APPENDIX D – PRELIMINARY LIMITED GEOTECHNICAL DESIGN REPORT

Geotechnical Engineering • Engineering Geology

Preliminary Limited Geotechnical Design Report

LA PUENTE CITY PARK STORMWATER STORAGE & INFILTRATION FACILITIES 15538-15598 E Temple Avenue La Puente, California

Prepared for:

City of Industry P.O. Box 3366 15625 E. Stafford, Suite 100 City of Industry, CA 91744

Prepared by:

Tetra Tech 1360 Valley Vista Drive Diamond Bar, California 91765

March 20, 2018 Project No. TET 17-136E

Project No. TET 17-136E March 20, 2018

Ms. Kristen Weger City of Industry Project Manager City of Industry P.O. Box 3366 15625 E. Stafford, Suite 100 City of Industry, CA 91744

Subject: PRELIMINARY LIMITED GEOTECHNICAL DESIGN REPORT LA PUENTE CITY PARK **STORMWATER STORAGE & INFILTRATION FACILITIES 15338-15598 E Temple Avenue** La Puente, California

Dear Mr. Philips:

Presented herein is Tetra Tech's preliminary limited geotechnical design report for the proposed stormwater infiltration/storage facilities at La Puente City Park located at 15338-15598 E Temple Avenue in the City of La Puente, California. This report summarizes the results of our geotechnical investigation to characterize the soils at the site and provides geotechnical considerations for the preliminary design of the proposed infiltration facilities. The appendices of the report include logs of borings from the previous and current investigations, results of laboratory and infiltration tests, and liquefaction analyses.

We appreciate the opportunity to provide our professional services on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

Respectfully submitted, Tetra Tech

Fende

Fernando Cuenca, Ph.D., P.E. Senior Project Engineer

Andrew McLarty, M. &d., C

Senior Engineering Geologist

Peter Skopek, Ph.D., G.E. Principal

Distribution: Addressee (pdf by email <u>kweger@cityofindustry.org</u>) Oliver Galang (pdf by email <u>Oliver.Galang@tetratech.com</u>)

Filename: 2018-01-30 La Puente Geotechnical Report RPT.docx

TABLE OF CONTENTS

Page

1. INTRODUCTION	1
2. SCOPE OF WORK	2
3. PROJECT BACKGROUND AND DESCRIPTION	
4. SUBSURFACE EXPLORATIONS	4
5. LABORATORY TESTING	6
6. SUBSURFACE CONDITIONS	7
 6.1. REGIONAL GEOLOGY 6.2. SITE GEOLOGY 6.2.1. Fill 6.2.2. Native Alluvium 6.3. GROUNDWATER 	
7. FIELD INFILTRATION TESTING	
8. ESTIMATED SATURATED HYDRAULIC CONDUCTIVITY	
9. ENGINEERING SEISMOLOGY AND GEOLOGIC HAZARDS	10
 9. ENGINEERING SEISMOLOGY AND GEOLOGIC HAZARDS. 9.1. GENERAL SEISMIC SETTING	13 16 16 17 17 17 17 17 17 17 17 17 19 19
 9.1. GENERAL SEISMIC SETTING	13 16 16 17 17 17 17 17 17 17 17 17 19 19 21
 9.1. GENERAL SEISMIC SETTING	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 9.1. GENERAL SEISMIC SETTING	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figures

Figure 1 – Site Location Map

Figure 2 – Site Layout and Boring Location Map

Figure 3 – Geologic Map

Figure 4 – Historic High Groundwater Map

Figure 5 – Regional Faults and Seismicity Map

Figure 6 – Seismic Hazard Zones Map

Appendices

Appendix A – Logs of Ninyo and Moore's Exploratory Boring

Appendix B – Logs of Tetra Tech's Exploratory Boring

Appendix C – Tetra Tech Laboratory Testing

Appendix D – Field Infiltration Testing Results

Appendix E – Liquefaction Analyses

1. INTRODUCTION

This report presents the results of Tetra Tech's preliminary limited geotechnical engineering evaluation for the proposed stormwater capture, infiltration, and conveyance facilities at the La Puente City Park (see Figure 1) located at 15338-15598 E Temple Avenue in the City of La Puente, California.

The purpose of this study was to evaluate the subsurface conditions at the site and to provide considerations for the preliminary design of the proposed facilities. The area considered in this investigation is located immediately west of St. Joseph High School and the tennis court facilities located along Temple Avenue shown on Figure 2. This report summarizes the collected data and presents our findings, conclusions, and preliminary geotechnical design considerations.

2. SCOPE OF WORK

Tetra Tech's scope of services for this project consisted of the following tasks:

- Review of readily available background data, including in-house geotechnical data from our soil explorations in the vicinity of the proposed facilities.
- Perform a reconnaissance site visit to observe ground conditions and mark boring locations.
- Coordinate with City of Industry personnel, park staff, and Underground Service Alert (USA) for access and clearance of buried utilities prior to drilling.
- Conduct a subsurface investigation within the area where infiltration facilities could be located, including excavating, logging, and geotechnical sampling of 1 soil exploratory boring to a depth of 31.5 feet.
- Install 2 Double Ring Infiltrometers (DRIs) within the area where infiltration facilities could be located and perform infiltration tests in general accordance with County of Los Angeles guidelines GS200.2 (2017).
- Perform laboratory testing of selected samples recovered from the borings to evaluate geotechnical engineering properties of the on-site soils.
- Conduct an evaluation of the geotechnical data to develop preliminary limited geotechnical considerations for the design and construction of the proposed structures including the following items:
 - An evaluation of general subsurface conditions and description of types, distribution, and engineering characteristics of subsurface materials.
 - An evaluation of the liquefaction potential and dynamic settlement of the on-site materials.
 - An evaluation of the suitability of on-site soils for infiltration;
 - Determination of seismic design parameters in accordance with the 2016 California Building Code.
 - An evaluation of the corrosion potential of the on-site soils to buried concrete.
- Prepare this written report documenting the work performed, physical data acquired, and preliminary geotechnical considerations.

3. PROJECT BACKGROUND AND DESCRIPTION

The Upper San Gabriel River Enhanced Watershed Management Group (USGREWMG) was formed on October 24, 2013 and is comprised of the County of Los Angeles, the Los Angeles County Flood Control District (LACFCD), and the cities of Baldwin Park, Covina, Glendora, City of Industry, La Puente, and West Covina (the Cities). The group completed the development of an Enhanced Watershed Management Program (EWMP) and obtained approval from the Los Angeles Regional Quality Control Board on April 11, 2016.

The USGREWM Group was formed in response to provisions of National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit Order No. R4-2012-0175 (Permit). The USGREWM Group, through a cooperative and collaborative process, developed an EWMP to demonstrate compliance with water quality standards.

The EWMP identified a suite of watershed control measures and structural Best Management Practices (BMPs), and identified priority projects including the subject La Puente City Park. As required by the EWMP, a screening geotechnical investigation was conducted at the site (Ninyo and Moore, 2015). The County, the LACFD and the Cities are now taking the next step in implementing the EWMP by developing this Preliminary Geotechnical Design Report. The City of Industry represents the USGREWMG and is the lead agency for this effort.

La Puente City Park was considered a high priority site for a regional stormwater capture project due to its proximity to a 39-inch diameter reinforced concrete stormdrain pipe running in the east-west under Temple Avenue and then turning afterwards in the south-north direction under Glendora Avenue. The area considered in this investigation encompasses the area of the park immediately west of St. Joseph High School and the tennis court facilities located along Temple Avenue as shown in Figure 2.

At this moment no specific information regarding the location, depth, and size of the proposed diversion structures, pre-treatment units, and pump station is available. Therefore, the designer should verify with the Geotechnical Engineer the applicability of the considerations contained herein once the design configuration is decided. For infiltration a large scale spreading basin is being considered. It is estimated that the invert of the infiltration facility will be located at a maximum depth of about 5 feet.

4. SUBSURFACE EXPLORATIONS

A screening subsurface investigation was conducted at the southernmost area of the site by Ninyo and Moore (2015) at the location indicated on Figure 2. Ninyo and Moore's exploration consisted in drilling one soil boring to a depth of 101.5 feet. The log of this exploration is included in Appendix A.

For the Preliminary Design subject of this document the subsurface soil and groundwater conditions beneath the site were explored on November 29, 2017 and included the drilling, logging, and sampling of 1 hollow stem auger exploratory boring LP-101.

Prior to starting the field exploration program, a field reconnaissance was conducted to observe surface conditions and to mark the locations of the planned boreholes in agreement with the City of Industry and the park staff. A drilling permit was obtained from the Los Angeles County Department of Public Health (LACDPH) for the subsurface explorations. Underground Service Alert and the park staff were also notified of the drilling schedule at least 48 hours prior to drilling.

The hollow stem auger boring was excavated using a CME-75 truck-mounted drill rig equipped with an 8-inch diameter auger at the approximate location indicated on Figure 2 – Site Layout and Boring Location Map. Boring LP-101 was advanced to a depth of 31.5 feet. Subsequently, 2 shallow pits were excavated to a depth of 1 foot in the park area for infiltration testing. DRI tests DRI-102 and DRI-103 were conducted as described in the section "Field Infiltration Testing."

The approximate coordinates of the current soil exploration locations, the approximate elevations, and depths are included in Table 1.

Exploration Number	Northing	Easting	Approximate Depth (ft)	Approximate Top of Borehole/DRI test Elevation (ft)*			
LP-101	34.02766	-117.95188	31.5	345			
DRI-102	34.027750	-117.952452	1	340			
DRI-103	34.028391	-117.952539	1	337			
*Estimated from Google Earth							

Table 1Borehole and DRI Information

Bulk, driven ring-type, and small bag samples were retrieved at selected depths during drilling of the exploratory boring. Standard Penetration Testing (SPT) was performed using an SPT sampler driven by an automatic 140-pound hammer with a drop of 30 inches in general accordance with ASTM D1586. The hammer calibration record indicated an energy transfer ratio of 80 percent. Ring-type samples were collected utilizing a California-type sampler driven by the same

equipment used for the SPTs. Sampling between the depths of 2.5 and 10 feet was carried out at 2.5-foot intervals. Otherwise sampling was carried out at 5-foot intervals.

The soil boring was surface-logged by a California Professional Geologist in general accordance with the visual-manual procedure for description and identification of soils, ASTM D2488. The Geologist prepared the recovered samples for subsequent reference and laboratory testing. The soil boring log is presented in Appendix B.

At the completion of drilling, the exploratory boring was backfilled with a bentonite cement grout in accordance with LACDPH requirements. The excavated soils from the borehole were disposed of by park personnel.

5. LABORATORY TESTING

Laboratory tests were performed on selected samples recovered from the soil boring to aid in the classification of soils and to evaluate pertinent engineering properties. The following tests were performed:

- Moisture Content of Soil, ASTM D2216;
- Density of Soil Specimens, ASTM D7263;
- Particle Size Analysis of Soils, ASTM D6913 and ASTM D7928;
- Atterberg Limits, ASTM D4318;
- Percent Passing #200 Sieve, ASTM D1140;
- Swell and Collapse Test, ASTM D4546;
- Corrosion Testing of Soils:
 - \rightarrow pH, ASTM G51;
 - Resistivity, ASTM G187;
 - Sulfates, ASTM D516;
 - Chlorides, ASTM D512;
 - Redox, ASTM G200;
 - ➢ Sulfides, SM-4500-S2;
 - ➤ Ammonia, SM 4500-NH₃; and
 - ➢ Nitrate SM 4500-NO₃.

Results of all laboratory tests are presented in Appendix C. For ease of referral to the soil profile, most of the laboratory results have also been included on the boring logs in Appendix B.

6. SUBSURFACE CONDITIONS

6.1. Regional Geology

The subject site is located within the eastern portions of the greater Los Angeles Basin. The Los Angeles Basin is located within Peninsular Ranges geomorphic province which is characterized as a low-lying plain that rises gently inland to the surrounding mountains and hills including the Santa Monica and San Gabriel Mountains to the north, Puente Hills to the northeast, the Santa Ana Mountains to the Southeast, and the San Joaquin hills and Palos Verdes Peninsula to the south. The Peninsular Range is characterized by northwest-southeast trending structural blocks separated by northwest-southeast trending strike-slip faults. The site is nearby and to the south of the San Gabriel Mountains surrounded by locally characterized by crystalline plutonic rock of Cretaceous age to Precambrian gneisses. Foothills are locally characterized by Miocene aged units of andesitic volcanic units of the Glendora Volcanics and sandstones of the Topanga Formation (Harden, 2004). Valleys are filled with intermediate and young alluvium formations consisting of locally derived surficial sands and gravels (Dibblee, 2002). Older alluvial gravels outcrop in uplifted remnants, and coarser gravels outcrops are younger and present in active stream channels within the valley floor.

6.2. Site Geology

Based on a review of the geologic maps of El Monte and Baldwin Park quadrangles the subject site is underlain by Quaternary alluvial gravel and sand (Dibblee, 1999). Geologic units encountered during our reconnaissance and subsurface exploration of the project site included relatively thin fill soils that mantle alluvium. The alluvium was encountered to the maximum explored depth of 31.5 feet. Additional descriptions are provided on the boring log in Appendix B. A geologic map of the region is presented on Figure 3. Generalized descriptions of the encountered units are provided in the subsequent sections.

6.2.1. Fill

Fill materials were encountered in our boring LP-101 extending from the ground surface to a depth of approximately 1 foot. As observed, the fill materials generally consisted of dark brown, moist, medium dense, silty sand. Scattered roots and grass were encountered in the fill materials.

6.2.2. Native Alluvium

Native alluvium was encountered in our boring LP-101 underlying the fill materials and was observed to extend to the total depth explored of 31.5 feet below existing grade. As observed during our subsurface exploration, the alluvial materials generally consisted of brown to yellowish brown, damp to moist, stiff to very stiff silts and lean clays, and dark yellowish brown to olive brown, medium dense, silty and clayey sands and poorly graded sands. The previous exploration by Ninyo and Moore (2015) encountered the same material types within the alluvium, and it also encountered them in a very stratified manner throughout the explored depth of 101.5 feet.

6.3. Groundwater

Groundwater was not encountered neither in the Ninyo and Moore's exploration (2015) to a depth of 101.5 feet nor in the Tetra Tech exploratory boring to a depth of 31.5 feet. According to the State of California Seismic Hazard Zone Report for the Baldwin Park 7.5-minute Quadrangle (CDMG, 1998), the historic high groundwater level near the site has been mapped at a depth of about 18 feet (Figure 4 – Historic High Groundwater Map). However, it is recognized that the CDMG groundwater contours are based on early last century water well logs (Mendenhall, 1905, Conkling, 1927) and also include water measurements from wells from the Central Basin Investigation (State Water Resources Board, 1952), Department of Water Resources (circa 1940's) which reflect conditions prior to massive infrastructure and urban development that has taken place in the last 50 years which modified the drainage and infiltration patterns and therefore they may not correspond or apply to current conditions and circumstances.

Well data from the Los Angeles County Department of Public Works (LACDPW) database (http://dpw.lacounty.gov/general/wells/) and from the database from Geotracker (http://geotracker.waterboards.ca.gov/map/) for nearby wells indicate groundwater depths as summarized in Table 4.

Groundwater Wens in the Vicinity of the Site							
Well Identification	Monitoring Period	Approximate location relative to the site	Shallowest groundwater depth				
LACDPW Well ID 3048E State # 2S10W08G02	March 1971 to October 2017	0.97 miles to the southwest	10.7 feet on March 1986				
LACDPW Well ID 3026E State # 1S10W31P06	November 1979 to May 2011	1.33 miles to the northwest	43 feet on November 1983				
LACDPW Well ID 3036 State # 1S10W31P06	March 1928 to September 2009	1.33 miles to the northwest	4.2 feet on May 1942 and 46 on March 1969 (within the last 50 years)				
Geotracker well cluster T0603791308, MW-1 though MW-3	November 2001	0.31 miles to the south	13.2 feet on November 2001				
Geotracker well cluster T0603704226, B-8 though B-23	January 2006 to April 2009	0.4 miles to the southwest	12.9 feet on November 2001				

 Table 4

 Groundwater Wells in the Vicinity of the Site

Based on the assessment of the local stratigraphy and local topography, it is our opinion that the LACDPW and the Geotracker wells can be utilized for interpretation of the project groundwater conditions. Considering also the current soil exploration, it is our conclusion that the groundwater at the site has been deeper than about 11 feet within the last 50 years.

Based on the research and observed conditions, groundwater is not expected to impact the design or the construction of the proposed development if infiltration takes place near the ground surface. The historic high groundwater of 18 feet can be used for the design. It is noted that the County

guidelines establish that a minimum distance of 10 feet must be kept between the proposed invert of the infiltration BMP and the groundwater, so facilities with an invert depth of up to 8 feet could be considered in principle. Fluctuations of the groundwater level, localized zones of perched water, and increased soil moisture content should be anticipated during and following the rainy season. Irrigation of landscaped areas on or adjacent to the site can also cause a fluctuation of local groundwater levels. Evaluation of such factors is beyond the scope of our services.

7. FIELD INFILTRATION TESTING

Tetra Tech performed 2 DRI tests denoted DRI-102 and DRI-103 located in the park area using the test procedure described in the LACDPW GS200.2 guidelines (2017) and in general accordance with ASTM D3385. Both, DRI-102 and DRI-103, were installed to a depth of about 1 foot. At both locations the ground surface was prepared by trimming loose soil to expose undisturbed alluvium and create a generally flat and level surface. The double ring assembly consisted of concentrically arranged 12- and 24-inch diameter rings (inner and outer rings, respectively). The assembly was placed on the prepared surface and the rings embedded approximately 4 to 6 inches into the ground. The approximate coordinates of the 2 DRI tests, the test depth and elevations are included in Table 1.

The DRI locations were presoaked for at least 2 hours before the test. For the DRI testing a constant water level of about 6 inches was maintained above the bottom of the test. Mariotte tubes with a 3- and 10-liter capacity were used to maintain a constant water level in both the inner and outer rings, respectively. The readings to determine the flow rate were taken every 30 minutes until a stabilized drop rate was obtained (per GS 200.2 a stabilized rate is obtained when the highest and lowest readings are within 10 percent from each other for 3 consecutive readings), however testing was not completed until a 4-hour minimum testing period was completed. Immediately following testing and removal of the ring assembly, a vertical trench was excavated at each test location along a mid-line through both rings. Soil samples were recovered from the surface down to a depth of 1.1 feet at vertical intervals of 0.3 feet. Recovered samples were sealed in plastic bags and transported to the laboratory for moisture determinations. Logs of DRI testing are included in Appendix D. After conclusion of the DRI testing, the pits were backfilled with tamped soil cuttings.

The field vertical hydraulic conductivity expressed in inches per hour was adjusted as explained below and on the percolation logs. A testing method reduction factor RF_t of 2 was applied as required by the guidelines to account for the direction of flow during the test and the reliability of the method. To account for effects related to site subsurface variability and the limited number of tests, a reduction factor RF_v of 2 was used (typical range between 1 and 3) reflecting that although the tests were relatively consistent, some degree of variation in stratigraphy was observed throughout the site. Lastly, to account for long-term siltation, and plugging, a reduction factor RF_s of 2 was considered (typical range between 1 and 3). The results of the DRI testing and calculation of the adjusted hydraulic conductivity are summarized in Table 2.

The DRI results from this exploration indicate that the adjusted hydraulic conductivity ranges between 0.0026 and 0.0004 inches/hour. These hydraulic conductivities are much smaller than the minimum infiltration rate of 0.3 inches/hour required by the LACDPW guidelines and corresponds to soils with very poor permeability and very poor drainage characteristics. These rates are also consistent with the soil descriptions for the surficial soils at the site (up to a depth of 80 inches) obtained from the **USDA** web soil survey (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx) which indicate the presence of silty loam and clay loam belonging to Hydrologic Group C with water transmission through the soil being somewhat restricted. The soil boring from this exploration indicates that the subsurface

materials to the maximum explored depth of 31.5 feet consists of interspersed layers of clayey sands, silts, clays, and sandy clays.

Table 2Adjusted Hydraulic Conductivities							
Boring Percolation Test No.	DRI Test Depth (ft)	Adjusted Hydraulic Conductivity (inches/hour)					
DRI-102	1	0.026					
DRI-103	1	0.0004					

The Ninyo and Moore (2015) soil exploration also indicates that the subsurface materials consist of interspersed layers of silts, silty and clayey sands, and clays. The adjusted hydraulic conductivities indicate that effective infiltration is not feasible at this site. Furthermore, the boring logs also indicate that the subsurface materials would likely not be suitable for the installation of underground infiltration galleries or dry wells.

8. ESTIMATED SATURATED HYDRAULIC CONDUCTIVITY

In order to further estimate the magnitude of the hydraulic conductivity of the coarser-grained materials below the invert of the proposed infiltration facilities, the following analyses were performed. It should be noted that the estimates given with empirical formulas should be viewed as "order-of magnitude" estimates and field data should always be considered more reliable. An estimate of the saturated soil field hydraulic conductivity for a soil samples taken at about 5 feet below the planned invert depth was made from the grain size distributions using the approximation based on Chapuis (2004) formula:

$$K_{sat} = 2.4622 \left[D_{10}^2 \frac{e^3}{(1+e)} \right]^{0.7825}$$

where:

Ksat	is the saturated hydraulic conductivity in cm/s
D_{10}	is the grain size in mm for which 10% of the sample is finer
е	is the void ratio

Although this formula is applicable to coarse-grained soils, it was here used to compute the permeability of a soil with a high percentage of fines (49%), so the results may not be reliable. This sample was selected because it would yield the best scenario possible in terms of infiltration. To compare the hydraulic conductivity estimated above with the hydraulic conductivity from the DRI testing described in the previous section, the saturated hydraulic conductivities calculated using the equation above were further adjusted using the same reduction factors as for the calculation of the adjusted hydraulic conductivities, i.e., a reduction factor for testing method RFt of 2, a site subsurface variability factor RFv of 2, and a long-term siltation factor RFs of 2. The resulting infiltration-equivalent computed hydraulic conductivities are shown on Table 3.

Table 3Computed Hydraulic Conductivities from Grain Size Distributions

Boring and Sample No.	USCS Classification	Sample Depth (ft)	Applicable Depth Interval (ft)	Infiltration-Equivalent Computed Hydraulic Conductivity (inches/hour)
LP-101 SPT-3	SC	7.5-9	7.5-10	0.0002

The computed hydraulic conductivity using Chapuis formula matches well the DRI measured and adjusted hydraulic conductivities.

9. ENGINEERING SEISMOLOGY AND GEOLOGIC HAZARDS

9.1. General Seismic Setting

The Southern California region is known to be seismically active. Earthquakes occurring within approximately 60 miles of the site are generally capable of generating ground shaking of engineering significance to the proposed construction. The project area is located in the general proximity of several active and potentially active faults, as shown on Figure 5 – Regional Faults and Seismicity Map. Active faults are defined as those that have experienced surface displacement within the Holocene period (approximately the last 11,000 years).

Known faults within approximately 13 miles of the project site include:

- the Walnut Creek fault located approximately within the northwest corner of the site (approximately 0.1 miles northwest of the proposed site of the BMP);
- the San Jose fault approximately 3.8 miles east of the site;
- the Whittier zone approximately 3.9 miles southwest of the site;
- the Indian Hill fault approximately 5.4 miles northeast of the site;
- the East Montebello fault approximately 7.1 miles west of the site;
- the Sierra Madre fault zone located approximately 7.4 miles to the north of the site;
- the Raymond fault located approximately 9.6 miles northwest of the site;
- the Clamshell-Sawpit fault approximately 10.4 miles north of the site; and
- the Chino/Central Avenue fault approximately 12.5 miles east east of the site.

The San Andreas Fault is located about 28 miles to the northeast of the site.

Table 5 lists selected principal known active faults that may affect the subject site and the maximum moment magnitude (M_{max}) as published by Cao et al. (2003) for the California Geological Survey (CGS). The approximate distance to the site were calculated from Jennings (2010).

Superimposed on the area map in Figure 5 are earthquake epicenters recorded by the USGS between 1900 to present day. A large amount of seismic activity and associated events with their epicenters have been recorded surrounding the project site. Notable historic earthquakes in Southern California of significance to the project are listed in Table 6.

TE TETRA TECH

Fault Name	Main Active Faults Approximate Fault Distance to Site ¹ (miles)	Maximum Moment Magnitude ² (Mmax)
San Jose	3.8	6.4
Whittier	3.9	6.8
East Montebello	7.1	7.2
Sierra Madre	7.4	7.2
Puente Hills Blind Thrust	7.8	7.1
Raymond	9.6	6.5
Clamshell-Sawpit	10.4	6.5
Chino/Central Avenue	12.5	6.7
Hollywood	14.7	6.4
San Gabriel	15.1	7.2
Los Alamitos	16.3	6.2
Verdugo	17.5	6.9
Cucamonga	17.8	6.9
Newport-Inglewood	19.8	7.1
Palos Verdes	25.9	7.3
Santa Monica	26.8	6.6
Malibu Coast	40.1	6.7

Forth quality Marrie	Ver	Foult and Foult Trees	Earthquake	Epicenter		
Earthquake Name	Year	Fault and Fault Type	Magnitude*	Latitude	Longitude	
Chino Hills	2008	Whittier fault (left-lateral thrust)	5.5 M _w	33.95°N	117.76°W	
Northridge	1994	Northridge Thrust (blind thrust)	6.7 M _w	34.21°N	118.54°W	
Sierra Madre	1991	Clamshell-Sawpit Canyon fault (reverse)	$5.8 \ M_L$	34.20°N	118.14°W	
Upland	1990	San Jose fault (left-lateral strike-slip)	$5.4 \ M_L$	34.13°N	117.70°W	
Pasadena	1988	Raymond fault (left-lateral strike-slip)	$5.0 \ M_w$	34.14°N	118.13°W	
Whittier Narrows	1987	Puente Hills Fault (blind thrust)	5.9 M _L	34.06°N	118.08°W	
San Fernando	1971	San Fernando fault (thrust)	6.5-6.7 M _w	34.42°N	118.37°W	
Lytle Creek	1970	Lytle Creek fault (right-reverse)	$5.2 \ M_L$	34.27°N	117.54°W	
Torrance-Gardena	1941	Palos Verdes fault (right-reverse)	$4.8 \ M_L$	33.82°N	118.22°W	
Long Beach	1933	Newport-Inglewood fault (right-lateral strike-slip)	6.4 M _w	33.63°N	118.00°W	
San Jacinto	1923	San Jacinto fault (right-lateral strike-slip)	6.3 M _L	34.00°N	117.24°W	
San Jacinto	1918	San Jacinto fault (right-lateral strike-slip)	6.7 M _w	33.65°N	117.43°W	
Elsinore	1910	Elsinore fault (right-lateral strike-slip)	6 M _L	33.75°N	117.45°W	
Fort Tejon	1857	San Andreas fault (right-lateral strike-slip)	7.9 M _w	35.43°N	120.19°W	

Table 6 Historic Earthquakes in Southern California

Potential seismic sources of significance to the project include active faults previously described and faults that are not known to break the ground surface but are considered active. This latter group of faults includes buried or "blind" thrust faults. Current tectonic models for the Los Angeles basin include the presence of buried thrust faults, several of which are considered partly responsible for the north-to-south compression of the basin. Although these faults are not currently zoned by the State of California for surface rupture hazards (Earthquake Fault Zones), many are considered capable of generating seismic shaking of significance to structures.

Of these buried active faults the closest to the site is the Puente Hills Trust Fault (PHTF). The PHTF is currently defined as 3 separate but juxtaposed, generally east-west trending and northdipping, fault surfaces underlying Downtown Los Angeles to Brea. From west to east these include the Los Angeles, Santa Fe Springs, and Coyote Hills segments. Based upon recent studies

by several researchers, including Shaw et al., (2002), Olsen and Cooke (2005), and Leon et al. (2007), the three fault surfaces are interpreted to extend from depths in excess of 9 miles on the north side of the Los Angeles Basin to less than 1.2 miles at the southerly limits of the fault surfaces in the central portion of the basin. Fault surface geometries are interpreted from historical petroleum exploration data, limited geotechnical subsurface exploration data, and limited seismicity (i.e.; the 1987 magnitude 5.9 Whittier Narrows earthquake).

Leon et al. (2007) estimates that upwards of 60 percent of the total Los Angeles Basin compression may be attributed to strain along the PHTF. Although ground rupture has not been officially attributed to the fault, the presence of youthful hills (e.g., Coyote Hills) and shallow folding at depth in the upper portion of the interpreted thrust ramp suggests recent activity. The PHTF is considered capable of generating earthquake magnitudes up to about M_w 7.0.

9.2. Surface Fault Rupture

Official Maps of Earthquake Fault Zones were reviewed to evaluate the location of the project site relative to active fault zones. Earthquake Fault Zones (known as Special Studies Zones prior to 1994) have been established in accordance with the Alquist-Priolo Special Studies Zones Act enacted in 1972. The Act directs the State Geologist to delineate the regulatory zones that encompass surface traces of active faults that have a potential for future surface fault rupture. The purpose of the Alquist-Priolo Act is to regulate development near active faults in order to mitigate the hazard of surface fault rupture.

The site is <u>not located</u> within a designated Earthquake Fault Zone for fault surface rupture hazard. Based on a review of State of California Earthquake Fault Zone maps, the closest zoned fault for surface rupture is the Elsinore Fault Zone, Whittier section located approximately 4 miles southwest of the site and is mapped within the La Habra Quadrangle (1999).

No surface traces of any active or potentially active faults are known to pass directly through or project towards the site. Neither our field exploration nor literature review disclosed an active fault trace projecting to the ground surface in the project area. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design life of the proposed development is considered low.

9.3. Seismic Hazard Zones

Maps of seismic hazard zones are issued by the California Geological Survey (CGS, formerly California Department of Conservation, Division of Mines and Geology (CDMG)) in accordance with the Seismic Hazards Mapping Act enacted in April 1997. The intent of the Seismic Hazards Mapping Act is to provide for a statewide seismic hazard mapping and technical advisory program to assist cities and counties in developing compliance requirements to protect the public health and safety from the effects of strong ground shaking, liquefaction, landslides, or other ground failure and other seismic hazards caused by earthquakes.

Based on the review of the Baldwin Park Quadrangle Official Map of Seismic Hazard Zones issued March 25, 1999 (see Figure 6), the proposed development <u>is not located</u> within an area identified

by the State of California as subject to the hazard of liquefaction. However, as of 2013 CBC the seismic demand for assessment of liquefaction has increased from an earthquake event with 10% probability of exceedance in 50 years to a Maximum Considered Earthquake generally taken as geometric mean near ground motion for an earthquake probability of exceedance of about 2% in 50 years. Therefore, further analysis are needed even when a site is not located within a designated seismic hazard zone for liquefaction. Consequently, presented below is an associated site-specific assessment.

9.4. Liquefaction Potential, Dynamic Settlement, and Cyclic Softening

Liquefaction of soils can be caused by ground shaking during earthquakes. Research and historical data indicate that loose, relatively clean granular soils and low plasticity silts are susceptible to liquefaction and dynamic settlement, whereas the stability of the majority of clayey silts, silty clays and clays are not typically adversely affected by ground shaking. Liquefaction is generally known to occur in saturated or near-saturated cohesionless soils at depths shallower than about 50 feet. However, cyclic mobility and seismically induced strength softening with effects similar to liquefaction can occur also in fine-grained soils. Since the historic high groundwater level near the site has been mapped at a depth of about 10 feet, a more rigorous liquefaction hazard analysis per 2016 CBC is included in the following sections.

9.4.1. Soil Description

Evaluation of liquefaction potential for the on-site materials was performed based on soil stratigraphy encountered in the field explorations. The encountered soil materials generally consisted of alluvial deposits made up of interspersed layers of very stiff sandy silt and lean clay, medium dense clayey sand, and medium dense silty sand.

Materials that are above the groundwater table are not considered susceptible to liquefaction. Thus, the focus of this investigation was aimed at evaluating the liquefaction potential of soils encountered at a depth between 10 and 50 feet. Fine-grained soils can also undergo severe strength loss during ground shaking, and thus an evaluation of their sensitivity was also performed.

9.4.2. Groundwater Level for Liquefaction Analysis

Groundwater was not encountered during the field explorations. According to the State of California Seismic Hazard Zone Report for the Baldwin Park 7.5-minute Quadrangle (CDMG, 1998), the historic high groundwater level near the site has been mapped at a depth of about 18 feet. Therefore, although not considered as a design groundwater level for the project, for the purposes of liquefaction evaluation and consistent with SPT 117 (CDCDMG, 2008) a groundwater depth of 18 feet was assumed for evaluation of liquefaction potential at the site.

9.4.3. Liquefaction Seismic Demand

Based on the USGS U.S. Seismic Design Maps website application (<u>http://earthquake.usgs.gov/designmaps/us/application.php</u>), for the subject site at coordinates 34.02792°N, -117.952265°W, the mapped geometric mean Peak ground acceleration (PGA_M) was

estimated to be approximately 0.78g for a site class D (assumed $v_s = 260$ m/s), for a ground motion corresponding to the Maximum Considered Earthquake (MCE). From the Seismic Hazard Interactive Deaggregation website (<u>https://earthquake.usgs.gov/hazards/interactive/</u>) and using the 2008 Dynamic Conterminous U.S. v3.3.1 edition, the ground motion for a return period of 2,475 years (2% in 50 years) corresponds approximately to a modal earthquake magnitude of M_w 6.9 located at a distance of approximately 7.4 km (4.6 miles). These ground motion parameters provided above were used in the liquefaction analyses.

9.4.4. Evaluation of Liquefaction Potential and Sensitivity Analyses

The liquefaction potential of cohesionless (sandy) soils was evaluated based on the SPT blowcounts and laboratory test results utilizing procedure published by Boulanger and Idriss (2014) and generally as recommended in the County of Los Angeles Administrative Manual, Liquefaction/Lateral Spreading/GS045.0 dated October 6, 2014. Cohesive soils with a Plasticity Index less than 7 were considered to behave as cohesionless materials and therefore be susceptible to liquefaction.

The analyses based on standard penetration test (SPT) considered the energy ratio correction factor C_E of 1.3. This ratio is based on a calibrated average hammer efficiency of approximately 80 percent as supplied by the drilling contractor. The blowcounts recorded for soils driven with the 3-inch O.D. California Sampler with brass rings were converted to an equivalent SPT blowcounts using a reduction factor of 0.66. Borehole diameter correction factor C_B of 1 based on the internal diameter of the hollow stem auger system used for the drilling was utilized in the liquefaction evaluation.

Results of liquefaction analyses of granular soils are summarized in Table 7 in the next section of this report and the analysis details are presented in Appendix E. The analyses based on SPT and Modified California data indicated that the majority of the on-site granular soils are not susceptible to liquefaction.

Seismic sensitivity of fine-grained soils (clays and silts) was further evaluated per County of Los Angeles Administrative Manual GS045.0 with modifications proposed by Idriss and Boulanger (2008) and the fine-grained soils were classified in the following 3 categories:

- 1. Soils with Plasticity Index < 7 and below groundwater are classified as fine-grained soils susceptible to liquefaction (typically includes silts);
- 2. Soils with Plasticity Index > 18 and a degree of sensitivity $S_t > 6$ are classified as finegrained soils potentially susceptible to significant loss of strength during seismic shaking and require additional evaluation. The sensitivity of the on-site fine-grained soils is evaluated based on the water content, Atterberg limits, and effective vertical stresses using the procedures suggested by Holtz and Kovacs (1981) and Terzaghi, Peck and Mesri (1996).
- 3. Fine-grained soils falling outside the two categories above are considered to behave like clays, and are not considered susceptible to liquefaction or seismic sensitivity.

The results from the sensitivity analyses indicated that the fine-grained materials at the site below groundwater are not considered susceptible to liquefaction or seismic sensitivity (see Appendix E).

9.4.5. Dynamic Settlement

Dynamic settlement can occur in saturated sands due to liquefaction or in dry sands due to densification of the soil matrix. The anticipated dynamic settlement of the saturated soils at the site was estimated using SPT data from the current exploration using procedures outlined by Yoshimine et al (2006). The estimated settlements by Yoshimine et al (2006) were further adjusted by a calibration factor of 0.9 recommended by Cetin (2009) to better match observed settlements. The potential for dry dynamic settlement using SPT data was calculated according to the procedure outlined in Pradel (1998a and 1998b).

Table 7 presents the results of the liquefaction analyses and it includes liquefaction settlement of saturated sands and the seismically-induced settlement of unsaturated materials above the groundwater table. As shown in Table 7, the combined dynamic settlement at the ground surface estimated from the SPT data is about 0.6 inches. It is noted that although the magnitude of the estimated dynamic settlements corresponds to a mean estimated settlement and can vary on the order of +/- 50 percent, the standard of practice uses the mean estimated values in developing guidelines and evaluating potential damage to structures. Differential settlements per GS045.0 are assumed to be about half of the total settlements i.e., about 0.3 inches over a span of 30 feet. Therefore, structural mitigation is acceptable at this site, and the Structural Engineer should account for this differential settlement in the design of the foundation and the structure.

Boring No.	Assumed Groundwater Depth (feet)	Liquefiable Zone Depth Interval (feet)	FSiiq	Liquefaction Settlement (inches) ¹	Settlement of Dry Sands (inches) ¹	Combined Dynamic Settlement (inches) ¹		
LP-101 Tetra Tech		25-27.5	0.5	0.5	0.1	0.6		
B-10 Ninyo and Moore	18	33-36	1	0.2	0.3	0.5		
¹ Estimated settlements are mean values which can vary within +/-50 percent.								

 Table 7

 Results of Liquefaction and Dry Dynamic Settlement Analyses

9.5. Earthquake-Induced Landslides

The site <u>is not located</u> in an Earthquake-Induced Landslide Hazard Zone on the State of California Seismic Hazard Zones Map (see Figure 6). No evidence of landsliding was observed on or in the immediate vicinity of the site. Therefore an occurrence of an earthquake-induced landslide is not considered to be a hazard to the site.

9.6. Subsidence

Land subsidence is the lowering of the ground surface due to extraction or lowering of water levels or other fluids within the subsurface soil pores, or due to seismic activity. The fluid withdrawal causes the alluvial sediments in the basin to compact. Damage caused by subsidence can be visible cracks, fissures, or surface depression.

The site is not located in mapped by the USGS an area (https://ca.water.usgs.gov/land_subsidence/california-subsidence-areas.html) where either historical or current subsidence has been recorded. Therefore, subsidence is not considered a hazard for this site.

10. PRELIMINARY DESIGN CONSIDERATIONS

10.1. General

Based on the results of the field exploration and engineering analyses, it is Tetra Tech's opinion that the proposed construction of the infiltration BMP is not feasible from the geotechnical standpoint given the low hydraulic conductivity properties of the subsurface materials.

If a capture/storage facility is considered viable, then it is expected that conventional foundation and construction methods will be suitable for the proposed improvements.

Laboratory tests indicate that the on-site soils are not considered to be susceptible to collapse (less than 1 percent volume change per ASTM D4546 at 1,200 psf) as assessed by Jennings and Knight (1975). Consequently, infiltration is not likely to trigger detrimental collapse or swelling of the underlying soils.

Observations and laboratory tests indicate that the on-site soils have negligible levels of watersoluble sulfates, therefore, the soils are not expected to cause injurious sulfate attack on concrete with a minimum 28-day compressive strength of 2,500 psi.

Once the preferred BMP type for the site is selected, as well as the final location and depth, then more specific geotechnical recommendations for the project design phase should be developed. The key geotechnical design items that will need to be addressed:

- Site Preparation;
- Excavation and shoring design;
- Foundation design of at-grade and subterranean structures;
- Lateral earth pressures on underground structures;
- Conveyance pipelines; and
- Grading recommendations.

For the preliminary design, presented below are the updated seismic design parameters and assessment of the corrosion potential of the onsite soils.

10.2. Seismic Design Parameters

The seismic design coefficients provided below in Table 8 are based on Chapter 16 of the 2016 CBC and on the information provided by the USGS website (https://earthquake.usgs.gov/designmaps/us/application.php?).

Table 8 Site Categorization and 2016 CBC Site Coefficients

Site coordinates 34.02792° N, -117.952265° W

Parameter	Design Value						
Site Class (Table 20.3-1 ASCE 7)	D^*						
Short Period Spectral Acceleration Parameter S _s	2.137**						
1-sec. Period Spectral Acceleration Parameter S ₁	0.755**						
Short Period Design Spectral Acceleration Parameter S _{DS}	1.425**						
1-sec. Period Design Spectral Acceleration Parameter S _{D1}	0.755**						
 Soil profile based on estimated v_{s30} of 260 m/s ** Values from USGS Earthquake Hazards Program website based on the ASCE7-10 with March 2013 errata and 2015 International Building Code. 							

10.3. Soil Corrosion

The corrosion potential of the on-site materials to buried steel and concrete was evaluated based on laboratory testing on a representative soil sample from this investigation and a sample from Ninyo and Moore's investigation (2015). Table 9 below presents the results of the corrosivity testing.

Boring	Sample ID	Depth (feet)	рН	Minimum Resistivity (ohm-cm)	Chlorides (ppm/%)	Soluble Sulfate Content in Soil (ppm/%)	Nitrate (mg/kg)	Sulfide (mg/kg)	Ammonia (mg/kg)	Redox (mV)
LP-101 Tetra Tech	SPT-1	2.5-4	7.9	1,340	36/0.0036	90/0.0090 Category S0 per 2016 CBC	21	ND	ND	220
B-10 Ninyo and Moore	N/A	0-3	7.0	640	490/0.049	100/0.010 Category S0 per 2016 CBC	Not measured			

Table 9Corrosivity Test Results

Per 2016 CBC/ 2015 IBC, Section 1904.1, concrete subject to exposure to sulfates shall comply with the requirements set forth in ACI 318, Section 19.3. Based on the measured water soluble sulfate results the exposure of buried concrete to sulfate attack should be considered "not applicable", i.e., exposure class S0 per ACI 318, Table 19.3.1.1. Consequently, injurious sulfate attack is not anticipated for concrete with a minimum 28-day compressive strength of 2,500 psi.

Per 2016 CBC, Section 1904.1, concrete shall conform to durability requirements established in ACI 318 Sections 19.3.2 and 26.4 including protection for corrosion and exposure to chlorides. Reinforcement should be protected from corrosion in accordance with ACI 318 Section 20.6.

The evaluation of potential for corrosion of buried metals was based on the minimum resistivity and our experience with similar soils. The on-site soils are anticipated to be "moderately corrosive" to "corrosive" to buried metals as defined by the NACE (1984).

A corrosion specialist should be consulted regarding suitable types of piping and necessary protection for underground metal conduits. The corrosion potential of the on-site soils should be verified during construction for each encountered soil type. Imported fill materials should be tested prior to placement to confirm that their corrosion potential is not more severe than the one assumed for the project.

11. LIMITATIONS

This report presents preliminary design considerations for the proposed infiltration BMP at La Puente City Park. It is not intended to be the geotechnical document suitable for final design of the proposed development as the extent and scope of the performed field and laboratory testing and engineering analyses was not developed for the anticipated relatively complex specific configuration of the proposed development. Consequently, additional field and laboratory investigation and engineering analyses will be required once the scope and configuration of the project are determined.

The recommendations and opinions expressed in this report are based on Tetra Tech's review of background documents and on information obtained from the current geotechnical investigation. It should be noted that this study did not evaluate the possible presence of hazardous materials on any portion of the site.

Due to the limited nature of the field explorations, conditions not observed and described in this report may be present on the site. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation and laboratory testing can be performed upon request. It should be understood that conditions different from those anticipated in this report may be encountered during grading operations, for example, the extent of unsuitable soil and the associated additional effort required to mitigate them.

Site conditions, including groundwater level, can change with time as a result of natural processes or the activities of man at the subject site or at nearby sites. Changes to the applicable laws, regulations, codes, and standards of practice may occur as a result of government action or the broadening of knowledge. The findings of this document may, therefore, be invalidated over time, in part or in whole, by changes over which Tetra Tech has no control. Therefore, this report should reviewed and recertified if it were to be used for a project design commencing more than 1 year after the date of issuance of this report.

Tetra Tech's recommendations for this site are dependent upon verification of the actual encountered field conditions, appropriate quality control of grading operations including overexcavation, processing, and replacement of the on-site materials, shoring, and foundation construction. Accordingly, the recommendations are made contingent upon the opportunity for Tetra Tech to observe all aspects of subgrade preparation for the proposed construction. If parties other than Tetra Tech are engaged to provide such services, such parties are assuming complete responsibility as the Geotechnical Engineer of Record for the geotechnical phase of the project and implicitly concur with the recommendations provided in this report or may provide alternative recommendations.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Tetra Tech should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. Reliance by others on the data presented herein or for purposes other than those stated in the text is authorized only if so permitted

in writing by Tetra Tech. It should be understood that such an authorization may incur additional expenses and charges.

Tetra Tech has endeavored to perform its evaluation using the degree of care and skill ordinarily exercised under similar circumstances by reputable geotechnical professionals with experience in this area in similar soil conditions. No other warranty, either expressed or implied, is made as to the conclusions and recommendations contained in this report.

12. SELECTED REFERENCES

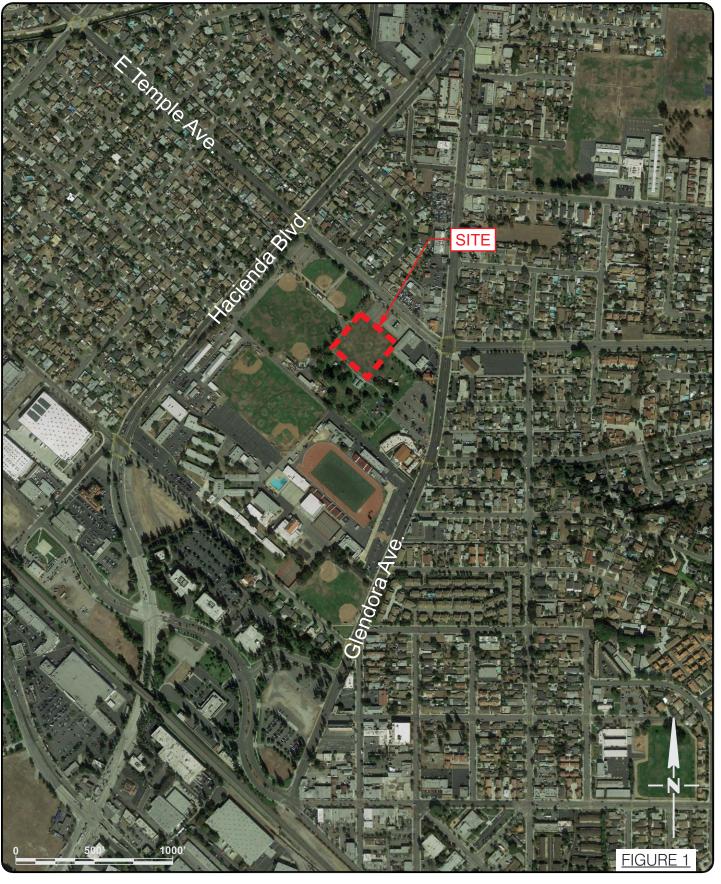
- American Concrete Institute, 2014. 318-14: Building Code Requirements for Structural Concrete and Commentary on Building Code Requirements for Structural Concrete.
- California Building Standards Commission, 2016 California Building Code, California Code of Regulations Title 24, Based on the 2015 International Building Code, July 2016.
- California Department of Conservation, Division of Mines and Geology, 2008, Guidelines for Evaluation and Mitigation of Seismic Hazards in California: Special Publication 117.
- California Department of Conservation, Division of Mines and Geology, 1998, Seismic Hazard Zone Report for the Baldwin Park 7.5-Minute Quadrangle, Los Angeles County, California: Seismic Hazard Zone Report 022.
- California Department of Transportation (CALTRANS), 2011, Trenching and Shoring Manual. County of Los Angeles, Department of Public Works, Geotechnical and Materials Engineering Division, 2009. Review of Geotechnical Reports addressing Liquefaction. GME-3 (February 4).
- California Department of Transportation (CALTRANS), 2012. Corrosion Guidelines, Version 2. November 2012.
- California Geological Survey (CGS), 1999, Seismic Hazard Zones for the Baldwin Park Quadrangle 7.5-Minute Quadrangle, Revised Official Map, Los Angeles County.
- Cao, T., Bryant, W. A., Rowshandel B., Branum D., and Wills C. J., 2003, The Revised 2002 California Probabilistic Seismic Hazard Maps June 2003.
- Dibblee, T.W., and Ehrenspeck, H.E., 1999, Geologic map of the El Monte and Baldwin Park quadrangles, Los Angeles County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-69, scale 1:24,000.
- Dibblee, T.W., and Ehrenspeck, H.E., 2001, Geologic map of the Whittier and La Habra quadrangles (western Puente Hills) Los Angeles and Orange Counties, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-74, scale 1:24,000.
- Dibblee, T.W., and Ehrenspeck, H.E., 2001, Geologic map of the Yorba Linda and Prado Dam quadrangles (eastern Puente Hills), Los Angeles, Orange, San Bernardino and Riverside Counties, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-75, scale 1:24,000.
- Dibblee, T.W., and Minch, J.A., 2002, Geologic map of the Baldwin Park quadrangle, Los Angeles County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-89, scale 1:24,000.

- Ebeling, R., 1993, The Seismic Design of Waterfront Retaining Structures, NCEL Technical Report R-939, January 1993.
- Harden, D.R., 2004, California Geology, Second Edition, Pearson Education Inc.
- Idriss, I.M., and Boulanger, R.W., 2008. Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute.
- Idriss, I.M., and Boulanger, R.W., 2015. "2nd Ishihara Lecture: SPT- and CPT-based relationships for the residual shear strength of liquefied soil." Soil Dynamics and Earthquake Engineering, 68, 57-68, 10.1016/j.soildyn.2014.09.010.

International Code Council, Inc., 2015. International Building Code, May 2014.

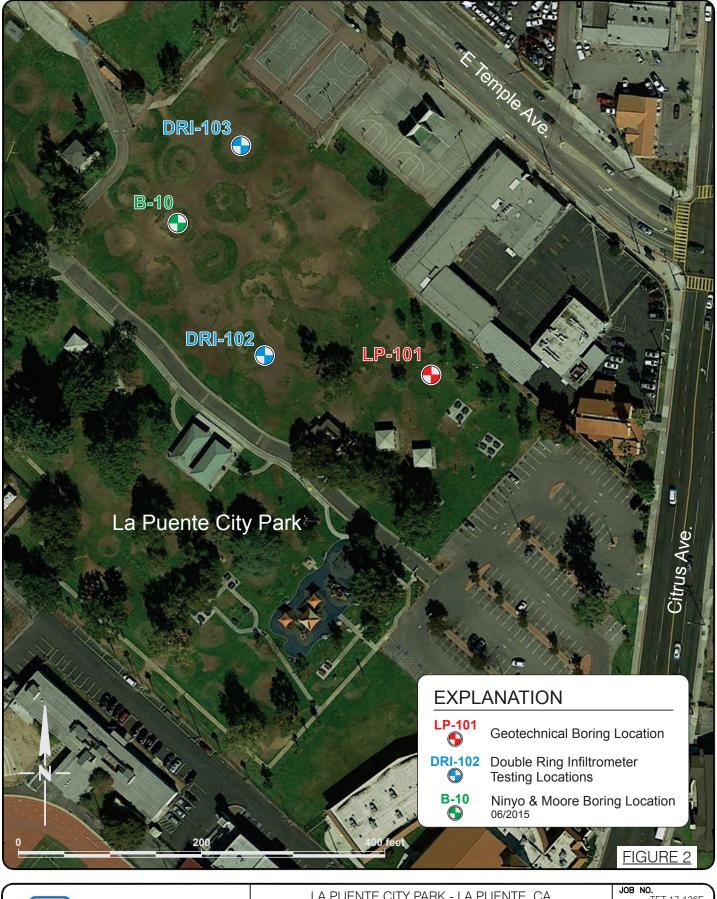
- International Code Council, Inc., 2017. County of Los Angeles Building Code Amendments only.
- Jennings, C. W., and Bryant, W. A., 2010, Fault Activity Map of California, California Geological Survey, Data Map No. 6, Map scale 1:750,000.
- Jennings, J. E., and K. Knight, 1975. A Guide to Construction on or With Material Exhibiting Additional Settlement due to Collapse of Grain Structure," Journal of Soil Mechanics and Foundation Engineering, 6th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Durban, South Africa, pp. 99-105.
- National Association of Corrosion Engineers (NACE), 1984. Corrosion Basics, An Introduction, LS Van Delinder, ed., Houston, TX.
- Naval Facilities Engineering Command (NAVFAC), 1982. Soil Mechanics, Foundations and Earth Structures. Design Manuals 7.01 and 7.02.
- Ninyo & Moore, 2015, Geotechnical Services, La Puente City Park, Upper San Gabriel River EWMP, Los Angeles County, California, Task Order No. T10503269-102669-OM, Project No. 107900001: dated June 3.
- Leon, L. A., Christofferson, S. A., Dolan, J. F., Shaw, J. H., and Pratt, T. L., 2007, Earthquake-byearthquake fold growth above the Puente Hills, blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard, J. Geophys. Res., 112.
- Mahoney W. Editor, 2015. 2015 Greenbook: Standard Specifications for Public Works Construction. BNI Publications.
- Mikola, G. R., and Sitar, N., 2013. "Seismic Earth Pressures on Retaining Structures in Cohesionless Soils." Report submitted to the California Department of Transportation (Caltrans), Report No. UCB GT 13-01, March 2013.

Norris, R. M., and R. W. Webb, 1990, Geology of California, John Wiley & Sons, N.Y.



- Olson, E.L. and Cooke, M.L., 2005, Application of Three Fault Growth Criteria to the Puente Hills Thrust System, Los Angeles, California, USA: Journal of Structural Geology 27(2005)1765-1777.
- Poland and Piper, 1956, Ground-water geology of the coastal zone, Long Beach Santa Ana area, California, USGS, Water-Supply Paper 1109, dated 1956
- Pradel, D., 1998a, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated April, pp. 364-368.
- Pradel, D., 1998b, Erratum to Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated October, p. 1048.
- Shaw, J., Plesch, A., Dolan, J. F., Pratt, T. L., Fiore, P., 2002, Puente Hills Blind-Thrust System, Los Angeles, California, Bulletin of the Seismological Society of America (Seismological Society of America) 92 (8): 2946–2960.
- Southern California Earthquake Center, 1999. Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California, dated March.
- Taciroglu, E., Shamsabadi, A., and Shi-Yu X., 2013. Development of Improved Guidelines for Analysis and Design of Earth Retaining Structures. UCLA-SGEL Report 2013/02. Caltrans Final Report No. CA13-2270. July, 2013.
- Terzaghi, K., Peck R., and Mesri G., (1996), Soil Mechanics in Engineering Practice, Third Edition, Published by Wiley-Interscience, February 7, 1996.
- Youd, T.L., and Idriss, I.M. (eds.), 1998, Summary Report in Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils: National Center for Earthquake Engineering Research Technical Report NCEER-97-0022, pp. 1-40.
- Youd, T.L. and Idriss, I.M., 2001, Liquefaction Resistance of Soils: Summary report of NCEER 1996 and 1998 NCEER/SF Workshops on Evaluation of Liquefaction Resistance of Soils: Journal of Geotechnical and Geoenvironmental Engineering, dated April, 2001.

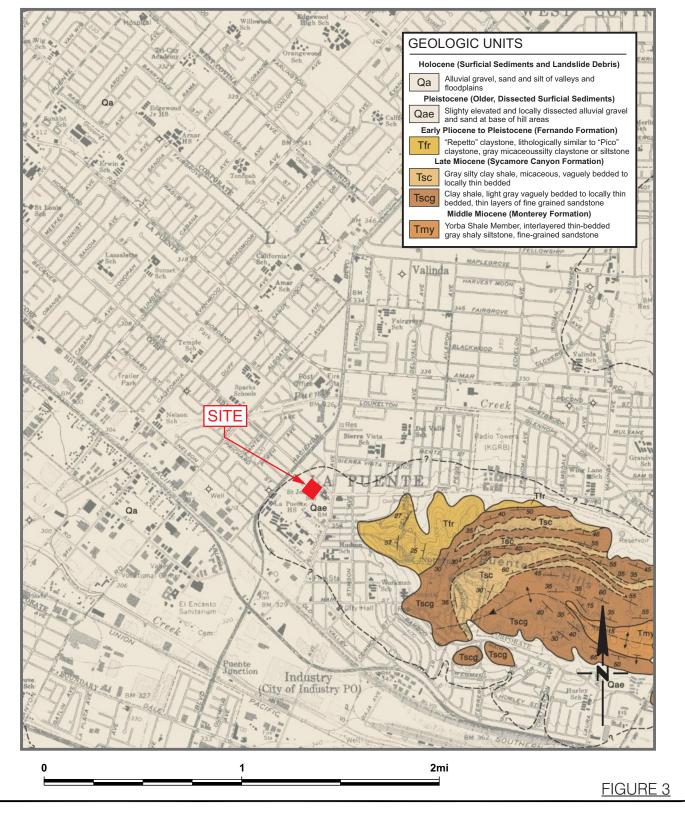
Figures



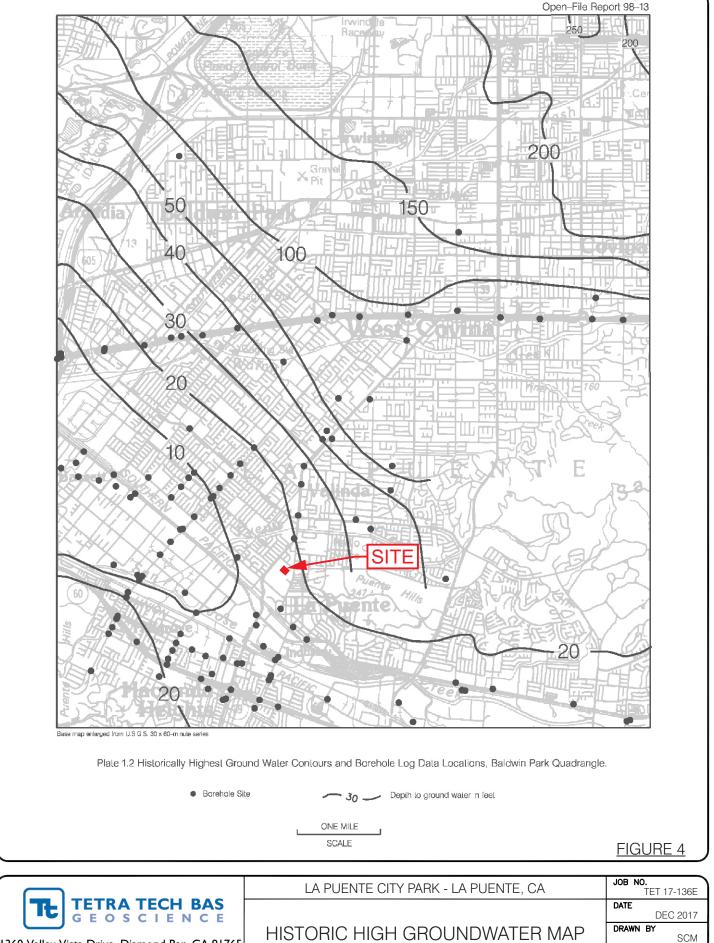
LA PUENTE CITY PARK - LA PUENTE, CA

SITE LOCATION MAP

JOB NO. TET 17-	136E
1 - 1 1 / .	-130L
DATE	
DEC	2017
DRAWN BY	SCM
CHECKED BY	FC 🖌



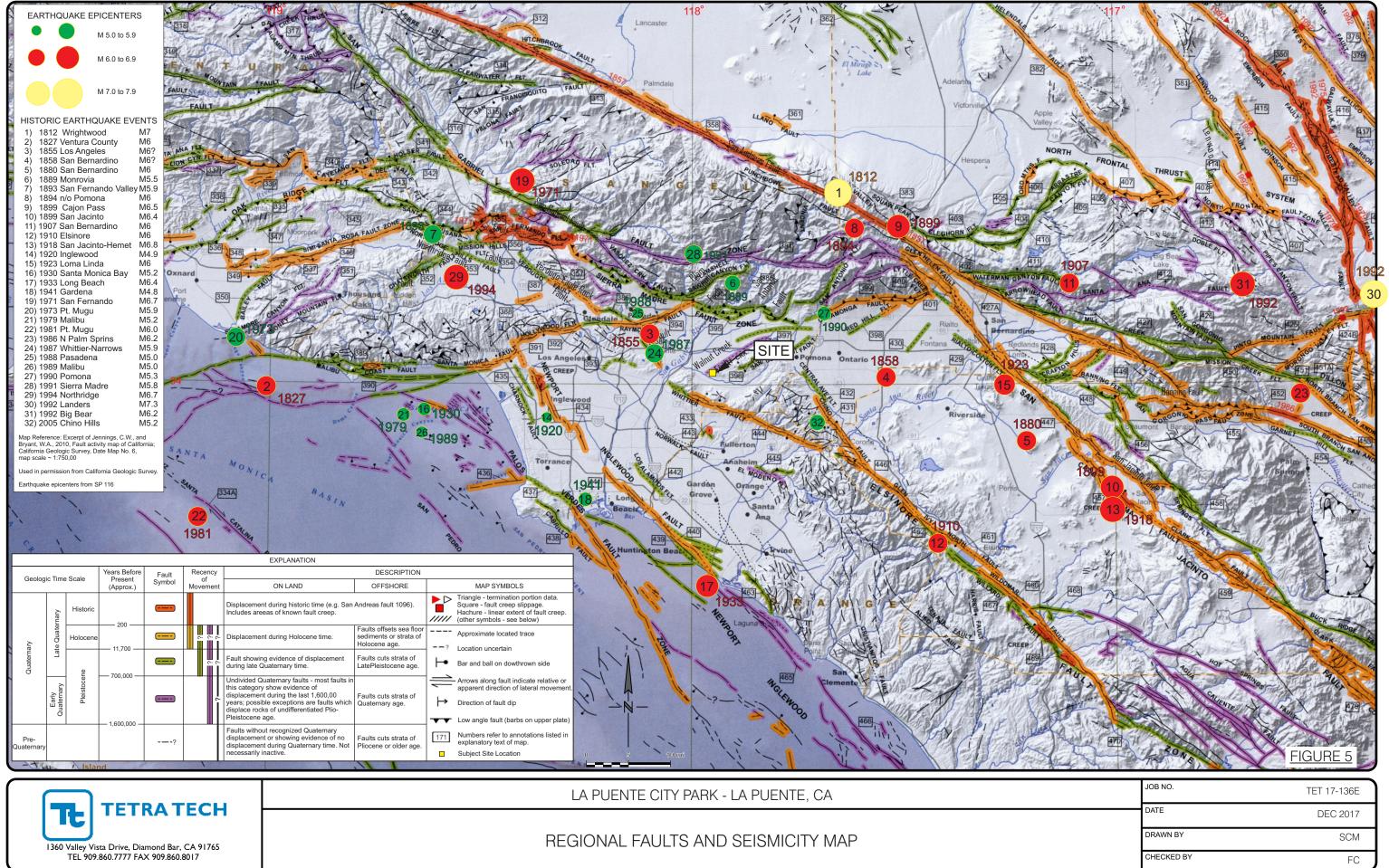
LA PUENTE CITY PARK - LA PUENTE, CA

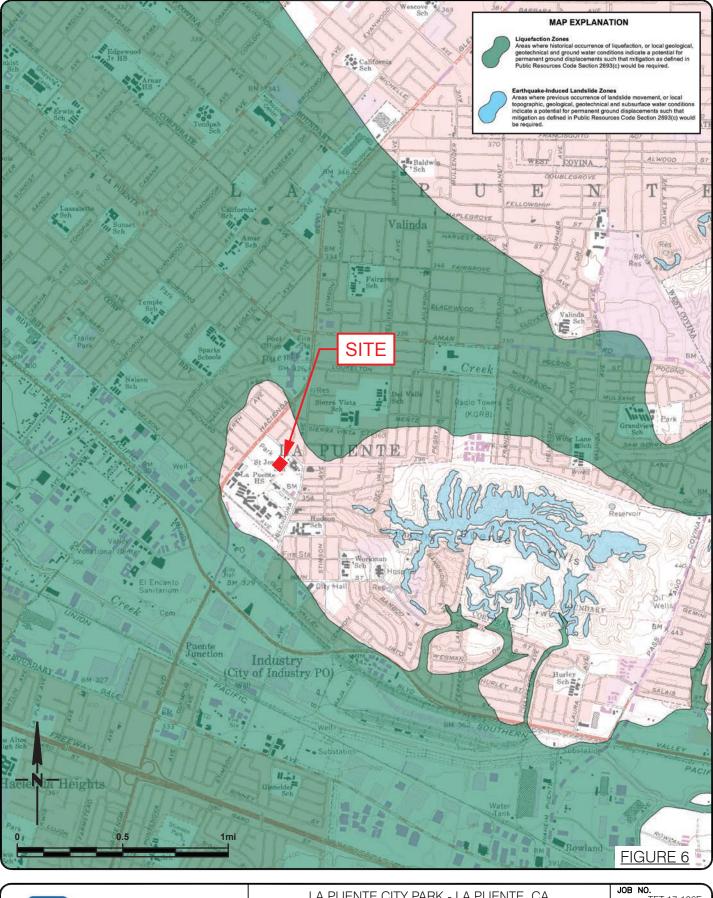

SITE LAYOUT AND BORING LOCATION MAP

	300
I JOB NO	
	TET 17-136E
DATE	
1	
	DEC 2017
DRAWN	BY
	SCM
	SCIVI
CHECKE	DBY
1	FC
	FC A

PORTION OF THE GEOLOGIC MAP OF THE EL MONTE & BALDWIN PARK QUADRANGLES, LOS ANGELES COUNTY, CALIFORNIA By THOMAS W. DIBBLEE, JR., 1999

	LA PUENTE CITY PARK - LA PUENTE, CA	JOB NO. TET 17-136E
TETRA TECH BAS		DATE DEC 2017
1360 Valley Vista Drive, Diamond Bar, CA 91765	GEOLOGIC MAP	DRAWN BY SCM
TEL 909.860.7777 FAX 909.860.8017		CHECKED BY




1360 Valley Vista Drive, Diamond Bar, CA 91765 TEL 909.860.7777 FAX 909.860.8017

HISTORIC HIGH GROUNDWATER MAP

CHECKED BY

FC

Ŧ	TETRA TECH BAS GEOSCIENCE
1360 Valley V	ísta Drive, Diamond Bar, CA 91765
T	EL 909.860.7777 FAX 909.860.8017

LA PUENTE CITY PARK - LA PUENTE, CA

SEISMIC HAZARD ZONES MAP

JOB NO.	
TET 17	7-136E
DATE	
DEC	C 2017
DRAWN BY	
	SCM
CHECKED BY	
	FC 🖌

Appendix A

Logs of Ninyo and Moore's Exploratory Boring

DEPTH (feet) Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET								
0						Bulk sample.								
	XX/XX	Ş				Modified split-barrel drive sampler. 2-inch inner diameter split-barrel drive sampler. No recovery with modified split-barrel drive sampler, or 2-inch inner diameter split-barrel drive sampler. Sample retained by others. Standard Penetration Test (SPT). No recovery with a SPT. Shelby tube sample. Distance pushed in inches/length of sample recovered in inches. No recovery with Shelby tube sampler. Continuous Push Sample. Seepage.								
						Groundwater encountered during drilling. Groundwater measured after drilling.								
		-			SM	MAJOR MATERIAL TYPE (SOIL):								
					0111	Solid line denotes unit change.								
					CL	Dashed line denotes material change. Attitudes: Strike/Dip b: Bedding c: Contact j: Joint f: Fracture F: Fault cs: Clay Seam s: Shear bss: Basal Slide Surface sf: Shear Fracture sz: Shear Zone sbs: Shear Bedding Surface								
						The total depth line is a solid line that is drawn at the bottom of the boring.								
20														
						BORING LOG								
	$\sim / /$	ĺ		&	DNN	BORING LOG Explanation of Boring Log Symbols PROJECT NO. DATE FIGURE								
						PROJECT NO. DATE FIGURE								

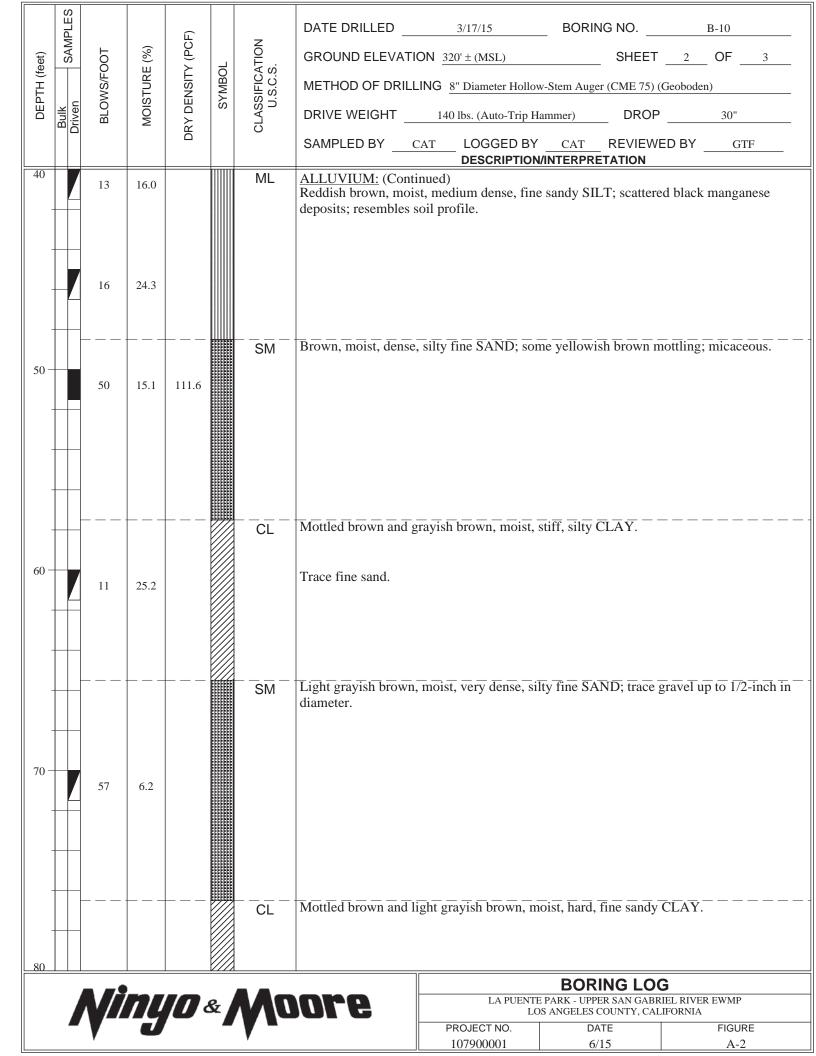
9	SOIL CLAS	SSIFICATION	CH	ART PER AS	STM D 2488			GRAI	N SIZE	
סס				SECON	DARY DIVISIONS	DES		SIEVE	GRAIN	APPROXIMATI
FR		510113		OUP SYMBOL	GROUP NAME			SIZE	SIZE	SIZE
		CLEAN GRAVEL		GW	well-graded GRAVEL	В	oulders	> 12"	> 12"	Larger than basketball-sized
		less than 5% fines		GP	poorly graded GRAVEL					Daskelball-sized
	GRAVEL			GW-GM	well-graded GRAVEL with silt	0	obbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than 50% of	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt					
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay		Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on No. 4 sieve			GP-GC	poorly graded GRAVEL with clay	Grave				Pea-sized to
	110. 4 Sieve	GRAVEL with		GM	silty GRAVEL		Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
COARSE- GRAINED		FINES more than		GC	clayey GRAVEL		Coarse	#10 - #4	0.079 - 0.19"	Rock-salt-sized
SOILS more than		12% fines		GC-GM	silty, clayey GRAVEL		Coarse	#10 - #4	0.079-0.19	pea-sized
50% retained on No. 200 sieve		CLEAN SAND		SW	well-graded SAND	Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
		less than 5% fines		SP	poorly graded SAND					rock-salt-sized
				SW-SM	well-graded SAND with silt		Fine	#200 - #40	0.0029 - 0.017"	Flour-sized to sugar-sized
	SAND 50% or more	SAND with DUAL		SP-SM	poorly graded SAND with silt					
	of coarse fraction passes No. 4 sieve	CLASSIFICATIONS 5% to 12% fines	111	SW-SC	well-graded SAND with clay		Fines	Passing #200	< 0.0029"	Flour-sized and smaller
				SP-SC	poorly graded SAND with clay					
		SAND with FINES		SM	silty SAND			PLASTIC	TY CHART	•
		more than 12% fines		SC	clayey SAND					
		12 /0 111103		SC-SM	silty, clayey SAND		70			
				CL	lean CLAY), %	60			
	SILT and	INORGANIC		ML	SILT	IA) X	50			
	CLAY liquid limit			CL-ML	silty CLAY	ADE)	40		CH or OF	
FINE-	less than 50%	ORGANIC		OL (PI > 4)	organic CLAY	[⊥]	30			
GRAINED SOILS				OL (PI < 4)	organic SILT	STICITY INDEX (PI),	20	CL or 0		MH or OH
50% or more passes		INORGANIC		СН	fat CLAY	PLAS	10			
No. 200 sieve	SILT and CLAY			MH	elastic SILT		7 4 0	ML ML or		
	liquid limit 50% or more	ORGANIC		OH (plots on or above "A"-line)	organic CLAY		0 10	20 30 40	50 60 70	
				OH (plots below "A"-line)	organic SILT			LIQUID	LIMIT (LL), %)
	Highly C	Organic Soils		PT	Peat					

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER				
APPARENT DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)			
Very Loose	≤ 4	≤ 8	≤3	≤ 5			
Loose	5 - 10	9 - 21	4 - 7	6 - 14			
Medium Dense	11 - 30	22 - 63	8 - 20	15 - 42			
Dense	31 - 50	64 - 105	21 - 33	43 - 70			
Very Dense	> 50	> 105	> 33	> 70			

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL


	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

PROJECT NO.

	SAMPLES			(=			DATE DRILLED	3/17/15	BORING NO.	B-10				
eet)	SAM	DOT	(%)	DRY DENSITY (PCF)		CLASSIFICATION U.S.C.S.	GROUND ELEVATI	ON <u>320' ± (MSL)</u>	SHEET	OF3				
DEPTH (feet)		BLOWS/FOOT	MOISTURE (%)	INSIT	SYMBOL	SIFICA S.C.S	METHOD OF DRILL	ING <u>8" Diameter Hollow</u>	-Stem Auger (CME 75) (0	Geoboden)				
DEF	Bulk Driven	BLO	MOIS	ςY DE	လ်	n CLASS	DRIVE WEIGHT	140 lbs. (Auto-Trip Ha	mmer) DROP	30"				
				ā			SAMPLED BY	LOGGED BY	CAT REVIEWE	DBY				
0						ML	FILL: Brown, dry, medium fragments of asphalt.		a sandy SILT; scattere	ed roots and grass; trace				
		26	16.2			SM	<u>ALLUVIUM:</u> Light reddish brown, moist, dense, silty fine SAND; trace clay; trace medium sand; scattered pinhole voids.							
10 -		45	10.7	121.4			Trace coarse sand an	Frace coarse sand and gravel up to 1-inch in diameter.						
		35	5.6				Fine to coarse sand.							
						SC	Brown, moist, dense	, clayey fine to coarse	SAND with gravel up	to 1-inch in diameter.				
20 -		24	10.8			— — <u>—</u> — - ML	Reddish brown, mois	red fine laminations.						
		9	21.1				Brown, moist, stiff, s deposits; slightly mic	silty CLAY; some fine to medium sand; scattered black manga icaceous.						
30 -		30	17.0	108.8			Mottled reddish brov	vn and light brown; tra	ce fine gravel.					
			16.6				Brown, moist, dense.	, clayey fine to SAND.						
_40						CL	Brown, moist, hard,	silty CLAY with fine t	o coarse sand and find	e gravel.				
	<u>. </u>								BORING LOG PARK - UPPER SAN GABRI					
			Ц		Ŷ	N/	ore		ANGELES COUNTY, CALI					
		V				V		107900001	6/15	A-1				

DEPTH (feet)	Bulk SAMPLES Driven	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	DATE DRILLED GROUND ELEVATI METHOD OF DRILL DRIVE WEIGHT SAMPLED BY	ION <u>320</u> LING <u>8</u>)' ± (MSL) " Diameter Hollow-S	Stem Auger mer) CAT	_ DROP _	3 oboden	OF	3
80		28	16.5			CL SC	ALLUVIUM: (Conti Mottled brown and 1 Brown and light gray up to 1/2-inch in diar	ight gra yish bro	yish brown, moi	st, hard, f	fine sandy CL	LAY.	D; scatte	ered clay
90 -		22	18.0				Mottled brown and 1 sand.	ight gra	ıyish brown, wet,	hard, cla	īyey SILT; sc	attere	d pocke	ts of fine
100 -		33	17.7				Brown, wet, hard, sil	Ity CLA	\overline{Y} ; scattered gray	yish and	reddish brow	n mot	tling.	
110 -							Total Depth = 101.5 Groundwater not end Backfilled shortly af <u>Notes:</u> Groundwater, level due to seasonal the report. The ground elevation of published maps ar not sufficiently accu	counter fter drill , thoug l variati n shown	ing on 3/17/15. h not encountere ons in precipitation n above is an esti- r documents revio	d at the ti on and se mation or ewed for	everal other fa nly. It is base the purposes	actors ed on c of this	as discu our inter s evalua	ussed in pretations
120	<u> </u>								LA PUENTE P		NG LOG ER SAN GABRIEL	RIVER	EWMP	
		V	Ц		Š2		ore	PF			OUNTY, CALIFO		FIGURE	
		V				•		11	07900001	6/1			A-3	

Appendix B

Logs of Tetra Tech's Exploratory Boring

Abb.tpl]

Date Drille	ed	1/2	9/201	7				Logged By	JPG		Checked By FC					
Drilli Meth	nod			em aug	ger				Size/Type 8-inch of Borehole 31.5 f			5 feet				
Drill Type	Rig Ə	СМІ	E-75					Drilling Contractor	2R Drilling, Inc.		Approximate Surface Elevation 345 feet					
and	Date Measured Method(s) SP1, Kings Data 30-inch												to trip; 140 pounds with drop			
	rehole Cement bentonite grout, tamped Location Latitude: 34.02766° Longitude: -117.95188°															
		Π		é									f			
t)			Der	Sampling Resistance, blows/ft								it, %	lht, pcf			
Elevation (feet)	eet)		Sample Number	g Res	Material Type	Log						Water Content, %	Dry Unit Weight,			
vatio	Depth (feet)	Sample Type	mple	mplin ws/ft	terial	Graphic Log						tter C	/ Unit	REMARKS AN		
Э <u></u> 345	De	Sam	Sa	Sal blo	Ma	1 1	[FILL] Artificia		MATERIAL DES	CRIPTION		Ň	Dŋ	OTHER TEST		
-					ML			nedium dense,	dark brown (7.5YR 3/4), da	amp, rootlets		.7				
-		7	SPT-1	4-7-10					n (2.5Y 4/6), moist to wet			-		CORR		
40 —	5-		R-2	14-27-40			hard, mottle	ed to dark olive	e brown (2.5Y 3/3), moist				116	#200 = 66%		
-			11-2	14-27-40			-						110	LL/PL/PI = 27/25/2		
-		\mathbb{N}	SPT-3	7-11-16	SC		Clayey SAND	, medium den	se, dark yellowish brown (1	0YR 4/4), moist, fine to n	nedium grained			G/S/F = 0/51/49%		
35 —	10 —	_ X	R-4	7-20-24	ML			f, moist, claye	y with fine sand			19.6	113	Swell/Collapse Tes		
-		-					-					-				
-		$\left \right $					-					-				
330 -	15 —	Ŋ	SPT-5	7-11-12	SM		Silty SAND, m	nedium dense,	dark yellowish brown (10Y	R 4/4), fien to medium g	rained			#200 = 40%		
-					CL			ony stiff dark	olive brown (2.5Y 3/3), mois	<u> </u>						
-	20 -	-			0L			ery sun, dark	51176 510WH (2.31 3/3), 1101	51		_				
-		-X	R-6	8-16-16			-					_ 23.4	102			
-		$\left \right $					-					-				
-	25 -				SP-SM		Poorly-graded	I SAND with S	ilt, medium dense, dark oliv	e brown (2.5Y 3/3), mois	st, trace of white	-				
-			SPT-7	4-8-11			 caliche lamina 	ations						#200 = 9%		
-					CL		Lean CLAY, h	ard, olive (2.5	Y 4/3), moist, fine grained]				
15 —	30 —	X	R-8	15-28-37			_						117			
-		-					- No groundwa	ater encounter				-				
-							Boring backfill grass plug.	led: 1-31.5 fee	t with cement bentonite gro	ut, and 0-1 feet with tan	nped soil cuttings and					
310 <u>-</u>	35 —	1					-									
-							-									
- 305	40-						-					_				
	10 -															

ſ	Pro	ject:	Uppe	r San	Gab	riel	EWMP - City of Industry	Key to Log of Boring						
[ld	Pro	ject L	ocatio	on: La	a Pue	ente	City Park, La Puente, CA		Sheet 1 of 1					
Abb.tl	Pro	ject N	lumb	er: TE	T 17	-13	6E		01100		· ·			
Tt LOGO_w Lab			er	istance,						t, %	ht, pcf			
.bg4[40-45 with 2 lab	Elevation (feet)	Depth (feet)	Sample Number	on Sampling Resistance, blows/ft	ত Material Type	A Graphic Log	MATERIA	L DESCRIF	PTION	Water Content, %	Dry Unit Weight,	REMARKS AND OTHER TESTS		
-01-22	1	2 3	4	9	10	11								
ndustry/03 Field & Lab/2017-11-29 & 30 La Puente City Park Drilling & DRI Testing/Boring Log Rev 2018-01-22 bg4[40-45 with 2 lab Tt LOGO_w Lab Abb.tpl]	 COLUMN DESCRIPTIONS Elevation (feet): Elevation (MSL, feet). Depth (feet): Depth in feet below the ground surface. Sample Type: Type of soil sample collected at the depth interval shown. Sample Number: Sample identification number. Sampler one foot (or distance shown) beyond seating interval using the hammer identified on the boring log. Material Type: Type of material encountered. Material Type: Type of material encountered. Text of the subsurface material encountered. Material Type: Type of material encountered. REMARKS AND OTHER TESTS: Comments and observations regarding drilling or sampling made by driller or field personnel. 													
City P	FIE		ID LAE	BORAT	ORY	TES	ABBREVIATIONS							
-29 & 30 La Puente	FIELD AND LABORATORY TEST ABBREVIATIONS CHEM: Chemical tests to assess corrosivity LL: Liquid Limit, percent COMP: Compaction test PI: Plasticity Index, percent CONS: One-dimensional consolidation test SA: Sieve analysis (percent passing No. 200 Sieve) DS: Direct Shear UC: Unconfined compressive strength test, Qu, in ksf EI: Expansion Index WA: Wash sieve (percent passing No. 200 Sieve)													
017-11	MA	TERIA	L GR		SYMB	OLS								
eld & Lab\2		Le	an CLA	AY, CLA	AY w/S	SANE	D, SANDY CLAY (CL)	Cla	yey SAND (SC)					
Industry\03 Fi		III SIL	T, SIL	.T w/SA	ND, S	ANE	Y SILT (ML)		Silty SAND (SM) Poorly graded SAND with Silt (SP-SM)					
City of														
MP - 0	ΤY						YMBOLS		OTHER GRAPH	<u>C SYN</u>	IBOL	<u>.S</u>		
iel EW	X	3.0-inc Califor	:h-OD∣ nia w/	Modifie brass li	d ners	N	2-inch-OD unlined split spoon (SPT)		$-\frac{\nabla}{\Xi}$ Water level (a	t time o	f drillir	ng, ATD)		
San Gabr									—⊻ Water level (a Minor change √ stratum		0,	operties within a		
Uppei										itional c	ontact	between strata		
0136)									-?- Queried conta	ict betw	een st	rata		
ЗЕ (4552-	<u>GE</u>	NERA	L NOT	ES										
L:\02 - PROJECTS\2017 Projects\TET 17-136E (4552-0136) Upper San Gabriel EWMP - City of I	gra 2: E	dual. Fie Descripti	eld desc ons on	riptions these loo	may ha gs appl	ave b y only	Unified Soil Classification System. Descripteen modified to reflect results of lab tests. y at the specific boring locations and at the specific boring locations and at the specific boring or times.		•		0	· ·		
L:\02														

Appendix C

Tetra Tech Laboratory Testing

MOISTURE CONTENT AND DENSITY

ASTM D2937

Job Name:		Upper san (Gabriel EWN	ЛР		Date Sam	pled:		11/29/2017	
Job Number:		197-4552-0	136			Date Com	pleted:		12/20/2017	
Tested By:		MG				Note:			Page 1 of 3	
Boring / Test Pit / Trench	I.	FB-101	FB-101	C-101	C-101	C-101	C-101	C-101	C-102	C-102
Sample Number		R-6	R-8	R-2	R-4	R-8	R-12	R-14	R-2	R-4
Sample Depth	feet	17.5-19	22.5-24	5-6.5	12.5-14	22.5-24	40-41.4	50-51.5	5-6.5	12.5-14
USCS Soil Description		Brown Native (ML)	Greenish Black Native (SP)	Brown Native (SW)	Yellowish Brown Native (SW-SM)	Yellowish Brown Native (SW-SM)	Brown Native (SM)	Brown Native (ML)	Brown Native (SM)	Brown Native (SP)
Number of Rings		6	6	6	5	6	6	6	6	6
Total Weight Rings + Soil	grams	1248.90	1218.70	1026.10	907.40	1132.00	1142.90	1186.70	1077.20	1026.80
* Volume of Rings	ft ³	0.0159	0.0159	0.0159	0.0133	0.0159	0.0159	0.0159	0.0159	0.0159
* Weight of Rings	grams	277.80	277.80	277.80	231.50	277.80	277.80	277.80	277.80	277.80
* Weight of Soil	grams	971.10	940.90	748.30	675.90	854.20	865.10	908.90	799.40	749.00
* Wet Density	pcf	134.27	130.09	103.46	112.15	118.11	119.61	125.67	110.53	103.56
C	ontainer ID	PZ1	Z5	P4	VB-4	P88	P#2	Z18	Z9	Z24
Tare	grams	90	4	92.3	148.7	9.3	84	4	4	4
Wet Soil + Tare	grams	400.7	317.3	481.7	739.5	289.7	482.3	301	252.1	270
Dry Soil + Tare	grams	369.8	310.5	446.9	706.2	270.2	431.6	245.5	231.8	251.2
* Weight of Water	grams	30.9	6.8	34.8	33.3	19.5	50.7	55.5	20.3	18.8
* Dry Density	pcf	120.9	127.3	94.2	105.8	109.9	104.4	102.2	101.5	96.2
* Moisture Content	%	11.0	2.2	9.8	6.0	7.5	14.6	23.0	8.9	7.6

MOISTURE CONTENT AND DENSITY

ASTM D2937

Job Name:		Upper san (Gabriel EWN	ЛР		Date Sam	pled:		11/29/2017	
Job Number:		197-4552-0	136			Date Com	pleted:		12/20/2017	
Tested By:		MG				Note:			Page 2 of 3	
Boring / Test Pit / Trench		C-102	B-101	B-101	B-101	LP-101	LP-101	LP-101	LPI-102	LPI-102
Sample Number		R-8	R-2	R-8	R-10	R-2	R-06	R-08	G-01	G-02
Sample Depth	feet	22.5-24	5-6.5	22.5-24	30-31.5	5-6.5	20-21.5	30-31.5	1.3	0-0.3
USCS Soil Description		Brown Native (SW)	Black & White Native (SW-SM)	Black & White Native (SW-SM)	Yellowish Brown Native (SW-SM)	Yellowish Brown Native (CL)	Yellowish Brown Native (CL)	Yellowish Brown Native (SC)	Brown Native (SM)	Brown Native (SP)
Number of Rings		6	6	6	6	6	6	6		
Total Weight Rings + Soil	grams	1172.50	1102.10	1135.00	1185.70	1259.00	1185.90	1256.60		
* Volume of Rings	ft ³	0.0159	0.0159	0.0159	0.0159	0.0159	0.0159	0.0159		
* Weight of Rings	grams	277.80	277.80	277.80	277.80	277.80	277.80	277.80		
* Weight of Soil	grams	894.70	824.30	857.20	907.90	981.20	908.10	978.80		
* Wet Density	pcf	123.71	113.97	118.52	125.53	135.67	125.56	135.34		
C	ontainer ID	Z31	Z38	Z1	Z7	A2	Z15	Z37	Z39	Z36
Tare	grams	4	4	4	4	147.1	4	4	4	4
Wet Soil + Tare	grams	279.9	273.4	300.1	263.3	554.9	297.4	337.4	298	398.3
Dry Soil + Tare	grams	267.1	268.3	292.2	253.7	496.3	241.7	292.7	261.4	344.7
* Weight of Water	grams	12.8	5.1	7.9	9.6	58.6	55.7	44.7	36.6	53.6
* Dry Density	pcf	118.0	111.8	115.4	120.9	116.2	101.7	117.2		
* Moisture Content	%	4.9	1.9	2.7	3.8	16.8	23.4	15.5	14.2	15.7

MOISTURE CONTENT AND DENSITY

ASTM D2937

									_	
Job Name:		Upper san (Gabriel EWN	ΛP		Date Sam	pled:		11/29/2017	
Job Number:		197-4552-0136				Date Con	npleted:		12/20/2017	
Tested By:		MG				Note:			Page 3 of 3	i
									_	
Boring / Test Pit / Trench	1	LPI-102	LPI-102	LPI-103	LPI-103	LPI-103	LPI-103			
Sample Number		G-03	G-04	G-01	G-02	G-03	G-04			
Sample Depth	feet	0.3-0.7	0.7-1.1	1.3	0-0.3	0.3-0.7	0.7-1.1			
USCS Soil Description		Brown Native (SC)	Brown Native (SC)	Olive Brown Native (CL)	Red Gray (CL)	Olive Brown (CL)	Olive Brown (CL)			
Number of Rings										
Total Weight Rings + Soil	grams									
* Volume of Rings	ft ³									
* Weight of Rings	grams									
* Weight of Soil	grams									
* Wet Density	pcf									
С	ontainer ID	Z34	Z16	Z4	Z29	Z19	Z20			
Tare	grams	4	4	4	4	4	4			
Wet Soil + Tare	grams	300.2	282.4	226.1	270.9	290.2	282.2			
Dry Soil + Tare	grams	263.3	247.7	208	230.5	250.7	250.7			
* Weight of Water	grams	36.9	34.7	18.1	40.4	39.5	31.5			

* Dry Density	pcf								
* Moisture Content	%	14.2	14.2	8.9	17.8	16.0	12.8		

MOISTURE CONTENT AND DRY DENSITY OF RING SAMPLES ASTM D2216 & ASTM D2937

Client:TETRA TECHProject Name:Uper San Gabriel EWMP - City of IndustryProject No.:197-4552-0136

HAI Project No.: Performed by: Checked by: Date:

TRT-17-017 KL MJ/MZ 12/7/2017

No.		1	2	3
Boring No.		FB-101	B-101	LP-101
Sample No.		R-4	R-4	R-04
Depth (ft)		12.5-14	12.5-14	10-11.5
Total wt of rings and soil	gr	403.10	355.75	625.12
Height of sample	in	2.00	2.01	3.00
Diameter of sample	in	2.416	2.416	2.416
Volume of sample	cu.ft	0.0053	0.0053	0.0080
Weight of rings	gr	92.60	93.28	138.90
Weight of soil	lbs.	0.68	0.58	1.07
Wet Density	pcf	129.01	108.62	134.68
Weight of cont.+ wet soil	gr	108.25	124.86	104.99
Weight of cont.+ dry soil	gr	100.40	121.98	88.59
Weight of container	gr	4.98	11.71	4.86
Weight of water	gr	7.85	2.88	16.40
Weight of dry soil	gr	95.42	110.27	83.73
Moisture Content	%	8.2	2.6	19.6
Dry Density	pcf	119.2	105.9	112.6

PERCENT PASSING # 200 SIEVE

ASTM D1140

Job Name: Uper San Gabriel EWMP Job Number: 197-4552-0136 Address: **Date Sampled:**

Tested By : **Date Completed:**

MG December 24, 2017

November 29, 2017

Boring Number	Sample Number	Depth (ft)	Weight Before Wash - Dry (grams)	Weight After Wash - Dry (grams)	Percent Passing # 200 Sieve	USCS Classification
C-101	R-6	17.5-19	279.9	183.1	35%	SM
C-101	SPT-9	25-26.5	502.6	169.2	66%	ML
C-101	R-12	40-41.5	374.4	333.6	11%	SP-SM
C-102	SPT-5	15-16.5	346	140.5	59%	CL
C-102	R-10	30-31.5	408.9	184	55%	CL
LP-101	R-02	5-6.5	349.3	117.9	66%	CL
LP-101	SPT-05	15-16.5	314.8	188.8	40%	SM
LP-101	SPT-07	25-26.5	360.2	326.5	9%	SP-SM

PERCENT PASSING # 200 SIEVE

ASTM D 1140

Client:TETRA TECHProject Name:Uper San Gabriel EWMP - City of IndustryProject No.:197-4552-0136

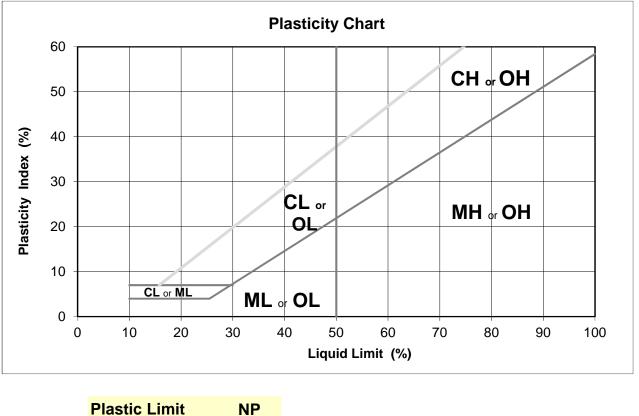
 HAI Project No.:
 TRT-17-017

 Performed by:
 GA

 Checked by:
 KL/MJ

 Date:
 12/7/2017

Boring No.	Sample No.	Depth	Soil Description	USCS	Wt of oven dry soil before wash + Wt of container gr	Wt of oven dry soil retained after #200 wash + Wt of container gr	Wt of Container gr	Wt of soil passing # 200 sieve gr	Initial wt of oven dry soil gr	Soil passing # 200 sieve %
C-101	R-6	17.5-19	Brown, Clayey Sand	sc	296.05	167.82	8.14	128.23	287.91	44.5


ASTM D4318

Job Name:	Uper San Gabriel EWMP
Job Number:	197-4552-0136
Tested By:	MG
Note:	
Sample Description:	Brown Native (ML)

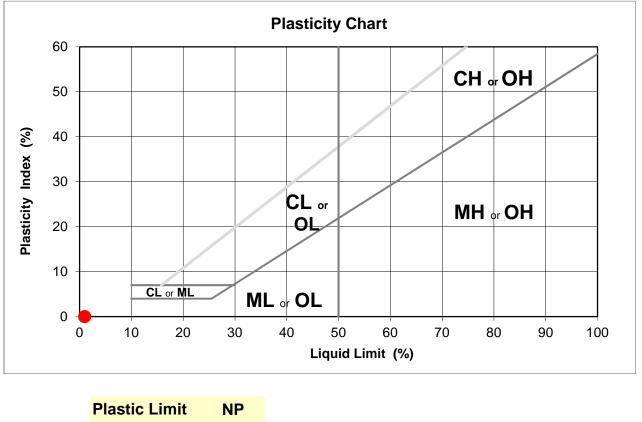
Date Sampled:	11/29/2017
Date Completed:	12/24/2017
Sample Identification:	C-101, SPT-9
Sample Depth:	25-26.5 ft

		PLASTI	C LIMIT
Test No.		1	2
Number of Blows			
Container ID		NP	NP
Wet Weight of Soil + Cont.	grams		
Dry Weight of Soil + Cont.	grams		
Weight of Container	grams		
* Moisture Weight	grams		
* Weight of Dry Soil	grams		
* Moisture Content	%	NP	NP

LIQUID LIMIT							
1	2	4					
NP	NP	NP					
NP	NP	NP					

Plastic Limit NI Liquid Limit Plasticity Index

USCS Classification


ASTM D4318

Job Name:	Uper San Gabriel EWMP	Date Sampled:
Job Number:	197-4552-0136	Date Completed:
Tested By:	MG	Sample Identification:
Note:		Sample Depth:
Sample Description:	Brown Native (ML)	

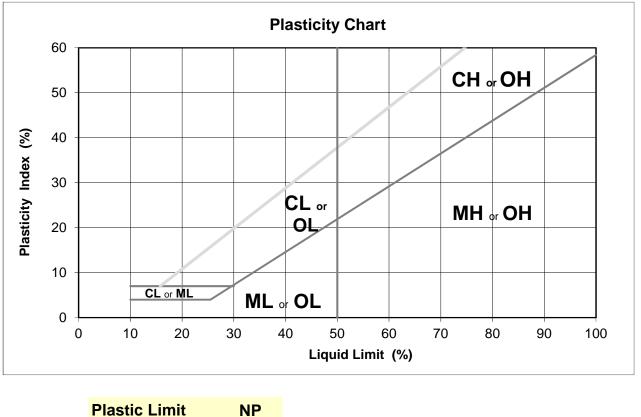
Date Sampled:	11/29/2017
Date Completed:	12/24/2017
Sample Identification:	C-101, SPT-11
Sample Depth:	35-36.5 ft

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID			
Wet Weight of Soil + Cont.	grams	NP	NP
Dry Weight of Soil + Cont.	grams		
Weight of Container	grams		
* Moisture Weight	grams	0.00	0.00
* Weight of Dry Soil	grams	0.00	0.00
* Moisture Content	%	NP	NP

LIQUID LIMIT			
1	2	3	4
NP	NP	NP	
0.00	0.00	0.00	
0.00	0.00	0.00	
NP	NP	NP	

Liquid Limit NP Plasticity Inde NP USCS Classification

ML


ASTM D4318

Job Name:	Uper San Gabriel EWMP
Job Number:	197-4552-0136
Tested By:	MG
Note:	
Sample Description:	Brown Native (ML)

Date Sampled:	11/29/2017
Date Completed:	12/24/2017
Sample Identification:	FB-101, R-6
Sample Depth:	17.5-19 ft

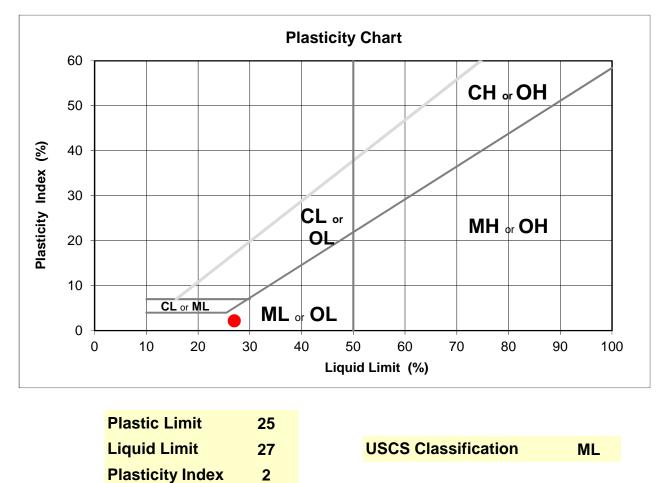
		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		NP	NP
Wet Weight of Soil + Cont.	grams		
Dry Weight of Soil + Cont.	grams		
Weight of Container	grams		
* Moisture Weight	grams		
* Weight of Dry Soil	grams		
* Moisture Content	%	NP	NP

LIQUID LIMIT			
1	2	3	4
NP	NP	NP	
NP	NP	NP	

Plastic Limit NF Liquid Limit Plasticity Index

USCS Classification

ASTM D4318

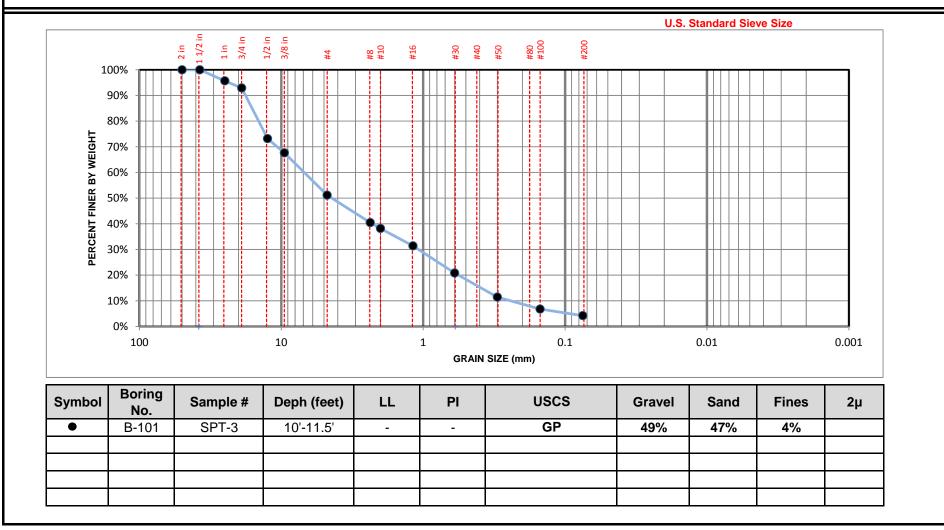

Job Name:	Uper San Gabriel EWMP
Job Number:	197-4552-0136
Tested By:	MG
Note:	
Sample Description:	Yellowish Brown Native (ML)

Date Sampled:	11/29/2017
Date Completed:	12/24/2017
Sample Identification:	LP-101, R-02
Sample Depth:	5-6.5 ft

(_)

		PLASTIC LIMIT	
Test No.		1	2
Number of Blows			
Container ID		P5	P11
Wet Weight of Soil + Cont.	grams	28.00	29.00
Dry Weight of Soil + Cont.	grams	24.90	25.70
Weight of Container	grams	12.40	12.40
* Moisture Weight	grams	3.10	3.30
* Weight of Dry Soil	grams	12.50	13.30
* Moisture Content	%	24.8	24.8

LIQUID LIMIT			
1	2	3	4
-		-	4
36	24	16	
T23	N10	M7	
49.90	49.60	53.90	
45.10	44.50	47.60	
26.00	25.60	26.00	
4.80	5.10	6.30	
19.10	18.90	21.60	
25.1	27.0	29.2	

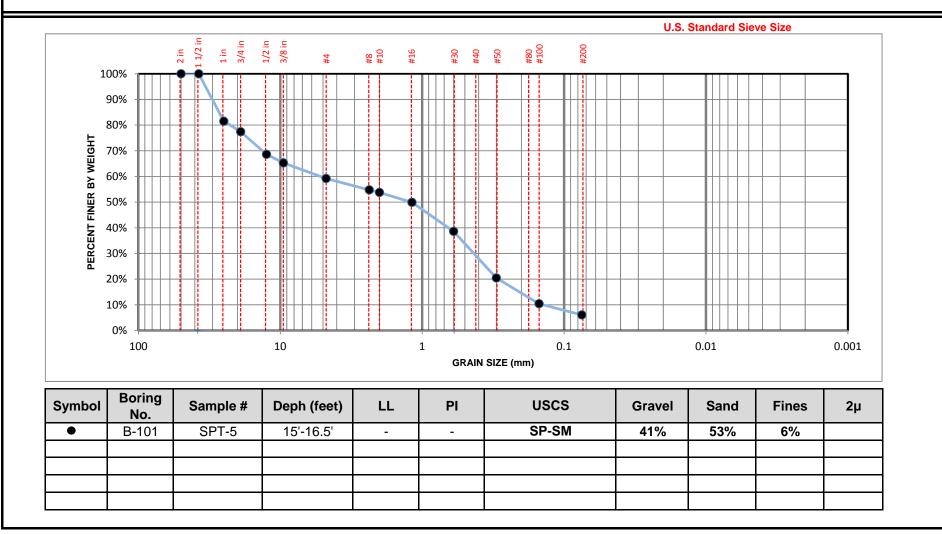


ASTM C136/C117/D422

Job Name:	Upper San Gabriel EWMP
Job Number:	197-4552-0136
Address:	

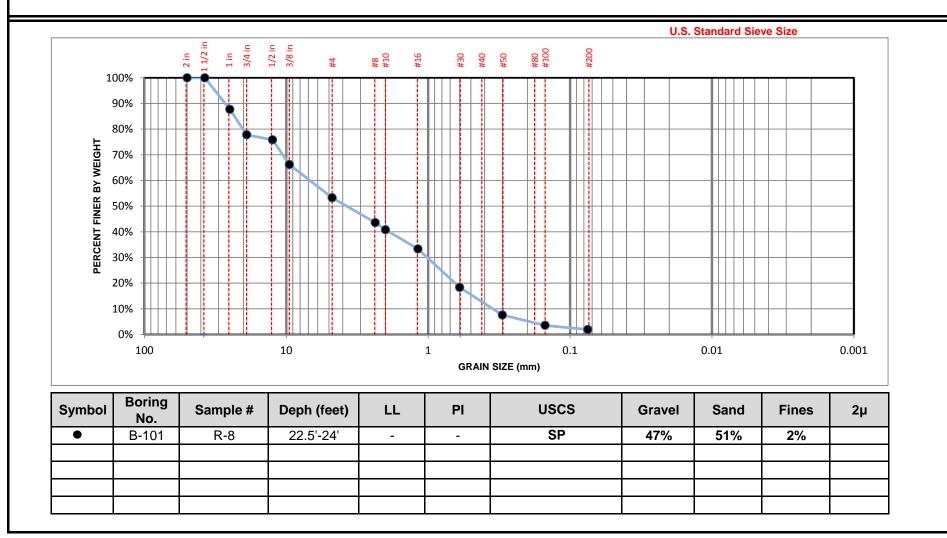
Tested By :MGDate Completed:December 24, 2017Sample Number:B-101, SPT-3

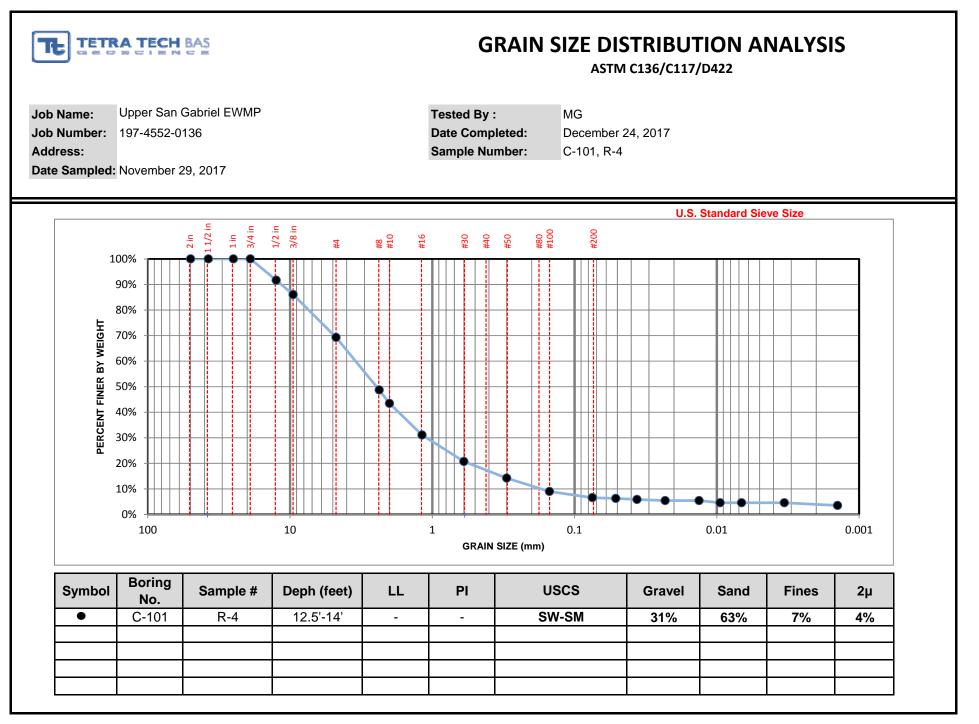
Date Sampled: November 29, 2017



ASTM C136/C117/D422

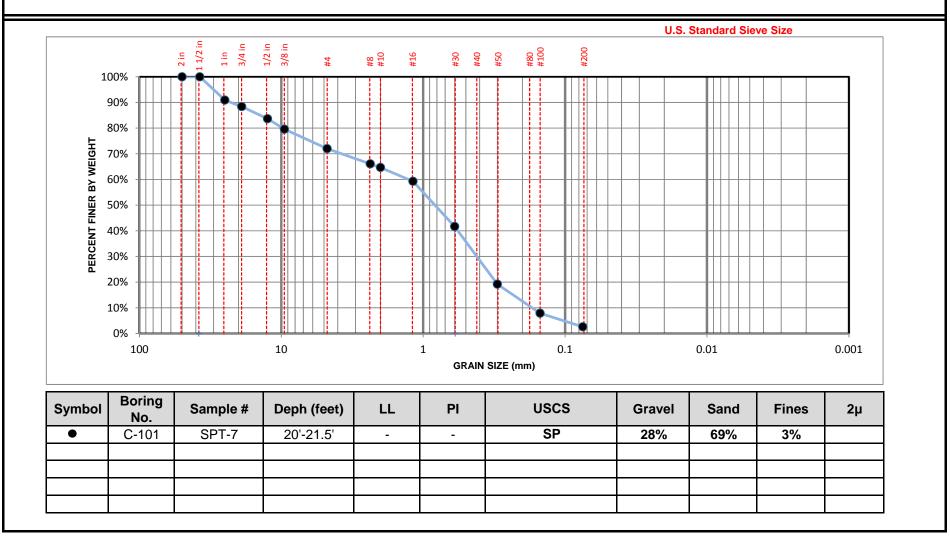
Job Name:Upper San Gabriel EWMPTested By :MGJob Number:197-4552-0136Date Completed:December 24, 2017Address:Sample Number:B-101, SPT-5


Date Sampled: November 29, 2017

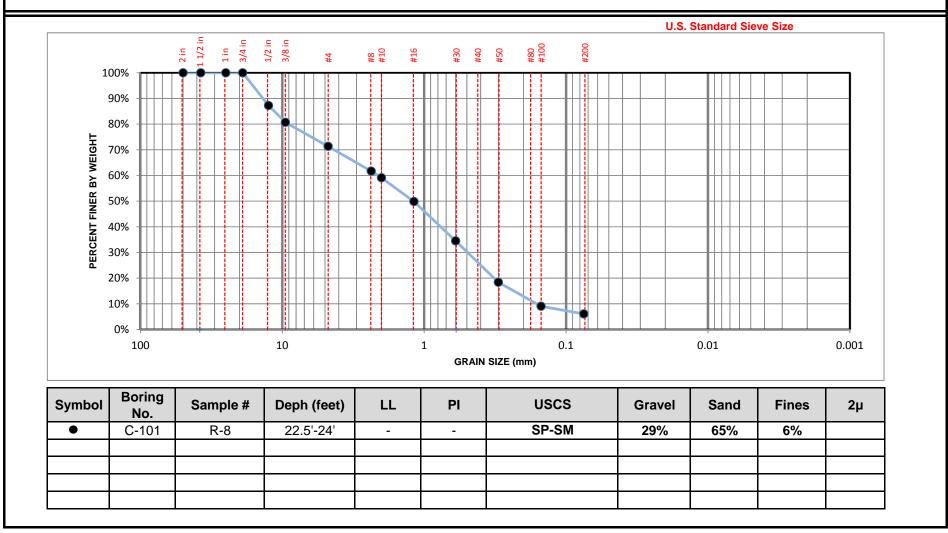


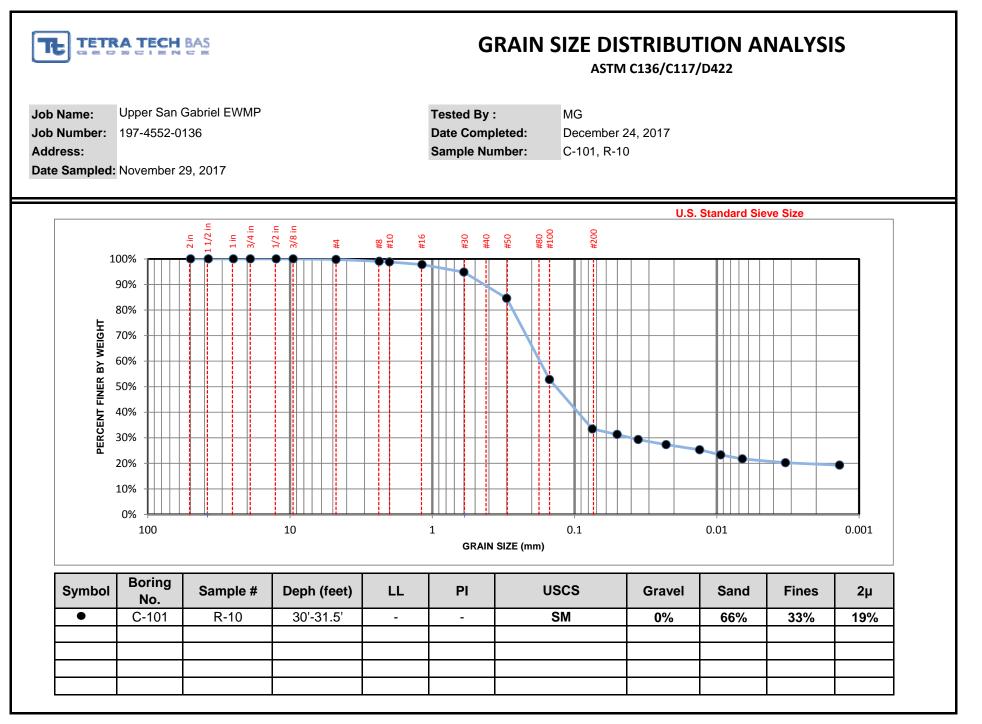
ASTM C136/C117/D422

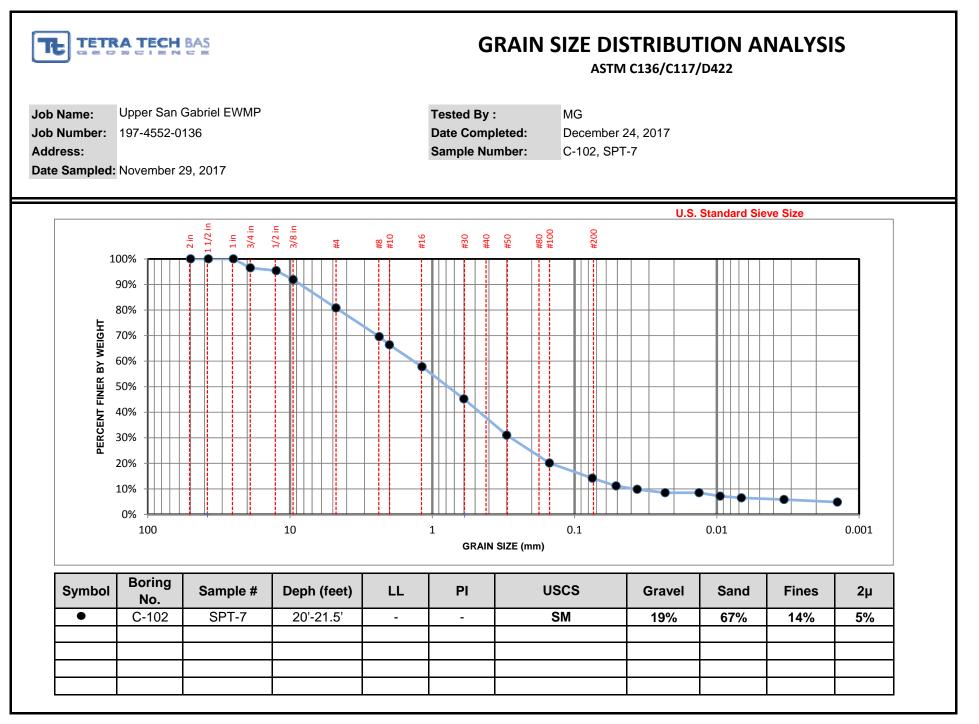
Job Name:Upper San Gabriel EWMPTested By :MGJob Number:197-4552-0136Date Completed:December 24, 2017Address:Sample Number:B-101, R-8Date Sampled:November 29, 2017Sample Sample Sa

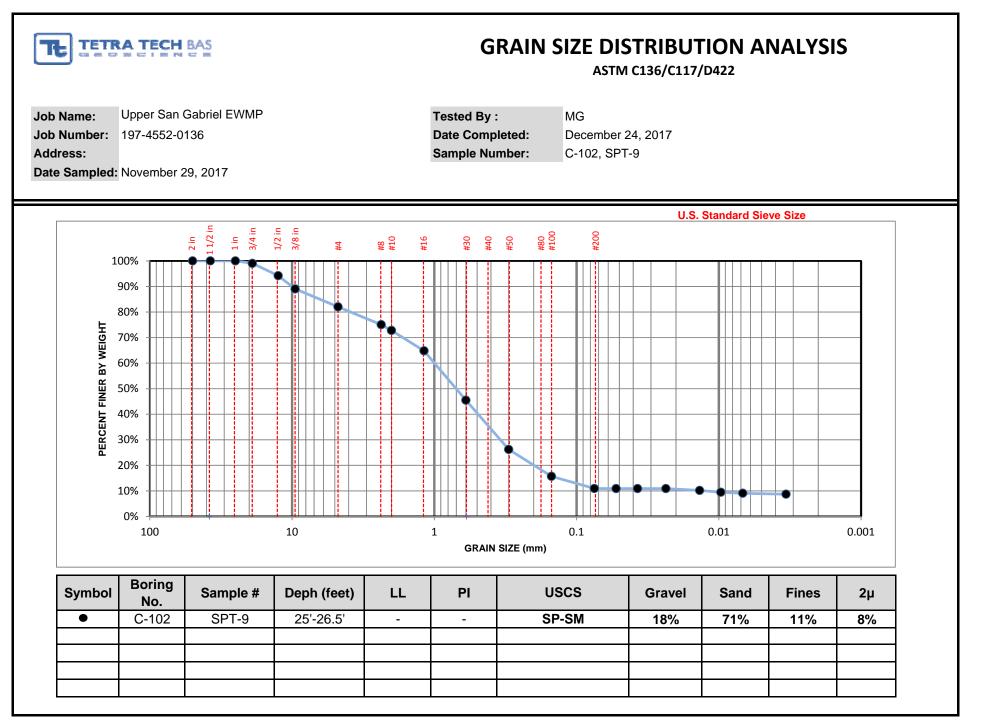


ASTM C136/C117/D422

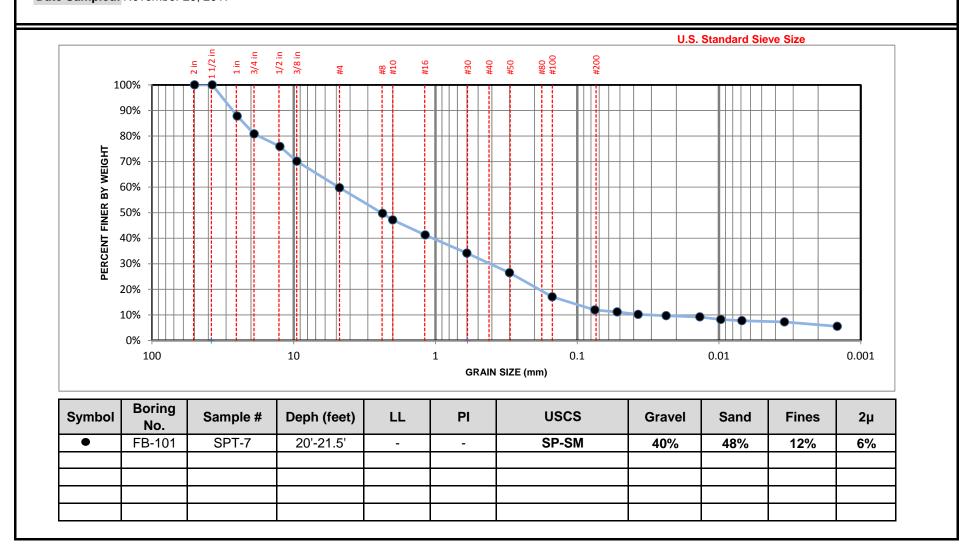

Job Name:	Upper San Gabriel EWMP	Tested By :	MG	
Job Number:	197-4552-0136	Date Completed:	December 24, 2017	
Address:		Sample Number:	C-101, SPT-7	
Date Sampled: November 29, 2017				






ASTM C136/C117/D422

Job Name: Up	oper San Gabriel EWMP	Tested By :	MG
Job Number: 19	07-4552-0136	Date Completed:	December 24, 2017
Address:		Sample Number:	C-101, R-8
Date Sampled: No	ovember 29, 2017		


ASTM C136/C117/D422

MG

December 24, 2017

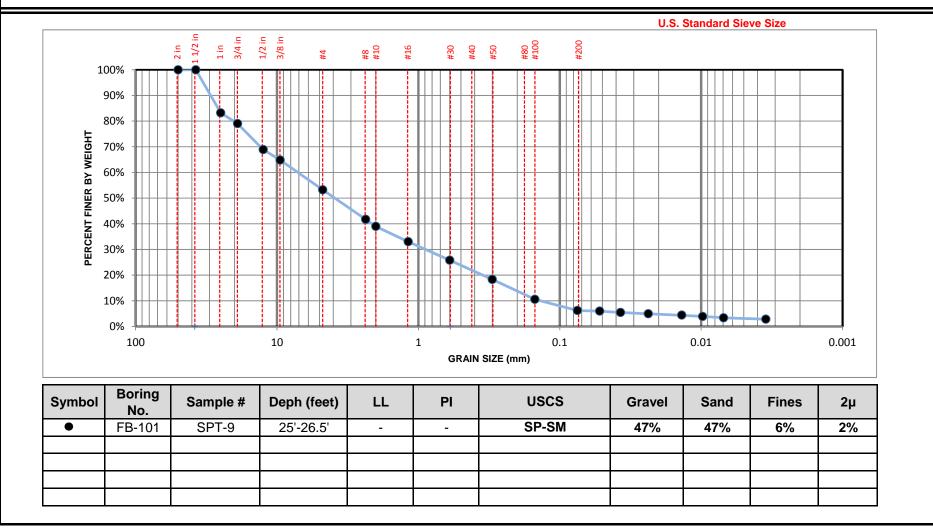
FB-101, SPT-7

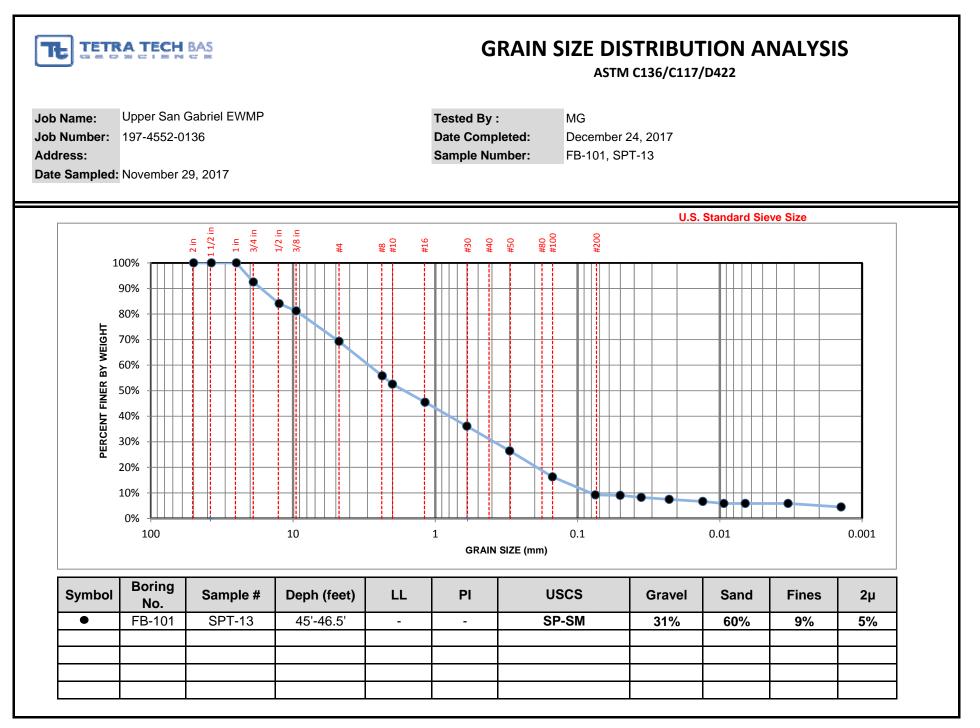
Job Name: Upper San Gabriel EWMP Job Number: 197-4552-0136 Address: Date Sampled: November 29, 2017

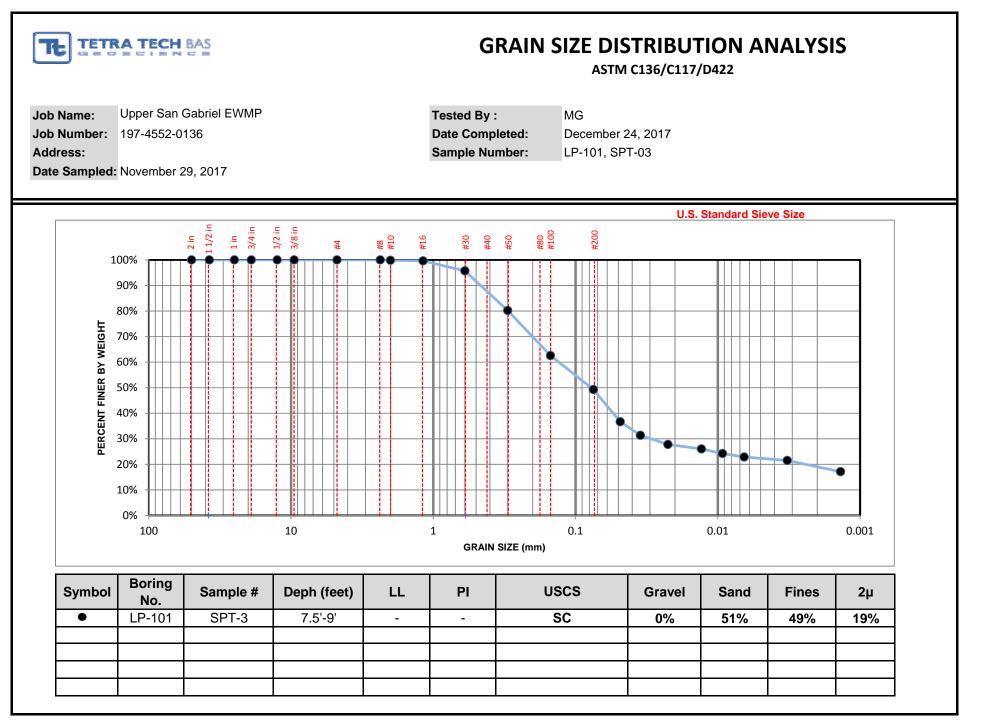
Tested By : Date Completed:

Sample Number:

Æ	TETRA TECH BAS
---	----------------


ASTM C136/C117/D422


Upper San Gabriel EWMP Job Name: **Job Number:** 197-4552-0136 Address:

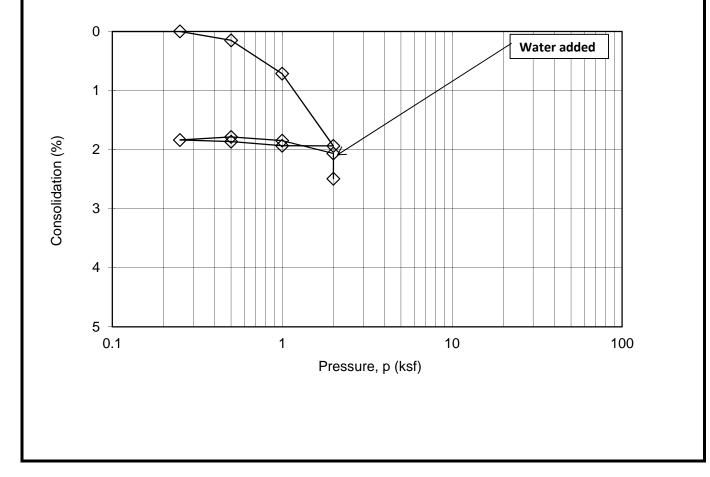

MG **Tested By :** Date Completed: Sample Number:

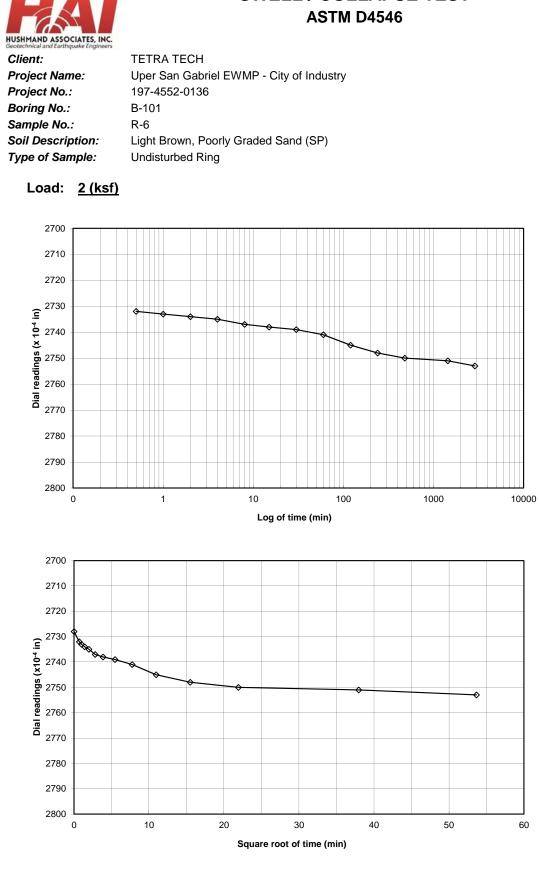
December 24, 2017 FB-101, SPT-9

Date Sampled: November 29, 2017

HUSHMAND ASSOCIATES, INC Geotechnical and Earthquake Engineer	C.					CT S		AR TES	ST			HAI Pr	No.: TRT-17-0	017
Geotechnical and Earthquake Engineer Client: Project Name: Project Number: Boring No.: Sample No.: Sample type: Depth (ft): Soil description:	TETRA TECH Uper San Gabrie 197-4552-0136 B-101 R-4 Undisturbed Ring 12.5-14 Gray, Poorly Grav	I			AU	Shear Stress (ksf)	3 -	>U			***********	Tested Checked	by: KL by: MJ/MZ ate: 12/7/201	
Type of test:	Consolidated, D	rained	1	2	2	L Shear S	1 ·							
	Symbol			∠ 	3			+		-			****	****
	al Stress (ksf)		1	3	-									
	ion Rate (in/min)		0.002	0.002	-		0	0	0.05	0.	1	0.15	0.2	0.25
			1			3		0	0.00		ntal Deform		0.2	0.20
Peak Shear	Stress (ksf)	0	0.84	2.72		1	3			1		1	• Peak	
Shear Stress @ E	End of Test (ksf)	Х	0.64	2.56							x		♥ Peak ★ End of Te	est
						hear Stress (ksf)	2		 					
Initial Heig	ght of Sample (in)		1.005	1.003		itres								
Height of Sam	nple before Shear (in)	0.9980	0.9806	-	ar S								
Diameter of Sample (in)			2.416	2.416		She	1		0					,
Initial Moisture Content (%)		2.6	2.6					О Х						
Final Mois	sture Content (%)		19.4	17.2	-									
Dry D	Density (pcf)		103.7	107.9	-		0		-			i		
						_		0	1	2 No	3 rmal Stress	4 (ksf)	5	6

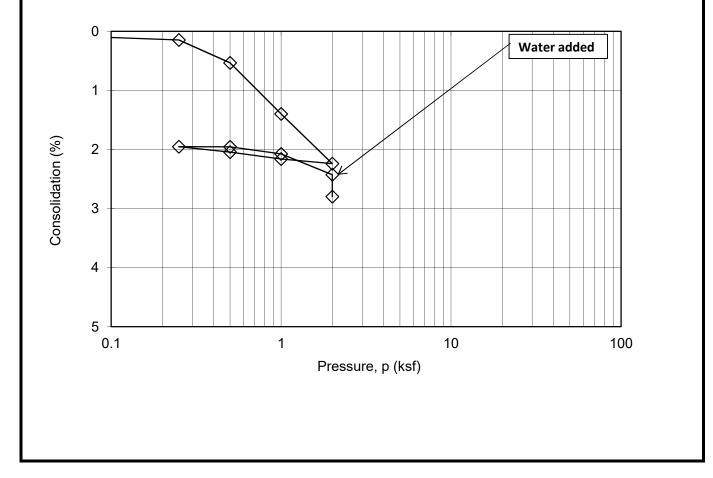
T AS					DIRE	CTS	SHE	AR T	EST						
HUSHMAND ASSOCIATES, INC Geotechnical and Earthquake Engineer	5				AS	STM C)308	80					HAI Pr	No.: TRT-17-(017
Client:	TETRA TECH												Teste	d by: KL	
Project Name:	Uper San Gabrie	IEWMF	P - City of I	ndustry									Checke	d by: KL/MJ	
Project Number:	197-4552-0136												I	Date: 12/7/201	7
Boring No.:	FB-101														
Sample No.:	R-2						3		1		1				
Sample type:	Undisturbed Ring	I							1						
Depth (ft):	5-6.5	5-6.5													
Soil description:	Brown, Silty Sand with Gravel (SM)											 	 		
Type of test:	Consolidated, D	rained				Shear Stress (ksf)					******			₽ ₽₽₽ ₩₩₽₽₽₽₽₩	
Test No.			1	2	3	near	1		╺╴┛┛╸				- 		
Symbol				•	õ			-	****			<u></u>			
Norma	Normal Stress (ksf)		1	3	-			The second second							
Deformati	on Rate (in/min)		0.002	0.002	-		0		1					1	
						_		0	0.0)5	0.1 Horizonta	al Deforr	0.15 nation (in)	0.2	0.25
Peak Shear	Stress (ksf)	0	0.71	1.66		1	3							1	
Shear Stress @ E	End of Test (ksf)	Х	0.67	1.66]								• Peak	
						sf)								⊭ End of Te	est
Initial Heio	ht of Sample (in)		1.024	1.009		Shear Stress (ksf)	2		l I I]. 				
		in)	1.0160	0.9842	-	Stre						8			
-	Height of Sample before Shear (in) Diameter of Sample (in)		2.416	2.416		ear (1		 		1	 		 	
Initial Moisture Content (%)		6.6	6.6		ชั่	I		Ø							
Final Moisture Content (%)		18.6	17.8	-	1			-							
	ensity (pcf)		108.3	109.1	-	1	0	_	 					 	
	-		•	1		_		0	1		2 Norm	3 al Stres	4 s (ksf)	5	6




TETRA TECH	HAI Project No.:	TRT-17-017
Uper San Gabriel EWMP - City of Industry	Tested by:	KL
197-4552-0136	Checked by:	KL/MJ
B-101	Date:	12/07/17
R-6		
Undisturbed Ring		
17.5-19		
Light Brown, Poorly Graded Sand (SP)		
	Uper San Gabriel EWMP - City of Industry 197-4552-0136 B-101 R-6 Undisturbed Ring 17.5-19	Uper San Gabriel EWMP - City of Industry Tested by: 197-4552-0136 Checked by: B-101 Date: R-6 Undisturbed Ring 17.5-19

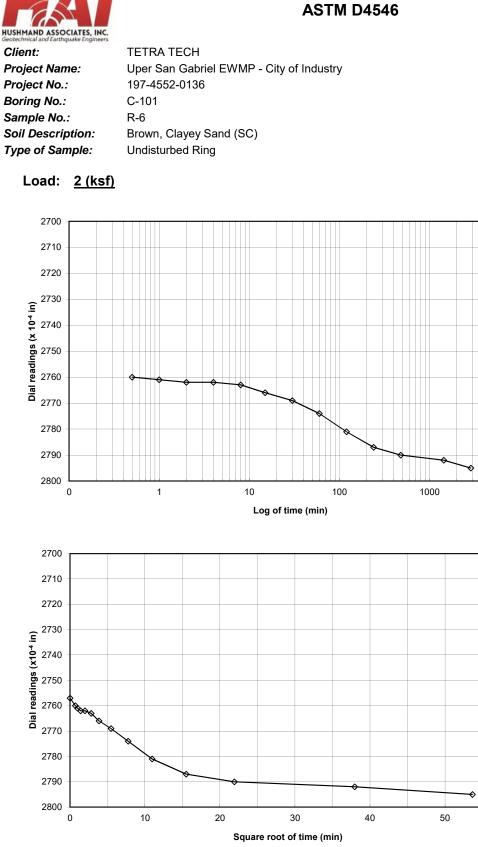
					al Weight g)	Final To	otal Weight (g)	Final Dry Weight (g)		
				143	3.30	14	146.99 12		21.24	
				Init	ial Conditio	ons	F	inal Conditi	ons	
Height		Н	(in)		1.015			0.990	0.990	
Height of S	olids	Hs	(in)		0.602			0.602		
Height of W	/ater	Hw	(in)		0.294			0.343		
Height of A	ir	На	(in)	0.119				0.045		
Dry Densit	у		(pcf)		99.2			102.8		
Water Con	tent		(%)	18.2				21.2		
Saturation			(%)		71.1			88.5		
* Saturatior	n is calcualte	d based on	Gs=2.68							
Load	δH	Н	Voids		Con	sol.	a _v M _v		Comment	
(ksf)	(in)	(in)	(in)	е	(%	6)	(ksf⁻¹)	(ksf⁻¹)	Comment	
0.01		1.0150	0.413	0.686	()				
0.25	0.0000	1.0150	0.413	0.686	0.	0	0.0E+00	0.0E+00		
0.5	0.0015	1.0135	0.411	0.683	0.	2	1.0E-02	6.1E-03		
1	0.0073	1.0077	0.406	0.673	0.	7	1.9E-02	1.1E-02		
2	0.0197	0.9953	0.393	0.653	1.	9	2.1E-02	1.2E-02		
1	0.0197	0.9953	0.393	0.653	1.	9				
0.5	0.0189	0.9961	0.394	0.654	1.	9		Unloaded		
0.25	0.0187	0.9964	0.394	0.655	1.	8				
0.5	0.0181	0.9969	0.395	0.655	1.	8	-3.4E-03	-2.1E-03		
1	0.0188	0.9962	0.394	0.654	1.	8	2.1E-03	1.3E-03		
2	0.0210	0.9940	0.392	0.651	2.	1	3.7E-03	2.2E-03		
2	0.0253	0.9897	0.388	0.644	2.	5		Water Adde	d	

Client:	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	B-101	Date:	12/07/17
Sample No.:	R-6		
Type of Sample:	Undisturbed Ring		
Depth (ft):	17.5-19		
Soil Description:	Light Brown, Poorly Graded Sand (SP)		



Client :	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	C-101	Date:	12/07/17
Sample No.:	R-6		
Type of Sample:	Undisturbed Ring		
Depth (ft):	17.5-19		
Soil Description:	Brown, Clayey Sand (SC)		

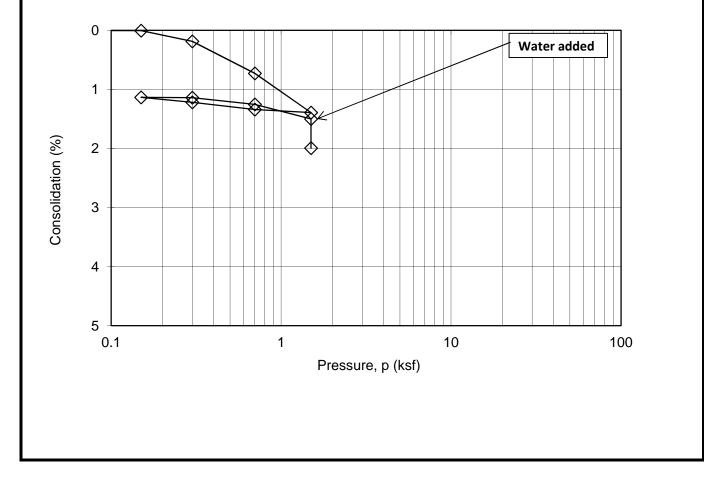
				Initial Tot	al Weight	Final T	otal Weight	Final D	ry Weight
				(9	g)		(g)		(g)
				156	6.98	1	56.34	12	9.38
				Init	ial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.020		•	0.991	0110
Height of S	olids	Hs	(in)		0.643			0.643	
Height of W		Hw	(in)		0.367			0.359	
Height of A		На	(in)		0.010			0.000	
Dry Densit			(pcf)		105.4			109.3	
Water Con	-		(%)		21.3			20.8	
Saturation			(%)		97.3		100.0		
* Saturation	n is calcualte	d based on		•			1		
Load	δH	Н	Voids		Con	isol.	a _v	Mv	
(ksf)	(in)	(in)	(in)	е	(%	%)	(ksf ⁻¹)	(ksf⁻¹)	Comment
0.01		1.0200	0.377	0.587	(C			
0.25	0.0015	1.0185	0.376	0.585	0	.1	9.7E-03	6.1E-03	
0.5	0.0055	1.0146	0.372	0.579	0	.5	2.5E-02	1.6E-02	
1	0.0143	1.0058	0.363	0.565	1	.4	2.7E-02	1.7E-02	
2	0.0228	0.9972	0.355	0.552	2	.2	1.3E-02	8.6E-03	
1	0.0221	0.9980	0.355	0.553	2	.2			
0.5	0.0209	0.9992	0.357	0.555	2	.0		Unloaded	
0.25	0.0199	1.0001	0.357	0.556	2	.0			
0.5	0.0200	1.0001	0.357	0.556	2	.0	3.1E-04	2.0E-04	
1	0.0212	0.9989	0.356	0.554	2	.1	3.7E-03	2.4E-03	
2	0.0247	0.9953	0.353	0.549	2	.4	5.6E-03	3.6E-03	
2	0.0285	0.9915	0.349	0.543	2	.8		Water Adde	d



Client:	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	C-101	Date:	12/07/17
Sample No.:	R-6		
Type of Sample:	Undisturbed Ring		
Depth (ft):	17.5-19		
Soil Description:	Brown, Clayey Sand (SC)		

10000

60



Client :	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	FB-101	Date:	12/07/17
Sample No.:	R-4		
Type of Sample:	Undisturbed Ring		
Depth (ft):	12.5-14		
Soil Description:	Brown, Silty Sand with Gravel (SM)		

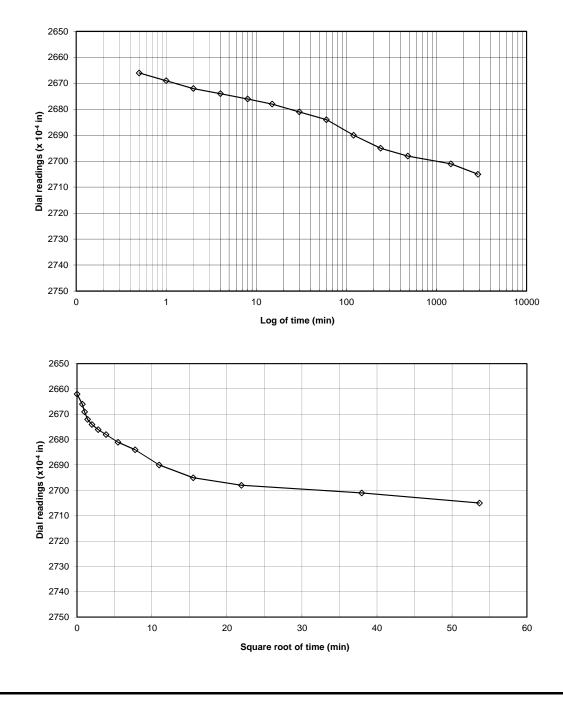
				(9	al Weight g) 9.27		otal Weight (g) 65.08	Final Dry Weight (g) 145.40		
				158	9.21	1	05.06	14	5.40	
				Init	tial Conditio	ons	F	inal Conditi	ons	
Height		Н	(in)		1.028			1.008	1.008	
Height of S	olids	Hs	(in)		0.728			0.728		
Height of W	Vater	Hw	(in)		0.185			0.262		
Height of A	ir	На	(in)		0.116			0.018		
Dry Densit	ÿ		(pcf)		117.5			119.0		
Water Con	tent		(%)		9.5			13.5		
Saturation			(%)		61.5			93.6		
* Saturatior	n is calcualte	d based on (Gs=2.68							
Load	δH	Н	Voids	е	Con	sol.	a _v M _v Cor		Commen	
(ksf)	(in)	(in)	(in)	e	(%	6)	(ksf⁻¹)	(ksf⁻¹)	Commen	
0.01		1.0280	0.300	0.413	0)				
0.15	0.0000	1.0280	0.300	0.413	0.	.0	4.9E-04	3.5E-04		
0.3	0.0019	1.0261	0.298	0.410	0.	.2	1.7E-02	1.2E-02		
0.7	0.0075	1.0205	0.293	0.403	0.	.7	1.9E-02	1.4E-02		
1.5	0.0143	1.0137	0.286	0.393	1.	.4	1.2E-02	8.4E-03		
0.7	0.0138	1.0142	0.287	0.394	1.	.3				
0.3	0.0125	1.0155	0.288	0.396	1.	.2		Unloaded		
0.15	0.0117	1.0164	0.289	0.397	1.	.1				
0.3	0.0117	1.0163	0.289	0.397	1.	.1	6.9E-04	4.9E-04		
0.7	0.0129	1.0151	0.288	0.395	1.	.3	4.0E-03	2.8E-03		
1.5	0.0154	1.0126	0.285	0.392	1.	.5	4.4E-03	3.1E-03		
1.5	0.0205	1.0075	0.280	0.385	2.	.0		Water Adde	ed	

Client:	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	FB-101	Date:	12/07/17
Sample No.:	R-4		
Type of Sample:	Undisturbed Ring		
Depth (ft):	12.5-14		
Soil Description:	Brown, Silty Sand with Gravel (SM)		

Project Name:

Project No.:

Boring No.:

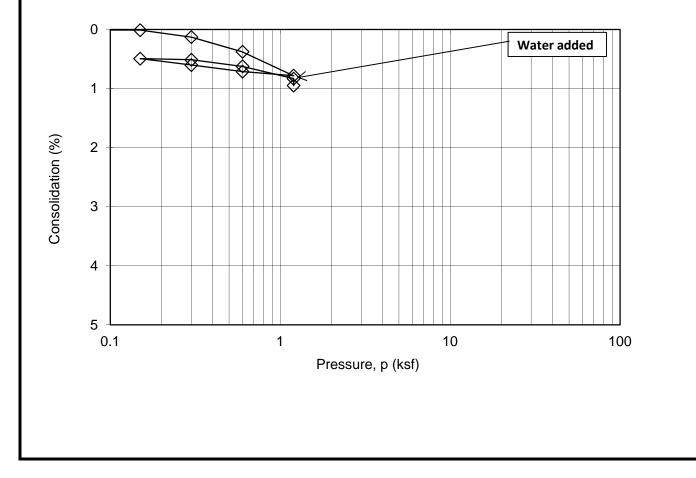

Sample No.:

Soil Description:

Type of Sample:

TETRA TECH Uper San Gabriel EWMP - City of Industry 197-4552-0136 FB-101 R-4 Brown, Silty Sand with Gravel (SM) Undisturbed Ring

Load: 1.5 (ksf)



Client :	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	LP-101	Date:	12/07/17
Sample No.:	R-04		
Type of Sample:	Undisturbed Ring		
Depth (ft):	10-11.5		
Soil Description:	Brown, Clayey Sand (SC)		

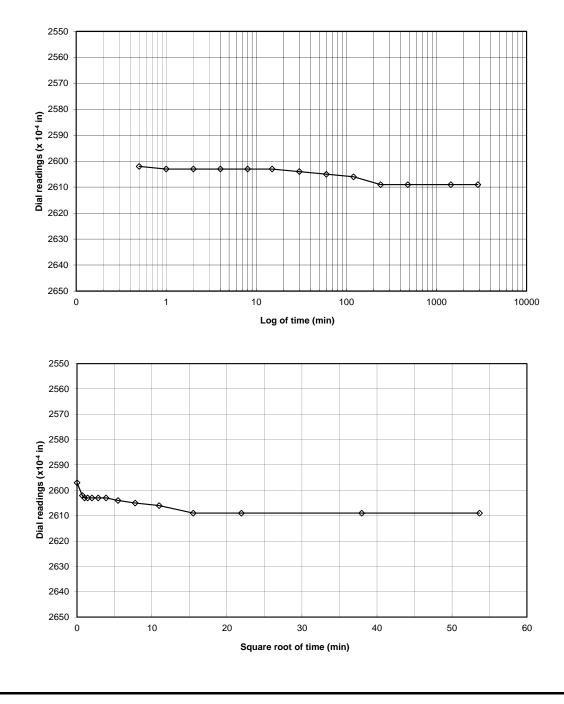
					al Weight		tal Weight		Final Dry Weight	
				(g	g)		(g)		(g)	
				161	.28	16	3.16	13	7.71	
				Init	ial Conditio	ons	F	inal Conditi	ons	
Height		Н	(in)		1.016	,		1.006	0.110	
Height of S	olids	Hs	(in)		0.684			0.684		
Height of Water Hw			(in)		0.314			0.339		
Height of A	ir	На	(in)		0.018			0.000		
Dry Densit	y		(pcf)		112.6			112.9		
Water Con	itent		(%)		17.1			18.5		
Saturation	1		(%)		94.5			100.0		
* Saturation	n is calcualte	d based on	Gs=2.68							
Load	ad δH H Voids		Voids	е	Con	sol.	a _v	M _v	Comment	
(ksf)	(in)	(in) (in)		e	(%)		(ksf⁻¹)	(ksf⁻¹)	Commen	
0.01		1.0160	0.332	0.485	5 0					
0.15	0.0001	1.0159	0.332	0.485	0	.0	1.4E-03	9.7E-04		
0.3	0.0013	1.0147	0.331	0.483	0	.1	1.2E-02	7.8E-03		
0.6	0.0039	1.0121	0.328	0.480	0	.4	1.2E-02	8.4E-03		
1.2	0.0080	1.0080	0.324	0.474	0	.8	1.0E-02	6.8E-03		
0.6	0.0073	1.0087	0.325	0.475	0	.7				
0.3	0.0061	1.0099	0.326	0.476	0	.6		Unloaded		
0.15	0.0050	1.0110	0.327	0.478	0	.5				
0.3	0.0052	1.0108	0.327	0.478	0	.5	1.8E-03	1.2E-03		
0.6	0.0064	1.0096	0.326	0.476	0	.6	5.5E-03	3.8E-03		
1.2	0.0085	1.0075	0.324	0.473	0	.8	5.1E-03	3.5E-03		
1.2	0.0097	1.0063	0.322	0.471	1	.0		Water Adde	d	

Client:	TETRA TECH	HAI Project No.:	TRT-17-017
Project Name:	Uper San Gabriel EWMP - City of Industry	Tested by:	KL
Project No.:	197-4552-0136	Checked by:	KL/MJ
Boring No.:	LP-101	Date:	12/07/17
Sample No.:	R-04		
Type of Sample:	Undisturbed Ring		
Depth (ft):	10-11.5		
Soil Description:	Brown, Clayey Sand (SC)		

Project Name:

Project No.:

Boring No.:


Sample No.:

Soil Description:

Type of Sample:

TETRA TECH Uper San Gabriel EWMP - City of Industry 197-4552-0136 LP-101 R-04 Brown, Clayey Sand (SC) Undisturbed Ring

Load: 1.2 (ksf)

Soil Analysis Lab Results

Client: HAI Job Name: Upper San Gabriel EWMP - City of Industry Client Job Number: TRT-17-017 (197-4552-0136) Project X Job Number: S171211A December 14, 2017

	Method	ASTM G187		ASTM D516		ASTM	D512B	SM 4500-E	SM 4500-C	SM 4500-D	ASTM G200	ASTM G51
Bore# / Description	Depth	Resistivity		Sulf	Sulfates Ch		rides	Nitrate	Ammonia	Sulfide	Redox	pН
		As Rec'd Minimum										
	(ft)	(Ohm-cm)	(Ohm-cm)	(mg/kg)	(wt%)	(mg/kg)	(wt%)	(mg/kg)	(mg/kg)	(mg/kg)	(mV)	
FB-101, SPT-1	2.5-4.0	32,160	5,092	18	0.0018	54	0.0054	ND	12.0	0.72	222	7.66
C-101, SPT-1	2.5-4.0	1,407	1,407	150	0.0150	503	0.0503	150	69.0	7.65	207	8.14
B-101, SPT-1	2.5-4.0	274,700	23,450	21	0.0021	12	0.0012	ND	2.8	0.15	223	7.74
LP-101, SPT-01	2.5-4.0	1,876	1,340	90	0.0090	36	0.0036	21	ND	ND	220	7.91

Unk = Unknown

mg/kg = milligrams per kilogram (parts per million) of dry soil weight mg/L = milligrams per liter of liquid volume Chemical Analysis performed on 1:3 Soil-To-Water extract

Please call if you have any questions.

Prepared by,

Ernesto Padilla, BSME Field Engineer

Respectfully Submitted,

Eddie Hernandez, M.Sc., P.E. Sr. Corrosion Consultant NACE Corrosion Technologist #16592 Professional Engineer California No. M37102 <u>ehernandez@projectxcorrosion.com</u>

Appendix D

Field Infiltration Testing Results

Double Ring Infiltrometer

ASTM D-3385

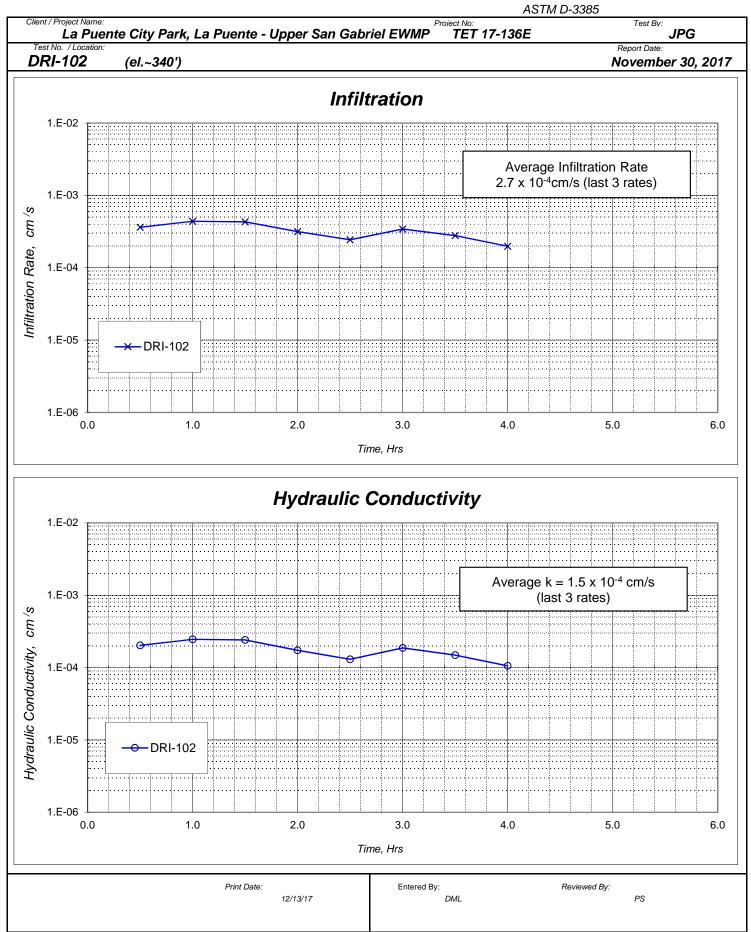
	F	ject Name: Project No: st Number: ormed By:	TET 1 DRI-	7-136E	Park, La Puente (Lat: 34.027750°,	••			~340 ft test)		Date Start: e Finished: Enter By: wiewed By:	Novembe	er 30, 2017 er 30, 2017 CM CC
		Note:*Elev	ation fr	om Goog	leEarth			INNER RING	<u>i (</u>		2		
Clayey SAND, medium dense, dark yellowish brown (10YR 4/4), moist						eter of Ring ea of Ring,	d, cm A		30.5 729.7		61.0 2192.8	Coe	efficient of Permeability L= H _z +D _w +Suction k = Q*D _w /(L*A*t)
	Height of water above soil su						H _z cm		15.0		15.0		
	Depth of wetter						D _w , cm		18.288		18.288		
	Soil suction						cm	Iter Flow Read	1		1		
Trial		Time Inner Flow Readings Reading Time Inner Flow Reading		ngs Flow Rate	Outer	Ings Flow Rate	Tomn	Infiltration Rate, Inner	Hydraulic Conductivity	Comments			
mai		Reading	t	milei	Inner Marriotte	Q/t	Outer	Outer Marriotte	0.11	remp.	Rate, miler	k	Comments
No.	Date	hr:min:sec	(sec)	Ring, cm	Reading (ml)	(cm ³ /sec)	Ring, cm	Reading (ml)	(cm ³ /sec)	(C)	(cm/sec)	(cm/sec)	
1	11/30/2017	10:41:00	1800	15.0 15.0	475	2.64E-01	15.0 15.0	1688	9.38E-01	18.2	3.62E-04	2.03E-04	clear, ~22C; ground 14.6C
~	11/00/0017	11:18:00	1000	15.6	-10	2.042 01	15.0	1000	0.00L 01	10.2	0.022 04	2.002 04	cical, -220, giouna 14.00
2	11/30/2017	11:48:00	1800	15.6	575	3.19E-01	15.0	200	1.11E-01	18.4	4.38E-04	2.45E-04	ground 14.6C
3	11/30/2017	11:54:00		15.8			15.0						
-		12:24:00 12:24:00	1800	15.8 16.3	565	3.14E-01	15.0 15.1	1125	6.25E-01	18.8	4.30E-04	2.41E-04	ground 15.3C
4	11/30/2017	12:54:00	1800	16.3	415	2.31E-01	15.1	975	5.42E-01	19.7	3.16E-04	1.73E-04	ground 15.2C
-		12:54:00	1000	16.6		2.012.01	15.2	570	0.422 01	10.7	0.102 04	1.702 04	ground 13.20
5	11/30/2017	13:24:00	1800	16.6	320	1.78E-01	15.2	650	3.61E-01	20.1	2.44E-04	1.30E-04	ground 15.5C
6	11/30/2017	13:29:00		17.0			15.1						
-		13:59:00 13:59:00	1800	17.0 17.4	450	2.50E-01	15.1 15.2	600	3.33E-01	19.7	3.43E-04	1.87E-04	ground 16.0C
7	11/30/2017	13:59:00	1800	17.4	365	2.03E-01	15.2	525	2.92E-01	20.1	2.78E-04	1.48E-04	ground 16.4C
0	11/20/2017	14:29:00	1000	17.5	000	2.002 01	15.2	020	2.022 01	20.1	2.702 04	1.402 04	ground 10.40
8	11/30/2017	14:59:00	1800	17.5	260	1.44E-01	15.2	625	3.47E-01	20.1	1.98E-04		ground 16.7C
Note	s:								AVER	AGE =	2.7E-04	1.5E-04	

 Permeant levels maintained using:
 X
 2 Marriotte Tubes
 Float Valve

 Water Source:
 55 gal drum

 Depth to water table:
 Unknown

 Annular Space Ring Marriotte Tube Voulme = 10, 000 ml
 Inner Ring Marriotte Tube


Other

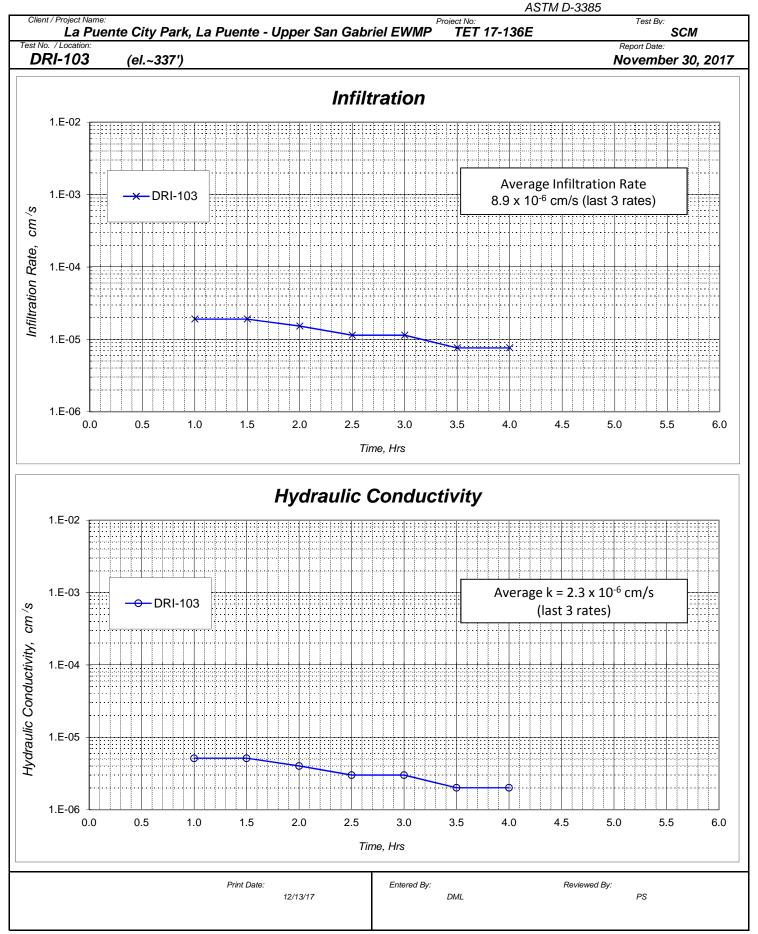
Inner Ring Marriotte Tube Volume = 3,000 ml

HYDRAULIC CONDUCTIVITY

DOUBLE RING INFILTRATION TEST

Double Ring Infiltrometer

ASTM D-3385

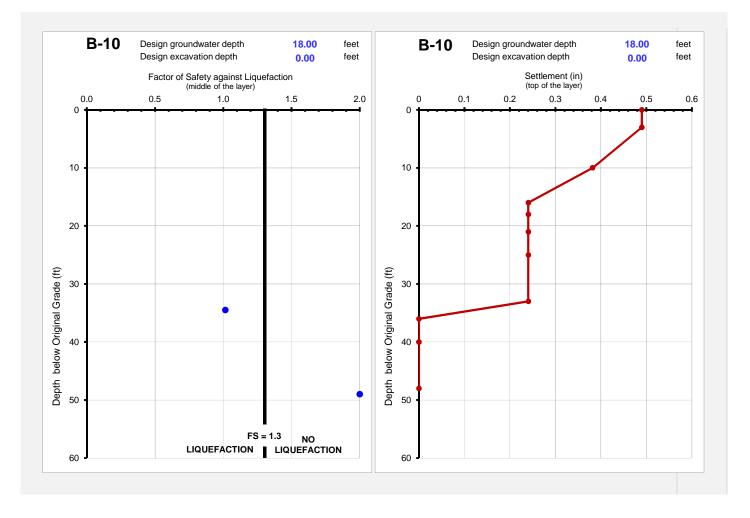

		ject Name:		,	Park, La Puente	- Upper Sar	Gabriel E	WMP	D -1	Date Start:		er 30, 2017	
		Project No:	DRI-	17-136E	// / 0/ 000511		05000 1	* 000 %	007.64	Dat	e Finished:		er 30, 2017
		st Number: ormed By:		103	(Lat: 34.028391°,	°,Long: -117.952539°; elev. *~338 ft ground, ~337 ft test)					Enter By: viewed By:		CM
	Field	Jinieu by.	SCM							ine	vieweu by.	ł	<u>-C</u>
		Note:*Elev	ation fr	om Goog	leEarth				INNER RING	<u>) (</u>		3	
,				1								Coe	efficient of Permeability
		, very stiff,				eter of Ring	d, cm		30.5		61.0		L= H _z +D _w +Suction
	(2.5Y 4/6),	moist to we	t		Ai	ea of Ring,	Α		729.7		2192.8		$k = Q^*D_w/(L^*A^*t)$
l													
				Height	of water above		H _z cm		16.0		16.0		
					Depth of v	vetted front-	D _w , cm		6.096		6.096		
					:	Soil suction	cm		1		1		
		Time		In	ner Flow Readi	ings	Οι	uter Flow Read	ings		Infiltration	Hydraulic	
Trial		Reading	Time	Inner		Flow Rate	Outer		Flow Rate	Temp.	Rate, Inner	Conductivity	Comments
			t		Inner Marriotte	Q/t		Outer Marriotte				k	
No.	Date	hr:min:sec	(sec)	Ring, cm	Reading (ml)	(cm ³ /sec)	Ring, cm	Reading (ml)	(cm ³ /sec)	(C)	(cm/sec)	(cm/sec)	
1	11/30/2017	11:00:00 11:30:00	4000	16.0	0	0.005.00	16.0		0.475.00	40.0	0.005.00	0.005.00	
		11:30:00	1800	16.0 16.0	0	0.00E+00	16.0 16.0	63	3.47E-02	19.3	0.00E+00	0.00E+00	clear, ~22C; ground 16.3C
2	11/30/2017	12:00:00	1800	16.0	25	1.39E-02	16.0	100	5.56E-02	19.5	1.90E-05	5.15E-06	ground 16.4C
		12:00:00	1000	16.0	25	1.000-02	16.0	100	0.00L-02	13.5	1.302-03	3.13E-00	ground 10.40
3	11/30/2017	12:30:00	1800	16.0	25	1.39E-02	16.0	75	4.17E-02	19.5	1.90E-05	5.15E-06	ground 16.5C
	44/00/0047	12:30:00		16.0			16.0						3
4	11/30/2017	13:00:00	1800	16.0	20	1.11E-02	16.0	75	4.17E-02	20.1	1.52E-05	4.02E-06	ground 16.5C
5	11/30/2017	13:00:00		16.0			16.0						
5	11/30/2017	13:30:00	1800	16.0	15	8.33E-03	16.0	75	4.17E-02	20.2	1.14E-05	3.02E-06	ground 16.8C
6	11/30/2017	13:30:00		16.0			16.0						
		14:00:00 14:00:00	1800	16.0 16.0	15	8.33E-03	16.0 16.0	63	3.47E-02	20.2	1.14E-05	3.02E-06	ground 16.9C
7	11/30/2017	14:00:00	1800	16.0	10	5.56E-03	16.0	63	3.47E-02	20.2	7.61E-06	2.01E-06	ground 16.9C
	44/00/00/7	14:30:00		16.0		2.002 00	16.0		JL				3
8	11/30/2017	15:00:00	1800	16.0	10	5.56E-03	16.0	63	3.47E-02	20.2	7.61E-06	2.01E-06	ground 17.0C
Note		- · · ·								AGE =		2.3E-06	
1) 2)		Permeant le Water Sour		aintained u 55 gal dru		2 Marriotte	Iupes	Float Valve		Other			-
2) 3)		Depth to wa			Unknown								
4)					Tube Voulme =	10, 000 ml		Inner Ring Mar	riotte Tube V	'olume	= 3,000 ml		

HYDRAULIC CONDUCTIVITY

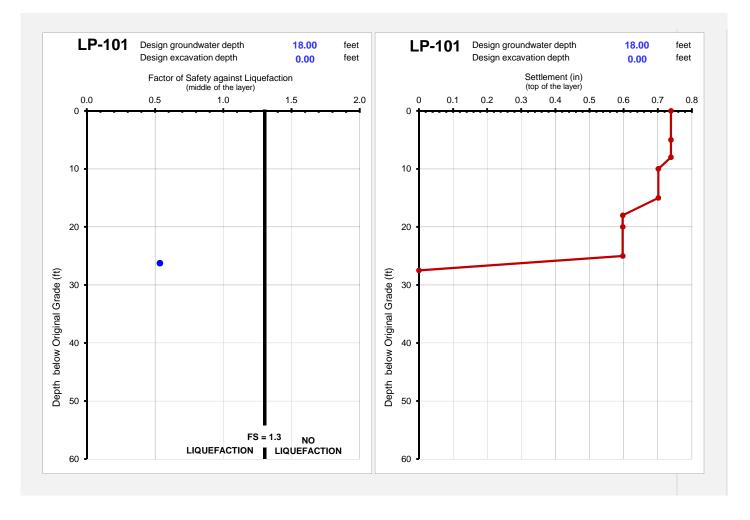
DOUBLE RING INFILTRATION TEST

DEPTH OF WETTED FRONT

DOUBLE RING INFILTRATION TEST


ASTM D-3385 roject Name: La Puente City Park, La Puente - Upper San Gabriel EWMP TET 17-136E Client / Project Name. Tested By: SCM/JPG Report Date: January 30, 2018 Test No. / Location: DRI-102 DRI-102 • Moisture % of Insitu Soil 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 . 15.0 14.0 Moisture (%) 13.0 12.0 11.0 Assumed Depth of 10.0 9.0 8.0 Wetted Front (18 cm) 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 Depth (cm) Test No. / Location: **DRI-103** — DRI-103 Moisture % of Insitu Soil 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 Moisture (%) 14.0 13.0 12.0 Assumed Depth of Wetted Front (6 cm) 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 Depth (cm) Print Date: Entered By: Reviewed By: 01/30/18 SCM PS

Appendix E


Liquefaction Analyses

		S	Summar	y of Lic	luefactio	on and	Earthq	uale-Inc	luced Settl	ement Analysis			
Project:	Upper Sa	an Gabriel	7-136E EWMP - La ark	a Puente	Boring:	B-	10	Engineer:	FC	Date:	1/19	/2018	
		Liquefacti	on Evaluati	on Method						Liquefaction Analysis Stati	stics		
Liquefaction Evaluation Method Correction for fines content Idriss & Boulang. 200					08. 2014				Total thickness of e			feet	
Correction for	overburden C	2 _N		0	4 (N1)60cs	;				sceptible to liquefaction	3	3 feet	
Cyclic resistar	nce ratio of so	il CRR _{cs}	Idriss & Bo	oulang. 200	04, 2014				Number of evaluate	ed intervals	11		
Correction for	overburden k	κσ	Idriss & Bo	oulang. 200	08, 2014				Number of potentia	lly liquefiable intervals	2		
Stress reducti	ion factor r_D		Idriss 1999	9, I&B 2008	3,2014				Average Factor of	Safety of sandy intervals	2.1		
Magnitude sca	aling factor M	SF	Idriss & Bo	oulang. 201	4				Dry sand settlemen	t	0.25	inches	
Liquefaction s	ettlement		Yoshimine et	al., 2006 – no	o adjustment				Liquefaction settler	nent		inches	
Dry settlemen	t		Pradel, 1998	a,b					Total earthquake-	induced settlement	0.49	inches	
Plasticity In Calculate s		only for lay	nreshold vers with les		7 50 Plasticity	% of fines	idered Blowc	ounts	Liquefaction		Layer	Cumulative	
Layer Top	Thickness	In-situ	Design	Fines %	Index	SPT-N	N1,60	N1,60,cs	Factor of Safety	Liquefaction potential rationale	Settlement	Settlement	
feet	feet	pcf	pcf	%	_	bpf	bpf	bpf	-	-	in	in	
0	3	127.53	121.0	65	10	20.0	39.8	45.4	Not liquefiable	- no groundwater	0.00	0.49	
3	7	140.36	125.0	35	n/plastic	26.0	38.6	44.1	Not liquefiable	- no groundwater	0.11	0.49	
10 16	6 2	134.31 120.99	125.0 125.0	35 35	n/plastic 10	29.7 24.0	34.5 34.6	40.0 40.1	Not liquefiable Not liquefiable	 no groundwater no groundwater 	0.14 0.00	0.38 0.24	
18	3	120.99	125.0	35	10	24.0	33.3	38.8	Not liquefiable	- clay-like behaviour	0.00	0.24	
21	4	120.99	125.0	65	10	24.0	31.7	37.3	Not liquefiable	- clay-like behaviour	0.00	0.24	
25 33	8 3	131.89 127.53	125.0 125.0	65 35	12 n/plastic	9.0 21.0	10.0 24.8	15.6 30.3	Not liquefiable 1.02	- clay-like behaviour - liquefieable - FS < 1.3	0.00 0.24	0.24 0.24	
36	4	127.53	125.0	65	15	21.0	23.9	29.4	Not liquefiable	- clay-like behaviour	0.00	0.00	
40 48	8 2	126.44 115.248	125.0 125.0	65 30	10 n/plastic	13.0 33.0	12.8 29.8	18.4 35.2	Not liquefiable 2.19	- clay-like behaviour - too dense – (N1)60,CS > 32	0.00 0.00	0.00 0.00	
250.00 In-Situ Ground DESIGN Grou DESIGN Exca DESIGN Surg	undwater dept avation depth	1393.81 Profile h	1371.00 no GW 18.00 0.00 0.00	feet	77.00	244.70 Earthquał M PGA	313.77 xe loading 6.91 0.775	374.61	3.21	Checks Groundwater depth check Design groundwater/excavation depth Fines correction method compatibility Idris & Boulanger, 2004 method for C		2.56 OK OK OK OK not used	
DESIGN Surcharge (fill) 0.00 feet									Idris & Boulanger, 2004 method for C _N r Cetin 2009 settlement method r Version v1c				

		S	Summar	y of Lic	luefactio	on and	Earthq	uale-Inc	luced Settl	lement Analysis			
Project:	Upper Sa	an Gabriel	7-136E EWMP - La ark	a Puente	Boring:	LP-	101	Engineer:	FC	Date:	1/19	/2018	
		Liquefacti	on Evaluati	on Method						Liquefaction Analysis Statis	stics		
Correction for fines content Idriss & Boulang. 200					08, 2014				Total thickness of e	evaluated profile	31.5	feet	
Correction for	r overburden (P _N	Idriss & Bo	oulang. 201	4 (N1)60cs				Profile thickness su	sceptible to liquefaction	2.5	2.5 feet	
Cyclic resista	ince ratio of so	il CRR _{CS}	Idriss & Bo	oulang. 200	04, 2014				Number of evaluate	ed intervals	9		
Correction for	r overburden k	Κσ	Idriss & Bo	oulang. 200	08, 2014				Number of potentia	Ily liquefiable intervals	1		
Stress reduct	tion factor r _D		Idriss 1999	9, I&B 2008	3,2014				Average Factor of	Safety of sandy intervals	0.5		
Magnitude sc	caling factor M	SF	Idriss & Bo	oulang. 201	4				Dry sand settlemen	ıt	0.14	inches	
Liquefaction s	settlement		Yoshimine et	al., 2006 – no	o adjustment				Liquefaction settler	nent	0.60	inches	
Dry settlemer	nt		Pradel, 1998	a,b					Total earthquake-	induced settlement	0.74	inches	
,	ndex sand l settlement o			s than	7 50	% of fines				_			
Depth to Layer Top	Layer Thickness	Total Ur In-situ	iit Weight Design	Fines %	Plasticity Index	Cons SPT-N	idered Blowo N1,60	ounts N1,60,cs	Liquefaction Factor of Safety	Liquefaction potential rationale	Layer Settlement	Cumulative Settlement	
feet	feet	pcf	pcf	%	-	bpf	bpf	bpf	-	-	in	in	
						•							
0	5	135.72	121.0	66	2	17.0	33.8	39.4	Not liquefiable	- no groundwater	0.00	0.74	
5 8	3 2	135.72 126.5	125.0 125.0	66 49	2 n/plastic	44.2 27.0	51.4 36.9	57.0 42.5	Not liquefiable Not liquefiable	 no groundwater no groundwater 	0.00 0.04	0.74 0.74	
10	5	135.6	125.0	65	2	29.0	34.3	39.9	Not liquefiable	- no groundwater	0.04	0.70	
15	3	120.75	125.0	40	n/plastic	23.0	30.0	35.6	Not liquefiable	- no groundwater	0.10	0.70	
18	2	135.6	125.0	65	12	21.1	24.4	30.0	Not liquefiable	- clay-like behaviour	0.00	0.60	
20 25	5 2.5	125.46 120.75	125.0 125.0	65 9	12 n/plastic	21.1 19.0	22.9 23.0	28.5 23.7	Not liquefiable 0.54	- clay-like behaviour - liquefieable - FS < 1.3	0.00 0.60	0.60 0.60	
27.5	4	135.72	125.0	65	12	42.9	46.0	51.5	Not liquefiable	- clay-like behaviour	0.00	0.00	
DESIGN Gro	31.50 adwater depth undwater depth avation depth charge (fill)		1121.00 no GW 18.00 0.00 0.00	feet	42.00	244.40 Earthqual M PGA	302.53 xe loading 6.91 0.775	347.97	0.54	Checks Groundwater depth check Design groundwater/excavation depth Fines correction method compatibility Idris & Boulanger, 2004 method for C _N Cetin 2009 settlement method		5.41 OK OK OK not used not used	

