}$ |  |  | * ${ }^{\text {¢ }}$ |  |  | * |  |  | $\hat{*}$ | F |
| Traffic Vol, veh/h | 208 | 106 | 60 | 107 | 190 | 296 | 40 | 60 | 111 | 212 | 36 | 73 |
| Fulure Vol, veh/h | 208 | 1006 | 60 | 107 | 190 | 296 | 40 | 60 | 111 | 212 | 36 | 73 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 217 | 110 | 63 | 111 | 198 | 308 | 42 | 63 | 116 | 221 | 38 | 76 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| Opposing Approach | WB | EB | SB | NB |
| Opposing Lanes | 2 | 2 | 2 | 1 |
| Conflicting Approach Left | SB | NB | EB | WB |
| Conflicting Lanes Left | 2 | 1 | 2 | 2 |
| Conflicting Approach Right | NB | SB | EB |  |
| Conflicting Lanes Right | 1 | 2 | 2 | 2 |
| HCM Control Delay | 18.1 | 28.2 | 19.9 | 22.1 |
| HCM LOS | C | D | C | C |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vol Left, \% | 19\% | 100\% | 0\% | 53\% | 0\% | 85\% | $0 \%$ |
| Vol Thru, \% | 28\% | 0\% | 64\% | 47\% | 24\% | 15\% | 0\% |
| Vol Right, \% | $53 \%$ | 0\% | 36\% | 0\% | 76\% | 0\% | 100\% |
| Sign Control | Stop |
| Traffic Vol by Lane | 211 | 208 | 166 | 202 | 391 | 248 | 73 |
| LT Vol | 40 | 208 | 0 | 107 | 0 | 212 | 0 |
| Through Vol | 60 | 0 | 106 | 95 | 95 | 36 | 0 |
| RT Vol | 111 | 0 | 60 | 0 | 296 | 0 | 73 |
| Lane Flow Rate | 220 | 217 | 173 | 210 | 407 | 258 | 76 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util ( $X$ ) | 0.512 | 0.52 | 0.378 | 0.47 | 0.806 | 0.628 | 0.16 |
| Departure Headway (Hd) | 8.393 | 8.642 | 7.862 | 8.04 | 7.246 | 8.749 | 7.585 |
| Convergence, Y/N | Yes |
| Cap | 431 | 418 | 460 | 450 | 501 | 413 | 475 |
| Service Time | 6.425 | 6.361 | 5.58 | 5.767 | 4.946 | 6.466 | 5.302 |
| HCM Lane VIC Ratio | 0.51 | 0.519 | 0.376 | 0.467 | 0.812 | 0.625 | 0.16 |
| HCM Control Delay | 19.9 | 20.4 | 15.3 | 17.7 | 33.6 | 25.1 | 11.7 |
| HCM Lane LOS | C | C | C | c | D | D | 8 |
| HCM 95th-tile Q | 2.8 | 2.9 | 1.7 | 2.5 | 7.6 | 4.2 | 0.6 |

Cumulative+Project School PM
5: Callan Blvd \& Serramonte Bivd


Cumulative+Project PM
1: St Francis Blvd \& Clarinada Ave

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 17.2 |  |
| Intersection LOS | C |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations |  | ¢ |  |  | ¢ | F' |  | * |  |  | * |  |
| Traffic Vol, veh/h | 5 | 31 | 45 | 93 | 197 | 310 | 44 | 137 | 54 | 32 | 227 | 5 |
| Future Vol, veh/h | 5 | 31 | 45 | 93 | 197 | 310 | 44 | 137 | 54 | 32 | 227 | 5 |
| Peak Hour Factor | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | $\hat{2}$ |
| Mumt Flow | ถิ | 36 | 52 | 108 | 229 | 360 | 51 | 159 | 63 | 37 | 264 | 6 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 2 |  |  | 1 |  |  |
| HCM Control Delay | 11.4 |  |  | 18.4 |  |  | 15.7 |  |  | 17.5 |  |  |
| HCM LOS | B |  |  | 6 |  |  | C |  |  | C |  |  |


|  | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $19 \%$ | $6 \%$ | $32 \%$ | $0 \%$ | $12 \%$ |
| Vol Thru, \% | $58 \%$ | $38 \%$ | $68 \%$ | $0 \%$ | $86 \%$ |
| Vol Right, \% | $23 \%$ | $56 \%$ | $0 \%$ | $100 \%$ | $2 \%$ |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 235 | 81 | 290 | 310 | 264 |
| LT Vol | 44 | 5 | 93 | 0 | 32 |
| Through Vol | 137 | 31 | 197 | 0 | 227 |
| RT Vol | 54 | 45 | 0 | 310 | 5 |
| Lane Flow Rate | 273 | 94 | 337 | 360 | 307 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.494 | 0.18 | 0.627 | 0.583 | 0.557 |
| Departure Headway (Hd) | 6.508 | 6.863 | 6.823 | 5.945 | 6.534 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 557 | 523 | 533 | 609 | 556 |
| Service Time | 4.521 | 4.904 | 4.523 | 3.645 | 4.546 |
| HCM Lane VIC Ratio | 0.49 | 0.18 | 0.632 | 0.591 | 0.552 |
| HCM Control Delay | 15.7 | 11.4 | 20.3 | 16.6 | 17.5 |
| HCM Lane LOS | C | $B$ | $C$ | $C$ | $C$ |
| HCM 95th-tile Q | 2.7 | 0.7 | 4.3 | 3.7 | 3.4 |

Cumulative＋Project PM
2：SR 1 SB Ramps \＆Clarinada Ave

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay，s／veh | 79.7 |  |
| Intersection LOS | F |  |


| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 性 |  | \％ | 个4 | 1 | 「 |
| Traftic Vol，veh／h | 44 | 89 | 405 | 97 | 524 | 351 |
| Future Vol，veh＇h | 44 | 89 | 405 | 97 | 524 | 351 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehides，\％ | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Flow | 49 | 99 | 450 | 108 | 582 | 390 |
| Number of Lanes | 2 | 0 | 1 | 2 | 1 | 1 |
| Approach | EB |  | WB |  | NB |  |
| Opposing Approach | WB |  | EB |  |  |  |
| Opposing Lanes | 3 |  | 2 |  | 0 |  |
| Conflicting Approach Left |  |  | NB |  | EB |  |
| Conflicting Lanes Left | 0 |  | 2 |  | 2 |  |
| Conflicting Approach Right | NB |  |  |  | WB |  |
| Conflicting Lanes Right | 2 |  | 0 |  | 3 |  |
| HCM Control Delay | 13.9 |  | 61.6 |  | 100.1 |  |
| HCMLOS | B |  | F |  | F |  |


| Lane | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left \％ | $100 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $100 \%$ | $0 \%$ | $0 \%$ |
| Vol Thru，\％ | $0 \%$ | $0 \%$ | $100 \%$ | $14 \%$ | $0 \%$ | $100 \%$ | $100 \%$ |
| Vol Right，\％ | $0 \%$ | $100 \%$ | $0 \%$ | $86 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 524 | 351 | 29 | 104 | 405 | 49 | 49 |
| LT Vol | 524 | 0 | 0 | 0 | 405 | 0 | 0 |
| Through Vol | 0 | 0 | 29 | 15 | 0 | 49 | 49 |
| RT Vol | 0 | 351 | 0 | 89 | 0 | 0 | 0 |
| Lane Flow Rate | 582 | 390 | 33 | 115 | 450 | 54 | 54 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Uill（X） | 1.245 | 0.703 | 0.078 | 0.257 | 1.003 | 0.113 | 0.087 |
| Departure Headway（Hd） | 7.701 | 6.491 | 9.224 | 8.595 | 8.486 | 7.973 | 6.195 |
| Convergence，Y／N | Yes |
| Cap | 472 | 558 | 391 | 420 | 432 | 452 | 582 |
| Service Time | 5.456 | 4.246 | 6.924 | 6.295 | 6.186 | 5.673 | 3.895 |
| HCM Lane VIC Ratio | 1.233 | 0.699 | 0.084 | 0.274 | 1.042 | 0.119 | 0.093 |
| HCM Control Delay | 151.5 | 23.3 | 12.7 | 14.2 | 73.8 | 11.7 | 9.5 |
| HCM Lane LOS | F | $C$ | $B$ | $B$ | F | B | A |
| HCM 95th－ile Q | 23.5 | 5.6 | 0.3 | 1 | 12.7 | 0.4 | 0.3 |

Cumulative+Project PM
3: St Francis Blvd \& Serramonte Blvd

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, s/veh | 14.6 |  |  |  |  |  |  |  |  |  |  |  |
| intersection LOS | B |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | \$ |  |  | * |  |  | * |  |
| Traffic Vol, veh/h | 10 | 137 | 2 | 29 | 95 | 216 | 3 | 28 | 24 | 304 | 11 | 71 |
| Future Vol, veh/h | 10 | 137 | 2 | 29 | 95 | 216 | 3 | 28 | 24 | 304 | 11 | 71 |
| Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvint Flow | 11 | 146 | 2 | 31 | 101 | 230 | 3 | 30 | 26 | 323 | 12 | 76 |
| Number of Lanes | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | WB |  |  | $E B$ |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | E8 |  |  |
| Conflicting Lanes Right | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  |
| HCM Control Delay | 11 |  |  | 13.8 |  |  | 9.6 |  |  | 17.4 |  |  |
| HCMLOS | B |  |  | B |  |  | A |  |  | c |  |  |


| Lane | NBLn1 | EBLn1 | WBLLn1 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Vol Left, \% | $5 \%$ | $7 \%$ | $9 \%$ | $79 \%$ |
| Vol Thru, \% | $51 \%$ | $92 \%$ | $28 \%$ | $3 \%$ |
| Vol Right, \% | $44 \%$ | $1 \%$ | $64 \%$ | $18 \%$ |
| Sign Control | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 55 | 149 | 340 | 386 |
| LT Vol | 3 | 10 | 29 | 304 |
| Through Vol | 28 | 137 | 95 | 11 |
| RT Vol | 24 | 2 | 216 | 71 |
| Lane Flow Rate | 59 | 159 | 362 | 411 |
| Geometry Grp | 1 | 1 | 1 | 1 |
| Degree of Util (X) | 0.095 | 0.259 | 0.522 | 0.627 |
| Departure Headway (Hd) | 5.859 | 5.878 | 5.198 | 5.497 |
| Convergence, Y/N | Yes | Yes | Yes | Yes |
| Cap | 608 | 609 | 691 | 657 |
| Service Time | 3.933 | 3.943 | 3.251 | 3.544 |
| HCM Lane VIC Ratio | 0.097 | 0.261 | 0.524 | 0.626 |
| HCM Control Delay | 9.6 | 11 | 13.8 | 17.4 |
| HCM Lane LOS | A | B | B | C |
| HCM 95th-tile Q | 0.3 | 1 | 3 | 4.4 |

Cumulative+Project PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Intersection |  |  |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 51.8 |  |
| Intersection LOS | F |  |


| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | 7 | $\hat{i}$ |  |  | $4 \hat{4}$ |  |  | 4 |  |  | 4 | $\stackrel{7}{7}$ |
| Traffic Vol, veh/h | 255 | 130 | 69 | 129 | 233 | 363 | 47 | 73 | 136 | 260 | 40 | 90 |
| Future Vol, veh/h | 255 | 130 | 69 | 129 | 233 | 363 | 47 | 73 | 136 | 260 | 40 | 90 |
| Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mumt Fiow | 266 | 135 | 72 | 134 | 243 | 378 | 49 | 76 | 142 | 271 | 42 | 94 |
| Number of Lanes | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Opposing Approach | W8 |  |  | EB |  |  | SB |  |  | NB |  |  |
| Opposing Lanes | 2 |  |  | 2 |  |  | 2 |  |  | 1 |  |  |
| Conflicting Approach Left | SB |  |  | NB |  |  | EB |  |  | WB |  |  |
| Conflicting Lanes Left | 2 |  |  | 1 |  |  | 2 |  |  | 2 |  |  |
| Conflicting Approach Right | NB |  |  | SB |  |  | WB |  |  | EB |  |  |
| Conflicting Lanes Right | 1 |  |  | 2 |  |  | 2 |  |  | 2 |  |  |
| HCM Control Delay | 26.4 |  |  | 83.7 |  |  | 30.1 |  |  | 36.4 |  |  |
| HCMLOS | D |  |  | F |  |  | D |  |  | E |  |  |


| Lane | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | $18 \%$ | $100 \%$ | $0 \%$ | $53 \%$ | $0 \%$ | $87 \%$ | $0 \%$ |
| Vol Thru, \% | $29 \%$ | $0 \%$ | $65 \%$ | $47 \%$ | $24 \%$ | $13 \%$ | $0 \%$ |
| Vol Right, \% | $53 \%$ | $0 \%$ | $35 \%$ | $0 \%$ | $76 \%$ | $0 \%$ | $100 \%$ |
| Sign Control | Stop |
| Traffic Vol by Lane | 256 | 255 | 199 | 246 | 480 | 300 | 90 |
| LT Vol | 47 | 255 | 0 | 129 | 0 | 260 | 0 |
| Through Vol | 73 | 0 | 130 | 117 | 117 | 40 | 0 |
| RT Vol | 136 | 0 | 69 | 0 | 363 | 0 | 90 |
| Lane Flow Rate | 267 | 266 | 207 | 256 | 499 | 313 | 94 |
| Geometry Grp | 6 | 7 | 7 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.674 | 0.687 | 0.498 | 0.64 | 1.136 | 0.812 | 0.213 |
| Departure Headway (Hd) | 9.503 | 9.713 | 8.935 | 9.016 | 8.189 | 9.737 | 8.556 |
| Convergence, Y/N | Yes |
| Cap | 384 | 375 | 406 | 404 | 445 | 375 | 422 |
| Service Time | 7.503 | 7.413 | 6.635 | 6.72 | 5.893 | 7.437 | 6.256 |
| HCM Lane VIC Ratio | 0.695 | 0.709 | 0.51 | 0.634 | 1.121 | 0.835 | 0.223 |
| HCM Control Delay | 30.1 | 31.2 | 20.2 | 26.4 | 113.1 | 43.3 | 13.6 |
| HCM Lane LOS | $D$ | $D$ | $C$ | 0 | $F$ | $E$ | $B$ |
| HCM 95th-tile Q | 4.7 | 4.9 | 2.7 | 4.3 | 17.9 | 7.1 | 0.8 |

Cumulative+Project PM
5: Callan Blvd \& Serramonte BIvd
03/25/2019

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configuraiions | \% | 个ts |  | \% | $\uparrow$ |  | \% | ¢ |  | * | $\uparrow$ | 「 |
| Traffic Volume (vph) | 103 | 359 | 72 | 230 | 416 | 313 | 173 | 204 | 78 | 176 | 277 | 139 |
| Future Volume (vph) | 103 | 359 | 72 | 230 | 416 | 313 | 173 | 204 | 78 | 176 | 277 | 139 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Lane Util. Factor | 1.00 | 0.95 |  | 1.00 | 0.95 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Frpb, ped/bikes | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 1.00 | 0.98 |
| Flpb, ped/bikes | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Fit | 1.00 | 0.98 |  | 1.00 | 0.94 |  | 1.00 | 0.96 |  | 1.00 | 1.00 | 0.85 |
| Fit Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd. Flow (prot) | 1770 | 3433 |  | 1770 | 3280 |  | 1770 | 1774 |  | 1770 | 1863 | 1557 |
| Flt Permitted | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 | 1.00 |
| Satd. Flow (perm) | 1770 | 3433 |  | 1770 | 3280 |  | 1770 | 1774 |  | 1770 | 1863 | 1557 |
| Peak-hour factor, PHF | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
| Adj. Flow (vph) | 105 | 366 | 73 | 235 | 424 | 319 | 177 | 208 | 80 | 180 | 283 | 142 |
| RTOR Reduction (vph) | 0 | 26 | 0 | 0 | 207 | 0 | 0 | 22 | 0 | 0 | 0 | 110 |
| Lane Group Flow (vph) | 105 | 413 | 0 | 235 | 536 | 0 | 177 | 266 | 0 | 180 | 283 | 32 |
| Confl. Peds. (\#hr) | 9 |  | 6 | 6 |  | 9 | 4 |  | 10 | 10 |  | 4 |
| Turn Type | Prot | NA |  | Prot | NA |  | Prot | NA |  | Prot | NA | Perm |
| Protected Phases | 7 | 4 |  | 3 | 8 |  | 5 | 2 |  | 1 | , |  |
| Permitted Phases |  |  |  |  |  |  |  |  |  |  |  | 6 |
| Actuated Green, G (s) | 4.6 | 13.3 |  | 9.1 | 17.8 |  | 7.1 | 13.4 |  | 7.1 | 13.4 | 13.4 |
| Eflective Green, g (s) | 4.6 | 13.3 |  | 9.1 | 17.8 |  | 7.1 | 13.4 |  | 7.1 | 13.4 | 13.4 |
| Actuated g/C Ratio | 0.08 | 0.23 |  | 0.15 | 0.30 |  | 0.12 | 0.23 |  | 0.12 | 0.23 | 0.23 |
| Clearance Time (s) | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 |  | 4.0 | 4.0 | 4.0 |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 138 | 775 |  | 273 | 991 |  | 213 | 403 |  | 213 | 423 | 354 |
| v/s Ratio Pro! | 0.06 | 0.12 |  | c0.13 | c0.16 |  | 0.10 | 0.15 |  | c0.10 | 0.15 |  |
| v/s Ratio Perm |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| vic Ratio | 0.76 | 0.53 |  | 0.86 | 0.54 |  | 0.83 | 0.66 |  | 0.85 | 0.67 | 0.09 |
| Uniform Delay, d1 | 26.6 | 20.1 |  | 24.3 | 17.1 |  | 25.3 | 20.7 |  | 25.4 | 20.7 | 17.9 |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2 | 21.6 | 0.7 |  | 23.1 | 0.6 |  | 23.2 | 3.9 |  | 25.2 | 4.0 | 0.1 |
| Delay (s) | 48.2 | 20.8 |  | 47.4 | 17.7 |  | 48.5 | 24.5 |  | 50.6 | 24.7 | 18.1 |
| Level of Service | D | C |  | D | B |  | D | C |  | D | c | B |
| Approach Delay (s) |  | 26.1 |  |  | 24.9 |  |  | 33.7 |  |  | 30.8 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | c |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 28.1 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.73 |  | 16.0 |
| Actuated Cycle Length (s) | 58.9 | Sum of lost time (s) | C |
| Intersection Capacity Utilization | $66.5 \%$ | ICU Level of Service |  |
| Analysis Period (min) | 15 |  |  |
| C Critical Lane Group |  |  |  |

Existing + Project PM
2: SR 1 SB Ramps \& Clarinada Ave


Existing + Project AM
4: Serramonte Blvd \& SR 1 NB Ramps
03/25/2019


|  | $\rightarrow$ | 7 | $\checkmark$ |  | 4 | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | 鲑 |  | 4 | 性 | * | F |
| Traffic Volume (vph) | 87 | 134 | 560 | 29 | 548 | 327 |
| Future Volume (vph) | 87 | 134 | 560 | 29 | 548 | 327 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 4.0 |  | 4.0 | 4.0 | 4.0 | 4.0 |
| Lane Util. Factor | 0.95 |  | 1.00 | 0.95 | 1.00 | 1.00 |
| Frpb, ped/bikes | 0.98 |  | 1.00 | 1.00 | 1.00 | 0.99 |
| Flpb, ped/bikes | 1.00 |  | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | 0.91 |  | 1.00 | 1.00 | 1.00 | 0.85 |
| Flt Protected | 1.00 |  | 0.95 | 1.00 | 0.95 | 1.00 |
| Satd. Flow (prot) | 3164 |  | 1770 | 3539 | 1770 | 1562 |
| Flt Permitted | 1.00 |  | 0.95 | 1.00 | 0.95 | 1.00 |
| Satd. Flow (perm) | 3164 |  | 1770 | 3539 | 1770 | 1562 |
| Peak-hour factor, PHF | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
| Adj. Flow (vph) | 99 | 152 | 636 | 33 | 623 | 372 |
| RTOR Reduction (vph) | 137 | 0 | 0 | 0 | 0 | 232 |
| Lane Group Flow (vph) | 114 | 0 | 636 | 33 | 623 | 140 |
| Confl, Peds. (\#/hr) |  | 3 | 3 |  |  | 2 |
| Turn Type | NA |  | Prot | NA | Prot | Perm |
| Protected Phases | 4 |  | 3 | 8 | 2 |  |
| Permitted Phases |  |  |  |  |  | 2 |
| Actuated Green, G (s) | 8.3 |  | 31.0 | 43.3 | 31.0 | 31.0 |
| Effective Green, g (s) | 8.3 |  | 31.0 | 43.3 | 31.0 | 31.0 |
| Actuated g/C Ratio | 0.10 |  | 0.38 | 0.53 | 0.38 | 0.38 |
| Clearance Time (s) | 4.0 |  | 4.0 | 4.0 | 4.0 | 4.0 |
| Vehicle Extension (s) | 3.0 |  | 3.0 | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 319 |  | 666 | 1861 | 666 | 588 |
| v/s Ratio Prot | c0.04 |  | c0.36 | 0.01 | c0.35 |  |
| v/s Ratio Perm |  |  |  |  |  | 0.09 |
| v/C Ratio | 0.36 |  | 0.95 | 0.02 | 0.94 | 0.24 |
| Uniform Delay, d1 | 34.5 |  | 25.0 | 9.3 | 24.7 | 17.6 |
| Progression Factor | 1.00 |  | 1.00 | 1.00 | 1.00 | 1.00 |
| Incremental Delay, ${ }^{\text {d }}$ | 0.7 |  | 24.1 | 0.0 | 20.4 | 0.2 |
| Delay (s) | 35.2 |  | 49.1 | 9.3 | 45.1 | 17.8 |
| Level of Service | D |  | D | A | D | B |
| Approach Delay (s) | 35.2 |  |  | 47.1 | 34.9 |  |
| Approach LOS | D |  |  | D | C |  |

Intersection Summary

| HCM 2000 Control Delay | 39.2 | HCM 2000 Level of Service | D |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Volume to Capacity ratio | 0.88 |  | 12.0 |
| Actuated Cycle Length (s) | 82.3 | Sum of lost lime (s) | D |
| Intersection Capacity Utilization | $78.9 \%$ | ICU Level of Service |  |
| Analysis Period (min) | 15 |  |  |
| C Critical Lane Group |  |  |  |

Cumulative+Project AM
4: Serramonte Blvd \& SR 1 NB Ramps

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \% | F |  |  | * ${ }^{\text {¢ }}$ |  |  | 4 |  |  | * | F |
| Traffic Volume (vph) | 446 | 112 | 55 | 160 | 274 | 378 | 66 | 134 | 183 | 191 | 100 | 106 |
| Future Volume (vph) | 446 | 112 | 55 | 160 | 274 | 378 | 66 | 134 | 183 | 191 | 100 | 106 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 4.0 | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 | 4.0 |
| Lane Util. Factor | 1.00 | 1.00 |  |  | 0.95 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Frpb, ped/bikes | 1.00 | 0.99 |  |  | 0.98 |  |  | 1.00 |  |  | 1.00 | 0.98 |
| Flpb, ped/bikes | 1.00 | 1.00 |  |  | 1.00 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Fit | 1.00 | 0.95 |  |  | 0.93 |  |  | 0.94 |  |  | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  |  | 0.99 |  |  | 0.99 |  |  | 0.97 | 1.00 |
| Satd. Flow (prot) | 1770 | 1747 |  |  | 3207 |  |  | 1726 |  |  | 1804 | 1552 |
| Fll Permitted | 0.95 | 1.00 |  |  | 0.99 |  |  | 0.82 |  |  | 0.46 | 1.00 |
| Satd. Flow (perm) | 1770 | 1747 |  |  | 3207 |  |  | 1436 |  |  | 863 | 1552 |
| Peak-hour factor, PHF | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Adj. Flow (vph) | 490 | 123 | 60 | 176 | 301 | 415 | 73 | 147 | 201 | 210 | 110 | 116 |
| RTOR Reduction (vph) | 0 | 25 | 0 | 0 | 224 | 0 | 0 | 47 | 0 | 0 | 0 | 76 |
| Lane Group Fiow (vph) | 490 | 158 | 0 | 0 | 668 | 0 | 0 | 374 | 0 | 0 | 320 | 40 |
| Confl. Peds. (\#hr) | 7 |  | 10 | 10 |  | 7 | 6 |  |  |  |  | 6 |
| Turn Type | Split | NA |  | Split | NA |  | Perm | NA |  | Perm | NA | Perm |
| Protected Phases | 4 | 4 |  | 8 | 8 |  |  | 2 |  |  | 6 |  |
| Permitted Phases |  |  |  |  |  |  | 2 |  |  | 6 |  | 6 |
| Actuated Green, G (s) | 18.0 | 18.0 |  |  | 16.0 |  |  | 24.0 |  |  | 24.0 | 24.0 |
| Effective Green, g (s) | 18.0 | 18.0 |  |  | 16.0 |  |  | 24.0 |  |  | 24.0 | 24.0 |
| Actuated g/C Ratio | 0.26 | 0.26 |  |  | 0.23 |  |  | 0.34 |  |  | 0.34 | 0.34 |
| Clearance Time (s) | 4.0 | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 | 4.0 |
| Vehicle Extension (s) | 3.0 | 3.0 |  |  | 3.0 |  |  | 3.0 |  |  | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 455 | 449 |  |  | 733 |  |  | 492 |  |  | 295 | 532 |
| v/s Ratio Prot | c0. 28 | 0.09 |  |  | c0.21 |  |  |  |  |  |  |  |
| v/s Ratio Perm |  |  |  |  |  |  |  | 0.26 |  |  | c0. 37 | 0.03 |
| v/c Ratio | 1.08 | 0.35 |  |  | 0.91 |  |  | 0.76 |  |  | 1.08 | 0.07 |
| Uniform Delay, d1 | 26.0 | 21.2 |  |  | 26.3 |  |  | 20.4 |  |  | 23.0 | 15.5 |
| Progression Factor | 1.00 | 1.00 |  |  | 1.00 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Incremental Delay, d2 | 64.4 | 0.5 |  |  | 15.5 |  |  | 6.6 |  |  | 76.9 | 0.1 |
| Delay (s) | 90.4 | 21.7 |  |  | 41.8 |  |  | 27.1 |  |  | 99.9 | 15.6 |
| Level of Service | F | C |  |  | D |  |  | C |  |  | $F$ | B |
| Approach Delay (s) |  | 71.7 |  |  | 41.8 |  |  | 27.1 |  |  | 77.4 |  |
| Approach LOS |  | E |  |  | D |  |  | C |  |  | E |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 54.0 | HCM 2000 Level of Service | D |
| HCM 2000 Volume to Capacity ratio | 1.03 |  |  |
| Actuated Cycle Length (s) | 70.0 | Sum of lost time (s) | 12.0 |
| Intersection Capacity Utilization | $100.5 \%$ | ICU Level of Service | G |
| Analysis Period (min) | 15 |  |  |
| c Critical Lane Group |  |  |  |

Cumulative＋Project School PM
2：SR 1 SB Ramps \＆Clarinada Ave

|  | $\rightarrow$ |  | $\checkmark$ | $\checkmark$ | 4 | $p$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |  |  |
| Lane Configurations | 个家 |  | 7 | 价 | \％ | 「＂ |  |  |
| Traffic Volume（vph） | 39 | 80 | 363 | 87 | 470 | 315 |  |  |
| Future Volume（vph） | 39 | 80 | 363 | 87 | 470 | 315 |  |  |
| Ideal Flow（vphpl） | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |  |  |
| Total Lost time（s） | 4.0 |  | 4.0 | 4.0 | 4.0 | 4.0 |  |  |
| Lane Util．Factor | 0.95 |  | 1.00 | 0.95 | 1.00 | 1.00 |  |  |
| Fripb，ped／bikes | 0.98 |  | 1.00 | 1.00 | 1.00 | 0.99 |  |  |
| Flpb，ped／bikes | 1.00 |  | 1.00 | 1.00 | 1.00 | 1.00 |  |  |
| Frt | 0.90 |  | 1.00 | 1.00 | 1.00 | 0.85 |  |  |
| Flt Protected | 1.00 |  | 0.95 | 1.00 | 0.95 | 1.00 |  |  |
| Satd．Flow（prot） | 3105 |  | 1770 | 3539 | 1770 | 1562 |  |  |
| Flt Permitted | 1.00 |  | 0.95 | 1.00 | 0.95 | 1.00 |  |  |
| Satd．Flow（perm） | 3105 |  | 1770 | 3539 | 1770 | 1562 |  |  |
| Peak－hour factor，PHF | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |  |  |
| Adj．Flow（vph） | 41 | 85 | 386 | 93 | 500 | 335 |  |  |
| RTOR Reduction（vph） | 77 | 0 | 0 | 0 | 0 | 208 |  |  |
| Lane Group Flow（vph） | 49 | 0 | 386 | 93 | 500 | 127 |  |  |
| Confl．Peds．（\＃\＃hr） |  | 3 | 3 |  |  | 2 |  |  |
| Turn Type | NA |  | Prol | NA | Prot | Perm |  |  |
| Protected Phases | 4 |  | 3 | 8 | 2 |  |  |  |
| Permitted Phases |  |  |  |  |  | 2 |  |  |
| Actuated Green，G（s） | 4.9 |  | 15.3 | 24.2 | 19.7 | 19.7 |  |  |
| Effective Green，g（s） | 4.9 |  | 15.3 | 24.2 | 19.7 | 19.7 |  |  |
| Actuatedg／C Ratio | 0.09 |  | 0.29 | 0.47 | 0.38 | 0.38 |  |  |
| Clearance Time（s） | 4.0 |  | 4.0 | 4.0 | 4.0 | 4.0 |  |  |
| Vehicle Extension（s） | 3.0 |  | 3.0 | 3.0 | 3.0 | 3.0 |  |  |
| Lane Grp Cap（vph） | 293 |  | 521 | 1650 | 671 | 592 |  |  |
| $v / s$ Ratio Prot | c0． 02 |  | c0．22 | 0.03 | c0．28 |  |  |  |
| v／s Ratio Perm |  |  |  |  |  | 0.08 |  |  |
| v／c Ratio | 0.17 |  | 0.74 | 0.06 | 0.75 | 0.21 |  |  |
| Uniform Delay，d1 | 21.6 |  | 16.5 | 7.6 | 13.9 | 10.9 |  |  |
| Progression Factor | 1.00 |  | 1.00 | 1.00 | 1.00 | 1.00 |  |  |
| Incremental Delay，d2 | 0.3 |  | 5.6 | 0.0 | 4.5 | 0.2 |  |  |
| Delay（s） | 21.9 |  | 22.1 | 7.6 | 18.4 | 11.1 |  |  |
| Level of Service | C |  | C | A | B | B |  |  |
| Approach Delay（s） | 21.9 |  |  | 19.3 | 15.5 |  |  |  |
| Approach LOS | C |  |  | B | B |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |
| HCM 2000 Control Delay |  | 17.3 |  | HCM 2000 Level of Service |  |  | B |  |
| HCM 2000 Volume to Capacity ratio |  | 0.67 |  | HCN 2000 Leva or Senice |  |  |  |  |
| Actualed Cycle Length（s） |  | 51.9 |  | Sum of lost time（s） |  |  | 12.0 |  |
| Intersection Capacity Utilization |  | 59．5\％ |  | ICU Level of Service |  |  | B |  |
| Analysis Period（min） |  | 15 |  |  |  |  |  |  |
| c Critical Lane Group |  |  |  |  |  |  |  |  |

Cumulative+Project PM
2: SR 1 SB Ramps \& Clarinada Ave


Cumulative+Project PM
4: Serramonte Blvd \& SR 1 NB Ramps

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{7}$ | 今 |  |  | 4 ${ }^{\text {a }}$ |  |  | ¢ |  |  | $\uparrow$ | $\overline{7}$ |
| Traffic Volume (vph) | 255 | 130 | 69 | 129 | 233 | 363 | 47 | 73 | 136 | 260 | 40 | 90 |
| Future Volume (vph) | 255 | 130 | 69 | 129 | 233 | 36.3 | 47 | 73 | 136 | 260 | 40 | 90 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 4.0 | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 | 4.0 |
| Lane Utill. Factor | 1.00 | 1.00 |  |  | 0.95 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Frpb, ped/fikes | 1.00 | 0.99 |  |  | 0.98 |  |  | 0.99 |  |  | 1.00 | 0.98 |
| Flpb, ped/bikes | 1.00 | 1.00 |  |  | 1.00 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Frt | 1.00 | 0.95 |  |  | 0.92 |  |  | 0.93 |  |  | 1.00 | 0.85 |
| Flt Protected | 0.95 | 1.00 |  |  | 0.99 |  |  | 0.99 |  |  | 0.96 | 1.00 |
| Satd. Flow (prot) | 1770 | 1745 |  |  | 3181 |  |  | 1700 |  |  | 1784 | 1553 |
| Flt Permitted | 0.95 | 1.00 |  |  | 0.99 |  |  | 0.90 |  |  | 0.55 | 1.00 |
| Satd. Flow (perm) | 1770 | 1745 |  |  | 3181 |  |  | 1541 |  |  | 1022 | 1553 |
| Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Adj. Flow (vph) | 266 | 135 | 72 | 134 | 243 | 378 | 49 | 76 | 142 | 271 | 42 | 94 |
| RTOR Reduction (vph) | 0 | 28 | 0 | 0 | 260 | 0 | 0 | 59 | 0 | 0 | 0 | 60 |
| Lane Group Flow (voh) | 266 | 179 | 0 | 0 | 495 | 0 | 0 | 208 | 0 | 0 | 313 | 34 |
| Confl. Peds. (\#hr) | 10 |  | 7 | 7 |  | 10 | 6 |  | 1 | 1 |  | 6 |
| Turn Type | Split | NA |  | Split | NA |  | Perm | NA |  | Perm | NA | Perm |
| Protected Phases | 4 | 4 |  | 8 | 8 |  |  | 2 |  |  | 6 |  |
| Permitted Phases |  |  |  |  |  |  | 2 |  |  | 6 |  | 5 |
| Actuated Green, G (s) | 13.7 | 13.7 |  |  | 14.1 |  |  | 22.8 |  |  | 22.8 | 22.8 |
| Eflective Green, $\mathrm{g}(\mathrm{s})$ | 13.7 | 13.7 |  |  | 14.1 |  |  | 22.8 |  |  | 22.8 | 22.8 |
| Actuated g/C Ratio | 0.22 | 0.22 |  |  | 0.23 |  |  | 0.36 |  |  | 0.36 | 0.36 |
| Clearance Time (s) | 4.0 | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 | 4.0 |
| Vehicle Extension (s) | 3.0 | 3.0 |  |  | 3.0 |  |  | 3.0 |  |  | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 387 | 381 |  |  | 716 |  |  | 561 |  |  | 372 | 565 |
| v/s Ratio Prot | c0.15 | 0.10 |  |  | c0.16 |  |  |  |  |  |  |  |
| v/s Ratio Perm |  |  |  |  |  |  |  | 0.13 |  |  | c0.31 | 0.02 |
| vic Ratio | 0.69 | 0.47 |  |  | 0.69 |  |  | 0.37 |  |  | 0.84 | 0.06 |
| Uniform Delay, d1 | 22.5 | 21.3 |  |  | 22.3 |  |  | 14.6 |  |  | 18.2 | 12.9 |
| Progression Factor | 1.00 | 1.00 |  |  | 1.00 |  |  | 1.00 |  |  | 1.00 | 1.00 |
| Incremental Delay, d2 | 5.0 | 0.9 |  |  | 2.9 |  |  | 0.4 |  |  | 15.7 | 0.0 |
| Delay (s) | 27.5 | 22.2 |  |  | 25.1 |  |  | 15.0 |  |  | 33.9 | 13.0 |
| Level of Service | C | C |  |  | C |  |  | B |  |  | C |  |
| Approach Delay (s) |  | 25.2 |  |  | 25.1 |  |  | 15.9 |  |  | 29.1 |  |
| Approach LOS |  | C |  |  | C |  |  | B |  |  | c |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 24.6 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.76 |  | 12.0 |
| Actuated Cycle Length (s) | 62.6 | Sum of losi time (s) | D |
| Intersection Capacity Utilization | $81.2 \%$ | ICU Level of Service |  |
| Analysis Period (min) | 15 |  |  |
| C Critical Lane Group |  |  |  |

## Appendix C

## Traffic Signal Warrants

Hexigon Transsortation Consultinnts. Inc.

## \#1 St. Francis Blvd and Clarinada Ave



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|  |  | AM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
|  |  | One | 2 or <br> More |  |  | $\begin{gathered} \text { No } \\ \text { Project } \end{gathered}$ | With Project |
| Major Street - Both Approaches | Clarinada Ave | x |  | 571 | 573 | 716 | 718 |
| Minor Street - Highest Approach | St. Francis Blvd | x |  | 298 | 300 | 268 | 270 |
| Warrant Met? |  |  |  | N | N | N | N |


|  |  | PM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing +Project | Cumulative |  |
|  |  | One | 2 or More |  |  | $\begin{gathered} \text { No } \\ \text { Project } \end{gathered}$ | With Project |
| Major Street - Both Approaches | Clarinada Ave | X |  | 713 | 722 | 672 | 681 |
| Minor Street - Highest Approach | St. Francis Blvd | X |  | 216 | 229 | 251 | 264 |
| Warrant Met? |  |  |  | N | N | N | N |

## \#1 St. Francis Blvd and Clarinada Ave



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.


## Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|  |  | School PM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
|  |  | One | $\begin{gathered} 2 \text { or } \\ \text { More } \end{gathered}$ |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave | X |  | 589 | 598 | 624 | 633 |
| Minor Street - Highest Approach | St. Francis Blvd | X |  | 278 | 291 | 234 | 247 |
| Warrant Met? |  |  |  | N | N | N | N |


|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | 2 or More |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave | x |  |  |  |  |  |
| Minor Street - Highest Approach | St. Francis Blvd | x |  |  |  |  |  |
| Warrant Met? |  |  |  |  |  |  |  |

## \#2 SR 1 SB ramps and Clarinada Ave



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.


## Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|  |  | AM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
|  |  | One | $\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$ |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave | x |  | 410 | 442 | 778 | 810 |
| Minor Street - Highest Approach | SR 1 SB off-ramp | x |  | 549 | 552 | 872 | 875 |
| Warrant Met? |  |  |  | Y | Y | Y | Y |


|  |  | PM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing +Project | Cumulative |  |
|  |  | One | $\begin{gathered} 2 \text { or } \\ \text { More } \end{gathered}$ |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave | X |  | 490 | 495 | 630 | 635 |
| Minor Street - Highest Approach | SR 1 SB off-ramp | X |  | 820 | 837 | 858 | 875 |
| Warrant Met? |  |  |  | Y | Y | Y | Y |



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.


## Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

School PM Peak Hour Volumes

|  |  | $\begin{gathered} \text { Approach } \\ \text { Lanes } \end{gathered}$ |  | Existing | Existing + |  |  | | |
|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  |
|  |  | One | 2 or More |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave |  |  | X |  | 555 | 560 | 564 | 569 |
| Minor Street - Highest Approach | SR 1 SB off-ramp | X |  | 618 | 635 | 768 | 785 |
| Warrant Met? |  |  |  | Y | Y | Y | Y |


|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | 2 or More |  |  | No Project | With Project |
| Major Street - Both Approaches | Clarinada Ave | X |  |  |  |  |  |
| Minor Street - Highest Approach | SR 1 SB off-ramp | x |  |  |  |  |  |
| Warrant Met? |  |  |  |  |  |  |  |

\#3 St. Francis Blvd and Serramonte Blvd


* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|  |  | AM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | $\begin{gathered} \text { Existing + } \\ \text { Project } \\ \hline \end{gathered}$ | Cumulative |  |
|  |  | One | $\begin{gathered} 2 \text { or } \\ \text { More } \end{gathered}$ |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte BI | x |  | 531 | 566 | 633 | 668 |
| Minor Street - Highest Approach | St. Francis Blvd | X |  | 338 | 342 | 333 | 337 |
| Warrant Met? |  |  |  | N | N | N | N |


|  |  | PM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | $\begin{gathered} \text { Existing + } \\ \text { Project } \end{gathered}$ | Cumulative |  |
|  |  | One | 2 or <br> More |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte BI | X |  | 415 | 422 | 482 | 489 |
| Minor Street - Highest Approach | St. Francis Blvd | X |  | 278 | 300 | 364 | 386 |
| Warrant Met? |  |  |  | N | N | N | N |

## \#3 St. Francis Blvd and Serramonte Blvd



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.


## Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

School PM Peak Hour Volumes

|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | 2 or More |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte BI | x |  | 426 | 433 | 486 | 493 |
| Minor Street - Highest Approach | St. Francis Blvd | X |  | 274 | 296 | 368 | 390 |
| Warrant Met? |  |  |  | N | N | N | N |


|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | 2 or <br> More |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte BI | x |  |  |  |  |  |
| Minor Street - Highest Approach | St. Francis Blvd | x |  |  |  |  |  |
| Warrant Met? |  |  |  |  |  |  |  |

## \#4 SR 1 NB ramps and Serramonte Blvd



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|  |  | AM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
|  |  | One | $\begin{gathered} 2 \text { or } \\ \text { More } \end{gathered}$ |  |  | $\begin{gathered} \text { No } \\ \text { Project } \end{gathered}$ | With Project |
| Major Street - Both Approaches | Serramonte Blvd | x |  | 1055 | 1062 | 1418 | 1425 |
| Minor Street - Highest Approach | SR 1 NB off-ramp | X |  | 325 | 330 | 292 | 297 |
|  |  | Warrant Met? |  | Y | Y | Y | Y |


|  |  | PM Peak Hour Volumes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
|  |  | One | 2 or More |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte Blvd | X |  | 890 | 924 | 1145 | 1179 |
| Minor Street - Highest Approach | SR 1 NB off-ramp | x |  | 357 | 378 | 369 | 390 |
|  |  | Warrant Met? |  | Y | Y | Y | Y |



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH
School PM Peak Hour Volumes

|  |  | Approach Lanes |  | Existing | $\begin{gathered} \text { Existing + } \\ \text { Project } \end{gathered}$ | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | 2 or More |  |  | No Project | With <br> Project |
| Major Street - Both Approaches | Serramonte Blvd | x |  | 786 | 820 | 933 | 967 |
| Minor Street - Highest Approach | SR 1 NB off-ramp | x |  | 298 | 319 | 300 | 321 |
| Warrant Met? |  |  |  | Y | Y | Y | Y |


|  |  | Approach Lanes |  | Existing | Existing + Project | Cumulative |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One | $\begin{gathered} 2 \text { or } \\ \text { More } \\ \hline \end{gathered}$ |  |  | No Project | With Project |
| Major Street - Both Approaches | Serramonte Blvd | x |  |  |  |  |  |
| Minor Street - Highest Approach | SR 1 NB off-ramp | x |  |  |  |  |  |
| Warrant Met? |  |  |  |  |  |  |  |


[^0]:    $\checkmark$
    Hexagon Transportation Consultants, Inc.
    5 | Page

[^1]:    ${ }^{1}$ The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.
    ${ }^{2}$ SPM = school PM peak hour.
    ${ }^{3}$ Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.
    ${ }^{4}$ Level of service was calculated based on the HCM methodology using Synchro software.
    ${ }^{5}$ AWSC - All Way Stop Control.
    ${ }^{6}$ In all cases, the recommended improvement is signalization of the existing 4-way stop. The level of service criteria (thresholds) therefore apply to those for signalized intersections.

