New Hilmar Unified Elementary School Project Initial Study

(State Clearinghouse No. 2019110288)

Appendix 4:

Traffic Impact Analysis

Traffic Impact Analysis Report

Hilmar Unified School District Elementary School

Located on the Northwest Corner of Pearl Street and Geer Avenue in the community of Hilmar

In Merced County, California

Prepared for:

Odell Planning & Research, Inc. 49346 Road 426, Suite 2 Oakhurst, CA 93644

December 14, 2020

JLB Project No. 044-001

Traffic Engineering, Transportation Planning, & Parking Solutions

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704 Phone: (559) 570-8991

Traffic Engineering, Transportation Planning, & Parking Solutions Traffic Impact Analysis Report

For the Hilmar Unified School District Elementary School located on the Northwest Corner of Pearl Street and Geer Avenue in the community of Hilmar

In Merced County, CA

December 14, 2020

This Traffic Impact Analysis Report has been prepared under the direction of a licensed Traffic Engineer. The licensed Traffic Engineer attests to the technical information contained therein and has judged the qualifications of any technical specialists providing engineering data from which recommendations, conclusions, and decisions are based.

Prepared by:

Jose Luis Benavides, PE, TE

President

No.T 2328

Exp:06/30/21

TRAFFIC

OF CALIFORN

PROFESSIONAL

PROFESSIONA

Traffic Engineering, Transportation Planning, & Parking Solutions

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704 Phone: (559) 570-8991 www.JLBtraffic.com

Table of Contents

Introduction and Summary	1
Introduction	1
Summary	2
Existing Traffic Conditions	2
Existing plus Project Traffic Conditions	2
Near Term plus Project Traffic Conditions	2
Cumulative Year 2040 No Project Traffic Conditions	2
Cumulative Year 2040 plus Project Traffic Conditions	3
Queuing Analysis	3
Scope of Work	
Study Facilities	Z
Study Intersections	Z
Study Scenarios	5
Existing Traffic Conditions	
Existing plus Project Traffic Conditions	5
Near Term plus Project Traffic Conditions	
Cumulative Year 2040 No Project Traffic Conditions	5
Cumulative Year 2040 plus Project Traffic Conditions	
Level of Service Analysis Methodology	6
Criteria of Significance	6
Operational Analysis Assumptions and Defaults	
Existing Traffic Conditions	
Roadway Network	8
Traffic Signal Warrants	8
Results of Existing Level of Service Analysis	<u>c</u>
Existing plus Project Traffic Conditions	12
Project Description	12
Project Access	12
Walkways	13
Bikeways	13

Transit	13
Trip Generation	14
Trip Distribution	15
Safe Routes to School	15
Vehicle Miles Traveled Analysis	16
Traffic Signal Warrants	17
Results of Existing plus Project Level of Service Analysis	18
Near Term plus Project Traffic Conditions	25
Description of Near Term Projects	25
Traffic Signal Warrants	25
Results of Near Term plus Project Level of Service Analysis	25
Cumulative Year 2040 No Project Traffic Conditions	28
Traffic Signal Warrants	28
Results of Cumulative Year 2040 No Project Level of Service Analysis	28
Cumulative Year 2040 plus Project Traffic Conditions	30
Traffic Signal Warrants	30
Results of Cumulative Year 2040 plus Project Level of Service Analysis	30
Queuing Analysis	
Conclusions and Recommendations	
Existing Traffic Conditions	35
Existing plus Project Traffic Conditions	35
Near Term plus Project Traffic Conditions	36
Cumulative Year 2040 No Project Traffic Conditions	
Cumulative Year 2040 plus Project Traffic Conditions	37
Queuing Analysis	38
Study Participants	
References	40

List of Figures

Figure 1: Vicinity Map	10
Figure 2: Existing - Traffic Volumes, Geometrics and Controls	
Figure 3: Project Site Plan	
Figure 4: Existing Elim Elementary Project Only Trips	
Figure 5: Future Project Only Trips	
Figure 6: Net New Project Only Trips	
Figure 7: Existing plus Project - Traffic Volumes, Geometrics and Controls	
Figure 8: Near Term plus Project - Traffic Volumes, Geometrics and Controls	
Figure 9: Cumulative Year 2040 No Project - Traffic Volumes, Geometrics and Controls	
Figure 10: Cumulative Year 2040 plus Project - Traffic Volumes, Geometrics and Controls	
List of Tables	
Table I: Existing Intersection LOS Results	9
Table II: Existing Elim Elementary School Trip Generation	14
Table III: Future Elim Elementary School Trip Generation	
Table IV: Proposed Elementary School Trip Generation	
Table V: Difference in Trip Generation	15
Table VI: Existing plus Project Intersection LOS Results	
Table VII: Near Term plus Project Intersection LOS Results	
Table VIII: Cumulative Year 2040 No Project Intersection LOS Results	
Table IX: Cumulative Year 2040 plus Project Intersection LOS Results	
Table X: Queuing Analysis	

List of Appendices

Appendix A: Scope of Work Appendix B: Traffic Counts Appendix C: Methodology

Appendix D: Existing Traffic Conditions

Appendix E: Existing plus Project Traffic Conditions
Appendix F: Near Term plus Project Traffic Conditions

Appendix G: Cumulative Year 2040 No Project Traffic Conditions
Appendix H: Cumulative Year 2040 plus Project Traffic Conditions

Appendix I: Signal Warrants

Introduction and Summary

Introduction

This Report describes a Traffic Impact Analysis (TIA) prepared by JLB Traffic Engineering, Inc. (JLB) for the Hilmar Unified School District (HUSD). HUSD, hereby referred to as the District, proposes construction of a New Elementary School campus and reconfiguration of the existing Elim Elementary School campus (Project) serving the community of Hilmar in Merced County. The District currently operates two (2) elementary schools serving grades K-5 (one of which is located in the community of Stevinson), a middle school serving grades 6-8, a high school serving grades 9-12, and a continuation school. The District proposes to a) construct a new Elementary School on a turfed area currently being used by Hilmar High School located on the northwest corner of Pearl Street and Geer Avenue and b) reconfigure a portion of the existing Elim Elementary School (Elim) site. Figure 1 shows the location of the proposed Project site relative to the surrounding roadway network.

The Project will include; six (6) classroom buildings housing 25 classrooms; two (2) buildings housing a library, administrative office, and multipurpose room; recreational areas including turfed athletic fields, hardcourts, and a climbing structure; and the addition of new parking areas. The Project also includes removal of facilities and new construction at Elim. As part of the Project, approximately 500 existing students in pre-K-2 grade will relocate from Elim to the Project, leaving Elim with approximately 500 existing students in 3-5 grade. The Project will provide instruction to approximately 600 students in pre-K-2 grade. Moreover, Elim's capacity will increase to 600 students. Ultimately, the Project proposes to increase overall student capacity from approximately 1,000 to 1,200 total students in pre-K-5 grade. Moreover, the Project proposes to reduce the number of classrooms at Elim from 50 to 26. While each campus is anticipated to have a maximum of 60 staff, it is anticipated that some staff will be shared given the proximity of the schools. New driveways from Geer Avenue will serve as the main access to both elementary schools. The "front" of Elim will be moved from Lander Avenue to the northeast corner of the Project site. A parking area with approximately 58 spaces is proposed to be developed along the eastern portion of the proposed Project site. This parking area will serve teachers, administrative staff and visitors. The Project will also provide parallel parking along the east side of campus for teachers and administrative staff. The Project proposes to construct designated vehicle and bus drop-off areas for each campus.

The Project is consistent with the Merced County Hilmar Community Plan, a comprehensive update of the Hilmar Community Specific Plan and its land use map, the Hilmar Specific Urban Development Plan (Hilmar SUDP). It is worth noting that the Project will fulfill a strategy of the Hilmar Community Plan to provide additional school sites away from Lander Avenue to serve current and future residents. The purpose of this Report is to evaluate the potential on-site and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures, and identify any critical traffic issues that should be addressed in the on-going planning process. The Report primarily focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. The Scope of Work was prepared via consultation with Merced County and Caltrans staff.

Summary

The potential traffic impacts of the proposed Project were evaluated in accordance with the standards set forth by the Level of Service (LOS) policy of the Merced County and Caltrans.

Existing Traffic Conditions

At present, all intersections operate at an acceptable LOS during the both peak periods.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the existing and proposed driveways relative to the existing local roads and driveways in the Project's vicinity. A review of the proposed Project driveways indicates that they are, or will be, located at points that minimize traffic operational impacts to the existing roadway network, namely Pearl Street and Lander Avenue.
- It is recommended that the Project Site Plan incorporate an ADA compliant walkway along its frontage to Geer Avenue and pedestrian facilities that connect to the proposed buildings on campus.
- It is recommended that the Project implement a Class II bike lane along its frontage to Geer Avenue.
- It is estimated that existing Elim generates 1,890 daily trips, 670 AM peak hour trips and 340 PM peak hour trips. At buildout, it is estimated that the future Elim will generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. At buildout, the proposed Elementary School is estimated to generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. The proposed Project is estimated to generate an additional 378 daily trips, 134 AM peak hour trips and 68 PM peak hour trips.
- In this case, the Project's average vehicle miles traveled (round-trip) is estimated to be 9.74 miles for future Elim and 9.67 miles for the proposed Elementary school. The 2018 Regional Transportation Plan (RTP) prepared by the Merced County Association of Governments indicates the average trip length under an 'Infill Emphasis' focus is 14.62 miles for the region defined by the County. Per the TA, the 15 percent VMT reduction threshold is 12.43 miles. Since the Project's VMT is projected to be less than the 12.43 miles, the Project's VMT impact is considered less than significant.
- Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods. Additional details as to the recommended improvements for these intersections are presented later in this report.

Near Term plus Project Traffic Conditions

 Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods. Additional details as to the recommended improvements for these intersections are presented later in this report.

Cumulative Year 2040 No Project Traffic Conditions

Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to exceed its LOS
threshold during both peak periods. Additional details as to the recommended improvements for
these intersections are presented later in this report.

Cumulative Year 2040 plus Project Traffic Conditions

 Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their LOS threshold during one or both peak periods. Additional details as to the recommended improvements for these intersections are presented later in this report.

Queuing Analysis

• It is recommended that the County consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Scope of Work

The study focused on evaluating traffic conditions at the existing study intersections that may potentially be impacted by the Project. On November 5, 2019, a Draft Scope of Work for the preparation of a TIA for this Project was provided to the County of Merced and Caltrans for their review and comment. Any comments to the Draft Scope of Work were to be provided by November 26, 2019.

On November 26, 2019, the Merced County responded and approved the Scope of Work as presented. On December 2, 2019, Caltrans responded to the Scope of Work. Caltrans requested that the analysis include the intersections of Lander Avenue, also known as State Route 165, and Dayton Avenue along with Lander Avenue and Echo Street.

Based on the comments received, the analysis includes the intersections of Lander Avenue and Dayton Avenue and Lander Avenue and Echo Street as requested by Caltrans. The Scope of Work and the comments received from the lead agency and responsible agencies are included in Appendix A.

Study Facilities

The existing peak hour turning movement counts were conducted at the study intersections in February 2020. The intersection turning movement counts included pedestrian and bicyclist volumes. The traffic counts for the existing study intersections are contained in Appendix B. The existing intersection turning movement volumes, intersection geometrics and traffic controls are illustrated in Figure 2.

Study Intersections

- 1. Lander Avenue / Echo Street
- 2. Lander Avenue / Dayton Avenue
- 3. Project Driveway 1 / Geer Avenue
- 4. Project Driveway 2 / Geer Avenue
- 5. Lander Avenue / Geer Avenue

Study Scenarios

Existing Traffic Conditions

This scenario evaluates the Existing Traffic Conditions based on existing traffic volumes and roadway conditions from traffic counts and field surveys conducted in February 2020.

Existing plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Existing plus Project Traffic Conditions. The Existing plus Project traffic volumes were obtained by adding the Net New Project Only Trips to the Existing Traffic Conditions scenario. The Net New Project Only Trips to the study intersections were developed based on existing travel patterns, the existing roadway network, engineering judgment, data provided by the District, knowledge of the study area, existing residential densities, the 2030 Merced County General Plan Circulation Diagram, and the Merced County Hilmar Community Plan Circulation Diagram in the vicinity of the Project.

Near Term plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Near Term plus Project Traffic Conditions. The Near Term plus Project traffic volumes were obtained by expanding existing traffic volumes by an average annual growth rate of 0.4 percent for five (5) years. The average annual growth rate of 0.4 percent was presented in the Scope of Work and approved by Merced County and Caltrans.

Cumulative Year 2040 No Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2040 No Project Traffic Conditions. The Cumulative Year 2040 No Project traffic volumes were obtained by expanding existing traffic volumes by an average annual growth rate of 0.4 percent. The average annual growth rate of 0.4 percent was presented in the Scope of Work and approved by Merced County and Caltrans.

Cumulative Year 2040 plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Cumulative Year 2040 plus Project Traffic Conditions. The Cumulative Year 2040 plus Project traffic volumes were obtained by adding the Net New Project Only Trips to the Cumulative Year 2040 No Project scenario.

Level of Service Analysis Methodology

Level of Service (LOS) is a qualitative index of the performance of an element of the transportation system. LOS is a rating scale running from "A" to "F", with "A" indicating no congestion of any kind and "F" indicating unacceptable congestion and delays. LOS in this study describes the operating conditions for signalized and unsignalized intersections.

The *Highway Capacity Manual* (HCM) 6th Edition is the standard reference published by the Transportation Research Board and contains the specific criteria and methods to be used in assessing LOS. Synchro software was used to define LOS in this study. Details regarding these calculations are included in Appendix C.

Criteria of Significance

The 2030 Merced County General Plan has established LOS C or better for roadways located within rural areas, LOS D or better for roadways located outside Urban Communities that serve as connectors between Urban Communities, and LOS D or better for roadways located within Urban Communities. Since all study intersections fall within the Urban Community of Hilmar according to the 2030 Merced County General Plan Circulation Diagram, all study intersections utilize LOS D as the criteria of significance.

Caltrans endeavors to maintain a target LOS at the transition between LOS C and D on State highway facilities consistent with the *Caltrans Guide for the Preparation of Traffic Impact Studies* dated December 2002. However, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. The State Route 165 Transportation Concept Report has established LOS D as the concept LOS for State Route 165 within the community of Hilmar. Therefore, study facilities within Caltrans' jurisdiction utilize LOS D as the criteria of significance.

Operational Analysis Assumptions and Defaults

The following operational analysis values, assumptions and defaults were used in this study to ensure a consistent analysis of LOS among the various scenarios.

- Yellow time consistent with the California Manual of Uniform Traffic Control Devices (CA MUTCD) based on approach speeds
- All-red clearance intervals of 1.0 second for all phases
- Walk intervals of 7.0 seconds
- Flashing Don't Walk based on 3.5 feet/second walking speed with yellow plus all-red clearance subtracted and 2.0 seconds added
- All new or modified signals utilize protective left-turn phasing, unless otherwise stated
- Heavy vehicle factor:
 - o An average 7 percent on Lander Avenue, per the Caltrans District 10 State Route 165 Transportation Concept Report (TCR) dated November 2015
 - An average 3 percent on Geer Avenue and the Project Driveways
 - An average of 1 percent on Echo Street at Dayton Avenue
- An average of 10 pedestrian calls per hour at all signalized intersections
- The number of observed pedestrians at existing intersections was utilized under all study scenarios
- The observed approach Peak Hour Factor (PHF) at existing intersections was utilized in the Existing, Existing plus Project and Near Term plus Project scenarios
- For the intersections of Project Driveway 1 at Geer Avenue and Project Driveway 2 at Geer Avenue, the following PHF's were utilized in the Existing plus Project and Near Term plus Project scenarios:
 - A PHF of 0.86 during the AM peak
 - A PHF of 0.90 during the PM peak
- For the Cumulative Year 2040 scenarios, the following PHF's were utilized to reflect school traffic operations and an increase in future traffic volumes. As roadways start to reach their saturated flow rates, PHF's tend to increase to 0.90 or higher. The PHF's were established based on historical traffic counts collected by JLB for intersections in proximity of school sites.
 - For the intersections of Project Driveway 1 at Geer Avenue and Project Driveway 2 at Geer Avenue, the following PHF's were utilized:
 - A PHF of 0.86 during the AM peak
 - A PHF of 0.90 during the PM peak
 - A PHF of 0.92, or the existing PHF if higher, is utilized for all other intersections

Existing Traffic Conditions

Roadway Network

The Project site and surrounding study area are illustrated in Figure 1. Important roadways serving the Project are discussed below.

Lander Avenue (State Route 165) is an existing north-south two-lane arterial/highway in the vicinity of the proposed Project site. In this area, Lander Avenue is the only major north-south roadway that bisects the community of Hilmar connecting State Route 99 in Turlock to Interstate 5 south of Los Banos. Lander Avenue is a two-lane conventional highway divided by a two-way left-turn lane between American Avenue and Geer Avenue. The Merced County Hilmar Community Plan designates Lander Avenue as a two-lane divided arterial with on-street parking and sidewalks within the Hilmar Community Planning Area. Outside of the Hilmar Community Planning Area, Lander Avenue is known as State Route 165. The Caltrans District 10 TCR for State Route 165 designates the segment of State Route 165 between Turner Avenue and Bradbury Road as a four-lane expressway with Class III bicycle facilities and sidewalks.

Echo Street is an existing east-west two-lane undivided local street in the vicinity of the proposed Project site. The Merced County Hilmar Community Plan designates Echo Street as a two-lane undivided local street within the Hilmar Community Planning Area.

Dayton Avenue is an existing east-west two-lane undivided local street in the vicinity of the proposed Project site. The Merced County Hilmar Community Plan designates Dayton Avenue as a two-lane undivided local street within the Hilmar Community Planning Area.

Geer Avenue is an existing east-west two-lane undivided collector adjacent to the proposed Project site. In this area, Geer Avenue is a two-lane undivided collector through the Hilmar Community Planning Area. The Merced County Hilmar Community Plan designates Geer Avenue as a two-lane undivided collector west of Camden Drive and a two-lane local roadway east of Camden Drive within the Hilmar Community Planning Area.

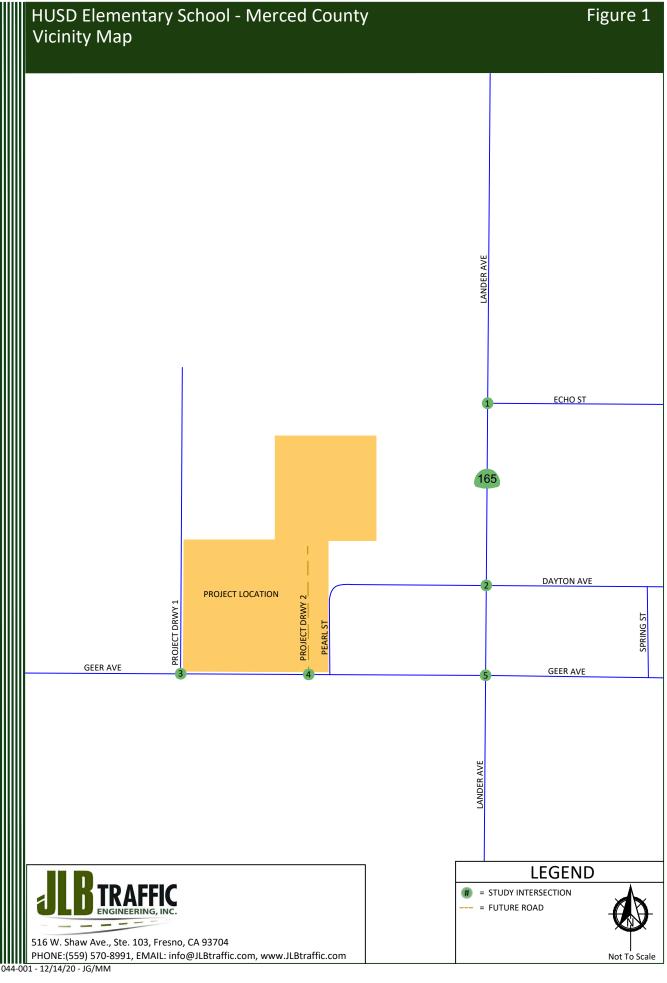
Traffic Signal Warrants

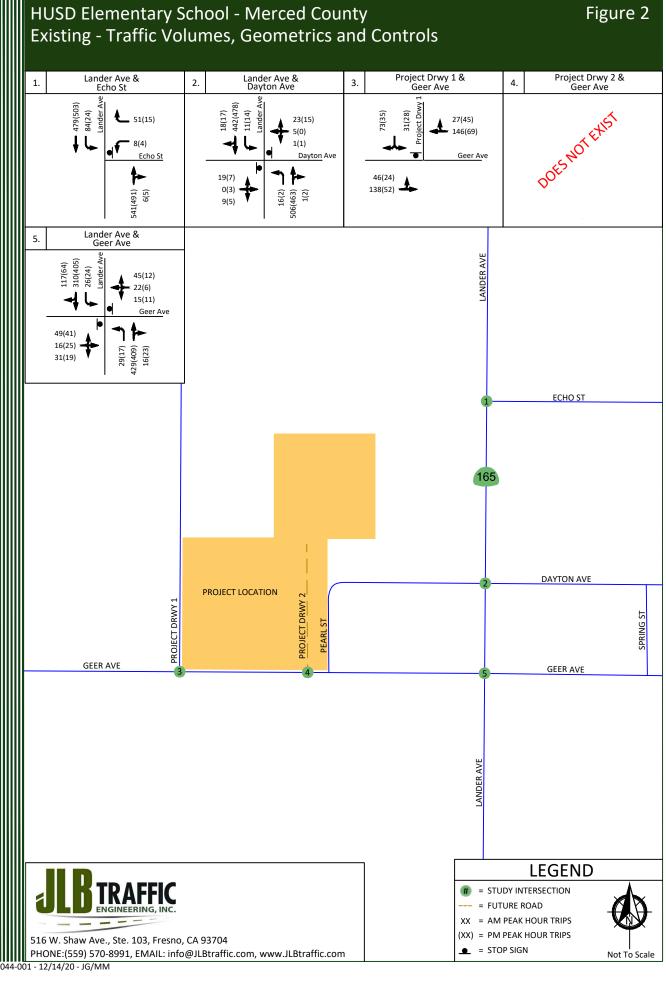
Peak hour traffic signal warrants, as appropriate, were prepared for the Existing Traffic Conditions scenario. The warrants found in Appendix I were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, none of the existing study intersections satisfy the peak hour signal warrant during either peak period.

Results of Existing Level of Service Analysis

Figure 2 illustrates the Existing turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing Traffic Conditions scenario are provided in Appendix D. Table I presents a summary of the Existing peak hour LOS at the study intersections.

At present, all study intersections operate at an acceptable LOS during both peak periods.


Table I: Existing Intersection LOS Results


			AM (7-9) Peal	k Hour	PM (2-4) Peal	k Hour
ID	Intersection Name	Type of Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	Lander Avenue / Echo Street	One-Way Stop	14.4	В	12.3	В
2	Lander Avenue / Dayton Avenue	Two-Way Stop	26.4	D	19.9	С
3	Project Driveway 1 / Geer Avenue	One-Way Stop	13.1	В	10.8	В
4	Project Driveway 2 / Geer Avenue	Does Not Exist	N/A	N/A	N/A	N/A
5	Lander Avenue / Geer Avenue	Two-Way Stop	34.9	D	28.6	D
Note	: LOS = Level of Service based on average delay o	n signalized intersections and Al	l-Way STOP Contro	ols.		

LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Existing plus Project Traffic Conditions

Project Description

The District proposes construction of a New Elementary School campus and reconfiguration of the existing Elim Elementary School campus (Project) serving the community of Hilmar in Merced County. The District currently operates two (2) elementary schools serving grades K-5 (one of which is located in Stevinson), a middle school serving grades 6-8, a high school serving grades 9-12, and a continuation school. The District proposes to a) construct a new Elementary School on a turfed area currently being used by Hilmar High School located on the northwest corner of Pearl Street and Geer Avenue and b) reconfigure a portion of the existing Elim Elementary School (Elim) site. Figure 1 shows the location of the proposed Project site relative to the surrounding roadway network.

The Project will include; six (6) classroom buildings housing 25 classrooms; two (2) buildings housing a library, administrative office, and multipurpose room; recreational areas including turfed athletic fields, hardcourts, and a climbing structure; and the addition of new parking areas. The Project also includes removal of facilities and new construction at Elim. As part of the Project, approximately 500 existing students in pre-K-2 grade will relocate from Elim to the Project, leaving Elim with approximately 500 existing students in 3-5 grade. The Project will provide instruction to approximately 600 students in pre-K-2 grade. Moreover, Elim's capacity will increase to 600 students. Ultimately, the Project proposes to increase overall student capacity from approximately 1,000 to 1,200 total students in pre-K-5 grade. Moreover, the Project proposes to reduce the number of classrooms at Elim from 50 to 26. While each campus is anticipated to have a maximum of 60 staff, it is anticipated that some staff will be shared given the proximity of the schools. New driveways from Geer Avenue will serve as the main access to both elementary schools. The "front" of Elim will be moved from Lander Avenue to the eastern edge of the Project site. A parking area with approximately 58 spaces is proposed to be developed along the eastern portion of the proposed Project site. This parking area will serve teachers, administrative staff and visitors. The Project will also provide parallel parking along the east side of campus for teachers and administrative staff. The Project proposes to construct designated vehicle and bus drop-off areas for each campus.

The Project is consistent with the Merced County Hilmar Community Plan, a comprehensive update of the Hilmar Community Specific Plan and its land use map, the Hilmar Specific Urban Development Plan (Hilmar SUDP). It is worth noting that the Project will fulfill a strategy of the Hilmar Community Plan to provide additional school sites away from Lander Avenue to serve current and future residents. Figure 3 illustrates the latest Project Site Plan.

Project Access

Access to and from the Project will be from two (2) driveways. The main access (Project Driveway 1) is an existing access utilized for shipping and receiving to the Hilmar High School campus. This access point is located along the north side of Geer Avenue approximately 1,300 feet west of Lander Avenue and is proposed as a full access. The other access driveway (Project Driveway 2) is also located along the north side of Geer Avenue approximately 175 feet west of Pearl Street and is proposed as an entrance only access.

JLB analyzed the location of the existing and proposed driveways relative to the existing local roads and driveways in the Project's vicinity. A review of the proposed Project driveways indicates that they are, or will be, located at points that minimize traffic operational impacts to the existing roadway network, namely Pearl Street and Lander Avenue.

Walkways

Currently, walkways exist in the vicinity of the proposed Project site along Lander Avenue, Echo Street, Dayton Avenue east of Lander Avenue, and the majority of the north side of Geer Avenue. The Merced County Hilmar Community Plan suggests that sidewalks are required with all new development. The latest Project Site Plan proposes pedestrian walkways near the northeast corner of the campus with paths toward Elim (east) and Hilmar High School (north). It is recommended that the Project Site Plan incorporate an ADA compliant walkway along its frontage to Geer Avenue and pedestrian facilities that connect to the proposed buildings on campus. With the implementation of the recommended walkways, pedestrians will have adequate and safe pedestrian facilities at all times.

Bikeways

The Merced County Hilmar Community Plan identifies potential bike routes a) Lander Avenue through the community of Hilmar as a Merced County Regional Bicycle Route, b) Echo Street between Lander Avenue and Camden Drive as a Class II Bicycle Route, c) Geer Avenue west of Lander Avenue as a Merced County Regional Bicycle Route, and d) Geer Avenue east of Lander Avenue as a Class II Bicycle Route. Within Hilmar, Lander Avenue serves as the only continuous north-south street, and serves as the primary travel path to several schools. Development of Class II bicycle lane may not be desirable compared to development of an alternative bicycle trail and lane system that keeps bicycles away from State Route 165. A Class I bike path adjacent to Turlock Irrigation District Lateral No. 7, south of Echo Street will become the backbone of the network. Bicycle and pedestrian facilities branching from this trail will ensure non-motorized access to neighborhood focal points such as schools and parks. The Merced County Hilmar Community Plan recommends Class II bike lanes along Lander Avenue and Geer Avenue west of Lander Avenue. Therefore, it is recommended that the Project implement a Class II bike lane along its frontage to Geer Avenue.

Transit

The Bus, Merced's Regional Transit System, is the single public transportation service provider for all of Merced County. At present, no bus routes connect to the community of Hilmar. However, The Bus offers curb-to-curb transit service through Paratransit to individuals that are eligible and have passed the approval process. Paratransit is open for service between 6:00 AM to 8:00 PM on Monday through Friday and 8:00 AM to 6:00 PM on Saturdays and Sundays. Expansion of future transit routes is dependent on transit ridership demand and available funding.

Trip Generation

Trip generation rates for the proposed Project were obtained from the 10th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table II presents the trip generation for existing Elim Elementary School with trip generation rates for 1,000 students in pre-K-5 grade. It is estimated that existing Elim generates 1,890 daily trips, 670 AM peak hour trips and 340 PM peak hour trips. Table III presents the trip generation for future Elim with trip generation rates for 600 students in 3-5 grade. At buildout, it is estimated that the future Elim will generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. Table IV presents the trip generation for the proposed Elementary School will trip generation rates for 600 students in pre-K-2 grade. At buildout, the proposed Elementary School is estimated to generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. Table V presents the difference in trip generation. As can be seen from Table V, the proposed Project is estimated to generate an additional 378 daily trips, 134 AM peak hour trips and 68 PM peak hour trips.

Table II: Existing Elim Elementary School Trip Generation

		Daily AM (7-9) Peak Hour			r		PM (2-4) Peak Hour									
Land Use (ITE Code)	Size	Unit	Derto	Total	Trip	In	Out	In	C 4	Total	Trip	In	Out	-	0	Total
			Rate	Total	Rate	9	6	""	Out	Total	Rate	%		In	Out	Total
Elementary School (520)	1,000	students	1.89	1,890	0.67	54	46	362	308	670	0.34	45	55	153	187	340
Total Project Trips				1,890				362	308	670				153	187	340

Table III: Future Elim Elementary School Trip Generation

				Daily		AM (7-9) Peak Hour					PM (2-4) Peak Hour					
Land Use (ITE Code)	Size	Unit	Desta	Total	Trip	In	Out	In	0	Total	Trip	In	Out	-	04	Total
			Rate Total	Rate	9	%	ın	Out	TOLUI	Rate	:	%	In	Out	Total	
Elementary School (520)	600	students	1.89	1,134	0.67	54	46	217	185	402	0.34	45	55	92	112	204
Total Project Trips				1,134				217	185	402				92	112	204

Table IV: Proposed Elementary School Trip Generation

			Daily		AM (7-9) Peak Hour				PM (2-4) Peak Hour							
Land Use (ITE Code) Size	Size	Unit	Rate Total	Trip	Trip In Out	In	04	Takad	Trip	In	Out	_	Out.	Tabal		
				Total	Rate	9	6	""	Out	Total	Rate	%		In	Out	Total
Elementary School (520)	600	students	1.89	1,134	0.67	54	46	217	185	402	0.34	45	55	92	112	204
Total Project Trips				1,134				217	185	402				92	112	204

Table V: Difference in Trip Generation

	Daily	AM (7-9) Peak Hour			PM (2-4) Peak Hour				
	Total	In	Out	Total	In	Out	Total		
Existing Elim	1,891	362	308	670	153	187	340		
Future Elim & Proposed Elementary	2,268	434	370	804	184	224	408		
Difference in Trip Generation	378	72	62	134	31	37	68		

Trip Distribution

The Net New Project Only Trips to the study intersections were developed based on data provided by the District, existing travel patterns, the existing roadway network, engineering judgment, knowledge of the study area, existing residential and commercial densities, and the Merced County Hilmar Community Plan in the vicinity of the Project. Figure 4 presents the Existing Elim Elementary Project Only Trips. These are the trip distribution and assignment patterns of approximately 1,000 students attending Elim Elementary School considering access along Lander Avenue. Figure 5 presents the Future Project Only Trips. These are the anticipated trip distribution patterns of the anticipated 1,200 students attending the proposed Project and future Elim assuming access along Geer Avenue. Figure 6 presents the Net New Project Only Trips to the study intersections. The net new trips are simply the difference between the Future Project Only Trips and Existing Elim Elementary Project Only Trips.

Safe Routes to School

The most direct path to the Project site for students residing north of Echo Street would be to either head east or west toward Lander Avenue and then south toward Echo Street. Students may utilize any combination of local streets and/or major roadways to arrive at Lander Avenue and Echo Street. Major roadways include American Avenue and Bloss Avenue, which contain signalized intersections at Lander Avenue with marked crosswalks and pedestrian walkways. The majority of local streets in the area are controlled by a two-way stop with unmarked crosswalks on all approaches and contain pedestrian walkways. Students would meet at the southwest corner of Lander Avenue and Echo Street, which is controlled by a one-way stop on Echo Street and contains marked crosswalks in the westbound and northbound approaches. Students may then continue south along the west side of Lander Avenue toward Dayton Avenue. The intersection of Lander Avenue and Dayton Avenue is controlled by a two-way stop on Dayton Avenue and contains marked crosswalks in the eastbound and westbound approaches. Students may continue west along the north side of Dayton Avenue and then south along the west side of Pearl Street toward Geer Avenue. The intersection of Pearl Street at Geer Avenue is controlled by a one-way stop on Pearl Street and contains unmarked crosswalks on all approaches. Students may then proceed west along the north side of Geer Avenue until reaching the nearest campus entrance.

The most direct path to the Project site for students residing east of Lander Avenue between Echo Street and Geer Avenue would be to head west toward Lander Avenue and then south toward Geer Avenue. The intersection of Lander Avenue and Geer Avenue is controlled by a two-way stop on Geer Avenue and contains unmarked crosswalks on all approaches. Students may continue west along the north side of Geer Avenue toward Pearl Street. The intersection of Pearl Street at Geer Avenue is controlled by a one-way stop on Pearl Street and contains unmarked crosswalks on all approaches. Students may then proceed west along the north side of Geer Avenue until reaching the nearest campus entrance.

The most direct path to the Project site for students residing southeast of Lander Avenue and Geer Avenue would be to head north toward Geer Avenue and then west toward Lander Avenue. The intersection of Lander Avenue and Geer Avenue is controlled by a two-way stop on Geer Avenue and contains unmarked crosswalks on all approaches. Students may continue west along the north side of Geer Avenue toward Pearl Street. The intersection of Pearl Street at Geer Avenue is controlled by a one-way stop on Pearl Street and contains unmarked crosswalks on all approaches. Students may then proceed west along the north side of Geer Avenue until reaching the nearest campus entrance.

The most direct path to the Project site for students residing southwest of Lander Avenue and Geer Avenue would be to head north toward Geer Avenue and then east until reaching the Lander Avenue. The intersection of Lander Avenue and Geer Avenue is controlled by a two-way stop on Geer Avenue and contains unmarked crosswalks on all approaches. Students may continue west along the north side of Geer Avenue toward Pearl Street. The intersection of Pearl Street at Geer Avenue is controlled by a one-way stop on Pearl Street and contains unmarked crosswalks on all approaches. Students may then proceed west along the north side of Geer Avenue until reaching the nearest campus entrance.

Vehicle Miles Traveled Analysis

Senate Bill (SB) 743 (Steinberg 2013) was approved by then Governor Brown on September 27, 2013. SB 743 created a path to revise the definition of transportation impacts according to the California Environmental Quality Act (CEQA). The revised CEQA Guidelines requiring Vehicle Miles Traveled (VMT) Analysis became effective December 28, 2018. However, agencies had until July 1, 2020 to finalize their local guidelines on VMT Analysis. Therefore, as agencies finalize their VMT Analysis protocol, CEQA transportation impacts are to be determined using LOS of intersections and roadways, which is a measure of congestion. The intent of SB 743 is to align CEQA transportation study methodology with and promote the statewide goals and policies of reducing VMT and greenhouse gases (GHG). Three objectives of SB 743 related to development are to reduce GHG, diversify land uses, and focus on creating a multimodal environment. It is hoped that this will spur infill development.

The State of California Governor's Office of Planning and Research (OPR) published a Technical Advisory (TA) on *Evaluating Transportation Impacts in CEQA* (December 2018) to provide advice and recommendations, which agencies and other entities may use at their discretion. The TA acknowledges that lead agencies should set criteria and thresholds for VMT and transportation impacts. However, it provides guidance to residential, office and retail uses, citing these as the most common land uses. Beyond these three land uses, there is no guidance provided for any other land use type. In other words, the TA does not establish any presumptive thresholds or analytical methods for assessing VMT in relation to school projects and operations. The TA also notes that land uses may have a less than significant impact if located within a low VMT areas, in close proximity to a transit route, areas of a region and suggests that screening maps be used for this determination. Furthermore, the TA also notes that local serving retail generally less than 50,000 square feet and projects which yield 110 or fewer trips could be considered not to lead to a significant impact. As of the date of this Report, the County of Merced had not finalized its VMT guidelines. As a result, the VMT analysis presented in this Report was performed pursuant to the TA.

VMT is simply the product of a number of trips and the length of those trips. The first step in a VMT analysis is to establish the baseline average VMT, which requires the definition of a region. The Technical Advisory states that existing VMT may be measured at the regional or city level. On the contrary, the Technical Advisory also notes that VMT analyses should not be truncated due to "jurisdictional or other boundaries." In this case, the Project site is located within a defined service area that is currently being served by Elim Elementary School. When considering the existing Elim Elementary School, the estimated average vehicle miles traveled (round-trip) for existing Elim is 9.30 miles per trip. When considering the Project, the Project's average vehicle miles traveled (round-trip) is estimated to be 9.74 miles for future Elim and 9.67 miles for the proposed Elementary school. Additionally, the proposed Project will incorporate adequate pedestrian and bicycle facilities. The 2018 Regional Transportation Plan (RTP) prepared by the Merced County Association of Governments (MCAG) indicates the average trip length under an 'Infill Emphasis' focus is 14.62 miles for the region defined by the County. Per the TA, the 15 percent VMT reduction threshold is 12.43 miles. Since the Project's VMT is projected to be less than the 12.43 miles, the Project's VMT impact is considered less than significant.

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the Existing plus Project Traffic Conditions scenario. The warrants found in Appendix I were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of Project Driveway 1 and Geer Avenue is projected to satisfy the peak hour signal warrant during the AM peak period only, while the intersection of Lander Avenue and Geer Avenue is projected to satisfy the peak hour signal warrant during the both peak periods. Based on the signal warrant and engineering judgment, signalization of this intersection is recommended.

Results of Existing plus Project Level of Service Analysis

The Existing plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 7 illustrates the Existing plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing plus Project Traffic Conditions scenario are provided in Appendix E. Table VI presents a summary of the Existing plus Project peak hour LOS at the study intersections.

Under this scenario, the study intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods.

The Hilmar Community Plan examined alternative scenarios to alleviate traffic along Lander Avenue that includes additional lane capacity along Lander Avenue, which would eliminate on-street parking, but would not meet Caltrans' lane standards for a Highway designation; and additional traffic lanes that meet Caltrans' Highway Standards. The first alternative was not supported by businesses along Lander Avenue and by the Community in general. The second alternative, which would have increased right-of-way along Lander Avenue, was determined to be infeasible due to the cost associated with right-of-way acquisition and would diminish Hilmar's small-town character. The Highway 165 Bypass has been determined as the most feasible option to alleviate inter-regional traffic as well as heavy truck uses through the community. Until the bypass is constructed, Lander Avenue may temporarily operate at LOS D or below during peak hours, through a General Plan Amendment allowing this LOS scenario that was approved with the Hilmar Community Plan in order to maintain Hilmar's small-town character and facilitate the construction of the Highway 165 Bypass through an update to the bridge and thoroughfare fee. In order to improve LOS at these intersections until that time, it is recommended that the following improvements be implemented.

- Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound leftturning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
- Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - Add a southbound right-turn lane.

(559) 570-8991

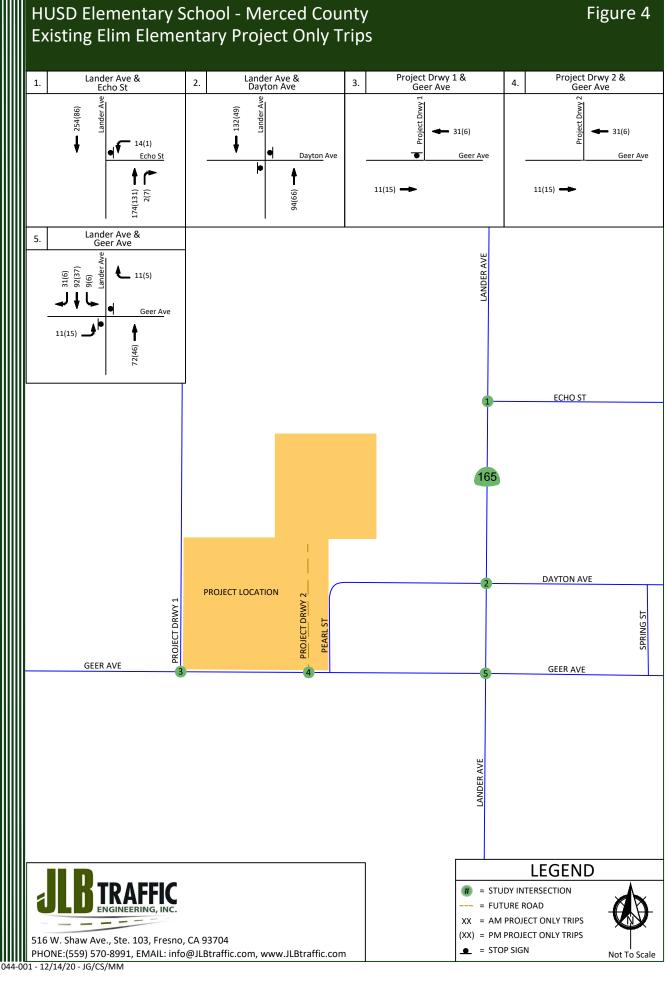
- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.

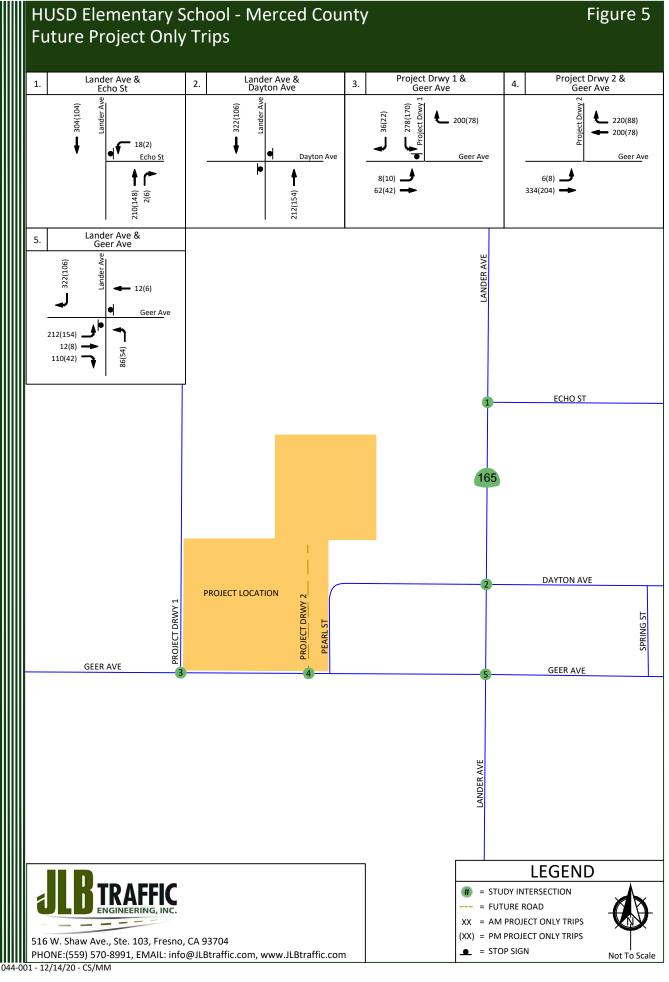
Table VI: Existing plus Project Intersection LOS Results

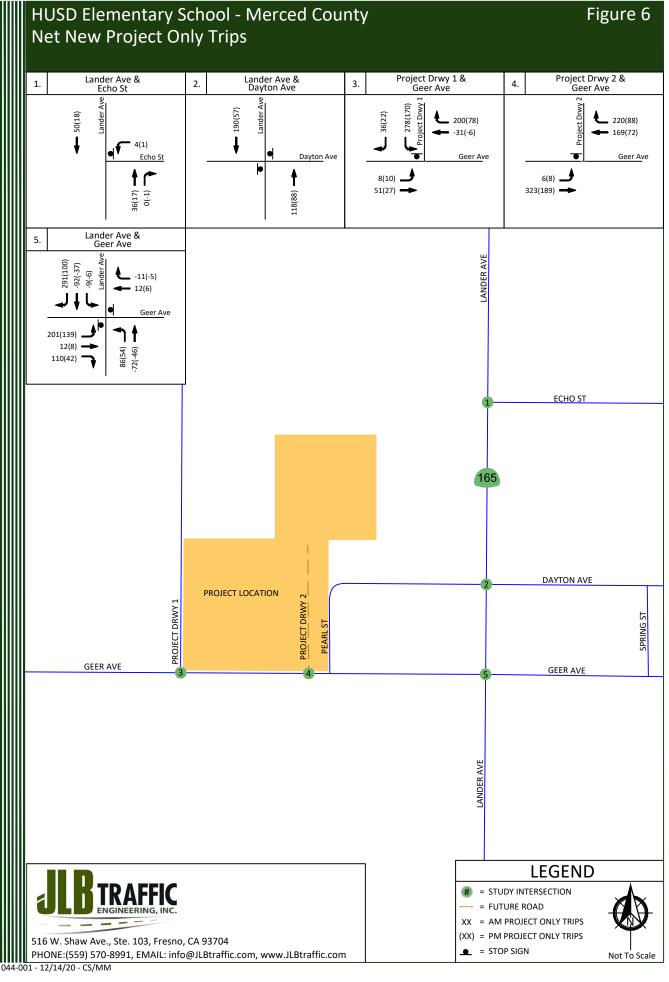
			AM (7-9) Peal	k Hour	PM (2-4) Pea	k Hour
ID	Intersection Name	Type of Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	Lander Avenue / Echo Street	One-Way Stop	15.5	С	12.6	В
2	Landay Avanua / Daviday Avanua	Two-Way Stop	46.4	E	23.8	С
2	Lander Avenue / Dayton Avenue	Two-Way Stop (Mitigated)	13.9	В	12.4	В
1	Desirat Deiverson 1 / Coor Avenue	One-Way Stop	77.1	F	13.6	В
3	Project Driveway 1 / Geer Avenue	One-Way Stop (Mitigated)	23.6	С	11.5	В
4	Project Driveway 2 / Geer Avenue	Uncontrolled	0.2	Α	0.3	Α
_	London Annua / Com Annua	Two-Way Stop	>120.0	F	>120.0	F
5	Lander Avenue / Geer Avenue	Signalized (Mitigated)	46.5	D	21.0	С

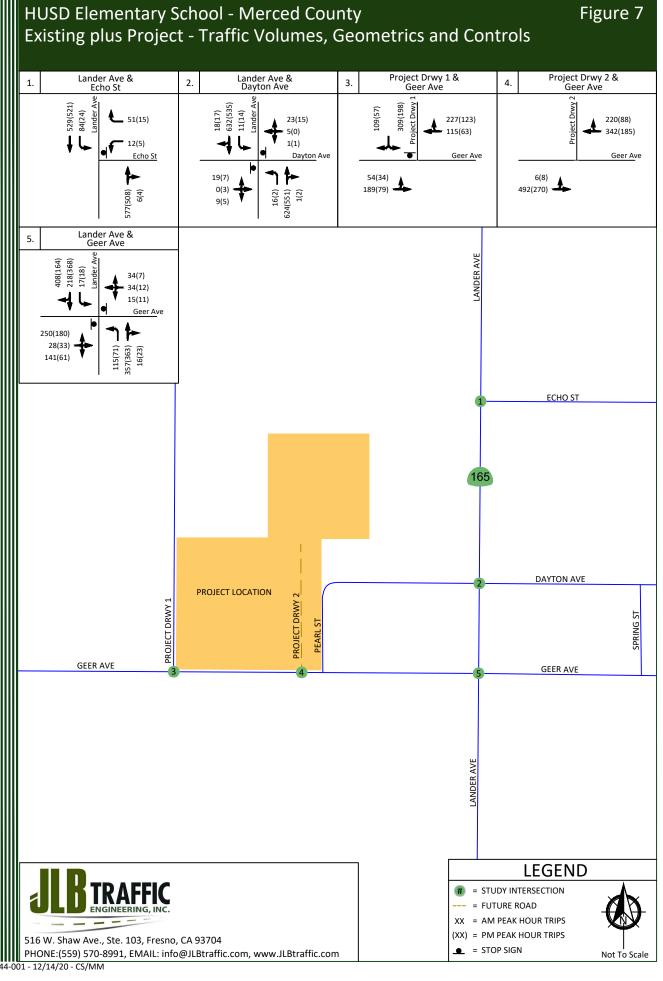
Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.






Not To Scale


516 W. Shaw Ave., Ste. 103, Fresno, CA 93704

PHONE:(559) 570-8991, EMAIL: info@JLBtraffic.com, www.JLBtraffic.com

Near Term plus Project Traffic Conditions

Description of Near Term Projects

Near Term Projects are approved and/or known projects that are either under construction, built but not fully occupied, are not built but have final site development review (SDR) approval, or for which the lead agency or responsible agencies have knowledge of. The Merced County and Caltrans staff were consulted throughout the preparation of this TIA regarding approved and/or known projects that could potentially impact the study intersections. JLB staff conducted a reconnaissance of the surrounding area to confirm the Near Term Projects. Subsequently, it was agreed that there are no projects approved, near approval, or in the pipeline within the proximity of the Project site.

Due to the lack of Near Term Projects in Hilmar, a growth rate was utilized to expand existing volumes to Year 2025. The growth rate of 0.4 percent, which was agreed upon by County of Merced staff, was applied to undergo this volume expansion. This was the process was used to derive volumes for the Near Term plus Project scenario as opposed to increasing volumes based on the Near Term Projects.

Traffic Signal Warrants

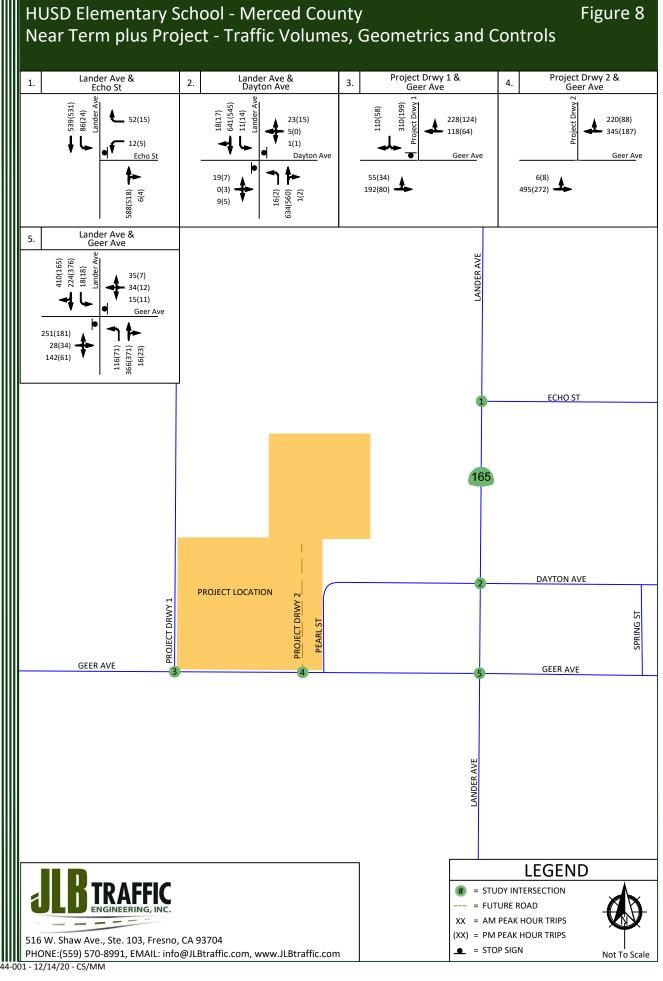
Peak hour traffic signal warrants, as appropriate, were prepared for the Near Term plus Project Traffic Conditions scenario. The warrants found in Appendix I were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to satisfy the peak hour signal warrant during the both peak periods. Based on the signal warrant and engineering judgment, signalization of this intersection is recommended.

Results of Near Term plus Project Level of Service Analysis

The Near Term plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 8 illustrates the Near Term plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Near Term plus Project Traffic Conditions scenario are provided in Appendix F. Table VII presents a summary of the Near Term plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods. To improve LOS at these intersections, it is recommended that the following improvements be implemented.

- Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound left-turning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
- Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - o Add a southbound right-turn lane.
- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.


Table VII: Near Term plus Project Intersection LOS Results

	Intersection Name		AM (7-9) Peal	k Hour	PM (2-4) Peal	k Hour
ID		Type of Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	Lander Avenue / Echo Street	One-Way Stop	15.7	С	12.7	В
	Landar Avanus / Davitar Avanus	Two-Way Stop	48.4	E	24.3	С
2	Lander Avenue / Dayton Avenue	Two-Way Stop (Mitigated)	14.0	В	12.5	В
3	Project Privavey 1 / Coor Avenue	One-Way Stop	82.7	F	13.7	В
3	Project Driveway 1 / Geer Avenue	One-Way Stop (Mitigated)	24.2	С	11.5	В
4	Project Driveway 2 / Geer Avenue	Uncontrolled	0.2	Α	0.3	Α
_	Lander Avenue / Coor Avenue	Two-Way Stop	>120.0	F	>120.0	F
5	Lander Avenue / Geer Avenue	Signalized (Mitigated)	48.1	D	21.4	С

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Cumulative Year 2040 No Project Traffic Conditions

Traffic Signal Warrants

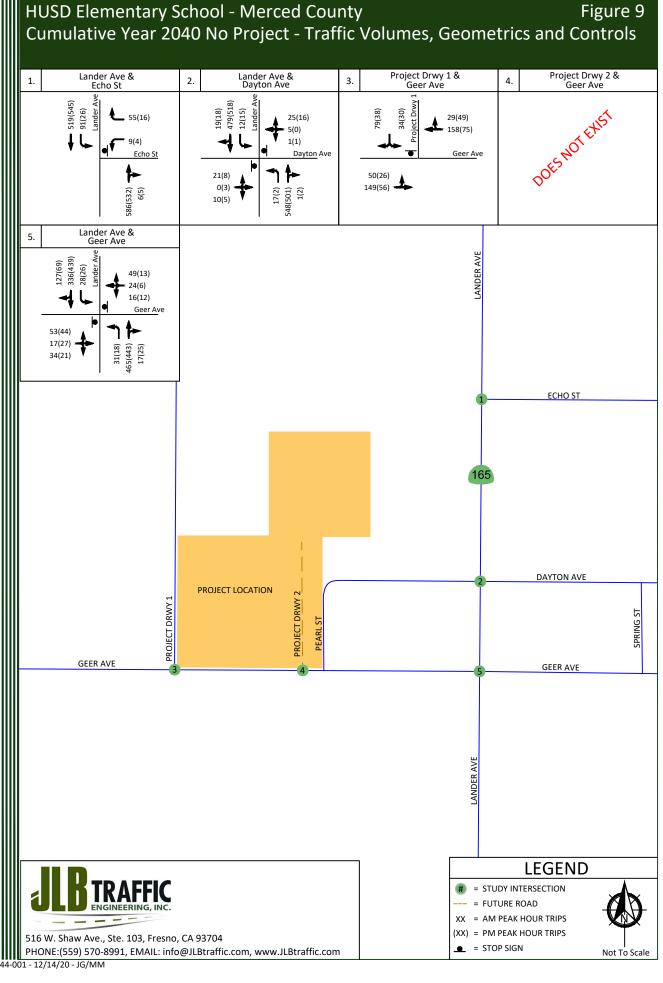
Peak hour traffic signal warrants, as appropriate, were prepared for the Cumulative Year 2040 No Project Traffic Conditions scenario. The warrants found in Appendix I were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to satisfy the peak hour signal warrant during the both peak periods. Based on the signal warrant and engineering judgment, signalization of this intersection is recommended.

Results of Cumulative Year 2040 No Project Level of Service Analysis

The Cumulative Year 2040 No Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 9 illustrates the Cumulative Year 2040 No Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2040 No Project Traffic Conditions scenario are provided in Appendix G. Table VIII presents a summary of the Cumulative Year 2040 No Project peak hour LOS at the study intersections.

Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to exceed its LOS threshold during both peak periods. To improve the LOS of this intersection, it is recommended that the following improvements be implemented.

- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.


Table VIII: Cumulative Year 2040 No Project Intersection LOS Results

			AM (7-9) Peal	k Hour	PM (2-4) Peak Hour		
ID	Intersection Name	Type of Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS	
1	Lander Avenue / Echo Street	One-Way Stop	14.9	В	12.7	В	
2	Lander Avenue / Dayton Avenue	Two-Way Stop	30.2	D	22.5	С	
3	Project Driveway 1 / Geer Avenue	One-Way Stop	11.1	В	9.7	Α	
4	Project Driveway 2 / Geer Avenue	Uncontrolled	N/A	N/A	N/A	N/A	
_	London Annua / Com Annua	Two-Way Stop	43.3	E	35.5	E	
5	Lander Avenue / Geer Avenue	Signalized (Improved)	16.9	В	14.2	В	

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Cumulative Year 2040 plus Project Traffic Conditions

Traffic Signal Warrants

Peak hour traffic signal warrants, as appropriate, were prepared for the Cumulative Year 2040 plus Project Traffic Conditions scenario. The warrants found in Appendix I were prepared pursuant to the CA MUTCD guidelines for the preparation of traffic signal warrants. Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to satisfy the peak hour signal warrant during the both peak periods. Based on the signal warrant and engineering judgment, signalization of this intersection is recommended.

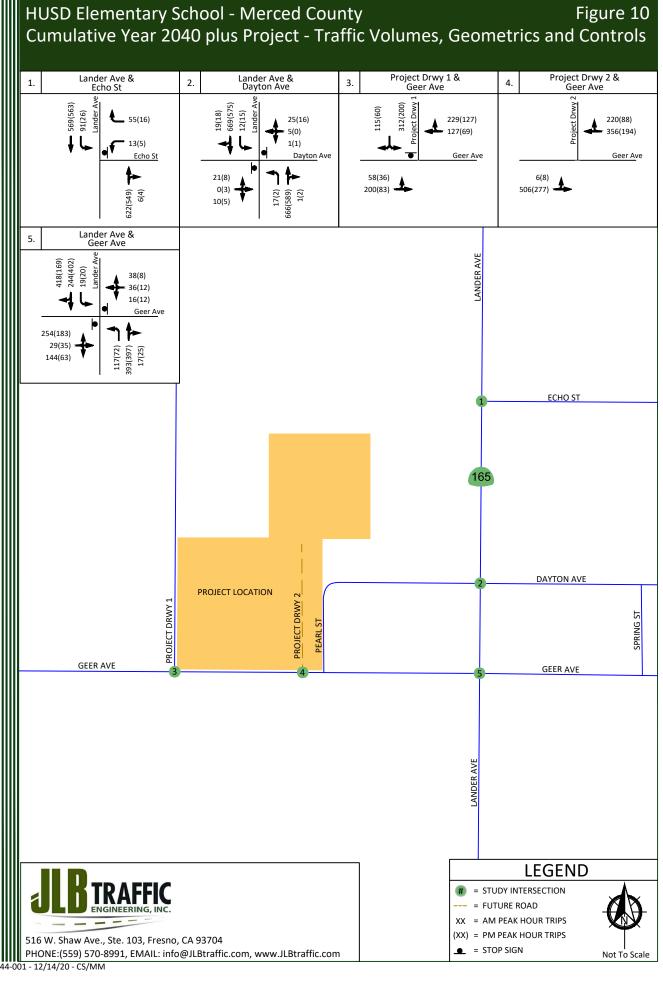
Results of Cumulative Year 2040 plus Project Level of Service Analysis

The Cumulative Year 2040 plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place. Figure 10 illustrates the Cumulative Year 2040 plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2040 plus Project Traffic Conditions scenario are provided in Appendix H. Table IX presents a summary of the Cumulative Year 2040 plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their LOS threshold during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.

- Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound leftturning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
- Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - Add a southbound right-turn lane.
- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.

Table IX: Cumulative Year 2040 plus Project Intersection LOS Results


			AM (7-9) Peal	k Hour	PM (2-4) Peal	k Hour
ID	Intersection Name	Type of Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	Lander Avenue / Echo Street	One-Way Stop	16.0	С	13.1	В
2	Lander Avenue / Deuten Avenue	Two-Way Stop	56.1	F	27.1	D
2	Lander Avenue / Dayton Avenue	Two-Way Stop (Mitigated)	14.4	В	12.8	В
	Decirat Diverse 4 / Com Assess	One-Way Stop	99.9	F	14.0	В
3	Project Driveway 1 / Geer Avenue	Two-Way Stop (Mitigated)	26.8	D	11.6	В
4	Project Driveway 2 / Geer Avenue	Uncontrolled	0.2	Α	0.3	Α
_	Lander Avenue / Coor Avenue	Two-Way Stop	>120.0	F	>120.0	F
5	Lander Avenue / Geer Avenue	Signalized (Mitigated)	49.9	D	22.9	С

LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.

www.JLBtraffic.com

Queuing Analysis

Table X provides a queue length summary for left-turn and right-turn lanes at the study intersections under all study scenarios. The queuing analyses for the study intersections are contained in the LOS worksheets for the respective scenarios. Appendix C contains the methodologies used to evaluate these intersections.

Queuing analyses were completed using Sim Traffic output information. Synchro provides both 50th and 95th percentile maximum queue lengths (in feet). According to the Synchro manual, "the 50th percentile maximum queue is the maximum back of queue on a typical cycle and the 95th percentile queue is the maximum back of queue with 95th percentile volumes." The queues shown on Table X are the 95th percentile queue lengths for the respective lane movements.

The Highway Design Manual (HDM) provides guidance for determining deceleration lengths for the left-turn and right-turn lanes based on design speeds. Per the HDM criteria, "tapers for right-turn lanes are usually un-necessary since the main line traffic need not be shifted laterally to provide space for the right-turn lane. If, in some rare instances, a lateral shift were needed, the approach taper would use the same formula as for a left-turn lane." Therefore, a bay taper length pursuant to the Caltrans HDM would need to be added, as necessary, to the recommended storage lengths presented below.

The storage capacity for the Cumulative Year 2040 scenarios shall be based on the SimTraffic output files and engineering judgement. The values in bold presented in Table X are the projected queue lengths that will likely need to be accommodated by the Cumulative Year 2040 scenario. At the remaining approaches, the existing storage capacity will be sufficient to accommodate the maximum queue.

(559) 570-8991

Table X: Queuing Analysis

ID	Intersection	Existing Qu Storage Leng		Exis	ting	Exis plus P	ting Project		Term Project	Year	lative 2040 roject	Year	lative 2040 Project
		Storage Leng	()/	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
		WB L	165	34	17	44	15	33	12	43	0	39	21
		WB R	>300	64	35	55	42	56	44	59	37	53	33
1	Lander Avenue / Echo Street	NB TR	>300	113	49	122	59	96	34	136	27	116	61
	,	SB L	250	57	35	60	28	56	26	77	0	72	33
		SB T	>300	83	18	86	75	60	28	79	0	100	51
		EB LTR	>300	54	43	*	*	*	*	45	44	*	*
		EB R	*	*	*	29	21	30	23	*	*	41	26
		WB LTR	>300	49	40	*	*	*	*	53	25	*	*
	Lander Avenue	WB R	*	*	*	42	37	41	40	*	*	42	42
2	/ Dayton Avenue	NB L	50	21	9	24	0	42	10	24	0	29	9
		NB TR	>300	10	23	36	0	0	18	31	0	44	24
		SB L	55	22	15	32	36	21	30	22	37	64	31
		SB TR	>300	26	0	106	61	120	10	28	40	287	40
		EB LT	>300	27	15	69	28	59	33	18	0	57	34
		WB TR	>300	0	0	*	*	*	*	0	0	*	*
		WBT	*	*	*	0	0	0	0	*	*	0	0
3	Project Driveway 1 / Geer Avenue	WB R	*	*	*	11	19	27	11	*	*	33	13
	,	SB LR	>300	63	64	*	*	*	*	62	60	*	*
		SB L	*	*	*	110	76	123	72	*	*	125	74
		SB R	*	*	*	47	39	68	48	*	*	53	52
4	Project Driveway 2	EB LT	*	*	*	44	15	47	14	*	*	0	10
4	/ Geer Avenue	WB TR	*	*	*	0	0	0	0	*	*	0	0
		EB LTR	>300	63	76	*	*	*	*	100	59	*	*
		EB LT	*	*	*	296	154	277	164	*	*	352	157
		EB R	*	*	*	61	65	70	66	*	*	236	54
_	Lander Avenue	WB LTR	>300	57	52	120	58	119	66	80	43	166	80
5	/ Geer Avenue	NB L	50	36	32	137	117	137	127	86	111	152	129
		NB TR	>300	0	10	339	230	303	237	262	192	281	196
		SB L	50	29	30	77	57	72	59	65	37	73	57
		SB TR	>300	15	0	453	330	441	354	260	374	479	380

Note: * = Does not exist or is not projected to exist

Conclusions and Recommendations

Conclusions and recommendations regarding the proposed Project are presented below.

Existing Traffic Conditions

At present, all study intersections operate at an acceptable LOS during the PM peak period.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the existing and proposed driveways relative to the existing local roads and driveways in the Project's vicinity. A review of the proposed Project driveways indicates that they are, or will be, located at points that minimize traffic operational impacts to the existing roadway network, namely Pearl Street and Lander Avenue.
- It is recommended that the Project Site Plan incorporate an ADA compliant walkway along its frontage to Geer Avenue and pedestrian facilities that connect to the proposed buildings on campus.
- It is recommended that the Project implement a Class II bike lane along its frontage to Geer Avenue.
- It is estimated that existing Elim generates 1,890 daily trips, 670 AM peak hour trips and 340 PM peak hour trips. At buildout, it is estimated that the future Elim will generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. At buildout, the proposed Elementary School is estimated to generate a maximum of 1,134 daily, 402 AM peak hour and 204 PM peak hour trips. The proposed Project is estimated to generate an additional 378 daily trips, 134 AM peak hour trips and 68 PM peak hour trips.
- In this case, the Project's average vehicle miles traveled (round-trip) is estimated to be 9.74 miles for future Elim and 9.67 miles for the proposed Elementary school. The 2018 Regional Transportation Plan (RTP) prepared by the MCAG indicates the average trip length under an 'Infill Emphasis' focus is 14.62 miles for the region defined by the County. Per the TA, the 15 percent VMT reduction threshold is 12.43 miles. Since the Project's VMT is projected to be less than the 12.43 miles, the Project's VMT impact is considered less than significant.
- Under this scenario, the study intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods.
- The Hilmar Community Plan examined alternative scenarios to alleviate traffic along Lander Avenue that includes additional lane capacity along Lander Avenue, which would eliminate on-street parking, but would not meet Caltrans' lane standards for a Highway designation; and additional traffic lanes that meet Caltrans' Highway Standards. The Highway 165 Bypass has been determined as the most feasible option to alleviate inter-regional traffic as well as heavy truck uses through the community. Until the bypass is constructed, Lander Avenue may temporarily operate at LOS D or below during peak hours, through a General Plan Amendment allowing this LOS scenario that was approved with the Hilmar Community Plan in order to maintain Hilmar's small-town character and facilitate the construction of the Highway 165 Bypass through an update to the bridge and thoroughfare fee. In order to improve LOS at these intersections until that time, it is recommended that the following improvements be implemented.

(559) 570-8991

- Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound left-turning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
- Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - Add a southbound right-turn lane.
- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.

Near Term plus Project Traffic Conditions

- Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their acceptable LOS threshold during one or both peak periods. To improve LOS at these intersections it is recommended that the following improvements be implemented.
 - Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound left-turning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
 - Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - Add a southbound right-turn lane.

www.JLBtraffic.com

- Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is
 recommended over concurrent left-turn phasing not only due to a large volume imbalance
 between eastbound and westbound traffic, but also to minimize impacts to existing business
 and Hilmar's small-town character.

Cumulative Year 2040 No Project Traffic Conditions

- Under this scenario, the intersection of Lander Avenue and Geer Avenue is projected to exceed its LOS
 threshold during both peak periods. To improve the LOS of this intersection, it is recommended that
 the following improvements be implemented.
 - Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.

Cumulative Year 2040 plus Project Traffic Conditions

- Under this scenario, the intersections of Lander Avenue and Dayton Avenue, Project Driveway 1 and Geer Avenue, and Lander Avenue and Geer Avenue are projected to exceed their LOS threshold during one or both peak periods. To improve the LOS at these intersections, it is recommended that the following improvements be implemented.
 - Lander Avenue / Dayton Avenue
 - Modify Dayton Avenue access at Lander Avenue to left-in, right-in and right-out only. To accomplish this, it is recommended that a raised median island be installed across the intersection along the center of Lander Avenue. With the installation of the raised median island, eastbound and westbound left-turns and through maneuvers would need to be redirected. Eastbound left-turning and through traffic from Dayton Avenue would need to travel south along Pearl Street, east along Geer Avenue towards Lander Avenue. Westbound left-turning and through traffic from Dayton Avenue would need to travel south along Spring Street and west along Geer Avenue towards Lander Avenue.
 - Project Driveway 1 / Geer Avenue
 - Modify the westbound through-right lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the southbound left-right lane to a left-turn lane; and
 - Add a southbound right-turn lane.
 - Lander Avenue / Geer Avenue
 - Signalize the intersection with split phasing in the east-west directions. Split phasing is recommended over concurrent left-turn phasing not only due to a large volume imbalance between eastbound and westbound traffic, but also to minimize impacts to existing business and Hilmar's small-town character.

www.JLBtraffic.com

Queuing Analysis

• It is recommended that the County consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Study Participants

JLB Traffic Engineering, Inc. Personnel:

Jose Luis Benavides, PE, TE **Project Manager**

Susana Maciel, EIT **Project Engineer**

Matthew Arndt, EIT Engineer I/II

Javier Rios Engineer I/II

Jove Alcazar, EIT Engineer I/II

Carlos Ayala-Magana, EIT Engineer I/II

Jesus Garcia Engineer I/II

Dennis Wynn Sr. Engineering Technician

Christian Sanchez Engineering Aide

Adrian Benavides **Engineering Aide**

Justin Barnett **Engineering Aide**

Persons Consulted:

Scott Odell Odell Planning & Research, Inc.

Hilda Sousa Caltrans

Tom Dumas Caltrans

Joe Giulian **Merced County**

Brian Guerrero Merced County

(559) 570-8991

References

- 1. Merced County, Hilmar Community Plan, adopted July 1, 2008.
- Merced County, 2030 General Plan, adopted December 10, 2013.
- 3. Governor's Office of Planning and Research, Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA, State of California, December 2018.
- 4. Guide for the Preparation of Traffic Impact Studies, Caltrans, dated December 2002.
- 5. Trip Generation, 10th Edition, Washington D.C., Institute of Transportation Engineers, 2017.
- 6. 2014 California Manual on Uniform Traffic Control Devices, Caltrans, November 7, 2014.
- 7. Merced County Association of Government, Regional Transportation Plan Sustainable Communities Strategy, Merced County, 2018.

www.JLBtraffic.com

Appendix A: Scope of Work

November 5, 2019

Brian Guerrero
Development Services Coordinator
Planning & Community Development Department
Merced County
2222 M Street
Merced, CA 95340

Via Email Only: brian.guerrero@countyofmerced.com

Subject: Draft Scope of Work for the Preparation of a Traffic Impact Analysis for the

Hilmar Unified School District Elementary School Project located in the

Community of Hilmar in Merced County (JLB Project 044-001)

Dear Mr. Guerrero,

JLB Traffic Engineering, Inc. (JLB) hereby submits this Draft Scope of Work for the preparation of a Traffic Impact Analysis (TIA) for the Project proposed by the Hilmar Unified School District (District). The Project consists of modifying the existing Elim Elementary School located along the west side of Highway 165 approximately 850 feet north of Geer Avenue and constructing a new elementary school on the northwest corner of Pearl Street and Geer Avenue in the community of Hilmar in Merced County. The District proposes to a) convert the existing Elim Elementary School from a pre-kindergarten through 5th grade school with 1,000 enrolled students to a 3rd to 5th grade school with a maximum capacity of 500 students and b) construct a new elementary school that will enroll pre-kindergarten through 2nd grade students with a maximum capacity of 600 students. The existing Elim Elementary School will a) reduce its existing staff from 60 to approximately half and classrooms from 50 to 28, b) relocate the front of the school now on Lander Avenue to the back of the site by building a new administrative/multi-purpose room on the traffic circle on site, and c) remove approximately 24 portables. The new elementary school will have approximately 24 classrooms, an administrative office, a multi-purpose room, a library, a hard-court area and a climbing structure. An aerial of the Project vicinity and Project Site Plan are shown in Exhibit A and Exhibit B, respectively.

The purpose of the TIA is to evaluate the potential on-site and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures and identify any critical traffic issues that should be addressed in the on-going planning process. To evaluate the on-site and off-site traffic impacts of the proposed Project, JLB proposes the following Scope of Work.

(559) 570-8991

Mr. Guerrero HUSD Elementary School TIA - Draft Scope of Work November 5, 2019

Scope of Work

- To arrive at the future forecast volumes, JLB proposes to utilize an average annual growth rate of 0.4 percent to expand existing traffic volumes by 21 years to arrive at the Cumulative Year 2040 traffic volumes. The average annual growth rate of 0.4 percent is based on a review of Annual Average Daily Traffic (AADT) volumes obtained from Caltrans for State Route 165 near the vicinity of the proposed Project for the last 20 years.
- JLB will obtain recent or schedule and conduct new traffic counts at the study facility(ies) as necessary. These counts will include pedestrians and vehicles.
- JLB will perform a site visit to observe existing traffic conditions, especially during the AM and PM
 peak hours. Existing roadway conditions including intersection geometrics and traffic controls will be
 verified.
- JLB will evaluate on-site circulation and provide recommendations as necessary to improve circulation to and within the Project site.
- JLB will prepare CA MUTCD Warrant 3 "Peak Hour" for unsignalized study intersections under all study scenarios.
- JLB will qualitatively analyze existing and planned bikeways in the vicinity of the Project site.
- JLB will qualitatively analyze existing and planned walkways in the vicinity of the Project site.
- JLB will qualitatively analyze existing and planned transit routes in the vicinity of the Project site.
- JLB will forecast trip distribution based on turn count information and knowledge of the existing and planned circulation network in the vicinity of the Project.
- JLB, in consultation with the Environmental Consultant and District staff, will identify the no bussing service boundaries for elementary school students. JLB will use the no bussing boundaries identified and field surveys performed by JLB to conduct a qualitative safe routes to school evaluation.
- JLB will evaluate existing and forecasted levels of service (LOS) at the study intersection(s). JLB will use HCM 6th or HCM 2000 methodologies (as appropriate) within Synchro to perform this analysis for the AM and PM peak hours. JLB will identify the causes of poor LOS.

Study Scenarios

- 1. Existing Traffic Conditions with needed improvements (if any);
- 2. Existing plus Project Traffic Conditions with proposed mitigation measures (if any);
- 3. Near Term plus Project Traffic Conditions with needed improvements (if any);
- Cumulative Year 2040 No Project Traffic Conditions with needed improvements (if any); and
- 5. Cumulative Year 2040 plus Project Traffic Conditions with proposed mitigation measures (if any).

Weekday peak hours to be analyzed (Tuesday through Thursday only)

- 1. 7 9 AM peak hour
- 2. 2 4 PM peak hour (to coincide with the school's peak traffic activities)

JLB proposes to analyze the PM peak hour of the generator (the school) between 2 - 4 PM.

Mr. Guerrero HUSD Elementary School TIA - Draft Scope of Work November 5, 2019

Study Intersections

- 1. Project Driveway 1 / Geer Avenue
- 2. Project Driveway 2 / Geer Avenue
- 3. Lander Avenue / Geer Avenue

Queuing analysis is included in the proposed Scope of Work for the study intersection(s) listed above under all study scenarios. This analysis will be utilized to recommend minimum storage lengths for left-turn and right-turn lanes at all study intersections.

Study Segments

1. none

Project Trip Generation

The trip generation rates for the proposed Project were obtained from the 10th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table I presents the trip generation for the existing Elim Elementary School with trip generation rates for Elementary School. The existing Elim Elementary School is estimated to generate a maximum of 1,890 daily trips, 670 AM peak hour trips and 340 PM peak hour trips. Table II presents the trip generation for the future Elim Elementary School with trip generation rates for Elementary School. With the construction of the proposed Project, Elim Elementary School is estimated to generate a maximum of 945 daily trips, 335 AM peak hour trips and 170 PM peak hour trips. Table III presents the trip generation for the proposed Project with trip generation rates for Elementary School. At buildout, the proposed Project is estimated to generate a maximum of 1,134 daily trips, 402 AM peak hour trips and 204 PM peak hour trips. As can be seen from Table IV, the net new total trip generation estimated to be generated by the Project site is 189 daily trips, 67 AM peak hour trips and 34 PM peak hour trips.

Table I: Existing Elim Elementary School Trip Generation

			D	aily		АМ	(7-9)	Peak	Hou	r		PN	1 (2-4)	Peak	Hour	
Land Use (ITE Code)	Size	Unit	Berto	Total	Trip	In	Out	In	0	Total	Trip	In	Out	110	0	Total
			Rate	Total	Rate	9	6	ın	Out	Total	Rate	,	%	In	Out	Total
Elementary School (520)	1,000	students	1.89	1,890	0.67	54	46	362	308	670	0.34	45	55	153	187	340
Total Project Trips				1,890				362	308	670				153	187	340

Table II: Future Elim Elementary School Trip Generation

			D	aily		АМ	(7-9)	Peak	Hou	r		PΝ	1 (2-4)	Peak	Hour	
Land Use (ITE Code)	Size	Unit	Donto	Takad	Trip	In	Out		04	Takad	Trip	In	Out		04	Takad
			Rate	Total	Rate	9	6	In	Out	Total	Rate	:	%	In	Out	Total
Elementary School (520)	500	students	1.89	945	0.67	54	46	181	154	335	0.34	45	55	77	93	170
Total Project Trips				945				181	154	335				77	93	170

www.JLBtraffic.com

Mr. Guerrero HUSD Elementary School TIA - Draft Scope of Work November 5, 2019

Table III: New Elementary School Trip Generation

			D	aily		АМ	(7-9)	Peak	(Hou	r		PΝ	1 (2-4)	Peak	Hour	
Land Use (ITE Code)	Size	Unit	Derto	Total	Trip	In	Out		04	Total	Trip	In	Out	In	Out	Total
			Rate	Total	Rate	9	6	In	Out	Total	Rate	:	%	ın	Out	Total
Elementary School (520)	600	students	1.89	1,134	0.67	54	46	217	185	402	0.34	45	55	92	112	204
Total Project Trips				1,134				217	185	402				92	112	204

Table IV: Net New Total Trip Generation

			D	aily		АМ	(7-9)	Peak	Hou	r		PΝ	1 (2-4)	Peak	Hour	
Land Use (ITE Code)	Size	Unit	Rate	Total	Trip	In	Out	In	Out	Total	Trip	In	Out	In	Out	Total
			Kute	Total	Rate	9	6	""	Out	Total	Rate		%	""	Out	Total
Elementary School (520)	100	students	1.89	189	0.67	54	46	36	31	67	0.34	45	55	15	19	34
Total Project Trips				189				36	31	67				15	19	34

Near Term Projects to be Included

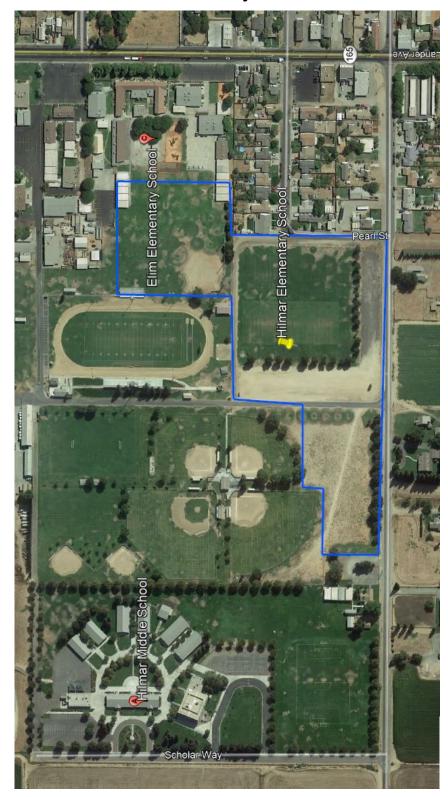
JLB is unaware of other projects in the vicinity of the proposed Project that have the ability to impact traffic operations in the Near Term scenario. However, JLB will include in the Near Term scenario, near term projects provided to us by responsible agencies. These would include near term projects that the County of Merced or Caltrans has knowledge of and for which it is anticipated that said project(s) is/are projected to be whole or partially built by the near term project year 2024 and for which the County of Merced or Caltrans provides JLB with near term project details. Near term project details include project description, location, proposed land uses with breakdowns and type of residential units and amount of square footages for non-residential uses.

The above Scope of Work is based on our understanding of this Project and our experience with similar TIAs. In the absence of comments by November 26, 2019 it will be assumed that the Scope of Work is acceptable to the agency(ies) that have not submitted any comments. If you have any questions or require additional information, please contact me by phone at (559) 317-6273 or by e-mail at smaciel@JLBtraffic.com. We sincerely appreciate your time and attention to this matter.

Sincerely,

Susana Maciel

Susana Maciel Project Engineer


cc: Joe Guilian, Merced County Hilda Sousa, Caltrans District 10

Jose Benavides, JLB Traffic Engineering, Inc.

Z:\01 Projects\044 Merced County\044-001 Hilmar ES TIA\Draft Scope of Work\L11052019 Draft Scope of Work (044-001).docx

Exhibit A – Project Aerial

Exhibit B – Project Site Plan

(559) 570-8991

Susana Maciel

From: Guerrero, Brian <Brian.Guerrero@countyofmerced.com>

Sent: Tuesday, November 26, 2019 2:09 PM

To: Susana Maciel

Subject: RE: HUSD Elementary School TIA: Draft Scope of Work

Hi Susana,

At this time Merced CED has no preliminary comments on the project and scope of work. Staff is looking forward to the final analysis when completed and will provide comments at that time if needed. Have a great holiday!

Regards,

Brian Guerrero

From: Susana Maciel <smaciel@jlbtraffic.com>
Sent: Wednesday, November 20, 2019 10:04 AM

To: Guerrero, Brian <Brian.Guerrero@countyofmerced.com>

Cc: Giulian, Joe <Joe.Giulian@countyofmerced.com>; Sousa, Hilda (Hilda.Sousa@dot.ca.gov) <Hilda.Sousa@dot.ca.gov>;

Jose Benavides <jbenavides@jlbtraffic.com>

Subject: RE: HUSD Elementary School TIA: Draft Scope of Work

Happy Wednesday All,

It is my understanding that the Request for Preliminary Comment was sent out to agencies and nearby property owners and residents last Thursday.

I have attached it to this email to aid in your review of the Draft Scope of Work for the Hilmar Elementary School TIA, which is also attached. I look forward to receiving your comments in the coming days. Also, if you have no comments, please let me know as well.

I appreciate your time.

Best,

Susana Maciel, EIT Project Engineer

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

From: Susana Maciel

Sent: Tuesday, November 12, 2019 1:55 PM

To: bguerrero@co.merced.ca.us

Cc: <u>jgiulian@co.merced.ca.us</u>; Sousa, Hilda (<u>Hilda.Sousa@dot.ca.gov</u>) < <u>hilda.sousa@dot.ca.gov</u>>; Jose Benavides (<u>jbenavides@jlbtraffic.com</u>) < <u>jbenavides@jlbtraffic.com</u>>

Subject: RE: HUSD Elementary School TIA: Draft Scope of Work

Good afternoon, Mr. Guerrero,

I hope your review of the Draft Scope of Work is going well. As a reminder, I am available to help answer any questions that may arise.

I look forward to hearing from you soon.

Best,

Susana Maciel, EIT Project Engineer

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

From: Susana Maciel

Sent: Tuesday, November 05, 2019 2:36 PM

To: bguerrero@co.merced.ca.us

Cc: jgiulian@co.merced.ca.us; Sousa, Hilda (Hilda.Sousa@dot.ca.gov) < hilda.sousa@dot.ca.gov>; Jose Benavides

(jbenavides@jlbtraffic.com) <jbenavides@jlbtraffic.com> **Subject:** HUSD Elementary School TIA: Draft Scope of Work

Good afternoon, Mr. Guerrero,

Attached is a Draft Scope of Work for the preparation of a Traffic Impact Analysis Report for the Hilmar Unified School District Elementary School Project located in the community of Hilmar in Merced County.

I kindly ask that you take some time to review and comment on the proposed Scope of Work. In the absence of comments by November 26th it will be assumed that the proposed Scope of Work is acceptable to the agency(ies) that have not submitted any comments.

If you have any questions or require any additional information, please feel welcome to contact me by phone at 559.317.6273 or by email at smaciel@jlbtraffic.com. I sincerely appreciate your time and attention to this matter and look forward to hearing from you all soon.

Best,

Susana Maciel, EIT Project Engineer

DEPARTMENT OF TRANSPORTATION

OFFICE OF THE DISTRICT 10 DIRECTOR
P.O. BOX 2048, STOCKTON, CA 95201
[1976 E. DR. MARTIN LUTHER KING JR. BOULEVARD 95205]
PHONE (209) 948-7943
FAX (209) 948-3895
TTY 711
www.dot.ca.gov

Making Conservation a California Way of Life.

December 2, 2019

10-MER-165-PM 32.868
New Elementary School Project
Hilmar Unified School District

Mr. Jim Bullock Director of Capital Projects, Operations & Safety Hilmar Unified School District 7807 N Lander Avenue Hilmar, CA 95324

Dear Mr. Bullock:

Thank you for the opportunity to review the Draft Scope of Work for the preparation of a Traffic Impact Analysis for the New Elementary School Project. The Department has the following comments:

- 1. On page one of Draft Scope of Work under the Study Intersections please add the following Intersections: (Shown in Bold)
 - 1. Project Driveway 1 / Geer Avenue
 - 2. Project Driveway 2 / Geer Avenue
 - 3. SR-165 (Lander Avenue) / Geer Avenue
 - 4. SR-165 (Lander Avenue)/Dayton Avenue
 - 5. SR-165 (Lander Avenue)/Echo Street
- 2. Provide Synchro/SimTraffic analysis for our review and comments.

Given the importance of mobility options, this project should provide an assessment of how various transportation options will be incorporated into the site. Specifically, pedestrian and bicycle access to and through the subject site should be provided.

Any work within the State's right-of-way will require an encroachment permit from Caltrans and must be done to our engineering and environmental

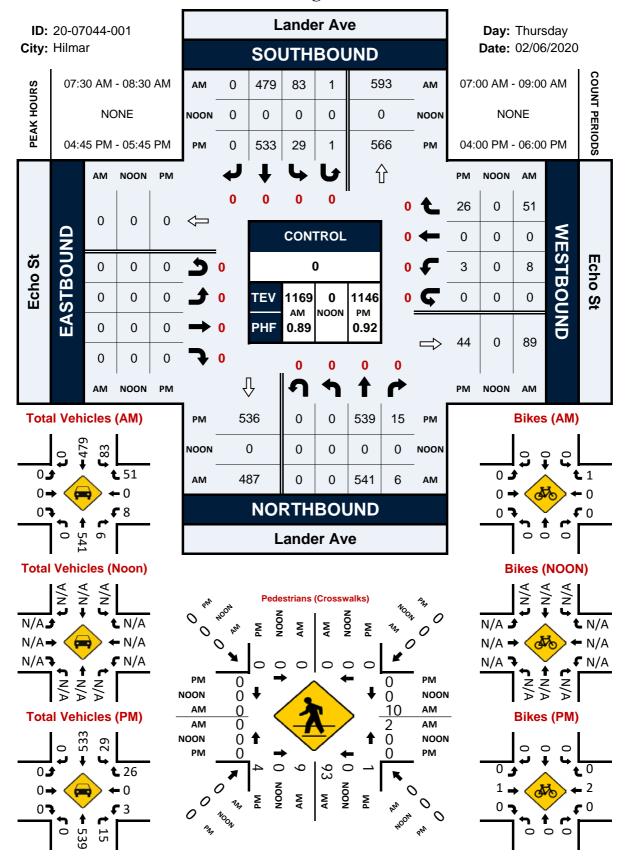
Mr. Bullock December 2, 2019 Page 2

standards, and at no cost to the State. The conditions of approval and the requirements for the encroachment permit are issued at the sole discretion of the Permits Office. For more information regarding the encroachment permit process, please visit our Encroachment Permit Website at: https://dot.ca.gov/programs/traffic-operations/ep or you can contact their office at (209)948-7891.

If you have any questions, please contact Hilda Sousa at (209) 942-6184 (email: hilda.sousa@dot.ca.gov) or me at (209) 941-1921. We look forward to continuing to work with you in a cooperative manner.

Sincerely,

TOM DUMAS, Chief


Office of Metropolitan Planning

Appendix B: Traffic Counts

Lander Ave & Echo St

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Echo St City: Hilmar Control:

Project ID: 20-07044-001 Date: 2/6/2020

Total NS/EW Streets: Lander Ave Lander Ave Echo St Echo St NORTHBOUND 0 0 WESTBOUND 0 0 WT WR EASTBOUND SOUTHBOUND **AM** 0 ER 0 EU TOTAL 196 228 268 317 328 256 183 183 NT NU ST 100 99 105 119 118 137 76 78 SU WL WT WU 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 86 112 141 153 151 96 99 100 0 0 0 36 12 3 1 ST 832 89.85% NT 938 ER 0 TOTAL 1959 EL 0 ET 0 EU 0 TOTAL VOLUMES APPROACH %'s 7 0.74% PEAK HR: PEAK HR VOL : PEAK HR FACTOR : 541 0.884 0 0.000 0 0.000 0 0.000 51 0.607 1169 6 0.500

		NORTH	BOUND			SOUTH	BOUND			EAST	BOUND			WESTE	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	150	3	0	5	142	0	1	0	0	0	0	0	0	6	0	307
4:15 PM	0	125	2	1	8	126	0	0	0	0	0	0	4	0	3	0	269
4:30 PM	0	105	1	0	6	117	0	0	0	0	0	0	1	0	2	0	232
4:45 PM	0	127	0	0	6	146	0	0	0	0	0	0	2	0	4	0	285
5:00 PM	0	138	7	0	7	124	0	1	0	0	0	0	0	0	11	0	288
5:15 PM	0	157	5	0	10	135	0	0	0	0	0	0	0	0	6	0	313
5:30 PM	0	117	3	0	6	128	0	0	0	0	0	0	1	0	5	0	260
5:45 PM	0	91	2	0	6	114	0	0	0	0	0	0	1	0	9	0	223
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	1010	23	1	54	1032	0	2	0	0	0	0	9	0	46	0	2177
APPROACH %'s :	0.00%	97.68%	2.22%	0.10%	4.96%	94.85%	0.00%	0.18%					16.36%	0.00%	83.64%	0.00%	
PEAK HR :		04:45 PM -	05:45 PM							·				·	·	·	TOTAL
PEAK HR VOL :	0	539	15	0	29	533	0	1	0	0	0	0	3	0	26	0	1146
PEAK HR FACTOR :	0.000	0.858	0.536	0.000	0.725	0.913	0.000	0.250	0.000	0.000	0.000	0.000	0.375	0.000	0.591	0.000	0.915
0.855						0.92	26							0.6	59		0.713

Intersection Turning Movement Count

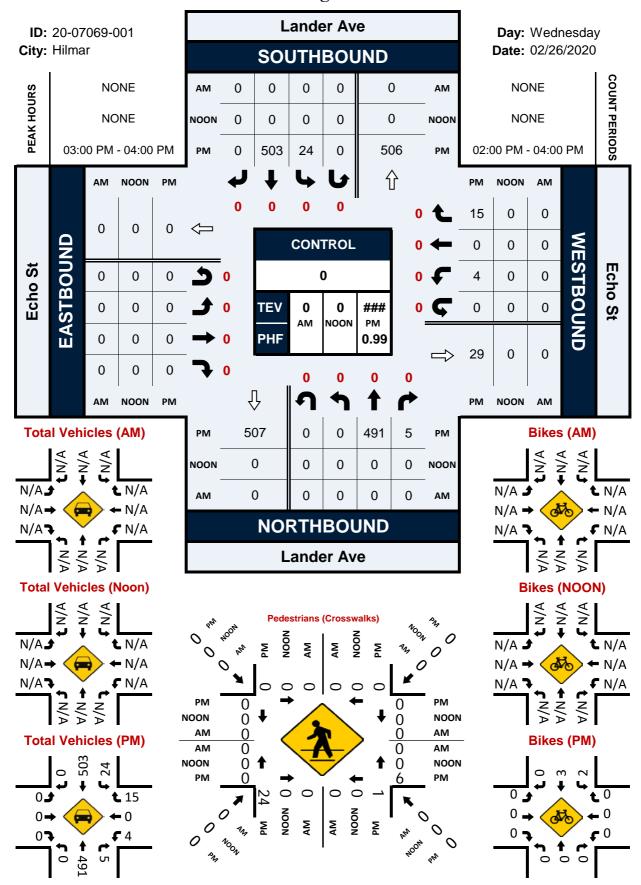
Location: Lander Ave & Echo St City: Hilmar Control: 0

Project ID: 20-07044-001 Date: 2/6/2020

-	Date:	2/6/20
	Date.	2/0/20

Control:	0													Date:	2/6/2020		
								Bil	ces								
NS/EW Streets:		Land	er Ave			Lande	r Ave			Echo	St			Echo	St St		
		NORT	HBOUND			SOUTH	BOUND			EASTE	OUND			WEST	BOUND		
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	11
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AIVI	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
APPROACH %'s:													0.00%	0.00%	100.00%	0.00%	
PEAK HR :		07:30 AM	- 08:30 AM														TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.000	0.250
														0.2	30		
		NORT	HBOUND			SOUTH	BOUND			EASTE	OUND			WEST	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	2
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2
5:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.43 F W	•	U	U	U	U	U	U	U	U	0	U	U	0	U	U	Ü	U
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	1	0	0	0	1	0	0	0	3	1	0	6
APPROACH %'s:					0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	75.00%	25.00%	0.00%	
PEAK HR :			- 05:45 PM														TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	3
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.000	0.000	0.000	0.250	0.000	0.000	0.375

Location: Lander Ave & Econo Tion Turning Movement Count City: Hilmar Date: 2/6/2020


Pedestrians (Crosswalks)

NS/EW Streets:	Lande	er Ave	Land	er Ave	Ech	o St	Ech	o St	
AM		'H LEG		'H LEG	-	T LEG	-	Γ LEG	TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	6	0	3	0	0	9
7:30 AM	0	0	0	14	0	4	0	0	18
7:45 AM	0	0	0	29	0	0	0	0	29
8:00 AM	0	0	3	44	2	5	0	0	54
8:15 AM	0	0	6	6	0	1	0	0	13
8:30 AM	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES			9	99				~-	
TOTAL VOLUMES :	0	0	,		2	13	0	0	123
APPROACH %'s:			8.33%	91.67%	13.33%	86.67%			
PEAK HR:	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL :	0	0	9	93	2	10	0	0	114
PEAK HR FACTOR :			0.375	0.528	0.250	0.500			0.528
			0.	543	0.4	129			0.320

PM	NORT	TH LEG	SOUT	H LEG	EAS	T LEG	WES	LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	2	0	0	0	0	0	2
4:15 PM	0	0	0	2	0	2	0	0	4
4:30 PM	0	0	0	4	0	0	0	0	4
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	2	0	0	0	0	0	2
5:15 PM	0	0	1	1	0	0	0	0	2
5:30 PM	0	0	1	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	0	6	7	0	2	0	0	15
APPROACH %'s:			46.15%	53.85%	0.00%	100.00%			
PEAK HR :	04:45 PM	- 05:45 PM							TOTAL
PEAK HR VOL :	0	0	4	1	0	0	0	0	5
PEAK HR FACTOR :			0.500	0.250					0.625
			0.6	525					0.625

Lander Ave & Echo St

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Echo St City: Hilmar Control:

8

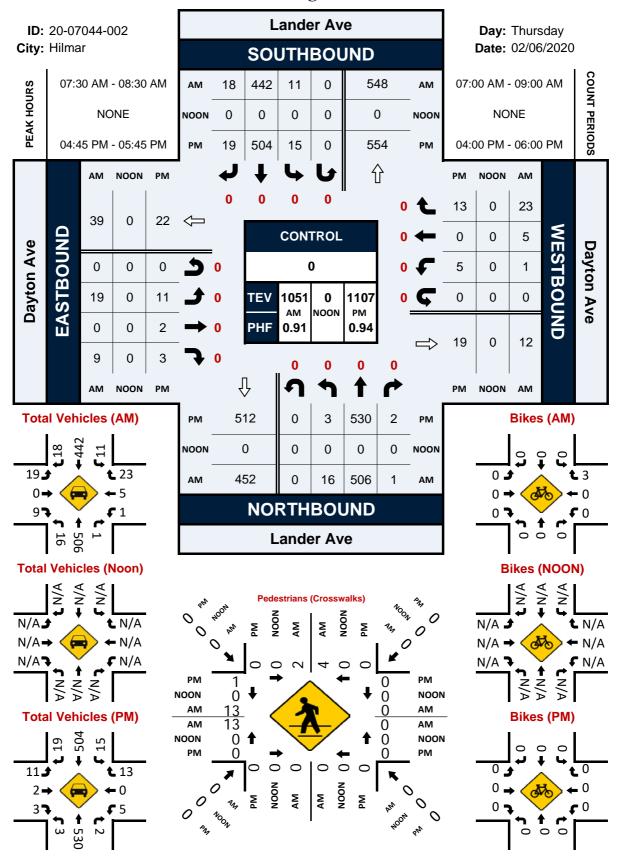
Project ID: 20-07069-001 Date: 2020-02-26

NS/EW Streets:		Lander	Ave			Lander	Ave			Ech	o St			Echo	St		
D0.4		NORTH	BOUND			SOUTH	BOUND			EAST	BOUND			WESTE			
PM	0 NL	0 NT	0 NR	0 NU	0 SL	0 ST	0 SR	0 SU	0 EL	0 FT	0 ER	0 EU	0 WL	0 WT	0 WR	0 WU	TOTAL
2:00 PM	0	90	3	0	2	108	0	0	0	0	0	0	0	0	6	0	209
2:15 PM	0	75	0	0	6	110	0	0	0	0	0	0	1	0	5	0	197
2:30 PM	0	111	3	0	2	127	0	0	0	0	0	0	1	0	3	0	247
2:45 PM	0	105	1	1	4	138	0	0	0	0	0	0	0	0	2	0	251
3:00 PM	0	115	1	0	7	136	0	0	0	0	0	0	2	0	3	0	264
3:15 PM	0	126	1	0	2	124	0	0	0	0	0	0	1	0	5	0	259
3:30 PM	0	128	1	0	7	116	0	0	0	0	0	0	0	0	3	0	255
3:45 PM	0	122	2	0	8	127	0	0	0	0	0	0	1	0	4	0	264
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	872	12	1	38	986	0	0	0	0	0	0	6	0	31	0	1946
APPROACH %'s :	0.00%	98.53%	1.36%	0.11%	3.71%	96.29%	0.00%	0.00%					16.22%	0.00%	83.78%	0.00%	
PEAK HR :	(03:00 PM -	04:00 PM														TOTAL
PEAK HR VOL :	0	491	5	0	24	503	0	0	0	0	0	0	4	0	15	0	1042
PEAK HR FACTOR :	0.000	0.959	0.625	0.000	0.750	0.925	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.000	0.750	0.000	0.987
		0.96	51			0.92	21							0.79	92		5.707

Intersection Turning Movement Count

Location: Lander Ave & Echo St City: Hilmar Control: 0 Project ID: 20-07069-001 Date: 2020-02-26 Bikes

						Bikes								i			
NS/EW Streets:		Land	er Ave			Lande	r Ave			Ech	no St						
		NORT	HBOUND			SOUTH	BOUND			EAST	BOUND			WEST	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
3:30 PM	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	3
3:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	3	0	0	0	0	0	0	1	0	0	0	6
APPROACH %'s :					40.00%	60.00%	0.00%	0.00%					100.00%	0.00%	0.00%	0.00%	
PEAK HR :		03:00 PM	- 04:00 PM	1													TOTAL
PEAK HR VOL :	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0	0	5
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.500	0.375	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.417
						0.4	17										0.417


Location: Lander Ave & Echo Sion Turning Movement Count City: Hilmar

Pedestrians (Crosswalks)

NS/EW Streets:	Land	er Ave	Lande	er Ave	Ech	o St	Ech	o St	
PM	_	TH LEG		H LEG	_	Γ LEG	-	T LEG	TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM		0	2	1	1	1	0	0	5
2:15 PM	0	0	0	1	0	1	0	0	2
2:30 PM	0	0	2	0	0	0	0	0	2
2:45 PM	0	0	5	3	1	0	0	0	9
3:00 PM	0	0	8	1	1	0	0	0	10
3:15 PM	0	0	16	0	5	0	0	0	21
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	0	33	6	8	2	0	0	49
APPROACH %'s:			84.62%	15.38%	80.00%	20.00%			
PEAK HR :	03:00 PM	- 04:00 PM							TOTAL
PEAK HR VOL :	0	0	24	1	6	0	0	0	31
PEAK HR FACTOR :			0.375	0.250	0.300				0.270
			0.3	391	0.3	300			0.369

Lander Ave & Dayton Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Dayton Ave City: Hilmar Control:

Project ID: 20-07044-002 Date: 2/6/2020

т	_	٠	_	п	

NS/EW Streets:		Lander	Ave		Lander Ave SOUTHBOUND					Dayton Ave				Dayton Ave			
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	84	0	0	0	100	2	0	1	0	0	0	0	0	4	0	192
7:15 AM	0	112	0	0	1	93	2	0	1	0	0	0	0	0	4	0	213
7:30 AM	3	137	0	0	0	103	1	0	1	0	2	0	1	3	2	0	253
7:45 AM	9	153	0	0	3	100	11	0	5	0	0	0	0	1	6	0	288
8:00 AM	4	143	1	0	6	101	3	0	7	0	5	0	0	1	10	0	281
8:15 AM	0	73	0	0	2	138	3	0	6	0	2	0	0	0	5	0	229
8:30 AM	0	102	0	0	0	76	0	0	0	0	0	0	0	0	0	0	178
8:45 AM	0	92	0	0	2	71	1	0	0	0	0	0	0	0	4	0	170
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	17	896	1	0	14	782	23	0	21	0	9	0	1	5	35	0	1804
APPROACH %'s:	1.86%	98.03%	0.11%	0.00%	1.71%	95.48%	2.81%	0.00%	70.00%	0.00%	30.00%	0.00%	2.44%	12.20%	85.37%	0.00%	
PEAK HR :		07:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	16	506	1	0	11	442	18	0	19	0	9	0	1	5	23	0	1051
PEAK HR FACTOR :	0.444	0.827	0.250	0.000	0.458	0.801	0.409	0.000	0.679	0.000	0.450	0.000	0.250	0.417	0.575	0.000	0.912
		0.80	07			0.82	23			0.5	83			0.6	59		0.712
204		NORTH	BOUND			SOUTHI				EASTE				WESTE	BOUND		
PM	0	NORTH 0	BOUND 0	0	0	0	0	0	0	0	0	0	0	WESTE 0	BOUND 0	0	
	NL	NORTH 0 NT	BOUND 0 NR	NU	SL	0 ST	0 SR	SU	EL	0 ET	0 ER	EU	WL	WESTE 0 WT	BOUND 0 WR	WU	TOTAL
4:00 PM	NL 1	NORTH 0 NT 141	BOUND 0 NR 2	NU 0	SL 3	0 ST 140	0 SR 5	SU 0		0 ET 0	0 ER 0	EU 0	WL 1	WESTE 0	BOUND 0 WR 5	WU 0	300
4:00 PM 4:15 PM	NL 1 0	NORTH 0 NT 141 119	BOUND 0 NR 2 0	NU 0 0	SL 3 6	0 ST 140 122	0 SR 5 7	0 0	EL	0 ET 0 0	0 ER 0 0	0 0	WL 1 0	WESTE 0 WT	BOUND 0 WR 5 0	0 0	300 259
4:00 PM 4:15 PM 4:30 PM	NL 1	NORTH 0 NT 141 119 99	BOUND 0 NR 2 0 2	0 0 0	SL 3 6 4	0 ST 140 122 113	0 SR 5 7 5	0 0 0	EL 2 4 1	0 ET 0 0	0 ER 0 0	0 0 0	WL 1 0 0	WESTE 0 WT 0 1	BOUND 0 WR 5 0 3	0 0 0	300 259 228
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 1 0	NORTH 0 NT 141 119 99 119	BOUND 0 NR 2 0 2 0	NU 0 0 0	SL 3 6 4 5	0 ST 140 122 113 137	0 SR 5 7 5 2	SU 0 0 0 0	EL 2 4 1 2	0 ET 0 0 0	0 ER 0 0 0	0 0 0 0	WL 1 0 0 1	WESTE 0 WT 0 1 1 0	BOUND 0 WR 5 0 3 1	0 0 0 0	300 259 228 268
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 1 0 0 1	NORTH 0 NT 141 119 99 119	BOUND 0 NR 2 0 2	NU 0 0 0 0	SL 3 6 4	0 ST 140 122 113 137	0 SR 5 7 5 2	SU 0 0 0 0	EL 2 4 1 2 3	0 ET 0 0 0 0	0 ER 0 0 0 0 0	EU 0 0 0 0	WL 1 0 0 1 3	WESTE 0 WT 0 1 1 0 0 0	BOUND 0 WR 5 0 3 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 1 0 0 1 1	NORTH 0 NT 141 119 99 119 142 156	BOUND 0 NR 2 0 2 0 0 1	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5	0 ST 140 122 113 137 113 125	0 SR 5 7 5 2 8 6	SU 0 0 0 0 0	EL 2 4 1 1 2 3 3 3	0 ET 0 0 0 0 0	0 ER 0 0 0 0 0 0	EU 0 0 0 0 0	WL 1 0 0 1 3 0	WESTE 0 WT 0 1 1 0 0 0 0	BOUND 0 WR 5 0 3 1 5	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 1 0 0 1 1 0 1	NORTHI 0 NT 141 119 99 119 142 156 113	BOUND 0 NR 2 0 2 0 0 1 1	NU 0 0 0 0 0	SL 3 6 4 5 4 1 5	0 ST 140 122 113 137 113 125 129	0 SR 5 7 5 2 8 6 3	SU 0 0 0 0 0 0	EL 2 4 1 1 2 3 3 3 3 3 3	0 ET 0 0 0 0 0	0 ER 0 0 0 0 0 3 0	EU 0 0 0 0 0	WL 1 0 0 1 3 0 1	WESTE 0 WT 0 1 1 0 0 0 0 0 0 0	30UND 0 WR 5 0 3 1 5 1 6	WU 0 0 0 0 0	300 259 228 268 284 293 262
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 1 0 0 1 1	NORTH 0 NT 141 119 99 119 142 156	BOUND 0 NR 2 0 2 0 0 1	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5	0 ST 140 122 113 137 113 125	0 SR 5 7 5 2 8 6	SU 0 0 0 0 0	EL 2 4 1 1 2 3 3 3	0 ET 0 0 0 0 0	0 ER 0 0 0 0 0 0	EU 0 0 0 0 0	WL 1 0 0 1 3 0	WESTE 0 WT 0 1 1 0 0 0 0	BOUND 0 WR 5 0 3 1 5	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 1 0 0 1 1 1 0 1 2 NL	NORTH 0 NT 141 119 99 119 142 156 113 80	BOUND 0 NR 2 0 2 0 0 1 1 1	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL	0 ST 140 122 113 137 113 125 129 107	0 SR 5 7 5 2 8 6 3 4	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 2 3 3 3 3 2 EL	0 ET 0 0 0 0 0 2 0 0 0	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 0 1 1 3 0 1 0 0 1 0 0 0 1 0 0 0 0 0	WESTE 0 WT 0 1 1 0 0 0 0 0 1 1 WT	BOUND 0 WR 5 0 3 1 5 1 6 6 WR	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 1 0 0 1 1 0 1 1 2 NL 6	NORTH 0 NT 141 119 99 119 142 156 113 80 NT 969	BOUND 0 NR 2 0 2 0 1 1 1 NR 7	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL 32	0 ST 140 122 113 137 113 125 129 107 ST 986	0 SR 5 7 5 2 8 6 3 4 SR 40	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 2 3 3 3 2 EL 20	0 ET 0 0 0 0 2 0 0 0 0	0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 0 1 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	WESTE 0 WT 3	3 1 5 0 3 1 5 1 6 6 6	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 1 0 1 1 0 1 2 NL 6 0.61%	NORTHI 0 NT 141 119 99 119 142 156 113 80 NT 969 98.68%	BOUND 0 NR 2 0 2 0 1 1 1 1 1 NR 7 0.71%	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL	0 ST 140 122 113 137 113 125 129 107	0 SR 5 7 5 2 8 6 3 4	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 2 3 3 3 3 2 EL	0 ET 0 0 0 0 0 2 0 0 0	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 0 1 1 3 0 1 0 0 1 0 0 0 1 0 0 0 0 0	WESTE 0 WT 0 1 1 0 0 0 0 0 1 1 WT	BOUND 0 WR 5 0 3 1 5 1 6 6 WR	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207 TOTAL 2101
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES: APPROACH %'s:	NL 1 0 1 1 1 0 1 1 2 NL 6 0.61%	NORTH 0 NT 141 119 99 119 142 156 113 80 NT 969 98.68% 04:45 PM -	BOUND 0 NR 2 0 2 0 0 1 1 1 1 NR 7 0.71% 05:45 PM	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL 32 3.02%	0 ST 140 122 113 137 113 125 129 107 ST 986 93.19%	0 SR 5 7 5 2 8 6 3 4 SR 40 3.78%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 1 2 3 3 3 3 2 EL 20 80.00%	0 ET 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	O ER O O O O O O O O O O O O O O O O O O O	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 0 1 3 0 1 0 WL 6 16.67%	WESTE 0 WT 0 1 1 1 0 0 0 0 0 1 1 WT 3 8.33%	30UND 0 WR 5 0 3 1 1 5 1 6 6 WR 27 75.00%	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207 TOTAL 2101
4:00 PM 4:15 PM 4:30 PM 4:35 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES: APPROACH %'s: PEAK HR: PEAK HR:	NL 1 0 1 1 0 1 1 2 NL 6 0.61%	NORTH 0 NT 141 119 99 119 142 156 113 80 NT 969 98.68% 04:45 PM -	BOUND 0 NR 2 0 2 0 0 1 1 1 1 1 NR 7 0.71% 05:45 PM 2	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL 32 3.02%	0 ST 140 122 113 137 113 125 129 107 ST 986 93.19%	0 SR 5 7 7 5 2 8 6 3 4 SR 40 3.78%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 2 3 3 3 3 2 2 EL 20 80.00%	0 ET 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	O ER O O O O O O O O O O O O O O O O O O	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 1 3 0 1 1 0 WL 6 16.67%	WESTE 0	30UND 0 WR 5 0 3 1 1 5 1 6 6 6 WR 27 75.00%	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207 TOTAL 2101
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES: APPROACH %'s:	NL 1 0 1 1 1 0 1 1 2 NL 6 0.61%	NORTH 0 NT 141 119 99 119 142 156 113 80 NT 969 98.68% 04:45 PM -	BOUND 0 NR 2 0 2 0 0 1 1 1 1 1 NR 7 0.71% 05:45 PM 2 0.500	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 3 6 4 5 4 1 5 4 SL 32 3.02%	0 ST 140 122 113 137 113 125 129 107 ST 986 93.19%	0 SR 5 7 5 2 8 6 3 4 SR 40 3.78%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 2 4 1 1 2 3 3 3 3 2 EL 20 80.00%	0 ET 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	O ER O O O O O O O O O O O O O O O O O O	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 0 0 1 3 0 1 0 WL 6 16.67%	WESTE 0 WT 0 1 1 1 0 0 0 0 0 1 1 WT 3 8.33%	30UND 0 WR 5 0 3 1 1 5 1 6 6 6 WR 27 75.00% 13 0.542	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 259 228 268 284 293 262 207 TOTAL 2101

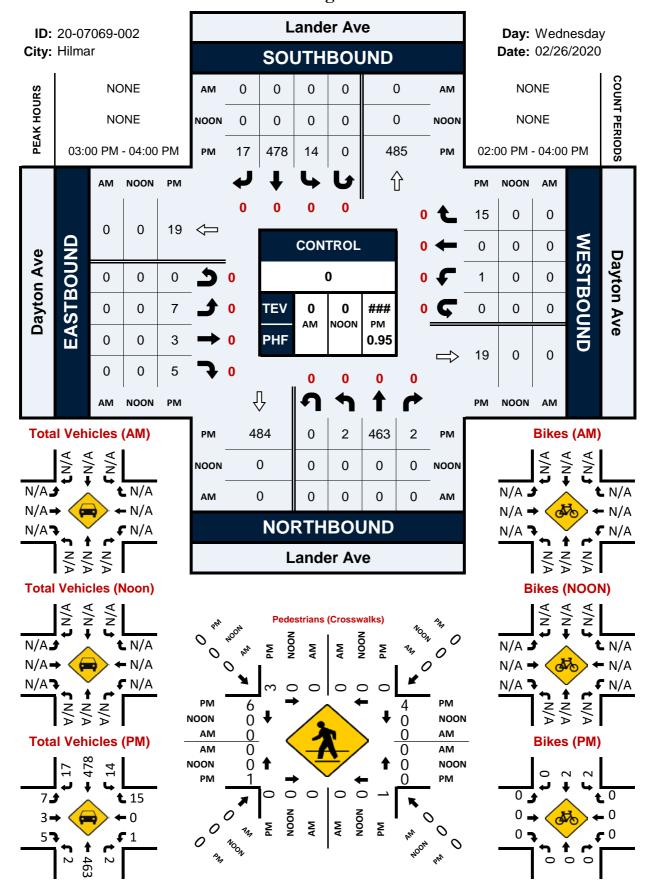
Intersection Turning Movement Count

Location: Lander Ave & Dayton Ave City: Hilmar Control: 0

Project ID: 20-07044-002 Date: 2/6/2020

NS/EW Streets:		Lande	er Ave			Lander	Ave			Dayto	on Ave			Dayto	n Ave		
AM	0 NL	NORTI 0 NT	HBOUND 0 NR	0 NU	0 SL	SOUTH 0 ST	BOUND 0 SR	0 SU	0 EL	EAST 0 ET	BOUND 0 ER	0 EU	0 WL	WEST 0 WT	BOUND 0 WR	0 WU	TOTAL
7:00 AM 7:15 AM	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
7:30 AM 7:45 AM	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0	0	0	0 0	0	0 0	0 3	0 0	0 3
8:00 AM 8:15 AM	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES : APPROACH %'s :	NL 0	NT 0	NR 0	NU 0	SL 0	ST 0	SR 0	SU 0	EL 0	ET 0	ER 0	EU 0	WL 0 0.00%	WT 0 0.00%	WR 3 100.00%	WU 0 0.00%	TOTAL 3
PEAK HR :			- 08:30 AM														TOTAL
PEAK HR VOL : PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 0.000 0.2	3 0.250 250	0.000	3 0.250
					T .			,									
PM	0 NL	NORTI 0 NT	HBOUND 0 NR	0 NU	0 SL	SOUTH 0 ST	O SR	0 SU	0 EL	O ET	BOUND 0 ER	0 EU	0 WL	WEST 0 WT	BOUND 0 WR	0 WU	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
4:30 PM 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	Ō	Ō	ō	ō	Ō	ō	Ō	Ō	0	ō	ō	ō	0	ō	ō	Ō	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	1 100.00%	0 0.00%	0 0.00%	0 0.00%	0	0	0	0	0	0	0	0	1
PEAK HR :		04:45 PM	- 05:45 PM														TOTAL
PEAK HR VOL : PEAK HR FACTOR :	0 0.00	0 0.000	0.000	0 0.000	0 0.000	0,000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0 0.000	0.000	0

Location: Lander Ave & Daylon Ave n Turning Movement Count City: Hilmar Date: 2/6/2020


Pedestrians (Crosswalks)

NS/EW Streets:	Lande	er Ave	Land	er Ave	Dayto	n Ave	Dayto	n Ave	
AM	NORT EB	H LEG WB	SOUT EB	TH LEG WB	EAST NB	T LEG SB	WES ⁻ NB	T LEG SB	TOTAL
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 2 0	0 0 0 0 2 2 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 4 7 2 0	0 0 1 2 5 5 0	0 0 1 6 14 11 0
TOTAL VOLUMES : APPROACH %'s : PEAK HR :		WB 4 66.67% - 08:30 AM	EB 0	WB 0	NB 0	SB 0	NB 13 50.00%	SB 13 50.00%	TOTAL 32 TOTAL
PEAK HR VOL : PEAK HR FACTOR :	2 0.250 0.3	4 0.500 375	0	0	0	0	13 0.464 0.5	13 0.650 542	32 0.571

PM	NORT	H LEG	SOUT	TH LEG	EAS	ΓLEG	WES	T LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	1	1
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	0	1	1
APPROACH %'s:							0.00%	100.00%	
PEAK HR :	04:45 PM	- 05:45 PM							TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	1	1
PEAK HR FACTOR :								0.250	0.250
							0.	250	0.250

Lander Ave & Dayton Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Dayton Ave City: Hilmar Control:

Project ID: 20-07069-002 Date: 2020-02-26

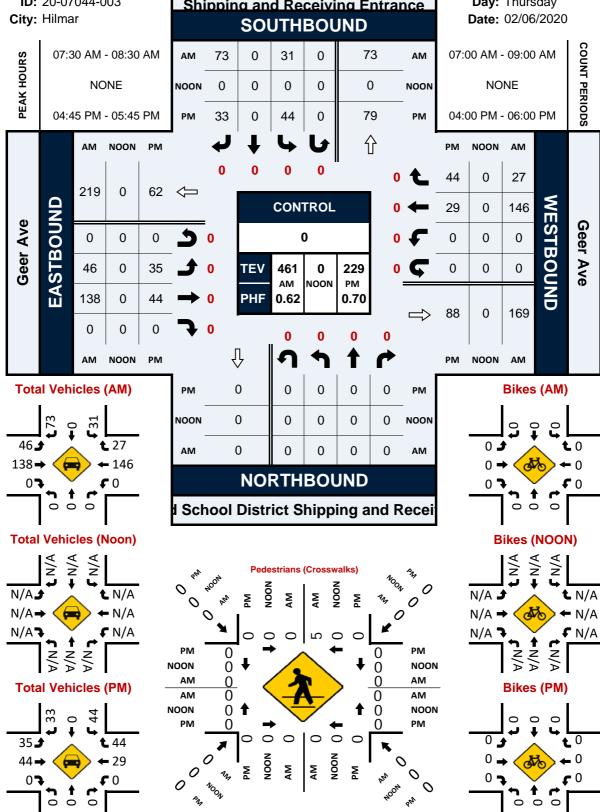
Total Dayton Ave

NS/EW Streets:		Lander	Ave		Lander Ave SOUTHBOUND					Daytor	n Ave						
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WEST	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	84	0	0	3	105	5	0	3	0	0	0	0	1	3	0	204
2:15 PM	0	71	0	0	0	107	2	0	0	0	0	0	0	0	3	0	183
2:30 PM	1	107	0	0	3	107	4	0	4	0	1	0	0	0	3	0	230
2:45 PM	0	94	0	0	6	129	3	0	3	0	0	0	1	1	1	0	238
3:00 PM	2	108	1	0	1	127	4	0	1	0	3	0	0	0	1	0	248
3:15 PM	0	115	1	0	4	120	9	0	5	2	2	0	0	0	6	0	264
3:30 PM	0	124	0	0	2	107	3	0	0	1	0	0	1	0	5	0	243
3:45 PM	0	116	0	0	7	124	1	0	1	0	0	0	0	0	3	0	252
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	3	819	2	0	26	926	31	0	17	3	6	0	2	2	25	0	1862
APPROACH %'s:	0.36%	99.39%	0.24%	0.00%	2.64%	94.20%	3.15%	0.00%	65.38%	11.54%	23.08%	0.00%	6.90%	6.90%	86.21%	0.00%	
PEAK HR :	C	3:00 PM -	04:00 PM			·	·				·					·	TOTAL
PEAK HR VOL :	2	463	2	0	14	478	17	0	7	3	5	0	1	0	15	0	1007
PEAK HR FACTOR:	0.250	0.933	0.500	0.000	0.500	0.941	0.472	0.000	0.350	0.375	0.417	0.000	0.250	0.000	0.625	0.000	0.954
		0.94	12			0.95	57			0.4	17			0.6	67		0.734

Intersection Turning Movement Count

Location: Lander Ave & Dayton Ave City: Hilmar Control: 0 Project ID: 20-07069-002 Date: 2020-02-26

-								Bik	ces								_
NS/EW Streets:		Land	er Ave			Lande	r Ave			Dayto	on Ave			Dayto	on Ave		
		NORT	HBOUND			SOUTH	BOUND			EAST	BOUND			WES	ΓBOUND		
PM	0 NL	0 NT	0 NR	0 NU	0 SL	0 ST	0 SR	0 SU	0 EL	0 ET	0 ER	<mark>0</mark> EU	0 WL	0 WT	0 WR	0 WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
3:45 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	4
APPROACH %'s:					50.00%	50.00%	0.00%	0.00%									
PEAK HR :		03:00 PM	- 04:00 PN	1													TOTAL
PEAK HR VOL :	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	4
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.250	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500


Location: Lander Ave & Daylon Ave n Turning Movement Count City: Hilmar

Pedestrians (Crosswalks)

NS/EW Streets:	Lande	r Ave	Land	er Ave	Dayto	on Ave	Dayto	n Ave	
DNA	NORTI	H LEG	SOUT	H LEG	EAS	T LEG	WES	T LEG	
PM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	0	0	0	0	4	4
2:15 PM	0	0	0	0	0	0	0	1	1
2:30 PM	0	0	0	0	0	0	1	0	1
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	1	0	0	0	0	4	1	5	11
3:15 PM	1	0	0	0	0	0	0	1	2
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	1	0	0	1	0	0	0	0	2
									i
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	3	0	0	1	0	4	2	11	21
APPROACH %'s:	100.00%	0.00%	0.00%	100.00%	0.00%	100.00%	15.38%	84.62%	
PEAK HR :	03:00 PM -	04:00 PM							TOTAL
PEAK HR VOL :	3	0	0	1	0	4	1	6	15
PEAK HR FACTOR :	0.750			0.250		0.250	0.250	0.300	0.341
	0.7	50	0	250	0	250	0.2	292	0.341

Hilmar Unified School District Shipping and Receiving Entrance & Geer Ave

Peak Hour Turning Movement Count Hilmar Unified School District ID: 20-07044-003 Day: Thursday Shipping and Receiving Entrance City: Hilmar Date: 02/06/2020 SOUTHBOUND COUNT PERIODS 07:30 AM - 08:30 AM 07:00 AM - 09:00 AM PEAK HOURS 73 0 31 0 73 AM AM NONE NOON 0 0 0 0 0 NOON NONE 04:45 PM - 05:45 PM 0 0 79 04:00 PM - 06:00 PM 33 44 PM 介 NOON NOON AM PM AM 0 0 27 219 0 62 \Leftrightarrow EASTBOUND **CONTROL** 0 146 29 **Geer Ave** Geer Ave 0 0 0 0 0 0 46 0 35 TEV 461 0 229 0 AM NOON PM 138 0 PHF 0.62 0.70 44 88 0 169 0 0 0 Û AM NOON NOON **Total Vehicles (AM)** 0 PM 0 0 0 0 РΜ Bikes (AM) NOON 0 0 0 0 0 NOON **t** 27 0 🗲 **t** 0 0 0 AM AM 138→ **NORTHBOUND School District Shipping and Recei Total Vehicles (Noon) Bikes (NOON)** Pedestrians (Crosswalks) L N/A L N/A N/A→

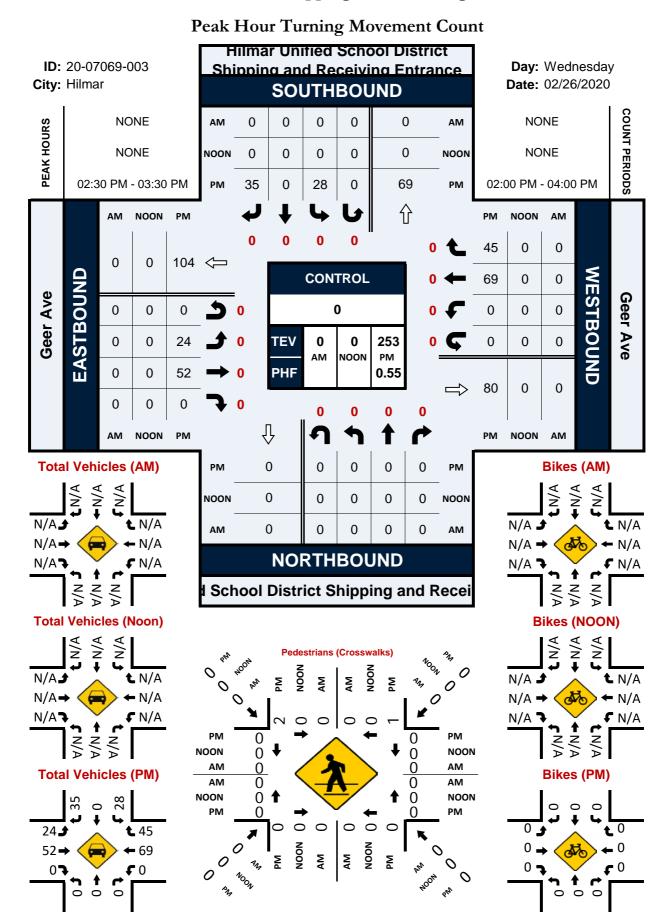
Project ID: 20-07044-003 Date: 2/6/2020

_									tai								
NS/EW Streets:	Hilmar Un			pping and	Hilmar Unif			pping and		Geer	Ave			Geer	Ave		
nes en ou ous.		Receiving				Receiving									-		
			HBOUND			SOUTH				EASTB				WESTE			
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	3	0	3	1	0	0	0	3	1	0	11
7:15 AM	0	0	0	0	1	0	3	0	3	3	0	0	0	9	1	0	20
7:30 AM	0	0	0	0	5	0	5	0	4	13	0	0	0	22	9	0	58
7:45 AM	0	0	0	0	5	0	24	0	27	34	0	0	0	50	7	0	147
8:00 AM	0	0	0	0	11	0	33	0	10	74	0	0	0	49	9	0	186
8:15 AM	0	0	0	0	10	0	11	0	5	17	0	0	0	25	2	0	70
8:30 AM	0	0	0	0	0	0	0	0	1	10	0	0	0	3	2	0	16
8:45 AM	0	0	0	0	0	0	0	0	1	2	0	0	0	4	0	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES:	0	0	0	0	32	0	79	0	54	154	0	0	0	165	31	0	515
APPROACH %'s:					28.83%	0.00%	71.17%	0.00%	25.96%	74.04%	0.00%	0.00%	0.00%	84.18%	15.82%	0.00%	
PEAK HR :		07:30 AM	- 08:30 AM														TOTAL
PEAK HR VOL :	0	0	0	0	31	0	73	0	46	138	0	0	0	146	27	0	461
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.705	0.000	0.553	0.000	0.426	0.466	0.000	0.000	0.000	0.730	0.750	0.000	0.620
						0.59				0.54				0.7			0.620
										0.54	18			0.7	46		0.620
		NORTI	HBOUND				91				18				46		0.620
PM	0	0	0	0	0	SOUTH	BOUND 0	0	0	0.54	OUND 0	0	0	WESTE 0	BOUND 0	0	
PM	0 NL				0 SL	0.59 SOUTH	BOUND	0 SU		0.54 EASTB	0UND	0 EU		0.7	46 BOUND		TOTAL
4:00 PM		0	0	0		SOUTH	BOUND 0		0	0.54 EASTB 0	OUND 0		0	WESTE 0	BOUND 0	0	
4:00 PM 4:15 PM	NL	0 NT	0 NR	0 NU	SL	SOUTHI 0 ST	BOUND 0 SR	SU	0 EL	0.54 EASTB 0 ET	OUND O ER	EU	0 WL	0.74 WESTE	BOUND 0 WR	0 WU	TOTAL 37 31
4:00 PM 4:15 PM 4:30 PM	NL 0	0 NT 0	0 NR 0	0 NU 0 0	SL 4	0.50 SOUTHI 0 ST 0 0	BOUND 0 SR 4	SU 0	0 EL 6 3 5	0.54 EASTB 0 ET 8	OUND 0 ER 0	0 0 0	0 WL 0	0.74 WESTE 0 WT 11 11 10	80UND 0 WR 4 5	0 WU 0 0	TOTAL 37 31 29
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 0 0	0 NT 0 0	0 NR 0 0	0 NU 0 0	SL 4 2 3 4	0.56 SOUTH 0 ST 0 0 0	BOUND 0 SR 4 2 3 1	0 0 0 0	0 EL 6 3 5	0.54 EASTB 0 ET 8 8 3 4	OUND 0 ER 0	0 0	0 WL 0 0	0.74 WESTE 0 WT 11 11 10 5	30UND 0 WR 4 5 5	0 WU 0 0	TOTAL 37 31 29 28
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	0 0 0	0 NT 0 0	0 NR 0 0	0 NU 0 0	SL 4 2 3	0.50 SOUTHI 0 ST 0 0	BOUND 0 SR 4 2	SU 0 0 0	0 EL 6 3 5	0.54 EASTB 0 ET 8 8 8	OUND 0 ER 0 0	0 0 0	0 WL 0 0	0.74 WESTE 0 WT 11 11 10	30UND 0 WR 4 5 5 9	0 WU 0 0	TOTAL 37 31 29
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 0 0 0 0	0 NT 0 0 0	0 NR 0 0 0	0 NU 0 0 0	SL 4 2 3 4 18 20	0.56 SOUTH 0 ST 0 0 0 0	BOUND 0 SR 4 2 3 1	0 0 0 0	0 EL 6 3 5	0.54 EASTB 0 ET 8 8 8 3 4 19 6	OUND 0 ER 0 0 0	0 0 0 0	0 WL 0 0 0	0.74 WESTE 0 WT 11 11 10 5	30UND 0 WR 4 5 5	0 WU 0 0	TOTAL 37 31 29 28 82 80
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	0 NU 0 0 0 0 0	SL 4 2 3 4 18 20 2	0.56 SOUTH 0 ST 0 0 0 0	BOUND 0 SR 4 2 3 1 14 14 4	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5	0.54 EASTB 0 ET 8 8 3 4 19 6 15	0UND 0 ER 0 0 0 0	EU 0 0 0 0 0	0 WL 0 0 0 0	0.74 WESTE 0 WT 11 11 10 5	46 BOUND 0 WR 4 5 5 9 11 17 7	0 WU 0 0 0	TOTAL 37 31 29 28 82 80 39
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 0 0 0 0 0	0 NT 0 0 0 0	0 NR 0 0 0 0 0	0 NU 0 0 0 0	SL 4 2 3 4 18 20	0.56 SOUTH 0 ST 0 0 0 0	BOUND 0 SR 4 2 3 1 14 14	SU 0 0 0 0 0	0 EL 6 3 5 5 10 16	0.54 EASTB 0 ET 8 8 8 3 4 19 6	0UND 0 ER 0 0 0 0	EU 0 0 0 0 0	0 WL 0 0 0 0	0.74 WESTE 0 WT 11 11 10 5	46 BOUND 0 WR 4 5 9 11	0 WU 0 0 0	TOTAL 37 31 29 28 82 80
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	0 NU 0 0 0 0 0	SL 4 2 3 4 18 20 2 0	0.56 SOUTH 0 ST 0 0 0 0	BOUND 0 SR 4 2 3 1 14 14 4	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 10 16 4	0.54 EASTB 0 ET 8 8 3 4 19 6 15	0UND 0 ER 0 0 0 0	EU 0 0 0 0 0	0 WL 0 0 0 0	0.74 WESTE 0 WT 11 11 10 5	46 BOUND 0 WR 4 5 5 9 11 17 7 7	0 WU 0 0 0	TOTAL 37 31 29 28 82 80 39
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0	0 NT 0 0 0 0 0 0	0 NR 0 0 0 0 0	0 NU 0 0 0 0 0	SL 4 2 3 4 18 20 2 0	0.50 SOUTH 0 ST 0 0 0 0 0 0 0 0	BOUND 0 SR 4 2 3 1 14 14 14 4 3	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 10 16 4 4	0.54 EASTB 0 ET 8 8 8 3 4 19 6 15 4	0UND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 WL 0 0 0 0	0.70 WESTE 0 WT 11 11 10 5 10 7 7	46 BOUND 0 WR 4 5 5 9 111 17 7	0 WU 0 0 0 0	TOTAL 37 31 29 28 82 80 39 22
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NL	0 NT 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0	SL 4 2 3 4 18 20 2 0	0.59 SOUTHI 0 ST 0 0 0 0 0 0 0 ST ST	BOUND 0 SR 4 2 3 1 1 14 14 4 3 SR	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 10 16 4 4	0.54 EASTB 0 ET 8 8 3 4 19 6 15 4 ET	0UND 0 ER 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 0 0 0 0 0 0	0.7- WESTE 0 WT 11 11 10 5 10 7 7 4	46 BOUND 0 WR 4 5 5 9 11 17 7 7	0 WU 0 0 0 0 0 0	TOTAL 37 31 29 28 82 80 39 22 TOTAL
4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0	SL 4 2 3 4 18 20 2 0 SL 53	0.56 SOUTHI 0 ST 0 0 0 0 0 0 0 This is a second of the sec	BOUND 0 SR 4 2 3 1 1 1 4 1 4 4 3 SR 45	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 10 16 4 4 4 EL 53	0.54 EASTB 0 ET 8 8 8 3 4 19 6 15 4 ET 67	48 OUND 0 ER 0 0 0 0 0 0 0 0 0 0 ER 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 0 0 0 0 0 0	0.73 WESTE 0 WT 11 11 10 5 10 7 7 4	30UND 0 WR 4 5 5 9 11 17 7 7	0 WU 0 0 0 0 0 0 0	TOTAL 37 31 29 28 82 80 39 22 TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0	SL 4 2 3 4 18 20 2 0 SL 53	0.56 SOUTHI 0 ST 0 0 0 0 0 0 0 This is a second of the sec	BOUND 0 SR 4 2 3 1 1 1 4 1 4 4 3 SR 45	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 10 16 4 4 4 EL 53	0.54 EASTB 0 ET 8 8 8 3 4 19 6 15 4 ET 67	48 OUND 0 ER 0 0 0 0 0 0 0 0 0 0 ER 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 0 0 0 0 0 0	0.73 WESTE 0 WT 11 11 10 5 10 7 7 4	30UND 0 WR 4 5 5 9 11 17 7 7	0 WU 0 0 0 0 0 0 0	TOTAL 37 31 29 28 82 80 39 22 TOTAL 348
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES: APPROACH %'s: PEAK HR:	NL 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0 0	SL 4 2 3 4 18 20 2 0 SL 53 54.08%	0.59 SOUTHI 0 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 SR 4 2 2 3 1 14 14 4 3 3 SR 45 45.92%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 6 3 5 5 5 10 16 4 4 4 4 EL 53 44.17%	0.54 EASTB 0 ET 8 8 8 3 4 19 6 15 4 ET 67 55.83%	48 OUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7- WESTE 0 WT 111 10 5 10 7 7 4 WT 65 50.00%	446 30UND 0 WR 4 5 5 9 11 17 7 7 WR 65 50.00%	0 WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL 37 31 29 28 82 80 39 22 TOTAL 348

Intersection Turning Movement Count

Location: Hilmar Unified School District Shipping and Receiving Entrance & Geer Ave City: Hilmar Control: 0 Project ID: 20-07044-003 Date: 2/6/2020

NS/EW Streets:	Hilmar Ur		l District Shi	pping and	Hilmar Uni			ipping and		Gee	Ave			Geer	r Ave		
NO, LW Streets.			Entrance				Entrance										
A B 4			HBOUND				HBOUND				BOUND				BOUND		
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	
7.00.414	NL	NT	NR	NU	SL	ST 0	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AW 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	0	0	0	Ō	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HR :		07:30 AM	- 08:30 AM														TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		NORTH	HBOUND			SOUTI	HBOUND			EAST	BOUND			WEST	BOUND		
PM	0	NORTH 0	0	0	0	SOUTI 0	0	0	0	EAST 0	BOUND 0	0	0	WEST 0	BOUND	0	
	O NL	0 NT		NU	SL	0 ST	0 SR	SU	EL			0 EU	0 WL		0 WR	WU	TOTAL
4:00 PM	NL 0	0 NT 0	0 NR 0	NU 0	SL 0	O ST	O SR O	SU 0	EL 0	0 ET 0	0 ER 0	EU 0	WL 0	0 WT	0 WR 0	WU 0	0
4:00 PM 4:15 PM	NL 0 0	0 NT 0 0	0 NR 0 0	NU 0 0	SL 0 0	0 ST 0 0	0 SR 0 0	SU 0 0	0 0	0 ET 0 0	0 ER 0 0	0 0	0 0	0 WT 0 0	0 WR 0 0	0 0	0
4:00 PM 4:15 PM 4:30 PM	0 0 0	0 NT 0 0	0 NR 0 0	0 0 0	SL 0 0 0	0 ST 0 0	0 SR 0 0	SU 0 0 0	0 0 0	0 ET 0 0	0 ER 0 0	0 0 0	0 0 0	0 WT 0 0	0 WR 0 0	0 0 0	0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 0 0 0	0 NT 0 0 0	0 NR 0 0 0	NU 0 0 0 0	SL 0 0 0 0	0 ST 0 0 0	0 SR 0 0 0	SU 0 0 0 0	EL 0 0 0 0	0 ET 0 0 0	0 ER 0 0 0	0 0 0 0	WL 0 0 0 0	0 WT 0 0 0	0 WR 0 0 0	0 0 0 0	0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 0 0 0 0	0 NT 0 0 0 0	0 NR 0 0 0 0	NU 0 0 0 0 0 0 0 0	SL 0 0 0 0	0 ST 0 0 0 0	0 SR 0 0 0	SU 0 0 0 0 0 0 0	EL 0 0 0 0	0 ET 0 0 0 0	0 ER 0 0 0 0	0 0 0 0 0	WL 0 0 0 0	0 WT 0 0 0 0	0 WR 0 0 0	WU 0 0 0 0	0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0	0 ST 0 0 0 0 0	0 SR 0 0 0 0	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0	0 ET 0 0 0 0 0	0 ER 0 0 0 0 0	0 0 0 0 0 0	WL 0 0 0 0 0	0 WT 0 0 0	0 WR 0 0 0 0	WU 0 0 0 0 0	0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 0 0 0 0 0	0 NT 0 0 0 0	0 NR 0 0 0 0	NU 0 0 0 0 0 0 0 0	SL 0 0 0 0	0 ST 0 0 0 0	0 SR 0 0 0	SU 0 0 0 0 0 0 0	EL 0 0 0 0	0 ET 0 0 0 0	0 ER 0 0 0 0	0 0 0 0 0	WL 0 0 0 0	0 WT 0 0 0 0	0 WR 0 0 0	WU 0 0 0 0	0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ST 0 0 0 0 0 0 0	0 SR 0 0 0 0 0 0	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ET 0 0 0 0 0 0 0	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WT 0 0 0 0 0 0 0	0 WR 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 0	0 ST 0 0 0 0 0	0 SR 0 0 0 0 0	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0	0 ET 0 0 0 0 0	0 ER 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0	0 WT 0 0 0 0 0	0 WR 0 0 0 0 0	WU 0 0 0 0 0	0 0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ST 0 0 0 0 0 0 0	0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ET 0 0 0 0 0 0 0	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WT 0 0 0 0 0 0 0	0 WR 0 0 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ST 0 0 0 0 0 0 0	0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ET 0 0 0 0 0 0 0	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WT 0 0 0 0 0 0 0	0 WR 0 0 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0


Location: Hilmar Unified School District Shipping and Receiving Intrance & Ge Violetting: 40-07044-003 Date: 2/6/2020

Pedestrians (Crosswalks)

NS/EW Streets:		ified School nipping and		ified School nipping and	Gee	r Ave	Geer	Ave	
AM	NOR	TH LEG	SOUT	ΓH LEG	EAS	T LEG	WES	T LEG	
Alvi	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0
7:45 AM	0	2	0	0	0	0	0	0	2
8:00 AM	0	3	0	0	0	0	0	0	3
8:15 AM	0	0	0	0	0	0	0	0	0
8:30 AM	0	1	0	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	6	0	0	0	0	0	0	6
APPROACH %'s:	0.00%	100.00%							
PEAK HR:	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL:	0	5	0	0	0	0	0	0	5
PEAK HR FACTOR:		0.417							0.417
	0.	417							0.417

PM	NORT	H LEG	SOUT	TH LEG	EAS	ΓLEG	WES	ΓLEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	0	0	0
APPROACH %'s:									
PEAK HR :	04:45 PM	- 05:45 PM							TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0
PEAK HR FACTOR :									

Hilmar Unified School District Shipping and Receiving Entrance & Geer Ave

Project ID: 20-07069-003 Date: 2020-02-26

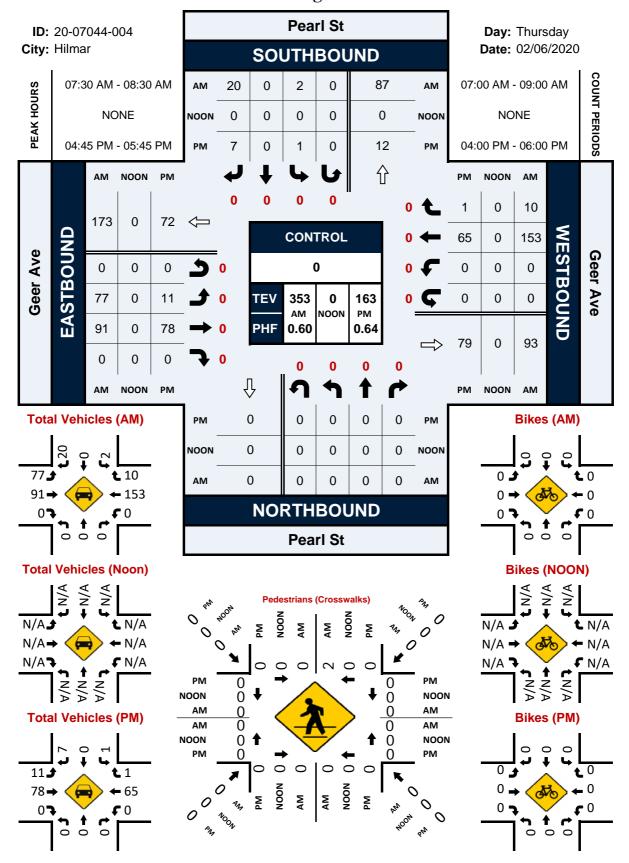
Total

NS/EW Streets:	Hilmar Ur			pping and	Hilmar Unif			ping and		Geer	Δνο			Geer	Δνο		
NOTEN Streets.		Receiving	Entrance			Receiving	Entrance			OCCI	AVC			OCCI	AVC		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	5	0	6	0	1	3	0	0	0	9	15	0	39
2:15 PM	0	0	0	0	6	0	2	0	5	6	0	0	0	5	10	0	34
2:30 PM	0	0	0	0	3	0	1	0	5	2	0	0	0	5	7	0	23
2:45 PM	0	0	0	0	2	0	1	0	5	4	0	0	0	15	14	0	41
3:00 PM	0	0	0	0	12	0	24	0	5	19	0	0	0	36	20	0	116
3:15 PM	0	0	0	0	11	0	9	0	9	27	0	0	0	13	4	0	73
3:30 PM	0	0	0	0	2	0	2	0	2	8	0	0	0	2	0	0	16
3:45 PM	0	0	0	0	0	0	5	0	1	11	0	0	0	7	5	0	29
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	41	0	50	0	33	80	0	0	0	92	75	0	371
APPROACH %'s :					45.05%	0.00%	54.95%	0.00%	29.20%	70.80%	0.00%	0.00%	0.00%	55.09%	44.91%	0.00%	
PEAK HR :		02:30 PM ·	- 03:30 PM														TOTAL
PEAK HR VOL :	0	0	0	0	28	0	35	0	24	52	0	0	0	69	45	0	253
PEAK HR FACTOR:	0.000	0.000	0.000	0.000	0.583	0.000	0.365	0.000	0.667	0.481	0.000	0.000	0.000	0.479	0.563	0.000	0.545
						0.43	38			0.5	28			0.50	09		0.545

Intersection Turning Movement Count

Location: Hilmar Unified School District Shipping and Receiving Entrance & Geer Ave City: Hilmar Control: 0 Project ID: 20-07069-003 Date: 2020-02-26

NS/EW Streets:	Hilmar U	nified Schoo Receiving	District Sh Entrance	ipping and	Hilmar Un		District Sh Entrance	ipping and		Gee	r Ave			Gee	r Ave		
		NORT	HBOUND			SOUTI	HBOUND			EAST	BOUND			WEST	BOUND		
PM	0 NL	0 NT	0 NR	0 NU	0 SL	0 ST	0 SR	0 SU	0	0 ET	0 ER	0 EU	0 WL	0 WT	0 WR	0 WU	TOTAL
2:00 PM	0	<u> </u>	0	0) ()	<u> </u>	0	<u></u>		<u> </u>	<u> </u>	0	O O	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HR :		02:30 PM	- 03:30 PN														TOTAL
PEAK HR VOL : PEAK HR FACTOR :	0 0.00	0.000	0 0.000	0 0.000	0.000	0.000	0.000	0.000	0.000	0 0.000	0 0.000	0.000	0.000	0 0.000	0.000	0.000	0
PEAK HIK PACTOR .	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	


Location: Hilmar Unified School District Shipping and Receiving Intrance & Ge Violetting: 40-07069-003 Unit City: Hilmar

Pedestrians (Crosswalks)

NS/EW Streets:		fied School ipping and		ified School nipping and	Geer	r Ave	Geer	Ave	
DM	NORT	H LEG	SOUT	H LEG	EAST	Γ LEG	WES	Γ LEG	
PM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0
2:15 PM	3	0	0	0	0	0	0	0	3
2:30 PM	0	1	0	0	0	0	0	0	1
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0
3:15 PM	2	0	0	0	0	0	0	0	2
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	1	0	0	0	0	0	0	6
APPROACH %'s:	83.33%	16.67%							
PEAK HR :	02:30 PM	- 03:30 PM							TOTAL
PEAK HR VOL :	2	1	0	0	0	0	0	0	3
PEAK HR FACTOR :	0.250	0.250							0.375
	0.3	375							0.373

Pearl St & Geer Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Pearl St & Geer Ave City: Hilmar Control:

Project ID: 20-07044-004 Date: 2/6/2020

~	_	•	_	

NS/EW Streets:		Pea	rl St			Pear	l St			Geer	Ave			Geer	Ave		
AM	0	NORTH 0	HBOUND 0	0	0	SOUTH 0	BOUND 0	0	0	EASTE 0	OUND 0	0	0	WESTE 0	BOUND 0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	1	0	0	0	4	0	0	6
7:15 AM	0	0	0	0	0	0	1	0	0	4	0	0	0	9	0	0	14
7:30 AM	0	0	0	0	2	0	2	0	3	15	0	0	0	30	0	0	52
7:45 AM	0	0	0	0	0	0	8	0	17	21	0	0	0	50	4	0	100
8:00 AM	0	0	0	0	0	0	5	0	48	37	0	0	0	51	6	0	147
8:15 AM	0	0	0	0	0	0	5	0	9	18	0	0	0	22	0	0	54
8:30 AM	0	0	0	0	1	0	0	0	0	11	0	0	0	5	0	0	17
8:45 AM	0	0	0	0	0	0	0	0	1	1	0	0	0	4	0	0	6
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	4 16.00%	0 0.00%	21 84.00%	0 0.00%	78 41.94%	108 58.06%	0 0.00%	0 0.00%	0 0.00%	175 94.59%	10 5.41%	0 0.00%	396
PEAK HR :		07:30 AM	- 08:30 AM														TOTAL
PEAK HR VOL :	0	0	0	0	2	0	20	0	77	91	0	0	0	153	10	0	353
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.250	0.000	0.625	0.000	0.401	0.615	0.000	0.000	0.000	0.750	0.417	0.000	0.600
						0.6	88			0.4	94			0.7	15		0.600
														0.7	10		II.
		NORTH	HBOUND			SOUTH				EASTE	OUND			WESTE			
PM	0	NORTH 0	HBOUND 0	0	0			0	0		SOUND 0	0	0			0	
PM	0 NL			0 NU	0 SL	SOUTH	BOUND	0 SU	0 EL	EASTE		0 EU	0 WL	WESTE	BOUND	0 WU	TOTAL
PM 4:00 PM		0	0			SOUTH 0	BOUND 0			EASTE 0	0			WESTE 0	BOUND 0		TOTAL 26
	NL	0 NT	0 NR	NU	SL	SOUTH 0 ST	BOUND 0 SR	SU	EL	EASTE 0 ET	0 ER	EU	WL	WESTE 0 WT	BOUND 0 WR	WU	
4:00 PM	NL 0	0 NT 0	0 NR 0	NU 0	SL 0	SOUTH 0 ST 0	BOUND 0 SR	SU 0	EL 1	EASTE 0 ET 10	0 ER 0	EU 0	WL 0	WESTE 0 WT 15	BOUND 0 WR 0	WU	26
4:00 PM 4:15 PM	NL 0 0	0 NT 0 0	0 NR 0 0	NU 0 0	SL 0 0	SOUTH 0 ST 0 0	BOUND 0 SR 0 4	0 0	1 2	EASTE 0 ET 10 9	0 ER 0 0	0 0	0 0	WESTE 0 WT 15 12	BOUND 0 WR 0 0	0 0	26 27
4:00 PM 4:15 PM 4:30 PM	0 0 0	0 NT 0 0	0 NR 0 0	0 0 0	SL 0 0 0	SOUTH 0 ST 0 0 0	BOUND 0 SR 0 4 3	0 0 0	1 2 0	EASTE 0 ET 10 9	0 ER 0 0	0 0 0	WL 0 0 0	WESTE 0 WT 15 12 13	BOUND 0 WR 0 0	0 0 0	26 27 22
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 0 0 0 0	0 NT 0 0 0	0 NR 0 0 0	NU 0 0 0 0	SL 0 0 0	SOUTH 0 ST 0 0 0	BOUND 0 SR 0 4 3 0	SU 0 0 0	EL 1 2 0 0	EASTE 0 ET 10 9 6	0 ER 0 0 0	0 0 0 0	WL 0 0 0 0	WESTE 0 WT 15 12 13 13	BOUND 0 WR 0 0	0 0 0 0	26 27 22 21
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 0 0 0 0	0 NT 0 0 0 0	0 NR 0 0 0 0	NU 0 0 0 0 0 0 0 0	SL 0 0 0 0	SOUTH 0 ST 0 0 0 0 0 0 0	BOUND 0 SR 0 4 3 0 2	SU 0 0 0 0	EL 1 2 0 0	EASTE 0 ET 10 9 6 8 29	0 ER 0 0 0 0	EU 0 0 0 0	WL 0 0 0 0	WESTE 0 WT 15 12 13 13 22	BOUND 0 WR 0 0 0 0	WU 0 0 0 0	26 27 22 21 64
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0	SOUTH 0 ST 0 0 0	BOUND 0 SR 0 4 3 0 2 3	SU 0 0 0 0 0	EL 1 2 0 0 0 9 0	EASTE 0 ET 10 9 6 8 29 25	0 ER 0 0 0 0 0	EU 0 0 0 0 0	WL 0 0 0 0 0	WESTE 0 WT 15 12 13 13 22 18	BOUND 0 WR 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 27 22 21 64 46
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0	0 NT 0 0 0 0 0	0 NR 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 1	SOUTH 0 ST 0 0 0 0	BOUND 0 SR 0 4 3 0 2 3 2 1 SR	SU 0 0 0 0 0	EL 1 2 0 0 0 9 0 2	EASTE 0 ET 10 9 6 8 29 25 16	0 ER 0 0 0 0 0	EU 0 0 0 0 0	WL 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 22 18 12	30UND 0 WR 0 0 0 0 1	WU 0 0 0 0 0	26 27 22 21 64 46 32
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0	0 NR 0 0 0 0 0 0	NU 0 0 0 0 0 0 0	SL 0 0 0 0 0 1 1 0 0 1 1	SOUTH 0 ST 0 0 0 0	BOUND 0 SR 0 4 3 0 2 3 2 1	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 1 2 0 0 0 9 0 2 0 0	EASTE 0 ET 10 9 6 8 29 25 16 4	0 ER 0 0 0 0 0	0 0 0 0 0 0 0	WL 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 22 18 12	30UND 0 WR 0 0 0 0 0	0 0 0 0 0 0 0	26 27 22 21 64 46 32 16
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 1 0 0 1 5 SL	SOUTH 0 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 SR 0 4 3 0 2 3 2 1 SR	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 1 2 0 0 0 9 0 2 0 EL	EASTE 0 ET 10 9 6 8 29 25 16 4	0 ER 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 22 18 12 10 WT	30UND 0 WR 0 0 0 0 0 1 0 0 0 WR	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 27 22 21 64 46 32 16
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 1 0 0 1 1 SL 2	SOUTH 0	BOUND 0 SR 0 4 3 0 2 3 2 1 SR 15	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 1 2 0 0 0 9 0 2 2 0 EL 14	EASTE 0 ET 10 9 6 8 29 25 16 4 ET 107	0 ER 0 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 13 12 18 12 10 WT 115	BOUND 0 WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 27 22 21 64 46 32 16
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 1 0 0 1 1 SL 2	SOUTH 0	BOUND 0 SR 0 4 3 0 2 3 2 1 SR 15	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 1 2 0 0 0 9 0 2 2 0 EL 14	EASTE 0 ET 10 9 6 8 29 25 16 4 ET 107	0 ER 0 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 22 18 12 10 WT 115 99.14%	BOUND 0 WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 27 22 21 64 46 32 16 TOTAL 254
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s :	NL 0 0 0 0 0 0 0 0 0 0	0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NR 0 0 0 0 0 0 0 0 0 0 0 0	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 0 0 0 0 0 1 1 0 0 1 1 SL 2 11.76%	SOUTH 0	BOUND 0 SR 0 4 3 0 2 3 2 1 1 SR 15 88.24%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 1 2 0 0 9 0 2 2 0 EL 14 11.57%	EASTE 0 ET 10 9 6 8 29 25 16 4 ET 107 88.43%	0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WESTE 0 WT 15 12 13 13 13 12 18 12 10 WT 115	BOUND 0 WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 27 22 21 64 46 32 16 TOTAL 254

Intersection Turning Movement Count

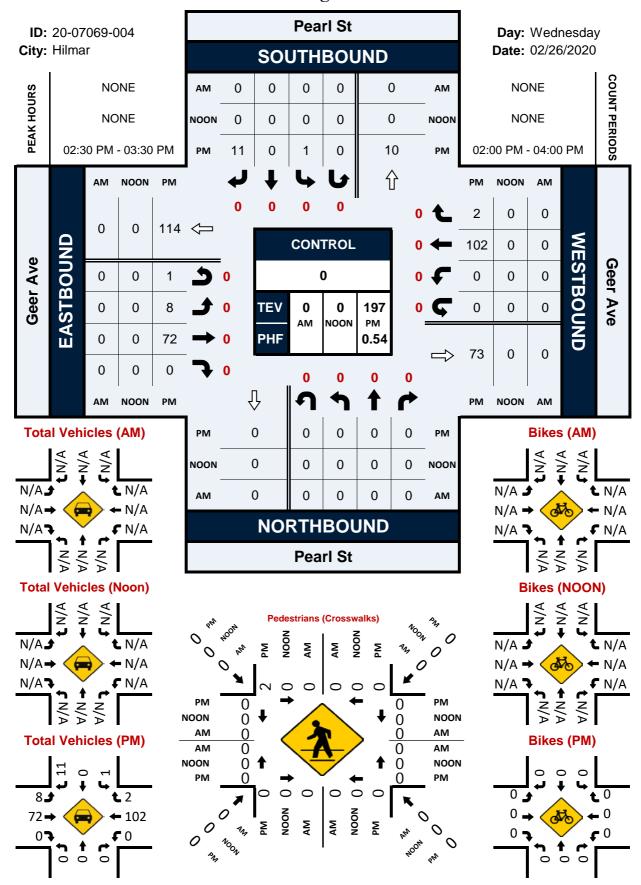
Location: Pearl St & Geer Ave City: Hilmar Control: 0

Project ID: 20-07044-004 Date: 2/6/2020

_				
R	п	•	_	c

NS/EW Streets:		Pea	ırl St			Pea	ırl St			Gee	r Ave			Gee	r Ave		
AM	0 NL	0 NT	HBOUND 0 NR	0 NU	0 SL	0 ST	HBOUND 0 SR	0 SU	0 EL	0 ET	BOUND 0 ER	<mark>0</mark> EU	0 WL	0 WT	TBOUND 0 WR	0 WU	TOTAL
7:00 AM 7:15 AM 7:30 AM	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
7:45 AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM 8:30 AM 8:45 AM	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
TOTAL VOLUMES : APPROACH %'s :	NL 0	NT 0	NR 0	NU 0	SL 0	ST 0	SR 0	SU 0	EL 0	ET 0	ER 0	EU 0	WL 0	WT 0	WR 0	WU 0	TOTAL 0
PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	0.000	07:30 AM 0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	TOTAL 0
PM	0 NL	0	HBOUND 0	0	0	0	HBOUND 0	0	0	EAST 0 ET	BOUND	0 EU	0 WL	WEST 0 WT	TBOUND 0	0	TOTAL
4:00 PM 4:15 PM 4:30 PM	0 0 0	NT 0 0 0	0 0 0	0 0 0	SL 0 0 0	ST 0 0 0	SR 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
4:45 PM 5:00 PM 5:15 PM	0 0	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0
5:30 PM 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES : APPROACH %'s :	NL 0	NT 0	NR 0	NU 0	SL 0	ST 0	SR 0	SU 0	EL 0	ET 0	ER 0	EU 0	WL 0	WT 0	WR 0	WU 0	TOTAL 0
PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	0 0.00	04:45 PM 0 0.000	- 05:45 PN 0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	0	0 0.000	0 0.000	0 0.000	0	0 0.000	0 0.000	0 0.000	TOTAL 0

Location: Pearl St & Seer Ave To Turning Movement Count City: Hilmar Date: 2/6/2020


Pedestrians (Crosswalks)

NS/EW Streets:	Pea	arl St	Pea	arl St	Gee	r Ave	Geer	Ave	
AM	NOR ⁻ EB	TH LEG WB	SOUT EB	TH LEG WB	EAS ⁻ NB	T LEG SB	WES ¹ NB	T LEG SB	TOTAL
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0	0 0 0 0 2 0 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 2 0 1
TOTAL VOLUMES : APPROACH %'s : PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	0	WB 3 100.00% - 08:30 AM 2 0.250	EB 0	WB 0	NB 0	SB 0	NB 0	SB 0	TOTAL 3 TOTAL 2 0.250
	0.	250							0.230

PM	NORT	H LEG	SOUT	H LEG	EAST	T LEG	WES	Γ LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	0	0	0
APPROACH %'s:									
PEAK HR :	04:45 PM	- 05:45 PM							TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0
PEAK HR FACTOR :									

Pearl St & Geer Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Pearl St & Geer Ave City: Hilmar Control:

Project ID: 20-07069-004 Date: 2020-02-26

Total

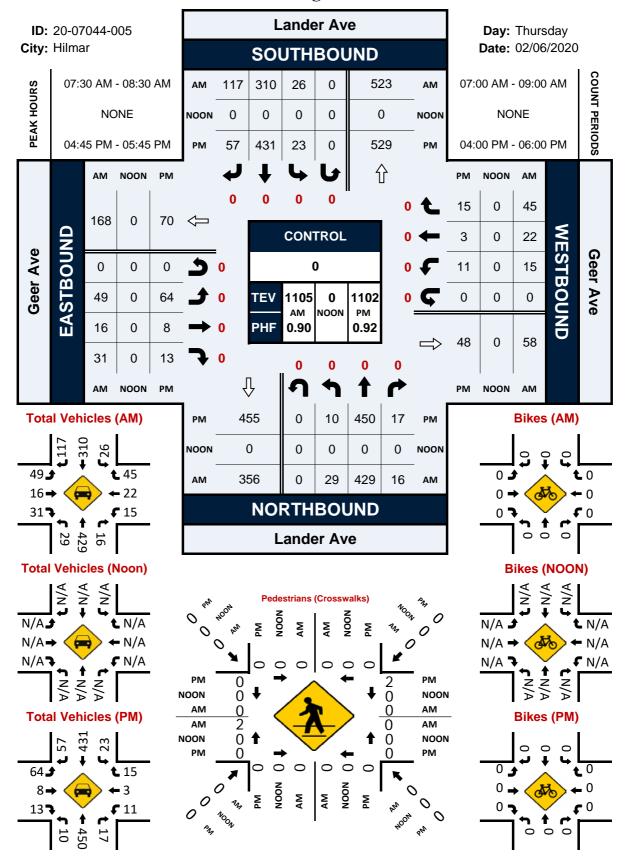
_																	i
NS/EW Streets:		Pea	rl St			Pearl	l St			Geer	Ave			Geer	Ave		
		NORTH	HBOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	2	0	1	8	0	0	0	24	0	0	35
2:15 PM	0	0	0	0	0	0	0	0	0	10	0	0	0	12	0	0	22
2:30 PM	0	0	0	0	1	0	1	0	0	5	0	0	0	13	1	0	21
2:45 PM	0	0	0	0	0	0	2	0	0	5	0	1	0	24	0	0	32
3:00 PM	0	0	0	0	0	0	6	0	3	29	0	0	0	53	1	0	92
3:15 PM	0	0	0	0	0	0	2	0	5	33	0	0	0	12	0	0	52
3:30 PM	0	0	0	0	1	0	0	0	0	8	0	0	0	2	0	0	11
3:45 PM	0	0	0	0	0	0	1	0	2	11	0	0	0	13	0	0	27
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	0	14	0	11	109	0	1	0	153	2	0	292
APPROACH %'s:					12.50%	0.00%	87.50%	0.00%	9.09%	90.08%	0.00%	0.83%	0.00%	98.71%	1.29%	0.00%	
PEAK HR :	,	02:30 PM -	- 03:30 PM														TOTAL
PEAK HR VOL :	0	0	0	0	1	0	11	0	8	72	0	1	0	102	2	0	197
PEAK HR FACTOR:	0.000	0.000	0.000	0.000	0.250	0.000	0.458	0.000	0.400	0.545	0.000	0.250	0.000	0.481	0.500	0.000	0.535
						0.50	00			0.5	33			0.4	31		0.555

Intersection Turning Movement Count

Location: Pearl St & Geer Ave City: Hilmar Control: 0

Project ID: 20-07069-004 Date: 2020-02-26

NS/EW Streets:		Pea	rl St			Pea	rl St			Gee	r Ave			Gee	r Ave		
		NORT	HBOUND			SOUTI	HBOUND			EAST	BOUND			WEST	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TOT41
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	ō	0	0	0	0	0	0	ō	0	0	0	Ō	0	0	0	0	0
3:45 PM	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
APPROACH %'s :																	
PEAK HR :		02:30 PM	- 03:30 PM														TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	


Location: Pearl Strategy Ave Turning Movement Count City: Hilmar

Pedestrians (Crosswalks)

NS/EW Streets:	Pear	'l St	Pea	ırl St	Geer	Ave	Geer	Ave	
PM	NORTI EB	H LEG WB		H LEG		LEG SB	-	T LEG	TOTAL
			EB	WB	NB	<u> </u>	NB	SB	TOTAL
2:00 PM		0	0	0	0	0	0	0	0
2:15 PM		0	0	0	0	0	0	0	3
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0
3:15 PM	2	0	0	0	0	0	0	0	2
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	0	0	0	0	0	0	0	5
APPROACH %'s:	100.00%	0.00%							
PEAK HR :	02:30 PM -	03:30 PM							TOTAL
PEAK HR VOL :	2	0	0	0	0	0	0	0	2
PEAK HR FACTOR :	0.250								0.250
	0.2	50							0.250

Lander Ave & Geer Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Geer Ave City: Hilmar Control:

Project ID: 20-07044-005 Date: 2/6/2020

nta	

NS/EW Streets:		Lander	Ave			Lander	r Ave			Geer	Ave			Geer	Ave		
		NORTH	ROLIND			SOUTH	ROLIND			EASTB	OUND			WESTE	ROUND		
AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
74101	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	77	2	0	2	97	3	0	2	1	2	0	2	0	4	0	193
7:15 AM	3	113	1	0	2	85	5	0	2	'n	1	0	7	1	4	0	224
7:30 AM	1	119	4	0	5	77	25	0	11	3	4	0	4	ė	9	0	267
7:45 AM	11	138	5	0	5	60	34	0	8	6	5	0	4	9	16	0	301
8:00 AM	17	110	4	0	7	63	35	0	17	5	18	0	5	8	17	0	306
8:15 AM	0	62	3	0	9	110	23	0	13	2	10	0	2	0	3	0	231
8:30 AM	2	87	3	0	3	71	3	0	8	2	3	0	1	0	5 5	0	188
8:45 AM	1	86	1	0	2	65	3	0	1	0	0	0	2	0	3		
8:45 AM	'	86	1	U	2	65	3	U		U	U	U	2	U	3	0	164
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	36	792	24	0	35	628	131	0	62	18	37	0	27	23	61	0	1874
APPROACH %'s:	4.23%	92.96%	2.82%	0.00%	4.41%	79.09%	16.50%	0.00%	52.99%	15.38%	31.62%	0.00%	24.32%	20.72%	54.95%	0.00%	
PEAK HR :		07:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	29	429	16	0	26	310	117	0	49	16	31	0	15	22	45	0	1105
PEAK HR FACTOR :	0.426	0.777	0.800	0.000	0.722	0.705	0.836	0.000	0.721	0.667	0.431	0.000	0.750	0.611	0.662	0.000	0.903
		0.76	69			0.79	98			0.60	00			0.6	83		0.703
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	0	NORTH 0	BOUND 0	0	0	SOUTH 0	BOUND 0	0	0	EASTB 0	OUND 0	0	0	WESTE 0	BOUND 0	0	
PM	0 NL			0 NU	0 SL			0 SU	0 EL			0 EU	0 WL			0 WU	TOTAL
PM		0	0			0	0	-		0	0			0	0		TOTAL 301
	NL	0 NT	0 NR	NU	SL	0 ST	0 SR	SU	EL	0 ET	0 ER	EU	WL	0 WT	0 WR	WU	
4:00 PM	NL 5	0 NT 129	0 NR 4	NU 0	SL 4	0 ST 128	0 SR 12	SU 0	EL 6	0 ET	0 ER	EU 0	WL 1	0 WT	0 WR 6	WU 0	301
4:00 PM 4:15 PM	NL 5 3	0 NT 129 113	0 NR 4 7	0 0	SL 4 10	0 ST 128 107	0 SR 12 7	SU 0 0	6 5	0 ET 3 4	0 ER 3 1	0 0	WL 1 3	0 WT 0 3	0 WR 6 0	0 0	301 263
4:00 PM 4:15 PM 4:30 PM	NL 5 3 3	0 NT 129 113 93	0 NR 4 7 5	0 0 0	SL 4 10 4	0 ST 128 107 98	0 SR 12 7 11	SU 0 0	6 5 5	0 ET 3 4	0 ER 3 1	0 0 0	WL 1 3 1	0 WT 0 3 3	0 WR 6 0	0 0 0	301 263 229
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 5 3 3	0 NT 129 113 93 109	0 NR 4 7 5	NU 0 0 0	SL 4 10 4 8	0 ST 128 107 98 118	0 SR 12 7 11 11	SU 0 0 0 0	EL 6 5 5	0 ET 3 4	0 ER 3 1	0 0 0 0	WL 1 3 1 2	0 WT 0 3 3 0	0 WR 6 0	0 0 0 0	301 263 229 264
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 5 3 3 2 4	0 NT 129 113 93 109 125	0 NR 4 7 5 5 6 4	NU 0 0 0 0	SL 4 10 4 8 3	0 ST 128 107 98 118	0 SR 12 7 11 11 20	SU 0 0 0 0	EL 6 5 5 5	0 ET 3 4 0 1	0 ER 3 1	EU 0 0 0 0	WL 1 3 1 2 5	0 WT 0 3 3 0	0 WR 6 0 6 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 5 3 3 2 4 2	0 NT 129 113 93 109 125 120	0 NR 4 7 5 5	NU 0 0 0 0 0	SL 4 10 4 8 3 8	0 ST 128 107 98 118 95 103	0 SR 12 7 11 11 20 16	SU 0 0 0 0 0	EL 6 5 5 5 18 27	0 ET 3 4 0 1	0 ER 3 1 0 2 5 4	EU 0 0 0 0 0	WL 1 3 1 2 5 4	0 WT 0 3 3 0 2	0 WR 6 0 6 1 4 8	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 5 3 3 2 4 2 2 1 1	0 NT 129 113 93 109 125 120 96 78	0 NR 4 7 5 5 6 4 2 2	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1	0 ST 128 107 98 118 95 103 115 103	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5 5 5 18 27 14 5	0 ET 3 4 0 1 4 2 1 0	0 ER 3 1 0 2 5 4 2 2	0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 3	0 WT 0 3 3 0 2 1 0 2	0 WR 6 0 6 1 4 8 2	WU 0 0 0 0 0 0	301 263 229 264 291 299 248 205
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 5 3 3 2 4 2 2 1 1 NL	0 NT 129 113 93 109 125 120 96 78	0 NR 4 7 5 5 6 4 2 2	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1	0 ST 128 107 98 118 95 103 115 103	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 6 5 5 5 5 18 27 14 5 5	0 ET 3 4 0 1 4 2 1 0	0 ER 3 1 0 2 5 4 2 2	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 0 3 WL	0 WT 0 3 3 0 2 1 0 2 WT	0 WR 6 0 6 1 4 8 2 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 5 3 3 2 4 2 2 1 NL 22	0 NT 129 113 93 109 125 120 96 78 NT 863	0 NR 4 7 5 5 6 4 2 2 NR 35	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1 SL 42	0 ST 128 107 98 118 95 103 115 103	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5 5 5 18 27 14 5	0 ET 3 4 0 1 4 2 1 0	0 ER 3 1 0 2 5 4 2 2	0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 3 WL 19	0 WT 0 3 3 0 2 1 0 2 2 WT 11	0 WR 6 0 6 1 4 8 2 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 5 3 4 2 4 2 1 NL 22 2.39%	0 NT 129 113 93 109 125 120 96 78 NT 863 93.80%	0 NR 4 7 5 5 6 4 2 2 2 NR 35 3.80%	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1	0 ST 128 107 98 118 95 103 115 103	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 6 5 5 5 5 18 27 14 5 5	0 ET 3 4 0 1 4 2 1 0	0 ER 3 1 0 2 5 4 2 2	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 0 3 WL	0 WT 0 3 3 0 2 1 0 2 WT	0 WR 6 0 6 1 4 8 2 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205 TOTAL 2100
4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:10 PM 5:15 PM 5:30 PM 5:45 PM	NL 5 3 4 2 4 2 1 NL 22 2.39%	0 NT 129 113 93 109 125 120 96 78 NT 863	0 NR 4 7 5 5 6 4 2 2 2 NR 35 3.80%	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1 SL 42	0 ST 128 107 98 118 95 103 115 103 ST 867	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 6 5 5 5 5 18 27 14 5 EL 85	0 ET 3 4 0 1 4 2 1 0 ET 15	0 ER 3 1 0 2 5 4 2 2 ER 19	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 3 WL 19	0 WT 0 3 3 0 2 1 0 2 2 WT 11	0 WR 6 0 6 1 4 8 2 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 5 3 4 2 4 2 1 NL 22 2.39%	0 NT 129 113 93 109 125 120 96 78 NT 863 93.80%	0 NR 4 7 5 5 6 4 2 2 2 NR 35 3.80%	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1 SL 42	0 ST 128 107 98 118 95 103 115 103 ST 867	0 SR 12 7 11 11 20 16 10 7	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 6 5 5 5 5 18 27 14 5 EL 85	0 ET 3 4 0 1 4 2 1 0 ET 15	0 ER 3 1 0 2 5 4 2 2 ER 19	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 3 WL 19	0 WT 0 3 3 0 2 1 0 2 2 WT 11	0 WR 6 0 6 1 4 8 2 1	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205 TOTAL 2100
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR :	NL 5 3 4 2 2 1 NL 22 2.39%	0 NT 129 113 93 109 125 120 96 78 NT 863 93.80%	0 NR 4 7 5 5 6 4 2 2 2 NR 35 3.80%	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 4 10 4 8 3 8 4 1 SL 42 4.19%	0 ST 128 107 98 118 95 103 115 103 ST 867 86.44%	0 SR 12 7 11 11 20 16 10 7 SR 94 9.37%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 6 5 5 5 18 27 14 5 EL 85 71.43%	O ET 3 4 0 1 4 2 1 0 ET 15 12.61%	O ER 3 1 0 2 5 4 2 2 2 ER 19 15.97%	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 1 3 1 2 5 4 0 3 WL 19 32.76%	0 WT 0 3 3 0 2 1 0 2 WT 11 18.97%	0 WR 6 0 6 1 4 8 2 1 1 WR 28 48.28%	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301 263 229 264 291 299 248 205 TOTAL 2100

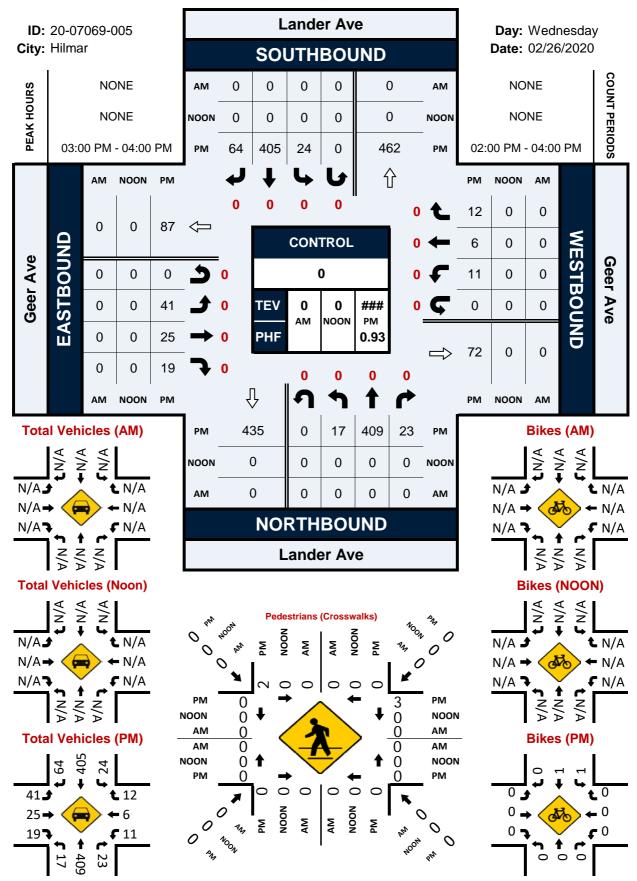
Intersection Turning Movement Count

Location: Lander Ave & Geer Ave City: Hilmar Control: 0

Project ID: 20-07044-005

Control:	0													Date.	2/6/2020		
								Bil	ces								•
NS/EW Streets:		Land	er Ave			Lande	er Ave			Geer	r Ave			Geer	r Ave		
A B 4			HBOUND				HBOUND				BOUND				BOUND		
AM	0 NL	0 NT	0 NR	0 NU	0 SL	0 ST	0 SR	0 SU	0 EL	0 ET	0 ER	<mark>0</mark> EU	0 WL	0 WT	0 WR	0 WU	TOTAL
7:00 AM	0	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HR :			- 08:30 AM														TOTAL
PEAK HR VOL : PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
1 ZANCTINCTANOTON	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
T E III C III C III C II	0.000			0.000	0.000			0.000	0.000			0.000	0.000			0.000	
		NORT	HBOUND			SOUTI	HBOUND		0.000		BOUND	0		WEST	BOUND		
PM	0 NL		HBOUND	O NU	0 SL	SOUTH 0 ST	HBOUND 0 SR	0 SU		EAST 0 ET			0 WL			0 WU	TOTAL
PM 4:00 PM	0 NL 0	NORT 0 NT	HBOUND 0 NR 0	0 NU 0	0 SL 0	SOUTH 0 ST 0	HBOUND 0 SR 0	0 SU 0	0 EL 0	EAST 0 ET 0	BOUND 0 ER 0	0 EU 0	0 WL 0	WEST 0 WT 0	BOUND 0 WR	0 WU 0	0
PM 4:00 PM 4:15 PM	0 NL 0 0	NORT 0 NT 0	HBOUND 0 NR 0	0 NU 0 0	0 SL 0	SOUTH 0 ST 0 0	HBOUND 0 SR 0	0 SU 0 0	0 EL 0 0	EAST 0 ET 0 0	BOUND 0 ER 0	0 EU 0 0	0 WL 0	WEST 0 WT 0	BOUND 0 WR 0	0 WU 0 0	0
PM 4:00 PM	0 NL 0	NORT 0 NT	HBOUND 0 NR 0	0 NU 0	0 SL 0	SOUTH 0 ST 0	HBOUND 0 SR 0	0 SU 0	0 EL 0	EAST 0 ET 0	BOUND 0 ER 0	0 EU 0	0 WL 0	WEST 0 WT 0	BOUND 0 WR	0 WU 0	0
PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	0 NL 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0	0 NU 0 0 0 0	0 SL 0 0 0 0	SOUTH 0 ST 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0	0 SU 0 0 0 0	0 EL 0 0 0	EAST 0 ET 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0	0 EU 0 0	0 WL 0 0 0	WEST 0 WT 0 0 0 0	BOUND 0 WR 0 0	0 WU 0 0 0	0 0 0 0
PIVI 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	0 NL 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0	0 SL 0 0 0 0	SOUTH 0 ST 0 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SU 0 0 0 0 0	0 EL 0 0 0 0	EAST 0 ET 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 0 0 0 0	0 WL 0 0 0	WEST 0 WT 0 0 0 0	0 WR 0 0 0 0 0	0 WU 0 0 0 0	0 0 0 0
PIVI 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	0 NL 0 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0	0 SL 0 0 0 0 0	SOUTH 0 ST 0 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SU 0 0 0 0 0	0 EL 0 0 0 0 0	EAST 0 ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 0 0 0 0	0 WL 0 0 0 0	WEST 0 WT 0 0 0 0	0 WR 0 0 0 0 0 0	0 WU 0 0 0 0	0 0 0 0 0
PIVI 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	0 NL 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0	0 SL 0 0 0 0	SOUTH 0 ST 0 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SU 0 0 0 0 0	0 EL 0 0 0 0	EAST 0 ET 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 0 0 0 0	0 WL 0 0 0	WEST 0 WT 0 0 0 0	0 WR 0 0 0 0 0	0 WU 0 0 0 0	0 0 0 0
PIVI 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 NL 0 0 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 NR NR	0 NU 0 0 0 0 0 0 0	0 SL 0 0 0 0 0 0	SOUTH 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 SR 0 0 SR	0 SU 0 0 0 0 0 0 0	0 EL 0 0 0 0 0 0 0	EAST 0 ET 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 ER	0 EU 0 0 0 0 0 0	0 WL 0 0 0 0 0 0	WEST 0 WT 0 0 0 0 0 0 0 0 0 WT	BOUND 0 WR 0 0 0 0 0 0 0 0 WR	0 WU 0 0 0 0 0 0	0 0 0 0 0 0 0 0
4:00 PM 4:15 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:30 PM 5:30 PM 5:45 PM	0 NL 0 0 0 0	NORT 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0	0 SL 0 0 0 0 0	SOUTH 0 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SU 0 0 0 0 0	0 EL 0 0 0 0 0	EAST 0 ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 0 0 0 0 0	0 WL 0 0 0 0	WEST 0 WT 0 0 0 0 0	BOUND 0 WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WU 0 0 0 0	0 0 0 0 0 0
4:00 PM 4:15 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:30 PM 5:30 PM 5:45 PM	0 NL 0 0 0 0 0	NORT 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0 0	0 SL 0 0 0 0 0 0	SOUTH 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 SR	0 SU 0 0 0 0 0 0 0	0 EL 0 0 0 0 0 0 0	EAST 0 ET 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 ER	0 EU 0 0 0 0 0 0	0 WL 0 0 0 0 0 0	WEST 0 WT 0 0 0 0 0 0 0 0 0 WT	BOUND 0 WR 0 0 0 0 0 0 0 0 WR	0 WU 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 TOTAL
4:00 PM 4:15 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:30 PM 5:30 PM 5:45 PM	0 NL 0 0 0 0 0	NORT 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 NR NR	0 NU 0 0 0 0 0 0 0	0 SL 0 0 0 0 0 0	SOUTH 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 SR	0 SU 0 0 0 0 0 0 0	0 EL 0 0 0 0 0 0 0	EAST 0 ET 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 ER	0 EU 0 0 0 0 0 0	0 WL 0 0 0 0 0 0	WEST 0 WT 0 0 0 0 0 0 0 0 0 WT	BOUND 0 WR 0 0 0 0 0 0 0 0 WR	0 WU 0 0 0 0 0 0	0 0 0 0 0 0 0 0
4:00 PM 4:15 PM 4:13 PM 4:43 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES: APPROACH 9's:	0 NL 0 0 0 0 0 0	NORT 0 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0 0 0	0 SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOUTH 0 0 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HBOUND 0 SR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EL 0 0 0 0 0 0 0	EAST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 0 0 0 0 0 0 0	0 WL 0 0 0 0 0 0 0 0 0	WEST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WU 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 TOTAL 0

Location: Lander Ave & Geer Ave on Turning Movement Count City: Hilmar Date: 2/6/2020


Pedestrians (Crosswalks)

NS/EW Streets:	Lande	er Ave	Land	er Ave	Geer	Ave	Geer	Ave	
AM	NORT EB	H LEG WB	SOU ⁻ EB	TH LEG WB	EAST NB	T LEG SB	WEST NB	LEG SB	TOTAL
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 2 0 0 0	0 0 0 0 0 0	0 0 0 2 0 0 0
TOTAL VOLUMES : APPROACH %'s : PEAK HR :	-	WB 0 - 08:30 AM	EB 0	WB 0	NB 0	SB 0	NB 2 100.00%	SB 0 0.00%	TOTAL 2
PEAK HR VOL : PEAK HR FACTOR :	0	0	0	0	0	0	0.250 0.2	0 50	2 0.250

PM	NORT	H LEG	SOUT	TH LEG	EAS	T LEG	WES	T LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
4:00 PM	0	0	0	0	0	0	0	1	1
4:15 PM	0	1	0	0	0	0	0	0	1
4:30 PM	1	0	0	0	0	2	0	0	3
4:45 PM	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	2	0	0	2
5:30 PM	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	1	1	0	0	0	4	0	1	7
APPROACH %'s:	50.00%	50.00%			0.00%	100.00%	0.00%	100.00%	
PEAK HR :	04:45 PM	- 05:45 PM		_					TOTAL
PEAK HR VOL :	0	0	0	0	0	2	0	0	2
PEAK HR FACTOR :						0.250			0.250
					0.	250			0.250

Lander Ave & Geer Ave

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Location: Lander Ave & Geer Ave City: Hilmar Control:

Project ID: 20-07069-005 Date: 2020-02-26

Total

NS/EW Streets:		Lander	Ave			Lander	Ave			Geer	Ave			Geer	Ave		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	2	79	3	0	5	78	21	0	6	2	1	0	4	3	2	0	206
2:15 PM	5	62	5	0	5	98	7	0	11	3	3	0	2	2	2	0	205
2:30 PM	5	90	3	0	4	100	12	0	5	3	1	0	2	1	7	1	234
2:45 PM	4	93	4	0	8	100	22	0	4	1	0	0	3	1	2	0	242
3:00 PM	10	93	4	0	9	89	41	0	11	8	8	0	1	4	5	0	283
3:15 PM	2	102	4	0	5	109	9	0	19	8	8	0	3	1	4	0	274
3:30 PM	1	111	11	0	8	99	3	0	6	5	2	0	5	0	0	0	251
3:45 PM	4	103	4	0	2	108	11	0	5	4	1	0	2	1	3	0	248
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	33	733	38	0	46	781	126	0	67	34	24	0	22	13	25	1	1943
APPROACH %'s :	4.10%	91.17%	4.73%	0.00%	4.83%	81.95%	13.22%	0.00%	53.60%	27.20%	19.20%	0.00%	36.07%	21.31%	40.98%	1.64%	
PEAK HR :	(03:00 PM -	04:00 PM														TOTAL
PEAK HR VOL :	17	409	23	0	24	405	64	0	41	25	19	0	11	6	12	0	1056
PEAK HR FACTOR :	0.425	0.921	0.523	0.000	0.667	0.929	0.390	0.000	0.539	0.781	0.594	0.000	0.550	0.375	0.600	0.000	0.933
		0.9	13			0.88	37			0.6	07			0.72	25		0.733

Intersection Turning Movement Count

Location: Lander Ave & Geer Ave City: Hilmar Control: 0 Bikes

Project ID: 20-07069-005 Date: 2020-02-26

_								DII	ces								-
NS/EW Streets:		Land	er Ave			Lande	r Ave			Gee	r Ave			Gee	r Ave		
		NORT	HBOUND			SOUTH	BOUND			EAST	BOUND			WEST	BOUND		
PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
APPROACH %'s:					50.00%	50.00%	0.00%	0.00%									
PEAK HR :		03:00 PM	- 04:00 PM														TOTAL
PEAK HR VOL :	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
PEAK HR FACTOR:	0.00	0.000	0.000	0.000	0.250	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250
						0.2	50										0.230

Location: Lander Ave & Geer Ave of Turning Movement Count City: Hilmar

Pedestrians (Crosswalks)

NS/EW Streets:	Lande	er Ave	Land	er Ave	Gee	er Ave	Geer	Ave	
PM		H LEG		TH LEG		T LEG		Γ LEG	
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM		0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	1	0	0	0	0	0	0	1
3:00 PM	0	0	0	0	0	1	0	0	1
3:15 PM	2	0	0	0	0	2	0	0	4
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	2	1	0	0	0	3	0	0	6
APPROACH %'s:	66.67%	33.33%			0.00%	100.00%			
PEAK HR :	03:00 PM ·	- 04:00 PM							TOTAL
PEAK HR VOL :	2	0	0	0	0	3	0	0	5
PEAK HR FACTOR :	0.250					0.375			0.313
	0.2	250			0.	375			0.313

Appendix C: Methodology

Levels of Service Methodology

The description and procedures for calculating capacity and level of service (LOS) are found in the Transportation Research Board, Highway Capacity Manual (HCM). The HCM 2010 represents the research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level of service (LOS), from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each LOS represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish a LOS.

Urban Streets (Automobile Mode)

The term "urban streets" refers to urban arterials and collectors, including those in downtown areas. Arterial streets are roads that primarily serve longer through trips. However, providing access to abutting commercial and residential land uses is also an important function of arterials. Collector streets provide both land access and traffic circulation within residential, commercial and industrial areas. Their access function is more important than that of arterials, and unlike arterials their operation is not always dominated by traffic signals. Downtown streets are signalized facilities that often resemble arterials. They not only move through traffic but also provide access to local businesses for passenger cars, transit buses, and trucks. Pedestrian conflicts and lane obstructions created by stopping or standing taxicabs, buses, trucks and parking vehicles that cause turbulence in the traffic flow are typical of downtown streets.

Flow Characteristics

The speed of vehicles on urban streets is influenced by three main factors, street environment, interaction among vehicles and traffic control.

The street environment includes the geometric characteristics of the facility, the character of roadside activity, and adjacent land uses. Thus, the environment reflects the number and width of lanes, type of median, driveway/access point density, spacing between signalized intersections, existence of parking, level of pedestrian and bicyclist activity and speed limit.

The interaction among vehicles is determined by traffic density, the proportion of trucks and buses, and turning movements. This interaction affects the operation of vehicles at intersections and, to a lesser extent, between signals.

Traffic controls (including signals and signs) forces a portion of all vehicles to slow or stop. The delays and speed changes caused by traffic control devices reduce vehicle speeds; however, such controls are needed to establish right-of-way.

Levels of Service (automobile Mode)

The average travel speed for through vehicles along an urban street is the determinant of the operating level of service (LOS). The travel speed along a segment, section or entire length of an urban street is dependent on the running speed between signalized intersections and the amount of control delay incurred at signalized intersections.

LOS A describes primarily free-flow operation. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is minimal. Travel speeds exceed 85 of the base free flow speed (FFS).

LOS B describes reasonably unimpeded operation. The ability to maneuver within the traffic stream is only slightly restricted and control delay at the boundary intersections is not significant. The travel speed is between 67 and 85 percent of the base FFS.

LOS C describes stable operations. The ability to maneuver and change lanes in midblock location may be more restricted than at LOS B. Longer queues at the boundary intersections may contribute to lower travel speeds. The travel speed is between 50 and 67 percent of the base FFS.

LOS D indicates a less stable condition in which small increases in flow may cause substantial increases in delay and decreases in travel speed. This operation may be due to adverse signal progression, high volumes, inappropriate signal timing, at the boundary intersections. The travel speed is between 40 and 50 percent of the base FFS.

LOS E is characterized unstable operation and significant delay. Such operations may be due to some combination of adverse progression, high volume, and inappropriate signal timing at the boundary intersections. The travel speed is between 30 and 40 percent of the base FFS.

LOS F is characterized by street flow at extremely low speed. Congestion is likely occurring at the boundary intersections, as indicated by high delay and extensive queuing. The travel speed is 30 percent or less of the base FFS.

Table A-1: Urban Street Levels of Service (Automobile Mode)

Travel Speed as a Percentage of Base Free-Flow Speed (%)	LOS by Critical Volume-to	-Capacity Ratio ^a
	≤1.0	>1.0
>85	A	F
>67 to 85	В	F
>50 to 67	С	F
>40 to 50	D	F
>30 to 40	Е	F
≤30	F	F

a =The Critical volume-to-capacity ratio is based on consideration of the through movement-to-capacity ratio at each boundary intersection in the subject direction of travel. The critical volume-to-capacity ratio is the largest ratio of those considered. Source: Highway Capacity Manual 2010, Exhibit 16-4. Urban Street LOS Criteria (Automobile Mode)

(559) 570-8991

www.JLBtraffic.com

Intersection Levels of Service

One of the more important elements limiting, and often interrupting the flow of traffic on a highway is the intersection. Flow on an interrupted facility is usually dominated by points of fixed operation such as traffic signals, stop and yield signs.

Signalized Intersections – Performance Measures

For signalized intersections the performance measures include automobile volume-to-capacity ratio, automobile delay, queue storage length, ratio of pedestrian delay, pedestrian circulation area, pedestrian perception score, bicycle delay, and bicycle perception score. LOS is also considered a performance measure. For the automobile mode average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection. A LOS designation is given to the weighted average control delay to better describe the level of operation. A description of LOS for signalized intersections is found in Table A-2.

Table A-2: Signalized Intersection Level of Service Description (Automobile Mode)

Level of Service	Description	Average Control Delay (seconds per vehicle)
А	Operations with a control delay of 10 seconds/vehicle or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when volume-to-capacity ratio is and either progression is exceptionally favorable or the cycle length is very short. If it's due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.	≤10
В	Operations with control delay between 10.1 to 20.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.	>10.0 to 20.0
С	Operations with average control delays between 20.1 to 35.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.	>20 to 35
D	Operations with control delay between 35.1 to 55.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop, and i ndividual cycle failures are noticeable.	>35 to 55
E	Operations with control delay between 55.1 to 80.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.	>55 to 80
F	Operations with unacceptable control delay exceeding 80.0 seconds/vehicle and a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.	>80

Source: Highway Capacity Manual 2010

Unsignalized Intersections

The HCM 2010 procedures use control delay as a measure of effectiveness to determine level of service. Delay is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, i. e., in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Control delay is the increased time of travel for a vehicle approaching and passing through an unsignalized intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection.

All-Way Stop Controlled Intersections

All-way stop controlled intersections is a form of traffic controls in which all approaches to an intersection are required to stop. Similar to signalized intersections, at all-way stop controlled intersections the average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection as a whole. In other words the delay measured for all-way stop controlled intersections is a measure of the average delay for all vehicles passing through the intersection during the peak hour. A LOS designation is given to the weighted average control delay to better describe the level of operation.

Two-Way Stop Controlled Intersections

Two-way stop controlled (TWSC) intersections in which stop signs are used to assign the right-of-way, are the most prevalent type of intersection in the United States. At TWSC intersections the stop-controlled approaches are referred as the minor street approaches and can be either public streets or private driveways. The approaches that are not controlled by stop signs are referred to as the major street approaches.

The capacity of movements subject to delay are determined using the "critical gap" method of capacity analysis. Expected average control delay based on movement volume and movement capacity is calculated. A LOS for TWSC intersection is determined by the computed or measured control delay for each minor movement. LOS is not defined for the intersection as a whole for three main reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at the typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay from all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements. Table A-3 provides a description of LOS at unsignalized intersections.

Table A-3: Unsignalized Intersection Level of Service Description (Automobile Mode)

Control Delay (seconds per vehicle)	LOS by Volume-	to-Capacity Ratio
	v/c <u><</u> 1.0	v/c > 1.0
≤10	А	F
>10 to 15	В	F
>15 to 25	С	F
>25 to 35	D	F
>35 to 50	E	F
>50	F	F

Source: HCM 2010 Exhibit 19-1.

(559) 570-8991

Appendix D: Existing Traffic Conditions

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	1>		ሻ	<u> </u>
Traffic Vol, veh/h	8	51	541	6	84	479
Future Vol, veh/h	8	51	541	6	84	479
Conflicting Peds, #/hr	102	0	0	12	12	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	9	57	608	7	94	538
WWW. Flow	,	0,	000	,	, ,	000
		_				
	Minor1		Major1		Major2	
Conflicting Flow All	1452	624	0	0	627	0
Stage 1	624	-	-	-	-	-
Stage 2	828	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.11	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	145	487	-	-	960	-
Stage 1	536	-	-	-	-	-
Stage 2	431	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	117	481	-	-	949	-
Mov Cap-2 Maneuver	243	-	-	-	-	-
Stage 1	530	-	-	-	-	-
Stage 2	350	-	-	-	-	-
Approach	WB		NB		SB	
					1.4	
HCM Control Delay, s	14.4		0		1.4	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	243	481	949
HCM Lane V/C Ratio		-	-	0.037	0.119	0.099
HCM Control Delay (s)		-	-		13.5	9.2
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)	-	-	0.1	0.4	0.3
70 700 2(1011	,			0.1	5.1	3.0

Baseline
JLB Traffic Engineering, Inc.
Synchro 10 Report
Page 1

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	f)		ሻ	f)	
Traffic Vol, veh/h	19	0	9	1	5	23	16	506	1	11	442	18
Future Vol, veh/h	19	0	9	1	5	23	16	506	1	11	442	18
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	21	0	10	1	5	25	18	556	1	12	486	20
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1160	1139	522	1118	1149	563	532	0	0	557	0	0
Stage 1	546	546	-	593	593	-	-	-	-	-	-	-
Stage 2	614	593	-	525	556	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	173	202	557	185	199	528	1041	-	-	1019	-	-
Stage 1	524	520	-	494	495	-	-	-	-	-	-	-
Stage 2	481	495	-	538	514	-	-	-	-	-	-	-
Platoon blocked, %	4				40-	=	1015	-	-	1015	-	-
Mov Cap-1 Maneuver	153	191	543	178	188	525	1015	-	-	1019	-	-
Mov Cap-2 Maneuver	153	191	-	178	188	-	-	-	-	-	-	-
Stage 1	502	501	-	485	486	-	-	-	-	-	-	-
Stage 2	442	486	-	522	495	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	26.4			15.3			0.3			0.2		
HCM LOS	D			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1015	-	-	199	381	1019	-	-			
HCM Lane V/C Ratio		0.017	_			0.084		_	_			
HCM Control Delay (s)		8.6	-	-	26.4	15.3	8.6	-	-			
HCM Lane LOS		A	-	-	D	С	A	-	-			
HCM 95th %tile Q(veh))	0.1	-	-	0.5	0.3	0	-	-			
_((-1)												

Baseline
JLB Traffic Engineering, Inc.
Synchro 10 Report
Page 2

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	₩ <u>₽</u>	TIDIC	Y	UDIN
Traffic Vol, veh/h	46	138	146	27	31	73
Future Vol, veh/h	46	138	146	27	31	73
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	62	62	62	62	62	62
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	74	223	235	44	50	118
WWW. TOW	, ,	220	200	•	00	110
	Major1		Major2		Minor2	
Conflicting Flow All	284	0	-	0	633	262
Stage 1	-	-	-	-	262	-
Stage 2	-	-	-	-	371	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-		3.327
Pot Cap-1 Maneuver	1273	-	-	-	442	774
Stage 1	-	-	-	-	780	-
Stage 2	-	-	-	-	696	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1267	-	-	-	408	770
Mov Cap-2 Maneuver	-	-	-	-	408	-
Stage 1	-	-	-	-	724	-
Stage 2	-	-	-	-	693	-
Approach	EB		WB		SB	
HCM Control Delay, s	2		0		13.1	
HCM LOS	2		U		В	
HOW LOS					D	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1267	-	-	-	609
HCM Lane V/C Ratio		0.059	-	-	-	0.275
HCM Control Delay (s)		8	0	-	-	13.1
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh))	0.2	-	-	-	1.1
HCIVI 95th %the Q(ven))	0.2	-	-	-	1.1

Baseline
JLB Traffic Engineering, Inc.
Synchro 10 Report
Page 3

Stop Stop
Lane Configurations Image: Configuration of the confi
Traffic Vol, veh/h 49 16 31 15 22 45 29 429 16 26 310 117 Future Vol, veh/h 49 16 31 15 22 45 29 429 16 26 310 117 Conflicting Peds, #/hr 0 0 0 0 0 2 0 0 0 0 2 Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free Free
Traffic Vol, veh/h 49 16 31 15 22 45 29 429 16 26 310 117 Future Vol, veh/h 49 16 31 15 22 45 29 429 16 26 310 117 Conflicting Peds, #/hr 0 0 0 0 0 2 0 0 0 0 2 Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free Free
Conflicting Peds, #/hr 0 0 0 0 0 0 2 0 0 0 2 Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length 50 50
Veh in Median Storage, # - 0 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90
Heavy Vehicles, % 3 3 3 3 3 3 7 3 3 7 3
Vlymt Flow 54 18 34 17 24 50 32 477 18 29 344 130
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 1056 1028 411 1043 1084 486 476 0 0 495 0 0
Stage 1 469 469 - 550 550
Stage 2 587 559 - 493 534
Critical Hdwy 7.13 6.53 6.23 7.13 6.53 6.23 4.13 - 4.13 -
Critical Hdwy Stg 1 6.13 5.53 - 6.13 5.53
Critical Hdwy Stg 2 6.13 5.53 - 6.13 5.53
Follow-up Hdwy 3.527 4.027 3.327 3.527 4.027 3.327 2.227 2.227 -
Pot Cap-1 Maneuver 202 233 639 207 216 579 1081 1064
Stage 1 573 559 - 518 514
Stage 2 494 509 - 556 523
Platoon blocked, %
Mov Cap-1 Maneuver 160 219 638 176 203 579 1079 1064
Mov Cap-2 Maneuver 160 219 - 176 203
Stage 1 555 543 - 502 499
Stage 2 417 494 - 495 508
Approach EB WB NB SB
HCM Control Delay, s 34.9 22 0.5 0.5
HCM LOS D C
Alaca Lang Marian Maria
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1079 224 302 1064
HCM Lane V/C Ratio 0.03 0.476 0.302 0.027
HCM Control Delay (s) 8.4 34.9 22 8.5
HCM Lane LOS A D C A
HCM 95th %tile Q(veh) 0.1 2.4 1.2 0.1

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	NDL	VVDIX	\	NDR	JDL Š	<u> </u>
Traffic Vol, veh/h	4	15	491	5	24	503
Future Vol, veh/h	4	15	491	5	24	503
Conflicting Peds, #/hr	25	0	0	6	6	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None		None	-	None
Storage Length	165	0	_	-	250	-
Veh in Median Storage		-	0	_	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	4	15	496	5	24	508
WWW. LOW	-	10	770	3	27	300
	Minor1		/lajor1		Major2	
Conflicting Flow All	1086	505	0	0	507	0
Stage 1	505	-	-	-	-	-
Stage 2	581	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.11	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	240	569	-	-	1063	-
Stage 1	608	-	-	-	-	-
Stage 2	561	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	228	566	-	-	1057	-
Mov Cap-2 Maneuver	362	-	-	-	-	-
Stage 1	604	-	-	-	-	-
Stage 2	535	-	-	-	-	-
Approach	WB		NB		SB	
	12.3		0		0.4	
HCM LOS	_		U		0.4	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	362	566	1057
HCM Lane V/C Ratio		-	-	0.011	0.027	0.023
HCM Control Delay (s)		-	-		11.5	8.5
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)	-	-	0	0.1	0.1
	•					

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ĵ.		*	ĵ.	
Traffic Vol, veh/h	7	3	5	1	0	15	2	463	2	14	478	17
Future Vol, veh/h	7	3	5	1	0	15	2	463	2	14	478	17
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	7	3	5	1	0	16	2	487	2	15	503	18
Major/Minor N	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1052	1046	520	1043	1054	495	528	0	0	493	0	0
Stage 1	549	549	-	496	496	-	-	-	-	-	-	-
Stage 2	503	497	-	547	558	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	205	229	558	208	227	577	1044	-	-	1076	-	-
Stage 1	522	518	-	558	547	-	-	-	-	-	-	-
Stage 2	553	546	-	523	513	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	195	223	554	200	221	573	1037	-	-	1072	-	-
Mov Cap-2 Maneuver	195	223	-	200	221	-	-	-	-	-	-	-
Stage 1	517	507	-	555	544	-	-	-	-	-	-	-
Stage 2	535	543	-	507	502	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	19.9			12.3			0			0.2		
HCM LOS	С			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1037	-	-	257	513	1072	-	-			
HCM Lane V/C Ratio		0.002	-	-				-	-			
HCM Control Delay (s)		8.5	-	-	400	12.3	8.4	-	-			
HCM Lane LOS		Α	-	-	С	В	Α	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.2	0.1	0	-	-			

Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ»		¥	
Traffic Vol, veh/h	24	52	69	45	28	35
Future Vol, veh/h	24	52	69	45	28	35
Conflicting Peds, #/hr	3	0	0	3	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	- -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	. # -	0	0	_	0	_
Grade, %	- π -	0	0	-	0	
Peak Hour Factor	55	55	55	55	55	55
	3	3	3	3	3	3
Heavy Vehicles, %	44	95	125	82	51	64
Mvmt Flow	44	95	125	82	31	04
Major/Minor N	Major1	N	Major2	N	Minor2	
Conflicting Flow All	210	0	-	0	352	169
Stage 1	-	-	-	-	169	-
Stage 2	-	-	-	-	183	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1355	-	-	-	644	872
Stage 1	-	-	-	-	858	-
Stage 2	-	-	_	_	846	-
Platoon blocked, %		_	_	_	010	
Mov Cap-1 Maneuver	1351		_	-	618	870
Mov Cap-1 Maneuver	-	_	_	-	618	- 070
Stage 1	_		-	-	826	_
· ·	-	-	-	-	843	-
Stage 2	-	-	-	-	043	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.4		0		10.8	
HCM LOS					В	
Minor Long/Major Mym	.1	EDI	EDT	WDT	WDD	CDI 51
Minor Lane/Major Mvm	l	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1351	-	-	-	737
			-	-	-	
		70	Λ	-	-	10.8
HCM Control Delay (s)						
HCM Lane LOS HCM 95th %tile Q(veh)		7.8 A 0.1	A	-	-	B 0.5
HCM Lane V/C Ratio		1351 0.032 7.8	- 0			73° 0.15! 10.8

Intersection												
Int Delay, s/veh	3.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	\$			ĵ.	
Traffic Vol, veh/h	41	25	19	11	6	12	17	409	23	24	405	64
Future Vol, veh/h	41	25	19	11	6	12	17	409	23	24	405	64
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	3	3	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	· -	· -	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3
Mvmt Flow	44	27	20	12	6	13	18	440	25	26	435	69
Major/Minor I	Minor2			Minor1			Major1		-	Major2		
Conflicting Flow All	1022	1026	470	1037	1048	458	504	0	0	468	0	0
Stage 1	522	522	-	492	492	-	-	-	-	-	-	-
Stage 2	500	504	-	545	556	-	-	-	-	-	-	-
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	-	2.227	-	-
Pot Cap-1 Maneuver	213	234	591	208	227	601	1055	-	-	1088	-	-
Stage 1	536	529	-	557	546	-	-	-	-	-	-	-
Stage 2	551	539	-	521	511	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	197	224	591	176	217	598	1055	-	-	1085	-	-
Mov Cap-2 Maneuver	197	224	-	176	217	-	-	-	-	-	-	-
Stage 1	527	516	-	546	535	-	-	-	-	-	-	-
Stage 2	523	528	-	465	499	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	28.6			20.5			0.3			0.4		
HCM LOS	D			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1055	-	-	242	263	1085	-	-			
HCM Lane V/C Ratio		0.017	-	-	0.378			-	-			
HCM Control Delay (s)		8.5	-	-	28.6	20.5	8.4	-	-			
HCM Lane LOS		А	-	-	D	С	Α	-	-			
HCM 95th %tile Q(veh))	0.1	-	-	1.7	0.4	0.1	-	-			

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	72	94	140	55	110
Average Queue (ft)	8	35	47	28	25
95th Queue (ft)	34	64	113	57	83
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	L	TR	L	TR
Maximum Queue (ft)	72	55	30	31	31	54
Average Queue (ft)	24	22	4	1	5	5
95th Queue (ft)	54	49	21	10	22	26
Link Distance (ft)	633	1229		349		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)			0	0		0
Queuing Penalty (veh)			0	0		0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	SB
Directions Served	LT	LR
Maximum Queue (ft)	31	78
Average Queue (ft)	7	42
95th Queue (ft)	27	63
Link Distance (ft)	1296	1245
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	WB	NB	SB	SB
Directions Served	LTR	LTR	L	L	TR
Maximum Queue (ft)	76	76	31	51	47
Average Queue (ft)	36	35	12	7	2
95th Queue (ft)	63	57	36	29	15
Link Distance (ft)	784	2629			349
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50	50	
Storage Blk Time (%)			0	0	0
Queuing Penalty (veh)			0	0	0

Zone Summary

Zone wide Queuing Penalty: 0

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	30	51	101	32	31
Average Queue (ft)	3	10	8	11	3
95th Queue (ft)	17	35	49	35	18
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	L
Maximum Queue (ft)	53	31	28	52	30
Average Queue (ft)	15	15	1	4	2
95th Queue (ft)	43	40	9	23	15
Link Distance (ft)	633	1229		349	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		55
Storage Blk Time (%)				0	
Queuing Penalty (veh)				0	

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	SB
Directions Served	LT	LR
Maximum Queue (ft)	29	80
Average Queue (ft)	3	38
95th Queue (ft)	15	64
Link Distance (ft)	1296	1245
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	WB	NB	NB	SB	
Directions Served	LTR	LTR	L	TR	L	
Maximum Queue (ft)	94	76	54	30	31	
Average Queue (ft)	41	19	8	1	8	
95th Queue (ft)	76	52	32	10	30	
Link Distance (ft)	784	2629		295		
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		50	
Storage Blk Time (%)			0	0	0	
Queuing Penalty (veh)			1	0	0	

Zone Summary

Zone wide Queuing Penalty: 1

Appendix E: Existing plus Project Traffic Conditions

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	1		ሻ	†
Traffic Vol, veh/h	12	51	577	6	84	529
Future Vol, veh/h	12	51	577	6	84	529
Conflicting Peds, #/hr	102	0	0	12	12	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	_	0	-		0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	13	57	648	7	94	594
WWW. Flow	10	0,	010	•	, ,	071
		_				
	Minor1		Major1		Major2	
Conflicting Flow All	1548	664	0	0	667	0
Stage 1	664	-	-	-	-	-
Stage 2	884	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.11	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	126	462	-	-	927	-
Stage 1	514	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	101	457	-	-	916	-
Mov Cap-2 Maneuver	225	-	-	-	-	-
Stage 1	508	-	-	-	-	-
Stage 2	328	-	-	-	-	-
Annroach	WB		NB		CD	
Approach					SB	
HCM Control Delay, s	15.5		0		1.3	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	225	457	916
HCM Lane V/C Ratio		-	-		0.125	
HCM Control Delay (s)		-	-	22	14	9.4
HCM Lane LOS		-	-	C	В	Α
HCM 95th %tile Q(veh)	-	-	0.2	0.4	0.3
110117 70111 701110 Q(VOI)	,			0.2	0.1	0.0

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		- 1	₽		<u>ች</u>	₽	
Traffic Vol, veh/h	19	0	9	1	5	23	16	624	1	11	632	18
Future Vol, veh/h	19	0	9	1	5	23	16	624	1	11	632	18
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	_ 0	0	_ 0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	21	0	10	1	5	25	18	686	1	12	695	20
Major/Minor	Minor2			Minor1			Major1		N	/lajor2		
Conflicting Flow All	1499	1478	731	1457	1488	693	741	0	0	687	0	0
Stage 1	755	755	7 0 1	723	723	0/3	, 71	-	-	-	-	-
Stage 2	744	723	_	734	765		_	_	_	_	_	_
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-		4.11	-	
Critical Hdwy Stg 1	6.11	5.51	0.21	6.11	5.51	0.21	4.11	_	_	4.11	_	
Critical Hdwy Stg 2	6.11	5.51	_	6.11	5.51	-	-	-	_		-	_
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209			2.209	_	
Pot Cap-1 Maneuver	101	126	423	108	125	445	870	-	_	912	-	_
Stage 1	402	418	423	419	432	_ 	010			712	_	
Stage 2	402	432	_	413	414	-	_	-			-	
Platoon blocked, %	100	TJZ		TIJ	717			_			_	
Mov Cap-1 Maneuver	87	119	413	103	118	442	848		_	912	-	_
Mov Cap-1 Maneuver	87	119	413	103	118	442	U 1 0			712	_	-
Stage 1	384	402	_	410	423	-	-	-	_		-	_
Stage 2	369	423		398	398		_					_
Jiaye Z	307	723		370	370							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	46.4			19.6			0.2			0.1		
HCM LOS	E			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		848		-		279	912					
HCM Lane V/C Ratio		0.021	_		0.263			_	-			
HCM Control Delay (s)		9.3	-	-		19.6	9	-	-			
HCM Lane LOS		9.3 A	-	-	40.4 E	19.0 C	A	-	-			
HCM 95th %tile Q(veh)	0.1	-	-	1	0.4	0	-	-			
HOW FOUT MILE Q(VEH)	0.1	-	-		0.4	U		-			

Intersection						
Int Delay, s/veh	32.6					
		EDT	MDT	MDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	Ε.4	<u>ર્</u> ન	115	227	7	100
Traffic Vol, veh/h	54	189	115	227	309	109
Future Vol, veh/h	54	189	115	227	309	109
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	63	220	134	264	359	127
Major/Minor 1	Major1	N	Major2		Minor2	
Conflicting Flow All	403	0	viajoiz	0	617	271
	403		-		271	
Stage 1	-	-	_	-	346	-
Stage 2		-	-			
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	0.02.	3.327
Pot Cap-1 Maneuver	1150	-	-	-	452	765
Stage 1	-	-	-	-	772	-
Stage 2	-	-	-	-	714	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1145	-	-	-	419	761
Mov Cap-2 Maneuver	-	-	-	-	419	-
Stage 1	-	-	-	-	720	-
Stage 2	-	-	-	-	710	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	1.9		0		77.1	
HCM LOS					F	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1145	_	_	_	
HCM Lane V/C Ratio		0.055	_	_		1.023
HCM Control Delay (s)		8.3	0	_		77.1
HCM Lane LOS		Α	A	_	_	F
HCM 95th %tile Q(veh))	0.2	-	-	-	14.2
HOW FOUT TOUTE Q(VEH))	0.2	-	-	-	14.2

	۶	→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĥ			
Traffic Volume (veh/h)	6	492	342	220	0	0
Future Volume (Veh/h)	6	492	342	220	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	572	398	256	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	654				1112	526
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	654				1112	526
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	928				228	550
Direction, Lane #	EB 1	WB 1				
Volume Total	579	654				
Volume Left	7	0				
Volume Right	0	256				
cSH	928	1700				
Volume to Capacity	0.01	0.38				
Queue Length 95th (ft)	1	0.00				
Control Delay (s)	0.2	0.0				
Lane LOS	A					
Approach Delay (s)	0.2	0.0				
Approach LOS	5.2	5.0				
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliza	ation		34.8%	IC	U Level o	of Service
Analysis Period (min)			15			

Intersection													
Int Delay, s/veh	278.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		ች	₽			₽		
raffic Vol, veh/h	250	28	141	15	34	34	115	357	16	17	218	408	
uture Vol, veh/h	250	28	141	15	34	34	115	357	16	17	218	408	
Conflicting Peds, #/hr	0	0	0	0	0	0	2	0	0	0	0	2	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-	
/eh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3	
/lvmt Flow	278	31	157	17	38	38	128	397	18	19	242	453	
Agior/Minor	Minor2			Minor1			Major1			Major?			
		1100			1207		Major1	0		Major2	0		
Conflicting Flow All	1209	1180	471	1263	1397	406	697	0	0	415	0	0	
Stage 1	509	509	-	662	662	-	-	-	-	-	-	-	
Stage 2	700	671	- / 22	601	735	- ())	110	-	-	4 1 2	-	-	
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.13	5.53	- 227	6.13	5.53	- 227	-	-	-	-	-	-	
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	-	2.227	-	-	
Pot Cap-1 Maneuver	~ 159	189	591	146	140	643	895	-	-	1139	-	-	
Stage 1	545	536	-	449	458	-	-	-	-	-	-	-	
Stage 2	428	453	-	485	424	-	-	-	-	-	-	-	
Platoon blocked, %	100	150	F00	00	110	(40	000	-	-	1120	-	-	
Mov Cap-1 Maneuver		159	590	80	118	643	893	-	-	1139	-	-	
Mov Cap-2 Maneuver		159	-	80	118	-	-	-	-	-	-	-	
Stage 1	466	526	-	385	393	-	-	-	-	-	-	-	
Stage 2	312	388	-	330	416	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, \$	1069.8			56.3			2.3			0.2			
HCM LOS	F			F									
A: 1 /DA : DA		NIDI	NDT	NDD		MDL 4	CDI	CDT	CDD	_		_	
Minor Lane/Major Mvn	nt	NBL	NBT	MRK	EBLn1\		SBL	SBT	SBR				
Capacity (veh/h)		893	-	-	144	157	1139	-	-				
HCM Lane V/C Ratio		0.143	-		3.233		0.017	-	-				
ICM Control Delay (s)	9.7	-	\$	1069.8	56.3	8.2	-	-				
ICM Lane LOS		Α	-	-	F	F	Α	-	-				
HCM 95th %tile Q(veh	1)	0.5	-	-	44.1	3.1	0.1	-	-				
Votes													
-: Volume exceeds ca	nacity	\$: De	elav evo	ceeds 3	00s	+. Com	putation	Not D	efined	*· ∆II	maiory	/olume i	n platoon
. Volume exceeds ca	pacity	ψ. DC	Jay CA	occus 3	003	i. Com	putation	ו ואטנ טי	chileu	. 📶	major (olullic I	ii piatooii

Interception						
Intersection	0.4					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	- ኝ	- 7	- î∍			
Traffic Vol, veh/h	5	15	508	4	24	521
Future Vol, veh/h	5	15	508	4	24	521
Conflicting Peds, #/hr	25	0	0	6	6	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	5	15	513	4	24	526
Major/Minor	Minor1	N	/lajor1	ı	Major2	
Conflicting Flow All	1120	521	0	0	523	0
	521	321	U	U	323	-
Stage 1	599		-	-		
Stage 2	6.41	6.21	-	-	4.11	-
Critical Hdwy			-	-	4.11	-
Critical IIdwy Stg 1	5.41 5.41	-	-	-	-	-
Critical Hdwy Stg 2		2 200	-	-	2 200	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	229	557	-	-	1049	-
Stage 1	598	-	-	-	-	-
Stage 2	551	-	-	-	-	-
Platoon blocked, %	61-	E	-	-	10.10	-
Mov Cap-1 Maneuver	217	554	-	-	1043	-
Mov Cap-2 Maneuver	353	-	-	-	-	-
Stage 1	594	-	-	-	-	-
Stage 2	526	-	-	-	-	-
					CD	
Approach	WB		NB		SB	
Approach HCM Control Delay s	WB		NB 0		SB 0.4	
HCM Control Delay, s	12.6		NB 0		0.4	
HCM Control Delay, s HCM LOS	12.6 B	NOT	0	A/DL 4	0.4	051
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr	12.6 B	NBT	0 NBRV	VBLn1V	0.4 VBLn2	SBL
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h)	12.6 B	NBT_	0 NBRV	353	0.4 VBLn2 554	1043
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	12.6 B nt		0 NBRV -	353 0.014	0.4 VBLn2 554 0.027	1043 0.023
HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	12.6 B nt	-	NBRV - -	353 0.014 15.3	0.4 VBLn2 554 0.027 11.7	1043 0.023 8.5
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	12.6 B nt	-	0 NBRV -	353 0.014	0.4 VBLn2 554 0.027	1043 0.023

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	f)		ሻ	î,	
Traffic Vol, veh/h	7	3	5	1	0	15	2	551	2	14	535	17
Future Vol, veh/h	7	3	5	1	0	15	2	551	2	14	535	17
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	7	3	5	1	0	16	2	580	2	15	563	18
Major/Minor I	Minor2		1	Minor1		1	Major1		N	/lajor2		
Conflicting Flow All	1205	1199	580	1196	1207	588	588	0	0	586	0	0
Stage 1	609	609	-	589	589	-	-	-	-	-	-	-
Stage 2	596	590	-	607	618	-	-	-	-	_	-	_
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209		-	2.209	-	-
Pot Cap-1 Maneuver	161	186	516	164	184	511	992	-	-	994	-	-
Stage 1	484	487	-	496	497	-	-	-	-	-	-	-
Stage 2	492	497	-	485	482	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	152	181	512	157	179	508	985	-	-	990	-	-
Mov Cap-2 Maneuver	152	181	-	157	179	-	-	-	-	-	-	-
Stage 1	480	476	-	493	494	-	-	-	-	-	-	-
Stage 2	474	494	-	469	471	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	23.8			13.4			0			0.2		
HCM LOS	C			В			0			0.2		
HOW LOS												
Minor Lane/Major Mum	nt .	NBL	NDT	MPD	EBLn1V	V/DI n1	SBL	SBT	SBR			
Minor Lane/Major Mvm	It		NBT	NDK				SDI	SDK			
Capacity (veh/h)		985	-	-	207	446	990	-	-			
HCM Cantral Dalay (a)		0.002	-	-	0.076			-	-			
HCM Long LOS		8.7	-	-	23.8	13.4	8.7	-	-			
HCM Lane LOS	\	A	-	-	С	В	A	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.2	0.1	0	-	-			

Intersection						
Int Delay, s/veh	6.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			אטא		אמכ
Lane Configurations	2.4	<u>ન</u>	-	100	100	- 7
Traffic Vol, veh/h	34	79	63	123	198	57
Future Vol, veh/h	34	79	63	123	198	57
Conflicting Peds, #/hr	3	0	0	3	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	:,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	38	88	70	137	220	63
N A o i o n/N Airo a s	1-1-1		1-1		Alia a O	
	Major1		Major2		/linor2	
Conflicting Flow All	210	0	-	0	306	142
Stage 1	-	-	-	-	142	-
Stage 2	-	-	-	-	164	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1355	-	-	-	684	903
Stage 1	-	-	-	-	883	-
Stage 2	-	-	-	-	863	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1351	_	_	-	659	900
Mov Cap-1 Maneuver	1331		_	_	659	700
Stage 1	-	-	-	-	854	-
	-	-	-	-		
Stage 2	-	-	-	-	860	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		13.6	
HCM LOS	2.3		U		13.0 B	
HOWI LUS					D	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1351		-		701
HCM Lane V/C Ratio		0.028	_	_		0.404
HCM Control Delay (s)		7.7	0	-		13.6
					-	
HCM Lane LOS		A	Α	-	-	B 2
HCM 95th %tile Q(veh)		0.1	-	-	-	2

	•	→	←	4	\	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>			
Traffic Volume (veh/h)	8	270	185	88	0	0
Future Volume (Veh/h)	8	270	185	88	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	9	300	206	98	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	304				573	255
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	304				573	255
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					4	
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	1251				476	781
		W/D 1				
Direction, Lane # Volume Total	EB 1 309	WB 1 304				
Volume Left	9	0				
Volume Right	0	98				
cSH	1251	1700				
Volume to Capacity	0.01	0.18				
Queue Length 95th (ft)	1					
0 , ,	0.3	0				
Control Delay (s)		0.0				
Lane LOS	A	0.0				
Approach LOS	0.3	0.0				
Approach LOS						
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	zation		24.0%	IC	U Level c	of Service
Analysis Period (min)			15			

latana at'an													
ntersection nt Delay, s/veh	58.9												
<u>Movement</u>	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4			4		- ሻ	₽			- ₽		
affic Vol, veh/h	180	33	61	11	12	7	71	363	23	18	368	164	
iture Vol, veh/h	180	33	61	11	12	7	71	363	23	18	368	164	
onflicting Peds, #/hr	2	0	0	0	0	2	0	0	3	3	0	0	
gn Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
T Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
torage Length eh in Median Storage	-	-	-	-	-	-	50	-	-	50	0	-	
en in Median Storage rade, %	e,# - -	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
eavy Vehicles, %	3	3	3	3	3	3	3	73	3	3	73	3	
vmt Flow	194	35	66	12	13	8	76	390	25	19	396	176	
WIIICT IOW	174	33	00	12	13	U	70	370	20	17	370	170	
laiar/Minar	Minora			Minari			Molor1			Majora			
	Minor2	1002		Minor1	1140		Major1	0		Major2	^	0	
onflicting Flow All Stage 1	1089 522	1092 522	484	1131 558	1168 558	408	572	0	0	418	0	0	
Stage 2	567	570	-	573	610	-	-	-	-	-	-	-	
ritical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-	
itical Hdwy Stg 1	6.13	5.53	0.23	6.13	5.53	0.23	4.13	_		4.13	_	_	
ritical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	_	_	
ollow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	_	_	2.227	_	_	
ot Cap-1 Maneuver	~ 192	214	581	180	193	641	996	-	-	1136	-	-	
Stage 1	536	529	-	512	510	-	-	-	-	-	-	-	
Stage 2	507	504	-	503	483	-	-	-	-	-	-	-	
atoon blocked, %								-	-		-	-	
lov Cap-1 Maneuver	~ 166	194	581	127	175	638	996	-	-	1133	-	-	
lov Cap-2 Maneuver	~ 166	194	-	127	175	-	-	-	-	-	-	-	
Stage 1	495	520	-	472	470	-	-	-	-	-	-	-	
Stage 2	449	464	-	409	475	-	-	-	-	-	-	-	
oproach	EB			WB			NB			SB			
CM Control Delay, s	275.5			29.2			1.4			0.3			
CM LOS	F			D									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		996	-	-	202	181	1133	-	-				
CM Lane V/C Ratio		0.077	-	-		0.178		-	-				
CM Control Delay (s)		8.9	-		275.5	29.2	8.2	-	-				
CM Lane LOS		А	-	-	F	D	Α	-	-				
ICM 95th %tile Q(veh)	0.2	-	-	17.8	0.6	0.1	-	-				
lotes													
Volume exceeds ca	pacity	\$: D	elav evo	ceeds 3	00s	+: Com	putation	n Not D	efined	*· All	maiory	/olume i	in platoon
. Sidino Shoodas da	racity	Ψ. Β	cay on	55545 0	-00	5011	ratation		Silliou	. ,	ajoi i	JIGITIO I	piatoori

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7	ች	ĵ.		ሻ	€	
Traffic Vol, veh/h	0	0	9	0	0	23	16	643	1	11	632	18
Future Vol, veh/h	0	0	9	0	0	23	16	643	1	11	632	18
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	10	0	0	25	18	707	1	12	695	20
Major/Minor N	1inor2		ľ	Minor1			Major1		ľ	Major2		
Conflicting Flow All	-	-	731	-	-	714	741	0	0	708	0	0
Stage 1	-	-	-	-	-	-		-	-	-	-	-
Stage 2	-	_	_	_	_	-	-		_	_	_	_
Critical Hdwy	-	-	6.21	-	-	6.21	4.11		-	4.11	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-		-	-	-	-
Follow-up Hdwy	-		3.309	-	-	3.309	2.209			2.209	-	-
Pot Cap-1 Maneuver	0	0	423	0	0	433	870	-	-	895	-	-
Stage 1	0	0	_	0	0	-	-	-	-	-	-	_
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	413	-	-	431	848	-	-	895	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	13.9			13.9			0.2			0.2		
HCM LOS	13.7 B			13.7 B			0.2			0.2		
TIOWI LOG	D			U								
Minor Lang/Major Mumt		NBL	NBT	NDD	DI 51V	VDI p1	CDI	SBT	SBR			
Minor Lane/Major Mvmt					EBLn1V		SBL					
Capacity (veh/h)		848	-	-	413	431	895	-	-			
HCM Control Doloy (c)		0.021	-			0.059		-	-			
HCM Lang LOS		9.3	-	-	13.9	13.9	9.1	-	-			
HCM DEth % tile O(vob)		0.1	-	-	B	0.2	A	-	-			
HCM 95th %tile Q(veh)		U. I	-	-	0.1	0.2	0	-	-			

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection						
Int Delay, s/veh	10.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		सी	↑	7		7
Traffic Vol, veh/h	54	189	115	227	309	109
Future Vol, veh/h	54	189	115	227	309	109
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	250	250	0
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	63	220	134	264	359	127
NA - ' / NA '	\		4-!0		\ A! O	
	Major1		/lajor2		Minor2	100
Conflicting Flow All	403	0	-	0	485	139
Stage 1	-	-	-	-	139	-
Stage 2	-	-	-	-	346	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	0.02,	
Pot Cap-1 Maneuver	1150	-	-	-	539	907
Stage 1	-	-	-	-	885	-
Stage 2	-	-	-	-	714	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1145	-	-	-	500	903
Mov Cap-2 Maneuver	-	-	-	-	500	-
Stage 1	-	-	-	-	825	-
Stage 2	-	-	-	-	710	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.9		0		23.6	
HCM LOS	1.7		U		23.0 C	
TICIVI LOS					U	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1 S
Capacity (veh/h)		1145	-	-	-	500
HCM Lane V/C Ratio		0.055	-	-	-	0.719
HCM Control Delay (s)		8.3	0	-	-	28.5
HCM Lane LOS		Α	Α	-	-	D
HCM 95th %tile Q(veh))	0.2	-	-	-	5.8

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 2

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4		Ť	4Î		7	f)	
Traffic Volume (veh/h)	269	28	141	16	39	34	115	357	16	17	217	408
Future Volume (veh/h)	269	28	141	16	39	34	115	357	16	17	217	408
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	299	31	157	18	43	38	128	397	18	19	241	453
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	331	34	324	23	56	49	156	891	40	36	250	469
Arrive On Green	0.21	0.21	0.21	0.07	0.07	0.07	0.09	0.52	0.52	0.02	0.45	0.45
Sat Flow, veh/h	1608	167	1572	313	748	661	1767	1705	77	1767	557	1048
Grp Volume(v), veh/h	330	0	157	99	0	0	128	0	415	19	0	694
Grp Sat Flow(s), veh/h/ln	1775	0	1572	1721	0	0	1767	0	1782	1767	0	1605
Q Serve(g_s), s	18.8	0.0	9.1	5.8	0.0	0.0	7.4	0.0	15.0	1.1	0.0	43.6
Cycle Q Clear(g_c), s	18.8	0.0	9.1	5.8	0.0	0.0	7.4	0.0	15.0	1.1	0.0	43.6
Prop In Lane	0.91		1.00	0.18		0.38	1.00		0.04	1.00		0.65
Lane Grp Cap(c), veh/h	365	0	324	128	0	0	156	0	931	36	0	719
V/C Ratio(X)	0.90	0.00	0.49	0.77	0.00	0.00	0.82	0.00	0.45	0.53	0.00	0.97
Avail Cap(c_a), veh/h	391	0	346	366	0	0	164	0	931	96	0	733
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	40.1	0.0	36.3	47.1	0.0	0.0	46.4	0.0	15.4	50.2	0.0	27.8
Incr Delay (d2), s/veh	22.8	0.0	1.1	9.4	0.0	0.0	26.2	0.0	0.3	11.5	0.0	24.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.3	0.0	3.5	2.8	0.0	0.0	4.3	0.0	5.7	0.6	0.0	20.3
Unsig. Movement Delay, s/veh		0.0	07.4	5 ()	0.0	0.0	70 (0.0	45.7	// 0	0.0	F0 (
LnGrp Delay(d),s/veh	62.9	0.0	37.4	56.4	0.0	0.0	72.6	0.0	15.7	61.8	0.0	52.6
LnGrp LOS	<u>E</u>	A	D	E	A	A	E	A	В	E	A	<u>D</u>
Approach Vol, veh/h		487			99			543			713	
Approach Delay, s/veh		54.7			56.4			29.1			52.8	
Approach LOS		D			Е			С			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.3	59.0		25.9	14.0	51.3		12.3				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5.6	51.3		22.8	9.6	* 47		22.0				
Max Q Clear Time (g_c+I1), s	3.1	17.0		20.8	9.4	45.6		7.8				
Green Ext Time (p_c), s	0.0	2.6		0.5	0.0	0.8		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			46.5									
HCM 6th LOS			D									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			T T			7	ሻ	7>		<u> </u>	<u> </u>	- J.J.
Traffic Vol, veh/h	0	0	5	0	0	15	2	558	2	14	535	17
Future Vol, veh/h	0	0	5	0	0	15	2	558	2	14	535	17
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	5	0	0	16	2	587	2	15	563	18
Major/Minor N	1inor2			Minor1			Major1			Major2		
Conflicting Flow All	-	-	580	-	-	595	588	0	0	593	0	0
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.21	-	-	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	3.309	-	-	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	0	0	516	0	0	506	992	-	-	988	-	-
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	512	-	-	503	985	-	-	984	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	12.1			12.4			0			0.2		
HCM LOS	В			В								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		985	-	-	012	503	984	-	-			
HCM Lane V/C Ratio		0.002	-	-	0.01	0.031		-	-			
HCM Control Delay (s)		8.7	-	-	12.1	12.4	8.7	-	-			
HCM Lane LOS		Α	-	-	В	В	Α	-	-			
HCM 95th %tile Q(veh)		0	-	-	0	0.1	0	-	-			

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection							
Int Delay, s/veh	5.8						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	LDL	<u>- ₽</u>		VVDIX	JDL	7 JUK	
Traffic Vol, veh/h	34	~ ~ 79	T 63	123	198	57	
Future Vol, veh/h	34	79	63	123	198	57	
Conflicting Peds, #/hr	3	0	0	3	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-			None	- -	None	
Storage Length	_	-	_	250	250	0	
Veh in Median Storage	2.# -	0	0	-	0	-	
Grade, %	-	0	0	_	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	38	88	70	137	220	63	
WIVIII TOW	- 30	- 00	10	101	220	- 03	
	Major1		Major2		Minor2		
Conflicting Flow All	210	0	-	0	237	73	
Stage 1	-	-	-	-	73	-	
Stage 2	-	-	-	-	164	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-		3.327	
Pot Cap-1 Maneuver	1355	-	-	-	749	986	
Stage 1	-	-	-	-	947	-	
Stage 2	-	-	-	-	863	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1351	-	-	-	722	983	
Mov Cap-2 Maneuver	-	-	-	-	722	-	
Stage 1	-	-	-	-	916	-	
Stage 2	-	-	-	-	860	-	
Approach	EB		WB		SB		
HCM Control Delay, s	2.3		0		11.5		
HCM LOS	2.0		U		В		
TIOWI LOS					D		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1 S	SBLn2
Capacity (veh/h)		1351	-	-	-	722	983
HCM Lane V/C Ratio		0.028	-	-	-	0.305	0.064
HCM Control Delay (s)		7.7	0	-	-	12.2	8.9
HCM Lane LOS		Α	Α	-	-	В	Α
HCM 95th %tile Q(veh))	0.1	-	-	-	1.3	0.2

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 2

	۶	→	•	•	←	•	4	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4		7	₽		ሻ	f)	
Traffic Volume (veh/h)	187	36	61	12	12	7	71	363	23	18	367	164
Future Volume (veh/h)	187	36	61	12	12	7	71	363	23	18	367	164
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	201	39	66	13	13	8	76	390	25	19	395	176
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	270	52	285	28	28	17	107	737	47	40	461	205
Arrive On Green	0.18	0.18	0.18	0.04	0.04	0.04	0.06	0.44	0.44	0.02	0.39	0.39
Sat Flow, veh/h	1492	289	1572	666	666	410	1767	1670	107	1767	1177	525
Grp Volume(v), veh/h	240	0	66	34	0	0	76	0	415	19	0	571
Grp Sat Flow(s), veh/h/ln	1781	0	1572	1743	0	0	1767	0	1777	1767	0	1702
Q Serve(g_s), s	7.5	0.0	2.1	1.1	0.0	0.0	2.5	0.0	10.0	0.6	0.0	18.0
Cycle Q Clear(g_c), s	7.5	0.0	2.1	1.1	0.0	0.0	2.5	0.0	10.0	0.6	0.0	18.0
Prop In Lane	0.84		1.00	0.38		0.24	1.00		0.06	1.00		0.31
Lane Grp Cap(c), veh/h	323	0	285	73	0	0	107	0	784	40	0	666
V/C Ratio(X)	0.74	0.00	0.23	0.47	0.00	0.00	0.71	0.00	0.53	0.47	0.00	0.86
Avail Cap(c_a), veh/h	670	0	591	656	0	0	163	0	993	151	0	940
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.7	0.0	20.5	27.4	0.0	0.0	27.0	0.0	11.9	28.2	0.0	16.3
Incr Delay (d2), s/veh	3.4	0.0	0.4	4.6	0.0	0.0	8.3	0.0	0.6	8.4	0.0	5.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.1	0.0	0.7	0.5	0.0	0.0	1.2	0.0	3.2	0.3	0.0	6.7
Unsig. Movement Delay, s/veh		0.0	00.0	04.0	0.0	0.0	05.0	0.0	40.5	017	0.0	00.0
LnGrp Delay(d),s/veh	26.0	0.0	20.9	31.9	0.0	0.0	35.3	0.0	12.5	36.7	0.0	22.0
LnGrp LOS	С	Α	С	С	A	A	D	A	В	D	A	<u>C</u>
Approach Vol, veh/h		306			34			491			590	
Approach Delay, s/veh		24.9			31.9			16.0			22.5	
Approach LOS		С			С			В			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.5	30.7		15.2	8.4	27.8		7.0				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5	32.7		22.0	5.4	* 32		22.0				
Max Q Clear Time (g_c+I1), s	2.6	12.0		9.5	4.5	20.0		3.1				
Green Ext Time (p_c), s	0.0	2.3		1.2	0.0	2.9		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			21.0									
HCM 6th LOS			C									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	52	78	171	74	101
Average Queue (ft)	15	27	40	31	29
95th Queue (ft)	44	55	122	60	86
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	R	R	L	TR	L	TR
Maximum Queue (ft)	31	52	31	97	49	157
Average Queue (ft)	7	16	5	5	8	31
95th Queue (ft)	29	42	24	36	32	106
Link Distance (ft)	633	1229		343		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)			0	0	0	4
Queuing Penalty (veh)			0	0	2	0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	119	24	147	64
Average Queue (ft)	23	2	64	28
95th Queue (ft)	69	11	110	47
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Geer Avenue & Project Driveway 2

Movement	EB
Directions Served	LT
Maximum Queue (ft)	116
Average Queue (ft)	7
95th Queue (ft)	44
Link Distance (ft)	422
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	B8	SB	SB	
Directions Served	LT	R	LTR	L	TR	T	L	TR	
Maximum Queue (ft)	349	76	159	124	366	327	89	397	
Average Queue (ft)	185	39	61	92	184	27	28	292	
95th Queue (ft)	296	61	120	137	339	153	77	453	
Link Distance (ft)	772		2629		276	2278		343	
Upstream Blk Time (%)					8			9	
Queuing Penalty (veh)					0			55	
Storage Bay Dist (ft)		250		50			50		
Storage Blk Time (%)	4			53	27		6	51	
Queuing Penalty (veh)	6			197	31		35	9	

Network Summary

Network wide Queuing Penalty: 336

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	31	31	124	31	139
Average Queue (ft)	2	17	12	7	17
95th Queue (ft)	15	42	59	28	75
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	SB	SB
Directions Served	R	R	L	TR
Maximum Queue (ft)	31	31	53	180
Average Queue (ft)	4	12	10	7
95th Queue (ft)	21	37	36	61
Link Distance (ft)	633	1229		706
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			55	
Storage Blk Time (%)			0	1
Queuing Penalty (veh)			1	0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	31	50	91	44
Average Queue (ft)	7	2	48	21
95th Queue (ft)	28	19	76	39
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Geer Avenue & Project Driveway 2

Movement	EB
Directions Served	LT
Maximum Queue (ft)	31
Average Queue (ft)	2
95th Queue (ft)	15
Link Distance (ft)	422
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	161	76	96	124	285	89	402
Average Queue (ft)	91	32	22	52	126	18	196
95th Queue (ft)	154	65	58	117	230	57	330
Link Distance (ft)	772		2629		282		349
Upstream Blk Time (%)					0		3
Queuing Penalty (veh)					0		15
Storage Bay Dist (ft)		250		50		50	
Storage Blk Time (%)				20	23	1	39
Queuing Penalty (veh)				76	16	7	7

Network Summary

Network wide Queuing Penalty: 123

Appendix F: Near Term plus Project Traffic Conditions

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	^	HUIK	<u> </u>	<u> </u>
Traffic Vol, veh/h	12	52	588	6	86	539
Future Vol, veh/h	12	52	588	6	86	539
Conflicting Peds, #/hr	102	0	0	12	12	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Jiop -	None	-	None	-	
Storage Length	165	0	_	-	250	-
Veh in Median Storage		-	0	_	230	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
						7
Heavy Vehicles, %	1	1	7	1	1	
Mvmt Flow	13	58	661	7	97	606
Major/Minor I	Minor1	1	Major1	N	/lajor2	
Conflicting Flow All	1579	677	0	0	680	0
Stage 1	677	-	-	-	-	-
Stage 2	902	_	_	_	_	_
Critical Hdwy	6.41	6.21	_	-	4.11	-
Critical Hdwy Stg 1	5.41	0.21	_	_		_
Critical Hdwy Stg 2	5.41	_			_	_
Follow-up Hdwy	3.509	3.309	_		2.209	
Pot Cap-1 Maneuver	121	455			917	_
Stage 1	507	400		_	717	_
Stage 2	398	-	-	-	-	-
	390	-	-	-	-	
Platoon blocked, %	07	150	-	-	007	-
Mov Cap-1 Maneuver	97	450	-	-	907	-
Mov Cap-2 Maneuver	220	-	-	-	-	-
Stage 1	501	-	-	-	-	-
Stage 2	321	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.7		0		1.3	
HCM LOS	C		- 0		1.0	
TIOWI LOS	U					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	/BLn2	SBL
Capacity (veh/h)		-	-	220	450	907
HCM Lane V/C Ratio		-	-	0.061		0.107
HCM Control Delay (s)		-	-		14.2	9.4
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)	-	-	0.2	0.4	0.4
				3.2	3.1	3.1

Synchro 10 Report Page 2 Baseline JLB Traffic Engineering, Inc.

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	1→			1>	
Traffic Vol, veh/h	19	0	9	1	5	23	16	634	1	11	641	18
Future Vol, veh/h	19	0	9	1	5	23	16	634	1	11	641	18
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	21	0	10	1	5	25	18	697	1	12	704	20
Major/Minor	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1519	1498	740	1477	1508	704	750	0	0	698	0	0
Stage 1	764	764	-	734	734	-	-	-	-	-	-	-
Stage 2	755	734	-	743	774	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	98	123	418	105	121	439	864	-	-	903	-	-
Stage 1	398	414	-	413	427	-	-	-	-	-	-	-
Stage 2	402	427	-	409	410	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	84	116	408	100	114	436	843	-	-	903	-	-
Mov Cap-2 Maneuver	84	116	-	100	114	-	-	-	-	-	-	-
Stage 1	380	398	-	404	418	-	-	-	-	-	-	-
Stage 2	364	418	-	394	394	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	48.4			20			0.2			0.1		
HCM LOS	E			C			3.2			3.1		
Minor Lanc/Major Mum	nt.	NDI	NDT	NDD	EDI 51V	M/DI n1	CDI	CDT	SBR			
Minor Lane/Major Mvn	IL	NBL	NBT		EBLn1V		SBL	SBT	SRK			
Capacity (veh/h)		843	-	-	113	272	903	-	-			
HCM Central Delay (a)		0.021	-	-	0.272			-	-			
HCM Long LOS		9.4	-	-	48.4	20	9	-	-			
HCM Lane LOS	١	A	-	-	E	C	A	-	-			
HCM 95th %tile Q(veh)	0.1	-	-	1	0.4	0	-	-			

Intersection						
Int Delay, s/veh	34.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	- î∍		N/	
Traffic Vol, veh/h	55	192	118	228	310	110
Future Vol, veh/h	55	192	118	228	310	110
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	64	223	137	265	360	128
WWW. TOW	01	220	107	200	300	120
	Major1	۱	Najor2		Minor2	
Conflicting Flow All	407	0	-	0	626	275
Stage 1	-	-	-	-	275	-
Stage 2	-	-	-	-	351	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227		-		3.527	3.327
Pot Cap-1 Maneuver	1146	_	_	-	446	761
Stage 1	-	-	_	-	769	-
Stage 2	-		-	_	710	_
Platoon blocked, %	_		-	-	710	_
Mov Cap-1 Maneuver	1141	-	-	-	413	757
		-	-			
Mov Cap-2 Maneuver	-	-	-	-	413	-
Stage 1	-	-	-	-	716	-
Stage 2	-	-	-	-	706	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.9		0		82.7	
HCM LOS	1.7		U		F	
HOW LOS					'	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1141	-	-	-	469
HCM Lane V/C Ratio		0.056	-	-	-	1.041
HCM Control Delay (s))	8.3	0	-	-	82.7
HCM Lane LOS		Α	Α	-	-	F
HCM 95th %tile Q(veh	.)	0.2	-	_	_	14.8
HUM YOU WINE CAVER						

	•	_	—	•	<u> </u>	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	EDL	<u>∟Б</u>	<u>₩Ы</u>	WDK	SDL	JUK
Traffic Volume (veh/h)	6	495	345	220	0	0
Future Volume (Veh/h)	6	495	345	220	0	0
Sign Control	U	Free	Free	220	Stop	U
Grade		0%	0%		0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	576	401	256	0.00	0.00
Pedestrians	1	570	401	230	U	U
Lane Width (ft)						
` '						
Walking Speed (ft/s) Percent Blockage						
Right turn flare (veh)		None	None			
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked	/ 57				1110	F20
vC, conflicting volume	657				1119	529
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	/ = 7				1110	F20
vCu, unblocked vol	657				1119	529
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	0.0				0.5	0.0
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	926				226	548
Direction, Lane #	EB 1	WB 1				
Volume Total	583	657				
Volume Left	7	0				
Volume Right	0	256				
cSH	926	1700				
Volume to Capacity	0.01	0.39				
Queue Length 95th (ft)	1	0				
Control Delay (s)	0.2	0.0				
Lane LOS	А					
Approach Delay (s)	0.2	0.0				
Approach LOS						
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	zation		34.9%	IC	ill evel d	of Service
Analysis Period (min)	<u> </u>		15	10	O LOVOI (J. JOI VICE
Analysis Fellou (IIIII)			10			

ntersection													
	300.3												
.													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		4			4			₽			₽		
raffic Vol, veh/h	251	28	142	15	34	35	116	366	16	18	224	410	
uture Vol, veh/h	251	28	142	15	34	35	116	366	16	18	224	410	
Conflicting Peds, #/hr	0	0	0	0	0	0	2	0	0	0	0	2	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-	
eh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3	
/lvmt Flow	279	31	158	17	38	39	129	407	18	20	249	456	
Major/Minor N	Minor2			Minor1		1	Major1		ı	Major2			
Conflicting Flow All	1232	1202	479	1286	1421	416	707	0	0	425	0	0	
Stage 1	519	519	4/7	674	674	410	707	-	U	423	-	-	
Stage 2	713	683	-	612	747	-	-	-	-	-	-	-	
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	0.23	6.13	5.53	0.23	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53			-	-		-	-	
	3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	-	2.227	-	-	
	~ 153	184	585	141	136	634	887	-	-	1129	-	-	
Stage 1	538	531	303	443	452	034	007	-	-	1129	-	-	
Stage 2	421	448	-	479	419			-	-		-	-	
Platoon blocked, %	421	440	-	4/7	417	-	-	-	-	-		-	
Mov Cap-1 Maneuver	~ 94	154	584	77	114	634	885	-	-	1129	-	-	
Mov Cap-1 Maneuver	~ 94	154	- 304	77	114	034	000	-	-	1129	-	-	
Stage 1	~ 94 459	520	-	378	386	-	-	-	-	-	-	-	
	305	383	-	323	411	-	-	-	-	-	-	-	
Stage 2	300	303	-	323	411	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
ICM Control Delay, \$ 1	165.4			59.8			2.3			0.2			
ICM LOS	F			F									
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)		885			136	153	1129						
ICM Lane V/C Ratio		0.146	_	_	3.44	0.61	0.018	_	_				
ICM Control Delay (s)		9.8	-		1165.4	59.8	8.2	_	-				
ICM Lane LOS		7.0 A	_	Ψ.	F	57.0 F	Α	_	-				
		$\overline{}$	-	-									
		0.5		_	45.3	3.3							
HCM 95th %tile Q(veh)		0.5	-	-	45.3	3.3	0.1	-	-				
				ceeds 3			0.1 putation						n platoon

Intersection						
Int Delay, s/veh	0.4					
		WIDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	þ	1	\	↑
Traffic Vol, veh/h	5	15	518	4	24	531
Future Vol, veh/h	5	15	518	4	24	531
Conflicting Peds, #/hr	25 Cton	O Cton	0	6	6	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- 1/F	None		None	-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	5	15	523	4	24	536
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1140	531	0	0	533	0
Stage 1	531	-	-	-	-	-
Stage 2	609	_	_	_	_	
Critical Hdwy	6.41	6.21	-	-	4.11	-
	5.41	0.21	-	-	4.11	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2	5.41		-	-		
3 0		2 200	-	-	2 200	-
Follow-up Hdwy	3.509	3.309	-	-	2.209	
Pot Cap-1 Maneuver	223	550	-	-	1040	-
Stage 1	592	-	-	-	-	-
Stage 2	545	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	211	547	-	-	1034	-
Mov Cap-2 Maneuver	348	-	-	-	-	-
Stage 1	588	-	-	-	-	-
Stage 2	520	-	-	-	-	-
Approach	WB		NB		SB	
	12.7		0		0.4	
HCM Control Delay, s HCM LOS	12.7 B		U		0.4	
HCIVI LU3	D					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	348	547	1034
HCM Lane V/C Ratio		-	-	0.015	0.028	0.023
HCM Control Delay (s)		-	-	15.5	11.8	8.6
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)	-	-	0	0.1	0.1
	,			_		

Synchro 10 Report Page 2 Baseline JLB Traffic Engineering, Inc.

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ť	f)		Ť	ĵ.	
Traffic Vol, veh/h	7	3	5	1	0	15	2	560	2	14	545	17
Future Vol, veh/h	7	3	5	1	0	15	2	560	2	14	545	17
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	7	3	5	1	0	16	2	589	2	15	574	18
Major/Minor I	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1225	1219	591	1216	1227	597	599	0	0	595	0	0
Stage 1	620	620	-	598	598	-	-	-	-	-	-	-
Stage 2	605	599	-	618	629	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	156	181	509	159	179	505	983	-	-	986	-	-
Stage 1	477	481	-	491	492	-	-	-	-	-	-	-
Stage 2	486	492	-	478	477	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	148	176	505	152	174	502	976	-	-	982	-	-
Mov Cap-2 Maneuver	148	176	-	152	174	-	-	-	-	-	-	-
Stage 1	473	470	-	488	489	-	-	-	-	-	-	-
Stage 2	468	489	-	462	467	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	24.3			13.5			0			0.2		
HCM LOS	C C			В						0.2		
TOW EGG	J			U								
Minor Lane/Major Mvm	nt	NBL	NBT	NRR	EBLn1V	VBI n1	SBL	SBT	SBR			
Capacity (veh/h)		976		-	202	439	982	-	-			
HCM Lane V/C Ratio		0.002	-		0.078			-	-			
HCM Control Delay (s)		8.7	-	-	24.3	13.5	8.7	_	-			
HCM Lane LOS		0.7 A	-	-	24.3 C	13.3 B	0.7 A	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.3	0.1	0	-	-			
HOW 75th 70the Q(Ven)					0.5	0.1	0					

Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1≯	7701	Y	- ODIN
Traffic Vol, veh/h	34	80	64	124	199	58
Future Vol, veh/h	34	80	64	124	199	58
Conflicting Peds, #/hr	3	0	0	3	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	Jiop -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		0	0	-	0	_
Grade, %	-, π	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	38	89	71	138	221	64
IVIVIIIL FIOW	30	09	/ 1	130	221	04
Major/Minor I	Major1	<u> </u>	Major2	N	Minor2	
Conflicting Flow All	212	0	-	0	308	143
Stage 1	-	-	-	-	143	-
Stage 2	-	-	-	-	165	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1352	-	-	-	682	902
Stage 1	-	-	-	-	882	-
Stage 2	-	-	-	-	862	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1348	-	-	-	657	899
Mov Cap-2 Maneuver	-	-	-	-	657	-
Stage 1	-	-	-	-	853	-
Stage 2	-	-	-	-	859	-
	ED		MD		0.0	_
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		13.7	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1348	_	-	-	699
HCM Lane V/C Ratio		0.028	_	_		0.409
HCM Control Delay (s)		7.7	0	_		13.7
HCM Lane LOS		Α	A	_	_	В
HCM 95th %tile Q(veh)	1	0.1	-	-	-	2
LICIVI 70HL MINE CAVELL						

	۶	→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1•			
Traffic Volume (veh/h)	8	272	187	88	0	0
Future Volume (Veh/h)	8	272	187	88	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	9	302	208	98	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	306				577	257
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	306				577	257
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	1249				473	779
Direction, Lane #	EB 1	WB 1				
Volume Total	311	306				
Volume Left	9	0				
Volume Right	0	98				
cSH	1249	1700				
Volume to Capacity	0.01	0.18				
Queue Length 95th (ft)	1	0				
Control Delay (s)	0.3	0.0				
Lane LOS	А					
Approach Delay (s)	0.3	0.0				
Approach LOS						
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliza	ition		24.1%	IC	U Level o	of Service
Analysis Period (min)			15			

Intersection													
Int Delay, s/veh	62.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	4	LDIN	VVDL	4	WDIN	NDL	1	NUN	JDL	1	JUIN	
Traffic Vol, veh/h	181	34	61	11	12	7	71	371	23	18	376	164	
Future Vol, veh/h	181	34	61	11	12	7	71	371	23	18	376	164	
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	3	3	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	Jiop -	Jiop -	None	- Jiup	- Jiop	None	-	-	None	-	-	None	
Storage Length		_	None	-		None	50		-	50		TVOTIC	
Veh in Median Storage		0		-	0	_	-	0	_	-	0	-	
Grade, %	-	0	_	_	0	-	_	0	_	_	0	_	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
Heavy Vehicles, %	3	3	3	3	3	3	3	73	3	3	73	3	
Mvmt Flow	195	37	66	12	13	8	76	399	25	19	404	176	
IVIVIII I IOW	175	37	00	12	13	0	70	377	23	17	404	170	
Major/Minor I	Minor2			Minor1			Major1		ľ	Major2			
Conflicting Flow All	1106	1109	492	1149	1185	417	580	0	0	427	0	0	
Stage 1	530	530	492	567	567	417	300	-	U	421	-	-	
Stage 2	576	579	-	582	618	-	-	-	-	-	-	-	
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	0.23	6.13	5.53	0.23	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	_		2.227	_		
Pot Cap-1 Maneuver	~ 187	209	575	175	188	634	989	_	_	1127	-		
Stage 1	531	525	-	507	505	034	707	_		1127	_		
Stage 2	501	499	_	497	479	-	_			_	_	_	
Platoon blocked, %	301	7//		7//	7//			_	_		_	_	
Mov Cap-1 Maneuver	~ 162	189	575	123	170	631	989			1124	_	_	
Mov Cap 1 Maneuver		189	-	123	170	- 001	707	_	_	- 1127	_	_	
Stage 1	490	516	-	467	465	_	_	_	_	_	_	_	
Stage 2	443	459	_	402	471	_	_	_	_	_	_	_	
Stage 2	113	737		102	771								
Approach	EB			WB			NB			SB			
HCM Control Delay, s				30.2			1.4			0.3			
HCM LOS	270.5 F			30.2 D			1.4			0.0			
HOW EOS	'			D D									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	WBI n1	SBL	SBT	SBR				
Capacity (veh/h)		989	-		197	175	1124	-					
HCM Lane V/C Ratio		0.077	_	_		0.184		_	_				
HCM Control Delay (s)		8.9	_		296.5	30.2	8.3	_	_				
HCM Lane LOS		Α	_	_	F	D	Α	_	_				
HCM 95th %tile Q(veh))	0.2	-	-	18.5	0.7	0.1	-	-				
	,	0.2			10.0	0.7	3.1						
Notes	n o o!1	¢ D	olove se	2006-2	000	C	nute!	Net D	ofin s al	* A !!	mo!==	olum -	in plots su
~: Volume exceeds cap	pacity	\$: De	elay exc	ceeds 3	UUS	+: Com	putation	i not D	etined	:: All	major v	volume i	in platoon

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7	ች	ĵ.		*	ĵ.	
Traffic Vol, veh/h	0	0	9	0	0	23	16	653	1	11	641	18
Future Vol, veh/h	0	0	9	0	0	23	16	653	1	11	641	18
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	10	0	0	25	18	718	1	12	704	20
Major/Minor M	inor2		١	Minor1			Major1		N	Major2		
Conflicting Flow All	-	-	740	-	-	725	750	0	0	719	0	0
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.21	-	-	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	3.309	-	-	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	0	0	418	0	0	427	864	-	-	887	-	-
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	408	-	-	425	843	-	-	887	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	14			14			0.2			0.1		
HCM LOS	В			В								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		843	-	-	408	425	887	-	-			
HCM Lane V/C Ratio		0.021	-	-	0.024	0.059	0.014	-	-			
HCM Control Delay (s)		9.4	-	-	14	14	9.1	-	-			
HCM Lane LOS		Α	-	-	В	В	Α	-	-			
HCM 95th %tile Q(veh)		0.1	-	-	0.1	0.2	0	-	-			

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection							
Int Delay, s/veh	10.5						
		EDT	14/5=	14/0.5	0.07	000	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	<u></u>	7		7	
Traffic Vol, veh/h	55	192	118	228	310	110	
Future Vol, veh/h	55	192	118	228	310	110	
Conflicting Peds, #/hr	5	0	0	5	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-		-		-	None	
Storage Length	-	-	-	250	250	0	
Veh in Median Storage	2,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	64	223	137	265	360	128	
Major/Minor I	Major1	Λ	/lajor2		Minor2		
Conflicting Flow All	407	0	-	0	493	142	
Stage 1	407	U	-	-	142	142	
Stage 2	-	-	-	-	351	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	4.13	-	-	-	5.43	0.23	
	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	2.227				3.527		
Follow-up Hdwy	1146	-	-	-	534		
Pot Cap-1 Maneuver		-	-	-		903	
Stage 1	-	-	-	-	883	-	
Stage 2	-	-	-	-	710	-	
Platoon blocked, %	1141	-	-	-	105	000	
Mov Cap-1 Maneuver	1141	-	-	-	495	899	
Mov Cap-2 Maneuver	-	-	-	-	495	-	
Stage 1	-	-	-	-	822	-	
Stage 2	-	-	-	-	706	-	
Approach	EB		WB		SB		
HCM Control Delay, s	1.9		0		24.2		
HCM LOS	1.7		U		C		
TOW LOO					J		
Minor Lane/Major Mvm	it	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1141	-	-	-	495	899
HCM Lane V/C Ratio		0.056	-	-	-	0.728	
HCM Control Delay (s)		8.3	0	-	-	29.4	9.7
110141 100							Λ
HCM Lane LOS HCM 95th %tile Q(veh)		A 0.2	Α	-	-	D 5.9	A 0.5

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 2

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		₩.			-î		*	₽	
Traffic Volume (veh/h)	270	28	142	16	39	35	116	366	16	18	223	410
Future Volume (veh/h)	270	28	142	16	39	35	116	366	16	18	223	410
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No	.=		No	.=
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	300	31	158	18	43	39	129	407	18	20	248	456
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	331	34	324	23	56	50	157	894	40	37	254	467
Arrive On Green	0.21	0.21	0.21	0.08	0.08	0.08	0.09	0.52	0.52	0.02	0.45	0.45
Sat Flow, veh/h	1609	166	1572	309	739	671	1767	1707	76	1767	566	1040
Grp Volume(v), veh/h	331	0	158	100	0	0	129	0	425	20	0	704
Grp Sat Flow(s), veh/h/ln	1775	0	1572	1719	0	0	1767	0	1783	1767	0	1606
Q Serve(g_s), s	19.1	0.0	9.3	6.0	0.0	0.0	7.5	0.0	15.6	1.2	0.0	45.1
Cycle Q Clear(g_c), s	19.1	0.0	9.3	6.0	0.0	0.0	7.5	0.0	15.6	1.2	0.0	45.1
Prop In Lane	0.91	0	1.00	0.18	0	0.39	1.00	٥	0.04	1.00	0	0.65
Lane Grp Cap(c), veh/h	365	0	324 0.49	129 0.77	0.00	0.00	157	0	933 0.46	0.54	0.00	721
V/C Ratio(X) Avail Cap(c_a), veh/h	0.91 388	0.00	343	361	0.00	0.00	0.82 163	0.00	933	96	0.00	0.98 722
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	40.6	0.00	36.8	47.6	0.00	0.00	47.0	0.00	15.6	50.8	0.00	28.3
Incr Delay (d2), s/veh	23.6	0.0	1.1	9.4	0.0	0.0	26.7	0.0	0.3	11.5	0.0	27.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.5	0.0	3.6	2.9	0.0	0.0	4.4	0.0	6.0	0.6	0.0	21.4
Unsig. Movement Delay, s/veh		0.0	3.0	2.7	0.0	0.0	7.7	0.0	0.0	0.0	0.0	21.7
LnGrp Delay(d),s/veh	64.2	0.0	37.9	57.0	0.0	0.0	73.6	0.0	16.0	62.3	0.0	55.8
LnGrp LOS	E	A	D	E	A	A	E	A	В	E	A	E
Approach Vol, veh/h		489			100			554			724	
Approach Delay, s/veh		55.7			57.0			29.4			56.0	
Approach LOS		E			E			C			E	
	1		_			,	_		_	_		
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.4	59.8		26.2	14.2	52.0		12.5				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5.7	51.1		22.9	9.7	* 47		22.0				
Max Q Clear Time (g_c+I1), s	3.2	17.6		21.1	9.5	47.1		8.0				
Green Ext Time (p_c), s	0.0	2.7		0.5	0.0	0.0		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			48.1									
HCM 6th LOS			D									

ivotes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7	ሻ	ĵ.		ሻ	ĵ.	
Traffic Vol, veh/h	0	0	5	0	0	15	2	567	2	14	545	17
Future Vol, veh/h	0	0	5	0	0	15	2	567	2	14	545	17
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	5	0	0	16	2	597	2	15	574	18
Major/Minor N	/linor2		ı	Minor1			Major1		N	/lajor2		
Conflicting Flow All		_	591	-	_	605	599	0	0	603	0	0
Stage 1	_	_	-	-	_	-	-	-	-	-	-	-
Stage 2	_	_	-	_	_	_	_	_	_	_		-
Critical Hdwy	-	-	6.21	-	-	6.21	4.11	-		4.11	-	-
Critical Hdwy Stg 1		-	-	-	-		-		-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	3.309	-	-	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	0	0	509	0	0	500	983	-	-	979	-	-
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	505	-	-	497	976	-	-	975	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	12.2			12.5			0			0.2		
HCM LOS	12.2 B			12.5 B			U			0.2		
TOWI LOS	D			D								
Minor Lane/Major Mvm	t	NBL	NBT	NBR F	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		976		-	505	497	975		-			
HCM Lane V/C Ratio		0.002	_	_		0.032		_	_			
HCM Control Delay (s)		8.7	_	_	400	12.5	8.7	_	_			
HCM Lane LOS		Α.	_	-	В	В	Α	_	-			
HCM 95th %tile Q(veh)		0	-	-	0	0.1	0	-	-			
/ 5 / 5 6 2 (1011)						5.1						

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection							
Int Delay, s/veh	5.8						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4		7	*	7	
Traffic Vol, veh/h	34	80	64	124	199	58	
Future Vol, veh/h	34	80	64	124	199	58	
Conflicting Peds, #/hr	3	0	0	3	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-		-	None	
Storage Length	-	-	-	250	250	0	
Veh in Median Storage	. # -	0	0	-	0	-	
Grade, %	-	0	0	_	0	_	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	38	89	71	138	221	64	
IVIVITIL FIOW	30	09	/ 1	130	221	04	
Major/Minor N	Major1	N	Major2	ľ	Minor2		
Conflicting Flow All	212	0	-	0	239	74	
Stage 1	-	-	-	-	74	-	
Stage 2	-	-	_	-	165	-	
Critical Hdwy	4.13	-	_	-	6.43	6.23	
Critical Hdwy Stg 1	1.10	_	_	_	5.43	0.20	
Critical Hdwy Stg 2	-			-	5.43	-	
Follow-up Hdwy	2.227	_	_		3.527		
Pot Cap-1 Maneuver	1352	_	-	_	747	985	
Stage 1	1332	-	-	-	946	705	
Stage 2		-	-		862	-	
Platoon blocked, %	-	-	-	-	002	-	
	1240	-	-	-	720	000	
Mov Cap-1 Maneuver	1348	-	-	-	720	982	
Mov Cap-2 Maneuver	-	-	-	-	720	-	
Stage 1	-	-	-	-	915	-	
Stage 2	-	-	-	-	859	-	
Approach	EB		WB		SB		
HCM Control Delay, s	2.3		0		11.5		
HCM LOS	2.5		U		В		
HOW LOS					Ь		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1 S	BL
Capacity (veh/h)		1348	-	-	-	720	9
HCM Lane V/C Ratio		0.028	-	-	-	0.307	
HCM Control Delay (s)		7.7	0	-	-	12.2	
HCM Lane LOS		A	A	_	_	В	
HCM 95th %tile Q(veh))	0.1	-	-	-	1.3	
113111 70111 701110 Q(VOII)		0.1				1.0	0.

	۶	→	*	•	←	4	1	†	~	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		- 4		ሻ	f)		ሻ	₽	
Traffic Volume (veh/h)	188	37	61	12	12	7	71	371	23	18	375	165
Future Volume (veh/h)	188	37	61	12	12	7	71	371	23	18	375	165
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	202	40	66	13	13	8	76	399	25	19	403	177
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	270	54	286	28	28	17	106	743	47	40	468	205
Arrive On Green	0.18	0.18	0.18	0.04	0.04	0.04	0.06	0.44	0.44	0.02	0.40	0.40
Sat Flow, veh/h	1487	294	1572	666	666	410	1767	1672	105	1767	1183	520
Grp Volume(v), veh/h	242	0	66	34	0	0	76	0	424	19	0	580
Grp Sat Flow(s), veh/h/ln	1781	0	1572	1743	0	0	1767	0	1777	1767	0	1703
Q Serve(g_s), s	7.6	0.0	2.1	1.1	0.0	0.0	2.5	0.0	10.3	0.6	0.0	18.5
Cycle Q Clear(g_c), s	7.6	0.0	2.1	1.1	0.0	0.0	2.5	0.0	10.3	0.6	0.0	18.5
Prop In Lane	0.83		1.00	0.38		0.24	1.00		0.06	1.00		0.31
Lane Grp Cap(c), veh/h	324	0	286	73	0	0	106	0	790	40	0	673
V/C Ratio(X)	0.75	0.00	0.23	0.47	0.00	0.00	0.71	0.00	0.54	0.47	0.00	0.86
Avail Cap(c_a), veh/h	662	0	584	647	0	0	161	0	981	149	0	929
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.9	0.0	20.7	27.7	0.0	0.0	27.3	0.0	12.0	28.6	0.0	16.4
Incr Delay (d2), s/veh	3.4	0.0	0.4	4.6	0.0	0.0	8.5	0.0	0.6	8.5	0.0	6.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.2	0.0	0.7	0.5	0.0	0.0	1.2	0.0	3.3	0.3	0.0	7.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.4	0.0	21.1	32.3	0.0	0.0	35.9	0.0	12.6	37.0	0.0	22.7
LnGrp LOS	С	Α	С	С	A	A	D	A	В	D	A	<u>C</u>
Approach Vol, veh/h		308			34			500			599	
Approach Delay, s/veh		25.2			32.3			16.1			23.1	
Approach LOS		С			С			В			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.5	31.2		15.4	8.5	28.3		7.1				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5	32.7		22.0	5.4	* 32		22.0				
Max Q Clear Time (g_c+I1), s	2.6	12.3		9.6	4.5	20.5		3.1				
Green Ext Time (p_c), s	0.0	2.4		1.2	0.0	2.9		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			21.4									
HCM 6th LOS			С									
Notos			-									

notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	31	53	142	55	76
Average Queue (ft)	10	31	34	31	20
95th Queue (ft)	33	56	96	56	60
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	SB	SB
Directions Served	R	R	L	L	TR
Maximum Queue (ft)	31	31	52	31	196
Average Queue (ft)	8	16	15	4	26
95th Queue (ft)	30	41	42	21	120
Link Distance (ft)	633	1229			706
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50	55	
Storage Blk Time (%)			0		4
Queuing Penalty (veh)			1		0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	90	53	154	93
Average Queue (ft)	19	4	79	38
95th Queue (ft)	59	27	123	68
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Geer Avenue & Project Driveway 2

Movement	EB
Directions Served	LT
Maximum Queue (ft)	97
Average Queue (ft)	10
95th Queue (ft)	47
Link Distance (ft)	422
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	B8	SB	SB	
Directions Served	LT	R	LTR	L	TR	T	L	TR	
Maximum Queue (ft)	328	90	119	124	348	63	89	415	
Average Queue (ft)	167	42	69	76	167	3	27	272	
95th Queue (ft)	277	70	119	137	303	24	72	441	
Link Distance (ft)	772		2629		276	2278		343	
Upstream Blk Time (%)					3			8	
Queuing Penalty (veh)					0			54	
Storage Bay Dist (ft)		250		50			50		
Storage Blk Time (%)	3			35	28		8	50	
Queuing Penalty (veh)	4			132	33		48	9	

Network Summary

Network wide Queuing Penalty: 281

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	31	52	74	31	52
Average Queue (ft)	2	17	7	6	6
95th Queue (ft)	12	44	34	26	28
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	R	R	L	TR	L	TR
Maximum Queue (ft)	31	31	30	55	31	30
Average Queue (ft)	5	15	1	2	8	1
95th Queue (ft)	23	40	10	18	30	10
Link Distance (ft)	633	1229		343		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)			0	0		
Queuing Penalty (veh)			0	0		

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	52	22	88	47
Average Queue (ft)	9	1	46	22
95th Queue (ft)	33	11	72	48
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Geer Avenue & Project Driveway 2

Movement	EB
Directions Served	LT
Maximum Queue (ft)	31
Average Queue (ft)	2
95th Queue (ft)	14
Link Distance (ft)	422
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	293	75	96	125	272	89	389
Average Queue (ft)	88	32	22	57	124	22	193
95th Queue (ft)	164	66	66	127	237	59	354
Link Distance (ft)	772		2629		276		343
Upstream Blk Time (%)					0		1
Queuing Penalty (veh)					0		6
Storage Bay Dist (ft)		250		50		50	
Storage Blk Time (%)	1			17	18	4	38
Queuing Penalty (veh)	0			67	13	19	7

Network Summary

Network wide Queuing Penalty: 112

Appendix G: Cumulative Year 2040 No Project Traffic Conditions

Interception						
Intersection	1.4					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	- 7	- î∍			
Traffic Vol, veh/h	9	55	586	6	91	519
Future Vol, veh/h	9	55	586	6	91	519
Conflicting Peds, #/hr	102	0	0	12	12	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	10	60	637	7	99	564
Major/Miner	Nineri		Anic 1		Molera	
	Minor1		//ajor1		Major2	
Conflicting Flow All	1517	653	0	0	656	0
Stage 1	653	-	-	-	-	-
Stage 2	864	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.11	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	132	469	-	-	936	-
Stage 1	520	-	-	-	-	-
Stage 2	414	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	105	464	-	-	925	-
Mov Cap-2 Maneuver	230	-	-	-	-	-
Stage 1	514	-	-	-	-	-
Stage 2	334	-	-	-	-	-
J						
Annroach	\MD		MD		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	14.9		0		1.4	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)			-		464	925
HCM Lane V/C Ratio			_	0.043		
HCM Control Delay (s)		_	_	21.3	13.9	9.4
HCM Lane LOS		_	_	C	В	A
HCM 95th %tile Q(veh)	_	_	0.1	0.4	0.4
1101VI 73(11 70(116 Q(VEI)	1			0.1	0.4	0.4

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	f)		ሻ	f)	
Traffic Vol, veh/h	21	0	10	1	5	25	17	548	1	12	479	19
Future Vol, veh/h	21	0	10	1	5	25	17	548	1	12	479	19
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	23	0	11	1	5	27	18	596	1	13	521	21
Major/Minor I	Minor2		[Minor1		[Major1		N	Major2		
Conflicting Flow All	1239	1217	558	1196	1227	603	568	0	0	597	0	0
Stage 1	584	584	-	633	633	-	-	-	-	-	-	-
Stage 2	655	633	-	563	594	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	153	182	531	164	179	501	1009	-	-	985	-	-
Stage 1	499	500	-	470	475	-	-	-	-	-	-	-
Stage 2	457	475	-	513	495	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	134	172	518	157	169	498	984	-	-	985	-	-
Mov Cap-2 Maneuver	134	172	-	157	169	-	-	-	-	-	-	-
Stage 1	478	481	-	462	466	-	-	-	-	-	-	-
Stage 2	417	466	-	496	476	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	30.2			16			0.3			0.2		
HCM LOS	D			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		984	-	-	176	360	985	-	-			
HCM Lane V/C Ratio		0.019	-	-	0.191			-	-			
HCM Control Delay (s)		8.7	-	-	30.2	16	8.7	-	-			
HCM Lane LOS		А	-	-	D	С	Α	-	-			
HCM 95th %tile Q(veh))	0.1	-	-	0.7	0.3	0	-	-			

Intersection						
Int Delay, s/veh	3.3					
			1115			0
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		Y	
Traffic Vol, veh/h	50	149	158	29	34	79
Future Vol, veh/h	50	149	158	29	34	79
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	54	162	172	32	37	86
	0.	.02	.,_	02	0.	
	Major1	Λ	Najor2		Minor2	
Conflicting Flow All	209	0	-	0	463	193
Stage 1	-	-	-	-	193	-
Stage 2	-	-	-	-	270	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1356	-	-	-	555	846
Stage 1	-	-	-	-	837	-
Stage 2	_	-	_	-	773	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1350	_	_	_	525	842
Mov Cap-1 Maneuver	1330			_	525	- 042
Stage 1	-	-	-	-	796	-
	-		-	-	769	-
Stage 2	-	-	-	-	709	-
Approach	EB		WB		SB	
HCM Control Delay, s	2		0		11.1	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1350	-	-	-	713
HCM Lane V/C Ratio		0.04	-	-	-	0.172
HCM Control Delay (s)		7.8	0	-	-	11.1
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh))	0.1	-	-	-	0.6

Intersection												
Int Delay, s/veh	6											
		EDT	EDD	MDI	MDT	14/00	NDI	NDT	NDD	0.01	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	- î∍		<u>ነ</u>	₽	
Traffic Vol, veh/h	53	17	34	16	24	49	31	465	17	28	336	127
Future Vol, veh/h	53	17	34	16	24	49	31	465	17	28	336	127
Conflicting Peds, #/hr	0	0	0	0	0	0	_ 2	_ 0	0	0	0	_ 2
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3
Mvmt Flow	58	18	37	17	26	53	34	505	18	30	365	138
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1118	1087	436	1104	1147	514	505	0	0	523	0	0
Stage 1	496	496	-	582	582	-	-	-	-	-	-	-
Stage 2	622	591	-	522	565	-	-	-	-	-	-	-
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	-	2.227	-	-
Pot Cap-1 Maneuver	183	215	618	188	198	558	1055	-	-	1038	-	-
Stage 1	554	544	-	497	497	-	-	-	-	-	-	-
Stage 2	473	493	-	536	506	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	141	202	617	157	186	558	1053	-	-	1038	-	-
Mov Cap-2 Maneuver	141	202	-	157	186	-	-	-	-	-	-	-
Stage 1	535	527	-	481	481	-	-	-	-	-	-	-
Stage 2	392	477	-	472	490	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
	43.3			24.6			0.5			0.5		
HCM Control Delay, s HCM LOS	43.3 E			24.0 C			0.5			0.5		
TIGIVI EUS	Ľ			C								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1053	-	-	202	279	1038	-	-			
HCM Lane V/C Ratio		0.032	-	-		0.347		-	-			
HCM Control Delay (s)		8.5	-	-	43.3	24.6	8.6	-	-			
HCM Lane LOS		Α	-	-	Е	С	Α	-	-			
HCM 95th %tile Q(veh)	0.1	-	-	3	1.5	0.1	-	-			

Interception						
Intersection	0.4					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	- î∍		- ሻ	•
Traffic Vol, veh/h	4	16	532	5	26	545
Future Vol, veh/h	4	16	532	5	26	545
Conflicting Peds, #/hr	25	0	0	6	6	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	165	0	-	-	250	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	1	1	7	1	1	7
Mvmt Flow	4	16	537	5	26	551
Major/Minor	Minor1	N	Anior1	N	Major2	
			Major1			0
Conflicting Flow All	1174	546	0	0	548	0
Stage 1	546	-	-	-	-	-
Stage 2	628	-	-	-	-	-
Critical Hdwy	6.41	6.21	-	-	4.11	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy		3.309	-	-	2.209	-
Pot Cap-1 Maneuver	213	540	-	-	1027	-
Stage 1	582	-	-	-	-	-
Stage 2	534	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		537	-	-	1021	-
Mov Cap-2 Maneuver	338	-	-	-	-	-
Stage 1	579	-	-	-	-	-
O1 0						
Stage 2	508	-	-	-	-	-
Stage 2	508	-	-	-	-	-
		-				-
Approach	WB		NB		SB	
Approach HCM Control Delay, s	WB 12.7					
Approach	WB		NB		SB	
Approach HCM Control Delay, s HCM LOS	WB 12.7 B		NB 0		SB 0.4	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvn	WB 12.7 B	NBT	NB 0	VBLn1V	SB 0.4 VBLn2	SBL
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h)	WB 12.7 B		NB 0 NBRV	<u>VBLn1W</u> 338	SB 0.4 WBLn2 537	1021
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	WB 12.7 B	NBT	NB 0 NBRV	WBLn1V 338 0.012	SB 0.4 VBLn2 537 0.03	1021 0.026
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	WB 12.7 B	NBT_	NB 0 NBRV	WBLn1V 338 0.012 15.8	SB 0.4 VBLn2 537 0.03 11.9	1021 0.026 8.6
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	WB 12.7 B	NBT -	NB 0 NBRV	WBLn1V 338 0.012	SB 0.4 VBLn2 537 0.03	1021 0.026

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	1		*	1	
Traffic Vol, veh/h	8	3	5	1	0	16	2	501	2	15	518	18
Future Vol, veh/h	8	3	5	1	0	16	2	501	2	15	518	18
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	8	3	5	1	0	17	2	527	2	16	545	19
Major/Minor I	Minor2			Minor1			Major1		- 1	Major2		
Conflicting Flow All	1138	1131	563	1128	1139	535	571	0	0	533	0	0
Stage 1	594	594	-	536	536	-	-	-	-	-	-	-
Stage 2	544	537	-	592	603	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	179	204	528	182	202	547	1007	-	-	1040	-	-
Stage 1	493	495	-	530	525	-	-	-	-	-	-	-
Stage 2	525	524	-	494	490	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	170	198	524	175	196	543	1000	-	-	1036	-	-
Mov Cap-2 Maneuver	170	198	-	175	196	-	-	-	-	-	-	-
Stage 1	489	484	-	527	522	-	-	-	-	-	-	-
Stage 2	506	521	-	478	479	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	22.5			12.7			0			0.2		
HCM LOS	С			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1000	-		223	483	1036	-	-			
HCM Lane V/C Ratio		0.002	_		0.076			_	_			
HCM Control Delay (s)		8.6	-	_	22.5	12.7	8.5	-	-			
HCM Lane LOS		A	_	-	C	В	A	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.2	0.1	0	-	-			
						0.7						

Intersection						
Int Delay, s/veh	3.1					
						0
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स्	- ₽		Y	
Traffic Vol, veh/h	26	56	75	49	30	38
Future Vol, veh/h	26	56	75	49	30	38
Conflicting Peds, #/hr	3	0	0	3	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	28	61	82	53	33	41
Majay/Mina	Ma!1		1-1-0		\	
	Major1		/lajor2		Minor2	4.5
Conflicting Flow All	138	0	-	0	229	112
Stage 1	-	-	-	-	112	-
Stage 2	-	-	-	-	117	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1440	-	-	-	757	938
Stage 1	-	-	-	-	910	-
Stage 2	-	-	-	-	906	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1436	-	-	-	737	935
Mov Cap-2 Maneuver	-	_	_	-	737	-
Stage 1	-	-		-	889	-
Stage 2	_	_		_	903	_
Stage 2					703	
Approach	EB		WB		SB	
HCM Control Delay, s	2.4		0		9.7	
HCM LOS					Α	
N. G. a. a. l. a. a. a. /N. / a. j. a. a. N. / a. wa	.1	EDI	EDT	WDT	WDD	CDI1
Minor Lane/Major Mvm	Il	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1436	-	-	-	836
HCM Lane V/C Ratio		0.02	-	-	-	0.088
HCM Control Delay (s)		7.6	0	-	-	9.7
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0.1	-	-	-	0.3
•						

Intersection												
Int Delay, s/veh	3.8											
		EDT	EDD	MDI	MIDT	\4/DD	NDI	NDT	NDD	0.01	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			₽			₽	
Traffic Vol, veh/h	44	27	21	12	6	13	18	443	25	26	439	69
Future Vol, veh/h	44	27	21	12	6	13	18	443	25	26	439	69
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	3	3	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3
Mvmt Flow	47	29	23	13	6	14	19	476	27	28	472	74
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1105	1109	509	1122	1133	495	546	0	0	506	0	0
Stage 1	565	565	-	531	531	-	-	-	-	-	-	-
Stage 2	540	544	_	591	602	_	_	-		_	-	-
Critical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.13	5.53	-	6.13	5.53		-	-		-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	_	2.227	-	-
Pot Cap-1 Maneuver	187	209	562	182	202	573	1018	-	-	1054	-	-
Stage 1	508	506	-	530	524		-	-	_	-	-	-
Stage 2	524	517	-	492	487	-	-	-	-	-	-	-
Platoon blocked, %								_	_		_	-
Mov Cap-1 Maneuver	171	199	562	150	192	570	1018	-	-	1051	-	-
Mov Cap-2 Maneuver	171	199	-	150	192	-	-	-	_	-	-	-
Stage 1	498	492	-	519	512	-	-	-	-	-	-	-
Stage 2	494	506	-	433	474	-	-	_	_	-	_	-
g					, , ,							
Annroach	_ ED			WB			ND			SB		
Approach	EB						NB					
HCM Control Delay, s	35.5			23.2			0.3			0.4		
HCM LOS	E			С								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1018	-	-	214	231	1051	-	-			
HCM Lane V/C Ratio		0.019	-	-	0.462	0.144	0.027	-	-			
HCM Control Delay (s)		8.6	-	-	35.5	23.2	8.5	-	-			
HCM Lane LOS		Α	-	-	Е	С	Α	-	-			
HCM 95th %tile Q(veh)	0.1	-	-	2.2	0.5	0.1	-	-			

	۶	→	•	•	←	4	1	†	~	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 4			- 4		ሻ	f)		ሻ	₽	
Traffic Volume (veh/h)	53	17	34	16	24	49	31	465	17	28	336	127
Future Volume (veh/h)	53	17	34	16	24	49	31	465	17	28	336	127
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	58	18	37	17	26	53	34	505	18	30	365	138
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	79	25	50	23	35	72	68	675	24	61	462	175
Arrive On Green	0.09	0.09	0.09	0.08	0.08	0.08	0.04	0.39	0.39	0.03	0.37	0.37
Sat Flow, veh/h	878	273	560	296	453	924	1767	1724	61	1767	1241	469
Grp Volume(v), veh/h	113	0	0	96	0	0	34	0	523	30	0	503
Grp Sat Flow(s),veh/h/ln	1711	0	0	1674	0	0	1767	0	1785	1767	0	1710
Q Serve(g_s), s	2.9	0.0	0.0	2.5	0.0	0.0	0.9	0.0	11.4	8.0	0.0	11.8
Cycle Q Clear(g_c), s	2.9	0.0	0.0	2.5	0.0	0.0	0.9	0.0	11.4	0.8	0.0	11.8
Prop In Lane	0.51		0.33	0.18		0.55	1.00		0.03	1.00		0.27
Lane Grp Cap(c), veh/h	154	0	0	130	0	0	68	0	699	61	0	637
V/C Ratio(X)	0.73	0.00	0.00	0.74	0.00	0.00	0.50	0.00	0.75	0.49	0.00	0.79
Avail Cap(c_a), veh/h	835	0	0	817	0	0	200	0	1291	200	0	1237
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	20.0	0.0	0.0	20.3	0.0	0.0	21.2	0.0	11.8	21.4	0.0	12.6
Incr Delay (d2), s/veh	6.6	0.0	0.0	7.9	0.0	0.0	5.6	0.0	1.6	5.9	0.0	2.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.3	0.0	0.0	1.1	0.0	0.0	0.4	0.0	3.5	0.4	0.0	3.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.5	0.0	0.0	28.3	0.0	0.0	26.8	0.0	13.4	27.3	0.0	14.8
LnGrp LOS	С	Α	Α	С	Α	Α	С	Α	В	С	Α	В
Approach Vol, veh/h		113			96			557			533	
Approach Delay, s/veh		26.5			28.3			14.3			15.5	
Approach LOS		С			С			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.8	22.5		8.7	6.6	21.7		8.1				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5.1	32.6		22.0	5.1	* 33		22.0				
Max Q Clear Time (g_c+l1), s	2.8	13.4		4.9	2.9	13.8		4.5				
Green Ext Time (p_c), s	0.0	3.0		0.5	0.0	3.0		0.4				
	0.0	3.0		0.5	0.0	3.0		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			16.9									
HCM 6th LOS			В									
Notos												

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	←	•	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	₽		ሻ	₽	
Traffic Volume (veh/h)	44	27	21	12	6	13	18	443	25	26	439	69
Future Volume (veh/h)	44	27	21	12	6	13	18	443	25	26	439	69
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	47	29	23	13	6	14	19	476	27	28	472	74
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	67	42	33	29	13	31	42	682	39	59	603	95
Arrive On Green	0.08	0.08	0.08	0.04	0.04	0.04	0.02	0.41	0.41	0.03	0.40	0.40
Sat Flow, veh/h	827	510	405	664	307	715	1767	1683	95	1767	1516	238
Grp Volume(v), veh/h	99	0	0	33	0	0	19	0	503	28	0	546
Grp Sat Flow(s), veh/h/ln	1741	0	0	1686	0	0	1767	0	1779	1767	0	1753
Q Serve(g_s), s	2.3	0.0	0.0	0.8	0.0	0.0	0.4	0.0	9.8	0.7	0.0	11.4
Cycle Q Clear(g_c), s	2.3	0.0	0.0	0.8	0.0	0.0	0.4	0.0	9.8	0.7	0.0	11.4
Prop In Lane	0.47		0.23	0.39		0.42	1.00		0.05	1.00		0.14
Lane Grp Cap(c), veh/h	142	0	0	74	0	0	42	0	720	59	0	698
V/C Ratio(X)	0.70	0.00	0.00	0.45	0.00	0.00	0.45	0.00	0.70	0.48	0.00	0.78
Avail Cap(c_a), veh/h	914	0	0	885	0	0	228	0	1370	228	0	1351
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	18.8	0.0	0.0	19.6	0.0	0.0	20.2	0.0	10.3	19.9	0.0	11.0
Incr Delay (d2), s/veh	6.0	0.0	0.0	4.2	0.0	0.0	7.5	0.0	1.2	5.9	0.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0	0.4	0.0	0.0	0.2	0.0	2.8	0.3	0.0	3.3
Unsig. Movement Delay, s/veh		0.0	0.0	22.7	0.0	0.0	27.7	0.0	11 /	25.0	0.0	12.0
LnGrp Delay(d),s/veh	24.8	0.0	0.0	23.7	0.0	0.0	27.7	0.0	11.6	25.8	0.0	13.0
LnGrp LOS	С	A	A	С	A	A	С	A	В	С	A	В
Approach Vol, veh/h		99			33			522			574	
Approach Delay, s/veh		24.8			23.7			12.2			13.6	
Approach LOS		С			С			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.6	21.9		8.0	5.9	21.6		6.4				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5.4	32.3		22.0	5.4	* 32		22.0				
Max Q Clear Time (g_c+l1), s	2.7	11.8		4.3	2.4	13.4		2.8				
Green Ext Time (p_c), s	0.0	3.0		0.4	0.0	3.2		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			14.2									
HCM 6th LOS			В									
Notos												

notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	72	56	211	97	119
Average Queue (ft)	11	34	47	38	26
95th Queue (ft)	43	59	136	77	79
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	L	TR	L	TR
Maximum Queue (ft)	32	52	31	95	31	77
Average Queue (ft)	24	24	5	3	4	4
95th Queue (ft)	45	53	24	31	22	28
Link Distance (ft)	633	1229		349		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)			0	0		0
Queuing Penalty (veh)			0	0		0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	SB
Directions Served	LT	LR
Maximum Queue (ft)	31	76
Average Queue (ft)	3	40
95th Queue (ft)	18	62
Link Distance (ft)	1296	1245
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	WB	NB	NB	B8	SB	SB
Directions Served	LTR	LTR	L	TR	T	L	TR
Maximum Queue (ft)	138	118	124	385	110	89	402
Average Queue (ft)	58	47	33	138	4	23	134
95th Queue (ft)	100	80	86	262	36	65	260
Link Distance (ft)	784	2629		295	2278		349
Upstream Blk Time (%)				2			1
Queuing Penalty (veh)				0			4
Storage Bay Dist (ft)			50			50	
Storage Blk Time (%)			2	26		1	27
Queuing Penalty (veh)			10	8		5	7

Zone Summary

Zone wide Queuing Penalty: 35

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	NB
Directions Served	R	TR
Maximum Queue (ft)	31	31
Average Queue (ft)	12	6
95th Queue (ft)	37	27
Link Distance (ft)	1262	706
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	SB	SB
Directions Served	LTR	LTR	L	TR
Maximum Queue (ft)	31	29	31	47
Average Queue (ft)	24	6	12	9
95th Queue (ft)	44	25	37	40
Link Distance (ft)	633	1229		706
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			55	
Storage Blk Time (%)				0
Queuing Penalty (veh)				0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	SB
Directions Served	LR
Maximum Queue (ft)	55
Average Queue (ft)	44
95th Queue (ft)	60
Link Distance (ft)	1245
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	L	TR	L	TR
Maximum Queue (ft)	53	31	125	164	31	401
Average Queue (ft)	45	24	38	109	12	193
95th Queue (ft)	59	43	111	192	37	374
Link Distance (ft)	784	2629		295		349
Upstream Blk Time (%)						6
Queuing Penalty (veh)						33
Storage Bay Dist (ft)			50		50	
Storage Blk Time (%)			3	22	0	34
Queuing Penalty (veh)			13	4	0	9

Zone Summary

Zone wide Queuing Penalty: 59

Appendix H: Cumulative Year 2040 plus Project Traffic Conditions

Intersection							
Int Delay, s/veh	1.4						
					0=:		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	ĵ,		ሻ	↑	
Traffic Vol, veh/h	13	55	622	6	91	569	
Future Vol, veh/h	13	55	622	6	91	569	
Conflicting Peds, #/hr	102	0	0	12	12	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	165	0	-	-	250	-	
Veh in Median Storage	e, # 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	1	1	7	1	1	7	
Mvmt Flow	14	60	676	7	99	618	
							r
	Minor1		/lajor1		Major2		
Conflicting Flow All	1610	692	0	0	695	0	
Stage 1	692	-	-	-	-	-	
Stage 2	918	-	-	-	-	-	
Critical Hdwy	6.41	6.21	-	-	4.11	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	-	-	2.209	-	
Pot Cap-1 Maneuver	116	446	-	-	905	-	
Stage 1	499	-	-	-	-	-	
Stage 2	391	-	-	_	-	_	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	92	441	-	_	895	-	
Mov Cap-2 Maneuver	215	-	_	-	-	-	
Stage 1	494				_		
Stage 2	314			_	_	_	
Jiaye Z	314				_	-	
Approach	WB		NB		SB		
HCM Control Delay, s	16		0		1.3		ĺ
HCM LOS	С						
Minor Long/Major Mayor	.+	NDT	NDD	MDI ~1V	MDL =2	CDI	ĺ
Minor Lane/Major Mvm	IL	NBT		NBLn1V		SBL	
Capacity (veh/h)		-	-	2.0	441	895	
HCM Lane V/C Ratio		-	-	0.066			
HCM Control Delay (s)		-	-	,	14.4	9.5	
LICM Land LOC				_	D	Λ	
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	C 0.2	0.5	A 0.4	

Intersection												
Int Delay, s/veh	1.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	£		ሻ	ĵ.	
Traffic Vol, veh/h	21	0	10	1	5	25	17	666	1	12	669	19
Future Vol, veh/h	21	0	10	1	5	25	17	666	1	12	669	19
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	23	0	11	1	5	27	18	724	1	13	727	21
Major/Minor I	ajor/Minor Minor2 Minor1								N	Major2		
Conflicting Flow All	1573	1551	764	1530	1561	731	<u>Major1</u> 774	0	0	725	0	0
Stage 1	790	790	-	761	761	751		-	-	. 20	-	-
Stage 2	783	761	-	769	800	_	_	_	_	_	_	_
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	_	_	4.11	-	_
Critical Hdwy Stg 1	6.11	5.51	0.21	6.11	5.51	-		-		-	-	_
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-		2.209	-	_
Pot Cap-1 Maneuver	90	114	405	96	113	423	846	-	-	882	-	-
Stage 1	385	403	-	399	415	- 123	- 3.0	-		-	-	_
Stage 2	388	415	-	395	399	-	-	-	-	-	-	-
Platoon blocked, %	300	113		3,3				-			-	_
Mov Cap-1 Maneuver	76	107	395	91	106	421	825	-	-	882	-	-
Mov Cap-2 Maneuver	76	107	-	91	106	-	- 323	-		-	-	_
Stage 1	367	387	-	390	406	-	-	-	-	-	-	-
Stage 2	348	406	-	378	383	-	-	-		-	-	_
g · -	3.3			3.3	200							
Annroach	EB			WB			NB			SB		
Approach												
HCM LOS	56.1 F			20.6			0.2			0.2		
HCM LOS	F			С								
		N.S.	NET	NE	EDI (ND.	0.51	057	055			
Minor Lane/Major Mvm	ıt .	NBL	NBT		EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		825	-	-	103	264	882	-	-			
HCM Lane V/C Ratio		0.022	-	-	0.327			-	-			
HCM Control Delay (s)		9.5	-	-	56.1	20.6	9.1	-	-			
HCM Lane LOS		Α	-	-	F	С	Α	-	-			
HCM 95th %tile Q(veh)		0.1	-	-	1.3	0.4	0	-	-			

Intersection						
Int Delay, s/veh	41.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	WB1 ♣	אטוי	→ SDL	JUK
Traffic Vol, veh/h	58	200	127	229	312	115
Future Vol, veh/h	58	200	127	229	312	115
	58				312	0
Conflicting Peds, #/hr		0	0	5		
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	67	233	148	266	363	134
Major/Minor	Major1	٨	//diara		/liner?	
	Major1		/lajor2		Minor2	207
Conflicting Flow All	419	0	-	0	653	286
Stage 1	-	-	-	-	286	-
Stage 2	-	-	-	-	367	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	3.327
Pot Cap-1 Maneuver	1135	-	-	-	430	751
Stage 1	-	-	-	-	760	-
Stage 2	_	-	-	-	699	-
Platoon blocked, %		_	-	-		
Mov Cap-1 Maneuver	1130			-	397	747
Mov Cap-1 Maneuver	1130	_	-	-	397	141
		-	-			
Stage 1	-	-	-	-	705	-
Stage 2	-	-	-	-	696	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.9		0		99.9	
	1.7		U		_	
HCM LOS					F	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1130		_	-	454
HCM Lane V/C Ratio		0.06	_	_		1.094
HOW LAND VIO MAID						
HCM Control Dalay (c))		Λ			QQ Q
HCM Lang LOS)	8.4	0	-	-	, , , ,
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh			0 A	-	-	99.9 F 16.6

	•	→	+	4	\	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ĵ.			
Traffic Volume (veh/h)	6	506	356	220	0	0
Future Volume (Veh/h)	6	506	356	220	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	588	414	256	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	670				1144	542
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	670				1144	542
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	916				218	538
Direction, Lane #	EB 1	WB 1				
Volume Total	595	670				
Volume Left	7	0				
Volume Right	0	256				
cSH	916	1700				
Volume to Capacity	0.01	0.39				
Queue Length 95th (ft)	1	0				
Control Delay (s)	0.2	0.0				
Lane LOS	A	0.0				
Approach Delay (s)	0.2	0.0				
Approach LOS	0.2	0.0				
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliza	ation		35.5%	IC.	ULevelo	of Service
Analysis Period (min)			15	.0		55.7100
Analysis i chou (illiii)			10			

324.4												
EDI	EDT	EDD	\\/DI	\\/DT	\M/DD	NIDI	NIDT	NIDD	CDI	CDT	CDD	
LDL		LDI	WDL		WDIX			NDIX			JUIN	
25.4		111	14		20			17			410	
		ivone			None						ivone	
		-			-						-	
		-										
							•					
2/6	32	15/	1/	39	41	12/	427	18	21	265	454	
Minor2			Minor1		١	Major1		١	Major2			
1266	1235	494	1319	1453	436	721	0	0	445	0	0	
536	536	-	690	690	-	-	-	-	-	-	-	
730	699	-	629	763	-	-	-	-	-	-	-	
7.13	6.53	6.23	7.13	6.53	6.23	4.13	-	-	4.13	-	-	
6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
6.13	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
3.527	4.027	3.327	3.527	4.027	3.327	2.227	-	-	2.227	-	-	
~ 145	176	573	133	130	618	876	-	-	1110	-	-	
527	522	-	434	445	-	-	-	-	-	-	-	
412	440	-	469	412	-	-	-	-	-	-	-	
							-	-		-	-	
~ 86	147	572	71	109	618	874	-	-	1110	-	-	
~ 86	147	-	71	109	-	-	-	-	-	-	-	
450	511	-	371	380	-	-	-	-	-	-	-	
295	376	-	314	403	-	-	-	-	-	-	-	
FB			WB			NB			SB			
F									3.2			
•												
nt	NRI	NRT	MRD	FRI n1\	MRI n1	SBI	SRT	SRD				
It	874	NDT	TIDIC		146	1110	301	JUK				
	0/4	-	_	125		0.019	-	-				
	0 1 1 4					0.019	-	-				
	0.146	-		3.713								
)	9.8	-		1292.9	69.2	8.3	-	-				
	9.8 A	-		1292.9 F	69.2 F	8.3 A	-	-				
)	9.8	- - -		1292.9	69.2	8.3	- - -					
	9.8 A 0.5	-		1292.9 F 46.2	69.2 F 3.8	8.3 A		-				in platoon
	EBL 254 254 0 Stop 92 3 276 Minor2 1266 536 730 7.13 6.13 3.527 - 145 527 412 - 86 - 86 450 295 EB 1292.9	EBL EBT 254 29 254 29 0 0 0 Stop Stop 0 92 92 3 3 276 32 Minor2 1266 1235 536 536 730 699 7.13 6.53 6.13 5.53 6.13 5.53 3.527 4.027 - 145 176 527 522 412 440 - 86 147 - 87 - 88 147 -	EBL EBT EBR 254 29 144 0 0 0 0 Stop Stop Stop - None - 0 - 92 92 92 3 3 3 276 32 157 Minor2 1266 1235 494 536 536 - 730 699 - 7.13 6.53 6.23 6.13 5.53 - 6.13 5.53 - 3.527 4.027 3.327 - 145 176 573 527 522 - 412 440 86 147 572 - 86 147	EBL EBT EBR WBL 254 29 144 16 0 0 0 0 0 Stop Stop Stop Stop - None - None - O - O O O 92 92 92 92 93 3 3 3 3 276 32 157 17 Minor2 Minor1 1266 1235 494 1319 536 536 - 690 730 699 - 629 7.13 6.53 6.23 7.13 6.13 5.53 - 6.13 6.13 5.53 - 6.13 3.527 4.027 3.327 3.527 - 145 176 573 133 527 522 - 434 412 440 - 469 - 86 147 572 71 - 86 147 - 71 450 511 - 371 295 376 - 314 EB WB 1292.9 69.2 F F	EBL EBT EBR WBL WBT 254 29 144 16 36 0 0 0 0 0 0 0 Stop Stop Stop Stop Stop - None None 0 - 0 - 0 92 92 92 92 92 3 3 3 3 3 3 276 32 157 17 39 Minor2 Minor1 1266 1235 494 1319 1453 536 536 - 690 690 730 699 - 629 763 7.13 6.53 6.23 7.13 6.53 6.13 5.53 - 6.13 5.53 6.13 5.53 - 6.13 5.53 3.527 4.027 3.327 3.527 4.027 - 145 176 573 133 130 527 522 - 434 445 412 440 - 469 412 - 86 147 572 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 86 147 - 71 109 - 87 1 109 - 88 147 - 71 109 - 88 149 - 314 403	EBL EBT EBR WBL WBT WBR 254 29 144 16 36 38 0 0 0 0 0 0 0 0 0 Stop Stop Stop Stop Stop Stop - None - None - O - None - O - O - O - 92 92 92 92 92 92 3 3 3 3 3 3 3 3 276 32 157 17 39 41 Minor2 Minor1 1266 1235 494 1319 1453 436 536 536 - 690 690 - 730 699 - 629 763 - 7.13 6.53 6.23 7.13 6.53 6.23 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 3.527 4.027 3.327 3.527 4.027 3.327 - 145 176 573 133 130 618 527 522 - 434 445 - 412 440 - 469 412 - - 86 147 572 71 109 618 - 86 147 - 71 109 - 4 86 1	EBL EBT EBR WBL WBT WBR NBL 254 29 144 16 36 38 117 0 0 0 0 0 0 0 0 0 2 Stop Stop Stop Stop Stop Stop Free None - None - None 0 0 - 50 e, # - 0 0 0 92 92 92 92 92 92 92 92 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	## FBL FBT FBR WBL WBT WBR NBL NBT ## 254 29	EBL EBT EBR WBL WBT WBR NBL NBT NBR 254 29 144 16 36 38 117 393 17 254 29 144 16 36 38 117 393 17 0 0 0 0 0 0 0 0 0 2 0 0 Stop Stop Stop Stop Stop Stop Free Free Free None - None - None - None N	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 254 29 144 16 36 38 117 393 17 19 254 29 144 16 36 38 117 393 17 19 0 0 0 0 0 0 0 0 0 2 0 0 0 0 Stop Stop Stop Stop Stop Stop Free Free Free Free None None None - None 0 0 50 - None - 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 8, # - 0 0 - 0 0 0 - 0 0 0 0 0 0 0 92 92 92 92 92 92 92 92 92 92 92 92 92 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7 3 3 3 276 32 157 17 39 41 127 427 18 21 Minor2 Minor1 Major1 Major2 1266 1235 494 1319 1453 436 721 0 0 445 536 536 - 690 690 7 7.13 6.53 6.23 7.13 6.53 6.23 4.13 4.13 6.13 5.53 - 6.13 5.53	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR 254 29 144 16 36 38 117 393 17 19 244 418 254 29 144 16 36 38 117 393 17 19 244 418 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Intersection							
Int Delay, s/veh	0.4						1
					0.00		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	4		<u> </u>	↑	
Traffic Vol, veh/h	5	16	549	4	26	563	
Future Vol, veh/h	5	16	549	4	26	563	
Conflicting Peds, #/hr	25	0	0	6	6	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	165	0	-	-	250	-	
Veh in Median Storage	e, # 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	99	99	99	99	99	99	
Heavy Vehicles, %	1	1	7	1	1	7	
Mvmt Flow	5	16	555	4	26	569	
Major/Minar	Mineral		Apic=1		Molera		į
	Minor1		//ajor1		Major2		l
Conflicting Flow All	1209	563	0	0	565	0	
Stage 1	563	-	-	-	-	-	
Stage 2	646	-	-	-	-	-	
Critical Hdwy	6.41	6.21	-	-	4.11	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509		-	-	2.209	-	
Pot Cap-1 Maneuver	203	528	-	-	1012	-	
Stage 1	572	-	-	-	-	-	
Stage 2	524	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	192	525	-	-	1006	-	
Mov Cap-2 Maneuver	329	-	-	-	-	-	
Stage 1	569	-	-	-	-	-	
Stage 2	498	-	_	-	-	-	
o tago 2							
Approach	WB		NB		SB		
HCM Control Delay, s	13.1		0		0.4		
HCM LOS	В						
Minor Lane/Major Mvm	nt .	NBT	NIPDI	VBLn1V	VRI n2	SBL	j
	IL	INDI					l
Capacity (veh/h)		-	-	02,	525	1006	
HCM Lane V/C Ratio		-		0.015		0.026	
HCM Control Delay (s)		-	-		12.1	8.7	
			-	(,	ט	Α	
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	C 0	0.1	0.1	

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ኘ	ĵ.		ሻ	1	
Traffic Vol, veh/h	8	3	5	1	0	16	2	589	2	15	575	18
Future Vol, veh/h	8	3	5	1	0	16	2	589	2	15	575	18
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	55	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	8	3	5	1	0	17	2	620	2	16	605	19
Major/Minor I	Minor2			Minor1			Major1		- 1	Major2		
Conflicting Flow All	1291	1284	623	1281	1292	628	631	0	0	626	0	0
Stage 1	654	654	-	629	629	-	-	-	-	-	-	-
Stage 2	637	630	-	652	663	-	-	-	-	-	-	-
Critical Hdwy	7.11	6.51	6.21	7.11	6.51	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.11	5.51	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.509	4.009	3.309	3.509	4.009	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	141	166	488	143	164	485	956	-	-	960	-	-
Stage 1	457	465	-	472	477	-	-	-	-	-	-	-
Stage 2	467	476	-	458	460	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	133	161	484	137	159	482	950	-	-	956	-	-
Mov Cap-2 Maneuver	133	161	-	137	159	-	-	-	-	-	-	-
Stage 1	453	454	-	469	474	-	-	-	-	-	-	-
Stage 2	448	473	-	442	449	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	27.1			14			0			0.2		
HCM LOS	D			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		950	-			420	956	-	-			
HCM Lane V/C Ratio		0.002	_		0.094			_	_			
HCM Control Delay (s)		8.8	-	-	27.1	14	8.8	-	-			
HCM Lane LOS		A	-	-	D	В	A	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.3	0.1	0.1	-	-			
						0.7						

Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		, M	
Traffic Vol, veh/h	36	83	69	127	200	60
Future Vol, veh/h	36	83	69	127	200	60
Conflicting Peds, #/hr	3	0	0	3	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-		-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	40	92	77	141	222	67
NA sign/NAins	Mair 4		1-1-2		Aller C. O	
	Major1		Major2		Minor2	4=:
Conflicting Flow All	221	0	-	0	323	151
Stage 1	-	-	-	-	151	-
Stage 2	-	-	-	-	172	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-		-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227		-	-	3.527	
Pot Cap-1 Maneuver	1342	-	-	-	669	893
Stage 1	-	-	-	-	874	-
Stage 2	-	-	-	-	856	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1338	-	-	-	644	890
Mov Cap-2 Maneuver	-	-	-	-	644	-
Stage 1	-	_		-	843	-
Stage 2	-	-	_	_	853	_
Jugo Z					555	
Approach	EB		WB		SB	
HCM Control Delay, s	2.4		0		14	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SRI n1
	ıı		LUI	וטיי	אטול .	
Capacity (veh/h)		1338	-	-	-	688
HCM Control Dolay (c)		0.03	-	-	-	0.42
HCM Lang LOS		7.8	0	-	-	14
HCM Lane LOS HCM 95th %tile Q(veh	\	A	Α	-	-	В
HUW YATH WILL DIVAN		0.1	-	-	-	2.1

	•		—	4	_	J
			MOT	\\(\(\sigma\)	000	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	•	4	^	00	•	•
Traffic Volume (veh/h)	8	277	194	88	0	0
Future Volume (Veh/h)	8	277	194	88	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	9	308	216	98	0	0
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	314				591	265
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	314				591	265
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				100	100
cM capacity (veh/h)	1241				464	771
Direction, Lane #	EB 1	WB 1				.,.
Volume Total	317	314				
Volume Left	9	0				
	0	98				
Volume Right cSH	1241	1700				
Volume to Capacity	0.01	0.18				
Queue Length 95th (ft)	1	0				
Control Delay (s)	0.3	0.0				
Lane LOS	А					
Approach Delay (s)	0.3	0.0				
Approach LOS						
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	zation		24.4%	IC	U Level o	of Service
Analysis Period (min)			15			
			.5			

Intersection													
Int Delay, s/veh	80												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		ሻ	ĵ.		ሻ	ĵ.		
Traffic Vol, veh/h	183	35	63	12	12	8	72	397	25	20	402	169	
uture Vol, veh/h	183	35	63	12	12	8	72	397	25	20	402	169	
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	3	3	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	·-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	-	50	-	-	
eh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93	
leavy Vehicles, %	3	3	3	3	3	3	3	7	3	3	7	3	
Nymt Flow	197	38	68	13	13	9	77	427	27	22	432	182	
	1,,	00	00	10	10	,	,,	127		LL	102	102	
lajor/Minor N	Minor2			Minor1		ľ	Major1		N	Major2			
Conflicting Flow All	1175	1178	523	1218	1256	446	614	0	0	457	0	0	
Stage 1	567	567	-	598	598	-	-	-	-	-	-	-	
Stage 2	608	611	_	620	658	_	_	_	_	_	_	_	
ritical Hdwy	7.13	6.53	6.23	7.13	6.53	6.23	4.13			4.13	_	_	
ritical Hdwy Stg 1	6.13	5.53	0.23	6.13	5.53	0.23	4.13	_	_	4.13	_	_	
ritical Hdwy Stg 2	6.13	5.53	-	6.13	5.53	_	_	_	_	_	-		
follow-up Hdwy	3.527	4.027	3.327		4.027	3.327	2.227	-	-	2.227	-	-	
	~ 168	190	552	157	171	610	961			1099	-	-	
Stage 1	507	505	- 552	487	489	010	701	-	-	1077	-	-	
Stage 2	481	483	-	474	460	-	-	-	-	-	-	-	
Platoon blocked, %	401	403	-	4/4	400	-	_	_	-	-	-	-	
·	1/1	171	552	104	154	607	961	-	-	1096		-	
Mov Cap-1 Maneuver		171		106				-	-		-		
Mov Cap-2 Maneuver		171	-	106	154	-	-	-	-	-	-	-	
Stage 1	466	495	-	447	448	-	-	-	-	-	-	-	
Stage 2	423	443	-	377	451	-	-	-	-	-	-	-	
Annroach	ED			MD			ND			CD			
Approach	EB			WB			NB			SB			
HCM Control Delay, s\$				34.3			1.3			0.3			
ICM LOS	F			D									
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V		SBL	SBT	SBR				
Capacity (veh/h)		961	-	-	176	157	1096	-	-				
HCM Lane V/C Ratio		0.081	-		1.717		0.02	-	-				
HCM Control Delay (s)		9.1	-	-\$	391.2	34.3	8.3	-	-				
ICM Lane LOS		Α	-	-	F	D	Α	-	-				
HCM 95th %tile Q(veh)		0.3	-	-	21.1	8.0	0.1	-	-				
Votes													
: Volume exceeds cap	pacity	\$: De	elav exc	ceeds 3	00s	+: Com	putation	Not D	efined	*: All	maior v	/olume i	n platoon
siamo onocous cup	Jaonty	Ψ. Β.	J.a.j One	33043 0		., 50111	ratatioi	. 1100 0	SIIIIOU	. 7 111	ajoi (Jane	piatooii

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7		,,,,,	7	ኘ	1		<u> </u>	1	JJ.,
Traffic Vol, veh/h	0	0	10	0	0	25	17	687	1	12	669	19
Future Vol, veh/h	0	0	10	0	0	25	17	687	1	12	669	19
Conflicting Peds, #/hr	6	0	0	0	0	6	26	0	0	0	0	26
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	11	0	0	27	18	747	1	13	727	21
Major/Minor N	linor2			Minor1			Major1		<u> </u>	Major2		
Conflicting Flow All	-	-	764	-	-	754	774	0	0	748	0	0
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	6.21	-	-	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	3.309	-	-	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	0	0	405	0	0	411	846	-	-	865	-	-
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	395	-	-	409	825	-	-	865	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	14.4			14.4			0.2			0.2		
HCM LOS	В			В								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		825	-	-	395	409	865	-	-			
HCM Lane V/C Ratio		0.022	-	-		0.066		-	-			
HCM Control Delay (s)		9.5	-	-	14.4	14.4	9.2	-	-			
HCM Lane LOS		Α	-	-	В	В	Α	-	-			
HCM 95th %tile Q(veh)		0.1	-	-	0.1	0.2	0	-	-			

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection							
Int Delay, s/veh	11.5						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	LDL	<u>EDI</u>	WDT	WBK	SBL	SBR 7	
Traffic Vol., veh/h	58	200	T 127	229	312	115	
Future Vol, veh/h	58	200	127	229	312	115	
Conflicting Peds, #/hr	5	0	0	5	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	- Jiop	None	
Storage Length		-	-	250	250	0	
Veh in Median Storage	2.# -	0	0	230	0	-	
Grade, %	-, π	0	0	_	0	_	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	3	3	3	3	3	3	
Mymt Flow	67	233	148	266	363	134	
IVIVIIIL I IOVV	07	233	140	200	303	134	
	Major1	Λ	Najor2		Minor2		
Conflicting Flow All	419	0	-	0	520	153	
Stage 1	-	-	-	-	153	-	
Stage 2	-	-	-	-	367	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-	3.527		
Pot Cap-1 Maneuver	1135	-	-	-	515	890	
Stage 1	-	-	-	-	873	-	
Stage 2	-	-	-	-	699	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1130	-	-	-	475	886	
Mov Cap-2 Maneuver	-	-	-	-	475	-	
Stage 1	-	-	-	-	809	-	
Stage 2	-	-	-	-	696	-	
Approach	EB		WB		SB		
HCM Control Delay, s	1.9		0		26.8		
HCM LOS	1.7				D		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	\M/RD	SBLn1 S	. [
	IC		LDT	VVDI	WDK .		,
Capacity (veh/h)		1130	-	-	-	475	_
HCM Caratast Pater (a)		0.06	-	-		0.764	U.
		X 4	0	-	-	33.1	
HCM Long LOS						D	
HCM Lane LOS HCM 95th %tile Q(veh)		A 0.2	A	-	-	D 6.6	

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 2

	۶	→	•	•	←	•	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		- 4		7	f)		7	₽	
Traffic Volume (veh/h)	275	29	144	17	41	38	117	393	17	19	243	418
Future Volume (veh/h)	275	29	144	17	41	38	117	393	17	19	243	418
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1796	1796	1856	1796	1796
Adj Flow Rate, veh/h	299	32	157	18	45	41	127	427	18	21	264	454
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	7	7	3	7	7
Cap, veh/h	329	35	323	23	58	53	155	892	38	39	266	457
Arrive On Green	0.21	0.21	0.21	0.08	0.08	0.08	0.09	0.52	0.52	0.02	0.45	0.45
Sat Flow, veh/h	1604	172	1572	297	744	678	1767	1711	72	1767	592	1018
Grp Volume(v), veh/h	331	0	157	104	0	0	127	0	445	21	0	718
Grp Sat Flow(s),veh/h/ln	1775	0	1572	1719	0	0	1767	0	1783	1767	0	1610
Q Serve(g_s), s	19.2	0.0	9.3	6.3	0.0	0.0	7.4	0.0	16.8	1.2	0.0	46.7
Cycle Q Clear(g_c), s	19.2	0.0	9.3	6.3	0.0	0.0	7.4	0.0	16.8	1.2	0.0	46.7
Prop In Lane	0.90		1.00	0.17		0.39	1.00		0.04	1.00		0.63
Lane Grp Cap(c), veh/h	364	0	323	134	0	0	155	0	930	39	0	723
V/C Ratio(X)	0.91	0.00	0.49	0.78	0.00	0.00	0.82	0.00	0.48	0.55	0.00	0.99
Avail Cap(c_a), veh/h	384	0	340	359	0	0	161	0	930	96	0	723
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	40.9	0.0	37.0	47.7	0.0	0.0	47.3	0.0	16.1	51.0	0.0	28.9
Incr Delay (d2), s/veh	24.2	0.0	1.1	9.2	0.0	0.0	26.8	0.0	0.4	11.5	0.0	31.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.6	0.0	3.6	3.0	0.0	0.0	4.3	0.0	6.4	0.7	0.0	22.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	65.1	0.0	38.1	56.9	0.0	0.0	74.1	0.0	16.5	62.5	0.0	60.5
LnGrp LOS	Е	Α	D	Е	Α	Α	Е	Α	В	Е	Α	<u> </u>
Approach Vol, veh/h		488			104			572			739	
Approach Delay, s/veh		56.4			56.9			29.3			60.6	
Approach LOS		Ε			Ε			С			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.5	59.8		26.2	14.1	52.2		12.8				
Change Period (Y+Rc), s	* 4.2	4.9		4.6	4.9	* 4.9		4.6				
Max Green Setting (Gmax), s	* 5.7	51.2		22.8	9.6	* 47		22.0				
Max Q Clear Time (g_c+l1), s	3.2	18.8		21.2	9.4	48.7		8.3				
Green Ext Time (p_c), s	0.0	2.8		0.4	0.0	0.0		0.4				
Intersection Summary												
			40.0									
HCM 6th Ctrl Delay			49.9									
HCM 6th LOS			D									
Motoc												

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7	ች	ĵ.		ሻ	f	
Traffic Vol, veh/h	0	0	5	0	0	16	2	597	2	15	575	18
Future Vol, veh/h	0	0	5	0	0	16	2	597	2	15	575	18
Conflicting Peds, #/hr	3	0	1	1	0	3	7	0	4	4	0	7
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	0	50	-	-	55	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	1	1	1	1	1	1	1	7	1	1	7	1
Mvmt Flow	0	0	5	0	0	17	2	628	2	16	605	19
Major/Minor N	/linor2		1	Minor1			Major1			Major2		
Conflicting Flow All	-	-	623	-	-	636	631	0	0	634	0	0
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	-	-	6.21	-	-	6.21	4.11	-	-	4.11	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	3.309	-	-	3.309	2.209	-	-	2.209	-	-
Pot Cap-1 Maneuver	0	0	488	0	0	480	956	-	-	954	-	-
Stage 1	0	0	-	0	0	-	-	-	-	-	-	-
Stage 2	0	0	-	0	0	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	-	-	484	-	-	477	950	-	-	950	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	12.5			12.8			0			0.2		
HCM LOS	В			В								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		950	-	-		477	950	-	-			
HCM Lane V/C Ratio		0.002	_			0.035		_				
HCM Control Delay (s)		8.8	_	-		12.8	8.9	-	-			
HCM Lane LOS		Α	_	_	12.3 B	12.0 B	Α	_				
HCM 95th %tile Q(veh)		0	-	-	0	0.1	0.1	-	-			
						5.1	J. 1					

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 10 Report Page 1

Intersection							
Int Delay, s/veh	5.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	J
Lane Configurations		सी	↑	7	*	7	1
Traffic Vol, veh/h	36	83	69	127	200	60	
Future Vol, veh/h	36	83	69	127	200	60	
Conflicting Peds, #/hr	3	0	0	3	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-		-	None	
Storage Length	-	-	-	250	250	0	
Veh in Median Storage	.,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	40	92	77	141	222	67	
Major/Minor N	Major1	N	/lajor2		Minor2		Ī
Conflicting Flow All	221	0	-	0	252	80	
Stage 1	-	-	_	-	80	-	
Stage 2	_	_	_	-	172	-	
Critical Hdwy	4.13	_	_	-	6.43	6.23	
Critical Hdwy Stg 1	-	_	_	-	5.43	-	
Critical Hdwy Stg 2	-	_	_	-	5.43	-	
	2.227	-	_	-	3.527	3.327	
Pot Cap-1 Maneuver	1342	-	-	-	734	977	
Stage 1	-	-	-	-	941	-	
Stage 2	-	-	-	-	856	-	
Platoon blocked, %			-	-			
Mov Cap-1 Maneuver	1338	-	-	-	706	974	
Mov Cap-2 Maneuver	-	-	-	-	706	-	
Stage 1	-	-	-	-	908	-	
Stage 2	-	-	-	-	853	-	
J							
Annroach	EB		WB		SB		J
Approach							1
HCM Control Delay, s	2.4		0		11.6		
HCM LOS					В		
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR	SBLn1 S	ŝl
Capacity (veh/h)		1338	-	-	-	706	
Supusity (Volum)						0.315	(
HCM Lane V/C Ratio		0.03	-	-			
HCM Lane V/C Ratio HCM Control Delay (s)		0.03 7.8	0	-	-	12.4	
HCM Lane V/C Ratio							

Mitigated Synchro 10 Report JLB Traffic Engineering, Inc. Synchro 2

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		۶	→	•	•	←	4	1	†	~	/	†	1
Traffic Volume (veh/h)	Movement	EBL			WBL		WBR			NBR		SBT	SBR
Future Volume (veh/h)						- 43→							
Initial Q (Qb), veh 0													
Ped-Bike Adj(A_pbT) 1.00 </td <td></td>													
Parking Bus, Adj 1.00			0			0			0			0	
Work Zöne On Approach													
Adj Sat Flow, veh/h/ln 1856 1856 1856 1856 1856 1856 1856 1856 1797 1797 170		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 205 41 68 14 13 9 77 427 27 22 431 182 Peak Hour Factor 0.93 0.25 4 4 4 9 0.01 16 0.8 0.0 104 104 104 104													
Peak Hour Factor 0.93													
Percent Heavy Veh, % 3 3 3 3 3 3 3 3 3 7 7 7 3 7 2 20, eh/h 271 54 287 29 27 19 105 759 48 45 491 207 Arrive On Green 0.18 0.18 0.18 0.18 0.04 0.04 0.04 0.06 0.45 0.45 0.03 0.41 0.41 Sat Flow, veh/h 1484 297 1572 676 627 434 1767 1671 106 1767 1199 506 Grp Volume(v), veh/h 246 0 68 36 0 0 77 0 454 22 0 613 Grp Sat Flow(s), veh/h/n 1781 0 1572 1737 0 0 1767 0 1777 1767 0 1705 0 Serve(g_s), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Cycle O Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Lane Grp Cap(c), veh/h 325 0 287 74 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Cap, veh/h 271 54 287 29 27 19 105 759 48 45 491 207 Arrive On Green 0.18 0.18 0.18 0.04 0.04 0.06 0.45 0.45 0.03 0.41 0.41 Sat Flow, veh/h 1484 297 1572 676 627 434 1767 1671 106 1767 1199 506 Gry Volume(v), veh/h 246 0 68 36 0 0 77 0 454 22 0 613 Gry Sat Flow(s), veh/h/In 1781 0 1572 1737 0 0 1767 0 17167 0 1707 0 1707 0 1106 0.8 0.0 20.6 Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39													
Arrive On Green 0.18 0.18 0.18 0.04 0.04 0.06 0.45 0.45 0.03 0.41 0.41 Sat Flow, veh/h 1484 297 1572 676 627 434 1767 1671 106 1767 1199 506 Grp Volume(v), veh/h 246 0 68 36 0 0 77 0 454 22 0 613 Grp Sat Flow(s), veh/h/ln 1781 0 1572 1737 0 0 1767 0 1767 0 1707 1767 0 1707 0 0 1767 0 1707 1767 0 1707 0 45 22 0 613 0 0 0 0 1707 0 116 0.8 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Sat Flow, veh/h 1484 297 1572 676 627 434 1767 1671 106 1767 1199 506 Grp Volume(v), veh/h 246 0 68 36 0 0 77 0 454 22 0 613 Grp Sat Flow(s), veh/h/n 1781 0 1572 1737 0 0 1767 0 1777 1767 0 1705 Q Serve(g_s), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Grp Volume(v), veh/h 246 0 68 36 0 0 77 0 454 22 0 613 Grp Sat Flow(s), veh/h/ln 1781 0 1572 1737 0 0 1767 0 1777 1767 0 1705 Q Serve(g_s), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Brop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.074 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Grp Sat Flow(s), veh/h/In 1781 0 1572 1737 0 0 1767 0 1777 1767 0 1705 Q Serve(g_s), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Lane Grp Cap(c), veh/h 325 0 287 74 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 <							434						
Q Serve(g_s), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Lane Grp Cap(c), veh/h 325 0 287 74 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00													
Cycle Q Clear(g_c), s 8.1 0.0 2.3 1.3 0.0 0.0 2.7 0.0 11.6 0.8 0.0 20.6 Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Lane Grp Cap(c), veh/h 325 0 287 74 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00													
Prop In Lane 0.83 1.00 0.39 0.25 1.00 0.06 1.00 0.30 Lane Grp Cap(c), veh/h 325 0 287 74 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00													
Lane Grp Cap(c), veh/h 325 0 287 74 0 0 0 105 0 807 45 0 698 V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Cycle Q Clear(g_c), s	8.1	0.0			0.0	0.0	2.7	0.0	11.6	0.8	0.0	20.6
V/C Ratio(X) 0.76 0.00 0.24 0.48 0.00 0.00 0.74 0.00 0.56 0.49 0.00 0.88 Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00							0.25	1.00					
Avail Cap(c_a), veh/h 632 0 558 616 0 0 148 0 937 143 0 894 HCM Platoon Ratio 1.00	Lane Grp Cap(c), veh/h		0					105	0	807			698
HCM Platoon Ratio 1.00 1.	V/C Ratio(X)		0.00			0.00	0.00		0.00			0.00	
Upstream Filter(I) 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.00 <td>Avail Cap(c_a), veh/h</td> <td>632</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>148</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>894</td>	Avail Cap(c_a), veh/h	632						148	0			0	894
Uniform Delay (d), s/veh 24.1 0.0 21.7 29.0 0.0 0.0 28.7 0.0 12.4 29.8 0.0 16.9 Incr Delay (d2), s/veh 3.6 0.0 0.4 4.8 0.0 0.0 10.8 0.0 0.6 8.0 0.0 8.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incr Delay (d2), s/veh 3.6 0.0 0.4 4.8 0.0 0.0 10.8 0.0 0.6 8.0 0.0 8.2 Initial Q Delay(d3),s/veh 0.0	Upstream Filter(I)	1.00	0.00	1.00	1.00		0.00		0.00	1.00		0.00	1.00
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td></td></t<>			0.0				0.0		0.0			0.0	
%ile BackOfQ(50%),veh/ln 3.5 0.0 0.8 0.6 0.0 0.0 1.4 0.0 3.8 0.4 0.0 8.1 Unsig. Movement Delay, s/veh 27.7 0.0 22.1 33.8 0.0 0.0 39.5 0.0 13.0 37.8 0.0 25.1 LnGrp LOS C A C C A A D A B D A C Approach Vol, veh/h 314 36 531 635 Approach Delay, s/veh 26.5 33.8 16.9 25.5 Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8	Incr Delay (d2), s/veh		0.0		4.8		0.0	10.8	0.0	0.6		0.0	
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 27.7 0.0 22.1 33.8 0.0 0.0 39.5 0.0 13.0 37.8 0.0 25.1 LnGrp LOS	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 27.7 0.0 22.1 33.8 0.0 0.0 39.5 0.0 13.0 37.8 0.0 25.1 LnGrp LOS C A C C A A D A B D A C Approach Vol, veh/h 314 36 531 635 Approach Delay, s/veh 26.5 33.8 16.9 25.5 Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8	%ile BackOfQ(50%),veh/ln	3.5	0.0	0.8	0.6	0.0	0.0	1.4	0.0	3.8	0.4	0.0	8.1
LnGrp LOS C A C C A D A B D A C Approach Vol, veh/h 314 36 531 635 Approach Delay, s/veh 26.5 33.8 16.9 25.5 Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8													
Approach Vol, veh/h 314 36 531 635 Approach Delay, s/veh 26.5 33.8 16.9 25.5 Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8		27.7	0.0		33.8	0.0	0.0	39.5	0.0	13.0	37.8	0.0	25.1
Approach Delay, s/veh 26.5 33.8 16.9 25.5 Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8	LnGrp LOS	С	Α	С	С	Α	Α	D	Α	В	D	Α	С
Approach LOS C C B C Timer - Assigned Phs 1 2 4 5 6 8	Approach Vol, veh/h		314			36			531			635	
Timer - Assigned Phs 1 2 4 5 6 8	Approach Delay, s/veh		26.5			33.8			16.9			25.5	
- J	Approach LOS		С			С			В			С	
- J	Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s 5.8 33.1 15.9 8.6 30.3 7.3	Phs Duration (G+Y+Rc), s	5.8							7.3				
Change Period (Y+Rc), s * 4.2 4.9 4.6 4.9 * 4.9 4.6													
Max Green Setting (Gmax), s * 5 32.7 22.0 5.2 * 33 22.0													
Max Q Clear Time (g_c+l1), s 2.8 13.6 10.1 4.7 22.6 3.3													
Green Ext Time (p_c), s 0.0 2.5 1.2 0.0 2.8 0.1													
Intersection Summary													
HCM 6th Ctrl Delay 22.9				22.0									
HCM 6th LOS C													
Notes													

ivotes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	53	57	152	94	188
Average Queue (ft)	12	29	45	38	31
95th Queue (ft)	39	53	116	72	100
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	R	R	L	TR	L	TR
Maximum Queue (ft)	53	52	31	100	114	457
Average Queue (ft)	12	15	8	7	15	86
95th Queue (ft)	41	42	29	44	64	287
Link Distance (ft)	633	1229		349		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)			0	0		10
Queuing Penalty (veh)			0	0		1

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	70	52	154	58
Average Queue (ft)	22	8	75	32
95th Queue (ft)	57	33	125	53
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Geer Avenue & Project Driveway 2

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	B8	SB	SB	
Directions Served	LT	R	LTR	L	TR	T	L	TR	
Maximum Queue (ft)	406	370	249	124	354	71	89	428	
Average Queue (ft)	204	71	82	89	172	2	24	318	
95th Queue (ft)	352	236	166	152	281	23	73	479	
Link Distance (ft)	772		2629		282	2278		349	
Upstream Blk Time (%)					2			14	
Queuing Penalty (veh)					0			92	
Storage Bay Dist (ft)		250		50			50		
Storage Blk Time (%)	8			33	30		6	53	
Queuing Penalty (veh)	11			136	35		42	10	

Network Summary

Network wide Queuing Penalty: 327

Intersection: 1: Lander Avenue & Echo Street

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	L	T
Maximum Queue (ft)	31	31	119	31	100
Average Queue (ft)	4	10	15	9	9
95th Queue (ft)	21	33	61	33	51
Link Distance (ft)		1262	706		1414
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	165			250	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Lander Avenue & Dayton Avenue

Movement	EB	WB	NB	NB	SB	SB
Directions Served	R	R	L	TR	L	TR
Maximum Queue (ft)	31	76	29	55	31	112
Average Queue (ft)	6	12	1	4	8	6
95th Queue (ft)	26	42	9	24	31	40
Link Distance (ft)	633	1229		343		706
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50		55	
Storage Blk Time (%)				0		1
Queuing Penalty (veh)				0		0

Intersection: 3: Geer Avenue & Project Driveway 1

Movement	EB	WB	SB	SB
Directions Served	LT	R	L	R
Maximum Queue (ft)	54	40	105	66
Average Queue (ft)	8	1	41	25
95th Queue (ft)	34	13	74	52
Link Distance (ft)	1284			1232
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		250	250	
Storage Blk Time (%)				
Queuing Penalty (veh)				

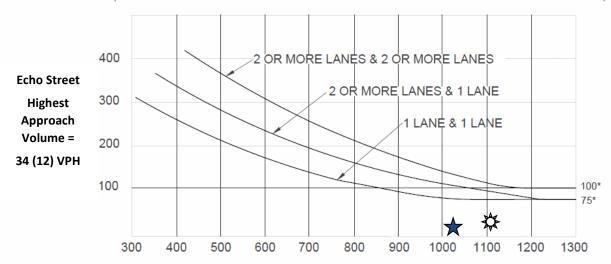
Intersection: 4: Geer Avenue & Project Driveway 2

Movement	EB
Directions Served	LT
Maximum Queue (ft)	29
Average Queue (ft)	1
95th Queue (ft)	10
Link Distance (ft)	422
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Lander Avenue & Geer Avenue

Movement	EB	EB	WB	NB	NB	SB	SB
Directions Served	LT	R	LTR	L	TR	L	TR
Maximum Queue (ft)	195	56	97	124	224	89	432
Average Queue (ft)	87	28	32	68	111	20	212
95th Queue (ft)	157	54	80	129	196	57	380
Link Distance (ft)	772		2629		276		343
Upstream Blk Time (%)							3
Queuing Penalty (veh)							16
Storage Bay Dist (ft)		250		50		50	
Storage Blk Time (%)				26	23	0	39
Queuing Penalty (veh)				108	17	0	8

Network Summary


Network wide Queuing Penalty: 149

Appendix I: Signal Warrants

Existing Traffic Conditions 1. Lander Avenue / Echo Street AM (PM) Peak Hour

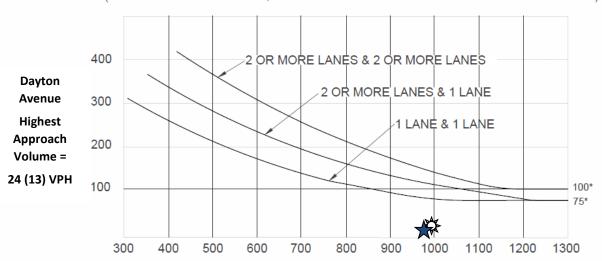
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1110 (1023) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

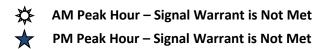
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Existing Traffic Conditions 2. Lander Avenue / Dayton Avenue AM (PM) Peak Hour

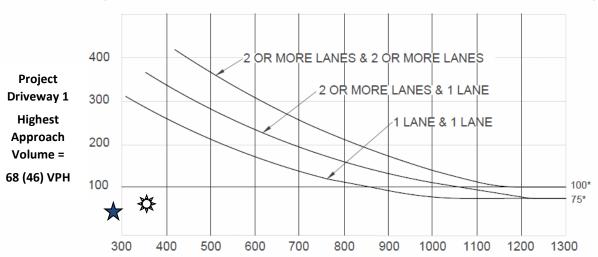
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 994 (976) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing Traffic Conditions 3. Project Driveway 1 / Geer Avenue AM (PM) Peak Hour

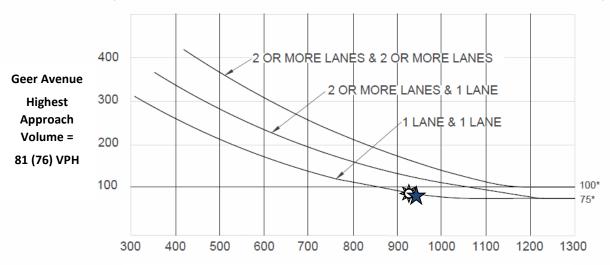
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 357 (190) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

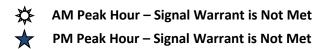
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Existing Traffic Conditions 5. Lander Avenue / Geer Avenue AM (PM) Peak Hour

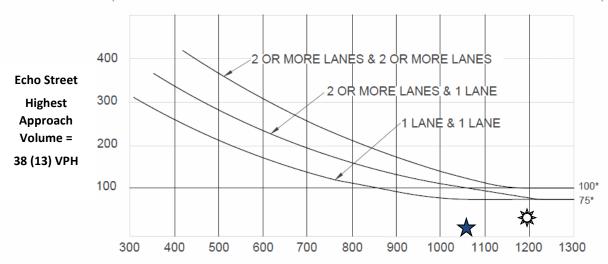
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 927 (942) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 1. Lander Avenue / Echo Street AM (PM) Peak Hour

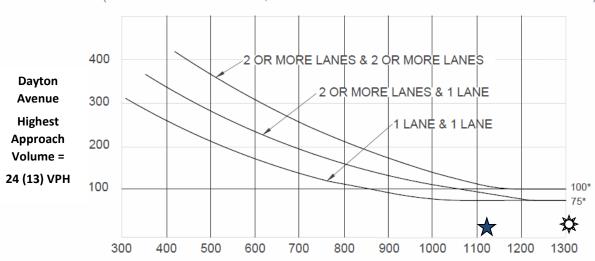
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1196 (1057) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 2. Lander Avenue / Dayton Avenue AM (PM) Peak Hour

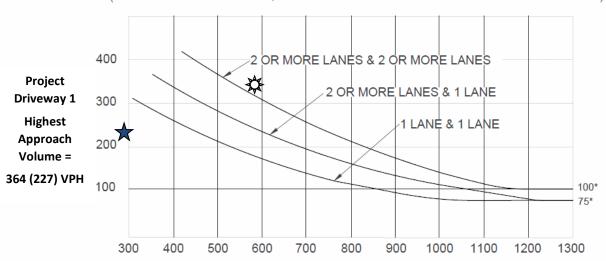
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1302 (1121) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 3. Project Driveway 1 / Geer Avenue AM (PM) Peak Hour

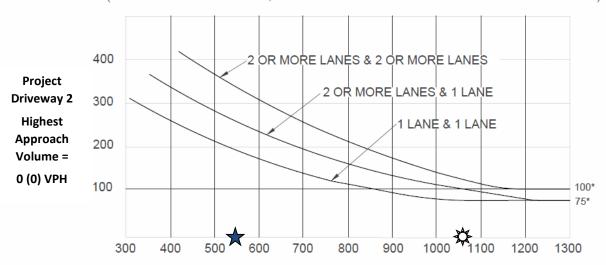
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 585 (299) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 4. Project Driveway 2 / Geer Avenue AM (PM) Peak Hour

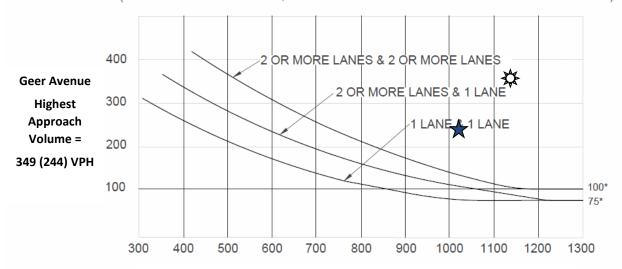
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 1060 (551) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 5. Lander Avenue / Geer Avenue AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

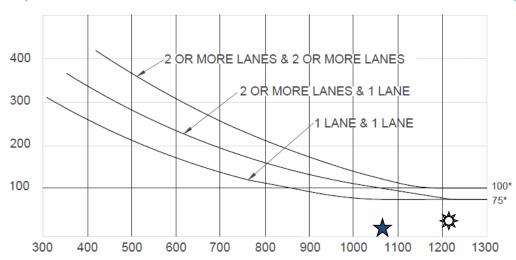
Lander Avenue Total of Both Approaches = 1131 (1007) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704


info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 1. Lander Avenue / Echo Street AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1218 (1078) VPH

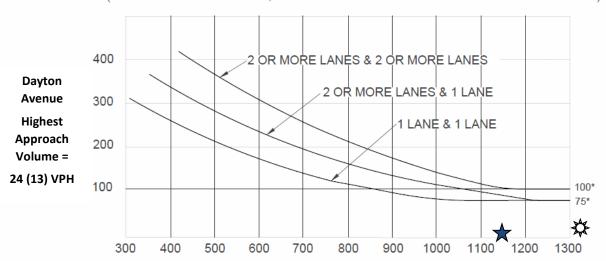
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Not Met

PM Peak Hour – Signal Warrant is Not Met

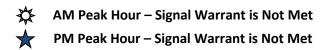
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Near Term plus Project Traffic Conditions 2. Lander Avenue / Dayton Avenue AM (PM) Peak Hour

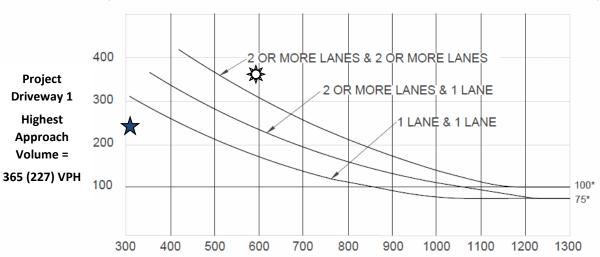
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1322 (1141) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 3. Project Driveway 1 / Geer Avenue AM (PM) Peak Hour

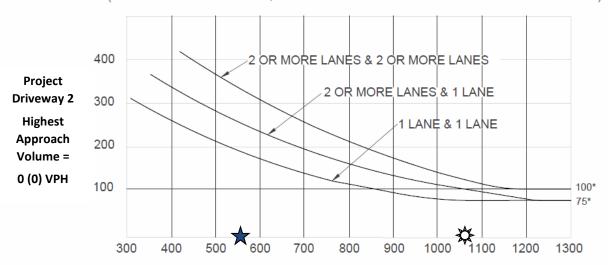
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 592 (303) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 4. Project Driveway 2 / Geer Avenue AM (PM) Peak Hour

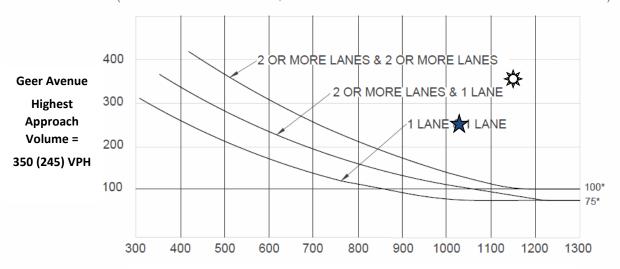
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 1067 (555) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 5. Lander Avenue / Geer Avenue AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1150 (1026) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour – Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2040 No Project Traffic Conditions 1. Lander Avenue / Echo Street AM (PM) Peak Hour

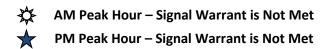
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Echo Street
Highest
Approach
Volume = 200
36 (12) VPH

Approach
100

2 OR MORE LANES & 2 OR MORE LANES
1 LANE
1 LANE & 1 LANE

600


Lander Avenue Total of Both Approaches = 1202 (1108) VPH

800

900

1000

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

700

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

300

400

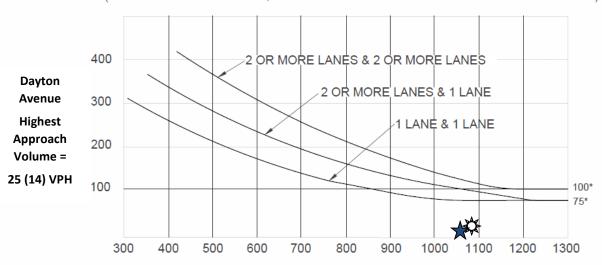
500

516 W. Shaw Ave., Ste. 103

100* 75*

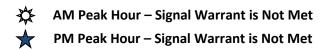
1300

1200


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2040 No Project Traffic Conditions 2. Lander Avenue / Dayton Avenue AM (PM) Peak Hour

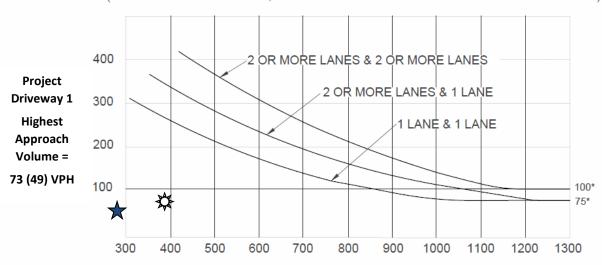
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1077 (1057) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2040 No Project Traffic Conditions 3. Project Driveway 1 / Geer Avenue AM (PM) Peak Hour

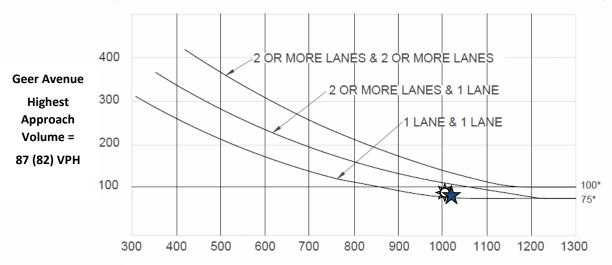
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 387 (206) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2040 No Project Traffic Conditions 5. Lander Avenue / Geer Avenue AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1004 (1020) VPH

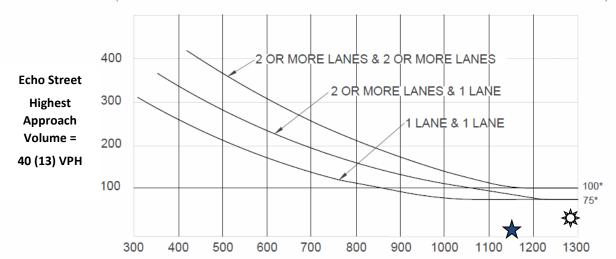
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour – Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2040 plus Project Traffic Conditions 1. Lander Avenue / Echo Street AM (PM) Peak Hour

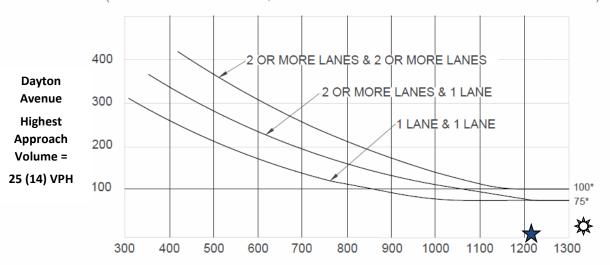
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1288 (1142) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

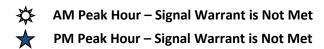
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2040 plus Project Traffic Conditions 2. Lander Avenue / Dayton Avenue AM (PM) Peak Hour

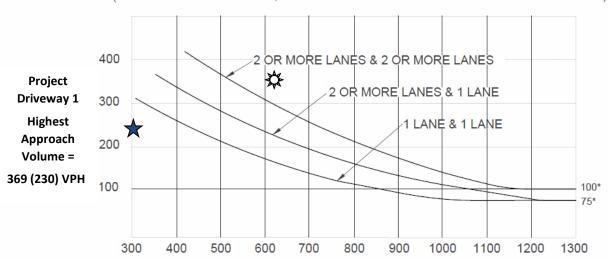
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1385 (1202) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2040 plus Project Traffic Conditions 3. Project Driveway 1 / Geer Avenue AM (PM) Peak Hour

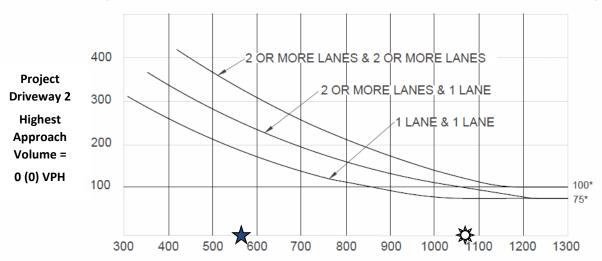
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 615 (315) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

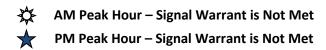
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2040 plus Project Traffic Conditions 4. Project Driveway 2 / Geer Avenue AM (PM) Peak Hour

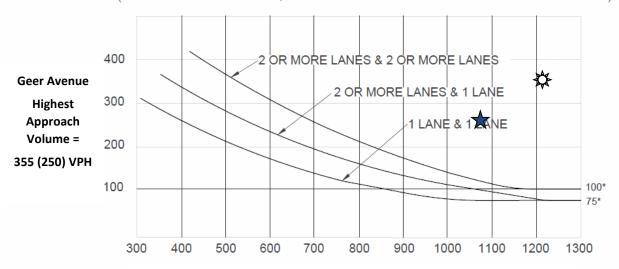
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Geer Avenue Total of Both Approaches = 1088 (567) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2040 plus Project Traffic Conditions 5. Lander Avenue / Geer Avenue AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Lander Avenue Total of Both Approaches = 1208 (1085) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com