Rider Distribution Center IV Design Review/Case No: 19-00006 City of Perris, Riverside County, California

Preliminary Drainage Study

Prepared for: IDI Logistics Attn: Steve Hollis 840 Apollo Street, Suite 343 El Segundo, CA 90245 Tel: (949) 351-7243

Riverside, CA 92506

Original Date Published: April 2019 Revision Date(s):

DJ Arellano, P.E. Senior Engineer, Land Development

TABLE OF CONTENTS

SECTION 1 - SUMMARY	1-1
PURPOSE	
DESCRIPTION OF WATERSHED	
PROPOSED CONDITIONS	1-1
METHODOLOGY	1-3
FIG. 1 VICINITY MAP	
FIG. 2 USGS TOPOGRAPHY MAP	
FIG. 3 AERIAL PHOTOGRAPH	
FIG. 4 RECEIVING WATERBODIES	
FIG. 5 SOILS MAP	
SECTION 2 - HYDROLOGY ANALYSIS	2-1
HYDROLOGY PARAMETERS	2-1
ON-SITE RATIONAL METHOD HYDROLOGY	
ON-SITE UNIT HYDROGRAPH METHOD HYDROLOGY	
SECTION 3 - HYDRAULIC ANALYSIS	
ON-SITE STORM DRAIN FACILITIES	
SECTION 4 - CONCLUSION	4-1
APPENDIX A – HYDROLOGY	A
HYDROLOGIC SOILS GROUP MAP (PLATE C-1.30)	
STANDARD INTENSITY-DURATION CURVES (PLATE D-4.1)	
RATIONAL METHOD HYDROLOGY	
HYDROLOGY MAPS	
APPENDIX B - HYDRAULICS	B
LINE-A	
LINE-B	
INLET CALCULATIONS	
WATER QUALITY CALCULATIONS AND ATTACHMENTS	
APPENDIX C - REFERENCES	C
LATERAL G-2 EXCERPT FROM PVSD MDP	
PERRIS VALLEY STORM DRAIN PLANS	

SECTION 1 - SUMMARY

PURPOSE

The purpose of this report is to document the hydrologic and hydraulic analyses performed in support of the Rider Distribution Center IV project located in the City of Perris, County of Riverside, California. The project site is located east of Redlands Avenue, south of Morgan Street and west of the Perris Valley Storm Drain Channel. The project proposes to build an industrial warehouse on approximately 26.4 acres of vacant land. This report will summarize the hydrology and hydraulic analyses that were completed to determine the necessary drainage improvements required for the project to safely convey runoff through the site.

The scope of this report will include the following:

- Determine the peak 100-year and 10-year flow rates for the developed condition using the Riverside County Flood Control and Water Conservation District (RCFC&WCD) Rational Method.
- Determine the required storm drain facilities, alignment, and sizes required to flood protect the project site.
- Determine the site's water quality volume and corresponding modular wetland size for water quality treatment.
- Preparation of a preliminary report summarizing the hydrology and hydraulic results.

DESCRIPTION OF WATERSHED

As previously described, the project is proposing to construct an industrial warehouse on approximately 26.4 acres. Existing elevations across the site vary from 1446 at the northwest corner to 1444 at the southeast corner (NAVD88 datum). The site is relatively flat and currently slopes at approximately 0.2%. The existing drainage pattern for the site is characterized by sheet flows that follow the approximate slope to the southeast corner of the project site. The sheet flow discharges southeasterly towards the Perris Valley Storm Drain. The project will be constructed after the Perris Valley Storm Drain is widen to its ultimate width. The widening of the PVSD is per a separate project.

The project is located within the Perris Valley Storm Drain Master Drainage Plan (PVSD MDP). Lateral G-2 is the backbone system that conveys flows from the tributary area, which then flows toward the Perris Valley Storm Drain Channel.

PROPOSED CONDITIONS

The project site is impacted by small off-site flows that come from an existing ridgeline located on the south side of the project boundary in Metropolitan Water District (MWD) right-of-way. These off-site flows will impact the area designated for the proposed multi-purpose trail. The area will be landscaped and depressed to conform to water quality standards. Runoff generated from this area will be conveyed into proposed Lateral G-2. Redlands Avenue protects the project site from any runoff that may impact the property on the west. On the north side of the project site, there is a swale that prevents flows from running on-site. To the east of the project, PVSD conveys runoff away from the site.

This project proposes for all on-site runoff to surface flow through the site utilizing ribbon gutters, curb and gutters, grate inlets, and subsurface storm drain systems. The storm drain systems will be used to convey flows into the proposed modular wetland system located on the southeast corner of the project site. Line A and Line B will both drain to this single modular wetland – though they will have different connections to Lateral G-2. For each on-site storm drain mainline, a manhole with an adverse grade pipe downstream will be placed to ensure the tributary water quality volume is retained. The adverse grade will also connect the mainlines to the Lateral G-2 invert. Higher flows will overcome the adverse grade and discharge into lateral G-2.

IDI Gazeley

After the captured flows have been treated by the MWS, they will drain to a proposed pump station that will discharge them into an on-site vault. From the vault, the pumped runoff will gravity flow into Lateral G-2. The pump station will discharge at an appropriate flowrate. The MWS will provide treatment for the entire project site. The treatment model will be MWS-L-8-24-HC from the manufacturer Bio Clean.

METHODOLOGY

HYDROLOGY

Hydrologic calculations were performed in accordance with the RCFC&WCD Hydrology Manual, dated April 1978. The Rational Method was utilized in determining peak flow rates.

The hydrological parameters, including rainfall values and soil types were derived from the RCFC&WCD Hydrology Manual. The isohyetal maps and soil map have been included in Section 2. The land use was assumed to be commercial for the developed as recommended in the hydrology manual. For the small area of offsite flows, the land use was assumed to be undeveloped with good cover due to the proposed landscaping and zero impervious area.

Rational Method calculations were performed using a computer program developed by CivilDesign Corporation and Joseph E. Bonadiman and Associates Inc. The computer program is commonly referred to as CivilD which incorporates the hydrological parameters outlined in the RCFC&WCD Hydrology Manual.

The Rational Method was utilized to determine the peak flow rates used to size and design the subsurface storm drain systems to convey on-site flows. The flow rates were computed by generating a hydrologic "link-node" model in which the overall area is divided into separate drainage sub-areas, each tributary to a concentration point (node) determined by the proposed layout and grading.

HYDRAULICS

Based on the results from the Rational Method Hydrology, a steady state hydraulic analysis of the storm drain system was performed to size/ analyze on-site subsurface storm drain systems. The facilities were analyzed under the established 100-year flow rates – it was assumed that the inlets on grade captured all of their tributary flow. The computer program, Water Surface and Pressure Gradient (WSPG) from CivilDesign, Corp. Version 14.06 (originally Los Angeles County Flood Control District Program F0515P) was used to analyze the system. For additional information and results, see Appendix B.

Normal depth calculations and inlet calculations were performed using the Hydraulic Toolbox 4.4 Software developed by Federal Highway Administration (FHWA) in cooperation with Aquaveo. For results, see Appendix B.

Water quality calculations were performed using spreadsheets that were created by RCFC&WCD. Preliminary calculations and additional details can be found in the Preliminary WQMP (P-WQMP). In addition, copies of the P-WQMP calculations and modular wetland specifications have been included in Appendix B.

Section 1 Rider Distribution Center IV

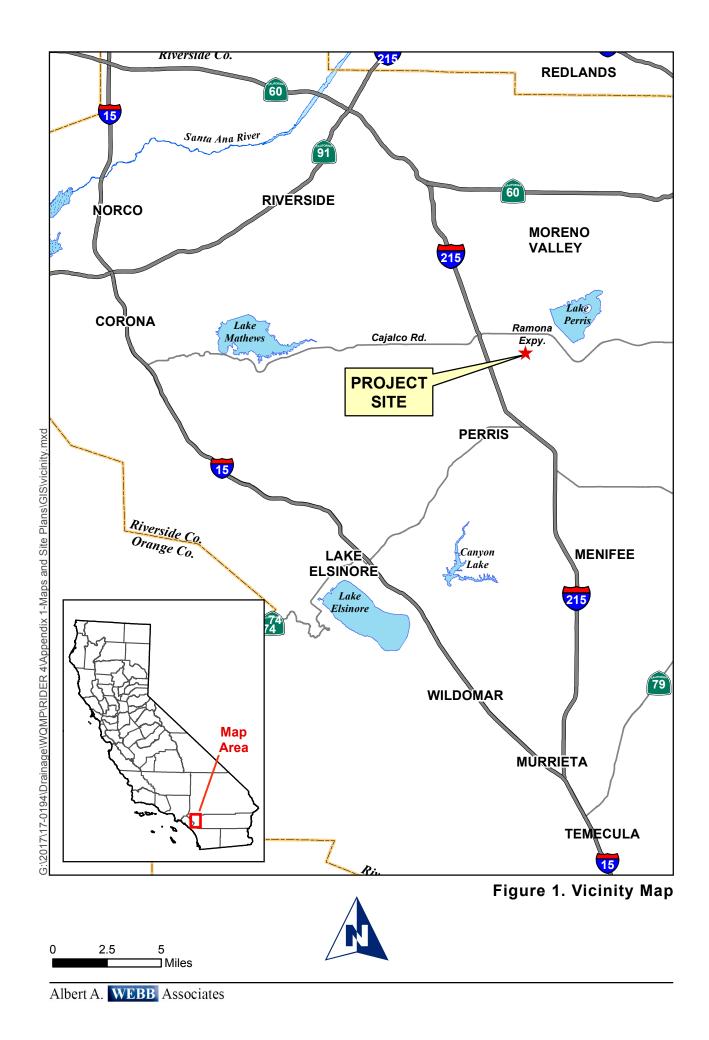

FIG. 1 VICINITY MAP

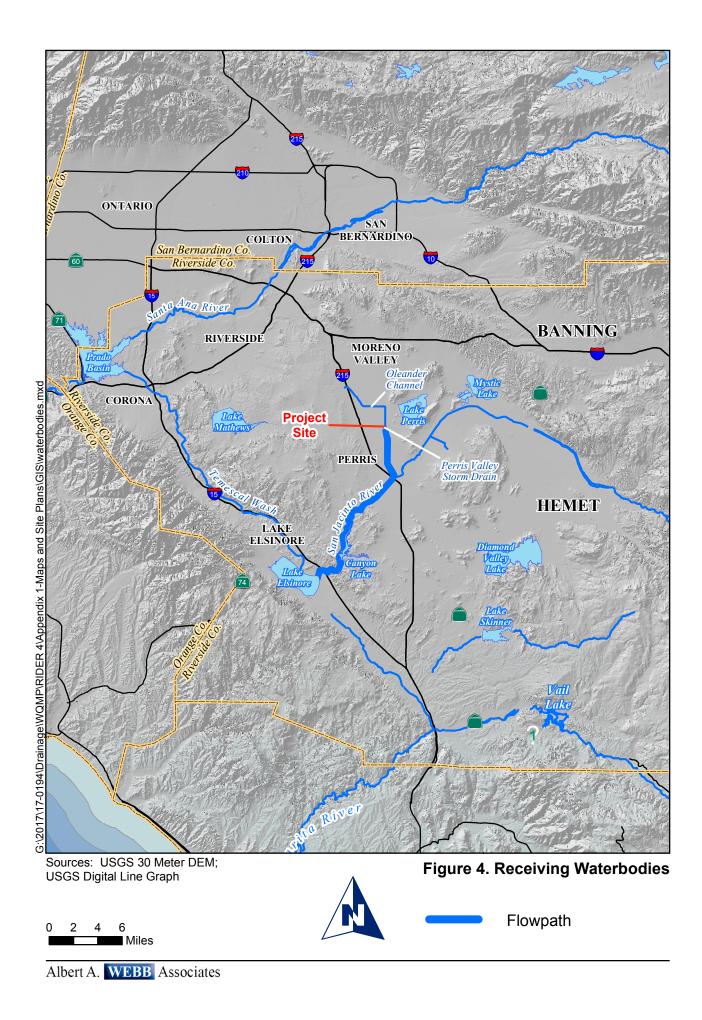
FIG. 2 USGS TOPOGRAPHY MAP

FIG. 3 AERIAL PHOTOGRAPH

FIG. 4 RECEIVING WATERBODIES

FIG. 5 SOILS MAP

Albert A. WEBB Associates



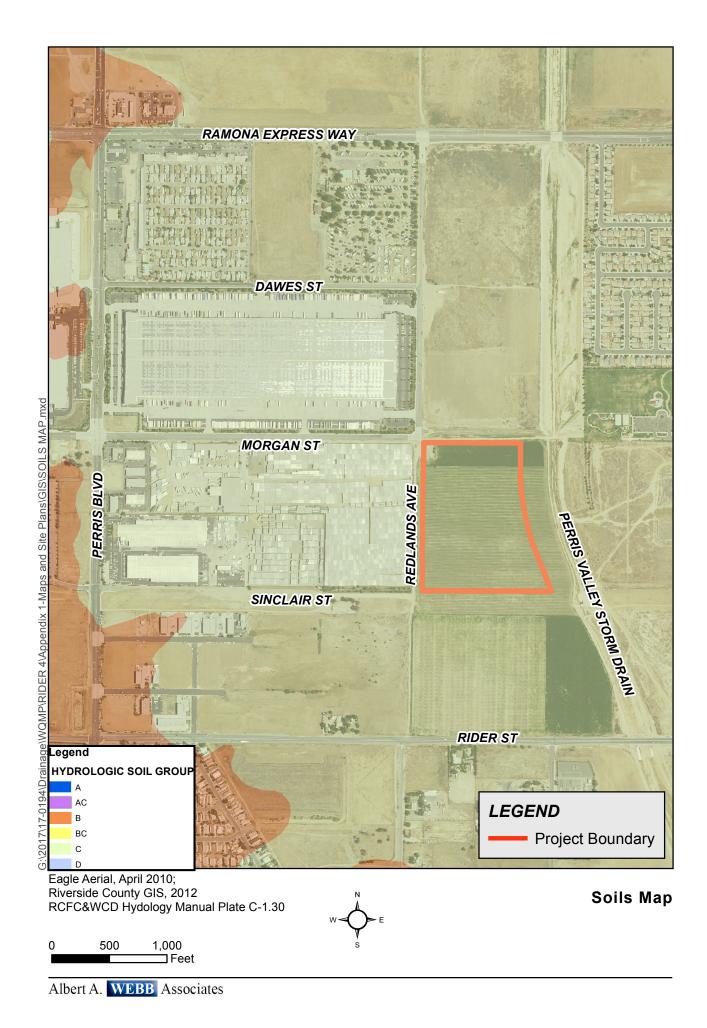

Sources: County of Riverside GIS, 2013; Eagle Aerial, April 2012.

Figure 3. Aerial Photograph

0 400 800

SECTION 2 - HYDROLOGY ANALYSIS

HYDROLOGY PARAMETERS

The RCFC&WCD Hydrology Manual was used to determine several of the hydrological parameters. The following rainfall depths were utilized in the hydrology analyses, which were obtained from the standard intensity-duration curve for Perris Valley from the manual (Plate D-4.1):

Table 1 – Precipita	uton values
	Duration
Storm Event	1-Hour (inches)
10-Year	0.78
100-Year	1.12

Table 1 – Precipitation Values

The value for slope of intensity was determined to be 0.49. This was also found from the standard intensity-duration curve for Perris Valley from the manual (Plate D-4.1). It has been included in Appendix A.

Based on the Plate C-1.30 (Perris) in the RCFC&WCD Hydrology Manual, the project site is comprised of soil type C. The soils map is included in Appendix A.

The cover type was determined based on the proposed use of the site and utilizing Plates D-5.5 and D-5.6 from the Hydrology Manual. The commercial landscaping cover type was used to represent the developed condition. The table below summarizes the runoff index values and recommended values for percentage each category of impervious cover:

Cover Type	Soil Group A	Soil Group B	Soil Group C	Soil Group D	Percentage of Impervious Cover
Undeveloped Poor Cover	67	78	86	89	0%
Commercial Landscaping	32	56	69	75	90%
Undeveloped Good Cover	38	61	74	80	0%

 Table 2 – Cover Type

ON-SITE RATIONAL METHOD HYDROLOGY

The rational method was used to determine peak flow rates in order to adequately size the proposed subsurface storm drain and associated inlets used to convey on-site flows to the proposed Lateral G-2. The project site is separated into two drainage areas which are further divided into sub-areas.

The following table summarizes the rational method results at key points:

Point of Interest	10-Year Peak Flow Rate (cfs)	100-Year Peak Flow Rate (cfs)
Node 105 Runoff generated from Areas-A1 to A5, Project East Side	21.5	31.4
Node 204 Runoff generated from Area-B1 to B4, Project West Side	17.0	24.8
Node 2 Runoff generated from OS-1, Offsite Southerly landscape trail	1.1	1.8

Table 3 – Rational Method Results

The rational method output files and hydrology map have been included in Appendix A.

ON-SITE UNIT HYDROGRAPH METHOD HYDROLOGY

There was no unit hydrograph analysis completed in this preliminary report since basin routing is not required. A unit hydrograph analysis will be included in the final report. It will be needed for a truck court ponding investigation.

SECTION 3 - HYDRAULIC ANALYSIS

ON-SITE STORM DRAIN FACILITIES

A brief summary of each system has been provided and the results of the hydraulic analyses are included in Appendix B. The peak flow rates determined during the 100-year rational method on-site hydrology analysis were utilized to evaluate the proposed storm drain systems.

On-site Line A

Line A will convey flow from the eastern side of the site – the side nearest the Perris Valley Storm Drain Channel. Runoff starts at a high point in the northern drive aisle and continues into the easterly truck court. It drains into a series of inlets on grade before reaching a low point and inlet in sag in the south of the eastern truck court. All inlets in the east side drain to Line A. Preliminary sizing of Line A can be found in the Rational Method output in Appendix A. These pipes will need to be oversized which will minimize ponding in the truck court and reduce head loss in the pipe during high flow events – the lower head loss promotes a greater efficiency of outflow into Lateral G-2. A hydraulic analysis using WSPGW was used to analyze this scenario. The preliminary oversizing of Line A resulted in pipes with diameters of 30-inches upstream to 48-inches downstream. It was assumed that the inlets captured all tributary flows found from the rational method. See Appendix B for WSPGW output.

A short distance after the Line A confluence with the sag inlet lateral, Line A connects to a low flow manhole. After this low flow manhole, Line A begins to gain elevation from an adverse grade before connecting to another manhole. After the second manhole, Line A gravity flows into Lateral G-2. The low flow manhole and adverse grade allow treatment flows to be captured and conveyed to an on-site modular wetland before being pumped into an on-site vault. From the vault, runoff is gravity fed into Lateral G-2.

On-site Line B

Line B will convey flow from the western side of the site – the side nearest Redlands Avenue. Runoff starts at a high point in the northern drive aisle and continues into the westerly truck court. It drains into a series of inlets on grade before reaching a low point and inlet in sag in the south of the western truck court. All inlets in the west side drain to Line B. Preliminary sizing of Line A can be found in the Rational Method output in Appendix A. These pipes will need to be oversized which will minimize ponding in the truck court and reduce head loss in the pipe during high flow events – the lower head loss promotes a greater efficiency of outflow into Lateral G-2. A hydraulic analysis using WSPGW was used to analyze this scenario. The preliminary oversizing of Line B resulted in pipes with diameters of 30-inches upstream to 48-inches downstream. It was assumed that the inlets captured all tributary flows found from the rational method. See Appendix B for WSPGW output.

A short distance after the Line B confluence with the sag inlet lateral, Line B connects to a low flow manhole. After this low flow manhole, Line B begins to gain elevation from an adverse grade before connecting to another manhole. After the second manhole, Line B gravity flows into Lateral G-2. The low flow manhole and adverse grade allow treatment flows to be captured and conveyed to an on-site modular wetland with before being pumped into an on-site vault. From the vault, runoff is gravity fed into Lateral G-2.

The low flows from Line A and B comingle before entering the modular wetland.

<u>Inlets</u>

The preliminary sizing of the inlets were found by taking a worst case scenario approach in terms of tributary flows; final sizing were be more detailed. The design philosophy of the inlets on grade is to have high capture efficiencies which will increase the amount of head in the on-site mainlines; this will allow the runoff to efficiently overcome the adverse grade during high flow events. The inlets in sag will be designed to have low entrance flow depths to minimize water in the truck courts.

IDI Gazeley	Section 3
Drainage Study – April 2019	Rider Distribution Center IV

The inlets on grade were preliminarily designed with a worst case tributary flow of 6.6 cfs (Node 201). Using the SSPWC standard for transverse grating catch basins, a five grate catch basin -3.0 feet wide and 10.8 feet long - has a capture efficiency of 93%. This is more than enough since the downstream tributary areas produce much less runoff.

The inlets in sag were preliminarily designed with a worst case tributary flow of 13.5 cfs. It accounts for the worst case tributary flowrate for a sump inlet (Node 105) plus 10% assumed as bypass flow from the upstream flow-by inlets. Using the SSPWC standard for transverse grating catch basins, a five grate catch basin – 3.0 feet wide and 10.8 feet long – creates a ponding depth of 0.36 feet. This is determined to be well within normal parameters.

Though this preliminary analysis shows minimal ponding, a truck court ponding study will be completed during final design. It will incorporate hydraulic grade lines in Lateral G-2, available truck court storage volumes and runoff flow rates to gauge the ponding potential of the system as a whole.

Water Quality Discharge System

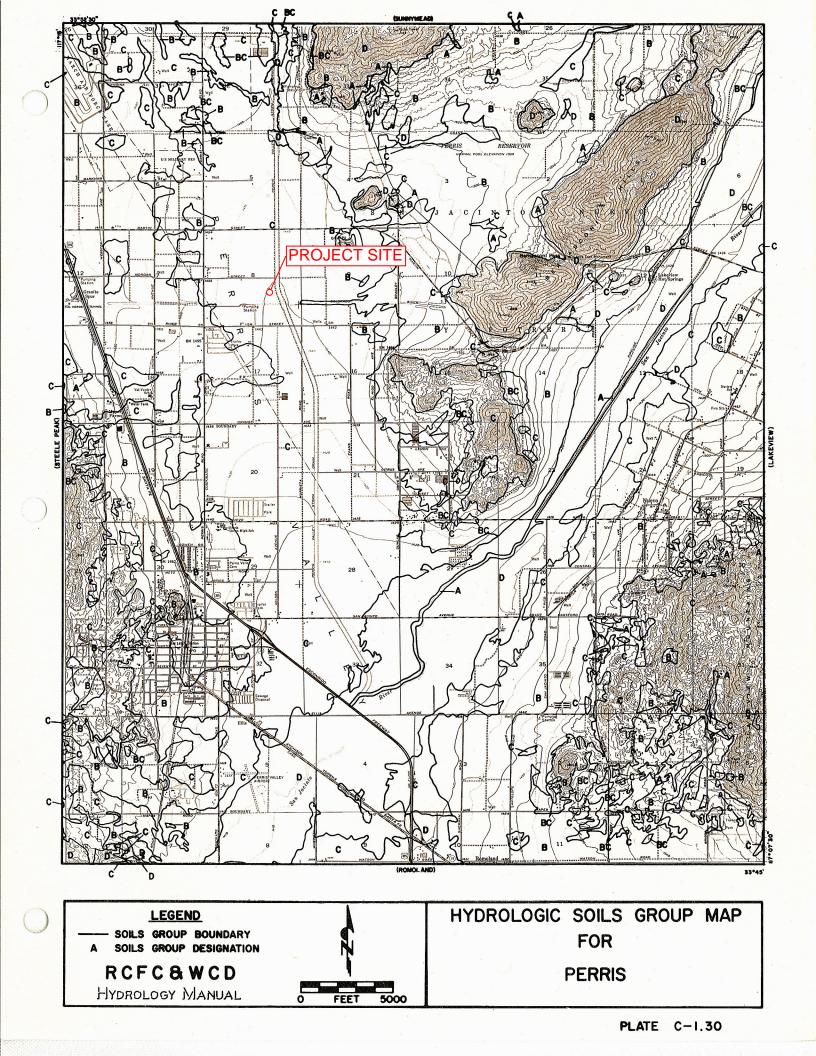
The proposed water quality discharge system will be further analyzed during final design.

Lateral G-2

The Perris Valley Master Drainage Plan (MDP) currently shows the proposed Lateral G-2 section along the property southern property line as a 5 foot deep trapezoidal concrete channel with a 0.1% slope. It proposes a peak flowrate of 301 cfs. A more in depth analysis will be completed during final design.

SECTION 4 - CONCLUSION

Based on the analyses and results of this report, the following conclusions were derived from the hydrology and hydraulic results:


- The proposed on-site subsurface storm drain systems will adequately convey flows to the modular wetland and provide flood protection for the 100-year storm event.
- The proposed modular wetland will adequately treat on-site flows.
- The proposed project will not impact flooding conditions to upstream or downstream properties.

APPENDIX A – HYDROLOGY

HYDROLOGIC SOILS GROUP MAP (PLATE C-1.30)

STANDARD INTENSITY-DURATION CURVES (PLATE D-4.1)

.EY	REQUENCY 0 100 AR YEAR	► 4 N O 8 • • • • • • • • • • • • • • • • • • •	2.57 2.57 2.57 2.37 2.29	2.21 2.14 2.08 2.02 1.97	1.92 1.83 1.75 1.69	1.57 1.52 1.48 1.44	1.22 1.29 1.12 1.12		<mark>4 90</mark>
PERRIS VALL	DURATION FRE Minutes 10 Year	04000	10 1.08 11 1.79 12 1.77 13 1.65 14 1.59	15 165 176 187 198 198 198 198 198 198 198 198 198 198	20 1.23 22 1.23 24 1.22 26 1.182 28 1.18	30 32 34 1,00 36 1,00 36 1,00 38 1,00 00 50 38 38	40 .95 45 .90 55 .88 81 60 .78	~~~~~	SLOPE = •
PALM SPRINGS	DURATION FREQUENCY MINUTES 10 100 YEAR YEAR	5 4.23 6.76 5 3.80 6.08 7 3.48 5.56 8 3.22 5.15 9 3.01 4.81	10 2.83 4.52 11 2.67 4.28 12 2.54 4.07 13 2.43 3.88 14 2.33 3.72	15 2.23 3.58 16 2.15 3.44 17 2.08 3.32 18 2.01 3.22 19 1.95 3.12	20 1.89 3.03 22 1.79 2.86 24 1.70 2.72 26 1.62 2.60 28 1.56 2.49	30 1.49 2.39 32 1.44 2.30 34 1.39 2.22 36 1.34 2.15 38 1.30 2.09	40 1.27 2.02 45 1.18 1.89 50 1.11 1.78 55 1.05 1.68 60 1.00 1.60	65 •95 1.53 70 •91 1.46 75 •88 1.46 80 •85 1.35 85 •82 1.31	SLOPE = .580
NORCO	DURATION FREQUENCY Minutes 10 100 Year Year	5 2.77 4.16 6 2.53 3.79 7 2.34 3.51 8 2.19 3.29 9 2.07 3.10	10 1.96 2.94 11 1.87 2.80 12 1.79 2.68 13 1.72 2.58 14 1.66 2.48	15 1.60 2.40 16 1.55 2.32 17 1.50 2.25 18 1.46 2.19 19 1.42 2.13	20 1.39 2.08 22 1.32 1.98 24 1.26 1.90 26 1.22 1.82 28 1.17 1.76	30 1.13 1.70 32 1.10 1.64 34 1.06 1.59 36 1.03 1.55 38 1.01 1.51	40 .98 1.47 45 .92 1.39 50 .88 1.31 55 .84 1.25 60 .80 1.20	65 .77 1.15 70 .74 1.11 75 .72 1.07 80 .69 1.04 85 .67 1.01	SLOPE = .500
MURRIETA - TEMECULA & Rancho California	DURATION FREQUENCY Minutes 10 100 Year Year	5 3.45 5.10 6 3.12 4.61 7 2.87 4.24 8 2.67 3.94 9 2.50 3.69	10 2.36 3.48 11 2.24 3.30 12 2.13 3.15 13 2.04 3.01 14 1.96 2.89	15 1.89 2.79 16 1.82 2.69 17 1.76 2.60 18 1.71 2.52 19 1.66 2.45	20 1.61 2.38 22 1.53 2.26 24 1.46 2.15 26 1.39 2.06 28 1.34 1.99	30 1.29 1.90 32 1.24 1.84 34 1.20 1.78 36 1.17 1.72 38 1.13 1.67	40 1.10 1.62 45 1.03 1.52 50 .97 1.44 55 .92 1.36 60 .88 1.30	65 •84 1.24 70 •81 1.19 75 •78 1.15 80 •75 1.11 85 •73 1.07	SLOPE = .550
MIRA LOMA	DURATION FREQUENCY MINUTES 10 100 YEAR YEAR	~~~~~	10 1.96 3.10 11 1.87 2.95 12 1.78 2.82 13 1.71 2.70 14 1.64 2.60	15 1.58 2.50 16 1.53 2.42 17 1.48 2.34 18 1.44 2.34 19 1.40 2.21	20 1.36 2.15 22 1.29 2.04 24 1.24 1.95 26 1.18 1.87 28 1.14 1.80 28 1.14 1.80	30 1.10 1.73 32 1.06 1.67 34 1.03 1.62 36 1.00 1.57 38 .97 1.53	40 .94 1.49 45 .89 1.40 50 .84 1.32 55 .80 1.26 55 .76 1.20	65 .73 1.15 70 .70 1.11 75 .68 1.07 80 .65 1.03 85 .63 1.00	SLOPE = .530
CFC & WCD Ydrology Manual				STANDARD INTENSITY - DURATION CURVES DATA					

RATIONAL METHOD HYDROLOGY

10-YEAR PROPOSED HYDROLOGY

EAST SIDE – TRIBUTARY TO LINE A

PROP10EAST.out

Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:PROP10EAST.out 17-0357 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - ONSITE FLOWS 10 YEAR STORM EVENT, EAST SIDE (LINE A) FN: PROP10EAST.OUT TSW ***** Hydrology Study Control Information ********* English (in-lb) Units used in input data file Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.780(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 548.000(Ft.) Top (of initial area) elevation = 1449.700(Ft.) Top (of initial area) elevation = 1449.700(Ft.)Bottom (of initial area) elevation = 1446.700(Ft.)Difference in elevation = 3.000(Ft.)Slope = 0.00547 s(percent) = 0.55TC = $k(0.300)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 10.592 min. Rainfall intensity = 1.825(In/Hr) for a 10.10.0 year storm Rainfall intensity = 1.025(11) in COMMERCIAL subarea type Runoff Coefficient = 0.878Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group D = 0.000RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.043(CFS) Total initial stream area = 1.900(Ac.) Pervious area fraction = 0.100**** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1442.500(Ft.) Downstream point/station elevation = 1442.300(Ft.) Downstream point/station elevation = 1441.700(Ft.) Pipe length = 274.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 3.043(C Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 3.043(CFS) Normal flow depth in pipe = 10.20(In.) 3.043(CFS)

PROP10EAST.out Flow top width inside pipe = 14.00(In.) Pipe flow velocity = 8.43(In.) Pipe flow velocity = 3.43(Ft/s) Travel time through pipe = 1.33 min. Time of concentration (TC) = 11.92 min. COMMERCIAL subarea type Runoff Coefficient = 0.877 Runoff Coefficient = 0.877 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 11.92 min. Rainfall intensity = 1.722(In/Hr) for a 10.0 year storm Subarea runoff = 3.170(CFS) for 2.100(Ac.) Total runoff = 6.213(CFS) Total area = 4.000(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.700(Ft.) Downstream point/station elevation = 1441.000(Ft.) Pipe length = 221.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 6.213(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 6.213(CFS) Normal flow depth in pipe = 14.30(In.) Flow top width inside pipe = 14.55(In.) Critical Depth = 11.56(In.) Pipe flow velocity = 4.13(Ft/s) Travel time through pipe = 0.89 min. Time of concentration (TC) = 12.82 min. COMMERCIAL subarea type Runoff Coefficient = 0.876 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.82 min. Rainfall intensity = 1.662(In/Hr) for a 10.0 year storm Subarea runoff = 3.203(CFS) for 2.200(Ac.) Total runoff = 9.416(CFS) Total area = 6.200(Ac.) ***** Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.000(Ft.) Downstream point/station elevation = 1440.300(Ft.) Pipe length = 222.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 9.416(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 9.416(CFS) Normal flow depth in pipe = 16.78(In.) Flow top width inside pipe = 16.83(In.) Critical Depth = 13.70(In.) Pipe flow velocity = 4.57(Ft/s) Travel time through pipe = 0.81 min. Time of concentration (TC) = 13.63 min.

PROP10EAST.out ***** Process from Point/Station 104.000 to Point/Station **** SUBAREA FLOW ADDITION **** 104.000 COMMERCIAL subarea type Runoff Coefficient = 0.876 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000Decimal fraction soil group D = 0.000RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.63 min. Rainfall intensity = 1.613(In/Hr) for a 10.0 year stor Subarea runoff = 3.530(CFS) for 2.500(Ac.) Total runoff = 12.946(CFS) Total area = 8.700(Ac.) 10.0 year storm **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1440.300(Ft.) Upstream point/station elevation = 1440.300(Ft.) Downstream point/station elevation = 1439.600(Ft.) Pipe length = 244.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 12.946(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 12.946(CFS) Normal flow depth in pipe = 19.36(In.) Flow top width inside pipe = 18.96(In.) Critical Depth = 15.54(In.) Pipe flow velocity = 4.76(Ft/s) Travel time through pipe = 0.85 min. Time of concentration (TC) = 14.48 min. COMMERCIAL subarea type Runoff Coefficient = 0.875 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 14.48 min. Rainfall intensity = 1.565(In/Hr) for a 10.0 year stor Subarea runoff = 8.630(CFS) for 6.300(Ac.) Total runoff = 21.576(CFS) Total area = 15.000(Ac.) 10.0 year storm **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 15.000(Ac.) Runoff from this stream = 21.576(CFS) Time of concentration = 14.48 min. Rainfall intensity = 1.565(In/Hr) Summary of stream data: Summary of stream data: Stream Flow rate тс Rainfall Intensity (min) (In/Hr) NO. (CFS) 21.576 14.48 1.565 1 Largest stream flow has longer time of concentration Qp = 21.576 + sum of Qp = 21.576Total of 1 streams to confluence: Flow rates before confluence point: 21.576 Area of streams before confluence: 15.000 Page 3

PROP10EAST.out

Results of confluence: Total flow rate = 21.576(CFS) Time of concentration = 14.480 min. Effective stream area after confluence = 15.000(Ac End of computations, total study area = 15.0 The following figures may be used for a unit hydrograph study of the same area. 15.000(Ac.) 15.00 (Ac.) Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 69.0

Drainage Study – February 2019

WEST SIDE – TRIBUTARY TO LINE B

WEST SIDE – TRIBUTARY TO LINE B

PROP10WEST.out

Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:PROP10WEST.out 17-0357 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - ONSITE FLOWS 10 YEAR STORM EVENT, WEST SITE (LINE B) FN: PROP10WEST.OUT TSW ***** Hydrology Study Control Information ********* English (in-lb) Units used in input data file Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.780(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 100.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 599.000(Ft.) Top (of initial area) elevation = 1449.700(Ft.) Bottom (of initial area) elevation = 1446.400(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.00551 s(percent)= 0.55 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.962 min. Rainfall intensity = 1.794(In/Hr) for a 10.0 year stor COMMERCIAL subarea type Runoff Coefficient = 0.877 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 4.565(CFS) Total initial stream area = 2.900(Ac.) Top (of initial area) elevation = 1449.700(Ft.) 10.0 year storm Total initial stream area = 2.900(Ac.) Pervious area fraction = 0.100**** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1442.100(Ft.) Downstream point/station elevation = 1442.100(Ft.) Downstream point/station elevation = 1441.500(Ft.) Pipe length = 235.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 4.565(C Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 4.565(CFS) Normal flow depth in pipe = 12.12(In.) 4.565(CFS)

PROP10WEST.out Flow top width inside pipe = 16.89(In.) Travel time through pipe = 1.08 min. Time of concentration (TC) = 12.05 min. COMMERCIAL subarea type Runoff Coefficient = 0.877 Runoff Coefficient = 0.877 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.05 min. Rainfall intensity = 1.713(In/Hr) for a 10.0 year storm Subarea runoff = 3.154(CFS) for 2.100(Ac.) Total runoff = 7.719(CFS) Total area = 5.000(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.500(Ft.) Downstream point/station elevation = 1441.000(Ft.) Pipe length = 224.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 7.719(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 7.719(CFS) Normal flow depth in pipe = 16.36(In.) Flow top width inside pipe = 17.43(In.) Critical Depth = 12.35(In.) Pipe flow velocity = 3.84(Ft/s) Travel time through pipe = 0.97 min. Time of concentration (TC) = 13.02 min. COMMERCIAL subarea type Runoff Coefficient = 0.876 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.02 min. Rainfall intensity = 1.649(In/Hr) for a 10.0 year storm Subarea runoff = 3.178(CFS) for 2.200(Ac.) Total runoff = 10.897(CFS) Total area = 7.200(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.000(Ft.) Downstream point/station elevation = 1440.400(Ft.) Pipe length = 240.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 10.897(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 10.897(CFS) Normal flow depth in pipe = 17.63(In.) Flow top width inside pipe = 21.20(In.) Critical Depth = 14.19(In.) Pipe flow velocity = 4.41(Ft/s) Travel time through pipe = 0.91 min. Time of concentration (TC) = 13.93 min.

PROP10WEST.out ***** Process from Point/Station 204.000 to Point/Station **** SUBAREA FLOW ADDITION **** 204.000 COMMERCIAL subarea type Runoff Coefficient = 0.875 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.93 min. Rainfall intensity = 1.596(In/Hr) for a 10.0 year stor Subarea runoff = 6.146(CFS) for 4.400(Ac.) Total runoff = 17.043(CFS) Total area = 11.600(Ac.) 10.0 year storm **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 11.600(Ac.) Runoff from this stream = 17.043(CFS) Time of concentration = 13.93 min. Rainfall intensity = 1.596(In/Hr) Summary of stream data: Rainfall Intensity Stream Flow rate TC (CFS) (min) NO. (In/Hr) Largest stream flow has longer time of concentration Qp = 17.043 + sum of Qp = 17.043Total of 1 streams to confluence: Flow rates before confluence point: 17.043 Area of streams before confluence: 11.600 Results of confluence: Total flow rate = 17.043(CFS) Time of concentration = 13.927 min. Effective stream area after confluence = 11.600(Ac.) 11.60 (Ac.) End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100Area averaged RI index number = 69.0

OFF-SITE SOUTH SIDE

OFFSITE10.out

Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:OFFSITE10.out 17-0358 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - OFFSITE FLOWS 10 YEAR STORM EVENT FN: OFFSITE10.OUT TSW _____ ****** Hydrology Study Control Information ********* English (in-lb) Units used in input data file _____ Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.780(In/Hr) Slope of intensity duration curve = 0.4900 Initial area flow distance = 948.000(Ft.) Top (of initial area) elevation = 1446.500(Ft.) Bottom (of initial area) elevation = 1445.500(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00105 s(percent)= 0.11 TC = k(0.940)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 57.440 min. Rainfall intensity = 0.797(In/Hr) for a 10.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.567 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 74.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.129(CFS) Total initial stream area = 2.500(Ac.) 0.00105 s(percent)= 0.11 slope = Total initial stream area = 2.500(Ac.) Pervious area fraction = 1.000Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.500(Ac.) Runoff from this stream = 1.129(CFS) Time of concentration = 57.44 min. Rainfall intensity = 0.797(In/Hr) Summary of stream data: Summary of stream data:

OFFSITE10.out Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.129 57.44 0.797 Largest stream flow has longer time of concentration Qp = 1.129 + sum of Qp = 1.129 Total of 1 streams to confluence: Flow rates before confluence point: 1.129 Area of streams before confluence: 2.500 Results of confluence: Total flow rate = 1.129(CFS) Time of concentration = 57.440 min. Effective stream area after confluence = 2.500(Ac.) End of computations, total study area = 2.50 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 74.0

100-YEAR PROPOSED HYDROLOGY

ON-SITE EAST SIDE – TRIBUTARY TO LINE A

PROP100EAST.out

Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:PROP100EAST.out 17-0357 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - ONSITE FLOWS 100 YEAR STORM EVENT, EAST SIDE (LINE A) FN: PROP100EAST.OUT TSW ******* Hydrology Study Control Information ********* English (in-lb) Units used in input data file Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.120(In/Hr) Slope of intensity duration curve = 0.4900 Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 548.000(Ft.) Top (of initial area) elevation = 1449.700(Ft.) Top (of initial area) elevation = 1449.700(Ft.)Bottom (of initial area) elevation = 1446.700(Ft.)Difference in elevation = 3.000(Ft.)Slope = 0.00547 s(percent)= 0.55TC = $k(0.300)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 10.592 min. Rainfall intensity = 2.620(In/Hr) for a 100.0 year storm Pervious area fraction = 0.100**** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1442.500(Ft.) Downstream point/station elevation = 1442.500(Ft.) Downstream point/station elevation = 1441.700(Ft.) Pipe length = 274.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 4.397(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 4.397(CFS) Normal flow depth in pipe = 11.25(In.)

PROP100EAST.out Flow top width inside pipe = 17.43(In.) Travel time through pipe = 1.21 min. Time of concentration (TC) = 11.80 min. COMMERCIAL subarea type Runoff Coefficient = 0.883 Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 11.80 min. Rainfall intensity = 2.485(In/Hr) for a 100.0 year storm Subarea runoff = 4.605(CFS) for 2.100(Ac.) Total runoff = 9.002(CFS) Total area = 4.000(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.700(Ft.) Downstream point/station elevation = 1441.000(Ft.) Pipe length = 221.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 9.002(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 9.002(CFS) Normal flow depth in pipe = 16.05(In.) Flow top width inside pipe = 17.82(In.) Critical Depth = 13.37(In.) Pipe flow velocity = 4.56(Ft/s) Travel time through pipe = 0.81 min. Time of concentration (TC) = 12.61 min. COMMERCIAL subarea type Runoff_Coefficient = 0.882 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.61 min. Rainfall intensity = 2.406(In/Hr) for a 100.0 year storm Subarea runoff = 4.668(CFS) for 2.200(Ac.) Total runoff = 13.670(CFS) Total area = 6.200(Ac.) ***** Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.000(Ft.) Downstream point/station elevation = 1440.300(Ft.) Pipe length = 222.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 13.670(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 13.670(CFS) Normal flow depth in pipe = 19.55(In.) Flow top width inside pipe = 18.66(In.) Critical Depth = 15.98(In.) Pipe flow velocity = 4.99(Ft/s) Travel time through pipe = 0.74 min. Time of concentration (TC) = 13.35 min.

PROP100EAST.out ***** Process from Point/Station 104.000 to Point/Station **** SUBAREA FLOW ADDITION **** 104.000 COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.35 min. Rainfall intensity = 2.339(In/Hr) for a 100.0 year storm Subarea runoff = 5.156(CFS) for 2.500(Ac.) Total runoff = 18.826(CFS) Total area = 8.700(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1440.300(Ft.) Downstream point/station elevation = 1439.600(Ft.) Pipe length = 244.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 18.826(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 18.826(CFS) Normal flow depth in pipe = 23.53(In.) Flow top width inside pipe = 18.07(In.) Critical Depth = 18.20(In.) Pipe flow velocity = 5.12(Ft/s) Travel time through pipe = 0.79 min. Time of concentration (TC) = 14.14 min. COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 14.14 min. Rainfall intensity = 2.274(In/Hr) for a 100.0 year storm Subarea runoff = 12.624(CFS) for 6.300(Ac.) Total runoff = 31.450(CFS) Total area = 15.000(Ac.) **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 15.000(Ac.) Runoff from this stream = 31.450(CFS) Time of concentration = 14.14 min. Rainfall intensity = 2.274(In/Hr) Summary of stream data: Summary of stream data: Stream Flow rate тс Rainfall Intensity (min) NO. (CFS) (In/Hr) 31.450 14.14 2.274 1 Largest stream flow has longer time of concentration Qp = 31.450 + sum of Qp = 31.450Total of 1 streams to confluence: Flow rates before confluence point: 31.450 Area of streams before confluence: 15.000 Page 3

PROP100EAST.out

PROP100EAST.out Results of confluence: Total flow rate = 31.450(CFS) Time of concentration = 14.142 min. Effective stream area after confluence = 15.000(Ad End of computations, total study area = 15.00 The following figures may be used for a unit hydrograph study of the same area. 15.000(Ac.) 15.00 (Ac.)

Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 69.0

ON-SITE WEST SIDE – TRIBUTARY TO LINE B

PROP100WEST.out

Riverside County Rational Hydrology Program

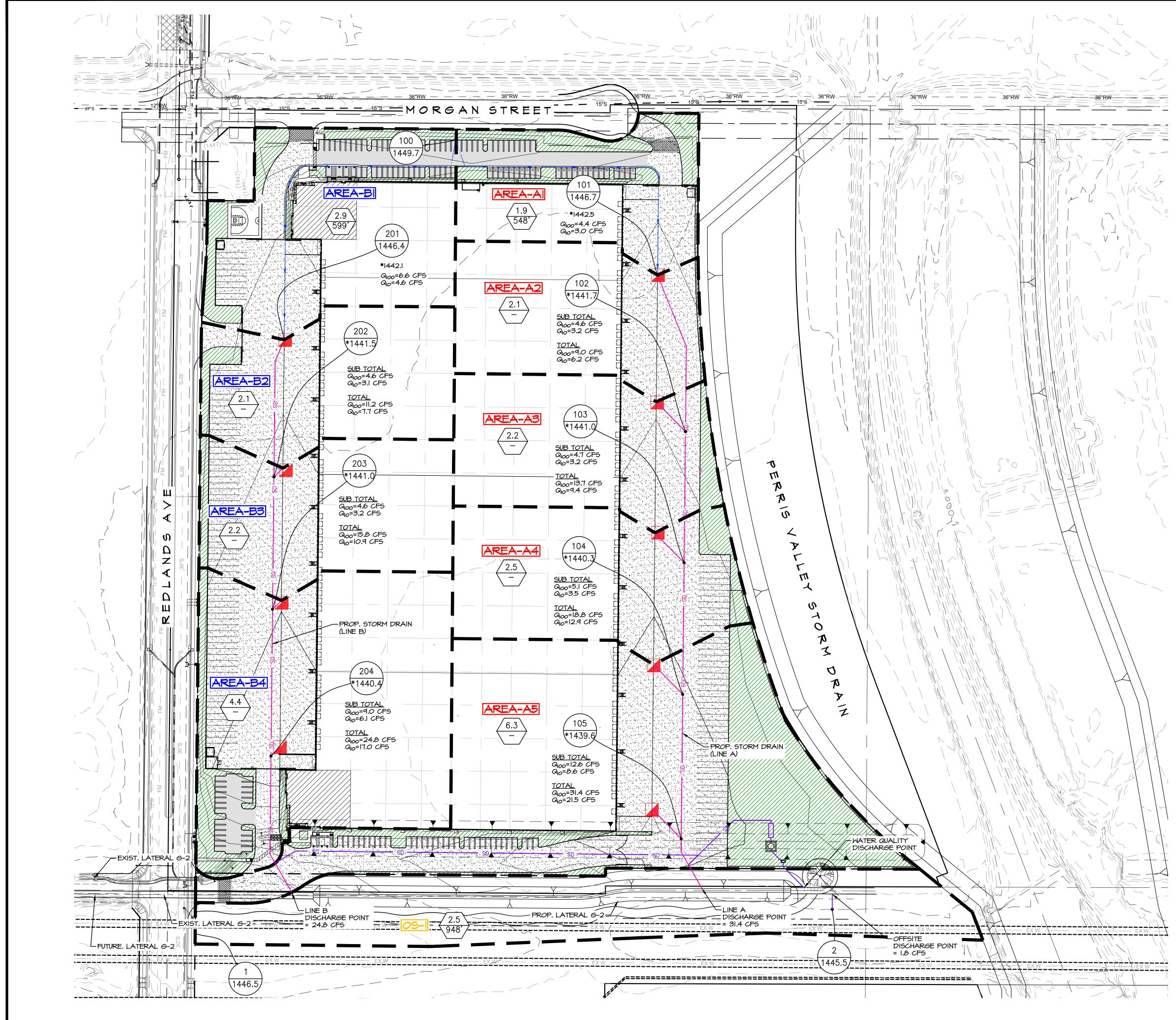
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:PROP100WEST.out 17-0357 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - ONSITE FLOWS 100 YEAR STORM EVENT, WEST SITE (LINE B) FN: PROP100WEST.OUT TSW ******* Hydrology Study Control Information ********* English (in-lb) Units used in input data file Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.120(In/Hr)
Slope of intensity duration curve = 0.4900 Process from Point/Station 100.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 599.000(Ft.) Top (of initial area) elevation = 1449.700(Ft.) Bottom (of initial area) elevation = 1446.400(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.00551 s(percent)= 0.55 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.962 min. Rainfall intensity = 2.576(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 6.597(CFS) Total initial stream area = 2.900(Ac.) Pervious area fraction = 0.100 Top (of initial area) elevation = 1449.700(Ft.) Pervious area fraction = 0.100**** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1442.100(Ft.) Downstream point/station elevation = 1442.100(Ft.) Downstream point/station elevation = 1441.500(Ft.) Pipe length = 235.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 6.597(C Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 6.597(CFS) Normal flow depth in pipe = 13.71(In.) 6.597(CFS)

PROP100WEST.out Flow top width inside pipe = 19.99(In.) Pipe flow velocity = 1.37(In.) Pipe flow velocity = 3.97(Ft/s) Travel time through pipe = 0.99 min. Time of concentration (TC) = 11.95 m 11.95 min. COMMERCIAL subarea type Runoff Coefficient = 0.882 Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 11.95 min. Rainfall intensity = 2.470(In/Hr) for a 100.0 year storm Subarea runoff = 4.576(CFS) for 2.100(Ac.) Total runoff = 11.173(CFS) Total area = 5.000(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.500(Ft.) Downstream point/station elevation = 1441.000(Ft.) Pipe length = 224.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 11.173(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 11.173(CFS) Normal flow depth in pipe = 18.94(In.) Flow top width inside pipe = 19.58(In.) Critical Depth = 14.38(In.) Pipe flow velocity = 4.20(Ft/s) Travel time through pipe = 0.89 min. Time of concentration (TC) = 12.84 min. COMMERCIAL subarea type Runoff_Coefficient = 0.882 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.84 min. Rainfall intensity = 2.384(In/Hr) for a 100.0 year storm Subarea runoff = 4.626(CFS) for 2.200(Ac.) Total runoff = 15.799(CFS) Total area = 7.200(Ac.) **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1441.000(Ft.) Downstream point/station elevation = 1440.400(Ft.) Pipe length = 240.00(Ft.) Manning's N = 0.012 No. of pipes = 1 Required pipe flow = 15.799(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 15.799(CFS) Normal flow depth in pipe = 20.84(In.) Flow top width inside pipe = 22.67(In.) Critical Depth = 16.64(In.) Pipe flow velocity = 4.80(Ft/s) Travel time through pipe = 0.83 min. Time of concentration (TC) = 13.67 min.

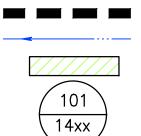
PROP100WEST.out ***** Process from Point/Station 204.000 to Point/Station **** SUBAREA FLOW ADDITION **** 204.000 COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.67 min. Rainfall intensity = 2.312(In/Hr) for a 100.0 year storm Subarea runoff = 8.967(CFS) for 4.400(Ac.) Total runoff = 24.766(CFS) Total area = 11.600(Ac.) **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 11.600(Ac.) Runoff from this stream = 24.766(CFS) Time of concentration = 13.67 min. Rainfall intensity = 2.312(In/Hr) Summary of stream data: Rainfall Intensity Stream Flow rate TC (CFS) (min) NO. (In/Hr) Largest stream flow has longer time of concentration Qp = 24.766 + sum of Qp = 24.766Total of 1 streams to confluence: Flow rates before confluence point: 24.766 Area of streams before confluence: 11.600 Results of confluence: Total flow rate = 24.766(CFS) Time of concentration = 13.671 min. Effective stream area after confluence = 11.600(Ac.) 11.60 (Ac.) End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100Area averaged RI index number = 69.0

OFF-SITE SOUTH SIDE

OFFSITE100.out


Riverside County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 03/05/19 File:OFFSITE100.out 17-0358 RIDER DISTRIBUTION CENTER IV RATIONAL METHOD HYDROLOGY - OFFSITE FLOWS 100 YEAR STORM EVENT FN: OFFSITE100.OUT TSW ******* Hydrology Study Control Information ********* English (in-lb) Units used in input data file _____ Program License Serial Number 4010 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (vear) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1)
For the [Perris Valley] area used.
10 year storm 10 minute intensity = 1.880(In/Hr)
10 year storm 60 minute intensity = 0.780(In/Hr)
100 year storm 10 minute intensity = 2.690(In/Hr)
100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.120(In/Hr) Slope of intensity duration curve = 0.4900 Initial area flow distance = 948.000(Ft.) Top (of initial area) elevation = 1446.500(Ft.) Bottom (of initial area) elevation = 1445.500(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00105 s(percent)= 0.11 TC = k(0.940)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 57.440 min. Rainfall intensity = 1.144(In/Hr) for a 100.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.639 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 74.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.827(CFS) 0.00105 s(percent)= 0.11 slope = 1.827(CFS) 2.500(Ac.) Initial subarea runoff = Total initial stream area = Pervious area fraction = 1.000Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.500(Ac.) Runoff from this stream = 1.827(CFS) Time of concentration = 57.44 min. Rainfall intensity = 1.144(In/Hr) Summary of stream data: Summary of stream data:

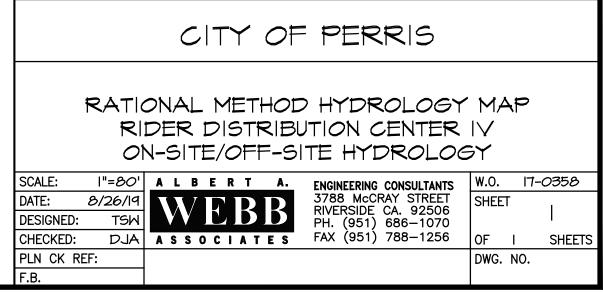

OFFSITE100.out Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.827 57.44 1.144 Largest stream flow has longer time of concentration Qp = 1.827 + sum of Qp = 1.827 Total of 1 streams to confluence: Flow rates before confluence point: 1.827 Area of streams before confluence: 2.500 Results of confluence: Total flow rate = 1.827(CFS) Time of concentration = 57.440 min. Effective stream area after confluence = 2.500(Ac.) End of computations, total study area = 2.50 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 74.0

HYDROLOGY MAPS

*l4XX

<u>5.0</u> (1000)

LANDSCAPING NODE DESIGNATION NODE ELEVATION


*INVERT ELEVATION

FLOW DIRECTION

WATERSHED AREA (ACRES) LONGEST WATER PATH (FT)

DRAINAGE MANAGEMENT BOUNDARY

APPENDIX B – HYDRAULICS

LINE-A

T1 17-0358 RIDER DISTRIBUTION T2 ONSITE STORM DRAIN LINE A	I CENTER IV	LINEA100.WSW LINE G-2, 100 YEAR	0
T3 FN:LINEA100.WSW SO 1000.0001440.160 1		1444.160	
REM ASSUMED SOFFIT CONTROL FO		1444.100	
R 1014.3701440.200 1	.013		.000 .000 0
TS 1019.8701440.220 1	.012		.000 .000
R 1039.7401439.390 1	.012		.000 .000 0
TS 1045.2401439.410 2	.012		.000 .000
R 1084.1301439.520 2	.012		.000 30.000 0
R 1105.0001439.590 2	.012		.000 .000 0
JX 1110.0001439.600 2 4	.012 4.400	1439.590	-45.0 0.000
R 1345.0001440.310 2	.012	1440 210	.000 .000 0
JX 1350.0001440.320 2 4 R 1570.0001440.990 2	.012 4.600 .012	1440.310	-45.0 0.000 .000 .000 0
R 1570.0001440.990 2 JX 1575.0001441.000 3 4	.012 4.700	1440.990	.000 .000 0 -45.0 0.000
R 1790.0001441.650 3	.012 4.700	1440.990	.000 .000 0
JX 1795.0001441.660 3 4	.012 5.100	1441.650	-45.0 0.000
R 1937.6001442.080 3	.012	1111.050	.000 -22.500 0
R 2065.2501442.470 3	.012		.000 .000 0
WE 2065.2501442.470 5	. 500		
R 2068.2501442.480 5	.013		.000
SH 2068.2501442.480 5		1442.120	
CD 1 4 1 .000 4.000 CD 2 4 1 .000 3.000 CD 3 4 1 .000 2.500		.00 .00	
CD 2 4 1 .000 3.000		000 .00	
CD 3 4 1 .000 2.500		000 .00	
CD 4 4 1 .000 1.500 CD 5 2 0 .000 5.000		000 .00	
	5.000 .000 .	000 .00	
Q 12.600 .0			

LINEA100.EDT FILE: LINEA100.WSW W S P G W - EDIT LISTING - Version 14.06 Date: 3- 6-2019 Time: 8:46: 0 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE Y(6) Y(7) Y(8) Y(9) Y(10) ΖL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 4.000 1 CD 2 4 1 3.000 ĊD 3 4 1 2.500 CD 4 4 1 1.500 CD 5 2 0 .000 5.000 5.000 .00 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS -17-0358 RIDER DISTRIBUTION CENTER IV HEADING LINE NO 2 IS -ONSITE STORM DRAIN LINE A CONNECTS TO EXIST. LINE G-2, 100 YEAR HEADING LINE NO 3 IS -FN:LINEA100.WSW WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING 1 IS A SYSTEM OUTLET ELEMENT NO U/S DATA STATION INVERT SECT W S ELEV 1000.000 1440.160 1444.160 1 REMARKS: ASSUMED SOFFIT CONTROL FOR SO FLEMENT NO 2 TS A REACH $\dot{\mathbf{x}}$ * STATION TNVFRT RADIUS U/S DATA SECT Ν ANGLE ANG PT MAN H 1014.370 1440.200 .013 .000 1 .000 .000 0 ELEMENT NO 3 IS A TRANSITION INVERT SECT RADTUS U/S DATA STATION Ν ANGLE .000 1019.870 1440.220 1 .012 000 ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT Ν RADIUS ANGLE ANG PT MAN H 1039.740 1439.390 1 .012 .000 .000 000 0 THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS INVERT ELEV -WARNING ELEMENT NO 5 IS A TRANSITION U/S DATA STATION INVERT SECT Ν RADIUS ANGLE 1045.240 1439.410 2 .012 .000 000 * ELEMENT NO 6 IS A REACH * U/S DATA STATION INVERT SECT Ν RADIUS ANGLE ANG PT MAN H 1084.130 1439.520 2 .012 .000 .000 30.000 0 ELEMENT NO 7 IS A REACH * * * Ν RADIUS U/S DATA STATION INVERT SECT ANGLE ANG PT MAN H 1105.000 1439.590 2 .012 .000 .000 .000 0 ELEMENT NO 8 IS A JUNCTION * * * * * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 Ν Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 1110.000 1439.600 2 4 0 .012 4.400 .000 1439.590 .000 -45.000 .000 RADIUS ANGLE .000 .000 ELEMENT NO 9 IS A REACH U/S DATA STATTON TNVFRT SECT Ν RADIUS ANGL F ANG PT MAN H 1345.000 1440.310 2 .012 .000 .000 .000 0 ELEMENT NO 10 IS A JUNCTION * ÷ * ÷ * INVERT SECT LAT-1 LAT-2 U/S DATA Q3 STATION Ν 04 INVERT-3

```
Page 1
```

		LI	NEA100.E	т					
INVERT-4 PHI 3		1350.000 1440.3	20 2	4	0	.012	4.600	.000	1440.310
.000 -45.000	.000								RADIUS
ANGLE									.000
.000	_		W	SPO	G W				
PAGE		ER SURFACE PROFI	LE - ELEM	IENT CA	ARD LIS	TING			
ELEMENT NO 11 :	IS A REACH U/S DATA	* STATION INVE	* * RT SECT			N			RADIUS
ANGLE ANG	PT MAN H	1570.000 1440.9	90 2			.012			.000
.000 .000 ELEMENT NO 12 :		*	* *	*	ŕ		*		*
INVERT-4 PHI 3	U/S DATA	STATION INVE	RT SECT	LAT-1	LAT-2	Ν	Q3	Q4 :	INVERT-3
	.000	1575.000 1441.0	00 3	4	0	.012	4.700	.000	1440.990
	.000								RADIUS
ANGLE									.000
.000 ELEMENT NO 13 I		*	* *						
ANGLE ANG	U/S DATA PT MAN H		RT SECT			N			RADIUS
.000 .000		1790.000 1441.6				.012			.000
ELEMENT NO 14 : *		*	* *	5	¢.		*		*
INVERT-4 PHI 3	U/S DATA PHI 4	STATION INVE	RT SECT	LAT-1	LAT-2	Ν	Q3	Q4 :	INVERT-3
.000 -45.000	.000	1795.000 1441.6	60 3	4	0	.012	5.100	.000	1441.650
ANGLE									RADIUS
.000									.000
ELEMENT NO 15		* STATION INVE	* * RT SECT			N			RADIUS
ANGLE ANG	U/S DATA PT MAN H								
.000 -22.500		1937.600 1442.0 *	s vo			.012			.000
ELEMENT NO 16	U/S DATA		RT SECT			Ν			RADIUS
	PT MAN H	2065.250 1442.4	70 3			.012			.000
.000 .000 ELEMENT NO 17		RANCE	*						
	U/S DATA	STATION INVE 2065.250 1442.4				FP .500			
ELEMENT NO 18	IS A REACH U/S DATA	*	RT SECT			N			RADIUS
ANGLE ANG	PT MAN H	2068.250 1442.4				.013			.000
.000 .000 ELEMENT NO 19 3			*				*		
	U/S DATA	STATION INVE 2068.250 1442.4							S ELEV 2.120

W S P G W - CIVILDESIGN Version 14.06

Program Package Serial Number: 1585

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE A CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEA100.WSW

F'N:LINEAIOO.WSW													* * *		
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT	!!!	ZL	No Wt Prs/E	
	 Ch Slope *******		******			 SF Ave ******	 HF *******		 Froude N		 "N" ******	 X-Fall ******	 ZR ****	Type	
1000.000	 1440.160 		1444.160 	31.40	2.50		1444.26	.00	 1.66 	.00	4.000	.000 	.00	 _	.0
.000	· ·					.0005	.00	4.00	.00	1.80	.013	.00		'PIPE	
1000.000	1440.160		1444.160 	31.40	2.50		1444.26	.00	1.66 	.00	4.000	.000 	.00	' 1 -	.0
14.370	.0028					.0005	.01	4.00	.00	1.80	.013	.00		'PIPE	
1014.370	1440.200 		1444.165 	31.40	2.50		1444.26	.00 		.74	4.000	.000 	.00	' 1 -	.0
TRANS STR	.0036					.0004	.00	' 3.97 	.11 	· 	.012	.00 	.00	'PIPE	
1019.870	1440.220 	3.947		31.40	2.51		1444.26	.00 		.91	4.000	.000 	.00	' 1 -	.0
1.234	0418					.0004	.00	' 3.95	.12	.00	.012	.00	.00	'PIPE	
	1440.168 		1444.168 	31.40	2.50		1444.27	.00 	1.66 	.00	4.000	.000 	.00	1 -	.0
18.636	0418		· · ·			.0004	.01	4.00	.00	.00	.012	.00	.00	PIPE	
1039.740	1439.390 		1444.176 	31.40	2.50		1444.27	.00 	1.66 	.00	4.000	.000 	.00	1 -	.0
TRANS STR	.0036					.0011	.01	4.79	.00		.012	.00	.00	PIPE	
	1439.410		1444.015	31.40	4.44		1444.32	.00	1.82	.00	3.000	.000	.00	1 -	.0
38.890	.0028					.0019	.07	4.60	.00	2.06	.012	.00	.00	PIPE	
1084.130	1439.520 	4.599	1444.119 	31.40	4.44		1444.42	.00 	1.82	.00	3.000	.000 	.00	1 -	.0
20.870	.0034		· · ·			.0019	.04	4.60	.00	1.94	.012	.00	.00	PIPE	
1105.000 -	1439.590 	4.568	1444.158 	31.40	4.44		1444.46	.00 	1.82	.00	3.000	.000	.00	1 -	.0
JUNCT STR	.0020					.0016	.01	4.57	.00		.012	.00	.00	PIPE	

W S P G W - CIVILDESIGN Version 14.06

Program Package Serial Number: 1585

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE A CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEA100.WSW

FN:LINEA100.WSW ***********************************														* * *	
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.		Critical Depth	-	Height/ DiaFT	!!!!	ZL	No Wt Prs/E	
- L/Elem ********	 Ch Slope *******				I	SF Ave	HF	SE Dpth	Froude N		 "N" ******	 X-Fall ******	 ZR ****	Type	
1110.000	1439.600		1444.292	27.00	3.82		1444.52	.00	1.68	.00	3.000	.000	.00	1	.0
235.000						.0014	.33	4.69	1		.012	- .00		- PIPE	
1345.000	1440.310		1444.620	27.00	3.82		1444.85	.00	1.68	.00	3.000	.000 	.00	1	.0
JUNCT STR	.0020					.0012	.01	4.31	.00		.012	.00		PIPE	
1350.000	1440.320 	4.410	1444.730	22.40	3.17		1444.89	.00	1.52	.00	3.000	.000 	.00	1 -	.0
220.000	.0030					.0010	.21	4.41	.00	1.61	.012	.00		- PIPE	
1570.000	1440.990		1444.941	22.40	3.17		1445.10	.00	1.52	.00	3.000	.000 	.00	1	.0
JUNCT STR	.0020					.0013	.01	3.95	.00		.012	.00		PIPE	
1575.000	1441.000	3.939	1444.939	17.70	3.61	.20	1445.14	.00	1.42	.00	2.500	.000 	.00	1 -	.0
215.000	.0030					.0016	.34	3.94	.00	1.58	.012	.00		PIPE	
1790.000	1441.650	3.630		17.70	3.61	.20	1445.48	.00	1.42	.00	2.500	.000	.00	1	.0
JUNCT STR	.0020					.0012	.01	3.63	.00		.012	.00		PIPE	
1795.000	1441.660	3.759	1445.420	12.60	2.57		1445.52	.00	1.19 	.00	2.500	.000	.00	1 _	.0
142.600	.0029			1		.0008	.11	3.76	1	1.28	.012	.00		 PIPE	
1937.600	1442.080		1445.542	12.60	2.57	.10	1445.64	.00 	1.19 	.00	2.500	.000 	.00	1 _	.0
127.650	.0031	-		- 1	_	.0008	.10	3.46		1.27	.012	.00		PIPE	
2065.250	1442.470	3.175	1445.645	12.60	2.57		1445.75	.00	1.19	.00	2.500	.000 	.00	 _	.0
WALL EN		_	_	-1	_		_	–	I –	–	–	_		I	

W S P G W - CIVILDESIGN Version 14.06 Program Package Serial Number: 1585

WATER SURFACE PROFILE LISTING Date: 3-6-2019 Time: 8:46: 3

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE A CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEA100.WSW

			EN. LINEAL(0.00										
***************************************													* * * * * * * *	
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	Critical	Flow Top	Height/	Base Wt		No Wth
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/Pip
-														
L/Elem	Ch Slope					SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Ch
*******	*******	******	*******	*******	******	******	*******	******	*******	*******	******	******	****	******
2065.250	1442.470	3.314	1445.784	12.60	.76	.01	1445.79	.00	.58	5.00	5.000	5.000	.00	0.0
-													-	-
3.000	.0033					.0000	.00	3.31	.07	.61	.013	.00	.00	RECTANG
2068.250	1442.480	3.304	1445.784	12.60	.76	.01	1445.79	.00	.58	5.00	5.000	5.000	.00	0.0
-													-	-

LINE-B

LINEB100.WSW T1 17-0358 RIDER DISTRIBUTION CENTER IV T2 ONSITE STORM DRAIN LINE B CONNECTS TO EXIST. LINE G-2, 100 YEAR	0
T3 FN:LINEB100.WSW	
SO 1000.0001441.210 1 1445.210	
REM ASSUMED SOFFIT CONTROL FOR SO R 1026.0001441.290 1 .013 TS 1031.5001441.300 1 .012 R 1053.0001439.970 1 .012 TS 1058.5001439.990 2 .012 R 1073.7501440.020 2 .012 R 1250.0001440.320 2 .012 JX 1250.0001440.330 2 4 R 1432.1301440.880 2 .012 TS 1437.6301440.900 3 .012 R 1495.0001441.040 3 .012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
JX 1500.0001441.050 3 4 .012 4.600 1441.050	45.0 0.000
R 1715.0001441.570 3 .012	.000 .000 0
JX 1720.0001441.580 3 4 .012 4.600 1440.330	45.0 0.000
R 1907.0601442.020 3 .012 R 1943.2501442.110 3 .012	.000 22.500 0
R 1943.2501442.110 3 .012 WE 1943.2501442.110 5 .500	.000 .000 0
R 1946.2501442.120 5 .013 SH 1946.2501442.120 5 1442.120	.000
CD 1 4 1 .000 4.000 .000 .000 .000 .00	
CD 1 4 1 .000 4.000 .000 .000 .000 .000 CD 2 4 1 .000 3.000 .000 .000 .000 .000 CD 3 4 1 .000 2.500 .000 .000 .000 .000	
CD 4 4 1 .000 1.500 .000 .000 .000 .00	
CD 5 2 0 .000 5.000 5.000 .000 .000 .00	
Q 9.000 .0	

LINEB100.EDT FILE: LINEB100.WSW W S P G W - EDIT LISTING - Version 14.06 Date: 3- 6-2019 Time: 8:47:55 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE Y(6) Y(7) Y(8) Y(9) Y(10) ΖL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) CODE TYPE PIER/PIP WIDTH NO DIAMETER WIDTH DROP CD 1 4 4.000 1 CD 2 4 1 3.000 ĊD 3 4 1 2.500 CD 4 4 1 1.500 CD 5 2 0 .000 5.000 5.000 .00 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS -17-0358 RIDER DISTRIBUTION CENTER IV HEADING LINE NO 2 IS -ONSITE STORM DRAIN LINE B CONNECTS TO EXIST. LINE G-2, 100 YEAR HEADING LINE NO 3 IS -FN:LINEB100.WSW WSPGW PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING 1 IS A SYSTEM OUTLET ELEMENT NO STATION INVERT SECT W S ELEV U/S DATA 1000.000 1441.210 1445.210 1 REMARKS: ASSUMED SOFFIT CONTROL FOR SO FLEMENT NO 2 IS A REACH * RADIUS U/S DATA STATION TNVERT SECT Ν ANGL F ANG PT MAN H 1026.000 1441.290 .013 .000 1 .000 .000 0 ELEMENT NO 3 IS A TRANSITION STATION INVERT SECT RADTUS U/S DATA Ν ANGLE .000 1031.500 1441.300 1 .012 000 ELEMENT NO 4 IS A REACH U/S DATA STATION INVERT SECT Ν RADIUS ANGLE ANG PT MAN H 1053.000 1439.970 1 .012 .000 .000 000 0 THE ABOVE ELEMENT CONTAINED AN INVERT ELEV WHICH WAS NOT GREATER THAN THE PREVIOUS INVERT ELEV -WARNING ELEMENT NO 5 IS A TRANSITION U/S DATA STATION INVERT SECT Ν RADIUS ANGLE 1058.500 1439.990 2 .012 .000 000 * ELEMENT NO 6 IS A REACH * U/S DATA STATION INVERT SECT Ν RADIUS ANGLE ANG PT MAN H 1073.750 1440.020 2 .012 .000 .000 30.000 0 ELEMENT NO 7 IS A REACH * * * INVERT SECT Ν RADIUS U/S DATA STATION ANGLE ANG PT MAN H 1245.000 1440.320 2 .012 .000 .000 .000 0 ELEMENT NO 8 IS A JUNCTION * * * * * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 Ν Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 1250.000 1440.330 2 4 .012 6.600 .000 0 1440.330 .000 45.000 .000 RADIUS ANGLE .000 .000 9 IS A REACH ELEMENT NO U/S DATA STATTON TNVERT SECT Ν RADIUS ANGL F ANG PT MAN H .000 1432.130 1440.880 2 .012 .000 .000 0 ELEMENT NO 10 IS A TRANSITION 4 -5 U/S DATA INVERT SECT STATION RADIUS N ANGL F

Page 1

		LINE 1437.630 1440.900	B100.EDT 3	.012	.000
.000			WSPGW		
	PAGE NO 3	ER SURFACE PROFILE		TINC	
ELEMENT	NO 11 IS A REACH	* *	*		
ANGLE	U/S DATA ANG PT MAN H	STATION INVERT	SECT	Ν	RADIUS
.000	.000 0	1495.000 1441.040	3	.012	.000
	NO 12 IS A JUNCTION	* *	* * *	*	*
	U/S DATA	STATION INVERT	SECT LAT-1 LAT-2	N Q3	Q4 INVERT-3
INVERT-4	PHI 3 PHI 4	1500.000 1441.050	3 4 0	.012 4.600	.000 1441.050
.000	45.000 .000				RADIUS
ANGLE					.000
.000		* *			.000
	NO 13 IS A REACH U/S DATA	STATION INVERT		Ν	RADIUS
ANGLE	ANG PT MAN H	1715.000 1441.570	3	.012	.000
.000	.000 0 NO 14 IS A JUNCTION	* *	-	*	*
	*				
INVERT-4	U/S DATA PHI 3 PHI 4	STATION INVERT	SECT LAT-1 LAT-2	N Q3	Q4 INVERT-3
.000	45.000 .000	1720.000 1441.580	3 4 0	.012 4.600	.000 1440.330
ANGLE					RADIUS
					.000
.000 ELEMENT	NO 15 IS A REACH	* *	*		
ANGLE	U/S DATA ANG PT MAN H	STATION INVERT	SECT	Ν	RADIUS
.000	22.500 0	1907.060 1442.020	3	.012	.000
	NO 16 IS A REACH	* *			
ANGLE	U/S DATA ANG PT MAN H	STATION INVERT	SECT	Ν	RADIUS
.000	.000 0	1943.250 1442.110	3	.012	.000
	NO 17 IS A WALL ENTE		*		
	U/S DATA	STATION INVERT 1943.250 1442.110	5	FP .500	
ELEMENT	NO 18 IS A REACH U/S DATA	* * STATION INVERT		N	RADIUS
ANGLE	ANG PT MAN H	1946.250 1442.120	5	.013	.000
.000			, *	.015	.000
ELEMENT	NO 19 IS A SYSTEM HEAU U/S DATA	STATION INVERT	SECT	*	W S ELEV
		1946.250 1442.120	5		1442.120

W S P G W - CIVILDESIGN Version 14.06

Program Package Serial Number: 1585

WATER SURFACE PROFILE LISTING Date: 3- 6-2019 Time: 8:47:59

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE B CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEB100.WSW

FILE: LINEB100.WSW

Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width	Height/ DiaFT		ZL	No Wt Prs/F	
L/Elem ********	Ch Slope	******	******	******	*****	SF Ave	HF ******	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR ****	Type	
1000.000	1441.210	4.000	1445.210	24.80	1.97		1445.27	.00 	 1.47 	.00	 4.000 	.000	.00	1	.0
.000	.0031	 				.0003	.00	4.00	.00	1.53	.013	.00		- PIPE	
1000.000	1	4.000	1445.210	24.80	1.97		1445.27	.00	1.47	.00	4.000	.000	.00	1 _	.0
26.000	.0031	1				.0003	.01	4.00	.00	1.53	.013	.00	.00	PIPE	
1026.000	1441.290		1445.216	24.80	1.98		1445.28	.00 	1.47 	1.08	4.000	.000	.00	1 _	.0
TRANS STR	.0018	1				.0002	.00	3.93	.10	1	.012	.00		PIPE	
1031.500	1441.300	3.917	1445.217	24.80	1.98		1445.28	.00 	1.47	1.14	4.000	.000	.00	1 _	.0
1.326	0619	1				.0002	.00	3.92	.11 	.00	.012	.00		PIPE	
1032.826			1445.218	24.80	1.97		1445.28	.00 	1.47	.00	4.000	.000	.00	1 -	.0
20.174	0619	1				.0003	.01	4.00	.00	.00	.012	.00		'PIPE	
1053.000	1439.970 		1445.223	24.80	1.97		1445.28	.00 	1.47	.00 	4.000	.000	.00	1 -	.0
TRANS STR	.0036	1				.0007	.00	5.25	.00	1	.012	.00		'PIPE	
1058.500	1439.990 	5.133	1445.123 	24.80	3.51	.19	1445.31	.00 	1.61 	.00	3.000	.000	.00	1 -	.0
15.250	.0020	1				.0012	.02	5.13	.00	1.98	.012	.00		'PIPE	
1073.750		5.139	1445.159 	24.80	3.51			.00 	1.61 	.00	3.000	.000	.00	1 -	.0
171.250	.0018	I				.0012	.20	5.14	.00	2.07	.012	.00		'PIPE	
1245.000	1440.320	5.041	1445.361	24.80	3.51	.19	1445.55	.00 	1.61 	.00	3.000	.000	.00	1 -	.0
JUNCT STR		1	I	I		.0009	.00	5.04	.00	1	.012	.00		PIPE	

W S P G W - CIVILDESIGN Version 14.06

Program Package Serial Number: 1585

WATER SURFACE PROFILE LISTING Date: 3-6-2019 Time: 8:47:59

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE B CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEB100.WSW

FN:LINEB100.WSW													* * *		
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Elev	Critical Depth	Width		Base Wt or I.D.	ZL	No Wt Prs/E	
- L/Elem *******	 Ch Slope *******				 ******	SF Ave	HF	SE Dpth	 Froude N ******	Norm Dp	"N"	 X-Fall ******	 ZR ****	Type ****	
	1440.330 		1445.465 	18.20			 1445.57	.00 	 1.37 	.00	3.000	 .000 	.00	 1 -	.0
182.130	I I				 	.0006	.12	5.14	.00	1.43	.012	.00		PIPE	
	1440.880		1445.581	18.20	2.57		1445.68 	.00 	1.37	.00 	3.000	.000 	.00	1 -	.0
TRANS STR	.0036				· · ·	.0012	.01	4.70	.00		.012	.00 		PIPE	
	1440.900 		1445.499 	18.20			1445.71 	.00 	1.45 	.00	2.500	.000 	.00	1 -	.0
57.370	.0024					.0017	.10	4.60	.00	1.74	.012	.00	.00	PIPE	
	1441.040		1445.595 	18.20			1445.81 	.00		.00	2.500	.000	.00	1 -	.0
JUNCT STR						.0013	.01	4.56	.00		.012	.00	.00	PIPE	
-	1441.050 		1445.737 	13.60			1445.86 		1	.00	1	.000	.00	1	.0
215.000						.0009	.20	4.69		1.43	.012	.00		PIPE	
-	1441.570 		1445.938 	13.60			1		1.24	.00	1	.000 	-	1 -	.0
JUNCT STR	.0020					.0007	.00	4.37 	.00		.012	.00		PIPE	
-	1441.580 		1446.022 	9.00			1	1	1	1	1	.000	.00	-	.0
187.060	.0024					.0004	.08	4.44	.00	1.13	.012	.00		PIPE	
-	1442.020 		1446.102 	9.00	1.83 		1			1	1	.000		1 -	.0
36.190	.0025					.0004	.01	4.08		1.11	.012	.00		PIPE	
-	1442.110		1446.117	9.00			1446.17 	.00	1.00	.00	2.500 	.000 	.00	1 -	.0
WALL EN:	TRANCE														

W S P G W - CIVILDESIGN Version 14.06 Program Package Serial Number: 1585

WATER SURFACE PROFILE LISTING Date: 3-6-2019 Time: 8:47:59

17-0358 RIDER DISTRIBUTION CENTER IV

ONSITE STORM DRAIN LINE B CONNECTS TO EXIST. LINE G-2, 100 YEAR

FN:LINEB100.WSW

*******	*******	********	**********	**********	*******	*******	* * * * * * * * * * *	******	*******	* * * * * * * * * *	******	* * * * * * * * * *	*****	* * * * * * * *
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical Depth	Flow Top Width		Base Wt or I.D.	ZL	No Wth Prs/Pip
L/Elem	 Ch Slope ********		******	*****	******	 SF Ave ******	 HF *******	-	 Froude N	-	 "N" ******	 X-Fall ******	 ZR *****	Type Ch ******
1943.250	1442.110	4.080	1446.190	9.00	.44	.00	 1446.19 	.00	.47	5.00	5.000	5.000	.00	0.0
3.000	.0033					.0000	.00	4.08	.04	.49	.013	.00	.00	RECTANG
1946.250 -	1442.120	4.070 	1446.190 	9.00	.44 	.00	 1446.19 	.00 	 .47 	 5.00 	 5.000 	5.000 	.00	0.0 -

INLET CALCULATIONS

Hydraulic Analysis Report

Project Data

Project Title: Designer: Project Date: Tuesday, March 5, 2019 Project Units: U.S. Customary Units Notes:

Median/Ditch Drop-Inlet Analysis: InletOnGrade

Notes: Using the following channel: TruckCourt

Channel Analysis: TruckCourt

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 143.0000 ft/ft Side Slope 2 (Z2): 200.0000 ft/ft Longitudinal Slope: 0.0030 ft/ft Manning's n: 0.0140 Flow: 6.6000 cfs

Result Parameters

Depth: 0.1812 ft Area of Flow: 5.6286 ft^2 Wetted Perimeter: 62.1401 ft Hydraulic Radius: 0.0906 ft Average Velocity: 1.1726 ft/s Top Width: 62.1390 ft Froude Number: 0.6866 Critical Depth: 0.1567 ft Critical Velocity: 1.5665 ft/s Critical Slope: 0.0065 ft/ft Critical Top Width: 55.29 ft Calculated Max Shear Stress: 0.0339 lb/ft^2 Calculated Avg Shear Stress: 0.0170 lb/ft^2

Inlet Data:

Grate Width: 3.0000 ft

Grate Length: 10.8100 ft

Computed Data:

Intercepted flow: 6.1394 cfs

Bypass flow: 0.4606 cfs

Hydraulic Analysis Report

Project Data

Project Title: Designer: Project Date: Tuesday, March 5, 2019 Project Units: U.S. Customary Units Notes:

Median/Ditch Drop-Inlet Analysis: InletInSag

Notes: Using the following channel: TruckCourt

Channel Analysis: TruckCourt

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 143.0000 ft/ft Side Slope 2 (Z2): 200.0000 ft/ft Longitudinal Slope: 0.0030 ft/ft Manning's n: 0.0140 Flow: 13.5000 cfs

Result Parameters

Depth: 0.2369 ft Area of Flow: 9.6271 ft² Wetted Perimeter: 81.2677 ft Hydraulic Radius: 0.1185 ft Average Velocity: 1.4023 ft/s Top Width: 81.2663 ft Froude Number: 0.7180 Critical Depth: 0.2087 ft Critical Velocity: 1.8075 ft/s Critical Slope: 0.0059 ft/ft Critical Top Width: 73.61 ft Calculated Max Shear Stress: 0.0444 lb/ft² Calculated Avg Shear Stress: 0.0222 lb/ft²

Inlet Data:

Grate Width: 3.0000 ft

Grate Length: 10.8100 ft

Computed Data:

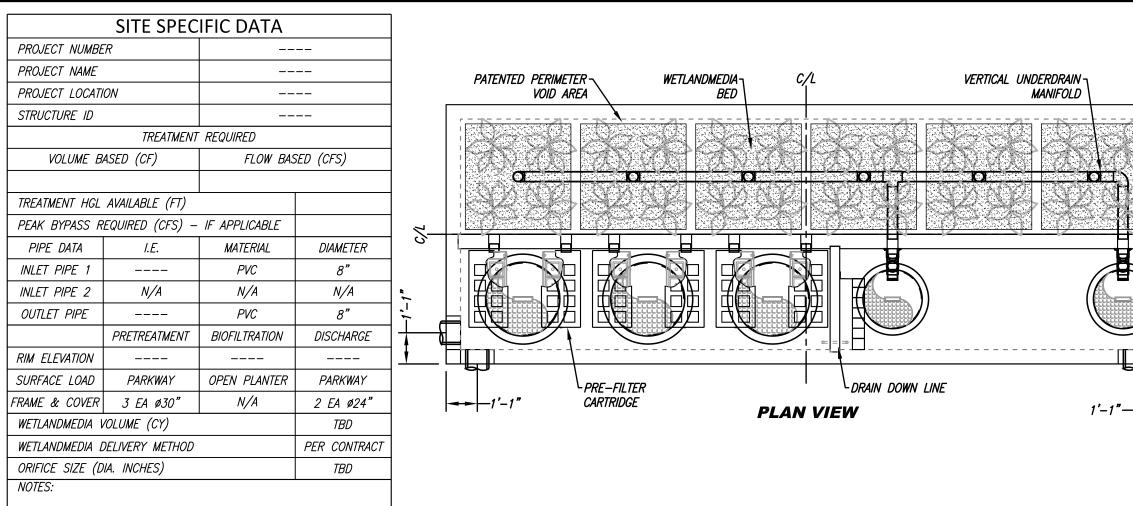
Perimeter: 27.6200 ft

Effective Perimeter: 20.7150 ft

Area: 29.1870 ft^2

Effective Area: 21.8903 ft^2

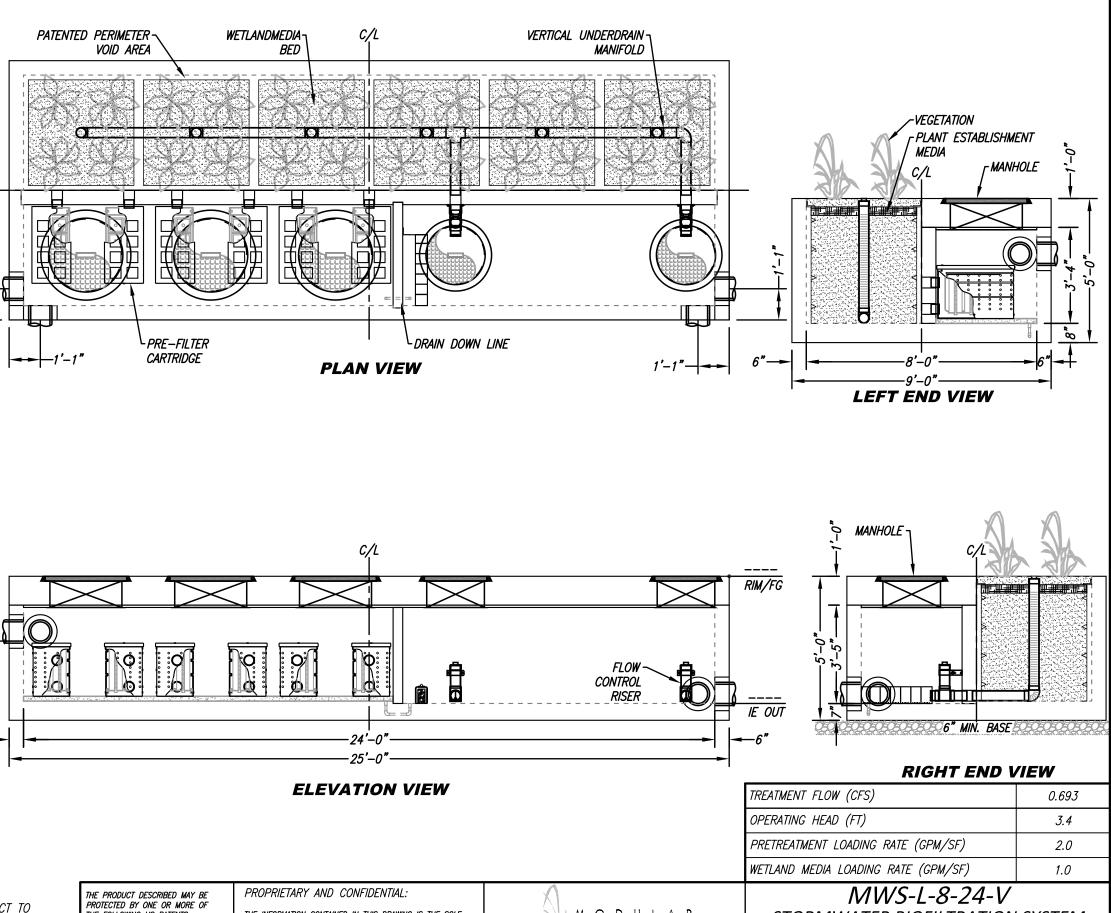
Depth at Center of Grate: 0.3614 ft


Computed Top width at Sag: 123.9498 ft

WATER QUALITY CALCULATIONS AND ATTACHMENTS

*See Preliminary-WQMP for additional details

	Santa	Ana Wat	ershed - BMP I	т 1		Required Entries								
	<u></u>		(Rev. 10-2011)	Legend:		Calculated Cells								
			heet shall <u>only</u> be used	' in conjunctio	n with BMP	designs from the	LID BMP L							
	ny Name		ebb Associates						4/25/2019					
Designe		TSW						Case No	PX-XXXX					
Compan	ny Project 1	Number/Nam	e		Rider IV									
				BMP I	dentificati	on								
BMP N	AME / ID	Modular We	tland System											
				st match Nan	ne/ID used o	on BMP Design	Calculation	Sheet						
				Design l	Rainfall De	epth								
85th Per from the	0.63	inches												
from the Isohyetal Map in Handbook Appendix E														
Drainage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP														
									Proposed					
				Effective	DMA		Design	Design Capture	Volume on					
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Storm Depth (in)	Volume, V_{BMP} (cubic feet)	Plans (cubic feet)					
	L-A	7475	Ornamental	0.1	0.11	825.7		(0000)000	,,					
	R-A	567098	Landscaping Roofs	1	0.89	505851.4								
	H-A	451119	Concrete or Asphalt	1	0.89	402398.1								
	SR-A	110345	concrete of Asphalt	1	0.09	402338.1								
		1103 13												
		1136037	7	0.63	47726.4	47727								
										8				
Notes:														



INSTALLATION NOTES

- CONTRACTOR TO PROVIDE ALL LABOR. EQUIPMENT. MATERIALS AND 1. INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 3. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. IE IN (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL GAPS AROUND PIPES SHALL BE SEALED WATER TIGHT WITH A NON-SHRINK GROUT PER MANUFACTURERS STANDARD CONNECTION DETAIL AND SHALL MEET OR EXCEED REGIONAL PIPE CONNECTION STANDARDS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING 6"-4. PIPES.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- DRIP OR SPRAY IRRIGATION REQUIRED ON ALL UNITS WITH VEGETATION. 6.
- CONTRACTOR RESPONSIBLE FOR CONTACTING MODULAR WETLANDS FOR 7. ACTIVATION OF UNIT. MANUFACTURES WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A MODULAR WETLANDS REPRESENTATIVE.

GENERAL NOTES

- MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO 2. CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT MANUFACTURER.

THE FOLLOWING US PATENTS: 7.425.262: 7.470.362: 7.674.378: 8,303,816; RELATED FOREIGN PATENTS OR OTHER PATENTS PENDING

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF MODULAR WETLANDS SYSTEMS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL

Drainage Study – April 2019

APPENDIX C – REFERENCES

Drainage Study – April 2019

LATERAL G-2 EXCERPT FROM PVSD MDP

SECTION 10 - LATERAL G-2

COMMENTS

This MDP realigns Lateral G-2 to run along Sinclair Street. G-2 is a proposed open concrete trapezoidal channel that will pick up runoff from an existing industrial facility north of Sinclair Street between Perris Boulevard and Redlands Avenue. The downstream water surface in Lateral G-2 is set by the Perris Valley Storm Drain. "Alternative 5" of the San Jacinto River Stage III Master Plan is currently adopted by the City of Perris as the "preferred alternative". Alternative 5 call for a wide channel crossing over the existing MWD Colorado River Aqueduct that is located just downstream of the Lateral G-2/PVSD confluence. The drainage area tributary to Lateral G-2 will require fill or some other acceptable drainage design (i.e. onsite retention basin and pumps) in order to properly connect to Lateral G-2.

HYDROLOGY

Riverside County Rational Hydrology Program

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2005 Version 7.1
    Rational Hydrology Study Date: 05/12/09 File:LatG2.out
     _____.
Perris Valley Commerce Center - Perris Valley MDP
Lateral G-2 (Updated from original MDP) Watershed revised to account
for exisitng development
jcc 12 May 2009
******** Hydrology Study Control Information *********
 English (in-lb) Units used in input data file
_____
Program License Serial Number 4010
_____
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.820(In.)
100 year, 1 hour precipitation = 1.200(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.200(In/Hr)
Slope of intensity duration curve = 0.4900
Process from Point/Station
                       10.000 to Point/Station
                                                 15 000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 900.000(Ft.)
Top (of initial area) elevation = 1462.000(Ft.)
Bottom (of initial area) elevation = 1459.000(Ft.)
Difference in elevation = 3.000(Ft.)
Slope = 0.00333 s(percent) = 0.33
TC = k(0.300) * [(length^3) / (elevation change)]^{0.2}
Initial area time of concentration = 14.264 min.
Rainfall intensity = 2.426(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.873
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 19.905(CFS)
Total initial stream area =
                            9.400(Ac.)
Pervious area fraction = 0.100
Process from Point/Station 15.000 to Point/Station
                                                  20.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
```

Top of street segment elevation = 1459.000(Ft.) End of street segment elevation = 1456.000(Ft.) Length of street segment = 325.000(Ft.)

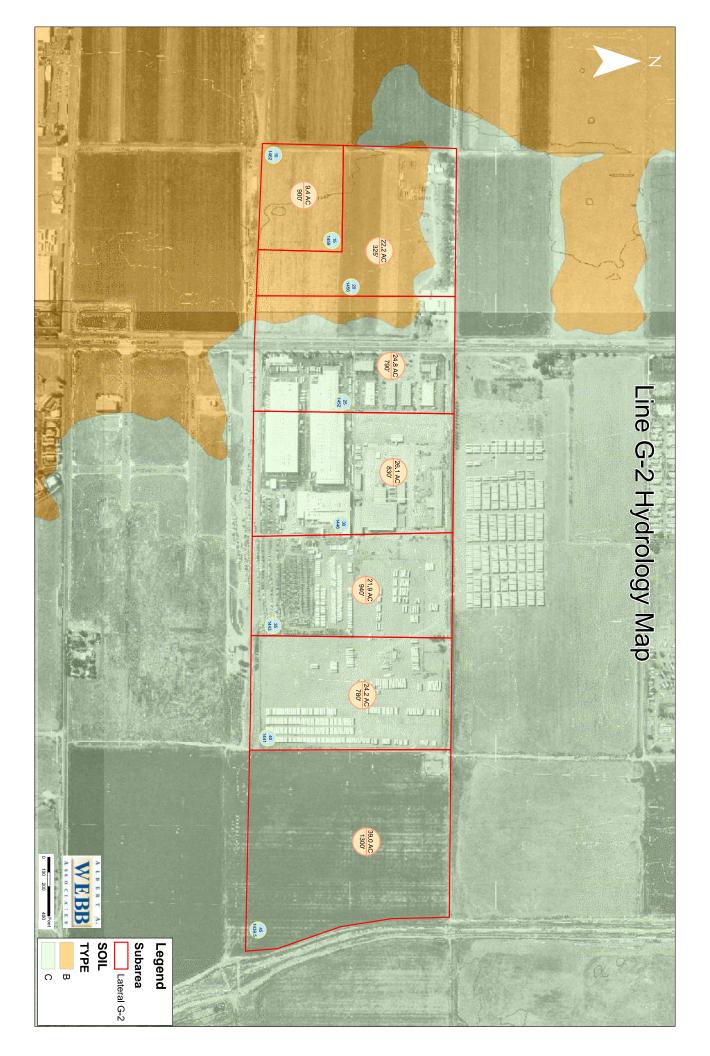
```
Height of curb above gutter flowline =
                                             6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
 Manning's N from gutter to grade break = 0.0150
 Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                        42.359(CFS)
Depth of flow = 0.604(Ft.), Average velocity = 3.524(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
                                                           4.17(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 22.000(Ft.)
Flow velocity = 3.52(Ft/s)
Travel time = 1.54 min.
                                 TC = 15.80 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.874
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.800
Decimal fraction soil group C = 0.200
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 58.60
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 2.307(In/Hr) for a 100.0 year storm
Rainfall intensity =2.307(In/Hr) for a100.0Subarea runoff =44.765(CFS) for22.200(Ac.)Total runoff =64.670(CFS)Total area =Street flow at end of street =64.670(CFS)
                                                            31.600(Ac.)
Half street flow at end of street = 32.335(CFS)
Depth of flow = 0.679(Ft.), Average velocity = 3.999(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 7.17(Ft.)
Flow width (from curb towards crown) = 22.000(Ft.)
Process from Point/Station 20.000 to Point/Station 25.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1456.000(Ft.)
Downstream point elevation = 1452.000(Ft.)
Channel length thru subarea = 790.000(Ft.)
Channel base width = 3.000(Ft.)
Slope or 'Z' of left channel bank = 1.500
Slope or 'Z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel = 88.630 (CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 5.000(Ft.)
Flow(q) thru subarea = 88.630(CFS)
Depth of flow = 1.941(Ft.), Average velocity = 7.726(Ft/s)
Channel flow top width = 8.822(Ft.)
Flow Velocity = 7.73(Ft/s)
Travel time = 1.70 min.
Time of concentration = 17.51 min.
Sub-Channel No. 1 Critical depth = 2.125(Ft.)
 ' ' Critical flow top width = 9.375(Ft.)
' ' Critical flow velocity= 6.741(Ft/s)
' Critical flow area = 13.148(Sq.Ft)
 Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.879
```

Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.200Decimal fraction soil group C = 0.800Decimal fraction soil group D = 0.000RI index for soil(AMC 2) = 66.40Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.194(In/Hr) for a 100.0 year storm

 Rainfall intensity =
 2.194(III/RI, IOL a 100.0 year 500.0

 Subarea runoff =
 47.828(CFS) for 24.800(Ac.)

 Total runoff =
 112.498(CFS)
 Total area = 56.400(

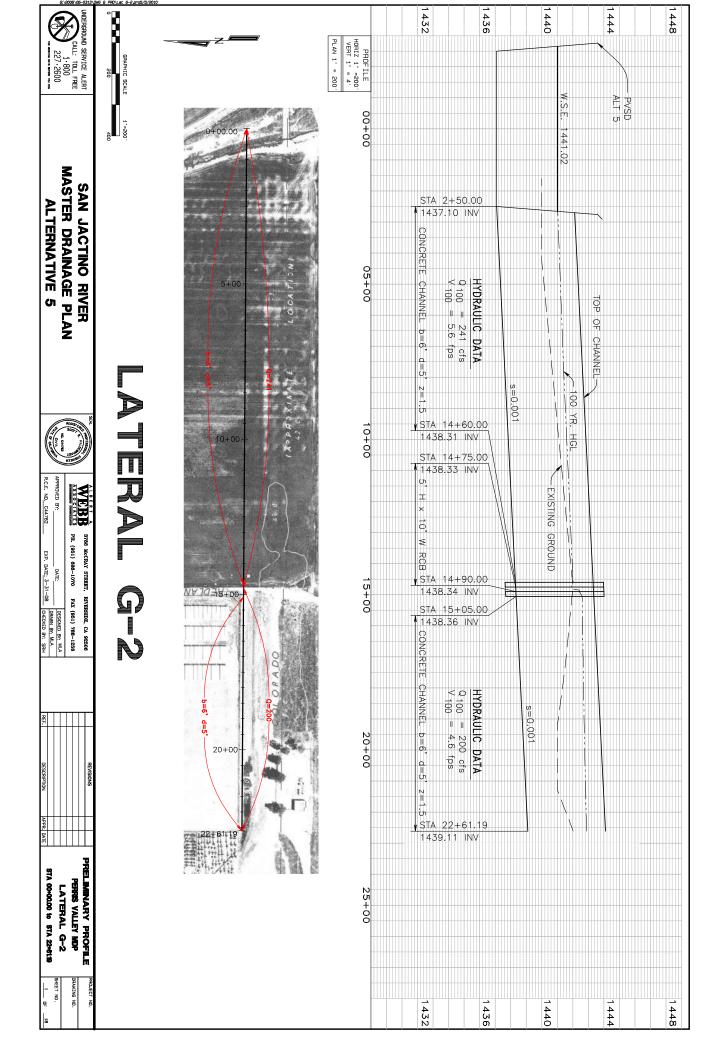

 Depth of flow =
 2.182(Ft.), Average velocity =
 8.221(Ft/s)

 56.400(Ac.) Sub-Channel No. 1 Critical depth = 2.406(Ft.) ub-Channel No. I Critical depen - 2.100,100, 'Critical flow top width = 10.219(Ft 'Critical flow velocity= 7.074(Ft/s) 'Critical flow area = 15.904(Sq.Ft) 10.219(Ft.) Process from Point/Station 25.000 to Point/Station 30.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 1452.000(Ft.) Downstream point elevation = 1446.000(Ft.) Channel length thru subarea = 830.000(Ft.) Channel base width = 6.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 136.760 (CFS) Manning's 'N' = 0.015Maximum depth of channel = 6.000 (Ft Flow(q) thru subarea = 136.760 (CFS) 6.000(Ft.) Depth of flow = 1.691(Ft.), Average velocity = 9.475(Ft/s) Channel flow top width = 11.072(Ft.) Flow Velocity = 9.48(Ft/s) Travel time = 1.46 min. Time of concentration = 18.97 min. Sub-Channel No. 1 Critical depth = 2.094(Ft.) Critical flow top width = 12.281(Ft.) Critical flow velocity= 7.146(Ft/s) Critical flow area = 19.138(Sq.Ft) Adding area flow to channel COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group D = 0.000RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.110(In/Hr) for a 100.0 year storm Rainfall intensity =2.110(in/Hr) for a100.0 year stormSubarea runoff =48.467(CFS) for26.100(Ac.)Total runoff =160.965(CFS)Total area =82.500(Ac.)Depth of flow =1.848(Ft.), Average velocity =9.930(Ft/s) Sub-Channel No. 1 Critical depth = 2.313(Ft.) ' Critical flow top width = 12.938(Ft
' Critical flow velocity= 7.351(Ft/s)
' Critical flow area = 21.896(Sq.Ft) 1 1 12.938(Ft.) . . Process from Point/Station 30.000 to Point/Station 35.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 1446.000(Ft.)

Downstream point elevation = 1446.000(Ft.) Downstream point elevation = 1443.000(Ft.) Channel length thru subarea = 940.000(Ft.)

```
Channel base width = 6.000(Ft.)
Slope or 'Z' of left channel bank = 1.500
Slope or 'Z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel = 180.316(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 6.000(Ft
Flow(q) thru subarea = 180.316(CFS)
                                     6.000(Ft.)
Depth of flow = 2.443(Ft.), Average velocity = 7.638(Ft/s)
Channel flow top width = 13.328(Ft.)
Flow Velocity = 7.64(Ft/s)
Travel time = 2.05 min.
Time of concentration = 21.02 min.
Sub-Channel No. 1 Critical depth = 2.469(Ft.)
  ' Critical flow top width = 13.406(Ft.)
' Critical flow velocity= 7.527(Ft/s)
' Critical flow area = 23.955(Sq.Ft)
 Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.879
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 2.006(In/Hr) for a 100.0 year storm
Subarea runoff = 38.637(CFS) for 21.900(Ac.)
Total runoff = 199.602(CFS) Total area = 104.400(Ac.)
Depth of flow = 2.576(Ft.), Average velocity = 7.854(Ft/s)
Sub-Channel No. 1 Critical depth =
                                               2.594(Ft.)
 ' ' Critical flow top width = 13.781(Ft
' Critical flow velocity= 7.781(Ft/s)
' Critical flow area = 25.654(Sq.Ft)
                                                              13.781(Ft.)
Process from Point/Station 35.000 to Point/Station 40.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1443.000(Ft.)
Downstream point elevation = 1441.000(Ft.)
Channel length thru subarea = 780.000(Ft.)
Channel base width = 6.000(Ft.)
Slope or 'Z' of left channel bank = 1.500
Slope or 'Z' of right channel bank = 1.500
Estimated mean flow rate at midpoint of channel = 220.158(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 6.000(Ft
Flow(q) thru subarea = 220.158(CFS)
                                     6.000(Ft.)
Depth of flow = 2.869(Ft.), Average velocity = 7.447(Ft/s)
Channel flow top width = 14.608(Ft.)
Flow Velocity = 7.45(Ft/s)
Travel time = 1.75 min.
Time of concentration = 22.76 min.
Sub-Channel No. 1 Critical depth = 2.750(Ft.)
 ' Critical flow top width = 14.250(Ft.)
' Critical flow velocity= 7.907(Ft/s)
' Critical flow area = 27.844(Sq.Ft)
 Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.879
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
```

RI index for soil(AMC 2) = 69.00Pervious area fraction = 0.100; Impervious fraction = 0.900Rainfall intensity = 1.929(In/Hr) for a 100.0 year storm Subarea runoff = 41.029(CFS) for 24.200(Ac.)Total runoff = 240.631(CFS) Total area = 128.600(Ac.)Depth of flow = 3.003(Ft.), Average velocity = 7.627(Ft/s)2.875(Ft.) Sub-Channel No. 1 Critical depth = ' Critical flow top width = 14.625(Ft.)
' Critical flow velocity= 8.116(Ft/s)
' Critical flow area = 29.648(Sq.Ft) Process from Point/Station 40.000 to Point/Station 45.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 1441.000(Ft.) Downstream point elevation = 1439.500(Ft.) Channel length thru subarea = 1300.000(Ft.) Channel base width = 8.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500 Estimated mean flow rate at midpoint of channel = 271.321(CFS) Manning's 'N' = 0.015Maximum depth of channel = 7.000(F¹ Flow(q) thru subarea = 271.321(CFS) 7.000(Ft.) Depth of flow = 3.523(Ft.), Average velocity = 5.797(Ft/s) Channel flow top width = 18.570(Ft.) Flow Velocity = 5.80(Ft/s) Travel time = 3.74 min. Time of concentration = 26.50 min. Sub-Channel No. 1 Critical depth = 2.750(Ft.) ' ' Critical flow top width = 16.250(Ft.)
' ' Critical flow velocity= 8.137(Ft/s)
' Critical flow area = 33.344(Sq.Ft) Adding area flow to channel COMMERCIAL subarea type Runoff Coefficient = 0.877Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 1.000Decimal fraction soil group D = 0.000RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.791(In/Hr) for a 100.0 year storm Subarea runoff = 61.287(CFS) for 39.000(Ac.) Total runoff = 301.918(CFS) Total area = 167.600(Ac.) Depth of flow = 3.724(Ft.), Average velocity = 5.967(Ft/s) Sub-Channel No. 1 Critical depth = 2.938(Ft.) ' ' Critical flow top width = 16.813(Ft.)
' ' Critical flow velocity= 8.285(Ft/s)
' Critical flow area = 36.443(Sq.Ft) End of computations, total study area = 167.60 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 66.5


HYDRAULICS

Τ1	06-0	0313	3	Perris	Val	ley 1	MDP						0		
Т2	Late	eral	1 G - 2	Hydraul	ics	;									
Т3	mla		06-	10-09											
SO	2	250	.0001	437.100	1					1	441.020				
R	14	460	.0001	438.310	1		.014					.000			
ΤS	14	475	.0001	438.330	4		.014					.000			
R	14	480	.0001	438.333	4		.014					.000			
JX	14	485	.0001	438.336	4	2	.014	41	.000		1438.35	90.0		.000	
R	14	490	.0001	438.340	4		.014					.000			
ΤS	15	505	.0001	438.360	3		.014					.000			
R	22	261	.1901	439.110	3		.014					.000			
SH	22	261	.1901	439.110	3					1	439.110				
CD	1	1	0	.000	5	.000	6.	000	1.500	1.500	.00				
CD	2	4	1	.000	5	.000		000	.000	.000	.00				
CD	3	1	0	.000	5	.000	6.	000	1.500	1.500	.00				
CD	4	3	0	.000	5	.000	10.	000	.000	.000	.00				
Q			19	9.600	. 0										

 198.063 .	1693.529 143	188.529 .	- 14					JUNCT STR .0				TRANS STR .0	 I	734.652 .				ш/шцет Сh S		*********************	
0010	8.547	0010	38.360	.0013	1438.340	.0008	1438.336 . _ _	.0006	1438.333	.0006	1438.330	.0013		.0010		.0010		Ch_SLOpe_	<u> </u>	- * *	
i	4.114 14		4.246 14		4.091 1442		4.091 1442		3.558 1441 		3.551 1441		3.709 14 		3.797 1441		3.920 1441	***	(FT) - F	06-0313 Lateral ************************************	ъ
 - 	1442.661		1442.606 		42.431		42.427		41.891		41.880		1442.019		41.372		41.020	***	Elev 	Perris V al G-2 Hydrau 8444444444444444444444444444444444444	rogram Pa
 - 	199.60		199.60 		199.60		199.60		240.60		240.60		240.60		240.60		240.60	****	(CFS)	06-0313 Perris Valley MDP Lateral G-2 Hydraulics mla 06-10-09 ***********************************	Package Ser
 - 	3.99	-	3.80	-	4.88		4.88	_	6.76	_	6.78	_	5.61 	_		_	5.17	* * * * * * * :	(FPS) 	MDP *******	Serial Number: 1585 Wampe SHEFACE DEOFTLE
.0005	.25 -	.0004		.0006		.0007		.0007	.71	.0015		.0010	 I	.0009		.0008		+ + + + + + + + + + + + + + + + + + +	Head -		r: 1585
.09	L442.91	.08	1442.83	.01	1442.80	.00	1442.80	.00	1442.60	.01	1442.59	.01	1442.51	68 – –	1441.83	.39	1441.43			; * * [- * F	
4.11	.00	4.25	00 -	4.09	00 -	4.09	00 	3.56	.00	3.55	.00	3.71	00 -	3.80	.00	3.92	.00	Uptn ****		\$ * * - *	TTOTTNC
.43	2.60	.40	2.60	.43	2.31	.43	2.31	.63	2.62	.63	2.62	.62	2.88	.60	2.88	.56	2.88			·· * 2 * 3 * 7 *	
3.36	18.34	3.36	18.74		10.00	3.96	10.00		10.00	5.00	10.00			3.68		3.68		orm Up ****** *	Width D:	+ - + + + + + + + + + + + + + - + +	שכ
.014	5.000	.014	- 5.000 	.014	5.000 -	.014	5,000 -	.014	5.000 1	.014	5.000	.014	5.000 	.014	5.000	.014	5.000	"N" 2	Width DiaFT or I 		Ј»+0·л∎л∎
.00 1.	6.000 1.	.00 - 1.	6.000 1.	.00		- 00 -		- 00		- 00 -		.00 - 1.		.00 - 1.		.00 - 1.	6.000 1.	Norm Up "N" X-Fall ZR ****** ***** ***** *****	DiaFT or I.D. ZL		л — 2010 тіт
.50 -	.50	.50 - TI		.00 B	00	.00 - B(00	.00 B	.00	.00 B	.00	1.50 TI	1.50	.50 	1.50 -	.50 TI	1.50	*	1		Time. 0.32.
TRAP	0 . 0	TRAP	• 0 • 0	BOX	.0	BOX	0 .0	BOX	.0	BOX	0 .0	TRAP	.0	TRAP	0.0	TRAP	0	"Type Ch	Prs/Pip 		20.02

2261.190 -	156.429	2104.761	213.169	1891.592	L/Elem *******	Station	* * * * * * * * * *		FILE: LatG2.WSW
2261.190 1439.110 -	.0010	1438.955	.0010	2 1438.743	L/Elem Ch Slope	Invert Elev	U6-U313 Perris Valley MDP Lateral G-2 Hydraulics mla 06-10-09 ***********************************		G2.WSW
- 3.779 - -		3.861		- 3.986 - 	* * * * * * * * * * *	Depth (FT)	06-0313 Later mla ******	>	
3.779 1442.889		1442.816		1442.729	* * * * * *	Water Elev	313 Fe teral G-2 mla 06 ******	Program	J
- 199.60 -		199.60		199.60	* * * * * * * *	Q (CFS)	-0313 Perris Valley MDP Lateral G-2 Hydraulics mla 06-10-09 **************	Program Package Serial Number: 1585 WATER SURFACE P	, w s
- 4.53 		4.38		4.18		Vel (FPS)	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	WATER S	· G W - C
32 -	.0006	. 30 _	.0005	.27	SF Ave	Vel Head	******	SURFACE E	VILDESIG
32 1443.21 	.09	1443.11	.11	1443.00	HF	Energy Grd.El.	· * * * * * * * * * *	AL Number: 1585 WATER SURFACE PROFILE LISTING	S P G W - CIVILDESIGN Version 14.06
· .000	3.86	00	3.99	·	SE Dpth Froude N ****** ******	Super Critical Elev Depth	* * * * * * *	STING	14.06
- 2.60	.48	2.60	.45	2.60			* * * * * * * *		
17.34 	3.36 	17.58	3.36 .014	17.96 5.000		Flow Top Height/ Base Wt No Wth Width DiaFT or I.D. ZL Prs/Pi	* * * * * * *	П	
17.34 5.000 6.000 1.50 0 .0	.014	5.000	.014	5.000	"N"	<pre>rlow Top Height/ Base Wt No Wth Width DiaFT or I.D. ZL Prs/Pip</pre>	****	Date: 5- 5-2010 Time: 9:32:23	
- 6.000 - -		6.000 1.50 0		-6.000 1.50 0	- - X-Fall 2	Base Wt or I.D.	* * * * * * *	5-2010	
- 1.50	.00 1.50 TRAP	1.50	.00 1.50 TRAP	1.50	* ZR * *	ZL	* * * * *	Time: 9	₽ł
- - - - - - - - - - - - - - - - - - -	TRAP	- 0 .0	TRAP	- - - - 0	 Type Ch '******	No Wth 'Prs/Pip	• * * * * * *):32:23	PAGE 2

PLAN AND PROFILE

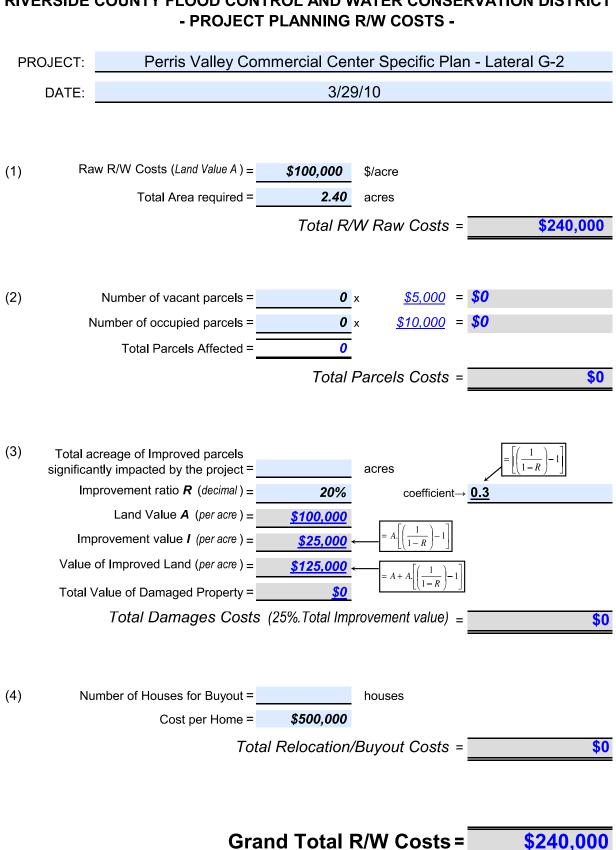
COST ESTIMATE

RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT 2010 PROJECT PLANNING COSTS

PROJECT DESCRIPTION: Perris Valley Commercial Center Specific Plan - Lateral G-2

ITEM	UNIT	QUANTITY	CRITERIA	2009 COST	⁻ OTAL
TRAP. CHANNEL EXCAVATION	CY		b > 8	\$9.00	
		5908	b ≤ 8	\$12.60	\$74,441
RCB & RECT. CHAN. EXCAVATION	CY	407	b > 12	\$11.70	40.000
		187	b ≤ 12 EXC > FILL	\$16.20 \$3.25	\$3,029
COMPACTED FILL	CY		EXC < FILL	\$7.30	
STRUCTURAL BACKFILL	CY	64		\$10.40	\$666
			b > 8*	\$380.00	
RAP. CHANNEL CONCRETE	CY	955	b ≤ 8	\$480.00	\$458,400
R.C.B. CONCRETE (INCLUDING	CY		L > 150	\$590.00	
STEEL)		36	L < 150	\$820.00	\$29,520
RECT. CHAN. CONC. (INCLUDING STEEL)	CY		L > 150	\$440.00	
	 LF	2062	L < 150	\$615.00	¢50.407
CUTOFF WALL (2' TYP.)	LF	3962		\$13.50	\$53,487
SUBDRAIN	LF		6 < b ≤ 16	\$12.50	
		00000	b > 16	\$25.00	.
FENCING (6' TYP.)	LF	3962		\$16.00	\$63,392
CATCH BASINS	LF			\$560.00	
MANHOLES (PIPE)	EA		FOR MAINLINE	\$5,600.00	
			FOR JUNCTION	\$6,500.00	
MANHOLES (RCB)	EA			\$2,100.00	
A.C. PAVING & BASE	SF			\$4.50	
CLASS 2 BASE (3" THICK)	SF	59430		\$0.70	\$41,601
ROCK SLOPE PROTECTION***	CY**			\$100.00	
CONCROCK SLOPE PROTECTION	CT			\$150.00	
STORM DRAINS		SEE STO	RM DRAIN COST SHEET		
SLAB BRIDGES	LBS	SEE BRIDGE	REBAR	\$1.10	
	CY	COST SHEET	CONCRETE	\$540.00	
ENV./ REGULATORY COSTS	LS		MITIGATION / E.A./ AL	T STUDY, ETC.	
MISCELLANEOUS COSTS		SEE MISCE	ELLANEOUS COST SHEE	г	
No.4 bars at 18 inches			SUBTOTAL		\$724,536
* 1.9 tons/cy			UBTOTAL (DAM & BASI	N)	\$0
*** Use 75% for large installations (>10 **** Use 25% of rock slope protection					
determine concreted-rock quantity			LUMP SUM ITEMS (22%))"	\$159,398
" i.e. Mobilization, Water Control, etc.		(CONTINGENCIES (12%)		\$106,072
"" Connector pipe, etc.		ENG & ADMIN. (2	25%) MITIGATION (3%) ?	ON FOR YES	\$277,202
2008 base index =	9894.94		SUBTOTAL (AS-BUILT)		
(E.N.R./OCT 2008) 2009 base index =	9760.69		, ,		¢1 067 007
(E.N.R./OCT 2009) Ratio increase =	0 086433		SUBTOTAL		\$1,267,207
ralio increase -	0.300432		R/W (FROM R/W SHEET)	\$240,000
ev. 11/07/09		R/W	(FROM DAM & BASIN SH	HEET)	\$0
	NA	ME & DATE		TOTAL	¢1 507 007
	mla	03/29/10		TOTAL	\$1,507,207

RCB QUANTITY SUMMARY SHEET

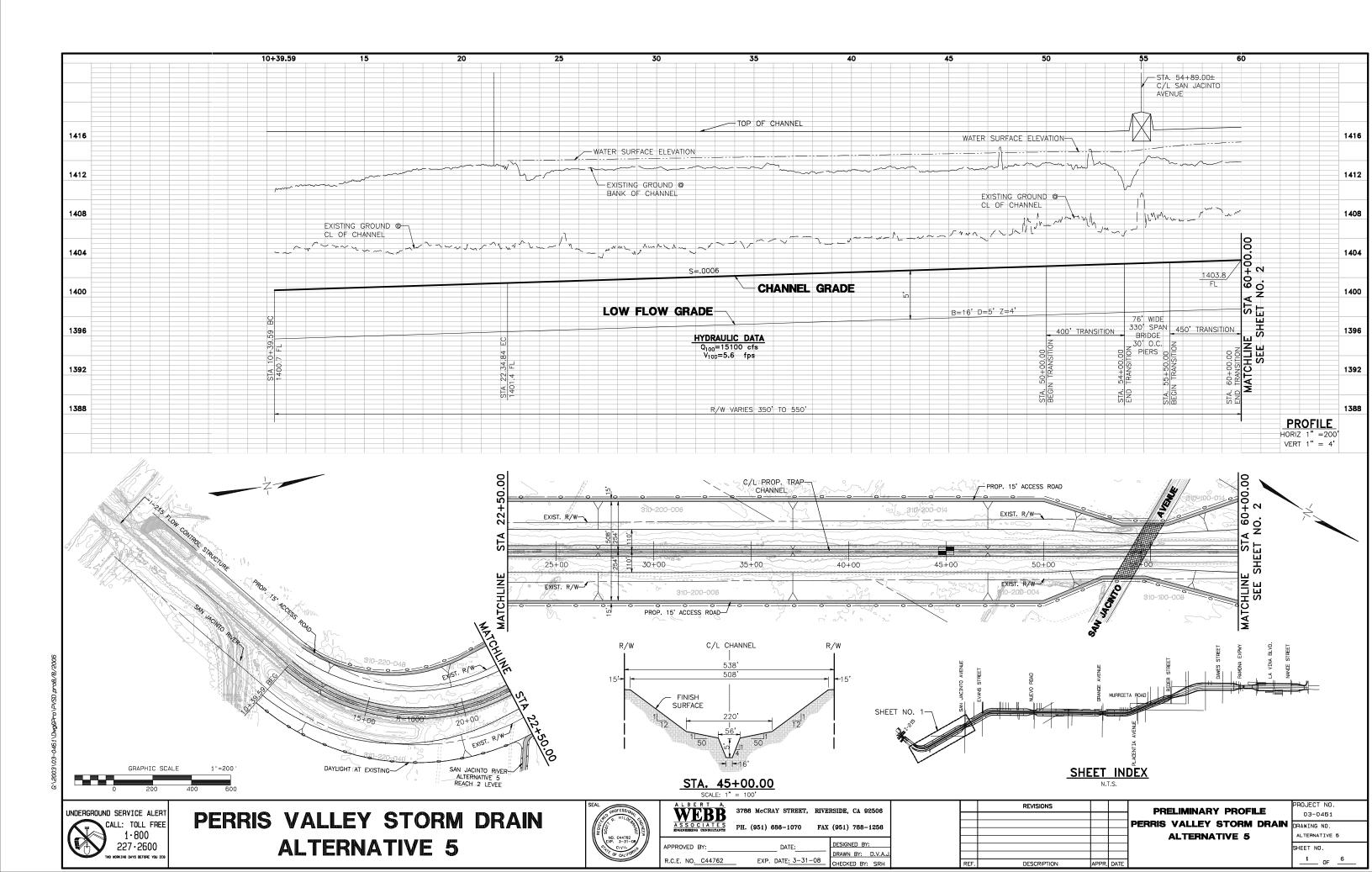

Perris Valley MDP MDP / ADP

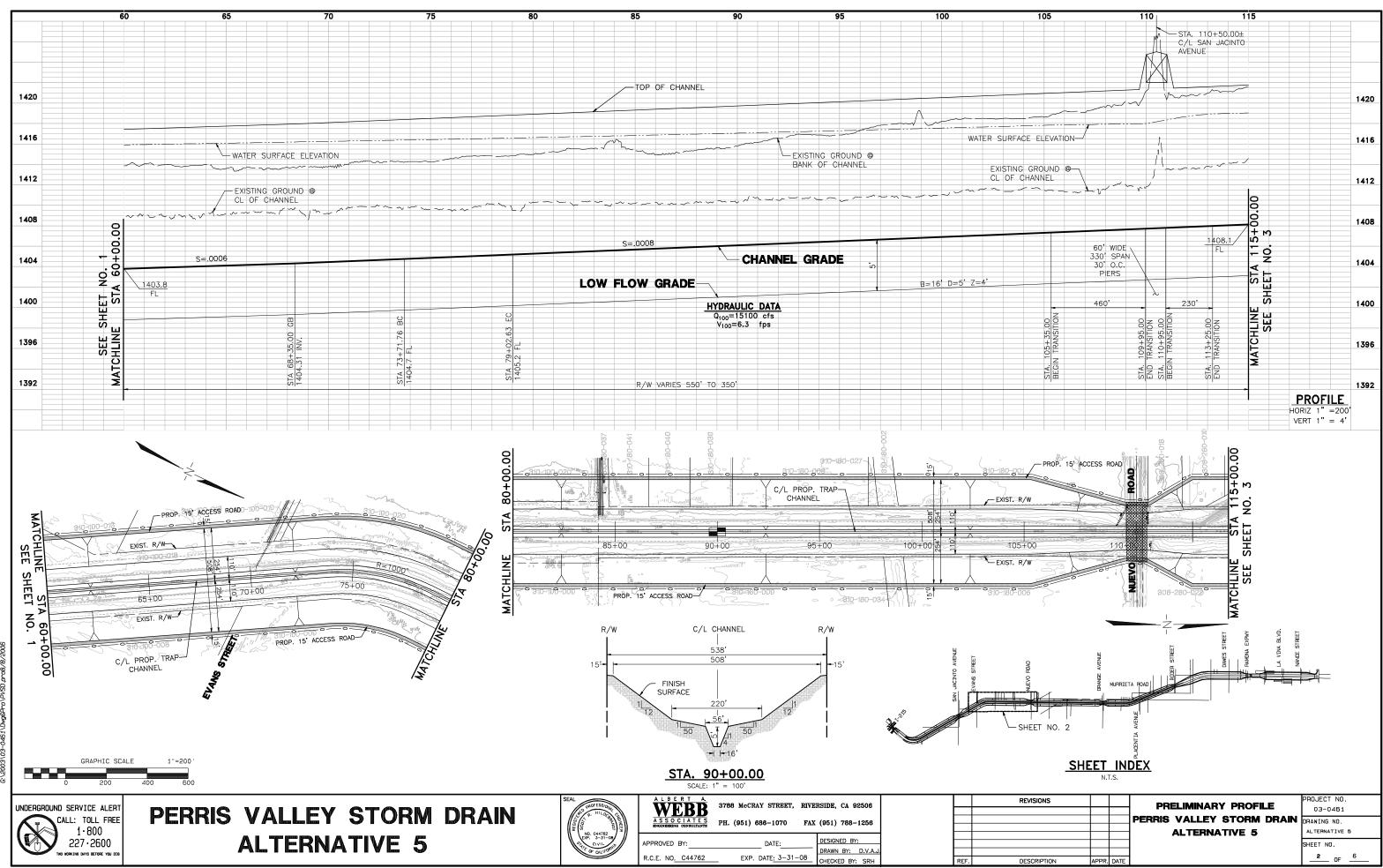
Perris Valley Commercial Center Specific Plan - Lateral G-2
FACILITY

mla ENGINEER 3/29/10 DATE

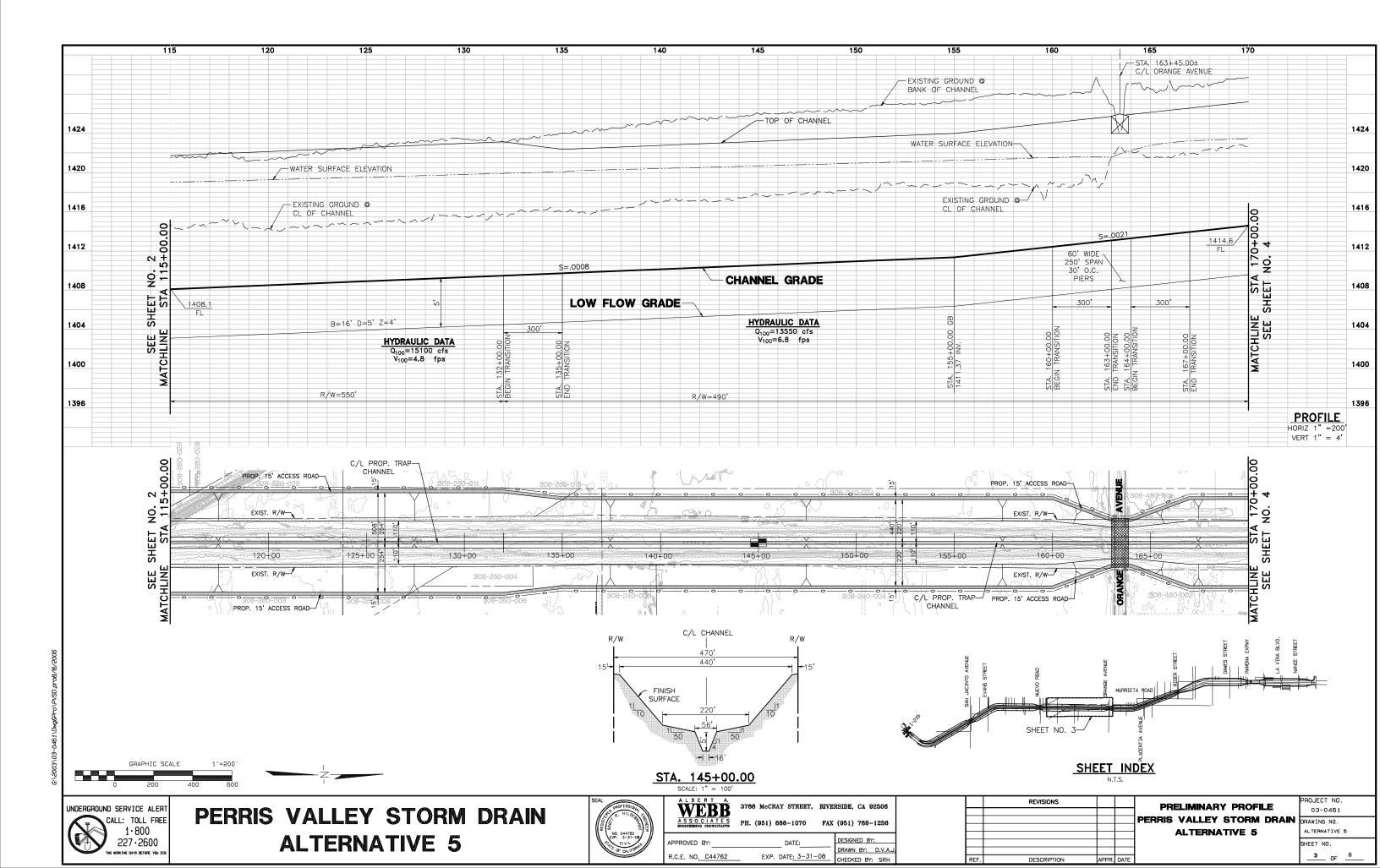
rev. 1	20	19	18	17	16	15	14	13	12	1	10	9	œ	7	6	ъ	4	ω	2	<u>_</u>				
rev. 11/07/09																				Sta 14+60 to Sta 15+05		Location		
																				1		Cells	No.	
																				5.0	(FT)	Height	Cell	
	-																		-	10.0	(FT)	Width	Cell	
																				21.6	(CF/LF) *	per Cell	Concrete	
45																				45.0		(FT)	Length	
																				1.0	(FT)	to Top of RCB	Depth from F.G.	
																				0.0	(FT)	E.G. to F.G.	Length Depth from F.G. Avg. Overburden	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	(FT) **	Height	RCB	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.33	(FT) **	Width	RCB	
36																				36.0		(CY)	Concrete	
0,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.5	(FT)	Below F.G.	Concrete Trench Depth	
																				Sloped	Trench	Shored	Sloped or	
																				4.0	of Trench (FT)	Sloped Portion	Height of	
187	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	186.7	(CY) ***	Excavation	Structural	
64	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	63.9	(CY) ***	Backfill	Structural	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.3	(FT)	Width ****	R/W	
0.0																				0.02		(AC)	R/W	
0																					(CY)	Excavation	Overburden	With
																					(FT)	Width ****	R/W	With Overburden
0.0																						(AC)	R/W	en

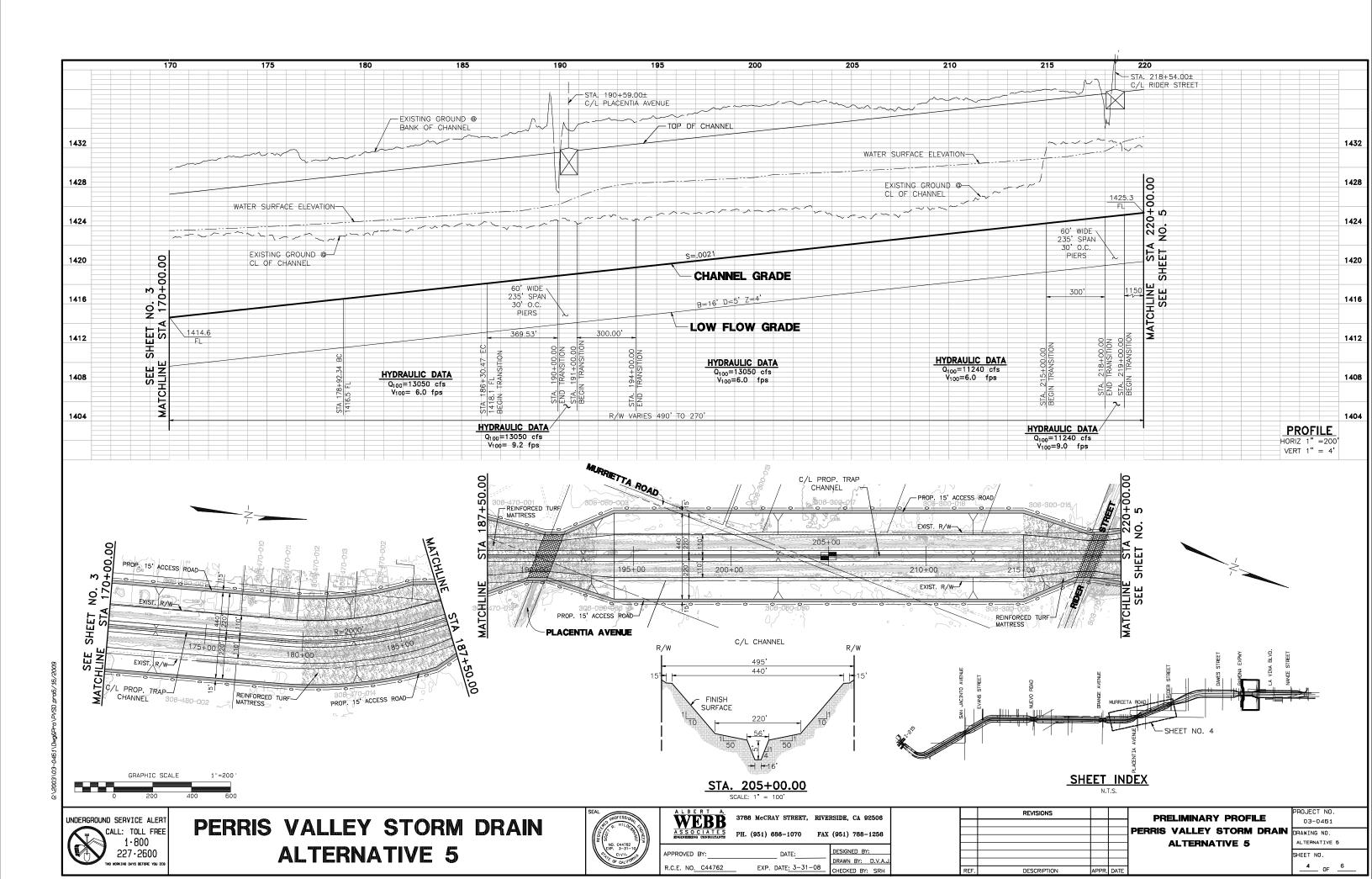
* Caltrans Standard Plans, 1992, D80.
** Assumes wall thickness, t2 = 8", roof and invert slab thicknesses, t1, t3 = 9".
** Assumes wall thickness, t2 = 8", roof and invert slab thicknesses, t1, t3 = 9".
** Below finish grade, per RCB pay lines (normal condition), Std. Dwg. No. M815. Refer to "Storm Drain Easement Widths," RCFC, Nov. 10, 1987 for sloped or shored trench sections.
*** Storm Drain Easement Widths," RCFC, Nov. 10, 1987. Assumes a minimum width of 10' for construction access, the width of the sloped excavation, or the width of the shored excavation plus 8', whichever is greater.
**** Assumes cut slopes of 0.75H:1V between overburden and finish grade.



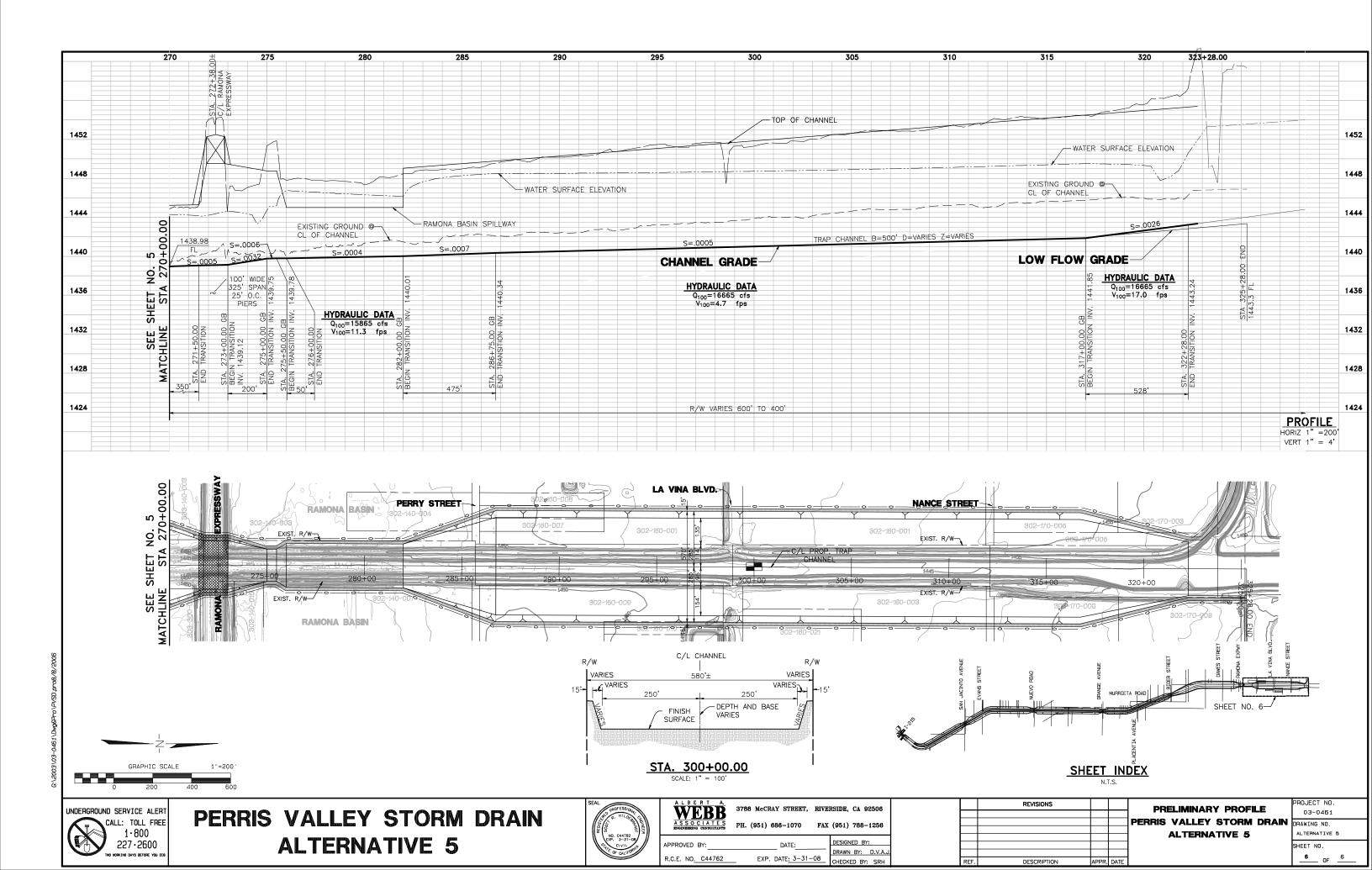

RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

Drainage Study – April 2019


PERRIS VALLEY STORM DRAIN PLANS







2003\03-0461\Dwg&Pro\PVSD.pro8/8/2006

