# APPENDIX E TRANSPORTATION IMPACT ANALYSIS



# 699 Serramonte Faculty & Staff Housing

Transportation Impact Analysis

Prepared for:

## **Jefferson Union High School District**

September 26, 2019

Hexagon Office: 5776 Stoneridge Mall Road, Suite 175 Pleasanton, CA 94588 Hexagon Job Number: 18BW15 Phone: 925.225.1439

#### San Jose · Gilroy · Pleasanton · Phoenix

#### www.hextrans.com

Areawide Circulation Plans Corridor Studies Pavement Delineation Plans Traffic Handling Plans Impact Fees Interchange Analysis Parking Studies Transportation Planning Neighborhood Traffic Calming Traffic Operations Traffic Impact Analysis Traffic Signal Design Travel Demand Forecasting



ĥ

ŝ

## **Table of Contents**

| Exec | utive Summary                    | ii |
|------|----------------------------------|----|
|      | Introduction                     |    |
| 2.   | Existing Conditions              | 8  |
|      | Project Characteristics          |    |
| 4.   | Existing Plus Project Conditions | 19 |
|      | Cumulative Conditions            |    |
| 6.   | Other Transportation Issues      | 26 |

## Appendices

Ø

Ē

-0-

50

ķ

Ö

| Appendix A: | Traffic Counts                      |
|-------------|-------------------------------------|
| Appendix B: | Level of Service Calculations       |
| Appendix C: | Traffic Signal Warrant Calculations |

## **List of Tables**

| Table 1 | Signalized Intersection Level of Service Definitions Based on Control Delay   | 5  |
|---------|-------------------------------------------------------------------------------|----|
| Table 2 | Unsignalized Intersection Level of Service Definitions Based on Control Delay | 6  |
| Table 3 | Existing Intersection Levels of Service                                       | 13 |
| Table 4 | Project Trip Generation Estimates                                             | 16 |
| Table 5 | Existing Plus Project Intersection Levels of Service                          | 20 |
| Table 6 | Cumulative Intersection Levels of Service                                     | 25 |
| Table 7 | Summary of Peak Hour Signal Warrant Results                                   | 27 |
| Table 8 | Off-Site Vehicle Queuing Analysis                                             | 28 |
| Table 9 | Site Driveway Vehicle Queuing Analysis                                        | 29 |

## List of Figures

| Figure 1 | Site Location and Study Intersections    | 2  |
|----------|------------------------------------------|----|
| Figure 2 | Project Site Plan                        |    |
| Figure 3 | Existing Transit Services                |    |
| Figure 4 | Existing Lane Configurations             |    |
| Figure 5 | Existing Traffic Volumes                 |    |
| Figure 6 | Project Trip Distribution and Assignment | 18 |
| Figure 7 | Existing Plus Project Traffic Volumes    | 21 |
| Figure 8 | Cumulative No Project Traffic Volumes    | 23 |
| Figure 9 | Cumulative With Project Traffic Volumes  | 24 |



## **Executive Summary**

The purpose of this report is to document the findings of the transportation impact analysis conducted for the proposed Jefferson Union High School District (JUHSD) faculty and staff housing project at 699 Serramonte Boulevard in Daly City. The project, as proposed, would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps. There are no traffic-generating uses currently on the project site.

The potential impacts of the project were evaluated following the standards and methodologies set forth by the City of Daly City and City/County Association of Governments of San Mateo County, the administering agency for the Congestion Management Program (CMP) of San Mateo County. The study includes an analysis of commute AM, school PM and commute PM peak-hour traffic conditions during weekdays at 5 study intersections in the vicinity of the project site. Potential impacts to pedestrians, bikes, transit service, and vehicle queues were also considered. The project is anticipated to generate fewer than 100 trips in any of the peak hours during the peak periods specified. Per the County CMP requirements, a CMP analysis was therefore not required.

Based on trip generation rates recommended by the Institute of Transportation Engineers and data provided by the District for faculty/staff housing, it is estimated that the proposed project would generate 92 new vehicle trips during the commute AM peak hour and 68 new vehicle trips during each of the school PM and commute PM peak hours.

The proposed project would not result in any impacts to level of service, vehicle queues, pedestrians, bikes or transit with the implementation of the following recommendations:

- **Recommendation 1:** A traffic signal is warranted at the intersection of SR-1 southbound ramps and Clarinada Avenue. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 35 AM, 22 school PM, and 22 PM peak-hour trips.
- **Recommendation 2:** A traffic signal with crosswalks across Serramonte Boulevard is warranted at the intersection of SR-1 northbound ramps and Serramonte Boulevard. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 92 AM, 68 school PM, and 68 PM peak-hour trips to the intersection.

- **Recommendation 3:** The project shall ensure that, in the final design, alignments of the drive aisles and the corner radii on site are adequate for circulation of trucks, garbage collection, and emergency vehicles, subject to review city staff/Republic Services. The northern east-west drive aisle should be designated one-way outbound (westbound) only.
- **Recommendation 4:** The project shall provide bicycle parking on site in accordance with City requirements. The number, type and location of bicycle facilities provided by the project will be subject to review by city staff.
- **Recommendation 5:** Prior to final design, the project applicant shall work with City of Daly City and SamTrans staff to consider the desirability of upgrades to the existing bus stop along the project frontage.

## 1. Introduction

This report presents the results of the transportation impact analysis conducted for the proposed Jefferson Union High School District (JUHSD) faculty and staff housing project at 699 Serramonte Boulevard in Daly City. The project, as proposed, would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps. The project site and the surrounding study area are shown on Figure 1. The project site plan is shown on Figure 2.

## **Scope of Study**

The potential impacts of the project were evaluated relative to the applicable level of service standards and methodologies in order to satisfy the requirements of the California Environmental Quality Act (CEQA), the City of Daly City, and the County Congestion Management Program (CMP). The City/County Association of Governments (C/CAG) of San Mateo County administers the CMP.

The study includes an analysis of peak-hour intersection levels of service, vehicle queuing, site access, and on-site circulation. The traffic analysis evaluated conditions at one signalized and four unsignalized intersections in the vicinity of the project site. The study intersections included:

- 1. St. Francis Boulevard and Clarinada Avenue\*
- 2. SR 1 SB Ramps and Clarinada Avenue\*
- 3. St. Francis Boulevard and Higate Drive/Serramonte Boulevard\*
- 4. SR 1 NB Ramps/Project Driveway and Serramonte Boulevard\*
- 5. Callan Boulevard and Serramonte Boulevard

#### \*denotes unsignalized intersection

Traffic conditions at the study locations were analyzed for the weekday AM and PM peak hours. The AM peak hour of traffic is typically between 7:00 AM and 9:00 AM and the PM peak hour is typically between 4:00 PM and 6:00 PM. These periods represent the most congested traffic conditions on the surrounding street network during a typical weekday. Traffic conditions were also analyzed for the school PM peak hour, which occurs between 2:00 PM and 4:00 PM.

The project is anticipated to generate fewer than 100 trips in any of the peak hours during the peak periods specified. Per the County CMP requirements, a CMP analysis was therefore not required.





NORTH Not to Scale

#### 699 Serramonte Faculty and Staff Housing



Figure 2 Conceptual Site Plan



Traffic conditions were evaluated for the following scenarios:

- **Scenario 1:** *Existing Conditions.* Existing conditions were represented by existing traffic volumes on the existing roadway network. Existing traffic volumes were obtained from recent traffic counts.
- **Scenario 2:** *Existing Plus Project Conditions.* Existing plus Project conditions represent existing peak-hour traffic volumes with the addition of project traffic from the new faculty and staff housing units. Existing plus project conditions were evaluated relative to existing conditions in order to identify potential impacts associated solely with the proposed project.
- Scenario 3: Cumulative No Project Conditions. Cumulative No Project conditions were represented by Cumulative No Project traffic volumes on the existing roadway network with the addition of funded transportation improvements. Cumulative No Project traffic volumes were obtained from the Daly City Travel Demand Forecast model. The Cumulative No Project traffic volumes reflect all approved and pending development in the City.
- **Scenario 4:** *Cumulative Plus Project Conditions.* Cumulative plus Project conditions were represented by Cumulative plus Project traffic volumes on the existing roadway network with the addition of funded transportation improvements. Cumulative plus Project traffic volumes were estimated by adding to the Cumulative No Project traffic volumes the traffic from the new faculty and staff housing units. Cumulative plus Project conditions were evaluated relative to Cumulative No Project conditions in order to determine potential cumulative project impacts.

### Methodology

This section presents the methods used to determine the traffic conditions for each scenario described above. It includes descriptions of the data requirements, the analysis methodologies, and the applicable level of service standards.

#### Data Requirements

The data required for the analysis were obtained from traffic counts, published data, public documents, previous traffic studies, the City's traffic model, and field observations. The following data were collected from these sources:

- existing traffic volumes
- existing traffic conditions
- lane configurations
- signal phasing
- existing bicycle facilities
- existing transit service
- cumulative traffic volumes

#### Level of Service Standards and Analysis Methodologies

Traffic conditions at the study locations were evaluated using level of service (LOS). *Level of Service* is a qualitative description of operating conditions ranging from LOS A, or free-flow conditions with little or no delay, to LOS F, or congested conditions with excessive delays. The analysis methods are described in detail below.

#### Signalized Intersections

The City of Daly City evaluates level of service at signalized intersections based on the HCM level of service methodology using Synchro software. The HCM method evaluates signalized intersection



operations based on average control delay time for all vehicles at the intersection. *Control delay* is the amount of delay that is attributed to the type of traffic control device at the intersection, and includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The correlation between average delay and level of service is shown in Table 1. The City of Daly City has a level of service standard for signalized intersections of LOS D or better.

#### Table 1

Signalized Intersection Level of Service Definitions Based on Control Delay

| Level of<br>Service | Description                                                                                                                                                                                                                                                                                    | Average Control<br>Delay Per Vehicle<br>(sec.) |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| A                   | Signal progression is extremely favorable. Most vehicles arrive during the green phase and do not stop at all. Short cycle lengths may also contribute to the very low vehicle delay.                                                                                                          | 10.0 or less                                   |
| В                   | Operations characterized by good signal progression and/or short cycle<br>lengths. More vehicles stop than with LOS A, causing higher levels of<br>average vehicle delay.                                                                                                                      | 10.1 to 20.0                                   |
| С                   | Higher delays may result from fair signal progression and/or longer<br>cycle lengths. Individual cycle failures may begin to appear at this level.<br>The number of vehicles stopping is significant, though some vehicles<br>may still pass through the intersection without stopping.        | 20.1 to 35.0                                   |
| D                   | The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal progression, long cycle lengths, or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.                           | 35.1 to 55.0                                   |
| E                   | This is considered to be the limit of acceptable delay. These high delay values generally indicate poor signal progression, long cycle lengths, and high volume-to-capacity (V/C) ratios. Individual cycle failures occur frequently.                                                          | 55.1 to 80.0                                   |
| F                   | This level of delay is considered unacceptable by most drivers. This condition often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes of such delay levels. | greater than 80.0                              |
| Source: Tr          | ransportation Research Board, Highway Capacity Manual.                                                                                                                                                                                                                                         |                                                |

Significance criteria are used to establish what constitutes an impact. For this analysis, the criteria used to determine significant impacts are based on CEQA Guidelines and the LOS standards of Daly City. Based on these criteria, for signalized intersections in Daly City, the project would result in a significant impact if, for any peak hour under evaluation:

- the addition of project traffic would increase peak hour traffic volumes such that signalized intersection levels of service degrade to below LOS D.
- the project adds traffic at a signalized intersection that is already operating at LOS E or F.

A significant impact at a signalized intersection is said to be satisfactorily mitigated when measures are implemented that would restore intersection levels of service to an acceptable level of service or restore the intersection to operating levels that are equal to or better than no project conditions.

#### Unsignalized Intersections

Unlike signalized intersections, which typically represent constraint points for the roadway network, unsignalized intersections rarely limit the potential capacity of a roadway. The determination of appropriate improvements to unsignalized intersections typically includes a qualitative and quantitative analysis of movement delay, traffic signal warrants, movement traffic volumes, availability of alternate routes, and intersection safety. For this reason, improvements to unsignalized intersections are frequently determined on the basis of professional engineering judgment. The City of Daly City does not apply significance thresholds to unsignalized intersections.

All four unsignalized intersections are all-way stop controlled. For all-way stop-controlled intersections, the average control delay time for all vehicles at the intersection was reported. The correlation between average delay and level of service is shown in Table 2.

#### Table 2

S

#### Unsignalized Intersection Level of Service Definitions Based on Control Delay

| Level of Service                                                     | Description                | Average Delay Per Vehicle (Sec.) |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------|----------------------------------|--|--|--|--|--|
| А                                                                    | Little or no traffic delay | 10.0 or less                     |  |  |  |  |  |
| В                                                                    | Short traffic delays       | 10.1 to 15.0                     |  |  |  |  |  |
| С                                                                    | Average traffic delays     | 15.1 to 25.0                     |  |  |  |  |  |
| D                                                                    | Long traffic delays        | 25.1 to 35.0                     |  |  |  |  |  |
| E Very long traffic delays 35.1 to 50.0                              |                            |                                  |  |  |  |  |  |
| F                                                                    | Extreme traffic delays     | greater than 50.0                |  |  |  |  |  |
| ource: Transportation Research Board, Highway Capacity Manual (HCM). |                            |                                  |  |  |  |  |  |

#### Signal Warrant Methodology

The level of service analysis at unsignalized intersections is supplemented with an assessment of the need for signalization of the intersections. For this study, the need for signalization is assessed, in part, on the basis of the operating conditions at the intersections (i.e., level of service) and on the peak hour volume signal warrant – warrant #3 – described in the *California Manual on Uniform Traffic Control Devices* (MUTCD). This method provides an indication of whether traffic conditions and peak hour traffic levels are, or would be, sufficient to justify installation of a traffic signal.

#### Caltrans LOS Standard

Some of the study intersections are maintained by Caltrans and are State highway facilities. As stated in the Caltrans' Guide for the preparation of Traffic Impact Studies: "Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and "D" on State highway facilities, however, Caltrans acknowledges that it may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. If an existing State highway facility is operating at less than the appropriate target LOS, the existing Measure of Effectiveness (MOE) should be maintained." Because Daly City is the lead agency for this project, the LOS standards and impact criteria used in this report were based on Daly City standards. This approach is consistent with previous traffic impact analyses conducted in Daly City, and is also consistent with CEQA law.



#### Vehicle Queuing

A vehicle queuing analysis was performed for high-demand movements at the study intersections. Vehicle queues were estimated using a Poisson probability distribution, which estimates the probability of "n" vehicles for a vehicle movement using the following formula:

$$P(x=n) = \frac{\lambda^n e^{-(\lambda)}}{n!}$$

Where:

- P (x=n) = probability of "n" vehicles in queue
- n = number of vehicles in the queue
- $\lambda$  = Average number of vehicles in the queue per lane (vehicles per hour /signal cycles per hour)

The basis of the analysis is as follows: (1) the Poisson probability distribution is used to estimate the 95<sup>th</sup>-percentile maximum number of queued vehicles per signal cycle for a particular movement; (2) the estimated maximum number of vehicles in the queue is translated into a queue length, assuming 25 feet per vehicle; and (3) the estimated maximum queue length is compared to the existing or planned available storage capacity for the movement.

## **Report Organization**

The remainder of this report is divided into five chapters. Chapter 2 describes the existing roadway network, transit service, existing bicycle and pedestrian facilities, and existing traffic conditions. Chapter 3 explains the method used to estimate project traffic. Chapter 4 describes the potential project impacts on the transportation system under Existing plus Project traffic conditions. Chapter 5 presents Cumulative traffic conditions without and with project traffic. Chapter 6 describes the evaluation of other transportation related issues, including site access and circulation.



## 2. Existing Conditions

This chapter describes the existing conditions for all of the major transportation facilities in the vicinity of the site, including the roadway network, bicycle and pedestrian facilities, and transit service.

## **Existing Roadway Network**

The existing roadways in the project vicinity are Interstate 280, State Route 35, State Route 1, Serramonte Boulevard, Callan Boulevard, Saint Francis Boulevard, Clarinada Avenue, and Campus Drive. These roadways are described below.

*Interstate 280 (I-280)* is a north-south freeway that extends from San Francisco to San Jose. In the project vicinity, it has four lanes in each direction and has a posted speed limit of 65 mph. The project is served by an interchange at Serramonte Boulevard. The Serramonte Boulevard interchange provides access to and from I-280 north of the site, via southbound off-ramps from, and northbound on-ramps to, I-280.

**State Route 1 (SR-1)** is a north-south freeway that runs along most of the Pacific coast of California. It provides regional access to the project site from San Francisco to the north via its interchange with I-280. It is a four- to eight-lane facility in the vicinity of the project with a posted speed limit of 65 mph. The project is served by a hook-ramp interchange on SR-1. The northbound SR-1 off- and on-ramps at Serramonte Boulevard provide direct access into and out of the site at the SR 1 NB ramps/Project Driveway & Serramonte Boulevard intersection. Access to and from southbound SR-1 is provided by the southbound SR-1 on- and off-ramps at Clarinada Avenue.

*State Route 35 (Skyline Boulevard)* is a north-south state highway that extends from Sloat Boulevard in San Francisco to Highway 17 in Santa Cruz. Skyline Boulevard provides access to the project site via interchange with SR-1.

**Serramonte Boulevard** is a four-lane, east-west street that extends from Hillside Boulevard (in the Town of Colma) in the east, to St. Francis Boulevard in the west. The exception is the 600-foot segment of Serramonte Boulevard between St. Francis Boulevard and the SR 1 NB ramps/Campus Drive/Project Driveway intersection, which is two-lanes wide. Serramonte Boulevard provides direct access to the project site via the project driveway located directly opposite the SR-1 northbound ramps. The posted speed limit is 30 mph in the project vicinity.



Ř



*Callan Boulevard* is a two- to four-lane, north-south street that connects Southgate Avenue and Serramonte Boulevard to residential land uses south of Hickey Boulevard. Callan Boulevard is four lanes north of Serramonte Boulevard and two lanes south of Serramonte Boulevard. South of Hickey Boulevard, Callan Boulevard has two lanes with a two-way center left-turn lane.

*Clarinada Avenue* is a two- to four-lane, east-west street that connects residential land uses west of St. Francis Boulevard with Callan Boulevard and Serramonte Center other commercial uses to the east. It also provides ramp access to and from southbound SR-1.

**Campus Drive** is a two-lane, north-south private street that provides access to both Serramonte Boulevard to the north and Hickey Boulevard to the south. It provides direct access to the project site via Serramonte Boulevard and the SR-1 northbound ramps. Campus Drive had at one time connected Serramonte Boulevard to Hickey Boulevard and had intersected Serramonte Boulevard opposite the intersection at Kent Court. However, Campus Drive was redesigned to prohibit access between Serramonte Boulevard and Hickey Boulevard, and was realigned to intersect Serramonte Boulevard opposite the SR-1 northbound ramps.

## **Existing Bicycle and Pedestrian Facilities**

According to the Daly City Bicycle Master Plan (2013), in the project vicinity, there are existing Class II bike lanes on the following street segments:

- Serramonte Boulevard between Callan Boulevard and Gellert Boulevard
- Callan Boulevard from Serramonte Boulevard to the southern city limit at King Drive
- Southgate Avenue west of St. Francis Boulevard
- Gellert Boulevard south of Hickey Boulevard
- Junipero Serra Boulevard from D Street to Hickey Boulevard

The following street segments are existing Class III bike routes:

- Callan Boulevard between Serramonte Boulevard and Southgate Avenue
- Gellert Boulevard between Serramonte Boulevard and Hickey Boulevard
- Southgate Avenue between St. Francis Boulevard and Junipero Serra Boulevard
- St. Francis Boulevard from Belhaven Avenue to Serramonte Boulevard
- St. Francis Boulevard from Southgate Avenue to Belhaven Avenue
- Serramonte Boulevard between Gellert Boulevard and Junipero Serra Boulevard
- Hickey Boulevard between SR 35 and City Limits
- Serramonte Boulevard between St. Francis Boulevard and Callan Boulevard

Pedestrian access to the site is provided by sidewalks along the site frontage on Serramonte Boulevard, and on all other streets in the vicinity of the site, including St. Francis Boulevard, Callan Boulevard, and Clarinada Avenue. The exception is the south side of Serramonte Boulevard between Callan Boulevard and Gellert Boulevard, which has no sidewalk. Most of the study intersections have pedestrian crosswalks and curb ramps, and the signalized study intersection at Callan Boulevard and Serramonte Boulevard also has pedestrian-actuated pedestrian-crossing phases. The exceptions are the two all-way stop freeway ramp intersections. Neither the intersection of SR 1 southbound ramps and Clarinada Avenue nor the intersection of SR 1 northbound ramps and Serramonte Boulevard have crosswalks or curb ramps. Pedestrians walking on the south side of Clarinada Avenue at the ramp intersection have no crosswalk or curb ramps to the other side, and there are no crosswalks to cross Clarinada Avenue. The same is the case on the north side of Serramonte Boulevard at the ramp intersection, the south leg of which is the site driveway.

Hexagon Transportation Consultants, Inc.

## **Existing Transit Service**

Existing transit service to the study area is provided by the San Mateo County Transit District (SamTrans). Figure 3 shows the existing transit service routes in the study area.

SamTrans provides bus service near the project site via Routes 16, 24, 28, 112, 120, 121, 122 and 130. The Serramonte Transit Center is located in the Serramonte Shopping Center, approximately 0.5 miles from the project site. The transit center serves Routes 16, 28, 112, 120, 121, 122 and 130. These are described below.

Route 16 operates only on school days between Serramonte Shopping Center and Terra Nova High School in Pacifica, via Serramonte Boulevard and Callan Boulevard, with two daily southbound AM departures and one daily northbound PM departure. The closest bus stop for Route 16 is located at Serramonte Boulevard and Callan Boulevard, approximately 750 feet (0.14 miles) away from the proposed project site.

Route 24 operates only on school days between Summit Shasta High School and Old County Road/San Francisco Avenue in Brisbane, with one daily westbound AM departure and one daily eastbound PM departure. The closest bus stop for Route 24 is located on Serramonte Boulevard at the project site driveway.

Route 28 operates only on school days between Serramonte Shopping Center and South San Francisco High School with two daily southbound AM departures and one daily northbound PM departure. The nearest bus stop for Route 28 is at the Serramonte Shopping Center, located 0.5 miles away.

Route 112 operates between the Colma BART station and the Linda Mar Shopping Center in Pacifica, with 60-minute headways on weekdays and weekends. The closest bus stop for Route 112 is 0.36 miles away at the corner of Campus Drive and Hickey Boulevard.

Route 120 operates between the Colma BART station and Brunswick Street/Templeton Avenue, with stops at the Daly City BART station and Serramonte Shopping Center. It runs on 10-minute headways during commute periods and 10- to 30-minute headways during non-commute periods on weekdays. Route 120 also provides weekend service with 15- to 45-minute headways. The nearest Route 120 bus stop is located on Serramonte Boulevard at the project site driveway.

Route 121 operates between Skyline College in San Bruno and Pope Street/Bellevue Avenue, with stops at the Daly City BART station, Colma BART station, and Serramonte Shopping Center with 30-minute headways on weekdays and 60-minute headways on weekends. The closest bus stop for Route 121 is located at Serramonte Boulevard and Callan Boulevard, approximately 750 feet (0.14 miles) away from the proposed project site.

Route 122 operates between the South San Francisco BART station and Stonestown Shopping Center, with stops at the Colma BART station and Serramonte Shopping Center, with 20- to 30-minute headways during commute periods and 30-minute headways during non-commute periods on weekdays and during all hours of service on weekends. The nearest bus stop for Route 122 is at the Serramonte Shopping Center, located 0.5 miles away.

Route 130 operates between Airport Boulevard/Linden Avenue (in South San Francisco) and the Daly City BART station, with stops at the Serramonte Shopping Center, Colma BART station and South San Francisco BART station, with 10- to 15-minute headways on weekdays. Route 130 also provides weekend service. The nearest bus stop for Route 130 is at the Serramonte Shopping Center, located 0.5 miles away.



2



10 | Page



HEXAGON



9

Ř

The Colma BART station is located approximately two miles northeast of the project site. The South San Francisco BART station is located approximately two miles east of the project site. BART trains provide access to a variety of locations in the Bay Area including San Francisco, Oakland, Dublin, Fremont, Pittsburg, and Richmond. Trains run on approximately 15 minute headways during commute hours. There are also a number of bus routes operated by SamTrans that stop at the Colma and South San Francisco BART stations.

## **Existing Intersection Lane Configurations and Traffic Volumes**

The existing lane configurations at the study intersections were obtained from field observations. The existing intersection lane configurations are shown on Figure 4. The existing peak hour traffic volumes at the study intersections were obtained from turning movement counts conducted in October 2018. The peak hour traffic volumes are shown on Figure 5. The intersection traffic count data are included in Appendix A.

### **Existing Signalized Intersection Levels of Service**

The results of the signalized intersection level of service analysis under existing conditions are summarized in Table 3. The results indicate that the signalized intersection of Callan Boulevard/Serramonte Boulevard currently operates at an acceptable LOS C during all peak hours. The level of service calculation sheets are included in Appendix B.

## **Existing Unsignalized Intersection Levels of Service**

The results of the unsignalized intersection level of service analysis under existing conditions are summarized in Table 3. The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue currently operates at an LOS E during the PM peak hour. All other study intersections operate at LOS D or better during all peak hours.

## **Observed Existing Traffic Conditions**

Traffic conditions in the field were observed in order to identify existing operational deficiencies and to confirm the accuracy of calculated levels of service. The purpose of this effort was (1) to identify any existing traffic problems that may not be directly related to intersection level of service, and (2) to identify any locations where the level of service calculation does not accurately reflect level of service in the field. Overall, the level of service analysis appears to accurately reflect actual existing traffic conditions. Field observations showed that operational problems currently occur at some of the study intersections. These are described below.

**Callan Boulevard and Serramonte Boulevard.** During the AM peak hour, the left-turn queue from northbound Callan Boulevard to westbound Serramonte Boulevard sometimes extends out of the left-turn pocket and into the adjacent through lane. Though, on those occasions, the queue blocks the northbound through lane on Callan Boulevard, vehicles are able to go around so that operations are generally unaffected. Not all northbound left-turning vehicles clear the intersection in a single cycle.

**SR-1 Ramps and Serramonte Boulevard.** During the AM peak hour, the queue for the eastbound left turn on Serramonte Boulevard to the SR-1 on-ramp sometimes spills out of the left turn pocket and extends to the intersection at Campus Drive.



#### 699 Serramonte Faculty & Staff Housing TIA

### Table 3

#### **Existing Intersection Levels of Service**

| No. | Study<br>Intersection            | Traffic<br>Control <sup>1</sup> | Peak<br>Hour <sup>2</sup> | LOS<br>Std <sup>2</sup> | Avg.<br>Delay <sup>3</sup> | LOS⁴        |
|-----|----------------------------------|---------------------------------|---------------------------|-------------------------|----------------------------|-------------|
| 1   | St. Francis Blvd & Clarinada Ave | AWSC⁵                           | AM<br>SPM<br>PM           | <br><br>                | 13.8<br>13.4<br>15.8       | B<br>B<br>C |
| 2   | SR 1 SB ramps & Clarinada Ave    | AWSC⁵                           | AM<br>SPM<br>PM           | <br><br>                | 13.9<br>19.6<br>45.4       | B<br>C<br>E |
| 3   | St. Francis Blvd & Serramonte Bl | AWSC⁵                           | AM<br>SPM<br>PM           | <br>                    | 14.7<br>11.1<br>10.8       | B<br>B<br>B |
| 4   | SR 1 NB ramps & Serramonte Bl    | AWSC⁵                           | AM<br>SPM<br>PM           | <br><br>                | 28.7<br>13.1<br>17.0       | D<br>B<br>C |
| 5   | Callan Blvd and Serramonte Blvd  | signal                          | AM<br>SPM<br>PM           | D<br>D<br>D             | 25.6<br>23.8<br>25.2       | с<br>с<br>с |

<sup>1</sup> The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.

 $^{2}$  SPM = school PM peak hour.

<sup>3</sup> Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.

<sup>4</sup> Level of service was calculated based on the HCM methodology using Synchro software.

<sup>5</sup> AWSC - All Way Stop Control.

= LOS E or F conditions



Ţ



ĥ

റ്റ

\$

699 Serramonte Faculty and Staff Housing



Existing Intersection Lane Configurations









HEXAGON



## 3. Project Characteristics

This chapter describes the method by which project traffic is estimated. The proposed Jefferson Union High School District (JUHSD) faculty and staff housing project would construct 122 faculty and staff housing units for the JUHSD employees. Project access would be provided directly onto Serramonte Boulevard via the realigned Campus Drive, directly opposite the SR 1 northbound ramps.

## **Project Traffic Estimates**

The trip generation of the project was estimated using (1) trip rates from the latest edition of the Institute of Transportation Engineers *Trip Generation* Manual (10<sup>th</sup> edition) and (2) data provided by the District for faculty/staff housing.

The housing facility will be occupied primarily by the district workforce, comprising school faculty and their spouses, and support staff. Based on the bell schedules of the district's high schools, faculty/school staff would typically arrive at their schools within a one-hour window between 7:00 AM and 8:00 AM, which is a narrower time frame than the typical 7:00 to 9:00 AM window represented by the ITE Trip Generation rates. This compressed departure time frame would cause the faculty/school staff trip rates to be higher than those of their spouses, which are assumed to follow the typical 7:00 to 9:00 AM departure window. Because of this, the trips generated by faculty/school staff were calculated separately using data provided by the District, as shown in Table 4.

#### Table 4 Project Trip Generation Estimates

|                                    | Commute<br>AM Peak Hour |    | School PM<br>Peak Hour |                |    | Commute<br><u>PM Peak Hour</u> |                |    |     |
|------------------------------------|-------------------------|----|------------------------|----------------|----|--------------------------------|----------------|----|-----|
| Land Use                           | Total<br>Trips          |    | Out                    | Total<br>Trips | In | Out                            | Total<br>Trips | In | Out |
| Trips generated by Faculty         | 74                      | 7  | 66                     | 46             | 41 | 5                              | 46             | 41 | 5   |
| Trips generated by Faculty Spouses | 18                      | 4  | 14                     | 23             | 14 | 8                              | 23             | 14 | 8   |
| Total Trips                        | 92                      | 12 | 80                     | 68             | 55 | 13                             | 68             | 55 | 13  |



÷

00

0

쨧

The project trip distribution was determined based on the locations of schools where the faculty and school staff would work and previous studies in the project vicinity. The addresses of the schools are listed below:

- Jefferson High School
- Oceana High School
- Serramonte Del Rey (Adult School)
- Terra Nova High School
- Thornton High School

Ţ

---

ŝ

Westmoor High School

6996 Mission St, Daly City, CA 94014
401 Paloma Avenue, Pacifica, CA 94044
699 Serramonte Boulevard, Daly City, CA 94015
1450 Terra Nova Boulevard, Pacifica, CA 94044
115 1<sup>st</sup> Avenue, Daly City, CA 94014
131 Westmoor Avenue, Daly City, CA 94015

Project trips were assigned to the roadway network based on the project trip distribution. The project trip distribution and trip assignment are shown on Figure 6.



NORTH Not to Scale

## 4. Existing Plus Project Conditions

This chapter describes existing plus project traffic conditions. Existing plus project traffic conditions represent the traffic conditions that would occur if the project were constructed and occupied today. This scenario is used to determine project-specific impacts.

## **Existing Plus Project Traffic Volumes and Transportation Network**

It is assumed in this analysis that the roadway network and the study intersection lane configurations under existing plus project conditions would be the same as those described under existing conditions. To estimate traffic for existing plus project conditions, project generated traffic was added to existing traffic at each intersection movement. The existing plus project traffic volumes at the study intersections are shown graphically on Figure 7.

## **Existing Plus Project Signalized Intersection Levels of Service**

The results of the signalized intersection level of service analysis under existing plus project conditions are summarized in Table 5. The results indicate that the signalized intersection of Callan Boulevard/Serramonte Boulevard would continue to operate at an acceptable LOS C during all peak hours. According to the City of Daly City level of service standards, the proposed project would not result in any adverse LOS impacts to the intersection. The level of service calculation sheets are included in Appendix B.

## **Existing Plus Project Unsignalized Intersection Levels of Service**

The results of the unsignalized intersection level of service analysis under existing plus project conditions are summarized in Table 5. The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue would continue to operate at an LOS E during the PM peak hour. The level of service at the SR-1 northbound ramps/Serramonte Boulevard intersection would degrade from an LOS D under existing conditions to an LOS E under existing plus project conditions. All other study intersections operate at LOS C or better during all peak hours.

ļ

•=•

പ്പ

Ř



#### Table 5

-

---

ŝ

#### **Existing Plus Project Intersection Levels of Service**

|     |                                  |                                 |                           | Exist                      | ing         | Exis                       | sting + I   | Project                | wi<br>Improv               |                  |
|-----|----------------------------------|---------------------------------|---------------------------|----------------------------|-------------|----------------------------|-------------|------------------------|----------------------------|------------------|
| No. | Study<br>Intersection            | Traffic<br>Control <sup>1</sup> | Peak<br>Hour <sup>2</sup> | Avg.<br>Delay <sup>3</sup> | LOS⁴        | Avg.<br>Delay <sup>3</sup> | LOS⁴        | Incr. In<br>Avg. Delay | Avg.<br>Delay <sup>3</sup> | LOS <sup>4</sup> |
| 1   | St. Francis Blvd & Clarinada Ave | AWSC <sup>5</sup>               | AM<br>SPM<br>PM           | 13.8<br>13.4<br>15.8       | B<br>B<br>C | 14.7<br>14.0<br>16.7       | B<br>B<br>C | 0.9<br>0.6<br>0.9      |                            |                  |
| 2   | SR 1 SB ramps & Clarinada Ave    | AWSC⁵                           | AM<br>SPM<br>PM           | 13.9<br>19.6<br>45.4       | B<br>C<br>E | 14.4<br>20.5<br>48.8       | B<br>C<br>E | 0.5<br>0.9<br>3.4      | 14.5                       | В                |
| 3   | St. Francis Blvd & Serramonte Bl | AWSC⁵                           | AM<br>SPM<br>PM           | 14.7<br>11.1<br>10.8       | B<br>B<br>B | 15.4<br>11.8<br>11.2       | C<br>B<br>B | 0.7<br>0.7<br>0.4      |                            |                  |
| 4   | SR 1 NB ramps & Serramonte Bl    | AWSC⁵                           | AM<br>SPM<br>PM           | 28.7<br>13.1<br>17.0       | D<br>B<br>C | 35.8<br>13.9<br>18.7       | E<br>B<br>C | 7.1<br>0.8<br>1.7      | 20.6                       | С                |
| 5   | Callan Blvd and Serramonte Bl    | signal                          | AM<br>SPM<br>PM           | 25.6<br>23.8<br>25.2       | C<br>C<br>C | 26.7<br>23.5<br>25.5       | C<br>C<br>C | 1.1<br>-0.3<br>0.3     |                            |                  |

<sup>1</sup> The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.

 $^{2}$  SPM = school PM peak hour.

<sup>3</sup> Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.

<sup>4</sup> Level of service was calculated based on the HCM methodology using Synchro software.

<sup>5</sup> AWSC - All Way Stop Control.

<sup>6</sup> In all cases, the recommended improvement is signalization of the existing 4-way stop. The level of service criteria (thresholds) therefore apply to those for signalized intersections.

= LOS E or F conditions

The City does not have a threshold of significance for level of service for unsignalized intersections. An evaluation of traffic signal warrants can further guide the decision whether to install a traffic signal. The traffic signal warrant analysis is described in Chapter 6.









🗌 Hexagon



## 5. Cumulative Conditions

This chapter presents a summary of the traffic conditions that would occur under cumulative conditions. For this analysis, cumulative conditions represent traffic conditions assuming the buildout of the Daly City General Plan to year 2035. Cumulative no project and with project traffic volumes were obtained from the Daly City Travel Demand Forecast (TDF) model. The Daly City TDF model includes various local and regional improvements outside of the project area. Included in this chapter is a summary of cumulative intersection impacts caused by the project.

## **Cumulative Transportation Network and Traffic Volumes**

While there are various regional transportation improvements planned by the year 2035, it is assumed in this analysis that the transportation network in the project vicinity under cumulative conditions would be the same as that described under existing conditions. However, the City's General Plan identifies the following planned improvements:

- St. Francis Boulevard and Clarinada Avenue- install a traffic signal
- SR 1 SB Ramps and Clarinada Avenue- install a traffic signal
- SR 1 NB Ramps/Project Driveway and Serramonte Boulevard- install a traffic signal

Traffic volumes for cumulative conditions were obtained from the Daly City TDF model based on the Year 2035 General Plan Buildout land uses. The 2035 forecasts represent volumes under Cumulative No Project conditions. Cumulative with Project volumes were determined by adding to the Cumulative No Project volumes the estimated project trips. The cumulative traffic volumes with and without the proposed project are shown on Figures 8 and 9.

## **Cumulative Signalized Intersection Levels of Service**

The signalized intersection level of service results under cumulative conditions are summarized in Table 6. The results show that, measured against the City of Daly City level of service standard, the signalized study intersection of Callan Boulevard and Serramonte Boulevard would operate at an acceptable LOS C under cumulative conditions both without and with the project. The level of service calculation sheets are included in Appendix B.

Ř



ļ

• = •





Hexagon







Hexagon



#### Table 6

----

Ķ

#### **Cumulative Intersection Levels of Service**

|     |                                  |                                 |                           | No Pr                      | oject            |                            | With Pro         | oject                  | wit<br>Improve             | 0           |
|-----|----------------------------------|---------------------------------|---------------------------|----------------------------|------------------|----------------------------|------------------|------------------------|----------------------------|-------------|
| No. | Study<br>Intersection            | Traffic<br>Control <sup>1</sup> | Peak<br>Hour <sup>2</sup> | Avg.<br>Delay <sup>3</sup> | LOS <sup>4</sup> | Avg.<br>Delay <sup>3</sup> | LOS <sup>4</sup> | Incr. In<br>Avg. Delay | Avg.<br>Delay <sup>3</sup> | LOS⁴        |
| 1   | St. Francis Blvd & Clarinada Ave | AWSC⁵                           | AM<br>SPM<br>PM           | 21.7<br>13.5<br>16.2       | C<br>B<br>C      | 24.3<br>14.0<br>17.2       | C<br>B<br>C      | 2.6<br>0.5<br>1.0      |                            |             |
| 2   | SR 1 SB ramps & Clarinada Ave    | AWSC⁵                           | AM<br>SPM<br>PM           | 148.5<br>39.5<br>76.0      | F<br>E<br>F      | 157.8<br>41.7<br>79.7      | F<br>E<br>F      | 9.3<br>2.2<br>3.7      | 39.2<br>17.3<br>21.4       | D<br>B<br>C |
| 3   | St. Francis Blvd & Serramonte Bl | AWSC⁵                           | AM<br>SPM<br>PM           | 17.2<br>14.7<br>13.7       | C<br>B<br>B      | 18.8<br>15.7<br>14.6       | C<br>C<br>B      | 1.6<br>1.0<br>0.9      |                            |             |
| 4   | SR 1 NB ramps & Serramonte BI    | AWSC⁵                           | AM<br>SPM<br>PM           | 122.2<br>20.8<br>46.1      | F<br>C<br>E      | 139.0<br>23.2<br>51.8      | F<br>C<br>F      | 16.8<br>2.4<br>5.7     | 54.0<br>24.6               | D<br>C      |
| 5   | Callan Blvd and Serramonte Bl    | signal                          | AM<br>SPM<br>PM           | 29.5<br>25.8<br>27.8       | C<br>C<br>C      | 29.9<br>24.9<br>28.1       | C<br>C<br>C      | 0.4<br>-0.9<br>0.3     |                            |             |

<sup>1</sup>The City's LOS standard for signalized intersections is LOS D or better. There is no official LOS standard for unsignalized (AWSC) intersections.

 $^{2}$  SPM = school PM peak hour.

<sup>3</sup> Signalized intersection levels of service and delays reported are for average control delay per vehicle. The intersection levels of service and delays reported for the all-way-stop-controlled (AWSC) intersections pertain to overall average delay.

<sup>4</sup> Level of service was calculated based on the HCM methodology using Synchro software.

<sup>5</sup> AWSC - All Way Stop Control.

<sup>6</sup> In all cases, the recommended improvement is signalization of the existing 4-way stop. The level of service criteria (thresholds) therefore apply to those for signalized intersections.

= LOS E or F conditions

## **Cumulative Unsignalized Intersection Levels of Service**

The results of the unsignalized intersection level of service analysis under cumulative conditions are summarized in Table 6. The level of service calculation sheets are included in Appendix B.

The results indicate that the unsignalized intersection of SR-1 southbound ramps/Clarinada Avenue would operate at LOS E or worse during all peak hours both without and with the project. It also shows that the unsignalized intersection of SR-1 northbound ramps/Serramonte Boulevard would operate at LOS E or worse during the AM and PM peak hours both without and with the project. The other unsignalized study intersections would operate at LOS C or better during all peak hours under cumulative conditions without and with the project.

The City does not have a threshold of significance for level of service for unsignalized intersections. An evaluation of traffic signal warrants can further guide the decision whether to install a traffic signal. The traffic signal warrant analysis is described in the next chapter.

## 6. Other Transportation Issues

This chapter presents an analysis of other transportation issues associated with the project site, including:

- Traffic Signal Warrants
- Vehicle Queuing Analysis
- Pedestrian, Bicycles and Transit Analysis
- Site Access and Circulation

Unlike the level of service impact methodology, which is adopted by the City Council, the analyses of non-LOS issues are based on professional judgment in accordance with the standards and methods employed by the traffic engineering community.

## **Traffic Signal Warrants**

The level of service analysis for the unsignalized intersections was supplemented with an assessment of the need for signalization of the intersections. For this study, the need for signalization is assessed on the basis of the peak-hour volume signal warrant – warrant #3 – described in the *California Manual on Uniform Traffic Control Devices* (MUTCD). This method provides an indication of whether traffic conditions and peak-hour traffic levels are, or would be, sufficient to justify installation of a traffic signal.

The peak-hour volume signal warrant analysis was conducted for the four unsignalized intersections under existing and existing plus project conditions. The results are summarized in Table 7. All signal warrant calculation sheets are included in Appendix C. The results are described below.

**SR-1 southbound ramps and Clarinada Avenue**. The results show that, at the intersection of SR-1 southbound ramps and Clarinada Avenue, the warrant would be met for all peak hours under all study scenarios. The warrants would be met principally because of the high volumes of traffic from the off-ramps.

**Recommendation 1:** A traffic signal is warranted at the intersection of SR-1 southbound ramps and Clarinada Avenue. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 35 AM, 22 school PM, and 22 PM peak-hour trips to the intersection.



9

---

Ř

**SR-1 northbound ramps and Serramonte Boulevard**. The results show that, at the intersection of SR-1 northbound ramps and Serramonte Boulevard, the warrant would be met for all peak hours under all study scenarios. The warrants would be met principally because of the high volumes of traffic from the off-ramps.

**Recommendation 2:** A traffic signal with crosswalks across Serramonte Boulevard is warranted at the intersection of SR-1 northbound ramps and Serramonte Boulevard. This improvement is identified in the City of Daly City General Plan. Accordingly, the applicant shall pay their fair share contribution for the improvement. The project would add 92 AM, 68 school PM, and 68 PM peak-hour trips to the intersection.

#### Table 7

Ř

|     |                                    |                   | Signal Warrant Met? |              |            |              |  |  |  |
|-----|------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|--|--|
|     |                                    | Peak              | Exi                 | sting        | Cum        | ulative      |  |  |  |
| No. | Study Intersection                 | Hour <sup>1</sup> | No Project          | With Project | No Project | With Project |  |  |  |
| 1   | St. Francis Blvd & Clarinada Ave   | AM                | no                  | no           | no         | no           |  |  |  |
|     |                                    | SPM               | no                  | no           | no         | no           |  |  |  |
|     |                                    | PM                | no                  | no           | no         | no           |  |  |  |
| 2   | SR 1 SB ramps & Clarinada Ave      | AM                | yes                 | yes          | yes        | yes          |  |  |  |
|     |                                    | SPM               | yes                 | yes          | yes        | yes          |  |  |  |
|     |                                    | PM                | yes                 | yes          | yes        | yes          |  |  |  |
| 3   | St. Francis Blvd & Serramonte Blvd | AM                | no                  | no           | no         | no           |  |  |  |
|     |                                    | SPM               | no                  | no           | no         | no           |  |  |  |
|     |                                    | PM                | no                  | no           | no         | no           |  |  |  |
| 4   | SR 1 NB ramps / project driveway   | AM                | yes                 | yes          | yes        | yes          |  |  |  |
|     | & Serramonte Blvd                  | SPM               | yes                 | yes          | yes        | yes          |  |  |  |
|     |                                    | PM                | yes                 | yes          | yes        | yes          |  |  |  |

<sup>1</sup> SPM = School PM peak hour

## **Vehicle Queuing Analysis**

There are no established thresholds under CEQA or policy adopted by Daly City for determining significance impacts for vehicle queuing. A vehicle queuing analysis can be useful in determining the adequacy of existing vehicle storage capacity at intersections in the vicinity of the site. Accordingly, a vehicle queuing analysis was conducted for the high demand turn movements where the project would add traffic.

Vehicle queues were estimated using a Poisson probability distribution. The basis of the analysis is as follows: (1) the Poisson probability distribution is used to estimate the 95<sup>th</sup> percentile maximum number of queued vehicles per signal cycle for a particular movement; (2) the estimated maximum number of vehicles in the queue is translated into a queue length, assuming 25 feet per vehicle; and (3) the estimated maximum queue length is compared to the existing or planned available storage capacity for the movement. This analysis thus provides a basis for estimating future storage requirements at intersections.

Vehicle queuing was evaluated at the following off-site locations: eastbound left-turn pocket at the intersection of Callan Boulevard and Serramonte Boulevard, and the westbound left-turn pocket at the intersection of SR-1 southbound ramps and Clarinada Avenue. The vehicle queuing estimates for these off-site intersections are shown in Table 8. Vehicle queuing was evaluated at the site driveway



intersection for the movement of the northbound shared left/thru/right-turn lane (site driveway). The vehicle queuing estimates for this site driveway intersection movement is shown in Table 9.

Table 8 shows that the estimated maximum vehicle queues under existing and existing plus project conditions would not exceed the existing vehicle storage capacity at either the eastbound left-turn pocket at the intersection of Callan Boulevard and Serramonte Boulevard or the westbound left-turn pocket at the intersection of SR-1 southbound ramps and Clarinada Avenue during any of the peak hours.

Table 9 shows the existing and projected maximum vehicle queues for the northbound movement at the site driveway intersection. This is discussed in detail in the "Site Access and On-Site Circulation" section of this chapter.

#### Table 8 Off-Site Vehicle Queuing Analysis

Ē

ŝ

|                                  | #5 Callan Blvd & Serramonte<br>Blvd <sup>1</sup> |     |                     | #2 SB SR-1 ramps<br>& Clarinada Ave <sup>2</sup> |      |      |
|----------------------------------|--------------------------------------------------|-----|---------------------|--------------------------------------------------|------|------|
|                                  | Eastbound Left-Turn                              |     | Westbound Left-Turn |                                                  |      |      |
| Measurement                      | AM                                               | SPM | PM                  | AM                                               | SPM  | PM   |
| <u>Existing</u>                  |                                                  |     |                     |                                                  |      |      |
| Cycle/Delay <sup>3</sup> (sec)   | 60                                               | 60  | 60                  | 11.9                                             | 18.5 | 19.1 |
| Volume (vph)                     | 102                                              | 59  | 64                  | 80                                               | 234  | 226  |
| Avg. Queue (veh)                 | 1.7                                              | 1.0 | 1.1                 | 0.3                                              | 1.2  | 1.2  |
| Avg. Queue (ft.) <sup>4</sup>    | 43                                               | 25  | 27                  | 7                                                | 30   | 30   |
| 95th %. Queue (veh)              | 4                                                | 3   | 3                   | 1                                                | 3    | 3    |
| 95th %. Queue (ft.) <sup>4</sup> | 100                                              | 75  | 75                  | 25                                               | 75   | 75   |
| Storage                          | 160                                              | 160 | 160                 | 150                                              | 150  | 150  |
| Adequate (Y/N)                   | Y                                                | Y   | Y                   | Y                                                | Y    | Y    |
| Existing + Project               |                                                  |     |                     |                                                  |      |      |
| Cycle/Delay <sup>3</sup> (sec)   | 60                                               | 60  | 60                  | 12.5                                             | 18.9 | 19.4 |
| Volume (vph)                     | 120                                              | 61  | 66                  | 98                                               | 236  | 228  |
| Avg. Queue (veh)                 | 2.0                                              | 1.0 | 1.1                 | 0.3                                              | 1.2  | 1.2  |
| Avg. Queue (ft.) <sup>4</sup>    | 50                                               | 25  | 28                  | 9                                                | 31   | 31   |
| 95th %. Queue (veh)              | 5                                                | 3   | 3                   | 1                                                | 3    | 3    |
| 95th %. Queue (ft.) <sup>4</sup> | 125                                              | 75  | 75                  | 25                                               | 75   | 75   |
| Storage                          | 160                                              | 160 | 160                 | 150                                              | 150  | 150  |
| Adequate (Y/N)                   | Y                                                | Y   | Y                   | Y                                                | Y    | Y    |

<sup>1</sup> Callan Boulevard & Serramonte Boulevard is a signalized intersection.

<sup>2</sup> SB SR 1 ramps & Clarinada Avenue is an unsignalized intersection.

<sup>3</sup> Vehicle queue calculations based on cycle length for signalized intersections and movement delay for unsignalized intersections.

<sup>4</sup>Assumes 25 feet per vehicle queued.

## Table 9

### Site Driveway Vehicle Queuing Analysis

|                                  | Site Driveway at Serramonte Boulevard<br>Northbound shared Left/Thru/Right <sup>3</sup> |      |      |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------|------|------|--|--|
| Measurement                      | AM                                                                                      | SPM  | PM   |  |  |
| <u>Existing</u>                  |                                                                                         |      |      |  |  |
| Delay <sup>1</sup> (sec)         | 14.3                                                                                    | 10.9 | 14.4 |  |  |
| Volume (vph)                     | 96                                                                                      | 36   | 132  |  |  |
| Avg. Queue (veh)                 | 0.4                                                                                     | 0.1  | 0.5  |  |  |
| Avg. Queue (ft.) <sup>2</sup>    | 10                                                                                      | 3    | 13   |  |  |
| 95th %. Queue (veh)              | 2                                                                                       | 1    | 2    |  |  |
| 95th %. Queue (ft.) <sup>2</sup> | 50                                                                                      | 25   | 50   |  |  |
| Storage                          | 50                                                                                      | 50   | 50   |  |  |
| Adequate (Y/N)                   | Y                                                                                       | Y    | Y    |  |  |
| Existing + Project               |                                                                                         |      |      |  |  |
| Delay <sup>1</sup> (sec)         | 19.2                                                                                    | 11.4 | 15.5 |  |  |
| Volume (vph)                     | 183                                                                                     | 50   | 145  |  |  |
| Avg. Queue (veh)                 | 1.0                                                                                     | 0.2  | 0.6  |  |  |
| Avg. Queue (ft.) <sup>2</sup>    | 24                                                                                      | 4    | 16   |  |  |
| 95th %. Queue (veh)              | 3                                                                                       | 1    | 2    |  |  |
| 95th %. Queue (ft.) <sup>2</sup> | 75                                                                                      | 25   | 50   |  |  |
| Storage                          | 130                                                                                     | 130  | 130  |  |  |
| Adequate (Y/N)                   | Y                                                                                       | Y    | Y    |  |  |

<sup>1</sup> Vehicle queue calculations based on movement delay for unsignalized intersections.

<sup>2</sup>Assumes 25 feet per vehicle queued.

<sup>3</sup> Under existing conditions, the northbound shared left/thru/right-turn lane on the drive aisle at the existing school site extends 50 feet back from the northbound stop bar to the intersecting parking aisle at the east lot. Per the proposed site plan, the northbound shared left/thru/right-turn lane would extend 130 feet back to the relocated southern east-west parking aisle at the east lot.

## Pedestrian, Bicycle, and Transit Analysis

**Pedestrian Facilities.** Existing observations at the study intersections showed a moderate amount of pedestrian activity. Pedestrian activity at the St. Francis Boulevard/Clarinada intersection is fairly heavy for a non-CBD area, ranging between 40 and 80 pedestrian crossings per hour. Pedestrian volumes at the Callan Boulevard/Serramonte Boulevard intersection are moderate, ranging between 25 and 50 pedestrian crossings per hour. Pedestrian volumes directly in front of the project site were fairly light, ranging from 10 to 25 pedestrian crossings per hour.

Overall, the volume of pedestrian trips generated by the project is expected to be relatively low and not exceed the carrying capacity of the sidewalks and crosswalks nearby. Nearly all of the streets in the project vicinity have sidewalks and crosswalks at intersections. Currently, there is an existing bus stop on the north side of Serramonte Boulevard, opposite the project site, just west of the SR 1 ramps. There is no crosswalk across Serramonte Boulevard at the SR 1 ramps intersection, and it is anticipated that the project would add to the demand for this crossing. With the implementation of Recommendation 1, the installation of a traffic signal, pedestrian crosswalks



Ň

should be added at this intersection, improving pedestrian access between the existing bus stop and the project site.

**Bicycle Facilities.** According to the U.S. Census and City of Daly City General Plan, approximately one percent of the proposed project's users could be expected to commute via bike to and from the project site. For the proposed project, this would equate to approximately one new bike trip during each of the AM, school PM, and PM peak hours. The low volume of bicycle trips generated by the project would not exceed the bicycle-carrying capacity of the streets surrounding the site, and the increase in bicycle trips would not, by itself, require new off-site bicycle facilities. Daly City has installed bike facilities on Serramonte Boulevard along the project frontage.

**Transit Service.** Transit service in the project vicinity is currently provided by SamTrans. The nearest bus service is provided by Lines 24 and 120, with bus stops directly fronting the project site. According to the U.S. Census, bus trips comprise approximately 11 percent of the total commute mode share in the City of Daly City. For the proposed project, this would equate to 10 new transit trips during the AM peak hour and 7 new transit trips during each of the school PM and PM peak commute hours. This volume of riders would not exceed the carrying capacity of the existing bus service near the project site. Therefore, the proposed project would not create an adverse impact to transit service in the area.

According to the CEQA Guidelines, a project would create an impact to bicycle, transit or pedestrians on the transportation system if it: (1) conflicts with a program, plan, ordinance or policy addressing the circulation system, including transit, bicycle and pedestrian facilities; or (2) substantially increases hazards due to a geometric design feature; or (3) would create demand in excess of capacity. The project would not alter any existing or planned bicycle, pedestrian or transit facilities nor would it create demand in excess of capacity. However, it is recommended that a crosswalk be installed across Serramonte Boulevard at SR 1 in conjunction with the City's planned traffic signal installation to facilitate the project's pedestrian access to existing bus service. Therefore, the proposed project would not cause a significant impact to bicycle, pedestrian, or transit operations in the study area.

## Site Access and On-Site Circulation

This section describes site access and on-site circulation for the proposed project. This review is based on the site plan dated July 9, 2019 (see Figure 2). The site plan is largely conceptual, being that it doesn't provide all necessary labels and dimensions.

#### Site Access Design

The site is located on the southwest corner of the SR-1 NB ramps/Serramonte Boulevard intersection. Site access would be provided by a single project driveway located at the south leg of the SR-1 northbound ramps/Serramonte Boulevard intersection. There is currently a driveway at this location that provides access to the existing education center on the parcel directly east of, and adjacent to, the site. The site driveway is located 175 feet east of Kent Court, and directly opposite the northbound SR-1 ramps. The distance to Callan Boulevard, the nearest street east of the site driveway, is approximately 600 feet. Along the site frontage, west of the site driveway, Serramonte Boulevard is two lanes wide with on-street parking on the north side. East of the site driveway, Serramonte Boulevard is four lanes wide with on-street parking on both sides. The proposed site driveway would have one lane in each direction, with the northbound approach functioning as a single shared left/thru/right-turn lane.

#### **Access Operations**

The results of the level of service and signal warrant analyses for the Site Driveway/Serramonte Boulevard intersection were reported previously. As shown on Figure 6, the project would add to the northbound approach of the Site Driveway/Serramonte Boulevard intersection 80 trips in the AM peak hour, and 13 trips in each of the school PM and PM commute peak hours. The project



Ř

ļ

----

ĥ

would add to the westbound left turn movement from Serramonte Boulevard into the site 3 trips in the AM peak hour, and 12 trips in each of the school PM and PM commute peak hours.

One measure of storage capacity for the northbound (outbound) driveway approach at the Serramonte Boulevard intersection could be based on the distance to the nearest intersecting east-west parking aisle upstream (south) of the intersection stop bar at Serramonte Boulevard. Under existing conditions, this distance- the distance to the parking lot's northern east-west parking aisle, and the point at which vehicles would obstruct this aisle- is 50 feet. By this same measure, with new crosswalk striping and modified curb radius into the east-west parking aisle, the main north-south drive aisle would provide an effective storage capacity of 40 feet on the northbound approach under project conditions. However, were the northern east-west parking aisle to be obstructed, vehicles in the parking lot could still exit their parking spaces and exit the parking lot via the parking lot's southern east-west parking aisle, which is located 130 feet south of the intersection at Serramonte Boulevard. The same holds for southbound vehicles turning left into the east parking lot. Therefore, if the measure of storage capacity were based on ensuring that vehicles could enter and exit the east parking lot, the effective storage capacity would be considered 130 feet.

**Driveway Queuing**. The results of the vehicle queuing analysis at the site driveway are shown in Table 9. For the northbound shared left/thru/right-turn lane, the analysis showed that, under existing conditions, the available storage of 50 feet accommodates the estimated maximum vehicle queue of 50 feet in the AM and PM peak hours and the 25-foot maximum vehicle queue during the school PM peak hour. Under existing plus project conditions, the estimated maximum vehicle queues were projected to be 75 feet in the AM peak hour and 25- to 50-feet in the school PM and PM commute peak hours. As explained above, the effective storage capacity for this movement was assumed to be 130 feet, but vehicle queues in excess of 50 feet would block the subject east/west drive aisle. Given that the vehicle queuing analysis is based on the worst-case, 95<sup>th</sup>-percentile maximum queues which, by definition, occur infrequently, and given the very low volume of traffic in the east/west drive aisle, the occasional blockage of the east-west drive aisle would likely not create an operational problem. Nevertheless, it would be beneficial to restrict southbound left turns into the northern east-west drive aisle, thereby directing the southbound left turns to enter at the southern east-drive aisle.

Westbound left turns into the site are made from the westbound shared through/left-turn lane on Serramonte Boulevard. Since there is no left-turn pocket, the effective storage capacity for the westbound left turn is 600 feet- the distance to the Callan Boulevard intersection.

**Signal Warrant**. As reported previously, the peak-hour signal warrant is and would be met for the site driveway intersection at Serramonte Boulevard under all scenarios during all 3 peak hours studied. Signalization of the intersection is planned under the City's General Plan.

**Sight Distance**. The issue of sight distance at the site driveway is relevant primarily when the site driveway is the minor street at a two-way-stop controlled intersection. That is not the case for the proposed project. The site driveway intersection at Serramonte Boulevard currently operates under all-way-stop control and is planned to operate under signal control.

The factors affecting sight distance at the site driveway are the vertical curve on Serramonte Boulevard and the on-street parking on the south side of Serramonte Boulevard east of the driveway. Serramonte Boulevard slopes upward from the driveway in the west direction. With no on-street parking on the south side of Serramonte Boulevard west of the driveway, the line of sight looking west is unimpeded and would remain so after completion of the project, provided there are no monument signs or landscaping installed that would obstruct it. East of the site driveway, Serramonte Boulevard slopes downward, away from the driveway in the east direction, limiting the line of sight to approximately 100 to 220 feet, depending on on-street parking obstructions. The on-street parking on the south side of Serramonte Boulevard potentially limits sight distance to the east. However, because the intersection would operate under all-way stop or signal control, the limited sight distance does not pose a safety issue.



-

----

Ř



31 | Page

#### **On-Site Circulation**

Ē

----

Ķ

The project access driveway on Serramonte Boulevard provides direct access to the on-site circulation via the main north-south drive aisle. The main north-south drive aisle extends approximately 260 feet southward from Serramonte Boulevard to a ninety-degree curve that extends westward about 265 feet on the main east-west drive aisle along the south frontage of the site where it connects to Campus Drive via a three-legged intersection. From the junction with Campus Drive, the main east-west drive aisle extends northwestward about 100 feet toward the project's west parking lot. The east parking lot is accessed from the main north-south drive aisle via the two previously mentioned east-west parking aisles. At its east end, the east lot also connects to the existing Perimeter Road.

All aisles on site have two lanes and serve two-way traffic. The main north-south drive aisle is approximately 34 feet wide from Serramonte Boulevard to and past the passenger loading area, until the pedestrian crossing, where the main north-south drive aisle widens to about 39 feet. The drive aisle continues 39 feet wide from the pedestrian crossing to the curve, where it narrows to 26 feet. The main east-west drive aisle is 26 feet wide from that point westward to the three-legged intersection at Campus Drive. The main east-west drive aisle is 24 feet wide between Campus Drive and the west parking lot. South of the main east-west drive aisle, Campus Drive is shown to be about 22 feet wide. There is no public access to this section of Campus Drive.

Several perpendicular parking spaces are located on the east side of the main north-south drive aisle, at the south end before the curve. Though the perpendicular parking is located in close proximity to the curve, the design of the curve and the location of the parking are such that adequate sight distance would be provided. Parallel parking would be provided on the north side of the main east-west drive aisle, at the west end before the three-legged intersection at Campus Drive. Because of the low volumes and speeds on the main east-west drive aisle, the proximity of the parallel parking to the intersection is not likely to pose any problems with operations at the intersection.

A passenger loading area would be located on the west side of the main north-south drive aisle, fronting the main pedestrian entry leading to the courtyard. The passenger loading area is of sufficient width and length to accommodate one to two cars without obstructing the southbound lane of the main north-south drive aisle. Vehicles would exit the passenger loading area southbound, turn left into the southern east-west drive aisle, circulate around to the northern east-west drive aisle back to the main north-south drive aisle, then turn right to access Serramonte Boulevard.

Circulation in the west parking lot consists of a single loop with 26-foot wide, two-way aisles with perpendicular (90-degree) parking along both sides, with the exception of the west side of the western north-south aisle, which provides a car barn with puzzle lifts. The three-level puzzle lift parking system would stack three vehicles in each parking stall. Upon arriving at the lot, residents would utilize a remote control to open their designated, secured, parking bay. The parking slots would shift to find an open space. The operation requires a short wait time to complete, depending if the shift is laterally only, requires raising and/or lowering, or if a shift is even needed. Based on Hexagon's prior observations of an existing two-level lift system, it was determined that the time to access a vehicle in the puzzle lift system can vary from 30 seconds to one minute and 45 seconds, depending on the configuration of vehicles within the system. It is anticipated that the proposed lift system would have adequate capacity to accommodate the number of trips into and out of the proposed parking lot, and the lift is far enough away from the public street that any minor inconveniences would be limited to the parking lot only.

The loop circulation layout in the west lot provides a simple circulation pattern with no dead-end aisles and parking spaces that are generally easy to access. The site plan shows that, conceptually, the alignments of the drive aisles on site, and the radii of the corners and curbs appear to be adequate to accommodate the circulation of trucks, garbage collection, and emergency vehicles.



Ţ

---

Ă

Ř

A review of the east parking lot was not conducted as it will remain unchanged from its existing layout.

**Recommendation 3:** The project shall ensure that, in the final design, the alignments of the drive aisles and the corner radii on site are adequate for circulation of trucks, garbage collection, and emergency vehicles, subject to review by city staff/Republic Services. The northern east-west drive aisle should be designated one-way outbound (westbound) only.

Pedestrian circulation on site and pedestrian access to off-site pedestrian facilities appear adequate. Three on-site walkways connect to Serramonte Boulevard at the northeast corner of the site. The site plan shows walkways along the perimeter of the site, between the buildings on site, fronting the west parking lot, and on the east side of the main north-south drive aisle on the section adjacent to the aforementioned perpendicular parking. Crosswalks would be provided at three locations: across the south leg of the site access driveway at Serramonte Boulevard; mid-block on the main north-south drive aisle (just south of the southern east-west parking aisle of the east lot); and at the bend where the main north-south drive aisle meets the main east-west drive aisle.

The project site plan shows a bike parking pen on the west side of the site, but the bike parking supply has not yet been finalized. The City requires bike parking in the following amounts:

- Long Term Bike Parking: 5% of the resident vehicular parking spaces
- Short Term Bike Parking: 5% of the visitor vehicular parking spaces

**Recommendation 4:** The project shall provide bicycle parking on site in accordance with City requirements. The number, type and location of bicycle facilities provided by the project will be subject to review by city staff.

While the project would not create a significant impact to transit operations, the existing bus stop along the site frontage (on the south side of Serramonte Boulevard) west of the site driveway does not currently provide a bench or shelter. In order to encourage transit usage, and as part of the project's enhancement to the site's frontage along Serramonte Boulevard, the project should consider installing a bus shelter or bench. Providing an upgrade to the bus stop, be it a bench or shelter, would encourage transit ridership.

**Recommendation 5:** Prior to final design, the project applicant shall work with City of Daly City and SamTrans staff to consider the desirability of upgrades to the existing bus stop along the project frontage.

**Technical Appendices** 

## Appendix A

**Traffic Counts** 































## Appendix B

## Intersection Level of Service Calculations

## Intersection Delay, s/veh 13.8 Intersection LOS B

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT            | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|----------------|------|------|-------|------|------|------|------|
| Lane Configurations        |      | 4.   |      |      | 4              | 1    |      | 4     |      |      | 4    | _    |
| Traffic Vol, veh/h         | 4    | 85   | 57   | 82   | 141            | 202  | 13   | 117   | 50   | 91   | 204  | 3    |
| Future Vol, veh/h          | 4    | 85   | 57   | 82   | 141            | 202  | 13   | 117   | 50   | 91   | 204  | 3    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91           | 0.91 | 0.91 | 0.91  | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2              | 2    | 2    | 2     | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 4    | 93   | 63   | 90   | 155            | 222  | 14   | 129   | 55   | 100  | 224  | 3    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1              | 1    | 0    | 1     | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      | 34   | WB   | and the second | 44 M | NB   | 1297- | 1.5  | SB   |      |      |
| Opposing Approach          | WB   | 1    |      | EB   |                |      | SB   |       |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 1    |                |      | 1    |       |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |                |      | EB   |       |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |                |      | 1    |       |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |                |      | WB   |       |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |                |      | 2    |       |      | 1    |      |      |
| HCM Control Delay          | 11.8 |      |      | 13.2 |                |      | 12.5 |       |      | 16.4 |      |      |
| HCM LOS                    | В    |      |      | В    |                |      | В    |       |      | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 7%    | 3%    | 37%   | 0%    | 31%   |  |
| Vol Thru, %            | 65%   | 58%   | 63%   | 0%    | 68%   |  |
| Vol Right, %           | 28%   | 39%   | 0%    | 100%  | 1%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 180   | 146   | 223   | 202   | 298   |  |
| LT Vol                 | 13    | 4     | 82    | 0     | 91    |  |
| Through Vol            | 117   | 85    | 141   | 0     | 204   |  |
| RT Vol                 | 50    | 57    | 0     | 202   | 3     |  |
| Lane Flow Rate         | 198   | 160   | 245   | 222   | 327   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.343 | 0.282 | 0.449 | 0.351 | 0.55  |  |
| Departure Headway (Hd) | 6.235 | 6.321 | 6.697 | 5.796 | 6.152 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 580   | 571   | 542   | 624   | 589   |  |
| Service Time           | 4.235 | 4.335 | 4.397 | 3.496 | 4.152 |  |
| HCM Lane V/C Ratio     | 0.341 | 0.28  | 0.452 | 0.356 | 0.555 |  |
| HCM Control Delay      | 12.5  | 11.8  | 14.7  | 11.6  | 16.4  |  |
| HCM Lane LOS           | В     | В     | В     | В     | С     |  |
| HCM 95th-tile Q        | 1.5   | 1.2   | 2.3   | 1.6   | 3.3   |  |

| Intersection              |      |  |      | and the second second second |
|---------------------------|------|--|------|------------------------------|
| Intersection Delay, s/veh | 13.9 |  |      |                              |
| Intersection LOS          | В    |  | 20.2 |                              |

| Movement                   | EBT        | EBR    | WBL  | WBT          | NBL  | NBR  |                      |
|----------------------------|------------|--------|------|--------------|------|------|----------------------|
| Lane Configurations        | <b>↑</b> Ъ |        | ٦    | <b>†</b> †   | 7    | 1    |                      |
| Traffic Vol, veh/h         | 114        | 133    | 70   | 93           | 292  | 257  |                      |
| Future Vol, veh/h          | 114        | 133    | 70   | 93           | 292  | 257  |                      |
| Peak Hour Factor           | 0.88       | 0.88   | 0.88 | 0.88         | 0.88 | 0.88 |                      |
| Heavy Vehicles, %          | 2          | 2      | 2    | 2            | 2    | 2    |                      |
| Mymt Flow                  | 130        | 151    | 80   | 106          | 332  | 292  |                      |
| Number of Lanes            | 2          | 0      | 1    | 2            | 1    | 1    |                      |
| Approach                   | EB         | 11 - A | WB   | a series and | NB   |      | a literation and the |
| Opposing Approach          | WB         |        | EB   |              |      |      |                      |
| Opposing Lanes             | 3          |        | 2    |              | 0    |      |                      |
| Conflicting Approach Left  |            |        | NB   |              | EB   |      |                      |
| Conflicting Lanes Left     | 0          |        | 2    |              | 2    |      |                      |
| Conflicting Approach Right | NB         |        |      |              | WB   |      |                      |
| Conflicting Lanes Right    | 2          |        | 0    |              | 3    |      |                      |
| HCM Control Delay          | 12         |        | 10.6 |              | 15.8 |      |                      |
| HCM LOS                    | В          |        | В    |              | С    |      |                      |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 0%    | 100%  | 22%   | 0%    | 100%  | 100%  |  |
| Vol Right, %           | 0%    | 100%  | 0%    | 78%   | 0%    | 0%    | 0%    |  |
| Sign Control           | Stop  |  |
| Fraffic Vol by Lane    | 292   | 257   | 76    | 171   | 70    | 47    | 47    |  |
| _T Vol                 | 292   | 0     | 0     | 0     | 70    | 0     | 0     |  |
| Through Vol            | 0     | 0     | 76    | 38    | 0     | 47    | 47    |  |
| RT Vol                 | 0     | 257   | 0     | 133   | 0     | 0     | 0     |  |
| ane Flow Rate          | 332   | 292   | 86    | 194   | 80    | 53    | 53    |  |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |
| Degree of Util (X)     | 0.605 | 0.434 | 0.165 | 0.342 | 0.168 | 0.104 | 0.078 |  |
| Departure Headway (Hd) | 6.559 | 5.355 | 6.885 | 6.328 | 7.591 | 7.081 | 5.311 |  |
| Convergence, Y/N       | Yes   |  |
| Cap                    | 551   | 672   | 520   | 567   | 471   | 505   | 671   |  |
| Service Time           | 4.303 | 3.099 | 4.645 | 4.088 | 5.358 | 4.847 | 3.076 |  |
| HCM Lane V/C Ratio     | 0.603 | 0.435 | 0.165 | 0.342 | 0.17  | 0.105 | 0.079 |  |
| HCM Control Delay      | 18.9  | 12.2  | 11    | 12.4  | 11.9  | 10.7  | 8.5   |  |
| HCM Lane LOS           | C     | В     | В     | В     | В     | В     | A     |  |
| HCM 95th-tile Q        | 4     | 2.2   | 0.6   | 1.5   | 0.6   | 0.3   | 0.3   |  |

## Intersection Delay, s/veh 14.7 Intersection LOS B

| Movement                   | EBL  | EBT       | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR   |
|----------------------------|------|-----------|------|------|------|------|------|------|-------|------|------|-------|
| Lane Configurations        |      | 4         |      |      | \$   |      |      | 4    |       |      | 4    |       |
| Traffic Vol, veh/h         | 12   | 278       | 2    | 9    | 85   | 145  | 3    | 13   | 45    | 315  | 15   | 8     |
| Future Vol, veh/h          | 12   | 278       | 2    | 9    | 85   | 145  | 3    | 13   | 45    | 315  | 15   | 8     |
| Peak Hour Factor           | 0.91 | 0.91      | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91  | 0.91 | 0.91 | 0.91  |
| Heavy Vehicles, %          | 2    | 2         | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2     |
| Mvmt Flow                  | 13   | 305       | 2    | 10   | 93   | 159  | 3    | 14   | 49    | 346  | 16   | 9     |
| Number of Lanes            | 0    | 1         | 0    | 0    | 1    | 0    | 0    | 1    | 0     | 0    | 1    | 0     |
| Approach                   | EB   | Se sporte |      | WB   |      |      | NB   | 1    |       | SB   |      | 122-1 |
| Opposing Approach          | WB   |           |      | EB   |      |      | SB   |      |       | NB   |      |       |
| Opposing Lanes             | 1    | 1         |      | 1    |      |      | 1    |      | 12.00 | 1    |      |       |
| Conflicting Approach Left  | SB   |           |      | NB   |      |      | EB   |      |       | WB   |      |       |
| Conflicting Lanes Left     | 1    |           |      | 1    |      |      | 1    |      |       | 1    |      |       |
| Conflicting Approach Right | NB   |           |      | SB   |      |      | WB   |      |       | EB   |      |       |
| Conflicting Lanes Right    | 1    |           |      | 1    |      |      | 1    |      |       | 1    |      | 1.00  |
| HCM Control Delay          | 14.6 |           |      | 12.1 |      |      | 9.7  |      |       | 17.4 |      |       |
| HCMLOS                     | В    |           |      | В    |      |      | А    |      |       | С    |      |       |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 4%    | 4%    | 93%   |  |
| Vol Thru, %            | 21%   | 95%   | 36%   | 4%    |  |
| Vol Right, %           | 74%   | 1%    | 61%   | 2%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 61    | 292   | 239   | 338   |  |
| LT Vol                 | 3     | 12    | 9     | 315   |  |
| Through Vol            | 13    | 278   | 85    | 15    |  |
| RT Vol                 | 45    | 2     | 145   | 8     |  |
| Lane Flow Rate         | 67    | 321   | 263   | 371   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.11  | 0.508 | 0.398 | 0.602 |  |
| Departure Headway (Hd) | 5.891 | 5.701 | 5.461 | 5.839 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 603   | 629   | 654   | 617   |  |
| Service Time           | 3.984 | 3.769 | 3.534 | 3.902 |  |
| HCM Lane V/C Ratio     | 0.111 | 0.51  | 0.402 | 0.601 |  |
| HCM Control Delay      | 9.7   | 14.6  | 12.1  | 17.4  |  |
| HCM Lane LOS           | A     | В     | В     | C     |  |
| HCM 95th-tile Q        | 0.4   | 2.9   | 1.9   | 4     |  |

# Intersection Intersection Delay, s/veh 28.7 Intersection LOS D

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR         | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|-------------|------|------|------|
| Lane Configurations        | 1    | Þ    |      |      | 472  |      |      | \$   |             |      | 4    | 1    |
| Traffic Vol, veh/h         | 402  | 225  | 33   | 53   | 131  | 211  | 16   | 38   | 33          | 193  | 37   | 95   |
| Future Vol, veh/h          | 402  | 225  | 33   | 53   | 131  | 211  | 16   | 38   | 33          | 193  | 37   | 95   |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91        | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2           | 2    | 2    | 2    |
| Mymt Flow                  | 442  | 247  | 36   | 58   | 144  | 232  | 18   | 42   | 36          | 212  | 41   | 104  |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2    | 0    | 0    | 1    | 0           | 0    | 1    | 1    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      | 4 - 12 - 54 | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |             | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |      |             | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |             | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |      |             | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |             | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |      |             | 2    |      |      |
| HCM Control Delay          | 41.5 |      |      | 18.1 |      |      | 14.3 |      |             | 19.6 |      |      |
| HCM LOS                    | E    |      |      | С    |      |      | B    |      |             | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 | and the second second |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------------|
| Vol Left, %            | 18%   | 100%  | 0%    | 45%   | 0%    | 84%   | 0%    |                       |
| Vol Thru, %            | 44%   | 0%    | 87%   | 55%   | 24%   | 16%   | 0%    |                       |
| Vol Right, %           | 38%   | 0%    | 13%   | 0%    | 76%   | 0%    | 100%  |                       |
| Sign Control           | Stop  |                       |
| Traffic Vol by Lane    | 87    | 402   | 258   | 119   | 277   | 230   | 95    |                       |
| _T Vol                 | 16    | 402   | 0     | 53    | 0     | 193   | 0     |                       |
| Through Vol            | 38    | 0     | 225   | 66    | 66    | 37    | 0     |                       |
| RT Vol                 | 33    | 0     | 33    | 0     | 211   | 0     | 95    |                       |
| ane Flow Rate          | 96    | 442   | 284   | 130   | 304   | 253   | 104   |                       |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |                       |
| Degree of Util (X)     | 0.229 | 0.943 | 0.558 | 0.286 | 0.6   | 0.592 | 0.211 |                       |
| Departure Headway (Hd) | 8.631 | 7.687 | 7.082 | 7.893 | 7.113 | 8.436 | 7.285 |                       |
| Convergence, Y/N       | Yes   |                       |
| Сар                    | 415   | 473   | 510   | 454   | 507   | 427   | 493   |                       |
| Service Time           | 6.699 | 5.438 | 4.833 | 5.649 | 4.868 | 6.188 | 5.036 |                       |
| HCM Lane V/C Ratio     | 0.231 | 0.934 | 0.557 | 0.286 | 0.6   | 0.593 | 0.211 |                       |
| HCM Control Delay      | 14.3  | 56.3  | 18.5  | 13.8  | 20    | 22.8  | 12    |                       |
| HCM Lane LOS           | В     | F     | С     | В     | C     | C     | В     |                       |
| HCM 95th-tile Q        | 0.9   | 11.3  | 3.4   | 1.2   | 3,9   | 3.7   | 0.8   |                       |

### Existing AM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ۶          | ->         | $\mathbf{i}$ | 1             | +           | •          | 1       | Ť     | /          | 5    | Ļ    | -     |
|-------------------------------|------------|------------|--------------|---------------|-------------|------------|---------|-------|------------|------|------|-------|
| Movement                      | EBL        | EBT        | EBR          | WBL           | WBT         | WBR        | NBL     | NBT   | NBR        | SBL  | SBT  | SBF   |
| Lane Configurations           | ٦          | <b>†</b> ] |              | ٦             | <b>↑</b> 7→ |            | ٦       | ħ     |            | ٦    | 1    | 1     |
| Traffic Volume (vph)          | 92         | 266        | 141          | 41            | 61          | 43         | 187     | 319   | 82         | 122  | 290  | 110   |
| Future Volume (vph)           | 92         | 266        | 141          | 41            | 61          | 43         | 187     | 319   | 82         | 122  | 290  | 110   |
| Ideal Flow (vphpl)            | 1900       | 1900       | 1900         | 1900          | 1900        | 1900       | 1900    | 1900  | 1900       | 1900 | 1900 | 1900  |
| Total Lost time (s)           | 4.0        | 4.0        |              | 4.0           | 4.0         |            | 4.0     | 4.0   |            | 4.0  | 4.0  | 4.0   |
| Lane Util. Factor             | 1.00       | 0.95       |              | 1.00          | 0.95        |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00  |
| Frpb, ped/bikes               | 1.00       | 0.99       |              | 1.00          | 0.99        |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 0.98  |
| Flpb, ped/bikes               | 1.00       | 1.00       |              | 1.00          | 1.00        |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00  |
| Frt                           | 1.00       | 0.95       |              | 1.00          | 0.94        |            | 1.00    | 0.97  |            | 1.00 | 1.00 | 0.85  |
| Flt Protected                 | 0.95       | 1.00       |              | 0.95          | 1.00        |            | 0.95    | 1.00  |            | 0.95 | 1.00 | 1.00  |
| Satd. Flow (prot)             | 1770       | 3321       |              | 1770          | 3296        |            | 1770    | 1798  |            | 1770 | 1863 | 1553  |
| Flt Permitted                 | 0.95       | 1.00       |              | 0.95          | 1.00        |            | 0.95    | 1.00  |            | 0.95 | 1.00 | 1.00  |
| Satd. Flow (perm)             | 1770       | 3321       |              | 1770          | 3296        |            | 1770    | 1798  |            | 1770 | 1863 | 1553  |
| Peak-hour factor, PHF         | 0.90       | 0.90       | 0.90         | 0.90          | 0.90        | 0.90       | 0.90    | 0.90  | 0.90       | 0.90 | 0.90 | 0.90  |
| Adj. Flow (vph)               | 102        | 296        | 157          | 46            | 68          | 48         | 208     | 354   | 91         | 136  | 322  | 122   |
| RTOR Reduction (vph)          | 0          | 120        | 0            | 0             | 40          | 0          | 0       | 14    | 0          | 0    | 0    | 87    |
| Lane Group Flow (vph)         | 102        | 333        | 0            | 46            | 76          | 0          | 208     | 431   | 0          | 136  | 322  | 35    |
| Confl. Peds. (#/hr)           | 5          |            | 6            | 6             | 200         | 5          | 7       | 13.E. | 9          | 9    |      | 1     |
| Turn Type                     | Prot       | NA         |              | Prot          | NA          |            | Prot    | NA    |            | Prot | NA   | Perm  |
| Protected Phases              | 7          | 4          |              | 3             | 8           |            | 5       | 2     |            | 1    | 6    |       |
| Permitted Phases              |            |            |              |               |             |            |         |       |            |      |      | 6     |
| Actuated Green, G (s)         | 4.8        | 12.5       |              | 1.4           | 9.1         |            | 8.3     | 18.2  |            | 5.2  | 15.1 | 15.1  |
| Effective Green, g (s)        | 4.8        | 12.5       |              | 1.4           | 9.1         |            | 8.3     | 18.2  |            | 5.2  | 15.1 | 15.1  |
| Actuated g/C Ratio            | 0.09       | 0.23       |              | 0.03          | 0.17        |            | 0.16    | 0.34  |            | 0.10 | 0.28 | 0.28  |
| Clearance Time (s)            | 4.0        | 4.0        |              | 4.0           | 4.0         |            | 4.0     | 4.0   |            | 4.0  | 4.0  | 4.0   |
| Vehicle Extension (s)         | 3.0        | 3.0        |              | 3.0           | 3.0         |            | 3.0     | 3.0   | the second | 3.0  | 3.0  | 3.0   |
| Lane Grp Cap (vph)            | 159        | 778        |              | 46            | 562         |            | 275     | 613   |            | 172  | 527  | 439   |
| v/s Ratio Prot                | c0.06      | c0.10      |              | 0.03          | 0.02        |            | c0.12   | c0.24 |            | 0.08 | 0.17 |       |
| v/s Ratio Perm                |            |            |              |               |             |            |         |       |            |      |      | 0.02  |
| v/c Ratio                     | 0.64       | 0.43       |              | 1.00          | 0.14        |            | 0.76    | 0.70  |            | 0.79 | 0.61 | 0.08  |
| Uniform Delay, d1             | 23.4       | 17.4       |              | 25.9          | 18.8        |            | 21.5    | 15.2  |            | 23.5 | 16.6 | 14.0  |
| Progression Factor            | 1.00       | 1.00       |              | 1.00          | 1.00        |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00  |
| Incremental Delay, d2         | 8.5        | 0.4        |              | 132.7         | 0.1         |            | 11.2    | 3.6   |            | 21.4 | 2.1  | 0.1   |
| Delay (s)                     | 32.0       | 17.7       |              | 158.6         | 18.9        |            | 32.8    | 18.8  | 1          | 45.0 | 18.7 | 14.1  |
| Level of Service              | С          | 8          |              | F             | В           |            | С       | В     |            | D    | В    | E     |
| Approach Delay (s)            |            | 20.4       |              |               | 58.6        |            |         | 23.3  |            |      | 23.9 |       |
| Approach LOS                  |            | С          |              |               | E           |            |         | С     |            |      | С    |       |
| Intersection Summary          |            |            | 1            | in the second |             |            | 1.4     |       | 作业工        |      |      | S. F. |
| HCM 2000 Control Delay        |            |            | 25.6         | H             | CM 2000     | Level of   | Service |       | С          |      |      |       |
| HCM 2000 Volume to Capa       | city ratio |            | 0.67         |               |             |            |         |       |            |      |      |       |
| Actuated Cycle Length (s)     |            |            | 53.3         |               | um of lost  |            |         |       | 16.0       |      |      |       |
| Intersection Capacity Utiliza | ation      |            | 57.7%        | IC            | U Level o   | of Service | •       |       | В          |      |      |       |
| Analysis Period (min)         |            |            | 15           |               |             |            |         |       |            |      |      |       |
| c Critical Lane Group         |            |            |              |               |             |            |         |       |            |      |      |       |

| 01/31/2019 |  |
|------------|--|
|------------|--|

| Intersection              | The second |  |   | State State | 125 6 5 3 |
|---------------------------|------------|--|---|-------------|-----------|
| Intersection Delay, s/veh | 13.4       |  | - |             |           |
| Intersection LOS          | В          |  |   |             |           |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR   | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|-------|-------|------|------|------|
| Lane Configurations        |      | \$   |      |      | 4    | 1    |      | 4     |       |      | 4    |      |
| Traffic Vol, veh/h         | 1    | 67   | 26   | 76   | 170  | 249  | 11   | 124   | 42    | 99   | 176  | 3    |
| Future Vol, veh/h          | 1    | 67   | 26   | 76   | 170  | 249  | 11   | 124   | 42    | 99   | 176  | 3    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91  | 0.91  | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2     | 2    | 2    | 2    |
| Mymt Flow                  | 1    | 74   | 29   | 84   | 187  | 274  | 12   | 136   | 46    | 109  | 193  | 3    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 1    | 0    | 1     | 0     | 0    | 1    | 0    |
| Approach                   | EB   |      | 14 M | WB   |      |      | NB   | SP FT |       | SB   |      |      |
| Opposing Approach          | WB   | 1    |      | EB   |      | -    | SB   |       | 1.000 | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 1    |      |      | 1    |       |       | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |       |       | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |       |       | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |       |       | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 2    |       | 1.1   | 1    |      |      |
| HCM Control Delay          | 10.7 |      |      | 13.5 |      |      | 12   |       |       | 15.1 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |       |       | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 6%    | 1%    | 31%   | 0%    | 36%   |  |
| Vol Thru, %            | 70%   | 71%   | 69%   | 0%    | 63%   |  |
| Vol Right, %           | 24%   | 28%   | 0%    | 100%  | 1%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 177   | 94    | 246   | 249   | 278   |  |
| LT Vol                 | 11    | 1     | 76    | 0     | 99    |  |
| Through Vol            | 124   | 67    | 170   | 0     | 176   |  |
| RT Vol                 | 42    | 26    | 0     | 249   | 3     |  |
| Lane Flow Rate         | 195   | 103   | 270   | 274   | 305   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.326 | 0.18  | 0.478 | 0.418 | 0.508 |  |
| Departure Headway (Hd) | 6.03  | 6.257 | 6.372 | 5.504 | 5.991 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 593   | 569   | 565   | 651   | 599   |  |
| Service Time           | 4.103 | 4.343 | 4.133 | 3.264 | 4.056 |  |
| HCM Lane V/C Ratio     | 0.329 | 0.181 | 0.478 | 0.421 | 0.509 |  |
| HCM Control Delay      | 12    | 10.7  | 14.9  | 12.2  | 15.1  |  |
| HCM Lane LOS           | В     | В     | В     | В     | С     |  |
| HCM 95th-tile Q        | 1.4   | 0.7   | 2.6   | 2.1   | 2.9   |  |

| Intersection              |      |  |  | See States |  |
|---------------------------|------|--|--|------------|--|
| Intersection Delay, s/veh | 19.6 |  |  |            |  |
| Intersection LOS          | С    |  |  |            |  |

| Movement                   | EBT  | EBR  | WBL  | WBT        | NBL  | NBR  |  |
|----------------------------|------|------|------|------------|------|------|--|
| Lane Configurations        | 11   |      | ٦    | <b>†</b> † | 7    | 1    |  |
| Traffic Vol, veh/h         | 99   | 116  | 220  | 120        | 377  | 241  |  |
| Future Vol, veh/h          | 99   | 116  | 220  | 120        | 377  | 241  |  |
| Peak Hour Factor           | 0.94 | 0.94 | 0.94 | 0.94       | 0.94 | 0.94 |  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2          | 2    | 2    |  |
| Mvmt Flow                  | 105  | 123  | 234  | 128        | 401  | 256  |  |
| Number of Lanes            | 2    | 0    | 1    | 2          | 1    | 1    |  |
| Approach                   | EB   |      | WB   |            | NB   |      |  |
| Opposing Approach          | WB   |      | EB   |            | 1.1  |      |  |
| Opposing Lanes             | 3    |      | 2    |            | 0    |      |  |
| Conflicting Approach Left  |      |      | NB   |            | EB   |      |  |
| Conflicting Lanes Left     | 0    |      | 2    |            | 2    |      |  |
| Conflicting Approach Right | NB   |      |      |            | WB   |      |  |
| Conflicting Lanes Right    | 2    |      | 0    |            | 3    |      |  |
| HCM Control Delay          | 12.8 |      | 15.5 |            | 24.2 |      |  |
| HCM LOS                    | В    |      | С    |            | С    |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | And the second second second                                                                                    |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |                                                                                                                 |
| Vol Thru, %            | 0%    | 0%    | 100%  | 22%   | 0%    | 100%  | 100%  |                                                                                                                 |
| Vol Right, %           | 0%    | 100%  | 0%    | 78%   | 0%    | 0%    | 0%    |                                                                                                                 |
| Sign Control           | Stop  |                                                                                                                 |
| Traffic Vol by Lane    | 377   | 241   | 66    | 149   | 220   | 60    | 60    |                                                                                                                 |
| LT Vol                 | 377   | 0     | 0     | 0     | 220   | 0     | 0     |                                                                                                                 |
| Through Vol            | 0     | 0     | 66    | 33    | 0     | 60    | 60    |                                                                                                                 |
| RT Vol                 | 0     | 241   | 0     | 116   | 0     | 0     | 0     |                                                                                                                 |
| Lane Flow Rate         | 401   | 256   | 70    | 159   | 234   | 64    | 64    |                                                                                                                 |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     | A CASE AND A |
| Degree of Util (X)     | 0.787 | 0.417 | 0.151 | 0.316 | 0.511 | 0.13  | 0.099 |                                                                                                                 |
| Departure Headway (Hd) | 7.169 | 5.961 | 7.737 | 7.175 | 7.866 | 7.355 | 5.581 |                                                                                                                 |
| Convergence, Y/N       | Yes   |                                                                                                                 |
| Сар                    | 509   | 608   | 466   | 504   | 461   | 490   | 646   |                                                                                                                 |
| Service Time           | 4.869 | 3.661 | 5.449 | 4.887 | 5.566 | 5.055 | 3.281 |                                                                                                                 |
| HCM Lane V/C Ratio     | 0.788 | 0.421 | 0.15  | 0.315 | 0.508 | 0.131 | 0.099 |                                                                                                                 |
| HCM Control Delay      | 31.5  | 12.9  | 11.8  | 13.2  | 18.5  | 11.2  | 8.9   |                                                                                                                 |
| HCM Lane LOS           | D     | В     | В     | В     | C     | В     | A     | suber in the state                                                                                              |
| HCM 95th-tile Q        | 7.2   | 2.1   | 0.5   | 1.3   | 2.8   | 0.4   | 0.3   |                                                                                                                 |

В

# Intersection Delay, s/veh 11.1

Intersection Delay, s/veh 11 Intersection LOS

| Movement                   | EBL  | EBT  | EBR    | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|--------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |        |      | 4    |      |      | 4    |      |      | 4.   |      |
| Traffic Vol, veh/h         | 4    | 141  | 3      | 11   | 98   | 169  | 2    | 6    | 19   | 239  | 19   | 16   |
| Future Vol, veh/h          | 4    | 141  | 3      | 11   | 98   | 169  | 2    | 6    | 19   | 239  | 19   | 16   |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91   | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 4    | 155  | 3      | 12   | 108  | 186  | 2    | 7    | 21   | 263  | 21   | 18   |
| Number of Lanes            | 0    | 1    | 0      | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      | Sec. 1 | WB   |      |      | NB   |      | Tor. | SB   |      |      |
| Opposing Approach          | WB   |      |        | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |        | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |        | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |        | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |        | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |        | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.9  |      |        | 10.8 |      |      | 8.4  |      |      | 12.3 |      |      |
| HCMLOS                     | A    |      |        | В    |      |      | A    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 7%    | 3%    | 4%    | 87%   |  |
| Vol Thru, %            | 22%   | 95%   | 35%   | 7%    |  |
| Vol Right, %           | 70%   | 2%    | 61%   | 6%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 27    | 148   | 278   | 274   |  |
| LT Vol                 | 2     | 4     | 11    | 239   |  |
| Through Vol            | 6     | 141   | 98    | 19    |  |
| RT Vol                 | 19    | 3     | 169   | 16    |  |
| Lane Flow Rate         | 30    | 163   | 305   | 301   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.043 | 0.234 | 0.396 | 0.435 |  |
| Departure Headway (Hd) | 5.212 | 5.173 | 4.663 | 5.2   |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 691   | 685   | 764   | 683   |  |
| Service Time           | 3.212 | 3.271 | 2.745 | 3.298 |  |
| HCM Lane V/C Ratio     | 0.043 | 0.238 | 0.399 | 0.441 |  |
| HCM Control Delay      | 8.4   | 9.9   | 10.8  | 12.3  |  |
| HCM Lane LOS           | A     | A     | В     | В     |  |
| HCM 95th-tile Q        | 0.1   | 0.9   | 1.9   | 2.2   |  |

# Intersection Intersection Delay, s/veh 13.1 Intersection LOS B

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT      | WBR            | NBL  | NBT    | NBR      | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|----------|----------------|------|--------|----------|------|------|------|
| Lane Configurations        | ٦    | T    |      |      | 414      |                |      | 4      |          |      | ÷.   | 7    |
| Traffic Vol, veh/h         | 224  | 188  | 10   | 20   | 168      | 176            | 12   | 8      | 15       | 193  | 3    | 102  |
| Future Vol, veh/h          | 224  | 188  | 10   | 20   | 168      | 176            | 12   | 8      | 15       | 193  | 3    | 102  |
| Peak Hour Factor           | 0.96 | 0.96 | 0.96 | 0.96 | 0.96     | 0.96           | 0.96 | 0.96   | 0.96     | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2        | 2              | 2    | 2      | 2        | 2    | 2    | 2    |
| Mvmt Flow                  | 233  | 196  | 10   | 21   | 175      | 183            | 13   | 8      | 16       | 201  | 3    | 106  |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2        | 0              | 0    | 1      | 0        | 0    | 1    | 1    |
| Approach                   | EB   |      |      | WB   | -Specifi | and the second | NB   | - tour | T- Stall | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   | _        |                | SB   |        |          | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2    |          |                | 2    |        |          | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |          |                | E8   |        |          | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |          |                | 2    |        |          | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |          |                | WB   |        |          | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |          |                | 2    |        |          | 2    |      |      |
| HCM Control Delay          | 13.6 |      |      | 12.6 |          |                | 10.9 |        |          | 13.4 |      |      |
| HCM LOS                    | В    |      |      | В    |          |                | В    |        |          | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |       |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Vol Left, %            | 34%   | 100%  | 0%    | 19%   | 0%    | 98%   | 0%    |       |
| /ol Thru, %            | 23%   | 0%    | 95%   | 81%   | 32%   | 2%    | 0%    |       |
| /ol Right, %           | 43%   | 0%    | 5%    | 0%    | 68%   | 0%    | 100%  |       |
| Sign Control           | Stop  |       |
| raffic Vol by Lane     | 35    | 224   | 198   | 104   | 260   | 196   | 102   |       |
| T Vol                  | 12    | 224   | 0     | 20    | 0     | 193   | 0     |       |
| hrough Vol             | 8     | 0     | 188   | 84    | 84    | 3     | 0     |       |
| RT Vol                 | 15    | 0     | 10    | 0     | 176   | 0     | 102   |       |
| ane Flow Rate          | 36    | 233   | 206   | 108   | 271   | 204   | 106   |       |
| Seometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |       |
| Degree of Util (X)     | 0.073 | 0.437 | 0.355 | 0.195 | 0.443 | 0.412 | 0.179 |       |
| Departure Headway (Hd) | 7.208 | 6.747 | 6.203 | 6.465 | 5.885 | 7.262 | 6.05  |       |
| Convergence, Y/N       | Yes   |       |
| Cap                    | 494   | 532   | 578   | 554   | 609   | 494   | 591   |       |
| Service Time           | 5.299 | 4.51  | 3.965 | 4.228 | 3.648 | 5.024 | 3.812 |       |
| ICM Lane V/C Ratio     | 0.073 | 0.438 | 0.356 | 0.195 | 0.445 | 0.413 | 0.179 | 1/2/1 |
| ICM Control Delay      | 10.9  | 14.7  | 12.4  | 10.8  | 13.3  | 15.1  | 10.1  |       |
| ICM Lane LOS           | В     | В     | В     | В     | В     | С     | В     |       |
| ICM 95th-tile Q        | 0.2   | 2.2   | 1.6   | 0.7   | 2.3   | 2     | 0.6   |       |

### Existing School PM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                                | ۶          | -           | $\mathbf{r}$ | *        | -         | •          | ٩       | 1     |         | 5        | Ļ    | ~    |
|--------------------------------|------------|-------------|--------------|----------|-----------|------------|---------|-------|---------|----------|------|------|
| Movement                       | EBL        | EBT         | EBR          | WBL      | WBT       | WBR        | NBL     | NBT   | NBR     | SBL      | SBT  | SBR  |
| Lane Configurations            | ٦          | <b>†</b> 1> |              | ٦        | <b>*</b>  | -          | ٦       | T+    |         | ٦        | 1    | 1    |
| Traffic Volume (vph)           | 58         | 244         | 96           | 126      | 151       | 204        | 146     | 271   | 114     | 119      | 252  | 80   |
| Future Volume (vph)            | 58         | 244         | 96           | 126      | 151       | 204        | 146     | 271   | 114     | 119      | 252  | 80   |
| Ideal Flow (vphpl)             | 1900       | 1900        | 1900         | 1900     | 1900      | 1900       | 1900    | 1900  | 1900    | 1900     | 1900 | 1900 |
| Total Lost time (s)            | 4.0        | 4.0         |              | 4.0      | 4.0       |            | 4.0     | 4.0   |         | 4.0      | 4.0  | 4.0  |
| Lane Util. Factor              | 1.00       | 0.95        |              | 1.00     | 0.95      |            | 1.00    | 1.00  |         | 1.00     | 1.00 | 1.00 |
| Frpb, ped/bikes                | 1.00       | 0.99        |              | 1.00     | 0.99      |            | 1.00    | 0.99  |         | 1.00     | 1.00 | 0.98 |
| Flpb, ped/bikes                | 1.00       | 1.00        |              | 1.00     | 1.00      |            | 1.00    | 1.00  |         | 1.00     | 1.00 | 1.00 |
| Frt                            | 1.00       | 0.96        |              | 1.00     | 0.91      |            | 1.00    | 0.96  |         | 1.00     | 1.00 | 0.85 |
| Flt Protected                  | 0.95       | 1.00        |              | 0.95     | 1.00      |            | 0.95    | 1.00  |         | 0.95     | 1.00 | 1.00 |
| Satd. Flow (prot)              | 1770       | 3341        |              | 1770     | 3189      |            | 1770    | 1769  |         | 1770     | 1863 | 1554 |
| Flt Permitted                  | 0.95       | 1.00        |              | 0.95     | 1.00      |            | 0.95    | 1.00  |         | 0.95     | 1.00 | 1.00 |
| Satd. Flow (perm)              | 1770       | 3341        |              | 1770     | 3189      |            | 1770    | 1769  |         | 1770     | 1863 | 1554 |
| Peak-hour factor, PHF          | 0.98       | 0.98        | 0.98         | 0.98     | 0.98      | 0.98       | 0.98    | 0.98  | 0.98    | 0.98     | 0.98 | 0.98 |
| Adj. Flow (vph)                | 59         | 249         | 98           | 129      | 154       | 208        | 149     | 277   | 116     | 121      | 257  | 82   |
| RTOR Reduction (vph)           | 0          | 75          | 0            | 0        | 160       | 0          | 0       | 23    | 0       | 0        | 0    | 59   |
| Lane Group Flow (vph)          | 59         | 272         | 0            | 129      | 202       | 0          | 149     | 370   | 0       | 121      | 257  | 23   |
| Confl. Peds. (#/hr)            | 13         | _           | 19           | 19       |           | 13         | 7       |       | 9       | 9        | 120  | 7    |
| Turn Type                      | Prot       | NA          |              | Prot     | NA        |            | Prot    | NA    |         | Prot     | NA   | Perm |
| Protected Phases               | 7          | 4           |              | 3        | 8         |            | 5       | 2     |         | 1        | 6    |      |
| Permitted Phases               |            |             |              |          |           |            |         |       |         |          |      | 6    |
| Actuated Green, G (s)          | 2.7        | 10.4        |              | 4.4      | 12.1      |            | 6.3     | 16.7  |         | 4.4      | 14.8 | 14.8 |
| Effective Green, g (s)         | 2.7        | 10.4        |              | 4.4      | 12.1      |            | 6.3     | 16.7  |         | 4.4      | 14.8 | 14.8 |
| Actuated g/C Ratio             | 0.05       | 0.20        |              | 0.08     | 0.23      |            | 0.12    | 0.32  |         | 0.08     | 0.29 | 0.29 |
| Clearance Time (s)             | 4.0        | 4.0         |              | 4.0      | 4.0       |            | 4.0     | 4.0   | _       | 4.0      | 4.0  | 4.0  |
| Vehicle Extension (s)          | 3.0        | 3.0         | 3-           | 3.0      | 3.0       | and a      | 3.0     | 3.0   |         | 3.0      | 3.0  | 3.0  |
| Lane Grp Cap (vph)             | 92         | 669         |              | 150      | 743       |            | 214     | 569   |         | 150      | 531  | 443  |
| v/s Ratio Prot                 | 0.03       | c0.08       |              | c0.07    | 0.06      |            | c0.08   | c0.21 | 1       | 0.07     | 0.14 |      |
| v/s Ratio Perm                 |            | 10.000      |              | 242.0    | 10 240    |            |         | -     |         |          |      | 0.02 |
| v/c Ratio                      | 0.64       | 0.41        |              | 0.86     | 0.27      |            | 0.70    | 0.65  | 1       | 0.81     | 0.48 | 0.05 |
| Uniform Delay, d1              | 24.1       | 18.1        |              | 23.4     | 16.3      |            | 21.9    | 15.1  |         | 23.3     | 15.4 | 13.5 |
| Progression Factor             | 1.00       | 1.00        |              | 1.00     | 1.00      |            | 1.00    | 1.00  | -       | 1.00     | 1.00 | 1.00 |
| Incremental Delay, d2          | 14.3       | 0.4         |              | 35.7     | 0.2       |            | 9.4     | 2.7   |         | 26.2     | 0.7  | 0.0  |
| Delay (s)                      | 38.4       | 18.5        |              | 59.2     | 16.5      |            | 31.3    | 17.8  |         | 49.5     | 16.1 | 13.5 |
| Level of Service               | D          | B           |              | E        | B         |            | С       | B     |         | D        | В    | В    |
| Approach Delay (s)             |            | 21.4        |              |          | 27.7      |            |         | 21.5  |         |          | 24.4 |      |
| Approach LOS                   |            | С           |              |          | C         |            |         | С     |         |          | С    |      |
| Intersection Summary           |            |             | 30.00        | an to al | Selector. |            | Sec. 1  | -     | Line of | Salar P. | 22   |      |
| HCM 2000 Control Delay         |            |             | 23.8         | н        | CM 2000   | Level of   | Service |       | С       |          |      |      |
| HCM 2000 Volume to Capac       | city ratio |             | 0.63         |          |           |            |         |       | 1       |          |      |      |
| Actuated Cycle Length (s)      |            |             | 51.9         |          | um of los |            |         |       | 16.0    |          |      |      |
| Intersection Capacity Utilizat | tion       |             | 60.1%        | IC       | U Level   | of Service |         |       | В       |          |      |      |
| Analysis Period (min)          |            |             | 15           |          |           |            |         |       |         |          |      |      |
| c Critical Lane Group          |            |             |              |          |           |            |         |       |         |          |      |      |

15.8 C

#### Intersection

Intersection Delay, s/veh Intersection LOS

| Movement                   | EBL  | EBT     | EBR   | WBL  | WBT    | WBR    | NBL  | NBT  | NBR  | SBL  | SBT  | SBR         |
|----------------------------|------|---------|-------|------|--------|--------|------|------|------|------|------|-------------|
| Lane Configurations        |      | 4       |       |      | ٩<br>٩ | 1      | -    | 4    |      |      | 4    |             |
| Traffic Vol, veh/h         | 4    | 48      | 23    | 107  | 209    | 322    | 23   | 135  | 37   | 64   | 145  | 7           |
| Future Vol, veh/h          | 4    | 48      | 23    | 107  | 209    | 322    | 23   | 135  | 37   | 64   | 145  | 7           |
| Peak Hour Factor           | 0.86 | 0.86    | 0.86  | 0.86 | 0.86   | 0.86   | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86        |
| Heavy Vehicles, %          | 2    | 2       | 2     | 2    | 2      | 2      | 2    | 2    | 2    | 2    | 2    | 2           |
| Mvmt Flow                  | 5    | 56      | 27    | 124  | 243    | 374    | 27   | 157  | 43   | 74   | 169  | 8           |
| Number of Lanes            | 0    | 1       | 0     | 0    | 1      | 1      | 0    | 1    | 0    | 0    | 1    | 0           |
| Approach                   | EB   | P. 和. 5 | 1.2.2 | WB   | 100    | 1000 A | NB   | 375  |      | SB   |      | 19 19 F. A. |
| Opposing Approach          | WB   |         |       | EB   |        |        | SB   | 100  |      | NB   |      |             |
| Opposing Lanes             | 2    |         |       | 1    |        |        | 1    |      |      | 1    |      |             |
| Conflicting Approach Left  | SB   |         |       | NB   |        |        | EB   |      |      | WB   |      |             |
| Conflicting Lanes Left     | 1    |         |       | 1    |        |        | 1    |      |      | 2    |      |             |
| Conflicting Approach Right | NB   |         |       | SB   |        |        | WB   |      |      | EB   |      |             |
| Conflicting Lanes Right    | 1    |         |       | 1    |        |        | 2    |      |      | 1    |      |             |
| HCM Control Delay          | 10.7 |         |       | 17.7 |        |        | 13.4 |      |      | 14.3 |      |             |
| HCM LOS                    | В    |         |       | С    |        |        | В    |      |      | В    |      |             |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 12%   | 5%    | 34%   | 0%    | 30%   |  |
| Vol Thru, %            | 69%   | 64%   | 66%   | 0%    | 67%   |  |
| Vol Right, %           | 19%   | 31%   | 0%    | 100%  | 3%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 195   | 75    | 316   | 322   | 216   |  |
| LT Vol                 | 23    | 4     | 107   | 0     | 64    |  |
| Through Vol            | 135   | 48    | 209   | 0     | 145   |  |
| RT Vol                 | 37    | 23    | 0     | 322   | 7     |  |
| Lane Flow Rate         | 227   | 87    | 367   | 374   | 251   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.394 | 0.156 | 0.649 | 0.569 | 0.441 |  |
| Departure Headway (Hd) | 6.257 | 6.451 | 6.355 | 5.472 | 6.326 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 571   | 551   | 566   | 655   | 568   |  |
| Service Time           | 4.326 | 4.543 | 4.116 | 3.233 | 4.393 |  |
| HCM Lane V/C Ratio     | 0.398 | 0.158 | 0.648 | 0.571 | 0.442 |  |
| HCM Control Delay      | 13.4  | 10.7  | 20.2  | 15.3  | 14.3  |  |
| HCM Lane LOS           | В     | В     | С     | С     | В     |  |
| HCM 95th-tile Q        | 1.9   | 0.5   | 4.7   | 3.6   | 2.2   |  |

| Intersection              |      | and the second sec |  | 1000 |  |
|---------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|--|
| Intersection Delay, s/veh | 45.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |      |  |
| Intersection LOS          | E    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |      |  |

| Movement                   | EBT      | EBR  | WBL  | WBT            | NBL  | NBR  |  |
|----------------------------|----------|------|------|----------------|------|------|--|
| Lane Configurations        | <b>1</b> |      | ٦    | <b>^</b>       | ۲    | 1    |  |
| Traffic Vol, veh/h         | 73       | 89   | 203  | 125            | 505  | 315  |  |
| Future Vol, veh/h          | 73       | 89   | 203  | 125            | 505  | 315  |  |
| Peak Hour Factor           | 0.90     | 0.90 | 0.90 | 0.90           | 0.90 | 0.90 |  |
| Heavy Vehicles, %          | 2        | 2    | 2    | 2              | 2    | 2    |  |
| Mvmt Flow                  | 81       | 99   | 226  | 139            | 561  | 350  |  |
| Number of Lanes            | 2        | 0    | 1    | 2              | 1    | 1    |  |
| Approach                   | EB       |      | WB   | and the second | NB   |      |  |
| Opposing Approach          | WB       |      | EB   |                |      |      |  |
| Opposing Lanes             | 3        |      | 2    |                | 0    |      |  |
| Conflicting Approach Left  |          |      | NB   |                | EB   |      |  |
| Conflicting Lanes Left     | 0        |      | 2    |                | 2    |      |  |
| Conflicting Approach Right | NB       |      |      |                | WB   |      |  |
| Conflicting Lanes Right    | 2        |      | 0    |                | 3    |      |  |
| HCM Control Delay          | 12.9     |      | 15.9 |                | 63.7 |      |  |
| HCM LOS                    | В        |      | С    |                | F    |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |     | and the second |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-----|----------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |     |                |
| Vol Thru, %            | 0%    | 0%    | 100%  | 21%   | 0%    | 100%  | 100%  |     |                |
| Vol Right, %           | 0%    | 100%  | 0%    | 79%   | 0%    | 0%    | 0%    |     |                |
| Sign Control           | Stop  |     |                |
| Fraffic Vol by Lane    | 505   | 315   | 49    | 113   | 203   | 63    | 63    |     |                |
| _T Vol                 | 505   | 0     | 0     | 0     | 203   | 0     | 0     |     |                |
| Through Vol            | 0     | 0     | 49    | 24    | 0     | 63    | 63    |     |                |
| RT Vol                 | 0     | 315   | 0     | 89    | 0     | 0     | 0     |     |                |
| ane Flow Rate          | 561   | 350   | 54    | 126   | 226   | 69    | 69    |     |                |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 1.2 |                |
| Degree of Util (X)     | 1.094 | 0.565 | 0.12  | 0.26  | 0.502 | 0.145 | 0.111 | -   |                |
| Departure Headway (Hd) | 7.021 | 5.814 | 8.34  | 7.77  | 8.304 | 7.791 | 6.013 |     |                |
| Convergence, Y/N       | Yes   |     |                |
| Сар                    | 522   | 623   | 433   | 465   | 438   | 463   | 600   |     |                |
| Service Time           | 4.748 | 3.541 | 6.04  | 5.47  | 6.004 | 5.491 | 3.713 |     |                |
| HCM Lane V/C Ratio     | 1.075 | 0.562 | 0.125 | 0.271 | 0.516 | 0.149 | 0.115 |     |                |
| HCM Control Delay      | 93.5  | 15.9  | 12.2  | 13.2  | 19.1  | 11.8  | 9.5   |     |                |
| HCM Lane LOS           | F     | С     | В     | В     | C     | В     | A     |     |                |
| HCM 95th-tile Q        | 17.8  | 3.5   | 0.4   | 1     | 2.7   | 0.5   | 0.4   |     |                |

| Intersection              |      | A SALAR SALAR | States and services |
|---------------------------|------|---------------|---------------------|
| Intersection Delay, s/veh | 10.8 |               |                     |
| Intersection LOS          | В    |               |                     |

| Movement                   | EBL  | EBT   | EBR  | WBL  | WBT  | WBR    | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|-------|------|------|------|--------|------|------|------|------|------|------|
| Lane Configurations        |      | 4     |      |      | 4    |        |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 9    | 129   | 0    | 21   | 81   | 175    | 1    | 9    | 17   | 225  | 29   | 24   |
| Future Vol, veh/h          | 9    | 129   | 0    | 21   | 81   | 175    | 1    | 9    | 17   | 225  | 29   | 24   |
| Peak Hour Factor           | 0.94 | 0.94  | 0.94 | 0.94 | 0.94 | 0.94   | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, %          | 2    | 2     | 2    | 2    | 2    | 2      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 10   | 137   | 0    | 22   | 86   | 186    | 1    | 10   | 18   | 239  | 31   | 26   |
| Number of Lanes            | 0    | 1     | 0    | 0    | 1    | 0      | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   | L. Sh |      | WB   |      | Sec. 4 | NB   |      | 1.00 | SB   |      |      |
| Opposing Approach          | WB   |       |      | EB   |      |        | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |       |      | 1    |      |        | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |       |      | NB   |      |        | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |       |      | 1    |      |        | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |       |      | SB   |      |        | WB   |      |      | EB   |      | _    |
| Conflicting Lanes Right    | 1    |       |      | 1    |      |        | 1    |      | af - | 1    |      |      |
| HCM Control Delay          | 9.6  |       |      | 10.5 |      |        | 8.4  |      |      | 11.9 |      |      |
| HCM LOS                    | А    |       |      | В    |      |        | А    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 4%    | 7%    | 8%    | 81%   |  |
| Vol Thru, %            | 33%   | 93%   | 29%   | 10%   |  |
| Vol Right, %           | 63%   | 0%    | 63%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 27    | 138   | 277   | 278   |  |
| LT Vol                 | 1     | 9     | 21    | 225   |  |
| Through Vol            | 9     | 129   | 81    | 29    |  |
| RT Vol                 | 17    | 0     | 175   | 24    |  |
| Lane Flow Rate         | 29    | 147   | 295   | 296   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.041 | 0.21  | 0.377 | 0.419 |  |
| Departure Headway (Hd) | 5.142 | 5.147 | 4.606 | 5.103 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 701   | 690   | 775   | 698   |  |
| Service Time           | 3.142 | 3.233 | 2.677 | 3.189 |  |
| HCM Lane V/C Ratio     | 0.041 | 0.213 | 0.381 | 0.424 |  |
| HCM Control Delay      | 8.4   | 9.6   | 10.5  | 11.9  |  |
| HCM Lane LOS           | A     | A     | В     | В     |  |
| HCM 95th-tile Q        | 0.1   | 0.8   | 1.8   | 2.1   |  |

17

С

#### Intersection

Intersection Delay, s/veh Intersection LOS

| Movement                   | EBL  | EBT   | EBR  | WBL  | WBT  | WBR    | NBL  | NBT     | NBR   | SBL  | SBT  | SBR  |
|----------------------------|------|-------|------|------|------|--------|------|---------|-------|------|------|------|
| Lane Configurations        | ٦    | 1.    |      |      | 472  |        |      | 4       |       |      | र्भ  | 1    |
| Traffic Vol, veh/h         | 195  | 142   | 46   | 114  | 196  | 197    | 26   | 48      | 53    | 216  | 35   | 106  |
| Future Vol, veh/h          | 195  | 142   | 46   | 114  | 196  | 197    | 26   | 48      | 53    | 216  | 35   | 106  |
| Peak Hour Factor           | 0.96 | 0.96  | 0.96 | 0.96 | 0.96 | 0.96   | 0.96 | 0.96    | 0.96  | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, %          | 2    | 2     | 2    | 2    | 2    | 2      | 2    | 2       | 2     | 2    | 2    | 2    |
| Mymt Flow                  | 203  | 148   | 48   | 119  | 204  | 205    | 27   | 50      | 55    | 225  | 36   | 110  |
| Number of Lanes            | 1    | 1     | 0    | 0    | 2    | 0      | 0    | 1       | 0     | 0    | 1    | 1    |
| Approach                   | EB   | - Has | 1.80 | WB   |      | 91.15- | NB   | and the | 153.5 | SB   |      | 1    |
| Opposing Approach          | WB   |       |      | EB   |      |        | SB   |         | 11-   | NB   |      |      |
| Opposing Lanes             | 2    |       |      | 2    |      |        | 2    |         |       | 1    |      |      |
| Conflicting Approach Left  | SB   |       |      | NB   |      |        | EB   |         |       | WB   |      |      |
| Conflicting Lanes Left     | 2    |       |      | 1    |      |        | 2    |         |       | 2    |      |      |
| Conflicting Approach Right | NB   |       |      | SB   |      |        | WB   |         |       | EB   |      |      |
| Conflicting Lanes Right    | 1    |       |      | 2    |      |        | 2    |         |       | 2    |      |      |
| HCM Control Delay          | 15.8 |       |      | 17.5 |      |        | 14.4 |         |       | 18.5 |      |      |
| HCM LOS                    | С    |       |      | С    |      |        | В    |         |       | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 20%   | 100%  | 0%    | 54%   | 0%    | 86%   | 0%    |  |
| Vol Thru, %            | 38%   | 0%    | 76%   | 46%   | 33%   | 14%   | 0%    |  |
| Vol Right, %           | 42%   | 0%    | 24%   | 0%    | 67%   | 0%    | 100%  |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 127   | 195   | 188   | 212   | 295   | 251   | 106   |  |
| LT Vol                 | 26    | 195   | 0     | 114   | 0     | 216   | 0     |  |
| Through Vol            | 48    | 0     | 142   | 98    | 98    | 35    | 0     |  |
| RT Vol                 | 53    | 0     | 46    | 0     | 197   | 0     | 106   |  |
| Lane Flow Rate         | 132   | 203   | 196   | 221   | 307   | 261   | 110   |  |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |  |
| Degree of Util (X)     | 0.295 | 0.447 | 0.393 | 0.46  | 0.576 | 0.583 | 0.211 |  |
| Departure Headway (Hd) | 8.031 | 7.918 | 7.228 | 7.506 | 6.75  | 8.034 | 6.875 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 447   | 455   | 497   | 479   | 535   | 450   | 521   |  |
| Service Time           | 6.095 | 5.671 | 4.98  | 5.256 | 4.5   | 5.784 | 4.625 |  |
| HCM Lane V/C Ratio     | 0.295 | 0.446 | 0.394 | 0.461 | 0.574 | 0.58  | 0.211 |  |
| HCM Control Delay      | 14.4  | 17    | 14.6  | 16.5  | 18.3  | 21.5  | 11.5  |  |
| HCM Lane LOS           | В     | С     | В     | С     | С     | С     | В     |  |
| HCM 95th-tile Q        | 1.2   | 2.3   | 1.9   | 2.4   | 3.6   | 3.6   | 0.8   |  |

## Existing PM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ۶          | -         | $\mathbf{r}$ | <b>*</b> |             | *          | •              | 1     | 1      | 5     | Ļ        | -    |
|-------------------------------|------------|-----------|--------------|----------|-------------|------------|----------------|-------|--------|-------|----------|------|
| Movement                      | EBL        | EBT       | EBR          | WBL      | WBT         | WBR        | NBL            | NBT   | NBR    | SBL   | SBT      | SBR  |
| Lane Configurations           | ٦          | <b>†‡</b> |              | 7        | <b>†</b> 1+ |            | 7              | 1.    | 10     | 7     | 1        | 1    |
| Traffic Volume (vph)          | 63         | 264       | 87           | 127      | 211         | 205        | 197            | 246   | 103    | 130   | 274      | 116  |
| Future Volume (vph)           | 63         | 264       | 87           | 127      | 211         | 205        | 197            | 246   | 103    | 130   | 274      | 116  |
| Ideal Flow (vphpl)            | 1900       | 1900      | 1900         | 1900     | 1900        | 1900       | 1900           | 1900  | 1900   | 1900  | 1900     | 1900 |
| Total Lost time (s)           | 4.0        | 4.0       |              | 4.0      | 4.0         |            | 4.0            | 4.0   |        | 4.0   | 4.0      | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95      |              | 1.00     | 0.95        |            | 1.00           | 1.00  |        | 1.00  | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99      |              | 1.00     | 0.99        |            | 1.00           | 0.99  |        | 1.00  | 1.00     | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00      |              | 1.00     | 1.00        |            | 1.00           | 1.00  |        | 1.00  | 1.00     | 1.00 |
| Frt                           | 1.00       | 0.96      |              | 1.00     | 0.93        |            | 1.00           | 0.96  |        | 1.00  | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00      |              | 0.95     | 1.00        |            | 0.95           | 1.00  | -      | 0.95  | 1.00     | 1.00 |
| Satd. Flow (prot)             | 1770       | 3382      |              | 1770     | 3244        |            | 1770           | 1769  |        | 1770  | 1863     | 1558 |
| Flt Permitted                 | 0.95       | 1.00      |              | 0.95     | 1.00        |            | 0.95           | 1.00  |        | 0.95  | 1.00     | 1.00 |
| Satd. Flow (perm)             | 1770       | 3382      |              | 1770     | 3244        |            | 1770           | 1769  |        | 1770  | 1863     | 1558 |
| Peak-hour factor, PHF         | 0.98       | 0.98      | 0.98         | 0.98     | 0.98        | 0.98       | 0.98           | 0.98  | 0.98   | 0.98  | 0.98     | 0.98 |
| Adj. Flow (vph)               | 64         | 269       | 89           | 130      | 215         | 209        | 201            | 251   | 105    | 133   | 280      | 118  |
| RTOR Reduction (vph)          | 0          | 58        | 0            | 0        | 155         | 0          | 0              | 24    | 0      | 0     | 0        | 87   |
| Lane Group Flow (vph)         | 64         | 300       | 0            | 130      | 269         | 0          | 201            | 332   | 0      | 133   | 280      | 31   |
| Confl. Peds. (#/hr)           | 9          |           | 6            | 6        |             | 9          | 4              |       | 10     | 10    |          | 4    |
| Turn Type                     | Prot       | NA        |              | Prot     | NA          |            | Prot           | NA    |        | Prot  | NA       | Perm |
| Protected Phases              | 7          | 4         |              | 3        | 8           |            | 5              | 2     | 1      | 1     | 6        |      |
| Permitted Phases              |            | -         |              |          |             |            |                | -     |        |       |          | 6    |
| Actuated Green, G (s)         | 2.8        | 11.7      |              | 5.1      | 14.0        |            | 7.1            | 16.0  |        | 5.4   | 14.3     | 14.3 |
| Effective Green, g (s)        | 2.8        | 11.7      |              | 5.1      | 14.0        |            | 7.1            | 16.0  |        | 5.4   | 14.3     | 14.3 |
| Actuated g/C Ratio            | 0.05       | 0.22      |              | 0.09     | 0.26        |            | 0.13           | 0.30  |        | 0.10  | 0.26     | 0.26 |
| Clearance Time (s)            | 4.0        | 4.0       |              | 4.0      | 4.0         |            | 4.0            | 4.0   |        | 4.0   | 4.0      | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0       |              | 3.0      | 3.0         |            | 3.0            | 3.0   |        | 3.0   | 3.0      | 3.0  |
| Lane Grp Cap (vph)            | 91         | 730       | -            | 166      | 837         |            | 231            | 522   |        | 176   | 491      | 411  |
| v/s Ratio Prot                | 0.04       | c0.09     |              | c0.07    | 0.08        |            | c0.11          | c0.19 | 1      | 0.08  | 0.15     | 411  |
| v/s Ratio Perm                | 0.01       | 00.00     |              | 00.01    | 0.00        |            | 00.11          | 00.10 | 4      | 0.00  | 0.10     | 0.02 |
| v/c Ratio                     | 0.70       | 0.41      |              | 0.78     | 0.32        |            | 0.87           | 0.64  |        | 0.76  | 0.57     | 0.08 |
| Uniform Delay, d1             | 25.3       | 18.3      |              | 24.0     | 16.3        |            | 23.1           | 16.6  |        | 23.8  | 17.3     | 15.0 |
| Progression Factor            | 1.00       | 1.00      |              | 1.00     | 1.00        |            | 1.00           | 1.00  |        | 1.00  | 1.00     | 1.00 |
| Incremental Delay, d2         | 21.8       | 0.4       |              | 21.0     | 0.2         |            | 28.0           | 2.5   |        | 16.7  | 1.6      | 0.1  |
| Delay (s)                     | 47.1       | 18.7      |              | 45.0     | 16.5        |            | 51.1           | 19.1  |        | 40.5  | 18.9     | 15.1 |
| Level of Service              | D          | В         |              | D        | 8           |            | D              | В     |        | D     | В        | E    |
| Approach Delay (s)            |            | 23.0      |              |          | 23.2        |            | -              | 30.6  |        | 10.01 | 23.5     |      |
| Approach LOS                  |            | С         |              |          | С           |            |                | С     |        |       | С        |      |
| Intersection Summary          |            | 4122      |              |          |             |            | and the second |       | 14-121 |       | A Street |      |
| HCM 2000 Control Delay        |            |           | 25.2         | Н        | CM 2000     | Level of   | Service        |       | С      |       |          |      |
| HCM 2000 Volume to Capa       | city ratio |           | 0.64         |          |             |            |                |       |        |       |          |      |
| Actuated Cycle Length (s)     |            |           | 54.2         | S        | um of los   | t time (s) |                |       | 16.0   |       |          |      |
| Intersection Capacity Utiliza | ation      |           | 57.9%        | 10       | U Level     | of Service |                |       | В      |       |          |      |
| Analysis Period (min)         |            |           | 15           |          |             |            |                |       |        |       |          |      |
| c Critical Lane Group         |            |           |              |          |             |            |                |       |        |       |          |      |

| Intersection<br>Intersection Delay, s/veh | 14.7 |  |
|-------------------------------------------|------|--|
| Intersection LOS                          | P    |  |

| EBL  | EBT                                                                          | EBR                                                                                            | WBL                                                                                                                                                                           | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SBL                                                   | SBT                                                    | SBR                                                     |
|------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
|      | 4                                                                            |                                                                                                |                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 4                                                      |                                                         |
| 4    | 85                                                                           | 57                                                                                             | 84                                                                                                                                                                            | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                    | 206                                                    | 3                                                       |
| 4    | 85                                                                           | 57                                                                                             | 84                                                                                                                                                                            | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                    | 206                                                    | 3                                                       |
| 0.91 | 0.91                                                                         | 0.91                                                                                           | 0.91                                                                                                                                                                          | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.91                                                  | 0.91                                                   | 0.91                                                    |
| 2    | 2                                                                            | 2                                                                                              | 2                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                     | 2                                                      | 2                                                       |
| 4    | 93                                                                           | 63                                                                                             | 92                                                                                                                                                                            | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                   | 226                                                    | 3                                                       |
| 0    | 1                                                                            | 0                                                                                              | 0                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                     | 1                                                      | 0                                                       |
| EB   |                                                                              |                                                                                                | WB                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SB                                                    |                                                        |                                                         |
| WB   |                                                                              |                                                                                                | EB                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NB                                                    |                                                        |                                                         |
| 2    |                                                                              |                                                                                                | 1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                     |                                                        |                                                         |
| SB   |                                                                              |                                                                                                | NB                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WB                                                    |                                                        |                                                         |
| 1    |                                                                              |                                                                                                | 1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                     |                                                        |                                                         |
| NB   |                                                                              |                                                                                                | SB                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EB                                                    |                                                        |                                                         |
| 1    |                                                                              |                                                                                                | 1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                     |                                                        |                                                         |
| 12.3 |                                                                              |                                                                                                | 13.9                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.6                                                  |                                                        |                                                         |
| В    |                                                                              |                                                                                                | В                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                     |                                                        |                                                         |
|      | 4<br>4<br>0.91<br>2<br>4<br>0<br>EB<br>WB<br>2<br>SB<br>1<br>NB<br>1<br>12.3 | 4 85<br>4 85<br>0.91 0.91<br>2 2<br>4 93<br>0 1<br>EB<br>WB<br>2<br>SB<br>1<br>NB<br>1<br>12.3 | 4       85       57         4       85       57         0.91       0.91       0.91         2       2       2         4       93       63         0       1       0         EB | Image: A graph of the system       Image: A graph of the system       Image: A graph of the system         4       85       57       84         4       85       57       84         0.91       0.91       0.91       0.91         2       2       2       2         4       93       63       92         0       1       0       0         EB       WB       EB         2       1       1         SB       NB       1         1       1       1         NB       SB       1         1       1       1         12.3       13.9 | 4       85       57       84       141         4       85       57       84       141         4       85       57       84       141         0.91       0.91       0.91       0.91       0.91         2       2       2       2       2         4       93       63       92       155         0       1       0       0       1         EB       WB       EB       2       1         SB       NB       1       1         NB       SB       1       1         NB       SB       1       1         12.3       13.9       13.9       13.9 | 4       85       57       84       141       202         4       85       57       84       141       202         4       85       57       84       141       202         0       0.91       0.91       0.91       0.91       0.91         2       2       2       2       2       2         4       93       63       92       155       222         0       1       0       0       1       1         EB       WB       EB       2       1       1         SB       NB       1       1       1         NB       SB       1       1       1         NB       SB       1       1       1         12.3       13.9       13.9       1       1 | 4       85       57       84       141       202       13         4       85       57       84       141       202       13         0.91       0.91       0.91       0.91       0.91       0.91       0.91         2       2       2       2       2       2       2         4       93       63       92       155       222       14         0       1       0       0       1       1       0         EB       WB       EB       SB       SB       NB         1       1       1       1       1       1         SB       NB       EB       SB       WB       EB         1       1       1       1       1       1         NB       SB       WB       EB       WB       1       1         1       1       1       2       13       13.9       13.7 | 4       85       57       84       141       202       13       136         4       85       57       84       141       202       13       136         4       85       57       84       141       202       13       136         0.91       0.91       0.91       0.91       0.91       0.91       0.91       0.91         2       2       2       2       2       2       2       2       2         4       93       63       92       155       222       14       149         0       1       0       0       1       1       0       1         EB       WB       EB       SB       SB       SB       SB         1       1       1       1       1       1       1         NB       SB       WB       EB       WB       1       1       1         1       1       1       2       13.7       13.9       13.7 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
|------------------------|-------|-------|-------|-------|-------|
| Vol Left, %            | 6%    | 3%    | 37%   | 0%    | 30%   |
| Vol Thru, %            | 63%   | 58%   | 63%   | 0%    | 69%   |
| Vol Right, %           | 31%   | 39%   | 0%    | 100%  | 1%    |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 215   | 146   | 225   | 202   | 300   |
| LT Vol                 | 13    | 4     | 84    | 0     | 91    |
| Through Vol            | 136   | 85    | 141   | 0     | 206   |
| RT Vol                 | 66    | 57    | 0     | 202   | 3     |
| Lane Flow Rate         | 236   | 160   | 247   | 222   | 330   |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |
| Degree of Util (X)     | 0.412 | 0.291 | 0.472 | 0.368 | 0.577 |
| Departure Headway (Hd) | 6.272 | 6.524 | 6.866 | 5.962 | 6.296 |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |
| Сар                    | 572   | 549   | 527   | 606   | 574   |
| Service Time           | 4.324 | 4.583 | 4.589 | 3.684 | 4.316 |
| HCM Lane V/C Ratio     | 0.413 | 0.291 | 0.469 | 0.366 | 0.575 |
| HCM Control Delay      | 13.7  | 12.3  | 15.6  | 12.1  | 17.6  |
| HCM Lane LOS           | В     | В     | С     | В     | C     |
| HCM 95th-tile Q        | 2     | 1.2   | 2.5   | 1.7   | 3.7   |

| Movement                   | EBT      | EBR  | WBL  | WBT        | NBL  | NBR          | the state of the state of the state of the |
|----------------------------|----------|------|------|------------|------|--------------|--------------------------------------------|
| Lane Configurations        | <b>*</b> |      | 3    | <b>†</b> † | 1    | 1            |                                            |
| Traffic Vol, veh/h         | 114      | 149  | 86   | 93         | 294  | 258          |                                            |
| Future Vol, veh/h          | 114      | 149  | 86   | 93         | 294  | 258          |                                            |
| Peak Hour Factor           | 0.88     | 0.88 | 0.88 | 0.88       | 0.88 | 0.88         |                                            |
| Heavy Vehicles, %          | 2        | 2    | 2    | 2          | 2    | 2            |                                            |
| Mvmt Flow                  | 130      | 169  | 98   | 106        | 334  | 293          |                                            |
| Number of Lanes            | 2        | 0    | 1    | 2          | 1    | 1            |                                            |
| Approach                   | EB       |      | WB   |            | NB   | and a second |                                            |
| Opposing Approach          | WB       |      | EB   |            |      |              | 1                                          |
| Opposing Lanes             | 3        |      | 2    |            | 0    |              |                                            |
| Conflicting Approach Left  |          |      | NB   |            | EB   |              |                                            |
| Conflicting Lanes Left     | 0        |      | 2    |            | 2    |              |                                            |
| Conflicting Approach Right | NB       |      |      |            | WB   |              |                                            |
| Conflicting Lanes Right    | 2        |      | 0    |            | 3    |              |                                            |
| HCM Control Delay          | 12.6     |      | 11   |            | 16.4 |              |                                            |
| HCM LOS                    | В        |      | В    |            | С    |              |                                            |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |               |
|------------------------|-------|-------|-------|-------|-------|-------|-------|---------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |               |
| Vol Thru, %            | 0%    | 0%    | 100%  | 20%   | 0%    | 100%  | 100%  | All and all a |
| Vol Right, %           | 0%    | 100%  | 0%    | 80%   | 0%    | 0%    | 0%    |               |
| Sign Control           | Stop  |               |
| Fraffic Vol by Lane    | 294   | 258   | 76    | 187   | 86    | 47    | 47    |               |
| _T Vol                 | 294   | 0     | 0     | 0     | 86    | 0     | 0     |               |
| Through Vol            | 0     | 0     | 76    | 38    | 0     | 47    | 47    |               |
| RT Vol                 | 0     | 258   | 0     | 149   | 0     | 0     | 0     |               |
| ane Flow Rate          | 334   | 293   | 86    | 212   | 98    | 53    | 53    |               |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |               |
| Degree of Util (X)     | 0.621 | 0.447 | 0.167 | 0.378 | 0.208 | 0.105 | 0.079 |               |
| Departure Headway (Hd) | 6.689 | 5.484 | 6.981 | 6.41  | 7.68  | 7.169 | 5.398 |               |
| Convergence, Y/N       | Yes   |               |
| Сар                    | 538   | 654   | 512   | 559   | 466   | 498   | 659   |               |
| Service Time           | 4.438 | 3.233 | 4.746 | 4.175 | 5.452 | 4.941 | 3.169 |               |
| HCM Lane V/C Ratio     | 0.621 | 0.448 | 0.168 | 0.379 | 0.21  | 0.106 | 0.08  |               |
| HCM Control Delay      | 19.8  | 12.6  | 11.2  | 13.1  | 12.5  | 10.8  | 8.6   |               |
| HCM Lane LOS           | C     | В     | В     | В     | В     | В     | A     |               |
| HCM 95th-tile Q        | 4.2   | 2.3   | 0.6   | 1.8   | 0.8   | 0.3   | 0.3   |               |

| Movement                   | EBL  | EBT  | EBR        | WBL  | WBT       | WBR  | NBL  | NBT  | NBR      | SBL  | SBT  | SBR  |
|----------------------------|------|------|------------|------|-----------|------|------|------|----------|------|------|------|
| Lane Configurations        |      | \$   |            |      | 4         |      |      | 4    |          |      | 4    |      |
| Traffic Vol, veh/h         | 12   | 278  | 2          | 9    | 85        | 180  | 3    | 13   | 45       | 319  | 15   | 8    |
| Future Vol, veh/h          | 12   | 278  | 2          | 9    | 85        | 180  | 3    | 13   | 45       | 319  | 15   | 8    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91       | 0.91 | 0.91      | 0.91 | 0.91 | 0.91 | 0.91     | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2          | 2    | 2         | 2    | 2    | 2    | 2        | 2    | 2    | 2    |
| Mvmt Flow                  | 13   | 305  | 2          | 10   | 93        | 198  | 3    | 14   | 49       | 351  | 16   | 9    |
| Number of Lanes            | 0    | 1    | 0          | 0    | 1         | 0    | 0    | 1    | 0        | 0    | 1    | 0    |
| Approach                   | EB   |      | Sec. Spine | WB   | al Margan |      | NB   |      | In the L | SB   | 14   |      |
| Opposing Approach          | WB   |      |            | EB   |           |      | SB   |      |          | NB   |      |      |
| Opposing Lanes             | 1    |      |            | 1    |           |      | 1    |      |          | 1    |      |      |
| Conflicting Approach Left  | SB   |      |            | NB   |           |      | EB   |      |          | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |            | 1    |           |      | 1    |      |          | 1    |      |      |
| Conflicting Approach Right | NB   |      |            | SB   |           |      | WB   |      |          | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |            | 1    |           |      | 1    |      | 1        | 1    |      |      |
| HCM Control Delay          | 15.1 |      |            | 13.2 |           |      | 10   |      |          | 18.4 |      |      |
| HCM LOS                    | С    |      |            | В    |           |      | А    |      |          | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 4%    | 3%    | 93%   |  |
| Vol Thru, %            | 21%   | 95%   | 31%   | 4%    |  |
| Vol Right, %           | 74%   | 1%    | 66%   | 2%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 61    | 292   | 274   | 342   |  |
| LT Vol                 | 3     | 12    | 9     | 319   |  |
| Through Vol            | 13    | 278   | 85    | 15    |  |
| RT Vol                 | 45    | 2     | 180   | 8     |  |
| Lane Flow Rate         | 67    | 321   | 301   | 376   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.115 | 0.518 | 0.458 | 0.622 |  |
| Departure Headway (Hd) | 6.165 | 5.807 | 5.479 | 5.954 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 585   | 616   | 650   | 601   |  |
| Service Time           | 4.165 | 3.894 | 3.568 | 4.03  |  |
| HCM Lane V/C Ratio     | 0.115 | 0.521 | 0.463 | 0.626 |  |
| HCM Control Delay      | 10    | 15.1  | 13.2  | 18.4  |  |
| HCM Lane LOS           | А     | C     | В     | С     |  |
| HCM 95th-tile Q        | 0.4   | 3     | 2.4   | 4.3   |  |

| Intersection              |      |  |
|---------------------------|------|--|
| Intersection Delay, s/veh | 35.8 |  |
| Intersection LOS          | E    |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT            | NBR             | SBL  | SBT  | SBR   |
|----------------------------|------|------|------|------|------|------|------|----------------|-----------------|------|------|-------|
| Lane Configurations        | ٦    | 1.   |      |      | 412  |      |      | 4              |                 |      | 4    | ۲     |
| Traffic Vol, veh/h         | 402  | 225  | 37   | 56   | 131  | 211  | 51   | 61             | 55              | 193  | 42   | 95    |
| Future Vol, veh/h          | 402  | 225  | 37   | 56   | 131  | 211  | 51   | 61             | 55              | 193  | 42   | 95    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91           | 0.91            | 0.91 | 0.91 | 0.91  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2              | 2               | 2    | 2    | 2     |
| Mymt Flow                  | 442  | 247  | 41   | 62   | 144  | 232  | 56   | 67             | 60              | 212  | 46   | 104   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2    | 0    | 0    | 1              | 0               | 0    | 1    | 1     |
| Approach                   | EB   |      |      | WB   |      |      | NB   | and the second | No. Contraction | SB   | 1.00 | THE D |
| Opposing Approach          | WB   | -    |      | EB   |      |      | SB   |                | 1               | NB   |      |       |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |                |                 | 1    |      |       |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |                |                 | WB   |      |       |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |                |                 | 2    |      |       |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |                |                 | EB   |      |       |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |                |                 | 2    |      |       |
| HCM Control Delay          | 55.4 |      |      | 21.2 |      |      | 19.2 |                |                 | 22.3 |      |       |
| HCMLOS                     | F    |      |      | С    |      |      | С    |                |                 | С    |      |       |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 31%   | 100%  | 0%    | 46%   | 0%    | 82%   | 0%    |  |
| Vol Thru, %            | 37%   | 0%    | 86%   | 54%   | 24%   | 18%   | 0%    |  |
| Vol Right, %           | 33%   | 0%    | 14%   | 0%    | 76%   | 0%    | 100%  |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 167   | 402   | 262   | 122   | 277   | 235   | 95    |  |
| LT Vol                 | 51    | 402   | 0     | 56    | 0     | 193   | 0     |  |
| Through Vol            | 61    | 0     | 225   | 66    | 66    | 42    | 0     |  |
| RT Vol                 | 55    | 0     | 37    | 0     | 211   | 0     | 95    |  |
| Lane Flow Rate         | 184   | 442   | 288   | 134   | 304   | 258   | 104   |  |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |  |
| Degree of Util (X)     | 0.45  | 1.018 | 0.614 | 0.312 | 0.652 | 0.634 | 0.226 |  |
| Departure Headway (Hd) | 9.024 | 8.292 | 7.674 | 8.586 | 7.73  | 9.027 | 7.806 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 402   | 437   | 469   | 422   | 468   | 403   | 458   |  |
| Service Time           | 7.024 | 6.051 | 5.432 | 6.286 | 5.492 | 6.727 | 5.577 |  |
| HCM Lane V/C Ratio     | 0.458 | 1.011 | 0.614 | 0.318 | 0.65  | 0.64  | 0.227 |  |
| HCM Control Delay      | 19.2  | 77.1  | 22    | 15.1  | 23.9  | 26.1  | 12.9  |  |
| HCM Lane LOS           | C     | F     | C     | С     | С     | D     | В     |  |
| HCM 95th-tile Q        | 2.3   | 13.3  | 4     | 1.3   | 4.6   | 4.2   | 0.9   |  |

## Existing + Project AM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ٦                         | -                      | $\mathbf{i}$ | 1     | -          | •          | •       | 1     | /         | 5    | Ļ         | -     |
|-------------------------------|---------------------------|------------------------|--------------|-------|------------|------------|---------|-------|-----------|------|-----------|-------|
| Movement                      | EBL                       | EBT                    | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR       | SBL  | SBT       | SBR   |
| Lane Configurations           | ٦                         | <b>†1</b> <sub>2</sub> |              | 7     | <b>↑</b> ₽ |            | 7       | 1.    |           | 7    | +         | 7     |
| Traffic Volume (vph)          | 108                       | 269                    | 144          | 41    | 62         | 43         | 188     | 319   | 82        | 122  | 290       | 111   |
| Future Volume (vph)           | 108                       | 269                    | 144          | 41    | 62         | 43         | 188     | 319   | 82        | 122  | 290       | 111   |
| Ideal Flow (vphpl)            | 1900                      | 1900                   | 1900         | 1900  | 1900       | 1900       | 1900    | 1900  | 1900      | 1900 | 1900      | 1900  |
| Total Lost time (s)           | 4.0                       | 4.0                    |              | 4.0   | 4.0        |            | 4.0     | 4.0   |           | 4.0  | 4.0       | 4.0   |
| Lane Util. Factor             | 1.00                      | 0.95                   |              | 1.00  | 0.95       |            | 1.00    | 1.00  |           | 1.00 | 1.00      | 1.00  |
| Frpb, ped/bikes               | 1.00                      | 0.99                   |              | 1.00  | 0.99       |            | 1.00    | 1.00  |           | 1.00 | 1.00      | 0.98  |
| Flpb, ped/bikes               | 1.00                      | 1.00                   |              | 1.00  | 1.00       |            | 1.00    | 1.00  |           | 1.00 | 1.00      | 1.00  |
| Frt                           | 1.00                      | 0.95                   |              | 1.00  | 0.94       |            | 1.00    | 0.97  |           | 1.00 | 1.00      | 0.85  |
| Flt Protected                 | 0.95                      | 1.00                   |              | 0.95  | 1.00       |            | 0.95    | 1.00  |           | 0.95 | 1.00      | 1.00  |
| Satd. Flow (prot)             | 1770                      | 3320                   |              | 1770  | 3299       |            | 1770    | 1798  |           | 1770 | 1863      | 1554  |
| Flt Permitted                 | 0.95                      | 1.00                   |              | 0.95  | 1.00       |            | 0.95    | 1.00  |           | 0.95 | 1.00      | 1.00  |
| Satd. Flow (perm)             | 1770                      | 3320                   |              | 1770  | 3299       |            | 1770    | 1798  |           | 1770 | 1863      | 1554  |
| Peak-hour factor, PHF         | 0.90                      | 0.90                   | 0.90         | 0.90  | 0.90       | 0.90       | 0.90    | 0.90  | 0.90      | 0.90 | 0.90      | 0.90  |
| Adj. Flow (vph)               | 120                       | 299                    | 160          | 46    | 69         | 48         | 209     | 354   | 91        | 136  | 322       | 123   |
| RTOR Reduction (vph)          | 0                         | 120                    | 0            | 0     | 40         | 0          | 0       | 16    | 0         | 0    | 0         | 90    |
| Lane Group Flow (vph)         | 120                       | 339                    | 0            | 46    | 77         | 0          | 209     | 429   | 0         | 136  | 322       | 33    |
| Confl. Peds. (#/hr)           | 5                         |                        | 6            | 6     |            | 5          | 7       |       | 9         | 9    |           | 7     |
| Turn Type                     | Prot                      | NA                     |              | Prot  | NA         |            | Prot    | NA    |           | Prot | NA        | Perm  |
| Protected Phases              | 7                         | 4                      |              | 3     | 8          |            | 5       | 2     |           | 1    | 6         |       |
| Permitted Phases              |                           |                        |              |       |            |            |         |       |           |      |           | 6     |
| Actuated Green, G (s)         | 4.9                       | 12.6                   |              | 1.3   | 9.0        |            | 7.3     | 15.9  |           | 5.2  | 13.8      | 13.8  |
| Effective Green, g (s)        | 4.9                       | 12.6                   |              | 1.3   | 9.0        |            | 7.3     | 15.9  |           | 5.2  | 13.8      | 13.8  |
| Actuated g/C Ratio            | 0.10                      | 0.25                   |              | 0.03  | 0.18       |            | 0.14    | 0.31  | 1         | 0.10 | 0.27      | 0.27  |
| Clearance Time (s)            | 4.0                       | 4.0                    |              | 4.0   | 4.0        |            | 4.0     | 4.0   |           | 4.0  | 4.0       | 4.0   |
| Vehicle Extension (s)         | 3.0                       | 3.0                    |              | 3.0   | 3.0        |            | 3.0     | 3.0   |           | 3.0  | 3.0       | 3.0   |
| Lane Grp Cap (vph)            | 170                       | 820                    |              | 45    | 582        |            | 253     | 560   |           | 180  | 504       | 420   |
| v/s Ratio Prot                | c0.07                     | c0.10                  |              | 0.03  | 0.02       |            | c0.12   | c0.24 |           | 0.08 | 0.17      |       |
| v/s Ratio Perm                |                           |                        |              |       |            |            |         |       |           |      |           | 0.02  |
| v/c Ratio                     | 0.71                      | 0.41                   |              | 1.02  | 0.13       |            | 0.83    | 0.77  |           | 0.76 | 0.64      | 0.08  |
| Uniform Delay, d1             | 22.4                      | 16.1                   |              | 24.9  | 17.7       |            | 21.2    | 15.9  |           | 22.3 | 16.4      | 13.9  |
| Progression Factor            | 1.00                      | 1.00                   |              | 1.00  | 1.00       |            | 1.00    | 1.00  |           | 1.00 | 1.00      | 1.00  |
| Incremental Delay, d2         | 12.5                      | 0.3                    |              | 140.7 | 0.1        |            | 19.3    | 6.2   |           | 16.4 | 2.7       | 0.1   |
| Delay (s)                     | 34.9                      | 16.4                   |              | 165.6 | 17.8       |            | 40.5    | 22.1  |           | 38.7 | 19.1      | 13.9  |
| Level of Service              | С                         | В                      |              | F     | В          |            | D       | С     |           | D    | В         | В     |
| Approach Delay (s)            |                           | 20.3                   |              |       | 59.5       |            |         | 28.0  |           |      | 22.6      |       |
| Approach LOS                  |                           | С                      |              |       | E          |            |         | С     |           |      | С         |       |
| Intersection Summary          | 98 - 1983.<br>1983 - 1983 |                        | 17-19        |       |            | Tel Inter  | Ever    |       | A Starter |      | - All the | 1.038 |
| HCM 2000 Control Delay        |                           |                        | 26.7         | Н     | CM 2000    | Level of   | Service |       | С         |      |           |       |
| HCM 2000 Volume to Capa       | icity ratio               |                        | 0.71         |       |            |            |         |       |           |      |           |       |
| Actuated Cycle Length (s)     |                           |                        | 51.0         | S     | um of los  | t time (s) |         |       | 16.0      |      |           |       |
| Intersection Capacity Utiliza | ation                     |                        | 57.9%        |       |            | of Service |         |       | В         |      |           |       |
| Analysis Period (min)         |                           |                        | 15           |       |            |            |         |       |           |      |           |       |
| c Critical Lane Group         |                           |                        |              |       |            |            |         |       | 1         |      |           |       |

14

В

#### Intersection

| ne Configurations<br>affic Vol, veh/h                                                            |                      |            |      | WBL                  | WBT  | WBR  | NBL                  | NBT  | NBR  | SBL     | SBT              | SBR              |
|--------------------------------------------------------------------------------------------------|----------------------|------------|------|----------------------|------|------|----------------------|------|------|---------|------------------|------------------|
| office Val ush /h                                                                                |                      | 4          |      |                      | 4    | 1    |                      | 4    |      |         | 4.               |                  |
| anic vol, ven/n                                                                                  | 1                    | 67         | 26   | 85                   | 170  | 249  | 11                   | 128  | 45   | 99      | 189              | 3                |
| iture Vol, veh/h                                                                                 | 1                    | 67         | 26   | 85                   | 170  | 249  | 11                   | 128  | 45   | 99      | 189              | 3                |
| ak Hour Factor                                                                                   | 0.91                 | 0.91       | 0.91 | 0.91                 | 0.91 | 0.91 | 0.91                 | 0.91 | 0.91 | 0.91    | 0.91             | 0.91             |
| eavy Vehicles, %                                                                                 | 2                    | 2          | 2    | 2                    | 2    | 2    | 2                    | 2    | 2    | 2       | 2                | 2                |
| vmt Flow                                                                                         | 1                    | 74         | 29   | 93                   | 187  | 274  | 12                   | 141  | 49   | 109     | 208              | 3                |
| umber of Lanes                                                                                   | 0                    | 1          | 0    | 0                    | 1    | 1    | 0                    | 1    | 0    | 0       | 1                | 0                |
| proach                                                                                           | EB                   | and stored |      | WB                   |      |      | NB                   | 12.5 |      | SB      |                  | Creation in      |
| oposing Approach                                                                                 | WB                   |            |      | EB                   |      |      | SB                   |      | -    | NB      |                  |                  |
| oposing Lanes                                                                                    | 2                    |            |      | 1                    |      |      | 1                    |      |      | 1       |                  |                  |
| onflicting Approach Left                                                                         | SB                   |            |      | NB                   |      |      | EB                   |      |      | WB      |                  |                  |
| onflicting Lanes Left                                                                            | 1                    |            |      | 1                    |      |      | 1                    |      |      | 2       |                  |                  |
| onflicting Approach Right                                                                        | NB                   |            |      | SB                   |      |      | WB                   |      |      | EB      |                  |                  |
|                                                                                                  | 1                    |            |      | 1                    |      |      | 2                    |      |      | 1       |                  |                  |
| CM Control Delay                                                                                 | 10.9                 |            |      | 14.1                 |      |      | 12.4                 |      |      | 16      |                  |                  |
| CMLOS                                                                                            | В                    |            |      | В                    |      |      | В                    |      |      | С       |                  |                  |
| onflicting Lanes Left<br>onflicting Approach Right<br>onflicting Lanes Right<br>CM Control Delay | 1<br>NB<br>1<br>10.9 |            |      | 1<br>SB<br>1<br>14.1 |      |      | 1<br>WB<br>2<br>12.4 |      |      | El<br>1 | 2<br>B<br>1<br>6 | 2<br>B<br>1<br>6 |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 6%    | 1%    | 33%   | 0%    | 34%   |  |
| Vol Thru, %            | 70%   | 71%   | 67%   | 0%    | 65%   |  |
| Vol Right, %           | 24%   | 28%   | 0%    | 100%  | 1%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 184   | 94    | 255   | 249   | 291   |  |
| LT Vol                 | 11    | 1     | 85    | 0     | 99    |  |
| Through Vol            | 128   | 67    | 170   | 0     | 189   |  |
| RT Vol                 | 45    | 26    | 0     | 249   | 3     |  |
| Lane Flow Rate         | 202   | 103   | 280   | 274   | 320   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.343 | 0.183 | 0.503 | 0.424 | 0.537 |  |
| Departure Headway (Hd) | 6.101 | 6.375 | 6.464 | 5.583 | 6.046 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 586   | 558   | 555   | 640   | 595   |  |
| Service Time           | 4.181 | 4.472 | 4.233 | 3.352 | 4.117 |  |
| HCM Lane V/C Ratio     | 0.345 | 0.185 | 0.505 | 0.428 | 0.538 |  |
| HCM Control Delay      | 12.4  | 10.9  | 15.7  | 12.4  | 16    |  |
| HCM Lane LOS           | В     | В     | С     | В     | С     |  |
| HCM 95th-tile Q        | 1.5   | 0.7   | 2.8   | 2.1   | 3.2   |  |

#### 03/22/2019

# Intersection 20.5 Intersection LOS C

| Movement                   | EBT        | EBR    | WBL. | WBT       | NBL  | NBR  |  |
|----------------------------|------------|--------|------|-----------|------|------|--|
| Lane Configurations        | <b>†</b> ] |        | ň    | <b>††</b> | ۲    | 1    |  |
| Traffic Vol, veh/h         | 99         | 119    | 222  | 120       | 386  | 249  |  |
| Future Vol, veh/h          | 99         | 119    | 222  | 120       | 386  | 249  |  |
| Peak Hour Factor           | 0.94       | 0.94   | 0.94 | 0.94      | 0.94 | 0.94 |  |
| Heavy Vehicles, %          | 2          | 2      | 2    | 2         | 2    | 2    |  |
| Mvmt Flow                  | 105        | 127    | 236  | 128       | 411  | 265  |  |
| Number of Lanes            | 2          | 0      | 1    | 2         | 1    | 1    |  |
| Approach                   | EB         | 76-1-5 | WB   |           | NB   |      |  |
| Opposing Approach          | WB         |        | EB   |           |      |      |  |
| Opposing Lanes             | 3          |        | 2    |           | 0    |      |  |
| Conflicting Approach Left  |            |        | NB   |           | EB   |      |  |
| Conflicting Lanes Left     | 0          |        | 2    |           | 2    |      |  |
| Conflicting Approach Right | NB         |        |      |           | WB   |      |  |
| Conflicting Lanes Right    | 2          |        | 0    |           | 3    |      |  |
| HCM Control Delay          | 12.9       |        | 15.8 |           | 25.7 |      |  |
| HCM LOS                    | В          |        | С    |           | D    |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | Walter Charles Strength |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------------------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |                         |
| Vol Thru, %            | 0%    | 0%    | 100%  | 22%   | 0%    | 100%  | 100%  |                         |
| Vol Right, %           | 0%    | 100%  | 0%    | 78%   | 0%    | 0%    | 0%    |                         |
| Sign Control           | Stop  |                         |
| Fraffic Vol by Lane    | 386   | 249   | 66    | 152   | 222   | 60    | 60    |                         |
| _T Vol                 | 386   | 0     | 0     | 0     | 222   | 0     | 0     |                         |
| Through Vol            | 0     | 0     | 66    | 33    | 0     | 60    | 60    |                         |
| RT VOI                 | 0     | 249   | 0     | 119   | 0     | 0     | 0     |                         |
| ane Flow Rate          | 411   | 265   | 70    | 162   | 236   | 64    | 64    |                         |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |                         |
| Degree of Util (X)     | 0.809 | 0.433 | 0.152 | 0.325 | 0.52  | 0.132 | 0.1   |                         |
| Departure Headway (Hd) | 7.203 | 5.995 | 7.802 | 7.236 | 7.93  | 7.419 | 5.644 |                         |
| Convergence, Y/N       | Yes   |                         |
| Сар                    | 505   | 604   | 461   | 500   | 458   | 486   | 639   |                         |
| Service Time           | 4.903 | 3.695 | 5.516 | 4.95  | 5.63  | 5.119 | 3.344 |                         |
| HCM Lane V/C Ratio     | 0.814 | 0.439 | 0.152 | 0.324 | 0.515 | 0.132 | 0.1   |                         |
| HCM Control Delay      | 33.8  | 13.2  | 11.9  | 13.4  | 18.9  | 11.2  | 9     |                         |
| HCM Lane LOS           | D     | В     | В     | В     | С     | В     | Α     |                         |
| HCM 95th-tile Q        | 7.7   | 2.2   | 0.5   | 1.4   | 2.9   | 0.5   | 0.3   |                         |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT        | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4          |      |
| Traffic Vol, veh/h         | 4    | 141  | 3    | 11   | 98   | 176  | 2    | 6    | 19   | 261  | 19         | 16   |
| Future Vol, veh/h          | 4    | 141  | 3    | 11   | 98   | 176  | 2    | 6    | 19   | 261  | 19         | 16   |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91       | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2          | 2    |
| Mvmt Flow                  | 4    | 155  | 3    | 12   | 108  | 193  | 2    | 7    | 21   | 287  | 21         | 18   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1          | 0    |
| Approach                   | EB   |      | 2053 | WB   |      |      | NB   |      | 1    | SB   | 19 J. 19 1 |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |            |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |            |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |            |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |            |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |            |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |            |      |
| HCM Control Delay          | 10.1 |      |      | 11.3 |      |      | 8.6  |      |      | 13.3 |            |      |
| HCM LOS                    | В    |      |      | В    |      |      | А    |      |      | В    |            |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 7%    | 3%    | 4%    | 88%   |  |
| Vol Thru, %            | 22%   | 95%   | 34%   | 6%    |  |
| Vol Right, %           | 70%   | 2%    | 62%   | 5%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 27    | 148   | 285   | 296   |  |
| LT Vol                 | 2     | 4     | 11    | 261   |  |
| Through Vol            | 6     | 141   | 98    | 19    |  |
| RT Vol                 | 19    | 3     | 176   | 16    |  |
| Lane Flow Rate         | 30    | 163   | 313   | 325   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.044 | 0.242 | 0.422 | 0.482 |  |
| Departure Headway (Hd) | 5.295 | 5.366 | 4.846 | 5.334 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 675   | 668   | 749   | 677   |  |
| Service Time           | 3.339 | 3.401 | 2.846 | 3.365 |  |
| HCM Lane V/C Ratio     | 0.044 | 0.244 | 0.418 | 0.48  |  |
| HCM Control Delay      | 8.6   | 10.1  | 11.3  | 13.3  |  |
| HCM Lane LOS           | A     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.1   | 0.9   | 2.1   | 2.6   |  |

| EBL  | EBT                                                                                                | EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SBT                                                   | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۲    | Þ                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 224  | 188                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                                    | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 224  | 188                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                                    | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.96 | 0.96                                                                                               | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96                                                  | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2    | 2                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 233  | 196                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    | 1                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EB   | 1                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Service .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Luite                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| WB   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SB   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NB   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14.4 |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| В    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | *<br>224<br>224<br>0.96<br>2<br>233<br>1<br>EB<br>WB<br>2<br>SB<br>2<br>SB<br>2<br>NB<br>1<br>14.4 | Image: height black         Image: height blackImage: height black <td>Image: Non-State information of the image in the image information of the image informatio</td> <td>Image: Non-State Non-Stat</td> <td>1       224       188       32       32       168         224       188       32       32       168         224       188       32       32       168         0.96       0.96       0.96       0.96       0.96         2       2       2       2       2         233       196       33       33       175         1       1       0       0       2         EB       WB       EB       2         2       2       2       2         SB       NB       2       1         NB       SB       1       2         14       2       1       13.2</td> <td>1       224       188       32       32       168       176         224       188       32       32       168       176         224       188       32       32       168       176         0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2         233       196       33       33       175       183         1       1       0       0       2       0         EB       WB       EB       2       2       2       2         SB       NB       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <t< td=""><td>Image: Non-Sector 1       Image: Non-Sector 1       Image: Non-Sector 1         224       188       32       32       168       176       19         224       188       32       32       168       176       19         0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2         233       196       33       33       175       183       20         1       1       0       0       2       0       0         EB       WB       EB       SB       SB         2       2       2       2       2       2         SB       NB       EB       SB       SB         2       1       2       2       2       2         SB       SB       WB       EB       SB         1       2       2       2       2       2         14.4       13.2       11.4       13.2       11.4</td><td>1       1       41         224       188       32       32       168       176       19       11         224       188       32       32       168       176       19       11         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11         1       1       0       0       2       0       0       1         EB       WB       EB       SB       SB       2       2       2       2       2         SB       NB       EB       SB       SB       2       2       2       2       2       2       2       2       3       3       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3</td></t<><td>1 <math>41</math> <math>41</math>         224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11       19         1       1       0       0       2       0       0       1       0         EB       WB       EB       SB       SB       SB       SB       SB       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3       <td< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<></td></td> | Image: Non-State information of the image in the image information of the image informatio | Image: Non-State Non-Stat | 1       224       188       32       32       168         224       188       32       32       168         224       188       32       32       168         0.96       0.96       0.96       0.96       0.96         2       2       2       2       2         233       196       33       33       175         1       1       0       0       2         EB       WB       EB       2         2       2       2       2         SB       NB       2       1         NB       SB       1       2         14       2       1       13.2 | 1       224       188       32       32       168       176         224       188       32       32       168       176         224       188       32       32       168       176         0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2         233       196       33       33       175       183         1       1       0       0       2       0         EB       WB       EB       2       2       2       2         SB       NB       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>Image: Non-Sector 1       Image: Non-Sector 1       Image: Non-Sector 1         224       188       32       32       168       176       19         224       188       32       32       168       176       19         0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2         233       196       33       33       175       183       20         1       1       0       0       2       0       0         EB       WB       EB       SB       SB         2       2       2       2       2       2         SB       NB       EB       SB       SB         2       1       2       2       2       2         SB       SB       WB       EB       SB         1       2       2       2       2       2         14.4       13.2       11.4       13.2       11.4</td><td>1       1       41         224       188       32       32       168       176       19       11         224       188       32       32       168       176       19       11         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11         1       1       0       0       2       0       0       1         EB       WB       EB       SB       SB       2       2       2       2       2         SB       NB       EB       SB       SB       2       2       2       2       2       2       2       2       3       3       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3</td></t<> <td>1 <math>41</math> <math>41</math>         224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11       19         1       1       0       0       2       0       0       1       0         EB       WB       EB       SB       SB       SB       SB       SB       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3       <td< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<></td> | Image: Non-Sector 1       Image: Non-Sector 1       Image: Non-Sector 1         224       188       32       32       168       176       19         224       188       32       32       168       176       19         0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2         233       196       33       33       175       183       20         1       1       0       0       2       0       0         EB       WB       EB       SB       SB         2       2       2       2       2       2         SB       NB       EB       SB       SB         2       1       2       2       2       2         SB       SB       WB       EB       SB         1       2       2       2       2       2         14.4       13.2       11.4       13.2       11.4 | 1       1       41         224       188       32       32       168       176       19       11         224       188       32       32       168       176       19       11         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11         1       1       0       0       2       0       0       1         EB       WB       EB       SB       SB       2       2       2       2       2         SB       NB       EB       SB       SB       2       2       2       2       2       2       2       2       3       3       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3 | 1 $41$ $41$ 224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         224       188       32       32       168       176       19       11       18         0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         233       196       33       33       175       183       20       11       19         1       1       0       0       2       0       0       1       0         EB       WB       EB       SB       SB       SB       SB       SB       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3 <td< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 | and a second second second |
|------------------------|-------|-------|-------|-------|-------|-------|-------|----------------------------|
| Vol Left, %            | 40%   | 100%  | 0%    | 28%   | 0%    | 89%   | 0%    |                            |
| Vol Thru, %            | 23%   | 0%    | 85%   | 72%   | 32%   | 11%   | 0%    |                            |
| Vol Right, %           | 38%   | 0%    | 15%   | 0%    | 68%   | 0%    | 100%  |                            |
| Sign Control           | Stop  |                            |
| Traffic Vol by Lane    | 48    | 224   | 220   | 116   | 260   | 217   | 102   |                            |
| LT Vol                 | 19    | 224   | 0     | 32    | 0     | 193   | 0     |                            |
| Through Vol            | 11    | 0     | 188   | 84    | 84    | 24    | 0     |                            |
| RT Vol                 | 18    | 0     | 32    | 0     | 176   | 0     | 102   |                            |
| Lane Flow Rate         | 50    | 233   | 229   | 121   | 271   | 226   | 106   |                            |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |                            |
| Degree of Util (X)     | 0.105 | 0.45  | 0.403 | 0.225 | 0.458 | 0.462 | 0.183 |                            |
| Departure Headway (Hd) | 7.551 | 6.937 | 6.324 | 6.708 | 6.084 | 7.362 | 6.197 |                            |
| Convergence, Y/N       | Yes   |                            |
| Сар                    | 478   | 516   | 566   | 532   | 588   | 488   | 575   |                            |
| Service Time           | 5.551 | 4.717 | 4.103 | 4.491 | 3.867 | 5.142 | 3.977 |                            |
| HCM Lane V/C Ratio     | 0.105 | 0.452 | 0.405 | 0.227 | 0.461 | 0.463 | 0.184 |                            |
| HCM Control Delay      | 11.4  | 15.3  | 13.4  | 11.5  | 14    | 16.4  | 10.4  |                            |
| HCM Lane LOS           | В     | С     | В     | В     | В     | С     | В     |                            |
| HCM 95th-tile Q        | 0.3   | 2.3   | 1.9   | 0.9   | 2.4   | 2.4   | 0.7   |                            |

## Existing+Project School PM 5: Callan Blvd & Serramonte Blvd

|                               | ٠          | -     | >     | 1     | +         | *          | -       | 1     | 1          | 5    | Ļ    | ~    |
|-------------------------------|------------|-------|-------|-------|-----------|------------|---------|-------|------------|------|------|------|
| Movement                      | EBL        | EBT   | EBR   | WBL   | WBT       | WBR        | NBL     | NBT   | NBR        | SBL  | SBT  | SBR  |
| Lane Configurations           | ٦          | 11    |       | ٦     | <b>1</b>  |            | ٦       | Ţ.    |            | ٦    | 1    | 1    |
| Traffic Volume (vph)          | 60         | 245   | 96    | 126   | 153       | 204        | 148     | 271   | 114        | 119  | 252  | 88   |
| Future Volume (vph)           | 60         | 245   | 96    | 126   | 153       | 204        | 148     | 271   | 114        | 119  | 252  | 88   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900  | 1900  | 1900      | 1900       | 1900    | 1900  | 1900       | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 4.0        | 4.0   |       | 4.0   | 4.0       |            | 4.0     | 4.0   |            | 4.0  | 4.0  | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95  |       | 1.00  | 0.95      |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99  |       | 1.00  | 0.99      |            | 1.00    | 0.99  |            | 1.00 | 1.00 | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00  |       | 1.00  | 1.00      |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00 |
| Frt                           | 1.00       | 0.96  |       | 1.00  | 0.91      |            | 1.00    | 0.96  |            | 1.00 | 1.00 | 0.85 |
| Flt Protected                 | 0.95       | 1.00  |       | 0.95  | 1.00      |            | 0.95    | 1.00  |            | 0.95 | 1.00 | 1.00 |
| Satd. Flow (prot)             | 1770       | 3341  |       | 1770  | 3190      |            | 1770    | 1769  |            | 1770 | 1863 | 1553 |
| Flt Permitted                 | 0.95       | 1.00  |       | 0.95  | 1.00      |            | 0.95    | 1.00  |            | 0.95 | 1.00 | 1.00 |
| Satd. Flow (perm)             | 1770       | 3341  |       | 1770  | 3190      |            | 1770    | 1769  |            | 1770 | 1863 | 1553 |
| Peak-hour factor, PHF         | 0.98       | 0.98  | 0.98  | 0.98  | 0.98      | 0.98       | 0.98    | 0.98  | 0.98       | 0.98 | 0.98 | 0.98 |
| Adj. Flow (vph)               | 61         | 250   | 98    | 129   | 156       | 208        | 151     | 277   | 116        | 121  | 257  | 90   |
| RTOR Reduction (vph)          | 0          | 74    | 0     | 0     | 155       | 0          | 0       | 24    | 0          | 0    | 0    | 65   |
| Lane Group Flow (vph)         | 61         | 274   | 0     | 129   | 209       | 0          | 151     | 369   | 0          | 121  | 257  | 25   |
| Confl. Peds. (#/hr)           | 13         |       | 19    | 19    |           | 13         | 7       |       | 9          | 9    |      | 7    |
| Turn Type                     | Prot       | NA    |       | Prot  | NA        |            | Prot    | NA    |            | Prot | NA   | Perm |
| Protected Phases              | 7          | 4     |       | 3     | 8         |            | 5       | 2     |            | 1    | 6    |      |
| Permitted Phases              |            |       |       |       |           |            |         |       |            |      |      | 6    |
| Actuated Green, G (s)         | 2.8        | 11.3  |       | 5.1   | 13.6      |            | 6.1     | 16.4  |            | 4.6  | 14.9 | 14.9 |
| Effective Green, g (s)        | 2.8        | 11.3  |       | 5.1   | 13.6      |            | 6.1     | 16.4  |            | 4.6  | 14.9 | 14.9 |
| Actuated g/C Ratio            | 0.05       | 0.21  |       | 0.10  | 0.25      |            | 0.11    | 0.31  |            | 0.09 | 0.28 | 0.28 |
| Clearance Time (s)            | 4.0        | 4.0   |       | 4.0   | 4.0       |            | 4.0     | 4.0   |            | 4.0  | 4.0  | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0   |       | 3.0   | 3.0       |            | 3.0     | 3.0   |            | 3.0  | 3.0  | 3.0  |
| Lane Grp Cap (vph)            | 92         | 706   |       | 169   | 812       |            | 202     | 543   |            | 152  | 519  | 433  |
| v/s Ratio Prot                | 0.03       | c0.08 |       | c0.07 | 0.07      |            | c0.09   | c0.21 |            | 0.07 | 0.14 |      |
| v/s Ratio Perm                |            |       |       |       |           |            |         |       |            |      |      | 0.02 |
| v/c Ratio                     | 0.66       | 0.39  |       | 0.76  | 0.26      |            | 0.75    | 0.68  |            | 0.80 | 0.50 | 0.06 |
| Uniform Delay, d1             | 24.8       | 18.1  |       | 23.6  | 15.9      |            | 22.9    | 16.2  |            | 23.9 | 16.1 | 14.1 |
| Progression Factor            | 1.00       | 1.00  |       | 1.00  | 1.00      |            | 1.00    | 1.00  |            | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2         | 16.5       | 0.4   |       | 18.3  | 0.2       |            | 14.0    | 3.4   |            | 24.3 | 0.7  | 0.1  |
| Delay (s)                     | 41.4       | 18.4  |       | 41.9  | 16.0      |            | 36.9    | 19.6  |            | 48.3 | 16.8 | 14.2 |
| Level of Service              | D          | В     |       | D     | В         |            | D       | В     |            | D    | В    | В    |
| Approach Delay (s)            |            | 21.9  |       |       | 22.8      |            |         | 24.4  |            |      | 24.5 |      |
| Approach LOS                  |            | С     |       |       | С         |            |         | С     |            |      | С    |      |
| Intersection Summary          | 1-51-010   | 23    | 11 C  |       | 1250      |            |         |       | The second |      | 1.2  |      |
| HCM 2000 Control Delay        |            |       | 23.5  | Н     | CM 2000   | Level of   | Service |       | С          |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.62  |       |           |            |         |       |            |      |      |      |
| Actuated Cycle Length (s)     |            |       | 53.4  | S     | um of los | t time (s) |         |       | 16.0       |      |      |      |
| Intersection Capacity Utiliza | tion       |       | 60.1% |       |           | of Service |         |       | В          |      |      |      |
| Analysis Period (min)         |            |       | 15    |       |           |            |         |       |            |      |      |      |
| c Critical Lane Group         |            |       |       |       |           |            |         |       |            |      |      |      |

С

| 03/22/2019 |
|------------|
|------------|

## Intersection

| Movement                   | EBL  | EBT  | EBR    | WBL  | WBT    | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |
|----------------------------|------|------|--------|------|--------|------|------|------|-------|------|------|------|
| Lane Configurations        |      | 4    |        |      | 4      | 1    |      | 4    | -     |      | 4    |      |
| Traffic Vol, veh/h         | 4    | 48   | 23     | 116  | 209    | 322  | 23   | 139  | 40    | 64   | 158  | 7    |
| Future Vol, veh/h          | 4    | 48   | 23     | 116  | 209    | 322  | 23   | 139  | 40    | 64   | 158  | 7    |
| Peak Hour Factor           | 0.86 | 0.86 | 0.86   | 0.86 | 0.86   | 0.86 | 0.86 | 0.86 | 0.86  | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, %          | 2    | 2    | 2      | 2    | 2      | 2    | 2    | 2    | 2     | 2    | 2    | 2    |
| Mymt Flow                  | 5    | 56   | 27     | 135  | 243    | 374  | 27   | 162  | 47    | 74   | 184  | 8    |
| Number of Lanes            | 0    | 1    | 0      | 0    | 1      | 1    | 0    | 1    | 0     | 0    | 1    | 0    |
| Approach                   | EB   |      | al-ar- | WB   | 10 200 |      | NB   |      | 15-12 | SB   |      | 1    |
| Opposing Approach          | WB   |      |        | EB   |        |      | SB   |      |       | NB   |      |      |
| Opposing Lanes             | 2    |      |        | 1    |        |      | 1    |      |       | 1    |      |      |
| Conflicting Approach Left  | SB   |      |        | NB   |        |      | EB   |      |       | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |        | 1    |        |      | 1    |      |       | 2    |      |      |
| Conflicting Approach Right | NB   |      |        | SB   |        |      | WB   |      |       | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |        | 1    |        |      | 2    |      | -     | 1    |      |      |
| HCM Control Delay          | 11   |      |        | 18.8 |        |      | 13.8 |      |       | 15.1 |      |      |
| HCM LOS                    | В    |      |        | С    |        |      | В    |      |       | C    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 11%   | 5%    | 36%   | 0%    | 28%   |  |
| Vol Thru, %            | 69%   | 64%   | 64%   | 0%    | 69%   |  |
| Vol Right, %           | 20%   | 31%   | 0%    | 100%  | 3%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 202   | 75    | 325   | 322   | 229   |  |
| LT Vol                 | 23    | 4     | 116   | 0     | 64    |  |
| Through Vol            | 139   | 48    | 209   | 0     | 158   |  |
| RT Vol                 | 40    | 23    | 0     | 322   | 7     |  |
| ane Flow Rate          | 235   | 87    | 378   | 374   | 266   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.413 | 0.162 | 0.677 | 0.578 | 0.472 |  |
| Departure Headway (Hd) | 6.328 | 6.684 | 6.453 | 5.56  | 6.384 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 566   | 540   | 559   | 644   | 562   |  |
| Service Time           | 4.408 | 4.684 | 4.223 | 3.329 | 4.46  |  |
| HCM Lane V/C Ratio     | 0.415 | 0.161 | 0.676 | 0.581 | 0.473 |  |
| HCM Control Delay      | 13.8  | 11    | 21.8  | 15.7  | 15.1  |  |
| HCM Lane LOS           | В     | В     | С     | С     | С     |  |
| HCM 95th-tile Q        | 2     | 0.6   | 5.1   | 3.7   | 2.5   |  |

| Movement                   | EBT         | EBR            | WBL  | WBT        | NBL  | NBR  | and the second |
|----------------------------|-------------|----------------|------|------------|------|------|------------------------------------------------------------------------------------------------------------------|
| Lane Configurations        | <b>≜</b> î≽ |                | 7    | <b>†</b> † | ٦    | 1    |                                                                                                                  |
| Traffic Vol, veh/h         | 73          | 92             | 205  | 125        | 514  | 323  |                                                                                                                  |
| Future Vol, veh/h          | 73          | 92             | 205  | 125        | 514  | 323  |                                                                                                                  |
| Peak Hour Factor           | 0.90        | 0.90           | 0.90 | 0.90       | 0.90 | 0.90 |                                                                                                                  |
| Heavy Vehicles, %          | 2           | 2              | 2    | 2          | 2    | 2    |                                                                                                                  |
| Mvmt Flow                  | 81          | 102            | 228  | 139        | 571  | 359  |                                                                                                                  |
| Number of Lanes            | 2           | 0              | 1    | 2          | 1    | 1    |                                                                                                                  |
| Approach                   | EB          | and the second | WB   |            | NB   |      | and the second second second second                                                                              |
| Opposing Approach          | WB          |                | EB   |            |      |      |                                                                                                                  |
| Opposing Lanes             | 3           |                | 2    |            | 0    |      |                                                                                                                  |
| Conflicting Approach Left  |             |                | NB   |            | EB   |      |                                                                                                                  |
| Conflicting Lanes Left     | 0           |                | 2    |            | 2    |      |                                                                                                                  |
| Conflicting Approach Right | NB          |                |      |            | WB   |      |                                                                                                                  |
| Conflicting Lanes Right    | 2           |                | 0    |            | 3    |      |                                                                                                                  |
| HCM Control Delay          | 13          |                | 16.1 |            | 68.7 |      |                                                                                                                  |
| HCM LOS                    | В           |                | С    |            | F    |      |                                                                                                                  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 0%    | 100%  | 21%   | 0%    | 100%  | 100%  |  |
| Vol Right, %           | 0%    | 100%  | 0%    | 79%   | 0%    | 0%    | 0%    |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 514   | 323   | 49    | 116   | 205   | 63    | 63    |  |
| _T Vol                 | 514   | 0     | 0     | 0     | 205   | 0     | 0     |  |
| Through Vol            | 0     | 0     | 49    | 24    | 0     | 63    | 63    |  |
| RT Vol                 | 0     | 323   | 0     | 92    | 0     | 0     | 0     |  |
| Lane Flow Rate         | 571   | 359   | 54    | 129   | 228   | 69    | 69    |  |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |
| Degree of Util (X)     | 1.118 | 0.582 | 0.119 | 0.268 | 0.509 | 0.146 | 0.112 |  |
| Departure Headway (Hd) | 7.05  | 5.843 | 8.394 | 7.819 | 8.355 | 7.842 | 6.063 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 520   | 617   | 430   | 463   | 435   | 460   | 595   |  |
| Service Time           | 4.773 | 3.567 | 6.094 | 5.519 | 6.055 | 5.542 | 3.763 |  |
| HCM Lane V/C Ratio     | 1.098 | 0.582 | 0.126 | 0.279 | 0.524 | 0.15  | 0.116 |  |
| HCM Control Delay      | 101.6 | 16.4  | 12.2  | 13.4  | 19.4  | 11.9  | 9.5   |  |
| HCM Lane LOS           | F     | C     | В     | В     | C     | В     | A     |  |
| HCM 95th-tile Q        | 18.8  | 3.7   | 0.4   | 1.1   | 2.8   | 0.5   | 0.4   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 9    | 129  | 0    | 21   | 81   | 182  | 1    | 9    | 17   | 247  | 29   | 24   |
| Future Vol, veh/h          | 9    | 129  | 0    | 21   | 81   | 182  | 1    | 9    | 17   | 247  | 29   | 24   |
| Peak Hour Factor           | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 10   | 137  | 0    | 22   | 86   | 194  | 1    | 10   | 18   | 263  | 31   | 26   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   | Sale |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.8  |      |      | 10.8 |      |      | 8.5  |      |      | 12.5 |      |      |
| HCMLOS                     | A    |      |      | В    |      |      | Α    |      | 1.5  | В    |      | -    |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 | #20.05 T | in and |
|------------------------|-------|-------|-------|-------|----------|--------|
| Vol Left, %            | 4%    | 7%    | 7%    | 82%   |          |        |
| Vol Thru, %            | 33%   | 93%   | 29%   | 10%   |          |        |
| Vol Right, %           | 63%   | 0%    | 64%   | 8%    |          |        |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |          |        |
| Traffic Vol by Lane    | 27    | 138   | 284   | 300   |          |        |
| LT Vol                 | 1     | 9     | 21    | 247   |          |        |
| Through Vol            | 9     | 129   | 81    | 29    |          |        |
| RT Vol                 | 17    | 0     | 182   | 24    |          |        |
| Lane Flow Rate         | 29    | 147   | 302   | 319   |          |        |
| Geometry Grp           | 1     | 1     | 1     | 1     |          |        |
| Degree of Util (X)     | 0.042 | 0.213 | 0.392 | 0.455 |          |        |
| Departure Headway (Hd) | 5.222 | 5.229 | 4.669 | 5.135 |          |        |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |          |        |
| Сар                    | 690   | 678   | 761   | 693   |          |        |
| Service Time           | 3.222 | 3.327 | 2.749 | 3.23  |          |        |
| HCM Lane V/C Ratio     | 0.042 | 0.217 | 0.397 | 0.46  |          |        |
| HCM Control Delay      | 8.5   | 9.8   | 10.8  | 12.5  |          |        |
| HCM Lane LOS           | А     | Α     | В     | В     |          |        |
| HCM 95th-tile Q        | 0.1   | 0.8   | 1.9   | 2.4   |          |        |

#### Intersection Intersection Delay, s/veh 18.7 С

Intersection LOS

| <b>*</b><br>195 | Þ                                                                               |                                                                                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 105             |                                                                                 |                                                                                         |                                                                                                                                                                                                                                                    | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | é.                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 190             | 142                                                                             | 68                                                                                      | 126                                                                                                                                                                                                                                                | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 195             | 142                                                                             | 68                                                                                      | 126                                                                                                                                                                                                                                                | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.96            | 0.96                                                                            | 0.96                                                                                    | 0.96                                                                                                                                                                                                                                               | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96                                                  | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2               | 2                                                                               | 2                                                                                       | 2                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 203             | 148                                                                             | 71                                                                                      | 131                                                                                                                                                                                                                                                | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58                                                    | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1               | 1                                                                               | 0                                                                                       | 0                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EB              |                                                                                 | 22.13                                                                                   | WB                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WB              |                                                                                 |                                                                                         | EB                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2               |                                                                                 |                                                                                         | 2                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SB              |                                                                                 |                                                                                         | NB                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2               |                                                                                 |                                                                                         | 1                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NB              |                                                                                 |                                                                                         | SB                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1               |                                                                                 |                                                                                         | 2                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16.9            |                                                                                 |                                                                                         | 19.1                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С               |                                                                                 |                                                                                         | С                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 0.96<br>2<br>203<br>1<br>EB<br>WB<br>2<br>SB<br>2<br>SB<br>2<br>NB<br>1<br>16.9 | 0.96 0.96<br>2 2<br>203 148<br>1 1<br>EB<br>WB<br>2 .<br>SB<br>2 .<br>NB<br>1 .<br>16.9 | 0.96         0.96         0.96           2         2         2           203         148         71           1         1         0           EB             WB         2            SB         2            NB         1         1           16.9 | 0.96         0.96         0.96         0.96           2         2         2         2           203         148         71         131           1         1         0         0           EB          WB         EB           2         2         2         2           SB         NB         SB         NB           1         2         1         1           NB         SB         11         1           1         2         1         1         1 | 0.96       0.96       0.96       0.96       0.96         2       2       2       2       2         203       148       71       131       204         1       1       0       0       2         EB       WB       EB       2         2       2       2       2         SB       NB       1       1         NB       SB       1       1         1       2       1       1         1       1       1       1       1         1       1       1       1       1       1         1       1       1       1       1       1         1       2       2       2       1       1         1       2       1       1       1       1       1         1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | 0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2         203       148       71       131       204       205         1       1       0       0       2       0         EB       WB       EB           2       2       2       1       1       1         NB       EB       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2         203       148       71       131       204       205       34         1       1       0       0       2       0       0         EB       WB       EB       SB       SB         2       2       2       2       2         SB       NB       EB       SB         2       2       1       2       2         SB       NB       EB       SB         1       2       1       2       2         SB       SB       WB       EB         1       2       2       2       2         NB       SB       WB       EB         1       2       2       2         NB       SB       WB       2       2         16.9       19.1       15.5       15.5</td><td>0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         203       148       71       131       204       205       34       53         1       1       0       0       2       0       0       1         EB       WB       EB       SB       SB       SB       SB         2       2       1       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96</td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96</td></td<> | 0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2         203       148       71       131       204       205       34         1       1       0       0       2       0       0         EB       WB       EB       SB       SB         2       2       2       2       2         SB       NB       EB       SB         2       2       1       2       2         SB       NB       EB       SB         1       2       1       2       2         SB       SB       WB       EB         1       2       2       2       2         NB       SB       WB       EB         1       2       2       2         NB       SB       WB       2       2         16.9       19.1       15.5       15.5 | 0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96         2       2       2       2       2       2       2       2       2         203       148       71       131       204       205       34       53         1       1       0       0       2       0       0       1         EB       WB       EB       SB       SB       SB       SB         2       2       1       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | 0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96 |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |                       |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------------|
| Vol Left, %            | 24%   | 100%  | 0%    | 56%   | 0%    | 79%   | 0%    |                       |
| Vol Thru, %            | 36%   | 0%    | 68%   | 44%   | 33%   | 21%   | 0%    |                       |
| Vol Right, %           | 40%   | 0%    | 32%   | 0%    | 67%   | 0%    | 100%  |                       |
| Sign Control           | Stop  |                       |
| Fraffic Vol by Lane    | 140   | 195   | 210   | 224   | 295   | 272   | 106   |                       |
| _T Vol                 | 33    | 195   | 0     | 126   | 0     | 216   | 0     |                       |
| Through Vol            | 51    | 0     | 142   | 98    | 98    | 56    | 0     |                       |
| RT Vol                 | 56    | 0     | 68    | 0     | 197   | 0     | 106   | and the second second |
| ane Flow Rate          | 146   | 203   | 219   | 233   | 307   | 283   | 110   |                       |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |                       |
| Degree of Util (X)     | 0.336 | 0.46  | 0.45  | 0.503 | 0.597 | 0.645 | 0.217 |                       |
| Departure Headway (Hd) | 8.29  | 8.158 | 7.409 | 7.766 | 6.996 | 8.191 | 7.065 |                       |
| Convergence, Y/N       | Yes   |                       |
| Сар                    | 433   | 441   | 486   | 462   | 513   | 439   | 507   |                       |
| Service Time           | 6.368 | 5.926 | 5.177 | 5.532 | 4.761 | 5.954 | 4.827 |                       |
| HCM Lane V/C Ratio     | 0.337 | 0.46  | 0.451 | 0.504 | 0.598 | 0.645 | 0.217 |                       |
| HCM Control Delay      | 15.5  | 17.7  | 16.2  | 18.2  | 19.7  | 24.8  | 11.8  |                       |
| HCM Lane LOS           | С     | С     | С     | C     | С     | С     | В     |                       |
| HCM 95th-tile Q        | 1.5   | 2.4   | 2.3   | 2.8   | 3.9   | 4.4   | 0.8   |                       |

#### Existing + Project PM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ٨          | -•         | $\mathbf{i}$ | 1      | -         | •          | •       | ↑     | 1     | \$   | ¥    | ~     |
|-------------------------------|------------|------------|--------------|--------|-----------|------------|---------|-------|-------|------|------|-------|
| Movement                      | EBL        | EBT        | EBR          | WBL    | WBT       | WBR        | NBL     | NBT   | NBR   | SBL  | SBT  | SBR   |
| Lane Configurations           | ٦          | <b>†</b> Ъ | -            | ٦      | <b>*</b>  |            | ٦       | f.    |       | ٦    | 1    | 1     |
| Traffic Volume (vph)          | 65         | 265        | 87           | 127    | 213       | 205        | 199     | 246   | 103   | 130  | 274  | 124   |
| Future Volume (vph)           | 65         | 265        | 87           | 127    | 213       | 205        | 199     | 246   | 103   | 130  | 274  | 124   |
| Ideal Flow (vphpl)            | 1900       | 1900       | 1900         | 1900   | 1900      | 1900       | 1900    | 1900  | 1900  | 1900 | 1900 | 1900  |
| Total Lost time (s)           | 4.0        | 4.0        |              | 4.0    | 4.0       |            | 4.0     | 4.0   |       | 4.0  | 4.0  | 4.0   |
| Lane Util. Factor             | 1.00       | 0.95       |              | 1.00   | 0.95      |            | 1.00    | 1.00  |       | 1.00 | 1.00 | 1.00  |
| Frpb, ped/bikes               | 1.00       | 0.99       |              | 1.00   | 0.99      |            | 1.00    | 0.99  |       | 1.00 | 1.00 | 0.98  |
| Flpb, ped/bikes               | 1.00       | 1.00       |              | 1.00   | 1.00      |            | 1.00    | 1.00  |       | 1.00 | 1.00 | 1.00  |
| Frt                           | 1.00       | 0.96       |              | 1.00   | 0.93      |            | 1.00    | 0.96  |       | 1.00 | 1.00 | 0.85  |
| Flt Protected                 | 0.95       | 1.00       |              | 0.95   | 1.00      |            | 0.95    | 1.00  |       | 0.95 | 1.00 | 1.00  |
| Satd. Flow (prot)             | 1770       | 3382       |              | 1770   | 3245      |            | 1770    | 1769  |       | 1770 | 1863 | 1558  |
| Flt Permitted                 | 0.95       | 1.00       |              | 0.95   | 1.00      |            | 0.95    | 1.00  |       | 0.95 | 1.00 | 1.00  |
| Satd. Flow (perm)             | 1770       | 3382       |              | 1770   | 3245      |            | 1770    | 1769  |       | 1770 | 1863 | 1558  |
| Peak-hour factor, PHF         | 0.98       | 0.98       | 0.98         | 0.98   | 0.98      | 0.98       | 0.98    | 0.98  | 0.98  | 0.98 | 0.98 | 0.98  |
| Adj. Flow (vph)               | 66         | 270        | 89           | 130    | 217       | 209        | 203     | 251   | 105   | 133  | 280  | 127   |
| RTOR Reduction (vph)          | 0          | 57         | 0            | 0      | 155       | 0          | 0       | 24    | 0     | 0    | 0    | 94    |
| Lane Group Flow (vph)         | 66         | 302        | 0            | 130    | 271       | 0          | 203     | 332   | 0     | 133  | 280  | 33    |
| Confl. Peds. (#/hr)           | 9          |            | 6            | 6      | -         | 9          | 4       |       | 10    | 10   |      | 4     |
| Turn Type                     | Prot       | NA         |              | Prot   | NA        |            | Prot    | NA    |       | Prot | NA   | Perm  |
| Protected Phases              | 7          | 4          |              | 3      | 8         |            | 5       | 2     |       | 1    | 6    |       |
| Permitted Phases              |            |            |              |        |           |            |         |       |       |      |      | 6     |
| Actuated Green, G (s)         | 2.8        | 11.8       |              | 5.1    | 14.1      |            | 7.1     | 16.0  | 130 3 | 5.4  | 14.3 | 14.3  |
| Effective Green, g (s)        | 2.8        | 11.8       |              | 5.1    | 14.1      |            | 7.1     | 16.0  |       | 5.4  | 14.3 | 14.3  |
| Actuated g/C Ratio            | 0.05       | 0.22       |              | 0.09   | 0.26      |            | 0.13    | 0.29  |       | 0.10 | 0.26 | 0.26  |
| Clearance Time (s)            | 4.0        | 4.0        |              | 4.0    | 4.0       |            | 4.0     | 4.0   |       | 4.0  | 4.0  | 4.0   |
| Vehicle Extension (s)         | 3.0        | 3.0        |              | 3.0    | 3.0       |            | 3.0     | 3.0   |       | 3.0  | 3.0  | 3.0   |
| Lane Grp Cap (vph)            | 91         | 734        |              | 166    | 842       |            | 231     | 521   |       | 176  | 490  | 410   |
| v/s Ratio Prot                | 0.04       | c0.09      |              | c0.07  | 0.08      |            | c0.11   | c0.19 |       | 0.08 | 0.15 |       |
| v/s Ratio Perm                |            |            |              |        |           |            |         |       |       |      |      | 0.02  |
| v/c Ratio                     | 0.73       | 0.41       |              | 0.78   | 0.32      |            | 0.88    | 0.64  |       | 0.76 | 0.57 | 0.08  |
| Uniform Delay, d1             | 25.4       | 18.3       |              | 24.1   | 16.2      |            | 23.2    | 16.6  |       | 23.8 | 17.3 | 15.1  |
| Progression Factor            | 1.00       | 1.00       |              | 1.00   | 1.00      |            | 1.00    | 1.00  |       | 1.00 | 1.00 | 1.00  |
| Incremental Delay, d2         | 24.7       | 0.4        |              | 21.0   | 0.2       |            | 29.2    | 2.6   |       | 16.7 | 1.6  | 0.1   |
| Delay (s)                     | 50.1       | 18.6       |              | 45.1   | 16.5      |            | 52.3    | 19.2  |       | 40.6 | 19.0 | 15.1  |
| Level of Service              | D          | В          |              | D      | В         |            | D       | В     |       | D    | В    | В     |
| Approach Delay (s)            |            | 23.5       |              |        | 23.2      |            |         | 31.2  |       |      | 23.4 |       |
| Approach LOS                  |            | С          |              |        | С         |            |         | С     |       |      | С    |       |
| Intersection Summary          |            |            |              | da set | 1.5       | 100        |         |       | 1.1   | 325  | 10   | 1 and |
| HCM 2000 Control Delay        |            |            | 25.5         | Н      | CM 2000   | Level of   | Service |       | С     |      |      |       |
| HCM 2000 Volume to Capa       | city ratio |            | 0.64         |        |           |            |         |       |       |      |      |       |
| Actuated Cycle Length (s)     |            |            | 54.3         | S      | um of los | t time (s) |         |       | 16.0  |      |      |       |
| Intersection Capacity Utiliza | ation      |            | 57.9%        | IC     | U Level   | of Service |         |       | В     |      |      |       |
| Analysis Period (min)         |            |            | 15           |        |           |            |         |       |       |      |      |       |
| c Critical Lane Group         |            |            |              |        |           |            |         |       |       |      |      |       |

С

#### Intersection

| Movement                   | EBL  | EBT  | EBR    | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT    | SBR  |
|----------------------------|------|------|--------|------|----------|------|------|------|------|------|--------|------|
| Lane Configurations        |      | 4    |        |      | र्भ      | 1    |      | 4    |      |      | 4      |      |
| Traffic Vol, veh/h         | 3    | 102  | 34     | 93   | 248      | 236  | 110  | 154  | 56   | 58   | 208    | 2    |
| Future Vol, veh/h          | 3    | 102  | 34     | 93   | 248      | 236  | 110  | 154  | 56   | 58   | 208    | 2    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91   | 0.91 | 0.91     | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91   | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2      | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2      | 2    |
| Mymt Flow                  | 3    | 112  | 37     | 102  | 273      | 259  | 121  | 169  | 62   | 64   | 229    | 2    |
| Number of Lanes            | 0    | 1    | 0      | 0    | 1        | 1    | 0    | 1    | 0    | 0    | 1      | 0    |
| Approach                   | EB   |      | Same 1 | WB   | Read the |      | NB   |      |      | SB   | AL THE | din. |
| Opposing Approach          | WB   |      |        | EB   |          |      | SB   |      |      | NB   |        |      |
| Opposing Lanes             | 2    |      |        | 1    |          |      | 1    |      |      | 1    |        |      |
| Conflicting Approach Left  | SB   |      |        | NB   |          |      | EB   |      |      | WB   |        |      |
| Conflicting Lanes Left     | 1    |      |        | 1    |          |      | 1    |      |      | 2    |        |      |
| Conflicting Approach Right | NB   |      |        | SB   |          |      | WB   |      |      | EB   |        |      |
| Conflicting Lanes Right    | 1    |      |        | 1    |          |      | 2    |      |      | 1    |        |      |
| HCM Control Delay          | 14.2 |      |        | 23.6 |          |      | 23.3 |      |      | 19.8 |        |      |
| HCM LOS                    | В    |      |        | С    |          |      | С    |      |      | С    |        |      |
|                            |      |      |        |      |          |      |      |      |      |      |        |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 | · · · · · · · · · · · · · · · · · · · |
|------------------------|-------|-------|-------|-------|-------|---------------------------------------|
| Vol Left, %            | 34%   | 2%    | 27%   | 0%    | 22%   |                                       |
| Vol Thru, %            | 48%   | 73%   | 73%   | 0%    | 78%   |                                       |
| Vol Right, %           | 17%   | 24%   | 0%    | 100%  | 1%    |                                       |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |                                       |
| Traffic Vol by Lane    | 320   | 139   | 341   | 236   | 268   |                                       |
| LT Vol                 | 110   | 3     | 93    | 0     | 58    |                                       |
| Through Vol            | 154   | 102   | 248   | 0     | 208   |                                       |
| RT Vol                 | 56    | 34    | 0     | 236   | 2     |                                       |
| Lane Flow Rate         | 352   | 153   | 375   | 259   | 295   |                                       |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |                                       |
| Degree of Util (X)     | 0.675 | 0.32  | 0.76  | 0.464 | 0.583 |                                       |
| Departure Headway (Hd) | 6.907 | 7.537 | 7.297 | 6.44  | 7.129 |                                       |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |                                       |
| Сар                    | 520   | 474   | 495   | 558   | 504   |                                       |
| Service Time           | 4.979 | 5.636 | 5.07  | 4.213 | 5.207 |                                       |
| HCM Lane V/C Ratio     | 0.677 | 0.323 | 0.758 | 0.464 | 0.585 |                                       |
| HCM Control Delay      | 23.3  | 14.2  | 29.8  | 14.7  | 19.8  |                                       |
| HCM Lane LOS           | C     | В     | D     | В     | С     |                                       |
| HCM 95th-tile Q        | 5     | 1.4   | 6.6   | 2.4   | 3.7   |                                       |

| Intersection             |       |      | 1.1  | 12-1-      | -19. 19. |      | State Barris | and a share of the local |
|--------------------------|-------|------|------|------------|----------|------|--------------|--------------------------|
| ntersection Delay, s/veh | 148.5 |      |      |            |          |      |              |                          |
| Intersection LOS         | F     |      |      |            |          |      |              |                          |
| Movement                 | EBT   | EBR  | WBL  | WBT        | NBL      | NBR  |              | and the second second    |
| Lane Configurations      | 11-   |      | 3    | <b>†</b> † | ٦        | 1    |              |                          |
| Traffic Vol, veh/h       | 87    | 118  | 544  | 29         | 546      | 326  |              |                          |
| Future Vol, veh/h        | 87    | 118  | 544  | 29         | 546      | 326  |              |                          |
| Peak Hour Factor         | 0.88  | 0.88 | 0.88 | 0.88       | 0.88     | 0.88 |              |                          |
| Heavy Vehicles, %        | 2     | 2    | 2    | 2          | 2        | 2    |              |                          |
| Mymt Flow                | 99    | 134  | 618  | 33         | 620      | 370  |              |                          |
| Number of Lanes          | 2     | 0    | 1    | 2          | 1        | 1    |              |                          |

| Number of Lanes            | 2    | 0 1   | 2     |  |              |                |
|----------------------------|------|-------|-------|--|--------------|----------------|
| Approach                   | EB   | WB    | NB    |  | de la polici | and the second |
| Opposing Approach          | WB   | EB    |       |  |              |                |
| Opposing Lanes             | 3    | 2     | 0     |  |              |                |
| Conflicting Approach Left  |      | NB    | EB    |  |              |                |
| Conflicting Lanes Left     | 0    | 2     | 2     |  |              |                |
| Conflicting Approach Right | NB   |       | WB    |  |              |                |
| Conflicting Lanes Right    | 2    | 0     | 3     |  |              |                |
| HCM Control Delay          | 16.4 | 217.6 | 134.1 |  |              |                |
| HCM LOS                    | C    | F     | F     |  |              |                |

| ane                    | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | Martin Contraction of the |
|------------------------|-------|-------|-------|-------|-------|-------|-------|---------------------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |                           |
| Vol Thru, %            | 0%    | 0%    | 100%  | 20%   | 0%    | 100%  | 100%  |                           |
| Vol Right, %           | 0%    | 100%  | 0%    | 80%   | 0%    | 0%    | 0%    |                           |
| Sign Control           | Stop  |                           |
| Traffic Vol by Lane    | 546   | 326   | 58    | 147   | 544   | 15    | 15    |                           |
| T Vol                  | 546   | 0     | 0     | 0     | 544   | 0     | 0     |                           |
| Through Vol            | 0     | 0     | 58    | 29    | 0     | 15    | 15    |                           |
| RT Vol                 | 0     | 326   | 0     | 118   | 0     | 0     | 0     |                           |
| ane Flow Rate          | 620   | 370   | 66    | 167   | 618   | 16    | 16    |                           |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |                           |
| Degree of Util (X)     | 1.355 | 0.686 | 0.155 | 0.367 | 1.424 | 0.036 | 0.028 |                           |
| Departure Headway (Hd) | 8.694 | 7.473 | 9.838 | 9.244 | 8.869 | 8.354 | 6.569 |                           |
| Convergence, Y/N       | Yes   |                           |
| Сар                    | 422   | 489   | 367   | 393   | 414   | 431   | 548   |                           |
| Service Time           | 6.394 | 5.173 | 7.538 | 6.944 | 6.569 | 6.054 | 4.269 |                           |
| HCM Lane V/C Ratio     | 1.469 | 0.757 | 0.18  | 0.425 | 1.493 | 0.037 | 0.029 |                           |
| HCM Control Delay      | 199.3 | 25    | 14.3  | 17.2  | 228.6 | 11.4  | 9.5   |                           |
| HCM Lane LOS           | F     | С     | В     | С     | F     | В     | A     |                           |
| HCM 95th-tile Q        | 26.4  | 5.2   | 0.5   | 1.7   | 29    | 0.1   | 0.1   |                           |

17.2 С

#### 03/20/2019

## Intersection Intersection Delay, s/veh Intersection LOS

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR      | SBL  | SBT            | SBR   |
|----------------------------|------|------|------|------|------|------|------|------|----------|------|----------------|-------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | \$   |          |      | 4              |       |
| Traffic Vol, veh/h         | 6    | 262  | 12   | 16   | 83   | 254  | 2    | 38   | 42       | 304  | 6              | 23    |
| Future Vol, veh/h          | 6    | 262  | 12   | 16   | 83   | 254  | 2    | 38   | 42       | 304  | 6              | 23    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91     | 0.91 | 0.91           | 0.91  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2              | 2     |
| Mymt Flow                  | 7    | 288  | 13   | 18   | 91   | 279  | 2    | 42   | 46       | 334  | 7              | 25    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0        | 0    | 1              | 0     |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      | The said | SB   | $\sim \pi_{0}$ | and a |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |          | NB   |                |       |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |          | 1    |                |       |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |          | WB   |                |       |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |          | 1    |                |       |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |          | EB   |                |       |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |          | 1    |                |       |
| HCM Control Delay          | 15.9 |      |      | 17.1 |      |      | 11   |      |          | 20   |                |       |
| HCM LOS                    | С    |      |      | С    |      |      | В    |      |          | С    |                |       |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 | S. S. S. S. | Sec. States |
|------------------------|-------|-------|-------|-------|-------------|-------------|
| Vol Left, %            | 2%    | 2%    | 5%    | 91%   |             |             |
| Vol Thru, %            | 46%   | 94%   | 24%   | 2%    |             |             |
| Vol Right, %           | 51%   | 4%    | 72%   | 7%    |             |             |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |             |             |
| Traffic Vol by Lane    | 82    | 280   | 353   | 333   |             |             |
| LT Vol                 | 2     | 6     | 16    | 304   |             |             |
| Through Vol            | 38    | 262   | 83    | 6     |             |             |
| RT Vol                 | 42    | 12    | 254   | 23    |             |             |
| Lane Flow Rate         | 90    | 308   | 388   | 366   |             |             |
| Geometry Grp           | 1     | 1     | 1     | 1     |             |             |
| Degree of Util (X)     | 0.165 | 0.526 | 0.608 | 0.641 |             |             |
| Departure Headway (Hd) | 6.609 | 6.158 | 5.646 | 6.307 |             |             |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |             |             |
| Сар                    | 541   | 585   | 640   | 571   |             |             |
| Service Time           | 4.673 | 4.202 | 3.686 | 4.35  |             |             |
| HCM Lane V/C Ratio     | 0.166 | 0.526 | 0.606 | 0.641 |             |             |
| HCM Control Delay      | 11    | 15.9  | 17.1  | 20    |             |             |
| HCM Lane LOS           | В     | С     | С     | С     |             |             |
| HCM 95th-tile Q        | 0.6   | 3.1   | 4.1   | 4.5   |             |             |

| Movement                   | EBL  | EBT           | EBR  | WBL   | WBT     | WBR                                      | NBL  | NBT      | NBR   | SBL  | SBT  | SBR  |
|----------------------------|------|---------------|------|-------|---------|------------------------------------------|------|----------|-------|------|------|------|
| Lane Configurations        | ٦    | ħ             |      |       | 414     |                                          |      | 4        | -     |      | 4    | 1    |
| Traffic Vol, veh/h         | 446  | 112           | 51   | 157   | 274     | 378                                      | 31   | 111      | 161   | 191  | 95   | 106  |
| Future Vol, veh/h          | 446  | 112           | 51   | 157   | 274     | 378                                      | 31   | 111      | 161   | 191  | 95   | 106  |
| Peak Hour Factor           | 0.91 | 0.91          | 0.91 | 0.91  | 0.91    | 0.91                                     | 0.91 | 0.91     | 0.91  | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2             | 2    | 2     | 2       | 2                                        | 2    | 2        | 2     | 2    | 2    | 2    |
| Mymt Flow                  | 490  | 123           | 56   | 173   | 301     | 415                                      | 34   | 122      | 177   | 210  | 104  | 116  |
| Number of Lanes            | 1    | 1             | 0    | 0     | 2       | 0                                        | 0    | 1        | 0     | 0    | 1    | 1    |
| Approach                   | EB   | " Internation |      | WB    | and and | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | NB   | N. LEWIS | 4.8.8 | SB   | 19   |      |
| Opposing Approach          | WB   |               |      | EB    | 1       |                                          | SB   |          |       | NB   |      |      |
| Opposing Lanes             | 2    |               |      | 2     |         |                                          | 2    |          |       | 1    |      |      |
| Conflicting Approach Left  | SB   |               |      | NB    |         |                                          | EB   |          |       | WB   |      |      |
| Conflicting Lanes Left     | 2    |               |      | 1     |         |                                          | 2    |          |       | 2    |      |      |
| Conflicting Approach Right | NB   |               |      | SB    |         |                                          | WB   |          |       | EB   |      |      |
| Conflicting Lanes Right    | 1    |               |      | 2     |         |                                          | 2    |          |       | 2    |      |      |
| HCM Control Delay          | 156  |               |      | 158.5 |         |                                          | 57.7 |          |       | 44.6 |      |      |
| HCM LOS                    | F    |               |      | F     |         |                                          | F    |          |       | E    |      |      |

| Lane                   | NBLn1  | EBLn1  | EBLn2 | WBLn1  | WBLn2 | SBLn1  | SBLn2 | Con all | - 1-1 |  |
|------------------------|--------|--------|-------|--------|-------|--------|-------|---------|-------|--|
| Vol Left, %            | 10%    | 100%   | 0%    | 53%    | 0%    | 67%    | 0%    |         |       |  |
| /ol Thru, %            | 37%    | 0%     | 69%   | 47%    | 27%   | 33%    | 0%    |         |       |  |
| /ol Right, %           | 53%    | 0%     | 31%   | 0%     | 73%   | 0%     | 100%  |         |       |  |
| Sign Control           | Stop   | Stop   | Stop  | Stop   | Stop  | Stop   | Stop  |         |       |  |
| Fraffic Vol by Lane    | 303    | 446    | 163   | 294    | 515   | 286    | 106   |         |       |  |
| T Vol                  | 31     | 446    | 0     | 157    | 0     | 191    | 0     |         |       |  |
| Through Vol            | 111    | 0      | 112   | 137    | 137   | 95     | 0     |         |       |  |
| RT Vol                 | 161    | 0      | 51    | 0      | 378   | 0      | 106   |         |       |  |
| ane Flow Rate          | 333    | 490    | 179   | 323    | 566   | 314    | 116   |         |       |  |
| Geometry Grp           | 6      | 7      | 7     | 7      | 7     | 7      | 7     |         |       |  |
| Degree of Util (X)     | 0.887  | 1.355  | 0.459 | 0.867  | 1.395 | 0.866  | 0.288 |         |       |  |
| Departure Headway (Hd) | 10.531 | 10.349 | 9.591 | 10.293 | 9.468 | 10.852 | 9.762 |         |       |  |
| Convergence, Y/N       | Yes    | Yes    | Yes   | Yes    | Yes   | Yes    | Yes   |         |       |  |
| Cap                    | 346    | 353    | 378   | 355    | 390   | 336    | 370   |         |       |  |
| Service Time           | 8.531  | 8.049  | 7.291 | 7.993  | 7.168 | 8.552  | 7.462 |         |       |  |
| HCM Lane V/C Ratio     | 0.962  | 1.388  | 0.474 | 0.91   | 1.451 | 0.935  | 0.314 |         |       |  |
| HCM Control Delay      | 57.7   | 205.6  | 20.2  | 53.1   | 218.7 | 55.1   | 16.4  |         |       |  |
| HCM Lane LOS           | F      | F      | C     | F      | F     | F      | С     |         |       |  |
| HCM 95th-tile Q        | 8.5    | 23.1   | 2.3   | 8.1    | 26.3  | 8      | 1.2   |         |       |  |

## Cumulative No Project AM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ٨          | -+    | $\mathbf{F}$ | *     | -          | ۰.       | •       | 1    | 1    | 5    | <b>↓</b> | -    |
|-------------------------------|------------|-------|--------------|-------|------------|----------|---------|------|------|------|----------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR      | NBL     | NBT  | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations           | 7          | 17    |              | 1     | <b>†</b> ] |          | 7       | F.   |      | ٦    | 1        | 1    |
| Traffic Volume (vph)          | 4          | 353   | 102          | 142   | 518        | 481      | 244     | 106  | 130  | 222  | 298      | 134  |
| Future Volume (vph)           | 4          | 353   | 102          | 142   | 518        | 481      | 244     | 106  | 130  | 222  | 298      | 134  |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900     | 1900    | 1900 | 1900 | 1900 | 1900     | 1900 |
| Total Lost time (s)           | 4.0        | 4.0   |              | 4.0   | 4.0        |          | 4.0     | 4.0  |      | 4.0  | 4.0      | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95  |              | 1.00  | 0.95       |          | 1.00    | 1.00 |      | 1.00 | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99  |              | 1.00  | 0.99       |          | 1.00    | 0.99 |      | 1.00 | 1.00     | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00  |              | 1.00  | 1.00       |          | 1.00    | 1.00 |      | 1.00 | 1.00     | 1.00 |
| Frt                           | 1.00       | 0.97  |              | 1.00  | 0.93       |          | 1.00    | 0.92 |      | 1.00 | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00  |              | 0.95  | 1.00       |          | 0.95    | 1.00 |      | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)             | 1767       | 3396  |              | 1770  | 3255       |          | 1770    | 1687 |      | 1770 | 1863     | 1550 |
| Flt Permitted                 | 0.95       | 1.00  |              | 0.95  | 1.00       |          | 0.95    | 1.00 |      | 0.95 | 1.00     | 1.00 |
| Satd. Flow (perm)             | 1767       | 3396  |              | 1770  | 3255       |          | 1770    | 1687 | _    | 1770 | 1863     | 1550 |
| Peak-hour factor, PHF         | 0.90       | 0.90  | 0.90         | 0.90  | 0.90       | 0.90     | 0.90    | 0.90 | 0.90 | 0.90 | 0.90     | 0.90 |
| Adj. Flow (vph)               | 4          | 392   | 113          | 158   | 576        | 534      | 271     | 118  | 144  | 247  | 331      | 149  |
| RTOR Reduction (vph)          | 0          | 37    | 0            | 0     | 219        | 0        | 0       | 64   | 0    | 0    | 0        | 116  |
| Lane Group Flow (vph)         | 4          | 468   | 0            | 158   | 891        | 0        | 271     | 198  | 0    | 247  | 331      | 33   |
| Confl. Peds. (#/hr)           | 5          |       | 6            | 6     |            | 5        | 7       |      | 9    | 9    |          | 7    |
| Turn Type                     | Prot       | NA    |              | Prot  | NA         | _        | Prot    | NA   |      | Prot | NA       | Perm |
| Protected Phases              | 7          | 4     |              | 3     | 8          |          | 5       | 2    |      | 1    | 6        |      |
| Permitted Phases              |            |       |              |       |            |          |         |      |      |      |          | 6    |
| Actuated Green, G (s)         | 0.7        | 17.2  |              | 8.0   | 24.5       |          | 12.0    | 15.5 |      | 11.6 | 15.1     | 15.1 |
| Effective Green, g (s)        | 0.7        | 17.2  |              | 8.0   | 24.5       |          | 12.0    | 15.5 |      | 11.6 | 15.1     | 15.1 |
| Actuated g/C Ratio            | 0.01       | 0.25  |              | 0.12  | 0.36       |          | 0.18    | 0.23 |      | 0.17 | 0.22     | 0.22 |
| Clearance Time (s)            | 4.0        | 4.0   |              | 4.0   | 4.0        |          | 4.0     | 4.0  |      | 4.0  | 4.0      | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0   |              | 3.0   | 3.0        |          | 3.0     | 3.0  |      | 3.0  | 3.0      | 3.0  |
| Lane Grp Cap (vph)            | 18         | 855   |              | 207   | 1167       |          | 310     | 382  |      | 300  | 411      | 342  |
| v/s Ratio Prot                | 0.00       | 0.14  |              | c0.09 | c0.27      |          | c0.15   | 0.12 |      | 0.14 | c0.18    |      |
| v/s Ratio Perm                |            |       |              |       |            |          |         |      |      |      |          | 0.02 |
| v/c Ratio                     | 0.22       | 0.55  |              | 0.76  | 0.76       |          | 0.87    | 0.52 |      | 0.82 | 0.81     | 0.10 |
| Uniform Delay, d1             | 33.5       | 22.2  |              | 29.2  | 19.3       |          | 27.4    | 23.1 |      | 27.4 | 25.2     | 21.2 |
| Progression Factor            | 1.00       | 1.00  |              | 1.00  | 1.00       |          | 1.00    | 1.00 |      | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2         | 6.2        | 0.7   |              | 15.3  | 3.0        |          | 22.8    | 1.2  |      | 16.5 | 11.0     | 0.1  |
| Delay (s)                     | 39.7       | 22.9  |              | 44.5  | 22.4       |          | 50.2    | 24.3 |      | 43.9 | 36.2     | 21.3 |
| Level of Service              | D          | С     |              | D     | С          |          | D       | С    |      | D    | D        | C    |
| Approach Delay (s)            |            | 23.0  |              |       | 25.1       |          |         | 37.5 |      |      | 35.7     |      |
| Approach LOS                  |            | С     |              |       | С          |          |         | D    |      |      | D        |      |
| Intersection Summary          |            | 2-1-3 | -            |       |            | Salar    |         |      | 10 m |      |          |      |
| HCM 2000 Control Delay        |            |       | 29.5         | В     | CM 2000    | Level of | Service |      | С    |      |          |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.84         |       |            |          |         |      |      |      |          |      |
| Actuated Cycle Length (s)     |            |       | 68.3         | S     | um of lost | time (s) |         |      | 16.0 |      |          |      |
| Intersection Capacity Utiliza | ation      |       | 75.9%        |       | U Level o  |          |         |      | D    |      |          |      |
| Analysis Period (min)         |            |       | 15           |       |            |          |         |      |      |      |          |      |
| c Critical Lane Group         |            |       |              |       |            |          |         |      |      |      |          |      |

| 03/25/201 | 9 |
|-----------|---|
|-----------|---|

| Movement                   | EBL  | EBT         | EBR       | WBL  | WBT  | WBR  | NBL  | NBT  | NBR        | SBL  | SBT     | SBR  |
|----------------------------|------|-------------|-----------|------|------|------|------|------|------------|------|---------|------|
| Lane Configurations        |      | 4           |           |      | 4    | 1    |      | 4    |            |      | 4       |      |
| Traffic Vol, veh/h         | 5    | 28          | 42        | 78   | 183  | 288  | 41   | 124  | 47         | 30   | 199     | 5    |
| Future Vol, veh/h          | 5    | 28          | 42        | 78   | 183  | 288  | 41   | 124  | 47         | 30   | 199     | 5    |
| Peak Hour Factor           | 0.91 | 0.91        | 0.91      | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91       | 0.91 | 0.91    | 0.91 |
| Heavy Vehicles, %          | 2    | 2           | 2         | 2    | 2    | 2    | 2    | 2    | 2          | 2    | 2       | 2    |
| Mvmt Flow                  | 5    | 31          | 46        | 86   | 201  | 316  | 45   | 136  | 52         | 33   | 219     | 5    |
| Number of Lanes            | 0    | 1           | 0         | 0    | 1    | 1    | 0    | 1    | 0          | 0    | 1       | 0    |
| Approach                   | EB   | See Service | 1997 - MA | WB   |      |      | NB   |      | The set is | SB   | Sec. Se |      |
| Opposing Approach          | WB   |             |           | EB   |      |      | SB   |      |            | NB   |         |      |
| Opposing Lanes             | 2    |             |           | 1    |      |      | 1    |      |            | 1    |         |      |
| Conflicting Approach Left  | SB   |             |           | NB   |      |      | EB   |      |            | WB   |         |      |
| Conflicting Lanes Left     | 1    | 15          |           | 1    |      |      | 1    |      |            | 2    |         |      |
| Conflicting Approach Right | NB   |             |           | SB   |      |      | WB   |      |            | EB   |         |      |
| Conflicting Lanes Right    | 1    |             |           | 1    |      |      | 2    |      |            | 1    |         |      |
| HCM Control Delay          | 10.2 |             |           | 14.1 |      |      | 12.8 |      |            | 13.6 |         |      |
| HCM LOS                    | В    |             |           | В    |      |      | В    |      |            | В    |         |      |
|                            |      |             |           |      |      |      |      |      |            |      |         |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 | A Contract |
|------------------------|-------|-------|-------|-------|-------|------------|
| Vol Left, %            | 19%   | 7%    | 30%   | 0%    | 13%   |            |
| Vol Thru, %            | 58%   | 37%   | 70%   | 0%    | 85%   |            |
| Vol Right, %           | 22%   | 56%   | 0%    | 100%  | 2%    |            |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |            |
| Traffic Vol by Lane    | 212   | 75    | 261   | 288   | 234   |            |
| LT Vol                 | 41    | 5     | 78    | 0     | 30    |            |
| Through Vol            | 124   | 28    | 183   | 0     | 199   |            |
| RT Vol                 | 47    | 42    | 0     | 288   | 5     |            |
| Lane Flow Rate         | 233   | 82    | 287   | 316   | 257   |            |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |            |
| Degree of Util (X)     | 0.387 | 0.14  | 0.501 | 0.477 | 0.431 |            |
| Departure Headway (Hd) | 5.986 | 6.12  | 6.292 | 5.43  | 6.037 |            |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |            |
| Сар                    | 599   | 582   | 571   | 661   | 594   |            |
| Service Time           | 4.047 | 4.201 | 4.046 | 3.183 | 4.098 |            |
| HCM Lane V/C Ratio     | 0.389 | 0.141 | 0.503 | 0.478 | 0.433 |            |
| HCM Control Delay      | 12.8  | 10.2  | 15.2  | 13.1  | 13.6  |            |
| HCM Lane LOS           | В     | В     | C     | В     | В     |            |
| HCM 95th-tile Q        | 1.8   | 0.5   | 2.8   | 2.6   | 2.2   |            |

## Intersection Intersection Delay, s/veh 39.5 Intersection LOS E

| Movement                   | EBT        | EBR  | WBL  | WBT        | NBL  | NBR  |  |
|----------------------------|------------|------|------|------------|------|------|--|
| Lane Configurations        | <b>†</b> Ъ |      | ٦    | <b>†</b> † | ٦    | 1    |  |
| Traffic Vol, veh/h         | 39         | 77   | 361  | 87         | 461  | 307  |  |
| Future Vol, veh/h          | 39         | 77   | 361  | 87         | 461  | 307  |  |
| Peak Hour Factor           | 0.94       | 0.94 | 0.94 | 0.94       | 0.94 | 0.94 |  |
| Heavy Vehicles, %          | 2          | 2    | 2    | 2          | 2    | 2    |  |
| Mymt Flow                  | 41         | 82   | 384  | 93         | 490  | 327  |  |
| Number of Lanes            | 2          | 0    | 1    | 2          | 1    | 1    |  |
| Approach                   | EB         |      | WB   |            | NB   |      |  |
| Opposing Approach          | WB         |      | EB   |            |      |      |  |
| Opposing Lanes             | 3          |      | 2    |            | 0    |      |  |
| Conflicting Approach Left  |            |      | NB   |            | EB   |      |  |
| Conflicting Lanes Left     | 0          |      | 2    |            | 2    |      |  |
| Conflicting Approach Right | NB         |      |      |            | WB   |      |  |
| Conflicting Lanes Right    | 2          |      | 0    |            | 3    |      |  |
| HCM Control Delay          | 12.6       |      | 36   |            | 45.6 |      |  |
| HCM LOS                    | В          |      | E    |            | E    |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  | 1.5.11- |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|---------|
| /ol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |         |
| /ol Thru, %            | 0%    | 0%    | 100%  | 14%   | 0%    | 100%  | 100%  |  |         |
| /ol Right, %           | 0%    | 100%  | 0%    | 86%   | 0%    | 0%    | 0%    |  |         |
| Sign Control           | Stop  |  |         |
| Fraffic Vol by Lane    | 461   | 307   | 26    | 90    | 361   | 44    | 44    |  |         |
| _T Vol                 | 461   | 0     | 0     | 0     | 361   | 0     | 0     |  |         |
| Through Vol            | 0     | 0     | 26    | 13    | 0     | 44    | 44    |  |         |
| RT Vol                 | 0     | 307   | 0     | 77    | 0     | 0     | 0     |  |         |
| ane Flow Rate          | 490   | 327   | 28    | 96    | 384   | 46    | 46    |  |         |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |         |
| Degree of Util (X)     | 0.99  | 0.55  | 0.066 | 0.211 | 0.854 | 0.096 | 0.074 |  |         |
| Departure Headway (Hd) | 7.386 | 6.179 | 8.568 | 7.945 | 8.007 | 7.496 | 5.722 |  |         |
| Convergence, Y/N       | Yes   |  |         |
| Сар                    | 495   | 588   | 420   | 454   | 457   | 481   | 630   |  |         |
| Service Time           | 5.086 | 3.879 | 6.286 | 5.663 | 5.707 | 5.196 | 3.422 |  |         |
| HCM Lane V/C Ratio     | 0.99  | 0.556 | 0.067 | 0.211 | 0.84  | 0.096 | 0.073 |  |         |
| HCM Control Delay      | 65.2  | 16.2  | 11.9  | 12.8  | 42.3  | 11    | 8.9   |  |         |
| HCM Lane LOS           | F     | С     | В     | В     | E     | В     | А     |  |         |
| HCM 95th-tile Q        | 13.2  | 3.3   | 0.2   | 0.8   | 8.6   | 0.3   | 0.2   |  |         |

14.7 B

#### Intersection

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT    | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|-------|------|--------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | \$   |       |      | 4      |      |
| Traffic Vol, veh/h         | 10   | 138  | 2    | 29   | 96   | 211  | 3    | 29   | 24    | 285  | 11     | 72   |
| Future Vol, veh/h          | 10   | 138  | 2    | 29   | 96   | 211  | 3    | 29   | 24    | 285  | 11     | 72   |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91  | 0.91 | 0.91   | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2      | 2    |
| Mvmt Flow                  | 11   | 152  | 2    | 32   | 105  | 232  | 3    | 32   | 26    | 313  | 12     | 79   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0     | 0    | 1      | 0    |
| Approach                   | EB   | 25   |      | WB   |      |      | NB   |      | 54.00 | SB   | Ser an |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |       | NB   |        |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |       | 1    |        |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |       | WB   |        |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |       | 1    |        |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |       | EB   |        |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |       | 1    |        |      |
| HCM Control Delay          | 11.1 |      |      | 14.2 |      |      | 9.7  |      |       | 17.3 |        |      |
| HCM LOS                    | В    |      |      | В    |      |      | А    |      |       | С    |        |      |
|                            |      |      |      |      |      |      |      |      |       |      |        |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 7%    | 9%    | 77%   |  |
| Vol Thru, %            | 52%   | 92%   | 29%   | 3%    |  |
| Vol Right, %           | 43%   | 1%    | 63%   | 20%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 56    | 150   | 336   | 368   |  |
| LT Vol                 | 3     | 10    | 29    | 285   |  |
| Through Vol            | 29    | 138   | 96    | 11    |  |
| RT Vol                 | 24    | 2     | 211   | 72    |  |
| Lane Flow Rate         | 62    | 165   | 369   | 404   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.101 | 0.27  | 0.535 | 0.622 |  |
| Departure Headway (Hd) | 5.904 | 5.892 | 5.213 | 5.534 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 602   | 607   | 690   | 651   |  |
| Service Time           | 3.984 | 3.96  | 3.269 | 3.584 |  |
| HCM Lane V/C Ratio     | 0.103 | 0.272 | 0.535 | 0.621 |  |
| HCM Control Delay      | 9.7   | 11.1  | 14.2  | 17.3  |  |
| HCM Lane LOS           | A     | В     | В     | С     |  |
| HCM 95th-tile Q        | 0.3   | 1.1   | 3.2   | 4.3   |  |

20.8

С

#### 03/25/2019

#### Intersection

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        | ٦    | 1.   |      |      | 472  |      |      | 4    | 1    |      | 4    | 1    |
| Traffic Vol, veh/h         | 208  | 106  | 38   | 95   | 190  | 296  | 33   | 57   | 108  | 212  | 15   | 73   |
| Future Vol, veh/h          | 208  | 106  | 38   | 95   | 190  | 296  | 33   | 57   | 108  | 212  | 15   | 73   |
| Peak Hour Factor           | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 217  | 110  | 40   | 99   | 198  | 308  | 34   | 59   | 113  | 221  | 16   | 76   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2    | 0    | 0    | 1    | 0    | 0    | 1    | 1    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |      |      | 2    |      |      |
| HCM Control Delay          | 16.9 |      |      | 25.2 |      |      | 17.8 |      |      | 19   |      |      |
| HCM LOS                    | С    |      |      | D    |      |      | С    |      |      | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 17%   | 100%  | 0%    | 50%   | 0%    | 93%   | 0%    |  |
| Vol Thru, %            | 29%   | 0%    | 74%   | 50%   | 24%   | 7%    | 0%    |  |
| Vol Right, %           | 55%   | 0%    | 26%   | 0%    | 76%   | 0%    | 100%  |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 198   | 208   | 144   | 190   | 391   | 227   | 73    |  |
| LT Vol                 | 33    | 208   | 0     | 95    | 0     | 212   | 0     |  |
| Through Vol            | 57    | 0     | 106   | 95    | 95    | 15    | 0     |  |
| RT Vol                 | 108   | 0     | 38    | 0     | 296   | 0     | 73    |  |
| Lane Flow Rate         | 206   | 217   | 150   | 198   | 407   | 236   | 76    |  |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |  |
| Degree of Util (X)     | 0.46  | 0.498 | 0.315 | 0.421 | 0.776 | 0.557 | 0.154 |  |
| Departure Headway (Hd) | 8.033 | 8.273 | 7.566 | 7.661 | 6.859 | 8.487 | 7.285 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 448   | 433   | 473   | 469   | 525   | 423   | 490   |  |
| Service Time           | 6.116 | 6.053 | 5.345 | 5.432 | 4.629 | 6.263 | 5.06  |  |
| HCM Lane V/C Ratio     | 0.46  | 0.501 | 0.317 | 0.422 | 0.775 | 0.558 | 0.155 |  |
| HCM Control Delay      | 17.8  | 19,1  | 13.8  | 15.9  | 29.7  | 21.5  | 11.4  |  |
| HCM Lane LOS           | С     | С     | В     | C     | D     | C     | В     |  |
| HCM 95th-tile Q        | 2.4   | 2.7   | 1.3   | 2.1   | 7     | 3.3   | 0.5   |  |

#### Cumulative NP School PM 5: Callan Blvd & Serramonte Blvd

|                                   | ≯           | -        | $\mathbf{r}$ | 4                    | ←              | ×.             | •       | 1        |          | 1       | Ļ     | -     |
|-----------------------------------|-------------|----------|--------------|----------------------|----------------|----------------|---------|----------|----------|---------|-------|-------|
| Movement                          | EBL         | EBT      | EBR          | WBL                  | WBT            | WBR            | NBL     | NBT      | NBR      | SBL     | SBT   | SBR   |
| Lane Configurations               | 5           | <b>1</b> |              | ٦                    | <b>†</b> ]+    |                | 7       | 1.       |          | ۲       | 1     | 1     |
| Traffic Volume (vph)              | 93          | 329      | 66           | 212                  | 381            | 288            | 157     | 188      | 72       | 162     | 255   | 121   |
| Future Volume (vph)               | 93          | 329      | 66           | 212                  | 381            | 288            | 157     | 188      | 72       | 162     | 255   | 121   |
| Ideal Flow (vphpl)                | 1900        | 1900     | 1900         | 1900                 | 1900           | 1900           | 1900    | 1900     | 1900     | 1900    | 1900  | 1900  |
| Total Lost time (s)               | 4.0         | 4.0      |              | 4.0                  | 4.0            |                | 4.0     | 4.0      |          | 4.0     | 4.0   | 4.0   |
| Lane Util. Factor                 | 1.00        | 0.95     |              | 1.00                 | 0.95           |                | 1.00    | 1.00     |          | 1.00    | 1.00  | 1.00  |
| Frpb, ped/bikes                   | 1.00        | 0.99     |              | 1.00                 | 0.99           |                | 1.00    | 0.99     |          | 1.00    | 1.00  | 0.98  |
| Flpb, ped/bikes                   | 1.00        | 1.00     |              | 1.00                 | 1.00           |                | 1.00    | 1.00     |          | 1.00    | 1.00  | 1.00  |
| Frt                               | 1.00        | 0.98     |              | 1.00                 | 0.94           |                | 1.00    | 0.96     |          | 1.00    | 1.00  | 0.85  |
| Flt Protected                     | 0.95        | 1.00     |              | 0.95                 | 1.00           |                | 0.95    | 1.00     |          | 0.95    | 1.00  | 1.00  |
| Satd. Flow (prot)                 | 1770        | 3433     |              | 1770                 | 3280           |                | 1770    | 1775     |          | 1770    | 1863  | 1558  |
| Flt Permitted                     | 0.95        | 1.00     |              | 0.95                 | 1.00           |                | 0.95    | 1.00     |          | 0.95    | 1.00  | 1.00  |
| Satd. Flow (perm)                 | 1770        | 3433     |              | 1770                 | 3280           |                | 1770    | 1775     |          | 1770    | 1863  | 1558  |
| Peak-hour factor, PHF             | 0.98        | 0.98     | 0.98         | 0.98                 | 0.98           | 0.98           | 0.98    | 0.98     | 0.98     | 0.98    | 0.98  | 0.98  |
| Adj. Flow (vph)                   | 95          | 336      | 67           | 216                  | 389            | 294            | 160     | 192      | 73       | 165     | 260   | 123   |
| RTOR Reduction (vph)              | 0           | 26       | 0            | 0                    | 203            | 0              | 0       | 23       | 0        | 0       | 0     | 94    |
| Lane Group Flow (vph)             | 95          | 377      | 0            | 216                  | 480            | 0              | 160     | 242      | 0        | 165     | 260   | 29    |
| Confl. Peds. (#/hr)               | 9           |          | 6            | 6                    |                | 9              | 4       |          | 10       | 10      |       | 4     |
| Turn Type                         | Prot        | NA       |              | Prot                 | NA             |                | Prot    | NA       |          | Prot    | NA    | Perm  |
| Protected Phases                  | 7           | 4        |              | 3                    | 8              |                | 5       | 2        |          | 1       | 6     | 1 Ont |
| Permitted Phases                  |             | -        |              |                      |                |                |         | -        |          |         |       | 6     |
| Actuated Green, G (s)             | 6.4         | 13.5     |              | 9.1                  | 16.2           |                | 6.1     | 12.6     |          | 7.1     | 13.6  | 13.6  |
| Effective Green, g (s)            | 6.4         | 13.5     |              | 9.1                  | 16.2           |                | 6.1     | 12.6     |          | 7.1     | 13.6  | 13.6  |
| Actuated g/C Ratio                | 0.11        | 0.23     |              | 0.16                 | 0.28           |                | 0.10    | 0.22     |          | 0.12    | 0.23  | 0.23  |
| Clearance Time (s)                | 4.0         | 4.0      |              | 4.0                  | 4.0            |                | 4.0     | 4.0      |          | 4.0     | 4.0   | 4.0   |
| Vehicle Extension (s)             | 3.0         | 3.0      |              | 3.0                  | 3.0            |                | 3.0     | 3.0      |          | 3.0     | 3.0   | 3.0   |
| Lane Grp Cap (vph)                | 194         | 794      |              | 276                  | 911            |                | 185     | 383      | -        | 215     | 434   | 363   |
| v/s Ratio Prot                    | 0.05        | 0.11     |              | c0.12                | c0.15          |                | 0.09    | 0.14     |          | c0.09   | c0.14 |       |
| v/s Ratio Perm                    | 0.00        |          |              |                      |                |                |         |          |          |         |       | 0.02  |
| v/c Ratio                         | 0.49        | 0.47     |              | 0.78                 | 0.53           |                | 0.86    | 0.63     |          | 0.77    | 0.60  | 0.08  |
| Uniform Delay, d1                 | 24.4        | 19.3     |              | 23.6                 | 17.8           |                | 25.7    | 20.7     | -        | 24.8    | 19.9  | 17.5  |
| Progression Factor                | 1.00        | 1.00     |              | 1.00                 | 1.00           |                | 1.00    | 1.00     |          | 1.00    | 1.00  | 1.00  |
| Incremental Delay, d2             | 1.9         | 0.4      |              | 13.5                 | 0.6            |                | 31.7    | 3.4      |          | 15.1    | 2.2   | 0.1   |
| Delay (s)                         | 26.4        | 19.8     |              | 37.1                 | 18.4           |                | 57.4    | 24.1     |          | 39.9    | 22.1  | 17.6  |
| Level of Service                  | С           | В        |              | D                    | В              |                | E       | С        |          | D       | C     | 6     |
| Approach Delay (s)                |             | 21.0     |              |                      | 22.9           |                |         | 36.7     |          |         | 26.5  |       |
| Approach LOS                      |             | С        |              |                      | С              |                |         | D        |          |         | С     |       |
| Intersection Summary              |             |          | 1 Starter    | and the state of the | a new          | Contraction of |         | a alfred | The part | append. |       |       |
| HCM 2000 Control Delay            |             |          | 25.8         | Н                    | ICM 2000       | Level of       | Service |          | С        |         |       |       |
| HCM 2000 Volume to Capa           | acity ratio |          | 0.67         |                      |                |                |         |          |          |         |       |       |
| Actuated Cycle Length (s)         |             |          | 58.3         | S                    | um of losi     | time (s)       |         |          | 16.0     |         |       |       |
| Intersection Capacity Utilization | ation       |          | 62.2%        |                      | CU Level       |                | •       |          | В        |         |       |       |
| Analysis Period (min)             |             |          | 15           |                      | and the second |                |         |          |          |         |       |       |
| c Critical Lane Group             |             |          |              |                      |                |                |         |          |          |         |       |       |

16.2 C

#### Intersection

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT     | WBR  | NBL  | NBT  | NBR  | SBL  | SBT     | SBR   |
|----------------------------|------|------|------|------|---------|------|------|------|------|------|---------|-------|
| Lane Configurations        |      | 4    |      |      | et.     | 1    |      | 4    |      |      | 4       |       |
| Traffic Vol, veh/h         | 5    | 31   | 45   | 84   | 197     | 310  | 44   | 133  | 51   | 32   | 214     | 5     |
| Future Vol, veh/h          | 5    | 31   | 45   | 84   | 197     | 310  | 44   | 133  | 51   | 32   | 214     | 5     |
| Peak Hour Factor           | 0.86 | 0.86 | 0.86 | 0.86 | 0.86    | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86    | 0.86  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2       | 2    | 2    | 2    | 2    | 2    | 2       | 2     |
| Mymt Flow                  | 6    | 36   | 52   | 98   | 229     | 360  | 51   | 155  | 59   | 37   | 249     | 6     |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1       | 1    | 0    | 1    | 0    | 0    | 1       | 0     |
| Approach                   | EB   |      | 1    | WB   | a Press |      | NB   |      |      | SB   | Sales - | 02.57 |
| Opposing Approach          | WB   |      |      | EB   |         |      | SB   |      |      | NB   |         |       |
| Opposing Lanes             | 2    |      |      | 1    |         |      | 1    |      |      | 1    |         |       |
| Conflicting Approach Left  | SB   |      |      | NB   |         |      | EB   |      |      | WB   |         |       |
| Conflicting Lanes Left     | 1    |      |      | 1    |         |      | 1    |      |      | 2    |         |       |
| Conflicting Approach Right | NB   |      |      | SB   |         |      | WB   |      |      | EB   |         |       |
| Conflicting Lanes Right    | 1    |      |      | 1    |         |      | 2    |      |      | 1    |         |       |
| HCM Control Delay          | 11.1 |      |      | 17.4 |         |      | 14.9 |      |      | 16.2 |         |       |
| HCM LOS                    | В    |      |      | С    |         |      | В    |      |      | С    |         |       |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 | - Terry Land |
|------------------------|-------|-------|-------|-------|-------|--------------|
| Vol Left, %            | 19%   | 6%    | 30%   | 0%    | 13%   |              |
| Vol Thru, %            | 58%   | 38%   | 70%   | 0%    | 85%   |              |
| Vol Right, %           | 22%   | 56%   | 0%    | 100%  | 2%    |              |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |              |
| Traffic Vol by Lane    | 228   | 81    | 281   | 310   | 251   |              |
| LT Vol                 | 44    | 5     | 84    | 0     | 32    |              |
| Through Vol            | 133   | 31    | 197   | 0     | 214   |              |
| RT Vol                 | 51    | 45    | 0     | 310   | 5     |              |
| Lane Flow Rate         | 265   | 94    | 327   | 360   | 292   |              |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |              |
| Degree of Util (X)     | 0.466 | 0.176 | 0.599 | 0.574 | 0.516 |              |
| Departure Headway (Hd) | 6.328 | 6.715 | 6.598 | 5.733 | 6.37  |              |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |              |
| Сар                    | 565   | 538   | 542   | 624   | 560   |              |
| Service Time           | 4.426 | 4.715 | 4.384 | 3.519 | 4.466 |              |
| HCM Lane V/C Ratio     | 0.469 | 0.175 | 0.603 | 0.577 | 0.521 |              |
| HCM Control Delay      | 14.9  | 11.1  | 18.9  | 16.1  | 16.2  |              |
| HCM Lane LOS           | В     | В     | С     | С     | С     |              |
| HCM 95th-tile Q        | 2.5   | 0.6   | 3.9   | 3.6   | 2.9   |              |

76 F

## Intersection

| Lane Configurations                            |
|------------------------------------------------|
| Traffic Vol, veh/h 44 86 403 97 515 343        |
| Future Vol, veh/h 44 86 403 97 515 343         |
| Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 |
| Heavy Vehicles, % 2 2 2 2 2 2 2                |
| Mvmt Flow 49 96 448 108 572 381                |
| Number of Lanes 2 0 1 2 1 1                    |
| Approach EB WB NB                              |
| Opposing Approach WB EB                        |
| Opposing Lanes 3 2 0                           |
| Conflicting Approach Left NB EB                |
| Conflicting Lanes Left 0 2 2                   |
| Conflicting Approach Right NB WB               |
| Conflicting Lanes Right 2 0 3                  |
| HCM Control Delay 13.8 58.9 95.4               |
| HCM LOS B F F                                  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 | and the second second second second |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |                                     |
| Vol Thru, %            | 0%    | 0%    | 100%  | 15%   | 0%    | 100%  | 100%  |                                     |
| Vol Right, %           | 0%    | 100%  | 0%    | 85%   | 0%    | 0%    | 0%    |                                     |
| Sign Control           | Stop  |                                     |
| Traffic Vol by Lane    | 515   | 343   | 29    | 101   | 403   | 49    | 49    |                                     |
| LT Vol                 | 515   | 0     | 0     | 0     | 403   | 0     | 0     |                                     |
| Through Vol            | 0     | 0     | 29    | 15    | 0     | 49    | 49    |                                     |
| RT Vol                 | 0     | 343   | 0     | 86    | 0     | 0     | 0     |                                     |
| Lane Flow Rate         | 572   | 381   | 33    | 112   | 448   | 54    | 54    |                                     |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |                                     |
| Degree of Util (X)     | 1.226 | 0.689 | 0.078 | 0.25  | 0.991 | 0.112 | 0.087 |                                     |
| Departure Headway (Hd) | 7.716 | 6.507 | 9.18  | 8.554 | 8.45  | 7.937 | 6.159 |                                     |
| Convergence, Y/N       | Yes   |                                     |
| Сар                    | 475   | 560   | 393   | 423   | 434   | 454   | 585   |                                     |
| Service Time           | 5.424 | 4.214 | 6.88  | 6.254 | 6.15  | 5.637 | 3.859 |                                     |
| HCM Lane V/C Ratio     | 1.204 | 0.68  | 0.084 | 0.265 | 1.032 | 0.119 | 0.092 |                                     |
| HCM Control Delay      | 144   | 22.4  | 12.7  | 14.1  | 70.5  | 11.6  | 9.4   |                                     |
| HCM Lane LOS           | F     | С     | В     | В     | F     | В     | A     |                                     |
| HCM 95th-tile Q        | 22.6  | 5.3   | 0.3   | 1     | 12.3  | 0.4   | 0.3   |                                     |

13.7 B

#### Intersection

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR      | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|----------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4.   |          |      | 4    |      |
| Traffic Vol, veh/h         | 10   | 137  | 2    | 29   | 95   | 209  | 3    | 28   | 24       | 282  | 11   | 71   |
| Future Vol, veh/h          | 10   | 137  | 2    | 29   | 95   | 209  | 3    | 28   | 24       | 282  | 11   | 71   |
| Peak Hour Factor           | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94     | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2    |
| Mymt Flow                  | 11   | 146  | 2    | 31   | 101  | 222  | 3    | 30   | 26       | 300  | 12   | 76   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0        | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      | A george | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |          | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |          | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |          | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |          | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |          | E8   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |          | 1    |      |      |
| HCM Control Delay          | 10.8 |      |      | 13.3 |      |      | 9.4  |      |          | 16   |      |      |
| HCM LOS                    | В    |      |      | 8    |      |      | A    |      |          | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 7%    | 9%    | 77%   |  |
| Vol Thru, %            | 51%   | 92%   | 29%   | 3%    |  |
| Vol Right, %           | 44%   | 1%    | 63%   | 20%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 55    | 149   | 333   | 364   |  |
| LT Vol                 | 3     | 10    | 29    | 282   |  |
| Through Vol            | 28    | 137   | 95    | 11    |  |
| RT Vol                 | 24    | 2     | 209   | 71    |  |
| Lane Flow Rate         | 59    | 159   | 354   | 387   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.094 | 0.254 | 0.504 | 0.586 |  |
| Departure Headway (Hd) | 5.764 | 5.772 | 5.117 | 5.448 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 618   | 620   | 701   | 662   |  |
| Service Time           | 3.83  | 3.831 | 3.165 | 3.491 |  |
| HCM Lane V/C Ratio     | 0.095 | 0.256 | 0.505 | 0.585 |  |
| HCM Control Delay      | 9.4   | 10.8  | 13.3  | 16    |  |
| HCM Lane LOS           | А     | В     | В     | C     |  |
| HCM 95th-tile Q        | 0.3   | 1     | 2.9   | 3.8   |  |

E

#### Intersection 46.1

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT     | WBR  | NBL  | NBT  | NBR      | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|---------|------|------|------|----------|------|------|------|
| Lane Configurations        | 7    | Þ    |      |      | 412     |      |      | 4    |          |      | A    | 1    |
| Traffic Vol, veh/h         | 255  | 130  | 47   | 117  | 233     | 363  | 40   | 70   | 133      | 260  | 19   | 90   |
| Future Vol, veh/h          | 255  | 130  | 47   | 117  | 233     | 363  | 40   | 70   | 133      | 260  | 19   | 90   |
| Peak Hour Factor           | 0.96 | 0.96 | 0.96 | 0.96 | 0.96    | 0.96 | 0.96 | 0.96 | 0.96     | 0.96 | 0.96 | 0.96 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2       | 2    | 2    | 2    | 2        | 2    | 2    | 2    |
| Mvmt Flow                  | 266  | 135  | 49   | 122  | 243     | 378  | 42   | 73   | 139      | 271  | 20   | 94   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2       | 0    | 0    | 1    | 0        | 0    | 1    | 1    |
| Approach                   | EB   |      |      | WB   | E State | 100  | NB   | -    | je sa se | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |         |      | SB   |      |          | NB   |      | -    |
| Opposing Lanes             | 2    |      |      | 2    |         |      | 2    |      |          | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |         |      | EB   |      |          | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |         |      | 2    |      |          | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |         |      | WB   |      |          | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |         |      | 2    |      |          | 2    |      |      |
| HCM Control Delay          | 24.7 |      |      | 74   |         |      | 26.4 |      |          | 30   |      |      |
| HCM LOS                    | С    |      |      | F    |         |      | D    |      |          | D    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 16%   | 100%  | 0%    | 50%   | 0%    | 93%   | 0%    |  |
| Vol Thru, %            | 29%   | 0%    | 73%   | 50%   | 24%   | 7%    | 0%    |  |
| Vol Right, %           | 55%   | 0%    | 27%   | 0%    | 76%   | 0%    | 100%  |  |
| Sign Control           | Stop  |  |
| Fraffic Vol by Lane    | 243   | 255   | 177   | 234   | 480   | 279   | 90    |  |
| LT Vol                 | 40    | 255   | 0     | 117   | 0     | 260   | 0     |  |
| Through Vol            | 70    | 0     | 130   | 117   | 117   | 19    | 0     |  |
| RT Vol                 | 133   | 0     | 47    | 0     | 363   | 0     | 90    |  |
| ane Flow Rate          | 253   | 266   | 184   | 243   | 499   | 291   | 94    |  |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |  |
| Degree of Util (X)     | 0.624 | 0.67  | 0.434 | 0.589 | 1.097 | 0.744 | 0.211 |  |
| Departure Headway (Hd) | 9.258 | 9.455 | 8.739 | 8.721 | 7.909 | 9.573 | 8.36  |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 392   | 385   | 415   | 416   | 465   | 381   | 432   |  |
| Service Time           | 7.258 | 7.155 | 6.439 | 6.427 | 5.616 | 7.273 | 6.06  |  |
| HCM Lane V/C Ratio     | 0.645 | 0.691 | 0.443 | 0.584 | 1.073 | 0.764 | 0.218 |  |
| HCM Control Delay      | 26.4  | 29.4  | 18    | 23.2  | 98.7  | 35.4  | 13.3  |  |
| HCM Lane LOS           | D     | D     | С     | C     | F     | E     | В     |  |
| HCM 95th-tile Q        | 4.1   | 4.7   | 2.1   | 3.7   | 16.7  | 5.9   | 0.8   |  |

#### Cumulative NP PM 5: Callan Blvd & Serramonte Blvd

03/25/2019

|                               | ≯          | -       | $\mathbf{r}$ | 4     | <b>-</b>   | ۰.         | 1       | 1    | /    | \$    | Ļ     | $\checkmark$ |
|-------------------------------|------------|---------|--------------|-------|------------|------------|---------|------|------|-------|-------|--------------|
| Movement                      | EBL        | EBT     | EBR          | WBL   | WBT        | WBR        | NBL     | NBT  | NBR  | SBL   | SBT   | SBR          |
| Lane Configurations           | ٦          | 14      |              | ٦     | <b>†</b> ‡ |            | ۲       | 4    |      | 7     | +     | 1            |
| Traffic Volume (vph)          | 101        | 358     | 72           | 230   | 414        | 313        | 171     | 204  | 78   | 176   | 277   | 131          |
| Future Volume (vph)           | 101        | 358     | 72           | 230   | 414        | 313        | 171     | 204  | 78   | 176   | 277   | 131          |
| Ideal Flow (vphpl)            | 1900       | 1900    | 1900         | 1900  | 1900       | 1900       | 1900    | 1900 | 1900 | 1900  | 1900  | 1900         |
| Total Lost time (s)           | 4.0        | 4.0     |              | 4.0   | 4.0        |            | 4.0     | 4.0  |      | 4.0   | 4.0   | 4.0          |
| Lane Util. Factor             | 1.00       | 0.95    |              | 1.00  | 0.95       |            | 1.00    | 1.00 |      | 1.00  | 1.00  | 1.00         |
| Frpb, ped/bikes               | 1.00       | 0.99    |              | 1.00  | 0.99       |            | 1.00    | 0.99 |      | 1.00  | 1.00  | 0.98         |
| Flpb, ped/bikes               | 1.00       | 1.00    |              | 1.00  | 1.00       |            | 1.00    | 1.00 |      | 1.00  | 1.00  | 1.00         |
| Frt                           | 1.00       | 0.97    |              | 1.00  | 0.94       |            | 1.00    | 0.96 |      | 1.00  | 1.00  | 0.85         |
| Flt Protected                 | 0.95       | 1.00    |              | 0.95  | 1.00       |            | 0.95    | 1.00 |      | 0.95  | 1.00  | 1.00         |
| Satd. Flow (prot)             | 1770       | 3433    |              | 1770  | 3280       |            | 1770    | 1774 |      | 1770  | 1863  | 1557         |
| Flt Permitted                 | 0.95       | 1.00    |              | 0.95  | 1.00       |            | 0.95    | 1.00 |      | 0.95  | 1.00  | 1.00         |
| Satd. Flow (perm)             | 1770       | 3433    | _            | 1770  | 3280       |            | 1770    | 1774 |      | 1770  | 1863  | 1557         |
| Peak-hour factor, PHF         | 0.98       | 0.98    | 0.98         | 0.98  | 0.98       | 0.98       | 0.98    | 0.98 | 0.98 | 0.98  | 0.98  | 0.98         |
| Adj. Flow (vph)               | 103        | 365     | 73           | 235   | 422        | 319        | 174     | 208  | 80   | 180   | 283   | 134          |
| RTOR Reduction (vph)          | 0          | 26      | 0            | 0     | 207        | 0          | 0       | 22   | 0    | 0     | 0     | 104          |
| Lane Group Flow (vph)         | 103        | 412     | 0            | 235   | 534        | 0          | 174     | 266  | 0    | 180   | 283   | 30           |
| Confl. Peds. (#/hr)           | 9          | ALC: NO | 6            | 6     |            | 9          | 4       |      | 10   | 10    |       | 4            |
| Turn Type                     | Prot       | NA      |              | Prot  | NA         |            | Prot    | NA   |      | Prot  | NA    | Perm         |
| Protected Phases              | 7          | 4       |              | 3     | 8          |            | 5       | 2    | 1    | 1     | 6     |              |
| Permitted Phases              |            |         |              |       |            |            |         |      |      |       |       | 6            |
| Actuated Green, G (s)         | 4.6        | 13.3    |              | 9.1   | 17.8       |            | 7.1     | 13.4 | -    | 7.1   | 13.4  | 13.4         |
| Effective Green, g (s)        | 4.6        | 13.3    |              | 9.1   | 17.8       |            | 7.1     | 13.4 |      | 7.1   | 13.4  | 13.4         |
| Actuated g/C Ratio            | 0.08       | 0.23    |              | 0.15  | 0.30       |            | 0.12    | 0.23 |      | 0.12  | 0.23  | 0.23         |
| Clearance Time (s)            | 4.0        | 4.0     |              | 4.0   | 4.0        |            | 4.0     | 4.0  |      | 4.0   | 4.0   | 4.0          |
| Vehicle Extension (s)         | 3.0        | 3.0     |              | 3.0   | 3.0        |            | 3.0     | 3.0  |      | 3.0   | 3.0   | 3.0          |
| Lane Grp Cap (vph)            | 138        | 775     |              | 273   | 991        |            | 213     | 403  |      | 213   | 423   | 354          |
| v/s Ratio Prot                | 0.06       | 0.12    |              | c0.13 | c0.16      |            | 0.10    | 0.15 |      | c0.10 | c0.15 |              |
| v/s Ratio Perm                |            |         |              |       |            |            |         |      |      |       |       | 0.02         |
| v/c Ratio                     | 0.75       | 0.53    |              | 0.86  | 0.54       |            | 0.82    | 0.66 |      | 0.85  | 0.67  | 0.09         |
| Uniform Delay, d1             | 26.6       | 20.1    |              | 24.3  | 17.1       |            | 25.3    | 20.7 |      | 25.4  | 20.7  | 17.9         |
| Progression Factor            | 1.00       | 1.00    |              | 1.00  | 1.00       |            | 1.00    | 1.00 |      | 1.00  | 1.00  | 1.00         |
| Incremental Delay, d2         | 19.5       | 0.7     |              | 23.1  | 0.6        |            | 20.9    | 3.9  |      | 25.2  | 4.0   | 0.1          |
| Delay (s)                     | 46.1       | 20.8    |              | 47.4  | 17.7       |            | 46.2    | 24.5 |      | 50.6  | 24.7  | 18.0         |
| Level of Service              | D          | С       |              | D     | В          |            | D       | С    |      | D     | С     | В            |
| Approach Delay (s)            |            | 25.6    |              |       | 24.8       |            |         | 32.7 |      |       | 31.0  |              |
| Approach LOS                  |            | С       |              |       | С          |            |         | С    |      |       | С     |              |
| Intersection Summary          | F ME       |         | 1            |       |            |            |         | 20.5 |      | 1     | 2123  |              |
| HCM 2000 Control Delay        |            |         | 27.8         | Н     | CM 2000    | Level of : | Service |      | С    |       |       |              |
| HCM 2000 Volume to Capa       | city ratio |         | 0.73         |       |            |            |         |      |      |       |       |              |
| Actuated Cycle Length (s)     |            |         | 58.9         | S     | um of lost | time (s)   |         |      | 16.0 |       |       |              |
| Intersection Capacity Utiliza | tion       |         | 66.3%        |       | CU Level o |            | 1       |      | C    |       |       |              |
| Analysis Period (min)         |            |         | 15           |       |            |            |         |      |      |       |       |              |
| c Critical Lane Group         |            |         |              |       |            |            |         |      |      |       |       |              |

| Movement                   | EBL  | EBT     | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR   |
|----------------------------|------|---------|-------|------|------|------|------|------|------|------|------|-------|
| Lane Configurations        |      | 4       |       | -    | 4    | 1    |      | 4    |      |      | 4    |       |
| Traffic Vol, veh/h         | 3    | 102     | 34    | 95   | 248  | 236  | 110  | 173  | 72   | 58   | 210  | 2     |
| Future Vol, veh/h          | 3    | 102     | 34    | 95   | 248  | 236  | 110  | 173  | 72   | 58   | 210  | 2     |
| Peak Hour Factor           | 0.91 | 0.91    | 0.91  | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91  |
| Heavy Vehicles, %          | 2    | 2       | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     |
| Mymt Flow                  | 3    | 112     | 37    | 104  | 273  | 259  | 121  | 190  | 79   | 64   | 231  | 2     |
| Number of Lanes            | 0    | 1       | 0     | 0    | 1    | 1    | 0    | 1    | 0    | 0    | 1    | 0     |
| Approach                   | EB   | h- talk | 51.35 | WB   | 1933 |      | NB   |      |      | SB   |      | 12.23 |
| Opposing Approach          | WB   |         |       | EB   | -    |      | SB   |      |      | NB   |      |       |
| Opposing Lanes             | 2    |         |       | 1    |      |      | 1    |      |      | 1    |      |       |
| Conflicting Approach Left  | SB   |         |       | NB   |      |      | EB   |      |      | WB   |      |       |
| Conflicting Lanes Left     | 1    |         |       | 1    |      |      | 1    |      |      | 2    |      |       |
| Conflicting Approach Right | NB   |         |       | SB   |      |      | WB   |      |      | EB   |      |       |
| Conflicting Lanes Right    | 1    |         |       | 1    |      |      | 2    |      |      | 1    |      |       |
| HCM Control Delay          | 14.8 |         |       | 25.5 |      |      | 28.6 |      |      | 21   |      |       |
| HCM LOS                    | В    |         |       | D    |      |      | D    |      |      | С    |      |       |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 | 1. S. C. C. C. S. C. |
|------------------------|-------|-------|-------|-------|-------|----------------------|
| Vol Left, %            | 31%   | 2%    | 28%   | 0%    | 21%   |                      |
| Vol Thru, %            | 49%   | 73%   | 72%   | 0%    | 78%   |                      |
| Vol Right, %           | 20%   | 24%   | 0%    | 100%  | 1%    |                      |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |                      |
| Traffic Vol by Lane    | 355   | 139   | 343   | 236   | 270   |                      |
| LT Vol                 | 110   | 3     | 95    | 0     | 58    |                      |
| Through Vol            | 173   | 102   | 248   | 0     | 210   |                      |
| RT Vol                 | 72    | 34    | 0     | 236   | 2     |                      |
| Lane Flow Rate         | 390   | 153   | 377   | 259   | 297   |                      |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |                      |
| Degree of Util (X)     | 0.754 | 0.335 | 0.783 | 0.477 | 0.602 |                      |
| Departure Headway (Hd) | 6.96  | 7.905 | 7.483 | 6.622 | 7.306 |                      |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |                      |
| Сар                    | 515   | 458   | 482   | 539   | 490   |                      |
| Service Time           | 5.051 | 5.905 | 5.274 | 4.413 | 5.406 |                      |
| HCM Lane V/C Ratio     | 0.757 | 0.334 | 0.782 | 0.481 | 0.606 |                      |
| HCM Control Delay      | 28.6  | 14.8  | 32.5  | 15.4  | 21    |                      |
| HCM Lane LOS           | D     | В     | D     | C     | С     |                      |
| HCM 95th-tile Q        | 6.5   | 1.5   | 7     | 2.6   | 3.9   |                      |

| Intersection              |       | and the second | Land State | Sec. Sec. | in the second | - CALANT | and the second | 1 | 200 |
|---------------------------|-------|----------------|------------|-----------|---------------|----------|----------------|---|-----|
| Intersection Delay, s/veh | 157.8 |                |            |           |               |          |                |   |     |
| Intersection LOS          | F     |                |            |           |               |          |                |   |     |

| Movement                   | EBT      | EBR     | WBL   | WBT        | NBL   | NBR  |  |
|----------------------------|----------|---------|-------|------------|-------|------|--|
| Lane Configurations        | <b>1</b> |         | 7     | <b>†</b> † | 1     | 1    |  |
| Traffic Vol, veh/h         | 87       | 134     | 560   | 29         | 548   | 327  |  |
| Future Vol, veh/h          | 87       | 134     | 560   | 29         | 548   | 327  |  |
| Peak Hour Factor           | 0.88     | 0.88    | 0.88  | 0.88       | 0.88  | 0.88 |  |
| Heavy Vehicles, %          | 2        | 2       | 2     | 2          | 2     | 2    |  |
| Mymt Flow                  | 99       | 152     | 636   | 33         | 623   | 372  |  |
| Number of Lanes            | 2        | 0       | 1     | 2          | 1     | 1    |  |
| Approach                   | EB       | and and | WB    |            | NB    |      |  |
| Opposing Approach          | WB       |         | EB    |            |       |      |  |
| Opposing Lanes             | 3        |         | 2     |            | 0     |      |  |
| Conflicting Approach Left  |          |         | NB    |            | EB    |      |  |
| Conflicting Lanes Left     | 0        |         | 2     |            | 2     |      |  |
| Conflicting Approach Right | NB       |         |       |            | WB    |      |  |
| Conflicting Lanes Right    | 2        |         | 0     |            | 3     |      |  |
| HCM Control Delay          | 17.3     |         | 239.3 |            | 138.5 |      |  |
| HCM LOS                    | С        |         | F     |            | F     |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 0%    | 100%  | 18%   | 0%    | 100%  | 100%  |  |
| Vol Right, %           | 0%    | 100%  | 0%    | 82%   | 0%    | 0%    | 0%    |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 548   | 327   | 58    | 163   | 560   | 15    | 15    |  |
| LT Vol                 | 548   | 0     | 0     | 0     | 560   | 0     | 0     |  |
| Through Vol            | 0     | 0     | 58    | 29    | 0     | 15    | 15    |  |
| RT Vol                 | 0     | 327   | 0     | 134   | 0     | 0     | 0     |  |
| Lane Flow Rate         | 623   | 372   | 66    | 185   | 636   | 16    | 16    |  |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |
| Degree of Util (X)     | 1.369 | 0.694 | 0.155 | 0.407 | 1.477 | 0.036 | 0.028 |  |
| Departure Headway (Hd) | 8.844 | 7.62  | 9.931 | 9.322 | 8.943 | 8.428 | 6.641 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 417   | 479   | 364   | 389   | 414   | 427   | 542   |  |
| Service Time           | 6.544 | 5.32  | 7.631 | 7.022 | 6.643 | 6.128 | 4.341 |  |
| HCM Lane V/C Ratio     | 1.494 | 0.777 | 0.181 | 0.476 | 1.536 | 0.037 | 0.03  |  |
| HCM Control Delay      | 205.7 | 25.9  | 14.4  | 18.3  | 251.1 | 11.4  | 9.5   |  |
| HCM Lane LOS           | F     | D     | В     | С     | F     | В     | A     |  |
| HCM 95th-tile Q        | 26.6  | 5.3   | 0.5   | 1.9   | 31.2  | 0.1   | 0.1   |  |

| 03/22/2019 |
|------------|
|------------|

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT     | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|---------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | \$   |      |      | 4       |      |      | 4    |      |
| Traffic Vol, veh/h         | 6    | 262  | 12   | 16   | 83   | 289  | 2    | 38      | 42   | 308  | 6    | 23   |
| Future Vol, veh/h          | 6    | 262  | 12   | 16   | 83   | 289  | 2    | 38      | 42   | 308  | 6    | 23   |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91    | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2       | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 7    | 288  | 13   | 18   | 91   | 318  | 2    | 42      | 46   | 338  | 7    | 25   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1       | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   | 04415-0 |      | SB   |      |      |
| Opposing Approach          | WB   | - C  |      | EB   |      |      | SB   |         |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |         |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |         |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |         |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |         |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |         |      | 1    |      |      |
| HCM Control Delay          | 16.5 |      |      | 19.8 |      |      | 11.3 |         |      | 21.3 |      |      |
| HCM LOS                    | С    |      |      | C    |      |      | В    |         |      | C    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 | and the second |
|------------------------|-------|-------|-------|-------|------------------------------------------------------------------------------------------------------------------|
| Vol Left, %            | 2%    | 2%    | 4%    | 91%   |                                                                                                                  |
| Vol Thru, %            | 46%   | 94%   | 21%   | 2%    |                                                                                                                  |
| Vol Right, %           | 51%   | 4%    | 74%   | 7%    |                                                                                                                  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |                                                                                                                  |
| Traffic Vol by Lane    | 82    | 280   | 388   | 337   |                                                                                                                  |
| LT Vol                 | 2     | 6     | 16    | 308   |                                                                                                                  |
| Through Vol            | 38    | 262   | 83    | 6     |                                                                                                                  |
| RT Vol                 | 42    | 12    | 289   | 23    |                                                                                                                  |
| Lane Flow Rate         | 90    | 308   | 426   | 370   |                                                                                                                  |
| Geometry Grp           | 1     | 1     | 1     | 1     |                                                                                                                  |
| Degree of Util (X)     | 0.17  | 0.538 | 0.674 | 0.663 |                                                                                                                  |
| Departure Headway (Hd) | 6.804 | 6.293 | 5.694 | 6.444 |                                                                                                                  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |                                                                                                                  |
| Сар                    | 524   | 572   | 635   | 559   |                                                                                                                  |
| Service Time           | 4.882 | 4.347 | 3.743 | 4.496 |                                                                                                                  |
| HCM Lane V/C Ratio     | 0.172 | 0.538 | 0.671 | 0.662 |                                                                                                                  |
| HCM Control Delay      | 11.3  | 16.5  | 19.8  | 21.3  |                                                                                                                  |
| HCM Lane LOS           | В     | С     | С     | С     |                                                                                                                  |
| HCM 95th-tile Q        | 0.6   | 3.2   | 5.2   | 4.9   |                                                                                                                  |

139 F

#### Intersection

| Movement                   | EBL   | EBT  | EBR  | WBL   | WBT  | WBR  | NBL   | NBT                                          | NBR  | SBL  | SBT  | SBR  |
|----------------------------|-------|------|------|-------|------|------|-------|----------------------------------------------|------|------|------|------|
| Lane Configurations        | ٦     | Þ    |      |       | 4î þ |      |       | \$                                           |      |      | 4    | 1    |
| Traffic Vol, veh/h         | 446   | 112  | 55   | 160   | 274  | 378  | 66    | 134                                          | 183  | 191  | 100  | 106  |
| Future Vol, veh/h          | 446   | 112  | 55   | 160   | 274  | 378  | 66    | 134                                          | 183  | 191  | 100  | 106  |
| Peak Hour Factor           | 0.91  | 0.91 | 0.91 | 0.91  | 0.91 | 0.91 | 0.91  | 0.91                                         | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2     | 2    | 2    | 2     | 2    | 2    | 2     | 2                                            | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 490   | 123  | 60   | 176   | 301  | 415  | 73    | 147                                          | 201  | 210  | 110  | 116  |
| Number of Lanes            | 1     | 1    | 0    | 0     | 2    | 0    | 0     | 1                                            | 0    | 0    | 1    | 1    |
| Approach                   | EB    |      |      | WB    | 12   | Sec. | NB    | annin an | P.   | SB   |      | 1    |
| Opposing Approach          | WB    |      |      | EB    |      |      | SB    |                                              |      | NB   |      |      |
| Opposing Lanes             | 2     |      |      | 2     |      |      | 2     |                                              |      | 1    |      |      |
| Conflicting Approach Left  | SB    |      |      | NB    |      |      | EB    |                                              |      | WB   |      |      |
| Conflicting Lanes Left     | 2     |      |      | 1     |      |      | 2     |                                              |      | 2    |      |      |
| Conflicting Approach Right | NB    |      |      | SB    |      |      | WB    |                                              |      | EB   |      |      |
| Conflicting Lanes Right    | 1     |      |      | 2     |      |      | 2     |                                              |      | 2    |      |      |
| HCM Control Delay          | 163.6 |      |      | 170.2 |      |      | 124.8 |                                              |      | 50.9 |      |      |
| HCM LOS                    | F     |      |      | F     |      |      | F     |                                              |      | F    |      |      |

| Lane                   | NBLn1  | EBLn1 | EBLn2  | WBLn1  | WBLn2  | SBLn1  | SBLn2  | Standing of the States of the |
|------------------------|--------|-------|--------|--------|--------|--------|--------|-------------------------------|
| Vol Left, %            | 17%    | 100%  | 0%     | 54%    | 0%     | 66%    | 0%     |                               |
| Vol Thru, %            | 35%    | 0%    | 67%    | 46%    | 27%    | 34%    | 0%     |                               |
| Vol Right, %           | 48%    | 0%    | 33%    | 0%     | 73%    | 0%     | 100%   |                               |
| Sign Control           | Stop   | Stop  | Stop   | Stop   | Stop   | Stop   | Stop   |                               |
| Traffic Vol by Lane    | 383    | 446   | 167    | 297    | 515    | 291    | 106    |                               |
| T Vol                  | 66     | 446   | 0      | 160    | 0      | 191    | 0      |                               |
| Through Vol            | 134    | 0     | 112    | 137    | 137    | 100    | 0      |                               |
| RT Vol                 | 183    | 0     | 55     | 0      | 378    | 0      | 106    |                               |
| ane Flow Rate          | 421    | 490   | 184    | 326    | 566    | 320    | 116    |                               |
| Geometry Grp           | 6      | 7     | 7      | 7      | 7      | 7      | 7      |                               |
| Degree of Util (X)     | 1.138  | 1.378 | 0.479  | 0.894  | 1.426  | 0.903  | 0.296  |                               |
| Departure Headway (Hd) | 10.656 | 10.83 | 10.056 | 10.907 | 10.075 | 11.267 | 10.179 |                               |
| Convergence, Y/N       | Yes    | Yes   | Yes    | Yes    | Yes    | Yes    | Yes    |                               |
| Сар                    | 345    | 338   | 362    | 336    | 368    | 323    | 355    |                               |
| Service Time           | 8.656  | 8.53  | 7.756  | 8.607  | 7.775  | 8.967  | 7.879  |                               |
| HCM Lane V/C Ratio     | 1.22   | 1.45  | 0.508  | 0.97   | 1.538  | 0.991  | 0.327  |                               |
| HCM Control Delay      | 124.8  | 216.7 | 21.7   | 60.2   | 233.7  | 63.2   | 17.1   |                               |
| HCM Lane LOS           | F      | F     | С      | F      | F      | F      | С      |                               |
| HCM 95th-tile Q        | 15.3   | 23.1  | 2.5    | 8.6    | 26.3   | 8.6    | 1.2    |                               |

## Cumulative+Project AM 5: Callan Blvd & Serramonte Blvd

|                               | ٦          | -        | $\mathbf{i}$ | *     | -          | ۰.       | •       | Ť    | 1    | 5    | Ļ     | -    |
|-------------------------------|------------|----------|--------------|-------|------------|----------|---------|------|------|------|-------|------|
| Movement                      | EBL        | EBT      | EBR          | WBL   | WBT        | WBR      | NBL     | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | ۲          | <b>1</b> |              | ٦     | 14         |          | ٦       | f.   | -    | ٦    | +     | 1    |
| Traffic Volume (vph)          | 20         | 356      | 105          | 142   | 519        | 481      | 245     | 106  | 130  | 222  | 298   | 135  |
| Future Volume (vph)           | 20         | 356      | 105          | 142   | 519        | 481      | 245     | 106  | 130  | 222  | 298   | 135  |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900         | 1900  | 1900       | 1900     | 1900    | 1900 | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 4.0        | 4.0      |              | 4.0   | 4.0        |          | 4.0     | 4.0  |      | 4.0  | 4.0   | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95     |              | 1.00  | 0.95       |          | 1.00    | 1.00 |      | 1.00 | 1.00  | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99     |              | 1.00  | 0.99       |          | 1.00    | 0.99 |      | 1.00 | 1.00  | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00     |              | 1.00  | 1.00       |          | 1.00    | 1.00 |      | 1.00 | 1.00  | 1.00 |
| Frt                           | 1.00       | 0.97     |              | 1.00  | 0.93       |          | 1.00    | 0.92 |      | 1.00 | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00     |              | 0.95  | 1.00       |          | 0.95    | 1.00 |      | 0.95 | 1.00  | 1.00 |
| Satd. Flow (prot)             | 1770       | 3393     |              | 1770  | 3255       |          | 1770    | 1687 |      | 1770 | 1863  | 1551 |
| Flt Permitted                 | 0.95       | 1.00     |              | 0.95  | 1.00       |          | 0.95    | 1.00 |      | 0.95 | 1.00  | 1.00 |
| Satd. Flow (perm)             | 1770       | 3393     |              | 1770  | 3255       |          | 1770    | 1687 |      | 1770 | 1863  | 1551 |
| Peak-hour factor, PHF         | 0.90       | 0.90     | 0.90         | 0.90  | 0.90       | 0.90     | 0.90    | 0.90 | 0.90 | 0.90 | 0.90  | 0.90 |
| Adj. Flow (vph)               | 22         | 396      | 117          | 158   | 577        | 534      | 272     | 118  | 144  | 247  | 331   | 150  |
| RTOR Reduction (vph)          | 0          | 39       | 0            | 0     | 225        | 0        | 0       | 64   | 0    | 0    | 0     | 117  |
| Lane Group Flow (vph)         | 22         | 474      | 0            | 158   | 886        | 0        | 272     | 198  | 0    | 247  | 331   | 33   |
| Confl. Peds. (#/hr)           | 5          | EL-      | 6            | 6     |            | 5        | 7       |      | 9    | 9    |       | 7    |
| Turn Type                     | Prot       | NA       |              | Prot  | NA         |          | Prot    | NA   |      | Prot | NA    | Perm |
| Protected Phases              | 7          | 4        |              | 3     | 8          |          | 5       | 2    |      | 1    | 6     |      |
| Permitted Phases              |            |          |              |       |            |          |         |      |      |      |       | 6    |
| Actuated Green, G (s)         | 1.5        | 16.6     |              | 8.0   | 23.1       |          | 12.0    | 15.5 |      | 11.6 | 15.1  | 15.1 |
| Effective Green, g (s)        | 1.5        | 16.6     |              | 8.0   | 23.1       |          | 12.0    | 15.5 |      | 11.6 | 15.1  | 15.1 |
| Actuated g/C Ratio            | 0.02       | 0.25     |              | 0.12  | 0.34       |          | 0.18    | 0.23 |      | 0.17 | 0.22  | 0.22 |
| Clearance Time (s)            | 4.0        | 4.0      |              | 4.0   | 4.0        |          | 4.0     | 4.0  |      | 4.0  | 4.0   | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0      |              | 3.0   | 3.0        |          | 3.0     | 3.0  | 1-1- | 3.0  | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 39         | 831      |              | 209   | 1110       |          | 313     | 386  |      | 303  | 415   | 345  |
| v/s Ratio Prot                | 0.01       | 0.14     |              | c0.09 | c0.27      |          | c0.15   | 0.12 |      | 0.14 | c0.18 |      |
| v/s Ratio Perm                |            |          |              |       |            |          |         |      |      |      |       | 0.02 |
| v/c Ratio                     | 0.56       | 0.57     |              | 0.76  | 0.80       |          | 0.87    | 0.51 |      | 0.82 | 0.80  | 0.10 |
| Uniform Delay, d1             | 32.8       | 22.4     |              | 28.9  | 20.2       |          | 27.1    | 22.8 |      | 27.0 | 24.9  | 20.9 |
| Progression Factor            | 1.00       | 1.00     |              | 1.00  | 1.00       |          | 1.00    | 1.00 |      | 1.00 | 1.00  | 1.00 |
| Incremental Delay, d2         | 17.3       | 0.9      |              | 14.4  | 4.1        |          | 21.7    | 1.2  |      | 15.4 | 10.2  | 0.1  |
| Delay (s)                     | 50.1       | 23.4     |              | 43.3  | 24.3       |          | 48.7    | 24.0 |      | 42.4 | 35.1  | 21.0 |
| Level of Service              | D          | С        |              | D     | С          |          | D       | С    |      | D    | D     | C    |
| Approach Delay (s)            |            | 24.5     |              |       | 26.7       |          |         | 36.6 |      |      | 34.7  |      |
| Approach LOS                  |            | C        |              |       | С          |          |         | D    |      |      | С     |      |
| Intersection Summary          |            | - Pay    |              |       | Sant's     |          | 100     |      |      |      |       |      |
| HCM 2000 Control Delay        |            |          | 29.9         | Н     | CM 2000    | Level of | Service |      | С    |      |       |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.85         |       |            |          |         |      |      |      |       |      |
| Actuated Cycle Length (s)     |            |          | 67.7         | S     | um of lost | time (s) |         |      | 16.0 |      |       |      |
| Intersection Capacity Utiliza | ition      |          | 76.0%        |       | U Level    |          |         |      | D    |      |       |      |
| Analysis Period (min)         |            |          | 15           |       |            |          |         |      |      |      |       |      |
| c Critical Lane Group         |            |          |              |       |            |          |         |      |      |      |       |      |

14 B

## Intersection Dela

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4.   |      |      | 4    | 1    |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 5    | 28   | 42   | 87   | 183  | 288  | 41   | 128  | 50   | 30   | 212  | 5    |
| Future Vol, veh/h          | 5    | 28   | 42   | 87   | 183  | 288  | 41   | 128  | 50   | 30   | 212  | 5    |
| Peak Hour Factor           | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 5    | 31   | 46   | 96   | 201  | 316  | 45   | 141  | 55   | 33   | 233  | 5    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 1    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   | 1000 |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 2    |      |      | 1    |      |      |
| HCM Control Delay          | 10.4 |      |      | 14.7 |      |      | 13.2 |      |      | 14.3 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 19%   | 7%    | 32%   | 0%    | 12%   |  |
| /ol Thru, %            | 58%   | 37%   | 68%   | 0%    | 86%   |  |
| Vol Right, %           | 23%   | 56%   | 0%    | 100%  | 2%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Fraffic Vol by Lane    | 219   | 75    | 270   | 288   | 247   |  |
| _T Vol                 | 41    | 5     | 87    | 0     | 30    |  |
| Through Vol            | 128   | 28    | 183   | 0     | 212   |  |
| RT Vol                 | 50    | 42    | 0     | 288   | 5     |  |
| ane Flow Rate          | 241   | 82    | 297   | 316   | 271   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.405 | 0.143 | 0.526 | 0.484 | 0.459 |  |
| Departure Headway (Hd) | 6.051 | 6.238 | 6.382 | 5.507 | 6.093 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 592   | 570   | 564   | 652   | 589   |  |
| Service Time           | 4.12  | 4.33  | 4.144 | 3.269 | 4.161 |  |
| HCM Lane V/C Ratio     | 0.407 | 0.144 | 0.527 | 0.485 | 0.46  |  |
| HCM Control Delay      | 13.2  | 10.4  | 16.1  | 13.4  | 14.3  |  |
| HCM Lane LOS           | В     | В     | С     | В     | В     |  |
| HCM 95th-tile Q        | 2     | 0.5   | 3     | 2.6   | 2.4   |  |

| Movement                   | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |  |
|----------------------------|------|------|------|------|------|------|--|
| Lane Configurations        | 14   |      | ٦    | 11   | 1    | 1    |  |
| Traffic Vol, veh/h         | 39   | 80   | 363  | 87   | 470  | 315  |  |
| Future Vol, veh/h          | 39   | 80   | 363  | 87   | 470  | 315  |  |
| Peak Hour Factor           | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow                  | 41   | 85   | 386  | 93   | 500  | 335  |  |
| Number of Lanes            | 2    | 0    | 1    | 2    | 1    | 1    |  |
| Approach                   | EB   |      | WB   |      | NB   |      |  |
| Opposing Approach          | WB   |      | EB   |      |      |      |  |
| Opposing Lanes             | 3    |      | 2    |      | 0    |      |  |
| Conflicting Approach Left  |      |      | NB   |      | EB   |      |  |
| Conflicting Lanes Left     | 0    |      | 2    |      | 2    |      |  |
| Conflicting Approach Right | NB   |      |      |      | WB   |      |  |
| Conflicting Lanes Right    | 2    |      | 0    |      | 3    |      |  |
| HCM Control Delay          | 12.7 |      | 36.2 |      | 49.3 |      |  |
| HCM LOS                    | В    |      | E    |      | E    |      |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 0%    | 100%  | 14%   | 0%    | 100%  | 100%  |  |
| Vol Right, %           | 0%    | 100%  | 0%    | 86%   | 0%    | 0%    | 0%    |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 470   | 315   | 26    | 93    | 363   | 44    | 44    |  |
| _T Vol                 | 470   | 0     | 0     | 0     | 363   | 0     | 0     |  |
| Through Vol            | 0     | 0     | 26    | 13    | 0     | 44    | 44    |  |
| RT Vol                 | 0     | 315   | 0     | 80    | 0     | 0     | 0     |  |
| ane Flow Rate          | 500   | 335   | 28    | 99    | 386   | 46    | 46    |  |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |
| Degree of Util (X)     | 1.013 | 0.567 | 0.064 | 0.216 | 0.854 | 0.096 | 0.073 |  |
| Departure Headway (Hd) | 7.297 | 6.091 | 8.628 | 8.001 | 7.96  | 7.448 | 5.675 |  |
| Convergence, Y/N       | Yes   |  |
| Cap                    | 495   | 586   | 418   | 451   | 452   | 478   | 625   |  |
| Service Time           | 5.09  | 3.884 | 6.328 | 5.701 | 5.755 | 5.243 | 3.469 |  |
| HCM Lane V/C Ratio     | 1.01  | 0.572 | 0.067 | 0.22  | 0.854 | 0.096 | 0.074 |  |
| HCM Control Delay      | 71.1  | 16.7  | 11.9  | 12.9  | 42.5  | 11    | 8.9   |  |
| HCM Lane LOS           | F     | C     | В     | В     | E     | В     | A     |  |
| CM 95th-tile Q         | 14    | 3.5   | 0.2   | 0.8   | 8.6   | 0.3   | 0.2   |  |

15.7

С

# Intersection Intersection Delay, s/veh

Intersection LOS

| Movement                   | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR    | SBL  | SBT  | SBR    |
|----------------------------|------|----------|------|------|------|------|------|------|--------|------|------|--------|
| Lane Configurations        |      | 4        |      |      | 4    |      |      | 4    |        |      | 4    |        |
| Traffic Vol, veh/h         | 10   | 138      | 2    | 29   | 96   | 218  | 3    | 29   | 24     | 307  | 11   | 72     |
| Future Vol, veh/h          | 10   | 138      | 2    | 29   | 96   | 218  | 3    | 29   | 24     | 307  | 11   | 72     |
| Peak Hour Factor           | 0.91 | 0.91     | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91   | 0.91 | 0.91 | 0.91   |
| Heavy Vehicles, %          | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2      | 2    | 2    | 2      |
| Mymt Flow                  | 11   | 152      | 2    | 32   | 105  | 240  | 3    | 32   | 26     | 337  | 12   | 79     |
| Number of Lanes            | 0    | 1        | 0    | 0    | 1    | 0    | 0    | 1    | 0      | 0    | 1    | 0      |
| Approach                   | EB   | 14 1 1 2 |      | WB   |      | 124  | NB   |      | 1.7.70 | SB   |      | - Aren |
| Opposing Approach          | WB   |          |      | EB   |      |      | SB   |      |        | NB   |      |        |
| Opposing Lanes             | 1    |          |      | 1    |      |      | 1    |      |        | 1    |      |        |
| Conflicting Approach Left  | SB   |          |      | NB   |      |      | EB   |      |        | WB   |      |        |
| Conflicting Lanes Left     | 1    |          |      | 1    |      |      | 1    |      |        | 1    |      |        |
| Conflicting Approach Right | NB   |          |      | SB   |      |      | WB   |      |        | EB   |      |        |
| Conflicting Lanes Right    | 1    |          |      | 1    |      |      | 1    |      |        | 1    |      |        |
| HCM Control Delay          | 11.4 |          |      | 14.8 |      |      | 9.8  |      |        | 19.1 |      |        |
| HCM LOS                    | В    |          |      | В    |      |      | A    |      |        | С    |      |        |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 7%    | 8%    | 79%   |  |
| Vol Thru, %            | 52%   | 92%   | 28%   | 3%    |  |
| Vol Right, %           | 43%   | 1%    | 64%   | 18%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 56    | 150   | 343   | 390   |  |
| LT Vol                 | 3     | 10    | 29    | 307   |  |
| Through Vol            | 29    | 138   | 96    | 11    |  |
| RT Vol                 | 24    | 2     | 218   | 72    |  |
| Lane Flow Rate         | 62    | 165   | 377   | 429   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.103 | 0.275 | 0.555 | 0.665 |  |
| Departure Headway (Hd) | 6.006 | 6.005 | 5.298 | 5.585 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 591   | 595   | 678   | 643   |  |
| Service Time           | 4.096 | 4.083 | 3.361 | 3.641 |  |
| HCM Lane V/C Ratio     | 0.105 | 0.277 | 0.556 | 0.667 |  |
| HCM Control Delay      | 9.8   | 11.4  | 14.8  | 19.1  |  |
| HCM Lane LOS           | A     | В     | В     | С     |  |
| HCM 95th-tile Q        | 0.3   | 1.1   | 3.4   | 5     |  |

| 03/25/2019 | ) |
|------------|---|
|------------|---|

# Intersection Delay, s/veh 23.2 Intersection LOS C

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT   | SBR    |
|----------------------------|------|------|------|------|------|------|------|------|-------|------|-------|--------|
| Lane Configurations        | ٦    | 1.   |      |      | 47+  |      |      | 4    |       |      | 4     | 1      |
| Traffic Vol, veh/h         | 208  | 106  | 60   | 107  | 190  | 296  | 40   | 60   | 111   | 212  | 36    | 73     |
| Future Vol, veh/h          | 208  | 106  | 60   | 107  | 190  | 296  | 40   | 60   | 111   | 212  | 36    | 73     |
| Peak Hour Factor           | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96  | 0.96 | 0.96  | 0.96   |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2     | 2      |
| Mymt Flow                  | 217  | 110  | 63   | 111  | 198  | 308  | 42   | 63   | 116   | 221  | 38    | 76     |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2    | 0    | 0    | 1    | 0     | 0    | 1     | 1      |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      | 12371 | SB   | 22.24 | Start. |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |       | NB   |       |        |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |      |       | 1    |       |        |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |       | WB   |       |        |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |      |       | 2    |       |        |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |       | EB   |       |        |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |      |       | 2    |       |        |
| HCM Control Delay          | 18.1 |      |      | 28.2 |      |      | 19.9 |      |       | 22.1 |       |        |
| HCM LOS                    | С    |      |      | D    |      |      | С    |      |       | С    |       |        |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |                 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------|
| Vol Left, %            | 19%   | 100%  | 0%    | 53%   | 0%    | 85%   | 0%    |                 |
| /ol Thru, %            | 28%   | 0%    | 64%   | 47%   | 24%   | 15%   | 0%    |                 |
| /ol Right, %           | 53%   | 0%    | 36%   | 0%    | 76%   | 0%    | 100%  |                 |
| Sign Control           | Stop  |                 |
| Fraffic Vol by Lane    | 211   | 208   | 166   | 202   | 391   | 248   | 73    |                 |
| _T Vol                 | 40    | 208   | 0     | 107   | 0     | 212   | 0     |                 |
| Through Vol            | 60    | 0     | 106   | 95    | 95    | 36    | 0     |                 |
| RT Vol                 | 111   | 0     | 60    | 0     | 296   | 0     | 73    |                 |
| ane Flow Rate          | 220   | 217   | 173   | 210   | 407   | 258   | 76    |                 |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |                 |
| Degree of Util (X)     | 0.512 | 0.52  | 0.378 | 0.47  | 0.806 | 0.628 | 0.16  |                 |
| Departure Headway (Hd) | 8.393 | 8.642 | 7.862 | 8.04  | 7.246 | 8.749 | 7.585 |                 |
| Convergence, Y/N       | Yes   |                 |
| Сар                    | 431   | 418   | 460   | 450   | 501   | 413   | 475   |                 |
| Service Time           | 6.425 | 6.361 | 5.58  | 5.767 | 4.946 | 6.466 | 5.302 |                 |
| HCM Lane V/C Ratio     | 0.51  | 0.519 | 0.376 | 0.467 | 0.812 | 0.625 | 0.16  |                 |
| HCM Control Delay      | 19.9  | 20.4  | 15.3  | 17.7  | 33.6  | 25.1  | 11.7  |                 |
| HCM Lane LOS           | C     | С     | С     | С     | D     | D     | В     | The I want to a |
| HCM 95th-tile Q        | 2.8   | 2.9   | 1.7   | 2.5   | 7.6   | 4.2   | 0.6   |                 |

## Cumulative+Project School PM 5: Callan Blvd & Serramonte Blvd

| 03/25/2019 |  |
|------------|--|
|------------|--|

|                               | ۶          | -           |       | ¥     | -          | ×.       | •       | 1    | 1       | 5             | Ļ         | ~    |
|-------------------------------|------------|-------------|-------|-------|------------|----------|---------|------|---------|---------------|-----------|------|
| Movement                      | EBL        | EBT         | EBR   | WBL   | WBT        | WBR      | NBL     | NBT  | NBR     | SBL           | SBT       | SBR  |
| Lane Configurations           | ٦          | <b>†</b> ]; |       | 7     | <b>†</b> ‡ |          | ۲       | 1    |         | ۲             | +         | 1    |
| Traffic Volume (vph)          | 95         | 330         | 66    | 212   | 383        | 288      | 159     | 188  | 72      | 162           | 255       | 129  |
| Future Volume (vph)           | 95         | 330         | 66    | 212   | 383        | 288      | 159     | 188  | 72      | 162           | 255       | 129  |
| Ideal Flow (vphpl)            | 1900       | 1900        | 1900  | 1900  | 1900       | 1900     | 1900    | 1900 | 1900    | 1900          | 1900      | 1900 |
| Total Lost time (s)           | 4.0        | 4.0         |       | 4.0   | 4.0        |          | 4.0     | 4.0  |         | 4.0           | 4.0       | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95        |       | 1.00  | 0.95       |          | 1.00    | 1.00 |         | 1.00          | 1.00      | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99        |       | 1.00  | 0.99       |          | 1.00    | 0.99 |         | 1.00          | 1.00      | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00        |       | 1.00  | 1.00       |          | 1.00    | 1.00 |         | 1.00          | 1.00      | 1.00 |
| Frt                           | 1.00       | 0.98        |       | 1.00  | 0.94       |          | 1.00    | 0.96 |         | 1.00          | 1.00      | 0.85 |
| Flt Protected                 | 0.95       | 1.00        |       | 0.95  | 1.00       |          | 0.95    | 1.00 |         | 0.95          | 1.00      | 1.00 |
| Satd. Flow (prot)             | 1770       | 3434        |       | 1770  | 3281       |          | 1770    | 1775 |         | 1770          | 1863      | 1558 |
| Flt Permitted                 | 0.95       | 1.00        |       | 0.95  | 1.00       |          | 0.95    | 1.00 |         | 0.95          | 1.00      | 1.00 |
| Satd. Flow (perm)             | 1770       | 3434        |       | 1770  | 3281       |          | 1770    | 1775 |         | 1770          | 1863      | 1558 |
| Peak-hour factor, PHF         | 0.98       | 0.98        | 0.98  | 0.98  | 0.98       | 0.98     | 0.98    | 0.98 | 0.98    | 0.98          | 0.98      | 0.98 |
| Adj. Flow (vph)               | 97         | 337         | 67    | 216   | 391        | 294      | 162     | 192  | 73      | 165           | 260       | 132  |
| RTOR Reduction (vph)          | 0          | 26          | 0     | 0     | 201        | 0        | 0       | 23   | 0       | 0             | 0         | 103  |
| Lane Group Flow (vph)         | 97         | 378         | 0     | 216   | 484        | 0        | 162     | 242  | 0       | 165           | 260       | 29   |
| Confl. Peds. (#/hr)           | 9          |             | 6     | 6     |            | 9        | 4       |      | 10      | 10            |           | 4    |
| Turn Type                     | Prot       | NA          |       | Prot  | NA         |          | Prot    | NA   |         | Prot          | NA        | Perm |
| Protected Phases              | 7          | 4           |       | 3     | 8          |          | 5       | 2    |         | 1             | 6         |      |
| Permitted Phases              |            |             |       |       |            |          |         |      |         |               |           | 6    |
| Actuated Green, G (s)         | 6.4        | 13.5        |       | 9.1   | 16.2       |          | 7.1     | 13.0 |         | 7.1           | 13.0      | 13.0 |
| Effective Green, g (s)        | 6.4        | 13.5        |       | 9.1   | 16.2       |          | 7.1     | 13.0 |         | 7.1           | 13.0      | 13.0 |
| Actuated g/C Ratio            | 0.11       | 0.23        |       | 0.16  | 0.28       |          | 0.12    | 0.22 |         | 0.12          | 0.22      | 0.22 |
| Clearance Time (s)            | 4.0        | 4.0         |       | 4.0   | 4.0        |          | 4.0     | 4.0  |         | 4.0           | 4.0       | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0         |       | 3.0   | 3.0        |          | 3.0     | 3.0  | 1.000   | 3.0           | 3.0       | 3.0  |
| Lane Grp Cap (vph)            | 192        | 789         |       | 274   | 905        |          | 214     | 393  |         | 214           | 412       | 345  |
| v/s Ratio Prot                | 0.05       | 0.11        |       | c0.12 | c0.15      |          | 0.09    | 0.14 |         | c0.09         | c0.14     |      |
| v/s Ratio Perm                |            |             |       |       |            |          |         |      |         |               | 17/20.0.0 | 0.02 |
| v/c Ratio                     | 0.51       | 0.48        |       | 0.79  | 0.54       |          | 0.76    | 0.62 |         | 0.77          | 0.63      | 0.08 |
| Uniform Delay, d1             | 24.7       | 19.6        |       | 23.9  | 18.1       |          | 25.0    | 20.6 |         | 25.0          | 20.7      | 18.1 |
| Progression Factor            | 1.00       | 1.00        |       | 1.00  | 1.00       |          | 1.00    | 1.00 |         | 1.00          | 1.00      | 1.00 |
| Incremental Delay, d2         | 2.1        | 0.5         |       | 13.9  | 0.6        |          | 14.2    | 2.9  |         | 15.7          | 3.1       | 0.1  |
| Delay (s)                     | 26.7       | 20.0        |       | 37.8  | 18.7       |          | 39.1    | 23.5 |         | 40.7          | 23.8      | 18.2 |
| Level of Service              | С          | С           |       | D     | В          |          | D       | С    |         | D             | С         | В    |
| Approach Delay (s)            |            | 21.3        |       |       | 23.2       |          |         | 29.4 |         |               | 27.5      |      |
| Approach LOS                  |            | С           |       |       | С          |          |         | С    |         |               | С         |      |
| Intersection Summary          | Part and   |             | No.   |       | dire all   |          |         |      | The set | and the local | And and   | 5.35 |
| HCM 2000 Control Delay        |            |             | 24.9  | Н     | CM 2000    | Level of | Service |      | С       |               |           |      |
| HCM 2000 Volume to Capa       | city ratio |             | 0.67  |       |            |          |         |      |         |               |           |      |
| Actuated Cycle Length (s)     |            |             | 58.7  | S     | um of lost | time (s) |         |      | 16.0    |               |           |      |
| Intersection Capacity Utiliza | tion       |             | 62.4% |       | CU Level o |          | 12      |      | В       |               |           |      |
| Analysis Period (min)         |            |             | 15    |       |            |          |         |      |         |               |           |      |
| c Critical Lane Group         |            |             |       |       |            |          |         |      |         |               |           |      |

C

#### Intersection

Intersection Delay, s/veh Intersection LOS 17.2

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR     | NBL  | NBT  | NBR     | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|---------|------|------|---------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    | 1       |      | 4    |         |      | 4    |      |
| Traffic Vol, veh/h         | 5    | 31   | 45   | 93   | 197  | 310     | 44   | 137  | 54      | 32   | 227  | 5    |
| Future Vol, veh/h          | 5    | 31   | 45   | 93   | 197  | 310     | 44   | 137  | 54      | 32   | 227  | 5    |
| Peak Hour Factor           | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86    | 0.86 | 0.86 | 0.86    | 0.86 | 0.86 | 0.86 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2       | 2    | 2    | 2       | 2    | 2    | 2    |
| Mymt Flow                  | 6    | 36   | 52   | 108  | 229  | 360     | 51   | 159  | 63      | 37   | 264  | 6    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 1       | 0    | 1    | 0       | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   | 100  | and the | NB   |      | att att | SB   | Real |      |
| Opposing Approach          | WB   |      |      | EB   |      |         | SB   |      |         | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 1    |      |         | 1    |      |         | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |         | EB   |      |         | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |         | 1    |      |         | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |         | WB   |      |         | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |         | 2    |      |         | 1    |      |      |
| HCM Control Delay          | 11.4 |      |      | 18.4 |      |         | 15.7 |      |         | 17.5 |      |      |
| HCM LOS                    | В    |      |      | С    |      |         | С    |      |         | С    |      |      |
|                            |      |      |      |      |      |         |      |      |         |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 19%   | 6%    | 32%   | 0%    | 12%   |  |
| Vol Thru, %            | 58%   | 38%   | 68%   | 0%    | 86%   |  |
| Vol Right, %           | 23%   | 56%   | 0%    | 100%  | 2%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 235   | 81    | 290   | 310   | 264   |  |
| LT Vol                 | 44    | 5     | 93    | 0     | 32    |  |
| Through Vol            | 137   | 31    | 197   | 0     | 227   |  |
| RT Vol                 | 54    | 45    | 0     | 310   | 5     |  |
| Lane Flow Rate         | 273   | 94    | 337   | 360   | 307   |  |
| Geometry Grp           | 2     | 5     | 7     | 7     | 2     |  |
| Degree of Util (X)     | 0.494 | 0.18  | 0.627 | 0.583 | 0.557 |  |
| Departure Headway (Hd) | 6.508 | 6.863 | 6.823 | 5.945 | 6.534 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 557   | 523   | 533   | 609   | 556   |  |
| Service Time           | 4.521 | 4.904 | 4.523 | 3.645 | 4.546 |  |
| HCM Lane V/C Ratio     | 0.49  | 0.18  | 0.632 | 0.591 | 0.552 |  |
| HCM Control Delay      | 15.7  | 11.4  | 20.3  | 16.6  | 17.5  |  |
| HCM Lane LOS           | C     | В     | C     | С     | С     |  |
| HCM 95th-tile Q        | 2.7   | 0.7   | 4.3   | 3.7   | 3.4   |  |

| 03/25/2019 | 9 |
|------------|---|
|------------|---|

| Intersection              |      |  |  |
|---------------------------|------|--|--|
| Intersection Delay, s/veh | 79.7 |  |  |
| Intersection LOS          | F    |  |  |

| Movement                   | EBT         | EBR      | WBL  | WBT      | NBL   | NBR     |  |
|----------------------------|-------------|----------|------|----------|-------|---------|--|
| Lane Configurations        | <b>†</b> ]> |          | ٦    | <b>^</b> | 5     | 1       |  |
| Traffic Vol, veh/h         | 44          | 89       | 405  | 97       | 524   | 351     |  |
| Future Vol, veh/h          | 44          | 89       | 405  | 97       | 524   | 351     |  |
| Peak Hour Factor           | 0.90        | 0.90     | 0.90 | 0.90     | 0.90  | 0.90    |  |
| Heavy Vehicles, %          | 2           | 2        | 2    | 2        | 2     | 2       |  |
| Mvmt Flow                  | 49          | 99       | 450  | 108      | 582   | 390     |  |
| Number of Lanes            | 2           | 0        | 1    | 2        | 1     | 1       |  |
| Approach                   | EB          | 2. Marte | WB   | Sile -   | NB    | and the |  |
| Opposing Approach          | WB          |          | EB   | _        |       |         |  |
| Opposing Lanes             | 3           |          | 2    |          | 0     |         |  |
| Conflicting Approach Left  |             |          | NB   |          | EB    |         |  |
| Conflicting Lanes Left     | 0           |          | 2    |          | 2     |         |  |
| Conflicting Approach Right | NB          |          |      |          | WB    |         |  |
| Conflicting Lanes Right    | 2           |          | 0    |          | 3     |         |  |
| HCM Control Delay          | 13.9        |          | 61.6 |          | 100.1 |         |  |
| HCM LOS                    | В           |          | F    |          | F     |         |  |

| Lane                   | NBLn1 | NBLn2 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | WBLn3 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 0%    | 0%    | 0%    | 100%  | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 0%    | 100%  | 14%   | 0%    | 100%  | 100%  |  |
| Vol Right, %           | 0%    | 100%  | 0%    | 86%   | 0%    | 0%    | 0%    |  |
| Sign Control           | Stop  |  |
| Traffic Vol by Lane    | 524   | 351   | 29    | 104   | 405   | 49    | 49    |  |
| T Vol                  | 524   | 0     | 0     | 0     | 405   | 0     | 0     |  |
| fhrough Vol            | 0     | 0     | 29    | 15    | 0     | 49    | 49    |  |
| RT Vol                 | 0     | 351   | 0     | 89    | 0     | 0     | 0     |  |
| ane Flow Rate          | 582   | 390   | 33    | 115   | 450   | 54    | 54    |  |
| Geometry Grp           | 8     | 8     | 8     | 8     | 8     | 8     | 8     |  |
| Degree of Util (X)     | 1.245 | 0.703 | 0.078 | 0.257 | 1.003 | 0.113 | 0.087 |  |
| Departure Headway (Hd) | 7.701 | 6.491 | 9.224 | 8.595 | 8.486 | 7.973 | 6.195 |  |
| Convergence, Y/N       | Yes   |  |
| Cap                    | 472   | 558   | 391   | 420   | 432   | 452   | 582   |  |
| Service Time           | 5.456 | 4.246 | 6.924 | 6.295 | 6.186 | 5.673 | 3.895 |  |
| HCM Lane V/C Ratio     | 1.233 | 0.699 | 0.084 | 0.274 | 1.042 | 0.119 | 0.093 |  |
| ICM Control Delay      | 151.5 | 23.3  | 12.7  | 14.2  | 73.8  | 11.7  | 9.5   |  |
| HCM Lane LOS           | F     | C     | В     | В     | F     | В     | A     |  |
| HCM 95th-tile Q        | 23.5  | 5.6   | 0.3   | 1     | 12.7  | 0.4   | 0.3   |  |

| Intersection              |      |  |
|---------------------------|------|--|
| Intersection Delay, s/veh | 14.6 |  |
| Intersection LOS          | В    |  |

| Movement                   | EBL  | EBT   | EBR       | WBL  | WBT       | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|-------|-----------|------|-----------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4     |           |      | 4         |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 10   | 137   | 2         | 29   | 95        | 216  | 3    | 28   | 24   | 304  | 11   | 71   |
| Future Vol, veh/h          | 10   | 137   | 2         | 29   | 95        | 216  | 3    | 28   | 24   | 304  | 11   | 71   |
| Peak Hour Factor           | 0.94 | 0.94  | 0.94      | 0.94 | 0.94      | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, %          | 2    | 2     | 2         | 2    | 2         | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow                  | 11   | 146   | 2         | 31   | 101       | 230  | 3    | 30   | 26   | 323  | 12   | 76   |
| Number of Lanes            | 0    | 1     | 0         | 0    | 1         | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   | 2-1-3 | Service W | WB   | all all a |      | NB   |      |      | SB   | -    |      |
| Opposing Approach          | WB   |       |           | EB   |           |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |       |           | 1    |           |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |       |           | NB   |           |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |       |           | 1    |           |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |       |           | SB   |           |      | WB   |      |      | E8   |      |      |
| Conflicting Lanes Right    | 1    |       |           | 1    |           |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 11   |       |           | 13.8 |           |      | 9.6  |      |      | 17.4 |      |      |
| HCMLOS                     | В    |       |           | В    |           |      | A    |      |      | C    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 7%    | 9%    | 79%   |  |
| Vol Thru, %            | 51%   | 92%   | 28%   | 3%    |  |
| Vol Right, %           | 44%   | 1%    | 64%   | 18%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 55    | 149   | 340   | 386   |  |
| LT Vol                 | 3     | 10    | 29    | 304   |  |
| Through Vol            | 28    | 137   | 95    | 11    |  |
| RT Vol                 | 24    | 2     | 216   | 71    |  |
| Lane Flow Rate         | 59    | 159   | 362   | 411   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.095 | 0.259 | 0.522 | 0.627 |  |
| Departure Headway (Hd) | 5.859 | 5.878 | 5.198 | 5.497 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 608   | 609   | 691   | 657   |  |
| Service Time           | 3.933 | 3.943 | 3.251 | 3.544 |  |
| HCM Lane V/C Ratio     | 0.097 | 0.261 | 0.524 | 0.626 |  |
| HCM Control Delay      | 9.6   | 11    | 13.8  | 17.4  |  |
| HCM Lane LOS           | А     | В     | В     | С     |  |
| HCM 95th-tile Q        | 0.3   | 1     | 3     | 4.4   |  |

| 03/25/2019 |
|------------|
|------------|

| Intersection              |      | 1 | 1. | - |  |  |
|---------------------------|------|---|----|---|--|--|
| Intersection Delay, s/veh | 51.8 |   |    |   |  |  |
| Intersection LOS          | F    |   |    |   |  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT     | SBR  |
|----------------------------|------|------|------|------|------|------|------|-------|------|------|---------|------|
| Lane Configurations        | ٦    | 1.   |      |      | 412  |      |      | 4     |      |      | 4       | 1    |
| Traffic Vol, veh/h         | 255  | 130  | 69   | 129  | 233  | 363  | 47   | 73    | 136  | 260  | 40      | 90   |
| Future Vol, veh/h          | 255  | 130  | 69   | 129  | 233  | 363  | 47   | 73    | 136  | 260  | 40      | 90   |
| Peak Hour Factor           | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96  | 0.96 | 0.96 | 0.96    | 0.96 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2       | 2    |
| Mvmt Flow                  | 266  | 135  | 72   | 134  | 243  | 378  | 49   | 76    | 142  | 271  | 42      | 94   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 2    | 0    | 0    | 1     | 0    | 0    | 1       | 1    |
| Approach                   | EB   |      |      | WB   |      |      | NB   | 5.200 |      | SB   | Con St. | 27.7 |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |       |      | NB   |         |      |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |       |      | 1    |         |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |       |      | WB   |         |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |       |      | 2    |         |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |       |      | EB   |         |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |       |      | 2    |         |      |
| HCM Control Delay          | 26.4 |      |      | 83.7 |      |      | 30.1 |       |      | 36.4 |         |      |
| HCMLOS                     | D    |      |      | F    |      |      | D    |       |      | E    |         |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Vol Left, %            | 18%   | 100%  | 0%    | 53%   | 0%    | 87%   | 0%    |  |
| Vol Thru, %            | 29%   | 0%    | 65%   | 47%   | 24%   | 13%   | 0%    |  |
| /ol Right, %           | 53%   | 0%    | 35%   | 0%    | 76%   | 0%    | 100%  |  |
| Sign Control           | Stop  |  |
| Fraffic Vol by Lane    | 256   | 255   | 199   | 246   | 480   | 300   | 90    |  |
| T Vol                  | 47    | 255   | 0     | 129   | 0     | 260   | 0     |  |
| Through Vol            | 73    | 0     | 130   | 117   | 117   | 40    | 0     |  |
| RT Vol                 | 136   | 0     | 69    | 0     | 363   | 0     | 90    |  |
| ane Flow Rate          | 267   | 266   | 207   | 256   | 499   | 313   | 94    |  |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |  |
| Degree of Util (X)     | 0.674 | 0.687 | 0.498 | 0.64  | 1.136 | 0.812 | 0.213 |  |
| Departure Headway (Hd) | 9.503 | 9.713 | 8.935 | 9.016 | 8.189 | 9.737 | 8.556 |  |
| Convergence, Y/N       | Yes   |  |
| Сар                    | 384   | 375   | 406   | 404   | 445   | 375   | 422   |  |
| Service Time           | 7.503 | 7.413 | 6.635 | 6.72  | 5.893 | 7.437 | 6.256 |  |
| HCM Lane V/C Ratio     | 0.695 | 0.709 | 0.51  | 0.634 | 1.121 | 0.835 | 0.223 |  |
| HCM Control Delay      | 30.1  | 31.2  | 20.2  | 26.4  | 113.1 | 43.3  | 13.6  |  |
| HCM Lane LOS           | D     | D     | С     | D     | F     | E     | В     |  |
| HCM 95th-tile Q        | 4.7   | 4,9   | 2.7   | 4.3   | 17.9  | 7.1   | 0.8   |  |

## Cumulative+Project PM 5: Callan Blvd & Serramonte Blvd

|                               | ۶          | -           | $\mathbf{r}$ | <b>V</b>  | -         |            | •       | 1     |      | <b>\</b> | <b>↓</b> | -    |
|-------------------------------|------------|-------------|--------------|-----------|-----------|------------|---------|-------|------|----------|----------|------|
| Movement                      | EBL        | EBT         | EBR          | WBL       | WBT       | WBR        | NBL     | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | ۲          | <b>†</b> 1> |              | 1         | <b>†</b>  |            | ۲       | f,    |      | 7        | +        | 1    |
| Traffic Volume (vph)          | 103        | 359         | 72           | 230       | 416       | 313        | 173     | 204   | 78   | 176      | 277      | 139  |
| Future Volume (vph)           | 103        | 359         | 72           | 230       | 416       | 313        | 173     | 204   | 78   | 176      | 277      | 139  |
| Ideal Flow (vphpl)            | 1900       | 1900        | 1900         | 1900      | 1900      | 1900       | 1900    | 1900  | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)           | 4.0        | 4.0         |              | 4.0       | 4.0       |            | 4.0     | 4.0   |      | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor             | 1.00       | 0.95        |              | 1.00      | 0.95      |            | 1.00    | 1.00  |      | 1.00     | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99        |              | 1.00      | 0.99      |            | 1.00    | 0.99  |      | 1.00     | 1.00     | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00        |              | 1.00      | 1.00      |            | 1.00    | 1.00  |      | 1.00     | 1.00     | 1.00 |
| Frt                           | 1.00       | 0.98        |              | 1.00      | 0.94      |            | 1.00    | 0.96  |      | 1.00     | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00        |              | 0.95      | 1.00      |            | 0.95    | 1.00  |      | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)             | 1770       | 3433        |              | 1770      | 3280      |            | 1770    | 1774  |      | 1770     | 1863     | 1557 |
| Flt Permitted                 | 0.95       | 1.00        |              | 0.95      | 1.00      |            | 0.95    | 1.00  |      | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)             | 1770       | 3433        |              | 1770      | 3280      |            | 1770    | 1774  |      | 1770     | 1863     | 1557 |
| Peak-hour factor, PHF         | 0.98       | 0.98        | 0.98         | 0.98      | 0.98      | 0.98       | 0.98    | 0.98  | 0.98 | 0.98     | 0.98     | 0.98 |
| Adj. Flow (vph)               | 105        | 366         | 73           | 235       | 424       | 319        | 177     | 208   | 80   | 180      | 283      | 142  |
| RTOR Reduction (vph)          | 0          | 26          | 0            | 0         | 207       | 0          | 0       | 22    | 0    | 0        | 0        | 110  |
| Lane Group Flow (vph)         | 105        | 413         | 0            | 235       | 536       | 0          | 177     | 266   | 0    | 180      | 283      | 32   |
| Confl. Peds. (#/hr)           | 9          |             | 6            | 6         |           | 9          | 4       |       | 10   | 10       |          | 4    |
| Turn Type                     | Prot       | NA          |              | Prot      | NA        |            | Prot    | NA    |      | Prot     | NA       | Perm |
| Protected Phases              | 7          | 4           |              | 3         | 8         |            | 5       | 2     |      | 1        | 6        |      |
| Permitted Phases              |            |             |              |           |           |            |         |       |      |          |          | 6    |
| Actuated Green, G (s)         | 4.6        | 13.3        |              | 9.1       | 17.8      |            | 7.1     | 13.4  |      | 7.1      | 13.4     | 13.4 |
| Effective Green, g (s)        | 4.6        | 13.3        |              | 9.1       | 17.8      |            | 7.1     | 13.4  |      | 7.1      | 13.4     | 13.4 |
| Actuated g/C Ratio            | 0.08       | 0.23        |              | 0.15      | 0.30      |            | 0.12    | 0.23  |      | 0.12     | 0.23     | 0.23 |
| Clearance Time (s)            | 4.0        | 4.0         |              | 4.0       | 4.0       |            | 4.0     | 4.0   |      | 4.0      | 4.0      | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0         |              | 3.0       | 3.0       |            | 3.0     | 3.0   |      | 3.0      | 3.0      | 3.0  |
| Lane Grp Cap (vph)            | 138        | 775         |              | 273       | 991       |            | 213     | 403   |      | 213      | 423      | 354  |
| v/s Ratio Prot                | 0.06       | 0.12        |              | c0.13     | c0.16     |            | 0.10    | 0.15  |      | c0.10    | c0.15    |      |
| v/s Ratio Perm                |            |             |              |           |           |            |         |       |      |          |          | 0.02 |
| v/c Ratio                     | 0.76       | 0.53        |              | 0.86      | 0.54      |            | 0.83    | 0.66  |      | 0.85     | 0.67     | 0.09 |
| Uniform Delay, d1             | 26.6       | 20.1        |              | 24.3      | 17.1      |            | 25.3    | 20.7  |      | 25.4     | 20.7     | 17.9 |
| Progression Factor            | 1.00       | 1.00        |              | 1.00      | 1.00      |            | 1.00    | 1.00  |      | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2         | 21.6       | 0.7         |              | 23.1      | 0.6       |            | 23.2    | 3.9   |      | 25.2     | 4.0      | 0.1  |
| Delay (s)                     | 48.2       | 20.8        |              | 47.4      | 17.7      |            | 48.5    | 24.5  |      | 50.6     | 24.7     | 18.1 |
| Level of Service              | D          | С           |              | D         | В         |            | D       | C     |      | D        | C        | E    |
| Approach Delay (s)            |            | 26.1        |              |           | 24.9      |            |         | 33.7  |      |          | 30.8     |      |
| Approach LOS                  |            | С           |              |           | С         |            |         | С     |      |          | С        |      |
| Intersection Summary          |            | haven       | Carnel .     | and the s |           | 1          | and the | 71.5. | 1    |          | - Julia  |      |
| HCM 2000 Control Delay        |            |             | 28.1         | Н         | CM 2000   | Level of   | Service |       | С    |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |             | 0.73         |           |           |            |         |       |      |          |          |      |
| Actuated Cycle Length (s)     |            |             | 58.9         | S         | um of los | t time (s) |         |       | 16.0 |          |          |      |
| Intersection Capacity Utiliza | ation      |             | 66.5%        |           | CU Level  |            | 1       |       | С    |          |          |      |
| Analysis Period (min)         | AND COMP.  |             | 15           |           |           |            |         |       |      |          |          |      |
| c Critical Lane Group         |            |             |              |           |           |            |         |       |      |          |          |      |

### Existing + Project PM 2: SR 1 SB Ramps & Clarinada Ave

| ane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{r}$ | 1    | -                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                   |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|
| ane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Movement                                | EBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EBR          | WBL  | WBT                                                                                                             | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NBR                 |   |
| raffic Volume (vph)       73       92       205       125       514       323         uture Volume (vph)       73       92       205       125       514       323         eal Flow (vphpl)       1900       1900       1900       1900       1900       1900         otal Lost time (s)       4.0       4.0       4.0       4.0       4.0       4.0         ane Util. Factor       0.95       1.00       1.00       1.00       1.00       1.00       1.00         pb, ped/bikes       1.00       1.00       1.00       1.00       1.00       1.00       1.00         the time (s)       4.0       4.0       4.0       4.0       4.0       4.0         pb, ped/bikes       1.00       1.00       1.00       1.00       1.00       1.00         the time (s)       1.00       0.95       1.00       0.95       1.00       0.95       1.00         atd. Flow (prot)       3184       1770       3539       1770       1562       1562       156       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NAME OF TAXABLE PARTY OF TAXABLE PARTY. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 5    | the second se | and the second se |                     | - |
| uture Volume (vph)         73         92         205         125         514         323           leal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900           otal Lost time (s)         4.0         4.0         4.0         4.0         4.0         ano         4.0         ano         4.0         4.0         ano         4.0         ano         4.0         ano         4.0         ano         4.0         4.0         4.0         ano         4.0         4.0         ano         4.0         ano         4.0         ano         4.0         4.0         4.0         4.0         4.0         4.0         4.0         ano         4.0         4.0         4.0         4.0         4.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92           | 205  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| leal Flow (vphpl)         1900         1900         1900         1900         1900         1900           otal Lost time (s)         4.0         4.0         4.0         4.0         4.0         4.0           ane Util, Factor         0.95         1.00         0.95         1.00         1.00         0.99           pb, ped/bikes         0.98         1.00         1.00         1.00         0.09         pb, ped/bikes         1.00         1.00         1.00         0.99           bp, ped/bikes         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.85           th Protected         1.00         0.95         1.00         0.95         1.00         0.95         1.00           atd. Flow (perm)         3184         1770         3539         1770         1562           eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Future Volume (vph)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| otal Lost time (s)         4.0         4.0         4.0         4.0         4.0           ane Util, Factor         0.95         1.00         0.95         1.00         1.00           rpb, ped/bikes         0.98         1.00         1.00         1.00         0.99           pb, ped/bikes         1.00         1.00         1.00         1.00         0.00           there of the operation of the operat |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| ane Util. Factor         0.95         1.00         0.95         1.00         1.00           pb, ped/bikes         0.98         1.00         1.00         1.00         0.99           pb, ped/bikes         0.92         1.00         1.00         1.00         0.99           pt, ped/bikes         1.00         1.00         1.00         1.00         0.95           th Protected         1.00         0.95         1.00         0.95         1.00           atd. Flow (prot)         3184         1770         3539         1770         1562           eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90           ane Group Flow (vph)         81         102         228         139         571         359           TOR Reduction (vph)         90         0         0         0         0         197           ane Group Flow (vph)         93         0         228         139         571         162           onfl. Peds. (#/hr)         3         3         2         2         2         2           urm Type         NA         Prot         NA         Prot         Perm           rotected Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.7.7       |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| mpb, ped/bikes         0.98         1.00         1.00         1.00         0.99           pb, ped/bikes         1.00         1.00         1.00         1.00         1.00         1.00           there protected         1.00         0.95         1.00         0.95         1.00         0.95           there protected         1.00         0.95         1.00         0.95         1.00         0.95         1.00           atd. Flow (prot)         3184         1770         3539         1770         1562           eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90           di, Flow (vph)         81         102         228         139         571         359           TOR Reduction (vph)         93         0         228         139         571         162           onfl. Peds. (#hr)         3         2         2         2         2         2           urn Type         NA         Prot         NA         Prot         Prot         Perm         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lane Util. Factor                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| pb, ped/bikes         1.00         1.00         1.00         1.00         1.00         1.00         1.00           ht         0.92         1.00         1.00         0.95         1.00         0.85           ht Protected         1.00         0.95         1.00         0.95         1.00           atd. Flow (prot)         3184         1770         3539         1770         1562           atd. Flow (perm)         3184         1770         3539         1770         1562           eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90           dj. Flow (vph)         81         102         228         139         571         359           TOR Reduction (vph)         90         0         0         0         0         197           ane Group Flow (vph)         93         0         228         139         571         162           onfl. Peds. (#/hr)         3         2         2         2         2         2           urn Type         NA         Prot         NA         Prot         Prot         Prot           fective Green, g (s)         5.5         9.1         18.6         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frpb, ped/bikes                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| tt       0.92       1.00       1.00       1.00       0.85         tt Protected       1.00       0.95       1.00       0.95       1.00         atd. Flow (prot)       3184       1770       3539       1770       1562         tt Permitted       1.00       0.95       1.00       0.95       1.00         atd. Flow (prot)       3184       1770       3539       1770       1562         aek-hour factor, PHF       0.90       0.90       0.90       0.90       0.90       0.90         dj. Flow (vph)       81       102       228       139       571       359         TOR Reduction (vph)       90       0       0       0       197         ane Group Flow (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2       2       2       2         urm Type       NA       Prot       NA       Prot       Prot       Prot       Prot       2       2         ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8       2       2         ctuated g/C Ratio       0.11       0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flpb, ped/bikes                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1.00 | 1.00                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                |   |
| It Protected       1.00       0.95       1.00       0.95       1.00         atd. Flow (prot)       3184       1770       3539       1770       1562         It Permitted       1.00       0.95       1.00       0.95       1.00         atd. Flow (perm)       3184       1770       3539       1770       1562         eak-hour factor, PHF       0.90       0.90       0.90       0.90       0.90       0.90       0.90         atd. Flow (pph)       81       102       228       139       571       359       TOR Reduction (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frt                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1.00 | 1.00                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| atd. Flow (prot)       3184       1770       3539       1770       1562         tt Permitted       1.00       0.95       1.00       0.95       1.00       0.95         atd. Flow (perm)       3184       1770       3539       1770       1562         eak-hour factor, PHF       0.90       0.90       0.90       0.90       0.90       0.90         dj. Flow (vph)       81       102       228       139       571       359         TOR Reduction (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2       2       2         urn Type       NA       Prot       NA       Prot       Perm       7         rotected Phases       2       21.8       21.8       21.8       21.8         ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8         fective Green, g (s)       5.5       9.1       18.6       21.8       21.8         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flt Protected                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| It Permitted       1.00       0.95       1.00       0.95       1.00         atd. Flow (perm)       3184       1770       3539       1770       1562         eak-hour factor, PHF       0.90       0.90       0.90       0.90       0.90       0.90         dj. Flow (vph)       81       102       228       139       571       359         TOR Reduction (vph)       90       0       0       0       0       197         ane Group Flow (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2       2       2         urn Type       NA       Prot       NA       Prot       Prot       Perm         rotacted Phases       4       3       8       2       2         ermitted Phases       2       18.6       21.8       21.8       21.8         ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0         s Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Satd. Flow (prot)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| atd. Flow (perm)         3184         1770         3539         1770         1562           eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flt Permitted                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| eak-hour factor, PHF         0.90         0.90         0.90         0.90         0.90         0.90           dj. Flow (vph)         81         102         228         139         571         359           TOR Reduction (vph)         90         0         0         0         0         197           ane Group Flow (vph)         93         0         228         139         571         162           onfl. Peds. (#/hr)         3         3         2         2         177         162           onfl. Peds. (#/hr)         3         3         2         2         2         139         571         162           onfl. Peds. (#/hr)         3         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Satd. Flow (perm)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| dj. Flow (vph)       81       102       228       139       571       359         TOR Reduction (vph)       90       0       0       0       197         ane Group Flow (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2         urn Type       NA       Prot       NA       Prot       Perm         rotected Phases       4       3       8       2         ermited Phases       2       2       2       2         ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8         fective Green, g (s)       5.5       9.1       18.6       21.8       21.8         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0         etarde g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0         s Ratio Prot       c0.03       c0.13       0.04       c0.32       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90         | 0.90 | 0.90                                                                                                            | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90                |   |
| TOR Reduction (vph)       90       0       0       0       197         ane Group Flow (vph)       93       0       228       139       571       162         onfl. Peds. (#/hr)       3       3       2       2       139       571       162         urn Type       NA       Prot       NA       Prot       NA       Prot       Perm         rotected Phases       4       3       8       2       2       2       2         ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8       2         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45       2         learance Time (s)       4.0       4.0       4.0       4.0       4.0       4.0         ehale Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0         ane Grp Cap (vph)       361       332       1360       797       703       703         fs Ratio Prot       c0.03       c0.13       0.04       c0.32       2       2       2       2       10       0.72       0.23       10       10       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Adj. Flow (vph)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| ane Group Flow (vph)         93         0         228         139         571         162           onfl. Peds. (#/hr)         3         3         2         2           urn Type         NA         Prot         NA         Prot         Perm           rotected Phases         4         3         8         2           ermitted Phases         2         2         2         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           ffective Green, g (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0           elarance Time (s)         4.0         4.0         4.0         4.0         4.0           elarance Time (s)         3.0         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703         703           /s Ratio Prot         c0.03         c0.13         0.04         c0.32         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RTOR Reduction (vph)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| onfl. Peds. (#/hr)         3         3         2           urn Type         NA         Prot         NA         Prot         Perm           rotected Phases         4         3         8         2           ermitted Phases         2         2         2         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           fective Green, g (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0           ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703           (c Ratio         0.26         0.69         0.10         0.72         0.23           rogression Factor         1.00         1.00         1.00         1.00           iform Delay, d1         19.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 228  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| urn Type         NA         Prot         NA         Prot         Perm           rotected Phases         4         3         8         2           ermitted Phases         2         2         2         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           ffective Green, g (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0           ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703           fs Ratio Prot         c0.03         c0.13         0.04         c0.32         2           fs Ratio Perm         0.10         0.72         0.23         10.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Confl. Peds. (#/hr)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| rotected Phases         4         3         8         2           ermitted Phases         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           ffective Green, g (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0           ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703           's Ratio Prot         c0.03         c0.13         0.04         c0.32         's's Ratio Perm         0.10           'c Ratio         0.26         0.69         0.10         0.72         0.23           niform Delay, d1         19.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00         1.00         1.00         1.00           icremental Delay, d2         0.4         5.8         0.0         3.1         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Type                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Prot | NA                                                                                                              | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perm                |   |
| ermitted Phases         2           ctuated Green, G (s)         5.5         9.1         18.6         21.8         21.8           ffective Green, g (s)         5.5         9.1         18.6         21.8         21.8           ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0           ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703           's Ratio Prot         c0.03         c0.13         0.04         c0.32         's'           's Ratio Perm         0.10         0.72         0.23         niform Delay, d1         19.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Protected Phases                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| ctuated Green, G (s)       5.5       9.1       18.6       21.8       21.8         ffective Green, g (s)       5.5       9.1       18.6       21.8       21.8         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0         ehicle Extension (s)       3.0       3.0       3.0       3.0       3.0         ane Grp Cap (vph)       361       332       1360       797       703         /s Ratio Prot       c0.03       c0.13       0.04       c0.32       0.10         /s Ratio Perm       0.10       0.72       0.23       0.10       0.72       0.23         niform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         icremental Delay, d2       0.4       5.8       0.0       3.1       0.2         elay (s)       20.0       24.1       9.6       13.9       8.3         evel of Service       B       C       A       B       A         pproach LOS       B       B       B <td>Permitted Phases</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Permitted Phases                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                   |   |
| ffective Green, g (s)       5.5       9.1       18.6       21.8       21.8         ctuated g/C Ratio       0.11       0.19       0.38       0.45       0.45         learance Time (s)       4.0       4.0       4.0       4.0       4.0         ehicle Extension (s)       3.0       3.0       3.0       3.0       3.0         ane Grp Cap (vph)       361       332       1360       797       703         /s Ratio Prot       c0.03       c0.13       0.04       c0.32       0.10         /s Ratio Perm       0.10       0.72       0.23       0.10       0.72       0.23         inform Delay, d1       19.6       18.3       9.5       10.8       8.2       0.10       0.72       0.23         rogression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actuated Green, G (s)                   | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 9.1  | 18.6                                                                                                            | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |   |
| ctuated g/C Ratio         0.11         0.19         0.38         0.45         0.45           learance Time (s)         4.0         4.0         4.0         4.0         4.0         4.0           ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           ane Grp Cap (vph)         361         332         1360         797         703           /s Ratio Prot         c0.03         c0.13         0.04         c0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| learance Time (s)       4.0       4.0       4.0       4.0       4.0         ehicle Extension (s)       3.0       3.0       3.0       3.0       3.0         ane Grp Cap (vph)       361       332       1360       797       703         /s Ratio Prot       c0.03       c0.13       0.04       c0.32         /s Ratio Perm       0.10       0.72       0.23         /s Ratio Perm       0.10       0.72       0.23         inform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         inform Delay, d2       0.4       5.8       0.0       3.1       0.2         elay (s)       20.0       24.1       9.6       13.9       8.3         evel of Service       B       C       A       B       A         pproach Delay (s)       20.0       18.6       11.7       pproach LOS       B       B         evel of Service       B       C       A       B       A         pproach LOS       B       B       B       B         etersection Summary       14.5       HCM 2000 Level of Servi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| ehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| ane Grp Cap (vph)         361         332         1360         797         703           /s Ratio Prot         c0.03         c0.13         0.04         c0.32           /s Ratio Perm         0.10         0.72         0.23           /s Ratio         0.26         0.69         0.10         0.72         0.23           niform Delay, d1         19.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00         1.00         1.00         1.00           incremental Delay, d2         0.4         5.8         0.0         3.1         0.2           relay (s)         20.0         24.1         9.6         13.9         8.3           evel of Service         B         C         A         B         A           pproach Delay (s)         20.0         18.6         11.7         pproach LOS         B         B           ICM 2000 Control Delay         14.5         HCM 2000 Level of Service         ICM 2000 Level of Service         0.64           Ctuated Cycle Length (s)         48.4         Sum of lost time (s)         itersection Capacity Utilization         55.0%         ICU Level of Service           nalysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| Is Ratio Prot       c0.03       c0.13       0.04       c0.32         Is Ratio Perm       0.10       0.72       0.23         Inform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         inform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         incremental Delay, d2       0.4       5.8       0.0       3.1       0.2         relay (s)       20.0       24.1       9.6       13.9       8.3         evel of Service       B       C       A       B       A         pproach Delay (s)       20.0       18.6       11.7         pproach LOS       B       B       B         itersection Summary       ICM 2000 Control Delay       14.5       HCM 2000 Level of Service         ICM 2000 Volume to Capacity ratio       0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| Is Ratio Perm       0.10         Ic Ratio       0.26       0.69       0.10       0.72       0.23         Inform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         Inform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         Inform Delay, d2       0.4       5.8       0.0       3.1       0.2         relay (s)       20.0       24.1       9.6       13.9       8.3         evel of Service       B       C       A       B       A         pproach Delay (s)       20.0       18.6       11.7         pproach LOS       B       B       B       B         Intersection Summary       ICM 2000 Control Delay       14.5       HCM 2000 Level of Service         ICM 2000 Volume to Capacity ratio       0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                 |   |
| Inform Delay, d1       19.6       0.69       0.10       0.72       0.23         niform Delay, d1       19.6       18.3       9.5       10.8       8.2         rogression Factor       1.00       1.00       1.00       1.00       1.00         horemental Delay, d2       0.4       5.8       0.0       3.1       0.2         elay (s)       20.0       24.1       9.6       13.9       8.3         evel of Service       B       C       A       B       A         pproach Delay (s)       20.0       18.6       11.7         pproach LOS       B       B       B         ICM 2000 Control Delay       14.5       HCM 2000 Level of Service         ICM 2000 Volume to Capacity ratio       0.64       Cuated Cycle Length (s)       48.4       Sum of lost time (s)         intersection Capacity Utilization       55.0%       ICU Level of Service       nalysis Period (min)       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                |   |
| Inform Delay, d1         19.6         18.3         9.5         10.8         8.2           rogression Factor         1.00         1.00         1.00         1.00         1.00           icremental Delay, d2         0.4         5.8         0.0         3.1         0.2           relay (s)         20.0         24.1         9.6         13.9         8.3           evel of Service         B         C         A         B         A           pproach Delay (s)         20.0         18.6         11.7         pproach LOS         B         B         B           itersection Summary         Identified for the second service         Identified for the service         Identified for th                                                                                                                                                                                                                                                                                                                                                                                | v/c Ratio                               | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 0.69 | 0.10                                                                                                            | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |   |
| rogression Factor         1.00         1.00         1.00         1.00         1.00           icremental Delay, d2         0.4         5.8         0.0         3.1         0.2           ielay (s)         20.0         24.1         9.6         13.9         8.3           evel of Service         B         C         A         B         A           pproach Delay (s)         20.0         18.6         11.7           pproach LOS         B         B         B           itersection Summary         Id.5         HCM 2000 Level of Service           ICM 2000 Control Delay         14.5         HCM 2000 Level of Service           ICM 2000 Volume to Capacity ratio         0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| Incremental Delay, d2         0.4         5.8         0.0         3.1         0.2           lelay (s)         20.0         24.1         9.6         13.9         8.3           evel of Service         B         C         A         B         A           pproach Delay (s)         20.0         18.6         11.7           pproach LOS         B         B         B           Intersection Summary         14.5         HCM 2000 Level of Service           ICM 2000 Control Delay         14.5         HCM 2000 Level of Service           ICM 2000 Volume to Capacity ratio         0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| lease         20.0         24.1         9.6         13.9         8.3           evel of Service         B         C         A         B         A           pproach Delay (s)         20.0         18.6         11.7         B         B         B           pproach LOS         B         B         B         B         B         B         B           resection Summary         14.5         HCM 2000 Level of Service         164         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| evel of Service B C A B A<br>pproach Delay (s) 20.0 18.6 11.7<br>pproach LOS B B B<br>Intersection Summary<br>ICM 2000 Control Delay 14.5 HCM 2000 Level of Service<br>ICM 2000 Volume to Capacity ratio 0.64<br>ctuated Cycle Length (s) 48.4 Sum of lost time (s)<br>intersection Capacity Utilization 55.0% ICU Level of Service<br>nalysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Delay (s)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| pproach LOS     B     B     B       Intersection Summary     Identified and the section Summary       ICM 2000 Control Delay     14.5     HCM 2000 Level of Service       ICM 2000 Volume to Capacity ratio     0.64       Ictuated Cycle Length (s)     48.4     Sum of lost time (s)       Intersection Capacity Utilization     55.0%     ICU Level of Service       nalysis Period (min)     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level of Service                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | С    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
| pproach LOS     B     B     B       Intersection Summary     Identified and the section Summary       ICM 2000 Control Delay     14.5     HCM 2000 Level of Service       ICM 2000 Volume to Capacity ratio     0.64       Ictuated Cycle Length (s)     48.4     Sum of lost time (s)       Intersection Capacity Utilization     55.0%     ICU Level of Service       nalysis Period (min)     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approach Delay (s)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      | 18.6                                                                                                            | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |   |
| ICM 2000 Control Delay14.5HCM 2000 Level of ServiceICM 2000 Volume to Capacity ratio0.64ctuated Cycle Length (s)48.4Sum of lost time (s)intersection Capacity Utilization55.0%ICU Level of Servicenalysis Period (min)15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approach LOS                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      | В                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |   |
| ICM 2000 Control Delay14.5HCM 2000 Level of ServiceICM 2000 Volume to Capacity ratio0.64ctuated Cycle Length (s)48.4Sum of lost time (s)intersection Capacity Utilization55.0%ICU Level of Servicenalysis Period (min)15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intersection Summary                    | Sec. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |      | de la                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1775                |   |
| ICM 2000 Volume to Capacity ratio     0.64       ctuated Cycle Length (s)     48.4     Sum of lost time (s)       intersection Capacity Utilization     55.0%     ICU Level of Service       nalysis Period (min)     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 14.5 | Н                                                                                                               | CM 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level of Servic     | е |
| ctuated Cycle Length (s)     48.4     Sum of lost time (s)       ntersection Capacity Utilization     55.0%     ICU Level of Service       nalysis Period (min)     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | city ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | - |
| ntersection Capacity Utilization 55.0% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actuated Cycle Length (s)               | Section of the sectio |              |      | S                                                                                                               | um of los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t time (s)          |   |
| nalysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Construction of the |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c Critical Lane Group                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |   |

### Existing + Project AM 4: Serramonte Blvd & SR 1 NB Ramps

|                               | ٦          | -    |         | ∢     | ←          | ×.         | •       | Ť    | 1     | \$   | Ļ     | -    |
|-------------------------------|------------|------|---------|-------|------------|------------|---------|------|-------|------|-------|------|
| Movement                      | EBL        | EBT  | EBR     | WBL   | WBT        | WBR        | NBL     | NBT  | NBR   | SBL  | SBT   | SBR  |
| Lane Configurations           | 7          | 4    |         |       | 4 Pr       |            |         | \$   |       |      | 4     | ۲    |
| Traffic Volume (vph)          | 402        | 225  | 37      | 56    | 131        | 211        | - 51    | 61   | 55    | 193  | 42    | 95   |
| Future Volume (vph)           | 402        | 225  | 37      | 56    | 131        | 211        | 51      | 61   | 55    | 193  | 42    | 95   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900    | 1900  | 1900       | 1900       | 1900    | 1900 | 1900  | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 4.0        | 4.0  |         |       | 4.0        |            |         | 4.0  |       |      | 4.0   | 4.0  |
| Lane Util. Factor             | 1.00       | 1.00 |         |       | 0.95       |            |         | 1.00 |       |      | 1.00  | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99 |         |       | 0.98       |            |         | 1.00 |       |      | 1.00  | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00 |         |       | 1.00       |            |         | 1.00 |       |      | 1.00  | 1.00 |
| Frt                           | 1.00       | 0.98 |         |       | 0.92       |            |         | 0.96 |       |      | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00 |         |       | 0.99       |            |         | 0.98 |       |      | 0.96  | 1.00 |
| Satd. Flow (prot)             | 1770       | 1814 |         |       | 3182       |            |         | 1751 |       |      | 1789  | 1555 |
| Flt Permitted                 | 0.95       | 1.00 |         |       | 0.99       |            |         | 0.84 |       |      | 0.66  | 1.00 |
| Satd. Flow (perm)             | 1770       | 1814 |         |       | 3182       |            |         | 1498 |       |      | 1234  | 1555 |
| Peak-hour factor, PHF         | 0.91       | 0.91 | 0.91    | 0.91  | 0.91       | 0.91       | 0.91    | 0.91 | 0.91  | 0.91 | 0.91  | 0.91 |
| Adj. Flow (vph)               | 442        | 247  | 41      | 62    | 144        | 232        | 56      | 67   | 60    | 212  | 46    | 104  |
| RTOR Reduction (vph)          | 0          | 10   | 0       | 0     | 190        | 0          | 0       | 29   | 0     | 0    | 0     | 75   |
| Lane Group Flow (vph)         | 442        | 278  | 0       | 0     | 248        | 0          | 0       | 154  | 0     | 0    | 258   | 29   |
| Confl. Peds. (#/hr)           | 7          |      | 10      | 10    |            | 7          | 6       |      |       |      |       | 6    |
| Turn Type                     | Split      | NA   |         | Split | NA         |            | Perm    | NA   |       | Perm | NA    | Perm |
| Protected Phases              | 4          | 4    |         | 8     | 8          |            |         | 2    |       |      | 6     |      |
| Permitted Phases              |            |      |         |       |            |            | 2       |      |       | 6    |       | 6    |
| Actuated Green, G (s)         | 15.8       | 15.8 |         |       | 9.4        |            |         | 14.7 |       |      | 14.7  | 14.7 |
| Effective Green, g (s)        | 15.8       | 15.8 |         |       | 9.4        |            |         | 14.7 |       |      | 14.7  | 14.7 |
| Actuated g/C Ratio            | 0.30       | 0.30 |         |       | 0.18       |            |         | 0.28 | 1215  |      | 0.28  | 0.28 |
| Clearance Time (s)            | 4.0        | 4.0  |         |       | 4.0        |            |         | 4.0  |       |      | 4.0   | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0  |         |       | 3.0        |            |         | 3.0  |       |      | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 538        | 552  |         |       | 576        |            |         | 424  | (     |      | 349   | 440  |
| v/s Ratio Prot                | c0.25      | 0.15 |         |       | c0.08      |            |         |      |       |      |       |      |
| v/s Ratio Perm                |            |      |         |       |            |            |         | 0.10 |       |      | c0.21 | 0.02 |
| v/c Ratio                     | 0.82       | 0.50 |         |       | 0.43       |            |         | 0.36 |       |      | 0.74  | 0.07 |
| Uniform Delay, d1             | 16.7       | 14.8 |         |       | 18.9       |            |         | 14.9 |       |      | 16.9  | 13.6 |
| Progression Factor            | 1.00       | 1.00 |         |       | 1.00       |            |         | 1.00 |       |      | 1.00  | 1.00 |
| Incremental Delay, d2         | 9.8        | 0.7  |         |       | 0.5        |            |         | 0.5  |       |      | 8.0   | 0.1  |
| Delay (s)                     | 26.5       | 15.6 |         |       | 19.4       |            |         | 15.4 |       |      | 24.8  | 13.7 |
| Level of Service              | С          | 8    |         |       | В          |            |         | В    |       |      | С     | В    |
| Approach Delay (s)            |            | 22.2 |         |       | 19.4       |            |         | 15.4 |       |      | 21.6  |      |
| Approach LOS                  |            | С    |         |       | В          |            |         | В    |       |      | C     |      |
| Intersection Summary          |            |      | 1.1.1.1 |       |            |            |         |      | 1-1-1 |      |       |      |
| HCM 2000 Control Delay        |            |      | 20.6    | н     | CM 2000    | Level of   | Service |      | С     |      |       |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.70    |       |            |            |         |      |       |      |       |      |
| Actuated Cycle Length (s)     |            |      | 51.9    | S     | um of lost | time (s)   |         |      | 12.0  |      |       |      |
| Intersection Capacity Utiliza | ation      |      | 64.5%   | 10    | U Level    | of Service |         |      | С     |      |       |      |
| Analysis Period (min)         |            |      | 15      |       |            |            |         |      |       |      |       |      |
| c Critical Lane Group         |            |      |         |       |            |            |         |      |       |      |       |      |

#### Cumulative+Project AM 2: SR 1 SB Ramps & Clarinada Ave

|                               |             | $\mathbf{i}$ | <b>*</b> | -      | -         | 1               |      |
|-------------------------------|-------------|--------------|----------|--------|-----------|-----------------|------|
| Movement                      | EBT         | EBR          | WBL      | WBT    | NBL       | NBR             | 12.5 |
| ane Configurations            | <b>†</b>    | LUIX         | 5        | 11     | 5         | 1               | -    |
| Traffic Volume (vph)          | 87          | 134          | 560      | 29     | 548       | 327             |      |
| uture Volume (vph)            | 87          | 134          | 560      | 29     | 548       | 327             |      |
| Ideal Flow (vphpl)            | 1900        | 1900         | 1900     | 1900   | 1900      | 1900            |      |
| Total Lost time (s)           | 4.0         | 1900         | 4.0      | 4.0    | 4.0       | 4.0             |      |
| Lane Util, Factor             | 0.95        |              | 1.00     | 0.95   | 1.00      | 1.00            |      |
| Frpb, ped/bikes               | 0.95        |              | 1.00     | 1.00   | 1.00      | 0.99            |      |
| Flpb, ped/bikes               | 1.00        |              | 1.00     | 1.00   | 1.00      | 1.00            |      |
|                               |             |              |          |        |           |                 |      |
| Frt<br>Elle Directoret and    | 0.91        |              | 1.00     | 1.00   | 1.00      | 0.85            |      |
| Fit Protected                 | 1.00        | 1.1.1        | 0.95     | 1.00   | 0.95      | 1.00            |      |
| Satd. Flow (prot)             | 3164        |              | 1770     | 3539   | 1770      | 1562            |      |
| Flt Permitted                 | 1.00        |              | 0.95     | 1.00   | 0.95      | 1.00            |      |
| Satd. Flow (perm)             | 3164        |              | 1770     | 3539   | 1770      | 1562            |      |
| Peak-hour factor, PHF         | 0.88        | 0.88         | 0.88     | 0.88   | 0.88      | 0.88            |      |
| Adj. Flow (vph)               | 99          | 152          | 636      | 33     | 623       | 372             |      |
| RTOR Reduction (vph)          | 137         | 0            | 0        | 0      | 0         | 232             |      |
| Lane Group Flow (vph)         | 114         | 0            | 636      | 33     | 623       | 140             |      |
| Confl. Peds. (#/hr)           |             | 3            | 3        |        |           | 2               |      |
| Turn Type                     | NA          |              | Prot     | NA     | Prot      | Perm            |      |
| Protected Phases              | 4           |              | 3        | 8      | 2         |                 |      |
| Permitted Phases              |             |              |          |        |           | 2               |      |
| Actuated Green, G (s)         | 8.3         |              | 31.0     | 43.3   | 31.0      | 31.0            |      |
| Effective Green, g (s)        | 8.3         |              | 31.0     | 43.3   | 31.0      | 31.0            |      |
| Actuated g/C Ratio            | 0.10        |              | 0.38     | 0.53   | 0.38      | 0.38            |      |
| Clearance Time (s)            | 4.0         |              | 4.0      | 4.0    | 4.0       | 4.0             |      |
| Vehicle Extension (s)         | 3.0         |              | 3.0      | 3.0    | 3.0       | 3.0             |      |
| Lane Grp Cap (vph)            | 319         |              | 666      | 1861   | 666       | 588             | -    |
| v/s Ratio Prot                | c0.04       |              | c0.36    | 0.01   | c0.35     | 500             |      |
| v/s Ratio Perm                | 60.04       |              | 0.50     | 0.01   | 0.00      | 0.09            |      |
| v/c Ratio                     | 0.36        |              | 0.05     | 0.00   | 0.94      |                 |      |
|                               |             |              | 0.95     | 0.02   |           | 0.24            |      |
| Uniform Delay, d1             | 34.5        |              | 25.0     | 9.3    | 24.7      | 17.6            |      |
| Progression Factor            | 1.00        |              | 1.00     | 1.00   | 1.00      | 1.00            |      |
| Incremental Delay, d2         | 0.7         |              | 24.1     | 0.0    | 20.4      | 0.2             |      |
| Delay (s)                     | 35.2        |              | 49.1     | 9.3    | 45.1      | 17.8            |      |
| Level of Service              | D           |              | D        | A      | D         | В               |      |
| Approach Delay (s)            | 35.2        |              |          | 47.1   | 34.9      |                 |      |
| Approach LOS                  | D           |              |          | D      | С         |                 |      |
| Intersection Summary          | THERE       | - Level      | 131 4    | in the | States -  |                 | -    |
| HICM 2000 Control Delay       |             |              | 39.2     | н      | CM 2000   | Level of Servic | e    |
| HCM 2000 Volume to Capa       | acity ratio |              | 0.88     |        |           |                 | -    |
| Actuated Cycle Length (s)     |             |              | 82.3     | S      | um of los | t time (s)      |      |
| Intersection Capacity Utiliza | ation       |              | 78.9%    |        |           | of Service      |      |
| Analysis Period (min)         |             |              | 15       | 10     |           |                 |      |
| c Critical Lane Group         |             | 1            | 10       |        |           |                 |      |
| o onucar Lane Group           |             |              |          |        |           |                 |      |

#### Cumulative+Project AM <u>4: Serramonte Blvd & SR 1 NB Ramps</u>

|                               | ٦          | -    | $\mathbf{r}$ | 4     | ←          | ×.       |         | 1     | 1    | 5    | Ļ     | -    |
|-------------------------------|------------|------|--------------|-------|------------|----------|---------|-------|------|------|-------|------|
| Movement                      | EBL        | EBT  | EBR          | WBL   | WBT        | WBR      | NBL     | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | ۲          | ¢Î,  |              |       | 4°P        |          |         | \$    |      |      | 4     | 1    |
| Traffic Volume (vph)          | 446        | 112  | 55           | 160   | 274        | 378      | 66      | 134   | 183  | 191  | 100   | 106  |
| Future Volume (vph)           | 446        | 112  | 55           | 160   | 274        | 378      | 66      | 134   | 183  | 191  | 100   | 106  |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900         | 1900  | 1900       | 1900     | 1900    | 1900  | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 4.0        | 4.0  |              |       | 4.0        |          |         | 4.0   |      |      | 4.0   | 4.0  |
| Lane Util. Factor             | 1.00       | 1.00 |              |       | 0.95       |          |         | 1.00  |      |      | 1.00  | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99 |              |       | 0.98       |          |         | 1.00  |      |      | 1.00  | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00 |              |       | 1.00       |          |         | 1.00  |      |      | 1.00  | 1.00 |
| Frt                           | 1.00       | 0.95 |              |       | 0.93       |          |         | 0.94  |      |      | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00 |              |       | 0.99       |          |         | 0.99  |      |      | 0.97  | 1.00 |
| Satd. Flow (prot)             | 1770       | 1747 |              |       | 3207       |          |         | 1726  |      |      | 1804  | 1552 |
| Flt Permitted                 | 0.95       | 1.00 |              |       | 0.99       |          |         | 0.82  |      |      | 0.46  | 1.00 |
| Satd. Flow (perm)             | 1770       | 1747 |              |       | 3207       | _        |         | 1436  |      |      | 863   | 1552 |
| Peak-hour factor, PHF         | 0.91       | 0.91 | 0.91         | 0.91  | 0.91       | 0.91     | 0.91    | 0.91  | 0.91 | 0.91 | 0.91  | 0.91 |
| Adj. Flow (vph)               | 490        | 123  | 60           | 176   | 301        | 415      | 73      | 147   | 201  | 210  | 110   | 116  |
| RTOR Reduction (vph)          | 0          | 25   | 0            | 0     | 224        | 0        | 0       | 47    | 0    | 0    | 0     | 76   |
| Lane Group Flow (vph)         | 490        | 158  | 0            | 0     | 668        | 0        | 0       | 374   | 0    | 0    | 320   | 40   |
| Confl. Peds. (#/hr)           | 7          |      | 10           | 10    |            | 7        | 6       |       | 1    | 1-1  |       | 6    |
| Turn Type                     | Split      | NA   |              | Split | NA         |          | Perm    | NA    |      | Perm | NA    | Perm |
| Protected Phases              | 4          | 4    |              | 8     | 8          |          |         | 2     |      |      | 6     |      |
| Permitted Phases              |            |      |              |       |            |          | 2       |       |      | 6    |       | 6    |
| Actuated Green, G (s)         | 18.0       | 18.0 |              |       | 16.0       |          |         | .24.0 |      |      | 24.0  | 24.0 |
| Effective Green, g (s)        | 18.0       | 18.0 |              |       | 16.0       |          |         | 24.0  |      |      | 24.0  | 24.0 |
| Actuated g/C Ratio            | 0.26       | 0.26 |              |       | 0.23       |          |         | 0.34  |      |      | 0.34  | 0.34 |
| Clearance Time (s)            | 4.0        | 4.0  |              |       | 4.0        |          |         | 4.0   |      |      | 4.0   | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0  |              | Sauce | 3.0        |          |         | 3.0   |      |      | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 455        | 449  |              |       | 733        |          |         | 492   |      |      | 295   | 532  |
| vis Ratio Prot                | c0.28      | 0.09 |              |       | c0.21      |          |         |       |      |      |       |      |
| v/s Ratio Perm                |            |      |              |       |            |          |         | 0.26  |      |      | c0.37 | 0.03 |
| v/c Ratio                     | 1.08       | 0.35 |              |       | 0.91       |          |         | 0.76  |      |      | 1.08  | 0.07 |
| Uniform Delay, d1             | 26.0       | 21.2 |              |       | 26.3       |          |         | 20.4  |      |      | 23.0  | 15.5 |
| Progression Factor            | 1.00       | 1.00 |              |       | 1.00       |          |         | 1.00  |      |      | 1.00  | 1.00 |
| Incremental Delay, d2         | 64.4       | 0.5  |              |       | 15.5       |          |         | 6.6   |      |      | 76.9  | 0.1  |
| Delay (s)                     | 90.4       | 21.7 |              |       | 41.8       |          |         | 27.1  | 1    |      | 99.9  | 15.6 |
| Level of Service              | F          | С    |              |       | D          |          |         | C     |      |      | F     | B    |
| Approach Delay (s)            |            | 71.7 |              |       | 41.8       |          |         | 27.1  |      |      | 77.4  |      |
| Approach LOS                  |            | E    |              |       | D          |          |         | С     |      |      | Ε     |      |
| Intersection Summary          | Without a  |      | 1            |       |            |          |         | 11.5  | 1    | 1    |       |      |
| HCM 2000 Control Delay        |            |      | 54.0         | Н     | CM 2000    | Level of | Service |       | D    |      |       |      |
| HCM 2000 Volume to Capa       | city ratio |      | 1.03         |       |            |          |         |       | -    |      |       |      |
| Actuated Cycle Length (s)     |            |      | 70.0         | S     | um of lost | time (s) |         |       | 12.0 |      |       |      |
| Intersection Capacity Utiliza | ation      |      | 100.5%       |       | U Level    |          |         |       | G    |      |       |      |
| Analysis Period (min)         |            |      | 15           |       |            |          |         |       |      |      |       |      |
| c Critical Lane Group         |            |      |              |       |            |          |         |       |      |      |       |      |

#### Cumulative+Project School PM 2: SR 1 SB Ramps & Clarinada Ave

|                               |             |      |              |            |            | '                |      |         |
|-------------------------------|-------------|------|--------------|------------|------------|------------------|------|---------|
| Movement                      | EBT         | EBR  | WBL          | WBT        | NBL        | NBR              |      |         |
| Lane Configurations           | <b>†</b> ]> |      | 7            | <b>†</b> † | ٦          | 1                |      |         |
| Traffic Volume (vph)          | 39          | 80   | 363          | 87         | 470        | 315              |      |         |
| Future Volume (vph)           | 39          | 80   | 363          | 87         | 470        | 315              |      |         |
| Ideal Flow (vphpl)            | 1900        | 1900 | 1900         | 1900       | 1900       | 1900             |      |         |
| Total Lost time (s)           | 4.0         | 1000 | 4.0          | 4.0        | 4.0        | 4.0              |      |         |
| Lane Util. Factor             | 0.95        |      | 1.00         | 0.95       | 1.00       | 1.00             |      |         |
| Frpb, ped/bikes               | 0.98        |      | 1.00         | 1.00       | 1.00       | 0.99             |      |         |
| Flpb, ped/bikes               | 1.00        |      | 1.00         | 1.00       | 1.00       | 1.00             |      |         |
| Fipb, peu/bikes<br>Frt        |             |      |              |            |            |                  |      |         |
| Fit Protected                 | 0.90        |      | 1.00<br>0.95 | 1.00       | 1.00       | 0.85             |      |         |
|                               |             |      |              |            |            |                  |      |         |
| Satd. Flow (prot)             | 3105        |      | 1770         | 3539       | 1770       | 1562             |      |         |
| Fit Permitted                 | 1.00        |      | 0.95         | 1.00       | 0.95       | 1.00             |      |         |
| Satd. Flow (perm)             | 3105        |      | 1770         | 3539       | 1770       | 1562             |      |         |
| Peak-hour factor, PHF         | 0.94        | 0.94 | 0.94         | 0.94       | 0.94       | 0.94             |      |         |
| Adj. Flow (vph)               | 41          | 85   | 386          | 93         | 500        | 335              |      |         |
| RTOR Reduction (vph)          | 77          | 0    | 0            | 0          | 0          | 208              |      |         |
| Lane Group Flow (vph)         | 49          | 0    | 386          | 93         | 500        | 127              |      |         |
| Confl. Peds. (#/hr)           |             | 3    | 3            |            | 1000       | 2                |      |         |
| Turn Type                     | NA          |      | Prot         | NA         | Prot       | Perm             |      |         |
| Protected Phases              | 4           |      | 3            | 8          | 2          |                  |      |         |
| Permitted Phases              |             |      |              |            |            | 2                |      |         |
| Actuated Green, G (s)         | 4.9         |      | 15.3         | 24.2       | 19.7       | 19.7             |      |         |
| Effective Green, g (s)        | 4.9         |      | 15.3         | 24.2       | 19.7       | 19.7             |      |         |
| Actuated g/C Ratio            | 0.09        |      | 0.29         | 0.47       | 0.38       | 0.38             |      |         |
| Clearance Time (s)            | 4.0         |      | 4.0          | 4.0        | 4.0        | 4.0              |      |         |
| Vehicle Extension (s)         | 3.0         |      | 3.0          | 3.0        | 3.0        | 3.0              |      |         |
| Lane Grp Cap (vph)            | 293         |      | 521          | 1650       | 671        | 592              |      |         |
| v/s Ratio Prot                | c0.02       |      | c0.22        | 0.03       |            | 592              |      |         |
|                               | CU.UZ       |      | CU.22        | 0.05       | c0.28      | 0.00             |      |         |
| v/s Ratio Perm                | 0.47        |      | 0.74         | 0.00       | A 75       | 0.08             |      |         |
| v/c Ratio                     | 0.17        |      | 0.74         | 0.06       | 0.75       | 0.21             |      |         |
| Uniform Delay, d1             | 21.6        |      | 16.5         | 7.6        | 13.9       | 10.9             |      |         |
| Progression Factor            | 1.00        |      | 1.00         | 1.00       | 1.00       | 1.00             |      |         |
| Incremental Delay, d2         | 0.3         |      | 5.6          | 0.0        | 4.5        | 0.2              |      |         |
| Delay (s)                     | 21.9        |      | 22.1         | 7.6        | 18.4       | 11.1             |      |         |
| Level of Service              | C           |      | С            | A          | B          | В                |      |         |
| Approach Delay (s)            | 21.9        |      |              | 19.3       | 15.5       |                  |      |         |
| Approach LOS                  | С           |      |              | В          | В          |                  |      |         |
| Intersection Summary          |             |      | di se di     |            |            |                  |      | and the |
| HCM 2000 Control Delay        |             |      | 17.3         | Н          | CM 2000    | Level of Service | В    |         |
| HCM 2000 Volume to Capa       | city ratio  |      | 0.67         |            |            |                  |      |         |
| Actuated Cycle Length (s)     |             |      | 51.9         | S          | um of lost | time (s)         | 12.0 |         |
| Intersection Capacity Utiliza | tion        |      | 59.5%        | IC         | U Level o  | of Service       | В    |         |
| intersection outputing ounde  |             |      |              |            |            |                  |      |         |

### Cumulative+Project PM 2: SR 1 SB Ramps & Clarinada Ave

|                               |            | $\mathbf{Y}$ | 1     | +          | -          | 1                |     |
|-------------------------------|------------|--------------|-------|------------|------------|------------------|-----|
| Movement                      | EBT        | EBR          | WBL   | WBT        | NBL        | NBR              | 120 |
| Lane Configurations           | <b>↑</b> ₽ |              | ٦     | <b>†</b> † | ٦          | 1                |     |
| Traffic Volume (vph)          | 44         | 89           | 405   | 97         | 524        | 351              |     |
| Future Volume (vph)           | 44         | 89           | 405   | 97         | 524        | 351              |     |
| Ideal Flow (vphpl)            | 1900       | 1900         | 1900  | 1900       | 1900       | 1900             |     |
| Total Lost time (s)           | 4.0        |              | 4.0   | 4.0        | 4.0        | 4.0              |     |
| Lane Util. Factor             | 0.95       |              | 1.00  | 0.95       | 1.00       | 1.00             |     |
| Frpb, ped/bikes               | 0.97       |              | 1.00  | 1.00       | 1.00       | 0.99             |     |
| Flpb, ped/bikes               | 1.00       |              | 1.00  | 1.00       | 1.00       | 1.00             |     |
| Frt                           | 0.90       |              | 1.00  | 1.00       | 1.00       | 0.85             |     |
| Flt Protected                 | 1.00       |              | 0.95  | 1.00       | 0.95       | 1.00             |     |
| Satd. Flow (prot)             | 3103       |              | 1770  | 3539       | 1770       | 1562             |     |
| Flt Permitted                 | 1.00       |              | 0.95  | 1.00       | 0.95       | 1.00             |     |
| Satd. Flow (perm)             | 3103       |              | 1770  | 3539       | 1770       | 1562             |     |
| Peak-hour factor, PHF         | 0.90       | 0.90         | 0.90  | 0.90       | 0.90       | 0.90             |     |
| Adj. Flow (vph)               | 49         | 99           | 450   | 108        | 582        | 390              |     |
| RTOR Reduction (vph)          | 91         | 0            | 0     | 0          | 0          | 230              |     |
| Lane Group Flow (vph)         | 57         | 0            | 450   | 108        | 582        | 160              |     |
| Confl. Peds. (#/hr)           |            | 3            | 3     |            |            | 2                |     |
| Turn Type                     | NA         |              | Prot  | NA         | Prot       | Perm             |     |
| Protected Phases              | 4          |              | 3     | 8          | 2          | 1 Onn            |     |
| Permitted Phases              |            |              |       |            |            | 2                |     |
| Actuated Green, G (s)         | 5.3        |              | 21.4  | 30.7       | 26.8       | 26.8             |     |
| Effective Green, g (s)        | 5.3        |              | 21.4  | 30.7       | 26.8       | 26.8             |     |
| Actuated g/C Ratio            | 0.08       |              | 0.33  | 0.47       | 0.41       | 0.41             |     |
| Clearance Time (s)            | 4.0        |              | 4.0   | 4.0        | 4.0        | 4.0              |     |
| Vehicle Extension (s)         | 3.0        |              | 3.0   | 3.0        | 3.0        | 3.0              |     |
| Lane Grp Cap (vph)            | 251        |              | 578   | 1658       | 724        | 639              |     |
| v/s Ratio Prot                | c0.02      |              | c0.25 | 0.03       | c0.33      | 000              |     |
| v/s Ratio Perm                | 00.02      |              | 00.20 | 0.00       | 00.00      | 0.10             |     |
| v/c Ratio                     | 0.23       |              | 0.78  | 0.07       | 0.80       | 0.25             |     |
| Uniform Delay, d1             | 28.2       |              | 19.9  | 9.5        | 17.0       | 12.7             |     |
| Progression Factor            | 1.00       |              | 1.00  | 1.00       | 1.00       | 1.00             |     |
| Incremental Delay, d2         | 0.5        |              | 6.6   | 0.0        | 6.5        | 0.2              |     |
| Delay (s)                     | 28.6       |              | 26.5  | 9.6        | 23.5       | 12.9             |     |
| Level of Service              | С          |              | С     | А          | С          | В                |     |
| Approach Delay (s)            | 28.6       |              |       | 23.2       | 19.3       |                  |     |
| Approach LOS                  | С          |              |       | С          | В          |                  |     |
| Intersection Summary          |            | -            |       | 4          |            |                  |     |
| HCM 2000 Control Delay        |            |              | 21.4  | Н          | CM 2000    | Level of Service | e   |
| HCM 2000 Volume to Capa       | city ratio |              | 0.74  |            |            |                  |     |
| Actuated Cycle Length (s)     |            |              | 65.5  | S          | um of losi | t time (s)       |     |
| Intersection Capacity Utiliza | ation      |              | 65.8% | IC         | U Level    | of Service       |     |
| Analysis Period (min)         |            |              | 15    |            |            |                  |     |
| c Critical Lane Group         |            |              |       |            |            |                  |     |

### Cumulative+Project PM 4: Serramonte Blvd & SR 1 NB Ramps

|                               | ٦          | -    | >     | 1     | -          | •        | 4       | 1              | 1    | 5     | Ļ     | ~    |
|-------------------------------|------------|------|-------|-------|------------|----------|---------|----------------|------|-------|-------|------|
| Movement                      | EBL        | EBT  | EBR   | WBL   | WBT        | WBR      | NBL     | NBT            | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations           | ۲          | 1.   |       |       | 414        |          |         | 4              |      |       | र्भ   | 1    |
| Traffic Volume (vph)          | 255        | 130  | 69    | 129   | 233        | 363      | 47      | 73             | 136  | 260   | 40    | 90   |
| Future Volume (vph)           | 255        | 130  | 69    | 129   | 233        | 363      | 47      | 73             | 136  | 260   | 40    | 90   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900  | 1900  | 1900       | 1900     | 1900    | 1900           | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)           | 4.0        | 4.0  |       |       | 4.0        |          |         | 4.0            |      |       | 4.0   | 4.0  |
| Lane Util. Factor             | 1.00       | 1.00 |       |       | 0.95       |          |         | 1.00           |      |       | 1.00  | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99 |       |       | 0.98       |          |         | 0.99           |      |       | 1.00  | 0.98 |
| Flpb, ped/bikes               | 1.00       | 1.00 |       |       | 1.00       |          |         | 1.00           |      |       | 1.00  | 1.00 |
| Frt                           | 1.00       | 0.95 |       |       | 0.92       |          |         | 0.93           |      |       | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00 |       |       | 0.99       |          |         | 0.99           |      |       | 0.96  | 1.00 |
| Satd. Flow (prot)             | 1770       | 1745 |       |       | 3181       |          |         | 1700           |      |       | 1784  | 1553 |
| Flt Permitted                 | 0.95       | 1.00 |       |       | 0.99       |          |         | 0.90           |      |       | 0.55  | 1.00 |
| Satd. Flow (perm)             | 1770       | 1745 | _     |       | 3181       | _        |         | 1541           |      |       | 1022  | 1553 |
| Peak-hour factor, PHF         | 0.96       | 0.96 | 0.96  | 0.96  | 0.96       | 0.96     | 0.96    | 0.96           | 0.96 | 0.96  | 0.96  | 0.96 |
| Adj. Flow (vph)               | 266        | 135  | 72    | 134   | 243        | 378      | 49      | 76             | 142  | 271   | 42    | 94   |
| RTOR Reduction (vph)          | 0          | 28   | 0     | 0     | 260        | 0        | 0       | 59             | 0    | 0     | 0     | 60   |
| Lane Group Flow (vph)         | 266        | 179  | 0     | 0     | 495        | 0        | 0       | 208            | 0    | 0     | 313   | 34   |
| Confl. Peds. (#/hr)           | 10         |      | 7     | 7     | -          | 10       | 6       |                | 1    | 1     |       | 6    |
| Turn Type                     | Split      | NA   |       | Split | NA.        |          | Perm    | NA             |      | Perm  | NA    | Perm |
| Protected Phases              | 4          | 4    |       | 8     | 8          |          |         | 2              |      |       | 6     |      |
| Permitted Phases              |            |      |       |       |            |          | 2       |                |      | 6     |       | 6    |
| Actuated Green, G (s)         | 13.7       | 13.7 |       |       | 14.1       |          |         | 22.8           |      |       | 22.8  | 22.8 |
| Effective Green, g (s)        | 13.7       | 13.7 |       |       | 14.1       |          |         | 22.8           |      |       | 22.8  | 22.8 |
| Actuated g/C Ratio            | 0.22       | 0.22 |       |       | 0.23       |          |         | 0.36           |      |       | 0.36  | 0.36 |
| Clearance Time (s)            | 4.0        | 4.0  |       |       | 4.0        |          |         | 4.0            |      |       | 4.0   | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0  |       |       | 3.0        |          | 1.00    | 3.0            | 1    | 1 1   | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 387        | 381  |       |       | 716        |          |         | 561            |      |       | 372   | 565  |
| v/s Ratio Prot                | c0.15      | 0.10 |       |       | c0.16      |          |         |                |      |       |       |      |
| v/s Ratio Perm                |            |      |       |       |            |          |         | 0.13           |      |       | c0.31 | 0.02 |
| v/c Ratio                     | 0.69       | 0.47 |       |       | 0.69       |          |         | 0.37           |      |       | 0.84  | 0.06 |
| Uniform Delay, d1             | 22.5       | 21.3 |       |       | 22.3       |          |         | 14.6           |      |       | 18.2  | 12.9 |
| Progression Factor            | 1.00       | 1.00 |       |       | 1.00       |          |         | 1.00           |      |       | 1.00  | 1.00 |
| Incremental Delay, d2         | 5.0        | 0.9  |       |       | 2.9        |          |         | 0.4            |      |       | 15.7  | 0.0  |
| Delay (s)                     | 27.5       | 22.2 |       |       | 25.1       |          |         | 15.0           |      |       | 33.9  | 13.0 |
| Level of Service              | C          | С    |       |       | С          |          |         | В              |      |       | C     | В    |
| Approach Delay (s)            |            | 25.2 |       |       | 25.1       |          |         | 15.0           |      |       | 29.1  |      |
| Approach LOS                  |            | C    |       |       | С          |          |         | В              |      |       | С     |      |
| Intersection Summary          | 1.1.1.1    |      |       | 1     | Jane &     |          |         | and the second | Sec. | 41.50 | 111   | 3.00 |
| HCM 2000 Control Delay        |            |      | 24.6  | н     | CM 2000    | Level of | Service |                | C    |       |       |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.76  |       |            |          |         |                |      |       |       |      |
| Actuated Cycle Length (s)     |            |      | 62.6  |       | um of lost |          |         |                | 12.0 |       |       |      |
| Intersection Capacity Utiliza | ation      |      | 81.2% |       | CU Level   |          | ŀ       |                | D    |       |       |      |
| Analysis Period (min)         |            |      | 15    |       |            |          |         |                |      |       |       |      |
| c Critical Lane Group         |            |      |       |       |            |          |         |                |      |       |       |      |

# Appendix C

**Traffic Signal Warrants** 

#### #1 St. Francis Blvd and Clarinada Ave



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

#### Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|                                 | _                |       |          |          | AM Peak Ho | ur Volumes | 5       |
|---------------------------------|------------------|-------|----------|----------|------------|------------|---------|
|                                 |                  | Арр   | roach    |          |            |            |         |
|                                 |                  | La    | nes      |          |            | Cum        | ulative |
|                                 |                  |       | 2 or     |          | Existing + | No         | With    |
|                                 |                  | One   | More     | Existing | Project    | Project    | Project |
| Major Street - Both Approaches  | Clarinada Ave    | X     |          | 571      | 573        | 716        | 718     |
| Minor Street - Highest Approach | St. Francis Blvd | X     |          | 298      | 300        | 268        | 270     |
|                                 |                  | Warra | int Met? | N        | N          | Ν          | Ν       |

|                                 |                  |       |              |          | PM Peak Ho | PM Peak Hour Volumes |         |  |  |  |  |  |
|---------------------------------|------------------|-------|--------------|----------|------------|----------------------|---------|--|--|--|--|--|
|                                 |                  |       | roach<br>nes |          |            | Cum                  | ulative |  |  |  |  |  |
|                                 |                  |       | 2 or         |          | Existing + | No                   | With    |  |  |  |  |  |
|                                 |                  | One   | More         | Existing | Project    | Project              | Project |  |  |  |  |  |
| Major Street - Both Approaches  | Clarinada Ave    | x     |              | 713      | 722        | 672                  | 681     |  |  |  |  |  |
| Minor Street - Highest Approach | St. Francis Blvd | X     |              | 216      | 229        | 251                  | 264     |  |  |  |  |  |
|                                 |                  | Warra | int Met?     | N        | N          | N                    | Ν       |  |  |  |  |  |

....

. . .

#### #1 St. Francis Blvd and Clarinada Ave



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

|                                 |                  | School PM Peak Hour Volumes |          |          |            |            |              |  |  |  |
|---------------------------------|------------------|-----------------------------|----------|----------|------------|------------|--------------|--|--|--|
|                                 |                  | Аррі                        | roach    |          |            |            |              |  |  |  |
|                                 |                  | Lanes                       |          |          |            | Cumulative |              |  |  |  |
|                                 |                  |                             | 2 or     |          | Existing + |            |              |  |  |  |
|                                 |                  | One                         | More     | Existing | Project    | No Project | With Project |  |  |  |
| Major Street - Both Approaches  | Clarinada Ave    | x                           |          | 589      | 598        | 624        | 633          |  |  |  |
| Minor Street - Highest Approach | St. Francis Blvd | x                           |          | 278      | 291        | 234        | 247          |  |  |  |
|                                 |                  | Warra                       | int Met? | N        | N          | N          | N            |  |  |  |

|                                 |                  |       | roach<br>nes |          |                       | Cumi       | ulative      |
|---------------------------------|------------------|-------|--------------|----------|-----------------------|------------|--------------|
|                                 |                  | One   | 2 or<br>More | Existing | Existing +<br>Project | No Project | With Project |
| Major Street - Both Approaches  | Clarinada Ave    | x     |              |          |                       |            |              |
| Minor Street - Highest Approach | St. Francis Blvd | X     |              |          |                       |            |              |
|                                 |                  | Warra | nt Met?      |          |                       |            |              |

#### #2 SR 1 SB ramps and Clarinada Ave



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

|                                 |                  |       |          |          | AM Peak    | Hour Volume | es           |
|---------------------------------|------------------|-------|----------|----------|------------|-------------|--------------|
|                                 |                  | Аррі  | roach    |          |            |             |              |
|                                 |                  | Lanes |          |          |            | Cum         | ulative      |
|                                 |                  |       | 2 or     |          | Existing + |             |              |
|                                 |                  | One   | More     | Existing | Project    | No Project  | With Project |
| Major Street - Both Approaches  | Clarinada Ave    | X     |          | 410      | 442        | 778         | 810          |
| Minor Street - Highest Approach | SR 1 SB off-ramp | X     |          | 549      | 552        | 872         | 875          |
|                                 |                  | Warra | int Met? | Y        | Y          | Y           | Y            |

|                                 |                  | PM Peak Hour Volumes |              |          |                       |            |              |  |  |
|---------------------------------|------------------|----------------------|--------------|----------|-----------------------|------------|--------------|--|--|
|                                 |                  |                      | roach<br>nes |          |                       | Cum        | ulative      |  |  |
|                                 |                  | One                  | 2 or<br>More | Existing | Existing +<br>Project | No Project | With Project |  |  |
| i                               |                  |                      | NOTE         |          |                       |            | ,            |  |  |
| Major Street - Both Approaches  | Clarinada Ave    | X                    |              | 490      | 495                   | 630        | 635          |  |  |
| Minor Street - Highest Approach | SR 1 SB off-ramp | x                    |              | 820      | 837                   | 858        | 875          |  |  |
|                                 |                  | Warra                | int Met?     | Y        | Y                     | Y          | Y            |  |  |

#### #2 SR 1 SB ramps and Clarinada Ave



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

|                                 |                  | School PM Peak Hour Volumes |          |          |            |            |              |  |  |
|---------------------------------|------------------|-----------------------------|----------|----------|------------|------------|--------------|--|--|
|                                 |                  | Аррі                        | roach    |          |            |            |              |  |  |
|                                 |                  | La                          | nes      |          |            | Cum        | ulative      |  |  |
|                                 |                  |                             | 2 or     |          | Existing + |            |              |  |  |
|                                 |                  | One                         | More     | Existing | Project    | No Project | With Project |  |  |
| Major Street - Both Approaches  | Clarinada Ave    | X                           |          | 555      | 560        | 564        | 569          |  |  |
| Minor Street - Highest Approach | SR 1 SB off-ramp | x                           |          | 618      | 635        | 768        | 785          |  |  |
|                                 |                  | Warra                       | int Met? | Y        | Y          | Y          | Y            |  |  |

|                                 |                  |       | Approach<br>Lanes |          |                       | Cumulative |              |
|---------------------------------|------------------|-------|-------------------|----------|-----------------------|------------|--------------|
|                                 |                  | One   | 2 or<br>More      | Existing | Existing +<br>Project | No Project | With Project |
| Major Street - Both Approaches  | Clarinada Ave    | x     |                   |          |                       |            |              |
| Minor Street - Highest Approach | SR 1 SB off-ramp | x     |                   |          |                       |            |              |
|                                 |                  | Warra | ant Met?          |          |                       |            |              |

#### #3 St. Francis Blvd and Serramonte Blvd



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

#### Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|                                 |                  | AM Peak Hour Volumes |              |          |                       |               |                 |  |
|---------------------------------|------------------|----------------------|--------------|----------|-----------------------|---------------|-----------------|--|
|                                 |                  |                      | roach<br>nes |          |                       | Cum           | ulative         |  |
|                                 |                  | One                  | 2 or<br>More | Existing | Existing +<br>Project | No<br>Project | With<br>Project |  |
| Major Street - Both Approaches  | Serramonte BI    | x                    |              | 531      | 566                   | 633           | 668             |  |
| Minor Street - Highest Approach | St. Francis Blvd | x                    |              | 338      | 342                   | 333           | 337             |  |
|                                 |                  | Warra                | int Met?     | Ν        | N                     | Ν             | Ν               |  |

|                                 |                  |       | roach<br>nes |          |                       | Cum           | ulative         |  |
|---------------------------------|------------------|-------|--------------|----------|-----------------------|---------------|-----------------|--|
|                                 |                  | One   | 2 or<br>More | Existing | Existing +<br>Project | No<br>Project | With<br>Project |  |
| Major Street - Both Approaches  | Serramonte Bl    | X     |              | 415      | 422                   | 482           | 489             |  |
| Minor Street - Highest Approach | St. Francis Blvd | X     |              | 278      | 300                   | 364           | 386             |  |
|                                 |                  | Warra | nt Met?      | N        | N                     | N             | Ν               |  |

#### PM Peak Hour Volumes

#### #3 St. Francis Blvd and Serramonte Blvd



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

|                                 | -                | School PM Peak Hour Volumes |              |          |                       |               |                 |  |  |  |
|---------------------------------|------------------|-----------------------------|--------------|----------|-----------------------|---------------|-----------------|--|--|--|
|                                 |                  |                             | roach<br>nes |          |                       | Cum           | ulative         |  |  |  |
|                                 |                  | One                         | 2 or<br>More | Existing | Existing +<br>Project | No<br>Project | With<br>Project |  |  |  |
| Major Street - Both Approaches  | Serramonte Bl    | X                           |              | 426      | 433                   | 486           | 493             |  |  |  |
| Minor Street - Highest Approach | St. Francis Blvd | X                           |              | 274      | 296                   | 368           | 390             |  |  |  |
|                                 |                  | Warra                       | nt Met?      | Ν        | N N N                 |               |                 |  |  |  |

|                                 |                  |       | roach<br>nes |          |                       | Cum           | ulative         |
|---------------------------------|------------------|-------|--------------|----------|-----------------------|---------------|-----------------|
|                                 |                  | One   | 2 or<br>More | Existing | Existing +<br>Project | No<br>Project | With<br>Project |
| Major Street - Both Approaches  | Serramonte BI    | X     |              |          |                       |               |                 |
| Minor Street - Highest Approach | St. Francis Blvd | X     |              |          |                       |               |                 |
|                                 |                  | Warra | int Met?     |          |                       |               |                 |

#### #4 SR 1 NB ramps and Serramonte Blvd



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

#### Peak Hour Volume Warrant Per 2012 MUTCD- Under 40 MPH

|                                 |                  | AM Peak Hour Volumes |              |          |                       |               |                 |  |
|---------------------------------|------------------|----------------------|--------------|----------|-----------------------|---------------|-----------------|--|
|                                 |                  |                      | roach<br>nes |          |                       | Cum           | ulative         |  |
|                                 |                  | 2 or<br>One More     |              | Existing | Existing +<br>Project | No<br>Project | With<br>Project |  |
| Major Street - Both Approaches  | Serramonte Blvd  | x                    | More         | 1055     | 1062                  | 1418          | 1425            |  |
| Minor Street - Highest Approach | SR 1 NB off-ramp | x                    |              | 325      | 330                   | 292           | 297             |  |
|                                 |                  | Warra                | nt Met?      | Y        | Y                     | Y             | Y               |  |

|                                 |                  | PM Peak Hour Volumes |         |          |         |         |         |  |  |
|---------------------------------|------------------|----------------------|---------|----------|---------|---------|---------|--|--|
|                                 |                  | Approach             |         |          |         |         |         |  |  |
|                                 |                  | La                   | nes     |          |         | Cum     | ulative |  |  |
|                                 |                  |                      | 2 or    |          |         | With    |         |  |  |
|                                 |                  | One                  | More    | Existing | Project | Project | Project |  |  |
| Major Street - Both Approaches  | Serramonte Blvd  | x                    |         | 890      | 924     | 1145    | 1179    |  |  |
| Minor Street - Highest Approach | SR 1 NB off-ramp | X                    |         | 357      | 378     | 369     | 390     |  |  |
|                                 |                  | Warra                | nt Met? | Y        | Y       | Y       | Y       |  |  |

. . .

. . .

....

#### #4 SR 1 NB ramps and Serramonte Blvd



\* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

|                                 |                  | School PM Peak Hour Volumes |                   |          |                       |               |                 |  |  |
|---------------------------------|------------------|-----------------------------|-------------------|----------|-----------------------|---------------|-----------------|--|--|
|                                 |                  |                             | Approach<br>Lanes |          |                       | Cum           | ulative         |  |  |
|                                 |                  | One                         | 2 or<br>More      | Existing | Existing +<br>Project | No<br>Project | With<br>Project |  |  |
| Major Street - Both Approaches  | Serramonte Blvd  | X                           |                   | 786      | 820                   | 933           | 967             |  |  |
| Minor Street - Highest Approach | SR 1 NB off-ramp | X                           |                   | 298      | 319                   | 300           | 321             |  |  |
|                                 |                  | Warra                       | nt Met?           | Y        | Y                     | Y             | Y               |  |  |

|                                 |                  |       | roach<br>nes |          |                       | Cum           | ulative         |
|---------------------------------|------------------|-------|--------------|----------|-----------------------|---------------|-----------------|
|                                 |                  | One   | 2 or<br>More | Existing | Existing +<br>Project | No<br>Project | With<br>Project |
| Major Street - Both Approaches  | Serramonte Blvd  | X     |              |          |                       |               |                 |
| Minor Street - Highest Approach | SR 1 NB off-ramp | x     |              |          |                       |               |                 |
|                                 |                  | Warra | nt Met?      |          |                       |               |                 |