

PREPARED FOR: TEICHERT AGGREGATES 3500 AMERICAN RIVER DRIVE SACRAMENTO, CALIFORNIA 95864

PREPARED BY:

GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742

GEOCON PROJECT NO. S9534-05-04

MAY 2016

CONSULTANTS, INC.

GEOTECHNICAL E ENVIRONMENTAL E MATERIALS

Project No. S9534-05-04 May 25, 2016

VIA ELECTRONIC MAIL

Jason Smith A. Teichert & Son, Inc. Aggregate Resource Development 3500 American River Drive Sacramento, California 95864-5805

Subject: SLOPE STABILITY EVALUATION TEICHERT SHIFLER MINING AND RECLAMATION PROJECT YOLO COUNTY, CALIFORNIA

Dear Mr. Smith:

In accordance with your authorization, we have performed a geotechnical evaluation of the proposed perimeter slopes that will be constructed during the future Shifler Mining Project located northeast of the intersection of County Roads 22 and 94B in Yolo County, California.

The accompanying report presents our findings, conclusions, and recommendations regarding geotechnical aspects of slope construction as presently proposed and incorporates (as necessary) project revisions provided on March 17, 2016 for supplemental seepage analysis for the proposed relocation of the Moore Canal.

Based on the results of our study, the proposed perimeter mining and reclamation slopes are anticipated to meet the performance standards set forth in the *Yolo County Surface Mining and Reclamation Ordinances* and the California *Surface Mining and Reclamation Act*. In our opinion, the proposed project is feasible from a geotechnical viewpoint provided the recommendations of this report are followed.

Please contact us if you have any questions regarding this report or if we may be of further service.

Sincerely,

GEOCON CONSULTANTS, INC.

Ronald E. Loutzenhiser, PE, GE Senior Engineer

John C. Pfeiffer, PG, CEG Senior Geologist

Jeremy J. Zorne, PE, GE Principal Engineer

TABLE OF CONTENTS

SLC	OPE STABILITY EVALUATION	PAGE
1.0	INTRODUCTION	
2.0	SITE AND PROJECT INFORMATION	2
3.0	SOIL AND GEOLOGIC CONDITIONS	3
4.0	GROUNDWATER	4
5.0	SEISMICITY	4
6.0	 SLOPE STABILITY AND SEEPAGE ANALYSIS	5
	 6.3 Seismic Forces for Dynamic (Seismic) Slope Stability Analysis 6.4 Slope Stability Analysis and Results 6.5 Seepage Analysis and Results 6.6 Pit Capture Potential 	7 8
7.0	CONCLUSIONS7.1Slope Stability7.2Seepage7.3Pit Capture Potential	10 11
8.0	RECOMMENDATIONS	11
9.0	FURTHER GEOTECHNICAL SERVICES9.1Plan Review9.2Future Services	
10.0	LIMITATIONS AND UNIFORMITY OF CONDITIONS	
11.0) LIST OF REFERENCES	14

FIGURES

Figure 1, Vicinity Map Figure 2, Mining Site Plan Figure 3, Reclamation Site Plan Figures 4 and 5, Typical Slope Sections Figure 6, Historical Aerial Photographs

APPENDIX A

FIELD EXPLORATION Figure A1, Key to Logs Figures A2 through A7, Logs of Test Pits (TPSHF1 through TPSHF6) Figures A8 through A11, Log of Boring (B1) Teichert Test Drill Hole Logs (SHF05DH-01 through SHF05DH-19 and SHF06DH-20 through SHF06DH-27)

APPENDIX B
LABORATORY TESTING PROGRAM
Figure B1, Summary of Laboratory Results
Figure B2, Atterberg Limits
Figure B2 and B4, Grain Size Distribution
Figure B5, Moisture-Density Relationship
Figures B6, Direct Shear Strength Test
Figure B7, Triaxial Shear Strength – UU Test (staged)
Figure B8 and B9, Triaxial Shear Strength – CU Test, with pore pressure measurements (staged)
Particle Size Analysis No. 1 and 2 (Ausenco Vector)
Large Scale Direct Shear Report No 1 and 2 (Ausenco Vector)
Large Scale Direct Shear Report No 1 and 2 (Ausenco Vector)
APPENDIX C
SLOPE STABILITY AND SEEPAGE ANALYSIS
Table C1, Slope Stability Summary
Figures C1 and C2, Seepage Analysis – Cache Creek
Figure C3, Slope Stability – Northeast Slope (Mining) – Water at 50'
Figure C4, Slope Stability – Northeast Slope (Mining) – Water at 50 Figure C4, Slope Stability – Northeast Slope (Mining) – Water at 65'
Figure C5, Slope Stability – West Slope (Mining) – Water at 50'
Figure C6, Slope Stability – West Slope (Mining) – Water at 50 Figure C6, Slope Stability – West Slope (Mining) – Water at 65'
Figure C0, Slope Stability – West Slope (Mining) – Water at 05 Figure C7, Slope Stability – East Slope (Mining) – Water at 50'
Figure C8, Slope Stability – East Slope (Mining) – Water at 65'
Figure C9, Slope Stability – North-Central Slope (Mining) – Water at 50'
Figure C10, Slope Stability – North-Central Slope (Mining) – Water at 65'
Figure C11, Slope Stability – North Slope (Reclamation) – Water at 40'

Figure C12, Slope Stability – North Slope (Reclamation) – Water at 62'

Figure C13, Slope Stability – West Slope (Reclamation) – Water at 40' Figure C14, Slope Stability – West Slope (Reclamation) – Water at 62'

Figure C15, Slope Stability – East Slope (Reclamation) – Water at 40'

Figure C16, Slope Stability – East Slope (Reclamation) – Water at 62'

Figure C17, Slope Stability – North-Central Slope (Reclamation) – Water at 40'

Figure C18, Slope Stability – North-Central Slope (Reclamation) – Water at 62'

Figures C19 through C21, Seepage Analysis - Relocated Moore Canal

1.0 INTRODUCTION

This report presents results of our geotechnical investigation for evaluation of proposed slopes that will be constructed as part of the Shifler Mining and Reclamation Project located northeast of the intersection of County Roads 22 and 94B in Yolo County, California. The approximate site location is shown on the Vicinity Map, Figure 1.

The purpose of our study was to evaluate subsurface conditions, evaluate pertinent geotechnical parameters, and to evaluate slope stability for proposed perimeter mining and reclamation slopes under static and dynamic (seismic) conditions with respect to the performance standards outlined in the Yolo County *Off-Channel Surface Mining and Reclamation Ordinances*, and the California *Surface Mining and Reclamation Act* (SMARA). The results of our evaluation will be used as part of the overall forward planning efforts for the project.

To prepare this report, we performed the following scope of services:

- Performed a limited geologic/geotechnical literature and aerial photograph review to aid in evaluating the geologic and geotechnical conditions present at the site. A list of referenced material is included in Section 10.0 of this report.
- Reviewed available plans for the proposed project to select areas of exploration.
- Notified subscribing utility companies via Underground Service Alert at least 48 hours prior to performing exploratory excavations at the site.
- Paid required fees and obtained a soil boring permit from Yolo County Environmental Health Department.
- Performed six test pits (TPSHF1 through TPSHF6) using a CAT 385 excavator. Test pits were excavated to approximate depths ranging from 18 to 21 feet on October 28, 2010.
- Performed one exploratory boring (B1) using a truck-mounted drill rig equipped with hollow-stem augers to a depth of approximately 101 feet on February 20, 2014.
- Logged the test pits and boring in accordance with the Unified Soil Classification System (USCS).
- Obtained soil samples from the test pits and borings.
- Performed laboratory tests on selected soil samples to evaluate pertinent geotechnical parameters.
- Performed slope stability and seepage analyses for mining and reclamation slopes considering both static and seismic conditions.
- Performed supplemental seepage analysis for the proposed relocation of Moore Canal.
- Prepared this report summarizing our findings, conclusions and recommendations regarding the geotechnical aspects of the proposed project.

Details of our field exploration program including test pit, exploratory boring, and drill hole logs are presented in Appendix A. Approximate locations of subsurface explorations are shown on the Mining Site Plan and Reclamation Site Plan, Figures 2 and 3 respectively. Details of our laboratory testing program and test results are summarized in Appendix B. Details of our slope stability and seepage analyses are summarized in Appendix C.

2.0 SITE AND PROJECT INFORMATION

The Shifler property (the "site") occupies approximately 319.3 acres south of Cache Creek, and is identified by Yolo County Assessor's Parcel Numbers 025-430-01 (portion), 025-430-02, 025-120-32 (portion), and 025-120-33. The approximate location of the site is depicted on the Vicinity Map, Figure 1. The site is located north of County Road No. 22 and east of County Road No. 94B. The Moore Canal traverses the site from its northeast corner to its west boundary. The Moore Canal is an irrigation water conveyance canal operated by the Yolo County Flood Control and Water Conservation District. Land uses in the vicinity of the site consist of active and former aggregate mining operations, agriculture, and some rural and farm residences.

Based on mapping prepared by Cunningham Engineering and information provided by Teichert, site topography is relatively flat with surface elevations ranging from approximately 98.7 feet to 112 feet above mean sea level (MSL). The site is currently an agricultural property planted with row crops.

We understand that Teichert proposes to excavate the site for gravel mining operations. The proposed mining operations will require excavation of the site to a maximum pit bottom elevation of -5 feet MSL. The currently proposed mining boundary and base of excavation elevation contours are shown on the Mining Site Plan, Figure 2.

Prior to initiating mining operations, the Moore Canal will be relocated to flow in a newly constructed concrete-lined channel adjacent to the north and west boundaries of the proposed mining/reclamation area. The new canal will be set back approximately 50 feet from the mining area. The existing and proposed new Moore Canal locations are depicted on the Mining Site Plan, Figure 2.

Mining operations will consist of removing and stockpiling the existing overburden soil and retrieving the underlying gravel material down to a maximum pit bottom elevation of approximately -5 feet MSL. Based on the topography of the site, this will result in mining (excavation) depths up to approximately 110 feet, depending on location.

Planned mining and reclamation will create slopes of varying height and inclinations. Some of these mining and reclamation slopes will intercept the groundwater potentiometric surface. Typical slope configurations are shown on Figures 4 and 5 (from *Shifler Mining Plans* and *Shifler Reclamation Plans* by Cunningham Engineering, 2014). Review of the *Shifler Mining Plan* and *Shifler Reclamation Plan*

sheets prepared by Cunningham Engineering, dated February 22, 2016, shows similar slope configurations and revised groundwater conditions. Proposed mining slopes shown in the 2016 plans will be excavated to an inclination of approximately ³/₄:1 (horizontal to vertical) above elevation 52 feet MSL; and 1:1 below elevation 47 feet MSL with a 5-foot-high 2:1 slope transition zone in between. As shown on the Mining Site Plan, Figure 2, a minimum 50-foot buffer will be maintained between the tops of the mining slopes and the property lines and the relocated Moore Canal.

Reclamation slopes will be constructed using stockpiled overburden soil that is placed and compacted to form new slopes ranging in inclination from 2:1 to 4:1 above elevation 43 MSL and 1:1 below this elevation. Reclamation slopes will be constructed in a sequential manner as mining progresses which should result in completed mining slopes only being exposed for a short period of time – on the order of one year or less. The proposed reclamation elevation contours are depicted on the Reclamation Site Plan, Figure 3.

3.0 SOIL AND GEOLOGIC CONDITIONS

We identified soil and geologic conditions by observing exploratory excavations (TPSHF1 through TPSHF6), an exploratory soil boring (B1), reviewing previous drill hole logs provided by Teichert (SHF05DH-1 through SHF06DH-27), and reviewing the referenced geologic literature (Section 9.0). Soil descriptions provided below include the USCS symbol where applicable.

Based on the *Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills* (Helley and Harwood, 1985), the site is underlain by Holocene-aged stream channel deposits. These depositional and erosional deposits are associated with open, active stream channels and generally consist of unweathered gravel, sand, silt, and clay.

The overburden soil at the site consists of an approximate 9- to 18-foot-thick layer of interbedded silty sand (SM), silt (ML), silty clay (CL-ML), sandy clay (CL), clay (CL), and clayey sand (SC). The gravelly soil below the overburden generally consists of loose to very dense poorly graded sand (SP), poorly graded sand with gravel (SP), poorly graded gravel with sand (GP), and silty gravel with sand (GM), with thin (up to 5 feet) interbedded layers of clay (CL) and poorly graded sand with silt (SP-SM) and scattered small cobbles up to 4 inches. The gravel and cobbles include slightly weathered to fresh metavolcanic and metasedimentary rock with some quartz and chert and will be the aggregate source for this mining project. The strata proposed for mining overlays a cemented sandstone to clay layer. Consistency of the clay layer varies from very stiff to hard as is typical of this type of sedimentary deposit.

Based on our review of the drill hole logs provided by Teichert, top and bottom elevations of the soil layers are relatively consistent suggesting relatively flat stratigraphy with no significant dip, which is consistent with the erosional/depositional geology of the area. The general subsurface profile at the site is shown on the Typical Slope Sections exhibits, Figures 4 and 5.

Subsurface conditions described in the previous paragraphs are generalized. The test pit, exploratory boring, and drill hole logs included in Appendix A contain soil type, color, moisture, consistency/relative density, and USCS classification of the materials encountered at specific locations and elevations.

4.0 **GROUNDWATER**

We did not encounter groundwater in any of our test pits performed on October 28, 2010. We encountered groundwater in boring B1 performed on February 20, 2014, at a depth of 70 feet (elevation of approximately 38¹/₂ feet MSL).

We understand that groundwater analysis indicates a predicted high groundwater elevation during mining of 60 feet MSL and a predicted low of 52 feet MSL. The analysis also indicates a high groundwater elevation for the reclamation condition of 57 feet MSL and a low of 47 feet MSL. We understand that these groundwater conditions are based on a site-specific study performed by Luhdorff & Scalmanini (February 2016). Groundwater analysis performed in 2014 yielded different groundwater elevations which bracketed these values (slightly higher and slightly lower). As such, our slope stability and seepage analyses presented herein use the results of the 2014 groundwater analysis since those results are more adverse than the results of the 2016 groundwater analysis with respect to slope stability and seepage, resulting in a more conservative analysis.

It should be noted that fluctuations in the level of groundwater may occur due to variations in rainfall, temperature, and other factors. Depth to groundwater can also vary significantly due to localized pumping, irrigation practices, and seasonal fluctuations in Cache Creek.

5.0 SEISMICITY

In order to evaluate the distance of closest known active faults to the site, we reviewed geologic maps and used the computer program *EQFAULT*, (Version 3, Blake, 2000). Principal references used within *EQFAULT* are Jennings (1975), Anderson (1984) and Wesnousky (1986). The results of the query indicate the Great Valley Fault System and a segment of the Dunnigan Hills Fault, located 8 miles to the west and northwest, respectively, are the closest known active faults to the site.

We used the USGS computer program *2008 Interactive Deaggregations* to estimate the PGA and modal (most probable) distance and magnitude associated with a 2% chance of exceedance in 50 years (2,475-year event). For an alluvial soil type, the USGS estimated PGA is 0.47g, the modal distance is 22.5 km and the modal magnitude is 6.6.

We used the online USGS application *Seismic Design Maps* to evaluate the site class modified, design-level Peak Ground Acceleration (PGA_M) for the site, for use in seismic slope stability analysis. The PGA_M for the site is 0.4g.

While listing PGA is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site. The site could be subjected to ground shaking in the event of a major earthquake along the faults mentioned above or other area faults. However, the seismic risk at the site is not considered to be significantly greater than that of other sites in the area.

6.0 SLOPE STABILITY AND SEEPAGE ANALYSIS

The stability of the proposed mining and reclamation slopes was evaluated based on soil strength parameters and the anticipated slope configurations and groundwater/seepage conditions from 2014 plans. Revised groundwater conditions provided in 2016 are bracketed by those used in the 2014 analysis. As such, we consider the results presented herein for analyses performed in 2014 as also appropriate given the revised groundwater conditions.

6.1 Stability Analysis Material Parameters

We evaluated slope stability at four locations considered representative of the anticipated mining and reclamation slope conditions along the perimeter of the proposed mining pit: A-A' and D-D' (north slope), B-B' (west slope), and C-C' (east slope). The analysis locations are shown on the Mining and Reclamation Site Plans, Figures 2 and 3, respectively. The configuration of slope stability analysis sections was based on topography and anticipated mining depths provided by Teichert. The typical slope sections are shown on Figures 4 and 5.

To select appropriate material parameters for our slope stability analysis, we used the results of our test pits, exploratory borings, drill hole information obtained from Teichert and our own borings, laboratory testing, published correlations, engineering judgment, and experience. The material parameters used in our analyses are summarized in Table 6.1.

SOIL PARAMETERS FOR SLOPE STABILITY AND SEEPAGE ANALYSIS													
Material	Total Unit Weight		sion, C sf)	Friction (deg	0 /	Permeab	ility (ft/sec)						
Туре	(pcf)	Total	Effective	Total	Effective	Vertical	Horizontal						
Overburden Soil	125	350		20		1.5 x 10 ⁻⁷	1.5 x 10 ⁻⁶						
Gravel	125		150		42	1.5 x 10 ⁻⁴	1.5 x 10 ⁻³						
Clay	120	450	375	18	30	1.5 x 10 ⁻⁷	1.5 x 10 ⁻⁶						
Reclamation Fill	125	2,000	250	29	34	n/a	n/a						

TABLE 6.1 SOIL PARAMETERS FOR SLOPE STABILITY AND SEEPAGE ANALYSIS

Discussion of the derivation of the parameters shown in Table 6.1 is presented hereinafter.

Overburden Soil. Shear strength parameters for overburden soil were estimated from published correlations based on soil type and our experience with similar soils in the project area. Permeability is based on laboratory permeability testing. Based on sensitivity analysis, overburden soil parameters (total unit weight, C, ϕ) have a negligible effect on slope stability for this project.

Gravel. Since it is extremely difficult to obtain intact, undisturbed samples of gravel and cobble containing up to 4-inch particles, we derived shear strength parameters for the gravel using the following procedure. We excavated test pits and collected representative samples of the gravel from selected depths. Representative bulk samples of gravel were delivered to Ausenco Vector Laboratory in Grass Valley, California. The samples were sieved and recombined as close as practically possible to the average in-situ gradation and dry density based on average gradation of over 100 samples. Ausenco Vector then performed large box (12-inch square) direct shear testing on saturated, remolded specimens to determine effective shear strength parameters. Because this material contains very little fines and is relatively freedraining, drained (effective stress) parameters are used for both static and seismic stability analyses. Permeability of the gravel deposit was estimated using correlations developed by Alyamani and Sen, *Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves*, Groundwater Journal, July-August 1993. Since the samples are remolded the shear strength results obtained do not account any for natural cementation which may be present in the material.

<u>Clay.</u> Total and effective shear strength parameters and permeability of the clay are based on the results of our exploratory borings, laboratory triaxial shear strength testing, published index property correlations, comparisons with local data, engineering judgment, and experience.

Reclamation Fill. We derived shear strength parameters for the future fill slopes constructed from the existing overburden material using the following procedure. We excavated test pits and collected representative samples of the overburden from selected depths. We then performed laboratory testing to determine a maximum dry density and optimum moisture content. Samples were remolded to approximately 90 percent relative compaction at least 2 percent above optimum moisture content. Staged triaxial shear testing was then performed on unconsolidated and consolidated samples to determine a range of total and effective shear strength parameters. Drained (effective stress) parameters are used for static stability analysis and undrained, total stress parameters are used for seismic stability analysis.

We assumed a generally flat soil layer stratigraphy consistent with the depositional and erosional geology of the site.

6.2 Groundwater Conditions

Based on the *Preliminary Mining and Reclamation Exhibits*, prepared by Cunningham Engineering dated January 30, 2014, we used the groundwater elevations in Table 6.2 in our analyses. These groundwater elevations bracket the revised groundwater elevations provided in 2016, resulting in a conservative analysis.

Condition	Average High Groundwater Elevation (Feet, MSL)	Average Low Groundwater Elevation (Feet, MSL)						
Mining ¹	65	50						
Reclamation ¹	62	40						

TABLE 6.2 GROUNDWATER ELEVATIONS FOR ANALYSIS

Notes: 1. Groundwater conditions used for slope stability analysis from the *Preliminary Mining and Reclamation Exhibits* by Cunningham Engineering (dated January 30, 2014) are higher and lower and are therefore more conservative than the 2016 revised groundwater conditions.

6.3 Seismic Forces for Dynamic (Seismic) Slope Stability Analysis

We analyzed dynamic (seismic) slope stability using a pseudo-static approach in which the earthquake load is simulated by "equivalent" static horizontal acceleration acting on the mass of the slope. This methodology is generally considered to be conservative and is most often used in current practice.

We calculated the seismic coefficient using the procedures presented in *Special Publication 117A*, *Guidelines for Evaluating and Mitigating Seismic Hazards in California* (CGS 2008). In this procedure, the seismic coefficient is equal to a portion of the design-level PGA_M for a soft rock site condition without the risk coefficient (PGA_M/1.5). Assuming a 5-cm displacement threshold, a PGA_M/1.5 of 0.27g, a modal distance of 22.5 km, and a modal magnitude of 6.6, the calculated seismic coefficient is 0.1.

6.4 Slope Stability Analysis and Results

We analyzed slope stability using the computer program SLOPE/W, Version 7.22 (Geo-Slope International) for static and seismic conditions using the Morgenstern-Price method of limit-equilibrium analysis considering circular and block failure modes. For the mining slope conditions, we analyzed both shallow surface (surficial) and global stability. For the purposes of this report, "shallow surface" failures are those within close proximity to the top of the mining slope, generally within the outer 25-foot portion of the dedicated 50-foot buffer. "Global" failures for the mining slope condition are considered failure surfaces that would extend beyond the 50-foot buffer. For the reclamation slope conditions, we analyzed for global failure surfaces.

In limit-equilibrium slope stability analysis, ponded water against a slope tends to increase global slope stability due to the buttressing effect of the mass of water against the slope. In our analyses, as a conservative measure for the mining condition, we assumed no ponded water against the slope, even

though ponded water will be present during mining (no dewatering planned). For the reclamation condition, we assumed the ponded water elevation would be coincident with the potentiometric groundwater surface.

Tabulated results of our slope stability analysis (factor of safety against failure) for each slope configuration under the conditions of analysis (e.g. high groundwater, low groundwater, static, seismic, surficial and global) are summarized in Table C1 in Appendix C. Graphical representations of the potential critical failure surfaces and parameters used for each stability analysis are presented on Figures C3 through C18 in Appendix C. Results are summarized in Table 6.5.

Location	Condition	Calculated Minimum Factor of Safety			
		Static	Seismic		
	Mining – Low Groundwater/Shallow Surface	1.1 to 1.2	1.0 to 1.1		
	Mining – Low Groundwater /Global	1.3	1.1		
Northeast Slope	Mining – High Groundwater/Shallow Surface	1.1	1.0		
(A-A')	Mining – High Groundwater /Global	1.2	1.0		
	Reclamation – Low Groundwater	1.5	1.4		
	Reclamation – High Groundwater	1.8	1.4		
	Mining - Low Groundwater/Shallow Surface	1.2 to 1.3	1.0 to 1.1		
	Mining – Low Groundwater /Global	1.7	1.1		
West Slope (B-B')	Mining – High Groundwater/Shallow Surface	1.1 to 1.2	1.0		
	Mining – High Groundwater /Global	1.6	1.0		
	Reclamation – Low Groundwater	3.7	2.3		
	Reclamation – High Groundwater	3.7	2.0		
	Mining - Low Groundwater/Shallow Surface	1.2 to 1.6	1.1 to 1.3		
	Mining – Low Groundwater /Global	2.1	1.4		
East Slope	Mining – High Groundwater/Shallow Surface	1.2 to 1.6	1.1 to 1.3		
Northeast Slope (A-A')	Mining – High Groundwater /Global	2.1	1.3		
	Reclamation – Low Groundwater	2.7	2.0		
	Reclamation – High Groundwater	2.7	1.7		
	Mining - Low Groundwater/Shallow Surface	1.2	1.0 to 1.1		
	Mining – Low Groundwater /Global	1.3	1.1		
	Mining – High Groundwater/Shallow Surface	1.1	1.0		
1	Mining – High Groundwater /Global	1.3	1.0		
(D-D)	Reclamation – Low Groundwater	1.8	1.3		
	Reclamation – High Groundwater	2.2	1.3		

 TABLE 6.5

 SLOPE STABILITY ANALYSIS RESULTS

6.5 Seepage Analysis and Results

Cache Creek

The proposed north mining/reclamation slopes will be separated (set back) from Cache Creek by a minimum of 300 feet. To model seepage conditions in the north mining/reclamation slope under influence of a potential 200-year flood event in Cache Creek, we used the computer program SEEP/W, Version 7 (Geo-Slope International). In our analysis, we considered the initial condition for the site to be the average high groundwater elevation of 65 feet MSL for the mining condition (2014 groundwater

conditions). We then modeled the transient 200-year water surface elevation (+98 feet MSL, per Cunningham Engineering, 2014) in Cache Creek for durations of one month, 100 days, and 100 years. Our seepage analysis results are presented graphically on Figures C1 and C2 in Appendix C.

The results of our analyses indicate that the seepage front does not intercept the proposed north mining slope at an elevation higher than the average seasonal high groundwater condition, even when sustained indefinitely (100 years). Therefore, anticipated subsurface seepage conditions at the proposed north mining slope under the 200-year Cache Creek flood event are not expected to be more adverse than normal, average seasonal high groundwater conditions.

Relocated Moore Canal

As requested, we performed supplemental seepage analysis for the proposed Moore Canal relocation. The proposed north mining slope will be separated (set back) from the relocated canal by about 50 feet. We used the computer program SEEP/W, Version 7 (Geo-Slope International) for seepage modeling. In our analysis, we considered the initial condition for the site to be the average high groundwater elevation of 60 feet MSL for the mining condition (2016 groundwater conditions for this analysis). We then modeled the transient design water surface elevation (+105.5 feet MSL, per Cunningham Engineering) in the canal for durations of one month and 100 days (we understand that the canal is only used periodically and is frequently dry throughout the year) as well as steady state conditions. Our seepage analysis results are presented graphically on Figures C19 through C21 in Appendix C.

Two different near-surface soil conditions were evaluated for the relocated Moore Canal (overburden and clayey gravel). The canal is anticipated to be located primarily in overburden soils (see Section 6.1 for soil descriptions) but will likely be, at least locally, established in the underlying clayey gravels. Although a concrete lining is proposed for the relocated Moore Canal, our analysis conservatively does not include a concrete lining. The effectiveness of concrete linings as a water barrier can be variable depending on the condition of the liner, frequency of crack maintenance, and other factors. As such, our analysis assumes no concrete liner is present.

The results of our analyses for the two conditions modeled indicate that the seepage front does not intercept the proposed north mining slope at an elevation higher than the average seasonal high groundwater condition, even when sustained indefinitely (steady-state flow). Seepage is minimal from the canal during transient analysis and does not extend to the mining slope due to the generally clayey nature of the overburden and gravelly soils at the project location and the shallow depth of water in the canal. Therefore, anticipated subsurface seepage conditions at the proposed north mining slope under the design water conditions for the relocated canal are not expected to be more adverse than the normal, average seasonal high groundwater conditions.

6.6 Pit Capture Potential

In off-channel mining operations, "Pit capture" is a term to describe the process where the earthen material separating the mining pit from an adjacent watercourse is breached by overflowing floodwaters, streambank erosion, and/or channel migration. The northern portion of the site is bordered by Cache Creek. Based on current plans, mining will occur to within 300 feet of the south bank of the creek (North-Central Mining Slope). The 300-foot "setback" will include the relocated, concrete-lined Moore Canal and the existing aggregate conveyor facility owned by Teichert. A typical cross-section of the North-Central Mining Slope (Cross-Section D-D') showing the proximity of Cache Creek is presented on Figure 4.

To evaluate historic channel migration and floodwater conditions in Cache Creek, Teichert reviewed and compiled a series of historical aerial photographs covering the period of 1958 to 2012, copies of which are provided on Figure 6. The photograph from February 1958 shows Cache Creek under flood conditions. The remaining photographs (March 1973, June 1986, June 1993, April 2000, and February 2012) show the creek channel under various degrees of flow. The photographs suggest that floodwaters, when present, do not flow over the south bank of the creek adjacent to the site. This evidence agrees with the hydrologic models developed by Cunningham Engineering which indicate that floodwaters spread to the north of the creek. The aerial photographs also show increasing vegetation on the south bank over the 54-year photo period and a lack of channel migration to the south. These conditions, coupled with the absence of adverse seepage and slope stability conditions identified during our analyses suggest that the potential for pit capture is low.

7.0 CONCLUSIONS

7.1 Slope Stability

Based on the results of our study, the proposed mining and reclamation slopes are anticipated to meet the performance standards set forth in the Yolo County *Surface Mining and Reclamation Ordinances* and SMARA.

For the mining condition, static factor of safety (FOS) against failure ranged from 1.1 to 2.1. The lower FOS values were for shallow surface failures within the outer portion of the 50-foot buffer. These values indicate that the mining slopes should be globally stable during the mining period provided unanticipated conditions are not encountered. Seismic FOS for the mining condition ranged from 1.0 to 1.4. Again, the lower FOS values are associated with shallow surface failures. Considering the relatively short amount of time that the mining slopes will be exposed (less than one year), the likelihood of a design-level earthquake event occurring during mining is low. Therefore, the risk of seismic-induced global failure is low.

For the long-term reclamation condition, static and seismic FOS for all slope configurations exceed FOS of 1.5 and 1.4, respectively, which is accepted by many jurisdictions for residential and commercial purposes, and is, in our opinion, consistent with the required FOS for the anticipated end use of the site, which is agriculture. Therefore, permanent slopes are anticipated to remain stable relative to global failure provided unanticipated conditions are not encountered during mining/reclamation.

7.2 Seepage

Seepage analyses indicates that the seepage front does not intercept the proposed north mining slope at an elevation higher than the average seasonal high groundwater condition, even when sustained indefinitely (100 years / steady state conditions). Therefore, anticipated subsurface seepage conditions at the proposed north mining slope under a 200-year Cache Creek flood event or from design water elevation in the relocated Moore Canal are not expected to be more adverse than normal, average seasonal high groundwater conditions.

7.3 Pit Capture Potential

Cache Creek floodwaters, when present, do not appear to overtop the south bank of the creek adjacent to the site. Hydrologic models developed by Cunningham Engineering indicate that floodwaters spread to the north of the creek. Aerial photographs show increasing vegetation on the south bank and an absence of southward channel migration over the 54-year photo period. These conditions, coupled with the lack of adverse seepage and slope stability conditions based on our analyses suggest that the potential for pit capture is low.

8.0 **RECOMMENDATIONS**

Reclamation slopes should be constructed using stockpiled overburden materials. Reclamation fill should be compacted in horizontal lifts not exceeding 8 inches (loose thickness). Each lift should be moisture-conditioned to at least 2% above optimum and compacted to at least 90% relative compaction as determined by the latest American Society for Testing and Materials (ASTM) D1557 Test Procedure.

During mining, exposed gravel slopes are subject to erosion and deterioration and shallow surficial failures should be expected. Such surficial failures should be repaired immediately prior to additional mining. Consideration should be given to mining methods that minimize the amount of time that mining slopes are exposed and personnel and equipment are present on or below mining slopes. During mining, we recommend active, daily monitoring of slopes to identify potential instability.

In addition, the following measures should be considered:

- Reclamation should occur concurrently with or shortly after mining. We highly recommend not leaving mining slopes exposed throughout the winter months without a program of active monitoring and ongoing slope maintenance.
- Mining and reclamation activities adjacent to the Moore Canal should be coordinated with the Yolo County Flood Control and Water Conservation District.
- Slopes exposed to rain and surface runoff are susceptible to erosion and surficial degradation. Appropriate erosion control measures and best management practice (BMP) devices should be installed to reduce long-term slope degradation.
- Teichert should train onsite workers regarding seismic safety issues, including appropriate actions to be taken during a seismic event.
- During mining operations, Teichert should have sufficient materials and equipment available to repair slopes due to surficial sloughing and/or erosion.

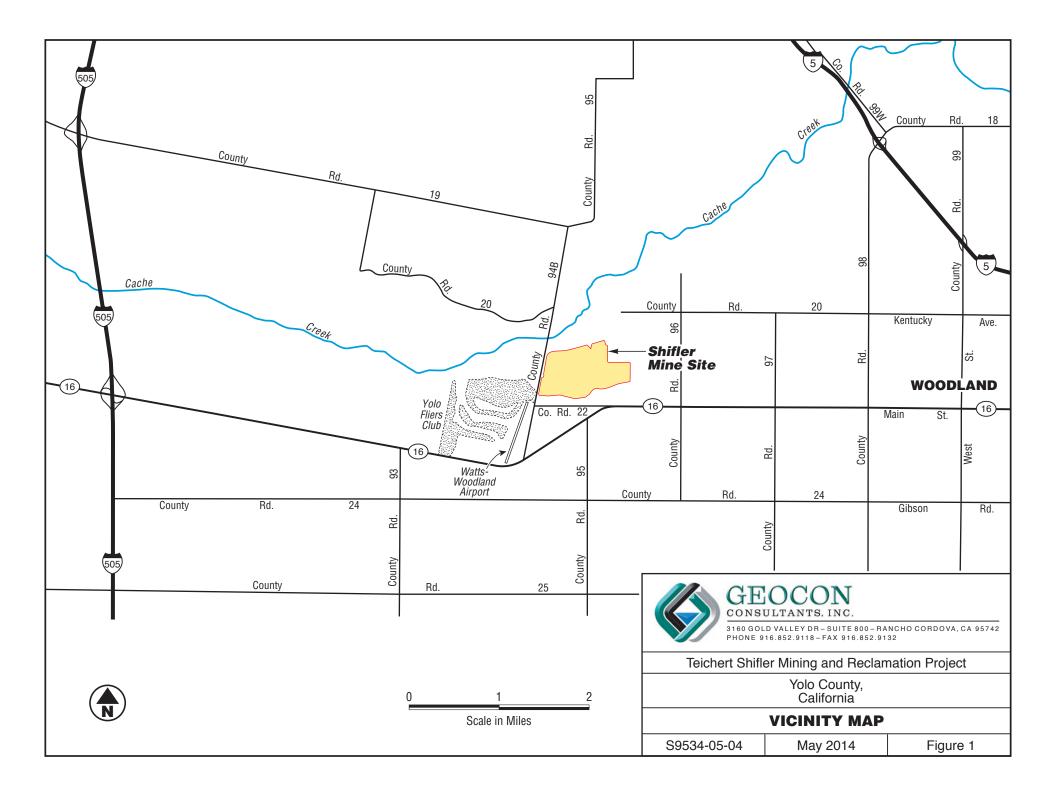
9.0 FURTHER GEOTECHNICAL SERVICES

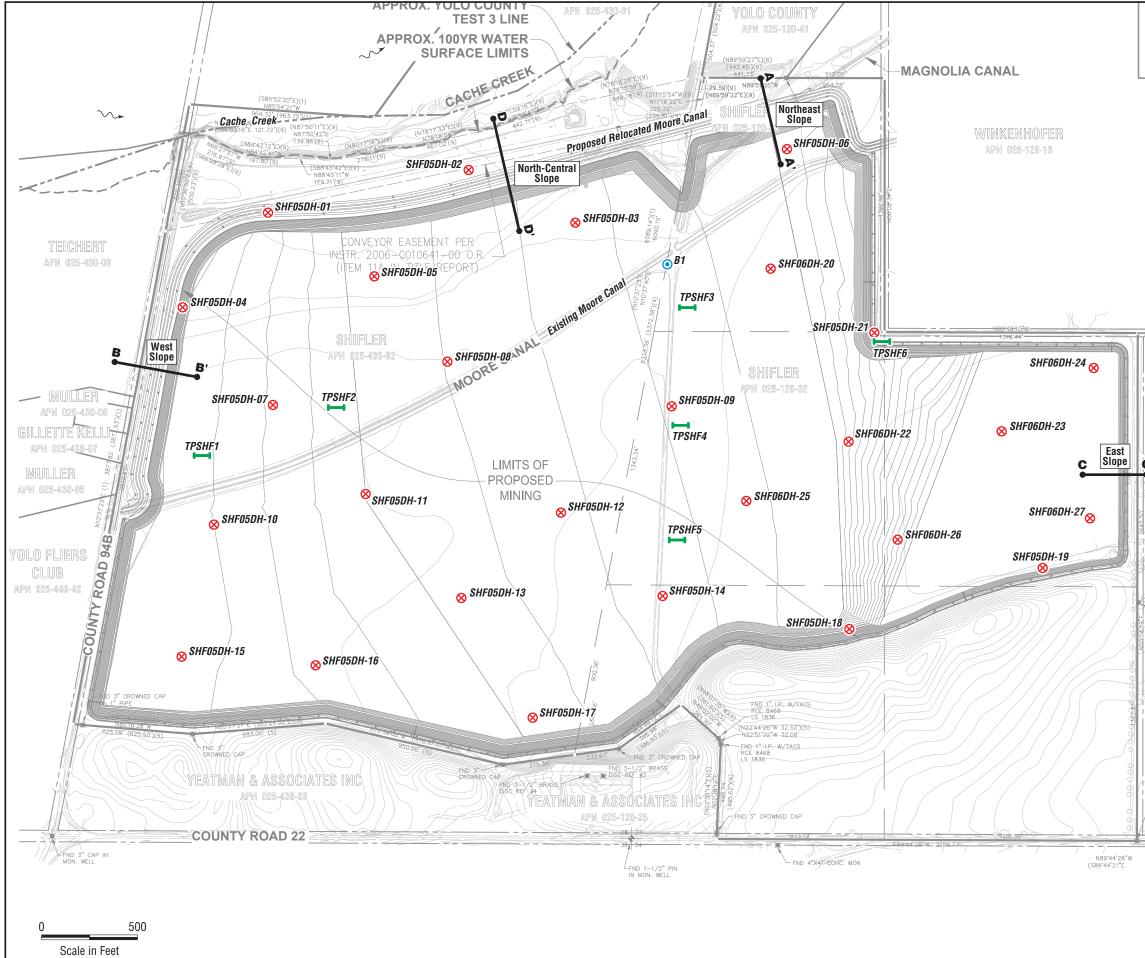
9.1 Plan Review

We should review the mining and reclamation plans prior to final submittal to assess whether our recommendations have been properly incorporated and evaluate if additional analysis and/or recommendations are required.

9.2 Future Services

If, during the course of mining and reclamation, sloughing or rills greater than 12 inches deep develop, Geocon should be requested to observe site conditions and develop mitigation recommendations, as appropriate.


10.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS


The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during mining and reclamation, or if the proposed mining and reclamation will differ from that anticipated herein, we should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous materials or environmental contamination was not part of our scope of services.

Our professional services were performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering and engineering geology principles and practices used in the site area at this time. No warranty is provided, express or implied. This report is subject to review and should not be relied upon after a period of three years.

11.0 LIST OF REFERENCES

- 1. Alyamani and Sen, *Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves*, Groundwater Journal, July-August 1993.
- 2. Blake, T.F., EQFAULT, A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults, Version 2.20, 2000.
- 3. California Division of Mines and Geology Wagner, D.L., Jennings, C.W., Bedrossian, T.L. and Bortugno, E.J. (compilers), *Geologic Map of the Sacramento Quadrangle*, 1981.
- 4. California Division of Mines and Geology, *Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117A*, revised and re-adopted September 11, 2008.
- 5. Cunningham Engineering, *Preliminary Reclamation Exhibit for Teichert Shifler*, January 30, 2014.
- 6. Cunningham Engineering, Shifler Mining Plans, Sheets M-02 through M-09, February 14, 2014.
- 7. Cunningham Engineering, *Shifler Mining Plan, Sheets M-02 through M-09*, February 11, 2016.
- 8. Cunningham Engineering, *Shifler Reclamation Plans, Sheets R-02 through R-09*, February 14, 2014.
- 9. Cunningham Engineering, *Shifler Reclamation Plan, Sheets R-02 through R-09*, February 8, 2016.
- 10. Cunningham Engineering, Teichert Woodland 2014 Moore Canal Relocation, Sheets C-02 through C-10, May 28, 2014.
- 11. Geo-Slope International, SEEP/W and SLOPE/W, Version 7, 2011.
- 12. Helley, E. J. and Harwood, D. S., *Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills, California*, United States Geological Survey Miscellaneous Field Studies map MF-1790, scale 1:62,500, 1985.
- 13. Jennings, C.W., Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions, California Division of Mines and Geology Map No. 6, 1994.
- 14. Teichert Aggregates, Drill Hole Locations & Summary, Shifler Property, Yolo County, California, October 26, 2006.
- 15. United States Geological Survey, 2008 Interactive Deaggregations, http://eqint.cr.usgs.gov/deaggint/2008/index.php.
- 16. United States Geological Survey, U.S. Seismic Design Maps, Online Application, <u>http://earthquake.usgs.gov/hazards/designmaps/usdesign.php</u>, accessed October 1, 2013.
- 17. Unpublished reports, aerial photographs, and maps on file with Geocon.

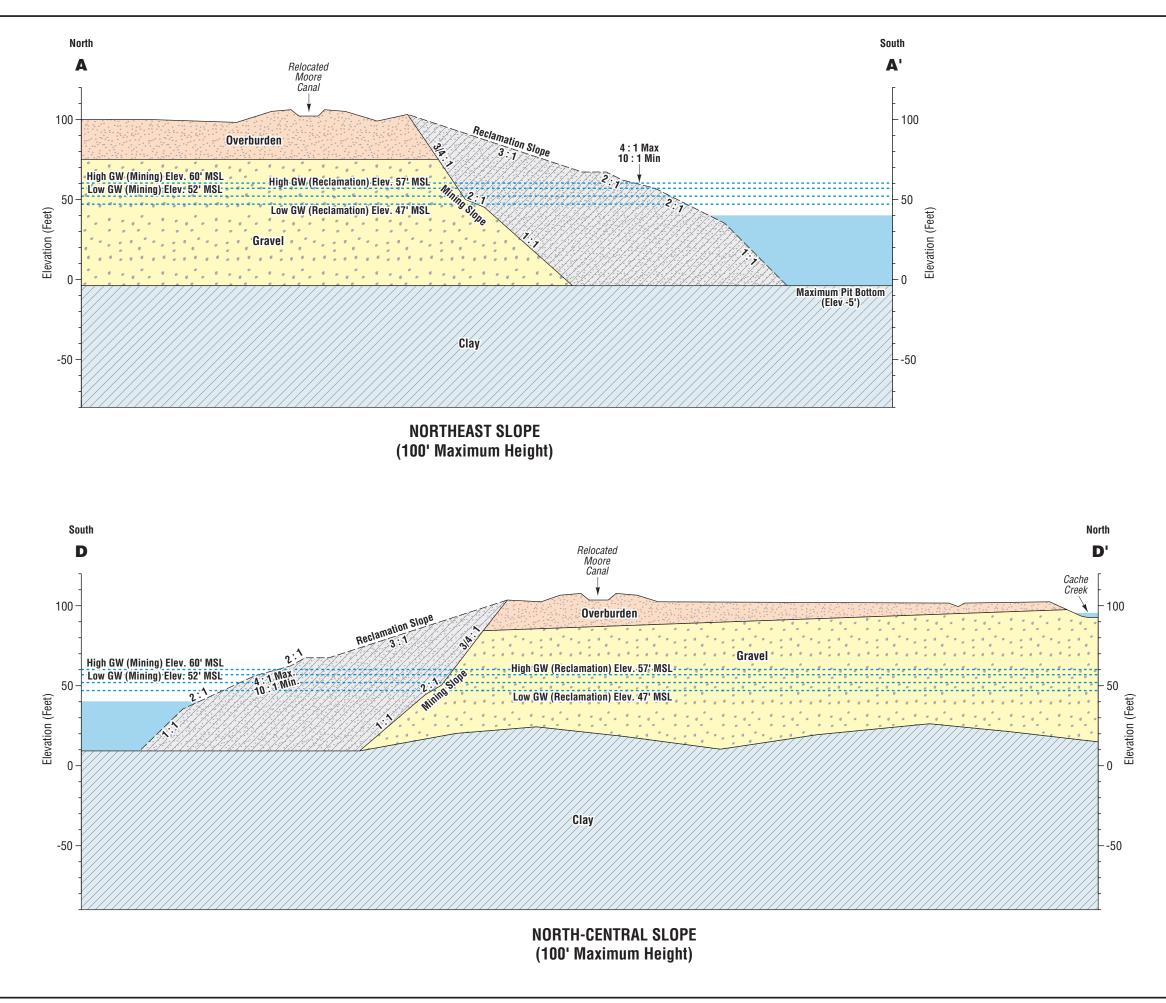
SHFt A	D6DH-27 ₈ TPSHF6 B1 ₀ North Slope	Approximate Teichert Exploratory Boring Location (2005-2006) Approximate Exploratory Trench Location (Geocon, Oct. 2010) Approximate Exploratory Boring Location (Geocon, Feb. 2014) Approximate Cross-Section Location for Stability Analysis (Figure 4)
FND 3/4" PIN 6-23" EAST OF PROPA LINE		
-FND RR 5266.32 5266.97	CONSUI	VALLEY DR-SUITE 800-RANCHO CORDOVA, CA 95742 .852.9118-FAX 916.852.9132

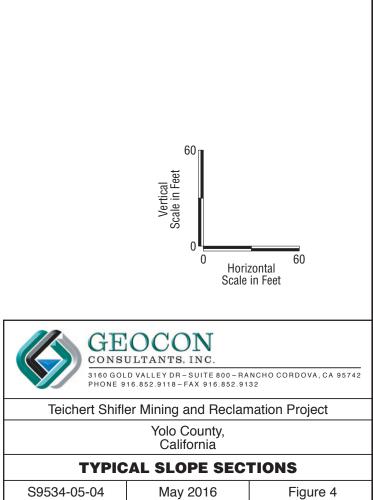
Teichert Shifler Mining and Reclamation Project

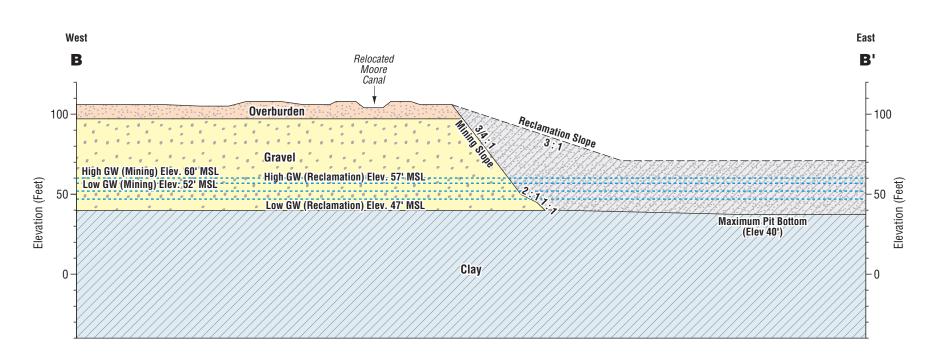

Yolo County, California

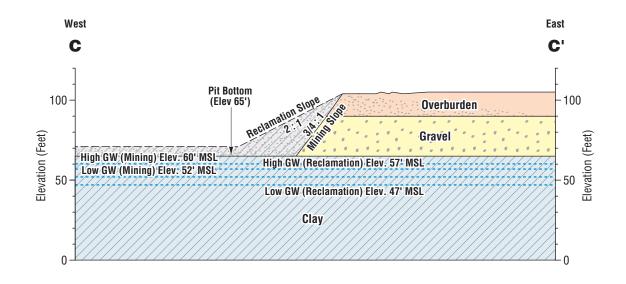
MINING SITE PLAN

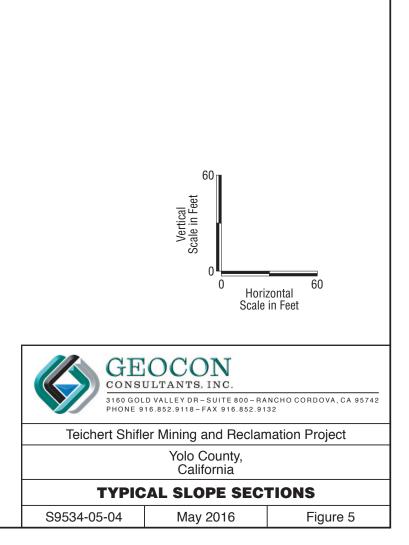
S9534-05-04

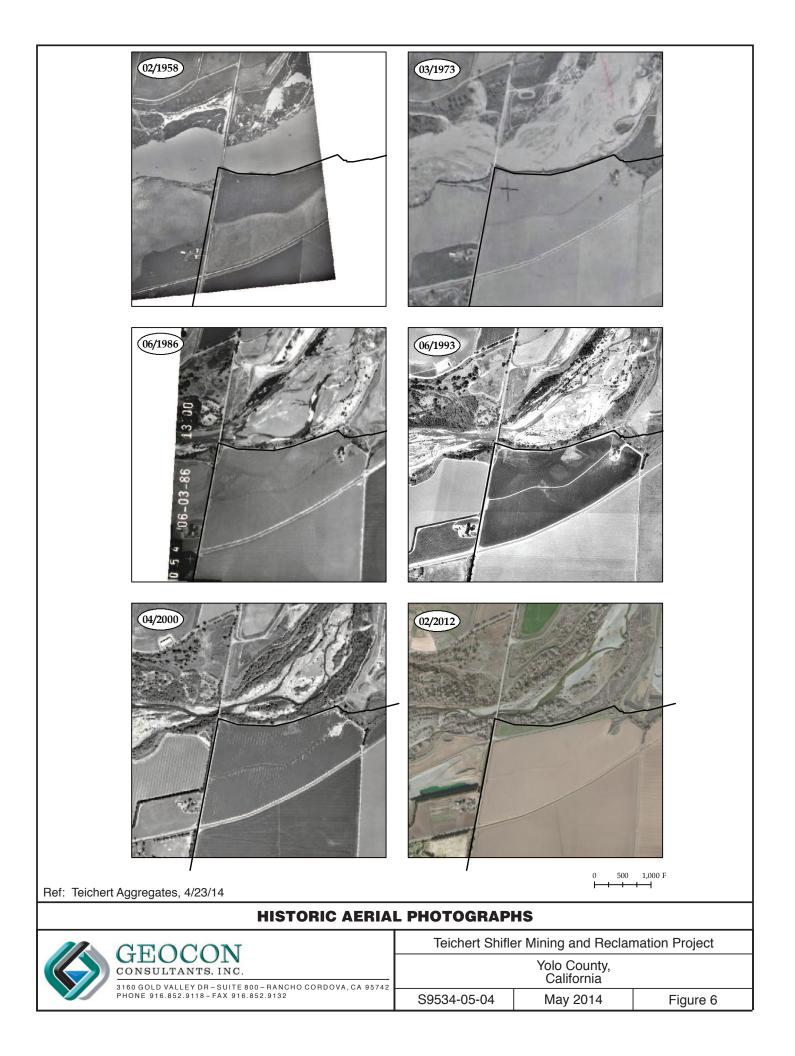

May 2016


Figure 2




SHI	F06DH-27 ₈₀ TPSHF6	Approximate Teichert Exploratory Boring Location (2005-2006) Approximate Exploratory Trench Location (Geocon, Oct. 2010)
	B1 ₀	Approximate Exploratory Boring Location (Geocon, Feb. 2014)
	North Slope	Approximate Cross-Section Location for Stability Analysis (Figure 4)
1H0FER 5-120-17		





WEST SLOPE (65' Maximum Height)

EAST SLOPE (40' Maximum Height)

APPENDIX A

FIELD EXPLORATION PROGRAM

Our field exploration program was performed on October 28, 2010, and February 20, 2014, and consisted of excavating six test pits (TPSHF1 through TPSHF6) and drilling one exploratory boring (B1) at the approximate locations shown on the Site Plan, Figure 2.

Test pits were performed using a Caterpillar 385 excavator equipped with a 24-inch-wide bucket. Bulk samples were obtained from the test pits. Upon completion, the test pits were backfilled with the excavated material.

Exploratory borings were performed using a truck-mounted, CME 75 drill rig equipped with 8-inch outside diameter (OD) hollow-stem augers. Soil sampling was accomplished using an automatic 140-pound hammer with a 30-inch drop. Samples were obtained with a 3-inch OD, split spoon (California Modified) sampler and a 2-inch OD Standard Penetration Test (SPT) sampler. The number of blows required to drive the samplers the last 12 inches (or portion thereof) of the 18-inch sampling interval were recorded on the boring logs.

Subsurface conditions encountered in the exploratory borings were visually examined, classified and logged in general accordance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488-90). This system uses the Unified Soil Classification System (USCS) for soil designations. The logs depict the soil and geologic conditions encountered and the depths at which samples were obtained. The logs also include our interpretation of the conditions between sampling intervals. Therefore, the logs contain both observed and interpreted data. We determined the lines designating the interface between soil materials on the logs using visual observations, drill rig penetration rates, excavation characteristics and other factors. The transition between the materials may be abrupt or gradual. Where applicable, the field logs were revised based on subsequent laboratory testing. Logs of exploratory borings are presented herein.

		UNIFIED SOIL	CLA	SSIFIC	CATION SYSTEM
	MAJOR DIVI	SIONS	SYN	/BOL	TYPICAL NAMES
		CLEAN GRAVELS WITH	GW	° 0	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
	GRAVELS MORE THAN HALF	LITTLE OR NO FINES	GP	000	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
SOILS Arser	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM		SILTY GRAVELS, SILTY GRAVELS WITH SAND
		OVER 12% FINES	GC		CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
COARSE-GRAINED SOIL MORE THAN HALF IS COARSER THAN NO. 200 SIEVE		CLEAN SANDS WITH	SW		WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
COAR MORE	SANDS MORE THAN HALF	LITTLE OR NO FINES	SP		POORLY GRADED SANDS WITH OR WITHOUT GRAVELS, LITTLE OR NO FINES
	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 12% FINES	SC		CLAYEY SANDS WITH OR WITHOUT GRAVEL
			ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
SOILS FINER EVE		L TS AND CLAYS LIMIT 50% OR LESS			INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
			OL		ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
FINE-GRAINED SOIL			MH	$\left\langle \left\langle \right\rangle \right\rangle$	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FIN		SILTS AND CLAYS			INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			ОН		ORGANIC CLAYS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORGANIC	SOILS	PT		PEAT AND OTHER HIGHLY ORGANIC SOILS

BORING/TEST PIT LOG LEGEND

pp tsf	_	Pocket Penetrometer (tsf) Tons Per Square Foot	PENETRATION RESISTANCE								
ĹĹ	_	Liquid Limit	SA	ND AND GRA	VEL		SILT A	ND CLAY			
PI	_	Plasticity Index		BLOWS	BLOWS		BLOWS	BLOWS			
	_	Shelby Tube Sample	RELATIVE DENSITY	PER FOOT (SPT)*	PER FOOT (MOD-CAL)*	CONSISTENCY	PER FOOT (SPT)*	PER FOOT (MOD-CAL)*	COMPRESSIVE STRENGTH (tsf)		
	_	Bulk Sample	VERY LOOSE	0 - 4	0 - 7	VERY SOFT	0 - 2	0 - 2	0 - 0.25		
			LOOSE	4-10	7 - 17	SOFT	2 - 3	2 - 4	0.25 - 0.50		
	—	SPT Sample	MEDIUM DENSE	10-30	17 - 48	MEDIUM STIFF	3 - 8	4 - 10	0.50 - 1.0		
			DENSE	30-50	48 - 85	STIFF	8 - 15	10 - 20	1.0 - 2.0		
	—	Modified California Sample	VERY DENSE	OVER 50	OVER 85	VERY STIFF	15 - 30	20 - 48	2.0 - 4.0		
Ţ	—	Groundwater Level (At Completion)				HARD	OVER 30	OVER 48	OVER 4.0		
Ţ	_	Groundwater Level (First Encountered)	*NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE LAST 12 INCHES OF AN 18-INCH DRIVE								

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 Telephone: 916-852-9118 Fax: 916-852-9132

Key to Logs

Project: Teichert Shifler Mining and Reclamation Location: Woodland, CA Number: S9534-05-04 Figure: A1

PROJECT NAME Teichert Shifler Mining and Reclamation

DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TPSHF1 ELEV. (MSL.) 110 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 1 -	TPSHF1-0-9			CL	ALLUVIUM Medium stiff, moist, dark brown, Sandy lean CLAY, slightly plastic, trace roots and straw	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TPSHF1-9-18			<u>SM</u> -	Medium dense, moist, dark vellowish brown, Silty SAND, non-plastic, poorly graded and fine grained sand -caving from 2 to 18 feet Loose, slightly moist, dark gray to gray, poorly graded sand, 5 to 10% gravel, gravel is subrounded up to 1 inch, sand is fine to coarse grained TRENCH TERMINATED AT 18 FEET DUE TO CAVING NO GROUNDWATER ENCOUNTERED			

Figure A2, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

 SAMPLE SYMBOLS

 ... SAMPLING UNSUCCESSFUL
 ... STANDARD PENETRATION TEST
 ... DRIVE SAMPLE (UNDISTURBED)
 ... CHUNK SAMPLE
 ... WATER TABLE OR SEEPAGE

PROJECT NAME Teichert Shifler Mining and Reclamation

DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TPSHF2 ELEV. (MSL.) 108 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0					MATERIAL DESCRIPTION			
0 - 1 - 2 - 3 - 4 - 5 -	TPSHF2-0-14.3			CL	ALLUVIUM Medium stiff, moist, dark brown, lean CLAY, slightly plastic, roots -becomes dark brown and dark yellowish brown -caving from 2 to 21 feet	-		
6 - 7 - 8 -				- <u>c</u>	Medium stiff, moist, yellowish brown, Sandy lean CLAY, slightly plastic	 - -		
9 - 10 - 11 - 12 - 13 - 14 -				- <u>SM</u> -	Loose, moist, yellowish brown, Silty SAND, non-plastic, poorly graded and fine grained sand	 - -		
15 - 16 - 17 - 18 -	TPSHF2-14.5-21			SP -	Loose, moist, gray, poorly graded SAND, non-plastic, fine grained	- -		
19 - 20 - 21 -		0 0 0		<u>- sp</u> -	Loose, moist, gray, poorly graded SAND with gravel and cobble, non-plastic, fine grained sand, cobbles up to 4 inches TRENCH TERMINATED AT 21 FEET DUE TO CAVING NO GROUNDWATER ENCOUNTERED			

Figure A3, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

PROJECT NAME Teichert Shifler Mining and Reclamation

DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TPSHF3 ELEV. (MSL.) 106 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
					MATERIAL DESCRIPTION				
- 0 -	1PSHF3-0-11			CL	ALLUVIUM Medium stiff to stiff, moist, dark brown, lean CLAY, slightly plastic, roots and straw	_			
- 2 -	1				-becomes stiff, dark yellowish brown	-			
- 3 -	-		1			_			
- 4 -	-	//	1			-			
- 5 -	-					_			
- 6 -						_			
- / -	1		1			_			
- 8 -	1		1			_			
- 9 -	- 8]			_			
- 10 -	-					_			
- 11 -	TPSHF3-11-20	ĻĻ	4-	$-\overline{SP}$					
- 12 -		. 0. .0.	-	51	Loose, moist, dark gray, poorly graded SAND with gravel, non-plastic, fine to coarse sand, gravel to 1 inch, caving from 11 to 20 feet	_			
- 13 -	1	÷		\overline{SP}	Loose, moist, dark gray, poorly graded SAND, non-plastic, fine grained, trace gravel to 1 inch				
- 14 -	- 8		-		grained, trace gravel to 1 inch	_			
- 15 -	-					_			
- 16 -	-					_			
- 17 -			-			_			
		· . · .							
- 18 -]		-						
- 19 -	1					_			
- 20 -	<u> </u>	· . · · -	\vdash		TRENCH TERMINATED AT 20 FEET DUE TO CAVING				
					NO GROUNDWATER ENCOUNTERED				

Figure A4, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

N SAMPLE SYMBOLS ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED) ... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE ... WATER TABLE OR SEEPAGE

PROJECT NAME Teichert Shifler Mining and Reclamation

DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	• TEST PIT TPSHF4 ELEV. (MSL.) 106 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
0					MATERIAL DESCRIPTION			
-0 -1 -2 -2	1PSHF4-0-16			CL	ALLUVIUM Medium stiff, moist, dark brown, lean CLAY, slightly plastic, roots and straw -becomes medium stiff to stiff, dark yellowish brown,	_		
- 3 - - 4 · - 5 ·	-				-some interbedded seams of clayey SAND	_		
- 6 - - 7 - - 8 -	-					-		
- 9 · - 10 · - 11 · - 12 ·	-			- _{SC} -	Medium dense, moist, gray and dark yellowish brown, clayey SAND with gravel (interbedded lean clay and poorly graded sand with gravel), gravel to 1 inch, poorly graded sand seams are approximately 6 inches thick	 - -		
- 13 · - 14 · - 15 · - 16 ·		9 			-caving from 13.5 to 18 feet	-		
- 17 · - 18 ·	TPSHF4-16-18	0 0 0	-	<u> </u>	Loose, moist, dark gray, poorly graded SAND with gravel, non-plastic, fine to coarse grained, gravel up to 3 inches	_		
					TRENCH TERMINATED AT 18 FEET DUE TO CAVING NO GROUNDWATER ENCOUNTERED			

Figure A5, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

PROJECT NAME Teichert Shifler Mining and Reclamation

DEP IN FEE	1	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TPSHF5 ELEV. (MSL.) 106 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
						MATERIAL DESCRIPTION				
- 0 - 1 - 2		1PSHF5-0-14			CL-ML	ALLUVIUM Stiff, moist, very dark brown, Silty CLAY, slightly plastic, roots and straw	_			
-3 -4 -5 -6 -7 -88 -99 -100 -112 -1200 -1200 -1					- <u>CL</u> -	Medium stiff, moist, dark yellowish brown, Sandy lean CLAY, slightly plastic, caving from 3 to 18 feet				
- 12 - 13 - 10 - 17 - 18	5 – 6 – 7 –	TPSHF14-18			- GP -	Loose, moist, dark gray, poorly graded GRAVEL with sand, non-plastic, sand is fine to coarse grained, gravel up to 1 inch but is mostly 3/8 inch TRENCH TERMINATED AT 18 FEET DUE TO CAVING NO GROUNDWATER ENCOUNTERED	— — —			

Figure A6, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

 SAMPLE SYMBOLS

 ... SAMPLING UNSUCCESSFUL
 ... STANDARD PENETRATION TEST
 ... DRIVE SAMPLE (UNDISTURBED)

 N

 ... DISTURBED OR BAG SAMPLE
 ... CHUNK SAMPLE
 ... WATER TABLE OR SEEPAGE

PROJECT NAME Teichert Shifler Mining and Reclamation

0 MATERIAL DESCRIPTION 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 11 - 12 - 7 - 8 - 9 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 10 - 10	EPTH IN EET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TEST PIT TPSHF6 ELEV. (MSL.) 106 DATE COMPLETED 10/28/10 ENG./GEO. MARK REPKING DRILLER TEICHERT EQUIPMENT CAT 385 Excavator	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
- 1 - ALLUYIUM Soft, very moist, very dark brown to black, lean CLAY, - - - -	0					MATERIAL DESCRIPTION				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -	1PSHF6-0-18			CL	ALLUVIUM Soft, very moist, very dark brown to black, lean CLAY, slightly plastic, roots and straw -becomes very dark brown and dark yellowish brown, plastic	-			
	111 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 -	TPSHF6-18-21				Medium dense, very moist, dark gray, poorly graded GRAVEL with sand, gravel to 2 inches				

Figure A7, Log of Test Pit, page 1 of 1

IN PROGRESS \$9534-06-02 TEICHERT WOODLAND LAB TESTING.GPJ 03/19/14

PROJECT	NO. S	9534-0	5-04		PROJECT NAME Teichert Shifler Mini	ng and Re	clamatio	n
DEPTH IN FEET	SAMPLE NO.	ADOTOHLIT	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 109 DATE COMPLETED 2/20/14 ENG./GEO. Sean Dixon DRILLER PC EXPLORATION EQUIPMENT CME 75 w/ HSA HAMMER TYPE Automatic MATERIAL DESCRIPTION	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 0 +		+	$\left \cdot \right $	ML	ALLUVIUM			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1-6 B1-5-10 B1-10.5 B1-11 B1-15.5 B1-16 B1-15-20			- <u>GP</u> -	Medium stiff, moist, brown, SILT Medium dense, moist, gray, poorly graded GRAVEL with sand, gravel is rounded	- 9 - 9 		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B1-20		-	- <u>sp</u> -	Medium dense, moist, gray, poorly graded SAND with gravel Dense, damp, gray, poorly graded GRAVEL with sand	26		
- 24 - - 25 - - 26 - - 27 - - 28 - - 29 -	B1-25			01	Dense, damp, gray, poorry graded ORAVEL with Sand	- 30 		

Figure A8, Log of Boring, page 1 of 4

IN PROGRESS TEICHERT SHIFLER.GPJ 03/19/14

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJECT NAME Teichert Shifler Mining and Reclamation

PROJECT	ΓNO.	S9534-05	5-04		PROJECT NAME Teichert Shifler Mini	ng and Re	eclamatio	n
DEPTH IN FEET	SAMPLE NO.	ADOTOHLIT	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 109 DATE COMPLETED ENG./GEO Sean Dixon DRILLER PC EXPLORATION EQUIPMENT CME 75 w/ HSA HAMMER TYPE Automatic	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 30 -					MATERIAL DESCRIPTION			
- 31 - - 32 -	B1-30 B1-30-40					36 - -		
- 33 - - 34 - - 35 - - 36 - - 37 -	B1-35			- <u>GM</u> -	Dense, wet, gray, Silty GRAVEL with sand	60 -		
- 38 - - 39 - - 40 - - 41 -	B1-40			- <u>ē</u>	Medium stiff, wet, brown, lean CLAY	- - - 17		
- 42 - - 43 - - 44 - - 45 -	B1-45.5			<u>SP-SM</u>		- - - -		
- 46 - - 47 - - 48 - - 49 -	B1-46		1	- <u>G</u> ₽-	Dense, damp, gray, poorly graded GRAVEL with sand, trace silt			
- 50 - - 51 - - 52 - - 53 - - 54 -	B1-50					-90/10" 		
- 55 - - 56 - - 57 - - 58 - - 59 -	B1-55					_ 50/5" _ _ _		

Figure A9, Log of Boring, page 2 of 4

IN PROGRESS TEICHERT SHIFLER.GPJ 03/19/14

PROJEC	ΓNO.	S9534-05	-04		PROJECT NAME Teichert Shifler N	Mining and Re	clamatio	n
DEPTH IN FEET	SAMPLE NO.	TITHOLOGY		SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 109 DATE COMPLETED _2/20/14 ENG./GEO. Sean Dixon DRILLER PC EXPLORATION EQUIPMENT CME 75 w/ HSA HAMMER TYPE Automatic MATERIAL DESCRIPTION	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1-65 B1-85-86 B1-86		⊻	- CL -	-becomes wet Hard, wet, gray, lean CLAY			

Figure A10, Log of Boring, page 3 of 4

IN PROGRESS TEICHERT SHIFLER.GPJ 03/19/14

DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 109 DATE COMPLETED _2/20/14 ENG./GEO. Sean Dixon DRILLER PC EXPLORATION EQUIPMENT CME 75 w/ HSA HAMMER TYPE Automatic MATERIAL DESCRIPTION	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 90 - - 91 -	B1-90.5	//						
- 92 -	B1-91					43		
- 93 -						-		
- 94 -			1			-		
- 95 -	B1-95.5					-		
- 96 - - 97 -	B1-96					100		
- 98 -						_		
- 99 -						_		
- 100 -	B1-100.5					-		
- 101 -	B1-101	(+		BORING TERMINATED AT 101.5 FEET GROUNDWATER AT 70 FEET	- 100		
					GROUNDWATER AT 70 FEET			

PROJECT NAME Teichert Shifler Mining and Reclamation

Figure A11, Log of Boring, page 4 of 4

SAMPLE SYMBOLS

IN PROGRESS TEICHERT SHIFLER.GPJ 03/19/14

▼ ... WATER TABLE OR SEEPAGE

... DRIVE SAMPLE (UNDISTURBED)

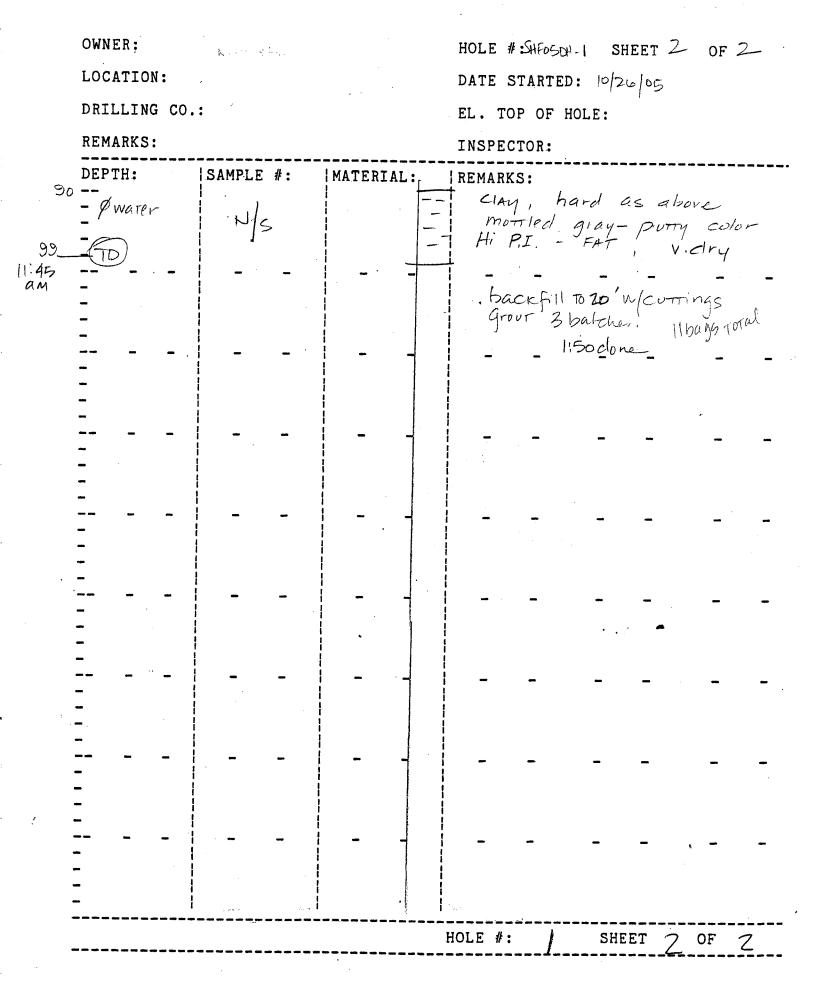
PROJECT NO.

S9534-05-04

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

... SAMPLING UNSUCCESSFUL

🕅 ... DISTURBED OR BAG SAMPLE

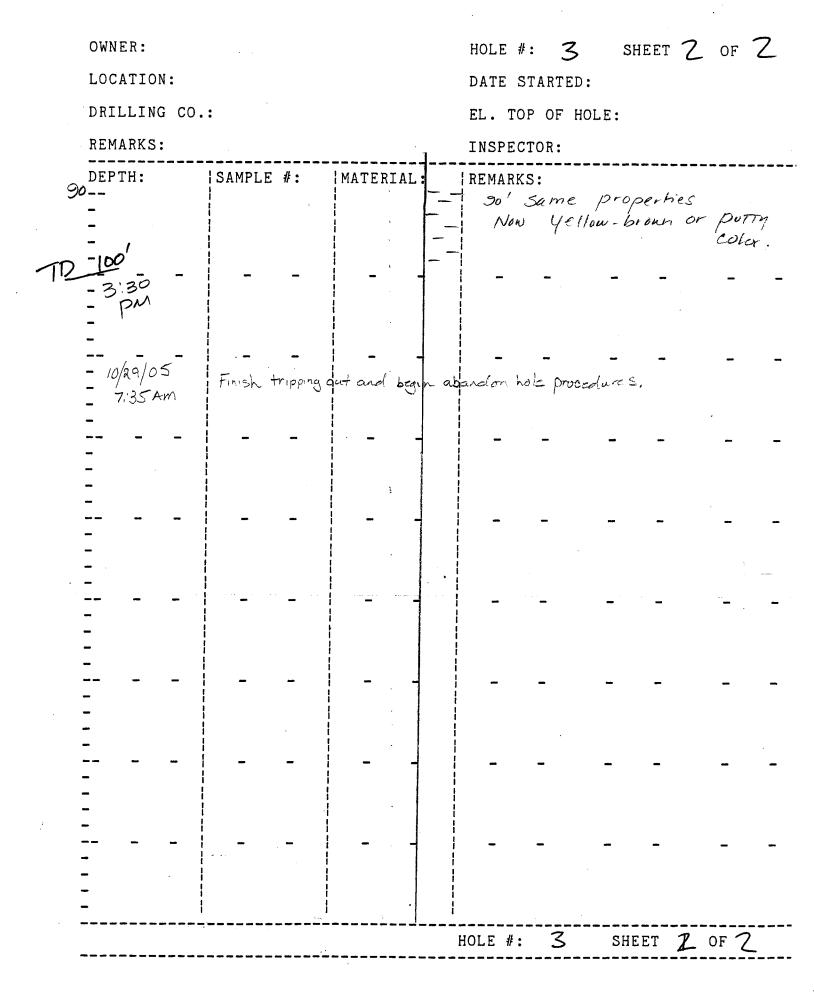

... STANDARD PENETRATION TEST

... CHUNK SAMPLE

-

.

· ·



OWNER: SHIFLER HOLE # SHFOGOH-2_SHEET / OF (LOCATION: Near Creak, NE Corner DATE STARTED: 10/26/05 DRILLING CO .: Layne Christensen EL. TOP OF HOLE: $99^{+}/_{-}$ REMARKS: Cloudy, breezy ØSUN TODAY INSPECTOR: ZAFFRAN DEPTH: SAMPLE #: **REMARKS:** MATERIAL: OVB - TOP SOIL, CLAY F. gravel in Cse Clean #1 4-9 F. GRUL gray sand , MUCH #4 10 - 2 Moist SAND AS ABOVE, POUND Graver 21:5" #2 9-19 MOIST - F. SAND STICKS TO GRUL. * 17 × Slight Fines Coating N5%L 20. # 3 19-26 Ø 26' I'STICKY SILT-CLAY HA 26-29 Followed by clayey 30 CLAYEY Agg - yellow-brown color GRUL F. Gravel & MOSTY SAND IN #529-39 SAND Sticky Clay Maticix estim 10% clay Hous Together in Hand D 40 Made DALL, #6 39-49 ASABAVE 42" SIZE AS , MOIST , CLAY COATING & MATTIX 50-#749-59 Inc 57- SOFT, Iblow/FT UAU CLAYEY SAND 20%CL 62 Moisr 62 Pale yellow color Hi Moisture #8 562-69 Sti Silt . W/ Gravels From 61.62 CLAY Pale Yellow - gray M Feox 3:45-70 Tr organics lans V. Hard #969-79 peam Hard Slow Hi Plashicity - White gypsum or caliche Coating on Flat pale @76 STAIT gray pancake pieces 420 1 80 dank gray blue V.Hard #10 Slow 79-89 putty color driving 10 5:30pm Thurs, 10/27 am HOLE #: SHEET I OF 2 back fill TO 20 10 bags

Photos OF

Material

OWNER: SHIFLER HOLE #: SHFOGDH-3 SHEET) OF 7 LOCATION: NICANALIN CORNER DATE STARTED: 10.28.05 S. OF TURNAVOUND DRILLING CO.: EL. TOP OF HOLE: LAYNE Christensen INSPECTOR: ZAFERAN REMARKS: CLOUDY, O'CAST Sprinkles LOW DEPTH: SAMPLE #: MATERIAL **REMARKS:** CLAY, SOIL CLOTSOF OVB DIRT NS 0 SILTY JUST BEFORE SANDY 17' 17' GRAY GRAVEL 20 Clean #1 19-29 SAN Q. 80% clean Sand up Genni F-grave Few' cobbles (2) 30 -Much # 50 size Sand 29-38 Special GOLDEN brown color@ D 38,5 371 CLAY, MOIST, Like PUTTY 40orange brown color # 3 39-49 bag - 44' 44 Pale yellow CLAYEN SAND #4. 44-49 CLAYEY 01 & Gravel 50---SAND CSEV THAN above Clean Agg. 49-59 Moisr GRAN MUCH 3/8-1" Size in CLAyey SAND Matrix CSTM 5%-10% CL NOT WET YETgening #6 WEFIN MAX 3" 59-69 00 Ð H20 69 - Gray 70 0 CSe 1 14 Clean Clean washed agg. 出7 . 0 agg 69-77 OMMOR FINES WASH OUT in Ground water 2) 7.7.0 11 ±8 bag Pale Olive - gray color 77-81_ 80-CLAY 77-79 V. Hard, w hi Photos Here OF Due-gray color May 81-87 # 3 79-89 Pale gray 87-89 90 HOLE #: SHEET I OF つ

	OWNER: SHIFLE			HOLE #: SHF05DH-4 SHEET OF 2
		KT TO ROATS JAF		
		TROM	STORZ	DATE STARTED: 10/25/05
		: Layne CI		EL. TOP OF HOLE: 03
	REMARKS: Bree	ze WGOOD GUE	DTS FROM S,	INSPECTOR: ZAFFRAN
2:05 PM 0	DEPTH:	SAMPLE #:	MATERIAL	REMARKS:
	-		OVB	Soil, Poors, CLAY
	-	N/s		LITTLE RETURN - QUICK DRIVE
10				
	- 11		Clean 0.0	Gray F. graded gravel in
	 -	#1 9-19'	SANDY 00	Clean, loose, SANDlense
20			ERVL 00	From 18'-20'
,	-	# 2 19-26	26'-00	V CSENS QUICKIY
29 -	- Moisr	# 3 26-29	CLAYEY 100	SOFT, MOIST Pale yellow brwn, CLAY HOLDING Agg TOGETHER
50	-	,	31'0-0	IN MOIST JCLUMPS
Junch bre	- (Close TO H20!)	[±] 4 29. 39	graded = 0	ESTM. 10% CLAYEY MOIST FINES IN Well graded SAND - F. GRVL
· - 40			Sand or WF.	MAY = 211 SIZE (WOULD NEED
	-	[#] 539-49	GRUL DO.	GOOD WASHING)
H20-	-1-49'		CLAN 00	Continues of 5-10% CLAY
50				WET, SLOPPY Agg. W/ Cobbles
	- WET FLOWING	£ 49-59	11 0-	3"size, 5% PAle yellow CLAYEY
60				SAND MATRIX Supporting Well' Graded ROCK,
<u> </u>	- 62'	bug	62'	- pale gray, dry & crumbly
	- ØWATER_	# 7 59-69	CLAY	MED. P.I. 66' COLON NOW Pale Yellow brown
70				
	- i - l	#8 72-77	72	Gray, well cem. Sandstone
	-		77	Hard,
රිර				Clay, yellow brown color, wet
	-	#9 80-88		Varies Quickiy, V.Haral, dense . Clay - Mottled coloring
_	-		88	Gray color
90 ·			MOIST, STICKY	HOLE #: SHEET OF

. . .

OWNER:

LOCATION:

DRILLING CO.:

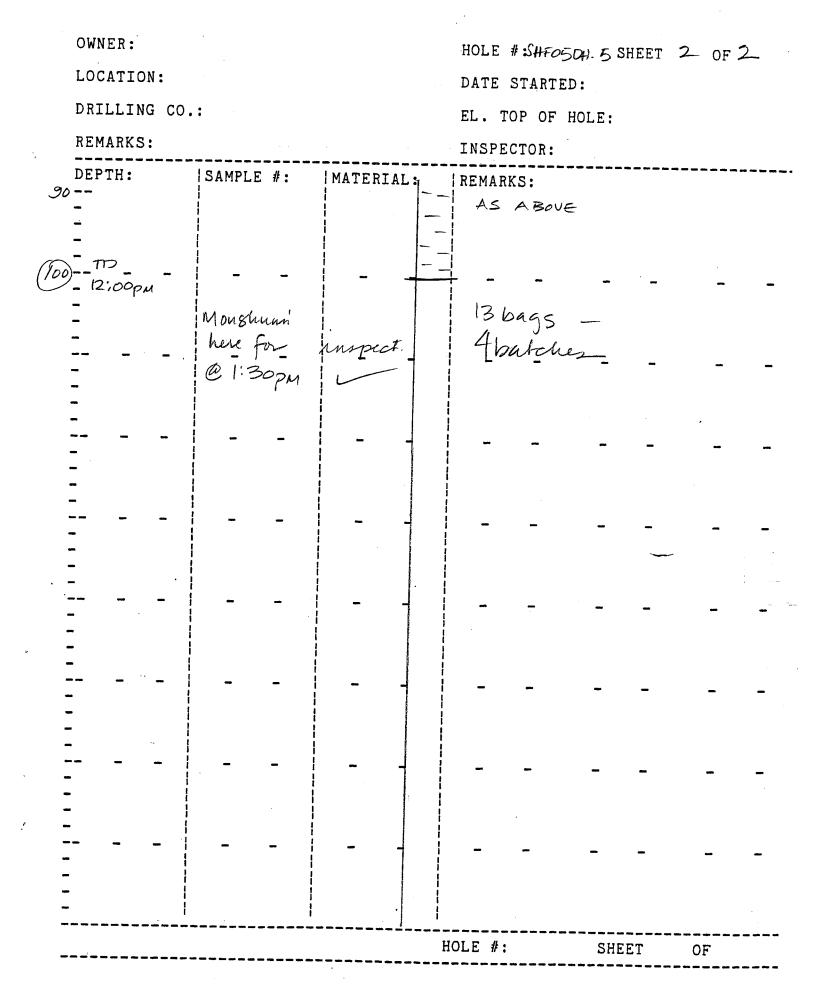
HOLE #:SHF05DH-4 SHEET 2 OF 2 DATE STARTED:

EL. TOP OF HOLE:

DAILLING CO.		EL. TOP OF HOLE:
REMARKS:		INSPECTOR:
) _ _	SAMPLE #: N S	MATERIAL: REMARKS:
)TD. 4:4012M		Grout on WED A.M.
- -		2 batz Hes
- - -		
- - -	- -	
- - -		
		
- - -		
-		

HOLE #:

SHEET


OF

•

• •

···· ##-*/2

OWNER: SHFLER
LOCATION: N-CANAL, N.Field Min
DATE STARTED:
$$10/27/25$$

DRILLING CO.: LAYNE Christersen
REMARKS: R-Cloudy, Coc. A.M. 500 in
REMARKS: CLAY, Report
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
10 - 9'
1

OF 2-HOLE #: SHFOSDH 6 SHEET OWNER: Shifler ł DATE STARTED: 10/29/05 LOCATION: Nofcaral Eside DRILLING CO .: Laure EL. TOP OF HOLE: 102 INSPECTOR: ()huck REMARKS: Small section between canal ditch SAMPLE #: MATERIAL: LA REMARKS: DEPTH: 8:58 km 0 --Y brown sandy silt with clay (soil) OB. NS poor return 10 brown sandy self with chay OB comes out in balls ican roll bones of plastic NS v. premon gul and "clean sand 1219 SAND SAME 20 -(nd Cidon) brown selling SAND with minor gravel which minor to bottom with 1.5" clasts max. SAND 20-30 1. 20 money class. 00 30 -Stal D = Horary to brown Sandy Gravel with 2) GRAVEL -moist - sand E elay stok Clary * * * 10.1112 to growing (Choney bods conselling gol ier: Coc 20-410 Clev 40 ----brown sandy Chky - high photos CLAY bago clau 40-46 NOT YIT drills slow JAND - brown sulfy SARD A. Sheet 50 -Chine Sound Congres Stars 00053 Brown Sandy GRAVEL with mover glass Same 50-60 Ð Gravel 0. 0 60 000 Interbedded Gravels and Sands Sanda ac^{ida} Find grounds Yo" mans come or 2" min is s Gravel 00 c 60 - 70 70grave sandy GRAUEL - wet Mean course in till and my gut laars which ever second councils (in water somet explosed) GNME The an Q0 Clean gravel a Hydro 86 GRAVEL. K. RC -8 in -----CINY-GUL fine gravel wichen 90 HOLE #: ∽ SHEET OF

OWNER:

LOCATION:

DRILLING CO.:

REMARKS:

INSPECTOR:

DATE STARTED:

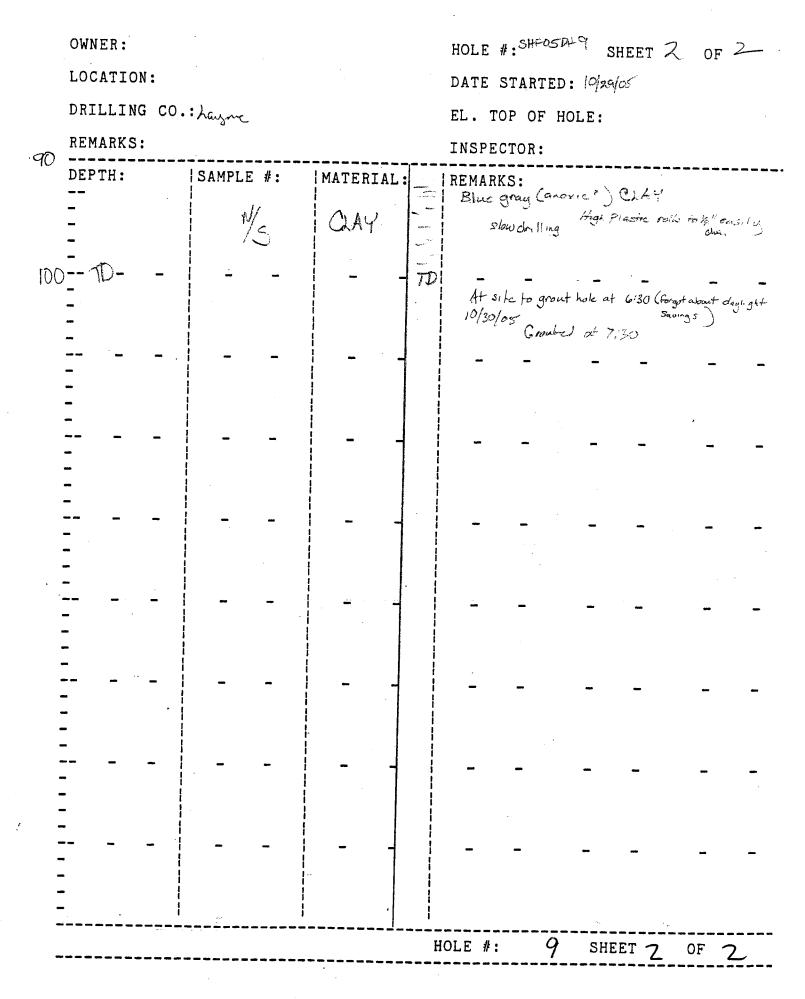
EL. TOP OF HOLE:

HOLE #: 6 SHEET 2 OF 2

				INSPECTOR:
90	DEPTH:	SAMPLE #:	MATERIAL:	REMARKS:
	-	90 -190	Changen - 6 Grave - 6	Clay with incr. gravel Cleaner gravel with water at 97-98 and again bottomotinterval
100	- -	100 - 104	- GUL - 339	Gravel with more clay to 104'
110	- - 	100-104 bog-a-chay 102-108	Clau -	Classe gray preenwith hence Fellx peterns (ach ?)
	-	G 115-120	SS 2	Commented SAND (Soudstone) (Vellow borown Silts SAND W/CLau)
120				Starting to get much 420
			-	
•				
-				
-	·			
-				
-				
-			 H	OLE #: 6 SHEET Z OF Z

13-38' Clean SANDY GUL		bit= 10 " 1
38-61' CLAYEY GRUL-SAND	ST HOL	E LOG $ID = 6''$ OD = 9/4''
OWNER: SHIFLER		HOLE #: SHF05DH-7 SHEET OF 2
LOCATION: W.Side N. OF C		DATE STARTED: 10/25/05
DRILLING CO .: Layne Chris	TENSEN	EL. TOP OF HOLE: 7-108."
DRILLING CO.: Layne Chris AP1000 Human REMARKS: Fracisco, Salvador	Jaime	INSPECTOR: L. ZAFFRAN
	MATERIAL:	REMARKS:
- N/c	7	DRY DUSTY SILT/CLAY Little RETURN - MOSTLY
- /3	OVB	ets dust blowing AWAY, - Few
		ets dust blowing AWAY, - Few CLAY pieces
- 13'	13/	
#1 13-19	.0	Clean sand grades V. Quickiy To wellgraded
20 /	F.GPVL 00	F. Gravel & SAND; Subround
- - - 2	IN Oo Clean	gray Gravels in CSE SAND - (100 SE, CLEAN)
30- Zq' 19-29 3 30- MOIST # 3	SAN7 .	- SLIGHT CHANGE IN MOISTURE
- Moist # 3 29-35	0	& SLigHTLY LSEF at 29' - Secons - MAY 2" CAUSES FINES TO STICK TO GRUELS
38 - Moist = 35-39	38 00	- COSSAY M 5% CLAY
-	Geve	Keul CSE , MUCH 2-41'SIZP
#5 39-49	SAND -	Material Now Comes out & Forms
	W/CLAY PJ	STIFF Pile w/Little Slump 'restin 15% CLAYEY FINES
MOIST # 6 49-59		CLEAN SANDY P. GRAVEL LEASE
	0	In OTHERWISE CSE Well graded
61 - + + 20	61	Gove of 15% CLAY (STICKY)
- 67' ± 759-67	F.GVL	CSC SAND & P. GRAVELS, MULH CSC SAND & P. GRVL. (Flowing)
70		Pale yellow CLAY
Slow + 9 609	CLAY	- cores large pieces Cabbage size
70-77	77	W F. SAND, BMAILER CLAY COMES)
80 #10 80-85	(SILTY)	CLAY M low Plashicity & B. Silty Fibe
- DARK	85	FIDILLECI WORING M FEW OFGONICS.
- DARK - GRAY 88' 1= 11 85-89 1	CLAY	Palegray color @ 85"
		HOLE #: SHEET OF
	-	

WOMET DEVE - LOPEN


TEST HOLE LOG

OWNER: HOLE # SHF050H-7 SHEET 2 OF 2 LOCATION: DATE STARTED: 10/25/05 DRILLING CO.: EL. TOP OF HOLE: **REMARKS:** INSPECTOR: 11:00 am DEPTH: SAMPLE #: MATERIAL REMARKS: 90 Real - de blue gray # 12 bag SIM Slow drilling MRD-HiP.J. dense - Rolls O.K., SMEARS CLAY 90-99 99' color changes To buffi 100 "PALE YEllow". NS TD 11:40 (110 16 bags grout/beut, pand, 14+2 12:15 Start grout 1:40 Clean up Moushui here for inspect. 12:15-1:30 CRAZY, ANTIQUE LOOKING GROUT PLANT. HOLE #: SHEET OF

Dongs Photos Taken

OWNER : SHIFLER HOLE #: SHF05DH-8 SHEET | OF / LOCATION: 100' N CANAL, E. Corner DATE STARTED: 10/27/05 EL. TOP OF HOLE: 7- 107 DRILLING CO .: LAYNE CHRISTENSEN WIND REMARKS: GOOD S. Breeze THis QNOON INSPECTOR: L. ZAFFRAN 2:50 DEPTH: SAMPLE #: MATERIAL: †REMARKS: PM 0 --DRY, DUSTY CLAY /SILF N/S OVB 10 NS SILT, dry FLOUDY TAN COT V. SOFT 17 Gray SANDY GRAVEL 20 crean. well graded sund WF. grave SANDY 19-29 GRAVEL cse lenses up well Rounded (D 1-2"Size Pock 29 SLIGHT Inc. In MOIST. @ 24' #2 29-39 Moisí CLAYCY Graul 5-10% Moist CLAY CSM ROCK TO A"Size but MOSTI - = 3/" 6 SAND Chay as integrated matrix Not lenses. #3 39-49 Seems Coarser Here MUCH 3/4-1" SIZE - yellow brown color STILL QUITE MOIST BUT & FLOWING F. GIDNU #4 49-59 H20 - CLAYEY SAND TENSE @ 55' ISAND (can Make Pock bad in Hands) Menough Moist/clay Q 0 120 60--WET Flowing CSE Pock in Wellgraded #5 59-69 Sard, STILL 5% CLAY - MUDDY 3,50 70-H20. yellow-brown color from 69-72 69-72 CLAY . dark Gray 4115 broken cable V. Hard, dry, 'laminated Resume 11:40 am # 772-79 80-Hi Plast. CLAY #8 79-89 Yellow-brown color TD 12:10 backfue TO 18' Luch HOLE #: SHEET OF 12:45 Grout 1:20 To Anif. Called Monshumi OK TO Grout ON STAN

OF 2 OWNER: Shifler HOLE #: SHFOS DH-9 SHEET LOCATION: Sofcanal conter road DATE STARTED: 10/29/05 DRILLING CO .: Layne EL. TOP OF HOLE: 106 INSPECTOR: Church REMARKS: East side ABrand between Dields 😂 🖉 REMARKS: MATERIAL SAMPLE #: DEPTH: . Soil for row crups (beans?) OB Ma poor return some sondard gul? 2:25 10 ð Gravely brown gravely Start 60 sand / 40 go 1 . c., most gul less thom I" (1/2" minus SMA \mathcal{O} 10-20 GUI incont ŋ., 20. 0. Sapa :0 brown sandarmorel - clasts to ç, 2 " meri silt/clay V GU 1 20-30 30 Sandy Hundry N32 - MOIOT 00 brown sounda gravel minor clay ming for Softward - 20" K-yellow Gravel 30-40 up clay 40 Yiller Sture 38 SAND yellowbrown SAND with clay (hagens?) Garatela. 600 Conc gud at 45 clay minur gut 40-50 49 nor in gravely size of grand lie see 2000 50 0000 I day brown clayre GRAVES w/SAND Chines Gram 0:0 monst c Chungss 55 Gray SHODY GRAVE) -60 Sandy Graine Sections 60 Intbold CSE # #3" Cinco gravels What's Sandy with Sand - MOIST (trace day only " Gravel w-70 420 at top of day Water-70 -Sandy Clay brown sindy class grading to concerte ClaeySon Claycy sand with water at and of in torican ban Sumple 80 light gray clay (sticky Que big blue olay balls bages blue Eling balls **A**F 9 SHEET HOLE #: I OF 7

OWNER: Shifler HOLE #: SHEATDH 10 SHEET 1 OF 2_ LOCATION: Soutor Canal Wend DATE STARTED: 10/30/05 DRILLING CO .: hayne EL. TOP OF HOLE: 109 **REMARKS:** INSPECTOR: Chuck DEPTH: 12:05 SAMPLE #: MATERIAL; **REMARKS:** Tilled Soil and overbarden Ôß MG No Recovery 10 Brown SAND with gravel SAND lesight (11+41e Soft Clean samp 10-20 Gondel 20 Scoroly Brown (signity sitty) sandy GRAVEL Gravel 20-30 30. Sardy Brown (sightly salty) sandy ORAVEL +relay Gravel 30--10 most presigned else mover 2 ŶŲ Sanda Brown & Hu Sandy GRAVEL with chay. Pol Grand 40-50 The st - SAND of End of ration SIH Star Sandy 000 se up to 91 usto: Brown (s. Ity) Study GRAVEL Gravel 50-60 Tr Clay Damp 60--41 H2D -61 Sand's 1 1-Water Coarse and fine GRAVEL in when clay at and (prob. S. 14 w/some clay) 6)-70-69 STANC Ď 0 O. 70. Y. Brown sandy (Fine) ChAY "Sticky" Setup for met drilling (add the) rolis eachy to Ye" Clay 1/5 a wet mess More Sandy at 75 " Cranics to dayay Shall but and? · KASAND (clause) 80 Claudy of Clayer SAND with annuel SAND 80.90 V, we sample fores (s. 17/ chy may be neiched WGVL V. wet HOLE #: D SHEET OF

OWNER: SHEET Z OF Z HOLE #: /Ò LOCATION: DATE STARTED: 10/30/05 DRILLING CO.: EL. TOP OF HOLE: **REMARKS:** INSPECTOR: DEPTH: SAMPLE #: MATERIAL: **REMARKS:** 90 clay balls CLAY Bracon "highly plaste" CLAY shift moist bag-o-olay roll Ya" dia to 2" DD 1P-1:45 ended hole in clay and poor sampling conditions HOLE #: 10 1.1 OF Z SHEET 2

	OWNER: SHIFLE	R		HOLE #: SHF OS OH- //SHEET / OF 2		
	LOCATION:			DATE STARTED: $/6/3i/05$		
	DRILLING CO.	: LAYNE CHRISTE	NSEN	EL. TOP OF HOLE:		
-10	REMARKS:			INSPECTOR: RIVAS		
START B:44 O	DEPTH:	SAMPLE #:	MATERIAL:	REMARKS: TOPSOLL, SILTYCLAY		
	- -	N/S				
. 9	- 					
, G	_	SHF051H-11 #1 0	SAND	VERY FINE, SLIGHTLY SILTY SAND		
52	> ` _ _	SHFOSDH-11 # 2	GRAVEL	GRAVEL TO 3" IN CLEAN MEDIUM GRAINED SAND. SOME MOISTURE		
3 0		#3	ERAVEL 35	4" MAX COBBLE SIZE. MOISTURE, CLAY INCREASING W/AEATH, ESP. BELOW 35')		
9:09 40		#4 Ø	DIATUS GRAVEL	WET, COATED WITH TAN CLAY. MUCH PEA GRAVEL FRACTION, FINER THAN ABOVE · 2"MAX		
50		 #5	DIRTY GANGE	WET CLAYEY GRAVEL LIRE ABOVE		
9:24 60	- 57' - 9:30- PU662ACE 67' - CLEAR @ 9:32	- #6 D	GRAVEL	CLAY INCREASING W/DEPTH		
	- 67' 	- ^{µ/s} - # 7 0	CLAY SAND	TAN, SICTY, STICKY GLAY WET, FAIRLY CLEAN FINE TO FIEDING. GRAINED SAND @ 70' FREE-FLOWING WATER		
80		N(5	SAND	FREE-FLOWING FINC TO MEDIUM SAND LIKE ADDUE		
90	- 89'		CLAY'	HOLE #		
				HOLE #: SHFOSDH //SHEET / OF 2		

,

OWNER: SHIFLER

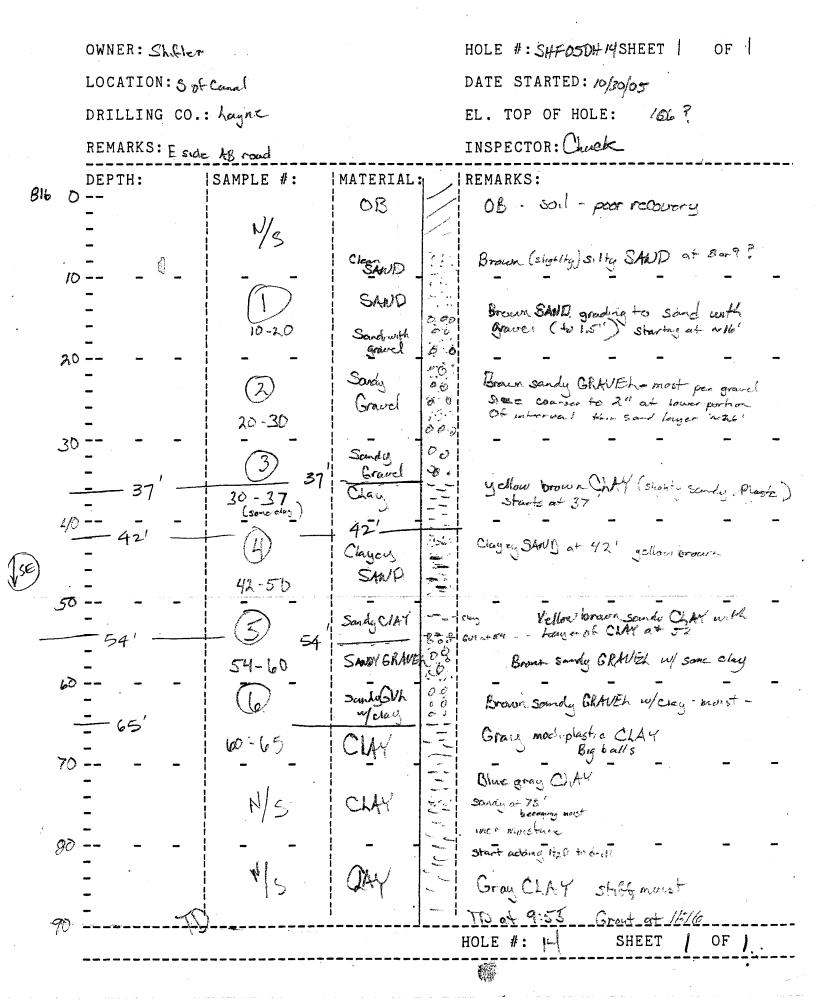
LOCATION:

DRILLING CO.:

REMARKS:

HOLE #:SHFOSDI+- \SHEET 2 OF2

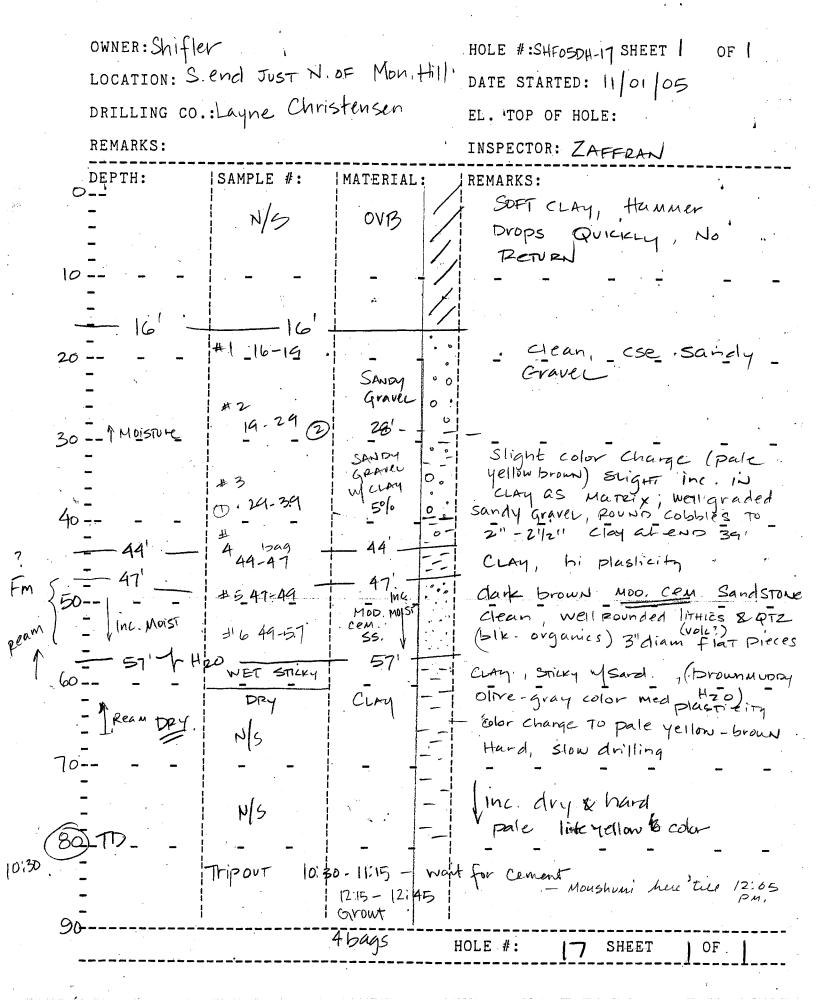
DATE STARTED:


EL. TOP OF HOLE:

INSPECTOR:

			INSPECTOR:
DEPTH: 90 - - 94	SAMPLE #: $N \leq$	MATERIAL:	TAN, STICKY, SILTY CLAY. WET
TD - 10:30 100 QUIT HOLE_ - 10:30 -12:30		BLUE-GRAY SILT/CLAN	HARD, LITTLE MOISTURE, SLOW DRILLING, CLAYEY
-94 TD - 10:30 100 QUIT HOLE- 10:30-12:30 - 10:30-12:30 - 10:30 - 12:30 - 1			
- - 			
- - -			
- - - - -			
- - -			
- i 		 H	OLE #: SHFRES DIT II SHEET 2 OF 2

		OWNER:	SHIFLE	R		HOLE #:SHF050/A-12 SHEET OF /
		LOCATIO	DN:			DATE STARTED: $10/31/05$
		DRILLI	NG CO.	:		EL. TOP OF HOLE:
12:30 noris 1:00 STAR	0-1:00	REMARKS	5:			INSPECTOR: RIVAS
	o C	DEPTH:		SAMPLE #: N/S	MATERIAL:	REMARKS: NO RECOVERY
-	10	- - 13	-	 SHFOSOH- 12	GRAVEL	SLIGHTLY MOIST GRAVEL TO 25" in CLEAN, COARSE SAND
		- 	-	1 0 SHF050H-12 2	SAND	FINE TO MEDIUM - GRAINED BROWN SAND. CLEAN. ~ 10% GRAVEL TO 2" BEIOW 27.
	30	1;30 -1;5 	5 EUNICH	# 3 ①	GRAUEL	GRADES TO FINE CLEAN GRAVEL BLLOW 30, CLAY, MOISTURE INCREASES BELOW 35!
	40		-	MIS	CLAY	STICKY TOIST BROWN PUTTY CLAY
		<u>-</u> 43 -	. · · ·	#4	DIRTY GRAVEL	GRAVEL.
	50	` `		#5 D	D'RTY GRAVEL	VERY MOIST, CLAY-COATED LIKE ABOVE. FAIRLY FINE GRAVELS- 1-2"MAY. COARSE SPND MATRIX
2:4	60		-		↓ ↓	
	70		- I	N/S	CLAY	WET, BROWN PUTTY CLAY. THIN INTERBEDS OF SAND AND GRAVEL LG" DOWN TO 166, THEN HOARD SILTY CLAY W/ LITTLE MOISTURE
	, , , ,	-		м(5	CLAY	GRADESTOCENENTED SAND @78'
2:5*	80	TD_	-			
Чем	-	-	 			
	-					HOLE #: SIHFOSDH=12SHEET (OF /


OWNER: SHIFLER HOLE #: SHF05DH. 13SHEET | OF LOCATION: S. Canal Mid of Field DATE STARTED: 11 OI 05 DRILLING CO .: LAYNE CHRISTENSEN EL. TOP OF HOLE: REMARKS: Sunny, S. breeze, Warm INSPECTOR: ZAFFRAN DEPTH: SAMPLE #: MATERIAL: REMARKS: όΜ O_ Little to & RETURN OVB CLAY. ROW Crop Soil NG 10 121 12 #1 SAND Clean, brown-gray Sand 0 12-19 well graded if 20% Graver · 0 20 QUICKLY Grades TO SANDY SANDY graver -MUCH 3/4 - 1" SIZE GRAVEL 19-35 $\widehat{\boldsymbol{\mathcal{D}}}$ Rounded Graver Sill Clean _ +- Moist_ 30 COB6125 From 33-35 3"-4" 35' (bag clay) - 35 pale yellow clayey agg. after 1 #3-35-39 MUCH P. Graver Size (CLAY= Clayey 40 _ SAND-Moist Zlayey Sand Matrix (5%) MOISTURE GRAVU # 4 39-49 MOSTLY CLAYEY STND - P.GOVL NCLOSETO W 5% > 1" MAX 3" _ H20 50--Clayey # 5 49-59 WET GRAVELS NOT FLOWING Sahd WET 5-10% CLAYey Matrix έĘ, PFLOW arvu Mostly 3/8-1" gravies (30%) 60-*1 bag 62-64 62-64 Clay lanse /layer 00 clean WASH Gravel FLOWING CSE ROCK in MUDDY WCT. #6 64-69 O / Flowing H20 WASHES CLEAN 71 Pale yellow - Hanon Softball Size - inj. +20 CLAY #8 609 72 Hard pieces Gray @ 75' 80 Gray, hard, Tough Hi Plasticity Clay Drills Slow T,D, 2:47 pm ; 4:30 Mix Grout HOLE #: DHIB SHEET | OF | Abags + gel

OWNER: SHIFLEr HOLE #: SHF050H.15 SHEET 1 OF 2 LOCATION: SW Corner hear Ro 94B DATE STARTED: 11/02/05 FOOT OF HILL 2 DRILLING CO .: LAYNE Christensen EL. TOP OF HOLE: REMARKS: P. CLOUDY Chance Showers INSPECTOR: L. ZAFFRAN DEPTH: SAMPLE #: MATERIAL; IREMARKS: Little Return. 7:55 aM. SOIL, DIRT, POOTS, NS SOFT, HAMMERS CLAY OVB QUICKLY 10 - 15' 15 #1 15-19 SANDY Gray GRAVEL 20. Clean, Mostly cse SAND SANDY #2 W/ 20% F. Graver, MAX 1" GRUL 19-29 M occassional clay lenses 30) 30'-О CLAYEY Yellow Color Clayey Moist #3 SANDY SANDY Graver - MUCH 31% -1" 30-38 0. GRUL rounds, STICKY Clay Coating 38' 38 STLT #4 bag 38.43 orange - brown Silt W.F.S.ND - 43 CLAY 45 0-0 #5 43-45 Clay of embedded pebbles 00 #6 45-49 clayey sand & p. Graver 10% cc CLAYEY 50-Inc. Moist. SANDY #7 49.58 Cleans up a bit THEN CLAYEY at GRUL 57 1/-58'_ WET FLOWING MUDDY H20+ AGG (Yellowmud) - AGG WASH M WASted # 8 59-46 GRAVEL clean, *MAX 4" 3/8 - 1" size , Œ 66 DUFF COLOR, MY ROOT CASTS L gypsum? Hard Pièces 70 -- dey 1 #9 1,6-78 CLAY Line dry M depth, PAR yellow Color - Mottled, lans Med. P.I. 78 MOIST, STICKY ICLUMP OF SILT 80--1 WET Flowing Clegray SAND. SILTY SAND Flows Fine # 40 size ; Similar to DH-4 ONLY NOT CRMETEd. HOLE #: 15 SHEET OF Z

OWNER: HOLE # SHFOSDH 15 SHEET 2 OF 2 LOCATION: DATE STARTED: DRILLING CO.: EL. TOP OF HOLE: **REMARKS:** INSPECTOR: DEPTH: SAMPLE #: MATERIAL **REMARKS:** 90 91 WET, STICKY CLAY Low pt 100 9:35 by 10:20 70 20' Ibatch TRIpour backfill Grout 110 Abags 15 SHEET 2 OF HOLE #: 2

DIRTY Hole poch	ТЕ	EST HOL	E LOG	
UWNER: SHIFLE			HOLE #: SHFOSDH 16 SHEET / OF	
LOCATION: S.	end, just	NWOF Monumer	DATE STARTED: $11/02/05$	
DRILLING CO.	: Lagne Ch	nistensen	EL. TOP OF HOLE:	
REMARKS: C	oudy Sb.	reeze	INSPECTOR: L. ZAFFRAN	
11:48 DEPTH:	SAMPLE #:	MATERIAL	REMARKS:	
`	NS	OVB	Tilled clayey soil For Row Crop	
-				
		- {/		
15	#1 bag	Sizry 15	I Golden brown	
20 19	15-19	Silry SANOIGI	Silty Study Fine clean	
-	19-29	SAND'	grades into CLANEY SANDY Graver, F. GRAVEL dk brown	
	Ō	GVL 28'-0	MOIST, STICKY YELLON_	J .
-	 ±3		Color Clay Coated grave	
- MOISTVILE	29.39 D	(15-20%) CLAY(Y)	W CLAY LEUSES, 20% CL	
40 wet, but		SAND 00	OVERALL ?* HOLDS TOGETHER IN Clum WETT but NOT FLOWING -	<u>کر</u>
- V Not Flowing	#4 39-49	Graver 0.0	AS Above, STICKY Gravers In Clayey Sand Matrix W	
50			Sticky clay lenses -	
- 11	*5	-0	AS ABOVE, STIll WET WIS%	
58 60- H20	1 49-69	420 0- 58 0-	CLAY , MAX ROUND GRUL 4"	
60 1 1120	# 6 59-67		- MOSTLY CI'' Clean Cse Agg, little Stud	
- V Flowing	2	Cobbles 0	ENES WASH OUT IN NUDDYYELLOW	
70		67	- GOMMON	
· Dry		CLAY	by 73' & lite gray - yellow TO WHITE &	
80			by 75 SOFTER, MOIST Yellow brown color	
Rearn, drilly			- SOFT, WET, STICKY 82'	
- H20			Hard, Cabbage size clay core pieces	
90-TD 1:50,p/A G+901	batch by 3:	26		
			HOLE #: 16 SHEET OF	

•

	OWNER:SHI	FLER				HOLF # • ·	SHFOSDH-18SHEE	· T	of ₹ 2	
			S. DE DIT	ich at the)					
		0	LUNH		~		ARTED: 1/03/	0'>		
	DRILLING		•				OF HOLE:			
,			breezy	FAIL A.M.		INSPECTO	DR: ZAFFRAN			
2:40 GM 0	DEPTH:	SA	MPLE #:	MATERIAL	$\overline{\mathbf{X}}$	REMARKS:		~		
	-					Freq	cy soil & shly cut h srown			
0	 - -	-	N S	OVB		Hurd Color	CLAY, Orana , Hi Plastici	je-bro ty, To	un ugh,	
20		-		-		Moist,	STILKY -	-		
30	- 25'	-	25-29	25 SANDY GRVL	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Follow	ry SAND Foo red by Well Color Gravel	grad	cd	
46		+ : 2	2 :4-39 D	33' - CLayey P.Grn	0.00	2 6" C by Csc	LAY Lense Sand - P. HTly CLAye	, FOI GRVL	Ioned In	기
	- 44,5	- # 3	39-44	44,5	0		t orange - bron 1 SOFT & MO		- - ·	
50			 Бад 5-59	Сьу		· · · · · · · ·	O.K. NOT TO	·	• ••	
60	- ⁻ -	-		59 - Clayey	01.0	cse, ci	bled gravels obbles, Har oks Cleaner,	el driv	ing t/ w	
70	68' 1- H20	-	59-69	cse Agg	0.0	Clay, b 1" size	55% GVL.	MUCH T	20uncled	
	73'	#7	549 13-84	73' -			ellow Hzo & ally wet, dr		ione H	
80.	·		'	- 84 -		Flowing V	vater & Rock	Mu		
90-		# 8	84-89		• •	Fines w	1254 OUT lear	ing C	lean Ago)
-	****	 7 2				OLE #:	·		\$2	r
				•						

OWNER:

LOCATION:

DRILLING CO.:

HOLE #: 18 SHEET 2 OF Z

DATE STARTED:

EL. TOP OF HOLE:

REMARKS: INSPECTOR: MATERIAL: DEPTH: SAMPLE **#**: REMARKS: 90 ---92 gray, Hiplasticity, cores as large cylinders. ≯inj. Hzo CLAY 100 9:35am 0:00-10:30 backfilling 1 batch 4 bags 1/2 gel Grout

HOLE #:

18

SHEET Z OF Z

OWNER: SHIFLER HOLE # SHFOSDH-19 SHEET) OF / LOCATION: FAR. SE Corner, Toe of DATE STARTED: 11/3/05 DRILLING CO.: LAyne Christensen EL. TOP OF HOLE: INSPECTOR: ZAFFRAN REMARKS: P. Cloury, beautiful breezy DEPTH: SAMPLE #: MATERIAL; REMARKS: 11:50 am 0 SOFT, DIPT, FEW CLAY Soil NS PIECES Little - NO RETURN + CUT WHEAT) 10 - 15' 15 bag Silty SAND, FINE #50-dark brown - Golden #1 15-19 SILTY 20. SAND VGrades into Sand WF. Graver - 24' 24' 7-215% F. Kounded grave #2 24-29 SAND dance brown 30. #329-36 CSENS TO 36' 000 36' CLAY STICKY & MOIST HOLOS AGG TOGETHEN MOIST #4 36-38 38 40 STALTS STICKY, MOIST, gets dry CLAY > Inj. H20 hard quickly - pale vorange color #5bag bURNE 38.49 hi plasticity, Tough, Tr. organies 50-AS ABOVE, CUTS Easily when Inj · Azo. CLAY NS Yellow color 60. AS ABOVE NS TD Wipour, badgfiling @ 2:30 Grout @ 2:50 90 19 SHEET HOLE #: I OF

.....

9 Total Buckets	• •		14'OB.
SPT = 0	TEST HO	JLE	75' Sta 9'CLAY Layer ELOG
OWNER: Shifler LOCATION: Woodland			SHFOG-DHZO HOLE #: SHEET 1 OF 2 DATE STARTED: 10/23/06
DRILLING CO.: Ere	tWest	· ·	EL. TOP OF HOLE:
REMARKS: 10am Start	15mg i-1-APM	• •	INSPECTOR: BLITR
DEPTH: SAM 0 -			REMARKS: D-14 SOLT DAY SILT (OB) Brown · Topson
10 =			Sitty SAUD alsome grave), brown, dry. 25% grave)
20 =	- DH20	SM GM HH	Sold sand, 15% silt, grivels up to 2,5" dia / subsounded sand free to med graphed. Silly GRAVEL "toone send, brown, dry, 40% gravel, 25%, send, 4015% silt, gravels well graded 1/4" to 2.5" Sund fine to coarse gradned. Chay. layer at
$30 = Bi^{\dagger} Charge su f' = 29$ = Dinp = 33	0 29 to 33 0 0 0	6 74	25 bet 2-3" thick very seft, Low plasticity. sondy GRAVEL : How silt, 40% savel, 40% sand, 10% silt, 80% Clay_ howm, damp @ 31 bet,
	- e 1146 - e	4	ELATE 41', light brown, damp, med plasticity, so ft
			Increasing soft content @ 48', loses plasticity. 49'ent clay
50 - I WAITRESI - (D 49 10 59'	sc.	gravely, SAND, brown, damp, "Anare clay clumps. gravels up to 2" diameter rounded.
	59 10 69' D- Q C. 1220 C. 1 C. 1220 C. S.	SW	gravely SAND, bown, wet w/ trace fines but most have been washed away. well graded sand, gravels up to 1.5 " Saturated, in we to table.
	D. C 1240 0.00 0	SW	Sand time to coarse graineds fine to roarse are sub roundal What up to . 3" diameter. Wet, Gray
80 - - - 89 - ()	79 to 89 D. C 1255	5~	gravely SAND in/Trace cobbles 70% and, 25% gravel, 5% addle and med. to coase, fines wanted away. cobbles up to 3.5" gravel manly coase, wet Gray a CLAT at very bollow de Runo 89"
90 <u></u>			HOLE #: 20 SHEET OF Z

SHF06 DH-20 HOLE #: 20 SHEET Z OF Z OWNER: SHITCLER DATE STARTED: 10/23/06 LOCATION: WOODIND. Completed : same day EL. TOP OF HOLE: DRILLING CO .: GREAT WEST ! INSPECTOR: BL/IR **REMARKS:** REMARKS: gravely, CLAY w/ traice sand + trace sitt, brown, wet SAMPLE #: DEPTH: ERIAL 90 . ĊĹ sub rounded gravels, sund well graded. les % lay 30% gravel, 5% sond + silt. Mole: fores may be) 89% 979 q C 1315 Bit cloged @97; even after addition of twater, CL 100 -TD97 Buckfilled W/ withings then plugged with neat rement grout top 20 let, as directed by tolo county. SHEET 2 OF Z HOLE #: 20

4

OWNER: SHIFLE	-R-	HOLE #: SHF050H,2 SHEET / OF 2	
LOCATION: FA	r.E. Side at	WINKENHOFEr	
DRILLING CO.	:Layne	Ŧ	EL. TOP OF HOLE: 7/102
	CUST, STrony	SQUST	INSPECTOR: ZAFFRAN
DEPTH:	SAMPLE #:	MATERIAL;	REMARKS: Resume Mon. at 9:55 an
0 - -	Ns	OUB	edge of pows preped for
-			Planking Not allowed on Field
10			DRY CLAY LITTLE RETURN CLAY CLOTS
-	#1 14-19	13'	The Moist CLAY Layer I'M Gravel, Followed by
20		SANDY	5% CLAY
30	# 2 19-29	GRAVEL 00 7-5%	AS Above - MOIST GRAY color MUCH 3/4-1"SIZZ, MAX2"
- 331	·	33'	
- 36'	^{± 3} 33.36	SAND 36	Clean Sand, brown color Mostly # 50 Size W 10% GRAVEL
40	# <u>4</u> 36 <u>-</u> 39		SILT, SOFT, DRY, Orange- brown color
	#5 bag	SILT MF. SAND	golden brown color & Moisture
50	39-49		WV. Fine SAND F# 50
	# 6 bag 49-59	56' -	- SLIGHT Inc. in plasticity
60	# 759-66	CLAY	Grades TO clay of SAND_
- 66'		66	Inc. MOISTURE
H20 70	# 866-69	0	M 5-10% CLAY - MUCH 2"
- FLowing	# 969.79	WET 06 Agg	SIZE ROUNDED WET FLOWING Gravels - Fines
80	©		2 Silts WASH OUT leaving clean agg MAX 411
-	#10 79-89	0	CONTINUES
		0	
			HOLE #: SHEET OF Z
	1	•	

:

.

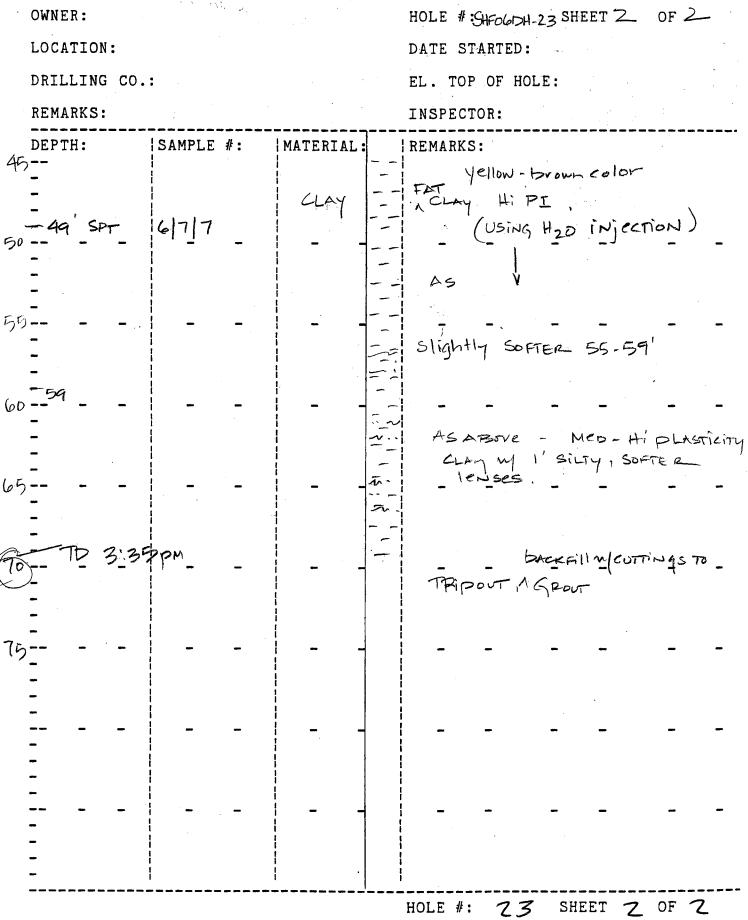
OWNER: HOLE #: 21 SHEET Z OF Z LOCATION: DATE STARTED: DRILLÍNG CO.: EL. TOP OF HOLE: **REMARKS:** INSPECTOR: DEPTH: SAMPLE #: MATERIAL: **REMARKS:** 90 --6. WASHED CLEAN GRAVEL & CSE FLOWING #11 `c 6 SAND WET 1' CLAY 89-99 LITE BrOWN - YEllow Agg. D , 6 D. D MAY FLOWING MUDDy_ 3" 00 100 H20 ø loosing #12 SANDY Surges, Strong FLOW Fines 712 in water Ò 6 YELLOW SAND - DISTINCT COLONS 0 99-109 0 UNCH 2 Ď IN OTHERWISE GRAY COLOR ROUNI 10 **BRK** Poele - CHERT, D 11:45 0 13 # 12:20 O 0 109-119 D (\mathcal{D}) 118,5 118,5 120 CLAY Yellow-PUTTY Color, JAMS 123 DRY Morganics & Feor blue Clay レ TD _ 130 21 SHEET 2 OF Z HOLE #:

8 TOTAL BUCKETS		9-15'=OB w/ 59'=5+67 (25' layer Clay+s)+
I SPT		
owner: Shifle	er	SHFOG-DHZZ HOLE #: ZZ SHEET) OF Z
LOCATION: Wa	bodhind .	DATE STARTED: 10/23/06 Monday FINISHED: 10/23/06 Monday EL. TOP OF HOLE:
DRILLING CO.:	Crieat West / Jim	EL. TOP OF HOLE:
REMARKS: Sfort	#22@ 4:25PM Monday	INSPECTOR: BL
DEPTH: /RUN	I STATES AS	REMARKS: STLT W/some sand. Brown, Dry sand is very fine smined, 0-9'1
- - 0-9'	<u>NS</u>	sand is very fine grained, 0-9'1
10 1		
- 9-19	NS	AND, brown, dry thine grained, well sorted loorly graded, almost silt size.
- 15	SHF06-DHZZ 00005	1 bravely SAND brown dy, fine to coase sond, gravels
20 11	SHEOB - DHZZ	
- 19-29'		Sandy GRAVEL, bown, dry, fine because sund, gravels p 1 to 2.5" diameter, subrounded graveds.
30 - 1 - 21	SHF06 DH-22	Sandy LARAVER, brown, dry, Fire to course sand, gravels up
- 29-39 ¹		to 2.0" demote and rounded to subrounded.
40 = 39		SAND, boun, dry fine grained 36'- 39', Poorly graded
39'-49'	<u>ND</u>	SFLT brown, damp, non cohosive, loose.
	SPT Blowson (T) CL	ICLAY W/some silt, very slight plasher by brown, daup - SPT Collected Tolk day 30% solt.
5 ()		BEAN STLT, bown, daugo non plastic, 49-59' Soft
-	15 [1] [1] [1]	
40		- SILT, Lrown, dump non plushic 59-64
- 59-69'	SHF06 DH 22 D C 1810 CD C 1810	Sand, GRAVEC w/trace sitt. Sand well suched fine browne gravels up to 2" diameter sub rounded, brown twet
* 70	SHIFOL DHZZ GG 77' , O. SW	1 SAND "Some gravel and have sitt. gray wet sund well graved fine to case. gravels up to 2" claumb
- 69'-79'	5 V, V, V,	sund rell granted time to case gravels up to 2 camp gave sub rounded. Bell sand, 15% gravel, 5% sitt
80	SITFOLDHZZ Som D. G. O. SW	gravely SAND Whome sitt gray wet, 10% SAND, 30% gravel
- 75'-89'	Q 79-89' 0 0 8'	198% sitt. Sand fire to coarse, gravels subnunded p 10 2" diameter.
$\frac{90}{1025}$ HOLE #: ZZ SHEET (OF Z		
* end day 10/23/06/09'		
1 CHU DUY COL		

TEST HOLE LOG

æ

		TE	ст но)L_1	E LOG	
	OWNER: Shifler				SHF06 DHZZ HOLE #: ZZ SHEET Z	of Z
	LOCATION: Woo	dead			DATE STARTED: 10/23/06	
	DRILLING CO.				EL. TOP OF HOLE:	
	REMARKS : Kolo Co.	Contacted for grant insp	C 0900, Directe	d to	PINSPECTOR: BL	· · · ·
		SAMPLE #:	MATERTAL		REMARKS:	
90	1	SHEOL DHZZ ,			gravely SAND "lame Silt 50% sand 40%	smand, 10% sitt
•	- - 89-77'	Wown 39-79	0 6 3		Send is five to coase gravels subround a	10 to 1.5" diamet
	-	Ø Y	1: 1 4 0.		Some clay buts in recovery pite indicate . Chy in formation. water very dirty.	thm layers of
150		SHEDG DHZZ FROMA	740 0 0 0	6.1		
	- 99-109' 104	Benow Y, 10	4. 0		SAA, increasing clay content 50% sond: (Clayballs in prover,) 10% cky
				<u>C</u> L	CLAY, brown, damp. Lost recovery, clay	plussed bit
(10					End boring @ 109 feet	
	-	1 1 1				
	-				backfulled W/cuttings to 20' BL7 plugged W/nest cement growte	s then
	-					
	-					
	-					
	-					
	-					
	· _ ·					
	-					•
	- * -					
	-					•
						si s
	-					
,	-					
				ĺ		
	-					
	-					
		•				
					HOLE #: 27 SHEET Z	UF Z


4 IVIAL MAIS

1

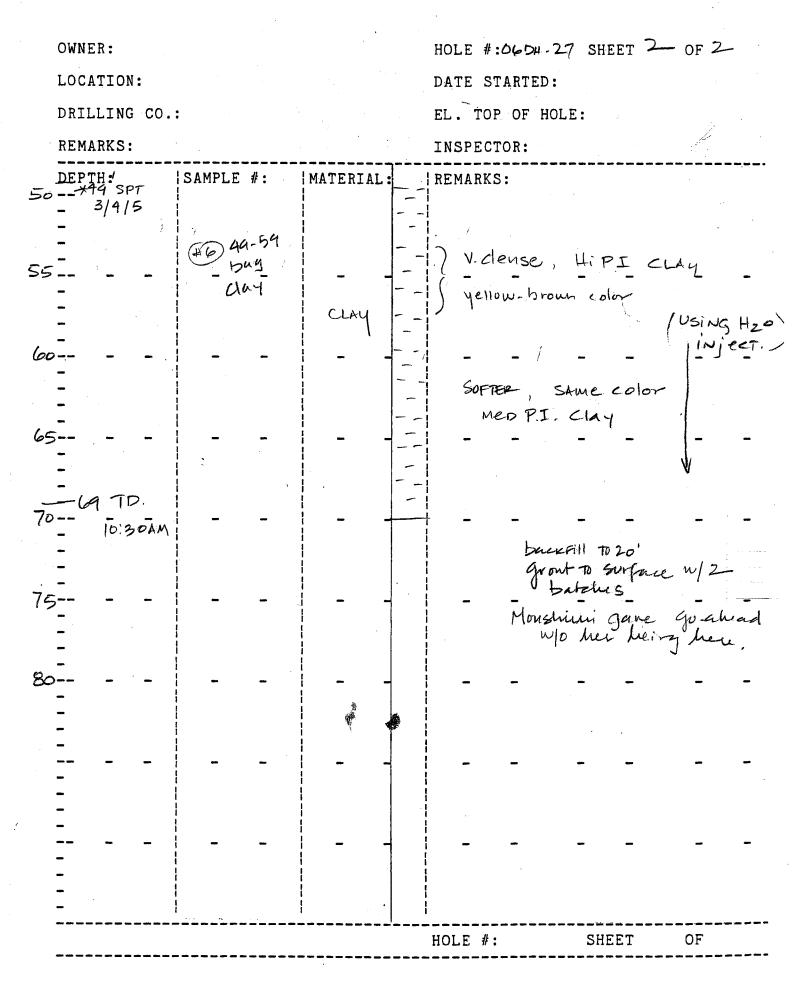
25' GRVLW S'CL

TEST HOLE LOG

OWNER: SHin LOCATION:			HOLE # SHFOLDH - SHEET OF 2 23 DATE STARTED: 10.25.06
DRILLING CO.	: GIVEAT WEST	٢	EL. TOP OF HOLE:
	11 V. WINDY		INSPECTOR: L. ZAFFRAN
DEPTH:	SAMPLE #:	MATERIAL	REMARKS:
0 - - -	NS	2 · · · · · · · · · · · · · · · · · · ·	TOPSOIL - TOMATOES - POOTS SILT Grades QUICKLYTO CLAY
5		OVB	
	060H-23 11-19	LI OC CSE GRVL NO	SAND
- - - -	- 2/2	SANDY 0	Well graded, rounded F. GRAVELS
- 20 - -	@ 19-24 11	GRAVEL .	in Med- CSE SAND
25	3, 24-27	- 24 00 - 24 00 - 27 00	MOIST BAND, PEBBIES W/CLAY
36 -	(4) 27-36 21-	SANDY O	Im - CONTING GIZAVEL
35		36	1 5-10/0 CLAY
- 39' SPT 40	5/7/10	CLAY MSAND	Lay of F. SAND & Grades & SAND HARD, DENSE Hiplasticity
- - 45	BAG SAMPLE B39-49	CLAY -	- CLAY - (USING HZO INJ)
			HOLE #: 23 SHEET OF 2

71 = 08 3 BUCKETS TOTAL 27' SfG TEST HOLE LOG 2 SPT Jamples SHFOG DHZ4 HOLE #: OWNER: Shifter / OF 🗲 SHEET DATE STARTED: 10/24/06 LOCATION: Woodland, East Side Completed : same day DRILLING CO .: Great West Drilling / Jim Benson EL. TOP OF HOLE: INSPECTOR: BL **REMARKS:** DEPTH:/RUN SAMPLE #: MATERIAL REMARKS: SILT Brown, Dry 0-7 FBH, Top Soil overburden NS ML 0-9 Hyrae gravel SP SAND, Bown Dry 7-9 FB15 sand is V. Ane grained. gravel 2" diamatric R. _99% sund 1% gravel NS 1D -=9 SHF06 DH-24 from , A 4 to 19' SAND W/ Trace gravel, brownish gray, dry. Sand is fine to med graved gravels are up to 344" diameter und rounded. (II) SW 9-19 Y, 2D SW | 544 500 Sandy GRAVEL, brownish gray, dry, Sand 35%. Gravel 65% O SHFOLD DHZY GW 19-29 @ 1220 Sand Due to coase grain, gravel up to 2"diameter SubAngular, Υ, Good Sandy GRAVEL altrace sitt tolay , brown, damp, Sand 40% 30 SHEDG DH24 from 29-36 gravel 58%, sittlelay 2%. sand the to coase, gravels up GMI 29-39 4 to2" diameter, fines rause material to clump typefter تك slightly when squeezed. CLAPMENED 36 to 39' - 8/4/7/ 2011+2000 = SNT + 450000 clay. CLAY, light brown, low plashirty, damp, clogging bit badly, poor 40 CL recovery. trace sitt, grittyness on teeth. Large chumps 46 5/8/13 # SATZ 47,5 SPT2 SPTZ from 46 to 47.5 CL CLAY W/some sitt. light brown, damp, slightly plastic. NS water introduced to facilitate recovery, large 49-59 soft ball size frogment continue to plug discharge hose 60 SAA ĊL NS 59-69 70 End boring TD 69 Feet backfilled to 20FBG with outlings, next Rement good placed from 20 - OFBb. 8D 9D SHEET -OF HOLE #: 24

8' OB 46' Sand + Gravel W/26' SILT Layer


HOLE LOG SPT= O FST SHFOGDH-25 SHEET OF OWNER: Shiples HOLE #: 25 DATE STARTED: 10/26/06 @ 1200 LOCATION: Est side EL. TOP OF HOLE: DRILLING CO .: Great West INSPECTOR: BL REMARKS: Sunny/warm 280°F (Afternoon) SAMPLE #: MATERIAL: REMARKS: DEPTH: SELT, brun, dy, overburden topsoil. MLI NS 0-9' 8' gravely SAND, send is fine to pagerse, gamels pto 1/2". 10 -goverly, SAND, Gry, dry send well gaded, gavels of to SHF062H-25 9-16 SW 9-19 2.5" diameter are sub rounded. there sill. \mathcal{O} SAND w/tace gavels, send is time grained gavels up to 16 SHFOG DH-25 SP 1' Jamek- Clean. 20 = NS 19'-29' Sandy GRAVEL, W/Some sitt. 50% grave), 40% sand, 10% sitt. send well SHFOG DH-25 Igrander, gravels up to 3" some are answer and may have been robbles broken during drilling. 30 SHFOBDH-25 29-33 Ð Ω, 0 33 SILT, light brown, damp, loose; so ft. chose not to drive 29-39' ML NS SPT because of lock of clay content, no placticily, ųΟ 39-49' NS Thin Layers of clay showing op as small golfball stee 4 65 ML NS chunck while drilling 56 to 55 High silt content (non plastic. ML 60 SHFOB DH-25 59-63 6M Sundy LIRAVEZ " tare Silt. Sologand, 45% sud, 5% sult. bown, damp. send well graded, gravels up to 2.5" diameter. 63 - 79 59'-69' SHFOG DH-25 GW GRAVEL "some send, brain, wet, gravels up to 3" diameter. and trace robbles. grave GO% send 30%, cobbles 10%. Clean! SAA, less clean, take fines. WET. GW SHFOB DH-25 From 69-79 19-79 CL CLAY sown Vishert pluged bit during dulling, have to 79'-89' *> N S introduce water to contrace. 1 TDB9' Backinked To Hings to 20 Bh S then Nent Comment to TGO. 90 OF 75 SHEET HOLE #:

• •			•	25' OB
2 BUCKETS TOTAL 2 SPT Samples	TE	ST HOL	E LOG	9' gravel/sand
owner: Shift	er		SHF06 DH-26 HOLE #: 26 S	HEET OF
LOCATION: E.	side		DATE STARTED: 10/20	olob e osco
DRILLING CO.:	Gratwest	· ·	EL. TOP OF HOLE:	
REMARKS: Clear/C		NING	INSPECTOR: BL	
$ \frac{\text{DEPTH: } / R \cup N}{-1} $	SAMPLE #:		REMARKS: SELT, brown, dry. Ov very soft. 0-16'	EKBURDEN /TOPSOSL
			54A	
20 H - 29 - A-29			primed, they eases man brown, damp.	haceday. sund is very line levicl to clump slightly.
- 1 - 12 30 4 - 12 - 29-39' 34	ЯКОБЪН-26 D V, SHF06 DH-26 Q V,	0 ° 0 7 0 ° 0 SW	sitt. Send is fine to course	wh, damp, 60% sand, 30% gravel, 10% , gravels up to 2" diameter, Clayballs appear for layers
40	10/8/8 577.1 -		CLAY brown, damp; Stiff, S was recovered in SPT, gr	SPT collected, only 6 of 18" avel blacked of F_sander.
= 37'-49' = 49 50 - 49' 50.5 (PTZ) - 49-59'	4/4/6 SPTZ		CLAY, W/Some sitt. El. de, 202 med placticity.	(sith Bran, daugo, stiff,
60 <u></u> 			SAA, end boring at 69	B65
76	- -	TD 65'	Hole back Filled W/cuttin with neat cement group Castached bb Ba bains	55 to 20 FB4 then topped it. peckion @ 1030 and article 1100
			LONIACEC 1000 LD, For Ing	
			HOLE #: ^{SHEDDDH-ZB}	SHEET / OF /
a a series and a series and a series and a series of the				

• •

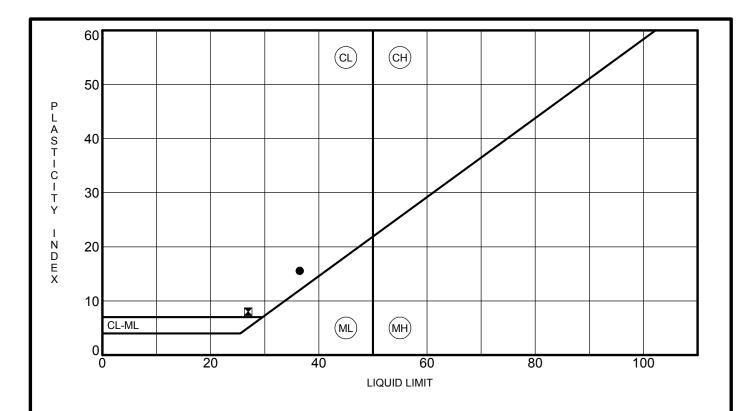
	· ·	HOLE #: SHFOGDH-27SHEET / OF 2 ION: FAR SECORNER DATE STARTED: 10.25.06 ING CO.: GREAT WEST EL. TOP OF HOLE: KS: STRONG N. WINDS - CAN DEARLY INSPECTOR: L. ZAFFRAN SAMPLE #: MATERIAL: REMARKS: SAMPLE #: MATERIAL: REMARKS: NS CLAY - TOP PIPE THYL CLAY OVB.				
				p		
	(STOTAL BILTS) I ==	TEST HOLE LOG 27'GRUL HOLE # SHFOGDH-27SHEET / OF 2 DATE STARTED: /0.25.06 WEST EL. TOP OF HOLE: WDSS- CAN DEMELY INSPECTOR: L. ZAFFRAN #: MATERIAL: REMARKS: USING LITTLE H2D TO PUSH CLANY			
O,	SHIF	a — 🙃 _	• •		HOLE # SHEDG DH-27SHEET OF	
	1		• +	· · · ·		
		•				
				· ·		•
RJ	EMARKS: STrons	9 N. WINDS-	CAN DEAR HOLD MY	el-j Gr	INSPECTOR: L.ZAFFRAN	
		SAMPLE #:	MATERIAL:			
D	-			[]		
-		NG	CLAY			
-		l I			OVB,	
:5-'			i _ J			
· _			1 · · · · · · · · · · · · · · · · · · ·	F!		
	- 8'	نـــــــــــــــــــــــــــــــــــــ	⊢8''			
	_	i sta <u>n</u> station in the state	SM .		SILTY SAND SOFT , SELY	η.
- 0/		SHF0604-27	1 7	1 1		
-			13'			A 4
-		10-20'		4+ °4	5% PEODLES IN SILLY, 24	をう
75		;			CCOV NOW	
· _		i i		0	SANDY Gravel, Pock	то 2 "
-	•	;	· · ·	0		
- v -		· /	GW	0.1		
- 14		2/2		2 .	Well Draded SANDY Gra	
* -		(#2)		6		
· -		20-30		° ;	subround - wellround	21202
25-		· - · - ·		- !		
-		1	l l		DAMP, GrAy Color	
					MAY 3" SIZC, SOFT	- easy
- 30-		1		0	ADVANCING _	
	j	1/1		0.		
-		30-35		.0		
	, 1	30			1	
35'-	1		35	- 0	Inc Moisture (GM) - Yel	Iow-Orn
-	, I	(40 /1	GC	0.0.	Inc MOISTURE (GM) - Yel Gravel of Clay 5-10% Clay & Moisture TO Club Together Slightly	, enough
-	ţ	(1) 35, - 40 1/			CLAY & Moisture TO CLUA	чP
- 40 -			to ;	• • •	l'ingether slightly	
	-41 SPT	2/3/7			Moist - Split spool SAN CLAY Yellow bry color,	nples
	ADVANLING W	i water	CLAY		Veny yellow bri color,	ITAN
-	· · · .	ybay sample		-	orange- brw Mottled ClA	Ч.
45-		(#5)			HOLE #: 27 SHEET / 0	
-						

TEST HOLE LOG

APPENDIX B

LABORATORY TESTING PROGRAM

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected soil samples were tested for their grain size distribution, plasticity characteristics, maximum dry density/optimum moisture content, and shear strength parameters. Laboratory test results are presented on the following pages.

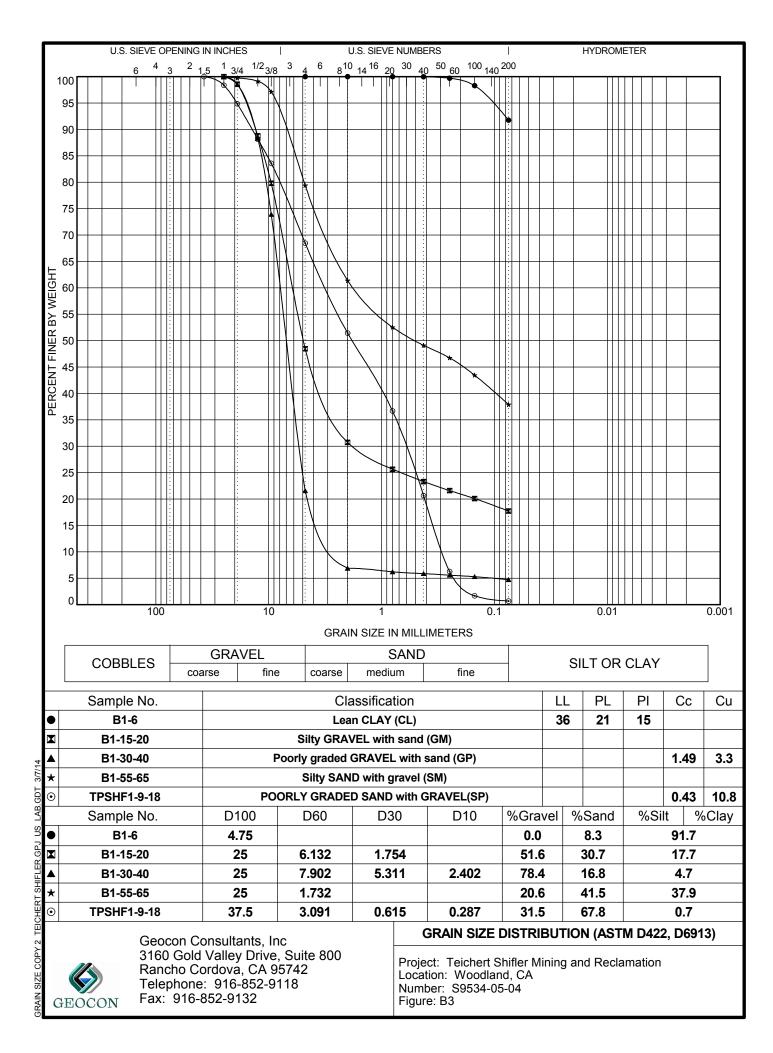

								Sheet 1 of 1
Sample ID	Depth (feet)	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Water Content (%)	Dry Density (pcf)
B1-6	6	36	21	15		91.7		
B1-15-20	15					17.7		
B1-30-40	30					4.7		
B1-55-65	55					37.9		
TPSHF1-9-18	0					0.7		
TPSHF-3&4	0	27	19	8		61.6		

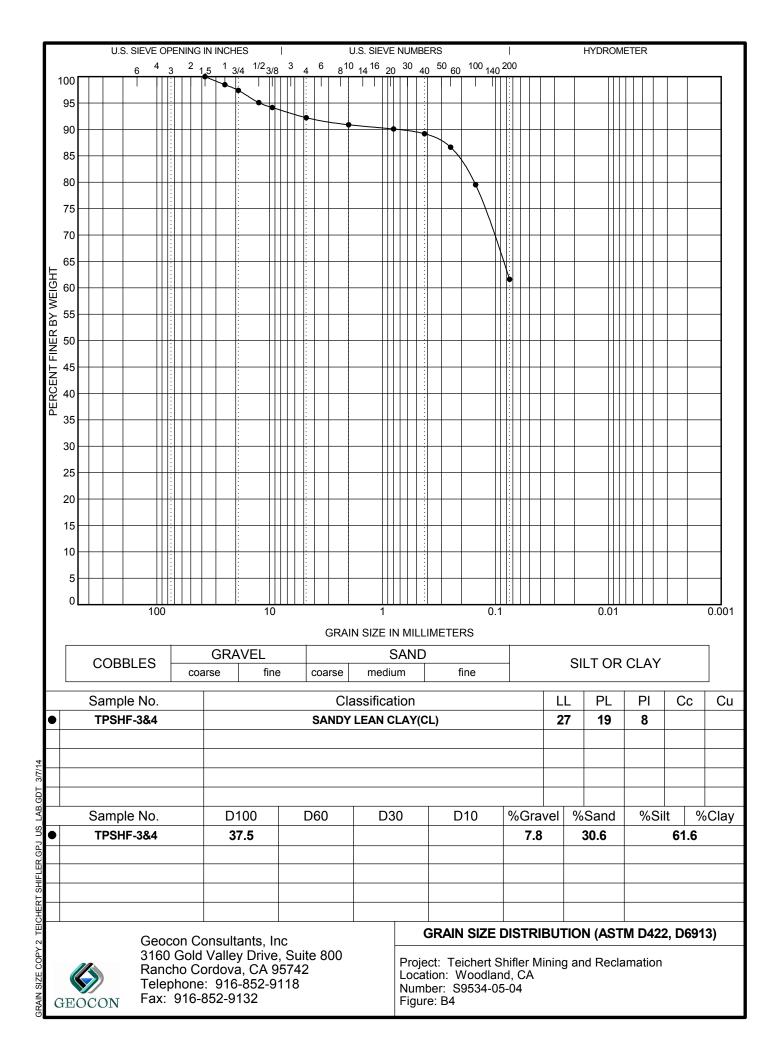
GEOCON

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 Telephone: 916-852-9118 Fax: 916-852-9132

Summary of Laboratory Results Project: Teichert Shifler Mining and Reclamation

Project: Teichert Shifler Mining and Reclamation Location: Woodland, CA Number: S9534-05-04 Figure: B1

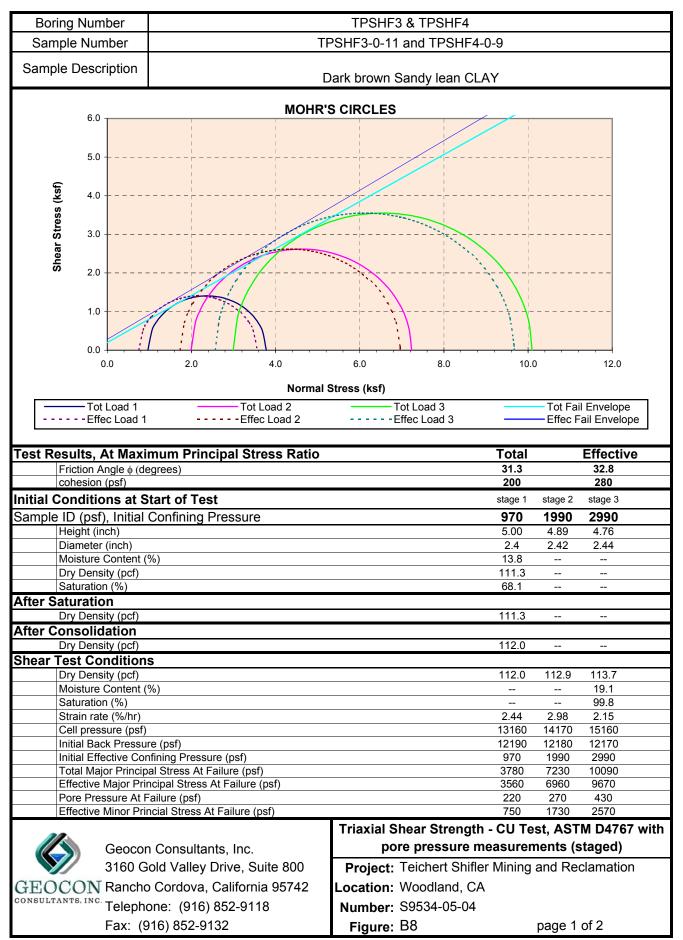

	Sample No.	Liquid Limit	Plastic Limit	Plasticity Index	% Pass #200 Sieve	Unified Soil Classification Description	Preparation Method
•	B1-6	36	21	15	91.7	Lean CLAY (CL)	
	TPSHF-3&4	27	19	8	61.6	SANDY LEAN CLAY(CL)	

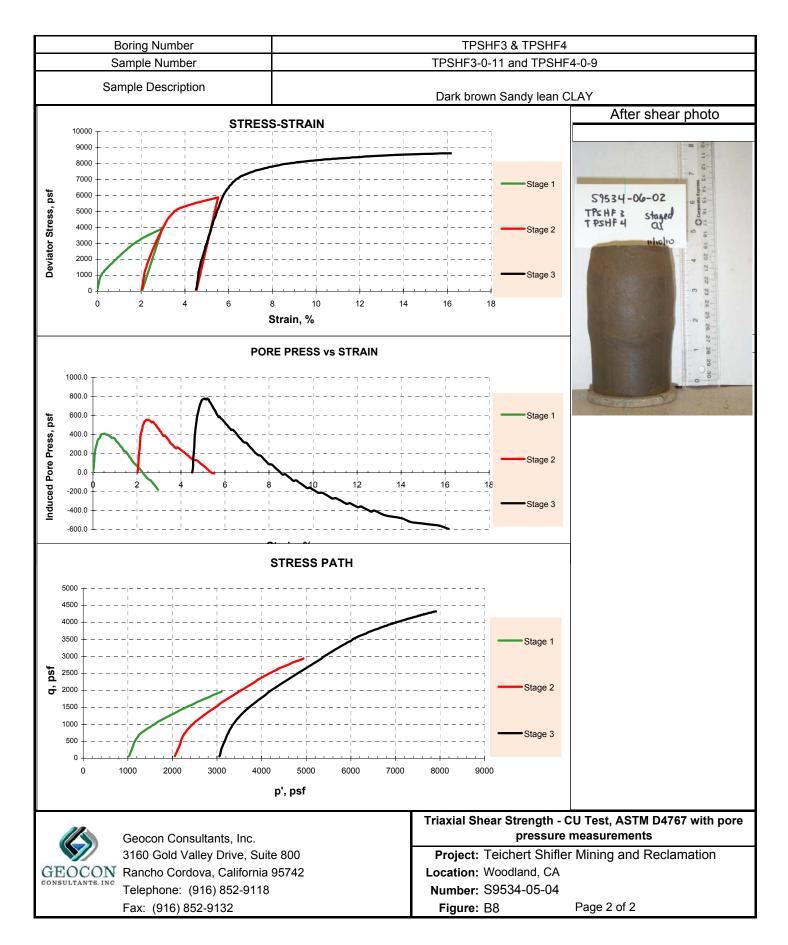

GEOCON

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 Telephone: 916-852-9118 Fax: 916-852-9132

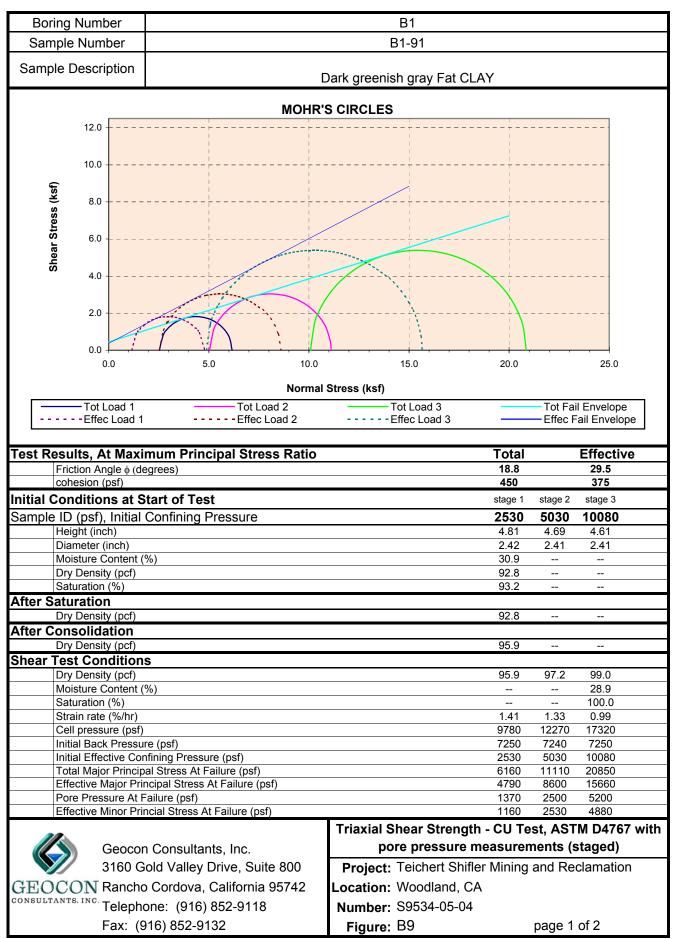
ATTERBERG LIMITS (ASTM D4318)

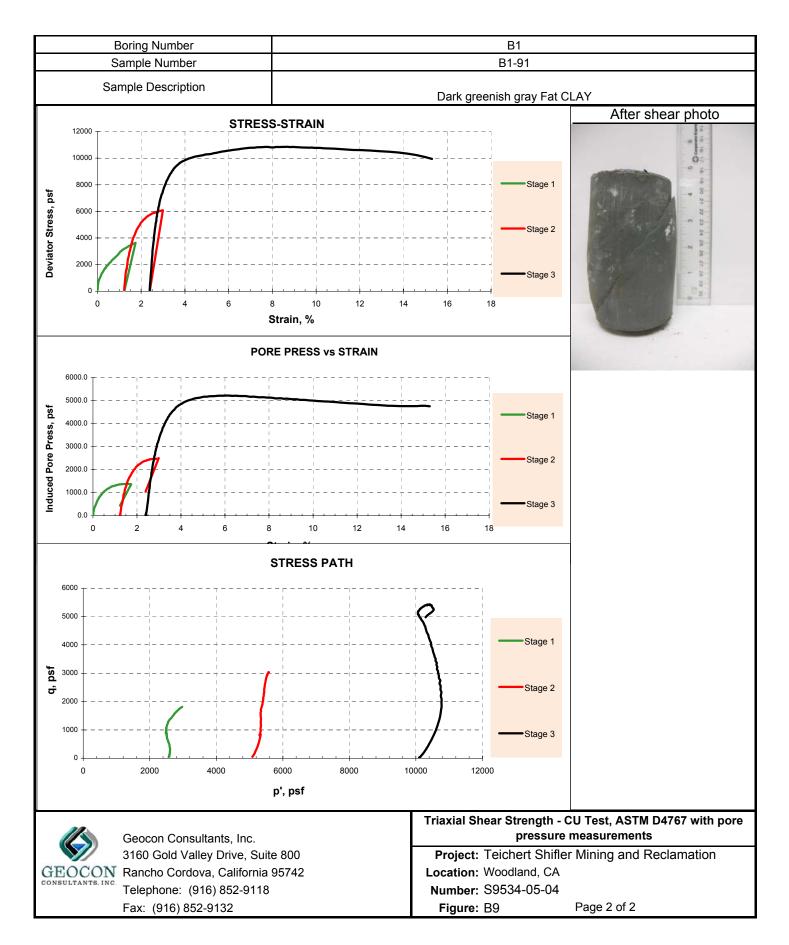
Project: Teichert Shifler Mining and Reclamation Location: Woodland, CA Number: S9534-05-04 Figure: B2





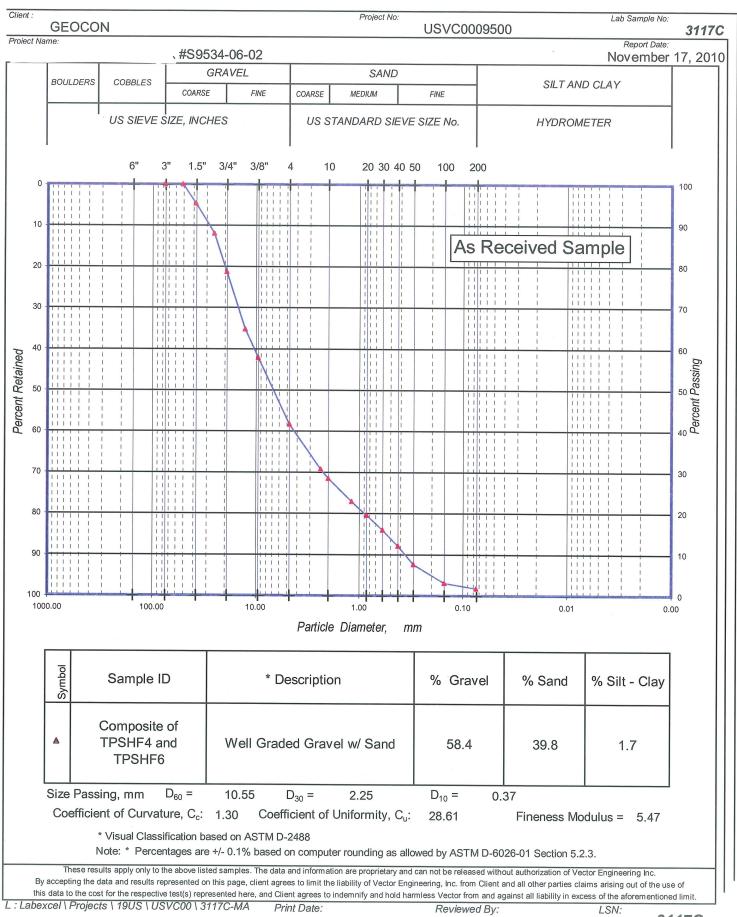
	SHEAR STRENGTH		0500	S	TRESS-STRAIN	
3.5 3.0 2.5 2.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5	O Shear Stress, psf	2500 2000 1500 1000 500 0 0		+ + + 10 15 20 Shear Strain, %	 25 30
Samp	le Description					
	Boring Number		TPS	HF1		
	Sample Depth (feet)		9-18	1		
	Material Description		Dark	brown	Silty SAND	
Initial	Conditions at Start of Test					
Samp	le ID (psf)			1000	2000	3000
	Height (inch)			1.00	1.00	1.00
	Diameter (inch)		2	2.375	2.375	2.375
	Moisture Content (%)			4.8	4.3	4.4
	Dry Density (pcf)		1	06.4	106.9	106.6
	Estimated Specific Gravity			2.60	2.60	2.60
	Saturation (%)			23.6	21.4	22.1
Shear	· Test Conditions					
	Strain Rate (%/min)		C).752	0.694	0.638
	Major Principle Stress at Failure (psf)			700	1344	2010
	Strain at Failure (%)			7.60	10.53	8.00
Test I	Results					
	φ, degrees 33.1					
	c, psf 50			4 01		1
GEO	Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742 CON Telephone: (916) 852-9118	Loca		ert Schif dland,		
CONSULT	ANTS. INC. Fax: (916) 852-9132		gure: B6		-	


		Failure Photo
7. 5. 5.	.0	S9534-06-02 TPSHF-3,0-0 TPSHF-3,0-0 TPSHF-3,0-0 Staged UU ululo
3. 2. 1.		
	STRESS-STRAIN	
	14000	
ž	10000	
ess, ps	8000	
Deviator Stress, psf	6000 4000	
Devia	2000	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 14 16
Taat		
rest	Results ∣	30.2
	¢, degrees c, psf	
Sam	ble Description	1020
<u>'</u>	Sample Number	TPSHF3 and 4
	Sample Depth (feet)	0-11
	Material Description	Brown Sandy lean CLA
	I Conditions at Start of Stage	
Samp	ble ID (psf), minor principal stress	1000 2000 2990
	Height (inch)	5.00 4.90 4.67
	Diameter (inch)	2.4 2.43 2.46
	Moisture Content (%)	<u> </u>
	Dry Density (pcf) Saturation (%)	73.9 73.9 73.9
Shea	r Test Conditions	10.0 10.0 10.0
	Strain Rate (%/min)	0.9855 0.9734 0.9970
	Major Principle Stress at Failure (psf)	9340 12420 15410
	Strain at failure (%)	2.99 5.06 10.82
	Deviator Stress and Fail (psf)	8340 10420 12420
	Geocon Consultants, Inc.	Triaxial Shear Strength - UU Test (staged)
	3160 Gold Valley Drive, Suite 800	Project : Teichert Shifler Mining and Reclamation
OF	Rancho Cordova, California 95742	Location: Woodland, CA
	CON Telephone: (916) 852-9118 TANTS. INC. Fax: (916) 852-9132	Number: S9534-05-04 Figure: B7
	1 U.N. (010) 002-0102	


CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION - ICU TEST ASTM D4767

Consolidated Undrained Triaxial Compression - ICU Test ASTM D4767

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION - ICU TEST ASTM D4767

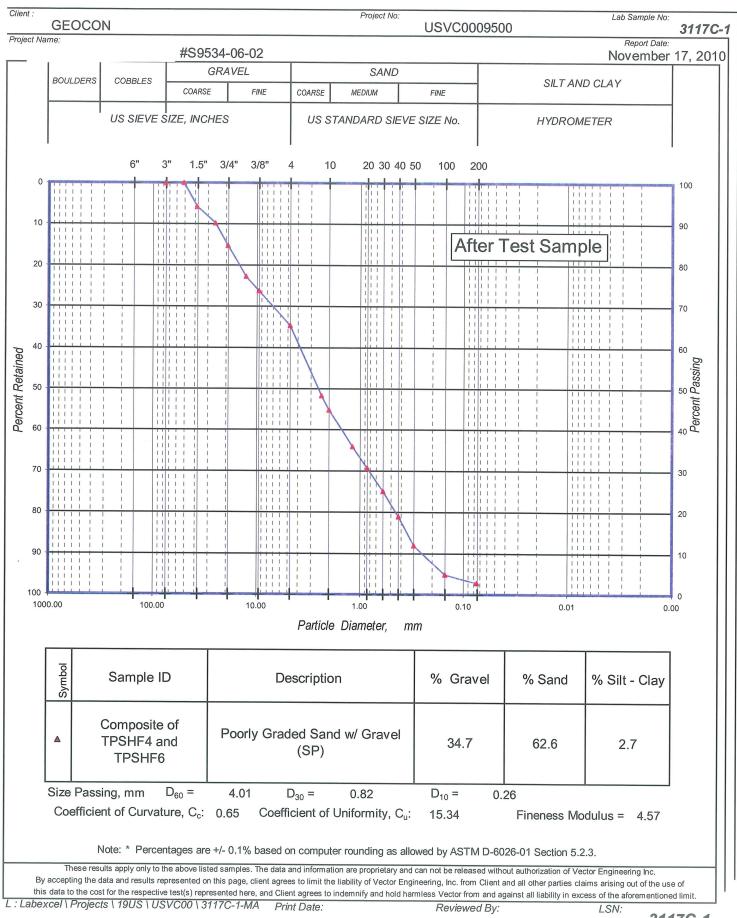


Ausenco Vector

PARTICLE SIZE ANALYSIS

Test Report

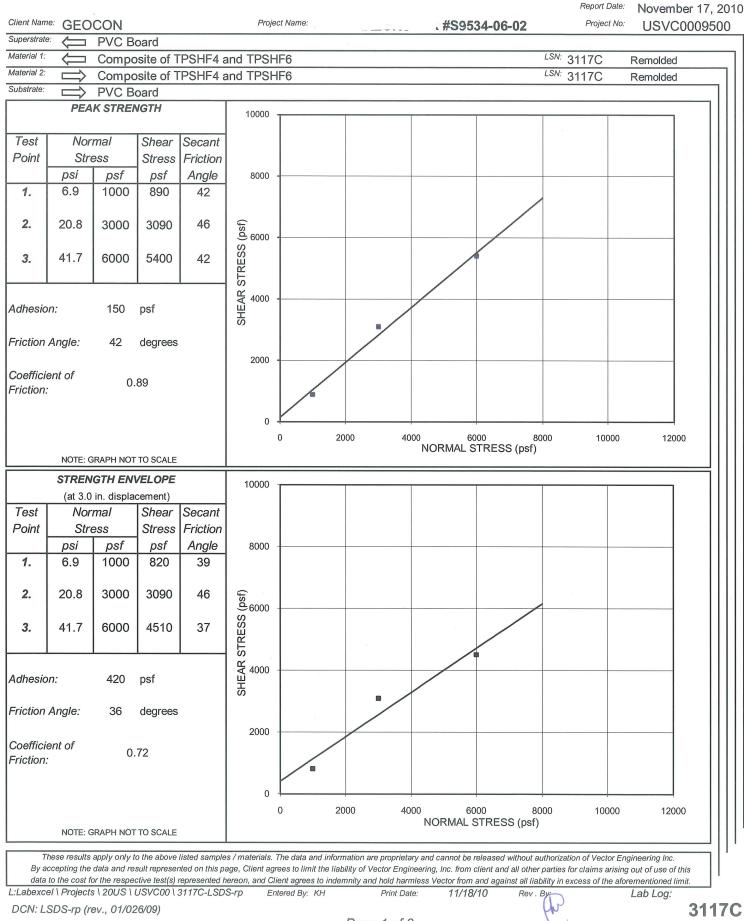
ASTM D-422


3117C

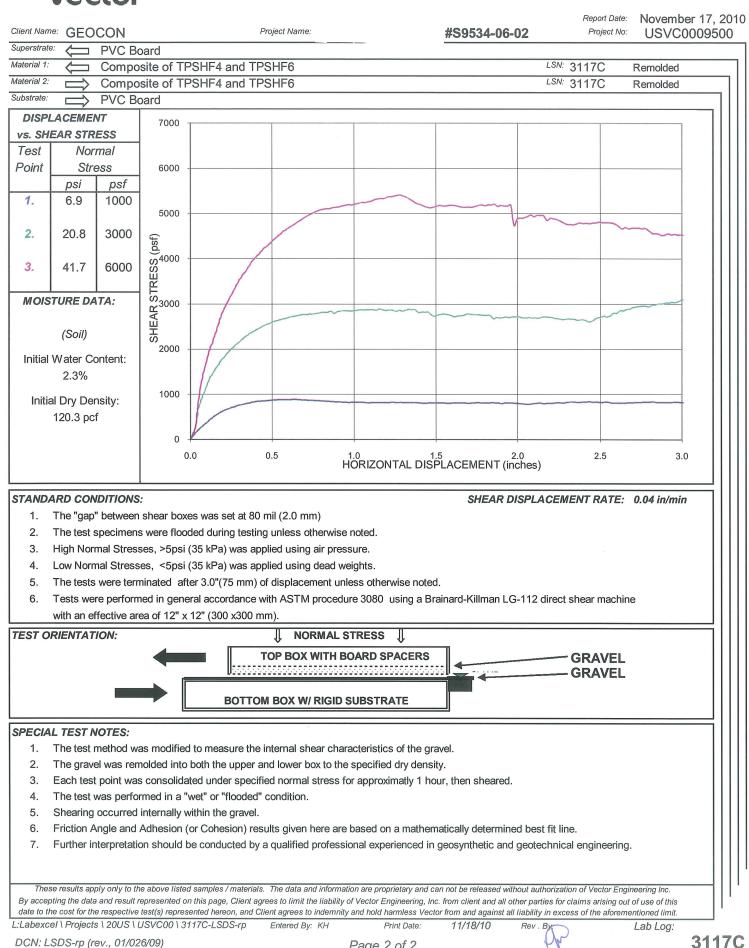
Ausenco Vector

PARTICLE SIZE ANALYSIS

Test Report


ASTM D-422

LARGE SCALE DIRECT SHEAR REPORT


Internal Shear

Ausenco **/ector**

LARGE SCALE DIRECT SHEAR REPORT

Internal Shear

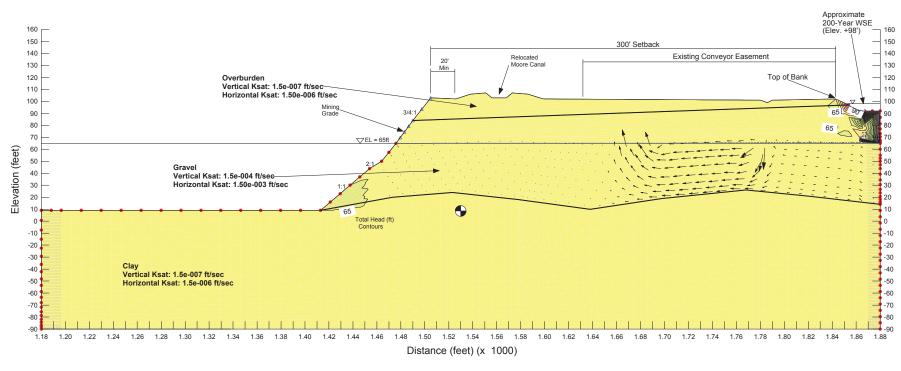
APPENDIX C

SLOPE STABILITY AND SEEPAGE ANALYSIS

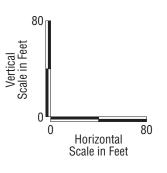
The computer programs SLOPE/W and SEEP/W Version 7 distributed by Geo-Slope International were utilized to perform slope stability and seepage analyses. SEEP/W is a finite element analysis software product for analyzing groundwater seepage and excess-pore pressure dissipation problems within porous materials such as soil and rock. SLOPE/W uses conventional slope stability equations and a two-dimensional limit-equilibrium method to calculate the factor of safety against failure. For our analysis, the Morgenstern-Price Method with a circular failure mechanism was used. The Morgenstern-Price Method satisfies both moment and force equilibrium.

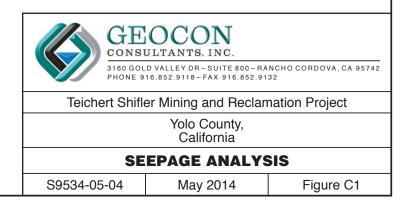
The computer program searches for the critical failure surface based on user-provided input parameters. For a circular failure search, a linear search of entry and exit locations is specified and the computer searches for the critical failure slip surface. Tabulated results of the factor of safety (FOS) against failure for each slope configuration under the conditions of analysis (e.g. high groundwater, low groundwater, static, seismic, surficial and global) are summarized in Table C1. Graphical representations of the seepage analyses, potential critical failure surfaces, and parameters used for each analysis are presented on Figures C1 through C18.

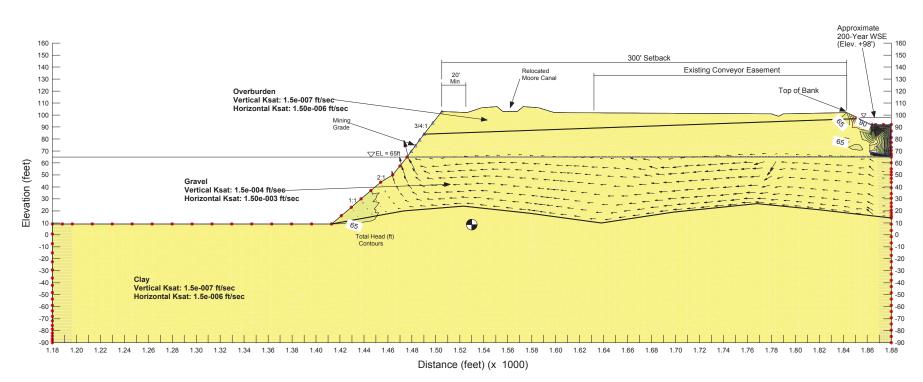
TEICHERT SHIFLER TABLE C1 - SLOPE STABILITY SUMMARY

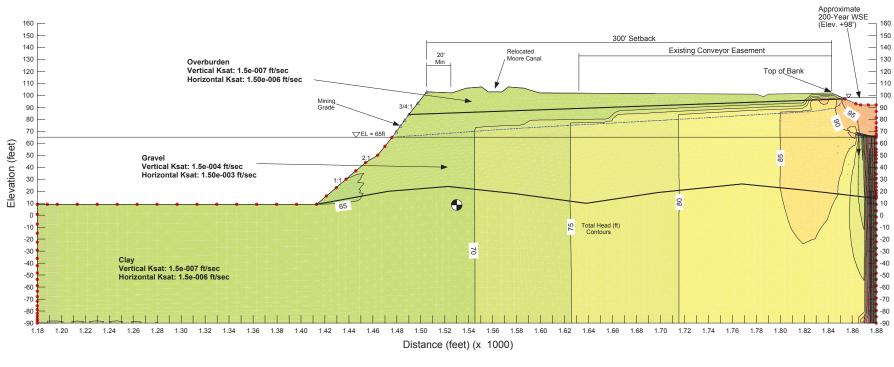

			[Safety - Static			afety - Seismic	
				Distance	From Top of Mi	ning Slope	Distance	From Top of Mi	ning Slope
Condition	Portion of Pit	Overall Height	Water Elevation	10	25	50	10	25	50
Mining	Northeast Slope	100	50	1.1	1.2	1.3	1.0	1.1	1.1
winning	(A-A')	100	65	1.1	1.1	1.2	1.0	1.0	1.0
Mining	West Slope (P. P')	65	50	1.2	1.3	1.7	1.0	1.1	1.1 1.1 1.0 1.0 1.3 1.4 1.3 1.3
Mining	West Slope (B-B')	65	65	1.1	1.2	1.6	1.0	1.0	
Mining	East Slaps (C. C')	40	50	1.2	1.6	2.1	1.1	1.3	1.4
Mining	65 1.2 1.6 2.1 1.1	1.3	1.3						
Mining	North-Central	05	50	1.2	1.2	1.3	1.0	1.1	1.1
Mining	North-Central Slope (D-D') 95 50 1.2 1.2 1.3 1.0 1.1 65 1.1 1.1 1.3 1.0 1.0	1.0							
Declamation	Northeast Slope	100	40		1.5			1.4	
Reclamation	(A-A')	100	62		1.8			1.4	
Declemation	West Slans (P. Pl)	35	40		3.7			2.3	
Reclamation	West Slope (B-B')	35	62		3.7			2.0	
Deelemetics	Fact Slane (C. Cl)	25	40		2.7			2.0	
Reclamation	East Slope (C-C')	35	62		2.7			1.7	
Declassof	North-Central	400	40		1.8			1.3	1.1
Reclamation	Slope (D-D')	100	62		2.2			1.3	

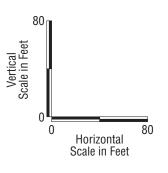
Soil Properties

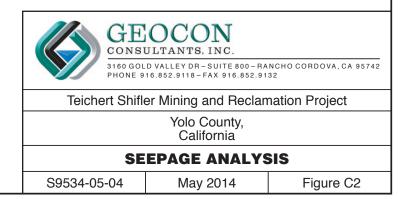

		Cohes	ion (psf)	Friction	Angle (φ)
Soil	Unit Weight (pcf)	Total	Effective	Total	Effective
Overburden	125	350		20	
Gravel	125		150		42
Clay	120	450	375	18	30
Reclamation Fill	125	2000	250	29	34

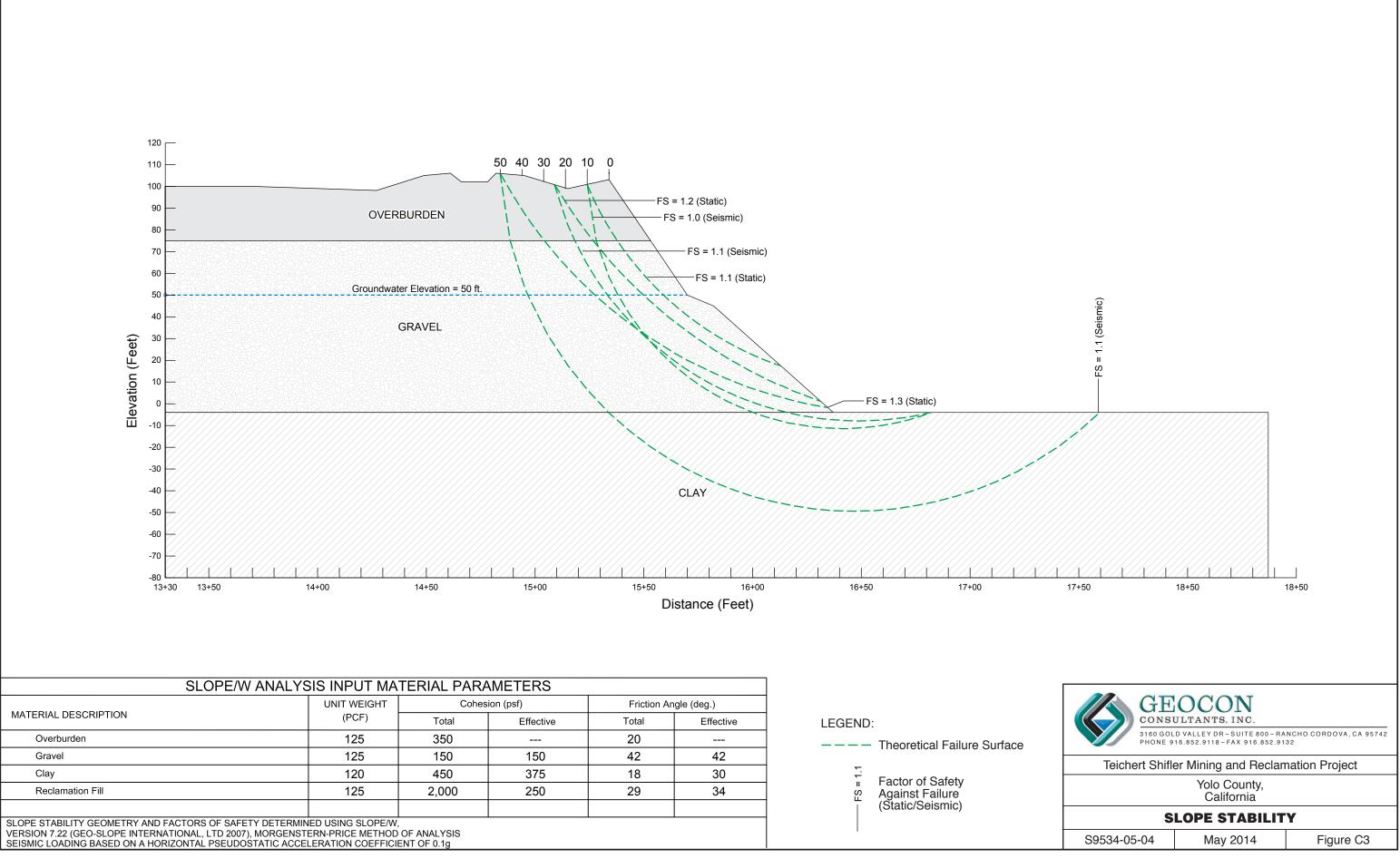


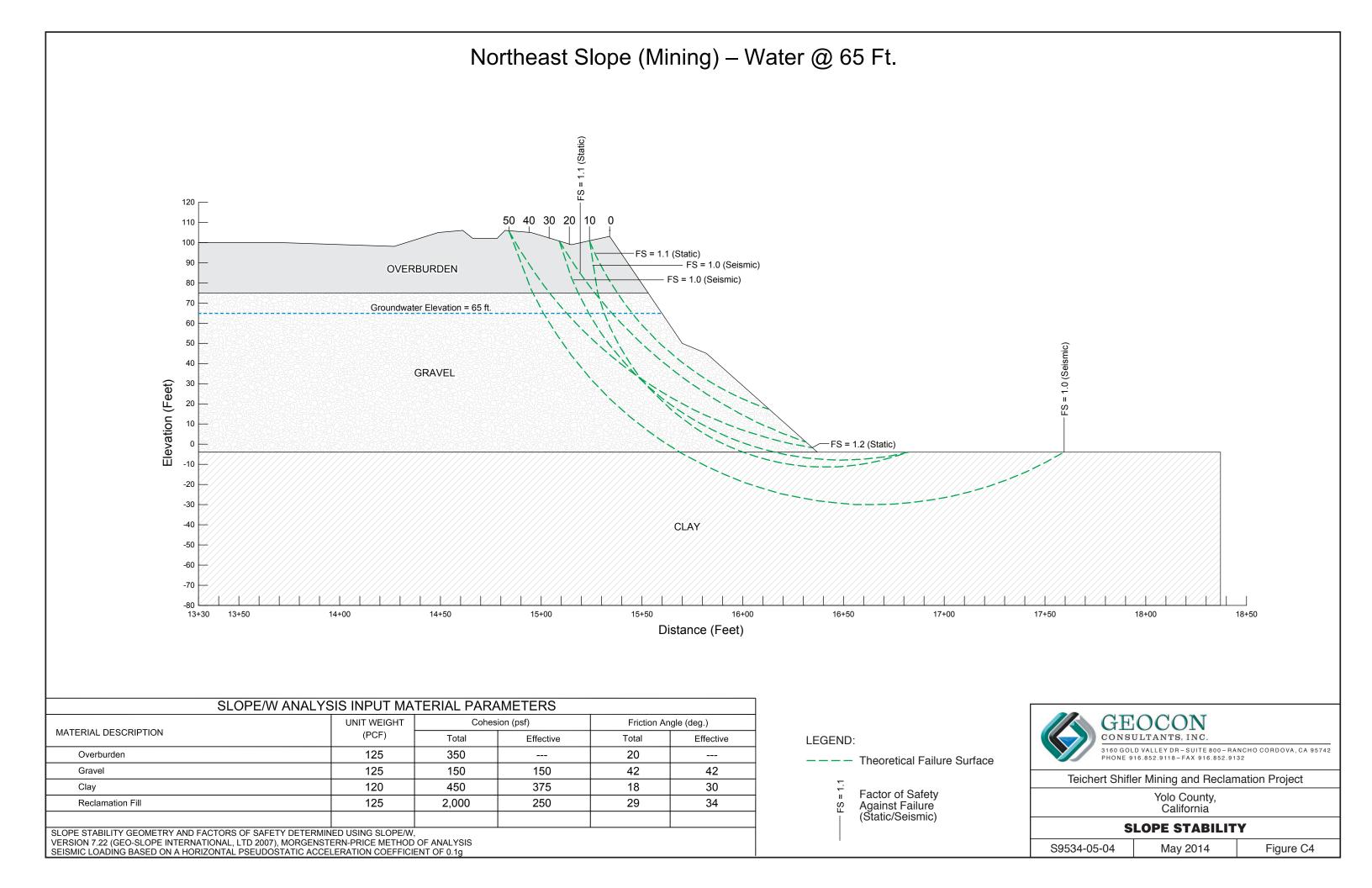


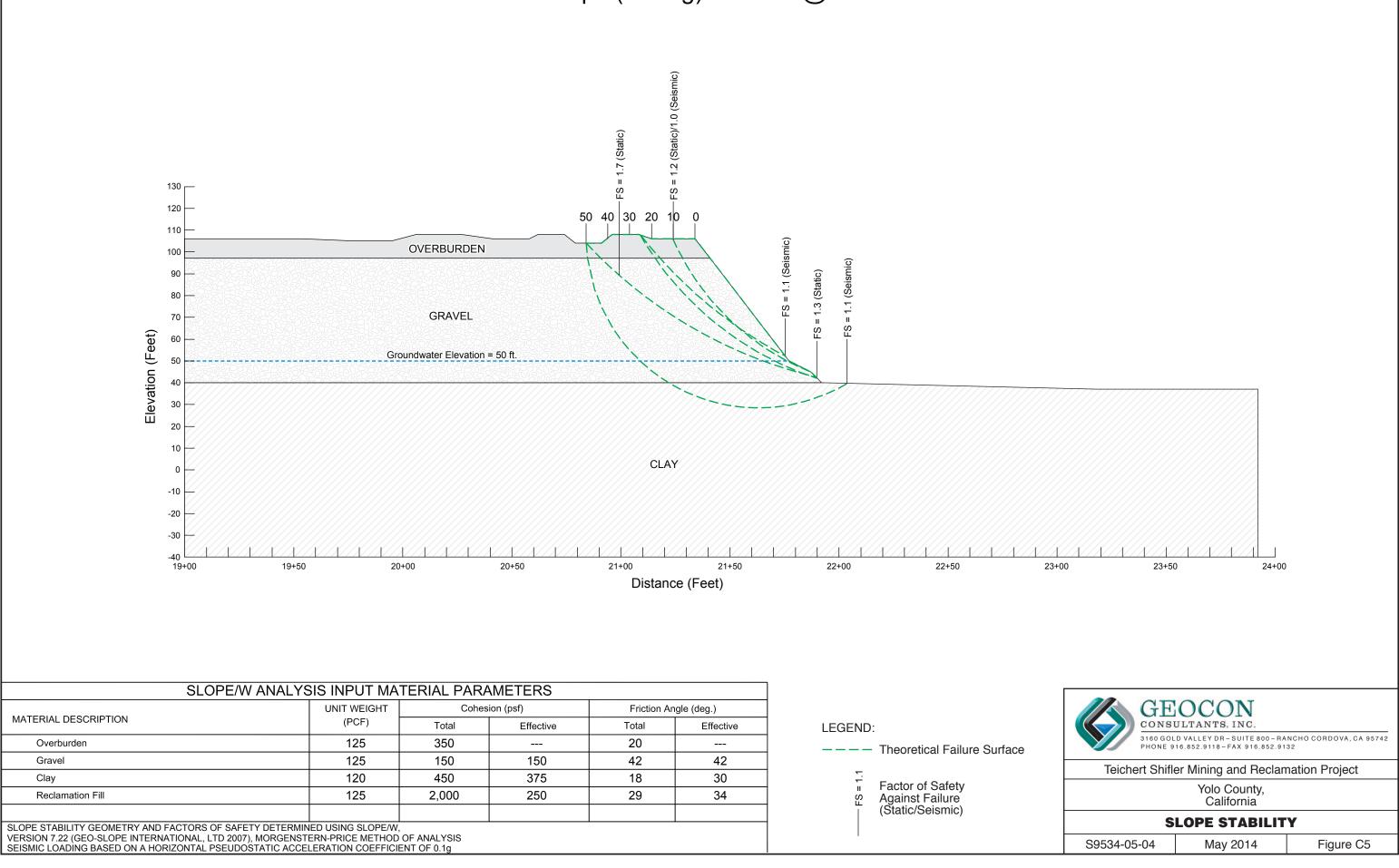




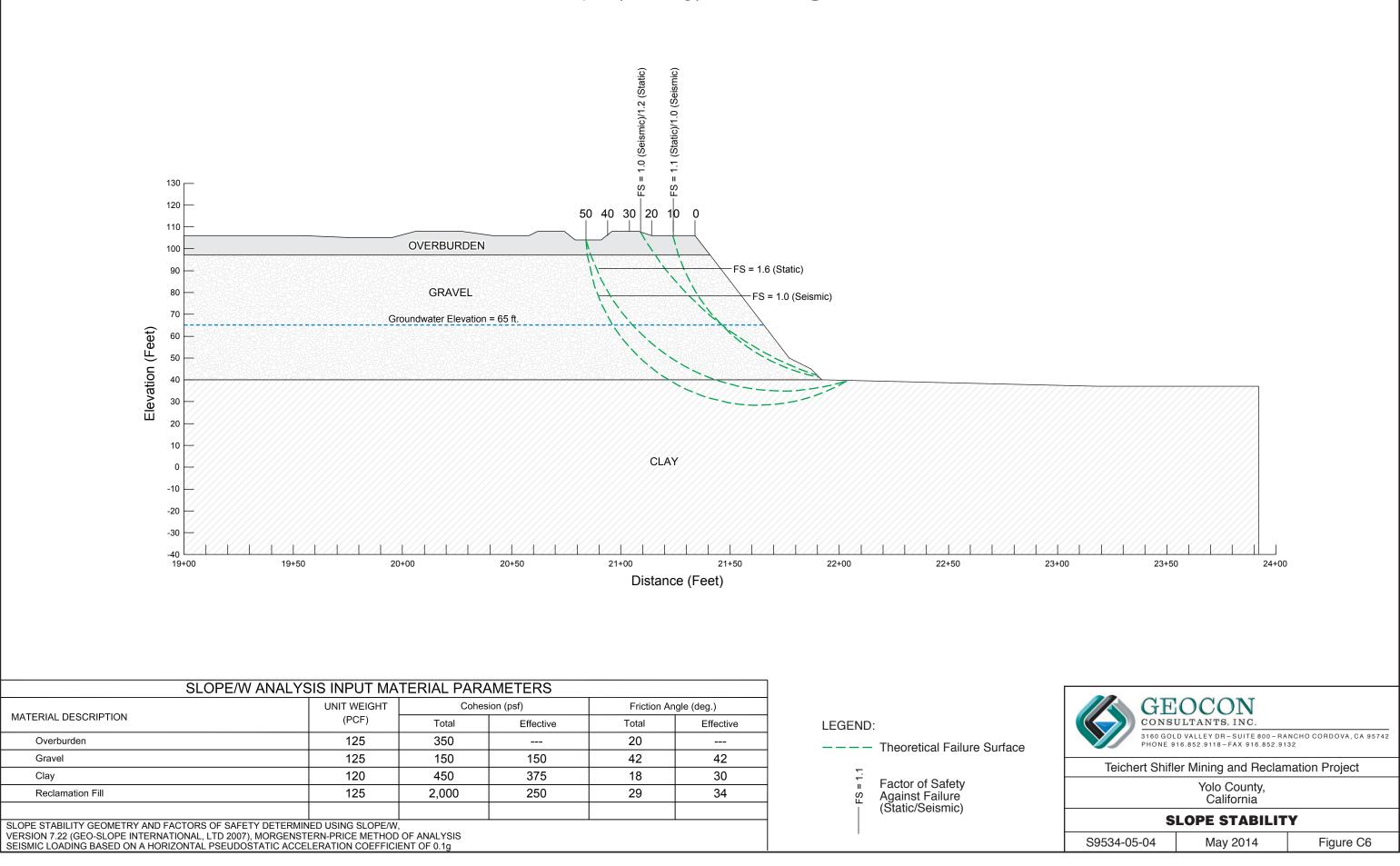


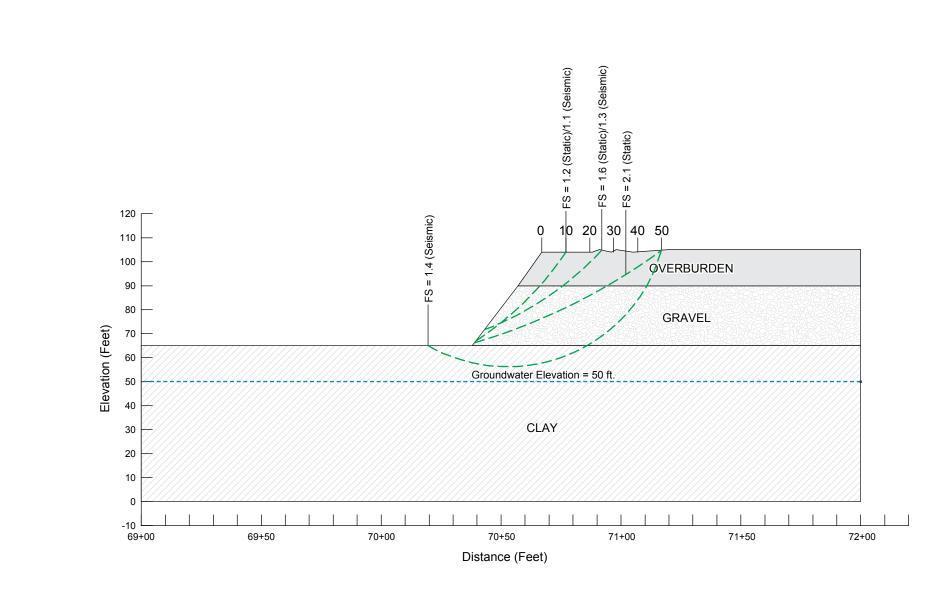






Northeast Slope (Mining) – Water @ 50 Ft.




West Slope (Mining) – Water @ 50 Ft.

West Slope (Mining) – Water @ 65 Ft.

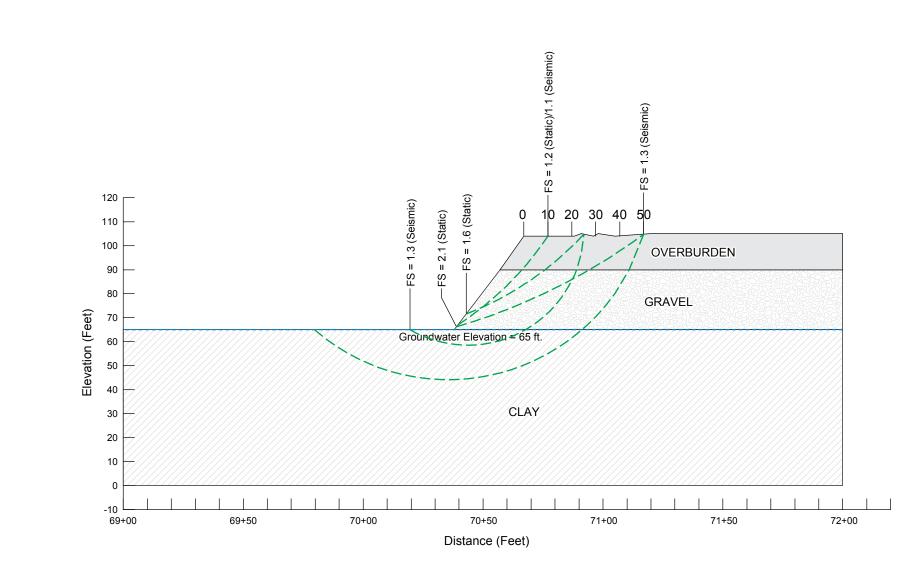
East Slope (Mining) – Water @ 50 Ft.

	UNIT WEIGHT	Cohesion (psf)		Friction Angle (deg.)		
MATERIAL DESCRIPTION	(PCF)	Total	Effective	Total	Effective	LEGEND:
Overburden	125	350		20		———— Theoretical Failure Surface
Gravel	125	150	150	42	42	
Clay	120	450	375	18	30	Factor of Safety
Reclamation Fill	125	2,000	250	29	34	ୁନ୍ଦୁ Against Failure (Static/Seismic)
SLOPE STABILITY GEOMETRY AND FACTORS O VERSION 7.22 (GEO-SLOPE INTERNATIONAL, LT SEISMIC LOADING BASED ON A HORIZONTAL PS	D 2007), MORGENSTERN-PRICE METHOD					(Static/Seismic)

3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132

Teichert Shifler Mining and Reclamation Project

Yolo County, California


SLOPE STABILITY

S9534-05-04

May 2014

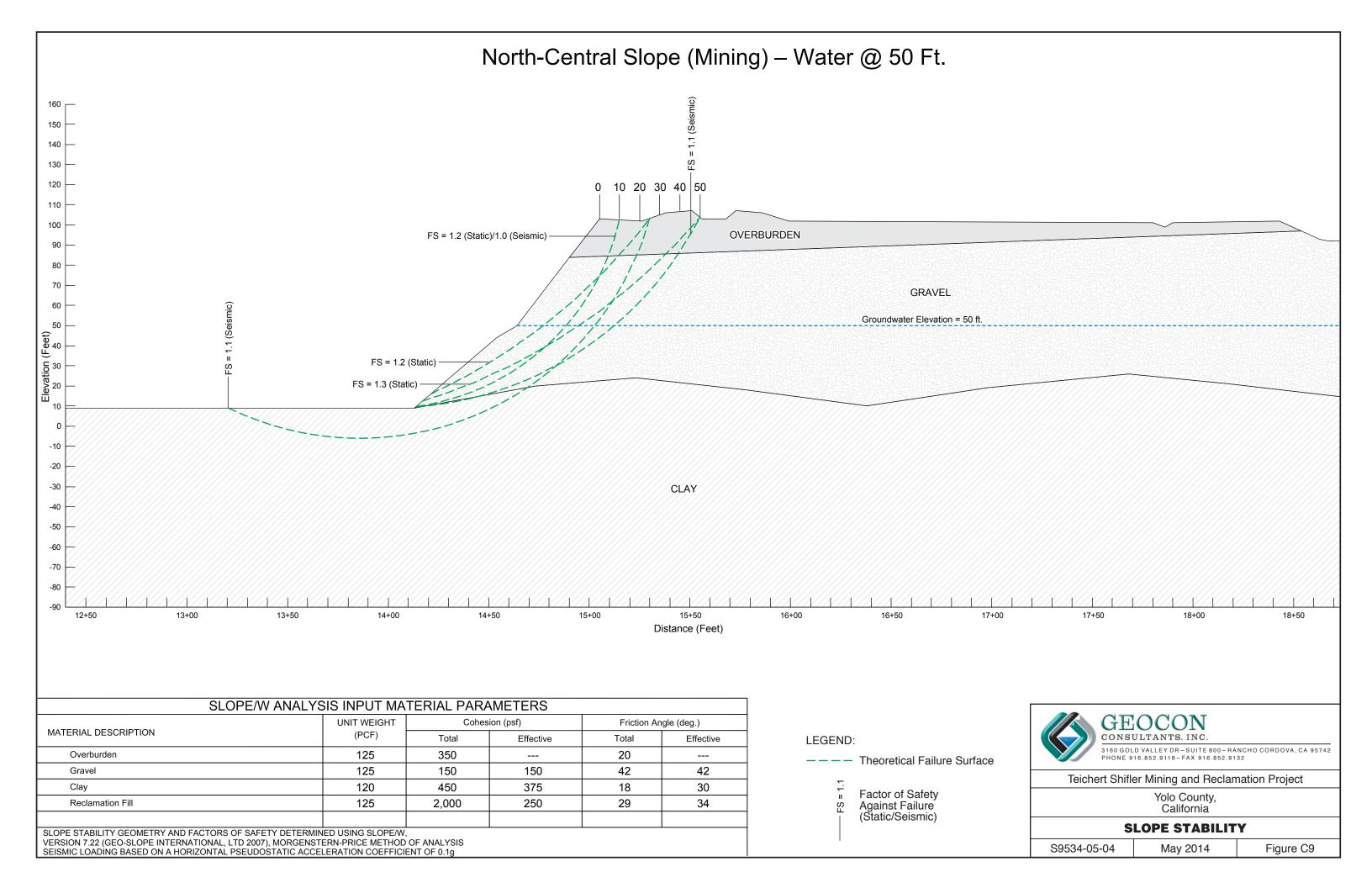
Figure C7

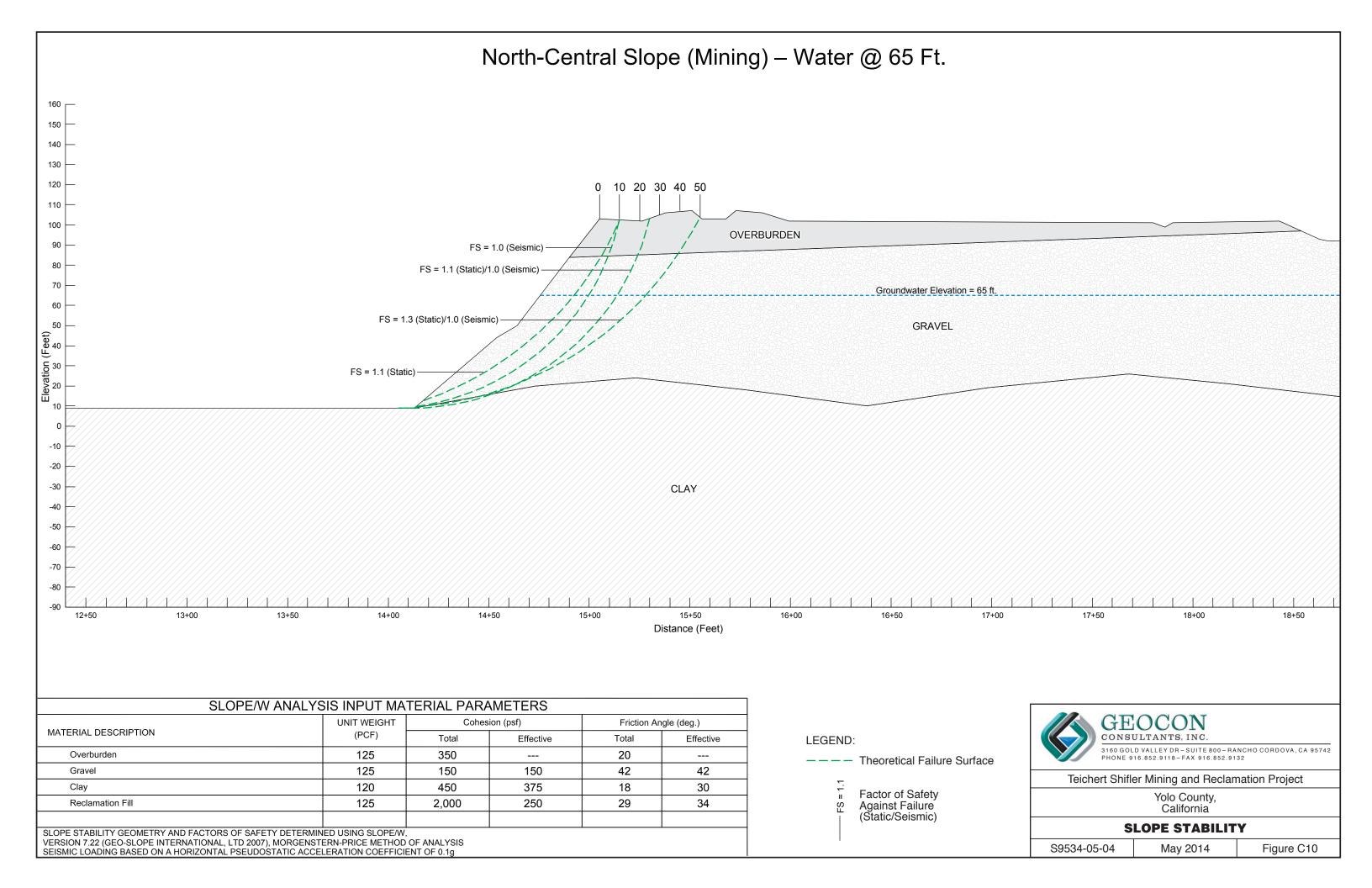
East Slope (Mining) – Water @ 65 Ft.

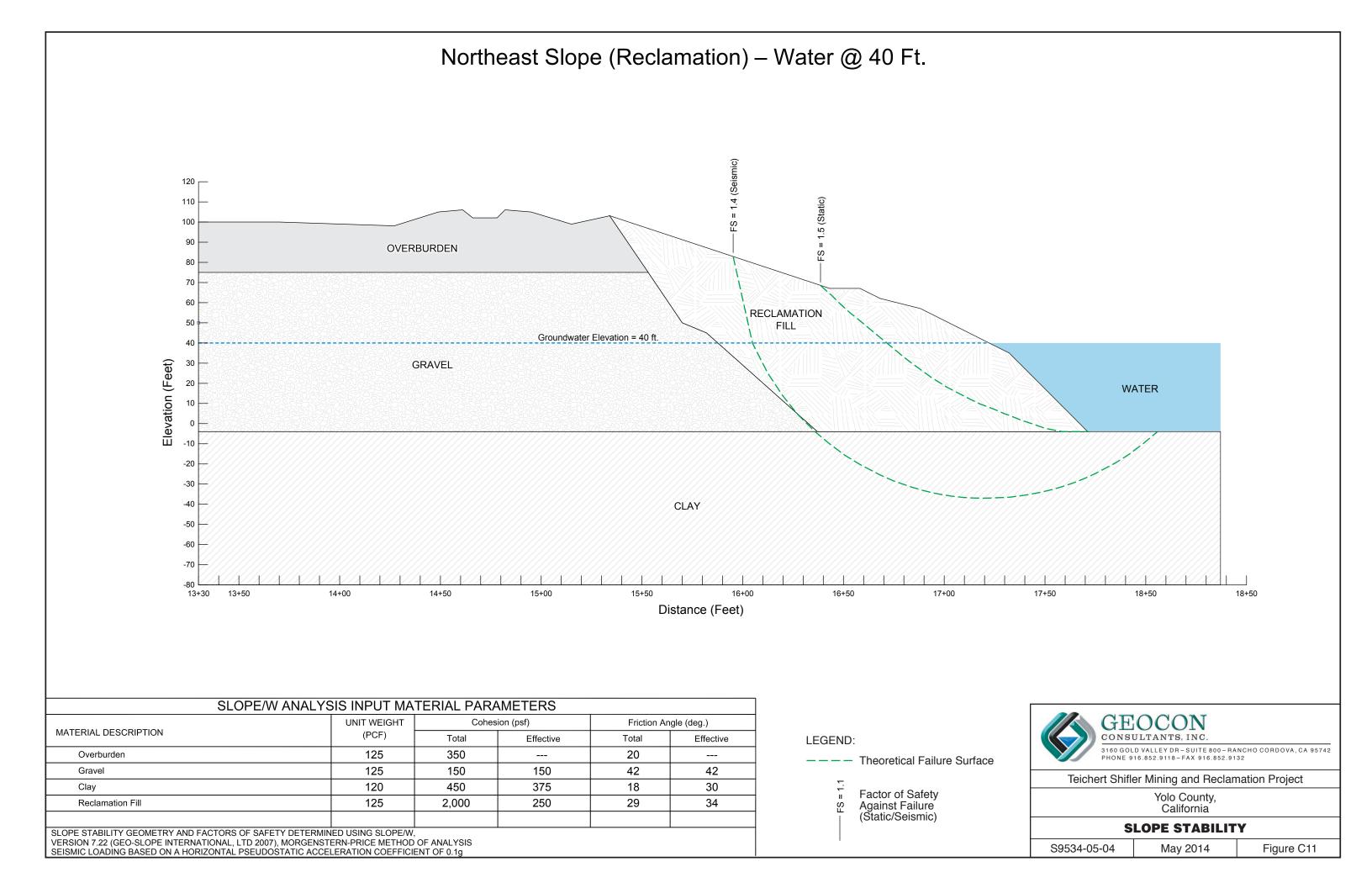
	UNIT WEIGHT	Cohes	sion (psf)	Friction A	ngle (deg.)	
ATERIAL DESCRIPTION	(PCF)	Total	Effective	Total	Effective	
Overburden	125	350		20		
Gravel	125	150	150	42	42	
Clay	120	450	375	18	30	
Reclamation Fill	125	2,000	250	29	34	
OPE STABILITY GEOMETRY AND FACTORS OF SAFE RSION 7.22 (GEO-SLOPE INTERNATIONAL, LTD 2007 ISMIC LOADING BASED ON A HORIZONTAL PSEUDO), MORGENSTERN-PRICE METHOD				1	

Factor of Safety Against Failure (Static/Seismic)

3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132


Teichert Shifler Mining and Reclamation Project


Yolo County, California


SLOPE STABILITY

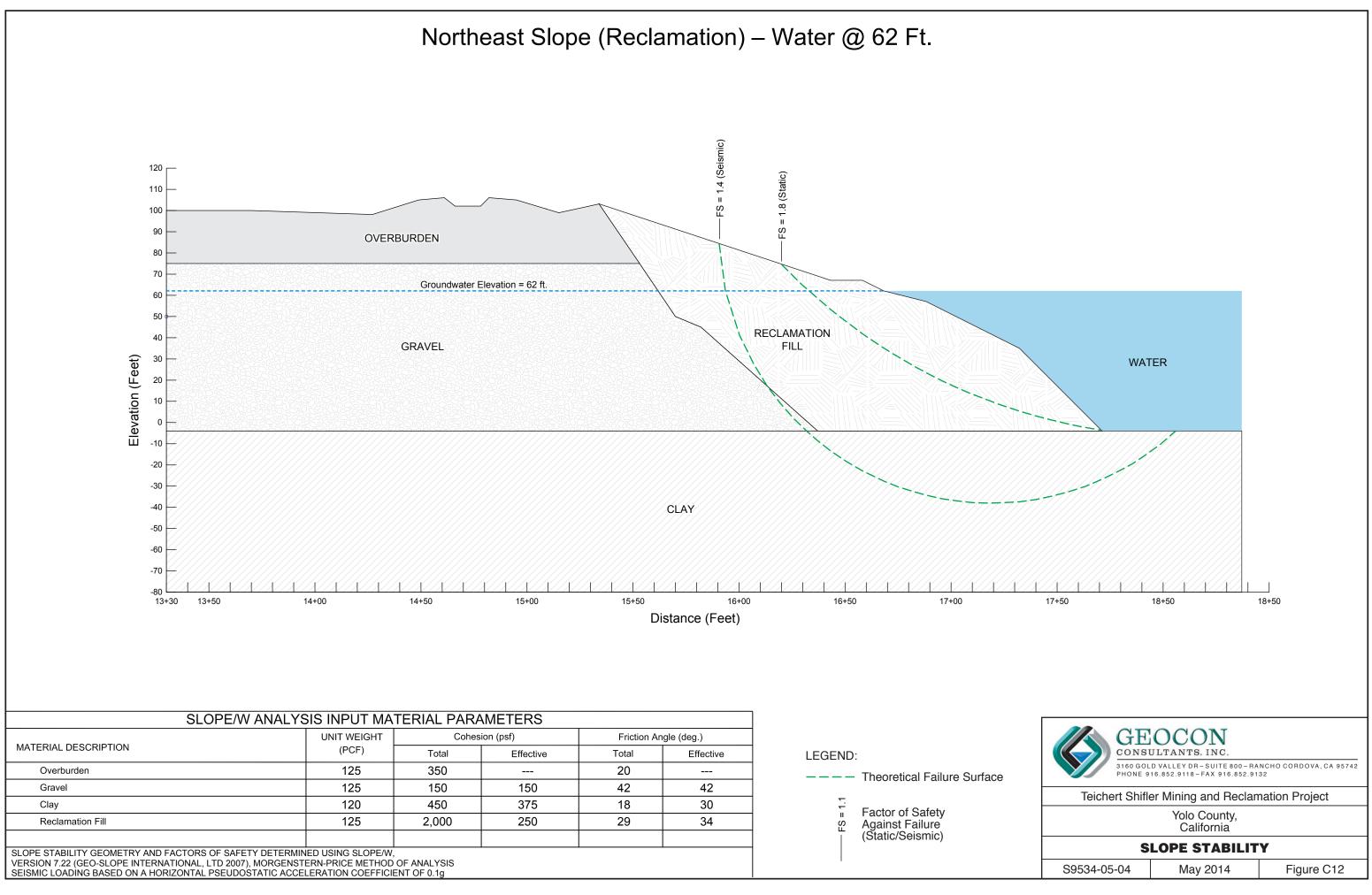
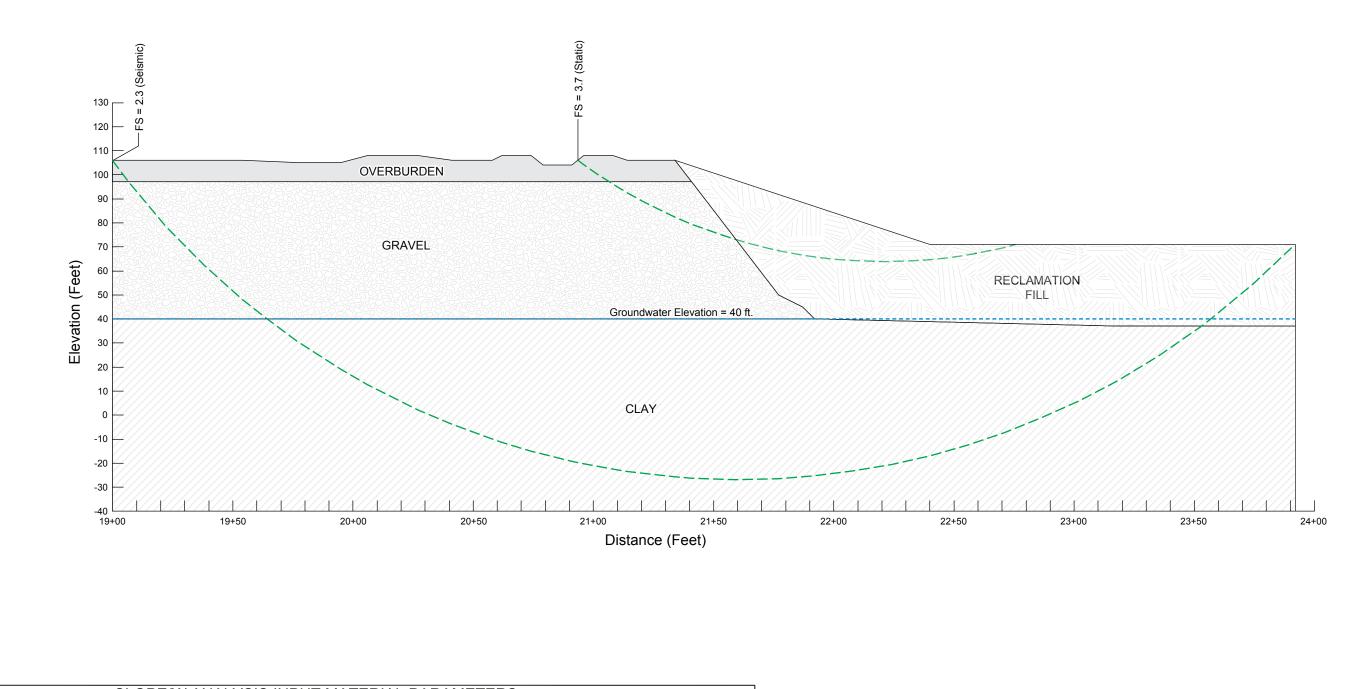
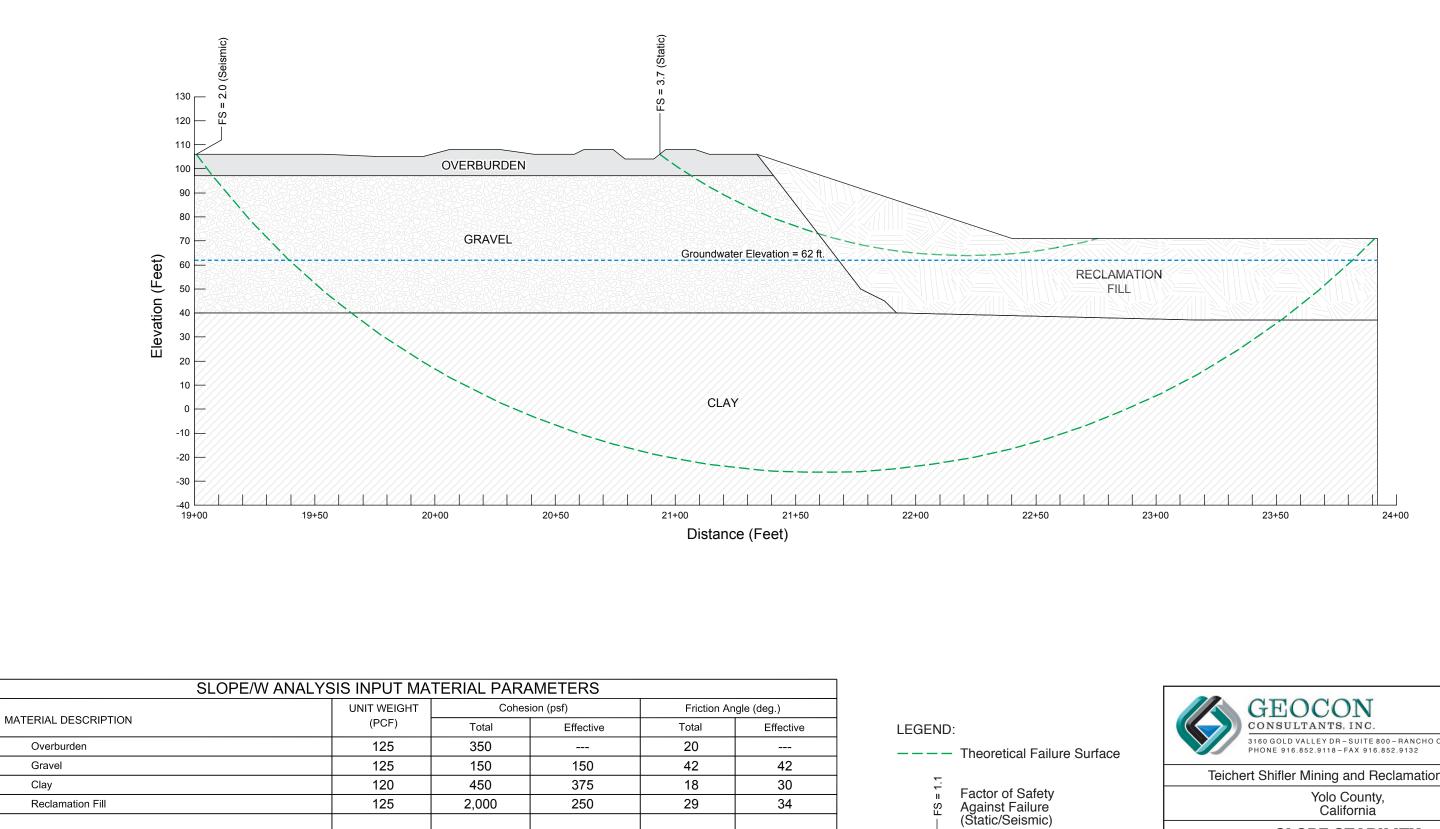

May 2014

Figure C8

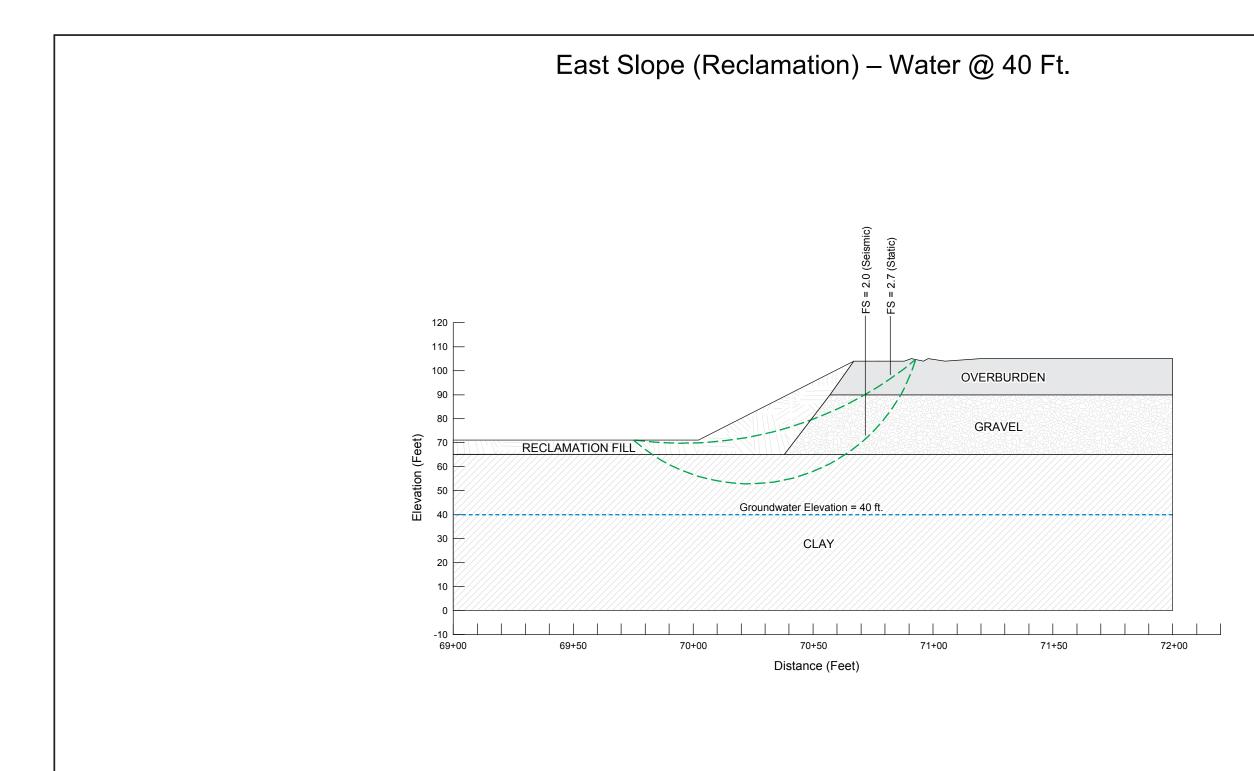



West Slope (Reclamation) – Water @ 40 Ft.

	YSIS INPUT MAT			1		
	UNIT WEIGHT	Cohes	sion (psf)	Friction A	ngle (deg.)	
MATERIAL DESCRIPTION	(PCF)	Total	Effective	Total	Effective	LEGEND:
Overburden	125	350		20		Theoretical Failure Surface
Gravel	125	150	150	42	42	
Clay	120	450	375	18	30	Factor of Safety
Clay Reclamation Fill	125	2,000	250	29	34	မှု Against Failure
						(Static/Seismic)
SLOPE STABILITY GEOMETRY AND FACTORS OF SAFETY DETER				•		
VERSION 7.22 (GEO-SLOPE INTERNATIONAL, LTD 2007), MORGE SEISMIC LOADING BASED ON A HORIZONTAL PSEUDOSTATIC A						

	ULTANTS, INC. D VALLEY DR-SUITE 800-RA 16.852.9118-FAX 916.852.91				
Teichert Shifle	er Mining and Reclan	nation Project			
	Yolo County, California				
SLOPE STABILITY					
S9534-05-04	May 2014	Figure C13			

West Slope (Reclamation) – Water @ 62 Ft.



SLOPE STABILITY GEOMETRY AND FACTORS OF SAFETY DETERMINED USING SLOPE/W, VERSION 7.22 (GEO-SLOPE INTERNATIONAL, LTD 2007), MORGENSTERN-PRICE METHOD OF ANALYSIS SEISMIC LOADING BASED ON A HORIZONTAL PSEUDOSTATIC ACCELERATION COEFFICIENT OF 0.1g

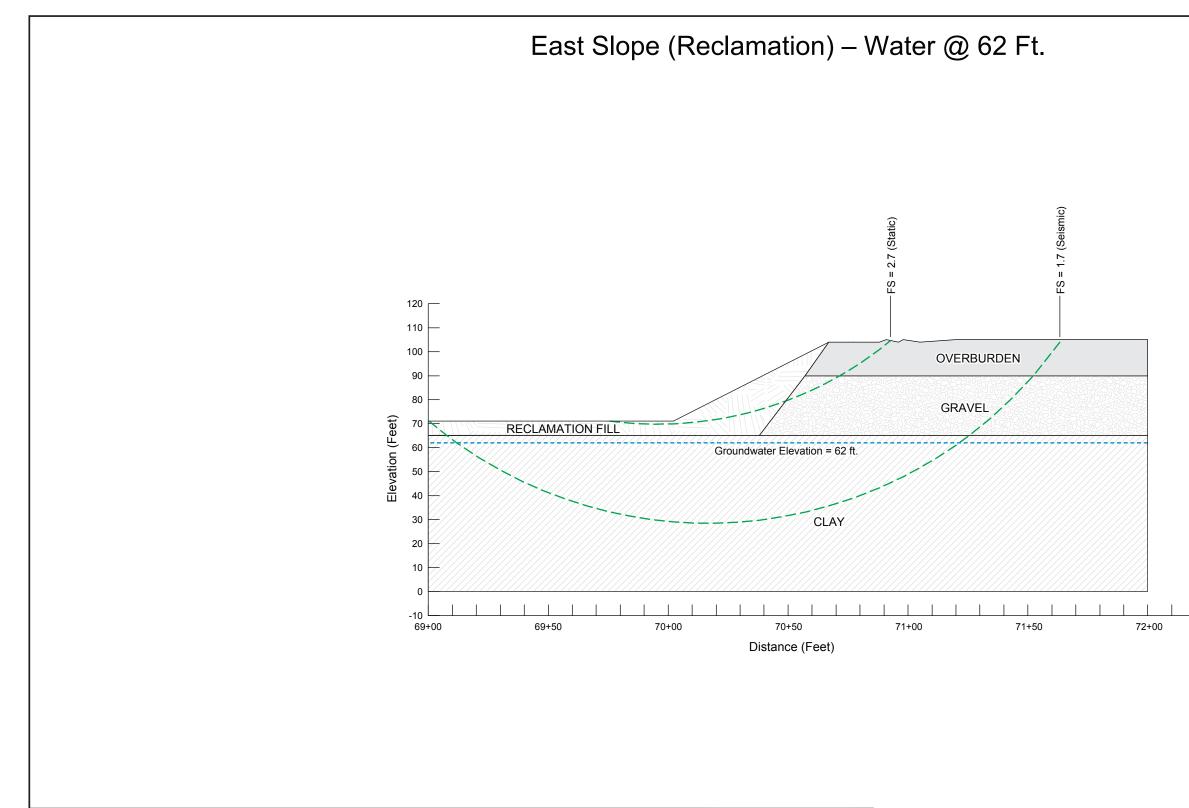
Gravel

Clay

	DILTANTS, INC. D VALLEY DR-SUITE 800- RA 16.852.9118 - FAX 916.852.91				
Teichert Shifle	er Mining and Reclan	nation Project			
	Yolo County, California				
SLOPE STABILITY					
S9534-05-04	May 2014	Figure C14			

MATERIAL DESCRIPTION	UNIT WEIGHT	Cohesion (psf)		Friction Angle (deg.)		
	(PCF)	Total	Effective	Total	Effective	LEGEND:
Overburden	125	350		20		Theoretical Failure Surface
Gravel	125	150	150	42	42	
Clay	120	450	375	18	30	Factor of Safety
Reclamation Fill	125	2,000	250	29	34	့ Against Failure
						(Static/Seismic)
LOPE STABILITY GEOMETRY AND FACTORS OF S ERSION 7.22 (GEO-SLOPE INTERNATIONAL, LTD 3						

3160 GOLD VALLEY DR – SUITE 800 – RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 – FAX 916.852.9132


Teichert Shifler Mining and Reclamation Project

Yolo County, California

SLOPE STABILITY

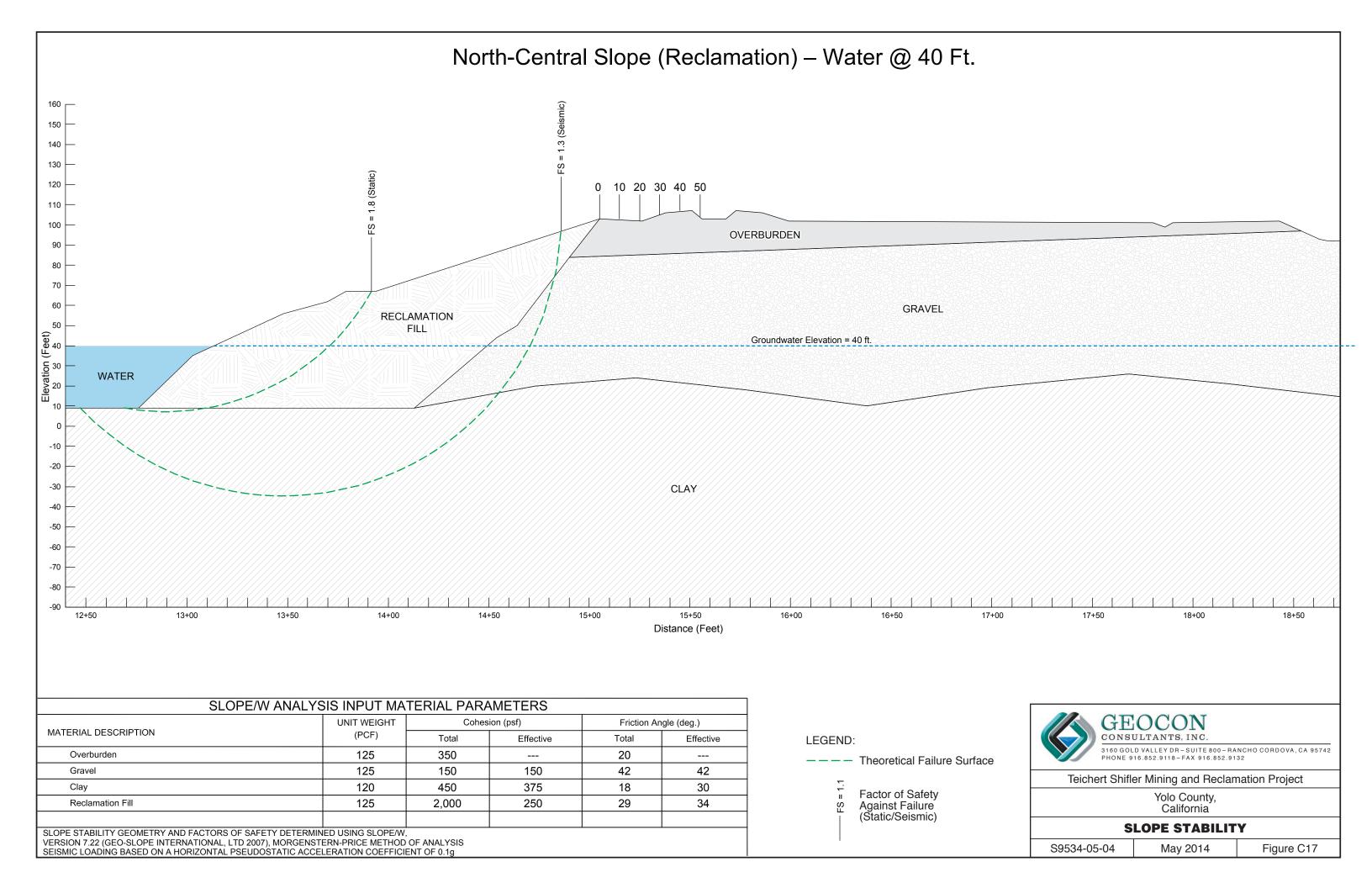
May 2014

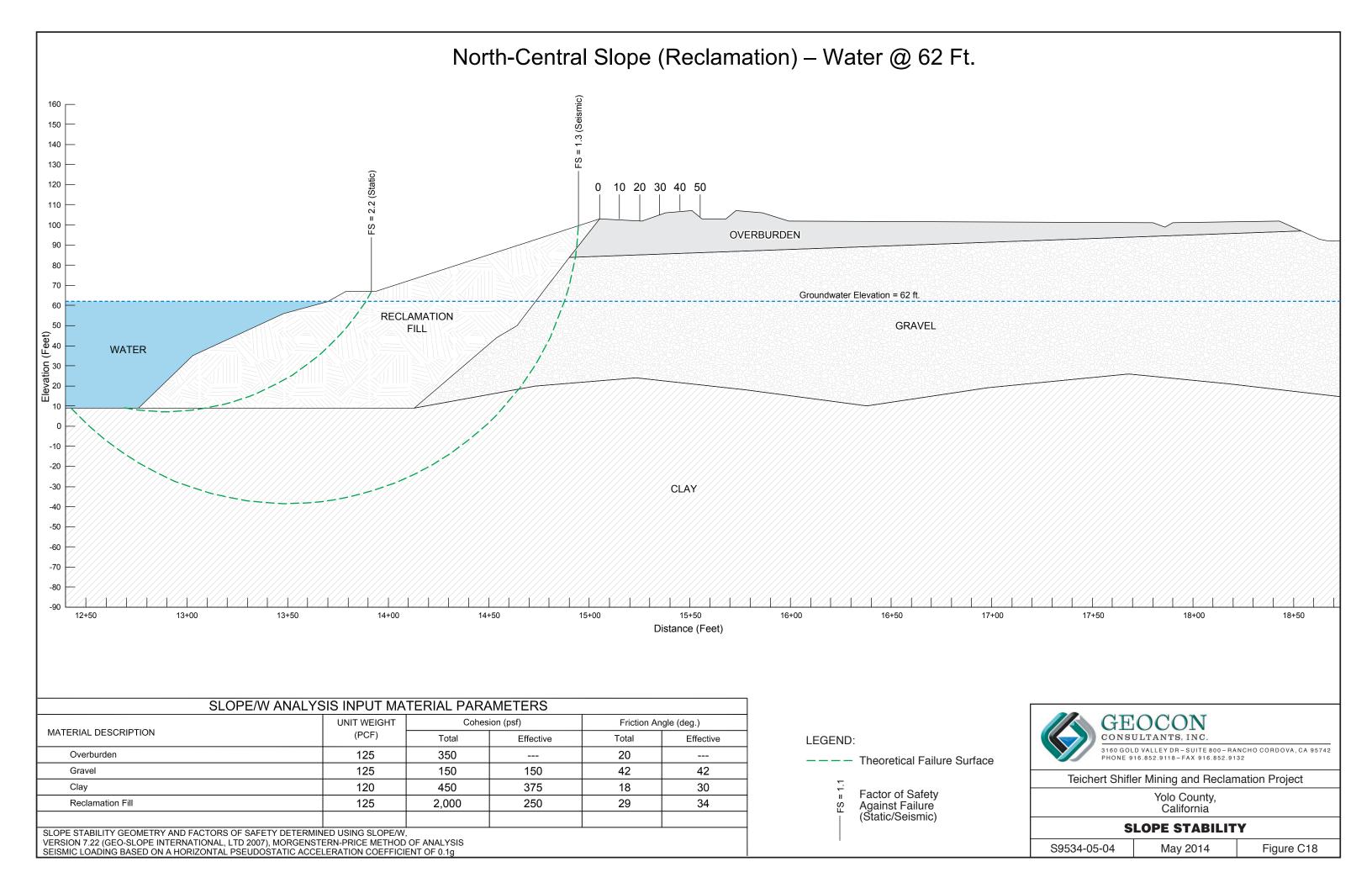
Figure C15

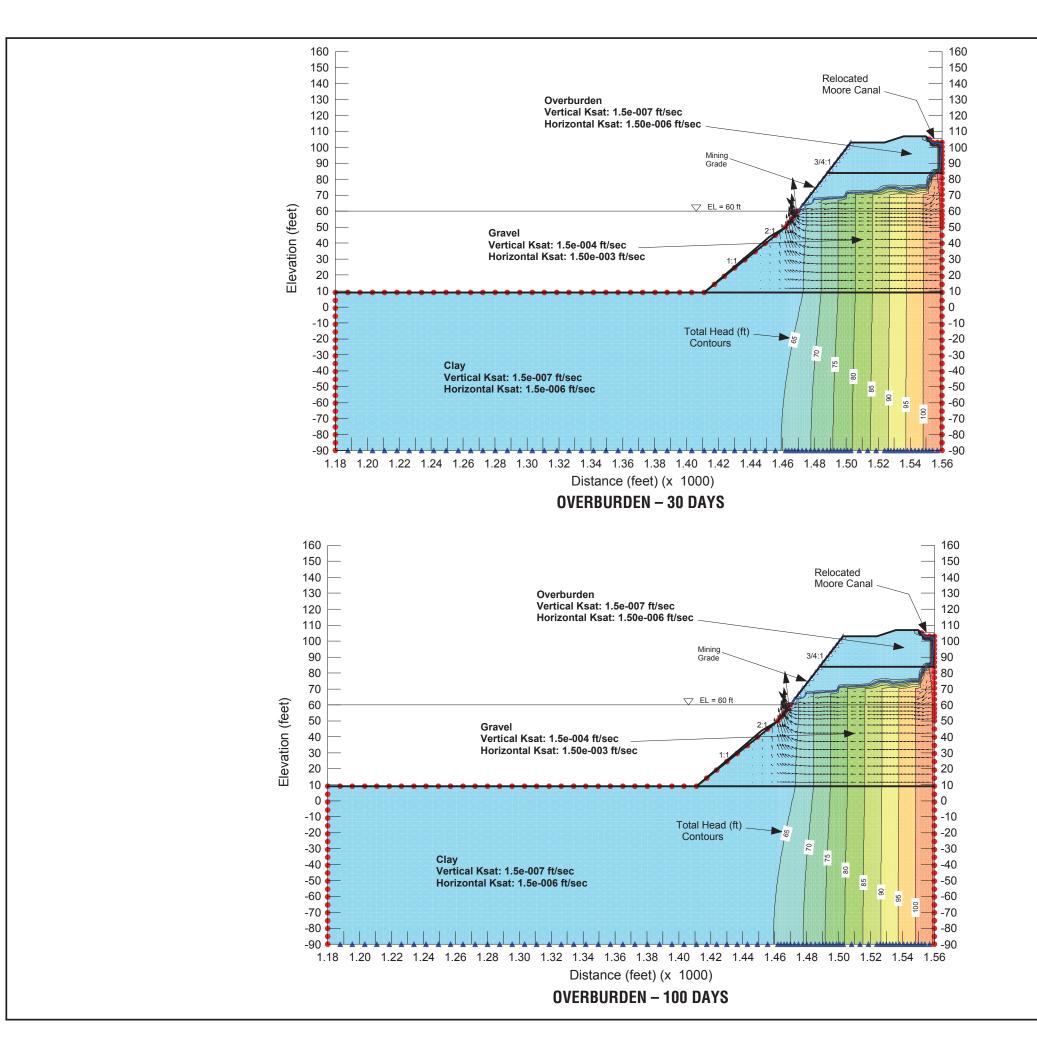
	UNIT WEIGHT	Cohes	sion (psf)	Friction A	ngle (deg.)	
MATERIAL DESCRIPTION	(PCF)	Total	Effective	Total Effective	Effective	
Overburden	125	350		20		
Gravel	125	150	150	42	42	
Clay	120	450	375	18	30	
Reclamation Fill	125	2,000	250	29	34	
LOPE STABILITY GEOMETRY AND FACTORS OF SAFETY D ERSION 7.22 (GEO-SLOPE INTERNATIONAL, LTD 2007), MO EISMIC LOADING BASED ON A HORIZONTAL PSEUDOSTAT	RGENSTERN-PRICE METHOD	OF ANALYSIS				

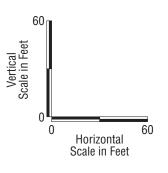
= 1.1 Factor of Safety Against Failure (Static/Seismic) БS

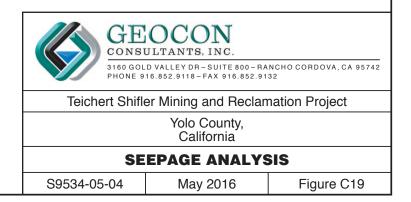
3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742 PHONE 916.852.9118 - FAX 916.852.9132


Teichert Shifler Mining and Reclamation Project


Yolo County, California


SLOPE STABILITY


May 2014


Figure C16

