Appendix G: Geology and Soils Supporting Information

THIS PAGE INTENTIONALLY LEFT BLANK

GEOTECHNICAL INVESTIGATION

for

2600 CAMINO RAMON San Ramon, California

Prepared For:

Sunset Development Company San Ramon, California

Prepared By:

Langan Treadwell Rollo

- Cori Dimoson

Geotechnical Engineer License No. 2396

ona

Elena M. Ayers Geotechnical Engineer License No. 2916

> 12 June 2014 Project No. 731628101

LANGAN TREADWELL ROLLO

501 14th Street, 3rd Floor

Oakland, CA 94612

T: 510.874.7000

F: 510.874.7001

www.langan.com

California • New Jersey • New York • Virginia • Washington, DC • Pennsylvania • Ohio • Connecticut • North Dakota • Fiorida • Abu Dhabi • Athens • Doha • Dubai • Istanbui

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND1		
2.0	SCOPE	OF SERVICES1	
3.0	FIELD	VVESTIGATION	
4.0	LABOF	ATORY TESTING	
5.0	SUBSL	RFACE CONDITIONS	
6.0	REGIO	IAL SEISMICITY	
7.0	DISCU 7.1 7.2 7.3 7.4 7.5	SION AND CONCLUSIONS7Seismic Hazards87.1.1Fault Rupture.87.1.27.1.2Soil Liquefaction and Associated Hazards87.1.31.3Lateral Spreading107.1.47.1.4Cyclic Densification11Foundation Support.11Garage Ground Floor12Corrosion Potential.1313	
8.0	RECON 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	IMENDATIONS13Earthwork138.1.1Site Preparation8.1.2Fill Placement8.1.3Subgrade Preparation8.1.4Temporary Cut Slopes8.1.5Utility Trenches7Foundation Support17Floor Slabs19Below-Grade Walls20Concrete Flatwork21Pavement Design218.6.1Asphalt Concrete Pavement218.6.2Portland Cement Concrete Pavement22Drainage23Irrigation and Landscaping Limitations23	
	8.9	Seismic Design	

TABLE OF CONTENTS (Continued)

9.0	ADDITIONAL RECOMMENDATIONS – SERVICES DURING DESIGN AND CONSTRUCTION 24
10.0	LIMITATIONS
REFER	ENCES
FIGUR	ES
APPEN	DIX A – Logs of Borings
APPEN	DIX B – Logs of Cone Penetration Tests
APPEN	DIX C – Laboratory Test Results
DISTRI	BUTION

1.0 INTRODUCTION AND BACKGROUND

This report presents the results our geotechnical investigation for the parking garage proposed for 2600 Camino Ramon in San Ramon, California. This investigation was performed in accordance with our proposal dated 15 November 2013.

The site consists of a portion of an asphalt-paved parking lot in the southeast corner of the property at 2600 Camino Ramon. The location of the site is shown on Figure 1. The site is approximately rectangular with plan dimensions of about 300 feet by 400 feet and is bound by Bishop Drive on the south, parking lots and driveways on the east and north, and a driveway and a four-story building on the west. The site is currently occupied by an asphalt-paved parking lot and driveways, landscaped areas, and below-grade utilities. The majority of the site is relatively level, with ground surface elevations between approximately 450 to 453 feet¹, as shown on Figure 2. A narrow berm slopes up about three to four feet higher than surrounding grades between the existing parking lot and Bishop Drive.

We understand plans are to demolish the existing improvements within the footprint of the new development and construct a 5-story parking garage at grade. Maximum plan dimensions for the parking garage are about 375 by 190 feet. We anticipate additional improvements will include new asphalt and concrete pavement, concrete flatwork, and landscaping adjacent to the parking garage. We understand the finished floor elevation will range from 446 to 454 feet², with pad subgrade elevations about one foot lower. Therefore, cuts to about seven feet and fills up to about two feet will be needed. Dead plus live loads were estimated by the project structural engineer to be about 300 to 700 kips for frame columns, 300 to 625 kips for non-frame columns, and 875 to 1200 kips for girder columns.

2.0 SCOPE OF SERVICES

Our scope of services, outlined in our proposal dated 15 November 2013, consisted of reviewing available subsurface information for the site vicinity, exploring the subsurface conditions at the site, and performing laboratory tests and engineering analyses to develop conclusions and recommendations regarding:

¹ Elevations are from a topographic survey provided by IDG Parkitects, Inc. on 15 January 2014 and are based on the National Geodetic Vertical Datum of 1929 (NGVD 1929).

² From Conceptual Grading and Drainage Site Plan by RJA dated 19 March 2014

Geotechnical Investigation 2600 Camino Ramon San Ramon, California

- soil and groundwater conditions at the site
- appropriate foundation type(s) for the proposed parking garage
- design criteria for the most appropriate foundation type(s), including values for vertical and lateral capacities
- estimated foundation settlement
- below-grade walls
- excavation
- temporary shoring
- seismic hazards, including ground rupture, liquefaction, and differential compaction
- seismic design criteria in accordance with the 2013 California Building Code (CBC)
- floor slabs
- concrete flatwork
- flexible (asphalt concrete) and rigid (Portland cement concrete) pavement design
- utility trenches
- fill quality and compaction criteria
- site grading, including criteria for fill quality and compaction
- subgrade preparation and moisture protection for floor slabs
- corrosion potential of near-surface soil
- construction considerations.

Note that because the parking garage will not have a basement, we have not included recommendations for temporary shoring.

3.0 FIELD INVESTIGATION

Subsurface conditions were explored at the site by drilling three borings, designated B-1 through B-3, and performing five cone penetration tests (CPTs), designated CPT-1 through CPT-5. The approximate

locations of the borings and CPTs are presented on Figure 2. Prior to performing our field investigation, we obtained drilling permits from Contra Costa County Environmental Health Division (CCCEHD), notified Underground Service Alert, and retained a private underground utility locating service to check that locations of exploratory points were clear of existing utilities.

The borings were drilled on 21 December 2013 to depths between about 50 and 51½ feet below the existing ground surface (bgs) using a truck-mounted drill rig equipped with hollow stem augers and operated by Exploration Geoservices, Inc. of San Jose, California. During drilling, our field engineer logged the borings and obtained representative samples of the soil encountered for classification and laboratory testing. The boring logs are presented in Appendix A on Figures A-1 through A-3. The soil encountered in the borings was classified in accordance with the soil classification system presented on Figure A-4. Soil samples were obtained using three different types of samplers: two driven split-barrel samplers and one pushed thin-walled sampler. The sampler types are as follows:

- Sprague & Henwood (S&H) split-barrel sampler with a 3.0-inch outside diameter and 2.5-inch inside diameter, lined with steel tubes with an inside diameter of 2.43 inches
- Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and 1.5-inch inside diameter, without liners.
- Shelby Tube (ST) sampler with a 3.0-inch outside diameter and a 2.875-inch inside diameter.

The sampler types were chosen on the basis of soil type being sampled and desired sample quality for laboratory testing. In general, the S&H sampler was used to obtain samples in medium stiff to very stiff cohesive soil and the SPT sampler was used to evaluate the relative density of sandy soil. The Shelby Tube sampler was used to obtain relatively undisturbed samples of soft to medium stiff cohesive soil.

The SPT and S&H samplers were driven with 140-pound, hydraulic trip wireline safety hammer falling 30 inches. The samplers were driven up to 18 inches and the hammer blows required to drive the samplers every six inches of penetration were recorded and are presented on the boring logs. A "blow count" is defined as the number of hammer blows per six inches of penetration or 50 blows for six inches or less of penetration. The driving of samplers was discontinued if the observed (recorded) blow count was 50 for six inches or less of penetration. The blow counts required to drive the S&H

sampler were converted to approximate SPT N-values using a factor of 0.6 to account for sampler type and hammer energy and are shown on the boring logs. The blow counts used for this conversion were the last two blow counts of the 18-inch sampler drive.

The Shelby Tube sampler is pushed hydraulically into the soil; the pressure required to advance the sampler is shown on the logs, measured in pounds per square inch (psi).

The CPTs were advanced to depths between about 38½ and 80 feet bgs on 21 December 2013 by John Sarmiento & Associates of Orinda, California. The CPT logs presents tip resistance and friction ratio by depth, as well as interpreted standard penetration test blow counts, soil shear strength parameters, and soil classifications. The logs of the CPTs are presented in Appendix B on Figures B-1 through B-5. The classification chart for the CPT logs is presented on Figure B-6.

The CPTs were performed by hydraulically pushing a 1.75-inch-diameter, cone-tipped probe with a projected area of 15 square centimeters into the ground. The cone-tipped probe measures tip resistance, and the friction sleeve behind the cone tip measures frictional resistance. Electrical strain gauges within the cone continuously measure soil parameters for the entire depth advanced. Soil data, including tip resistance and frictional resistance, were recorded by a computer while the test was conducted. Accumulated data were processed by computer to provide engineering information such as the types and approximate strength characteristics of the soil encountered.

Upon completion of the field investigation, the borings and CPTs were backfilled with cement grout in accordance with CCCEHD requirements and under the observation of a CCCEHD inspector, and pavement surfaces were patched. The soil cuttings from the borings were placed into 55-gallon drums which were stored temporarily at the site, tested, and transported off-site for disposal.

4.0 LABORATORY TESTING

Soil samples obtained from the borings were re-examined in the office for classification and representative samples were selected for laboratory testing. The laboratory testing program was designed to correlate and evaluate engineering properties of the soil at the site. Soil samples were tested to measure moisture content, dry density, fines content, Atterberg limits, strength,

compressibility, and resistance value (R-value). The geotechnical laboratory test results are presented on the boring logs and in Appendix C. Testing was also performed on a near-surface sample from boring B-1 to evaluate the corrosion potential of the soil. The results of the corrosivity testing are presented on Figure C-6 in Appendix C.

5.0 SUBSURFACE CONDITIONS

Subsurface information from our field investigation indicates portions of the site are underlain by a thin layer of fill consisting of stiff to very stiff clay. The fill was encountered in borings B-1 and B-2 and is between about 1 and 1½ feet thick. The pavement section as measured in the borings consists of 3 inches of asphalt concrete over 21 inches of aggregate base.

Beneath the pavement section and fill (where present), the soil at the site generally consists of medium stiff to very stiff clay to the maximum depth explored of about 80 feet bgs. Results of Atterberg limits tests performed on the near-surface clay indicate it has a moderate expansion potential,³ with a plasticity index of 23. Thin layers of granular soil consisting of sand with silt, silty sand with variable gravel content, clayey sand, and clayey silty sand were encountered within the clay in the borings and CPTs. The granular layers are loose to medium dense and range in thickness from about 1 to 4 feet.

Groundwater was measured in the borings and CPTs between depths of about 14.7 and 29 feet bgs, which correspond to approximate minimum and maximum Elevations 421 and 437.3 feet. The groundwater levels observed during drilling do not represent stable groundwater conditions, and the groundwater level at the site is expected to vary seasonally.

6.0 REGIONAL SEISMICITY

The major active faults in the area are the Calaveras, Mount Diablo Thrust, and Hayward faults. These and other faults in the region are shown on Figure 3. For each of the active faults within 50 kilometers (km) of the site, the distance from the site and estimated maximum Moment magnitude,⁴ M_w, [Working

³ Expansive soil undergoes large volume changes with changes in moisture content (i.e. it shrinks when dried and swells when wetted.)

⁴ Moment magnitude is an energy-based scale and provides a physically meaningful measure of the size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.

Geotechnical Investigation 2600 Camino Ramon San Ramon, California

Group on California Earthquake Probabilities (WGCEP) (2008) and Cao et al. (2003)] are summarized in Table 1.

Fault Segment	Approximate Distance from Site (km)	Direction from Site	Mean Characteristic Moment Magnitude
Total Calaveras	0.9	West	7.03
Mount Diablo Thrust	5.0	Northeast	6.70
Total Hayward	14	West	7.00
Total Hayward-Rodgers Creek	14	West	7.33
Green Valley Connected	15	North	6.80
Greenville Connected	17	East	7.00
Great Valley 5, Pittsburg Kirby Hills	30	Northeast	6.70
Great Valley 7	39	East	6.90
N. San Andreas - Peninsula	44	West	7.23
N. San Andreas (1906 event)	44	West	8.05
Monte Vista-Shannon	44	Southwest	6.50

TABLE 1 Regional Faults and Seismicity

Figure 3 also shows the earthquake epicenters for events with magnitude greater than 5.0 from January 1800 through January 1996. In 1868, an earthquake with an estimated maximum intensity of X on the MM scale occurred on the southern segment (between San Leandro and Fremont) of the Hayward Fault. The estimated M_w for the earthquake is 7.0. In 1861, an earthquake of unknown magnitude (probably a M_w of about 6.5) was reported on the Calaveras Fault. The most recent significant earthquake on this fault was the 1984 Morgan Hill earthquake ($M_w = 6.2$).

Since 1800, four major earthquakes have been recorded on the San Andreas Fault. In 1836 an earthquake with an estimated maximum intensity of VII on the Modified Mercalli (MM) scale (Figure 4) occurred east of Monterey Bay (Toppozada and Borchardt 1998). The estimated M_w for this earthquake is about 6.25. In 1838, an earthquake occurred with an estimated intensity of about VIII-IX (MM), corresponding to a M_w of about 7.5. The San Francisco Earthquake of 1906 caused the most significant damage in the history of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface rupture along the San Andreas Fault from Shelter Cove to San Juan Bautista,

approximately 470 kilometers in length. It had a maximum intensity of XI (MM), a M_w of about 7.9, and was felt 560 kilometers away in Oregon, Nevada, and Los Angeles. The most recent earthquake to affect the Bay Area was the Loma Prieta Earthquake of 17 October 1989 with a M_w of 6.9 and an epicenter in the Santa Cruz Mountains, approximately 81 km from the site.

The 2008 WGCEP at the U.S. Geologic Survey (USGS) predicted a 63 percent chance of a magnitude 6.7 or greater earthquake occurring in the San Francisco Bay Area in 30 years. More specific estimates of the probabilities for different faults in the Bay Area are presented in Table 2.

TABLE 2

WGCEP (2008) Estimates of 30-Year Probability			
of a Magnitude 6.7 or Greater Earthquake			

Fault	Probability (percent)
Hayward-Rodgers Creek	31
N. San Andreas	21
Calaveras	7
San Gregorio	6
Concord-Green Valley	3
Greenville	3
Mount Diablo Thrust	1

7.0 DISCUSSION AND CONCLUSIONS

We conclude that from a geotechnical engineering standpoint, the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications, and are implemented during construction. The primary geotechnical concerns for the project are the presence of fill and moderately expansive near-surface soil, liquefaction potential, and moderately compressible soil below the garage. Our conclusions regarding seismic hazards, expansive soil, foundations, settlement, and other geotechnical issues are presented in this section.

Geotechnical Investigation 2600 Camino Ramon San Ramon, California

7.1 Seismic Hazards

12 June 2014 731628101 Page 8

During a major earthquake on one of the nearby faults, strong to very strong shaking is expected to occur at the site. Strong shaking during an earthquake can result in ground failure such as that associated with soil liquefaction,⁵ lateral spreading,⁶ and cyclic densification.⁷ We used the results of the borings and CPTs to evaluate the potential for these phenomena to occur at the site. The results of our evaluation are presented below.

7.1.1 Fault Rupture

Historically, ground surface displacements closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act, and no active or potentially active faults exist on the site. We therefore conclude the risk of fault offset rupture at the site from a known fault is low. In a seismically active area, the remote possibility exists for future faulting in areas where no active faults previously existed; however, based on the available fault studies, we conclude the risk of surface faulting and consequent secondary ground failure from previously unknown faults is low.

7.1.2 Soil Liquefaction and Associated Hazards

Liquefaction is a phenomenon in which saturated soil temporarily loses strength from the build-up of excess pore water pressure, especially during earthquake-induced cyclic loading. Flow failure, lateral spreading, differential settlement, loss of bearing strength, ground fissures, and sand boils are evidence of excess pore pressure generation and liquefaction. We evaluated the potential for liquefaction to occur at the site in accordance with Special Publication 117A, *Guidelines for Evaluating and Mitigating Seismic Hazards Zones in California*, dated 11 September 2008, as described below.

⁵ Liquefaction is a transformation of soil from a solid to a liquefied state during which saturated soil temporarily loses strength resulting from the buildup of excess pore water pressure, especially during earthquake-induced cyclic loading. Soil susceptible to liquefaction includes loose to medium dense sand and gravel, low-plasticity silt, and some low-plasticity clay deposits.

⁶ Lateral spreading is a phenomenon in which surficial soil displaces along a shear zone that has formed within an underlying liquefied layer. Upon reaching mobilization, the surficial blocks are transported downslope or in the direction of a free face by earthquake and gravitational forces.

⁷ Cyclic densification is a phenomenon in which non-saturated, cohesionless soil is compacted by earthquake vibrations, causing differential settlement.

12 June 2014 731628101 Page 9

The level of ground shaking that may occur at the site during future earthquakes is uncertain because the location, recurrence interval, and magnitude of future earthquakes are not known. A peak ground acceleration (PGA) of 0.903 times gravity was used in our liquefaction analysis. This PGA was calculated using the procedures specified in Section 11.8 of ASCE 7-10 for the Maximum Considered Earthquake, using site class D. We assumed an earthquake magnitude of 7.3, which is the maximum Moment magnitude for the Hayward Fault, located about 14 km from the site as shown in Table 1. Note that the Calaveras fault is significantly closer, but has a lower maximum Moment magnitude. A high groundwater level at Elevation 439 feet was used in our liquefaction analyses.

We used the results of the CPTs to evaluate liquefaction potential at the site. The liquefaction analyses using CPT data were performed in accordance with the methodology presented in the publication titled Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, prepared by the National Center for Earthquake Engineering Research (NCEER), dated 31 December 1997. The susceptibility of sand to liquefaction under seismic loading was evaluated in general accordance with the procedure presented by Seed and Idriss (1982). Our liquefaction analysis using the CPT data indicates that thin layers of loose to medium dense granular soil below the groundwater table in the CPTs are susceptible to liquefaction (FSliq<1.3) during the design-level earthquake, as defined by ASCE 7-10.

We estimated liquefaction-induced settlement using the procedure outlined in the NCEER report. The strain potential of any potentially liquefiable layers was estimated in accordance with the method developed by Tokimatsu and Seed (1984), which relates $(N_1)_{60,CS}$ values to strain potential. The CPT tip resistance $(q_{C1N})_{CS}$ was converted to an $(N_1)_{60,CS}$ value assuming the ratio $(q_{C1N})_{CS}/(N_1)_{60,CS}$ (blows/foot) is equal to five. This value is consistent with published values for clean sand. In each of the CPTs, two to five layers of potentially liquefiable soil were encountered, each less than two feet thick, with calculated total liquefaction-induced settlements of about 1/4 to 1/2 inch.

In addition, we evaluated the potential for liquefaction using the results of our borings. In each of the borings, two to four layers of potentially liquefiable soil were encountered, each about 1 to 2½ feet thick, with calculated total liquefaction-induced settlements of about ¾ to 1¼ inches. However, liquefaction analyses using SPT data from hollow stem auger borings generally produce conservatively large settlements because the soil below the groundwater level tends to heave in borings drilled using hollow stem augers and as a result, the SPT blow counts are conservative; we judge the actual settlements may

be on the order of half of that calculated using the boring results. In addition, several of the layers identified in the borings as potentially liquefiable contained substantial amounts of clay and gravel, and will likely settle less than calculated. Therefore, while some liquefiable soil may be present, we judge liquefaction-induced settlement would be less than that calculated using the boring data.

The results of our liquefaction analyses indicate there are thin layers of loose to medium dense sand with variable clay, silt, and gravel content below the groundwater table that are susceptible to liquefaction during a major earthquake on a nearby fault. Based on our liquefaction analyses using the borings and CPTs, we conclude that up to about ½ inch of liquefaction-induced total settlement may occur at the site as a result of a major earthquake. The liquefaction may occur in isolated areas and differential settlement may be abrupt; therefore, differential settlements equivalent to the total settlement of ½ inch should be anticipated over short distances.

The potential for liquefaction-induced ground rupture and sand boils to occur at the site depends on the thickness of the liquefiable soil layer relative to the thickness of the overlying non-liquefiable material. Ishihara (1985) presented an empirical relationship that provides criteria that can be used to evaluate whether liquefaction-induced surface ruptures and sand boils would be expected to occur under a given level of shaking for a liquefiable layer overlain by a non-liquefiable layer. For the design-level earthquake defined by ASCE 7-10, we conclude that the potential for surface manifestations of liquefaction to occur at the site is moderate. Where surface manifestations occur, additional settlement may occur.

7.1.3 Lateral Spreading

Lateral spreading occurs when a continuous layer of soil liquefies at depth and the soil layers above move toward an unsupported face, such as an open slope cut, or in the direction of a regional slope or gradient. The potential for lateral spreading to occur at a site is typically evaluated using an empirical relationship developed by Youd, Hansen, and Bartlett (2002). This relationship incorporates the thickness of the liquefiable layer, the fines content and mean grain-size diameter of the liquefiable soil, the relative density of the liquefiable soil, the magnitude and distance of the earthquake from the site, the slope of the ground surface, and boundary conditions (such as a free face or edge of shoreline), to estimate the horizontal ground movement. The interpreted $(N_1)_{60}$ values for the potentially-liquefiable soil layers in the borings and CPTs are generally greater than 15, with the exception of one to three thin layers (each 2.5 feet thick or less) encountered in the borings. Typically layers with interpreted $(N_1)_{60}$ values greater

than 15 are not considered to have the potential for lateral spreading. The layers with $(N_1)_{60}$ values less than 15 encountered in the borings were not encountered in the CPTs. For reasons discussed in Section 7.1.2, we consider the $(N_1)_{60}$ values from the borings to be conservatively low. Therefore, we conclude the potential for lateral spreading at the site is low.

7.1.4 Cyclic Densification

Cyclic densification of non-saturated sand (sand above the groundwater table) caused by earthquake vibrations may result in settlement. Several feet of medium dense clayey sand and silty sand with gravel and loose to medium dense silty sand were encountered above the groundwater level in the borings. We compute that settlement up to about $\frac{1}{3}$ inch may occur due to strong shaking from a large earthquake, with a possibility of abrupt differential settlements on the order of $\frac{1}{4}$ inch.

7.2 Foundation Support

The site is underlain by moderately expansive soil. Expansive soil is subject to high volume changes during fluctuations in moisture content, which can cause cracking of foundations, floor slabs, and flatwork. The detrimental effects of near-surface expansive soil can be mitigated by moisture conditioning the expansive soil below slabs and flatwork, placing non-expansive fill below slabs and flatwork, supporting foundations below the zone of severe moisture change, and/or designing foundations to resist the movements associated with the volume changes.

Based on our field investigation, we anticipate the soil exposed at the foundation level of the parking garage will be the native stiff to very stiff clay, existing undocumented fill or engineered fill placed to raise the building pad. To provide uniform support, the existing fill will need to be overexcavated and recompacted prior to placement of the new fill. The foundations can bear on native stiff to very stiff clay or engineered fill; therefore, we conclude a shallow foundation may be used to support the parking garage. Because of the presence of moderately expansive clay, the footings should be deepened, and a deepened continuous footing or grade beam should be used around the perimeter.

Geotechnical Investigation 2600 Camino Ramon San Ramon, California 12 June 2014 731628101 Page 12

There are moderately compressible soils below the garage footprint; in addition, as presented in Section 7.1, we anticipate cyclic densification and liquefaction-induced settlement will occur. Therefore, we recommend the foundation consist of strip footings where feasible, and isolated spread footings where the column spacing is too great to spread the loads between columns. In addition, there are moderately and lightly loaded columns adjacent to heavily loaded columns, and our analysis indicates significant differential settlement will occur. In order to spread the loads to reduce the amount of settlement of the heavily loaded columns, the footings should be underlain by compacted aggregate base that extends beyond the limits of the footings. Our settlement analyses indicate total static settlement under the anticipated foundation pressures for the moderately loaded foundations will be about ¹/₃ to ²/₃ inch, while the more heavily loaded footings will settle about ³/₄ to 1 inch. In general, differential settlement will be less than ½ inch between columns, except where a heavily loaded column is near a moderately or lightly loaded column. In this case, we expect differential settlement up to about ³/₄ inch may occur. Some footings will bottom at Elevation 445 feet or lower; these footing will be closer to the compressible layer and will settle about 1½ inches, with about 1 inch of differential settlement. To reduce total and differential settlement, footings bottomed at Elevation 445 feet and below should have a reduced bearing pressure. In addition to the foregoing static settlements, seismically-induced settlement may occur during a major earthquake, as discussed in Section 7.1.

7.3 Garage Ground Floor

The ground level floor may be designed as a floor slab or pavement. If designed as a floor slab, the subgrade should be prepared as recommended in Section 8.1 to mitigate the effects of expansive soil. The floor slab will bear on engineered fill and can be supported on grade. If designed as a pavement, it may be flexible (asphalt concrete) or rigid (Portland cement concrete). Recommendations for both pavement types are presented in Section 8.6. If the surface is designed as pavement, it should be separate from the structure, as the performance of pavement differs from a floor slab. Pavements experience some movement under vehicle loads and with changes in moisture of the expansive soil.

7.4 Corrosion Potential

We performed a corrosivity test on a soil sample collected from boring B-1 at 3½ feet bgs. The soil sample was tested in accordance with Caltrans and ASTM protocols by Environmental Technical Services (ETS) of Petaluma, California. The corrosivity test results are presented in Appendix C on Figure C-6.

Geotechnical Investigation 2600 Camino Ramon San Ramon, California

7.5 Construction Considerations

As discussed previously, the site is underlain by moderately expansive near-surface soil. If the clayey soil subgrade is exposed and allowed to dry during excavation for the foundation and is not properly moisture-conditioned prior to placement of concrete, significant heave may occur as soil moisture levels increase after construction. Therefore, it is essential to maintain moisture during construction. Typically, it is necessary to spray the exposed bottom and sides of excavations on a daily basis to prevent drying.

If construction activities are performed during the winter/rainy season, the near-surface soils will be saturated, soft, and easily remolded. Methods of stabilizing saturated subgrade are discussed in Section 8.1. Wet soil will require significant drying before it can be used as fill or backfill.

8.0 **RECOMMENDATIONS**

Our recommendations regarding design of foundations, below-grade walls, pavement, and other geotechnical aspects of this project are presented in this section.

8.1 Earthwork

8.1.1 Site Preparation

Site preparation should include removal of all existing structures, foundations, slabs, pavements, and underground utilities within the footprint of the planned development. Any subsurface structures and debris should be removed. The existing undocumented fill should be overexcavated, moisture conditioned, and recompacted where below footings and at least five feet beyond the footings. All areas to receive improvements should be stripped of vegetation and organic topsoil. Stripped materials should be removed from the site or stockpiled for later use in landscaped areas, if approved by the landscape architect. Underground utilities should be removed to the service connections and properly capped or plugged with concrete. Where existing utility lines will not interfere with the planned construction, they may be abandoned in-place, provided the lines are filled with lean concrete or cement grout to the limits of the project. Voids resulting from demolition activities should be properly backfilled with engineered fill as described later in this section.

From a geotechnical standpoint, concrete and asphalt generated by demolition may be crushed and reused as fill providing it is free of organic material and rocks or lumps greater than three inches in greatest dimension. The acceptability of using crushed asphalt at the site should be verified by the architect. Where crushed asphalt pavement materials are used as fill, particles between 1½ and 3 inches in greatest dimension should comprise no more than 30 percent of the fill by weight.

In areas where wet and/or weak subgrade soils are encountered, an alternative to mitigate this problem is scarifying and aerating the upper 12 inches of soil to reduce its moisture content so that it can be compacted to the required compaction. For this alternative, several weeks of dry, warm weather may be required. Other alternatives to mitigate weak subgrade areas are: 1) mixing and compacting the upper 12 to 18 inches of the weak soil with lime or kiln dust, 2) excavating the upper 12 to 18 inches of the weak soil, and backfilling with a lean concrete backfill, and 3) excavating the upper 12 to 18 inches of the weak soil, placing a geotextile (Mirafi 500X or equivalent), and placing and compacting select fill over the fabric.

8.1.2 Fill Placement

We anticipate fill placement will consist fill placement to raise site grades up to about 3-1/2 feet, utility trench backfill, placement of backfill around below-grade walls, and placement of select fill to mitigate the effects of the moderately expansive soil beneath the floor slab and exterior concrete flatwork. Wall backfill should meet the criteria for select fill.

Select fill should consist of imported or on-site soil that is free of organic matter and hazardous material, contain no rocks or lumps larger than three inches in greatest dimension, have a liquid limit less than 40 and plasticity index less than 12, and be approved by the geotechnical engineer. In addition, select fill placed outside of the garage footprint should contain at least 20 percent fines (particles passing the No. 200 sieve) to reduce the potential for surface water to infiltrate near the foundations or behind below-grade walls; select fill placed below the floor slab may consist of Class 2 Aggregate Base. Select fill should be placed in lifts not exceeding eight inches in loose thickness, moisture-conditioned to above optimum moisture content, and compacted to at least 90 percent relative compaction for fill thickness equal to or less than five feet and 95 percent compaction for fill thickness greater than five feet.

12 June 2014 731628101 Page 15

If lime treatment will be used beneath exterior concrete flatwork in lieu of select fill or Class 2 AB, the upper 12 inches of the expansive soil should be treated in place with about four to eight percent (to be determined by the contractor) dolomitic quicklime by dry weight of soil. A specialty subcontractor typically performs lime treatment, and we recommend this work be performed only by an experienced contractor. Prior to lime treatment, we recommend the area be graded to a level pad in accordance with our previous recommendations and all below-grade obstructions removed. The soil treated with lime should be mixed and compacted in one lift. The lime should be thoroughly blended with the soil and allowed to set for 24 hours prior to compaction. The lime-treated soil should be moisture-conditioned to above optimum moisture content and compacted to at least 90 percent relative compaction. It should be noted that disposal of lime-treated soil is typically expensive because of the high pH of the treated soil.

If native expansive clay is to be used as general site fill, it should be moisture-conditioned to at least three percent above optimum moisture content, placed in horizontal lifts not exceeding eight inches in loose thickness, and compacted to between 88 and 92 percent relative compaction.

We should approve all sources of engineered fill at least three days before use at the site. The grading subcontractor should provide analytical test results or other suitable environmental documentation indicating the imported fill is free of hazardous materials at least three days before use at the site. If this data is not available, up to two weeks should be allowed to perform analytical testing on the proposed import material.

8.1.3 Subgrade Preparation

We recommend at least 12 inches of non-expansive fill, consisting of either lime-treated soil or select fill be placed in the proposed garage area if a floor slab will be constructed; the non-expansive fill should extend at least five feet beyond garage footprint. Where lime-treatment will be performed, it will need to be removed and replaced with non-expansive soil in landscaped areas. Prior to placement of select fill in building areas, the subgrade soil exposed by stripping and grading should be scarified to a depth of at least 12 inches, moisture-conditioned to at least three percent above optimum moisture content, and compacted to between 88 and 93 percent relative compaction. The soil subgrade should be kept moist until it is covered by select fill.

12 June 2014 731628101 Page 16

In asphalt and concrete pavement areas, where non-expansive engineered fill is exposed at soil subgrade, the upper six inches should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction⁸ to provide a smooth non-yielding surface. If expansive on-site clay and/or undocumented fill is at subgrade in pavement areas, the upper 12 inches should be moisture-conditioned to at least two percent over optimum moisture content and compacted to at least 90 percent relative compaction.

As a minimum preparation for exterior concrete flatwork (including patio slabs and sidewalks), and where fill is to be placed outside the garage footprint, the native expansive soil at subgrade should be scarified to a depth of at least 12 inches, moisture-conditioned to at least three percent above optimum moisture content, and compacted to between 88 and 92 percent relative compaction. If non-expansive soil is exposed at subgrade, it should be scarified to a depth of at least six inches, moisture-conditioned to at least two percent above optimum moisture content, and compacted to between the scarified to a depth of at least six inches, moisture-conditioned to at least two percent above optimum moisture content, and compacted to at least 90 percent relative compaction.

If it is desirable to reduce the potential for differential movement and cracking where expansive soil is present, exterior concrete flatwork should be underlain by at least 12 inches of select fill, lime-treated soil, or Caltrans Class 2 aggregate base (AB), as recommended in Section 8.5. Select fill at subgrade in concrete flatwork areas should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction.

8.1.4 Temporary Cut Slopes

We anticipate there may be minor excavations for site improvements. The soil to be excavated consists predominantly of clay and sand, which may be excavated using conventional earth-moving equipment such as loaders and backhoes. Excavations that will be deeper than five feet and will be entered by workers should be shored or sloped in accordance with the Occupational Safety and Health Administration (OSHA) standards (29 CFR Part 1926). We judge that temporary cuts in native soil which are less than 12 feet high and inclined no steeper than 1.5:1 (horizontal: vertical) will be stable provided that they are not surcharged by equipment or building material.

⁸ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the ASTM D1557-09 laboratory compaction procedure.

Excavations for utility trenches can be made with a backhoe. All trenches should conform to the current OSHA requirements for slopes, shoring, and other safety concerns.

To provide uniform support, pipes or conduits should be bedded on a minimum of four inches of sand or fine gravel. After the pipes and conduits are tested, inspected (if required), and approved, they should be covered to a depth of six inches with sand or fine gravel, which should be mechanically tamped. If groundwater is encountered during trench excavation, the gravel used as bedding and cover should be replaced with Caltrans Class 2 permeable material below the water level, or the open-graded gravel used as bedding and cover should be wrapped in filter fabric (Mirafi 140N or equivalent) to reduce the potential for infiltration of fines.

Backfill for utility trenches and other excavations is also considered fill and should be placed and compacted according to the recommendations previously presented. If imported clean sand or gravel (defined as soil with less than 10 percent fines) is used as backfill, it should be compacted to at least 95 percent relative compaction. Jetting of trench backfill should not be permitted. Special care should be taken when backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements, resulting in damage to the pavement section.

Where utility trenches backfilled with sand or gravel enter the building pad, an impermeable plug consisting of native clay or lean concrete, at least five feet in length, should be installed at the building line. Further, where sand- or gravel-backfilled trenches cross planter areas and pass below asphalt or concrete pavements, a similar plug should be placed at the edge of the pavement. The plug should extend from the bottom of the trench to the subgrade elevation. The purpose of these recommendations is to reduce the potential for water to become trapped in trenches beneath the parking garage or pavements. This trapped water can cause heaving of soils beneath slabs and softening of subgrade soil beneath pavements.

8.2 Foundation Support

The parking garage should be supported on continuous footings bearing on native stiff to very stiff clay or engineered fill founded at least 24 inches below lowest adjacent soil subgrade. Where columns spacing is too great to sufficiently spread the load, isolated footings may be used, provided the differential

12 June 2014 731628101 Page 18

settlement is acceptable. To reduce the potential for movement of the footings due to shrink and swell of the expansive clay, we recommend that a continuous footing or grade beam be placed around the perimeter and bottomed at least 24 inches below the lowest adjacent soil subgrade. Continuous footing should be at least 18 inches wide and isolated footings should be at least 24 inches wide.

Footings bottomed above Elevation 445 feet should be designed for an allowable bearing pressure of 4,500 pounds per square foot (psf) for dead plus live load conditions, with a one-third increase for total design loads, including wind or seismic loads. A modulus of subgrade reaction of 80 kips per cubic foot (kcf) may be used for footings where column loads are less than 800 kips and 54 kcf for footings where column loads are greater than 800 kips. Footings bottomed at or below Elevation 445 feet should be designed for an allowable bearing pressure of 3,200 psf for dead plus live load conditions, with a one-third increase for total design loads. A modulus of subgrade reaction of 38 kcf should be used for these deeper footings.

To limit the differential settlement between moderately or lightly loaded columns and heavily loaded columns, we recommended the heavily loaded footings (800 kips and higher for dead plus live loads) be underlain by at least 36 inches of Class 2 aggregate base extending at least four feet beyond the limits of the footings and compacted to at least 95 percent relative compaction. At the time, we understand no heavily loaded footings will bear at Elevation 445 feet or below. We should be informed if this condition occurs as additional recommendations will be needed.

Resistance to lateral loads can be mobilized by a combination of passive pressure acting against the vertical faces of the footings and friction along the base of the footings. Passive resistance may be calculated using an equivalent fluid pressure of 270 pounds per cubic foot (pcf). The upper foot of soil should be ignored unless confined by a concrete slab or pavement. Friction along the bottom of the foundation may be calculated using an allowable friction coefficient of 0.25. These values include a factor of safety of about 1.5.

The bottom and sides of the footing excavations should be wetted following excavation and maintained in a moist condition until concrete is placed. If the foundation soil dries during construction, the foundation will heave when exposed to moisture, which may result in cracking and distress. We should observe footing excavations prior to placement of reinforcing steel, and we should recheck the excavation just prior to concrete placement to confirm the excavation is sufficiently moist. The

excavation for the footings should be free of standing water, debris, and disturbed materials prior to placing concrete.

8.3 Floor Slabs

The floor slabs will bear on at least 12 inches of lime-treated soil or select fill over native stiff to very stiff clay or engineered fill. The slab may be designed to bear on grade. Where moisture is not a concern, the floor should be underlain by at least 6 inches of Class 2 aggregate base compacted to at least 95 percent relative compaction.

Where moisture on the slab would be detrimental, a capillary moisture break consists of at least four inches of clean, free-draining gravel or crushed rock. The vapor retarder should meet the requirements for Class C vapor retarders stated in ASTM E1745-97. The vapor retarder should be placed in accordance with the requirements of ASTM E1643-98. These requirements include overlapping seams by six inches, taping seams, and sealing penetrations in the vapor retarder. The vapor retarder should be covered with two inches of sand to aid in curing the concrete and to protect the vapor retarder during slab construction. The particle size of the gravel/crushed rock and sand should meet the gradation requirements presented in Table 3.

TABLE 3

Sieve Size	Percentage Passing Sieve			
Gravel or Crushed Rock				
1 inch	90 – 100			
3/4 inch	30 – 100			
1/2 inch	5 – 25			
3/8 inch	0 – 6			
	Sand			
No. 4	100			
No. 200	0 – 5			

Gradation Requirements for Capillary Moisture Break

12 June 2014 731628101 Page 20

The sand overlying the membrane should be moist at the time concrete is placed; however, there should be no free water present in the sand. Excess water trapped in the sand could eventually be transmitted as vapor through the slab. If rain is forecast prior to pouring the slab, the sand should be covered with plastic sheeting to avoid wetting. If the sand becomes wet, concrete should not be placed until the sand has been dried or replaced.

Concrete mixes with high water/cement (w/c) ratios result in excess water in the concrete, which increases the cure time and results in excessive vapor transmission through the slab. Therefore, concrete for the floor slab should have a low w/c ratio – less than 0.50. If approved by the project structural engineer, the sand can be eliminated and the concrete can be placed directly over the vapor retarder, provided the w/c ratio of the concrete does not exceed 0.45 and water is not added in the field. If necessary, workability should be increased by adding plasticizers. In addition, the slab should be properly cured. Before the floor covering is placed, the contractor should check that the concrete surface and the moisture emission levels (if emission testing is required) meet the manufacturer's requirements.

8.4 Below-Grade Walls

Below-grade walls should be designed to resist both static lateral earth pressures and, where the wall is greater than six feet high, lateral pressures caused by earthquakes. Restrained walls less than six feet high should be designed for the at-rest earth pressures and, where applicable, a traffic increment, as presented below. For walls that are greater than six feet high, we recommend they be designed for the more critical of the following criteria:

- at-rest equivalent fluid weight of 65 pcf for walls that are fully backdrained and 95 pcf for walls without a backdrain, plus a traffic increment where the wall is adjacent to streets. The traffic increment consists of a uniform (rectangular distribution) lateral pressure of 100 psf, applied over the top 10 feet of the wall.
- active equivalent fluid weight of 45 pcf plus a seismic increment of 35 pcf for walls that are fully backdrained, and 85 pcf plus a seismic increment of 20 pcf for walls without a backdrain.

If surcharge loads are present above an imaginary 30-degree line (from the horizontal) projected up from the bottom of a below-grade wall, a surcharge pressure should be included in the wall design.

A backdrain can be provided behind below-grade walls to prevent the buildup of hydrostatic pressure. One acceptable method for backdraining below-grade walls is to place a prefabricated drainage panel against the backside of the newly cast wall and collect water in a drain at the base of the wall. The drain may consist of a flat drain or a 4-inch-diamter perforated pipe surrounded by at least 4 inches of uniformly graded crushed rock wrapped in filter fabric.

To protect against moisture migration, below-grade walls should be waterproofed and water stops placed at all construction joints. The waterproofing should be placed directly against the backside of the walls. During placement of backfill behind below-grade walls, the walls should be braced or hand compaction equipment should be used to prevent unwanted surcharges on walls or foundations (as determined by the structural engineer). As recommended in Section 8.1.3, retaining wall backfill should meet the criteria for select fill.

8.5 Concrete Flatwork

If it is desirable to reduce the potential for differential movement and cracking, exterior concrete flatwork should be underlain by at least 12 inches of select fill, lime-treated soil, or Caltrans Class 2 AB, which should extend at least two feet beyond the slab edges. Even with 12 inches of select fill, lime-treated soil, or AB, exterior slabs may experience some cracking due to shrinking and swelling of the underlying expansive soil. Thickening the slabs and adding reinforcement will control this cracking to some degree, if desired. In addition, where slabs provide access to the structure, it would be prudent to dowel the slab to the foundation at the entrance to permit rotation of the slab as the exterior ground shrinks and swells and to prevent a vertical offset at the entries. Recommendations for subgrade preparation beneath concrete flatwork are provided in Section 8.1.

8.6 Pavement Design

8.6.1 Asphalt Concrete Pavement

The State of California resistance value (R-value) method for flexible pavement design was used to develop recommendations for asphalt concrete pavement sections. We anticipate the final soil subgrade in areas to receive asphalt concrete pavement will generally consist of clay. The R-value test performed on a sample of near-surface clay collected during our field investigation indicates the material has an R-value of 8. We used an R-value of 8 in our calculations.

For our calculations, we used traffic indices (TIs) of 4.5, 5.5, and 6.5. We can provide recommended pavement sections for other TIs upon request. Our pavement section recommendations are presented in Table 4.

TI	Asphalt Concrete (inches)	Class 2 Aggregate Base (inches)
4.5	2.5	9.0
5.5	3.0	11.5
6.5	4.0	13.0

TABLE 4 Asphaltic Concrete Pavement Section Design (R-Value of 8)

Recommendations for subgrade preparation beneath pavement sections are provided in Section 8.1.2. AB should be compacted to at least 95 percent relative compaction.

8.6.2 Portland Cement Concrete Pavement

Concrete pavement design is based on a maximum single-axle load of 18,000 pounds and a maximum tandem axle of 32,000 pounds (corresponds to a garbage truck). The recommended rigid pavement section for these axle loads is seven inches of Portland cement concrete over six inches of Caltrans Class 2 AB. If only passenger cars or light trucks will use the pavement, the recommended minimum pavement section is five inches of Portland cement concrete over six inches of Class 2 AB. AB should conform to the current State of California Department of Transportation (Caltrans) Standard Specifications. Recommendations for subgrade preparation and AB compaction for Portland cement concrete pavement are the same as those for asphalt concrete pavement.

The modulus of rupture of the concrete should be at least 500 psi at 28 days. Contraction joints should be constructed at 15-foot spacing. Where the outer edge of a concrete pavement meets asphalt pavement, the concrete slab should be thickened by 50 percent at a taper not to exceed a slope of 1 in 10.

Geotechnical Investigation 2600 Camino Ramon San Ramon, California

8.7 Drainage

12 June 2014 731628101 Page 23

Positive surface drainage should be provided around the structure to direct surface water away from the foundation. To reduce the potential for water ponding adjacent to the structure, we recommend the ground surface within a horizontal distance of ten feet from the building slope down away from the building with a surface gradient of at least five percent in unpaved areas and two percent in paved areas. In addition, roof downspouts should be discharged into controlled drainage facilities to keep the water away from the foundation. Because the subgrade soil consists predominantly of clay, it will have a relatively low permeability. If infiltration basins, bioswales, or permeable pavement are planned, they should be lined with an impermeable membrane and drains should be provided that direct the water to an appropriate outlet; additional recommendations will be needed if any of these types of improvements are planned. Unlined infiltration basins or bioswales should not be placed within five feet of the foundations.

8.8 Irrigation and Landscaping Limitations

The use of water-intensive landscaping around the perimeter of the structure should be avoided to reduce the amount of water introduced to the expansive clay subgrade. In addition, irrigation of landscaping around the structure should be limited to drip or bubbler-type systems. The purpose of these recommendations is to avoid large differential moisture changes adjacent to the foundations, which has been known to cause large differential settlement over short horizontal distances in expansive soil, resulting in cracking of slabs and architectural damage.

Moderately expansive native clay is expected to be present at or near the subgrade level. For this condition, prior experience and industry literature indicate some species of high water-demand⁹ trees can induce ground surface settlement by drawing water from the expansive soil and causing it to shrink. Where these types of trees are planted adjacent to structures, the ground-surface settlement may result in damage to the structures. This problem usually occurs ten or more years after project completion as the trees reach mature height. To reduce the risk of tree-induced, ground-surface settlement, we recommend trees of the following genera not be planted within a horizontal distance from the structure

⁹ "Water-demand" refers to the ability of the tree to withdraw large amounts of water from the soil subgrade, rather than soil suction exerted by the root system.

equal to the mature height of the tree: *Eucalyptus, Populus, Quercus, Crataegus, Salix, Sorbus (simple-leafed), Ulmus, Cupressus, Chamaecyparis, and Cupressocyparis.* Because this is a limited list and does not include all genera than may induce ground-surface settlement, the project landscape architect should use judgment in limiting other types or trees with similar properties in the vicinity of the structure.

8.9 Seismic Design

Although potentially-liquefiable soil was encountered in the borings and CPTs at the site, we conclude the potentially liquefiable soil occurs in relatively thin layers. Therefore, on the basis of our evaluation of the average shear wave velocity in the upper 100 feet of the site and accounting for the softening of the potentially liquefiable material, we conclude that site class D may be used for design. For seismic design in accordance with the provisions of 2013 California Building Code (CBC) we recommend the following:

- risk targeted Maximum Considered Earthquake (MCE_R) $S_{\rm S}$ and $S_{\rm 1}$ of 2.335g and 0.888g, respectively
- site class D
- mapped MCE_R spectral response acceleration parameters, F_a and F_v of 1.0 and 1.5, respectively
- Risk Targeted MCE_R spectral acceleration parameters at short period, S_{MS}, and at one-second period, S_{M1}, of 2.335g and 1.332g, respectively
- Design Earthquake (DE) spectral acceleration parameters at short period, S_{DS}, and at one-second period, S_{D1}, of 1.556g and 0.888g, respectively.

9.0 ADDITIONAL RECOMMENDATIONS – SERVICES DURING DESIGN AND CONSTRUCTION

During final design we should be retained to consult with the design team as geotechnical questions arise. Prior to construction, we should review the geotechnical aspects of the project plans and specifications to check their conformance with the intent of our recommendations. During construction, it is imperative that we observe footings excavations, footing subgrade preparation, slab subgrade preparation, compaction of backfill, as the geotechnical engineer of record. These observations will allow us to compare the actual with the anticipated soil conditions and to check that the contractors' work

conforms with the geotechnical aspects of the plans and specifications. The recommendations contained in this report assume that we will be on-site during construction to make modification to them as needed.

10.0 LIMITATIONS

The conclusions and recommendations presented in this report result from limited engineering studies based on our interpretation of the geotechnical conditions existing at the site at the time of this investigation. Actual subsurface conditions may vary. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that described in this report, Langan Treadwell Rollo should be notified to make supplemental recommendations, as necessary.

REFERENCES

California Building Code (2013).

California Division of Mines and Geology (1996). "Probabilistic seismic hazard assessment for the State of California." DMG Open-File Report 96-08.

California Division of Mines and Geology (1982). "State of California Special Studies Zones, Diablo, Revised Official Map" 1 January.

Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Willis, C.J. (2003). "The Revised 2002 California Probabilistic Seismic Hazard Maps."

Idriss, I.M., and Boulanger, R.W. (2008). "Soil Liquefaction During Earthquakes" EERI Monograph, Earthquake Engineering Research Institute.

Ishihara, K. (1985). "Stability of Natural Deposits During Earthquakes," 11th International Conference of Soil Mechanics and Foundation Engineering, San Francisco, pp. 321-376.

National Center for Earthquake Engineering Research (1997), Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, Youd, T.L. and Idriss, I.M, eds.

Norris, R. M., and Webb, R. W. (1990) "Geology of California," John Wiley & Sons, Inc.

Seed, H.B., and Idriss, I.M. (1982). *Ground Motions and Soil Liquefaction during Earthquakes*, EERI Monograph, Earthquake Engineering Research Institute.

Sitar, N., Mikola, R.G., and Candia, C. (2012), "Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls." Geotechnical Engineering State of the Art and Practice Keynote Lectures GeoCongress 2012 Geotechnical Special Publication No. 226.

Tokimatsu, K. and Seed, H.B. (1984). "Simplified Procedures for the Evaluation of Settlements in Clean Sands," Rept. No. UCB/GT-84/16, Earthquake Engineering Research Center, University of California, Berkeley.

Tokimatsu, K. and Seed H. B. (1987). "Evaluation of Settlements in Sand due to Earthquake Shaking." Journal of Geotechnical Engineering, Vol. 113, No. 8, pp. 861-878.

Toppozada, T. R. and Borchardt G. (1998). "Re-Evaluation of the 1836 'Hayward Fault' and the 1838 San Andreas Fault earthquakes." *Bulletin of Seismological Society of America*, 88(1), 140-159.

Townley, S. D. and Allen, M. W. (1939). "Descriptive catalog of earthquakes of the Pacific coast of the United States 1769 to 1928." *Bulletin of the Seismological Society of America*, 29(1).

Wells, D. L. and Coppersmith, K. J. (1994). "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement." *Bulletin of the Seismological Society of America*, 84(4), 974-1002.

REFERENCES (Continued)

Wesnousky, S. G. (1986). "Earthquakes, quaternary faults, and seismic hazards in California." *Journal of* Geophysical Research, 91(1312).

Working Group on California Earthquake Probabilities (WGCEP), (2008), "The Uniform California Earthquake Rupture Forecast, Version 2," Open File Report 2007-1437.

Youd et al. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering, October.

Youd, T.L., Hansen, C.M., and Bartlett, S.F., (2002). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement, Journal of Geotechnical and Geoenvironmental Engineering, December 2002.

Youngs, R. R., and Coppersmith, K. J. (1985). "Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates." Bulletin of the Seismological Society of America, 75, 939-964.

FIGURES

Path: \\langan.com\data\SF\data1\731628101\ArcGIS\ArcMap_Documents\Site Location Map.mxd User: Cyoung

EXPLANATION

CPT-1 A Approximate location of cone penetration test by Treadwell & Rollo, December 2013

2600 CAMINO RAMON

San Ramon, California

SITE PLAN

Date 01/07/14 Project No. 731628101 Figure 2

- I Not felt by people, except under especially favorable circumstances. However, dizziness or nausea may be experienced. Sometimes birds and animals are uneasy or disturbed. Trees, structures, liquids, bodies of water may sway gently, and doors may swing very slowly.
- II Felt indoors by a few people, especially on upper floors of multi-story buildings, and by sensitive or nervous persons. As in Grade I, birds and animals are disturbed, and trees, structures, liquids and bodies of water may sway. Hanging objects swing, especially if they are delicately suspended.
- III Felt indoors by several people, usually as a rapid vibration that may not be recognized as an earthquake at first. Vibration is similar to that of a light, or lightly loaded trucks, or heavy trucks some distance away. Duration may be estimated in some cases. Movements may be appreciable on upper levels of tall structures. Standing motor cars may rock slightly.
- IV Felt indoors by many, outdoors by a few. Awakens a few individuals, particularly light sleepers, but frightens no one except those apprehensive from previous experience. Vibration like that due to passing of heavy, or heavily loaded trucks. Sensation like a heavy body striking building, or the falling of heavy objects inside.

Dishes, windows and doors rattle; glassware and crockery clink and clash. Walls and house frames creak, especially if intensity is in the upper range of this grade. Hanging objects often swing. Liquids in open vessels are disturbed slightly. Stationary automobiles rock noticeably.

V Felt indoors by practically everyone, outdoors by most people. Direction can often be estimated by those outdoors. Awakens many, or most sleepers. Frightens a few people, with slight excitement; some persons run outdoors.

Buildings tremble throughout. Dishes and glassware break to some extent. Windows crack in some cases, but not generally. Vases and small or unstable objects overturn in many instances, and a few fall. Hanging objects and doors swing generally or considerably. Pictures knock against walls, or swing out of place. Doors and shutters open or close abruptly. Pendulum clocks stop, or run fast or slow. Small objects move, and furnishings may shift to a slight extent. Small amounts of liquids spill from well-filled open containers. Trees and bushes shake slightly.

VI Felt by everyone, indoors and outdoors. Awakens all sleepers. Frightens many people; general excitement, and some persons run outdoors.

Persons move unsteadily. Trees and bushes shake slightly to moderately. Liquids are set in strong motion. Small bells in churches and schools ring. Poorly built buildings may be damaged. Plaster falls in small amounts. Other plaster cracks somewhat. Many dishes and glasses, and a few windows break. Knickknacks, books and pictures fall. Furniture overturns in many instances. Heavy furnishings move.

VII Frightens everyone. General alarm, and everyone runs outdoors.

People find it difficult to stand. Persons driving cars notice shaking. Trees and bushes shake moderately to strongly. Waves form on ponds, lakes and streams. Water is muddied. Gravel or sand stream banks cave in. Large church bells ring. Suspended objects quiver. Damage is negligible in buildings of good design and construction; slight to moderate in well-built ordinary buildings; considerable in poorly built or badly designed buildings, adobe houses, old walls (especially where laid up without mortar), spires, etc. Plaster and some stucco fall. Many windows and some furniture break. Loosened brickwork and tiles shake down. Weak chimneys break at the roofline. Cornices fall from towers and high buildings. Bricks and stones are dislodged. Heavy furniture overturns. Concrete irrigation ditches are considerably damaged.

VIII General fright, and alarm approaches panic.

Persons driving cars are disturbed. Trees shake strongly, and branches and trunks break off (especially palm trees). Sand and mud erupts in small amounts. Flow of springs and wells is temporarily and sometimes permanently changed. Dry wells renew flow. Temperatures of spring and well waters varies. Damage slight in brick structures built especially to withstand earthquakes; considerable in ordinary substantial buildings, with some partial collapse; heavy in some wooden houses, with some tumbling down. Panel walls break away in frame structures. Decayed pilings break off. Walls fall. Solid stone walls crack and break seriously. Wet grounds and steep slopes crack to some extent. Chimneys, columns, monuments and factory stacks and towers twist and fall. Very heavy furniture moves conspicuously or overturns.

IX Panic is general.

Ground cracks conspicuously. Damage is considerable in masonry structures built especially to withstand earthquakes; great in other masonry buildings - some collapse in large part. Some wood frame houses built especially to withstand earthquakes are thrown out of plumb, others are shifted wholly off foundations. Reservoirs are seriously damaged and underground pipes sometimes break.

X Panic is general.

Ground, especially when loose and wet, cracks up to widths of several inches; fissures up to a yard in width run parallel to canal and stream banks. Landsliding is considerable from river banks and steep coasts. Sand and mud shifts horizontally on beaches and flat land. Water level changes in wells. Water is thrown on banks of canals, lakes, rivers, etc. Dams, dikes, embankments are seriously damaged. Well-built wooden structures and bridges are severely damaged, and some collapse. Dangerous cracks develop in excellent brick walls. Most masonry and frame structures, and their foundations are destroyed. Railroad rails bend slightly. Pipe lines buried in earth tear apart or are crushed endwise. Open cracks and broad wavy folds open in cement pavements and asphalt road surfaces.

XI Panic is general.

Disturbances in ground are many and widespread, varying with the ground material. Broad fissures, earth slumps, and land slips develop in soft, wet ground. Water charged with sand and mud is ejected in large amounts. Sea waves of significant magnitude may develop. Damage is severe to wood frame structures, especially near shock centers, great to dams, dikes and embankments, even at long distances. Few if any masonry structures remain standing. Supporting piers or pillars of large, well-built bridges are wrecked. Wooden bridges that "give" are less affected. Railroad rails bend greatly and some thrust endwise. Pipe lines buried in earth are put completely out of service.

XII Panic is general.

Damage is total, and practically all works of construction are damaged greatly or destroyed. Disturbances in the ground are great and varied, and numerous shearing cracks develop. Landslides, rock falls, and slumps in river banks are numerous and extensive. Large rock masses are wrenched loose and torn off. Fault slips develop in firm rock, and horizontal and vertical offset displacements are notable. Water channels, both surface and underground, are disturbed and modified greatly. Lakes are dammed, new waterfalls are produced, rivers are deflected, etc. Surface waves are seen on ground surfaces. Lines of sight and level are distorted. Objects are thrown upward into the air.

2600 CAMINO RAMON San Ramon, California

MODIFIED MERCALLI INTENSITY SCALE

LANGAN TREADWELL ROLLO

Date 01/07/14 Project No. 731628101 Figure 4

APPENDIX A

LOGS OF BORINGS

PROJECT: 2600 CAMINO RAMON San Ramon, California Log of Boring B-1 PAGE 1						AGE 1	OF 2						
Borin	g loca	tion:	S	ee Si	te Pla	an, Figure 2		Logge	ed by:	E. Toth	1		
Date	starte	d:	1:	2/21/	13	Date finished: 12/21/13							
Drillin	ng met	thod:	Н	ollow	Ster	n Auger with Hydraulic Trip							
Hamr	mer w	eight/	drop:	14	0 lbs.	/30 inches Hammer type: Downhole Safe	ety		LABO	RATOR	Y TEST	DATA	
Samp	oler:	Spra	gue	& He	nwoo	d (S&H), Standard Penetration Test (SPT)				£			
et)	pler pe	SAMF 음	PLES .9 /s	oT alue ¹	OLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure bs/Sq Ft	ar Streng bs/Sq Ft	Fines %	Natural Moisture ontent, %	y Density bs/Cu Ft
DEP (fee	Sam	Sam	Blow	SF N-Va	LTH	Ground Surface Elevation: 450.5 fee	t ²			She		- 3	
						3 inches asphalt concrete (AC)							
1 —						21 inches aggregate base (AB)	- - -	-					
2 —						CLAY (CL)	Ē	-					
3 —			5		CL	dark brown, black, stiff, moist, with organi	ics, trace 🛓 _	-					
4 —	S&H		9	13		Sand, wood, debris							
			12			dark brown, stiff, moist, trace sand							
5 —	<u>с8н</u>		5	11		Corrosion Test, see Figure C-6	_			3 250			
6 —	Sort		10		CL	olive-brown	-		500	3,120		22.4	103
7 —						Triaxial Test, see Figure C-2	-	-					
8 —							_	_					
۹ <u> </u>			6			grades slity							
9	S&H		8 11	11		brown, medium dense, moist							
10 —	ODT		5	-	SM		_						
11 —	501		4 3	<i>'</i>		loose, decreased gravel, with clay	_	-					
12 —							_	-					
13 —						CLAY (CL)		-					
14 —			4			stiff, moist, variable sand content	Stiff to						
45	S&H		6 7	8	CL			PP		1,000			
15 —			•				_						
16 —						∠ CLAYEY SAND (SC)		-					
17 —					00	olive-brown, loose, wet, fine-grained		-					
18 —					SC			_					
19 —			7			LL = 26, PI = 8, see Figure C-1					42.9	19.0	
20	S&H		6 7	8		CLAY (CL)		PP		1,000			
20 —			1		CL	olive-brown, mediam sum to sun, wet	_						
21 —							_	1					
22 —						SAND with SILT (SP-SM)		-					
23 —					SP-	olive-brown, loose, wet, fine- to medium-g	rained _	-					
24 —			4		SIVI								
	SPT		5	8		CLAY (CL)	e sand						
25 —								1					
26 —							_	1					
27 —					CL		_	-					
28 —							_	-					
29 —			8			olive-brown with orange and black mottling	g, very _						
30 —	S&H		14 16	18		stiff, with carbonite nodules	-	PP		2,500			
								LAN	GAN	TREA	DWE	LL RO	ILLO
								Project	No.: 73162	8101	Figure:		A-1a
L													u

PRC	JEC	T:				2600 CAMINO RAMON San Ramon, California	Log of E	Borir	ng B	-1	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОСУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
						CLAY (CL) (continued)							
31 — 32 — 33 — 34 — 35 — 36 — 37 —	S&H		8 9 12	13		olive-gray with orange mottling, stiff, incressand content		PP		1,750			
38 — 39 — 40 — 41 — 42 —	S&H		7 12 14	16	CL	very stiff	-	-					
43 — 44 — 45 — 46 — 47 —	S&H		8 12 17	17		gray to olive-gray with orange and black r	mottling — — — —	PP		3,200			
48 — 49 — 50 — 51 — 52 — 53 —	S&H		8 9 12	13		olive-gray and olive with orange and gray stiff, increased sand content	 mottling, 						
54							-	-					
Borin Borin Borin	ig termir ce. ig backfi	ated at	a dep h cem	th of 50 ent gro) feet b ut.	elow ground 'S&H and SPT blow counts for the last tw converted to SPT N-Values using factors respectively, to account for sampler type	vo increments were of 0.6 and 1.0, and hammer	LAN	GAN	TREA	DWE	LL RO	LLO
Grou durin PP = LL =	ndwater g drilling pocket liquid lin	encour penetro nit. PI =	ntered meter	at 16.5	teet be	elow ground surface ^{2 elocyy.} Elevations based on NGVD 1929 from to provided by IDG Parkitects, Inc., on 01/1:	ppographic survey 5/14.	Project	^{No.:} 73162	8101	Figure:		A-1b

PRC	JEC	T:				2600 CAMINO RAMON San Ramon, California	Log of E	Borir	ng B	-2	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Si	te Pla	an, Figure 2	·	Logge	ed by:	E. Toth	ı		
Date	starte	d:	1	2/21/	13	Date finished: 12/21/13		1					
Drillin	g met	hod:	Н	ollow	Sten	n Auger with Hydraulic Trip							
Hamr	mer w	eight/	drop:	14(0 lbs.	/30 inches Hammer type: Downhole Sa	fety	4	LABO	RATOR	Y TEST	DATA	
Samp	oler:	Sprag	ue & I	Henwo	od (S&	KH), Standard Penetration Test (SPT), Shelby Tube (ST)				gth			~
- -	<u> </u>	SAMF	LES الم	-	OGY	MATERIAL DESCRIPTION		oe of ength est	fining ssure 'Sq Ft	Strenç 'Sq Ft	nes %	tural sture ent, %	Densit Cu Ft
EPTH feet)	ample Type	ample) wo	SPT -Value	HOL		.2	Star	Con Pre	hear Lbs/	Ē	Nai Moi	Dry D Lbs/
ā	ů.	Ś	ā	ż	5	Ground Surface Elevation: 452 fee	<u>r</u>			05			
1 —						21 inches aggregate base (AB)		-					
2 —			l –					-					
3 —	S&H		10	17	CL	dark brown to black, very stiff, moist, trad	e 🛓 _	PP		2,750			
4			19			fine-grained sand and gravel							
4 -					CL	brown, very stiff, moist, trace sand	_						
5 —	S&H		8	13		CLAYEY SAND (SC)		1					
6 —	Jan		12	15		LL = 29, PI = 10, see Figure C-1	-	1					
7 —					sc		-	-					
8 —							_	-					
9 —	S&H		8	13		grades silty							
10 —	Ouri		12	10		SILTY SAND (SM)	d —	-					
11	SPT		3	9			u 				29.5	11.1	
10			5		SM	loose							
12 -							_	1					
13 —			-										
14 —	S&H		9	14		olive-brown with orange and black mottlir	ig, stiff,	PP		2,250			
15 —			15			moist	-	-					
16 —					CL		_	-					
17 —							_	-					
18 —							_	-					
19 —			8										
20 -	S&H		10 11	13	SC	CLAYEY SAND (SC) ∠ brown, medium dense. moist to wet							
20	SPT		5 7	14		(12/21/13, measured groundwater elevat	on)						
21 -			7		CL	CLAY (CL) olive-brown with black mottling, stiff, wet,	trace –	1					
22 —						calcium carbonate nodules	_	1					
23 —			1		SC-	CLAYEY SILTY SAND (SC-SM)		1					
24 —	S&H		8 8	10	SM	olive-brown with black mottling, loose to r	nedium	-			26.5	16.7	
25 —			9			LL = 23, PI = 5, see Figure C-1		-					
26 —	ST			500	СН	CLAY (CH) olive-brown with orange and black mottlir	ig, stiff. —	DD		1 500			
27 —	01			psi		wet, trace rootlets	<u> </u>			1,500			
28 -			l		ſ	CLAY (CL)	/ _						
20			9		CL	olive-brown, stiff, wet							
29 -	S&H		15 15	18		very stiff, trace calcium carbonate nodule sand	s, with —						
30 —								LAN	GAN	TREA	DWEI	LL RO	ILLO
								Project	No.:	0104	Figure:		٨ ٥-
									1 3 102	0101			/- 2d

PROJECT: 2600 CAMINO RAMON San Ramon, California Log of Boring B-3 PAGE 1 OF				OF 2									
Borin	g loca	tion:	S	ee Si	te Pla	an, Figure 2		Logge	ed by:	E. Toth			
Date	starte	d:	1	2/21/	13	Date finished: 12/21/13]					
Drillin	g met	hod:	Н	lollow	Sten	n Auger with Hydraulic Trip							
Hamr	ner w	eight/	drop	: 14	0 lbs.	/30 inches Hammer type: Downhole Safe	ety		LABO	RATOR	Y TEST	DATA	
Samp	oler:	Sprag	ue & I	Henwo	od (S8	H), Standard Penetration Test (SPT), Shelby Tube (ST)				£			
H TH	pler oe	SAMF 음	PLES	T Ilue¹	огосу	MATERIAL DESCRIPTION		Type of Strength Test	confining pressure bs/Sq Ft	ar Strengi bs/Sq Ft	Fines %	Natural Moisture ontent, %	y Density bs/Cu Ft
DEP (fee	Sam Tyj	Sam	Blow	SF N-Va	LITH	Ground Surface Elevation: 450 feet	2			She		- 3	
						3 inches asphalt concrete (AC)		-					
1 -						21 inches aggregate base (AB)	-						
2 — 3 — 4 —	S&H		9 18 27	27		CLAY with SAND (CL) brown with gray mottling, very stiff, moist LL = 45, PI = 23, see Figure C-1 Resistance Value Test, see Figure C-5		PP		3,500			
5 — 6 — 7 —	S&H		5 8 10	11	CL	brown, stiff, trace fine-grained sand	-	PP		3,000			
8 —			3		SM	SILTY SAND (SM) brown, loose, moist, fine-grained	_	-					
9 —	S&H		4 7	7	CL	CLAY (CL)							
10 —	срт		4	11	см	SILTY SAND (SM)	/ —						
11 —	JF I		6		Sivi	brown, medium dense, wet, high silt conte	ent –	1					
12 — 13 —			6			CLAY (CL) olive-brown, stiff, moist, trace sand		-					
14 —	S&H		9 13	13			_	PP		1,500			
15 — 16 —							_						
17 —					CL		_						
18 —							_						
19 —	S&H		6 6 7	8		medium stiff to stiff, wet	_	PP		1,200			
20 — 21 —	ST			325 psi		medium stiff Triaxial Test, see Figure C-3 Consolidation Test, see Figure C-4	_	TxUU	3,500	650		23.9 23.1	102 100
22 — 23 —	SPT	Z	6 11 14	25	SM	SILTY SAND (SM) olive-brown, medium dense, wet, fine-grai high silt content	ined,	-					-
24 — 25 —	SPT	\square	4 3 3	6		CLAY (CH) dark gray with brown mottling, medium sti trace sand	iff, wet,						
26 —	ST			175	сн		_	-					
27 —				psi			_	-					
28 —			7					-					
29 — 20 — 30 —	S&H		7 12 17	17	CL	dark brown, very stiff, wet		PP		1,600			
		-						LAN	GAN	TREA	DWE	LL RO	LLO
								Project	^{No.:} 73162	8101	Figure:		A-3a

	UNIFIED SOIL CLASSIFICATION SYSTEM							
М	ajor Divisions	Symbols	Typical Names					
200	. .	GW	Well-graded gravels or gravel-sand mixtures, little or no fines					
no.	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines					
e <u>oil v</u>	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures					
of so	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures					
- Gra half (ieve	Sande	SW	Well-graded sands or gravelly sands, little or no fines					
arse han	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines					
Co ore ti	coarse fraction $<$	SM	Silty sands, sand-silt mixtures					
) m	10. 4 3676 326)	SC	Clayey sands, sand-clay mixtures					
e) ei		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts					
Soi of s siz	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays					
ned half sieve		OL	Organic silts and organic silt-clays of low plasticity					
Grai than 200 s		МН	Inorganic silts of high plasticity					
ne -1	Silts and Clays $ 1 = > 50$	СН	Inorganic clays of high plasticity, fat clays					
ii j v	22 9 00	ОН	Organic silts and clays of high plasticity					
Highl	y Organic Soils	PT	Peat and other highly organic soils					

Г

	(GRAIN SIZE CHA	RT		Sample	taken with Sprague & Henwood split-barrel sampler with				
		Range of Gra	ain Sizes		a 3.0-inc	ch outside diameter and a 2.43-inch inside diameter.				
Class	ification	U.S. Standard Sieve Size	Grain Size in Millimeters		Darkene	d area indicates soil recovered				
Boul	ders	Above 12"	Above 305		sampler					
Cobl	oles	12" to 3"	305 to 76.2							
Grav coa fine	Gravel 3" to No. 4 76.2 to 4.76 coarse 3" to 3/4" 76.2 to 19.1 fine 3/4" to No. 4 19.1 to 4.76				Diaturba	bed sample taken with thin-walled tube				
Sano coa me fine	d arse dium e	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075		Samplin	g attempted with no recovery				
Silt a	and Clay	Below No. 200	Below 0.075		Core sample					
<u> </u>	Unstabili	zed groundwater lev	vel	•	Analytic	al laboratory sample				
<u> </u>	Stabilize	d groundwater level		Sample taken with Direct Push or Drive sampler						
				SAMPI	ER TYP	E				
C	Core bar	rel	r with 2 E ipph out	aide	PT	Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube				
CA	diameter	and a 1.93-inch ins	ide diameter	side	S&H	Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter				
D&M	Dames 8 diameter	Moore piston samp , thin-walled tube	oler using 2.5-inch	outside	SPT	Standard Penetration Test (SPT) split-barrel sampler with a 2 0-inch outside diameter and a 1 5-inch inside diameter				
0	Osterber diameter	g piston sampler us , thin-walled Shelby	ing 3.0-inch outside tube	e	ST	Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure				
		2600 CAMINO	RAMON							
		San Ramon, C	aiitornia		-	CLASSIFICATION CHART				
LA/	VGA/	N TREAD	WELL RC	ILLO	Date	01/07/14 Project No. 731628101 Figure A-4				

SAMPLE DESIGNATIONS/SYMBOLS

APPENDIX B

LOGS OF CONE PENETRATION TESTS

APPENDIX C

LABORATORY TEST RESULTS

ETS

Environmental Technical Services

-Soil, Water & Air Testing & Monitoring -Analytical Labs -Technical Support

975 Transport Way, Suite 2 Petaluma, CA 94954 (707) 778-9605/FAX 778-9612

Serving people and the environment so that both benefit.

	Transhurall Q	Dalla 501 14th Street	3rd Floor O	akland CA 94612		ANALYST(S)	SUPERVISOR
COMPANY:					DATE of	D. Salinas	D. Jacobson
	Elena Ayers	- Bomon Son Bomor		DATE RECEIVED	COMPLETION	S. Santos	LAB DIRECTOR
JOB SITE:	2000 Camin	T Ramon, San Ramon	i, California	1/7/2014	1/14/2014		G.S. Conrad PhD
JOB #.	/31020101			11112011			
LAB	SAMPLE	DESCRIPTION of	SOIL pH	NOMINAL	ELECTRICAL	SULFATE	CHLORIDE
SAMPLE		SOIL and/or	-	RESISTIVITY	CONDUCTIVITY	SO4	CI
NUMBER	ID	SEDIMENT	-log[H+]	ohm-cm	µmhos/cm	ppm	ppm
05667-1	CR1/SR	B-1-2 @ 3.5'	5.98	1,433	[698]	83	96
Method	Detection	Limits>		1	0.1	1	1
LAB	SAMPLE	DESCRIPTION of	SALINITY	SOLUBLE	SOLUBLE	REDOX	PERCENT
SAMPLE	10 0	SOIL and/or	ECe	SULFIDES (S=)	CYANIDES (CN=)		MOISTURE
NUMBER	ID	SEDIMENT	mmhos/cm	ppm	ppm	mV	%
05667-1	CR1/SR	B-1-2 @ 3.5'				+305.3	
Method	Detection	Limits>		0.1	0.1	-400 -> +800	0.1
THE REAL PROPERTY AND ADDRESS OF	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS	*****************	0	OMMENTS	***************	*************	****************

Resistivity is below 1,500 ohm-cm, i.e., low (assign 2-10 pts, depending on specs); soil reaction (i.e., pH) is mildly acidic (assign Ø pts); sulfate level is very low (SO4 @ <200 ppm, assign Ø pts); and chloride level is low enough (Cl @ >100 ppm, assig Ø pts); soil is very mildly reduced (assign Ø-3.5 pts, depending on specs). Standard CalTrans times to perforation for this soil are as follows: for 18 ga steel the time is ~11 yrs, and for 12 ga it goes up to ≈24 yrs. For gray/ductile/mild steels and cast iron the calculated average pitting rate for this soil (according to Uhlig) is 0.26 mm/yr putting the 2 mm depth time at <8 yrs, and the 4 mm depth time would be <16 yrs. Sulfate level is low enough that there would be no measurable adverse impact on concrete cement, mortar and grout; chloride level should be low enough that there should be no adverse impact on steel reinforcement. ment. Soil redox is such that there could be some very mild adverse impact on construction materials (i.e., concrete or steel). This soil, in prnciple, could benefit from alkaline (i.e., lime or cement) treatment in that raising its pH to the 7.5-8.5 range would increase the CalTrans 18 ga time to perforation to ~29 yrs; and the pitting rate would decline to 0.094 mm/yr putting the 2 mm depth time at >21 yrs. But lime treatment only persists in protected locations (i.e., underneath slabs, bldgs, etc.); and while cement treatment is more permanent, there can be practical limitations. Otherwise, metal longevity can be improved by upgrading (e.g. increased gauge or more resistant steels, etc.). In fact, many times strength considerations will require use of heavier steel than used in the presented examples such that perforation or pitting times can be well beyond specified life span. Where this is not the case, cathodic protection of coated steel assets could be done as a potential solution for buried assets. Other alternatives include increased or specialized engineering fill, and/or use of plastic, fiberglass or concrete assets. Based on these these results, standard concrete mixes should be fine in this soil. The total points for buried steel is in the range of 2-13.5 pts, depending on the specifications: generally if total ≥10 pts, remediation is required (as this soil could exceed 10 pts, depending on specifications); in addition, specific results could cause outright rejection (e.g. resistivity @ <1,500 ohm-cm, etc.).

WWNOTES: Methods are from following sources: extractions by Cal Trans protocols as per Cal Test 417 (SO4), 422 (CI), and 532/643 (pH & resistivity); &/or by ASTM Vol. 4.08 & ASTM Vol. 11.01 (=EPA Methods of Chemical Analysis, or Standard Methods); pH - ASTM G 51; Spec. Cond. - ASTM D 1125; resistivity - ASTM G 57; redox - Pt probe/ISE; sulfate - extraction Title 22, detection ASTM D 516 (=EPA 375.4); chloride - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction by Title 22, and detection EPA 376.2 (= SMEWW 4500-S D): cvanides - extraction by Title 22. and detection by ASTM D 4374 (=EPA 335.2).

DISTRIBUTION

6 copies:

Mr. Chris Truebridge Sunset Development Company One Annabel Lane, Suite 201 San Ramon, CA 94583

QUALITY CONTROL REVIEWER

Richard D. Rodger

Richard D. Rodgers, G.E. Senior Principal

DISTRIBUTION

6 copies:

Mr. Chris Truebridge Sunset Development Company One Annabel Lane, Suite 201 San Ramon, CA 94583

QUALITY CONTROL REVIEWER

Richard D. Rodger

Richard D. Rodgers, G.E. Senior Principal

GEOTECHNICAL INVESTIGATION Bishop Ranch – BR3A San Ramon, California

Prepared For:

Sunset Development Company 2600 Camino Ramon, Suite 201 San Ramon, California

Prepared By:

Langan Treadwell Rollo 501 14th Street, 3rd Floor Oakland, California 94612

Elena M. ayus

Elena M. Ayers Senior Project Manager

Katen & Walte

Katrina L. Watkins Staff Engineer

28 July 2016 750633001

501 14th Street, 3rd Floor Oakland, CA 94612 T: 510.874.7000 F: 510.874.7001 www.langan.com

California • New Jersey • New York • Connecticut • Pennsylvania • Ohio • Washington, DC • Virginia • Florida • Texas • North Dakota • Abu Dhabi • Athens • Doha • Dubai • Istanbul

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND1						
2.0	SCOP	E OF SERVICES	2				
3.0	FIELD 3.1 3.2 3.3	EXPLORATION AND LABORATORY TESTING Borings Cone Penetration Tests Laboratory Testing	2 3 4 4				
4.0	SUBSI	JRFACE CONDITIONS	5				
5.0	REGIC	NAL SEISMICITY	5				
6.0	SEISM 6.1 6.2 6.3 6.4	IIC HAZARDS Fault Rupture Liquefaction and Associated Hazards Lateral Spreading Seismic Densification	8 8 8 10 .11				
7.0	DISCU 7.1 7.2 7.3 7.4 7.5 7.6	SSION AND CONCLUSIONS Groundwater and Dewatering Foundation Support 7.2.1 At-Grade Structures 7.2.2 Residential Building 7.2.3 Mixed-Use Building Floor Slabs Excavation and Temporary Cut Slopes Corrosion Potential Construction Considerations	11 12 13 13 14 15 15 16 16				
8.0	RECOI 8.1 8.2 8.3 8.4 8.5	VMENDATIONS	 17 17 18 20 21 22 22 24 26 28 30 30 30 				

TABLE OF CONTENTS (Continued)

	8.6	Pavement Design	34
		8.6.1 Asphalt Concrete Pavement	34
		8.6.2 Portland Cement Concrete Pavement	35
	8.7	Concrete Flatwork	35
	8.8	Drainage	36
	8.9	Irrigation and Landscaping Limitations	36
	8.10	2013 California Building Code Mapped Values	37
9.0	ADDIT	IONAL RECOMMENDATIONS – SERVICES DURING DESIGN AND	37
	CONO		07
10.0	LIMITA	ATIONS	38
REFER	RENCES		
FIGUR	ES		
APPEN	IDIX A -	- Logs of Borings	

APPENDIX B – Logs of Cone Penetration Tests

- APPENDIX C Laboratory Test Results
- APPENDIX D Corrosion Test Results

Geotechnical Investigation Bishop Ranch – BR3A San Ramon, California

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Map of Major Faults and Earthquake Epicenters in the San Francisco Bay Area
- Figure 4 Modified Mercalli Intensity Scale
- Figure 5 Typical Lateral Earth Pressures and Tieback Criteria for Temporary Shoring System

APPENDIX A

- Figures A-1 Log of Borings B-1 to B-14
- through A-14
- Figure A-15 Classification Chart

APPENDIX B

- Figures B-1 Log of Cone Penetration Tests (CPTs) CPT-1 to CPT-9
- through B-9
- Figure B-10 Classification Chart

APPENDIX C

- Figures C-1 Consolidation Tests
- through C-3
- Figures C-4 Unconsolidated-Undrained Triaxial Compression Tests
- through C-7

Figures C-8 Plasticity Chart

- through C-9
- Figure C-10 Resistance Value Test

APPENDIX D

Figure D-1 Corrosion Test Results

1.0 INTRODUCTION AND BACKGROUND

This report presents the results of our geotechnical investigation for the proposed Bishop Ranch 3A (BR3A) development to be constructed at 2600 Bollinger Canyon Road in San Ramon, California. This investigation was performed in accordance with our proposal dated 12 October 2015.

The BR3A site is at the northeast corner of the intersection of Bollinger Canyon Road and Camino Ramon, as shown on Figure 1. The 11-acre site is trapezoidal, with maximum plan dimensions of about 730 by 610 feet, and is bound by Bollinger Canyon Road on the south, Camino Ramon on the west, the Iron Horse Regional Trail on the east, and an office building on the north. The site is undeveloped and covered with scattered grass and weeds and areas of soil stockpiles. One fenced contractor equipment storage yard is present at the site. The ground surface at the site slopes gradually up to the northwest, from Elevation 437 to 446 feet.¹

We understand the proposed development includes construction of a hotel, a parking garage, one residential building, and one mixed-use building, as shown on Figure 2. The hotel is planned to be four to five stories at grade, with maximum plan dimensions of approximately 50 by 240 feet, and will be in the northwest portion of the site. The parking garage will be east of the hotel and will be three to five stories at grade with approximate plan dimensions of 130 by 280 feet. The residential building will be four stories with one basement level and will have maximum plan dimensions of approximately 280 by 610 feet; this building will be in the eastern portion of the site. A mixed-use building with four to five levels of housing over a one-level fitness center and two basement levels is planned for the southwestern portion of the site; this building will have maximum planned dimensions of approximately 220 by 250 feet. Building loads were not available at the time this report was prepared. Additional improvements will include new pavement, concrete flatwork, and landscaping adjacent to the buildings.

¹ Elevations are based on the National Geodetic Vertical Datum of 1929 (NGVD 1929) and are based on the plan titled "City of San Ramon City Center, BR3 Site, Existing Utility and Easements, City of San Ramon, Contra Costa County, California" by RJA dated 9 January 2014.

2.0 SCOPE OF SERVICES

Our scope of services, outlined in our proposal dated 12 October 2015, consisted of reviewing available existing subsurface information, exploring the subsurface conditions at the site, and performing laboratory tests and engineering analyses to develop conclusions and recommendations regarding:

- soil and groundwater conditions
- seismic hazards, including ground rupture, liquefaction, lateral spreading, and differential compaction
- mitigation of seismic hazards, if needed
- the most appropriate foundation type(s) for the proposed hotel, garage, residential building, and mixed-use building
- design criteria for the most appropriate foundation type(s), including values for vertical and lateral capacities
- estimated foundation settlement
- floor slabs
- soil subgrade preparation
- fill quality and compaction criteria
- site grading and excavation
- below-grade walls
- temporary shoring
- seismic design criteria in accordance with 2013 California Building Code (CBC)
- construction considerations.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

Subsurface conditions were explored at the site by drilling fourteen borings and advancing nine cone penetration tests (CPTs). The approximate locations of the borings and CPTs are presented on Figure 2. Prior to performing our field investigation we obtained a soil boring permit from the Contra Costa County Environmental Health Division (CCCEHD) and an encroachment permit from the City of San Ramon, notified Underground Service Alert (USA),

and retained a private underground utility locating service to check that locations of exploratory points were clear of existing utilities.

3.1 Borings

The borings, designated B-1 through B-14, were drilled using a truck-mounted drill rig equipped with hollow-stem augers on 19 January 2016 and 25 through 28 April 2016 by Exploration Geoservices, Inc. of San Jose, California. The borings were drilled to depths from 35 to 50 feet beneath the existing ground surface (bgs), during which time our engineer logged the soil encountered in the borings and obtained samples of the material encountered for visual classification and laboratory testing. The logs of the borings was classified in accordance with the Classification Chart shown on Figure A-15. Soil samples were obtained using two types of driven samplers and one pushed thin-walled sampler:

- Sprague & Henwood (S&H) split-barrel sampler with a 3.0-inch outside diameter and 2.5-inch inside diameter, lined with steel or brass tubes with an inside diameter of 2.43 inches
- Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and 1.43-inch inside diameter
- Shelby Tube (ST) sampler with a 3.0 inch outside diameter and a 2.875-inch inside diameter.

The SPT and S&H samplers were driven with a 140-pound, hydraulic trip wireline safety hammer falling 30 inches. The samplers were driven up to 18 inches and the hammer blows required to advance the samplers every six inches of penetration were recorded and are presented on the boring logs. A "blow count" is defined as the number of hammer blows per six inches of penetration. The blow counts required to drive the S&H and SPT samplers were converted to approximate SPT N-values using factors of 0.6 and 1.0, respectively, to account for sampler type and hammer energy and are shown on the boring logs. The blow counts used for this conversion were the last two blow counts since the sampler was driven more than 12 inches.

The Shelby Tube was pushed hydraulically into the soil; the pressure required to advance the sampler is shown on the logs, measured in pounds per square inch (psi).

Upon completion, the boreholes were backfilled with cement grout in accordance with CCCEHD requirements and under the observation of a CCCEHD inspector. Soil cuttings generated during drilling of the borings were scattered on-site adjacent to the boreholes.

3.2 Cone Penetration Tests

On 25 and 26 April 2016, nine CPTs designated CPT-1 through CPT-9 were advanced by Middle Earth Geo Testing of Fremont, California. The CPTs were advanced to 50 feet bgs.

The CPTs were performed by hydraulically pushing a 1.4-inch-diameter, cone-tipped probe with a projected area of 10 square centimeters into the ground. The cone-tipped probe measures tip resistance, and the friction sleeve behind the cone tip measures frictional resistance. Electrical strain gauges within the cone continuously measure soil parameters for the entire depth advanced. Soil data, including tip resistance and frictional resistance, were recorded by a computer while the test was conducted. Accumulated data were processed by computer to provide engineering information such as the types and approximate strength characteristics of the soil encountered. The CPT logs showing tip resistance, side friction, friction ratio by depth, as well as interpreted standard penetration blow counts and soil behavior type are presented in Appendix B on Figures B-1 through B-9. Soil types were estimated using the classification chart shown on Figure B-10.

3.3 Laboratory Testing

Soil samples obtained from the borings were re-examined in the office for classification and representative samples were selected for laboratory testing. The laboratory testing program was designed to correlate and evaluate engineering properties of the soil at the site. Samples were tested to measure dry density, moisture content, plasticity (Atterberg limits), strength, consolidation, resistance value (R-value), and corrosion potential. Results of the laboratory tests

are included on the boring logs and on Figures C-1 through C-10 in Appendix C. The results of the corrosivity testing are presented in Appendix D.

4.0 SUBSURFACE CONDITIONS

Subsurface information from our field investigation indicates localized portions of the site are covered by a thin layer of fill consisting of gravel, clayey sand with gravel, and sandy clay with gravel. Because the fill was only observed in localized areas and because soil stockpiles were observed on the site during our investigation, we judge the fill likely originated from previous soil stockpiles and is therefore uncompacted. The fill is approximately 1 to 2.5 feet thick and was encountered in borings B-2, B-5, and B-9.

In general, the site is underlain by medium stiff to hard clay with varying sand content sand to the maximum depth explored of 50 feet bgs. Laboratory testing performed on near-surface samples of the clay indicates that it has a moderate to very high expansion potential² with plasticity indices between 23 and 49. Thin layers of granular soil consisting of sand, silty sand, sand with clay, and clayey sand with variable gravel content were interlayered with the clay in the borings and CPTs. The granular layers are loose to dense and range in thickness from about $\frac{1}{2}$ to $2\frac{1}{2}$ feet.

Where groundwater was measured during our investigation, it was measured between depths of 12 and 23 feet bgs, corresponding to approximate Elevations 432 and 423 feet, respectively. The groundwater levels observed during drilling do not represent stable groundwater conditions, and the groundwater level at the site is expected to vary seasonally.

5.0 REGIONAL SEISMICITY

The major active faults in the area are the Calaveras, Mount Diablo Thrust, and Hayward faults. These and other faults in the region are shown on Figure 3. For each of the active faults within 50 kilometers (km) of the site, the distance from the site and estimated maximum Moment

² Expansive soil undergoes volume changes with changes in moisture content.

magnitude,³ M_w, [Working Group on California Earthquake Probabilities (WGCEP) (2008) and Cao et al. (2003)] are summarized in Table 1.

Fault Segment	Approximate Distance from Site (km)	Direction from Site	Mean Moment Magnitude
Total Calaveras	1.4	West	7.03
Mount Diablo Thrust	4.6	Northeast	6.70
Total Hayward	15	West	7.00
Total Hayward-Rodgers Creek	15	West	7.33
Green Valley Connected	15	North	6.80
Greenville Connected	16	East	7.00
Great Valley 5,			
Pittsburg Kirby Hills	30	Northeast	6.70
Great Valley 7	38	East	6.90
N. San Andreas - Peninsula	44	West	7.23
N. San Andreas (1906 event)	44	West	8.05
Monte Vista-Shannon	45	Southwest	6.50

TABLE 1Regional Faults and Seismicity

Figure 3 also shows the earthquake epicenters for events with magnitude greater than 5.0 from January 1800 through January 1996. In 1868, an earthquake with an estimated maximum intensity of X on the MM scale occurred on the southern segment (between San Leandro and Fremont) of the Hayward fault. The estimated M_w for the earthquake is 7.0. In 1861, an earthquake of unknown magnitude (probably a M_w of about 6.5) was reported on the Calaveras fault. The most recent significant earthquake on this fault was the 1984 Morgan Hill earthquake ($M_w = 6.2$).

Since 1800, four major earthquakes have been recorded on the San Andreas fault. In 1836 an earthquake with an estimated maximum intensity of VII on the Modified Mercalli (MM) scale (Figure 4) occurred east of Monterey Bay (Toppozada and Borchardt 1998). The estimated M_w

³ Moment magnitude is an energy-based scale and provides a physically meaningful measure of the size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.
for this earthquake is about 6.25. In 1838, an earthquake occurred with an estimated intensity of about VIII-IX (MM), corresponding to a M_w of about 7.5. The San Francisco Earthquake of 1906 caused the most significant damage in the history of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface rupture along the San Andreas fault from Shelter Cove to San Juan Bautista, approximately 470 kilometers in length. It had a maximum intensity of XI (MM), a M_w of about 7.9, and was felt 560 kilometers away in Oregon, Nevada, and Los Angeles. The Loma Prieta Earthquake of 17 October 1989 with a M_w of 6.9 and an epicenter in the Santa Cruz Mountains, approximately 81 km from the site. The most recent earthquake to affect the Bay Area occurred on 24 August 2014 and was located on the West Napa fault, approximately 60 kilometers north of the site, with a M_w of 6.0.

The 2008 WGCEP at the U.S. Geologic Survey (USGS) predicted a 63 percent chance of a magnitude 6.7 or greater earthquake occurring in the San Francisco Bay Area in 30 years. More specific estimates of the probabilities for different faults in the Bay Area are presented in Table 2.

Fault	Probability (percent)
Hayward-Rodgers Creek	31
N. San Andreas	21
Calaveras	7
San Gregorio	6
Concord-Green Valley	3
Greenville	3
Mount Diablo Thrust	1

TABLE 2 WGCEP (2008) Estimates of 30-Year Probability of a Magnitude 6.7 or Greater Earthquake

6.0 SEISMIC HAZARDS

The site is in a seismically active area and will be subject to strong shaking during a major earthquake on a nearby fault. Strong shaking during an earthquake can result in ground failure such as that associated with soil liquefaction⁴, lateral spreading⁵, seismic densification⁶, and fault rupture. Each of these conditions has been evaluated based on our literature review, field investigation, and studies, and is discussed in this section.

6.1 Fault Rupture

Historically, ground surface displacements closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act and no known active or potentially active faults exist on the site. Therefore, we conclude the risk of surface faulting and consequent secondary ground failure is low.

6.2 Liquefaction and Associated Hazards

When a saturated, cohesionless soil liquefies during an earthquake, it experiences a temporary loss of shear strength due to a transient rise in excess pore water pressure generated by strong ground motion. Flow failure, lateral spreading, differential settlement, loss of bearing strength, ground fissures, and sand boils are evidence of excess pore pressure generation and liquefaction.

The level of ground shaking used in our liquefaction evaluation was based on the Risk-Target Maximum Considered Earthquake (MCE_R) mapped values. A peak geometric mean ground acceleration (PGA_M) of 0.882g was used in our analyses. This PGA_M was obtained from mapped

⁴ Liquefaction is a transformation of soil from a solid to a liquefied state during which saturated soil temporarily loses strength resulting from the buildup of excess pore water pressure, especially during earthquake-induced cyclic loading. Soil susceptible to liquefaction includes loose to medium dense sand and gravel, low-plasticity silt, and some low-plasticity clay deposits.

⁵ Lateral spreading is a phenomenon in which surficial soil displaces along a shear zone that has formed within an underlying liquefied layer. Upon reaching mobilization, the surficial blocks are transported downslope or in the direction of a free face by earthquake and gravitational forces.

⁶ Seismically-induced densification, also known as differential compaction, is a phenomenon in which non-saturated, cohesionless soil is compacted by earthquake vibrations, causing differential settlement.

values specified in the provisions of the 2013 California Building Code (CBC)/ASCE 7-10 for the MCE_R, using site class D. We assumed an earthquake magnitude of 7.33, which is the maximum Moment magnitude for the Hayward fault, located 15 km from the site, as shown on Table 1. The Calaveras fault is significantly closer to the site, but was not selected for our evaluation since it has a lower maximum Moment magnitude. A groundwater level of 12 feet bgs was used in the analyses.

We used the results of the CPTs to evaluate liquefaction potential at the site. The liquefaction analyses using CPT data were performed in accordance with the methodology presented in the publication titled *Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils*, prepared by the Youd et al., dated October 2001. Our liquefaction analysis using the CPT data indicates that thin layers of loose to medium dense granular soil below the groundwater table in the CPTs are susceptible to liquefaction (FS_{lig}<1.3) following a major earthquake on a nearby fault.

We estimated liquefaction-induced settlement using the procedure outlined in the NCEER report. In each of the CPTs, one to three layers of potentially liquefiable soil were encountered, each less than 1½ feet thick, with calculated total liquefaction-induced settlements of about ¼ to ½ inch.

In addition, we evaluated the potential for liquefaction using the results of our borings. In nine of the borings, one to two layers of potentially liquefiable soil were encountered, with thicknesses of about ½ to 2½ feet, and calculated total liquefaction-induced settlements between about ¼ and 1¼ inches. However, liquefaction analyses using SPT data from hollow stem auger borings generally produce conservatively large settlements because the soil below the groundwater level tends to heave in the borings during drilling and as a result, the SPT blow counts are conservative; we judge the actual settlements may be on the order of half of that calculated using the boring results. In addition, several of the layers identified in the borings as potentially liquefiable contained substantial amounts of clay and gravel, and will likely settle less

than calculated. Therefore, while some liquefiable soil may be present, we judge liquefactioninduced settlement would be less than that calculated using the boring data.

The results of our liquefaction analyses indicate there are thin layers of loose to medium dense sand with variable clay, silt, and gravel content below the groundwater table that are susceptible to liquefaction during a major earthquake on a nearby fault. Based on our liquefaction analyses using the borings and CPTs, we conclude that up to about ½ inch of liquefaction-induced total settlement may occur at the site as a result of a major earthquake on a nearby fault. The liquefaction may occur in isolated areas and differential settlement may be abrupt; therefore, differential settlements equivalent to the total settlements of ½ inch should be anticipated over short distances. These total and differential settlements are expected to occur beneath the foundation levels of the planned at-grade hotel, at-grade parking garage, and the residential building with one basement level. The planned mixed-use building with two basement levels will likely be founded below the majority of the liquefable soil layers; for this building, we calculate less than ¼ inch of total and differential liquefaction-induced settlement could occur during a major earthquake.

The potential for liquefaction-induced ground rupture and sand boils to occur at the site depends on the thickness of the liquefiable soil layer relative to the thickness of the overlying non-liquefiable material. Ishihara (1985) presented an empirical relationship that provides criteria that can be used to evaluate whether liquefaction-induced surface ruptures and sand boils would be expected to occur under a given level of shaking for a liquefiable layer overlain by a non-liquefiable layer. The potentially-liquefiable layers encountered at the site are relatively thin and deep (the layers closest to the ground surface are 3 feet thick or less and are at least 12 feet deep); therefore, we conclude that the potential for surface manifestations of liquefaction to occur at the site is low.

6.3 Lateral Spreading

Lateral spreading occurs when a continuous layer of soil liquefies at depth and the soil layers above move toward an unsupported face, such as an open slope cut, or in the direction of a regional slope or gradient. The potential for lateral spreading to occur at a site is typically evaluated using an empirical relationship developed by Youd, Hansen, and Bartlett (2002). This relationship incorporates the thickness of the liquefiable layer, the fines content and mean grain-size diameter of the liquefiable soil, the relative density of the liquefiable soil, the magnitude and distance of the earthquake from the site, the slope of the ground surface, and boundary conditions (such as a free face or edge of shoreline), to estimate the horizontal ground movement. The potentially liquefiable layers encountered in the CPTs and borings are thin, isolated, and discontinuous. In addition, the (N_1)_{60-CS} values for the potentially liquefiable soil layers in the borings are generally greater than 15, with the exception of one thin layer encountered in boring B-4; soil with (N_1)_{60-CS} values greater than 15 are considered too dense to laterally spread. For reasons discusses in Section 6.2, we consider the blowcounts from the hollow stem auger borings to be conservatively low. Therefore, we conclude the potential for lateral spreading beneath the site is low.

6.4 Seismic Densification

Seismic densification (also referred to as differential compaction) can occur during strong ground shaking in loose, clean granular deposits above the water table, resulting in ground surface settlement. In borings B-2 and B-5, 1 to 2½ feet of gravel and clayey sand with gravel fill were encountered below the ground surface. We evaluated the potential for differential compaction to occur in the granular fill at the site using methodology presented in Tokimatsu and Seed (1984). Based on this method, we estimate ground surface settlements associated with seismic densification on the order of 1/3 inch or less as a result of strong shaking during a major earthquake on a nearby fault.

7.0 DISCUSSION AND CONCLUSIONS

We conclude that from a geotechnical engineering standpoint, the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications and are implemented during construction. The primary geotechnical concerns for the project are:

- 1) the presence of moderately to very highly expansive near-surface soil
- 2) excavation of the site below the groundwater to construct below-grade levels
- 3) selection of an appropriate foundation system to support anticipated building loads and reduce total and differential static settlements to within tolerable limits.

Our conclusions regarding expansive soil and other geotechnical issues are presented in this section.

7.1 Groundwater and Dewatering

Groundwater levels were measured during our field investigation between about 12 and 23 feet bgs, corresponding to approximate Elevations 434.5 and 423 feet, respectively. We conclude a design water level of 10 feet bgs, corresponding to approximate Elevations of 437 to 427 should be used at the site.

We understand the planned hotel and parking garage will be constructed at grade. We do not anticipate encountering groundwater in foundation excavations for the at-grade buildings; however, if localized water is present during excavation, dewatering should be performed. Where excavations encounter groundwater, wet, disturbed subgrade soil will require stabilization prior to placement of improvements. One method of stabilizing subgrade consists of overexcavating the disturbed material and replacing it with a lean concrete rat slab. Groundwater encountered in foundation excavations will need to be pumped out prior to placing concrete.

We understand the proposed residential building will be constructed with one basement level and the proposed mixed-use building will be constructed with two basement levels. We anticipate excavation for one to two basement levels will extend to about 12 and 24 feet bgs, respectively. Groundwater will likely be encountered in the basement excavations and we anticipate temporary dewatering will be required during construction. The dewatering system should be designed and installed by an experienced contractor. An active dewatering system is recommended if shoring is to consist of soldier piles and lagging. The active dewatering system

should be designed to maintain the groundwater at least three feet below the lowest level of excavation. Even with active dewatering, the soil at the base of the excavation will likely be near saturation, and may require stabilization using one of the methods previously described for the at-grade buildings.

7.2 Foundation Support

The site is generally underlain by moderately to highly expansive near-surface soil. Very highly expansive soil was encountered in one boring, B-14, within the footprint of the residential building. Expansive soil is subject to high volume changes during seasonal fluctuations in moisture content, which can cause cracking of foundations and floor slabs. The detrimental effects of near-surface expansive soil can be mitigated by moisture conditioning the expansive soil below slabs, placing non-expansive fill below slabs, supporting foundations below the zone of severe moisture change, and/or designing foundations to resist the movements associated with the volume changes. Because moderately to highly expansive soil is present within the footprints of the at-grade hotel and parking garage, we conclude the building foundations of these structures will need to be designed to reduce the potential for movement due to moisture change. If very highly expansive material is encountered within the footprint of the atgrade buildings, the building foundations will need to be supported below the zone of moisture change. Because the residential and mixed-use buildings will have below-grade levels, we concluded the foundations will be supported below the zone of severe moisture change and will not be susceptible to the effects of volume changes. Foundation options for the planned buildings are discussed in the following sections.

7.2.1 At-Grade Structures

The native soil at the foundation level of the planned hotel and parking garage has moderate strength and relatively low compressibility, and we conclude these buildings can be supported on spread footings bearing on native soil. If very highly expansive soil is encountered within the footprints of the at-grade buildings during construction, the structures will need to be supported on drilled piers or the very highly expansive soil beneath the footings will need to be overexcavated to below the zone of moisture change and replaced with lean concrete to the

planned footing bottom. Prior to construction, we can perform additional exploration and laboratory testing within the footprint of the at-grade structures to check for the presence of very highly expansive soil.

Because moderately to highly expansive soil has been encountered within the footprints of the at-grade buildings, the spread footings should be continuous and deepened around the perimeter of the buildings and deepened at interior column locations. The continuous perimeter footings will act as a barrier to reduce the potential for moisture change beneath the floor slabs. We estimate the total static settlement of properly constructed spread footings, designed using the recommendations presented in Section 8.2, will be about 1 inch, with differential settlement across a horizontal distance of 30 feet on the order of ½ inch. In addition, seismically-induced settlement may occur during a major earthquake, as discussed in Section 6.1.

7.2.2 Residential Building

We anticipate the soil exposed at the foundation level of the planned residential building with one basement level will be medium stiff to stiff clay with variable sand content and medium dense silty or clayey sand. The soil at the foundation level has moderate strength and moderate compressibility and is below the zone of moisture change. We conclude the residential building should be supported on a mat to limit static settlements to anticipated project tolerances, and because the foundation will most likely be constructed close to or below the groundwater table and near thin layers of potentially-liquefiable sand. If liquefiable sand layers are exposed at the foundation level during excavation, the sand will need to be either overexcavated and recompacted, overexcavated and replaced with lean concrete, or lime treated in accordance with the recommendations in Section 8.1.2. We should further evaluate the potential for additional subgrade preparation due to the presence of liquefiable soil after the final foundation depth is known. We estimate the total static settlement of a properly constructed mat for the residential building, designed using the recommendations presented in Section 8.2, will between 1 and 1¼ inches. In addition, seismically-induced settlement may occur during a major

earthquake, as discussed in Section 6.1. Differential settlement will depend on the rigidity of the mat.

7.2.3 Mixed-Use Building

We anticipate the soil exposed at the foundation level of the planned mixed-use building with two basement levels will be stiff to very stiff clay with variable sand content. The soil at the foundation has moderate to high strength and moderate compressibility and is below the zone of moisture change. Because the foundation will be constructed below groundwater and to limit total and differential static settlement to anticipated project tolerances, we recommend the residential building be supported on a mat. We estimate the total static settlement of a properly constructed mat for the mixed-use building, designed using the recommendations presented in Section 8.2, will be up to 1.5 inches. Differential settlement will depend on the rigidity of the mat.

7.3 Floor Slabs

The floor slab for the at-grade buildings will be underlain by medium stiff to very stiff clay; therefore, we conclude the slab may be supported on grade. Because the near-surface soil is moderately to highly expansive, the floor slab and capillary break/vapor retarder (recommended in Section 8.3) should be underlain by at least 18 inches of non-expansive soil to mitigate the potential for movement of the slabs. The non-expansive soil may consist of imported select fill or lime-treated native soil. If very highly expansive soil is encountered within the footprints of the at-grade buildings during construction, at least 24 inches of non-expansive soil will be required to mitigate the potential for movement of the slabs.

The residential and mixed-use buildings will include one and two below-grade levels, respectively. Because these buildings will be founded on mats below the expansive soil zone, we conclude the subgrade treatments discussed above will not be required for these buildings.

If the floor slab/mats extend below or are less than 30 inches above the design groundwater level, the slab/mats will need to be waterproofed (recommended in Section 8.3). If the floor

slab or mat bottom will be at least 30 inches above the design water level but moisture on the finished floor is undesirable, a capillary moisture break and water vapor retarder (recommended in Section 8.3) can be installed beneath the slab/mat to reduce water vapor transmission through the slab. Mats extending below the design groundwater level will need to designed to resist hydrostatic uplift pressure.

7.4 Excavation and Temporary Cut Slopes

We anticipate excavations on the order of about 15 to 30 feet will be needed to construct the below grade levels of the residential and mixed-use buildings, respectively. In addition, excavations will be required for hotel and parking garage footings, elevator pits, and below-grade utilities. The soil to be excavated consists predominantly of clay and sand, which can be excavated using conventional earth-moving equipment such as loaders and backhoes. Excavations that will be deeper than five feet and will be entered by workers will need to be shored or sloped in accordance with the Occupational Safety and Health Administration (OSHA) standards (29 CFR Part 1926). Recommendations for temporary cut slopes and shoring are provided in Section 8.5.

7.5 Corrosion Potential

Corrosivity testing was performed on a sample from a depth of 3½ feet in boring B-2 and a sample from a depth of 3 feet in boring B-7. The soil samples were tested in accordance with Caltrans and ASTM protocols by CERCO Analytical of Concord, California. The corrosivity test results are presented on Figure D-1 in Appendix D. Below grade structures will need to be designed for the corrosive conditions encountered at the site.

7.6 Construction Considerations

As previously discussed, the site is underlain by moderately to very highly expansive nearsurface soil. If the soil subgrade is exposed and allowed to dry during excavation for the foundations and is not properly moisture-conditioned prior to placement of concrete, significant heave may occur as soil moisture levels increase after construction, which could damage the structure. Therefore, it is essential to maintain moisture during construction. Typically, it is necessary to spray the exposed bottom and sides of foundation excavations on a daily basis to prevent drying.

In addition, if construction activities are performed during the winter/rainy season, the nearsurface soils will be saturated, soft, and easily remolded. If weak or saturated soil is encountered during construction, it can be stabilized by overexcavating the upper 12 to 24 inches of the weak soil, placing a stabilization geotextile (Mirafi RS380i or equivalent) over the sides and bottoms of the overexcavated areas, and placing and compacting granular fill, such as ½- to ¾-inch crushed rock or Class 2 aggregate base (AB), over the geotextile fabric. Wet soil will require significant drying before it can be used as fill or backfill.

8.0 **RECOMMENDATIONS**

Our recommendations regarding design of foundations, below-grade walls, temporary shoring, floor slabs, pavement, and other geotechnical aspects of this project are presented in this section.

8.1 Earthwork

8.1.1 Site Preparation

Site preparation should include removal of all existing structures, foundations, slabs, pavements, and underground utilities, if any, within the footprint of the planned development. All areas to receive improvements should be stripped of vegetation, organic topsoil, and fill from soil stockpiles. Stripped materials should be removed from the site or stockpiled for later use in landscaped areas, if approved by the landscape architect. Any subsurface structures should be removed, and any fill uncovered should be overexcavated and recompacted. Underground utilities should be removed to the service connections and properly capped or plugged with concrete. Where existing utility lines will not interfere with the planned construction, they may be abandoned in-place, provided the lines are filled with lean concrete or cement grout to the limits of the project. Voids resulting from demolition activities should be properly backfilled with engineered fill as described in Section 8.1.3.

8.1.2 Subgrade Preparation

Because moderately to highly expansive soil was encountered within the footprints of the atgrade hotel and parking garage, we recommend the floor slabs and underlying capillary break/vapor retarders (recommended in Section 8.3) for these buildings be underlain by at least 18 inches of non-expansive soil consisting of either select fill or lime-treated native soil, as described in the following sections. As discussed in Section 7.3, if very highly expansive soil is encountered within the footprints of the at-grade buildings during construction, at least 24 inches of non-expansive soil should be used to mitigate the potential for movement of the slabs. Criteria for select fill are provided in Section 8.1.3. As previously discussed, the proposed residential and mixed use buildings will be supported on mats below the zone of moisture change and therefore, the subgrade treatments discussed above are not required for these buildings. The soil subgrade should be kept moist until it is covered by fill or improvements.

Slab-on-Grade

Placement of Select Fill (Alternative No. 1)

If Alternative No. 1 is selected, we recommend the building pad be overexcavated to allow placement of at least 18 inches of select fill beneath the slab-on-grade floor and underlying capillary moisture break. Where the site will be raised at least 18 inches above the existing ground surface following demolition, the fill used to raise the grade for the building pad should consist of select fill. The select fill should extend at least five feet beyond the building footprint. The native expansive soil at the base of the overexcavation or at current grade prior to raising grades should be scarified to a depth of at least 12 inches, moisture-conditioned to at least three percent above optimum moisture content, and compacted to between 88 and 92 percent relative compaction.⁷ Any existing fill encountered at the base of the overexcavated and recompacted as recommended in Section 8.1.1 prior to placement of select fill. Select fill should be moisture content and compacted to at least 90 percent relative compaction. The geotechnical engineer should observe subgrade preparation prior to placement of select fill.

⁷ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the ASTM D1557 laboratory compaction procedure.

Lime Treatment (Alternative No. 2)

If Alternative No. 2 is selected, the upper 18 inches of the building pad (measured below the capillary moisture break) should be treated in place with between four to eight percent (to be determined by the specialty contractor performing the lime treatment) dolomitic quicklime by dry weight of soil. The limit of lime treatment should extend at least five feet beyond the building footprint. A specialty subcontractor typically performs lime treatment, and we recommend this work be performed only by an experienced contractor. The contractor should determine the percent lime to be used and confirm there are no chemical constituents present that would adversely affect the lime treatment. Prior to lime treatment, we recommend the building pad be graded in accordance with our previous recommendations and all below-grade obstructions be removed. The soil treated with lime should be mixed and compacted in one lift. The lime should be thoroughly blended with the soil and allowed to cure for 24 hours prior to remixing and compaction. The lime-treated soil should be moisture-conditioned to above optimum moisture content and compacted to at least 90 percent relative compaction. Limetreated soil should be removed from landscaping areas as it will inhibit growth of vegetation. It should be noted that disposal of lime-treated soil is typically expensive because of the high pH of the treated soil.

Below-Grade Mat Foundations

The residential and mixed-use buildings will have below-grade levels, and we conclude the mat foundations may bear on native soil. Although the excavations for the residential building and the mixed-use building site will be actively dewatered, the soil at basement subgrade level will likely be saturated or near saturation. To protect the subgrade, we recommend heavy construction equipment (such as scrapers) not be allowed within two feet of subgrade and that final excavation be made with an excavator equipped with a smooth bucket. The soil subgrade should be kept moist until the mat foundations or rat slabs are in place.

Pavement Areas

In asphalt and concrete pavement areas, where engineered or select fill is exposed at soil subgrade, the upper six inches should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction to provide a smooth

non-yielding surface. If expansive native clay is at subgrade in pavement areas, the upper 12 inches should be moisture-conditioned to at least two percent over optimum moisture content and compacted to at least 90 percent relative compaction.

Flatwork Areas

As a minimum preparation for exterior concrete flatwork, including concrete slabs and sidewalks, the upper 12 inches of expansive native soil at subgrade should be moisture-conditioned to at least three percent above optimum moisture content and compacted to between 88 and 92 percent relative compaction. If it is desirable to reduce the potential for differential movement and cracking, concrete flatwork should be underlain by at least 12 inches of select fill, lime-treated soil, or Caltrans Class 2 AB, as recommended in Section 8.4. Select fill and Class 2 AB at subgrade in concrete flatwork areas should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction. Lime-treated soil at subgrade should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction.

8.1.3 Fill Placement

We anticipate fill placement at the site will consist primarily of minor grading for the at-grade building pads, pavement, and flatwork areas and backfill for utility trenches and around elevator pit walls. Because the on-site soil is moderately to very highly expansive, the floor slabs of the planned at-grade buildings should be underlain by at least 18 inches of select fill or lime-treated soil, as recommended in Section 8.1.2. Prior to placement of fill, the subgrade soil should be scarified, moisture-conditioned, and recompacted as recommended in Section 8.1.2.

If native expansive clay is to be used as general site fill, it should be moisture-conditioned to at least three percent above optimum moisture content, placed in horizontal lifts not exceeding eight inches in loose thickness, and compacted to between 88 and 92 percent relative compaction.

Select fill should consist of imported or on-site soil that is free of organic matter and hazardous material, contain no rocks or lumps larger than three inches in greatest dimension, have a liquid

limit less than 40 and plasticity index less than 12, and be approved by the geotechnical engineer. In addition, select fill used within the at-grade building footprints should contain at least 20 percent fines (particles passing the No. 200 sieve) to reduce the potential for surface water to infiltrate beneath slabs. Select fill should be placed in lifts not exceeding eight inches in loose thickness, moisture-conditioned to above optimum moisture content, and compacted to at least 90 percent relative compaction for fill thickness greater than five feet.

We should approve all sources of engineered fill at least three days before use at the site. The grading subcontractor should provide analytical test results or other suitable environmental documentation indicating the imported fill is free of hazardous materials at least three days before use at the site. If this data is not available, up to two weeks should be allowed to perform analytical testing on the proposed import material.

8.1.4 Utility Trenches

Excavations for utility trenches can be made with a backhoe. All trenches should conform to the current OSHA requirements for slopes, shoring, and other safety concerns.

To provide uniform support, pipes or conduits should be bedded on a minimum of four inches of sand or fine gravel. After the pipes and conduits are tested, inspected (if required), and approved, they should be covered to a depth of six inches with sand or fine gravel, which should be mechanically tamped. If groundwater is encountered during trench excavation, the gravel used as bedding and cover should be replaced with Caltrans Class 2 permeable material below the water level, or the open-graded gravel used as bedding and cover should be wrapped in filter fabric (Mirafi 140N or equivalent) to reduce the potential for infiltration of fines.

Backfill for utility trenches and other excavations is also considered fill and should be placed and compacted according to the recommendations previously presented. If imported clean sand or gravel (defined as soil with less than 10 percent fines) is used as backfill, it should be compacted to at least 95 percent relative compaction. Jetting of trench backfill should not be

permitted. Special care should be taken when backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements, resulting in damage to the pavement section.

Where utility trenches backfilled with sand or gravel enter the building pad, an impermeable plug consisting of native clay or lean concrete, at least five feet in length, should be installed at the building line. Further, where sand- or gravel-backfilled trenches cross planter areas and pass below asphalt or concrete pavements, a similar plug should be placed at the edge of the pavement. The plug should extend from the bottom of the trench to the subgrade elevation. The purpose of these recommendations is to reduce the potential for water to become trapped in trenches beneath the building or pavements. This trapped water can cause heaving of soils beneath slabs and softening of subgrade soil beneath pavements.

8.2 Foundation Support

The planned at-grade hotel and parking garage may be supported on a combination of deepened continuous perimeter footings and isolated interior spread footings bearing on native soil. We recommend mat foundations be used for support of the residential and mixed-use buildings because, with one and two basement levels, respectively, the foundation will be constructed close to or below the design groundwater table and it is desirable to limit static settlements to anticipated project tolerances. Also, some areas of potentially liquefiable soil are present at the foundation level of the residential building, and a mat will reduce the potential for differential settlement. If needed, uplift can be resisted using tiedown anchors. Recommendations for footings and mat foundations are presented in the following sections. We can provide recommendations for tiedown anchors upon request.

8.2.1 Spread Footings for At-Grade Buildings

Continuous footings should be at least 18 inches wide and isolated spread footings should be at least 24 inches wide. Because moderately to highly expansive soil was encountered within the footprints of the at-grade buildings, we recommend the continuous perimeter footings be bottomed at least 36 inches below the lowest adjacent exterior soil subgrade or the top of the select fill or lime-treated layer, whichever is deeper, to reduce the potential for movement of the footings due to shrink and swell of the expansive clay. The interior footings should extend at least 30 inches below the lowest adjacent soil subgrade (measured from the top of the select fill or lime-treated soil). Footings located adjacent to utility trenches or other foundations should bear below an imaginary 1.5:1 (horizontal to vertical) plane projected upward from the bottom edge of the adjacent trench or the bottom of the adjacent foundation. As discussed in Section 7.2.1, if very highly expansive soil is encountered beneath the footings during construction, it should be overexcavated to below the zone of moisture change and replaced with lean concrete to the planned footing bottom, or drilled piers should be used.

Footings should be designed using an allowable bearing pressure for dead plus live loads of 5,000 pounds per square foot (psf) assuming a maximum column load on the order of 600 to 700 kips. This allowable bearing pressure may be increased by one-third for total loads, including wind or seismic forces, and include factors of safety of at least 2.0 and 1.5 for dead plus live loads and total loads, respectively. To design footings using the modulus of subgrade reaction method, we recommend a modulus of subgrade reaction of 60 kips per cubic foot (kcf) be used.

Lateral loads can be resisted by a combination of passive pressure acting on the vertical faces of the footings and friction along the base of the footings. We recommend passive resistance be calculated using a uniform pressure (rectangular distribution) of 2,300 psf in native soil and lime-treated soil and an equivalent fluid weight (triangular distribution) of 350 pounds per cubic foot (pcf) in select fill. The upper foot of soil should be ignored unless it is confined by slabs or pavement. Frictional resistance at the base of the footings should be computed using a friction coefficient of 0.30. These values include a factor of safety of about 1.5.

The footing excavations should be free of standing water, debris, and disturbed materials prior to placing concrete. If loose or soft soil or non-engineered fill is encountered in a footing excavation, the weak soil or fill should be overexcavated to expose stiff to very stiff clay.

The excavated material should be replaced with either structural concrete or sand-cement slurry with a minimum 28-day compressive strength of at least 50 pounds per square inch (psi).

The bottoms and sides of excavations should be wetted following excavation and maintained in a moist condition until concrete is placed. If the foundation soil dries during construction, the foundation will eventually heave, which may result in cracking and distress. We should check foundation excavations prior to placement of reinforcing steel to confirm suitable bearing material is present. We should recheck the condition of the excavations just prior to concrete placement to confirm the excavations are sufficiently moist.

8.2.2 Mat Foundations

The residential and mixed-use buildings should be supported on a mat bearing on native, undisturbed soil. We expect the average mat bearing pressures for the residential and mixeduse building will be about 750 psf and 1,200 psf, respectively, based on our experience with buildings of similar size; however, concentrated stresses may occur at interior columns and at the edges of the mat. The mat foundations may be designed to impose a maximum dead plus live load pressure under columns and walls equivalent to allowable bearing capacities of 4,800 psf and 4,500 psf for the residential and mixed-use buildings, respectively. The allowable bearing pressure can be increased by one-third for total design loads, including wind and seismic loads. The allowable bearing pressures for dead plus live and total design loads include factors of safety of about 2.0 and 1.5, respectively. During a seismic event, these pressures may be exceeded under portions of the mat, and we should review the predicted stress distributions when available. Mats extending below the design groundwater level should be designed to resist hydrostatic uplift forces.

To design the mats using the modulus of subgrade reaction method, we recommend initial moduli of subgrade reaction of 7 kcf and 10 kcf for the residential and mixed-use buildings, respectively; these values are representative of the anticipated settlement under the estimated average mat bearing pressures. After the mat analyses are completed, we should review the

computed settlement and bearing pressure profiles to check that the modulus value is appropriate.

Resistance to lateral loads can be mobilized by a combination of passive pressure acting against the vertical faces of the mat and friction along the base of the mat. Passive resistance for the mats for the residential and mixed-use buildings may be calculated using a uniform pressure of 1,900 psf. Frictional resistance should be computed using a base friction coefficient of 0.20, assuming a waterproofing membrane is placed below the mat. These values include a factor of safety of about 1.5.

We should observe mat subgrade prior to placement of reinforcing steel. If weak soil is encountered at the bottom of the mat excavation, it should be overexcavated and replaced with lean concrete or sand-cement slurry as described for spread footings in Section 8.2.1. Mat excavations should be free of standing water, debris, and disturbed materials prior to placing concrete. The bottom and sides of the mat excavations should be wetted following excavation and maintained in a moist condition until concrete is placed. If the foundation soil dries during construction, the foundation will heave when exposed to moisture, which may result in cracking and distress.

Where the bottom of the mat is at least 30 inches above the design groundwater level and moisture on the mat is undesirable, a capillary break and water vapor retarder should be provided beneath the mat as recommended in Section 8.3. Where the mat will extend below the design groundwater level, or is within 30 inches of the design groundwater level, permanent waterproofing will be required beneath the mat. We recommend a waterproofing consultant be retained to determine the most appropriate system for this project and to provide input regarding waterproofing details. Installation of waterproofing should be performed in accordance with the manufacturer's requirements.

8.3 Concrete Floor Slabs

Floor slabs may be supported on grade. The floor slabs and capillary moisture break should be underlain by at least 18 inches of properly compacted select fill or lime-treated native soil, as discussed in Section 8.1.2. If the previously-compacted soil subgrade is disturbed during foundation and utility excavation, the subgrade should be scarified, moisture-conditioned, and rerolled to provide a firm, unyielding surface prior to construction of the slab-on-grade floor. To further reduce the potential for cracking of slab-on-grade floors, we recommend the slab be reinforced with at least No. 4 bars spaced at 18 inches, each way.

Where moisture on the floor slab is undesirable, we recommend installing a capillary moisture break and water vapor retarder beneath the floor to reduce water vapor transmission through the floor slab. Where moisture is not a concern, such as at the parking garage, the floor should be underlain by at least 6 inches of Class 2 aggregate base compacted to at least 95 percent relative compaction. A capillary moisture break consists of at least four inches of clean, freedraining gravel or crushed rock. The vapor retarder should meet the requirements for Class C vapor retarders stated in ASTM E1745-97. The vapor retarder should be placed in accordance with the requirements of ASTM E1643-98. These requirements include overlapping seams by six inches, taping seams, and sealing penetrations in the vapor retarder. The vapor retarder should be covered with two inches of sand to aid in curing the concrete and to protect the vapor retarder during slab construction. The particle size of the gravel/crushed rock and sand should meet the gradation requirements presented in Table 3.

Sieve Size	Percentage Passing Sieve		
Gravel or Crushed Rock			
1 inch	90 – 100		
3/4 inch	30 – 100		
1/2 inch	5 – 25		
3/8 inch	0 – 6		
Sand			
No. 4	100		
No. 200	0 – 5		

TABLE 3 Gradation Requirements for Capillary Moisture Break

The sand overlying the membrane should be moist at the time concrete is placed; however, there should be no free water present in the sand. Excess water trapped in the sand could eventually be transmitted as vapor through the slab. If rain is forecast prior to pouring the slab, the sand should be covered with plastic sheeting to avoid wetting. If the sand becomes wet, concrete should not be placed until the sand has been dried or replaced.

Concrete mixes with high water/cement (w/c) ratios result in excess water in the concrete, which increases the cure time and results in excessive vapor transmission through the slab. Therefore, concrete for the floor slab should have a low w/c ratio – less than 0.50. If approved by the project structural engineer, the sand can be eliminated and the concrete can be placed directly over the vapor retarder, provided the w/c ratio of the concrete does not exceed 0.45 and water is not added in the field. If necessary, workability should be increased by adding plasticizers. In addition, the slab should be properly cured. Before the floor covering is placed, the contractor should check that the concrete surface and the moisture emission levels (if emission testing is required) meet the manufacturer's requirements.

If the elevator pits are within 30 inches of the design groundwater level and moisture migration is a concern, the elevator pits should be waterproofed. We recommend a waterproofing

consultant be retained to determine the most appropriate system for this project and to provide input regarding waterproofing details. Installation of waterproofing should be performed in accordance with the manufacturer's requirements.

8.4 Below-Grade Walls

The walls of below-grade structures should be designed as restrained walls. The walls should be designed to resist both static lateral earth pressures and lateral pressures caused by earthquakes. We used the procedures outlined in Sitar et al. (2012) to compute the seismic increment using a Design Earthquake (DE) peak ground acceleration (PGA; 40 percent of S_{DS}) equal to 0.60g. The more critical condition of either at-rest pressure or active pressure plus a seismic increment (total pressure) should be checked. At-rest and total equivalent fluid pressure for the DE level of shaking at the site, both for level backfill, are presented in Table 4 for fully drained and undrained conditions.

TABLE 4

Drainage Condition					
Drained		Undrained			
Static Pressure At-rest Pressure (pcf)	Total Pressure Active plus Seismic Pressure Increment (pcf)	Static Pressure At-rest Pressure (pcf)	Total Pressure Active plus Seismic Pressure Increment (pcf)		
60	40 + 38	90	80 + 19		

Lateral Earth Pressures Below-Grade Walls Level Ground Surface

If surcharge loads are present above an imaginary 30-degree line (from the horizontal) projected up from the bottom of a retaining wall, a surcharge pressure should be included in the wall design. Where vehicular traffic will pass within 10 feet of retaining walls, traffic loads should be

considered in the design of the walls. Traffic loads may be modeled by a uniform pressure of 100 psf applied in the upper 10 feet of the walls.

A backdrain can be provided behind below-grade walls to prevent the buildup of hydrostatic pressure. One acceptable method for backdraining walls is to place a prefabricated drainage panel against the backside of the newly cast wall. The panel should extend down to a perforated PVC collector pipe or an equivalent "flat" pipe (such as AdvanEdge) at the base of the wall or shoring. The PVC pipe should be bedded on and covered by at least 4 inches of Class 2 permeable material (per Caltrans Standard Specifications) or drain rock, and the aggregate material should be surrounded by filter fabric (Mirafi 140NC or equivalent). If a flat pipe surrounded by a filter fabric is used, it is not necessary to surround it with rock. A closed collector pipe should be sloped to drain to a suitable outlet. If water is collected in a sump, a pumping system may be required to carry the water to the storm drain system. We should review the manufacturer's specifications for proposed prefabricated drainage panel material and drain pipe to verify they are appropriate for the intended use.

As an alternative to using prefabricated drainage panel, the wall may be drained using Caltrans Class 2 permeable material (Caltrans Standard Specifications Section 68-1.025) or clean drain rock wrapped in a geotextile filter fabric (Mirafi 140N or equivalent). The gravel drain should be at least 12 inches wide and should extend up the back of the wall to about two feet below the ground surface; the upper two feet should be covered with a clay cap to reduce infiltration of surface water. A four-inch-diameter perforated PVC collector pipe should be placed within the gravel blanket near the base of the wall to drain the water to a suitable discharge.

Below-grade walls should be waterproofed, and water stops should be placed at all construction joints.

Wall backfill should be placed and compacted to the recommendations in Section 8.1.3. If heavy equipment is used, the wall should be appropriately designed to withstand loads exerted by the equipment and/or temporarily braced.

8.5 Temporary Cut Slopes and Shoring

8.5.1 Temporary Cut Slopes

Temporary cut slopes may be made during site grading, foundation installation, basement and elevator pit excavation, and utility installation. The safety of workers and equipment in or near excavations is the responsibility of the contractor. The contractor should be familiar with the most recent Occupational Safety and Health Administration (OSHA) Trench and Excavation Safety standards (29 CFR Part 1926). Excavations that will be deeper than five feet and will be entered by workers should be shored or sloped in accordance with OSHA standards. We judge that temporary cuts in native soil which are less than 10 feet high and inclined no steeper than 1.5:1 (horizontal: vertical) will be stable provided that they are above the groundwater level and not surcharged by equipment or building material. Temporary shoring will be required where temporary slopes are not possible because of space constraints. During construction, we should observe cut slopes to verify the inclinations are appropriate for the conditions encountered. Where excavations encounter groundwater, they should be dewatered.

8.5.2 Temporary Shoring

For design of a cantilevered shoring system, we recommend using an active earth pressure equivalent to a fluid weight of 40 pcf above the ground water table and 80 pcf below the groundwater table, assuming the ground behind the shoring is level. Where excavation depths exceed 12 feet, tiebacks or internal bracing will likely be required. Figure 5 presents the lateral pressures we recommend for design of a tied-backed or internally-braced soldier beam and lagging wall.

If traffic is within a distance equal to the shoring depth, a uniform surcharge load of 100 psf acting on the upper 10 feet should be used in the design. In addition, shoring should be designed for surcharge loads where there will be construction equipment, stockpiled soil, adjacent footings, or other surcharge loads above an imaginary 60-degree line (from the horizontal) projected from the bottom of the shoring. If these conditions exist, we should be consulted on a case-by-case basis to compute the additional pressure increment.

Lateral resistance can be gained by passive pressure acting on the face of the toe of the soldier piles. Passive resistance can be computed using a uniform pressure of 2,500 psf plus an equivalent fluid weight of 80 pcf. These values include a factor of safety of at least 1.5. Passive pressure can be assumed to act over an area of three soldier pile widths assuming the toe of the soldier pile is filled with structural concrete. The upper foot of soil should be ignored when computing passive resistance.

The shoring designer should evaluate the required penetration depth of the soldier piles. The soldier piles should have sufficient axial capacity to support the vertical load component of the tiebacks and the vertical load acting on the piles, if any. To compute the axial capacity of the piles, we recommend using an allowable friction of 550 psf on the perimeter of the piles below the excavation level, which includes a factor of safety of 1.5. Vertical support from end bearing is neglected.

Tiebacks may be used to restrain the shoring. The vertical load from the tiebacks should be accounted for in the design of the vertical elements. Design criteria for tiebacks are presented on Figure 5. As shown, tiebacks should derive their load-carrying capacity from the soil behind an imaginary line sloping upward from a point H/5 feet away from the bottom of the excavation at an angle 60 degrees from horizontal, where H is the wall height in feet. Tiebacks with bar and strand tendons should have a minimum unbonded length of 10 and 15 feet, respectively. The unbonded length should be created by placing an oversized rigid smooth plastic casing (i.e. PVC pipe) over the bars or strands; flexible plastic does not provide adequate bond-break for the unbonded zone. The tiebacks should have a minimum bond length of 15 feet each and be spaced at least six times the grouted diameter of the bonded zone or four feet, whichever is greater. The bottom of the excavation should not extend more than two feet below a row of unsecured tiebacks.

The shoring designer should be responsible for determining the actual length of tieback required. The determination should be based on the designer's familiarity with the installation

method to be used. The computed bond length should be confirmed by a performance- and proof-testing program under the observation of an engineer experienced in this type of work.

Tiebacks will generally be installed in medium stiff to stiff clay with variable sand and gravel content and medium dense to dense sand with varying silt, clay, and gravel content. Allowable capacities of the tiebacks will depend upon the drilling method, shaft diameter, grout pressure, and workmanship. Because of the tendency of sand and gravel layers to cave, augers should not be used in these materials. We recommend a smooth-cased method (such as a Klemm rig) be used to install tiebacks in these materials. For estimating purposes, we recommend using the skin friction value for pressure-grouted tiebacks given on Figure 5; this value includes a factor of safety of at least 1.5.

The anticipated deflections of the shoring system should be estimated to check if they are acceptable. The shoring system should be sufficiently rigid to prevent detrimental movement of the temporary shoring and possible damage to existing improvements, including underground utilities and structures, adjacent to the site. In our experience, the deflection of a properly designed shoring system should generally be held to one inch or less. The shoring and tieback system should be designed so that it does not conflict with nor damage existing improvements outside the site boundaries.

The shoring system should be installed by an experienced shoring specialty contractor. The contractor should be familiar with applicable local, state, and federal regulations for temporary shoring, including the current OSHA Excavation and Trench Safety Standards. The shoring designer should be responsible for shoring design. We should review the final shoring plans to check that they are consistent with the recommendations presented in this report. In addition, we recommend a representative from our office observe the installation of the temporary shoring system.

The first two production tiebacks and two percent of the remaining tiebacks should be performance-tested to 1.25 times the design load. The remaining tiebacks should be confirmed

by a proof-test to 1.25 times the design load. The performance tests will be used to determine the load carrying capacity of the tiebacks and the residual movement. The performance-tested tiebacks should be checked 24 hours after initial lock off to confirm stress relaxation has not occurred. If any tiebacks fail to meet the proof-testing requirements, additional tiebacks should be added to compensate for the deficiency, as determined by the shoring designer.

The movement of each tieback should be monitored with a free-standing, tripod-mounted dial gauge during performance and proof testing. The performance test is used to verify the capacity and the load-deformation behavior of the tiebacks. It is also used to separate and identify the causes of tieback movement, and to check that the designed unbonded length has been established. In the performance test, the load is applied to the tieback in several cycles of incremental loading and unloading. During the test, the tieback load and movement are measured. The maximum test load should be held for a minimum of 10 minutes, with readings taken at 0, 1, 3, 6, and 10 minutes. If the difference between the 1- and 10-minute readings is less than 0.04 inch during the loading, the test is discontinued. If the difference is more than 0.04 inch, the holding period is extended by 50 minutes to 60 minutes, and the movements should be recorded at 15, 20, 25, 30, 45, and 60 minutes.

A proof test is a simple test used to measure the total movement of the tieback during one cycle of incremental loading. The maximum test load should be held for a minimum of 10 minutes, with readings taken at 0, 1, 2, 3, 6, and 10 minutes. If the difference between the 1- and 10-minute readings is less than 0.04 inch, the test is discontinued. If the difference is more than 0.04 inch, the holding period is extended by 50 minutes to 60 minutes, and the movements should be recorded at 15, 20, 25, 30, 45, and 60 minutes.

We should evaluate the tieback test results to determine whether the tiebacks are acceptable. A performance- or proof-tested tieback with a ten-minute hold is acceptable if the tieback carries the maximum test load with less than 0.04 inch movement between one and 10 minutes, and total movement at the maximum test load exceeds 80 percent of the theoretical elastic elongation of the unbonded length. A performance- or proof-tested tieback

with a 60-minute hold is acceptable if the tieback carries the maximum test load with less than 0.08 inch movement between six and 60 minutes, and total movement at the maximum test load exceeds 80 percent of the theoretical elastic elongation of the unbonded length. Tiebacks that fail to meet the first criterion will be assigned a reduced capacity.

If the total movement of the tiebacks at the maximum test load does not exceed 80 percent of the theoretical elastic elongation of the unbonded length or the tieback fails the load test, the contractor should replace the tiebacks.

8.6 Pavement Design

8.6.1 Asphalt Concrete Pavement

The State of California resistance value (R-value) method for flexible pavement design was used to develop recommendations for asphalt concrete pavement sections. We anticipate the final soil subgrade in areas to receive asphalt concrete pavement will generally consist of clay. The R-value test performed on clay collected from the boring B-13 indicates the material has an R-value of 1. We used an R-value of 5 in our calculations, which is the minimum R-value to use in design pavement using this method.

For our calculations, we used traffic indices (TIs) of 5.0, 6.0, and 7.0. Our pavement section recommendations are presented on Table 5. Recommendations for subgrade preparation beneath pavement sections are provided in Section 8.1.2. AB should be compacted to at least 95 percent relative compaction.

TI	Asphalt Concrete (inches)	Class 2 Aggregate Base (inches)
5.0	3.0	10.0
6.0	3.5	13.0
7.0	4.0	15.5

TABLE 5 Asphaltic Concrete Pavement Section Design

8.6.2 Portland Cement Concrete Pavement

Concrete pavement design is based on a maximum single-axle load of 18,000 pounds and a maximum tandem axle of 32,000 pounds (corresponds to a garbage truck). The recommended rigid pavement section for these axle loads is seven inches of Portland cement concrete over six inches of Caltrans Class 2 AB. If only passenger cars or light trucks will use the pavement, the recommended minimum pavement section is five inches of Portland cement concrete over six inches of Class 2 AB. AB should conform to the current State of California Department of Transportation (Caltrans) Standard Specifications. Recommendations for subgrade preparation and AB compaction for Portland cement concrete pavement are the same as those for asphalt concrete pavement.

The modulus of rupture of the concrete should be at least 500 psi at 28 days. Contraction joints should be constructed at 15-foot spacing. Where the outer edge of a concrete pavement meets asphalt pavement, the concrete slab should be thickened by 50 percent at a taper not to exceed a slope of 1 in 10.

8.7 Concrete Flatwork

If it is desirable to reduce the potential for differential movement and cracking, exterior concrete flatwork should be underlain by at least 12 inches of select fill, lime-treated soil, or Caltrans Class 2 AB, which should extend at least two feet beyond the slab edges. Even with 12 inches of select fill, lime-treated soil, or AB, exterior slabs may experience some cracking due to shrinking and swelling of the underlying expansive soil. Thickening the slabs and adding additional reinforcement will control this cracking to some degree. In addition, where slabs provide access to the building, it would be prudent to dowel the slab to the foundation at the entrance to permit rotation of the slab as the exterior ground shrinks and swells and to prevent a vertical offset at the entries. Recommendations for subgrade preparation beneath concrete flatwork are provided in Section 8.1.2.

8.8 Drainage

Positive surface drainage should be provided around the building to direct surface water away from the foundations. To reduce the potential for water ponding adjacent to the structure, we recommend the ground surface within a horizontal distance of ten feet from the building slope down away from the building with a surface gradient of at least five percent in unpaved areas and two percent in paved areas. In addition, roof downspouts should be discharged into controlled drainage facilities to keep the water away from the foundations. Because the subgrade soil consists predominantly of clay, it will have a relatively low permeability. If infiltration basins, bioswales, or permeable pavement are planned, they should be lined with an impermeable membrane and drains should be provided that direct the water to an appropriate outlet. Unlined infiltration basins or bioswales should not be placed within five feet of the foundations.

8.9 Irrigation and Landscaping Limitations

The use of water-intensive landscaping around the perimeter of the buildings should be avoided to reduce the amount of water introduced to the expansive clay subgrade. In addition, irrigation of landscaping around the buildings should be limited to drip or bubbler-type systems. The purpose of these recommendations is to avoid large differential moisture changes adjacent to the foundations, which has been known to cause large differential settlement over short horizontal distances in expansive soil, resulting in cracking of slabs and architectural damage.

Moderately to very highly expansive native clay is expected to be present at or near the subgrade level. For this condition, prior experience and industry literature indicate some species of high water-demand⁸ trees can induce ground surface settlement by drawing water from the expansive soil and causing it to shrink. Where these types of trees are planted adjacent to structures, the ground-surface settlement may result in damage to the structures. This problem usually occurs ten or more years after project completion as the trees reach mature height. To reduce the risk of tree-induced, ground-surface settlement, we recommend trees of the following genera not be planted within a horizontal distance from the building equal to the

⁸ "Water-demand" refers to the ability of the tree to withdraw large amounts of water from the soil subgrade, rather than soil suction exerted by the root system.

mature height of the tree: *Eucalyptus, Populus, Quercus, Crataegus, Salix, Sorbus (simple-leafed), Ulmus, Cupressus, Chamaecyparis, and Cupressocyparis.* Because this is a limited list and does not include all genera that may induce ground-surface settlement, the project landscape architect should use judgment in limiting other types or trees with similar properties in the vicinity of the buildings.

8.10 2013 California Building Code Mapped Values

Although some potentially liquefiable soil layers were encountered in the borings and CPTs at the site, we judge these layers are thin, isolated, and discontinuous. Therefore, we conclude that Site Class D as defined in 2013 CBC is appropriate for the site. For seismic design in accordance with the provisions of 2013 California Building Code (CBC) we recommend the following:

- Risk Targeted Maximum Considered Earthquake (MCE_R) S_s and S_1 of 2.288g and 0.872g, respectively.
- Site Class D
- Site Coefficients, F_a and F_v of 1.0 and 1.5.
- MCE_R spectral response acceleration parameters at short period, S_{MS}, and at one-second period, S_{M1}, of 2.288g and 1.308g, respectively.
- Design Earthquake (DE) spectral response acceleration parameters at short period, S_{DS}, and at one-second period, S_{D1}, of 1.525g and 0.872g, respectively.

9.0 ADDITIONAL RECOMMENDATIONS – SERVICES DURING DESIGN AND CONSTRUCTION

During final design we should be retained to consult with the design team as geotechnical questions arise. Prior to construction, we should review the geotechnical aspects of the project plans and specifications to check their conformance with the intent of our recommendations. During construction, it is imperative that we observe subgrade preparation, compaction of backfill, shoring installation and testing, foundation excavations, and mat subgrade as the

geotechnical engineer of record. These observations will allow us to compare the actual with the anticipated soil conditions and to check that the contractors' work conforms with the geotechnical aspects of the plans and specifications. The recommendations contained in this report assume that we will be on-site during construction to make modification to them as needed.

10.0 LIMITATIONS

The conclusions and recommendations presented in this report result from limited engineering studies based on our interpretation of the geotechnical conditions existing at the site at the time of this investigation. Actual subsurface conditions may vary. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that described in this report, Langan Treadwell Rollo should be notified to make supplemental recommendations, as necessary.

REFERENCES

California Building Code (2013).

California Division of Mines and Geology (1996). "Probabilistic seismic hazard assessment for the State of California." DMG Open-File Report 96-08.

California Division of Mines and Geology (1982). "State of California Special Studies Zones, Diablo, Revised Official Map" 1 January.

Idriss, I.M., and Boulanger, R.W. (2008). "Soil Liquefaction During Earthquakes" EERI Monograph, Earthquake Engineering Research Institute.

Ishihara, K. (1985). "Stability of Natural Deposits During Earthquakes," 11th International Conference of Soil Mechanics and Foundation Engineering, San Francisco, pp. 321-376.

Norris, R. M., and Webb, R. W. (1990) "Geology of California," John Wiley & Sons, Inc.

Sitar, N., Mikola, R.G., and Candia, C. (2012), "Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls." Geotechnical Engineering State of the Art and Practice Keynote Lectures GeoCongress 2012 Geotechnical Special Publication No. 226.

Toppozada, T. R. and Borchardt G. (1998). "Re-Evaluation of the 1836 'Hayward Fault' and the 1838 San Andreas Fault earthquakes." *Bulletin of Seismological Society of America*, 88(1), 140-159.

Townley, S. D. and Allen, M. W. (1939). "Descriptive catalog of earthquakes of the Pacific coast of the United States 1769 to 1928." *Bulletin of the Seismological Society of America*, 29(1).

Wells, D. L. and Coppersmith, K. J. (1994). "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement." *Bulletin of the Seismological Society of America*, 84(4), 974-1002.

Wesnousky, S. G. (1986). "Earthquakes, quaternary faults, and seismic hazards in California." *Journal of* Geophysical Research, 91(1312).

Working Group on California Earthquake Probabilities (WGCEP), (2008), "*The Uniform California Earthquake Rupture Forecast, Version 2*," Open File Report 2007-1437.

Youd et al. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering, October.

Youngs, R. R., and Coppersmith, K. J. (1985). "Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates." Bulletin of the Seismological Society of America, 75, 939-964.

FIGURES

Path: \\langan.com\data\OAK\data0\750633001\ArcGIS\ArcMap_Documents\Site Location Map.mxd User: agekas

EXPLANATION

Approximate location of boring by Langan Treadwell Rollo, January and April 2016

Approximate location of cone penetration test by Langan Treadwell Rollo, April 2016

BISHOP RANCH - BR3A

San Ramon, California

SITE PLAN

Date 07/12/16 Project No. 750633001 Figure 2

- I Not felt by people, except under especially favorable circumstances. However, dizziness or nausea may be experienced. Sometimes birds and animals are uneasy or disturbed. Trees, structures, liquids, bodies of water may sway gently, and doors may swing very slowly.
- II Felt indoors by a few people, especially on upper floors of multi-story buildings, and by sensitive or nervous persons. As in Grade I, birds and animals are disturbed, and trees, structures, liquids and bodies of water may sway. Hanging objects swing, especially if they are delicately suspended.
- III Felt indoors by several people, usually as a rapid vibration that may not be recognized as an earthquake at first. Vibration is similar to that of a light, or lightly loaded trucks, or heavy trucks some distance away. Duration may be estimated in some cases. Movements may be appreciable on upper levels of tall structures. Standing motor cars may rock slightly.
- IV Felt indoors by many, outdoors by a few. Awakens a few individuals, particularly light sleepers, but frightens no one except those apprehensive from previous experience. Vibration like that due to passing of heavy, or heavily loaded trucks. Sensation like a heavy body striking building, or the falling of heavy objects inside.

Dishes, windows and doors rattle; glassware and crockery clink and clash. Walls and house frames creak, especially if intensity is in the upper range of this grade. Hanging objects often swing. Liquids in open vessels are disturbed slightly. Stationary automobiles rock noticeably.

V Felt indoors by practically everyone, outdoors by most people. Direction can often be estimated by those outdoors. Awakens many, or most sleepers. Frightens a few people, with slight excitement; some persons run outdoors.

Buildings tremble throughout. Dishes and glassware break to some extent. Windows crack in some cases, but not generally. Vases and small or unstable objects overturn in many instances, and a few fall. Hanging objects and doors swing generally or considerably. Pictures knock against walls, or swing out of place. Doors and shutters open or close abruptly. Pendulum clocks stop, or run fast or slow. Small objects move, and furnishings may shift to a slight extent. Small amounts of liquids spill from well-filled open containers. Trees and bushes shake slightly.

VI Felt by everyone, indoors and outdoors. Awakens all sleepers. Frightens many people; general excitement, and some persons run outdoors.

Persons move unsteadily. Trees and bushes shake slightly to moderately. Liquids are set in strong motion. Small bells in churches and schools ring. Poorly built buildings may be damaged. Plaster falls in small amounts. Other plaster cracks somewhat. Many dishes and glasses, and a few windows break. Knickknacks, books and pictures fall. Furniture overturns in many instances. Heavy furnishings move.

VII Frightens everyone. General alarm, and everyone runs outdoors.

People find it difficult to stand. Persons driving cars notice shaking. Trees and bushes shake moderately to strongly. Waves form on ponds, lakes and streams. Water is muddied. Gravel or sand stream banks cave in. Large church bells ring. Suspended objects quiver. Damage is negligible in buildings of good design and construction; slight to moderate in well-built ordinary buildings; considerable in poorly built or badly designed buildings, adobe houses, old walls (especially where laid up without mortar), spires, etc. Plaster and some stucco fall. Many windows and some furniture break. Loosened brickwork and tiles shake down. Weak chimneys break at the roofline. Cornices fall from towers and high buildings. Bricks and stones are dislodged. Heavy furniture overturns. Concrete irrigation ditches are considerably damaged.

VIII General fright, and alarm approaches panic.

Persons driving cars are disturbed. Trees shake strongly, and branches and trunks break off (especially palm trees). Sand and mud erupts in small amounts. Flow of springs and wells is temporarily and sometimes permanently changed. Dry wells renew flow. Temperatures of spring and well waters varies. Damage slight in brick structures built especially to withstand earthquakes; considerable in ordinary substantial buildings, with some partial collapse; heavy in some wooden houses, with some tumbling down. Panel walls break away in frame structures. Decayed pilings break off. Walls fall. Solid stone walls crack and break seriously. Wet grounds and steep slopes crack to some extent. Chimneys, columns, monuments and factory stacks and towers twist and fall. Very heavy furniture moves conspicuously or overturns.

IX Panic is general.

Ground cracks conspicuously. Damage is considerable in masonry structures built especially to withstand earthquakes; great in other masonry buildings - some collapse in large part. Some wood frame houses built especially to withstand earthquakes are thrown out of plumb, others are shifted wholly off foundations. Reservoirs are seriously damaged and underground pipes sometimes break.

X Panic is general.

Ground, especially when loose and wet, cracks up to widths of several inches; fissures up to a yard in width run parallel to canal and stream banks. Landsliding is considerable from river banks and steep coasts. Sand and mud shifts horizontally on beaches and flat land. Water level changes in wells. Water is thrown on banks of canals, lakes, rivers, etc. Dams, dikes, embankments are seriously damaged. Well-built wooden structures and bridges are severely damaged, and some collapse. Dangerous cracks develop in excellent brick walls. Most masonry and frame structures, and their foundations are destroyed. Railroad rails bend slightly. Pipe lines buried in earth tear apart or are crushed endwise. Open cracks and broad wavy folds open in cement pavements and asphalt road surfaces.

XI Panic is general.

Disturbances in ground are many and widespread, varying with the ground material. Broad fissures, earth slumps, and land slips develop in soft, wet ground. Water charged with sand and mud is ejected in large amounts. Sea waves of significant magnitude may develop. Damage is severe to wood frame structures, especially near shock centers, great to dams, dikes and embankments, even at long distances. Few if any masonry structures remain standing. Supporting piers or pillars of large, well-built bridges are wrecked. Wooden bridges that "give" are less affected. Railroad rails bend greatly and some thrust endwise. Pipe lines buried in earth are put completely out of service.

XII Panic is general.

Damage is total, and practically all works of construction are damaged greatly or destroyed. Disturbances in the ground are great and varied, and numerous shearing cracks develop. Landslides, rock falls, and slumps in river banks are numerous and extensive. Large rock masses are wrenched loose and torn off. Fault slips develop in firm rock, and horizontal and vertical offset displacements are notable. Water channels, both surface and underground, are disturbed and modified greatly. Lakes are dammed, new waterfalls are produced, rivers are deflected, etc. Surface waves are seen on ground surfaces. Lines of sight and level are distorted. Objects are thrown upward into the air.

BISHOP RANCH - BR3A San Ramon, California	MODIFIED	MERCALLI INTENS		ALE
LANGAN IREAUWELL RULLU	Date 05/13/16	Project No. 750633001	Figure	4

APPENDIX A

LOGS OF BORINGS

LANGAN TREADWELL ROLLO

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 1	AGE 1	OF 2	
Borin	g locat	tion:	S	ee Fi	gure	2		Logge	ed by:	K. Wat	kins	<u>-</u>	
Date	starte	d:	4/	/27/1	6	Date finished: 4/27/16		Drilleo	d By:	Explor	ation Ge	o Servic	es
Drillin	g met	hod:	Н	ollow	Sten	n Auger							
Hamr	ner we	eight/	drop:	14	0 lbs.	/30 inches Hammer type: Downhole Wirel	line		LABO	RATOR	Y TEST	DATA	
Samp	olers:	Sprag	ue & H	Henwo	od (S&	H), Standard Penetration Test (SPT), Shelby Tube (ST)				jth			
-	-	SAMF	PLES	-	QGY	MATERIAL DESCRIPTION		oe of ength est	fining ssure 'Sq Ft	Streng 'Sq Ft	nes %	tural sture ent, %	Densiți Cu Ft
EPTh (feet)	ample Type	ample) /swo	SPT -Value	THOL			Sta	Con Pre Lbs	Shear Lbs,	Ē	Moi Cont	Dry E Lbs
	S	о О	B	z		CLAY with SAND (CL)							
1 —						dark brown, stiff, moist, fine- to coarse-grai	ned						
2 —						Gund	_						
3 —	с 2 Ц		4	12			_	-				10.2	104
4 —	3011		11	13		LL = 47, PI = 28, see Figure C-8	_					19.2	104
5 —							_						
6	S&H		10 14	21		very stiff							
0 —			21		$\left \right>$								
7 —						olive-gray, stiff, moist, fine- to coarse-graine	ed						
8 —	S&H		9	12		sand	_	-					
9 —			11				_						
10 —			7		CL		_	-					
11 —	S&H		10 13	14			_	-					
12 —						fine-grained sand	_						
13 —			5				_						
10	S&H		6 10	10				PP		1,500			
14 —						SILTY SAND (SM)							
15 —	ODT		8	45	SM	medium-grained					20.0	10.7	
16 —	501		8 7	15		(4/27/2016, 7:45 a.m.)	_				30.3	18.7	
17 —						CLAY (CL)							
18 —	SPT	\square	4	12		olive-gray, stiff, wet, trace sand	_	-					
19 —	0. 1		6	12			_	-					
20 —			100				_						
	ет		psi			medium stiff		.	2 000	010		10.0	110
21 — 2	31		300			TxUU Test, see Figure C-4	_		∠,000	910		30.4	92
22 —			psi			Consolidation Test, see Figure C-1		PP		750			
<u> </u>					CL		_	-		-			
ž 24 —							_	-					
25 —			7			arav stiff		-					
26 —	S&H		10	13		gray, sun	_	-					
27 -													
200 20													
							_						
29 — 2								1					
30 —		<u> </u>		1	1	1		LAN	GAN	TREA	DWE	LL RD	ILLO
D D D								Project	No ·		Figure.		
0								-,	75063	3001	32.0.		A-1a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-1 P/	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31 —	S&H		6 8 14	13		CLAY (CL) (continued) gray-brown		PP		1 750			
32 —			14				_	-		1,750			
33 —					CL		-	-					
34 —							_						
35 —	S&H		4 8	11		dive-grav	_	-					
36 -			10										
38 —							_	-					
39 —							_	-					
40 —							_	-					
41 —							_	-					
42 —							_	-					
43 —							_						
45 —							_	-					
46 —							_	-					
47 —							_						
48 —							_	-					
49 —							_						
50 -							_						
52 —							_	_					
53 —							_	-					
54 —							_	-					
55 —							_						
56 —							_	-					
57 —							_	-					
50 –							_						
	g terminat	ted at a	depth o	of 36.5 fe	eet belo	w ground surface. ¹ S&H and SPT blow counts for the last two inc	rements were						
Boring Groun Of drill	g backfille ndwater e ling. pocket po	ed with c ncounte	ement g red at ?	grout. 15 feet b	oelow gr	round surface at time respectively to account for sampler type and 2 Elevations based on NGVD29 datum and site San Ramon City Center, BR3 Site, Existing L	hammer energy. e plan titled "City of Jtility and Easements."	LAN	GAN	TREA	DWE	LL RD	ILLO
	μουκει με	, ieu OIN				by RJA Engineers, 9 January 2014.		Project	No.: 75063	3001	Figure:		A-1b

Boring location: See Figure 2 Late finished: 1/19/16 Logget by: K Making Explanation Geo Barvices Dotter started: 1/19/16 Date finished: 1/19/16 Date finished: 1/19/16 Explanation Geo Barvices Dolling method: Haltow Stim Auger Hammer type: Downhole Wireline LABORATORY TEST DATA Samplers: Syngue & Herwood (SR4), Standard Peretration Test (SP), Staby Tube (S1) MATERIAL DESCRIPTION Staby Staby Tube (S1) Staby Staby Tube (S1) 1 Ground Surface Elevation: 44.5.8 feed ² Staby Staby Tube (S1) Staby Staby Tube (S1) Staby Staby Tube (S1) 2 Staby CLAY with GRAVEL (C1) Ground Surface Elevation: 45.8 feed ² Staby S	PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of I	Borir	ng B	-2	AGE 1	OF 2	
Date started: 1/19/16 Date finished: 1/19/16 Drilled By: Exploration Case Services Drilling method: Holdwo Stem Auger Hammer vigit Downhole Wireline LABORATORY TEST DATA Samplers: Snage & Henwood (S8H), Sandard Penetotion Test (SPT), Stelby Tube (ST) Image: State Comparison of the Structure Structure State Comparison	Borin	g loca	tion:	S	ee Fi	gure	2	1	Logge	ed by:	K. Wat	kins	<u> </u>	
Drilling method: Heatmer weight/dog: 140 bs/30 inches Hammer type: Downhole Wireline LABORATORY TEST DATA Samplers: Spague & Henwool (Sell), Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt Standard Paretation Tast (SPT), Stalty Tube (ST) Image: Stalt S	Date	starte	d:	1/	/19/1	6	Date finished: 1/19/16		Drilled	d By:	Explora	ation Ge	o Servic	es
Hammer weight/drog: Laboratorev Laboratorev <thlaboratorev< td="" th<=""><td>Drillin</td><td>g met</td><td>hod:</td><td>Н</td><td>lollow</td><td>Sten</td><td>n Auger</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlaboratorev<>	Drillin	g met	hod:	Н	lollow	Sten	n Auger							
Samplers: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Standard Paretration Tark (SPT), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Shelly Tube (ST) Image: Sprage & Hermod (SkH), Shelly Tube (ST) Image: Spra	Hamr	ner w	eight/	drop:	: 14	0 lbs.	/30 inches Hammer type: Downhole Wi	reline	_	LABO	RATOR	Y TEST	DATA	
SAMPLES SAMPLES MATERIAL DESCRIPTION Profit Base of the state of the s	Samp	olers:	Sprag	jue & ł	Henwo	od (S&	H), Standard Penetration Test (SPT), Shelby Tube (ST)				ft			
Exp Bit Solution Solution Af Solution	_	<u> </u>	SAMF	PLES	-	<u>96</u>	MATERIAL DESCRIPTION		be of ength est	fining ssure Sq Ft	Streng Sq Ft	sər %	tural sture ent, %	ensity Cu Ft
B i	EPTH feet)	ample Type	ample	ows/ 6	SPT -Value	LHOLO		.2	Stre	Con Pres	shear (Lbs/	Ē	Nat Moi	Dry D Lbs/
1 -	<u>a</u>	ŝ	ő	ā	ż		Ground Surface Elevation: 445.8 fee GRAVEL (GP)	et [∠]			0			
2 -	1 —					GP	gray, moist, coarse, angular		-					
3 S&H 13 13 14 4 17 0 CL CLAY (CH) 0 CLAY (CH) 0 0 8 S&H 8 8 10 0 CLAY (CH) 0 0 0 8 S&H 11 13 17 0 CLAY (CH) 0 0 0 10 7 14 16 CLAY (CL) 0 0 0 0 11 S&H 18 15 17 0 CLAY with SAND (CH) 0 0 0 0 12 7 13 16 CLAY with SAND (CH) 0 0 0 0 0 0 0 12 5 16 5 9 14 0 <td< td=""><td>2 —</td><td></td><td></td><td></td><td></td><td></td><td>SANDY CLAY with GRAVEL (CL) dark brown and light brown, very stiff, me</td><td>oist, fine- –</td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>	2 —						SANDY CLAY with GRAVEL (CL) dark brown and light brown, very stiff, me	oist, fine- –	-					
- SAH 11/4 17 CL Current isst, see Appendix D 4 -	3 —			13			to medium-grained sand, fine subangular	gravel						
3 -	4	S&H		15 14	17	CL	Corrosion Test, see Appendix D							
5 - 8 10 CLAV (CH) 7 - - - - 8 S8H 17 - - - 9 - 17 - - - 9 - 17 - - - - 10 - 7 - - - - 11 - SANDY CLAY (CL) gray-brown, very stiff, moist, fine-grained to - - 12 - - - - - - - 13 - - - - - - - - 14 - <	4 —							-	1					
6 - SAH 8 10 CLAY (CH) dark brown, stiff, moist - 8 - SAH 8 11 17 - - 9 - SAH 18 11 17 - - 10 - SAH Treat 18 17 - - - 11 - SSH 17 - - - - 11 - SSH 16 - CLAY with SAND (CH) olive-gray with light brown and dark brown motiling, very stiff, moist, fine-grained sand - - 12 - - - - - - - 14 - - - - - - - 15 14 - - - - - - 16 - - - - - - - - 16 - - - - - - - - 22 - - - - - - - - - 24	5 —	0011		9	10			-	1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 —	Зαп		8			CLAY (CH)		-					
8 S&H 8 17 SANDY CLAY (CL) gray-brown, very stiff, moist, fine-grained to 10 - 11 S&H 7 14 16 CLAY with SAND (CH) PP 2,500 12 - 13 16 CLAY with SAND (CH) Project No: PP 2,500 12 - 13 16 CLAY with SAND (CH) PP 2,500 13 - - CLAY with SAND (CH) - - 14 - - - - - 15 14 - - - - 16 - S&H 5 14 - - 17 - - - - - - 18 - - - - - - - 20 - - - - - - - - 21 - - - - - - - - - - - - - - -	7 —					СН	dark brown, stiff, moist	_	-					
9 - 18 1 CL Glag-Jordwin, dery still, midst, mie-grained to medium-grained to medium-grained sand -	8 —	S&H		8 11	17		SANDY CLAY (CL)	_	-					
10 -	9 —	CONT		18		CL	medium-grained sand		_					
11 S&H 11 14 15 14 14 14 14 14 15 15 14 14 15 15 14 16 0live-gray, stiff, moist, fine-grained sand 16 17 16 5 14 16 16 17 16 17 14 16 17 14 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 14 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 14 17 16 17 17 14 17 16 17	10 —							_						
11 13 13 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 16 16 17 16 15 14 17 16 15 14 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 18 17 17 18 17 17 16 17 16 17 16 17 17 17 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 16 17 17 17 16 17 <t< td=""><td>10</td><td>S&H</td><td></td><td>7 14</td><td>16</td><td></td><td>CLAY with SAND (CH)</td><td></td><td>PP</td><td></td><td>2,500</td><td></td><td></td><td></td></t<>	10	S&H		7 14	16		CLAY with SAND (CH)		PP		2,500			
12	11 —			13			olive-gray with light brown and dark brow	/n	1		_,			
13 -	12 —						mottling, very stiff, moist, fine-grained sa	na –						
14 -	13 —							-	-					
15 - 38H = 59 + 14 + CH + C	14 —							-	-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 —			-			alive area atiff wat	-	-					
17 15 CH - <td>16 —</td> <td>S&H</td> <td></td> <td>9</td> <td>14</td> <td></td> <td>olive-gray, stiff, wet</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	16 —	S&H		9	14		olive-gray, stiff, wet	_						
17 18 19 10 <t< td=""><td>17</td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	17			15										
18 -	17 -					СН		_						
19	18 —							-	1					
20 - 21 - ST 300 22 - ST 400 23 - 22 - ST 400 23 - 24 - 25 - 26 - S&H 6 11 17 26 - S&H 6 11 17 27 - 28 - 29 - 10 1 18 17 CL CL C	19 —							_	-					
21 - ST Image: ST definition of the state of the	20 —			300				-	-					
22 400 very stiff PP 2,400 23 (1/19/2016, 11:16 a.m.) PP 2,400 24 (1/19/2016, 11:16 a.m.) PP 2,400 25 (1/19/2016, 11:16 a.m.) PP 2,400 26 S8H 6 11 17 CLAY (CL) gray-brown to dark brown, very stiff, wet, trace PP 2,100 27 CL PP 2,100 PP 28 CL PP 2,100 Project No.: 30 EANGAN TREADWELL ROLLO Project No.: Figure: 30 A-2a Project No.: Figure:	21 —	ST		psi				-	-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 —	01		400				_	PP		2.400			
23 - - (1/19/2016, 11:16 a.m.) 24 - - CLAY (CL) 25 - - - 26 - S&H - - 27 - - - - 28 - - - - 29 - - - - 30 - - - - 29 - - - - 30 - - - - 28 - - - - - 30 - - - - - 30 - - - - - 29 - - - - - - 30 - - - - - - - 10 - - - - - - - - 30 - - - - - - - -	5			psi			very stiff ☑	_			_,			
24 25 26 S&H 6 11 17 gray-brown to dark brown, very stiff, wet, trace - - PP 2,100 - 2,100 - <						\vdash	(1/19/2016, 11:16 a.m.)	_						
25 -	24 —						CLAY (CL)	trace						
26 - S&H 11 17 - - PP 2,100 - <td< td=""><td>25 —</td><td>0.01</td><td></td><td>6</td><td></td><td></td><td>gray-prown to dark brown, very stiff, wet, fine- to coarse-grained sand</td><td>, lrace _</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	25 —	0.01		6			gray-prown to dark brown, very stiff, wet, fine- to coarse-grained sand	, lrace _						
27	26 —	S&H		11 18	17		-	-			2 100			
28						CL		-			2,100			
29	28 —							-	_					
30 LANGAN TREADWELL ROLLO Project No.: 750633001 Figure: A-2a	29 —							-						
LANGAN TREADWELL ROLLO Project No.: 750633001 Figure: 750633001	30 -													
Project No.: Figure: 750633001 A-2a									LAN	GAN	TREA	DWE	LL RC	ILLO
									Project	^{No.:} 75063	3001	Figure:		A-2a

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-2	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОЄУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	S&H		8 11	17		CLAY (CL) (continued)		PP		2.400			
31 — 32 — 33 —			17		CL		-			2,100			
34 —							_	-					
35 — 36 —	S&H		6 10	16		olive-gray, very stiff, wet, fine- to medium-	grained						
37 —			16		CI		_	-					
38 —							_	-					
39 —							_	-					
40 — 41 — 42 —	S&H		12 16 28	26		CLAY with SAND (CH) olive-gray with brown mottling, very stiff, w fine-grained sand	vet,	PP		3,250			
43 —							_	-					
44 —							_	-					
45 —	соц		13	22	СН		_			2 000			
46 —	SQL		20	22			_			3,000			
47 —							_						
49 —	S&H		13 18	29			_	-					
50 —	Carr		31	20				-					
							_	-					
52 -								-					
53 — 54 —							_						
55 —							_	-					
56 —							_	-					
57 —							_	-					
58 —							_	-					
60 —													
Borin Borin Grou drilling	Boring terminated at a depth of 50 feet below ground surface. Boring backfilled with cement grout. Groundwater encountered at 23 feet below ground surface during drilling. S&H and S+T blow counts for the last two increments were converted to SPT N-values using factors of 0.6 and 1.0, respectively to account for sampler type and harmmer ener 2 Elevations based on NGVD29 datum and site plan titled "C 2 Fee Dampe City (dotter, PD2 City).								GAN	TREA	DWE	LL RD	ILLO
5 PP = `	pocket pe	enetrom	eter.			san kamon City Center, BK3 Site, Existing Util by RJA Engineers, 9 January 2014.	iity and ⊨asements,"	Project	^{No.:} 75063	3001	Figure:		A-2b

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-3	AGE 1	OF 2	
Boring	g loca	tion:	S	ee Fi	gure	2	1	Logge	ed by:	K. Wat	kins	o Sonic	00
Date	starte	d:	1/	/19/1	6	Date finished: 1/19/16		Drilled	л Бу.	Explora	alion Ge	o Servici	es
Drillin	g met	hod:	H	ollow	Sten	n Auger							
Hamr	ner we		arop:	140 2 Lo	U IDS.		reline		LABO	RATOR	Y TEST	DATA	
Samp	JIEIS.	SAME	PIFS	x nei					ರಂಗ	ngth =t		_ 0 %	Ę.
E⊋	e	e	.9 /	це	DLOG	MATERIAL DESCRIPTION		ype o trengt Test	onfinir ressur ss/Sq	ar Stre os/Sq	Fines %	Vatura Ioistur ntent,	/ Dens
DEP ⁻ (fee	Samp Typ	Samp	Blows	SP ⁻ N-Val	TITHO	Ground Surface Elevation: 445.7 fe	et ²	- Γ S	0 r ∃	Shea		² ≥8	E H
						CLAY with SAND and GRAVEL (CL)							
1 -						dark brown, stin, moist	_						
2 —	0040	\bigtriangledown			CL		_	1					
3 —	GRAB	\wedge					_	-					
4 —							_						
5 —			7			CLAY with SAND (CH)	d fine	-					
6 —	S&H		10 12	13		subangular gravel		-					
7 —						CLAY with SAND (CL)		-					
8 —			7			medium-grained sand	.0-	-					
0	S&H		12 13	15	CL		_						
10													
10 -	S&H		8 12	15		SANDY CLAY (CL)	f to verv						
11 —			13			stiff, moist, fine- to medium-grained sand		1					
12 —					CL		_	1					
13 —							_	-					
14 —						CLAY with SAND (CL)		-					
15 —			6			\square light brown, stiff, wet, fine-grained sand (1/19/2016, 8:18 a m)	_	-					
16 —	S&H		7 9	10		(110/2010, 0.10 a.m.)	_	PP		1,250			
17 —							_	-					
18 —							_	-					
19 —							_						
20							_						
	S&H		4 5	7	CL	medium stiff, trace coarse-grained sand		PP		750			
21			7				_						
22 — (19)							_	1					
H) 23 —							_	1					
24 —							_	1					
25 —	_		7			olive-gray, stiff	_	-					
д 26 —	S&H		11 12	14	\vdash			-					
0 5 27 —						CLAY (CL)	fine to	PP		1,600			
28 -						medium-grained sand		-					
90 <u>6</u> / 29 —							_	-					
30 -													
EOIECH								LAN	GAN	TREA	DWE	LL RO	ILLO
								Project	No.: 75063	3001	Figure:		A-3a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	g of E	Borir	ng B	-3	AGE 2	OF 2	
		SAMF	PLES		-				LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31 — 32 — 33 —	S&H		8 9 14	14		CLAY (CL) (continued) olive-gray		PP		1,800			
34 — 35 — 36 — 37 —	S&H		8 11 22	20	CL	very stiff	-	PP		2,100			
38 — 39 — 40 — 41 —	S&H		9 15 23	23	CL	SANDY CLAY (CL) yellow-brown with dark brown mottling, very stiff, wet, fine- to medium-grained sand		PP		2,500			
42 — 43 — 44 — 45 —													
46 — 47 — 48 —													
49 — 50 — 51 — 52 —													
53 — 54 — 55 —													
56 — 57 — 58 — 59 —								•					
60 – Borin Borin	g terminat g backfille	ted at a ed with c	depth c ement g	f 40 fee grout.	t below	ground surface. a converted to SPT N-values using factors of 0.6 and 1.0, crespectively to account for sampler type and hammer ene	ergy.	LAN	GAN	TREA	DWE	LL RD	ILLO
drilling PP =	j. pocket pe	enetrom	eter.			² Elevations based on NGVD29 datum and site plan titled " San Ramor City Center, BR3 Site, Existing Utility and Ea by RJA Engineers, 9 January 2014.	'City of asements,"	Project	No.: 75063	3001	Figure:		A-3b

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-4	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2	1	Logge	ed by:	K. Wat	kins		
Date	starte	d:	4/	/29/10	6	Date finished: 4/29/16		Drille	d By:	Explora	ation Ge	o Servic	es
Drillin	g met	hod:	Н	ollow	Sten	n Auger							
Hamr	ner we	eight/	drop:	140	0 lbs.	/30 inches Hammer type: Downhole Wi	reline	_	LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra	gue a	& Her		d (S&H), Standard Penetration Test (SPT)				gth			~
oTH et)	npler rpe	SAMF 을	2LES %	PT alue ¹	IOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	ear Strenç Lbs/Sq Ft	Fines %	Natural Moisture Content, %	rry Densit
DEF (fe	San Ty	San	Blow	N-2	ΗLI	Ground Surface Elevation: 446 fee	ť			She		0	
1 — 2 —						CLAY with SAND (CH) dark brown with olive-gray mottling, very moist, fine-grained sand, trace organic m	stiff, naterial						
3 — 4 —	S&H		9 11 16	16	СН	LL = 50, PI = 30, see Figure C-8	_						
5 — 6 —	S&H		5 8 10	11		dark brown, stiff, no organics	_	-					
7 —			6			SANDY CLAY (CL) olive-gray, stiff, moist, fine-grained sand	_	-					
8 — 9 —	S&H		9 10	11	CL	TxUU Test, see Figure C-5	_	TxUU	900	1,340		15.3	107
10 — 11 — 12 —	S&H		6 11 16	16	CL	CLAY with SAND (CL) olive-gray, very stiff, moist, fine-grained s	sand	-					
13 —	S&H		5 8	11		stiff, fine- to medium-grained sand	-	-					
14 —			11		sc	CLAYEY SAND (SC) olive-gray, medium dense, moist, fine-gra	ained						
16 — 17 —	SPT		3 4 4	8		CLAY with SAND (CL) olive-gray, medium stiff to stiff, moist, fine sand	e-grained	-					
18 — 19 —							-	-					
20 — 21 —	S&H		4 7 8	9		stiff	_						
22 —			•		CL		_			1,000		22.9	101
23 - 23 - 24 -							_						
25 —	S&H		6 8	11		gray	-						
20 — 0 27 —			10				_						
28 -							-	-					
29 — 9 1 30 —					CL			1					
								LAN	GAN	TREA	DWE	LL RC	ILLO
								Project	^{No.:} 75063	3001	Figure:		A-4a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-4	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	S&H		7 12	18		CLAY (CL)	sand						
31 -			18										
33 —							_	-					
34 —							_	-					
35 —			7			olive with gray-brown mottling, stiff to ver	ry stiff						
36 —	S&H		10 15	15			_	PP		2,250			
37 —							_	-					
38 -							_						
40 —							_	-					
41 —							_	-					
42 —							_	-					
43 —							_	-					
44 —								-					
45 -							_						
40 47 —							_	_					
48 —							_	-					
49 —							_	-					
50 —							_	-					
51 —							_	-					
52 -							_						
54 -							_						
55 —							_	-					
56 —							_	-					
57 —							_	-					
58 —							_	-					
59 —													
Borine Borine Grour PP =	60 Boring terminated at a depth of 36.5 feet belo Boring backfilled with cement grout. Groundwater not encountered at time of drillin PP = pocket penetrometer.				eet belo of drillin	w ground surface. g. g. a skH and SPT blow counts for the last two inc converted to SPT N-values using factors of (respectively to account for sampler type and ² Elevations based on NGVD29 datum and site	rements were 0.6 and 1.0, hammer energy. e plan titled "City of	LAN	GAN	TREA	DWEI	L RC	ILLO
	Boring backfilled with centent group. Groundwater not encoundered at time o PP = pocket penetrometer.					San Kamon City Center, BR3 Site, Existing L by RJA Engineers, 9 January 2014.	JULINITY and Easements,"	Project	^{No.:} 75063	3001	Figure:		A-4b

PRO	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 5	AGE 1	OF 2	
Boring	g loca	tion:	S	ee Fi	gure	2		Logge	d by:	K. Wat	kins	-	
Date	starte	d:	4	/26/1	6	Date finished: 4/26/16		Drilled	d By:	Explora	ation Ge	o Servic	es
Drillin	g met	hod:	Н	lollow	Sten	n Auger							
Hamr	ner w	eight/	drop	140	0 lbs.	/30 inches Hammer type: Downhole Wir	eline	-	LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra		& Hei	nwoo	d (S&H)		-		gth t		<i>.</i>	2.1
т	۲. L		LES ق	-a	OGΥ	MATERIAL DESCRIPTION		pe of ength Fest	nfining ssure ssure	Stren /Sq F	ines %	atural isture tent, 9	Densit //Cu F
DEPT (feet)	Sample Type	Sampl	lows/	SPT 4-Valu	ITHOL	Ground Surface Elevation: 445.5 fee	+ ²	_'Ğī'	L Pre	Shear Lbs	ш	x ≥ co	Dry
1 —	<u>с</u> оц		9	14	SC	CLAYEY SAND with GRAVEL (SC) yellow-brown, medium dense, moist, fine- coarse-grained, fine to coarse gravel							
2 —	3011		12	14			¥	-					
3 —	S&H		8 11	16		CLAY with SAND (CH) dark brown, very stiff, moist, fine- to coarse-grained sand	_						
4			15		СН								
5 — 6 —	S&H		11 13 20	20		fine-grained sand	-						
7 —			_			CLAY (CH)		-					
8 — 9 —	S&H		5 9 15	14	СН	gray, stiff, moist, organic inclusions	_						
10 —			13			SANDY CLAY (CL)	arainad	-					
11 —	S&H		20	27		sand	grained	DD		3 250			
12 —			23		CL		_			5,250			
13 —								_					
14 —						SILTY SAND (SM)		-					
15 —					SM	olive-gray, medium dense, wet, fine-grain ∇ nonplastic	ed,						
16 _	S&H		6 8	13		(4/25/2016, 8:32 a.m.)	_				36.6	23.1	
17			14			CLAY with SAND (CL)		-					
						olive-gray, stiff, wet, fine-grained sand	_						
18 -					CL		_						
19 —							_	1					
20 —	SLH		5 8	10		CLAY (CL)		1					
ק 21 — צ	Curr		9			onve-gray, sun, wet, trace fine-grained sa	nu _	PP		1,500			
22 —							_	1					
23 —					$\left \right\rangle$			-					
24 —						CLAY with SAND (CL) olive-gray, stiff to very stiff, fine-grained s	and	-					
25 —			6		CL		_	-					
26 —	S&H		10 15	15				PP		1,750			
27 —					SP-	SAND WITH CLAY (SP-SC) olive-gray, medium dense, wet, fine-grain	ed sand –	-					
28 -					SC		_	-					
29 —					CL	CLAY with SAND (CL) olive-gray, very stiff, wet, fine-grained san	d						
								LAN	GAN	TREA	DWE	LL RO	ILLO
								Project	^{No.:} 75063	3001	Figure:		A-5a

PRO	DJEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 5 P/	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОЄУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	S&H		8 11	17		CLAY with SAND (CL) (continued)							
31 -			17					-					
32 - 33 - 34 -	-						-	-					
36 -	S&H		10 17	23	CL		_						
37 -			22				_						
38 —	-						_	-					
39 —	-						-	-					
40 —	-		10				_	-					
41 —	S&H		17 21	23			_	-					
42 —	-						_	-					
43 —	-						_	-					
44 -								-					
45 -							_						
47 -	_						_	-					
48 —	_						_	-					
49 -	-						_	-					
50 -	-						_	-					
51 -	-						_	-					
52 -	-						_	-					
53 -	-						_	-					
54 —	-						_	-					
55 —	1						_						
56 -]						_						
57 - 58 -							_						
59 -							_						
60 -						¹ S&H and SPT how counts for the last two ison	ements were						
Borir Borir Grou	ng termina ng backfilk indwater e	ited at a ed with c encounte	depth c ement g ered at	of 41.5 fe grout. 15 feet b	eet belo below gr	w ground surface during ound surface during ound surface during	6 and 1.0, nammer energy. plan titled "City of	LAN	GAN	TREA	DWE	LL RD	ILLO
9 PP =	pocket pe	enetrom	eter.			San Ramon City Center, BR3 Site, Existing Ut by RJA Engineers, 9 January 2014.	tility and Easements,"	Project	No.: 75063	3001	Figure:		A-5b

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of	Borir	ng B	- 6	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2		Logge	ed by:	K. Wat	kins		
Date	starte	d:	4	/25/1	6	Date finished: 4/25/16			т ву:	⊢xplora	acion Ge	o Servici	es
Drillin	ig met	hod:	н	ollow	Sten	n Auger							
Hamr	ner w	eight/	drop:	14	0 lbs.	/30 inches Hammer type: Downhole W	ireline	_	LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra		& He	nwoo			_	Dot	igth t			≥.+
Ξ	er		<u>لالات</u>	- e	LOGY	MATERIAL DESCRIPTION		/pe of rength Test	nfininç essure s/Sq F	r Strer s/Sq F	ines %	atural oisture itent, ⁶	Densi s/Cu F
JEPT (feet	Sampl Type	Samp	slows/	SPT N-Valu	ITHO!	Ground Surface Elevation: 443.5 fe	et ²	; <u>%</u>	S E A	Sheal	ш	ZĂP	Lby
1 —						CLAY with SAND (CL) dark brown with olive-gray mottling, stiff,	moist, _	_					
2 —	S&H		5 8 9	10	CL	gravel LL = 45, PI = 23, see Figure C-8	angular -	-					
3 —	S&H		8 11	15		stiff to very stiff, no gravel	-	-					
4 —	Odri		14				-						
5 — 6 —	S&H		7 11 17	17	СН	CLAY (CH) gray, very stiff, moist, trace fine-grained	sand -	-					
7 —						CLAY with SAND (CL)		-					
8 —	S&H		9 12 17	17	CL	olive-gray, very stiff, moist, fine-grained	sand _						
9 —						SANDY CLAY (CL)							
11 —	S&H		7 8 0	10		olive-gray, stiff, moist, fine-grained sand	-	- PP		1,500			
12 —			9				-	_		,			
13 —					CL		-	_					
14 —							-	_					
15 —			4			(4/25/2016, 2:00 p.m.) ▽	-	-					
16 —	S&H		8 17	15	sc	CLAYEY SAND with GRAVEL (SC)		=					
17 —						coarse-grained sand, fine angular gravel	/ -	-					
18 —						CLAY (CL) olive-gray_stiff to very stiff, wet	-	-					
<u> </u>							-	_					
20 —			6			stiff, trace fine-grained sand	-	_					
- 	S&H		8 12	12			-	_					
22 -							-	_					
19. H. 23 —					CL		-	_					
24 –							_						
10H2 25 -							_						
	S&H		11 12	16		gray with olive-gray mottling, very stiff, d sand content	ecreased						
			15				-						
							-	1					
28 -							-	1					
× 29 —							-	1					
		<u> </u>	<u> </u>	1		I		LAN	GAN	TREA	DWE	LL RD	ILLO
ESIGE								Project	No.: 75063	3001	Figure:		A-6a
-									-				

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California		Log of E	Borir	ng B	- 6	AGE 2	OF 2	
		SAMF	PLES	1	-					LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPT	ION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31 — 32 — 33 —	S&H		10 16 24	24		CLAY (CL) (continued)			-					
34 — 35 — 36 — 37 —	S&H		12 17 21	23	CL			-	PP		2,750			
38 — 39 — 40 — 41 —	S&H		10 18 22	24		olive-gray, trace fine-grained sand		-						
42 — 43 — 44 — 45 —								-	-					
46 — 47 — 48 — 49 —								-						
50 - 51 - 52 - 53 - 53 - 53 - 53 - 53 - 53 - 53								-	-					
54 — 55 — 56 —								-	-					
57 — 58 — 59 — 60 — Borin	termina	ted at a	depth o	f 41.5 fe	eet belo	w around surface. ¹ S&H and SPT blow counts for the la	st two inc		- - -					
Boring Grour drilling PP =	j backfille idwater e j. pocket pe	ed with c incounte	ement (ered at '	grout. 15.5 fee	t below	ground surface during ground surface during 2 Elevations based on NGVD29 datu San Ramon City Center, BR3 Site, by RJA Engineers, 9 January 2014	ctors of 0 type and I n and site Existing U	0.6 and 1.0, hammer energy. e plan titled "City of Jtility and Easements,"	LAN Project	GAN	TREA	DWE	LL RC	ILLO
										75063	3001	-		A-6b

PRC	JEC	T:				BISHOP RA San Ramor	NCH - BR3A n, California	Log of I	Borir	ng B	-7 P/	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2		1	Logge	ed by:	K. Wa	kins		
Date	starte	d:	4,	/27/1	6		Date finished: 4/27/16		Drille	d By:	Explor	ation Ge	o Servic	es
Drillin	g met	hod:	Н	lollow	Ster	n Auger								
Hamr	ner w	eight/	drop:	: 140	0 lbs.	./30 inches	Hammer type: Downhole Wi	reline	-	LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra	igue a	& Hei	nwoo	d (S&H)					gth			~
oTH et)	pler pe	SAMF	2LES هو ^{اله}	PT alue ¹	IOLOGY		MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure .bs/Sq Ft	ear Streng _bs/Sq Ft	Fines %	Natural Moisture ontent, %	ry Density _bs/Cu Ft
DEF (fe	San Ty	San	Blow	N-K	Ē	Grou	and Surface Elevation: 442.5 fee	et ²			She		0	
1 -						CLAY dark br fine-gra	(CH) rown, medium stiff to stiff, moist, tr ained sand	race _						
2 —	S&H		3 6 8	8	сн	LL = 60 Corros	0, PI = 40, see Figure C-8 ion Test, see Appendix D	-	-				22.7	101
4 —								_	1					
5 — 6 —	S&H		9 22 25	28	CL	CLAY brown fine-gra	with SAND (CL) with gray-brown mottling, very stif ained sand	f, moist,	-					
7 —			_		€L	SAND'	Y CLAY (CL) rown, very stiff, moist_fine-grained		-					
8 — 9 —	S&H		7 8 9	10		CLAY olive-gi	(CL) ray, stiff, moist, trace fine-grained	sand _	-					
10 —			5					-	-					
11 -	S&H		9 13	13				_	-					
13 —	S&H		5 6	8		mediur	n stiff to stiff	_						
14 —			7					-	-					
15 — 16 —	S&H		5 7 9	10		stiff	2016, 11.45 cm	-						
17 —			3			⊻ (4/27/2	2010, 11:45 a.m.)	-	-					
18 —								-	-					
<u>9</u> 19 —					CL			-	-					
20 —			9			stiff		_	-					
21 —	S&H		11 13	14				-	-					
22 —								-	-					
5 23 —								_	-					
24 —								-	-					
25 -			10			Vonu of	iff	_	-					
26 —	S&H		10 17 18	21		very st	.111	_	-					
27 —			10					_	-					
28 —								_	4					
29 —								_	4					
30 —														
									LAN	GAN	TREA	DWE	LL RD	ILLO
									Project	^{No.:} 75063	3001	Figure:		A-7a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 7	AGE 2	OF 2	
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОЄУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
21	S&H		9 17	22		CLAY (CL) (continued)							
31 -			20			gray brown	_						
33 —					CI		_						
34 —					ΟL		_						
35 —			10				_						
36 —	S&H		20 21	25									
37 —							_						
38 —							_						
40 —							_						
41 —							_						
42 —							_						
43 —							_						
44 —							_						
45 —							_						
40							_						
48 —							_						
49 —							_						
50 —							_						
51 —							_						
52 —							_						
53 — 54 —													
55 -							_						
56 —							_						
57 —							_						
58 —							_						
59 —							_						
Boring Boring Groun Groun drilling	g termina g backfille ndwater e a.	ted at a ed with c encounte	depth o ement g ered at ?	f 36.5 fe grout. 16.5 fee	et belo	w ground surface. "S&H and SPT blow counts for the last two incr converted to SPT N-values using factors of 0. "respectively to account for sampler type and h "Elevations based on NGVD29 datum and site	ements were 6 and 1.0, ammer energy. plan titled "City of	LAN	GAN	TREA	DWE	LL RO	ILLO
PP =	pocket pe	enetrom	eter.			San Ramon City Center, BR3 Site, Existing Ut by RJA Engineers, 9 January 2014.	ulity and Easements,"	Project	^{No.:} 75063	3001	Figure:		A-7b

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	-8	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2	1	Logge	ed by:	K. Wat	kins	o Service	95
Date	starte	d:	4/	/27/1	6	Date finished: 4/27/16			ω ⊔у.		auon Ge		60
Drillin	g met	hod:	H		Sten	1 Auger	rolino						
Sam	ner w	Sprag	urop.	. 14 Henwo	od (S8	H) Standard Penetration Test (SPT) Shelby Tube (ST)	enne		LABO	RATOR	Y TEST	DATA	
Carrie		SAMF	PLES) ≻			7 -	Бет Т	ength Ft		- e %	Ft sity
et) H	pler pe	ple	s/ 6"	oT alue ¹	OLOG	MATERIAL DESCRIPTION		Type (Streng	Confini Pressu bs/Sq	ar Str bs/Sq	Fines %	Natura Moistu ontent	y Den bs/Cu
DEP (fee	Sam Tyi	Sam	Blow	SF N-Va	ГІТН	Ground Surface Elevation: 444.5 fee	et ²		041	She		-3	
1 —						CLAY with SAND (CL) dark brown, very stiff, moist, fine- to medium-grained sand	_	-					
2 —			5		CL	LL = 47, $FI = 20$, see Figure C-o	_						
3 —	S&H		12 15	16			_						
4 —			10		\searrow			-					
5 —	C 0 L L		5	12		dark brown, stiff, moist	_	-					
6 —	Зαп		9 11	12	CL		_						
7 —			_		$\left \right $		_						
8 —	S&H		7 10	14		SANDY CLAY (CL) olive-gray, stiff, moist, fine-grained sand	_	1					
9 —			13				_						
10 —					CL		_	-					
11 —							_	-					
12 —						SILTY SAND (SM)		-					
13 —	S&H		7 6	8	SM	olive-gray, loose, moist, fine- to coarse-gr nonplastic	rained, _				28.6	17.6	
14 —			8		EL	SANDY CLAY (CL)							
15 —			10			sand	e-grained /_	-					
16 —	S&H		15 16	19		CLAY (CL) vellow-brown, very stiff, moist, trace fine-	arained	PP		2,000			
17 —						sand, some silt	-	-					
18 —						$\frac{\nabla}{2}$ (4/27/2016 2.10 pm)	_	-					
19 —						(<u></u> , <u>.</u> ., <u>.</u> ., <u>.</u> , <u>.</u> , <u>.</u> , <u>.</u> ,		-					
20 —			2			stiff wet	_	-					
21 —	S&H		7	10	CL	Sun, wei	_	-					
22 —			ľ				_	-					
23 -							_	-					
24 —							_	-					
25 —			100				_					24.0	00
26 —	ST		psi 500			Consolidation Test, see Figure C-2	_					31.0	92 88
27 —	-		psi			CLAYEY SAND (SC)							
28 -					sc	olive-gray, wet, fine-grained	_						
29 —						CLAY (CL)							
30 -					CL	gray, very stiff, wet							
								LAN	GAN	TREA	DWE	LL RD	ILLO
								Project	No.:		Figure:		
									75063	3001			A-8a

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of	Borir	ng B	-9	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2		Logge	ed by:	K. Wat	kins		
Date	starte	d:	4	/25/1	6	Date finished: 4/25/16		Drille	d By:	Explor	ation Ge	o Service	es
Drillin	g met	hod:	Н	ollow	Sten	n Auger		1					
Hamr	ner w	eight/	drop:	14	0 lbs.	/30 inches Hammer type: Downhole V	Vireline		LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra	igue a	& He	nwoo	d (S&H), Standard Penetration Test (SPT)			_		_		
		SAMF	PLES		5			gth of	ing ture q Ft	rengt q Ft	s	ral ure nt, %	nsity u Ft
PTH (et)	npler /pe	nple	vs/ 6"	PT alue ¹	IOLO		N	Stren	Confit Press Lbs/S	ear St Lbs/S	Fine %	Natu Moist Conter	Jry De Lbs/C
DEF (fe	Sar	Sar	Blov	s > z	É	Ground Surface Elevation: 444 fe	eet ²			Ś		0	
1					CL	SANDY CLAY with GRAVEL (CL) brown. moist. fine- to coarse-grained s	and fine						
	S&H		6 10	13		subangular gravel							
2 —	0011		12			CLAY (CH) dark brown with olive-gray mottling, sti	- ff moist	-					
3 —			10			trace fine- to coarse-grained sand, trac	e fine	-					
4 —	S&H		13 15	17	СН	angular gravel verv stiff, decreased sand content	-	_					
5 —			10			- ,	-	_					
6 —	S&H		10 16	18		gray	_						
0			14										
7 —			10			CLAY with SAND (CL)							
8 —	S&H		12 18	23		gray-brown, very stiff, moist, fine-grain	ed sand _	-					
9 —			20				-	_					
10 —					CL		-	_					
11	S&H		9 12	17		increased sand and silt content	_						
			16										
12 —						SANDY CLAY (CL)	-						
13 —	S&H		3 5	8	CL	olive-gray, medium stiff to stiff, moist, f	ine- to _	-					
14 —			8 7			\[\] \[\[\]		_					
15 —	SPT		8	16	00	CLAYEY SAND (SC) olive-gray, medium dense, wet, fine- to	_	_					
16 —			0		SC	medium-grained sand, trace fine angul	ar gravel						
10								-					
17 —						olive-gray, stiff, wet, trace fine-grained	sand						
18 —	SPT		4 5	10			-	-					
19 —			5				-	-					
20 —			•				-	_					
21 —	S&H		12	16				_					
			14		CL	olive-gray, very stiff, wet, fine-grained s	sand						
, 22 —						CLAY (CL)							
23 —						gray, very sun, wet, trace fine-grained	saliu _	1					
£ 24 —							-	-					
25 —			7				-	-					
26 —	S&H		11	17	СІ		-	4					
0 07			17										
							-						
28 —							-	1					
2 29 —							-	-					
30 —			<u> </u>										
								LAN	GAN	TREA	DWE	LL RO	ILLO
5								Project	No.:		Figure:		
									/5063	3001			A-9a

PI	RO	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	L	_og of	Borir	ng B	-9	AGE 2	OF 2	
			SAMF	PLES				·			LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	(leel)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОЄУ	MATERIAL DESCRIPTION	I		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	_			8			CLAY (CL) (continued)								
31	_	S&H		14 20	20				-	-					
32	_								-	-					
33							CLAY with SAND (CL)			-					
34							olive-gray, very stiff, wet, fine-grained s	and	-						
36		S&H		9 18	26				-						
37	_			20						_					
38	_					CL				-					
39	_									-					
40	_	0.011		5	40				-	-					
41	_	S&H		9 13	13		stiff								
42	_								-						
43									-						
45	_								-						
46	_									_					
47	_									_					
48	_								-	_					
<u>49</u>	_									-					
50	_								-	-					
51 2	_								-	-					
52	_								-						
53 54 54									-						
55									-						
56	_								-	-					
57	_								-	-					
58	_								-	-					
59 2	-									-					
	D Boring terminated at a depth of 41.5 feet below ground sur Boring backfilled with cement grout. Groundwater encountered at 14 feet below ground surface					l eet belo pelow gr	w ground surface. ¹ S&H and SPT blow counts for the last two i converted to SPT N-values using factors o respectively to account for sampler type ar Elevations based on NSVD29 datum and s	ncreme f 0.6 au nd ham site plar	ents were nd 1.0, mer energy. n titled "Citv of	LAN	GAN	TREA	DWE	LL RD	ILLO
	Boring backfilled with cement grout. Groundwater encountered at 14 feet below grounc drilling.						San Ramon City Center, BR3 Site, Existing by RJA Engineers, 9 January 2014.	g Utility	and Easements,	Project	No.: 75063	3001	Figure:		A-9b

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 10	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2	1	Logge	ed by:	K. Wat	kins		~~~
Date	starte	d:	4/	/26/10	6	Date finished: 4/26/16		Drille	а ву:	Explora	ation Ge	o Servic	es
Drillin	ng met	hod:	<u>н</u>	ollow	Sten								
Hami	mer w	eight/	drop:	140 2 Llor	U Ibs.	730 inches Hammer type: Downhole Wi	reline		LABO	RATOR	Y TEST	DATA	
Sam	JIEI 5.	SAMF	PLES						D e t	ngth Ft		_ 0 %	T it
₽₽	oler e	ble	s/ 6"	Le	DLOG	MATERIAL DESCRIPTION		Test	onfinir ressur bs/Sq	ar Stre os/Sq	Fines %	Vatura Aoistur intent,	y Dens os/Cu
DEP: (fee	Samp Typ	Sam	Blows	SP N-Va	ГІТНО	Ground Surface Elevation: 444.5 fee	et ²	1 00	043	Shea		-28	5.2
1 —						CLAY with SAND (CH) dark brown with yellow-brown mottling, s fine- to coarse-grained sand	tiff, moist,	-					
2 — 3 —	S&H		5 7	10		decrease in sand content	_	-					
4 — 5 — 6 —	S&H		9 14 15	17	СН	very stiff, trace fine angular gravel	_	-					
7 — 8 — 9 —	S&H		5 7 13	12		stiff	-	-					
10 — 11 — 12 —	S&H		8 10 12	13	CL	SANDY CLAY (CL) olive-gray, stiff, moist, fine- to medium-gr sand	ained	-					
13 — 14 —	S&H		6 8 8	10	SM	SILTY SAND (SM) olive-gray, loose to medium dense, moist fine-grained, trace clay	,						
15 — 16 —	S&H		7 8 14	13	CL	SANDY CLAY (CL) olive-gray, stiff, moist, fine-grained sand	_	-				17.2	113
17 — 18 — 19 —							-						
20 — 21 —	S&H		5 7 12	11		 ✓ (4/26/2016, 12:30 p.m.) CLAY with SAND (CL) olive-gray, stiff, wet, fine-grained sand 		PP		1,000			
22							-						
25 — 26 —	OT.		100 psi			stiff to very stiff	_	PP		2,500			
27 -	51		250 psi				-	-					
29 — 30 —					CL	CLAY (CL) gray-brown, very stiff, wet, trace fine-gra	ned sand	-					
								LAN	GAN	TREA	DWE	LL RD	ILLO
								Project	No.: 75063	3001	Figure:	<i>F</i>	∖ -10a

PR	OJEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 10 PA	AGE 2	OF 2	
		SAMF	PLES	1					LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	S&H		8	17		CLAY (CL) (continued)							
31 -			16										
32 -							—						
33 -							_						
34 -							_						
36	S&H		6 11	15		gray-brown with olive-gray mottling, stiff to v stiff	very						
37 -	_		14		CL		_	PP		2,000			
38 -	_												
39 -	_						_						
40 -	_		6			olive grav very stiff							
41 -	S&H		12 20	19		ulve-gray, very suit	_						
42 -	_						_						
43 -	_						_						
44 -	_					CLAY with SAND (CL)							
45 -			7			olive-gray, very stiff, wet, fine- to medium-gr sand	rained						
46 -	S&H		23	23			_					17.8	114
47 -					СІ		_						
48 -							_						
49							_						
51 -	S&H		12 19	26			_						
52 -	_		25					PP		3,500			
5 53 -	_												
54 -	_						_						
55 -	-						_						
56 -	-												
57 -	-						—						
58 -	-						—						
ະ 59 - ວິ	-						_						
Boi Boi Boi Grou Chilling	ring termina ring backfil pundwater ling.	ated at a led with c encounte	depth o ement g ered at 2	i f 51.5 fe grout. 20 feet b	eet belo below gr	w ground surface. ound surface during 2 Elevations based on NQD29 datum and site plan 2 Elevations based on NQD29 datum and site plan	ents were ind 1.0, imer energy. n titled "City of	LAN	GAN	TREA	DWE	LL RD	ILLO
	= pocket p	enetrom	eter.			San Ramon City Center, BR3 Site, Existing Utility by RJA Engineers, 9 January 2014.	and Easements,"	Project	No.: 75063	3001	Figure:	A	A-10b

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of	Borir	ng B	- 11	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2	<u> </u>	Logge	ed by:	K. Wa	tkins		
Date	starte	d:	4	/25/1	6	Date finished: 4/25/16		Drille	d By:	Explor	ation Ge	o Servic	es
Drillin	ng met	hod:	Н	ollow	Sten	n Auger							
Hami	mer we	eight/	drop	140	0 lbs.	/30 inches Hammer type: Downhole Wi	reline	_	LABO	RATOR	Y TEST	DATA	
Sam	olers:	Spra	gue	& Hei	nwoo	d (S&H), Standard Penetration Test (SPT)		_		gth '			>
Ξæ	e e	SAMF	vLES قر	Le_	LOGY	MATERIAL DESCRIPTION		ype of trength Test	onfining essure is/Sq Ft	r Stren s/Sq Ft	Fines %	Jatural oisture ntent, %	Densit
DEP1 (feet	Samp Typ	Samp	Blows	SP ⁻ N-Vali	UTHO.	Ground Surface Elevation: 443 fee	t ²	_⊢ø	ŭ Ē ŝ	Shea		<u>~</u> ≥ 8	2 a
1 — 2 —	S&H		10 12 16	17	сн	CLAY with SAND (CH) dark brown, very stiff, moist, fine- to coarse-grained sand, trace fine subangul	ar gravel	_					
3 — 4 — 5 —	S&H		11 13 17	18		CLAY (CH) dark brown, very stiff, moist, trace fine-gi sand	- rained	-					
6 — 7 —	S&H		12 15 17	19	СН		-	_					
8 — 9 —	S&H		10 19 25	26	CL	SANDY CLAY (CL) gray-brown, very stiff, moist, fine-grained	l sand -						
10 — 11 —	S&H		6 9 14	14	sc	CLAYEY SAND with GRAVEL (SC) olive-gray, medium dense, moist, fine- to coarse-grained sand	-						
12 — 13 —					CL	SANDY CLAY (CL) olive-gray, stiff, moist, fine-grained sand	-						
14 —						☑ (4/26/2016, 10:11 a.m.)	-	_					
15 — 16 —	S&H		7 14 14	17	SM	SILTY SAND (SM) olive-gray, medium dense, wet, fine-grair nonplastic coarse-grained	ned,	-			34.3	21.9	
17 — 18 —						CLAY (CL) olive-gray, medium stiff, wet	-						
19 — 20 —	SPT	\square	3	6			-						
21 — צו צו	-		3				-	1					
22 —					CL		-	1					
HONA							-	1					
24 —							-	1					
25 —	S&H		6 14	19		gray-brown, very stiff, trace fine-grained	sand	-					
26 —			17				-	1					
					\square		-	-					
0000 28 —					СЦ	gray, very stiff, wet, trace fine-grained sa	and	1					
ະ 29 — ງ							-	1					
30 — 30 —	1	<u> </u>	<u> </u>	I	I			LAN	GAN	TREA	DWE	LL RO	ILLO
								Project	^{No.:} 75063	3001	Figure:	A	∖ -11a

PRC)JEC	T:				BISHOP RANCH - BR3 San Ramon, California	A a	Log of E	Borir	ng B	-11	AGE 2	OF 2	
		SAM	PLES	1						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIA	AL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	S&H		7 14	20		CLAY (CH) (conti	nued)							
31 — 32 —			19		СН			_						
33 —								_	-					
34 —						CLAY (CL)			-					
35 —	0011		7	10	CL	gray-brown, very s	stiff, wet, trace fine-grai	ned sand	-					
36 —	S&H		10 17	16					-				23.0	92
37 —								_						
30 39 —								_	-					
40 —								_	-					
41 —								_	-					
42 —								_	-					
43 —								_	-					
44 —								_	-					
45 — 46 —								_						
47 —								_	-					
48 —								_	-					
<u>49</u>								_	-					
50 —								_	_					
								_	-					
52 —								_						
54 —								_	-					
55 —								_	-					
56 —								_	-					
57 —								_	-					
58 —								_	-					
60 —						۱ <u>ـ</u>								
Boring Boring Grour Duding drilling	g termina g backfille ndwater e g.	ted at a ed with c encounte	depth c ement e ered at	of 36.5 fe grout. 14.3 fee	eet belo t below	v ground surface. ground surface during 2 Elevations	to SPT N-values using factors of 0. based on NGVD29 datum and site no city Conter, PD2 Site Friddler	ernents were .6 and 1.0, nammer energy. plan titled "City of tility and Economics."	LAN	GAN	TREA	DWE	LL RD	ILLO
						by RJA En	igineers, 9 January 2014.		Project	^{No.:} 75063	3001	Figure:	A	-11b

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 12	AGE 1	OF 2	
Borin	g loca	tion:	S	ee Fi	gure	2		Logge	d by:	K. Wat	kins		
Date	starte	d:	4	/28/1	6	Date finished: 4/28/16		Drilled	d By:	Explora	ation Ge	o Service	es
Drillin	ng met	hod:	Н	lollow	Sten	n Auger							
Hamr	mer w	eight/	drop	: 14	0 lbs.	/30 inches Hammer type: Downhole Wirel	ine	-	LABO	RATOR	Y TEST	DATA	
Samp	olers:	Spra	gue	& He	nwoo	d (S&H), Shelby Tube (ST)				đt			~
oTH et)	pler pe	SAMF	PLES	PT alue ¹	IOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure _bs/Sq Ft	ear Strenç _bs/Sq Ft	Fines %	Natural Moisture Content, %	ry Densit _bs/Cu Ft
DEF (fe	San Ty	San	Blow	IS 7-Z	Ë	Ground Surface Elevation: 441.5 feet ²				She		0	<u> </u>
1 —						CLAY with SAND (CH) dark brown, very stiff, moist, fine- to medium-grained sand	-	-					
2 — 3 —	S&H		10 12	18	СН	LL = 54, PI = 35, see Figure C-9	_						
4 — 5 —			0			SANDY CLAY (CL)	_	-					
6 —	S&H		9 10	11	CL	yellow-brown	_	_					
7 — 8 — 9 —	S&H		5 8 9	10	CL	CLAY (CL) yellow-brown, stiff, moist, trace fine-grained LL = 34, PI = 14, see Figure C-9	l sand	-					
10 — 11 —	S&H		5 7 9	10	ям	SILTY SAND (SM) olive-gray to yellow-brown, loose to medium dense, moist, fine-grained	- 	-			39.3	16.0	
12 — 13 —			4			CLAY (CL) yellow-brown, medium stiff to stiff, moist, tra fine-grained sand, some silt	ace –	_					
14 —	S&H		5 9	8		∇ (4/00/0046 0:45 cm)	-	PP		750			
15 — 16 —	S&H		4 5 8	8	CL	⊻ (4/20/2010, 8.45 a.m.)	_			4 000			
17 —			Ī				_			1,200			
18 — 19 —	ST		100 psi 200 psi			TxUU Test, see Figure C-6 Consolidation Test, see Figure C-3	_	TxUU	1,800	680		29.5 24.0	94 99
20 -					sc	CLAYEY SAND (SC)]					
20 -	S&H		5 8 9	10		CLAY with SAND (CL) olive-gray, stiff, wet, fine-grained sand							
22 — 23 —							_	-					
24 —						CLAY (CL) gray, very stiff, wet		-					
25 — 26 —	S&H		10 16 20	22			_			0.050			
27 -					CL		_			2,250			
20 – 20 –							_]					
29					CI]					
		·	•					LAN	GAN	TREA	DWE	LL RO	ILLO
								Project	^{No.:} 75063	3001	Figure:	A	-12a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Borir	ng B	- 12	AGE 2	OF 2	
		SAMF	PLES	1					LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31 — 32 — 33 — 34 —	S&H		8 11 15	16	CL	CLAY with SAND (CL) gray-brown, very stiff, wet, fine-grained sa	and	PP		1,500			
35 — 36 — 37 — 38 —	S&H		6 14 18	19	CL	CLAY (CL) gray-brown, very stiff, wet, trace fine-grair	ned sand — 	PP		1,500			
39 — 40 — 41 — 42 — 43 —	S&H		13 26 34	36		olive-gray, hard	-	PP		>4,000		19.0	112
44 — 45 — 46 — 47 —							-						
48 — 49 — 50 — 51 — 52 —							-						
53 — 54 — 55 — 56 —													
57 — 58 — 59 — 60 —	termina	ted at a	depth o	f 41.5 fe	eet belo	w oround surface. ¹ S&H and SPT blow counts for the last two incre	ements were						
Boring Grour D drilling PP =	g backfille ndwater e j. pocket pe	ed with c ncounte	ement g ered at '	grout. 15 feet b	pelow gr	ound surface during ound surface during san Ramon City Center, BR3 Site, Existing Uti by RJA Engineers, 9 January 2014.	6 and 1.0, ammer energy. plan titled "City of ility and Easements,"	LAN Project	/ GAN ^{No.:} 75063	TREA 3001	DWE	LL RO	1110

Boring location: See Figure 2 Date started: 428/16 Diffig method: Harmer Vage Harmer weight/drop: 140 bs /30 inches Harmer weight/drop: 141 bs /30 inches Harmer weig	PROJECT: BISHOP RANCH - BR3A San Ramon, California Log of B									ng B	-13 _{P/}	AGE 1	OF 2	
Date stanted: 4/28/16 Date finished: 4/26/16 Difference Drilling method: Holkew Stem Auger Hammer vegital of the stant of the stan	Boring	tion:	S	ee Fi	Logged by: K. Watkins									
Drilling method: Hallow Stem Auger LABORATORY TEST DATA Bamplers: Sorgue & Harwood (S&H), Grab (GRAB) Image: Step (GRAB	Date	starte	d:	4	/26/10	6		Drille	d By:	Explor	ation Ge	o Servic	es	
Hammer weightdripp: 140 bis:/30 inches Hammer type: Downhole Wireline LABORATORY TEST DATA Sampers: Synapse: Signapse: Signap	Drillin	g met	hod:	Н	lollow	Sten	n Auger							
Samples: Sprague & Herwood (S&H), Grab (GRAB) End of the standard stand	Hamr	ner w	eight/	drop	140	0 lbs.	/30 inches Hammer type: Downhole Wi	reline	_	LABO	RATOR	Y TEST	DATA	
AMM CLOS MATERIAL DESCRIPTION Provide Stress Mage Stress St	Samp	olers:	Spra		& Her	-	D t	gth t		~ ~	- ح			
End B	II.	'n		LES ق	Б.	-0GY	MATERIAL DESCRIPTION	pe of ength Fest	nfining sssure s/Sq F	Stren s/Sq F	ines %	atural visture tent, %	Densit s/Cu F	
2 2 2 2 2 2 3 Sale	DEPT (feet)	Sampl	Sampl	3lows/	SPT N-Valu	IOHTI.	Ground Surface Elevation: 442.5 fee	≏t ²	~Š	L P.G	Shear Lbs		z ≥ c	Lbs
1 −GRAB 4 13 GRAF brown, stiff, most, tine- to coarse-grained - 2 - Sand 7 - Sand - 3 ssh 11 CH - - - 4 - Sand 11 10 - - - 5 - SANDY CLAY (CL) olive-gray, very stiff, moist, fine-grained sand - - 10 - SANDY CLAY (CL) olive-gray, very stiff, moist, fine-to - - 11 - SANDY CLAY (CL) olive-gray, very stiff, moist, fine-to - - 11 - SANDY CLAY (CL) olive-gray, reduin-grained sand - - 12 - To 15 - SC CLAY (CL) - - 14 - - - - - - - - 15 - - - - - - - - 16 - - - - - - - - <t< td=""><td></td><td></td><td>$\overline{\mathbf{N}}$</td><td></td><td></td><td></td><td>CLAY with SAND (CH)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			$\overline{\mathbf{N}}$				CLAY with SAND (CH)							
2 A	1 —	GRAB	Х				dark brown, stiff, moist, fine- to coarse-g sand	rained						
3 - S8H 7 13 CH 4 - - - - - 6 - S8H 13 16 - - 7 - - SANDY CLAY (CL) - - - 0 - 0 - - - - - 11 - 15 17 CL - - - - 11 -	2 —						Resistance Value Test, see Figure C-10		-					
4 - 14 Ori - 5 - 58H 11 16 - 7 - 58H 13 17 CL 8 58H 12 16 - SANDY CLAY (CL) 01 58H 12 16 - CLAY with SAND (CL) 01*-gray, very stiff, moist, fine-grained sand - - - 12 16 - SANDY CLAY (CL) - 01*-gray, wery stiff, moist, fine-grained sand - - - 12 15 15 SC CLAY with SAND (SC) - 00*-gray, stiff to very stiff, moist, fine-to - - - 14 - 50 CLAYEY SAND (SC) - - 16 - 51 - - - - 17 - - - - - - 18 - - - - - - - 19 - - - - - - - -	3 —	S&H		4 7	13	СЦ			-					
5 - S&H 11 14 16 very stiff, trace fine subangular gravel 7 - - SANDY CLAY (CL) olive-gray, very stiff, moist, fine-grained sand - 10 11 58H 10 15 16 CLAY with SAND (CL) olive-gray, very stiff, moist, fine-grained sand - 11 58H 10 10 CLAY with SAND (CL) olive-gray, stiff to very stiff, moist, fine- to medium-grained sand - 12 - SANDY CLAY (CL) olive-gray, stiff to very stiff, moist, fine- to medium-grained sand - 14 - 15 SC - 15 SC - - 16 58H 6 11 cLAYE SAND (SC) olive-gray, stiff, wet - 17 - 10 - CLAYE SAND (SC) OLIVE (CL) olive-gray, stiff, wet - 18 - 11 classes - - 24 - - - - - 25 - - - - - 26 - - - - - - 27 - -	4 —			14		СП			_					
6 - S8H 13 16	5 —			11			very stiff trees fire automatular are al		_					
7 -	6 —	S&H		13	16		very stiff, trace fine subangular gravel							
8 S&H 13 17 Oilve-gray, very stiff, moist, fine-grained sand 10 11 58H 10 10 CLAY with SAND (CL) 11 58H 10 10 CLAY with SAND (CL) Oilve-gray, very stiff, moist, fine-grained sand 12 58H 7 15 15 SANDY CLAY (CL) Oilve-gray, very stiff, moist, fine-to 13 58H 7 15 15 SANDY CLAY (CL) Oilve-gray, stiff to very stiff, moist, fine-to 14 - 58H 6 10 10 CLAY WY SAND (SC) 16 58H 6 10 10 CLAY WY SAND (SC) - 18 10 10 CLAY (CL) Oilve-gray, stiff, wet - 19 20 58H 6 11 trace fine-grained sand - 22 23 22 Oilve-gray with dark brown mottling, very stiff - - 24 22 22 Oilve-gray with dark brown mottling, very stiff - - 24 22 22 Oilve-gray with dark brown mottling, very stiff - -	7			14		\vdash								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				13			SANDY CLAY (CL) olive-gray, very stiff, moist, fine-grained s	and						
9 -	o —	S&H		14 15	17	CL								
10 11 58H 10 12 16 17 16 17 17 18 15 16 15 16 15 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 10 10 10 10 10 10 10 10 10 10 10 11 28 11 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 28 11 13 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 11 12 12 15 16 15 16 15 16 16 16 16 16 16 16 16 17 16 17 16 17 16 <t< td=""><td>9 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	9 —													
11 - S&H 12 15 16 - </td <td>10 —</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>CLAY with SAND (CL)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	10 —			10			CLAY with SAND (CL)							
12	11 —	S&H		12 15	16		olive-gray, very stiff, moist, fine-grained s	and	-					
13 S&H 70 15 0live-gray, stiff to very stiff, moist, fine- to medium-grained sand 15 6 7 10 SC CLAYEY SAND (SC) 16 S&H 6 7 10 SC Olive-gray, medium dense, moist, fine- to medium-grained 17 10 SC CLAYEY SAND (SC) Olive-gray, medium dense, moist, fine- to medium-grained 18 6 7 10 CLAYEY SAND (SC) Olive-gray, medium dense, moist, fine- to medium-grained 17 0 IL = 28, PI = 11, see Figure C-9 IL = 28, PI = 11, see Figure C-9 IL = 28, PI = 11, see Figure C-9 20 6 9 11 trace fine-grained sand Image: Sand (SC) 21 S&H 9 11 trace fine-grained sand Image: Sand (SC) 22 S&H 9 16 22 Olive-gray with dark brown mottling, very stiff Image: Sand (SC) 24 25 58H 9 16 22 Olive-gray with dark brown mottling, very stiff Image: Sand (SC) 28 29 15 22 0live-gray with dark brown mottling, very stiff Image: Sand (SC) Image: Sand (SC) <td>12 —</td> <td></td> <td></td> <td></td> <td></td> <td>CL</td> <td>SANDY CLAY (CL)</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	12 —					CL	SANDY CLAY (CL)		_					
14 15 <td< td=""><td>13 —</td><td>S&H</td><td></td><td>7</td><td>15</td><td></td><td>olive-gray, stiff to very stiff, moist, fine- to</td><td>)</td><td>_</td><td></td><td></td><td></td><td></td><td></td></td<>	13 —	S&H		7	15		olive-gray, stiff to very stiff, moist, fine- to)	_					
15 S&H S <	14 —	Ouri		15			CLAYEY SAND (SC)					39.2	15.4	
16 S&H 6 10 10 11 12 11 12 12 135 1.135	15 —					SC	✓ olive-gray, medium dense, moist, fine- to							
10 10 10 (4/26/2016, 1:35 p.m.) 17 18 0 0/// CLY (CL) 0/// Olive-gray, stiff, wet 19 20 0/// CLAY (CL) 0/// Olive-gray, stiff, wet 0/// Olive-gray, stiff, wet 20 21 S&H 0 11 trace fine-grained sand 0/// Olive-gray, stiff, wet 22 23 0 CL 0/// Olive-gray, stiff, wet 0/// Olive-gray, stiff, wet 24 9 10 11 0/// OLive-gray, stiff, wet 0/// Olive-gray, stiff 0/// Olive-gray, stiff 25 S&H 9 16 22 0/// Olive-gray, with dark brown mottling, very stiff 0/// Olive-gray, stiff 26 S&H 9 16 22 0/// Olive-gray, with dark brown mottling, very stiff 0/// Olive-gray, stiff, wet 0/// Olive-gray, stiff, wet 30 0 0/// Olive-gray, with dark brown mottling, very stiff 0/// Olive-gray, stiff, wet 0/// Olive-gray, stiff, wet 0/// Olive-gray, stiff, wet 30 0/// Olive-gray, stiff, wet 30 0/// Olive-	10	S&H		6 7	10		LL = 28, PI = 11, see Figure C-9	/	-					
17	10 -			10			(4/26/2016, 1:35 p.m.)]						
18 -	17 —						olive-gray, stiff, wet							
19 -	18 —								-					
20 -	19 —								_					
21 S&H 9 11 If the originated state 22 - - - - 23 - - - - 24 - - - - - 25 - - - - - - 26 S&H 9 16 22 olive-gray with dark brown mottling, very stiff - - 27 - - - - - - - - 28 - <	20 —			6			trace fine-grained sand		_					
22 -	21 —	S&H		9 10	11				_					
23	22 -			10					_					
24 -						CL								
24 -	23								1					
25 -	24 —								1					
26 -	25 —	0.011		9			olive-gray with dark brown mottling, very	stiff	-					
27 - 28 - 29 - 29 - 29 - 20 - 20 - 20 - 20 - 20	26 —	S&H		16 21	22				-					
28 - 29	27 —								-					
29	28 —								_					
30 LANGAN TREADWELL ROLLO Project No.: 750633001 Figure: A-13a	29 —								_					
LANGAN TREADWELL ROLLO Project No.: Figure: 750633001 A-13a	30 -													
Project No.: Figure: 750633001 A-13a									LAN	GAN	TREA	DWE	LL RC	ILLO
									Project	^{No.:} 75063	3001	Figure:	ŀ	A-13a

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Boring B-13 PAGE 2 OF 2					
		SAMF	PLES						LABO	RATOR	Y TEST	DATA	
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОСУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31 — 32 — 33 — 34 —	S&H		8 13 19	19		CLAY (CL) olive-gray with gray-brown mottling, decre sand content	eased	-					
35 — 36 — 37 — 38 — 39 —	S&H		9 11 15	16	CL	gray-brown, trace fine-grained sand	-						
40 — 41 — 42 — 43 — 44 —	S&H		7 8 15	14		stiff	- - - -	PP		2,250			
45 — 46 — 47 — 48 —													
49 — 50 — 51 — 52 — 53 —							-						
54 — 55 — 56 — 57 —													
58 — 59 — 60 —						¹ S&H and SDT how counte for the last two ices	rements were	-					
Boring Boring Groun drilling	g termina g backfille ndwater e j.	ted at a ed with c ncounte	depth o ement g red at	of 41.5 fe grout. 15 feet b	eet belo below gr	w ground surface. ound surface during and surface during sound sound sou	hammer energy. blan titled "City of Itility and Easements."	LAN	GAN	TREA	DWE	LL RD	ILLO
	роскет ре	netrom	eter.			by RJA Engineers, 9 January 2014.		Project	^{No.:} 75063	3001	Figure:	A	-13b

PRC	JEC	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Bor ir	ng B	-14	AGE 1	OF 2			
Borin	Boring location: See Figure 2									Logged by: K. Watkins					
Date	starte	d:	4	/25/1	6		Drilled By: Exploration Geo Services								
Drillin	ng met	hod:	Н	ollow	Sten	n Auger									
Ham	mer w	eight/	drop	14	0 lbs.	/30 inches Hammer type: Downhole Wi	reline	LABORATORY TEST DATA							
Samp	olers:	Spra	gue	& Hei	nwoo	d (S&H)				gth			~		
	-	SAMF	LES ا	-0	OGΥ	MATERIAL DESCRIPTION		pe of ength est	ifining ssure 'Sq Ft	Strenç 'Sq Ft	sər %	itural isture ent, %	ensity Cu Ft		
EPTI (feet)	ample Type	ample	lows/	SPT -Value	THOL	Cround Surface Flouritory, 140 F for	-1 ²		Cor Pre Lbs	Shear Lbs	LL.	Mo Cont Cont	Dry [Lbs		
	0	0)	8	Z		CLAY with SAND (CH)	el								
1 — 2 —	S&H		12 16 23	23		dark brown with olive-gray mottling, very moist, fine- to coarse-grained sand, trace material	stiff, organic	-							
3 — 4 —	S&H		8 11 14	15	СН	dark brown, stiff to very stiff, decrease in content $L_{1} = 69$ PI = 49, see Figure C-9	gravel	-							
5 — 6 —	S&H		10 15	25		dark gray, very stiff, decrease in sand co	ntent								
7 —			26			SANDY CLAY (CL) olive-gray, stiff, moist, fine-grained sand	_								
8 — 9 —	S&H		7 10	10			_	-				19.1	105		
10 —	S&H		8 9	14	CL		-	-							
12 —			14				_	-							
13 — 14 —															
15 —	S&H		8 11	13	CL	CLAY (CL) ⊈ olive-gray, stiff, wet (4/25/2016, 9:00 a.m.)	_	-							
16 — 17 —			11		SP	SAND (SP) red-brown, medium dense, wet, fine- to medium-grained		PP		1,000					
18 — 19 —						CLAY (CL) olive-gray, stiff, wet, trace fine-grained sa	ind	-							
20 -	S&H		7 11	16		very stiff	-								
22 — 22 —			16				_	-							
23 — 24 —					CL		_								
25 —	S&H		7 10	14		stiff TxUU Test, see Figure C-7	_	TxUU	2,600	1,710		25.4	101		
20 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —			14				-								
28 — 29 —							-								
30 -															
SEO LECT								LAN	GAN	TREA	DWE	LL RO	ILLO		
								Project	No.: 75063	3001	Figure:	A	-14a		

PRC	JEC.	T:				BISHOP RANCH - BR3A San Ramon, California	Log of E	Boring B-14 PAGE 2 OF 2							
		SAMF	PLES	I				LABORATORY TEST DATA							
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft		
31 — 32 —	S&H		5 9 12	13	CL	CLAY (CL) gray-brown		-							
33 —							_	_							
34 — 35 — 36 — 37 — 38 —	S&H		7 11 25	22	CL	CLAY with SAND (CL) olive-gray with yellow-brown mottling, ver wet, fine-grained sand	y stiff, 	-							
39 — 40 — 41 — 42 —	S&H		13 16 23	23	CL	CLAY (CL) olive-gray, very stiff, wet, trace fine-grain		-							
43 — 44 — 45 —							-	-							
46 — 47 —							_	-							
48 —							_								
49 —							_	-							
50 — 51 —							_								
52 —							-	-							
53 —							_	-							
2 54 — 55 —															
56 —							_	-							
57 —							_	-							
58 — 59 —							_								
60 –	g termina	ted at a	depth o	of 41.5 fe	eet belo	w ground surface. ¹ S&H and SPT blow counts for the last two inci- converted to SPT N-values using factors of 0	rements were				<u></u>				
Grour Grour D drilling PP =	y packfille ndwater e j. pocket pe	ea with c ncounte enetrome	ement (red at ' eter.	yrout. 15 feet b	oelow gr	ound surface during ¹² Elevations based on NGVD29 datum and site San Ramon City Center, BR3 Site, Existing U br RJA Engineers, 9. January 2014.	hammer energy. e plan titled "City of Itility and Easements,"	Project	No.:	IREA	UWE	LL RD	ILLO		
						.,			75063	3001	.3010.	A	-14b		

			UNIFIED SOIL CLASSIFICATION SYSTEM
м	ajor Divisions	Symbols	Typical Names
200		GW	Well-graded gravels or gravel-sand mixtures, little or no fines
oils no. 1	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines
d Sc	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures
of so	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures
-Gr half sieve	Sande	SW	Well-graded sands or gravelly sands, little or no fines
arse han	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines
Co ore ti	coarse fraction <	SM	Silty sands, sand-silt mixtures
) m	10. 4 3676 326)	SC	Clayey sands, sand-clay mixtures
e) eil		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts
Soi of s siz	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
ned half sieve		OL	Organic silts and organic silt-clays of low plasticity
Grai than 200 s		МН	Inorganic silts of high plasticity
no. 2	Silts and Clays	СН	Inorganic clays of high plasticity, fat clays
ii j ⊽		ОН	Organic silts and clays of high plasticity
Highl	y Organic Soils	РТ	Peat and other highly organic soils

٦

Γ

	(GRAIN SIZE CHA	RT		Sampla	taken with Sprague & Henwood split barrol sampler with			
		Range of Gra	ain Sizes		a 3.0-inc	th outside diameter and a 2.43-inch inside diameter.			
Class	ification	U.S. Standard	Grain Size		Darkene	d area indicates soil recovered			
Bould	ders	Above 12"	Above 305		Classific sampler	ation sample taken with Standard Penetration Test			
Cobb	oles	12" to 3"	305 to 76.2						
Gravel coarse fine		3" to No. 4 3" to 3/4" 3/4" to No. 4	0.4 76.2 to 4.76 4" 76.2 to 19.1 o.4 19.1 to 4.76		Undistur	bed sample taken with thin-walled tube			
Sand coa meo fine	l Irse dium	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075		Sampling	d sample g attempted with no recovery			
Silt a	nd Clay	Below No. 200	Below 0.075		Core sar	nple			
<u> </u>	Unstabili	zed groundwater lev	vel	•	Analytical laboratory sample				
_	Stabilize	d groundwater level			Sample	taken with Direct Push or Drive sampler			
				SAMPL	ER TYP	E			
С	Core bar	rel			PT	Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube			
CA	California diameter	a split-barrel sample and a 1.93-inch ins	r with 2.5-inch outs ide diameter	side	S&H	Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter			
D&M	Dames & diameter	Moore piston samp , thin-walled tube	bler using 2.5-inch	outside	SPT	Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter			
0	Osterber diameter	g piston sampler us , thin-walled Shelby	ing 3.0-inch outside tube	e	ST	Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure			
		BISHOP RAN San Ramon,	CH - BR3A California			CLASSIFICATION CHART			
LA	VGA/	N TREAD	WELL RO	ILLO	Data	05/18/16 Project No. 750633001 Figure A 15			

SAMPLE DESIGNATIONS/SYMBOLS

Date 05/18/16 Project No. 750633001 Figure A-15

APPENDIX B

LOGS OF CONE PENETRATION TESTS

LANGAN TREADWELL ROLLO

Treadwell & Rollo

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(797).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-01 **Date and Time** 4/26/2016 5:05:07 PM Maximum Depth 50.36 ft EST GW Depth During Test 12.00 ft

Treadwell & Rollo

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(796).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-02 **Date and Time** 4/26/2016 4:03:58 PM Maximum Depth 50.36 ft EST GW Depth During Test 12.00 ft

Figure B-2
Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(794).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-03 **Date and Time** 4/26/2016 1:36:08 PM Maximum Depth 50.52 ft EST GW Depth During Test 14.00 ft

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(793).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-04 **Date and Time** 4/26/2016 12:25:31 PM Maximum Depth 50.36 ft EST GW Depth During Test 16.00 ft

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(795).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-05 **Date and Time** 4/26/2016 2:53:04 PM Maximum Depth 50.52 ft EST GW Depth During Test 12.00 ft

Figure B-5

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(792).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-06 **Date and Time** 4/26/2016 10:41:19 AM Maximum Depth 50.52 ft EST GW Depth During Test 16.00 ft

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(791).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number** CPT-07 **Date and Time** 4/26/2016 9:36:20 AM Maximum Depth 50.52 ft EST GW Depth During Test 18.00 ft

Bishop Ranch BR3 Project Operator BH-JH-SF Filename SDF(789).cpt Job Number G16-046-10L Cone Number DDG1350 GPS **Hole Number CPT-08 Date and Time** 4/26/2016 7:26:21 AM Maximum Depth 50.36 ft EST GW Depth During Test 18.00 ft

Bishop Ranch BR3 Filename Project Operator BH-JH SDF(864).cpt Job Number 750633001 Cone Number DDG1281 GPS **Hole Number** CPT-09 **Date and Time** 5/5/2016 3:02:21 PM Maximum Depth 50.52 ft EST GW Depth During Test 15.00 ft

APPENDIX C

LABORATORY TEST RESULTS

LANGAN TREADWELL ROLLO

NP = Non Plastic

Symbol	Source	Description and Class	ification	Natural M.C. (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing #200 Sieve
•	B-1 to 3.5 feet	CLAY with SAND (CL), dark bi	rown	19.2	47	28	
4	B-1 at 15 feet	SILTY SAND (SM), olive-gray		18.7	21	3	30.3
	B-4 at 3 feet	CLAY with SAND (CH), dark b olive-gray mottling	rown with		50	30	
•	B-6 at 1.5 feet	CLAY with SAND (CL), dark bi olive-gray mottling	rown with		45	23	
●	B-7 at 3.5 feet	CLAY (CH), dark brown	22.7	60	40		
0	B-8 at 3.5 feet	CLAY with SAND (SC), dark brown			47	28	
BISHOP RANCH - BR3A San Ramon, California		PLASTICITY CHART					
LANGAN TREADWELL ROLLO							
			Date 07/12/16 Project No. 750633001 Figure C-			ure C-8	

NP = Non Plastic

Symbol	Source	Description and Class	ification	Natural M.C. (%)	Liquid Limit (%)	Plasticity Index (%)	% Passing #200 Sieve
•	B-8 to 40 feet	CLAYEY SAND (SC), olive-gra brown mottling	ay with dark	16.5	30	16	35.9
4	B-12 at 3.5 feet	CLAY with SAND (CH), dark b	rown		54	35	
	B-12 at 8.5 feet CLAY (CL), yellow-brown				34	14	
•	B-13 at 13.5 feet	CLAYEY SAND (SC), olive-gra	Ŋ	15.4	28	11	39.2
●	B-14 at 3.5 feet CLAY with SAND (CH), dark b		rown		69	49	
BISHOP RANCH - BR3A San Ramon, California			PLASTICITY CHART				
LANGAN TREADWELL ROLLO			Date 07/12/	16 Projec	t No. 7506	33001 Fig	ure C-9

APPENDIX D

CORROSION TEST RESULTS

LANGAN TREADWELL ROLLO

23 May, 2016

Job No. 1605101 Cust. No.11308

Ms. Elena Ayers Langan Treadwell Rollo 501 14th Street, 3rd Floor Oakland, CA 94612

Subject: Project No.: 750633001.700.3 Project Name: Bishop Ranch B3A Corrosivity Analysis – ASTM Test Methods

Dear Ms. Ayers:

Pursuant to your request, CERCO Analytical has analyzed the soil samples submitted on May 12, 2016. Based on the analytical results, a brief corrosivity evaluation is enclosed for your consideration.

Based upon the resistivity measurements, sample 001 is classified as "corrosive" and 002 is classified as "moderately corrosive". All buried iron, steel, cast iron, ductile iron, galvanized steel and dielectric coated steel or iron should be properly protected against corrosion depending upon the critical nature of the structure. All buried metallic pressure piping such as ductile iron firewater pipelines should be protected against corrosion.

The chloride ion concentrations are none detected to 15 mg/kg

The sulfate ion concentrations range from none detected to 25 mg/kg and are determined to be insufficient to damage reinforced concrete structures and cement mortar-coated steel at these locations.

The pH of the soils ranged from 7.18 to 7.30, which does not present corrosion problems for buried iron, steel, mortar-coated steel and reinforced concrete structures.

The redox potentials are both 420-mV which is indicative of aerobic soil conditions.

This corrosivity evaluation is based on general corrosion engineering standards and is non-specific in nature. For specific long-term corrosion control design recommendations or consultation, please call JDH Corrosion Consultants, Inc. at (925) 927-6630.

We appreciate the opportunity of working with you on this project. If you have any questions, or if you require further information, please do not hesitate to contact us.

Very truly yours, CERCO ANALYTICAL, INC Muller J. Darby Howard Ar President

JDH/jdl Enclosure

California State Certified Laboratory No. 2153

Langan Treadwell Rollo

Client:

Bishop Ranch B3A 750633001.700.3

Client's Project Name: Client's Project No.:

Date Received: Date Sampled:

Not Indicated 12-May-16 Soil Chain of Custody

Authorization: Matrix:

Concord, CA 94520-1006 925 462 2771 Fax. 925 462 2775 www.cercoanalytical.com

20-May-2016 Date of Report:

					Resistivity			
		Redox		Conductivity	(100% Saturation)	Sulfide	Chloride	Sulfate
Job/Sample No.	Sample I.D.	(mV)	Hd	(umhos/cm)*	(ohms-cm)	(mg/kg)*	(mg/kg)*	(mg/kg)*
1605101-001	B-2 2 @ 3.5'	420	7.30	•	1,300	I	N.D.	25
1605101-002	B-7 1 @ 3'	420	7.18		2,400	•	N.D.	N.D.
	•							
Method:		ASTM D1498	ASTM D4972	ASTM D1125M	ASTM G57	ASTM D4658M	ASTM D4327	ASTM D4327
Reporting Limit:		1	1	10	•	50	15	15
Date Analyzed:	C	18-May-2016	18-May-2016	1	16-May-2016	I	18-Mav-2016	18-Mav-2016
hen	Sulli		* Results Reported o	n "As Received" Basis	-			

<u>Quality Control Summary</u> - All laboratory quality control parameters were found to be within established limits

Laboratory Director Cheryl McMillen

N.D. - None Detected

DISTRIBUTION

Electronic copy: Mr. Alexander Mehran Sunset Development Company 2600 Camino Ramon, Suite 201 San Ramon, California 94583

QUALITY CONTROL REVIEWER

Dimpson OUS

Lori A Simpson, G.E. Principal THIS PAGE INTENTIONALLY LEFT BLANK

Final Geotechnical Investigation Bishop Ranch City Center Project Parcel 1 & 1A San Ramon, California

Prepared for

Sunset Development Company San Ramon, California

MACTEC Project No. 4096088527

Hadidi

Rambod Hadidi Senior Engineer

REGIS

Donald W. Quigley, PE, GE Senior Principal EngineerpROFE SSID

MACTEC Engineering and Consulting, Inc. 28 Second Street, Suite 700 San Francisco, CA 94105 - (415) 543-8422

Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076 Bishop Ranch-Geotech

Final Geotechnical Investigation Bishop Ranch City Center Project Parcel 1& 1A San Ramon, California

MACTEC Project No. 4096088527

This document was prepared by MACTEC Engineering and Consulting, Inc. (MACTEC) at the direction of Sunset Development Company for the sole use of Sunset Development Company and their consultants, the only intended beneficiaries of this work. No other party should rely on the information contained herein without the prior written consent of MACTEC. This report and the interpretations, conclusions, and recommendations contained within are based in part on information presented in other documents that are cited in the text. Therefore, this report is subject to the limitations and qualifications presented in the referenced documents.

Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional advice included in this report. If any of the project information provided to MACTEC has changed, we should be notified so that we may amend our recommendations as necessary.

CONTENTS

1.0	INTRO	DDUCTION	1-1
	1.1 1.2	Project Description Scope of Services	1-1 1-2
2.0	METH	IODS OF INVESTIGATION	2-1
	2.1 2.2	Review of Previous Data Field Exploration 2.2.1 Borehole Clearance 2.2.2 Test Borings 2.2.3 Cone Penetration Tests	2-1 2-2 2-2 2-2 2-3
	2.3	Laboratory Testing	2-3
3.0	SITE A	AND SUBSURFACE CONDITIONS	3-1
	3.1 3.2	Site Conditions Subsurface Conditions	3-1 3-1
4.0	GEOL	OGY AND SEISMICITY	4-1
	4.1 4.2 4.3	Geologic Setting Faults and Seismicity Site Classification and Code Seismic Criteria	4-1 4-1 4-1
5.0	DISCU	JSSIONS AND CONCLUSIONS	5-1
	5.1	Geologic Hazards 5.1.1 Surface Fault Rupture 5.1.2 Seismic Shaking 5.1.3 Liquefaction 5.1.4 Seismic Densification Geotechnical Considerations	5-1 5-1 5-1 5-1 5-2 5-2
6.0	GEOT		6.1
0.0	6.1	ECHNICAL RECOMMENDATIONS. Earthwork 6.1.1 Site Preparation 6.1.2 Excavation Considerations 6.1.3 Subgrade Preparation. 6.1.4 Material for Fill and Placement Criteria. 6.1.5 Compaction of Fill (Including Lime-Treated Clays). 6.1.6 Utility Trenches. 6.1.7 Surface Drainage 6.1.8 Fill Settlements.	6-1 6-1 6-1 6-2 6-2 6-3 6-3 6-3 6-3
	6.2	Foundations 6.2.1 Driven Piles 6.2.2 Lateral Resistance 6.2.3 Indicator Piles 6.2.4 Pile Installation	6-4 6-5 6-6 6-6

	6.2.5	Alternative Pile Types	
6.3	Concr	ete Slabs on Grade	
6.4	Misce	llaneous Footings Foundations	6-7
6.5	Flexib	le Asphalt Pavements	6-8
6.6	Corro	sion Potential	6-9
	6.6.1	Soil Resistivity	6-9
	6.6.2	Sulfates and Chlorides	6-10
ADD.	ITIONAI	L GEOTECHNICAL SERVICES DURING CONSTRUCTION	

TABLES

7.0

4-1 Major Named Faults Near the Project Site

PLATES

- 1-1 Vicinity Map
- 1-2 Site Plan
- 3-1 Cross Section A-A'
- 3-2 Cross Section B-B'
- 3-3 Cross Section C-C'
- 6-1 Allowable Pile Capacities 14 Inch Square Precast Concrete Pile
- 6-2 Lateral Load vs. Lateral Deflection 14 Inch Square Precast Concrete Pile
- 6-3 Lateral Deflection vs. Depth 14 Inch Square Precast Concrete Pile
- 6-4 Internal Shear vs. Depth 14 Inch Square Precast Concrete Pile
- 6-5 Internal Moment vs. Depth 14 Inch Square Precast Concrete Pile

APPENDICES

- A BORING AND CPT LOGS FROM PREVIOUS INVESTIGATIONS
- B BORING LOGS FROM THIS INVESTIGATION
- C CPT INVESTIGATION RESULTS
- D GEOTECHNICAL LABORATORY TEST RESULTS

1.0 INTRODUCTION

This report presents the results of MACTEC Engineering and Consulting, Inc.'s (MACTEC) final geotechnical investigation for the planned office buildings and parking garages on Parcel 1 & 1A at Bishop Ranch in San Ramon, California, as shown on Vicinity Map, Plate 1-1, and Site Plan, Plate 1-2. This investigation was performed for Sunset Development Company (Sunset).

MACTEC previously performed a preliminary geotechnical investigation for the project, as described in our report *Preliminary Geotechnical Investigation Report, San Ramon City Center Project, Bishop Ranch, San Ramon, California*, dated July 24, 2007. As described in our 2007 report, MACTEC evaluated subsurface soil and groundwater conditions at the project site by reviewing previous geotechnical reports by MACTEC and others at and near the site. From these documents, we developed geotechnical conclusions and preliminary recommendations for planning of the proposed development. We also recommended that additional subsurface investigations be performed to confirm and/or augment the site data available from previous investigations and/or to support the design requirements of the project teams. This report summarizes the results of the additional investigations and provides final recommendations for the design of the project.

1.1 Project Description

As shown on Plate 1-2, we understand that the planned development on Parcel 1 & 1A will consist of: 1) three, similar, 6-story office buildings, with approximate footprint areas of 33,000 square feet each; 2) a large 5-story parking garage (approximately 125,000 square feet in plan area) with a small café building attached; 3) a smaller 5-story parking structure (approximately 40,000 square feet in plan area); 4) an entry plaza and fountain; and 5) new roads and at-grade parking lot spaces. Based on our correspondence with project structural engineer, Middlebrook & Louie, the office building column loads (dead plus live) are estimated to be about 1,320 kips for interior columns and 325 kips for exterior columns. The parking garage column loads (dead plus live) range from 770 to 1,750 kips for interior columns and 1,000 to 1,600 kips for exterior columns. None of the buildings will have basements.

The planned building site includes vacant land and existing landscaping areas and surface parking lots. The property, in general, slopes very gently towards the southwest with elevations ranging from about 440 (Mean Sea Level) at the northeastern corner of Parcel 1A to 426 at the southwestern corner of Parcel 1. The finished ground floor elevations of the three office buildings will range from 438 to 439. At the parking garages, the finished ground floor level will slope from 436 to 431 at the larger parking garage and from 429 to 427 at the smaller parking garage. The proposed locations of the office buildings are currently primarily vacant land. Surface parking lots with minimal landscaping features, cover the proposed location of the parking garages. Site grading for construction of the parking garage pads is anticipated to be minor. Up to about 4 feet of fill and cut will be needed for grading the office building pads. The fill and cut volumes are estimated to be approximately 42,000 and 287,000 cubic yards, respectively (*Sunset Development Company, Conceptual Grading Plan – Business Complex, San Ramon City Center, San Ramon, California, dated April 30, 2007*).

We understand that the project will be constructed in three phases, each one year apart. Phase I will consist of site grading, including building pads for all planned structures, and construction of the northwest office building and the larger parking garage concurrently. Phase II will consist of construction of the northeast office building and smaller parking garage concurrently. Phase III will be construction of the remaining office building.

1.2 Scope of Services

The scope of our services, as stated in our proposal dated July 14, 2008, included supplementing the existing boring data by drilling test borings, performing Cone Penetration Tests (CPTs), conducting laboratory tests, performing geotechnical engineering analyses, and developing recommendations for final design of the project. As listed in our proposal, the site information was used to develop conclusions and recommendations for the following:

- Subsurface soil and groundwater conditions;
- Site preparation and minor grading, including fill and backfill compaction criteria;
- Subgrade preparation for concrete slab-on-grades and asphalt concrete pavements;
- Pavement section thicknesses;
- Geotechnical engineering design criteria for use in foundation design, including soil bearing values and resistance to lateral loads for shallow foundations;
- Design criteria for 14-inch by 14-inch precast, prestressed, driven concrete piles; including axial load capacities (downward and uplift), lateral capacities based on embedment depths and fixity, and factors of safety used and allowances for drag loads.

- Estimated amounts of ground and foundation settlements;
- Assessment of potential geohazard risks associated with seismicity, including liquefaction potential, seismically-induced settlement, and fault rupture; and
- Appropriate seismic factors for structural design input in accordance with the California Building Code (2007). No site-specific response analyses were to be provided.

Our services did not include an assessment for the presence of potentially toxic and hazardous material on or beneath the site.

2.0 METHODS OF INVESTIGATION

2.1 Review of Previous Data

A variety of published and unpublished sources were reviewed to evaluate geotechnical data and geologic hazards relevant to the site. Appropriate maps that were reviewed included topographic maps, geologic maps, and fault maps by the United States Geological Survey and the California Geological Survey (previously known as the California Division of Mines and Geology). We also reviewed the following geotechnical reports (or excepts thereof) for the project site and vicinity, several of which were prepared by MACTEC (then known as Harding Lawson Associates [HLA]):

- MACTEC, Preliminary Geotechnical Investigation Report; San Ramon City Center; Bishop Ranch; San Ramon, California, Prepared for Sunset Development Company, MACTEC Project 4096075707, dated July 24, 2007.
- Kleinfelder, *Geotechnical Investigation at Chevron/Texaco Campus Lots 16, 20 and 21 of the Bishop Ranch Business Park, San Ramon, California*; prepared for Watry Design; Kleinfelder Project 53512/Geo; dated June 9, 2005.
- ENGEO, *Preliminary Geotechnical Exploration, San Ramon City Center, San Ramon, California*, prepared for City of San Ramon, California, ENGEO Project 5172.001.01, dated March 29, 2001.
- HLA, *Geotechnical Investigation, Bishop Ranch 1 Development, San Ramon, California*, prepared for Sunset Development Company, HLA Project 50044.1, dated May 15, 2000.
- HLA, Geotechnical Investigation, Bishop Ranch 1 Development, Bishop Ranch Business Park, San Ramon, California, prepared for Sunset Development Company, HLA Project 8294,019.03, dated October 6, 1986.
- HLA, Soil Investigation, Bollinger Business Center, Bishop Ranch, San Ramon, California, prepared for Sunset Development Company, HLA Project 8294,009.03, dated April 6, 1982.
- Kleinfelder, Geotechnical Investigation Report, Chevron Park, San Ramon, California, dated June, 1981.

Copies of relevant boring log and CPT results from the previous reports are presented in Appendix A.

We have also reviewed the following project information provided by Sunset:

• Sunset Development Company, Conceptual Grading Plan – Business Complex, San Ramon City Center, San Ramon, California, dated April 30, 2007.

• David Evans and Associates, Inc., *Bishop Ranch 1 Grading Plan, San Ramon, Contra Costa County, California*, prepared for Sunset Development Company, dated June 22, 2000.

Information from these documents was used to plan our subsurface investigation for this project and to assist us in preparing this report.

2.2 Field Exploration

2.2.1 Borehole Clearance

On August 7, 2008, prior to the start of our field investigation, our subcontractor, Advanced Geological Services, Inc. (AGS), performed a geophysical survey to mark the boring and CPT locations and identify buried utilities nearby. We also notified Underground Service Alert (USA) and marked the approximate exploration locations with paint for utility clearance, as required by law. Additionally, we obtained a drilling permit from the Contra Costa County Environmental Health Division.

2.2.2 Test Borings

We explored the subsurface conditions by drilling test borings on August 18 - 20, 2008. The approximate locations of these borings are shown on the Site Plan, Plate 1-2. Soil and classification criteria (Plates B-1 and B-2) and the logs of the borings (Plates B-3 through B-11) are presented in Appendix B.

Our drilling subcontractor, Gregg Drilling, drilled borings B-1, B-8, and B-9 to depths of 70 feet with a truck-mounted drill rig equipped with 6-inch diameter hollow-stem augers. Borings B-2 through B-7 were drilled by a hand auger to a depth of 5 feet. Borings were drilled with Level D personal protective equipment and soil cuttings generated during drilling were placed in 55-gallon drums, transported to the empty lot adjacent to Bishops Ranch One East and Bollinger Canyon Road, and were spread on the ground.

Our field engineer observed the drilling of the borings and logged the soil strata encountered. Grab samples were obtained from auger cuttings in the upper five feet of each boring. Deeper samples were obtained at regular intervals in the hollow–stem auger borings using either a Sprague and Henwood (S&H) split barrel sampler (3.0-inch outside diameter, 2.43-inch inside diameter), lined with 6-inch long brass tubes, or a 2-inch outside diameter Standard Penetration Test (SPT) sampler. The S&H and SPT samplers were driven by a 140-pound downhole hammer falling 30 inches using the automatic trip method. The number of blows required to drive the samplers the final 12 inches of an 18-inch drive was

2-2

recorded. The observed S&H blow counts were converted to approximate SPT N-values ¹. N-values are shown on the boring logs. Borings B-2 through B-7 were backfilled with soil cuttings and capped with asphalt. Borings B-1, B-8, and B-9 were tremie backfilled with bentonite cement grout upon completion. Approximate ground elevations at each boring were determined from survey plans provided to us by Sunset and are shown on boring logs.

2.2.3 Cone Penetration Tests

Our subcontractor, Gregg Drilling, pushed seven CPTs to 64 to 70 feet below ground surface on August 18 and 19, 2008. The approximate location of the CPTs is shown on Plate 1-2. Upon completion of the CPTs, the CPT holes were grouted with bentonite cement grout. Level D personal protective equipment was used during CPT testing. The results of the CPT investigation are presented in Appendix C. Approximate ground elevations at each CPT were determined from plans provided to us by Sunset and are summarized in Appendix C.

2.3 Laboratory Testing

We re-examined the soil samples from the borings in our office to check field classifications and to select samples for laboratory testing. Laboratory tests performed included moisture content and dry density, consolidation, sieve analysis (#-200 sieve fraction), Atterberg limits, and strength tests. Results of these tests are summarized on the boring logs in accordance with the key on Plate B-1. Complete test reports are presented in Appendix D.

¹ The SPT N-value is defined as the number of blows of a 140-pound hammer, falling freely through the height of 30 inches, required to drive a standard split-barrel sampler (2-inch outside diameter and 1-3/8-inch inside diameter) for the last 12 inches of an 18-inch drive. For SPT procedures, see ASTM D1586-84.

3.0 SITE AND SUBSURFACE CONDITIONS

3.1 Site Conditions

The project site includes vacant land, landscaping areas and surface parking lots. Parcel 1 includes atgrade, asphalt-paved parking area, with minimal landscape areas. The parcel is bounded on the north side by the by parking lots of Parcel 1A. The Bishop Ranch One East access roadway bounds the east and south sides of Parcel 1. The Bishop Ranch One access roadway bounds the west side. Multi-story office structures are located on the adjacent land to the west.

Parcel 1A includes a vacant, with elevations ranging from 435 to 445. Ground cover includes uncultivated, annual and perennial vegetation, with some shrubbery at the northern portion of the parcel and at-grade, asphalt-paved parking area, with minimal landscapes at the southern part of the parcel. Bollinger Canyon Road bounds the north side of Parcel 1A. The Bishop Ranch One East access roadway bounds the east edge. Parcel 1 is located to the south. The Bishop Ranch One access roadway bounds the west edge.

3.2 Subsurface Conditions

The subsurface conditions at the site are presented graphically on Cross-Sections A-A' to C-C' (Plates 3-1 through 3-3), which summarize boring and CPT data from the current and previous geotechnical investigations at and near the site.

The subsurface conditions in the project area are interpreted to be relatively uniform. Expansive clay soils blanket most of the site and extend to at least 5 feet below the ground surface, and to as much as 10 feet in some locations. The ENGEO (*2001*) report indicated that possibly as much as 10 feet of fill soil had been placed within areas of the current Parcel 1A at the vacant lots. We have also encountered as much as 5 feet of fill in the vacant lot that northern portion of the Parcel 1A. The fill soil was reported to have been excavated from nearby parcels during construction activities. At the boring locations, the fill soils were silty or clayey sands or low to moderately expansive clays.

The stiff-to-hard native clay and fill surface soils overlie moderately compressible clays and silts to depths extending to about 30 feet to 40 feet below grade. Deeper clays are generally stiff to very stiff with inclusions of relatively strong alluvial gravels, sands, with various fine contents to the depths

Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076_Bishop Ranch-Geotech

explored (about 75 feet maximum). These gravel and sands are not continuous and their thickness, depth varies significantly within the site.

Groundwater has been encountered as shallow as 7 feet below the site grade during previous exploration, but has varied to as deep as 20 feet in some locations during drilling. Ground water was encountered at 13 to 20 feet below the site grade during our current borings. A pore water pressure dissipation test at CPT-06 indicated that the water table was 11 feet below the ground surface.
Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076_Bishop Ranch-Geotech

4.0 GEOLOGY AND SEISMICITY

4.1 Geologic Setting

The site is located within the San Ramon Valley, a portion of the California Coastal Ranges geomorphic province (*California Geomorphic Provinces, Note 36, California Geological Survey*, revised *December 2002*). In general, the geologic structure and topography are characteristic of the San Francisco Bay Area. This region is generally defined by northwest-trending ridges and valleys that generally parallel the geologic structures, including the major fault systems. The San Ramon Valley fill includes quaternary-aged alluvium up to approximately 300 feet in thickness. The valley is drained by both North and South San Ramon Creeks that are actively cutting into the alluvial surface soils. Tertiary-aged sedimentary rocks comprise surrounding slopes and underlying valley geology.

4.2 Faults and Seismicity

The numerous faults in Northern California include active, potentially active, and inactive faults. The criteria for these major groups are based on criteria developed by the California Geological Survey (previously the California Division of Mines and Geology) for the Alquist-Priolo Earthquake Fault Zoning Program (*Hart, 1999*). By definition, an active fault is one that has had surface displacement within Holocene time (about the last 11,000 years). A potentially active fault is a fault that has demonstrated surface displacement of Quaternary age deposits (last 1.6 million years). Inactive faults have not moved in the last 1.6 million years.

The site is not within a currently-established Alquist-Priolo Earthquake Fault Zone for surface rupture hazards. The nearest active faults are the Calalveras fault, located about 0.6 miles to the west, and the Concord-Green Valley fault, located about 8 miles northeast. Significant faults near the project site and their characteristics are presented in Table 4-1.

4.3 Site Classification and Code Seismic Criteria

We have determined the site seismic parameters in accordance with the Section 1613A of the 2007 edition of the California Building Code (CBC) using the United States Geological Survey (*USGS, 2007*) program, Earthquake Ground Motion Parameters, Version 5.0.8. The site location used was Latitude 37.7610° and Longitude -121.9540° and our opinion is that the Site Class can be considered "D" (stiff soil

profile). The mapped parameters and the site-specific design parameters are presented in the following table:

Item	Designation	Value
Site Class (Table 1613.5.2)	-	D
Mapped Spectral Acceleration for Short Periods (Figure 1613.5(1))	Ss	1.919g
Mapped Spectral Acceleration for 1-sec Period (Figure 1613.5(2))	S1	0.713g
Site Coefficient (Table 1613.5.3(1))	Fa	1.0
Site Coefficient (Table 1613.5.3(2))	F _v	1.5
MCE* Spectral Response Acceleration for Short Periods	S _{MS}	1.919g
MCE* Spectral Response Acceleration for 1-sec Periods	S _{M1}	1.069g
Design Spectral Response Acceleration for Short Periods	S _{DS}	1.279g
Design Spectral Response Acceleration for 1-sec Periods	S _{D1}	0.713g

MCE: Maximum Considered Earthquake

.

5.0 DISCUSSIONS AND CONCLUSIONS

We conclude that the development of the planned new buildings is feasible from a geotechnical standpoint provided our conclusions and recommendations are incorporated into the design and construction of the project. The most significant geologic hazard to the site is the seismic ground shaking. The main geotechnical engineering considerations for this project are: 1) the presence of the expansive surface soils, and 2) presence of undocumented fill at some areas, and 3) presence of relatively compressible clays beneath the site.

The significant geologic hazards and geotechnical considerations are discussed in the following sections.

5.1 Geologic Hazards

5.1.1 Surface Fault Rupture

The nearest active faults are the Calalveras fault, located about 0.6 miles to the west, and the Concord-Green Valley fault, located about 8 miles northeast. Therefore, potential for surface fault rupture at the site is considered to be low.

5.1.2 Seismic Shaking

The primary geologic hazard at the site is the potential for strong earthquake shaking resulting from major displacements on nearby faults or other active faults in the region. The proposed office buildings and garages should be expected to experience periodic smaller earthquakes and possibly a large earthquake during their design lives. Seismic design criteria, based on the 2007 California Building Code, are presented in Section 4.3.

5.1.3 Liquefaction

Liquefaction is a phenomenon in which saturated, cohesionless soil can temporarily lose strength due to buildup of excess pore water pressure, especially during cyclic loading such as earthquake shaking. Soils most susceptible to liquefaction are loose, clean, saturated, uniformly graded, fine-grained sands. In some cases, as pore pressures dissipate, sand is forced to the surface in "boils" due to upward water flow resulting in surface settlement. Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076_Bishop Ranch-Geotech

The subsurface data for the site indicate some saturated sand layers and lenses within the predominantly clayey soils at the site. These sand units are relatively thin, discontinuous, and/or contain appreciable concentrations of fine-grained materials. It is our interpretation that liquefaction potential at the site is limited, and that settlement caused by liquefaction would be relatively small (less than one inch).

5.1.4 Seismic Densification

Densification of unsaturated sandy soils above the ground water level subjected to earthquake shaking can cause settlement at the ground surface. However, because most near surface sand layers below the site are relatively thin, contain appreciable fine content, and appear to be interbedded with fine grained layers, it is our interpretation that settlement caused by soil densification would be negligible.

5.2 Geotechnical Considerations

Expansive Soils: Based on the results of borehole logging and laboratory testing performed for this investigation, the surficial clay soils (both native and fill soils) exhibit moderate expansion potential. These soils are anticipated to shrink and swell with fluctuations in moisture content. The volume changes _ in expansive soils can be effectively reduced by initially moisture conditioning them to a high moisture content (to cause expansion to occur before construction), and then blanketing with imported select fill having a low expansion potential. Alternatively, the existing upper zone of expansive clays may be lime-treated to reduce their expansion potential to that of a low or non-expansive imported select fill and reduce the quantity of select fill needed to be imported for the development.

<u>Undocumented Fill:</u> Some project areas have received fill soil apparently imported from nearby parcels undergoing development. These stockpiled material should be categorized, geotechnically, as an undocumented fill. The vertical and lateral extent of these soils are not known with precision and should be confirmed during construction. It is our opinion that such fill soils, where identified, will need to be excavated and recompacted or disposed offsite.

<u>Compressible Clays</u>: Beneath the upper native and fill clay soils, the underlying alluvial clays could undergo significant consolidation if they were loaded by shallow spread foundations beneath the heavy column loads of the proposed buildings. As a result, pile foundations that extend into deeper alluvial soils, below depths of 30 to 40 feet beneath the ground surface, should be used to support the buildings. This is consistent with past development within Bishop Ranch, where existing structures above three stories in height have been founded on driven pre-cast, prestressed concrete piles.

Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076_Bishop Ranch-Geotech

We have also considered supporting the structures on conventional spread and/or continuous footings founded on improved ground using Rammed Aggregate Piers (RAP). RAPs are a method of ground improvement, which is known as Geopiers, a propriety name of the Geopier Foundation Company. RAPs are constructed by drilling approximately 30-inch-diameter shafts, and replacing the excavated soil with crushed rock aggregate, placed and compacted in thin layers. The "replacement area" of the RAP shafts is typically about 35 percent of the footing area.

Our estimates for a typical RAP installation indicate that footings built over RAP-improved ground to a depth of 20 feet will settle as much as 3 to 4 inches under expected column loads. Therefore, we conclude that this alternate foundation option is not likely to be appropriate for this project. However, we have requested the Geopier Company to further evaluate this option and to determine if there is a cost-effective way to use Geopiers and still keep foundation settlements to acceptable amounts.

6.0 GEOTECHNICAL RECOMMENDATIONS

6.1 Earthwork

6.1.1 Site Preparation

In areas to be graded, the ground surface should be stripped of vegetation, soils containing organic matter, and other deleterious material (i.e., demolition debris, etc.). Existing asphalt pavements and utilities should be removed from the planned building areas. Stripped vegetation and organic matter should not be used as engineered fill, but could be used as landscaping material with the approval of the landscape architect. Debris should be disposed offsite.

Where site stripping exposes undocumented fill soils, they should be removed completely within and 5 feet beyond planned building areas and in other areas where ground settlement could be a concern (such as the entry plaza or fountain). In exterior areas to be graded, the existing fill soils should only be excavated as needed to allow compaction of the subgrade soils to a firm and unyielding conditions. If isolated zones of weak, saturated soils are encountered during grading, they should be removed to expose firm soils; this should be determined in the field by the geotechnical engineer.

6.1.2 Excavation Considerations

Temporary excavations must comply with current requirements of Cal-OSHA. Additionally, all cuts deeper than five feet should be sloped or shored. It is our opinion that temporary excavations can be sloped at 1(H):1(V) or flatter; however, it is the responsibility of the contractor to maintain safe and stable slopes or design and provide shoring during construction.

Excavations deeper than seven feet below the ground surface could encounter groundwater. Although groundwater inflows will probably not be large, because of the generally fine-grained nature of the site soils, the groundwater should be removed from the excavations to prevent softening of the excavation base to and to enable proper compaction of the subgrade and subsequent fills and backfills.

6.1.3 Subgrade Preparation

The subgrade beneath the site fills should be scarified to at least 8 inches, moisture conditioned to at least 2 to 4 percent over optimum moisture content and compacted to at least 90 percent relative compaction². The moisture content of the fill should be maintained until covered by subsequent fill material. The need and extent of moisture conditioning will vary depending on the time of year that grading commences. During late spring and early summer, the site will be saturated or close to saturation and little or no moisture conditioning will be necessary. Therefore, this would be the optimum time for site grading. Later, during the dry season, shrinkage cracks may be several feet deep. Therefore, prolonged watering and flooding, and the possible use of wetting agents, could be necessary to pre-swell the soils and close shrinkage cracks for their full depth. Alternatively, the grading contractor may elect to overexcavate the drier expansive soils to facilitate moisture conditioning. Because the exact depth of required moisture conditioning will not be known until site grading actually commences, we suggest that the contract documents contain provisions for either alternative at the contractor's option. Alternatively, onsite expansive soils can be treated with high calcium quicklime or dolomite (magnesium) quicklime and properly cured to reduce their expansion potential.

6.1.4 Material for Fill and Placement Criteria

Select Fill material should consist of relatively non-expansive granular soils with a Liquid Limit of less than 40 and a Plasticity Index of less than 15. Material for Select Fill should not contain any cobbles or rock fragments larger than 4 inches in diameter, organic matter, debris, or expansive clay soils. Granular (sand) portion of the existing fills could be suitable for Select Fill, but the fill and natural near-surface clay soils will not be suitable, as-is, due to their high expansion potential. They can be used for Select Fill if lime-treated, or for General Fill below the level of Select Fill.. The geotechnical engineer should approve all proposed fill and backfill materials prior to being placed at the site.

Select Fill should be placed in the following areas:

• Within building areas, to a distance of at least five feet beyond building perimeter, and extending to at least 18 inches below the ground floor subgrade.

² Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same soil, as determined by the ASTM D1557 laboratory compaction test procedure. Optimum moisture is the water content (percentage by dry weight) which corresponds to the maximum dry density.

• Within areas of exterior concrete slabs, and walkways, for a distance of at least three feet beyond their edges, and extending 12 inches below slab subgrade level. Alternatively, the Select Fill can be omitted and replaced with 4 inches of rock base course placed over properly moisture conditioned and compacted soil subgrade. This option, though less costly to construct, could require some slab maintenance because of greater shrink/swell movements of the soil subgrade.

6.1.5 Compaction of Fill (Including Lime-Treated Clays)

Fills and backfills should be placed in 8-inch (maximum) loose lifts, moisture conditioned as required, and compacted to at least 90 percent relative compaction (95 percent in upper 6 inches under paved areas). Following completion of fill compaction, the ground surface should be kept moist to avoid excessive moisture loss. All surfaces should be finished to present a smooth, firm, unyielding subgrade. Finished fill (and cut) slopes should be no greater than 2 (horizontal):1(vertical).

6.1.6 Utility Trenches

We recommend that utility conduit and pipe bedding material consist of sand with less than 10 percent fines. The bedding should extend from the bottom of the trench to 1 foot above the top of the pipe. Sand bedding should be placed in a trench free of standing water and mechanically compacted to at least 90 percent relative compaction.

Trench backfill above the pipe bedding should meet the criteria for Select Fill, as described above, in areas where settlement of the trench backfill would be a concern. In landscape areas, onsite soils can used as backfill, but some long-term settlement should be anticipated. Trench backfill should be placed in uniform layers not exceeding 8 inches in loose thickness, moisture-conditioned to near-optimum moisture content (2 to 4 percent above Optimum for clay soils), and then compacted to at least 90 percent Relative Compaction. Jetting or water flooding should not be permitted for any backfill compaction.

6.1.7 Surface Drainage

The finish exterior grades should be designed to drain surface water away from the proposed building. Slopes of at least 2 percent are recommended within 5 feet of the building. Where such surface gradients are difficult to achieve, we recommend that area drains and/or surface drainage swales be installed to direct surface water to a suitable discharge location. Downspout drainage should preferably be collected in closed pipe systems and routed to a suitable discharge outlet. Rainwater should not be allowed to pond on pavements or around the buildings. Surface water ponding should also be prevented during construction to reduce disturbance and loosening of site soils.

6.1.8 Fill Settlements

As much as four feet of fill will be needed for grading the office building pads, primarily near the west end of the southernmost (Phase III) office building. Raising the grades will cause settlement of underlying clays and silts. We estimate that by raising the grades one to four feet, the ground could settle as much as 1 to 3 inches. The settlements will occur relatively quickly, within four to six months. We recommend that fill settlements be checked with survey monuments placed on top of the fill after site grading is complete. This data will be used to confirm that post-construction settlements of pavements, floor slabs, and shallow foundations will be small.

6.2 Foundations

6.2.1 Driven Piles

Considering the relatively compressible nature of the clays and silts at the site and the load demand from the office building and parking garages, we judge that deep foundations will be required to support the new structures. In the past, precast prestressed concrete piles have been used to support buildings with more than two to three stories. The piles have been typically 12-inch square, with length of 30 to 60 feet. Considering that 14-inch square piles are now more commonly used because of lateral load demands for seismic design, we recommend their use for the project. The piles will primarily derive their supporting capacity from skin friction in the clay soils beneath the site. Where sand and gravel layers are encountered, additional capacity can be achieved in end bearing at the pile tip. However, the sand gravel layers are not continuous across the site and therefore, cannot be relied upon for design of pile lengths and capacities.

Allowable axial downward and uplift capacities of 14-inch-square precast prestressed concrete piles are presented in Plate 6-1. The allowable compressive (downward) capacities given for service loading cases (dead load plus reduced live loads) include a Factor of Safety (FS) of 2.0 for skin friction and a FS of 3.0 for end bearing. The allowable compressive capacities under seismic loading conditions include a 1.5 FS for skin friction and a FS of 2.0 for end bearing. Uplift capacities for short-term loads are based on skin friction and a FS of 2.0.

The pile capacities are based on a 3-foot-thick pile cap with the pile cap top at approximately one foot below finished grade elevation. For pile groups with pile spacing of at least three pile widths center-to-center, a group efficiency of 1.0 may be assumed for estimating axial capacity for both static and seismic conditions.

The capacities presented are based on the strength of the soils. The structural capacities of the piles should also be sufficient to carry the design loads. In addition, we recommend that piles be checked for a long term loading condition of dead and sustained live loads, plus a drag load of 150 kips caused by potential small amounts of site settlement.

We estimate that post-construction settlement of the proposed buildings supported on the piles as recommended will be less than 1/2 inch. Differential settlements will be less than 1/4 of inch.

6.2.2 Lateral Resistance

Lateral loads can be resisted by passive soil pressure on the pile caps. The short-term passive resistance of soils can be assumed to be equal to 300 pounds per cubic foot (pcf).

Additional lateral resistance can be obtained from pile bending. We have computed lateral capacities of 14-inch square concrete piles using LPILE computer program by ENSOFT, Inc. A graph of pile head deflection vs. pile head lateral load for fixed head and free-head conditions are presented in Plate 6-2. Distribution of the lateral deflection, internal shear, and moment with depth for piles with a maximum deflection of one (1) inch is presented in Plates 6-3, 6-4, and 6-5. Pile response to specific lateral loads can be evaluated, if desired, during foundation design.

The lateral pile capacities are for single piles. For piles spaced 3 pile diameters on center, group reduction factors should be applied to the lateral load capacities (to reduce the lateral load for a given amount of deflection at the pile head). The reduction factors depend on the configuration of the pile group. Reduction factors for several configurations are presented in the following table:

No. of Piles in Group	Configuration	Reduction Factor
4	2x2	0.60
6	2x3	0.43
9	3x3	0.40

Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076 Bishop Ranch-Geotech

6.2.3 Indicator Piles

We recommend that an indicator pile program be conducted to confirm design pile capacities and lengths prior to start of production pile driving at each building. We recommend driving at least 5 indicator piles for the office building and 5 indicator piles for the parking garage planned to be constructed in Phase I. We will evaluate the need for additional indicator piles for other phases of the project after reviewing the Phase I indicator pile program. The piles should be driven with the same equipment that will be used for driving the production piles.

We recommend that indicator pile driving be monitored with a pile driving analyzer (PDA) to evaluate soil resistance, driving criteria, and the stresses in the pile during driving and during re-strike at least two-weeks after the indicator piles are installed. That will allow an evaluation of soil setup (increase in skin friction with time after driving) and adjustment of pile lengths if appropriate. The PDA monitoring of pile driving will also enable an evaluation of pile stresses and end bearing resistances when dense sand and gravel layers are encountered. This will support decisions of whether to drive through dense layers or stop piles short of design lengths.

6.2.4 Pile Installation

Pile driving for other projects at Bishop Ranch has experienced some ground surface heave and cracking adjacent to piles. If this occurs, the cracks adjacent to piles should be filled with a sand slurry or grout. Alternatively, if pre-drilling is used for initial pile placement and control of ground heave, the diameter of the pre-drill auger should be no greater than the pile width. The depth of pre-drilling should be limited to 15 feet or to the groundwater level.

During pile driving, our engineer or technician should be present to record blow counts and observe pile installation details so that we can respond to various conditions as they develop. In previous projects at Bishop Ranch, a small number of piles have been broken, probably as a result of trying to drive through dense sand and gravel layers, typically below depths of 30 to 40 feet. If similar conditions are encountered for this project, we should assist the design and construction team to develop appropriate remedial measures, such as replacing the broken piles or limiting driving resistance by stopping piles short of their design lengths.

We recommend that adequate measures be taken to reduce vibrations that could be felt at nearby buildings. We also recommended that a pre-construction survey be conducted before driving operations commence and establish a baseline to check for vibration impacts caused by pile driving.

6.2.5 Alternative Pile Types

Contractors could propose alternative pile types as cost saving items. In particular, auger-cast-in-place (ACIP) or auger pressure grouted (APG) piles are being used in Bay Area in competition with driven piles. We can assist in evaluating such alternative pile types if desired.

6.3 Concrete Slabs on Grade

We recommend that concrete floor slabs be supported on at least 18 inches of Select Fill over native soils as described in Section 6.1. If migration of moisture vapor through the slab would be objectionable, the upper 6 inch of Select Fill can be replaced with 6 inches of free-draining granular fill, such as ¹/₄ to ³/₄-inch crushed rock, to provide capillary moisture break. The crushed rock should be vibrated with compaction equipment to a well-keyed state. The crushed rock should be covered with a synthetic membrane at least 10 mils thick beneath the floor slab. To help provide puncture protection and to aid in slab curing, the membrane can be covered with about 2 inches of clean-washed sand.

Slab reinforcement should be provided in accordance to with the anticipated use and loading on the floor slabs. Structural requirements and/or concentrated loads will require additional reinforcing. Minor movements of the concrete slab with resulting cracking should be expected. The recommendations above, if properly implemented, should help reducing the magnitude of the cracking.

6.4 Miscellaneous Footings Foundations

For small structures and miscellaneous building appurtenances, having relatively light loads, shallow foundations can be used. Shallow spread footings or mat foundations should be founded at least 30 inches below the lowest adjacent ground on properly prepared subgrade soils. Alternatively, they can be supported near the ground surface on 18 inches of Select Fill as described in Section 6.1.4. Footings/mats located adjacent to utility trenches should have their bearing surfaces situated below an imaginary 1½:1 (horizontal to vertical) plane projected upward from the bottom of the adjacent utility trenche.

Footings/mats conforming to the above requirements could be designed using allowable bearing pressures of no greater than 2000 pounds per square foot (psf). This allowable pressure can be increases one-third for short term load conditions, including wind or seismic forces. These values are net allowable bearing capacities (the weight of the footing can be neglected. For the bearing pressures above, the settlement of the footings is expected to be less than one inch.

Resistance to lateral loads can be derived from passive resistance acting on the faces of foundation elements oriented perpendicular to the direction of loading and friction acting between the base of the foundations and the supporting subgrade. We recommend using an equivalent fluid pressure of 300 pcf to compute passive resistance. The upper 12 inches of embedment should be ignored for passive resistance calculations except where the ground is paved or covered by a slab or pavement. A friction coefficient of 0.3 applied to dead loads can be used to compute base friction. The above values include a factor of safety of 1.5.

Resistance to uplift loads can be provided by the dead load of the structure and weight of the footing plus any soil cover.

6.5 Flexible Asphalt Pavements

Traffic Index	Asphalt Cement Thickness (inches)	Class 2 ⁽¹⁾ Aggregate Base Thickness (inches)	Class 2 ⁽¹⁾ Aggregate Subbase Thickness (inches)
4	2	8.5	
	2	4	6
5	2.5	11	
_	2.5	6	6
6	3	14	
	3	7	8

We suggest the following flexible pavement structural section thicknesses.

(1) Caltrans designation

The above pavement thicknesses are based on an R-value of 5 for the clay subgrade soils (*HLA*, *Geotechnical Investigation, Bishop Ranch 1 Development, San Ramon, California*, prepared for Sunset Development Company, HLA Project 50044.1, dated May 15, 2000). We anticipate that a Traffic Index of 4 could be used for parking areas with lower traffic loads and frequencies, while Traffic Indexes of 5 and 6 would be applicable to occasional to regular heavier traffic loadings and frequencies associated with entry/access roads and truck loading areas, respectively.

Soil subgrades in asphalt-paved areas should be smooth and nonyielding. The upper six-inches should be moisture conditioned, as necessary, to greater than Optimum Moisture Content and compacted to at least 95 percent relative compaction. The subgrade should not be allowed to dry out prior to pavement construction. If soft, unstable, or saturated soils are encountered, the questionable soil should be excavated and replaced with subbase material or aggregate base material. The aggregate base and subbase should conform to the criteria specified for Class 2 Aggregate Base and Subbase in the current, adopted Caltrans Standard Specifications. The Subbase and Aggregate Base courses should be moisture conditioned to slightly above optimum moisture content and compacted to at least 95 percent relative compaction prior to placement of the Asphalt Concrete.

6.6 Corrosion Potential

On the basis of the results of resistivity, pH, and chloride and sulfate measurements on surface soils, it appears that, in general, surficial materials are very corrosive to reinforced concrete foundation elements and buried utilities. Data for onsite soils are described below. The corrosion potential for any imported select fill should also be checked.

6.6.1 Soil Resistivity

Soil resistivity is a measure of the ability of a soil to conduct electrical current. Resistivity is usually related to the amount of soluble salts in the soil. Low resistivities generally indicate more corrosive conditions. Seawater has a resistivity of about 70 ohm-cm.

A commonly used soil classification for interpretation of corrosive environments on metals is presented below.

Geotechnical Investigation, Bishop Ranch City Center Project, Parcel 1 & 1A San Ramon, California MACTEC Engineering and Consulting, Inc., Project 4096088527 MB63076_Bishop Ranch-Geotech

Soil Resistivity (ohm-cm)	Degree of Corrosivity
0 - 1000	Very corrosive
1,000 - 2,000	Corrosive
2,000 - 5,000	Fairly corrosive
5,000 - 10,000	Mildly corrosive
10,000 and above	Negligible

Another factor influencing corrosion potential is pH. Values below pH 7 indicate acidic conditions, and hence, a corrosive environment for metals and concrete.

Resistivity and pH measurements were performed on soil samples from the borings, and analyzed at field moisture contents. The test results are summarized below:

Boring	Depth (feet)	рН	Resistivity (ohm-cm)
B-1	5.0	8.72	750
B-8	5.5	7.20	830

These test results indicate that the soil samples are considered "very corrosive."

6.6.2 Sulfates and Chlorides

The concentrations of sulfate and chloride in soils can also have a corrosive effect on buried utilities and foundation elements. General correlations between sulfate and chloride concentrations and corrosivity are presented below:

Chloride Concentration (mg/kg)	Degree of Corrosivity
Over 1,500	Severe
300 - 1,500	Positive
0-300	Negligible

Sulfate Concentration (mg/kg)	Degree of Corrosivity
Over 5,000	Severe
2,000 - 5,000	Considerable
1,000 - 2,000	Positive
0-1,000	Negligible

Sulfates are increasingly corrosive to ferrous metals at concentrations above 1,000 mg/kg, and to concrete above 2,000 mg/kg. In addition to a corrosive attack that is chemical, sulfates can exhibit a physical attack on concrete at higher concentrations. Chloride does not demonstrate a physical attack on concrete, but it is corrosive to metals. Sulfate and chloride test results are summarized below:

Boring	Depth (feet)	Chloride Concentration (mg/kg)	Sulfate Concentration (mg/kg)
B-1	5.0	29.2	138.6
B-8	5.5	9.4	49,2

On the basis of the results of measurements on surface soils, the degree of corrosively from sulfate and chloride concentration is considered "negligible".

7.0 ADDITIONAL GEOTECHNICAL SERVICES DURING CONSTRUCTION

MACTEC should perform additional geotechnical consultation during design on an as-needed basis. We should review the final plans and specifications during the design to check for conformance with the intent of our geotechnical recommendations. We should also review the bid documents and bids during the Construction Administration Phase to check for items that could result in unnecessary risk of change orders during construction.

If changes are made in the project, the conclusions and recommendations presented in this report may not be applicable; therefore, we should review any changes to verify that our conclusions and recommendations are valid and modify them if required.

During construction, we should perform site visits as needed to check geotechnical aspects of the work and perform quality control testing of the following work items:

- Observe the stripping and excavation operations for proper removal of all unsuitable materials;
- Evaluate the suitability of on-site and import soils for fill placement; collect and submit soil samples for required or recommended laboratory testing where necessary;
- Review the contractor's plans for lime treatment and lime materials, as well as mixing, curing, and compacting procedures (if lime treatment is selected). Observe and test lime treated soils;
- Observe and test the exposed subgrades prior to placement of compacted fills, slabs, pavements or foundations;
- Observe and test backfilling of utility trenches;
- Observe the indicator pile driving programs and adjust pile lengths as appropriate;
- Observe the driving of production piles;

At the completion of geotechnical-related construction, we should prepare a summary report of the work we observed for submittal to building officials. TABLES

Fault	Distance	Direction	Slip Rate	Maximum
	from Site	from Site	(mm/yr)	Moment
	(kilometers)			Magnitude
Calaveras	1	WSW	6	6.8
Concord – Green Valley	14	N	6	6.9
Hayward	15	WSW	9	7.1
Greenville	16	NE	2	6.9
Great Valley	27	ENE	1.5	6.7
San Andreas	44	WSW	24	7.9
Monte Vista - Shannon	45	SW	0.4	6.5
Rodgers Creek	49	NW	9	7.0
San Gregorio	54	WSW	5	7.3
West Napa	67	NNW	1	6.5
Sargent	72	S	3	6.8
Ortigalita	80	SE	1	6.9
Point Reyes	95	WNW	0.3	6.8

Table 4-1: Major Named Faults Near the Project Site

Checked RA Approved RA

PLATES

36 33 39 40 41 41 41 41 41 41 41 41 41 41 41 41 41	6 Story Office Building	A EN-6 EN-5 Finished Floor	CL (Fill?)	430 CL (Fill?) SM		• 5	5 et, MSL Datum)	දි Elevation (Fe	SM S	CL	380 SC	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	700 Note: The existing ground elevation contours at the vacant lot north of Parce approximate and do not reflect the latest survey results by David Evar Associates (Bishop Ranch 1, As Built Topography, Lot 4, Subdivision (435 M 28), San Ramon, Contra Costa County, California. Dated April 2003)	360 LEGEND Ground water level measured during or soon a	✓ Ground water level measured from CP1. ✓ CPT tip resistance (tsf)	0 100
--	-------------------------	----------------------------	------------	-------------------	--	-----	---------------------	---------------------	---------	----	-----------	---	---	--	--	-------

APPENDIX A

BORING AND CPT LOGS FROM PREVIOUS INVESTIGATIONS

Checked <u>R/A</u> Approved <u>M74</u> Preliminary Geotechnical Exploration, San Ramon City Center, San Ramon, California, prepared for City of San Ramon, California, Prepared by ENGEO, Project 5172.001.01, dated March 29, 2001.

			9	DATE OF BORING: January 22, 2001		qu	IN PL	ACE
H (FEET)	(METERS)	ENUMBER	CATION AN	SURFACE ELEVATION: Approx. feet (meters)	BLOWS/FT.	UNCON STRENGTH (TSF)	DRY UNIT WEIGHT	MOIST. CONTENT
DEPT	DEPTH	SAMPLI	LOG, LOC TYPE O	DESCRIPTION		*FIELD PENET. APPROX.	(PCF)	% DRY WEIGHT
-0 [-			ţ				
	-1	4-1		SILTY CLAY (CH), black, damp, hard, with sand and some wood debris. (Fill)	39	+4.5*	106.8	15.8
5	F			SILTY CLAY (CL), greyish brown, abundant carbonates, hard, damp.				
	-2	4-2		SILTY SAND (SM), light olive, medium dense, damp.	26	4.5*	99.0	11.4
	-			SANDY CLAY (CL), olive, very stiff, moist.				
- 10	-3							
-	-	4-3			27	3.5*		
-	-4							
- 15	-	4.4		∑ SILTY CLAY (CL), olive brown, stiff, very moist to wet, trace	15	1 5*	90.4	21.2
	5	4-4		carbonates. SILTY CLAY (CH), dark grey, very stiff, wet.	15	1.5	90.4	51.5
-	-6							
- 20		4-5		SANDY CLAY (CL), olive brown, stiff, wet.	18			
	-7							
- 25				SILTY CLAY (CH), light olive brown, very stiff, wet, trace carbonates.				
-	-8	4-6			12			28.8
Ę	-			Bottom of boring at approximately $26^{1}/_{2}$ feet. Ground water encountered at 15 feet during drilling.				
- 30	-9							
-	-							
		ICE	\cap	SAN RAMON CITY CENTER	BORING	HO.: B-4		FIGURE NO.
	CO	RPORAT	TED	SAN RAMON, CALIFORNIA	DATE: Man	ch 2001	CHECKED BY	9

			D	DATE OF BORING: January 22, 2001		qu	IN PI	.ACE
H (FEET)	(METERS)	E NUMBER	CATION AN	SURFACE ELEVATION: Approx. feet (meters)	BLOWS/FT.	UNCON STRENGTH (TSF)	DRY UNIT WEIGHT	MOIST. CONTENT
DEPT	DEPTH	SAMPL	LOG, LOG TYPE O	DESCRIPTION		*FIELD PENET. APPROX.	(PCF)	% DRY WEIGHT
-0	1 1			SILTY CLAY (CL), black, very stiff, dry to moist, with trace hay and other debris. (Fill)				
-	-1	5-1			28	+4.5*	101.2	16.2
-5	-	5-2-1			- 30			
-	-2	5-2-2		SANDY CLAY with gravel (CL), light brown, moist, hard, poorly sorted. (Fill?)				
- 10	-3			SILTY CLAY (CL), light brown, very stiff, moist.	_	L		
-	-4	5-3		SILTY SAND (SM), olive brown, medium dense, moist.	- 43	2.0*	112.0	15.5
- 15	-			SILTY CLAY (CH), greyish brown with black mottling, stiff, wet, trace charcoal.				
-	-5	5-4			16	2.0*	93.0	30.8
-	6			Ω				
- 20 -	-	5-5		✓ Mottling changes to white.	23	3.0*		
-	-7							X
- 25	-			SILTY CLAY (CH), olive grey, very stiff, very moist.				
-	-8	5-6		×	26	2.0	94.0	29.9
- 30	-9							
	-	5-7			29	3.0*		
-	-10				-			
F	N	IGE	\cap	SAN RAMON CITY CENTER	BORINC	3 NO.: B-5		FIGURE NO.
IN	CO	RPORAT	TED	SAN RAMON, CALIFORNIA	DATE: Mar	ch 2001	CUECKEDBY	10

DEPTH (FEET)	DEPTH (METERS)	SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DATE OF BORING: January 22, 2001		qu	IN PLACE	
				SURFACE ELEVATION: Approx. feet (meters)	BLOWS/FT.	UNCON STRENGTH (TSF)	DRY UNIT WEIGHT	MOIST. CONTENT
				DESCRIPTION		*FIELD PENET. APPROX.	(PCF)	% DRY WEIGHT
-35	- -11	5-8		SANDY CLAY (CL), olive brown, hard, moist, some rust stains.	56	4.0*	114.2	17.9
- 40 - -	-12 -13	5-9		Trace charcoal.	50	4.0*		
-45 -	-14	5-10		SILTY CLAY (CL), olive brown, very stiff, very moist, with trace carbonates, fine sand.	. 26	2.5*	100.7	25.6
- 50	-15			Ground water encountered at 20 feet during drilling.				
-	-16			2				
- 55	-17						9	
- 60	-18							-
-	-19							
- 65	-20							
F	N	IGF	0	SAN RAMON CITY CENTER	BORING	G NO.: B-5	; 	FIGURE NO.
INCORPORATED			TED	SAN RAMON, CALIFORNIA	PROJ. NO.: 5172.5.001.01			10

						-	the second result to		
			9	DATE OF BORING: January 29, 2001	_	qu		IN PLACE	
(LEET)	ETERS)	UMBEF	ION AN	SURFACE ELEVATION: Approx. feet (meters)	BLOWS/FT.	STRENGTH (TSF)	DRY UNIT	MOIST. CONTENT	
DEPTH (F	DEPTH (MI	SAMPLE NI	LOG, LOCATI TYPE OF SA	DESCRIPTION		*FIELD PENET. APPROX.	WEIGHT (PCF)	% DRY WEIGHT	
-0	-			SILTY CLAY (CL) black very stiff dry to moist, with trace hav and					
-	-			other debris. (Fill)					
-5	ŀ								
-	-2			SANDY CLAY with gravel (CL), light brown, hard, moist, poorly sorted. (Fill?)					
- 10	-3			SILTY CLAY (CL), light brown, stiff, moist.					
-	-4			SILTY SAND (SM), olive brown, medium dense, moist.	-				
- 15	-5			SILTY CLAY (CH), greyish brown with black mottling, stiff, wet, trace charcoal.	-				
	-6			Σ					
-	-								
-25	É			SILTY CLAY (CH), olive grey, very stiff, very moist.					
-	-8								
- 30	-9			Grades to very stiff.		4			
-	-10								
- 35	-11			SANDY CLAY (CL), olive brown, hard, moist.					
	-12								
-	-13								
- 45	-14			SILTY CLAY (CL), olive brown, very stiff, very moist, with trace	-		6		
	-15			SILTY SAND (SM), olive brown, dense, wet, medium grained.					
F	ENCEO			SAN RAMON CITY CENTER	BORING	G NO.: B-6		FIGURE NO.	
IN	INCORPORATED			SAN RAMON, CALIFORNIA	PROJ. NO.: 5172.5.001.01			11	
				12		TRUD. NO.: 5172.5.001.01 M			
	1		1	The second se	and the second second				
----------------	----------	--------	----------------------	---	-----------------------	----------------------------	-----------------------	-------------------	
			9	DATE OF BORING: January 29, 2001		qu	IN PL	.ACE	
I (FEET)	(METERS)	NUMBER	ATION AN	SURFACE ELEVATION: Approx. feet (meters)	BLOWS/FT.	UNCON STRENGTH (TSF)	DRY UNIT WEIGHT	MOIST. CONTENT	
DEPTH	DEPTH (SAMPLE	LOG, LOC, TYPE OI	DESCRIPTION *FIELD PENET. APPROX. (PCF)		(PCF)	% DRY WEIGHT		
- 50 - -	- -16	6-1		SILTY CLAY with sand (CL), light olive brown, very stiff, wet, some chunks of carbonates, minor rust stains.	27	3.0*	99.5	26.4	
- 55 - -	-17	6-2		CLAYEY SAND with gravel (SC), brown, very dense, wet.	50/6"		126.1	12.6	
- - - 60	-18			GRAVELLY SAND (SP), greyish brown, very dense, wet.					
- - - 65	-19								
-	-20								
- 70 -	-21			Bottom of boring at approximately 70 feet. Ground water encountered at 20 feet during drilling.				24	
- 75 -	-23						2		
- - - 80	-24								
- - -	-25								
- 85 - -	-26								
90	-27								
	-28								
- 95	-29								
<u> </u>		GF	\cap	SAN RAMON CITY CENTER	BORING	NO.: B-6		FIGURE NO.	
IN	COF	RPORA	TED	SAN RAMON, CALIFORNIA	DATE: Mar	ch 2001	CUBERED BY	11	

Geotechnical Investigation, Bishop Ranch 1 Development, San Ramon, California, prepared for Sunset Development Company, Prepared by HLA, Project 50044.1, dated May 15, 2000

April 21, 2000

Mr. Ryan Shafer Harding, Lawson and Associates, Inc. 383 Fourth St Suite 300 Oakland, CA 94607

PROJECT NAME:CPT Testing at Bishop Ranch 1PROJECT NO.:50044.1

Dear Mr. Shafer:

Enclosed please find copies of the cone penetrometer testing (CPT) data for the above referenced project along with a copy of the corresponding invoice.

The cone penetrometer testing conducted for this project consisted of pushing an instrumented cone-tipped probe into the ground while simultaneously recording the resistance to penetration at the cone tip and along the friction sleeve.

The cone penetrometer testing described in this report was conducted in general accordance with the current ASTM specifications (ASTM D5778-95 and D3441-94) using an electronic cone penetrometer.

The CPT equipment operated by Holguin, Fahan & Associates, Inc. (HFA) consists of a cone assembly mounted at the end of a series of hollow sounding rods. A set of hydraulic rams is used to continuously push the cone and rods into the soil at a rate of 20-mm per second (approximately four feet per minute) while the cone tip resistance and sleeve friction resistance are recorded every 50-mm (approximately two inches) and stored in digital form. A specially designed all wheel drive 23-ton truck provides the required reaction weight for pushing the cone assembly and is also used to transport and house the test equipment.

The cone penetrometer assembly used for this project consists of a conical tip and a cylindrical friction sleeve. The conical tip has a 60° apex angle and a diameter of 35.6-mm (1.40-inch) resulting in a projected cross-sectional area of 10 cm² (1.5 square inches). The cylindrical friction sleeve is 133-mm (5.25-inch) in length and has an outside diameter of 35.8-mm (1.41-inch), resulting in a surface area of 150 cm² (23 square inches).

The interior of the cone penetrometer is instrumented with strain gauges that allow simultaneous measurement of cone tip and friction sleeve resistance during penetration. Continuous electric signals from the strain gauges are transmitted by a shielded cable in the sounding rods to the PC-based data acquisition hardware in the CPT truck. The sounding log is also displayed on a monitor.

ENVIRONMENTAL: SCIENTISTS • GEOLOGISTS • ENGINEERS Contaminated Site Assessments • Phase LAudits • Site Remediation • Hazardous Waste Management

14.1 South Egocion Stort Venum, Catomia (* 3001 (805) 052 0249 (805) 052 07941 VX Internet, arst 1850 014 (00) 5940 Lokesnor 1950 v 1968s Vollothia (96340 7545 2064744 7545 20647451 XX merger 985 asserted Director 2826 Pegasus (0.57) Suite : Banersheur (antathae) (168) (0.67) 0.0517 (art 191.0826) VX memet (0.81) astuk (0.67) V accession 4501 Survey, Sone Cell Process, Arzenia S5015
 scor, 78002400 - 36024 (201000)
 oct2 (2000111) FAX
 laterney acts insteph till corre

The CPT data processing is performed using the truck mounted computer based data acquisition and presentation system. The computer generated graphical logs include cone resistance, friction resistance, friction ratio, and pore pressure ratio versus depth at a user selectable scale.

Soil behavior type interpretations are based on the following reference: Robertson, P.K. and Campanella, R.C., 1989, "Guidelines for Geotechnical Design using the Cone Penetrometer Test and CPT with Pore Pressure Measurement." Soil Mechanics series No. 120, Civil Engineering Department, University of British Columbia, Vancouver, B.C., V6T 1Z4, September 1989.

Interpretations and plotting has been done using HFA's proprietary data interpretation and presentation software. It is important to note that the data is not averaged. All interpretations are point interpretations at the corresponding depth listed.

It is also important to note that the soil behavior type correlations are based on a combination of theory, field research, research performed under laboratory conditions, and literature review. The information presented in the tabulated and/or graphical logs should, therefore, be viewed as a guideline rather than as precise measurements.

Some care is recommended when using the soil behavior type interpretations. If a tabulation depth happens to fall on a soil layer interface, or a seam of soil differing from the rest of the layer, the tabulated data can be misleading. The solution to this problem is the proper use of the graphical CPT logs. The tip and sleeve penetration resistance logs are the primary source of profile description; the soil behavior type logs are supplemental. The graphical logs of tip and sleeve resistance should be examined and layer boundaries delineated in accordance with the project requirements. The soil behavior type interpretations are only representative of the response of the soil to the large shear deformations imposed during cone penetration. This is not necessarily a prediction of grain size distribution. However, it has been found that the interpreted soil behavior types generally agree well with the soil types defined in accordance distribution methods such as used in the Unified Soil Classification System.

Limitations

Holguin, Fahan & Associates, Inc. (HFA) presents the attached data in accordance with ASTM Standards D5778-95 and D3441-94 and generally accepted cone penetrometer testing practices and standards. The attached data further relates only to the specific project and location discussed in the data. Judgement may be required to verify the CPT soil behavior interpretations.

Mr. Ryan Shafer Harding, Lawson and Associates, Inc. April 21, 2000 - Page 3

ENVIRONMENTAL MANAGEMENT CONSULTANTS

The "Client" may distribute this data or excerpts therefrom provided the following statement is prominently displayed and included with the distribution:

"Neither CLIENT nor HFA make any guarantee or warranty, express or implied, regarding this data. THE USE OF THIS INFORMATION SHALL BE AT THE USER'S SOLE RISK REGARDLESS OF ANY FAULT OR NEGLIGENCE OF THE CLIENT OR HFA."

Please feel free to call if you have any questions.

Respectfully submitted,

Dich Carlton

Dick Carlton CPT Operations Manager Holguin, Fahan & Associates, Inc.

:DC\Enclosures

.

.

5+

* *		CPT INTERPR	ETATIONS	*
*				*
*	SOUNDING : HI	A-1	PROJECT No.: 50044.1	*
*	PROJECT : HI	A/BISHOP RH 1	CONE/RIG : 491/BH, VO/R#4	*
+	DATE/TIME: 04	-13-00 07:51		*
+	DRID/ 11120			*
**	*****	*****	*****	**
	_		PAGE 1 of	4

DEPTH	DEPTH	TIP RESISTANCE	RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tst)	(Degrees)
150	40	71 51	4.83	*VERY STIFF FINE GRAINED	72	100			
. 150	.47	35 48	5 29	CLAY	35	57		2.1	
.500	1 /8	0 71	5 33	CLAY	10	16		.6	
.450	1.40	7 22	5 93	CLAY	7	12		.5	
.000	2.16	16 40	6 82	CLAY	14	23		1.0	
.750	2.40	20 46	7 10	CLAY	20	33		1.4	
1.050	2.93	20.40	7 18	CLAY	21	33		1.4	
1.050	3.44	10 80	7 86	CLAY	20	32		1.3	
1.200	5.94	77 88	5 57	CLAY	23	37		1.3	
1.350	4.45	1/ 74	6 07	CLAY	14	23		.9	
1.500	4.92	14.30	7 12	CLAY	12	19		.8	
1.650	5.41	11.90	/ 17	CLAY to STITY CLAY	16	23		14	
1.800	5.91	21.54	4.12	CLAT LO SILIT CLAT	17	10		8	
1.950	6.40	11.75	5.15	CLAT	10	17		.0	
2.100	- 6.89	10.57	5.05	CLAI	0	1/		- 6	
2.250	7.38	9.09	0.4/	CLAT	1/	22			
2.400	7.87	14.04	4.45	CLAY	14	22		1 0	
2.550	8.37	15.70	4.95	CLAY	10	24		1.0	
2.700	8.86	14.74	5.16	CLAY	15	22		7.5	
2.850	9.35	53.47	3.02	SANDY SILT to CLAYEY SILT	21	32		3.3	
3.000	9.84	10.75	4.39	CLAY	11	16		- (
3.150	10.33	9.79	4.09	CLAY	10	14		.0	
3.300	10.83	8.37	4.44	CLAY	8	12		.5	
3.450	11.32	7.10	3.98	CLAY	7	10		-4	
3.600	11.81	6.99	4.86	CLAY	7	10		.4	
3.750	12.30	8.35	4.84	CLAY	8	12		.5	
3.900	12.80	13.43	4.86	CLAY	13	18		.8	
4.050	13.29	12.96	6.37	CLAY	13	17		.8	
4.200	13.78	13.24	5.04	CLAY	13	18		.8	
4.350	14.27	11.13	5.60	CLAY	11	15		.7	
4.500	14.76	40.94	4.51	CLAY to SILTY CLAY	27	36		2.4	
4 650	15.26	28.66	3.82	CLAY to SILTY CLAY	19	25		1.9	
4 800	15 75	11.60	4.28	CLAY	12	15		.7	
4.050	16 24	12.87	3.82	CLAY	13	16		.8	
5 100	16 73	14 68	4.03	CLAY	15	18		.9	
5 250	17 22	13 94	4 16	CLAY	14	17		.9	
5.200	17 72	12 30	4 33	CLAY	12	15		.8	
5.400	19 21	15 15	4 34	CLAY	15	19		.9	
5.300	10.21	20 14	5 27	CLAY	20	24		1.1	
5.700	10.10	15 11	5 45	CLAY	15	18		.9	
0.000	10 (0	17.11	2 05	SANDY STIT TO CLAYEY STIT	10	23		3.1	
6.000	19.09	10 25	/ 99	CIAY	10	23		12	
0.150	20.18	19.25	4.00	CLAI	1.7	25		1.00	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL
ASSUMED TOTAL UNIT WT = 110 pcf
ASSUMED DEPTH OF WATER TABLE = 7.5 ft
N(60) = EQUIVALENT SPT VALUE (60% Energy)
N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy)
Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY
Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH
PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

(m) (t) (tsf) (x) (tsf) (upgrees) 6.300 20.67 17.95 6.12 CLAY 18 21 1.1 6.400 21.65 18.65 6.22 CLAY 19 22 1.0 6.700 22.64 17.46 5.47 CLAY 19 22 1.1 6.900 22.64 17.46 5.47 CLAY 17 20 1.1 7.050 23.13 17.17 5.40 CLAY 17 19 1.1 7.200 23.62 14.00 5.38 CLAY 15 16 .9 7.800 25.19 19.76 5.13 CLAY 21 23 1.3 8.100 26.57 22.50 5.24 CLAY 21 23 1.3 8.200 27.05 21.33 4.76 CLAY 21 23 1.3 8.400 27.56 21.33 4.76 CLAY 21 <t< th=""><th>DEPTH</th><th>DEPTH</th><th>TIP RESISTANCE</th><th>FRICTION RATIO</th><th>SOIL BEHAVIOR TYPE</th><th>N(60)</th><th>N1(60)</th><th>Dr</th><th>Su</th><th>PHI</th></t<>	DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
1.1.1 1.1.1 1.1 6.4300 20.67 17.95 6.12 CLAY 18 21 1.1 6.460 21.16 17.97 5.91 CLAY 18 21 1.1 6.400 22.15 18.06 5.40 CLAY 18 21 1.1 6.750 22.15 18.06 5.40 CLAY 18 21 1.1 7.050 24.61 17.46 5.47 CLAY 17 19 1.1 7.200 23.62 14.00 5.38 CLAY 15 16 .8 7.350 24.61 14.98 4.51 CLAY 15 16 .9 7.600 25.10 15.02 5.50 CLAY 21 23 1.3 8.100 26.05 21.35 4.45 CLAY 25 26 1.2 8.200 27.07 21.20 5.24 CLAY 21 23 1.3 8.400 <th>(m)</th> <th>(ft)</th> <th>(tsf)</th> <th>(%)</th> <th></th> <th></th> <th></th> <th>(%)</th> <th>(tst)</th> <th>(Degrees)</th>	(m)	(ft)	(tsf)	(%)				(%)	(tst)	(Degrees)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20 47	17.05	6 12		18	21		1.1	
0.430 21.165 11.71 5.75 $CLAY$ 10 22 1.0 6.750 22.15 18.06 5.40 $CLAY$ 18 21 1.1 7.050 22.64 17.46 5.47 $CLAY$ 17 20 1.1 7.050 24.64 17.46 5.43 $CLAY$ 12 13 $.7$ 7.050 24.61 14.96 4.51 $CLAY$ 15 16 $.9$ 7.050 24.61 14.96 4.51 $CLAY$ 21 23 1.3 7.050 24.61 14.96 4.51 $CLAY$ 21 23 1.3 8.100 26.57 22.50 5.24 $CLAY$ 21 23 1.3 8.250 27.07 21.20 4.76 $CLAY$ 21 23 1.3 8.400 27.56 5.24 $CLAY$ 21 23 1.3 8.450 29.00 25.17 4.37 $CLAY$	6.500	20.01	17 07	5 01	CLAY	18	21		1.1	
	0.450	21.10	10.45	4 77	CLAY	10	22		1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.600	21.05	10.00	5.22	CLAT	18	21		1 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.750	22.15	18.00	5.40	CLAT	17	20		1 1	
7.050 25.13 11.17 9.40 CLAY 17 17 17 17 7.200 25.62 14.00 5.38 CLAY 12 13 .7 7.500 24.61 14.98 4.51 CLAY 15 16 .9 7.650 25.10 15.02 5.50 CLAY 20 22 1.2 7.950 26.08 21.05 5.24 CLAY 21 23 1.3 8.100 26.57 22.50 27.7 CLAY 21 23 1.3 8.400 27.56 21.33 4.95 CLAY 21 23 1.3 8.400 27.56 21.33 4.95 CLAY 21 23 1.3 8.400 27.56 21.33 4.95 CLAY 21 23 1.3 8.500 20.04 25.43 5.12 CLAY 27 28 1.6 9.150 30.22 5.48 CLAY 33 34 1.6 9.150 30.02 27.35 5.89	6.900	22.64	17.40	5.4/	CLAT	17	10		1 1	
7.200 23.62 14.00 5.36 CLAY 14 16 -5 7.350 24.61 14.98 4.51 CLAY 15 17 .9 7.500 25.10 15.02 5.50 CLAY 15 16 .9 7.600 25.59 19.76 5.13 CLAY 20 22 1.2 7.950 26.08 21.05 4.61 CLAY 21 23 1.3 8.100 25.57 21.05 5.24 CLAY 21 23 1.3 8.260 27.66 21.33 4.95 CLAY 21 23 1.3 8.400 27.66 21.33 4.95 CLAY 17 18 1.4 8.700 28.42 3.24 4.09 CLAY 25 26 1.4 9.000 29.53 28.00 5.01 CLAY 28 29 1.6 9.150 30.02 27.36 5.68 CLAY 30 31 1.7 9.460 31.50 34.44 CLAY <td>7.050</td> <td>23.13</td> <td>17-17</td> <td>5.40</td> <td>CLAT</td> <td>17</td> <td>16</td> <td></td> <td>1.1</td> <td></td>	7.050	23.13	17-17	5.40	CLAT	17	16		1.1	
7.35024.1111.925.43LLAY1213.17.50025.46115.025.50LLAY1516.97.60025.5919.765.13LLAY20221.27.95026.0821.054.61LLAY21231.38.10026.5722.505.24CLAY21231.38.40027.5621.334.95CLAY21231.38.40027.5621.334.95CLAY17181.48.50028.0525.774.37CLAY to SILTY CLAY17181.48.70028.5423.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY28291.69.00029.5328.005.01CLAY27281.59.30030.0227.365.89CLAY30311.79.45031.0033.105.38CLAY30311.79.45031.9926.304.48CLAY to SILTY CLAY18181.49.90032.4815.704.35CLAY18181.49.90032.4618.444.64CLAY18181.49.90031.9926.304.48CLAY to SILTY CLAY18181.49.90032.4815.704.35CLAY1111.0 <td>7.200</td> <td>23.62</td> <td>14.00</td> <td>5.30</td> <td>CLAT</td> <td>12</td> <td>10</td> <td></td> <td>.0</td> <td></td>	7.200	23.62	14.00	5.30	CLAT	12	10		.0	
7.50024.6114.984.51LLAT1516.97.65025.1015.025.50LLAY20221.27.80025.9919.765.13CLAY21231.38.10026.5722.505.24CLAY21231.38.10026.5721.534.95CLAY21231.38.40027.5621.334.95CLAY21231.38.50025.774.37CLAY to SILTY CLAY17181.48.70025.5423.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY28291.69.15030.0227.365.89CLAY27281.59.30030.5130.325.68CLAY30311.79.46031.5036.844.55CLAY33341.89.60032.7717.883.84CLAY to SILTY CLAY25252.19.75031.0926.304.48CLAY to SILTY CLAY18181.49.90032.4815.704.35CLAY to SILTY CLAY18181.49.90032.4513.004.35CLAY to SILTY CLAY18181.49.90032.4618.444.46CLAY to SILTY CLAY18181.410.05033.4618.444.46CLA	7.350	24.11	11.92	5.45		12	13		.,	
7.65025.1015.025.501.1AT1515177.80025.5919.765.131.1AT20221.27.95026.0821.054.611.1AT21231.38.10026.5722.505.24CLAY231.38.40027.5621.334.95CLAY21231.38.40027.5621.334.95CLAY21231.38.40027.5621.37CLAY to SILTY CLAY15161.48.70028.5423.244.09CLAY to SILTY CLAY15161.49.00029.5328.005.01CLAY25261.49.00029.5328.005.01CLAY27281.59.10030.5130.325.68CLAY27281.59.10031.5036.844.55CLAY30311.79.45031.0033.105.38CLAY30311.79.60032.4815.704.35CLAY18181.49.00032.4815.704.35CLAY18181.49.00032.4815.743.54CLAY18181.49.00032.4815.743.5CLAY1616.90.15036.4531.004.43CLAY18181.40.50032.67 <td< td=""><td>7.500</td><td>24-61</td><td>14.98</td><td>4.51</td><td>LLAT</td><td>15</td><td>16</td><td></td><td>.7</td><td></td></td<>	7.500	24-61	14.98	4.51	LLAT	15	16		.7	
7.80025.9919.765.13LLAY20221.28.10026.0821.054.61LLAY21231.38.10026.5722.505.24CLAY21231.38.25027.0721.204.76CLAY21231.38.55028.0525.794.37CLAY to SILTY CLAY17181.48.70028.5423.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY25261.69.15030.0227.365.89CLAY27281.59.30030.5130.325.68CLAY33341.89.45031.0033.105.38CLAY33341.89.45031.0033.105.38CLAY33341.89.46031.5036.844.55CLAY18181.49.00032.4815.704.35CLAY18181.49.00032.4315.704.35CLAY18181.110.20033.4618.444.46CLAY18181.110.20033.4618.444.46CLAY18181.110.20034.6531.004.80CLAY18181.110.20034.645.25CLAY27261.510.500 <t< td=""><td>7.650</td><td>25.10</td><td>15.02</td><td>5.50</td><td>LLAT</td><td>20</td><td>10</td><td></td><td>1 2</td><td></td></t<>	7.650	25.10	15.02	5.50	LLAT	20	10		1 2	
7,95026.0821.054.01CLM2123241.28.10026.5722.505.24CLAY21231.38.40027.5621.334.95CLAY21231.38.55028.0525.794.37CLAY to SILTY CLAY17181.48.70028.5425.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY25261.49.00029.5328.005.01CLAY27281.59.15030.0227.365.89CLAY27281.59.50030.5130.325.68CLAY30311.79.45031.0033.105.38CLAY30311.79.60031.5036.844.55CLAY to SILTY CLAY25252.19.75031.9926.304.48CLAY to SILTY CLAY18181.49.00032.4815.704.35CLAY18181.110.20033.461.844.46CLAY18181.110.30333.9426.945.25CLAY31301.710.65034.9461.784.35CLAY18181.110.30439.375.93CLAY31301.710.50334.9426.172261.51.51.5	7.800	25.59	19.76	5.13	CLAF	20	22		1 3	
8.10026.5722.505.24CLAY231.38.25027.0721.204.76CLAY21231.38.40027.5621.334.95CLAY21231.38.55028.0525.794.37CLAY to SILTY CLAY17181.48.70028.5421.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY25261.49.00029.5328.005.01CLAY28291.69.15030.0227.365.89CLAY30311.79.45031.0033.105.38CLAY33341.89.60031.5036.844.55CLAY to SILTY CLAY25252.19.75031.9926.304.46CLAY to SILTY CLAY18181.49.00032.4815.704.35CLAY18181.110.20033.461.844.46CLAY18181.110.30034.643.45CLAY27261.51.710.50034.946.0784.35CLAY30293.510.80035.4339.375.93CLAY39382.210.50034.946.0784.35CLAY39382.210.50034.946.0784.35CLAY39364.3<	7.950	26.08	21.05	4.61	CLAT	21	25	23	1.5	
8.250 27.07 21.20 4.76 CLAY 21 23 1.3 8.400 27.56 21.33 4.95 CLAY 17 18 1.4 8.500 28.05 25.79 4.37 CLAY to SILTY CLAY 15 16 1.4 8.700 28.54 23.24 4.09 CLAY to SILTY CLAY 25 26 1.4 9.000 29.53 28.00 5.01 CLAY 25 26 1.4 9.000 30.51 30.32 5.68 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY 30 31 1.7 9.460 31.50 36.84 4.45 CLAY to SILTY CLAY 18 18 1.4 9.600 32.48 15.70 4.35 CLAY 12 11 1.0 10.050 32.97 17.38 3.84 CLAY to SILTY CLAY 18 18 1.7 10.500 34.94 60.78 4.35 CLAY to SILTY CLAY 30 29 35	8.100	26.57	22.50	5.24	CLAY	23	24		1.2	
8.40027.5621.334.95CLAYCLAY21231.38.50028.0525.794.37CLAY to SILTY CLAY17181.48.70028.5423.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY25261.49.00029.5328.005.01CLAY28291.69.15030.0227.365.89CLAY30311.79.45031.0033.105.38CLAY33341.89.60031.505.644.45CLAY to SILTY CLAY25252.19.75031.9926.304.48CLAY to SILTY CLAY18181.49.60032.4815.704.35CLAY1616.910.05032.9717.383.84CLAY to SILTY CLAY12111.010.50034.4531.004.80CLAY31301.710.65034.9460.784.35CLAY31301.710.65034.9460.784.35CLAY31301.710.65034.9461.782.72261.51.510.80035.4339.375.93CLAY31301.710.65034.9460.784.24CLAYEY SILT to SILTY CLAY38364.311.1006.4221.924.5	8.250	27.07	21.20	4.76	CLAY	21	25		1.5	
8.55028.0525.794.37CLAY to SILTY CLAY17181.48.70028.5425.244.09CLAY to SILTY CLAY15161.48.85029.0425.435.12CLAY25261.69.15030.0227.365.89CLAY27281.59.45031.0033.105.38CLAY33341.89.60031.5036.844.55CLAY to SILTY CLAY18181.49.70032.4815.704.35CLAY to SILTY CLAY18181.49.90032.4815.704.35CLAY to SILTY CLAY12111.010.05032.9717.383.84CLAY to SILTY CLAY12111.010.20033.4618.444.46CLAY18181.110.50034.4531.004.80CLAY31301.710.65034.9460.784.35CLAY39382.210.80035.439.375.93CLAY39382.210.80035.9375.484.24CLAYEY SILT to SILTY CLAY39382.211.25036.9126.025.02CLAY261.51.511.25037.8927.834.18CLAY15141.311.25037.8927.834.18CLAY26251.411.40037.40 <td< td=""><td>8.400</td><td>27.56</td><td>21.33</td><td>4.95</td><td>CLAY</td><td>21</td><td>25</td><td></td><td>1.5</td><td></td></td<>	8.400	27.56	21.33	4.95	CLAY	21	25		1.5	
8.700 28.54 25.24 4.09 CLAY to SILIY CLAY 15 16 1.4 8.850 29.04 25.43 5.12 CLAY 25 26 1.4 9.000 29.53 28.00 5.01 CLAY 28 29 1.6 9.150 30.02 27.36 5.89 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY 33 34 1.8 9.600 31.50 36.84 4.55 CLAY to SILTY CLAY 33 34 1.8 9.750 31.99 26.30 4.43 CLAY to SILTY CLAY 18 18 1.4 9.900 32.48 15.70 4.35 CLAY to SILTY CLAY 18 18 1.1 10.200 33.46 8.44 4.46 CLAY 27 26 1.5 10.500 34.94 60.78 4.35 CLAY 31 30 1.7 10.650 35.93 75.48 4.24 CLAY to SILTY CLAY 39 38 2.2	8.550	28.05	25.79	4.37	CLAY to SILTY CLAY	17	18		1-4	
8.850 29.04 25.43 5.12 CLAY 25 26 1.4 9.000 29.53 28.00 5.01 CLAY 27 28 1.5 9.150 30.02 27.36 5.89 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY 33 34 1.8 9.600 31.50 36.84 4.55 CLAY to SILTY CLAY 25 25 2.1 9.750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9.900 32.48 15.70 4.35 CLAY 16 16 .9 10.050 32.97 17.38 3.84 CLAY 12 11 1.0 10.350 34.46 18.44 4.46 CLAY 31 30 1.7 10.500 34.45 31.00 4.35 CLAY 31 30 1.7 10.500 34.94 60.78 4.35 CLAY 39 38 2.2 10.500 35.93	8.700	28.54	23.24	4.09	CLAY to SILTY CLAY	15	16		1.4	
9.000 29.53 28.00 5.01 CLAY 28 29 1.5 9.150 30.02 27.36 5.89 CLAY 30 31 1.7 9.300 30.51 30.32 5.68 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY SILTY CLAY 25 25 2.1 9.750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9.700 32.48 15.70 4.35 CLAY 121 1.0 10.200 33.46 18.44 4.46 CLAY 18 18 1.1 10.200 33.46 18.44 4.46 CLAY 31 30 1.7 10.200 33.46 18.44 4.46 CLAY 31 30 1.7 10.200 34.45 31.00 4.83 CLAY 31 30 1.7 10.500 34.45 39.37 5.93 CLAY 31 30 2.7 10.500 35.45 <	8.850	29.04	25.43	5.12	CLAY	25	26		1.4	
9.150 30.02 27.36 5.89 CLAY 27 28 15 9.300 30.51 30.32 5.68 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY 33 34 1.8 9.450 31.99 26.30 4.48 CLAY to SILTY CLAY 25 25 2.1 9.750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9.700 32.48 15.70 4.35 CLAY 12 11 1.0 10.050 32.97 17.38 3.84 CLAY 18 18 1.1 10.350 33.46 18.44 4.46 CLAY 18 18 1.1 10.350 34.45 31.00 4.80 CLAY 31 30 1.7 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.800 35.43	9.000	29.53	28.00	5.01	CLAY	28	29		1.0	
9.300 30.51 30.22 5.68 CLAY 30 31 1.7 9.450 31.00 33.10 5.38 CLAY 33 34 1.8 9.600 31.50 5.38 CLAY to SILTY CLAY 25 25 2.1 9.750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9.000 32.48 15.70 4.35 CLAY to SILTY CLAY 12 11 1.0 10.050 32.46 18.44 4.46 CLAY 18 18 1.1 10.200 33.46 18.44 4.46 CLAY 18 18 1.1 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.500 34.45 31.00 4.83 CLAY 31 30 1.7 10.500 35.43 39.37 5.93 CLAY 39 38 2.2 10.505 35.93 <t< td=""><td>9.150</td><td>30.02</td><td>27.36</td><td>5.89</td><td>CLAY</td><td>27</td><td>28</td><td></td><td>1.5</td><td></td></t<>	9.150	30.02	27.36	5.89	CLAY	27	28		1.5	
9,450 31,00 33.10 5.38 CLAY 53 34 1.8 9,600 31.50 36.84 4.55 CLAY to SILTY CLAY 25 25 2.1 9,750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9,900 32.48 15.70 4.35 CLAY to SILTY CLAY 12 11 1.0 10.050 32.97 17.38 3.84 CLAY to SILTY CLAY 18 18 1.1 10.200 33.46 18.44 4.46 CLAY 18 18 1.1 10.200 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAY 39 38 2.2 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAY 39 38 2.2 10.50 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 39 36 4.3	9.300	30.51	30.32	5.68	CLAY	30	31		1.7	
9.600 31.50 36.84 4.55 CLAY to SILTY CLAY 25 25 2.1 9.750 31.99 26.30 4.48 CLAY to SILTY CLAY 18 18 1.4 9.750 32.48 15.70 4.35 CLAY to SILTY CLAY 18 18 1.4 9.900 32.46 18.44 4.46 CLAY 12 11 1.0 10.200 33.46 18.44 4.46 CLAY 18 18 11 10.500 34.45 31.00 4.80 CLAY 27 26 1.5 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAY to SILTY CLAY 15 14 1.3 11.100 36.42 21.92 4.35 CLAY to SILTY CLAY 15 14 1.5 11.50 37.89 31.65 7.55 CLAY 28 26 1.5	9.450	31.00	33.10	5.38	CLAY	33	34		1.8	
9.75031.9926.304.48CLAY to SILTY CLAY18181.49.90032.4815.704.35CLAY1616.910.05032.9717.383.84CLAY to SILTY CLAY12111.010.20033.4618.444.46CLAY18181.110.35033.9626.945.25CLAY27261.510.65034.4531.004.80CLAY31301.710.65034.9460.784.35CLAYF SILT to SILTY CLAY30293.510.80035.4339.375.93CLAY39382.210.95035.9375.484.24CLAYFY SILT to SILTY CLAY39382.211.25036.9126.025.62CLAY26251.411.40037.4027.625.02CLAY28261.511.40037.4027.625.02CLAY32301.711.85038.8878.144.01CLAYFY SILT to SILTY CLAY19171.511.70039.3724.984.01CLAYFY SILT to SILTY CLAY39364.512.00039.3724.984.01CLAY to SILTY CLAY17151.512.15039.8615.813.78CLAY to SILTY CLAY39364.512.00040.3516.493.52CLAY to SILTY CLAY1110	9.600	31.50	36.84	4.55	CLAY to SILTY CLAY	25	25		2.1	
9.900 32.48 15.70 4.35 CLAY 16 16 .9 10.050 32.97 17.38 3.84 CLAY to SILTY CLAY 12 11 1.0 10.200 33.46 18.44 4.46 CLAY 18 18 1.1 10.350 33.96 26.94 5.25 CLAY 27 26 1.5 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 30 29 3.5 10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY 26 25 1.4 11.400 37.40 27.82 4.18 CLAY to SILTY CLAY 19 17 1.5 11.400 37.49 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5	9.750	31.99	26.30	4.48	CLAY to SILTY CLAY	18	18		1.4	
10.050 32.97 17.38 3.84 CLAY to SILTY CLAY 12 11 1.0 10.200 33.46 18.44 4.46 CLAY 18 18 11 10.350 33.96 26.94 5.25 CLAY 27 26 1.5 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 30 29 3.5 10.800 55.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.550 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 39 36 4.5 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.4 12.500 41.34 22.77 <	9.900	32.48	15.70	4.35	CLAY	16	16		.9	
10.20033.4618.444.46CLAY18181.110.35033.9626.945.25CLAY27261.510.50034.4531.004.80CLAY31301.710.65036.9460.784.35CLAY30293.510.60035.4339.375.93CLAY39382.210.95035.9375.484.24CLAYEY SILT to SILTY CLAY38364.311.10036.4221.924.35CLAY to SILTY CLAY38364.311.25036.9126.025.62CLAY26251.411.40037.4027.625.02CLAY28261.511.50038.3931.657.55CLAY32301.711.55038.8878.144.01CLAYEY SILT to SILTY CLAY19171.511.70038.3931.657.55CLAY32301.711.85038.8878.144.01CLAYEY SILT to SILTY CLAY17151.512.15039.8615.813.78CLAY to SILTY CLAY17151.512.30040.3517.654.56CLAY1110.912.45040.8517.654.56CLAY18161.012.45040.8517.654.56CLAY23211.412.90042.3224.75<	10.050	32.97	17.38	3.84	CLAY tO SILTY CLAY	12	11		1.0	
10.350 33.96 26.94 5.25 CLAY 27 26 1.5 10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 30 29 3.5 10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 19 17 1.5 11.500 38.39 31.65 7.55 CLAY 19 17 1.5 11.500 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.500 38.88 78.14 4.01 CLAY to SILTY CLAY 19 17 1.5	10.200	33.46	18.44	4.46	CLAY	18	18		1.1	
10.500 34.45 31.00 4.80 CLAY 31 30 1.7 10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 30 29 3.5 10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY 26 25 1.4 11.250 36.91 26.02 5.62 CLAY 28 26 1.5 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.500 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 26.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10	10.350	33.96	26.94	5.25	CLAY	27	26		1.5	
10.650 34.94 60.78 4.35 CLAYEY SILT to SILTY CLAY 30 29 3.5 10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY to SILTY CLAY 15 14 1.3 11.250 36.91 26.02 5.62 CLAY 28 26 1.5 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.500 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.140 39.36 15.81 3.76 CLAY to SILTY CLAY <t< td=""><td>10.500</td><td>34.45</td><td>31.00</td><td>4.80</td><td>CLAY</td><td>31</td><td>30</td><td></td><td>1.7</td><td></td></t<>	10.500	34.45	31.00	4.80	CLAY	31	30		1.7	
10.800 35.43 39.37 5.93 CLAY 39 38 2.2 10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY to SILTY CLAY 15 14 1.3 11.250 36.91 26.02 5.62 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.500 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAY to SILTY CLAY 19 17 1.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 11 10 1.0<	10.650	34.94	60.78	4.35	CLAYEY SILT to SILTY CLAY	30	29		3.5	
10.950 35.93 75.48 4.24 CLAYEY SILT to SILTY CLAY 38 36 4.3 11.100 36.42 21.92 4.35 CLAY to SILTY CLAY 15 14 1.3 11.250 36.91 26.02 5.62 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.500 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16	10.800	35.43	39.37	5.93	CLAY	39	38		2.2	
11.100 36.42 21.92 4.35 CLAY to SILTY CLAY 15 14 1.3 11.250 36.91 26.02 5.62 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.500 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAYEY SILT CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 11 10 1.4 <td>10.950</td> <td>35.93</td> <td>75.48</td> <td>4.24</td> <td>CLAYEY SILT to SILTY CLAY</td> <td>38</td> <td>36</td> <td></td> <td>4.3</td> <td></td>	10.950	35.93	75.48	4.24	CLAYEY SILT to SILTY CLAY	38	36		4.3	
11.250 36.91 26.02 5.62 CLAY 26 25 1.4 11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.550 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 19 17 1.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 5.05 CLAY 23 21 1.4 </td <td>11.100</td> <td>36.42</td> <td>21.92</td> <td>4.35</td> <td>CLAY to SILTY CLAY</td> <td>15</td> <td>14</td> <td></td> <td>1.3</td> <td></td>	11.100	36.42	21.92	4.35	CLAY to SILTY CLAY	15	14		1.3	
11.400 37.40 27.62 5.02 CLAY 28 26 1.5 11.550 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 <t< td=""><td>11.250</td><td>36.91</td><td>26.02</td><td>5.62</td><td>CLÁY</td><td>26</td><td>25</td><td></td><td>1.4</td><td></td></t<>	11.250	36.91	26.02	5.62	CLÁY	26	25		1.4	
11.550 37.89 27.83 4.18 CLAY to SILTY CLAY 19 17 1.5 11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 17 15 1.5 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 .9 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 <t< td=""><td>11,400</td><td>37.40</td><td>27.62</td><td>5.02</td><td>CLAY</td><td>28</td><td>26</td><td></td><td>1.5</td><td></td></t<>	11,400	37.40	27.62	5.02	CLAY	28	26		1.5	
11.700 38.39 31.65 7.55 CLAY 32 30 1.7 11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY EXPENDING CLAY 17 15 1.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 23 20 <	11.550	37.89	27.83	4.18	CLAY to SILTY CLAY	19	17		1.5	3
11.850 38.88 78.14 4.01 CLAYEY SILT to SILTY CLAY 39 36 4.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 <t< td=""><td>11 700</td><td>38.39</td><td>31.65</td><td>7.55</td><td>CLAY</td><td>32</td><td>30</td><td></td><td>1.7</td><td></td></t<>	11 700	38.39	31.65	7.55	CLAY	32	30		1.7	
12.000 39.37 24.98 4.01 CLAY to SILTY CLAY 17 15 1.5 12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 23 20 1.4 13.300 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 44.29 23.79 4.47 CLAY 24 21 1.4	11 850	38.88	78.14	4.01	CLAYEY SILT to SILTY CLAY	39	36		4.5	
12.150 39.86 15.81 3.78 CLAY to SILTY CLAY 11 10 .9 12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 <td>12 000</td> <td>39.37</td> <td>24.98</td> <td>4.01</td> <td>CLAY to SILTY CLAY</td> <td>17</td> <td>15</td> <td></td> <td>1.5</td> <td></td>	12 000	39.37	24.98	4.01	CLAY to SILTY CLAY	17	15		1.5	
12.300 40.35 16.49 3.52 CLAY to SILTY CLAY 11 10 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.650 44.29 23.79 4.47 CLAY 24 21 1.4 13.650	12 150	39.86	15.81	3.78	CLAY tO SILTY CLAY	11	10		.9	
12.450 40.85 17.65 4.56 CLAY 18 16 1.0 12.450 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.050 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 23 20 1.4 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	12 300	40.35	16.49	3.52	CLAY to SILTY CLAY	11	10		1.0	
12.600 41.34 22.77 2.87 CLAYEY SILT to SILTY CLAY 11 10 1.4 12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 23 20 1.4 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	12 450	40.85	17.65	4.56	CLAY	18	16		1.0	
12.750 41.83 23.03 4.46 CLAY 23 21 1.4 12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 23 20 1.4 13.500 44.29 23.79 4.47 CLAY 21 19 1.1 13.600 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	12 600	41 34	22.77	2.87	CLAYEY SILT tO SILTY CLAY	11	10		1.4	
12.900 42.32 24.75 5.05 CLAY 25 22 1.3 13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	12 750	41.83	23.03	4.46	CLAY	23	21		1.4	
13.050 42.81 25.05 5.00 CLAY 25 22 1.3 13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	12 000	42 32	24.75	5.05	CLAY	25	22		1.3	
13.200 43.31 22.90 4.63 CLAY 23 20 1.4 13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	13 050	42 81	25.05	5.00	CLAY	25	22		1.3	
13.350 43.80 20.97 5.07 CLAY 21 19 1.1 13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT to SILTY CLAY 55 48 6.4	13 200	43 31	22 90	4.63	CLAY	23	20		1.4	
13.500 44.29 23.79 4.47 CLAY 24 21 1.4 13.650 44.78 110.47 4.12 CLAYEY SILT tO SILTY CLAY 55 48 6.4	13 350	43 80	20.97	5.07	CLAY	21	19		1.1	
13.650 44.78 110.47 4.12 CLAYEY SILT tO SILTY CLAY 55 48 6.4	13 500	44 29	23.79	4.47	CLAY	24	21		1.4	
	13.650	44.78	110.47	4.12	CLAYEY SILT to SILTY CLAY	55	48		6.4	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
17 000	45 28	25 64	5 83	CLAY	26	22		1.4	
17.050	45.20	23 62	6.03	CLAY	24	21		1.2	
13.950	16 76	25 26	5 58	CLAY	25	22		1.3	
14.100	40.20	25.20	5 78	CLAY	26	22		1.4	
14.250	40.13	20.03	5.42	CLAY	27	23		1.4	
14.400	41.24	20.11	5.02		27	23		1.4	
14.550	41.14	20.00	5.07	CLAY	20	25		1.6	
14.700	48.25	29.00	5.55	CLAT	27	23		1 4	
14.850	48.72	21.11	5.39		24	22		1 6	
15.000	49.21	26.36	5.42	CLAT	20	21		1 3	
15.150	49.70	24.47	5.18	LLAT	24	21		1.2	
15.300	50.20	23.56	5.55	CLAY	24	20		1.2	
15.450	50.69	23.28	5.07	CLAY	25	19		1.2	
15.600	51.18	21.07	4.57	CLAY	21	17		1.2	
15.750	51.67	21.29	4.29	CLAY to SILTY CLAY	14	12		1.2	
15.900	52.17	22.56	3.50	CLAYEY SILT to SILTY CLAY	11	9		1.5	
16.050	52.66	22.73	4.33	CLAY to SILTY CLAY	15	12		1.5	
16.200	53.15	24.43	5.36	CLAY	24	20	5	1.3	
16.350	53.64	35.20	3.35	CLAYEY SILT to SILTY CLAY	18	14		2.1	
16.500	54.13	31.82	7.94	CLAY	32	26		1.7	
16,650	54.63	87.12	5.81	*VERY STIFF FINE GRAINED	87	70			
16.800	55.12	167.90	1.75	SAND to SILTY SAND	42	34	76		40.5
16.950	55.61	25.94	3.21	CLAYEY SILT to SILTY CLAY	13	10		1.5	
17,100	56.10	31.23	4.32	CLAY to SILTY CLAY	21	17		1.7	
17,250	56.59	16.02	4.41	CLAY	16	13		.9	
17 400	57.09	12.32	3.98	CLAY	12	10		.6	
17 550	57.58	34.16	2.93	CLAYEY SILT to SILTY CLAY	17	13		2.1	
17 700	58 07	25.62	4.77	CLAY	26	20		1.3	
17 850	58 56	37.43	4.86	CLAY	37	29		2.0	
18 000	50.06	35 56	7.57	CLAY	36	28		1.9	
18 150	50 55	32 67	5.98	CLAY	33	25	10	1.7	
19 700	40.04	31 85	4 75	CLAY	32	25		1.7	
10.300	40 57	37 08	4 86	CLAY	33	26		1.8	
10.430	61.03	33.00	1 38	CLAY TO SULTY CLAY	21	16		1.7	
18.000	01.02	22.04	3 88	CLAYEY SUIT to SUITY CLAY	16	12		1.7	
18.750	01.02	32.12	7.40	CLAYEY SHIT to SHITY CLAY	15	11		1.8	
18.900	62.01	30.00	3.00	CLAVEN SILT to SILTY CLAY	12	0		1 4	
19.050	62.50	24.04	3.51	CLATET STET LO STETT CLAT	10	1		1.6	
19.200	62.99	28.19	4.01	LLAT TO SILIT CLAT	17	14		1.0	
19.350	63.48	24.54	3.91	LLAT TO SILIT CLAT	10	. 12		4 5	
19.500	63.98	29.42	4.63	CLAY to SILIY CLAY	20	15		2.7	
19.650	64.47	43.57	4.55	CLAY to SILIY CLAY	29	22		2.4	
19.800	64.96	47.95	4.82	CLAY to SILTY CLAY	32	24		2.0	
19.950	65.45	49.10	4.80	CLAY to SILTY CLAY	35	24		2.1	
20.100	65.94	46.29	4.57	CLAY to SILTY CLAY	31	23		2.5	
20.250	66.44	45.83	4.95	CLAY to SILTY CLAY	31	23		2.5	
20.400	66.93	71.89	5.60	*VERY STIFF FINE GRAINED	72	53			
20.550	67.42	52.13.	5.51	CLAY	52	38		2.8	
20,700	67.91	43.89	5.67	CLAY	44	32		2.4	
20.850	68.41	37.88	7.26	CLAY	38	28		2.0	
21,000	68.90	51.75	6.61	CLAY	52	38		2.8	
21.150	69.39	41.00	5.38	CLAY	41	30		2.2	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
21 300	69 88	33.38	5.47	CLAY	33	24		1.7	
21 450	70.37	28.40	3.98	CLAY to SILTY CLAY	19	14		1.6	
21 600	70.87	27.64	4.20	CLAY to SILTY CLAY	18	13		1.4	
21 750	71 36	24.88	4-15	CLAY to SILTY CLAY	17	12		1.4	
21 000	71 85	26.79	4.26	CLAY to SILTY CLAY	18	13		1.3	
22.050	72 34	35 97	9.56	CLAY	36	26		1.9	
22.000	72 83	179 86	2.01	SILTY SAND to SANDY SILT	60	43	74		39.5
22.200	77 33	124 77	4.26	*VERY STIFF FINE GRAINED	100	89			
22.330	73.33	40 77	2 96	CLAYEY SILT to SILTY CLAY	20	14		2.4	
22.500	7/ 71	33 05	3 70	CLAYEY SULT to SULTY CLAY	17	12		2.0	
22.000	74.51	33.72	3 68	CLAVEY SUT to SUTY CLAY	14	10		1.5	
22.800	74.80	27.21	7.57	CLATET STET to STETT CLAY	15	10		1 7	
22.950	75.30	29.89	3.37	CLATET SILT to SILTY CLAT	15	10		1 7	
23.100	75.79	29.32	3.13	CLATET SILI TO SILIT CLAT	15	10		1-1	
23.250	76.28	37.28	4.94	CLAY	37	26		1.9	
23,400	76.77	80.88	4.45	CLAYEY SILT to SILTY CLAY	40	28		4.5	
23.550	77.26	67.98	****		0	0			.0

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

*				×
*		CPT INTERPR	ETATIONS	*
*				*
*	SOUNDING :	HLA-2	PROJECT No.: 50044.1	*
*	PROJECT :	HLA/BISHOP RH 1	CONE/RIG : 491/BH, VO/R#4	*
*	DATE/TIME:	04-12-00 07:36		*
*			38	*
**	*******	******	*****	***
1.000.000	4		PAGE 1 O	£З

DEPTH	DEPTH	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
.150	.49	45.08	5.18	CLAY	45	72		2.7	
.300	.98	24.81	5.08	CLAY	25	40		1.5	
.450	1.48	18.84	4.76	CLAY	19	30		1.3	
.600	1.97	20.40	4.01	CLAY tO SILTY CLAY	14	22		1.4	
.750	2.46	20.73	4.52	CLAY	21	33		1.4	
.900	2.95	27.43	5.02	CLAY	27	44		1.6	
1.050	3.44	22.90	5.41	CLAY	23	37		1.3	
1.200	3.94	22.05	4.94	CLAY	22	35		1.3	
1.350	4.43	21.52	4.53	CLAY	22	34		1.4	
1.500	4.92	24.79	5.27	CLAY	25	40		1.4	
1.650	5.41	22.99	.5.30	CLAY	23	37		1.3	
1.800	5.91	23.01	5.30	CLAY	23	37		1.3	
1.950	6.40	24.28	4.95	CLAY	24	39		1.4	
2.100	6.89	20.10	4.61	CLAY	20	32		1.3	
2.250	7.38	12.83	4.84	CLAY	13	20		.8	
2.400	7.87	16.85	4.60	CLAY	17	26		1.1	
2.550	8.37	12.58	4.03	CLAY	13	19		.8	
2.700	8.86	12.00	3.06	CLAY to SILTY CLAY	8	12		.8	
2.850	9.35	25.85	2.93	CLAYEY SILT to SILTY CLAY	13	19		1.7	
3.000	9.84	58.27	.93	SILTY SAND to SANDY SILT	19	28	61		41.5
3 150	10.33	12.47	2.48	CLAYEY SILT to SILTY CLAY	6	9		1.0	
3.300	10.83	9.65	4.63	CLAY	10	14		.6	
3,450	11.32	6.95	4.99	CLAY	7	10		.4	
3.600	11.81	6.48	3.16	CLAY	6	9		.4	
3.750	12.30	7.24	2.68	CLAY to SILTY CLAY	5	7		.5	
3,900	12.80	13.00	2.17	CLAYEY SILT to SILTY CLAY	7	9		1.0	
4.050	13.29	10.96	5.47	CLAY	11	15	12	.7	
4 200	13.78	11.11	5.51	CLAY	11	15		.7	
4 350	14.27	10.16	4.33	CLAY	10	13		.6	
4 500	14.76	10.96	3.74	CLAY -	11	14		.7	
4 650	15.26	21,16	3.97	CLAY to SILTY CLAY	14	18	¥31	1.4	
4 800	15.75	10.47	4.46	CLAY	10	13		.6	
4 950	16.24	10,92	4.60	CLAY	11	14		.7	
5 100	16.73	14.30	4.94	CLAY	14	18		.9	
5 250	17 22	17.51	5.33	CLAY	18	22		1.1	
5 400	17.72	17.80	4.33	CLAY	18	22		1.1	
5 550	18 21	18 76	3.80	CLAY to SILTY CLAY	13	15		1.2	
5 700	18.70	14.34	2.93	CLAY to SILTY CLAY	10	12		.9	
5 850	10 10	19.33	4.51	CLAY	19	23		1.2	
6 000	19 60	20.08	2.27	CLAYEY SILT to SILTY CLAY	10	12		1.5	
6.150	20.18	15.83	4.80	CLAY	16	19		1.0	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
4 300	20 67	17.06	5.36	CLAY	17	20		1.1	
6.500	21 16	17 02	5.02	CLAY	17	20		1.1	
6.400	21 45	18 50	5 40	CLAY	19	21		1.2	
6.000	27.05	10.30	5 36	CLAY	19	22		1.2	
6.750	22.13	21.27	1 03	CLAY	21	24		1.3	
7.050	22.04	17 14	5 15	CLAT	17 .	19		1.1	
7.030	23.15	16 34	4 16		14	16		.9	
7.200	22.02	12 /7	2 87	CLAY to STITY CLAY	8	9		7	
7.550	24-11	71 77	7 10	CLAY CO STELL CLAY	11	12		1.3	
7.500	24.01	21.24	2 70	CLAY to SULTY CLAY	17	18		1.6	
7.650	25.10	25.05	3.70	CLAY TO SILTY CLAY	16	18		1.5	
7.800	25.59	24.22	3.91	CLAY TO SILTY CLAY	17	10		1 6	
7.950	26.08	24.96	5.09	CLAT TO SILIT CLAT	17	10		1.6	
8.100	26.57	25.71	4.10	CLAY TO SILIT CLAT	17	10		1.0	
8.250	27.07	25.94	4.06	CLAY to SILIY CLAY	17	18		1.0	
8.400	27.56	24.88	4.60	CLAY	25	20		1.4	
8.550	28.05	26.15	4.05	CLAY to SILTY CLAY	11	18		1.0	
8.700	28.54	26.32	4.02	CLAY to SILTY CLAY	18	18		1-1	
8.850	29.04	28.66	3.61	CLAYEY SILT to SILTY CLAY	14	15		1.8	
9.000	29.53	26.51	3.00	CLAYEY SILT to SILTY CLAY	13	14		1.(
9.150	30.02	22.50	3.29	CLAYEY SILT to SILTY CLAY	11	12	9	1.4	
9.300	30.51	22.26	1.96	SANDY SILT to CLAYEY SILT	9	9		1.6	
9.450	31.00	15.23	2.78	CLAYEY SILT to SILTY CLAY	8	8		.9	
9.600	31.50	17.91	3.07	CLAYEY SILT to SILTY CLAY	9	9		1-1	
9.750	31.99	12.11	2.25	CLAYEY SILT to SILTY CLAY	6	6		-8	
9.900	32.48	13.11	2.17	CLAYEY SILT to SILTY CLAY	7	7		-9	
10.050	32.97	14.11	2.21	CLAYEY SILT to SILTY CLAY	7	7		1.0	
10.200	33.46	33.27	2.51	SANDY SILT to CLAYEY SILT	13	13		2.1	
10.350	33.96	29.15	2.02	SANDY SILT to CLAYEY SILT	12	11		2.2	
10.500	34.45	18.74	2.03	CLAYEY SILT to SILTY CLAY	9	9		1.3	
10,650	34.94	21.92	1.80	SANDY SILT to CLAYEY SILT	9	8		1.6	
10.800	35.43	22.35	2.79	CLAYEY SILT to SILTY CLAY	11	11		1.4	
10,950	35.93	17.59	2.63	CLAYEY SILT to SILTY CLAY	9	8		1.0	
11 100	36 42	19.86	2.25	CLAYEY SILT to SILTY CLAY	10 -	9	22	1.4	
11 250	36 91	16.72	3.11	CLAYEY SILT to SILTY CLAY	8	8		1.0	
11 400	37 40	16.42	2.96	CLAYEY SILT to SILTY CLAY	8	8		1.0	
11 550	37 80	18 67	2 92	CLAYEY SHIT TO SHITY CLAY	9	9		1.1	
11.700	79 70	15.06	1 07	CLAYEY SHIT to SHITY CLAY	8	7		1.0	
11.700	70.00	14 / 2	2 /8	CLAYEY SHIT to SHITY CLAY	8	8		1.0	
11.850	20.00	10.42	2.40	CLAVEY SHIT to SHITY CLAY	8	7		1 1	
12.000	39.31	10.67	2.10	CLATET SILT to SILTY CLAY	10	0		1 2	
12.150	39.80	19.05	2.19	CLATET SILT to SILTT CLAT	17	12		1 4	# 1
12.300	40.35	20.90	2.51	CLATET SILT to SILTT CLAT	15	12		1.0	
12.450	40.85	10.86	2.17	CLATET SILT to SILT CLAT	2	2		.'	
12.600	41.34	13.53	3.41	LLAT TO SILIT CLAT	*2			1 0	
12.750	41.83	17.91	3.60	LLAT TO SILIT CLAT	12			1.1	
12.900	42.32	19.08	5.04	CLATET SILT TO SILTY CLAY	10	12	20	1 7	
13.050	42.81	27.62	2.89	CLATET SILI TO SILIT CLAY	14	12		7-1	
13.200	43.31	38.81	5.26		39	22		2-1	
13.350	43.80	77.90	4.10	CLAYEY SILT to SILTY CLAY	39	54		4.4	10 5
13.500	44.29	190.78	1.73	SAND to SILTY SAND	48	42	82		42.5
13.650	44.78	289.55	2.04	SAND to SILTY SAND	12	63	94		44.0

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY SU = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP	FRICTION	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
						70	100		45 5
13.800	45.28	398.77	1.01	SAND	80	/0	100		
13,950	45.77	338.71	.51	GRAVELLY SAND to SAND	56	49	98		44.5
14 100	46 26	378.77	1.25	SAND	76	66	100		45.0
14.100	16 75	342 68	1.61	SAND to SILTY SAND	86	74	98		44.5
14.200	40.15	344.46	2.47	SILTY SAND to SANDY SILT	100	99	98		44.5
14 550	47.74	440.45	.66	GRAVELLY SAND to SAND	73	63	100		46.0
14 700	48.23	169.62	3.02	SANDY SILT to CLAYEY SILT	68	58		9.8	
14.850	48.72	211.45	1.93	SAND tO SILTY SAND	53	45	84		42.5
15 000	49.21	233.10	1.67	SAND to SILTY SAND	58	49	86		43.0
15,150	49.70	467.87	.76	GRAVELLY SAND to SAND	78	66	100		46.0
15 300	50.20	494.86	1.51	SAND	99	83	100		46.0
15.450	50.69	389.23	1.43	SAND	78	65	100		45.0

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

CDT	INTE	DDD	FTA	TI	ONG
ULI	THIC	IL I	LIA		UND

*	SOUNDING :	HLA-3
*	PROJECT :	HLA/BISHOP RH 1
*	DATE /TTME:	04-13-00 09:26

*

*

4

*

PROJECT No.: 50044.1 CONE/RIG : 491/BH,VO/R#4

*

*

*

*

*

* *

DEPTH	DEPTH	TIP	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft) '	(tsf)	(%)				(%)	(tsf)	(Degrees)
-150	-49	122.22	2.48	SILTY SAND to SANDY SILT	41	65	82		
.300	.98	40.17	6.15	CLAY	40	64		2.4	
.450	1.48	13.62	7.86	CLAY	14	22		.9	
.600	1.97	10.64	8.27	CLAY	11	17		.!	
.750	2.46	9.24	8-48	CLAY	9	15		.6	
.900	2.95	7.48	9.83	CLAY	7	12		.>	
1.050	3.44	8.52	8.29	CLAY	9	14		.0	
1.200	3.94	9.82	8.01	CLAY	10	16		.6	
1.350	. 4.43	10.56	7.54	CLAY .	11	17		./	
1.500	4.92	13.34	7.33	CLAY	13	21		.9	
1.650	5.41	17.36	7.52	CLAY	17	28		1.1	
1.800	5.91	17.59	6.94	CLAY .	18	28		1.2	
1.950	6.40	14.89	6.24	CLAY	15	24		1.0	
2.100	6.89	11.17	6.79	CLAY	11	18		./	
2.250	7.38	11.92	6.24	CLAY	12	19		.8	
2.400	7.87	10.13	7.97	CLAY	10	16		.6	
2.550	8.37	7.54	8.27	CLAY	8	11		.5	
2.700	8.86	5.99	8.31	CLAY	6	9		-4	
2.850	9.35	3.36	6.65	ORGANIC MATERIAL	3	5		.3	
3.000	9.84	6.08	7.13	CLAY	6	9		-4	
3.150	10.33	6.56	8.59	CLAY	7	9		.4	
3.300	10.83	7.03	7.08	CLAY	7	10		-4	
3.450	11.32	6.88	6.79	CLAY	7	10		-4	
3.600	11.81	7.84	7.52	CLAY	8	11		.5	
3.750	12.30	36.73	3.38	CLAYEY SILT to SILTY CLAY	18	25		2.4	
3 900	12.80	31.27	2.88	CLAYEY SILT to SILTY CLAY	16	21		2.0	
4 050	13.29	6.42	4.94	CLAY	6	9		.4	
4 200	13 78	6.84	4.40	CLAY	7	9		.4	
4.350	14 27	8.82	8.45	CLAY	9	12		.5	
4 500	14.76	7.73	8.51	CLAY	8	10		.5	
4 650	15.26	12.02	9.11	CLAY	12	16		.7	
4 800	15.75	11.43	6.93	CLAY	11	15		.7	
4.050	16 24	11.28	5.87	CLAY	11	14		.7	
5 100	16 73	14.36	6.21	CLAY	14	18		.9	
5 250	17.22	13.45	7.57	CLAY	13	17		.8	
5 400	17 72	11.54	7.56	CLAY	12	14		.7	
5 550	18 21	8.80	7.41	CLAY	9	11		.5	
5 700	18.70	9.88	7.49	CLAY	10	12		.6	
5 850	19.19	9.20	6.49	CLAY	9	11		.5	
6 000	19.60	14.21	8.09	CLAY	14	17		.9	
6.150	20.18	13.79	8.80	CLAY	14	16		.8	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
	10702					17		. 0	
6.300	20.67	14.19	8.11	LLAT	14	16		- 7	
6.450	21.16	15.45	8.42	LLAT	15	16		.0	
6.600	21.65	13.83	8.03	CLAY	14	10		.0	
6.750	22.15	14.30	(.59	CLAY	14	17		- 7	
6.900	22.64	14.70	6.54	CLAY	15	12		. *	
7.050	23.13	10.83	6.18	CLAY	11	12		.0	
7.200	23.62	12.00	5.32	CLAY	12	15		•'	
7.350	24-11	14.83	5.39	CLAY	15	16			
7.500	24-61	16.29	5.94	CLAY	16	18		1.0	
7.650	25.10	16.02	5.97	CLAY	16	18		1.0	
7.800	25.59	17.19	5.73	CLAY	17	19		1.1	
7.950	26.08	13.38	6.56	CLAY	13	14		.8	
8.100	26.57	11.83	6.60	CLAY	12	13		-[
8.250	27.07	9.07	5.77	CLAY	9.	10		.5	
8.400	27.56	20.16	5.53	CLAY	20	21		1.1	
8.550	28.05	22.88	5.49	CLAY	23	24		1.3	
8.700	28.54	25.37	5.28	CLAY	25	27		1.4	
8.850	29.04	23.07	5.46	CLAY	23	24		1.3	
9.000	29.53	26.28	5.08	CLAY	26	27		1.5	
9.150	30.02	24.47	5.40	CLAY	24	25		1.3	
9.300	30.51	22.97	4.91	CLAY	23	23		1.3	
9.450	31.00	19.33	4.79	CLAY	19	20		1.2	
9.600	31.50	28.47	5.68	CLAY	28	29		1.6	
9.750	31.99	21.29	5.86	CLAY	21	21		1.1	
9.900	32.48	20.97	4.53	CLAY	21	21		1.3	
10.050	32.97	26.34	6.58	CLAY	26	26		1.4	
10.200	33.46	36.35	6.14	CLAY	36	36		2.0	
10.350	33.96	24.58	6.76	CLAY	25	24		1.3	
10.500	34.45	53.75	3.70	CLAYEY SILT to SILTY CLAY	27	26		3.1	
10.650	34.94	47.12	3.81	CLAYEY SILT to SILTY CLAY	24	23		2.7	
10.800	35.43	117.19	2.88	SANDY SILT to CLAYEY SILT	47	45		6.8	872 (20)
10.950	35.93	228.06	1.36	SAND to SILTY SAND	57	55	89		44.0
11,100	36.42	226.68	1.32	. SAND to SILTY SAND	57	54	89		44.0
11.250	36.91	44.49	6.09	CLAY	44	42		2.5	
11,400	37.40	59.57	6.53	CLAY	60	56		3.4	
11.550	37.89	93.75	4.11	CLAYEY SILT TO SILTY CLAY	47	44		5.4	
11,700	38.39	131.34	2.92	SANDY SILT to CLAYEY SILT	53	49		7.6	
11.850	38.88	216.78	2.52	SILTY SAND to SANDY SILT	72	67	87		43.5
12,000	39.37	231.91	2.26	SILTY SAND to SANDY SILT	77	71	89		43.5
12.150 .	39.86	273.82	1.14	SAND	55	50	93		44.5
12 300	40 35	187.83	1.05	SAND	38	34	82		42.5
12 450	40.85	30.04	2.68	CLAYEY SILT to SILTY CLAY	15	14		1.9	
17 600	41 34	20.76	2 32	CLAYEY SULT to SULTY CLAY	10	9		1.2	
12.750	41.83	21 31	2.75	CLAYEY SILT to SILTY CLAY	11	10		1.3	
12 000	42 32	25 03	2.75	CLAYEY SILT TO SULTY CLAY	13	11		1.5	
13 050	42.52	22 43	3 09	CLAYEY SILT to SILTY CLAY	11	10		1.3	
13 200	43 31	25 83	3.64	CLAYEY SILT to SUTY CLAY	13	11		1.6	
13 350	43.80	30 66	8.39	CLAY	31	27		1.7	
13 500	44 20	383 11	1.71	SAND to SILTY SAND	96	84	100	19.01	45.5
13 650	44 78	157.57	1.69	SAND to SILTY SAND	39	35	76		41.5
						1000			

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI .
(m)	(ft)	(tsf)	(%)	<u>D</u>			(%)	(tsf)	(Degrees)
13.800	45.28	15.28	13.92	CLAY	15	15			
13.950	45.77	35.48	5.61	CLAY	35	51		1.9	
14.100	46.26	60.99	5.14	CLAY to SILTY CLAY	41	35		5.4	
14.250	46.75	35.39	4.67	CLAY to SILTY CLAY	24	20		1.9	
14.400	47.24	23.11	6.31	CLAY	23	20		1.2	
14.550	47.74	94.31	6.37	*VERY STIFF FINE GRAINED	94	81		1.00 × 1211	
14.700	48.23	32.91	9.74	CLAY	33	28		1.8	
14.850	48.72	18.70	6.08	CLAY	19	16		.9	
15.000	49.21	18.23	5.93	CLAY	18	15		1.0	
15.150	49.70	17.06	5.86	CLAY	17	• 14	25	1.0	
15.300	50.20	22.97	6.65	CLAY	23	19		1.2	
15.450	50.69	19.01	6.02	CLAY	19	16		1.0	1.00
15,600	51.18	18.21	6.54	CLAY	18	15		1.0	
15 750	51.67	17.00	6.55	CLAY	17	14		.9	
15 000	52 17	14.64	6.27	CLAY	15	12		.8	
16 050	52 66	14 17	6.78	CLAY	14	12		.8	
16.000	57 15	14.26	6 26	CLAY	14	12		.8	
16.200	53 64	13 04	6 23	CLAY	14	11		.7	
16.330	5/ 17	13.04	6 61	CLAY	13	11		.7	
16.500	54.15	1/ 3/	6 07	CLAY	14	12		.8	
10.000	54.05	70.14	7.07	CLAY	20	16		1 1	
16.800	55.12	20.10	4.40	CLAY	21	17		1.0	(*
16.950	55.01	20.00	8.00	CLAY	17	17		0	
17.100	56.10	16.51	1.22	CLAT	24	10		1 2	
17.250	56.59	23.65	0.00	CLAT	24	19		1.2	
17.400	57.09	28.70	7.55	CLAT	29	25		1.5	
17.550	57.58	32.53	7.25	CLAY	33	20		1.7	
17.700	58.07	32.48	7.52	CLAY	32	26		1-1	
17.850	58.56	35.54	6.74	CLAY	36	28		1.9	
18.000	59.06	37.60	6.65	CLAY	38	29		2.0	
18.150	59.55	38.16	7.03	CLAY	38	30		2.1	
18.300	60.04	25.92	5.58	CLAY	26	20		1.3	
18.450	60.53	24.39	6.28	CLAY	24	19		1.2	
18.600	61.02	28.45	6.33	CLAY	28	22		1.5	
18,750	61.52	28.98	6.86	CLAY	29	22		1.5	
18,900	62.01	29.36	6.58	CLAY	29	22		1.5	
19 050	62.50	29.23	6.62	CLAY	29	22		1.5	
19 200	62.99	35.37	6.75	CLAY	35	27		1.9	
10 350	63 48	39.52	6.81	CLAY	40	30		2.1	
10.500	63 08	37 11	6 85	CLAY	37	28		2.0	
10 650	64 47	39 30	6.99	CLAY	39	30		2.1	43
10.000	41.04	13 57	6 17	CLAY	44	33		2.4	
19.000	45 /5	37 04	6 10	CLAY	38	28		2.0	
19.950	45 0/	37.00	5 88	CLAY	37	28		2.0	
20.100	44 11	39.07	6 45	CLAY	78	28		2.0	
20.250	00.44	30.03	6.00	CLAY	70	20		2.0	
20.400	66.93	51.56	6.40	CLAI	30	20		1 0	
20.550	67.42	50.22	0.0/		20	21		. 2 /	
20.700	67.91	44.64	5.94		45	33		1 7	
20.850	68.41	52.48	6.51	LLAT	32	24			
21.000	68.90	28.21	6.74	LLAT	28	21		1.4	
21.150	69.39	28.36	6.72	CLAY	28	21		1.4	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP	FRICTION	SOIL	BEHAVIOR	TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)						(%)	(tsf)	(Degrees)
21.300	69.88	26.26	6.27	CLAY			26	19		1.3	
21.450	70.37	19.38	5.69	CLAY			19	14		1.0	
21.750	71.36	21.63	8.53	CLAY			22	16		1.2	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 7.5 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

*			÷
*	CPT INTERI	'KEIAIIONS	•
*			*
+	SOUNDING . HLA-4	PROJECT No.: 50044.1	*
	DDOTECT . HIA /BISHOD DH 1	CONE/RTG : 491/BH. VO/R#4	*
×	PROJECT : HEA/DISHOF KH I		. *
*	DATE/TIME: 04-12-00 17:19		100
Ţ	DATE/TIME: 04 12 00 17:15		*

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Degrees)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
300 $.86$ 30.72 51.72 01.72 17 27 1 $.450$ 1.48 25.15 3.78 $CLAY$ to SILTY CLAY 17 27 1 $.600$ 1.97 28.47 4.40 $CLAY$ to SILTY CLAY 19 30 1 $.750$ 2.46 27.34 5.09 $CLAY$ 27 44 1 $.900$ 2.95 22.43 5.41 $CLAY$ 22 36 1 $.900$ 2.95 22.43 5.41 $CLAY$ 22 35 1 $.900$ 3.94 19.74 5.56 $CLAY$ 20 32 1 1.200 3.94 19.74 5.56 $CLAY$ 20 32 1 1.350 4.43 19.82 5.38 $CLAY$ 20 32 1 1.500 4.92 14.34 5.63 $CLAY$ 14 23 1.650 5.41 16.76 5.01 $CLAY$ 17 27 1 1.800 5.91 14.32 5.39 $CLAY$ 14 23 1.950 6.40 9.92 4.13 $CLAY$ 10 16 2.100 6.89 10.62 4.59 $CLAY$ 9 14 2.250 7.38 8.77 5.64 $CLAY$ 9 14	.8
.4501.4825.155.76CLAY to SILTY CLAY1717.6001.9728.474.40CLAY to SILTY CLAY19301.7502.4627.345.09CLAY27441.9002.9522.435.41CLAY223611.0503.4421.755.51CLAY223511.2003.9419.745.56CLAY203211.3504.4319.825.38CLAY203211.5004.9214.345.63CLAY14231.6505.4116.765.01CLAY172711.8005.9114.325.39CLAY14231.9506.409.924.13CLAY10162.1006.8910.624.59CLAY9142.2507.388.775.64CLAY914	.7
.600 1.97 28.47 4.40 CLAY 17 30 .750 2.46 27.34 5.09 CLAY 27 44 1 .900 2.95 22.43 5.41 CLAY 22 36 1 1.050 3.44 21.75 5.51 CLAY 22 35 1 1.200 3.94 19.74 5.56 CLAY 20 32 1 1.350 4.43 19.82 5.38 CLAY 20 32 1 1.500 4.92 14.34 5.63 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 <	.7
.7502.4627.345.09CLAT2744.9002.9522.435.41CLAY223611.0503.4421.755.51CLAY223511.2003.9419.745.56CLAY203211.3504.4319.825.38CLAY203211.5004.9214.345.63CLAY14231.6505.4116.765.01CLAY172711.8005.9114.325.39CLAY14231.9506.409.924.13CLAY10162.1006.8910.624.59CLAY11172.2507.388.775.64CLAY914	6
.900 2.95 22.43 5.41 LLAT 22 35 1 1.050 3.44 21.75 5.51 CLAY 22 35 1 1.200 3.94 19.74 5.56 CLAY 20 32 1 1.350 4.43 19.82 5.38 CLAY 20 32 1 1.500 4.92 14.34 5.63 CLAY 20 32 1 1.500 4.92 14.34 5.63 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	
1.050 3.44 21.75 5.51 CLAY 22 53 1 1.200 3.94 19.74 5.56 CLAY 20 32 1 1.350 4.43 19.82 5.38 CLAY 20 32 1 1.500 4.92 14.34 5.63 CLAY 20 32 1 1.650 5.41 16.76 5.01 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 14 23 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	3
1.200 3.94 19.74 5.56 CLAY 20 52 1 1.350 4.43 19.82 5.38 CLAY 20 32 1 1.500 4.92 14.34 5.63 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	1
1.350 4.43 19.82 5.38 CLAY 20 52 1 1.500 4.92 14.34 5.63 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	-1
1.500 4.92 14.34 5.63 CLAY 14 23 1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	.2
1.650 5.41 16.76 5.01 CLAY 17 27 1 1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	.9
1.800 5.91 14.32 5.39 CLAY 14 23 1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	-1
1.950 6.40 9.92 4.13 CLAY 10 16 2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	.9
2.100 6.89 10.62 4.59 CLAY 11 17 2.250 7.38 8.77 5.64 CLAY 9 14 2.400 7.87 9.09 5.07 CLAY 9 14	.6
2.250 7.38 8.77 5.64 CLAY 9 14	-7
2 600 7 87 9 09 5.07 CLAY 9 14	.6
	.6
2 550 8.37 7.90 6.13 CLAY 8 12	.5
2 700 8 86 9 16 6.11 CLAY 9 13	.6
2,850 0,35 9,56 5,46 CLAY 10 14	.6
Z 000 0 8/ 7 58 5 30 CLAY 8 11	.5
7 150 10 77 7 00 5 14 CLAY 8 11	.5
7 700 10.93 6.05 6.34 CIAY 7 10	.4
2. (50 11.27 0.07 5.31 CLAY 9 12	.6
5.450 11.52 7.07 5.17 CAY 13 17	.8
3.000 11.01 12.17 4.17 CLAY 15 20	.9
5.750 12.50 14.55 5.47 CCA 10 16	.6
3.900 12.80 10.33 0.00 CLAT	4
4.050 13.29 6.69 4.00 CLAT	8
4.200 13.78 12.47 4.19 LLAT 12 10	.0
4.350 14.27 11.11 6.22 CLAY	-/
4.500 14.76 13.21 4.76 CLAY 13 17	.0
4.650 15.26 15.00 4.49 CLAY 15 19	.9
4.800 15.75 16.10 3.69 CLAY to SILTY CLAY 11 13	-0
4.950 16.24 16.10 3.55 CLAY to SILTY CLAY 11 13 1	.0
5.100 16.73 15.72 3.65 CLAY to SILTY CLAY 10 13 1	-0
5.250 17.22 15.66 5.07 CLAY 16 19 1	.0
5.400 17.72 15.08 3.76 CLAY to SILTY CLAY 10 12	.9
5.550 18.21 15.93 4.56 CLAY 16 19 1	.0
5.700 18.70 16.15 5.49 CLAY 16 19 1	.0
5 850 19 19 15.78 5.44 CLAY 16 19 1	.0
6 000 19.69 15.70 5.60 CLAY 16 18 1	.0
6 150 20 18 17 38 5.32 CLAY 17 20 1	.1

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tst)	(Degrees)
			7 07	CLAY to STITY CLAY	14	16		1.3	2 T T T T T T T T T T T T T T T T T T T
6.300	20.67	20.88	3.07	CLAT TO SILIT CLAT	14	16		1 3	
6.450	21.16	21.27	3.95	CLAT TO SILIT CLAT	17	16		1 3	
6.600	21.65	21.37	4.16	CLAY TO SILIT CLAT	14	10		1.5	
6.750	22.15	23.39	4.01	CLAY TO SILIT CLAT	10	10		1.4	
6.900	22.64	25.15	5.88	CLAY TO SILIT CLAT	14	19		1.6	
7.050	23.13	25.75	3.68	CLAY to SILTY CLAY	17	19		1.0	
7.200	23.62	25.85	3.87	CLAY to SILTY CLAY	17	19		1.0	
7.350	24.11	26.07	4.00	CLAY to SILTY CLAY	17	19		1.0	
7.500	24.61	27.96	3.83	CLAY to SILTY CLAY	19	20		1.0	
7.650	25.10	34.74	4.36	CLAY to SILTY CLAY	25	25		2.0	
7.800	25.59	36.16	4.26	CLAY to SILTY CLAY	24	26		2.0	
7.950	26.08	29.87	4.45	CLAY to SILTY CLAY	20	21		1-1	
8.100	26.57	24.88	5.15	CLAY	25	26		1.4	
8.250	27.07	40.24	4.61	CLAY tO SILTY CLAY	27	28		2.3	
8.400	27.56	35.76	5.03	CLAY	36	37		2.0	
8.550	28.05	22.54	4-61	CLAY	23	23		1-4	
8,700	28.54	20.69	4.84	CLAY	21	21		1.3	
8.850	29.04	18.59	3.17	CLAYEY SILT to SILTY CLAY	9	10		1.1	
9.000	29.53	24.69	3.05	CLAYEY SILT to SILTY CLAY	12	13		1.5	
9.150	30.02	30.74	3.92	CLAY to SILTY CLAY	20	21		1.9	
9.300	30.51	35.73	4.30	CLAY to SILTY CLAY	24	24		2.0	
9.450	31.00	36.03	3.46	CLAYEY SILT to SILTY CLAY	18	18	22	2.3	
9,600	31.50	96.56	4.21	CLAYEY SILT to SILTY CLAY	48	48		5.6	
9.750	31.99	93.12	3.89	CLAYEY SILT to SILTY CLAY	47	46		5.4	
9,900	32.48	96.15	3.84	CLAYEY SILT to SILTY CLAY	48	47		5.6	
10,050	32.97	82.30	3.35	SANDY SILT to CLAYEY SILT	33	32		4.7	303
10,200	33.46	166.60	1.85	SILTY SAND to SANDY SILT	56	54	81		42.5
10.350	33.96	175.93	1.00	SAND	35	34	82		43.0
10 500	34.45	60.00	2.50	SANDY SILT to CLAYEY SILT	24	23		3.9	
10 650	34.94	17.00	2.67	CLAYEY SILT to SILTY CLAY	9	8		1.0	
10.800	35 43	21.48	2.80	CLAYEY SILT to SILTY CLAY	11	10		1.3	
10.000	35 93	18,25	4.19	CLAY	18	17		1.1	
11 100	36 42	21.41	3.30	CLAYEY SILT to SILTY CLAY	11	10		1.3	
11 250	36 01	16.93	4.14	CLAY	17	16		1.0	
11 /00	37 40	11 81	2 84	CLAY to SILTY CLAY	8	7		.7	
11 550	- 37 RC	74 56	4 08	CLAY to SILTY CLAY	16	15		1.5	
11.330	70 70	29,30	6 13	CLAY	30	27		1.6	
11.050	20.37	186 76	3 89	*SAND to CLAYEY SAND	92	85			
17.000	20.00	740 75	1 47	SAND to SULTY SAND	67	62	93		44.0
12.000	70.94	209.15	2 72	SULTY SAND TO SANDY SULT	82	75	90		44.0
12.150	10 75	740.55	1 04	SAND	72	65	100		45.5
12.300	40.33	270 11	1.04	SAND	54	49	92		44.0
12.430	40.03	270.11		SAND	47	42	88		43.5
12.000	41.04	234.77	.03	SAND	48	43	89		43.5
12.750	41.00	178 75	2 27	STITY SAND to SANDY STIT	43	38	71		40.0
12.900	42.32	120.23	2 07	CLAYEY SILT to SILTY CLAY	21	18		2.6	
13.050	42.01	41.07	7 10	CLAYEY SILT to SILTY CLAY	21	10		2.6	
13.200	43.31	42.13	/ 07	CLAYEN SILT to SILTY CLAY	21	10		2.4	
13.350	45.80	42.70	4.07	CLAV to STUTY CLAV	20	25		2.4	
13.500	44.29	42.83	4.54	CLAT LO SILIT CLAT	15	70		2 5	
15 650	44.18	44.05	2.02	LLAI	4)	37		C	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
13 800	45 28	37.48	5.47	CLAY	37	32		2.1	
13 050	45 77	40.51	5.03	CLAY	41	35		2.2	
16 100	46 26	34.67	4.61	CLAY to SILTY CLAY	23	20		1.9	
14. 250	46 75	34.31	4.67	CLAY to SILTY CLAY	23	20		1.9	
14.400	47.24	26.62	4.12	CLAY to SILTY CLAY	18	15		1.6	
14 550	47.74	16.70	3.80	CLAY to SILTY CLAY	11	9		.9	
14, 700	48.23	17.46	3.73	CLAY to SILTY CLAY	12	10		1.0	
14.700	48.72	17 48	3,92	CLAY to SILTY CLAY	12	10		1.0	
15 000	/0 21	17 23	3.85	CLAY to SILTY CLAY	11	10		1.0	
15 150	40 70	20.88	4.45	CLAY	21	17		1.2	
15 300	50.20	22.56	4.32	CLAY to SILTY CLAY	15	12		1.3	
15 450	50.69	24.28	4.53	CLAY	24	20		1.3	
15 600	51 18	31.76	4.45	CLAY to SILTY CLAY	21	17		1.7	
15 750	51 67	42.45	5.49	CLAY	42	35		2.3	
15 000	52 17	44.00	4.78	CLAY to SILTY CLAY	29	24		2.4	
16 050	52 66	42.09	4.87	CLAY to SILTY CLAY	28	23		2.3	
16 200	53.15	42.81	4.99	CLAY	43	35		2.3	
16 350	53.64	39.05	4.59	CLAY to SILTY CLAY	26	21		2.1	
16 500	54.13	41.47	4.53	CLAY to SILTY CLAY	28	22		2.3	
16 650	54 63	45.93	3.85	CLAYEY SILT to SILTY CLAY	23	18		2.5	
16 800	55.12	35,10	4.23	CLAY to SILTY CLAY	23	19		1.9	
16.050	55 61	32.38	4.36	CLAY to SILTY CLAY	22	17		1.7	
17 100	56 10	22.73	3.57	CLAY to SILTY CLAY	15	12		1.3	
17 250	56.59	22.39	3.65	CLAY to SILTY CLAY	15	12		1.3	
17 400	57.09	21.69	3.40	CLAYEY SILT to SILTY CLAY	11	9		1.2	
17 550	57.58	23.67	3.27	CLAYEY SILT to SILTY CLAY	12	9		1.4	
17 700	58.07	24.96	3.99	CLAY to SILTY CLAY	17	13		1.5	
17 850	58.56	31.14	4.15	CLAY to SILTY CLAY	21	16		1.6	
18 000	59.06	59.17	9.80	CLAY	59	46		3.3	
19 150	50 55	262 82	*****	100.00	0	Û		00000000	.0

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

.

**	******	****	*****	* * *
*				*
*		CPT INTERPR	ETATIONS	*
*				*
*	SOUNDING :	HLA-5	PROJECT No.: 50044.1	*
*	PROJECT :	HLA/BISHOP RH 1	CONE/RIG : 491/BH, VO/R#4	*
*	DATE/TIME:	04-13-90 13:56	,)# 	*
*				*

PAGE 1 of 3

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
.150	.49	22.99	6.27	CLAY	23	37		1.4	
.300	.98	20.48	6.13	CLAY	20	33		1.2	
.450	1.48	15.47	6.76	CLAY	15	25		1.0	
.600	1.97	14.43	6.60	CLAY	14	23		1.0	
.750	2.46	23.11	5.40	CLAY	23	37		1.4	
.900	2.95	11.66	4.76	CLAY	12	19		-8	
1.050	3.44	15.30	8.44	CLAY	15	24		1.0	
1.200	3.94	26.94	5.55	CLAY	27	43		1.6	
1.350	4.43	22.03	5.60	CLAY	22	35		1.3	
1.500	4.92	22.20	5.74	CLAY	22	36		1.3	
1,650	5.41	23.11	5.56	CLAY	23	37		1.3	
1.800	5.91	25.30	5.05	CLAY	25	40		1.5	
1,950	6.40	22.99	5.10	CLAY	23	37		1.3	
2.100	6.89	23.92	5.48	CLAY	24	38		1.4	
2.250	7.38	25.39	4.80	CLAY	25	40		1.5	
2.400	7.87	23.71	5.00	CLAY	24	36		1.4	
2.550	8.37	29.40	3.34	CLAYEY SILT to SILTY CLAY	15	22		1.9	
2.700	8.86	24.03	4.83	CLAY	24	35		1.4	
2 850	9.35	20.01	4.03	CLAY to SILTY CLAY	13	19		1.3	
3 000	9 84	28.83	3.48	CLAYEY SILT to SILTY CLAY	14	20		1.9	
3 150	10 33	11.24	3.87	CLAY	11	16		.7	
3 300	10 83	8.54	2.75	CLAY to SILTY CLAY	6	8		.6	
3 450	11.32	10.37	3.25	CLAY to SILTY CLAY	7	9		.6	
3 600	11.81	18.57	2.82	CLAYEY SILT to SILTY CLAY	9	12		1.2	
3 750	12 30	11.51	4.60	CLAY	12	15		.7	
7 000	12 80	15.00	4.98	CLAY	15	20		1.0	
/ 050	13 20	15 68	4 30	CLAY	16	20		1.0	
4.000	13 78	13 60	4.12	CLAY	14	18		.9	
4.200	*/ 27	13.00	4 60	CLAY	13	17		8	
4.550	14.61	14 28	3 67	CLAY TO STUTY CLAY	10	12		.0	
4.500	14.70	17 07	1.77	CLAY CO STETT CERT	18	23		1 1	
4.030	15.20	16 97	4.12		17	21		1 1	
4.800	12.72	10.07	2 87	CLAY to STITY CLAY	9	0		7	
4.950	16.24	15 41	1. 48	CLAY CO STETT CEAT	16	10	199	10	
5.100	10.73	12.01	4.00	CLAY	1/	17		0	
5.250	17.22	14.20	4.92	CLAT	14	10		1.0	
5.400	17.72	13.49	5.10	CLAT	1/	17		1.0	
5.550	18.21	14.4/	4.40	CLAT	10	77		1 2	
5.700	18.70	19.25	4.00	CLAT	19	23		1.2	
5.850	19.19	18.74	4.70	CLAT	19	17		1.2	
8.000	19.69	14.52	4.00		14	17		.7	
6.150	20.18	10.88	4.25	LLAT	11	15		. /	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.8 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
6.300	20.67	15.11	4.46	CLAY	15-	17			
6.450	21.16	16.29	5.30	CLAY	16	18		1.0	
6.600	21.65	16.55	5.41	CLAY	17	19		1.0	
6.750	22.15	15.83	5.07	CLAY	16	18		1.0	
6.900	22.64	17.29	5.29	CLAY	17	19		1.1	
7.050	23.13	18.89	5.10	CLAY	19	21		1.2	
7.200	23.62	19.67	4.11	CLAY to SILTY CLAY	13	14		1.2	
7.350	24.11	11.71	2.64	CLAY to SILTY CLAY	8	8		.8	
7.500	24.61	14.74	2.65	CLAYEY SILT to SILTY CLAY	7	8		.9	
7.650	25.10	27.75	3.23	CLAYEY SILT to SILTY CLAY	14	15		1.8	
7.800	25.59	25.83	4.32	CLAY to SILTY CLAY	17	18		1.4	
7.950	26.08	29.64	4.71	CLAY	30	31		1.7	
8,100	26.57	28.53	4.11	CLAY to SILTY CLAY	19	20		1.6	
8.250	27.07	22.84	4.40	CLAY	23	24		1.4	
8.400	27.56	24.11	4.48	CLAY	24	25		1.5	
8,550	28.05	24.96	4.23	CLAY to SILTY CLAY	17	17		1.6	
8.700	28.54	27.13	4.97	CLAY	27	28		1.5	
8.850	29.04	29.66	4.92	CLAY	30	30		1.7	
9.000	29.53	26.49	3.43	CLAYEY SILT to SILTY CLAY	13	13		1.7	
9,150	30.02	26.64	3.47	CLAYEY SILT to SILTY CLAY	13	13		1.7	
9 300	30.51	27.26	4.17	CLAY to SILTY CLAY	18	18		1.5	
9 450	31.00	21.54	3.96	CLAY to SILTY CLAY	14	14		1.3	
9 600	31.50	32.14	3.44	CLAYEY SILT to SILTY CLAY	16	16		2.0	
9.750	31.99	27.62	4.99	CLAY	28	27		1.5	8
0 000	32 48	26.24	3.98	CLAY to SILTY CLAY	17	17		1.6	
10 050	32 07	27 07	4 57	CLAY	27	26		1.5	
10.200	33 46	25 09	3 97	CLAY to SULTY CLAY	17	16		1.5	
10.200	33.40	32 57	3 15	CLAYEY SILT to SULTY CLAY	16	16		2.0	
10.500	33.70	/8 07	3 64	CLAYEY SILT to SILTY CLAY	24	23		2.8	
10.500	34.45	33 57	3 94	CLAY to SUTY CLAY	22	21		1.9	
10.000	75 /7	36 02	3 (8	CLAYEY SUT to SUTY CLAY	18	17		2.3	
10.000	25.07	37 42	3 33	CLAYEY SILT to SILTY CLAY	14	13		1.7	
11 100	7/ /7	21.02	7 33	CLAYEY SILT to SILTY CLAY	11	10		13	
11.100	30.42	17.00	2.07	CLAYEY SILT to SILTY CLAY	0	8		1 0	
11.250	30.91	17.00	2.71	CLATET SILT to SILTY CLAY	0	8		1 1	
11.400	37.40	10.00	7.14	CLATET SILT to SILTI CLAT	19	16		2.2	
11.550	37.89	35.59	5.10	CLATET SILT to SILTE CLAT	10	10		1 5	
11.700	38.39	25.15	3.88	CLAT TO SILIT CLAT	17	15		1.5	
11.850	38.88	14.64	2.55	CLAYET SILT to SILTY CLAY	<i>.</i>	-		-0	
12.000	39.37	11.96	2.13	CLAYEY SILT to SILTY CLAY	6	5		-0	
12.150	39.86	16.36	3.10	CLAY to SILTY CLAY	11	10		. 7	
12.300	40.35	14.89	3.29	CLAY tO SILTY CLAY	10	9		.8	
12.450	40.85	13.28	3.23	CLAY to SILTY CLAY	9	8		• (
12.600	41.34	11.96	3.11	CLAY tO SILTY CLAY	8	7		.6	
12.750	41.83	14.74	3.33	CLAY tO SILTY CLAY	10	9		.8	
12.900	42.32	17.53	3.51	CLAY to SILTY CLAY	12	10		1.0	
13.050	42.81	19.35	3.83	CLAY tO SILTY CLAY	13	11		1.1	
13.200	43.31	23.65	4.52	CLAY	24	21		1.4	
13.350	43.80	26.51	3.88	CLAY to SILTY CLAY	18	15		1.6	
13.500	44.29	23.39	4.03	CLAY to SILTY CLAY	16	14		1.4	
13.650	44.78	22.94	3.96	CLAY tO SILTY CLAY	15	13		1.4	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.8 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH . PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tsf)	(Degrees)
13.800	45.28	21.54	3.91	CLAY to SILTY CLAY	14	12		1.3	
13.950	45.77	33.93	3.37	CLAYEY SILT to SILTY CLAY	17	15		2.1	
14,100	46.26	52.77	4.27	CLAYEY SILT to SILTY CLAY	26	23		3.0	
14.250	46.75	29.57	3.76	CLAYEY SILT to SILTY CLAY	15	13		1.8	
14,400	47.24	38.64	4.03	CLAYEY SILT to SILTY CLAY	19	16		2.1	
14.550	47.74	35.18	3.98	CLAYEY SILT to SILTY CLAY	18	15		1.9	
14.700	48.23	33.29	4.22	CLAY tO SILTY CLAY	22	19		1.8	
14.850	48.72	33.46	4.04	CLAY to SILTY CLAY	22	19		1.8	
15.000	49.21	38.24	3.92	CLAYEY SILT to SILTY CLAY	19	16		2.1	
15.150	49.70	41.17	4.20	CLAY tO SILTY CLAY	27	23		2.3	
15.300	50.20	43.11	4.08	CLAYEY SILT to SILTY CLAY	22	18		2.4	
15.450	50.69	44.36	3.85	CLAYEY SILT to SILTY CLAY	22	18		2.4	
15,600	51.18	46.06	4.98	CLAY	46	38		2.5	
15.750	51.67	51.58	4.83	CLAY tO SILTY CLAY	34	28		2.9	
15,900	52.17	53.94	4.58	CLAY tO SILTY CLAY	36	29		3.0	
16.050	52.66	51.67	4.29	CLAYEY SILT to SILTY CLAY	26	21		2.9	
16,200	53.15	49.82	4.07	CLAYEY SILT to SILTY CLAY	25	20		2.8	
16.350	53.64	54.98	3.81	CLAYEY SILT to SILTY CLAY	27	22		3.1	
16.500	54.13	52.20	3.92	CLAYEY SILT to SILTY CLAY	26	21		2.9	
16.650	54.63	50.41	4.10	CLAYEY SILT to SILTY CLAY	25	20		2.8	
16.800	55.12	46.16	4.41	CLAY tO SILTY CLAY	31	24		2.5	
16,950	55.61	42.60	4.11	CLAYEY SILT to SILTY CLAY	21	17		2.3	
17,100	56.10	42.87	3.95	CLAYEY SILT to SILTY CLAY	21	17		2.3	
17.250	56.59	43.11	3.97	CLAYEY SILT to SILTY CLAY	22	17		2.4	
17,400	57.09	45.63	4.14	CLAYEY SILT to SILTY CLAY	23	18		2.5	
17.550	57.58	46.61	3.99	CLAYEY SILT to SILTY CLAY	23	18		2.6	
17.700	58.07	46.40	4.61	CLAY to SILTY CLAY	31	24		2.5	
17.850	58.56	43.42	4.65	CLAY to SILTY CLAY	29	22		2.4	
18.000	59.06	45.40	4.12	CLAYEY SILT to SILTY CLAY	23	18		2.5	
18,150	59.55	45.87	3.84	CLAYEY SILT to SILTY CLAY	23	18		2.5	

. . .

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 8.8 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

CPT INTERPRETATIONS

* SOUNDING : HLA-6
* PROJECT : HLA/BISHOP RH 1
* DATE/TIME: 04-13-00 11:55
*

* *

PROJECT No.: 50044.1 CONE/RIG : 491/BH,VO/R#4

* ****

(m)(ft)(tsf)(x)(x)(x)(tsf)(Degrees)	DEPTH	DEPTH	TIP • RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
150 <th>(m)</th> <th>(ft)</th> <th>(tsf)</th> <th>(%)</th> <th></th> <th>,</th> <th></th> <th>(%)</th> <th>(tsf)</th> <th>(Degrees)</th>	(m)	(ft)	(tsf)	(%)		,		(%)	(tsf)	(Degrees)
150.4930.613.59CLAYEY SILT to SILTY CLAY15242.0.4501.4854.644.58CLAY to SILTY CLAY36583.2.6001.9718.636.82CLAY19301.2.7502.4612.517.59CLAY1320.8.9002.9511.837.27CLAY1219.8.10503.4411.416.31CLAY1118.7.12003.9419.315.44CLAY19311.1.15004.4321.675.49CLAY19311.1.15004.4321.675.49CLAY19311.1.15004.4321.675.40CLAY18291.2.16005.9118.236.20CLAY16261.1.18005.9118.236.20CLAY19311.3.25007.3840.394.88CLAY19311.3.25007.3840.394.88CLAY19311.3.25007.3840.394.88CLAY19311.3.25007.3840.394.88CLAY19311.3.25007.376.845.85CLAY19311.3.25007.384.026.47CLAY1684.450013.355										
300 .98 151.96 1.32 SAND to SILTY SAND 36 58 3.2 .600 1.43 54.64 4.58 CLAY 19 30 1.2 .750 2.46 12.51 7.57 CLAY 13 20 .8 .900 2.95 11.33 7.27 CLAY 12 19 .8 1.050 3.44 11.41 6.31 CLAY 11 18 .7 1.200 3.94 19.31 5.14 CLAY 19 31 1.3 1.500 4.42 21.67 5.49 CLAY 19 31 1.1 1.650 5.41 16.89 5.80 CLAY 16 26 1.1 1.800 5.91 18.23 6.20 CLAY 16 26 1.1 1.800 5.97 7.38 4.02 CLAY 10 .4 2.4 2.400 7.87 6.42 7.79 CLAY	.150	.49	30.61	3.59	CLAYEY SILT to SILTY CLAY	15	24		2.0	
.4501.4854.644.58CLAY to SILTY CLAY36585.2.6001.9718.636.82CLAY19301.2.7502.4612.517.59CLAY1219.8.9002.9511.837.27CLAY1219.8.10503.4411.416.31CLAY1118.7.12003.9419.315.44CLAY19311.1.15004.4321.675.49CLAY19311.1.15004.4321.675.49CLAY19311.1.15006.4016.176.05CLAY18291.2.19506.4016.176.06CLAY19311.3.20007.876.845.85CLAY19311.3.21006.8919.464.32CLAY19311.3.25007.384.034.88CLAY to SILTY CLAY27422.4.4007.876.845.85CLAY710.4.25008.374.026.47CLAY57.3.30000.844.916.92CLAY57.3.30000.835.977.37CLAY68.4.40011.335.486.57CLAY68.4.40011.335.66.76 <t< td=""><td>.300</td><td>.98</td><td>151.96</td><td>1.32</td><td>SAND to SILTY SAND</td><td>38</td><td>61</td><td>88</td><td></td><td></td></t<>	.300	.98	151.96	1.32	SAND to SILTY SAND	38	61	88		
.6001.9718.636.82CLAY19301.2 $.750$ 2.4612.517.59CLAY1320.8 $.900$ 2.9511.837.27CLAY1219.8 1.200 3.9419.315.14CLAY1118.7 1.200 3.9419.315.14CLAY19311.3 1.500 4.4321.675.49CLAY22351.3 1.500 4.9219.336.05CLAY17271.1 1.850 5.4116.895.80CLAY18291.2 1.950 6.4016.176.06CLAY18261.1 1.950 6.4016.176.06CLAY19311.3 2.250 7.3840.394.88CLAY19311.3 2.400 7.876.845.85CLAY1217.8 2.550 8.374.026.47CLAY1217.8 2.500 8.261.986.10CLAY1217.8 2.500 9.356.427.79CLAY57.3 3.150 10.335.486.57CLAY57.3 3.500 10.835.977.37CLAY68.4 3.600 11.813.878.01ORGANIC MATERIAL45.2 3.900 12.80	.450	1.48	54.64	4.58	CLAY to SILTY CLAY	36	58	24	3.2	
.7502.4612.517.59CLAY1320.8.9002.9511.837.27CLAY1219.8.10503.4411.416.31CLAY1118.71.2003.9419.315.44CLAY19311.3.1504.4321.675.49CLAY19311.11.8005.4116.895.80CLAY19311.11.8005.9118.236.20CLAY18291.21.9506.4016.176.06CLAY16261.12.2006.8919.464.32CLAY19311.32.2507.3840.394.88CLAY27422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY27422.42.4007.876.845.35CLAY710.42.5508.376.02CLAY710.42.8509.356.427.79CLAY57.33.0009.844.916.92CLAY57.33.00011.826.05CLAY68.43.65011.326.78CLAY79.43.65011.326.77CLAY57.33.00012.80	.600	1.97	18.63	6.82	CLAY	19	30		1.2	
9002.9511.837.27CLAY1219.81.0503.4411.416.31CLAY1118.71.2003.9419.315.44CLAY19311.31.3504.4321.675.49CLAY22351.31.5004.9219.336.05CLAY19311.11.6505.4116.895.80CLAY18291.21.9506.4016.176.06CLAY16261.12.1006.8919.464.32CLAY19311.32.2507.3840.394.88CLAY19311.32.2607.876.845.85CLAY710.42.5508.374.026.47CLAY46.22.6007.876.845.85CLAY710.42.5508.374.026.47CLAY57.33.0009.844.916.92CLAY57.33.0009.844.916.92CLAY57.33.0009.844.916.92CLAY68.43.0009.844.916.92CLAY57.33.0000.835.977.37CLAY68.43.0001.335.486.57CLAY68.	.750	2.46	12.51	7.59	CLAY	13	- 20		.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.900	2.95	11.83	7.27	CLAY	12	19		.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.050	3.44	11.41	6.31	CLAY	11	18		.7	
1.3504.4321.675.49CLAY22351.31.5004.9219.336.05CLAY19311.11.6505.4116.285.80CLAY17271.11.8005.9118.236.20CLAY18291.21.9506.4016.176.06CLAY16261.12.1006.8919.464.32CLAY19311.32.2507.3840.394.88CLAY1727422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY1217.82.5509.356.427.79CLAY57.33.0009.844.916.92CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.45011.326.056.78CLAY68.43.45011.326.17CLAY68.43.45011.326.17CLAY45.23.90012.804.427.47CLAY79.43.45011.326.181.0.4.4.43.45013.297.356.12CLAY79.44.0	1.200	3.94	19.31	5.44	CLAY	19	31		1.3	
1.5004.9219.336.05CLAY19311.11.6505.4116.895.80CLAY17271.11.8005.9118.236.20CLAY18291.21.9506.4016.176.06CLAY16261.12.1006.8919.464.32CLAY199311.32.2507.3840.394.88CLAY to SILTY CLAY27422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY46.22.7008.8611.986.01CLAY57.33.509.356.427.79CLAY57.33.50010.835.977.37CLAY57.33.50010.835.977.37CLAY68.43.60011.813.878.01ORGANIC MATERIAL45.33.60011.813.878.01ORGANIC MATERIAL45.23.90012.804.788.37ORGANIC MATERIAL56.44.05013.297.356.12CLAY79.44.05013.7810.205.69CLAY1012.64.50013.7810.205.69CLAY1012.64.50015.7511.	1.350	4.43	21.67	5.49	CLAY	22	35		1.3	
1.6505.4116.895.80CLAY17271.11.8005.9118.236.20CLAY18291.21.9506.4016.176.06CLAY16261.12.1006.8919.464.32CLAY19311.32.2507.3840.394.88CLAY to SILTY CLAY27422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY46.22.7008.8611.986.01CLAY1217.82.8509.356.427.79CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.0009.844.916.92CLAY57.33.15010.335.486.57CLAY68.43.00011.813.878.01ORGANIC MATERIAL45.23.00011.813.878.01ORGANIC MATERIAL45.23.00012.804.788.37ORGANIC MATERIAL45.23.00013.7810.205.69CLAY79.44.50013.7810.205.69CLAY1012.64.50014.2713.00 </td <td>1.500</td> <td>4.92</td> <td>19.33</td> <td>6.05</td> <td>CLAY</td> <td>. 19</td> <td>31</td> <td></td> <td>1.1</td> <td></td>	1.500	4.92	19.33	6.05	CLAY	. 19	31		1.1	
1.8005.9118.236.20CLAY18291.21.950 6.40 16.17 6.06 CLAY16261.12.100 6.89 19.464.32CLAY19311.32.2507.3840.394.88CLAY1710.42.4007.87 6.84 5.85CLAY710.42.5508.374.02 6.47 CLAY46.22.7008.8611.986.01CLAY1217.82.8509.35 6.42 7.79CLAY69.43.0009.844.91 6.92 CLAY57.33.15010.335.486.57CLAY68.43.45011.32 6.05 6.78 CLAY68.43.60011.813.878.01ORGANIC MATERIAL45.33.60012.804.788.37ORGANIC MATERIAL56.44.20013.7810.205.69CLAY1012.64.35014.2713.005.92CLAY1315.84.50015.7511.475.84CLAY910.54.80015.7511.475.84CLAY1113.75.40015.7511.475.84CLAY1113.75.41110.375.99	1.650	5.41	16.89	5.80	CLAY	17	27		1.1	
1.950 6.40 16.17 6.06 $CLAY$ 16 26 1.1 2.100 6.89 19.46 4.32 $CLAY$ 19 31 1.3 2.250 7.38 40.39 4.88 $CLAY$ to SILTY CLAY 27 42 2.44 2.400 7.87 6.84 5.85 $CLAY$ 7 10 .4 2.550 8.37 4.02 6.47 $CLAY$ 4 6 .2 2.700 8.86 11.98 6.01 $CLAY$ 12 17 .8 2.850 9.35 6.42 7.79 $CLAY$ 6 9 .4 3.000 9.84 4.91 6.92 $CLAY$ 5 7 .3 3.150 10.33 5.48 6.57 $CLAY$ 5 7 .3 3.000 0.84 4.91 6.92 $CLAY$ 6 8 .4 3.450 11.32 6.05 6.78 $CLAY$ 6 8 .4 3.450 11.32 6.05 6.78 $CLAY$ 6 8 .4 3.600 11.81 3.87 8.01 $ORGANIC MATERIAL$ 4 5 .2 3.900 12.80 4.78 8.37 $ORGANIC MATERIAL$ 5 6 .4 4.200 13.78 10.20 5.69 $CLAY$ 10 12 .6 4.350 14.27 13.00 5.92 $CLAY$ 10 12 .6 4.500 15.75 11	1.800	5.91	18.23	6.20	CLAY	18	29		1.2	
2.1006.8919.464.32CLAY19311.32.2507.3840.394.88CLAY to SILTY CLAY27422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY46.22.7008.8611.986.01CLAY1217.82.8509.356.427.79CLAY69.43.0009.844.916.92CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.45011.326.056.78CLAY68.43.60011.813.878.01ORGANIC MATERIAL45.33.75012.304.427.47CLAY45.23.90012.804.788.37ORGANIC MATERIAL56.44.05013.7810.205.69CLAY79.44.50013.7810.205.69CLAY1012.64.50014.7615.666.26CLAY910.54.80015.7511.475.84CLAY1113.75.10016.2412.025.82CLAY1112.75.10016.7310.975.99 </td <td>1.950</td> <td>6.40</td> <td>16.17</td> <td>6.06</td> <td>CLAY</td> <td>16</td> <td>26</td> <td></td> <td>1.1</td> <td>10</td>	1.950	6.40	16.17	6.06	CLAY	16	26		1.1	10
2.2507.3840.394.88CLAY to SILTY CLAY27422.42.4007.876.845.85CLAY710.42.5508.374.026.47CLAY46.22.7008.8611.986.01CLAY1217.82.8509.356.427.79CLAY69.43.0009.844.916.92CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.45011.326.056.78CLAY68.43.45011.326.056.78CLAY45.23.90012.804.788.37ORGANIC MATERIAL45.23.90012.804.788.37ORGANIC MATERIAL56.44.05013.297.356.12CLAY79.44.20013.7810.205.69CLAY1012.64.50015.268.636.26CLAY16181.04.65015.268.636.26CLAY1113.74.95016.2412.025.82CLAY1113.75.10016.7310.925.86CLAY1112.75.25017.2211.495.13 <td>2.100</td> <td>6.89</td> <td>19.46</td> <td>4.32</td> <td>CLAY</td> <td>19</td> <td>31</td> <td></td> <td>1.3</td> <td></td>	2.100	6.89	19.46	4.32	CLAY	19	31		1.3	
2.400 7.87 6.84 5.85 CLAY 7 10 .4 2.550 8.37 4.02 6.47 CLAY 4 6 .2 2.700 8.86 11.98 6.01 CLAY 12 17 .8 2.850 9.35 6.42 7.79 CLAY 5 7 .3 3.000 9.84 4.91 6.92 CLAY 5 7 .3 3.150 10.33 5.48 6.57 CLAY 6 8 .4 3.300 10.83 5.97 7.37 CLAY 6 8 .4 3.450 11.32 6.05 6.78 CLAY 6 8 .4 3.600 11.81 3.87 8.01 ORGANIC MATERIAL 4 5 .3 3.750 12.30 4.42 7.47 CLAY 7 9 .4 4.050 13.29 7.35 6.12 CLAY 7 9 .4 4.500 14.76 15.66 6.26 CLAY <t< td=""><td>2.250</td><td>7.38</td><td>40.39</td><td>4.88</td><td>CLAY to SILTY CLAY</td><td>27</td><td>42</td><td></td><td>2.4</td><td></td></t<>	2.250	7.38	40.39	4.88	CLAY to SILTY CLAY	27	42		2.4	
2.5508.374.026.47CLAY46.22.7008.8611.986.01CLAY1217.82.8509.356.427.79CLAY69.43.0009.844.916.92CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.45011.326.056.78CLAY68.43.60012.304.427.47CLAY45.23.90012.804.788.37ORGANIC MATERIAL45.33.75012.304.427.47CLAY45.23.90012.804.788.37ORGANIC MATERIAL56.44.20013.7810.205.69CLAY1012.64.35014.2713.005.92CLAY1012.64.50014.7615.666.26CLAY910.54.80015.7511.475.84CLAY910.54.80015.7511.475.82CLAY1113.75.40015.7511.475.84CLAY1112.75.40015.7511.495.13CLAY1112.75.40017.7210.815.46CLAY </td <td>2.400</td> <td>7.87</td> <td>6.84</td> <td>5.85</td> <td>CLAY</td> <td>7</td> <td>10</td> <td></td> <td>-4</td> <td></td>	2.400	7.87	6.84	5.85	CLAY	7	10		-4	
2.7008.8611.986.01CLAY1217.82.8509.356.427.79CLAY69.43.0009.844.916.92CLAY57.33.15010.335.486.57CLAY57.33.30010.835.977.37CLAY68.43.45011.326.056.78CLAY68.43.45011.326.056.78CLAY68.43.75012.304.427.47CLAY45.23.90012.804.788.37ORGANIC MATERIAL56.44.05013.297.356.12CLAY79.44.20013.7810.205.69CLAY1012.64.35014.2713.005.92CLAY1315.84.50015.268.636.26CLAY910.54.80015.7511.475.84CLAY1113.74.95016.2412.025.82CLAY1113.75.40017.7210.815.46CLAY1112.75.50018.2110.375.59CLAY1011.65.70018.7010.736.06CLAY1011.65.70018.7010.736.06CLAY1	2.550	8.37	4.02	6.47	CLAY	4	6		.2	
2.850 9.35 6.42 7.79 CLAY 6 9 .4 3.000 9.84 4.91 6.92 CLAY 5 7 .3 3.150 10.33 5.48 6.57 CLAY 5 7 .3 3.300 10.83 5.97 7.37 CLAY 6 8 .4 3.450 11.32 6.05 6.78 CLAY 6 8 .4 3.450 11.81 3.87 8.01 ORGANIC MATERIAL 4 5 .3 3.750 12.30 4.42 7.47 CLAY 4 5 .2 3.900 12.80 4.78 8.37 ORGANIC MATERIAL 5 6 .4 4.050 13.29 7.35 6.12 CLAY 7 9 .4 4.200 13.78 10.20 5.69 CLAY 10 12 .6 4.350 14.27 13.00 5.92 CLAY 10 12 .6 4.800 15.75 11.47 5.84 C	2.700	8.86	11.98	6.01	CLAY	12	17		.8	
3.000 9.84 4.91 6.92 $CLAY$ 5 7 $.3$ 3.150 10.33 5.48 6.57 $CLAY$ 5 7 $.3$ 3.300 10.83 5.97 7.37 $CLAY$ 6 8 $.4$ 3.450 11.32 6.05 6.78 $CLAY$ 6 8 $.4$ 3.600 11.81 3.87 8.01 $ORGANIC MATERIAL$ 4 5 $.3$ 3.750 12.30 4.42 7.47 $CLAY$ 4 5 $.2$ 3.900 12.80 4.78 8.37 $ORGANIC MATERIAL$ 5 6 $.4$ 4.050 13.29 7.35 6.12 $CLAY$ 7 9 $.4$ 4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 10 12 $.6$ 4.500 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 13 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 10 11 $.6$ 5.700	2.850	9.35	6.42	7.79	CLAY ·	6	9		-4	
3.150 10.33 5.48 6.57 CLAY 5 7 .3 3.300 10.83 5.97 7.37 CLAY 6 8 .4 3.450 11.32 6.05 6.78 CLAY 6 8 .4 3.600 11.81 3.87 8.01 ORGANIC MATERIAL 4 5 .3 3.750 12.30 4.42 7.47 CLAY 4 5 .2 3.900 12.80 4.78 8.37 ORGANIC MATERIAL 5 6 .4 4.050 13.29 7.35 6.12 CLAY 7 9 .4 4.200 13.78 10.20 5.69 CLAY 10 12 .6 4.350 14.76 15.66 6.26 CLAY 13 15 .8 4.500 15.75 11.47 5.84 CLAY 11 13 .7 4.950 16.24 12.02 5.82 CLAY 11 13 .7 5.250 17.22 11.49 5.13	3.000	9.84	4.91	6.92	CLAY	5	7		.3	
3.300 10.83 5.97 7.37 $CLAY$ 6 8 $.4$ 3.450 11.32 6.05 6.78 $CLAY$ 6 8 $.4$ 3.600 11.81 3.87 8.01 $ORGANIC MATERIAL$ 4 5 $.3$ 3.750 12.30 4.42 7.47 $CLAY$ 4 5 $.2$ 3.900 12.80 4.78 8.37 $ORGANIC MATERIAL$ 5 6 $.4$ 4.050 13.29 7.35 6.12 $CLAY$ 7 9 $.4$ 4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 12 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.400 17.72 10.81 5.46 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 11 12 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.1600 <	3.150	10.33	5.48	6.57	CLAY	5	7		.3	
3.450 11.32 6.05 6.78 $CLAY$ 6 8 $.4$ 3.600 11.81 3.87 8.01 $ORGANIC$ MATERIAL 4 5 $.3$ 3.750 12.30 4.42 7.47 $CLAY$ 4 5 $.2$ 3.900 12.80 4.78 8.37 $ORGANIC$ MATERIAL 5 6 $.4$ 4.050 13.29 7.35 6.12 $CLAY$ 7 9 $.4$ 4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 13 15 $.8$ 4.500 14.76 15.66 6.26 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 4.950 16.24 12.02 5.82 $CLAY$ 11 13 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 11 12 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 11 12 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 11 12 $.6$ 6.150 20.18 15.38 6.18 $CLAY$ 11 12 $.6$ <td>3.300</td> <td>10.83</td> <td>5.97</td> <td>7.37</td> <td>CLAY</td> <td>6</td> <td>8</td> <td></td> <td>-4</td> <td></td>	3.300	10.83	5.97	7.37	CLAY	6	8		-4	
3.600 11.81 3.87 8.01 ORGANIC MATERIAL 4 5 .3 3.750 12.30 4.42 7.47 CLAY 4 5 .2 3.900 12.80 4.78 8.37 ORGANIC MATERIAL 5 6 .4 4.050 13.29 7.35 6.12 CLAY 7 9 .4 4.200 13.78 10.20 5.69 CLAY 10 12 .6 4.350 14.27 13.00 5.92 CLAY 13 15 .8 4.500 14.76 15.66 6.26 CLAY 16 18 1.0 4.650 15.26 8.63 6.26 CLAY 9 10 .5 4.800 15.75 11.47 5.84 CLAY 11 13 .7 4.950 16.24 12.02 5.82 CLAY 11 13 .7 5.100 16.73 10.92 5.86 CLAY 11 13 .7 5.250 17.22 11.49 5.13<	3.450	11.32	6.05	6.78	CLAY	6	8		-4	
3.750 12.30 4.42 7.47 $CLAY$ 4 5 $.2$ 3.900 12.80 4.78 8.37 $ORGANIC$ MATERIAL 5 6 $.4$ 4.050 13.29 7.35 6.12 $CLAY$ 7 9 $.4$ 4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 13 15 $.8$ 4.500 14.76 15.66 6.26 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 13 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 11 12 $.7$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.000 19.69 13.41 5.07 $CLAY$ 15 17 1.0	3.600	11.81	3.87	8.01	ORGANIC MATERIAL	4	5		.3	<u>18</u>
3.900 12.80 4.78 8.37 ORGANIC MATERIAL 5 6 .4 4.050 13.29 7.35 6.12 CLAY 7 9 .4 4.200 13.78 10.20 5.69 CLAY 10 12 .6 4.350 14.27 13.00 5.92 CLAY 13 15 .8 4.500 14.76 15.66 6.26 CLAY 16 18 1.0 4.650 15.26 8.63 6.26 CLAY 9 10 .5 4.800 15.75 11.47 5.84 CLAY 11 13 .7 4.950 16.24 12.02 5.82 CLAY 12 14 .7 5.100 16.73 10.92 5.86 CLAY 11 12 .7 5.250 17.22 11.49 5.13 CLAY 11 13 .7 5.400 17.72 10.81 5.46 CLAY 11 12 .7 5.550 18.21 10.37 5.99	3.750	12.30	4.42	7.47	CLAY	4	5		.2	
4.050 13.29 7.35 6.12 $CLAY$ 7 9 $.4$ 4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 13 15 $.8$ 4.500 14.76 15.66 6.26 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 5.100 16.24 12.02 5.82 $CLAY$ 11 12 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 12 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 13 $.7$ 5.400 17.72 10.81 5.46 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 10 11 $.6$ 5.700 18.70 10.73 6.06 $CLAY$ 10 11 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.000 19.69 13.41 5.07 $CLAY$ 13 15 $.8$ 6.180 20.18 15.38 6.18 $CLAY$ 15 17 1.0	3,900	12.80	4.78	8.37	ORGANIC MATERIAL	5	6		.4	
4.200 13.78 10.20 5.69 $CLAY$ 10 12 $.6$ 4.350 14.27 13.00 5.92 $CLAY$ 13 15 $.8$ 4.500 14.76 15.66 6.26 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 4.950 16.24 12.02 5.82 $CLAY$ 12 14 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 12 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 13 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 10 11 $.6$ 5.700 18.70 10.73 6.06 $CLAY$ 11 12 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.000 19.69 13.41 5.07 $CLAY$ 13 15 $.8$ 6.150 20.18 15.38 6.18 $CLAY$ 15 17 1.0	4.050	13.29	7.35	6.12	CLAY	7	9		.4	
4.350 14.27 13.00 5.92 $CLAY$ 13 15 $.8$ 4.500 14.76 15.66 6.26 $CLAY$ 16 18 1.0 4.650 15.26 8.63 6.26 $CLAY$ 9 10 $.5$ 4.800 15.75 11.47 5.84 $CLAY$ 9 10 $.5$ 4.950 16.24 12.02 5.82 $CLAY$ 12 14 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 13 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.250 17.72 10.81 5.46 $CLAY$ 11 12 $.7$ 5.400 17.72 10.81 5.46 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 10 11 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.000 19.69 13.41 5.07 $CLAY$ 13 15 $.8$ 6.150 20.18 15.38 6.18 $CLAY$ 15 17 1.0	4,200	13.78	10.20	5.69	CLAY	10	12		.6	
$ \begin{array}{ccccccccccccccccccccccccccccccc$	4.350	14.27	13.00	5.92	CLAY	13	15		.8	
4.650 15.26 8.63 6.26 CLAY 9 10 .5 4.800 15.75 11.47 5.84 CLAY 11 13 .7 4.950 16.24 12.02 5.82 CLAY 12 14 .7 5.100 16.73 10.92 5.86 CLAY 11 12 .7 5.250 17.22 11.49 5.13 CLAY 11 12 .7 5.250 17.22 11.49 5.13 CLAY 11 12 .7 5.400 17.72 10.81 5.46 CLAY 11 12 .7 5.550 18.21 10.37 5.59 CLAY 10 11 .6 5.700 18.70 10.73 6.06 CLAY 10 11 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 <td< td=""><td>4.500</td><td>14.76</td><td>15.66</td><td>6.26</td><td>CLAY</td><td>16</td><td>18</td><td></td><td>1.0</td><td></td></td<>	4.500	14.76	15.66	6.26	CLAY	16	18		1.0	
4.800 15.75 11.47 5.84 $CLAY$ 11 13 $.7$ 4.950 16.24 12.02 5.82 $CLAY$ 12 14 $.7$ 5.100 16.73 10.92 5.86 $CLAY$ 11 12 14 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.250 17.22 11.49 5.13 $CLAY$ 11 12 $.7$ 5.400 17.72 10.81 5.46 $CLAY$ 11 12 $.7$ 5.550 18.21 10.37 5.59 $CLAY$ 10 11 $.6$ 5.700 18.70 10.73 6.06 $CLAY$ 10 11 $.6$ 5.850 19.19 9.79 5.92 $CLAY$ 10 11 $.6$ 6.000 19.69 13.41 5.07 $CLAY$ 13 15 $.8$ 6.150 20.18 15.38 6.18 $CLAY$ 15 17 1.0	4.650	15.26	8.63	6.26	CLAY	9	10		.5	
4.950 16.24 12.02 5.82 $CLAY$ 12 14 .7 5.100 16.73 10.92 5.86 $CLAY$ 11 12 .7 5.250 17.22 11.49 5.13 $CLAY$ 11 13 .7 5.400 17.72 10.81 5.46 $CLAY$ 11 12 .7 5.550 18.21 10.37 5.59 $CLAY$ 10 11 .6 5.700 18.70 10.73 6.06 $CLAY$ 10 11 .6 5.850 19.19 9.79 5.92 $CLAY$ 10 11 .6 6.000 19.69 13.41 5.07 $CLAY$ 13 15 .8 6.150 20.18 15.38 6.18 $CLAY$ 15 17 1.0	4.800	15.75	11.47	5.84	CLAY	11	13		.7	
5.100 16.73 10.92 5.86 CLAY 11 12 .7 5.250 17.22 11.49 5.13 CLAY 11 13 .7 5.400 17.72 10.81 5.46 CLAY 11 12 .7 5.550 18.21 10.37 5.59 CLAY 10 11 .6 5.700 18.70 10.73 6.06 CLAY 10 11 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	4.950	16.24	12.02	5.82	CLAY	12	14		.7	
5.250 17.22 11.49 5.13 CLAY 11 13 .7 5.400 17.72 10.81 5.46 CLAY 11 12 .7 5.550 18.21 10.37 5.59 CLAY 10 11 .6 5.700 18.70 10.73 6.06 CLAY 11 12 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5,100	16.73	10.92	5.86	CLAY	11	12		.7	<i></i>
5.400 17.72 10.81 5.46 CLAY 11 12 .7 5.550 18.21 10.37 5.59 CLAY 10 11 .6 5.700 18.70 10.73 6.06 CLAY 11 12 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5.250	17.22	11.49	5.13	CLAY	11	13		.7	
5.550 18.21 10.37 5.59 CLAY 10 11 .6 5.700 18.70 10.73 6.06 CLAY 11 12 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5.400	17.72	10.81	5.46	CLAY	11	12		.7	
5.700 18.70 10.73 6.06 CLAY 11 12 .6 5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5.550	18.21	10.37	5.59	CLAY	10	11		.6	
5.850 19.19 9.79 5.92 CLAY 10 11 .6 6.000 19.69 13.41 5.07 CLAY 13 15 .8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5.700	18.70	10.73	6.06	CLAY	11	12		.6	
6.000 19.69 13.41 5.07 CLAY 13 15 -8 6.150 20.18 15.38 6.18 CLAY 15 17 1.0	5.850	19.19	9.79	5.92	CLAY	10	11		.6	
6.150 20.18 15.38 6.18 CLAY 15 17 1.0	6.000	19.69	13.41	5.07	CLAY	13	15		-8	
	6.150	20.18	15.38	6.18	CLAY	15	17		1.0	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 12.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

HOLGUIN, FAHAN & ASSOCIATES, INC.

Interpretations based on: Robertson and Campanella, 1989.

* *

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL BEHAVIOR TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)				(%)	(tst)	(Degrees)
			/ 77	C1 4V	10	20		1 1	
6.300	20.67	19.10	0.23	CLAT	17	20		1-1	
6.450	21.16	13.49	5.95		15	14		.0	
6.600	21.65	13.32	6.51	LLAT	15	14		.0	
6.750	22.15	16.46	5.77	CLAY	10	17	3 8 3	1.0	
6.900	22.64	14.51	5.93	CLAY	15	15		• • •	
7.050	23.13	14.17	5.08	CLAY	14	15		.9	
7.200	23.62	13.19	4.78	CLAY	13	14		.8	
7.350	24.11	15.44	5.31	CLAY	15	16		-9	
7.500	24.61	16.10	5.28	CLAY	16	16		1.0	
7.650	25.10	16.57	5.07	CLAY	17	17		1.0	
7.800	25.59	17.72	4.74	CLAY	18	18		1.1	
7.950	26.08	16.32	4.78	CLAY	16	16		1.0	
8.100	26.57	19.18	4.54	CLAY	19	19		1.2	
8,250	27.07	16.15	5.39	CLAY	16	16		1.0	
8.400	27.56	21.12	5.07	CLAY	21	21		1.2	*
8.550	28.05	25.13	4.50	CLAY to SILTY CLAY	17	16		1.4	
8 700	28.54	26.47	4.65	CLAY	26	26		1.5	
8.850	29.04	32.27	4.37	CLAY to SILTY CLAY	22	21		1.8	
9 000	29 53	29.08	4.54	CLAY to SILTY CLAY	19	19		1.6	
0 150	30 02	44.15	4.35	CLAY to SILTY CLAY	29	28		2.5	
0 300	30 51	27 89	4.66	CLAY	28	26		1.5	
0 450	31 00	10 89	3.97	CLAY to SILTY CLAY	13	13		1.2	
0 600	31 50	12 56	4.22	CLAY	13	12		.7	
9.000	31.00	13 47	4.68	CLAY	13	13		.8	
9.750	37.77	10 50	3 47	CLAY TO SULTY CLAY	13	12		1.2	
10 050	72 07	12 58	6 21	CLAY	13	12		7	
10.000	77 14	17 20	2 88	CLAY TO SULTY CLAY	12	11		1 0	
10.200	33.40	21 75	5 33	CLAY	22	20		1.2	
10.550	33.90	21.13	1.62	CLAY TO STUTY CLAY	33	30		2.8	
10.500	34.43	49.14	4.02	CLAY TO SILTY CLAY	33	30		2.8	
10.050	34.94	47.40	7 19	CLAY CO STETT CLAT	25	23		1 4	
10.800	32.43	23.07	1.10	CLAYEN CTLT to STITY FLAN	10	18		2.2	
10.950	35.95	38.98	4.05	CLATET SILT LO SILTI CLAT	20	10		1.7	
11.100	36.42	19.07	5.29		20	10		1.0	
11.250	36.91	16.00	4.02	THE STAR STAR STAR STAR	100	100		1.0	
11.400	37.40	117.55	4.10	VERT STIFF FINE GRAINED	100	100			
11.550	37.89	240.66	3.51	*SAND TO CLAYEY SAND	100	100			
11.700	38.39	89.40	4.16	CLAYEY SILT to SILTY CLAY	45	39		5.1	
11.850	. 38.88	33.89	4.93	CLAY	34	30		1.9	
12.000	39.37	28.28	4.95	CLAY	28	25		1.5	
12.150	39.86	28.72	4.32	CLAY to SILTY CLAY	19	17		1.6	
12.300	40.35	23.69	4.56	CLAY	24	20		1.4	
12.450	40.85	31.59	3.32	CLAYEY SILT to SILTY CLAY	16	14		2.0	
12.600	41.34	40.03	3.55	CLAYEY SILT to SILTY CLAY	20	17		2.5	
12.750	41.83	30.06	5.06	CLAY	30	26		1.6	
12,900	42.32	27.55	5.23	CLAY	28	23		1.5	
13.050	42.81	41.38	4.35	CLAY to SILTY CLAY	28	23		2.3	
13,200	43.31	28.13	3.95	CLAY tO SILTY CLAY	19	16		1.7	
13.350	43.80	25.45	4.05	CLAY to SILTY CLAY	17	14		1.5	
13,500	44.29	23.33	3.64	CLAY to SILTY CLAY	16	13		1.4	
13.650	44.78	18.63	4.03	CLAY tO SILTY CLAY	12	10		1.1	

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 12.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.

DEPTH	DEPTH	TIP RESISTANCE	FRICTION RATIO	SOIL	BEHAVIOR	TYPE	N(60)	N1(60)	Dr	Su	PHI
(m)	(ft)	(tsf)	(%)						(%)	(tsf)	(Degrees)
13.800	45.28	21.95	5.15	CLAY			22	18		1.1	
13.950	45.77	23.60	4.49	CLAY			24	19		1.4	
14,100	46.26	30.74	4.91	CLAY			31	25		1.7	
14.250	46.75	30.06	5.26	CLAY			30	25		1.6	
14,400	47.24	32.25	5.40	CLAY			32	26		1.7	
14.550	47.74	38.50	4.91	CLAY			39	31		2.1	
14,700	48.23	37.07	5.48	CLAY			37	30		2.0	
14 850	48.72	35.42	5.28	CLAY			35	29		1.9	
15,000	49.21	34.91	5.30	CLAY		20	35	28		1.9	35
15 150	49.70	33.16	4.73	CLAY			33	27		1.8	
15 300	50 20	32.40	5.46	CLAY			32	26		1.7	
15 450	50.69	37.48	5.74	CLAY			37	30		2.0	
15 600	51 18	39.37	5.66	CLAY			39	31		2.2	
15 750	51 67	41.60	5.48	CLAY			42	33		2.3	
15 000	52 17	44 74	5.16	CLAY			45	35		2.5	
16 050	52 66	51.03	5.41	CLAY			51	40		2.8	
16.000	53 15	48 23	5.52	CLAY			48	38		2.7	
16 350	53 64	49.12	6.35	CLAY			49	38		2.7	
16.500	5/ 13	40 54	5.92	CLAY			41	31		2.2	
16.500	54 63	34 08	5.58	CLAY		54	34	26		1.8	
16.800	55 12	34 40	5 81	CLAY			34	26		1.8	
14 050	55 61	32 82	5 73	CLAY			33	25		1.8	
17 100	56 10	33 18	5 15	CLAY			33	25		1.8	
17.750	54 50	37 82	5 55	CLAY			38	29		2.0	
17.00	57.00	11 10	4 61	CLAY to	STITY CL	Y	30	22		2.4	
17.400	57 59	31 78	5 20	CLAY	01211 027		32	24		1.7	
17.330	59 07	21.86	1.76	CLAY -			22	16		1.2	
17.700	50.07	21.00	4.70	CLAY			23	17		1 2	
17.850	20.20	22.02	4.70	CLAY			20	15		1 1	
18.000	59.06	20.44	4.50	CLAT			10	1/		1.0	
18.150	59.55	10.91	4.00	CLAT		1	7/	75		1.8	
18.300	60.04	54.29	0./0	LLAT			54	25		1.0	0
18.450	60.53	109.39	A DECOMPOSITION OF				U	0			.0

*INDICATES OVERCONSOLIDATED OR CEMENTED MATERIAL ASSUMED TOTAL UNIT WT = 110 pcf ASSUMED DEPTH OF WATER TABLE = 12.3 ft N(60) = EQUIVALENT SPT VALUE (60% Energy) N1(60) = OVERBURDEN NORMALIZED EQUIVALENT SPT VALUE (60% Energy) Dr = OVERBURDEN NORMALIZED EQUIVALENT RELATIVE DENSITY Su = OVERBURDEN NORMALIZED UNDRAINED SHEAR STRENGTH PHI = OVERBURDEN NORMALIZED EQUIVALENT FRICTION ANGLE

Interpretations based on: Robertson and Campanella, 1989.
Kleinfelder, *Geotechnical Investigation Report, Chevron Park,* San Ramon, California, dated June 1981.

[] (* *					ана стана 1970 година 1970 година			
		0	DRY DENSITY 16/ft3	MOISTURE CONTENT 2 DRY WEIGHT	BLOW COUNT	SAMPLE	NZCZ	DESCRIPTION			
		-		â	25		СН	Black, silty clay, desiccato 3 ft, dry, stiff.	ted, roots		
		5-	105.1	16.8	16	2-2	ML	Brown, sandy clayey silt, dry, caliche.	dense,		
	-	10-	111.1	5.0	23	2-10			-		
		15_					SM	Brown, silty sand, fine to grained, medium dense, dry, fine gravel.	medium with -		
	Th' IN FEI		98.5	23.5	18	2-15		Dark brown, mottled gray, so clay, medium stiff, damp.	- ilty _		
	DEP	20 -			18	2-20	LIT				
		25-			21 2	2-25		Color change to greenish gra	y.		
		30 -			22 2	-30	В	ottom of boring at 30 ft.			
					~ ~ ~				1.1		
	J.H. KLE GEOTECHNIC	INFELDI	ER & ASSO ANTS + MATERIA			CHEVI SAN F	RON	PARK DN, CALIFORNIA	PLATE		
E	PREPARE CHECKED	D BY: P BY: D	LC DAT CM DAT	E: 8/81 E: 8/81		LOG OF BORING NO. B-2 A-3					

Kar V.

• 7

30

i

ŝ

Ę

APPENDIX B

BORING LOGS FROM THIS INVESTIGATION

Checked <u>RA</u> Approved <u>D</u>

10/08

GEOTECH MACTEC CLASS

RH

4096088527

RELATIVE DENSITY OF COARSE-GRAINED SOILS

	Standard Penetration Test
Relative	Blow Count
Density	(blows per foot)
very loose	<4

loose medium dense dense very dense 4
4-10
10-30
30-50
>50

PHYSPROPS-SOIL.DWG 40.0 20070208.1259

CONSISTENCY OF FINE-GRAINED SOILS

Consistency	Approximate Blows/foot (SPT)	Undrained Shear Strength (psf)		
very soft	<2	0 - 250		
soft	2-4	250 - 500		
medium stiff	4-8	500 - 1,000		
stiff	8-15	1,000 - 2,000		
very stiff	15-30	2,000 - 4,000		
hard	>30	>4,000		

NATURAL MOISTURE CONTENT

- Dry Requires considerable moisture to obtain optimum moisture content for compaction
- Moist Near the optimum moisture content for compaction
- Wet Requires drying to obtain optimum moisture content for compaction

Note: Where laboratory data are not available, the field classifications given above provide a general indication of material properties; the classifications may require modification based on judgment or laboratory testing.

MAC	CTEC	Physical Bishop Ra Parcel 1& San Ramo	Properties Criteria for S anch City Center Project 1A on, California	Soil Classification	PLATE:
DRAWN	JOB NUMBER	CHECKED	CHECKED DATE	APPROVED	APPROVED DATE
RL	4096-08-8527	RH	9/08	$\mathcal{O}\mathcal{U}(\mathcal{T})$	12/00

Other Tests/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blows per Foot	Depth (ft.)	Sampler Type	Graphic Log	Date 8/19/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 439
						- 0 -	×		Dark gray coarse SAND with silt (SM), moist (Fill?)
Corrosion			4.5	2	20*	5			Dark gray LEAN CLAY (CL),very Stiff, moist
LL=38, PL = 24, PI = 14, Consol	18.2	101.0	3.0	0.8	21*				Becomes light gray Light brown clayey SAND (SC), medium dense, wet
TXUU 986 (1800)			0.75	0.7	8*				Light brown FAT CLAY (CH), medium stiff, wet
			2.0	1.1	14*	20			$\overline{\Sigma}$ Becomes light gray with brown spots, stiff
LL=55, PL = 27, PI = 28	24.8	101.2	2.0	1.5	11*	25 — 			Becomes light brown
TXUU 2182 (2995)			1.5	1.3	13*	30			Becomes light gray with white streaks
LL= 44, PL = 22, PI = 22	19.3	109.4	3.0	1.1	19*	35 —			Light gray LEAN CLAY (CL), stiff, wet
, ¹						40			

** From field Torvane measurements *** From field Pocket Penetrometer measurements

Log of Boring B-1 Bishop Ranch City Center Project Parcel 1&1A San Ramon, California CHECKED CHCK'D DATE CHECKED 10/08

		4 1	1			<u></u>		_		
Other Te:	sts/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blows per Foot	Depth (ft.)	Sampler Type	Graphic Log	Date 8/19/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 439 Datum MSL
				2.0	0.9	20*				Light brown clayey SAND (SC), medium dense, wet
-200 = 48.24	%,			2.0	0.7	21*	45			
MA, -200 = -	85.7%			3.5	1.2	27*	50			Light brown LEAN CLAY (CL), stiff, wet
TXUU 4543	(4795)			3.25	1.1	28*	55 — — — 60 —			Light brown FAT CLAY (CH), very stiff, wet with greenish spots
							65 —			
				3.0	1.1	62*	70 —			Dark brown GRAVEL with fines (GP), very dense, wet Light brown FAT CLAY (CH), hard, wet Bottom of boring at 70 feet below ground surface. Groundwater encountered at 20 feet below ground level. Boring was grouted with cement grout after completion.
T										
* Blowcount ** From field	s have been conve I Torvane measure d Pocket Penetror	erted to ements meter m	appro easur	ximate ements	SPT-N	Values I	using a co	onv	ersion f	actor of 0.8
	DRAWN				E(\sum		Li Bi Pa Sa	og of shop Ra arcel 1& an Ram	Boring B-1 BORING anch City Center Project 1A on, California CHCK'D DATE APPROVED CHCK'P DATE
	DB		40	96-08	-8527			1	PH	10/08 Call 60 06

10/01 CH GDT C 00 JUNNO DO BIGH NG NEW MACTEC CH BORI

L

Page 2 of 2

Other Tests/Drilling Notes	Moisture Content (%) Dry Density (pcf) Shear Strength*** (ksf) Risear Strength ** (ksf) Blows per Foot	(1) 00
		Dark gray coarse SAND with silt (SM) Moist (Fill?)
		Dark gray FAT CLAY (CH), Moist
		5 Bottom of boring 5 foot below ground surface. No groundwater encountered Backfilled with soil and tamped down.
1		
* Blowcounts have been converted at the second seco	erted to approximate SPT-N values using ements meter measurements	g a conversion factor of 0.8
MA	CTEC	Log of Boring B-2 BORING Bishop Ranch City Center Project Parcel 1&1A San Ramon, California
DRAWN DB	JOB NUMBER 4096-08-8527	CHECKED CHCK'D DATE APPROVED CHCK'D DATE

Other Tests/Drilling Notes	Moisture Content (%) Dry Density (pcf)	Shear Strength*** (ksf) Shear Strength ** (ksf)	Blows per Foot	Depth (ft.)	Sampler Type	Graphic Log	Date 8/19/08 Equipment Gregg Drilling Drilling Method Hand Auger Sampler Grab Hammer Weight N/A Drop N/A Logged by RL Datum MSL Surface Elevation 438
							Dark gray coarse SAND with silt (SM) Moist (Fill?) Dark gray FAT CLAY (CH), Moist Bottom of boring 5 foot below ground surface.
							No groundwater encountered Backfilled with soil and tamped down.
* Blowcounts have been conve ** From field Torvane measure *** From field Pocket Penetron	rted to apprometer measu	oximate SPT-	N values (using a co	onvers	ion f	actor of 0.8
DRAWN		OB NUMBER	С		Log Bisho Parce San F CHEC	of p Ra el 1& Ram KED	Boring B-3 anch City Center Project 1A on, California CHCK'D DATE 10/08 B-5 CHCK'D DATE

		Date 8/19/08
ure int (%)	ty (pcf) - Strength*** r Strength ** s per Foot	Bate Original Bite Original
Other Tests/Drilling Notes	Densis Densis (ksf) (ksf) (ksf) Blows Depth	Logged byRL Datum MSL Surface Elevation433
	0	Dark gray coarse SAND with silt (SM) Moist (Fill?)
		Dark gray FAT CLAY (CH), Moist
	5	Bottom of boring 5 foot below ground surface. No groundwater encountered Backfilled with soil and tamped down.
*Blowcounts have been converted t ** From field Torvane measurement *** From field Pocket Penetrometer	o approximate SPT-N values using a co s measurements	onversion factor of 0.8
DRAWN	CTEC JOB NUMBER	Log of Boring B-4 BORING Bishop Ranch City Center Project Parcel 1&1A San Ramon, California CHECKED CHCK'D DATE APPROVED CHCK'D DATE
DB	4096-08-8527	10/08 VNX 10/00

Coher Tosts/Dring Motor	[1 1 1 1	1 1 1	1 1	(12) (3) <u>12) (12) (12) (12)</u>
Applied Concrete 2' Applied Concrete 2' Det gray coares SADD with all (SM) Moist (Fill) Det gray FAT CLAY (CH). Moist Det gray FAT CLAY (CH). Moist Det gray FAT CLAY (CH). Moist Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with all (SM) Moist (Fill) Det gray Charter ADD with add the add t	Other Tests/Drilling Notes	Moisture Content (%) Dry Density (pcf) Shear Strength*** (ksf) Shear Strength *** (ksf)	Blows per Foot Depth (ft.)	Campler Type Graphic Log HnnS InnS	Date 8/19/08 Equipment Gregg Drilling iilling Method Hand Auger Sampler Grab mmer Weight N/A Drop N/A Logged by RL Datum MSL ace Elevation 430
Bottom of boring 5 foot below ground surface. No ground surface. Backlined with soil and tamped down. Bottom of boring 5 foot below ground surface. Backlined with soil and tamped down. Backlined with soil					Asphalt Concrete 2" Dark gray coarse SAND with silt (SM) Moist (Fill) Dark gray FAT CLAY (CH), Moist
			5		Bottom of boring 5 foot below ground surface. No groundwater encountered Backfilled with soil and tamped down.
*Bowcounts have been converted to approximate SPT-N values using a conversion factor of 0.8 * * Torm field Torvane measurements * * Torm field Torvane measurements * * Torm field Pocket Penetrometer measurements Log of Boring B-5 Bishop Ranch City Center Project DRAWN JOB NUMBER DRAWN DB NUMBER DB NUMBER CHCKD DATE CHC					
Blowcounts have been converted to approximate SPT-N values using a conversion factor of 0.8 * From field Torvane measurements ** From field Pocket Penetrometer measurements ** From field Pocket Penetrometer measurements Log of Boring B-5 Bishop Ranch City Center Project Parcel 181A San Ramon, California CHCKD DATE DRAWN JOB NUMBER CHCKD DATE CHCKD DATE APPROVED CHCKD DATE					
* Blowcounts have been converted to approximate SPT-N values using a conversion factor of 0.8 ** From field Torvane measurements ** From field Pocket Penetrometer measurements Log of Boring B-5 Bishop Ranch City Center Project Parcel 1&1A San Ramon, California DB 4096-08-8527					
Log of Boring B-5 BORING DRAWN JOB NUMBER Log of Boring B-5 Boring B-5 DB 4096-08-8527 CHECKED CHECKED <th< td=""><td>* Blowcounts have been conv ** From field Torvane measur</td><td>erted to approximate SPT ements meter measurements</td><td>-N values using a co</td><td>nversion factor</td><td>of 0.8</td></th<>	* Blowcounts have been conv ** From field Torvane measur	erted to approximate SPT ements meter measurements	-N values using a co	nversion factor	of 0.8
AUMONIONOUVI VILLET IDDA			С	Log of Bor Bishop Ranch Parcel 1&1A San Ramon, C CHECKED	ing B-5 City Center Project B-7 City Center Project CHCK'D DATE APPROVED CHCK'D DATE CHCK'D DATE CHCK'D DATE CHCK'D DATE CHCK'D DATE

	Other Tests/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blows per Foot	o Depth (ft.)	Sampler Type	Graphic Log	Date 8/19/08 Equipment Gregg Drilling Drilling Method Hand Auger Sampler Grab Hammer Weight N/A Drop N/A Logged by RL Datum MSL Surface Elevation 429
								XX		Aspirat Concrete 2 Dark gray coarse SAND with silt (SM) Moist (Fill) Dark gray FAT CLAY (CH), Moist Bottom of boring 5 foot below ground surface. No groundwater encountered Backfilled with soil and tamped down.
PJ GEOTECH.GDT 10/8/08										x
JEW_MACTEC BISHOP RANCH.G										
GEOTECH BORING N	* Blowcounts have been conve ** From field Torvane measure *** From field Pocket Penetror	erted to ements neter m	appro	oximate rement:	s SPT-1	V values	using a c	onv	version	factor of 0.8
	DRAWN DB			Г В NUM 096-08	E(C		BPSC	og of ishop R arcel 18 an Ram HECKED	Boring B-6 BORING anch City Center Project ATA BORING CHCK'D DATE APPROVED CHCK'D DATE 10/08

			1							Date 8/19/08
				th**'	ith *	ot		_o	ß	Equipment Gregg Drilling
		(%	pcf)	eng	reng	r Fo	~	Type	ic L	Drilling Method Hand Auger
		ure ent (ity (r Sti	r St	s pe	ר (ft.	oler	aph	Hammer Weight Drop N/A
		loist	ens	hea (sf)	shea (sf)	iowi	epth	amp	ū	Logged byRL Datum MSL
Other 7	ests/Drilling Notes	201		SE	ທະ	ш		S		Surface Elevation
-							- 0 -			Asphalt Concrete 2"
							-	\bigotimes	IIII	Dark gray coarse SAND with silt (SM) Moist (Fill?)
										Dark gray FAT CLAY (CH), Moist
							5 -	\times		
							5 -			Bottom of boring 5 foot below ground surface. No groundwater encountered
										Backfilled with soil and tamped down.
										S
2										
0/8/0										
10										
E										
2										
5										
ANG										
										1
EC										
MAG										
NEW										
INC										
- Sal										
- Di	- le b b-				007.	1		_		
Blowcou	eld Torvane measure	erted to a ements	approx	ximate	SPI-N	i values u	ising a co	onv	ersion f	actor of 0.8
*** From f	ield Pocket Penetror	neter me	easure	ements	5			1	00.05	Poring D 7 BODING
2 M		(17	די	7	7		Bis	shop R	anch City Center Project
	IVIA	11	,		11			Pa	arcel 18	1A B-9
(Section of the section of the secti	DRAWN	~ ~	JO	BNUM	BER			CH	in Ram 库安族民D	CHCK'D DATE APPROVED CHCK'D DATE
Walling and	DB		40	96-08	-8527			0	OH	10/08 Del 600

P	-	-	-	-	i	r - r			
Other Tests/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blaws per Foat	Depth (ft.)	Sampler Type	Graphic Log	Date 8/18/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 428
							×		Asphalt Concrete Dark gray coarse SAND with silt (SM) moist (Fill) Dark gray FATCLAY (CH), very stiff, moist
Corrosion			3.5	0.8	18*	5			Becomes light gray
No Sample Recovery					10*				
LL= 60, PL = 32, PI = 28, Consol	32.4	88.3	1	0.8	12*	15			¥
					13				Light brown clayey SAND (SC), medium dense, wet Light gray FAT CLAY (CH), very stiff, moist with some brown spots
TXUU 1987 (1915)			2.5	0.8	16*	20			
LL=45, PL = 19, PI = 26	20.6	110.6	2.5	0.9	16*	25			Light gray LEAN CLAY (CL), very stiff, wet
TXUU 1512 (2578)			4.5	0.9	14*	30 -			
			2.25	0.7	14*	35 —			Light brown FAT CLAY (CH), stiff, wet Light brown clayey SAND (SC), medium dense, wet
* Blowcounts have been conve ** From field Torvane measure	erted to	o appro	oximate	SPT-1	V values	40 –	onve	ersion f	actor of 0.8
From field Pocket Penetror	neter n	neasur	ement	S				-	
DRAWN				E(\mathbb{C}		Bis Pa Sa	bg of shop Ra rcel 1& n Rame ECKED	Boring B-8 anch City Center Project 1A Dn, California CHCK'D DATE APPROVED CHCK'D DATE
DB		40	196-08	-8527		3	A	2/A	10/08 DWD White
		4(100-00	0021			VV	//	VIG VIG

GEOTECH BORING NEW MACTEC BISHOP RANCH.GPJ GEOTECH.GDT 10/8/08

			1		. 1		1	-		Date 8/18/08
	Other Tests/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blows per Foot	Depth (ft.)	Sampler Type	Graphic Log	Equipment Gregg Drilling Drilling Method HSA Sampler SPT/S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 428
				3.5	0.8	18*	- 40 - - - -			Light brown FAT CLAY (CH), very stiff to hard, wet with white streaks
	TXUU 4025 (3485)			2.5	1.2	27*	45 —			
				4.5	0.8	36*	50 —			Light brown clayey SAND (SC), dense, wet with greenish spots
				4.0	0.8	30*	55 — — —			Light brown LEAN CLAY (CL), very Stiff, wet with greenish spots
	LL=36, PL = 16, PI = 20	22.6	106.5			19*	60			
H.GDT 10/8/08	MA, -200 = 3.4%					54*	65 — — —			Dark brown GRAVEL(GP) with fines, very dense, wet
SORING NEW MACTEC BISHOP RANCH.GPJ GEOTEC.	2					16*	70 —			Light brown FAT CLAY (CH), very stiff, wet Bottom of boring at 70 feet below ground surface. Groundwater encountered at 13 feet below ground level. Boring was grouted with cement grout and topped off with asphalt after completion.
GEOTECH E	* Blowcounts have been conve ** From field Torvane measure *** From field Pocket Penetron	erted to ments neter n	appro	ximate ement:	SPT-N	l values i	using a co	onv	ersion f	actor of 0.8
	DRAWN JOB NUMBER								og of shop Ra arcel 1& an Ram IECKED	Boring B-8 anch City Center Project 1A on, California CHCK'D DATE
	DB 4096-08-8527							01	11	10/08 (Y/N/U 10/04)

Page 2 of 2

	Aoisture Content (%)	Dry Density (pcf)	Shear Strength*** ksf)	Shear Strength ** ksf)	slows per Foot	Jepth (ft.)	sampler Type	Graphic Log	Date 8/20/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL
Other Tests/Drilling Notes	20								Surface Elevation435
						-			Asphalt Concrete Dark Gray coarse SAND with silt (SM), moist (Fill) Dark gray LEAN CLAY (CL), very stiff, moist with some green spots.
LL=45, PL = 22, PI = 23	18.4	82.7	3.0	13	15*	5			Becomes light Brown, stiff, moist
			2.0	6	15*	10			Light brown clayey SAND (SC), medium dense with some black spots. Light brown FAT CLAY (CH), Stiff, Wet, with black spots.
TXUU 1944 (1800)			1.0	10	10*				⊻ with some gravel
LL=69, PL = 29, PI = 40	26.6	98	2.0	13	16*	20			Becomes dark brown with black ad green spots, very stiff.
TXUU 2030 (2405)			2.25	1.7	13*	25 — 			Becomes dark gray with green spots, stiff.
LL=49, PL = 23, PI = 26	20.7	109.8	3.0	0.9	17*				Light brown LEAN CLAY(CL), very stiff, wet
TXUU 2052 (2995)			2.25	0.9	21*				
* Blowcounts have been conv	verted to	appro	oximate	e SPT-1	V values	40 —	onvers	ion fa	actor of 0.8
*** From field Pocket Penetro				E (\sum		Log Bisho Parc San	p Ra pp Ra el 1&1 Ramo	Boring B-9 BORIN IA BAN, California CHCKP DATE

4096-08-8527

DB

San Ramon, California CHECKED CHCK'D DATE 10/08

APPROVED Page 1 of 2

Other Tradubiting Mate Image: Second	<u> </u>		1			-			1	-	
228 0.7 14* -40 <td>Other Tests</td> <td>/Drilling Notes</td> <td>Moisture Content (%)</td> <td>Dry Density (pcf)</td> <td>Shear Strength*** (ksf)</td> <td>Shear Strength ** (ksf)</td> <td>Blows per Foot</td> <td>Depth (ft.)</td> <td>Sampler Type</td> <td>Graphic Log</td> <td>Date 8/20/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 435</td>	Other Tests	/Drilling Notes	Moisture Content (%)	Dry Density (pcf)	Shear Strength*** (ksf)	Shear Strength ** (ksf)	Blows per Foot	Depth (ft.)	Sampler Type	Graphic Log	Date 8/20/08 Equipment Gregg Drilling Drilling Method HSA Sampler SPT/ S&H Hammer Weight 140 lbs Drop 30 Logged by RL Datum MSL Surface Elevation 435
-200 = 77.7% -200 = 77.7% -200 = 77.7% -3.0 -3.0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -					2.25	0.7	14*				Light brown clayey SAND (SC), medium dense, wet Light gray FAT CLAY (CH), stiff, moist
-200 = 77.7% MA, -200 = 43.4% -200 = 75.7% -200 = 75.7% -2							50/3"	45			Dark brown GRAVEL with fines (GP), very dense, wet
MA, -200 = 43.4% 18.3 114.9 19' 60 Light brown clayey SAND (SC), medium dense, wet -200 = 75.7% 42'	-200 = 77.7%				3.0	1.6	20*	50 — — 55 — — —			Light brown FAT CLAY(CH) very stiff, wet with some green spots
Light brown FAT CLAY (CH), very stiff, wet Groundwater encountered at 15 feet below ground surface. Groundwater encountered at 15 feet below ground level. Boring was grouted with cement grout and topped off with asphalt after completion. * Blowcounts have been converted to approximate SPT-N values using a conversion factor of 0.8 ** From field Torvane measurements ** From field Pocket Penetrometer measurements Conversion factor of 0.8 ** From field Pocket Penetrometer measurements Bishop Ranch City Center Project Bishop Ranch City Center Projec	MA, -200 = 43	.4%	18.3	114.9			19*	60 — — — 65 — —			Light brown clayey SAND (SC), medium dense, wet
* Blowcounts have been converted to approximate SPT-N values using a conversion factor of 0.8 ** From field Torvane measurements *** From field Pocket Penetrometer measurements Log of Boring B-9 Bishop Ranch City Center Project Parcel 1&1A Benefit Band	-200 = 75.7%						42*	70 —			Light brown FAT CLAY (CH), very stiff, wet Bottom of boring at 70 feet below ground surface. Groundwater encountered at 15 feet below ground level. Boring was grouted with cement grout and topped off with asphalt after completion.
Image: Second State Sta	* Blowcounts ** From field	have been conve Forvane measure Pocket Penetror	erted to ements meter n	appro	oximate rement	s SPT-I	N values i	using a c	on	version f	actor of 0.8
DRAWN JOB NUMBER CHECKED CHCK'D DATE APPROVED CHCK'D DAT DB 4096-08-8527 DA 10/08		MA DRAWN DB	10			E(\sum		BPSCI	og of ishop Ra arcel 18 an Ram HECKED	Boring B-9 anch City Center Project 1A on, California CHCK'D DATE 10/08 Boring B-11 CHCK'D DATE CHCK'D DATE

Page 2 of 2
APPENDIX C

CPT INVESTIGATION RESULTS

Checked All

August 22, 2008

Mactec Attn: Rambod Hadidi 28 Second St., Suite 700 San Francisco, California 94105

Subject: CPT Site Investigation Bishop Ranch San Ramon, California GREGG Project Number: 08-220MA

Dear Mr. Hadidi:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

1	Cone Penetration Tests	(CPTU)	\boxtimes	
2	Pore Pressure Dissipation Tests	(PPD)	\boxtimes	
3	Seismic Cone Penetration Tests	(SCPTU)		
4	Resistivity Cone Penetration Tests	(RCPTU)		
5	UVOST Laser Induced Fluorescence	(UVOST)		
6	Groundwater Sampling	(GWS)		
7	Soil Sampling	(SS)		
8	Vapor Sampling	(VS)		
9	Vane Shear Testing	(VST)		
10	SPT Energy Calibration	(SPTE)		

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely, GREGG Drilling & Testing, Inc.

Mary Walden Operations Manager

GREGG DRILLING & TESTING, INC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Cone Penetration Test Sounding Summary

-Table 1-

APP. Growd Surface Elev	(ree) 439	439	438	434	430	430	677						
Depth of Pore Pressure Dissipation Tests (Feet)		1	1	1	1	66.1	1						
Depth of Soil Samples (Feet)	ı	1	.1	I	.0	L	1						
Depth of Groundwater Samples (Feet)		1	1	1		I.	Ĭ						
Termination Depth (Feet)	70	70	70	70	70	70	64						
Date	8/19/08	8/19/08	8/19/08	8/19/08	8/18/08	8/18/08	8/18/08						
CPT Sounding Identification	CPT-01	CPT-02	CPT-03	CPT-04	CPT-05	CPT-06	CPT-07						

950 Howe Rd • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 OTHER OFFICES: LOS ANGELES • HOUSTON • SOUTH CAROLINA www.greggdrilling.com

APPENDIX PPDT

Cone Penetration Testing Procedure (CPT)

Gregg Drilling carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 10 cm^2 and a friction sleeve area of 150 cm^2 . The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.80.

The cone takes measurements of cone bearing (q_c) , sleeve friction (f_s) and penetration pore water pressure (u_2) at 5cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2002) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , *Figure CPT*. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg In Situ support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Cone Penetration Test (CPT) Interpretation

Gregg have recently updated their CPT interpretation and plotting software (2007). The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses 'default' values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters.

Input:

- 1 Units for display (Imperial or metric) (atm. pressure, pa = 0.96 tsf or 0.1 MPa)
- 2 Depth interval to average results, (ft or m). Data are collected at either 0.02 or 0.05m and can be averaged every 1, 3 or 5 intervals.
- 3 Elevation of ground surface (ft or m)
- 4 Depth to water table, z_w (ft or m) input required
- 5 Net area ratio for cone, a (default to 0.80)
- 6 Relative Density constant, C_{Dr} (default to 350)
- 7 Young's modulus number for sands, α (default to 5)
- 8 Small strain shear modulus number
 - a. for sands, S_G (default to 180 for SBT_n 5, 6, 7)
 - b. for clays, C_G (default to 50 for $SBT_n 1, 2, 3 \& 4$)
- 9 Undrained shear strength cone factor for clays, N_{kt} (default to 15)
- 10 Over Consolidation ratio number, k_{oer} (default to 0.3)
- 11 Unit weight of water, (default to $\gamma_w = 62.4 \text{ lb/ft}^3 \text{ or } 9.81 \text{ kN/m}^3$)

Column

- 1 Depth, z, (m) CPT data is collected in meters
- 2 Depth (ft)
- 3 Cone resistance, q_c (tsf or MPa)
- 4 Sleeve friction, f_s (tsf or MPa)
- 5 Penetration pore pressure, u (psi or MPa), measured behind the cone (i.e. u₂)
- 6 Other any additional data, if collected, e.g. electrical resistivity or UVIF
- 7 Total cone resistance, q_t (tsf or MPa) $q_t = q_c + u (1-a)$

8	Friction Ratio, Rf (%)	$R_f = (f_s/q_t) \times 100\%$				
9	Soil Behavior Type (non-normalized), SBT	see note				
10	Unit weight, γ (pcf or kN/m ³)	based on SBT, see note				
11	Total overburden stress, σ_v (tsf)	$\sigma_{vo} = \gamma Z$				
12	Insitu pore pressure, u _o (tsf)	$u_o = \gamma_w (z - z_w)$				
13	Effective overburden stress, σ'_{vo} (tsf)	$\sigma'_{vo} = \sigma_{vo} - u_o$				
14	Normalized cone resistance, Q _{t1}	$Q_{tl} = (q_t - \sigma_{vo}) / \sigma'_{vo}$				
15	Normalized friction ratio, F_r (%)	$F_r = f_s / (q_t - \sigma_{vo}) \times 100\%$				
16	Normalized Pore Pressure ratio, B _a	$B_q = u - u_o / (q_t - \sigma_{vo})$				
17	Soil Behavior Type (normalized), SBT _n	see note				
18	SBT _n Index, I _c	see note				
19	Normalized Cone resistance, Qtn (n varies with	lc) see note				
20	Estimated permeability, k _{SBT} (cm/sec or ft/sec)	see note				
21	Equivalent SPT N ₆₀ , blows/ft	see note				
22	Equivalent SPT $(N_1)_{60}$ blows/ft	see note				
23	Estimated Relative Density, Dr, (%)	see note				
24	Estimated Friction Angle, ϕ' , (degrees)	see note				
25	Estimated Young's modulus, Es (tsf)	see note				
26	Estimated small strain Shear modulus, Go (tsf)	see note				
27	Estimated Undrained shear strength, su (tsf)	see note				
28	Estimated Undrained strength ratio	s_u/σ_v				
29	Estimated Over Consolidation ratio, OCR	see note				
Notes:		1 (1007)				
1	Soil Benavior Type (non-normalized), SBT	Lunne et al. (1997)				
	listed below					
2	Unit weight, γ either constant at 119 pcf or based on Non-normalized S					
	(Lunne et al., 1997 and table below)					
3	Soil Behavior Type (Normalized), SBT_n	Lunne et al. (1997)				
		2.05				
4	SB1 _n Index, $I_c = ((3.47 - \log Q_{t1})^2)$	$+ (\log F_r + 1.22)^2)^{0.5}$				
5	Normalized Cone resistance, O _m (n varies with)	(c)				
		2				
	$Q_{tn} = ((q_t - \sigma_{vo})/pa) (pa/(\sigma'_{vo})^n \text{ and recalculate } I_c$, then iterate:				
	When $I_c < 1.64$, $n = 0.5$ (clean sand)					
	When $I_c > 3.30$, $n = 1.0$ (clays)					
	When $1.64 < I_c < 3.30$, $n = (I_c - 1.64)0.3 + 0$.	5				
	Iterate until the change in n, $\Delta n < 0.01$					
6	Estimated permeability, k_{SBT} (based on Normaliz	zed SBT _n)				
	1 1007 1 11 1 1 1					

Gregg CPT Interpretation Software 1.1, 2007

7	Equivalent SPT N60, blows/ft	Lunne et al. (1997)
	$\frac{(q_i/p_a)}{N_{60}} = 8$	$3.5\left(1-\frac{I_e}{4.6}\right)$
8	Equivalent SPT $(N_1)_{60}$ blows/ft where $C_N = (pa/\sigma'_{vo})^{0.5}$	$(N_1)_{60} = N_{60} C_{N,}$
9	Relative Density, D_r , (%) Only SBT _n 5, 6, 7 & 8	$D_r^2 = Q_{tn} / C_{Dr}$ Show 'N/A' in zones 1, 2, 3, 4 & 9
10	Friction Angle, \u00f6', (degrees)	$\tan \phi' = \frac{1}{2.68} \left[\log \left(\frac{q_e}{\sigma'_{vo}} \right) + 0.29 \right]$
	Only $SBT_n 5, 6, 7 \& 8$	Show'N/A' in zones 1, 2, 3, 4 & 9
11	Young's modulus, E_s Only SBT _n 5, 6, 7 & 8	$E_s = \alpha q_t$ Show 'N/A' in zones 1, 2, 3, 4 & 9
12	Small strain shear modulus, Go a. $G_o = S_G (q_t \sigma'_{vo} pa)^{1/3}$ b. $G_o = C_G q_t$	For SBT _n 5, 6, 7 For SBT _n 1, 2, 3& 4 Show 'N/A' in zones 8 & 9
13	Undrained shear strength, s_u Only SBT _n 1, 2, 3, 4 & 9	$s_u = (q_t - \sigma_{vo}) / N_{kt}$ Show 'N/A' in zones 5, 6, 7 & 8

Over Consolidation ratio, OCR 14 Only SBT_n 1, 2, 3, 4 & 9

 $OCR = k_{ocr} Q_{t1}$

Show 'N/A' in zones 5, 6, 7 & 8

 SBT Zones
 SBT_n Zones

 The following updated and simplified SBT descriptions have been used in the
 software:

1	sensitive fine grained	1	sensitive fine grained
2	organic soil	2	organic soil
3	clay	3	clay
4	clay & silty clay	4	clay & silty clay
5	clay & silty clay		
6	sandy silt & clayey silt		
7	silty sand & sandy silt	5	silty sand & sandy silt
8	sand & silty sand	6	sand & silty sand
9	sand		
10	sand	7	sand
11	very dense/stiff soil*	8	very dense/stiff soil*
12	very dense/stiff soil*	9	very dense/stiff soil*
* hea	avily overconsolidated and/or cemented		

Gregg CPT Interpretation Software 1.1, 2007

Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 & 5, print 'clays & silty clays')

Estimated	I Permeability (see Lunne et	al., 1997)
SBT _n	Permeability (ft/sec)	(m/sec)
1	3×10^{-8}	1×10^{-8}
2	$3x \ 10^{-7}$	1×10^{-7}
3	1x 10 ⁻⁹	$3x \ 10^{-10}$
4	3×10^{-8}	1×10^{-8}
5	3x 10 ⁻⁶	1×10^{-6}
6	$3x \ 10^{-4}$	1×10^{-4}
7	$3x \ 10^{-2}$	1×10^{-2}
8	$3x \ 10^{-6}$	1x 10 ⁻⁶
9	1×10^{-8}	3x 10 ⁻⁹

Estimated Unit Weight (see Lunne et al., 1997)

SBT	Approximate Unit Weight (lb/ft ³)	(kN/m^3)
1	111.4	17.5
2	79.6	12.5
3	111.4	17.5
4	114.6	18.0
5	114.6	18.0
6	114.6	18.0
7	117.8	18.5
8	120.9	19.0
9	124.1	19.5
10	127.3	20.0
11	130.5	20.5
12	120.9	19.0

Cone Penetration Test Data & Interpretation

The Cone Penetration Test (CPT) data collected from your site are presented in graphical form in the attached report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings extending greater than 50 feet, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg InSitu and Gregg Drilling & Testing Inc. do not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and do not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user.

A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Note that it is not always possible to clearly identify a soil type based solely on q_t , f_s , and u_2 . In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

(After Robertson, et al., 1986)

Figure SBT

APPENDIX CPT

Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT's) conducted at various intervals measured hydrostatic water pressures and determined the approximate depth of the ground water table. A PPDT is conducted when the cone is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded by a computer system.

Pore pressure dissipation data can be interpreted to provide estimates of:

- Equilibrium piezometric pressure
- Phreatic Surface
- In situ horizontal coefficient of consolidation (c_h)
- In situ horizontal coefficient of permeability (k_h)

Useful Conversion Factors:

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until such time as there is no variation in pore pressure with time, *Figure PPDT*. This time is commonly referred to as t_{100} , the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992.

A summary of the pore pressure dissipation tests is summarized in Table 1.

1psi = 0.704m = 2.31 feet (water)

1tsf = 0.958 bar = 13.9 psi

Figure PPDT

1m = 3.28 feet

GREGG DRILLING & TESTING, INC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

APPENDIX D

GEOTECHNICAL LABORATORY TEST RESULTS

Checked DA

MOISTURE CONTENT & UNIT WEIGHT TEST RESULTS

Sample <u>Identification</u>	Depth, ft.	Wet Unit <u>Weight, lb/ft.³</u>	Dry Unit <u>Weight, lb/ft.³</u>	Moisture <u>Content, %</u>
B-1	10-10.5	119.3	101.0	18.2
B-1	25.0	126.2	101.2	24.8
B-1	35.0	130.5	109.4	19.3
B-8	12.5-13	117.0	88.3	32.4
B-8	25.5-26	133.4	110.6	20.6
B-8	60.5-61	130.6	106.5	22.6
B-9	6-6.5	98.0	82.7	18.4
B-9	20.0	124.1	98.0	26.6
B-9	30.0	132.5	109.8	20.7
B-9	60.0	136.0	114.9	18.3

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER:	08-288	August 27, 2008
------------------------	--------	-----------------

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507 Bishop Ranch Parcel 1A Job #4096-08-8527

Tested By: KS

Tested By: KS

Tested By: KS

Tested By: JS

Checked By: JF

Dial Reading vs. Time

Project No.: 08-288 Project: Bishop Ranch Parcel 1A #4096-08-8527 Location: B-1

SIERRA TESTING LABS, INC. El Dorado Hills, CA

RESISTIVITY & CORROSION PACKAGE LABORATORY TEST RESULTS

<u>Sample ID.</u> B-1 @ 5.0' B-8 @ 5.5'-6.0'	<u>рН</u> 8.72 7.20	pH <u>Specifications</u> - -	Minimum Resistivity, ohm-cm (x1,000) 0.75 0.83	Specifications Minimum Resistivity, <u>ohm-cm (x1,000)</u> - -	<u>Chloride, ppm</u> 29.2 9.4	<u>Sulfate, ppm</u> 138.6 49.2
0						
Note: Testing performed by Sunland Analytical, Rancho Cordova, CA				Test Method: Cal test #643, #417 Ʀ		
R	EMARKS:			LAB NUMBER:	S6479 & S6490	
PROJECT N	UMBER:	08-152	March 14, 2008	Bishop Ranch I Job #4096-08	Parcel 1A 3-8527	
5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507						