

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (PWQMP)

THE BOWERY October 3, 2019

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (PWQMP)

October 3, 2019

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (PWQMP)

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (PWQMP)

THE BOWERY

Santa Ana, California

PREPARED FOR VINEYARDS DEVELOPMENT CORPORATION 240 Newport Center Dr. Suite #200 Newport Beach, CA 92660 310.571.8227

> FUSCOE ENGINEERING, INC. 16795 Von Karman, Suite 100 Irvine, California 92606 949.474.1960 www.fuscoe.com

> > PROJECT MANAGER Josh Ruiz, PE

DATE PREPARED: October 3, 2019

PROJECT NUMBER: 1154-003-01

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (WQMP)

THE BOWERY

2300, 2310 & 2320 Red Hill Ave, City of Santa Ana, County of Orange

APN: 430-222-01 & 430-222-16

Prepared for:

VINEYARDS DEVELOPMENT CORPORATION 240 Newport Center Dr. Suite #200 Newport Beach, CA 92660 310. 571.8227

Prepared by:

FUSCOE ENGINEERING, INC. 16795 Von Karman, Suite 100 Irvine, CA 92618 949.474.1960 Josh Ruiz

Date Prepared: October 03, 2019

PROJECT OWNER'S CERTIFICATION							
Permit/Application No.: Pending Grading Permit No.: Pending							
Tract/Parcel Map and Lot(s)No.:	Parcel 2 & 3, P.M.B. 125 PG 45-46	Building Permit No.:	Pending				
Address of Project Site and APN:	2300, 2310 & 2320 Red Hill Ave, Satna Ana, CA 92705 APN: 430-222-07 & 430-222-16						

This Water Quality Management Plan (WQMP) has been prepared for VINEYARDS DEELOPMENT CORPORATION by FUSCOE ENGINEERING, INC. The WQMP is intended to comply with the requirements of the County of Orange NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan , including the ongoing operation and maintenance of all best management practices (BMPs), and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the Santa Ana Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

OWNER:						
Name:	Jeremy Ogulnick					
Title:	Vice President of Development					
Company:	Vineyards Development Corporation					
Address:	240 Newport Center Drive, Suite 200, Newport Beach, CA 92660					
Email:	Jeremy@vineyardsdc.com					
Telephone #:	310.849.5793					
I understand my responsibility to implement the provisions of this WQMP including the ongoing operation and maintenance of the best management practices (BMPs) described herein.						
Owner Signature:	Date:					

TABLE OF CONTENTS

SECTION	11	DISCRETIONARY PERMITS AND WATER QUALITY CONDITIONS	1
SECTION	1	PROJECT DESCRIPTION	2
II.1	Proje	ect Description	2
II.2	Pote	ntial Storm Water Pollutants	2
II.3	Hydr	rologic Conditions of Concern	7
II.4	Post	Development Drainage Characteristics	8
II.5	Prop	erty Ownership/Management	9
SECTION	1	SITE DESCRIPTION	.10
III.1	Phys	ical Setting	10
III.2	Site	Characteristics	10
III.3	Wate	ershed Description	.11
SECTION	1 IV	BEST MANAGEMENT PRACTICES (BMPs)	.13
		ect Performance Criteria	
IV.2	Site	Design and Drainage Plan	14
IV.2.	1	Site Design BMPs	
IV.2.	2	Drainage Management Areas	15
IV.3	LID I	BMP Selection and Project Conformance Analysis	
IV.3.	1	Hydrologic Source Controls (HSCs)	16
IV.3.	2	Infiltration BMPs	.16
IV.3.		Evapotranspiration, Rainwater Harvesting BMPs	.17
IV.3.	4	Biotreatment BMPs	.20
IV.3.	5	Hydromodification Control BMPs	.22
IV.3.		Regional/Sub-Regional LID BMPs	
IV.3.	7	Treatment Control BMPs	22
IV.3.	-		.23
IV.3.		Structural Source Control BMPs	
		native Compliance Plan	
IV.4.		Water Quality Credits	
IV.4.		Alternative Compliance Plan Information	
SECTION		INSPECTION/MAINTENANCE RESPONSIBILITY FOR BMPs	
SECTION		SITE PLAN AND DRAINAGE PLAN	
SECTION		EDUCATIONAL MATERIALS	
APPENDI	CES.		.39

APPENDICES

Appendix A	Supporting Calculations
Appendix B	Notice of Transfer of Responsibility
Appendix C	Educational Materials (To be Provided in Final WQMP)
Appendix D	BMP Maintenance Supplement / O&M Plan
Appendix E	Conditions of Approval (Pending Issuance)
Appendix F	Geotechnical Study
Appendix G	2-Year Hydrology Calculations

EXHIBITS & BMP DETAILS (INCLUDED IN SECTION VI)

- Vicinity Map
- Site Plan
- Preliminary WQMP Exhibit
- Modular Wetland System Details
- BIO-7 Proprietary Biotreatment BMP Fact Sheets

EDUCATIONAL MATERIALS (INCLUDED IN APPENDIX C)

- The Ocean Begins at Your Front Door
- Tips for the Home Mechanic
- Household Tips
- Proper Disposal of Household Hazardous Waste
- Recycle at Your Local Used Oil Collection Center (Central County)
- Responsible Pest Control
- Tips for Pet Care
- Tips for Pool Maintenance
- Tips for Residential Pool, Landscape and Hardscape Drains
- Tips for Protecting your Watershed
- Tips for the Food Service Industry
- Proper Maintenance Practices for your Business
- DF-1 Drainage System Operation & Maintenance R-3 Automobile Parking
- R-5 Disposal of Pet Waste
- R-8 Water Conservation

- SD-10 Site Design & Landscape Planning
- SD-12 Efficient Irrigation
- SD-13 Storm Drain Signage
- SD-32 Trash Storage Areas

SECTION I DISCRETIONARY PERMITS AND WATER QUALITY CONDITIONS

PROJECT INFORMATION							
Permit/Application No.:	Pending Grading or Building Pending						
Address of Project Site (or Tract Map and Lot Number if no address) and APN:		2300, 2310 & 2320 Red Hill Ave, Satna Ana, CA 92705 APN: 430-222-07 & 430-222-16					
WATER Q	UALITY CONDITIONS O	F APPROVAL OR ISSU	ANCE				
Discretionary Permit(s):	There are no discretionary permits applicable to this project.						
Water Quality Conditions of Approval or Issuance applied to this project: (Please list verbatim.)	Pending – to be provided	in Final WQMP					
	CONCEPTUAL	WQMP					
Was a Conceptual Water Quality Management Plan previously approved for this project?							
	WATERSHED-BASED PLA	AN CONDITIONS					
Applicable conditions from watershed - based plans including WIHMPs and TMDLs:	 Applicable TMDLs for San Diego Creek Reach 1, Upper and Lower Newport Bay, include the following: Metals Nutrients Pesticides Siltation Pathogens Priority Organics 						

1

SECTION II PROJECT DESCRIPTION

II.1 PROJECT DESCRIPTION

The proposed Bowery project site encompasses approximately 14.69 acres in the City of Santa Ana. The project site is bounded by Warner Avenue to the northeast and Red Hill Avenue to the southeast. A Vicinity Map is included in Section VI.

Under existing conditions, the project site consist of three vacant warehouse buildings and associated parking lots. Adjacent land uses include a mix of commercial and light industrial.

The table below summarizes the proposed project.

	DESCRIPT	ION OF PROPOSEI	D PROJECT				
Development Category (Model WQMP, Table 7.11-2; or 7.11-3):	8. All significant redevelopment projects, where significant redevelopment is defined as the addition or replacement of 5,000 or more square feet of impervious surface on an already developed site. Redevelopment does not include routine maintenance activities that are conducted to maintain original line and grade, hydraulic capacity, original purpose of the facility, or emergency redevelopment activity required to protect public health and safety.						
Project Area (ft ²):	639,896.4 ft² (14.	69 acres)					
# of Dwelling Units:	1,060 units	1,060 units					
SIC Code:	TBD; to include res	TBD; to include residential and commercial land use pending lease agreements					
Narrative Project Description:	buildings and asso northeastern corne Ricoh Electronics, I proposed project w a 272-unit project uses over retail spo deck. Building B is portion of residenti structure with amen story residential with a 6-story parking s story residential use	ciated parking lots. r of the property. The nc., a manufacturer vill include four resid consisting of 5-story ace surrounding a 6. a 241-unit project of al uses over retail sp nity deck. Building C th a portion of reside tructure. Building D es surrounding a 6-s	ite consists of three v A vacant lot is locate e property was forme and distributor of the ential buildings. Build residential with a po 5-story parking struct consisting of 5-story r bace surrounding a 6 is a 309-unit project ential uses over retail is a 238-unit project tory parking structure units and 80,000 SF	ed in the erly occupied by ermal paper. The ding A will consist of ortion of residential ture with amenity esidential with a .5-story parking t consisting of 5- space surrounding t consisting of 5- e. Overall, the			
Project Area:	Pervious Area	Pervious Area Percentage	Impervious Area	Impervious Area Percentage			
Pre-Project Conditions:	3.73 ac	25%	10.96 ac	75%			
Post-Project Conditions:	2.05 ac	14%	12.64 ac	86%			

	DESCRIPTION OF PROPOSED PROJECT
	Under existing conditions, the project site drains northwest where flows enter an existing catch basin. The catch basin connects to a 6x10 RCB culvert designed for flood control that then ties into an 84" RCP. From there flows travel southeast and are temporarily detained in a Tustin Flood Control Basin before exiting to travel along Barranca Channel. Barranca Channel connects to San Diego Creek Reach 1 and ultimately drains to Newport Bay and the Pacific Ocean.
Drainage Patterns/ Connections:	The post development drainage will maintain existing drainage patterns. The 14.69 project area will collect on-site drainage via roof drains, surface flow, curb and area drains. Low flows and first flush runoff will be pumped to one of four Modular Wetland System (MWS) units for water quality treatment. High flows will by-pass the biotreatment and exit the site. All flows will tie into an existing 84" RCP along Redhill Avenue. From there flows will travel southeast and be temporarily detained in a Tustin Flood Control Basin before exiting to travel along Barranca Channel. Barranca Channel connects to San Diego Creek Reach 1 and ultimately drains to Newport Bay and the Pacific Ocean.

PROJECT FEATURES								
		Studio Units	1 Bed		2 Bed	Total Units		
	Building A	54	143		75	272		
	Building B	35	13	33	73	241		
Building	Building C	64	15	54	91	309		
Summary:	Building D	35	12	125 78		238		
	Total	188 555		55 317		1,060		
	Commercial Ret		80,000 SF					
Amenities:	Recreation amenities for residents would include pool and spa areas, a fitness area, a community/club room, a leasing office, and a mail room in each residential building. Each residential building would also have a common area with outdoor kitchen and seating areas. Buildings A & B will have rooftop level spaces, while Buildings C & D will have at-grade courtyard spaces. The retail areas will also include one at-grade plaza and one rooftop level deck area. The project would also provide 247,506 square feet of open space in courtyards, common area amenities, roof decks, and perimeter plazas and open space areas for residents and the public.							

PROJECT FEATURES								
Landscaped Areas:	Proposes landscaped areas will be situated along Red Hill Avenue, Warner Avenue, along building setbacks, along the project entryway, within residential courtyards and in rooftop areas. Trees, shrubs, and groundcover is included within proposed landscaped areas accounting for the site's 14% of pervious area.							
	Parking stalls are pro and commercial reto		e project site for reside	ential, leasing,				
		Residential Stalls	Commercial Stalls	Total Stalls				
	Building A	486	170	656				
Parking Facilities:	Building B	420	130	550				
	Building C	526	100	626				
	Building D	406	0	406				
	Total	1,838	400	2,238				
Other Project Features:	satellite trash rooms four trash rooms are will be located near site. Another storage Building B. The third main roadway outsid the southeastern edg taken from the interi- time trash collection water quality inlet to local design standar Three loading dock portions of the site. be located along the area will be located along Warner Ave. community car wash	Eight trash rooms and located in the comm Building C adjacent to a area will be located I storage area will be de of Building D. The ge of the main roadw or trash rooms to the is set to occur. The prevent discharge of ds. areas will be located One loading dock are e northern edge of the directly across the ma at the southern edge The site will not have pracks, vehicle/equip	throughout the centra e aconsisting of two pare is a consisting of two pare is precised at the western fourth storage area w ay outside of Building exterior trash storage trash storage areas will spilled contaminants, throughout the centra ea consisting of two pare is main roadway. The third of the site adjacent to any outdoor storage a ment wash areas. How	ential areas and sh storage area hat bisects the way outside of edge of the ill be located on A. Trash will be areas at the I drain into a consistent with I and southern arking stalls will her loading dock loading dock the sidewalk wreas, vehicle/ vever, there will				

	PROJECT FEATURES						
Outdoor	For the commercial/retail areas, outdoor activities are anticipated with passive uses in the common landscaped areas surrounding the buildings. Outdoor lounge furniture and restaurant seating is proposed. All vehicular parking will be located at surface parking lots. No outdoor storage of materials is anticipated.						
Outdoor Activities:	For the residential areas, outdoor areas throughout the site will be used for recreational and open space purposes. Each building will have a central recreation area that will include a pool, spa, fireplace/BBQ areas, various lounge/dining furnishings, and open areas (courtyards or roof decks). All other outdoor areas will be used for walkways, common areas and landscaping, and other recreational purposes.						
Materials Stored:	Materials anticipated to be stored on-site include those associated with retail buildings (i.e. cleaning products, storage, etc.); however, no hazardous wastes will be stored on-site. No outdoor storage of materials is anticipated (materials will be stored indoors).						
Wastes Generated:	The project is not anticipated to generate any wastes other than landscape clippings, typical trash, debris and refuse from the tenants. Outdoor trash receptacles will be provided in trash room areas within buildings for the residential and commercial tenants to dispose of their refuse in a proper manner, and property maintenance will provide trash and waste material removal to maintain a trash-free property. All wastes shall be collected and properly disposed of off-site.						

II.2 POTENTIAL STORM WATER POLLUTANTS

The table below, derived from Table 2 of the Countywide Model WQMP Technical Guidance Document (December 2013), summarizes the categories of land use or project features of concern and the general pollutant categories associated with them.

ANTICIPATED & POTENTIAL POLLUTANTS GENERATED BY LAND USE TYPE								
			Gener	al Polluta	nt Cat	egories		
Priority Project Categories and/or Project Features	Suspended Solid/ Sediments	Nutrients	Heavy Metals	Pathogens (Bacteria/ Virus)	Pesticides	Oil & Grease	Toxic Organic Compounds	Trash & Debris
Detached Residential Development	E	E	N	E	E	E	N	E
Attached Residential Development	E	Е	N	Е	Е	E ⁽²⁾	N	E

ANTICIPATED & POTENTIAL POLLUTANTS GENERATED BY LAND USE TYPE										
	General Pollutant Categories									
Priority Project Categories and/or Project Features	Suspended Solid/ Sediments	Nutrients	Heavy Metals	Pathogens (Bacteria/ Virus)	Pesticides	Oil & Grease	Toxic Organic Compounds	Trash & Debris		
Commercial/Industrial Development	E ⁽¹⁾	E ⁽¹⁾	E ⁽⁵⁾	E ⁽³⁾	E ⁽¹⁾	E	Е	E		
Automotive Repair Shops	N	N	E	Ν	Ν	E	E	E		
Restaurants	E ⁽¹⁾⁽²⁾	E ⁽¹⁾	E ⁽²⁾	E	E ⁽¹⁾	E	N	E		
Hillside Development >5,000 ft ²	E	E	N	E	E	E	N	E		
Parking Lots	E	E ⁽¹⁾	E	E ⁽⁴⁾	E ⁽¹⁾	E	E	Е		
Streets, Highways, & Freeways	E	E ⁽¹⁾	E	E ⁽⁴⁾	E ⁽¹⁾	Е	Е	E		
Retail Gasoline Outlets	N	Ν	E	Ν	Ν	E	E	Е		
Notes:	1	1	I	1		I	1			

E = expected to be of concern N = not expected to be of concern

(1) Expected pollutant if landscaping exists on-site, otherwise not expected.

(2) Expected pollutant if the project includes uncovered parking areas, otherwise not expected.

(3) Expected pollutant if land use involves food or animal waste products, otherwise not expected.

(4) Bacterial indicators are routinely detected in pavement runoff.

(5) Expected if outdoor storage or metal roofs, otherwise not expected.

Source: County of Orange. (2013, December 20). Technical Guidance Document for the Preparation of Conceptual/ Preliminary and/or Project Water Quality Management Plans (WQMPs). Table 2.1.

Priority Project Categories and/or Features: Attached Residential Development; Commercial/Industrial Development; Restaurants; Parking Lots; Streets, Highways, & Freeways

POLLUTANTS OF CONCERN					
Pollutant	E = Expected to be of concern N =Not Expected to be of concern	Additional Information and Comments			
Suspended Solid/ Sediment	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			
Nutrients	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			
Heavy Metals	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			

POLLUTANTS OF CONCERN					
Pollutant	E = Expected to be of concern N =Not Expected to be of concern	Additional Information and Comments			
Pathogens (Bacteria/Virus)	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			
Pesticides	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			
Oil & Grease	E				
Toxic Organic Compounds	E	303(d) listed impairments, TMDL in effect (see table in Section III.3 for TMDL details)			
Trash & Debris	E				

II.3 HYDROLOGIC CONDITIONS OF CONCERN

The purpose of this section is to identify any hydrologic conditions of concern (HCOC) with respect to downstream flooding, erosion potential of natural channels downstream, impacts of increased flows on natural habitat, etc. As specified in Section 2.3.3 of the 2011 Model WQMP, projects must identify and mitigate any HCOCs. A HCOC is a combination of upland hydrologic conditions and stream biological and physical conditions that presents a condition of concern for physical and/or biological degradation of streams.

In the North Orange County permit area, HCOCs are considered to exist if any streams located downstream from the project are determined to be potentially susceptible to hydromodification impacts and either of the following conditions exists:

Post-development runoff volume for the 2-yr, 24-hr storm exceeds the pre-development runoff volume for the 2-yr, 24-hr storm by more than 5 percent

or

• Time of concentration (Tc) of post-development runoff for the 2-yr, 24-hr storm event exceeds the time of concentration of the pre-development condition for the 2-yr, 24-hr storm event by more than 5 percent.

If these conditions do not exist or streams are not potentially susceptible to hydromodification impacts, an HCOC does not exist and hydromodification does not need to be considered further. In the North Orange County permit area, downstream channels are considered not susceptible to hydromodification, and therefore do not have the potential for a HCOC, if all downstream conveyance channels that will receive runoff from the project are engineered, hardened, and regularly maintained to ensure design flow capacity, and no sensitive habitat areas will be affected.

Is the proposed project potentially susceptible to hydromodification impacts?

\boxtimes

Yes

No (show map)

2-YEAR, 24-HOUR STORM SUMMARY							
Condition Acreage Tc (min) Peak Runoff (cfs) Volume (ac-							
Pre-development	14.69	10.33	14.9	1.241			
Proposed 14.69		13.06	16.3	1.699			
Difference 0		+2.73	+1.4	+0.458			
% Change		+26%	+9.4%	+37%			

The proposed project will increase imperviousness as compared to the existing conditions. The two year volumes will increase 37%. The results indicate the 2-year time of concentration (Tc) increases by 26% as compared to existing conditions. The TGD recognizes that increases in Tc are acceptable, as a longer Tc is generally associated with natural conditions and nearly universally results in lower concerns for hydromodification impacts (TGD, Section 2.2.3.1, footnote 4).

Due to poor infiltrating soils, south basin groundwater plume, and shallow groundwater levels (see Section III.2), infiltration of project runoff is not feasible, and reuse demands are not sufficient to draw down the volume within 30 days (see Section IV.3.3). Therefore, as stated in the 4th Term Storm Water Permit, "In cases where the excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow." (Section XII.D.4) The 2-year peak flow rate increases by 9.4% as compared to existing conditions, which is consistent with the Fourth Term MS4 permit. Therefore, the project complies with the hydromodification requirements and allowable discharge provisions. Calculations are provided in Appendix G.

Detention for Flood Control may be needed to mitigate the difference from existing to proposed conditions for the 10-year storm event. Please refer to the Hydrology Report for 10-year calculations, requirements, and proposed detention for Flood Control.

II.4 POST DEVELOPMENT DRAINAGE CHARACTERISTICS

The post development drainage will maintain existing drainage patterns. The 14.69 project area will collect on-site drainage via roof drains, surface flow, curb and area drains. Low flows and first flush runoff will be pumped to one of four Modular Wetland System (MWS) units for water quality treatment. High flows will by-pass the biotreatment and exit the site. All flows will tie into an existing 84" RCP along Redhill Avenue. From there flows will travel southeast and be temporarily detained in a Tustin Flood Control Basin before exiting to travel along Barranca Channel. Barranca Channel connects to San Diego Creek Reach 1 and ultimately drains to Newport Bay and the Pacific Ocean.

PROPERTY OWNERSHIP/MANAGEMENT			
Private Streets: Vineyards Development Corporation			
Landscaped Areas: Vineyards Development Corporation			
Open Space: Vineyards Development Corporation			
Buildings:	Vineyards Development Corporation		
Structural BMPs:	Vineyards Development Corporation		

II.5 PROPERTY OWNERSHIP/MANAGEMENT

A Property Owners Association (POA) will be formed upon project completion. The POA will be responsible for inspecting and maintaining all BMPs prescribed for The Bowery Mixed-Use project. Until a POA is formally established, Vineyards Development Corporation shall assume all BMP maintenance and inspection responsibilities for the proposed project. Inspection and maintenance responsibilities are outlined in Section V of this report.

SECTION III SITE DESCRIPTION

III.1 PHYSICAL SETTING

Planning Area/ Community Name:	The Bowery Mixed-Use Project			
Address:	2300, 2310 & 2320 Red Hill Ave, Santa Ana, CA 92705			
Project Area Description:	The project is bound by Red Hill Ave to the southeast, Warner Ave to the northeast, and existing light industrial buildings to the southwest and northwest.			
Land Use:	PAO - Professional & Administration Office			
Zoning:	M1 – Light Industrial			
Acreage:	14.69 acres			
Predominant Soil Type:	Type B – per Figure XVI-2a of the TGD			
Impervious Conditions:	Existing Impervious: 75% (25% Pervious) Proposed Impervious: 86% (14% Pervious)			

III.2 SITE CHARACTERISTICS

Precipitation Zone:	0.75 inches per Figure XVI-1 (see Appendix A)		
Topography:	The project site is relatively flat (approx. 0.5% grade), and generally drains from the north to the south.		
Existing Drainage Patterns/ Connections: Under existing conditions, the project site drains northwest where enter an existing catch basin. The catch basin connects to a 6x10 culvert designed for flood control that then ties into an 84" RCP. there flows travel southeast and are temporarily detained in a Tus Flood Control Basin before exiting to travel along Barranca Chan Barranca Channel connects to San Diego Creek Reach 1 and ultimately drains to Newport Bay and the Pacific Ocean.			
Proposed Drainage Patterns/ Connections:	The post development drainage will maintain existing drainage patterns. The 14.69 project area will collect on-site drainage via roof drains, surface flow, curb and area drains. Low flows and first flush runoff will be pumped to one of four Modular Wetland System (MWS) units for water quality treatment. High flows will by-pass the biotreatment and exit the site. All flows will tie into an existing 84" RCP along Redhill Avenue. From there flows will travel southeast and be temporarily detained in a Tustin Flood Control Basin before exiting to travel along Barranca Channel. Barranca Channel connects to San Diego Creek Reach 1 and ultimately drains to Newport Bay and the Pacific Ocean.		

Soil Type, Geology, and Infiltration Properties:	A geotechnical study was performed for the site in 2019 by LGC Geotechnical, Inc. Soils within the vicinity of the project site generally consist of older artificial fill materials and quaternary alluvial deposits. Artificial fill materials consist of slightly moist to moist clays and silts with variable amounts of sand to depths up to 7.5 feet below ground surface (bgs). Alluvial soils beneath the artificial fill generally consist of loose to medium dense silty sands to depths of approximately 50 feet bgs. In addition, the study is located within a liquefaction hazard zone.	
Hydrogeologic (Groundwater) Conditions:	The project site is located in an area with shallow (or high) groundwater levels, approximately between 5-10 feet below bgs as illustrated in the TGD Figure XVI-2e (see Appendix A). During the geotechnical study, moist to wet soils were encountered at depths 24 to 33 feet bgs, and previous data indicates that historic high groundwater within the region of the site is approximately 10 feet bgs.	
Geotechnical Conditions (relevant to infiltration):	Infiltration testing performed by LGC Geotechnical, Inc. observed a measured infiltration rate of 0.15 in/hr which, according to Section 2.4.2.4 of the OC TGD, is considered infeasible. As illustrated in the TGD Figure XVI-2f (see Appendix A), the project site is located within the South Basin Groundwater Protection Project and borders the Tustir Marine Air Base as well as the Selenium Contamination Area. Due to low infiltration rates, historical shallow groundwater and location of the project in the South Basin Groundwater Plume, infiltration is considered infeasible for the project site.	
Off-Site Drainage:	The project site does not receive any off-site storm water flows onto the property.	
Utility and Infrastructure Information:	Dry and wet utilities will be incorporated into the proposed project and will tie into existing facilities associated with the existing development.	

III.3 WATERSHED DESCRIPTION

Receiving Waters:	San Diego Creek, Reach 1;		
	Upper Newport Bay, Lower Newport Bay		
	San Diego Creek, Reach 1: fecal coliform, nutrients, pesticides, sedimentation, selenium, toxaphene		
303(d) Listed Impairments:	Newport Bay, Upper: chlordane, copper, DDT, metals, nutrients, PCBs, sediment toxicity, sedimentation		
	Newport Bay, Lower: chlordane, DDT, nutrients, PCBs, pesticides, sediment toxicity		

Applicable TMDLs:	San Diego Creek, Reach 1: metals, nutrients, pesticides, sedimentation Newport Bay, Upper: metals, nutrients, pathogens, pesticides, sedimentation Newport Bay, Lower: metals, nutrients, pathogens, pesticides/priority organics, sedimentation			
Pollutants of Concern for the Project:	 Suspended Solid/Sediments 303(d) listed impairment & Total Maximum Daily Load (TMDL) for Sediment Nutrients 303(d) listed impairment & TMDL for Nutrients 9 athogens/Bacteria/Virus 303(d) listing for Fecal Coliform, TMDL for Pathogens Pesticides 303(d) listings for Pesticides & DDT, TMDLs for Organochlorine Compounds, Metals, Diazinon & Clorpyrifos Trash & Debris 			
Hydrologic Conditions of Concern (HCOCs):	The project complies with the hydromodification requirements and allowable discharge provisions. Refer to Section II.3 for details.			
Environmentally Sensitive and Special Biological Significant Areas:	There are no Environmentally Sensitive Areas (ESAs) within 200 ft. of the project site. In addition, there are no Areas of Special Biological Significance (ASBS) within the project site.			

SECTION IV BEST MANAGEMENT PRACTICES (BMPs)

IV.1 PROJECT PERFORMANCE CRITERIA

Is there an approved WIHMP or equivalent for the project area that includes more stringent LID feasibility criteria or if there are opportunities identified for implementing LID on regional or sub-regional basis?

-					
Yes 🛛] No				
	PROJECT PERFORMANCE CRITERIA				
Hydromodification Control Performance Criteria: (Model WQMP Section 7.II-2.4.2.2)	 If a hydrologic condition of concern (HCOC) exists, priority projects shall implement onsite or regional hydromodification controls such that: Post-development runoff volume for the two-year frequency storm does not exceed that of the predevelopment condition by more than five percent, and Time of concentration of post-development runoff for the two-year storm event is not less than that for the predevelopment condition by more than five percent. Where the Project WQMP documents that excess runoff volume from the two-year runoff event cannot feasibly be retained and where in-stream controls cannot be used to otherwise mitigate HCOCs, the project shall implement on-site or regional hydromodification controls to: Retain the excess volume from the two-year runoff event to the MEP, and Implement on-site or regional hydromodification controls such that the post-development runoff two-year peak flow rate is no greater than 110 percent of the predevelopment runoff two-year peak flow rate. 				
LID Performance Criteria: (Model WQMP Section 7.II-2.4.3)	 Infiltrate, harvest and use, evapotranspire, or biotreat/biofilter, the 85th percentile, 24-hour storm event (Design Capture Volume). LID BMPs must be designed to retain, on-site, (infiltrate, harvest and use, or evapotranspire) storm water runoff up to 80 percent average annual capture efficiency. 				
Treatment Control BMP Performance Criteria: (Model WQMP Section 7.II-3.2.2)	If it is not feasible to meet LID performance criteria through retention and/or biotreatment provided on-site or at a sub-regional/regional scale, then treatment control BMPs shall be provided on-site or offsite prior to discharge to waters of the US. Sizing of treatment control BMP(s) shall be based on either the unmet volume after claiming applicable water quality credits, if appropriate.				

PROJECT PERFORMANCE CRITERIA				
D	$CV = C \times d \times A \times 43560 \text{ sf/ac} \times 1/12 \text{ in/ft}$			
LID Design Storm Capture Volume: DO	There: $DCV = design storm capture volume, cu-ft$ $C = runoff coefficient = (0.75 \times imp + 0.15)$ $Imp = impervious fraction of drainage area (ranges from 0 to 1)$ $d = storm depth (inches)$ $A = tributary area (acres)$ $Imp = 86$ $d = 0.75 \text{ inches}$ $A = 14.69 \text{ acres}$ $CV = (0.75 \times 0.86 + 0.15) \times 0.75 \text{ inches } \times 14.69 \text{ ac } \times 43560 \text{ sf/ac } \times 1/12 \text{ in/ft}$ $= 31,795 \text{ cu-ft}$ efter to Section IV.2.2 for specific Drainage Manage Area (DMA) eakdown and Appendix A for detailed calculations (Worksheet B).			

IV.2 SITE DESIGN AND DRAINAGE PLAN

The following section describes the site design BMPs used in this project and the methods used to incorporate them. Careful consideration of site design is a critical first step in storm water pollution prevention from new developments and redevelopments.

IV.2.1 Site Design BMPs

Minimize Impervious Area

Impervious surfaces have been minimized by incorporating landscaped areas throughout the site surrounding the proposed building. Landscaping will be provided throughout the site within the common areas as well as around the perimeter of the building.

Maximize Natural Infiltration Capacity

Infiltration is not recommended for the project site due to proximity to groundwater, poor infiltrating soils and the site's proximity to the South Basin Groundwater Plume. Refer to Section IV.3.2 for details.

Preserve Existing Drainage Patterns and Time of Concentration

Runoff from the site will continue to flow similar to existing conditions. Low-flows and first-flush runoff will drain to modular wetland units for water quality treatment via bio-filtration.

Disconnect Impervious Areas

Landscaping will be provided between the proposed buildings. Low-flows and first-flush runoff will drain to modular wetland units for water quality treatment via bio-filtration. Refer to Section IV.3.4 for further details.

Protect Existing Vegetation and Sensitive Areas, and Revegetate Disturbed Areas

There are no existing vegetated or sensitive areas to preserve on the project site. All disturbed areas will either be paved or landscaped.

<u>Xeriscape Landscaping</u>

Xeriscape landscaping is not proposed for the project. However, native and/or tolerant landscaping will be incorporated into the site design consistent with City guidelines.

IV.2.2 Drainage Management Areas

In accordance with the MS4 permit and the 2011 Model WQMP, the project site has been divided into Drainage Management Areas (DMAs) to be utilized for defining drainage areas and sizing LID and other treatment control BMPs. DMAs have been delineated based on the proposed site grading patterns, drainage patterns, storm drain and catch basin locations.

The design capture volumes (DCV) and treatment flow rates (Q_{Design}) for each DMA are summarized in the table below. These have been derived utilizing the "Simple Method" in accordance with the TGD Section III.1.1. Actual BMP sizing requirements, including 80 percent capture design volumes, flow rates, depths, and other design details for the specific BMPs proposed are provided in Section IV.3.4 below. Locations of DMAs and associated LID and treatment BMPs are identified on the exhibits in Section VI. Additional calculations and TGD Worksheets are provided in Appendix A.

DRAINAGE MANAGEMENT AREAS (DMAs)								
DMA/ Drainage Area ID ⁽¹⁾	Tributary Drainage Area (ft ²)	Tributary Drainage Area (ac)	% Imp.	Design Storm Depth ⁽²⁾ (in)	Estimated Tc (min)	Rainfall Intensity ⁽³⁾ (in/hr)	Simple Method DCV ⁽⁴⁾ (ft ³)	Q _{Design} ⁽⁵⁾ (cfs)
DMA 1	639,896	14.69	86	0.75	5	0.26	31,795	3.036

Notes:

1. Refer to exhibits in Section VI for locations of each DMA.

2. Per Figure XVI-1 of the Technical Guidance Document, dated December 20, 2013. See also Appendix A.

3. Per Figure III.4 of the Technical Guidance Document, dated December 20, 2013. See also Appendix A.

4. Per Section III.1.1 of the Technical Guidance Document.

5. Per Section III.3.3 and Worksheet D of the Technical Guidance Document.

IV.3 LID BMP SELECTION AND PROJECT CONFORMANCE ANALYSIS

Low Impact Development (LID) BMPs are required in addition to site design measures and source controls to reduce pollutants in storm water discharges. LID BMPs are engineered facilities that are designed to retain or biotreat runoff on the project site. The 4th Term MS4 Storm Water Permit (Order R8-2009-0030) requires the evaluation and use of LID features using the following hierarchy of

treatment: infiltration, evapotranspiration, harvest/reuse, and biotreatment. The following sections summarize the LID BMPs proposed for the project in accordance with the permit hierarchy and performance criteria outlined in Section IV.1.

IV.3.1 Hydrologic Source Controls (HSCs)

Hydrologic source controls (HSCs) can be considered to be a hybrid between site design practices and LID BMPs. HSCs are distinguished from site design BMPs in that they do not reduce the tributary area or reduce the imperviousness of a drainage area; rather they reduce the runoff volume that would result from a drainage area with a given imperviousness compared to what would result if HSCs were not used.

HYDROLOGIC SOURCE CONTROLS							
ID	ID Name						
HSC-1	Localized on-lot infiltration						
HSC-2	Impervious area dispersion (e.g. roof top disconnection)						
HSC-3	Street trees (canopy interception)						
HSC-4	Residential rain barrels (not actively managed)						
HSC-5	Green roofs/Brown roofs						
HSC-6	Blue roofs						
HSC-7	Impervious area reduction (e.g. permeable pavers, site design)						

HSCs were not incorporated into the project's design at this stage in the project's development. Any HSC's will be accounted for during final design and the cumulative volume of the HSC's will be subtracted from the required treatment volume in the Final WQMP.

IV.3.2 Infiltration BMPs

Infiltration BMPs are LID BMPs that capture, store and infiltrate storm water runoff. These BMPs are engineered to store a specified volume of water and have no design surface discharge (underdrain or outlet structure) until this volume is exceeded. Examples of infiltration BMPs include infiltration trenches, bioretention without underdrains, drywells, permeable pavement, and underground infiltration galleries.

INFILTRATION						
ID	Name	Included?				
INF-3	Bioretention Without Underdrains					
INF-4	Rain Gardens					

INFILTRATION					
ID	Name	Included?			
	Porous Landscaping				
	Infiltration Planters				
	Retention Swales				
INF-2	Infiltration Trenches				
INF-1	Infiltration Basins				
INF-5	Drywells				
INF-7	Subsurface Infiltration Galleries				
	French Drains				
	Permeable Asphalt				
INF-6	Permeable Concrete				
	Permeable Concrete Pavers				
	Other:				

No infiltration BMPs are proposed within the redevelopment project. As discussed in Section III.2, due to low infiltration rates, historical shallow groundwater and location of the project in the South Basin Groundwater Plume, infiltration is considered infeasible for the project site. See Appendices A and F for further details.

IV.3.3 Evapotranspiration & Rainwater Harvesting BMPs

Evapotranspiration (ET) BMPs are a class of retention BMPs that discharges stored volume predominately to ET, though some infiltration may occur. ET includes both evaporation and transpiration, and ET BMPs may incorporate one or more of these processes. BMPs must be designed to achieve the maximum feasible ET, where required to demonstrate that the maximum amount of water has been retained on-site. Since ET is not the sole process in these BMPs, specific design and sizing criteria have not been developed for ET-based BMPs.

EVAPOTRANSPIRATION						
ID	Name	Included?				
	HSCs, see Section IV.3.1					
	Surface-based infiltration BMPs					
	Biotreatment BMPs, see Section VI.3.4					

	EVAPOTRANSPIRATION					
ID	Name	Included?				
	Other:					

Bioretention BMPs are proposed which utilize evapotranspiration as a physical process for runoff volume reduction. Bioretention BMPs are described further in Section IV.3.4.

Harvest and use (aka. Rainwater Harvesting) BMPs are LID BMPs that capture and store storm water runoff for later use. These BMPs are engineered to store a specified volume of water and have no design surface discharge until this volume is exceeded. Harvest and use BMPs include both above-ground and below-ground cisterns. Examples of uses for harvested water include irrigation, toilet and urinal flushing, vehicle washing, evaporative cooling, industrial processes and other non-potable uses.

HARVEST & REUSE / RAINWATER HARVESTING						
ID	Name	Included?				
HU-1	Above-ground cisterns and basins					
HU-2	Underground detention					
	Other:					

In order to quantify harvested water demand for the common areas of the project, the Modified Estimated Applied Water Use (EAWU) method was used, consistent with Appendix X of the Model WQMP's Technical Guidance Document (TGD), dated December 20, 2013.

The Modified EAWU method is modified from the OC Irrigation Code (County Ordinance No. 09-010) to account for the wet season demand and storm events (assuming that no irrigation would be applied for approximately 30% of the days in the wet season).

The equation used to calculate the Modified EAWU is:

$$Modified \ EAWU = \frac{(ETowet \ \times \ KL \ \times LA \ \times \ 0.015)}{IE}$$

Where:

Modified EAWU = estimated daily average water use during wet season
ETo_{wet} = average reference ET from November through April (inches per month) per Table X.2 of the TGD
K_L = landscape coefficient (Table X.4 of the TGD)

LA = landscape area irrigated with harvested water (square feet)

IE = irrigation efficiency (assumed at 90%)

Note: In the equation, the coefficient (0.015) accounts for unit conversions and shut down of irrigation during and for three days following a significant precipitation event.

For a system to be considered "feasible", the system must be designed with a storage volume equal to the DCV from the tributary area and achieve more than 40% capture. The system must also be able to drawdown in 30 days to meet the 40% capture value. In addition, Table X.6 of the Technical Guidance Document sets forth the demand thresholds for minimum partial capture.

TABLE X.6: HARVESTED WATER DEMAND THRESHOLDS FOR MINIMUM PARTIAL CAPTURE						
Design Capture Storm Depth, inches	Wet Season Demand Required for Minimum Partial Capture, gpd per impervious acre					
0.60	490					
0.65	530					
0.70	570					
0.75	610					
0.80	650					
0.85	690					
0.90	730					
0.95	770					
1.00	810					

The following table summarizes the estimated applied water use for the common area landscaping of the project.

ESTIMATED APPLIED WATER USE (EAWU) FOR COMMON AREA LANDSCAPING									
Landscape Type	Total Area (ac)	% Impervious	Impervious Tributary (ac)	Irrigated LS Area (ac)	ETo _{wet (1)} (in/mo)	K _L ⁽²⁾		Modified EAWU per impervious acre (gpd/ac)	Minimum Capture Threshold ⁽³⁾ (gpd/ac)
Blend	14.69	86	12.63	89,585	2.93	0.55	2,406	190.5	610
	Design Capture Volume (gal) 237,825 Drawdown (days)								99

Notes:

1 Per Table X.2 for Santa Ana Region (similar climate type), Model WQMP Technical Guidance Document, dated May 19, 2011.

2 Per Table X.4 of the Model WQMP Technical Guidance Document, dated May 19, 2011.

3 Per Table X.6 of Model WQMP Technical Guidance Document, dated May 19, 2011.

As shown above, the project site does not have sufficient water demand during the wet season to support harvest and reuse. For this project a blend of high and low water use landscaping was

assumed, and the project, therefore, does not meet the minimum capture threshold of 610 gallons per day/acre with its Modified EAWU or estimated daily average water usage during the wet season. The DCV will not be fully utilized and emptied for the next storm event. Drawdown of the DCV is anticipated to take approximately 99 days by the landscape's water demand usage, which is greater than the maximum drawdown time of 30 days.

IV.3.4 Biotreatment BMPs

Biotreatment BMPs are a broad class of LID BMPs that reduce storm water volume to the maximum extent practicable, treat storm water using a suite of treatment mechanisms characteristic of biologically active systems, and discharge water to the downstream storm drain system or directly to receiving waters. Treatment mechanisms include media filtration (though biologically-active media), vegetative filtration (straining, sedimentation, interception, and stabilization of particles resulting from shallow flow through vegetation), general sorption processes (i.e., absorption, adsorption, ion-exchange, precipitation, surface complexation), biologically-mediated transformations, and other processes to address both suspended and dissolved constituents. Examples of biotreatment BMPs include bioretention with underdrains, vegetated swales, constructed wetlands, and proprietary biotreatment systems.

BIOTREATMENT					
ID	Name	Included?			
	Bioretention with underdrains				
BIO-1	Storm Water planter boxes with underdrains				
	Rain gardens with underdrains				
BIO-5	Constructed wetlands				
BIO-2	Vegetated swales				
BIO-3	Vegetated filter strips				
BIO-7	Proprietary vegetated biotreatment systems	\square			
BIO-4	Wet extended detention basin				
BIO-6	Dry extended detention basins				
	Other:				

Since both infiltration and harvest and reuse are considered infeasible, biotreatment BMPs will be utilized on-site for water quality treatment, including four proprietary Modular Wetland System units. This BMP was chosen based on its ability to treat the project's pollutants of concerns to a medium or high effectiveness, in accordance with the Model WQMP and TGD requirements. The table below summarizes the overall treatment effectiveness for Modular Wetland Systems, derived from Table 4.2 of the Technical Guidance Document and testing data provided by the manufacturer. Additional details on the proposed BMPs are included in Section VI of this WQMP.

_	
Treatme	ent Effectiveness
Bioretention System ⁽²⁾	Modular Wetlands Proprietary Bioretention Units ⁽³⁾
High	High
Low	Medium-High
High	Medium
Medium	Medium-High
N/A	N/A
High	High
Medium	N/A ⁽⁴⁾
High	High
-	High Low High Medium N/A High Medium

2 Per Table 4.2 of the Model WQMP's companion Technical Guidance Document dated May 19, 2011.

3 Based on Washington State University Technology Assessment Protocol – Ecology (TAPE) third-party independent field tests for a high-flow biotreatment system with raised under drain (Modular Wetland System-Linear). Refer to manufacturer documentation (attached) for specific removal efficiencies and source references.

4 Field and Lab Testing demonstrates 75-83% removal rates of Chemical Oxygen Demand (COD), a measure of the amount of organic pollutants commonly found in surface water. COD removals of this range would fall within the Medium-High effectiveness category.

Modular Wetlands by Modular Wetlands Systems, Inc. are proprietary biotreatment systems that utilize multi-stage treatment processes including screening media filtration, settling, and biofiltration. The pre-treatment chamber contains the first three stages of treatment, and includes a catch basin inlet filter to capture trash, debris, gross solids and sediments, a settling chamber for separating out larger solids, and a media filter cartridge for capturing fine TSS, metals, nutrients, and bacteria. Runoff then flows through the wetland chamber where treatment is achieved through a variety of physical, chemical, and biological processes. As storm water passes down through the planting soil, pollutants are filtered, adsorbed, biodegraded and sequestered by the soil and plants, functioning similar to bioretention systems. The discharge chamber at the end of the unit collects treated flows and discharges back into the storm drain system.

In accordance with the Model WQMP and TGD, the bioretention/biotreatment BMPs will be sized to treat runoff from the Design Capture Storm (85th percentile, 24-hour). Since Modular Wetlands are sized based on flow rate, they were sized utilizing the methodology for flow based BMPs (TGD Section III.1.2 and Worksheet D). Locations and tributary drainage areas are shown on the WQMP Exhibit included in Section VI. BMP details are also included in Section VI. Detailed calculations and associated TGD Worksheets are included in Appendix A. Operation and maintenance details are included in Section V and Appendix D (O&M Plan).

MODULAR WETLAND SYSTEM DESIGN SUMMARY									
DMA ID ⁽¹⁾ Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) Area (ac) % Imp. 2-Year Tc (min) Area (ac) % Imp. 2-Year Tc (min) Area (ac) % Imp. 2-Year						Combined Treatment Capacity ⁽⁵⁾ (cfs)			
DMA 1	14.69	86%	5.0	0.26	3.036	Four MWS-L-8-24 High Capacity (3.75')	3.056		

Notes:

(1) See also Section IV.2.2.

(2) Refer to WQMP Exhibit in Section VI for locations of each drainage area and BMP.

(3) Detailed calculations and worksheets are included in Appendix A.

(4) Unit details and specifications are included in Section VI.

(5) Treatment capacities of each unit are based on wetland media design loading rate (controlled by downstream orifice) and perimeter surface area of wetland media provided. Individual unit sizing calculations provided by the manufacturer are included on each cut sheet/detail included in Section VI.

Four high capacity modular wetland systems will be installed in the parking lot along Redhill Avenue. Low flows will be diverted and pumped to the MWS units for treatment before joining the main storm drain system along Redhill Avenue.

IV.3.5 Hydromodification Control BMPs

Not applicable. Refer to Section II.3 for further information.

IV.3.6 Regional/Sub-Regional LID BMPs

Not applicable. LID BMPs (biofiltration) will be utilized for water quality treatment on-site in accordance with the MS4 Permit hierarchy identified at the beginning of this Section.

IV.3.7 Treatment Control BMPs

Treatment control BMPs can only be considered if the project conformance analysis indicates that it is not feasible to retain the full design capture volume with LID BMPs.

	TREATMENT CONTROL BMPs					
ID	Name	Included?				
TRT-1	Sand Filters					
TRT-2	Cartridge Media Filter					
PRE-1	Hydrodynamic Separation Device					
PRE-2	Catch Basin Insert					
	Other:					

Not applicable. LID BMPs (biofiltration) will be utilized for water quality treatment on-site in accordance with the MS4 Permit hierarchy identified at the beginning of this Section.

IV.3.8 Non-Structural Source Control BMPs

The table below indicates all BMPs to be incorporated in the project. For those designated as not applicable (N/A), a brief explanation why is provided.

NON-STRUCTURAL SOURCE CONTROL BMPs				
ID	Name	Included?	Not Applicable?	If Not Applicable, Provide Brief Reason
NI	Education for Property Owners, Tenants and Occupants	\square		
N2	Activity Restrictions	\square		
N3	Common Area Landscape Management	\square		
N4	BMP Maintenance	\square		
N5	Title 22 CCR Compliance (How development will comply)		\square	Not applicable – no hazardous materials.
N6	Local Water Quality Permit Compliance		\boxtimes	The City of Santa Ana does not issue water quality permits.
N7	Spill Contingency Plan		\boxtimes	Not applicable, no proposed hazardous materials on site
N8	Underground Storage Tank Compliance		\boxtimes	No underground storage tanks are proposed.
N9	Hazardous Materials Disclosure Compliance			Not applicable – no proposed hazardous materials on site
N10	Uniform Fire Code Implementation			Not applicable – no hazardous materials.
N11	Common Area Litter Control	\square		
N12	Employee Training	\square		
N13	Housekeeping of Loading Docks			
N14	Common Area Catch Basin Inspection	\square		
N15	Street Sweeping Private Streets and Parking Lots			

	NON-STRUCTURAL SOURCE CONTROL BMPs				
	ID	Name	Included?	Not Applicable?	If Not Applicable, Provide Brief Reason
I	N16	Retail Gasoline Outlets		\square	No retail gasoline outlets are proposed.

N1, Education for Property Owners, Tenants and Occupants

Educational materials will be provided to tenants, including brochures and restrictions to reduce pollutants from reaching the storm drain system. Examples include tips for pet care, household tips, and proper household hazardous waste disposal. Tenants will be provided with these materials by the property management prior to occupancy, and periodically thereafter. Refer to Section VII for a list of materials available and attached to this WQMP. Additional materials are available through the County of Orange Stormwater Program website (<u>http://ocwatersheds.com/PublicEd/</u>) and the California Stormwater Quality Association's (CASQA) BMP Handbooks (<u>http://www.cabmphandbooks.com/</u>).

N2, Activity Restrictions

The Owner shall develop ongoing activity restrictions that include those that have the potential to create adverse impacts on water quality. Activities include, but are not limited to: handling and disposal of contaminants, fertilizer and pesticide application restrictions, litter control and pick-up, and vehicle or equipment repair and maintenance in non-designated areas, as well as any other activities that may potentially contribute to water pollution.

N3, Common Area Landscape Management

Management programs will be designed and implemented by the Owner to maintain all the common areas within the project site. These programs will cover how to reduce the potential pollutant sources of fertilizer and pesticide uses, utilization of water-efficient landscaping practices and proper disposal of landscape wastes by the owner/developer and/or contractors.

N4, BMP Maintenance

The Owner will be responsible for the implementation and maintenance of each applicable nonstructural BMP, as well as scheduling inspections and maintenance of all applicable structural BMP facilities through its staff, landscape contractor, and/or any other necessary maintenance contractors. Details on BMP maintenance are provided in Section V of this WQMP, and the O&M Plan is included in Appendix D.

N11, Common Area Litter Control

The Owner will be responsible for performing trash pickup and sweeping of littered common areas on a weekly basis or whenever necessary. Responsibilities will also include noting improper disposal materials by the public and reporting such violations for investigation.

N12, Employee Training

All employees of the Owner and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, housekeeping practices, etc.

N13, Housekeeping of Loading Docks

Housekeeping measures will be implemented by the Owner to keep the proposed loading dock and delivery areas clean and orderly condition. Includes sweeping, removal of trash & debris on a weekly basis, and use of dry methods for cleanup (e.g., sweeping).

N14, Common Area Catch Basin Inspection

All on-site catch basin inlets and drainage facilities shall be inspected and maintained by the Owner at least once a year, prior to the rainy season, no later than October 1st of each year.

N15, Street Sweeping Private Streets and Parking Lots

The Owner shall be responsible for sweeping all on-site streets, drive aisles, and parking lots within the project on a quarterly basis.

IV.3.9 Structural Source Control BMPs

The table below indicates all BMPs to be incorporated in the project. For those designated as not applicable (N/A), a brief explanation why is provided.

STRUCTURAL SOURCE CONTROL BMPs				
ID	Name	Included?	Not Applicable?	If Not Applicable, Provide Brief Reason
S1 SD-13	Provide storm drain system stenciling and signage	\square		
S2 SD-34	Design and construct outdoor material storage areas to reduce pollution introduction		\boxtimes	No outdoor storage areas are proposed.
S3 SD-32	Design and construct trash and waste storage areas to reduce pollution introduction	\square		
\$4 \$D-12	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control			
\$5	Protect slopes and channels and provide energy dissipation		\square	There are no slopes or channels on the project site.
S6 SD-31	Properly Design: Dock areas			

STRUCTURAL SOURCE CONTROL BMPs				
ID	Name	Included?	Not Applicable?	If Not Applicable, Provide Brief Reason
S7 SD-31	Properly Design: Maintenance bays		\square	No maintenance bays are proposed.
\$8 SD-33	Properly Design: Vehicle wash areas		\boxtimes	No vehicle wash areas are proposed.
S9 SD-36	Properly Design: Outdoor processing areas		\boxtimes	No outdoor processing areas are proposed.
S10	Properly Design: Equipment wash areas		\boxtimes	No equipment wash areas are proposed.
S11 SD-30	Properly Design: Fueling areas		\boxtimes	No fueling areas are proposed.
\$12 SD-10	Properly Design: Hillside landscaping		\boxtimes	Project is not located in a hillside area.
S13	Properly Design: Wash water control for food preparation areas	\square		
S14	Properly Design: Community car wash racks		\square	No community car wash racks are proposed.

<u>S1/SD-13, Provide storm drain system stenciling and signage</u>

The phrase "NO DUMPING! DRAINS TO OCEAN", or an equally effective phrase approved by the City, will be stenciled on all major storm drain inlets within the project site to alert the public to the destination of pollutants discharged into storm water. Stencils shall be in place prior to release of certificate of occupancy. Stencils shall be inspected for legibility on an annual basis and re-stenciled as necessary.

<u>S3/SD-32</u>, Design and construct trash and waste storage areas to reduce pollution introduction

All trash and waste shall be stored in containers that have lids or tarps to minimize direct precipitation into the containers. There will be four trash staging areas. One trash storage area will be located near Building C adjacent to the main roadway that bisects the site. Another storage area will be located across the main roadway outside of Building B. The third storage area will be located at the western edge of the main roadway outside of Building D. The fourth storage area will be located on the southeastern edge of the main roadway outside of Building A. The trash storage areas will be designed to City standards, and will be walled, roofed, have gates and proper drainage per City standards.

<u>S4/SD-12</u>, Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control

The Owner will be responsible for the installation and maintenance of all common landscape areas utilizing similar planting materials with similar water requirements to reduce excess irrigation runoff.

The Owner will be responsible for implementing all efficient irrigation systems for common area landscaping including, but not limited to, provisions for water sensors and programmable irrigation cycles. This includes smart timers, rain sensors, and moisture shut-off valves. The irrigation systems shall be in conformance with water efficiency guidelines. Systems shall be tested twice per year, and water used during testing/flushing shall not be discharged to the storm drain system.

<u>S6/SD-31, Properly Design: Dock areas</u>

Three loading dock areas will be located throughout the central and southern portions of the site. One loading dock area consisting of two parking stalls will be located along the northern edge of the main roadway. Another loading dock area will be located directly across the main roadway. The third loading dock area will be located at the southern edge of the site adjacent to the sidewalk along Warner Ave. Runoff from the loading dock will not discharge into the storm drain system. Housekeeping measures shall be implemented in accordance with BMP N13.

S13, Properly Design: Wash water control for food preparation areas

All wash water from food prep areas will be controlled and proper staff training conducted by the site operator. Food preparation facilities shall meet all health and safety, building and safety and any other applicable regulations, codes requirements, including installation of a grease interceptor where required. Sinks shall be contained with sanitary sewer connections for disposal of wash waters containing kitchen and food wastes.

IV.4 ALTERNATIVE COMPLIANCE PLAN

IV.4.1 Water Quality Credits

Local jurisdictions may develop a water quality credit program that applies to certain types of development projects after they first evaluate the feasibility of meeting LID requirements on-site. If it is not feasible to meet the requirements for on-site LID, project proponents for specific project types can apply credits that would reduce project obligations for selecting and sizing other treatment BMPs or participating in other alternative programs.

WATER QUALITY CREDITS		
Credit	Applicable?	
Redevelopment projects that reduce the overall impervious footprint of the project site.		
Brownfield redevelopment, meaning redevelopment, expansion, or reuse of real property which may be complicated by the presence or potential presence of hazardous substances, pollutants or contaminants, and which have the potential to contribute to adverse ground or surface water quality if not redeveloped.		
Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance)		

WATER QUALITY CREDITS			
Credit	Applicable?		
Mixed use development, such as a combination of residential, commercial, industrial, office, institutional, or other land uses which incorporate design principles that can demonstrate environmental benefits that would not be realized through single use projects (e.g. reduced vehicle trip traffic with the potential to reduce sources of water or air pollution).			
Transit-oriented developments, such as a mixed use residential or commercial area designed to maximize access to public transportation; similar to above criterion, but where the development center is within one half mile of a mass transit center (e.g. bus, rail, light rail or commuter train station). Such projects would not be able to take credit for both categories, but may have greater credit assigned			
Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).			
Developments with dedication of undeveloped portions to parks, preservation areas and other pervious uses.			
Developments in a city center area.			
Developments in historic districts or historic preservation areas.			
Live-work developments, a variety of developments designed to support residential and vocational needs together – similar to criteria to mixed use development; would not be able to take credit for both categories.			
In-fill projects, the conversion of empty lots and other underused spaces into more beneficially used spaces, such as residential or commercial areas.			

Not applicable. Water quality credits will not be applied for the project. LID BMPs will be utilized for water quality treatment on-site in accordance with the MS4 Permit hierarchy identified at the beginning of this Section.

IV.4.2 Alternative Compliance Plan Information

Not applicable. LID BMPs (biofiltration) will be utilized for water quality treatment on-site in accordance with the MS4 Permit hierarchy identified at the beginning of this Section.

SECTION V INSPECTION/MAINTENANCE RESPONSIBILITY FOR BMPs

It has been determined that Vineyards Development Corporation shall assume all BMP inspection and maintenance responsibilities for The Bowery Mixed-Use project.

Contact Name:	Jeremy Ogulnick
Title:	Vice President of Development
Company:	Vineyards Development Corporation
Address:	240 Newport Center Drive, Suite 200, Newport Beach, CA 92660
Phone:	310.849.5793
Email:	Jeremy@vineyardsdc.com

Should the maintenance responsibility be transferred at any time during the operational life of The Bowery Mixed-Use project, such as when an HOA or POA is formed for a project, a formal notice of transfer shall be submitted to the City of Santa Ana at the time responsibility of the property subject to this WQMP is transferred. The transfer of responsibility shall be incorporated into this WQMP as an amendment.

The POA shall verify BMP implementation and ongoing maintenance through inspection, selfcertification, survey, or other equally effective measure. The certification shall verify that, at a minimum, the inspection and maintenance of all structural BMPs including inspection and performance of any required maintenance in the late summer / early fall, prior to the start of the rainy season. A form that may be used to record implementation, maintenance, and inspection of BMPs is included in Appendix D.

The City of Santa Ana may conduct verifications to assure that implementation and appropriate maintenance of structural and non-structural BMPs prescribed within this WQMP is taking place at the project site. The POA shall retain operations, inspections and maintenance records of these BMPs and they will be made available to the City or County upon request. All records must be maintained for at least five (5) years after the recorded inspection date for the lifetime of the project.

Long-term funding for BMP maintenance will be provided by Vineyards Development Corporation.

The Operations and Maintenance (O&M) Plan can be found in Appendix D.

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX						
	ВМР	Inspection/Maintenance Activities	Minimum Frequency	Responsible Party			
BIOTRE	EATMENT BMPs						
BIO-7	Proprietary Biotreatment: Modular Wetland Systems (MWS)	The Modular Wetland unit shall be maintained in accordance with manufacturer's specifications. The system shall be inspected at a minimum of once every six months, prior to the start of the rainy season (October 1) each year, and after major storm events. Typical maintenance includes removing trash & debris from the catch basin screening filter (by hand), removal of sediment and solids in the settlement chamber (vacuum truck), replacement of the BioMediaGREEN TM filter cartridge, and replacement of the BioMediaGREEN TM drain down filter (if equipped). In addition, plants within the wetland chamber will require trimming as needed in conjunction with routine landscape maintenance activities. No fertilizer shall be used in this chamber. Wetland chamber should be inspected during rain events to verify flow through the system. If little to no flow is observed from the lower valve or orifice plate, the wetland media may require replacement. If prior treatment stages are properly maintained, the life of the wetland media can be up to 20 years.	2x per year	Vineyards Development Corporation			
NON-S	NON-STRUCTURAL SOURCE CONTROL BMPs						
NI	Education for Property Owners, Tenants and Occupants	Educational materials will be provided to tenants annually. Materials to be distributed are found in Appendix C of this WQMP. Tenants will be provided these materials by Property Management prior to occupancy and annually thereafter.	Annually	Vineyards Development Corporation			

VINEYARDS DEVELOPMENT CORPORATION

BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX					
	ВМР	Inspection/Maintenance Activities	Responsible Party		
N2	Activity Restrictions	The Owner will prescribe activity restrictions to protect surface water quality, through lease terms or equally effective measure, for the property. Restrictions include but are not limited to prohibiting vehicle maintenance or vehicle washing.	Ongoing	Vineyards Development Corporation	
N3	Common Area Landscape Management	Maintenance shall be consistent with County requirements. Fertilizer and/or pesticide usage shall be consistent with County Management Guidelines for Use of Fertilizers (OC DAMP § 5.5). Maintenance includes mowing, weeding, and debris removal on a weekly basis. Trimming, replanting, and replacement of mulch shall be performed on an as-needed basis to prevent exposure of erodible surfaces. Trimmings, clippings, and other landscape wastes shall be properly disposed of in accordance with local regulations. Materials temporarily stockpiled during maintenance activities shall be placed away from water courses and drain inlets.	Monthly	Vineyards Development Corporation	
N4	BMP Maintenance	Maintenance of structural BMPs implemented at the project site shall be performed at the frequency prescribed in this WQMP (Appendix B). Records of inspections and BMP maintenance shall be kept by the Owner and shall be available for review upon request.	Ongoing	Vineyards Development Corporation	
N5	Title 22 CCR Compliance (How development will comply)	Not Applicable			
N6	Local Industrial Permit Compliance	Not Applicable			
N7	Spill Contingency Plan	Not Applicable			

VINEYARDS DEVELOPMENT CORPORATION

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX					
	ВМР	Inspection/Maintenance Activities	Minimum Frequency	Responsible Party		
N8	Underground Storage Tank Compliance	Not Applicable				
N9	Hazardous Materials Disclosure Compliance	Not Applicable				
N10	Uniform Fire Code Implementation	Not Applicable				
N11	Common Area Litter Control	Litter patrol, violations investigations, reporting and other litter control activities shall be performed on a weekly basis and in conjunction with routine maintenance activities.	Weekly	Vineyards Development Corporation		
N12	Employee Training	The Owner shall educate all new employees/managers on storm water pollution prevention, particularly good housekeeping practices, prior to the start of the rainy season (October 1). Refresher courses shall be conducted on an as needed basis. Materials that may be utilized on BMP maintenance are included in Appendix B.	Annually	Vineyards Development Corporation		
N13	Housekeeping of Loading Docks	Sweep area routinely and before October 1 each year. Keep area clean of trash and debris at all times. Spills shall be cleaned up immediately using dry methods.	Weekly	Vineyards Development Corporation		
N14	Common Area Catch Basin Inspection	On-site catch basin inlets shall be inspected and, if necessary, cleaned prior to the storm season by October 1 st each year.	Annually	Vineyards Development Corporation		
N15	Street Sweeping Private Streets and Parking Lots	All private streets, drive aisles and exposed parking areas within the project shall be swept at a minimum frequency quarterly as well as once per year prior to the storm season, no later than October 1 each year.	Quarterly	Vineyards Development Corporation		

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX					
	ВМР	Inspection/Maintenance Activities Minimum Frequency		Responsible Party		
N16	Retail Gasoline Outlets	Not Applicable				
STRUC	TURAL SOURCE CONTROL BMPs					
S1 SD-13	Provide storm drain system stenciling and signage	On-site storm drain stencils shall be inspected for legibility, at minimum, once prior to the storm season, no later than October 1 st each year. Those determined to be illegible will be re-stenciled as soon as possible.	Annually	Vineyards Development Corporation		
S2 SD-34	Design and construct outdoor material storage areas to reduce pollution introduction	Not Applicable				
S3 SD-32	Design and construct trash and waste storage areas to reduce pollution introduction	Trash receptacles will be monitored and emptied by management of the Bowery. Trash will be taken from the interior trash rooms to the exterior trash storage areas at the time trash collection is set to occur. The four trash storage areas will drain into a water quality inlet to prevent discharge of spilled contaminants, consistent with local design standards.	Ongoing	Vineyards Development Corporation		
S4 SD-12	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	In conjunction with routine maintenance, verify that landscape design continues to function properly by adjusting systems to eliminate overspray to hardscape areas and to verify that irrigation timing and cycle lengths are adjusted in accordance to water demands, given the time of year, weather, and day or nighttime temperatures. System testing shall occur twice per year. Water from testing/flushing shall be collected and properly disposed to the sewer system and shall not discharge to the storm drain system.	2x per year	Vineyards Development Corporation		

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX						
	ВМР	Inspection/Maintenance Activities	Responsible Party				
S5	Protect slopes and channels and provide energy dissipation	Not Applicable					
S6 SD-31	Properly Design: Dock areas	Sweep area routinely and before October 1 each year. Keep area clean of trash and debris at all times. Spills shall be cleaned up immediately. See also BMP N13.	Vineyards Development Corporation				
S7 SD-31	Properly Design: Maintenance bays	Not Applicable					
S8 SD-33	Properly Design: Vehicle wash areas	Not Applicable					
S9 SD-36	Properly Design: Outdoor processing areas	Not Applicable					
S10	Properly Design: Equipment wash areas	Not Applicable					
S11 SD-30	Properly Design: Fueling areas	Not Applicable					
S12 SD-10	Properly Design: Hillside landscaping	Not Applicable					
S13	Properly Design: Wash water control for food preparation areas	Adequate signs shall be provided and appropriately placed stating the prohibition of discharging wash water to the storm drain system. Employees shall be trained in discharge and safety requirements outlined in State Health & Safety Code 27520. All cooking utensils shall be cleaned in appropriate wash stations.	Ongoing	Vineyards Development Corporation			

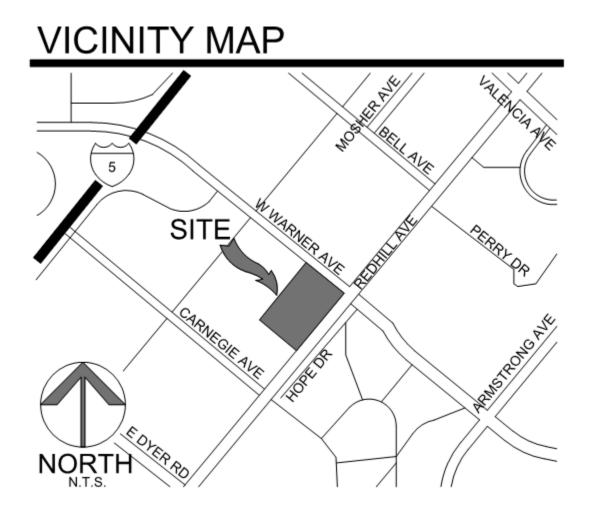
VINEYARDS DEVELOPMENT CORPORATION

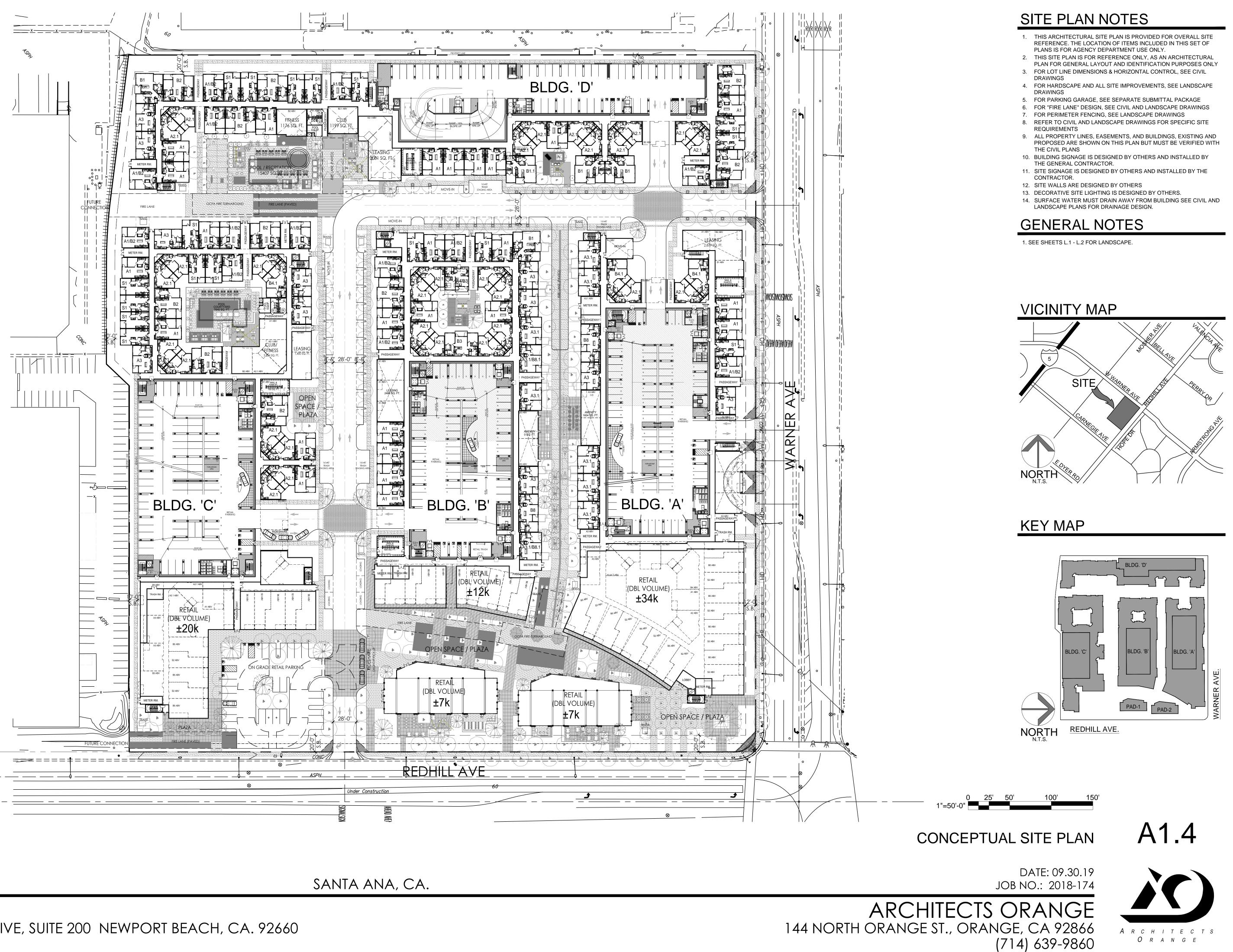
BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX						
	BMP Inspection/Maintenance Activities Minimum Frequency Responsible Party					
S14	Properly Design: Community car wash racks	Not Applicable				

Any waste generated from maintenance activities will be disposed of properly. Wash water and other waste from maintenance activities is not to be discharged or disposed of into the storm drain system. Clippings from landscape maintenance (i.e. prunings) will be collected and disposed of properly off-site, and will not be washed into the streets, local area drains/conveyances, or catch basin inlets.

SECTION VI SITE PLAN AND DRAINAGE PLAN

The exhibits provided in this section are to illustrate the post construction BMPs prescribed within this WQMP. Drainage flow information of the proposed project, such as general surface flow lines, concrete or other surface drainage conveyances, and storm drain facilities are also depicted. All structural source control and treatment control BMPs are shown as well.


EXHIBITS

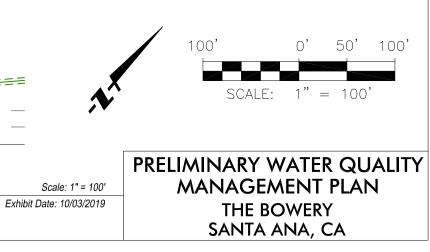

- Vicinity Map
- Site Plan
- WQMP Exhibit
- Modular Wetland System Details

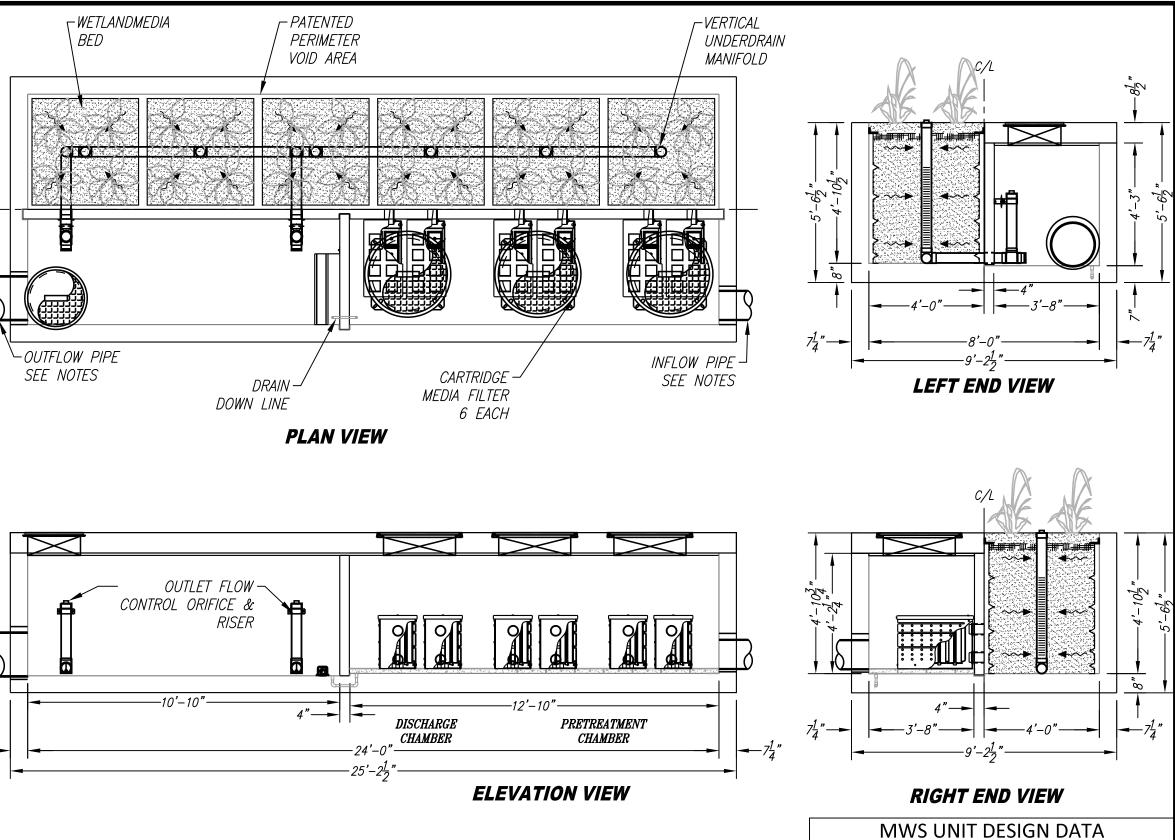
BMP DETAILS & FACT SHEETS

BIO-7 Proprietary Biotreatment BMP Fact Sheets

VICINITY MAP

THE BOWERY


VDC 240 NEWPORT CENTER DRIVE, SUITE 200 NEWPORT BEACH, CA. 92660 (310) 571-8227


16795 Von Karman, Suite 100 Irvine, California 92606 tel 949.474.1960 • fax 949.474.5315 www.fuscoe.com

LEGEND

	PROPERTY LINE
	EXISTING STORM DRAIN
	PROPOSED STORM DRAIN
	BMP DRAINAGE AREA BOUNDARY
	PROPOSED COMMON AREA LANDSCAPING
\sim	PROPOSED TURF LANDSCAPING
	PROPOSED BUILDING
	STREET SWEEPING PRIVATE STREETS & PARKING LOTS
	PROPOSED POOL
\sim	PROPOSED TRASH ENCLOSURE
	CATCH BASIN STENCILING & MAINTENANCE
	PROPOSED MODULAR WETLAND SYSTEM
	DIRECTION OF FLOW
(<u>A</u>) (4.69 AC)	DRAINAGE MANAGEMENT AREA

	SITE S	SPECI	FIC D	ΑΤΑ	*]	$\bigvee BE$
PROJEC	CT NAME						
PROJEC	CT LOCATIOI	v				1	
STRUCT	TURE ID					-	
	PERF	ORMA	NCE [DATA		1	
TREATM	ENT FLOW	(CFS)				-	- pro
TREATM	ENT HGL (FT)			3.4]	
BYPASS	S FLOW RAT	'E (CFS)]	
	PROJE	ECT PA	RAMI	ETERS	1		
PIPE	DATA	<i>I.E</i> .	MA	TERIAL	DIAMETER		
INLET F	PIPE 1			PVC],	
OUTLET	PIPE 1			PVC] >	
RIM EL	EVATION						
	CE LOADING				ARKWAY		
	& PRETRE	ATMENT	BIOFILT	RATION	DISCHARGE		SEE NOTE
COVER	30)"			24"	_	SEE NUTE.
	IDMEDIA VO	LUME (C	Y)			_	
	DELIVERED	,				-	
	SIZE (DIA					-	
	ICK WEIGHT	(LBS)				-	
NOTES:							
*050 5							
TPER E	NGINEER O	F RECOR	D				
INSTAL	LATION	NOTES	5				
	RACTOR TO						
	RIALS AND ILL THE SY.				TO OFFLOAL CES IN) AND	
	RDANCE W				THE SS OTHERWI.	SF (
STATE	D IN MANU	IFACTURE	RS CON	TRACT.		(
					'M 6"LEVEL ECT ENGINEE		
CONT	RACTOR IS	RESPON	SIBLE T	O VERIF	Y PROJECT	./	
	VEERS RECO PIPES MUS				E SURFACE	OF 1	
CONC		ES CANN	OT INTR	UDE BE	YOND FLUS		
DISCI	HARGE CHAI	MBER FL	OOR.				
					FALED WATEF FACTURERS	r IIGHI	
	DARD CONN ED REGION				ALL MEET O	R	
6. CONT	RACTOR RE	SPONSIB	LE FOR	INSTALL	ATION OF A		
					ITRACTOR TO O MATCH FII		
	ACE UNLES						
GENERA	AL NOTE	<u>s</u>					
					IALS UNLESS		
SUBJ	ЕСТ ТО СНІ	ANGE. P	OR PRO	DJECT S		AWINGS DET	TAILING EXACT
DIMEI	VSIONS, WE	IGHTS AN	ID ACCE	SSORIE	S PLEASE C	ONTACT MA	NUFACTURER.

THE PRODUCT DESCRIBED MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING US PATENTS: 7,425,262; 7,470,362; 7,674,378; 8,303,816; RELATED FOREIGN PATENTS OR OTHER PATENTS PENDING PROPRIETARY AND CONFIDENTIAL:

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF MODULAR WETLANDS SYSTEMS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

MWS UNIT DESIGN DATA					
TREATMENT CAPACITY (CFS)	0.693				
OPERATING HEAD (FT)	3.4				
PRETREATMENT LOADING RATE (GPM/SF)	2.0				
WETLAND LOADING RATE (GPM/SF)	1.0				
<i>MWS-L-8-24-V</i> STORMWATER BIOFILTRATION SYSTEM STANDARD DETAIL					

BIO-7: Proprietary Biotreatment

Proprietary biotreatment devices are devices that are manufactured to mimic natural systems such as bioretention areas by incorporating plants, soil, and microbes engineered to provide treatment at higher flow rates or volumes and with smaller footprints than their natural counterparts. Incoming flows are typically filtered through a planting media (mulch, compost, soil, plants, microbes, etc.) and either infiltrated or collected by an underdrain and delivered to the storm water conveyance system. Tree box filters are an increasingly common type of proprietary biotreatment device that are installed at curb level and filled with a bioretention type soil. For low to moderate flows they operate similarly to bioretention systems and are bypassed during high flows. Tree box filters are highly adaptable solutions that can be used in all types of development and in all types of soils but are especially applicable to dense urban parking lots, street, and roadways.

Also known as:

- *Catch basin planter box*
- > Bioretention vault
- ➤ Tree box filter

Proprietary biotreatment Source: http://www.americastusa.com /index.php/filterra/

Feasibility Screening Considerations

• Proprietary biotreatment devices that are unlined may cause incidental infiltration. Therefore, an evaluation of site conditions should be conducted to evaluate whether the BMP should include an impermeable liner to avoid infiltration into the subsurface.

Opportunity Criteria

- Drainage areas of 0.25 to 1.0 acres.
- Land use may include commercial, residential, mixed use, institutional, and subdivisions. Proprietary biotreatment facilities may also be applied in parking lot islands, traffic circles, road shoulders, and road medians.
- Must not adversely affect the level of flood protection provided by the drainage system.

OC-Specific Design Criteria and Considerations

Frequent maintenance and the use of screens and grates to keep trash out may decrease the likelihood of clogging and prevent obstruction and bypass of incoming flows.

Consult proprietors for specific criteria concerning the design and performance.

Proprietary biotreatment may include specific media to address pollutants of concern. However, for proprietary device to be considered a biotreatment device the media must be capable of supporting rigorous growth of vegetation.

Proprietary systems must be acceptable to the reviewing agency. Reviewing agencies shall have the discretion to request performance information. Reviewing agencies shall have the discretion to deny the use of a proprietary BMP on the grounds of performance, maintenance considerations, or other relevant factors.

In right of way areas, plant selection should not impair traffic lines of site. Local jurisdictions may also limit plant selection in keeping with landscaping themes.

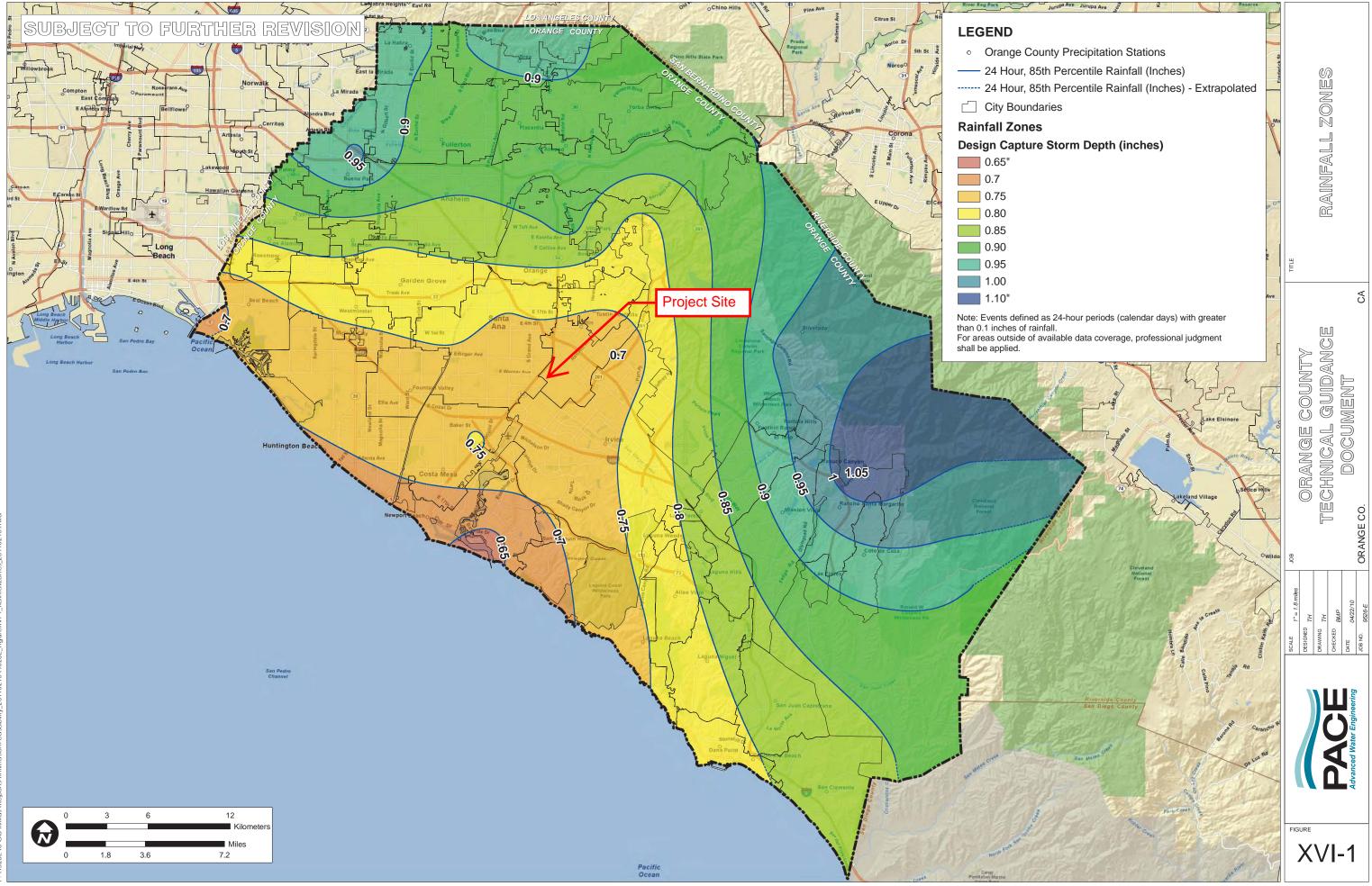
Computing Sizing Criteria for Proprietary Biotreatment Device

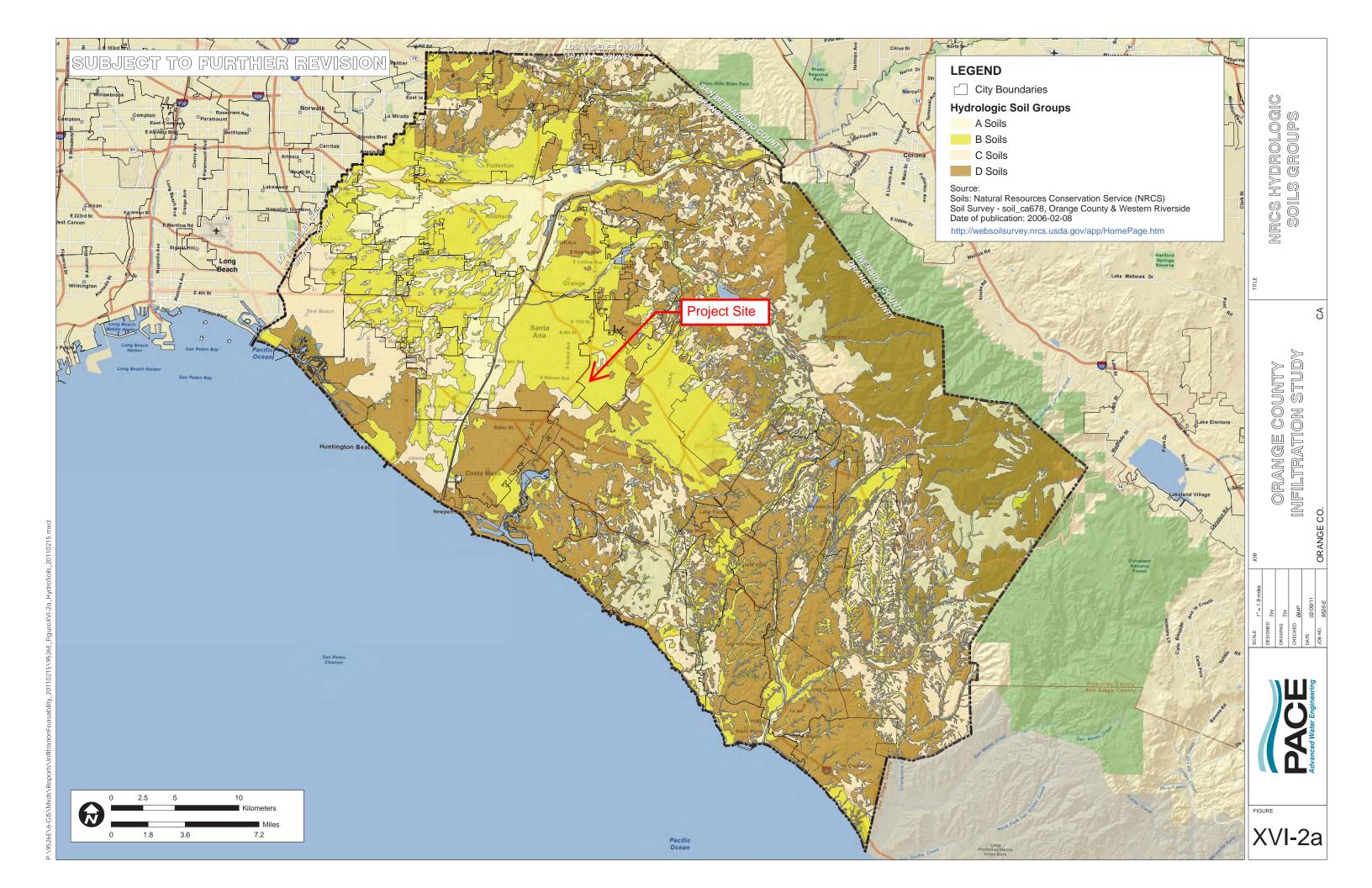
- Proprietary biotreatment devices can be volume based or flow-based BMPs.
- Volume-based proprietary devices should be sized using the Simple Design Capture Volume Sizing Method described in Appendix III.3.1 or the Capture Efficiency Method for Volume-Based, Constant Drawdown BMPs described in Appendix III.3.2.
- The required design flowrate for flow-based proprietary devices should be computed using the Capture Efficiency Method for Flow-based BMPs described in Appendix III.3.3).

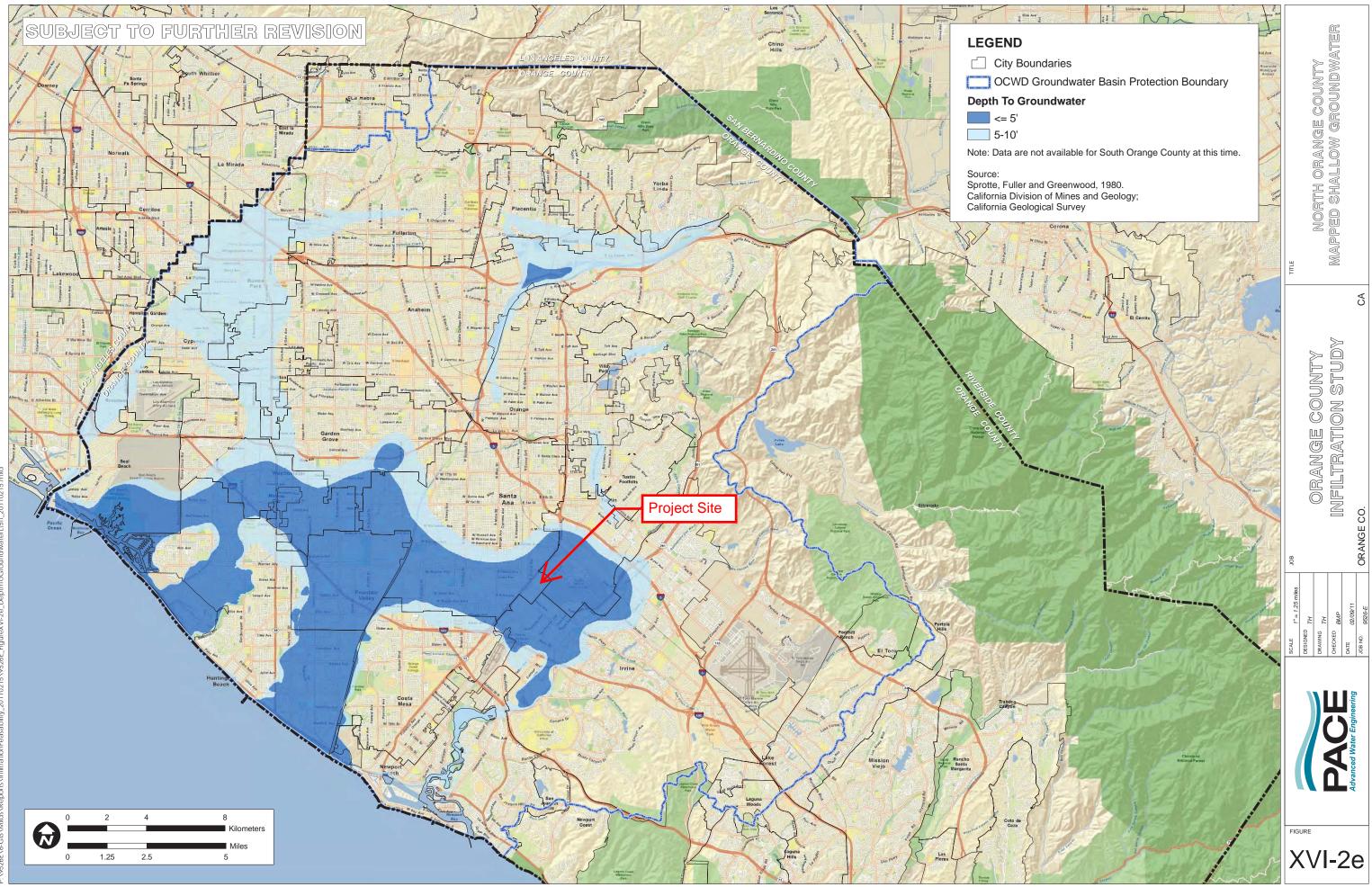
Additional References for Design Guidance

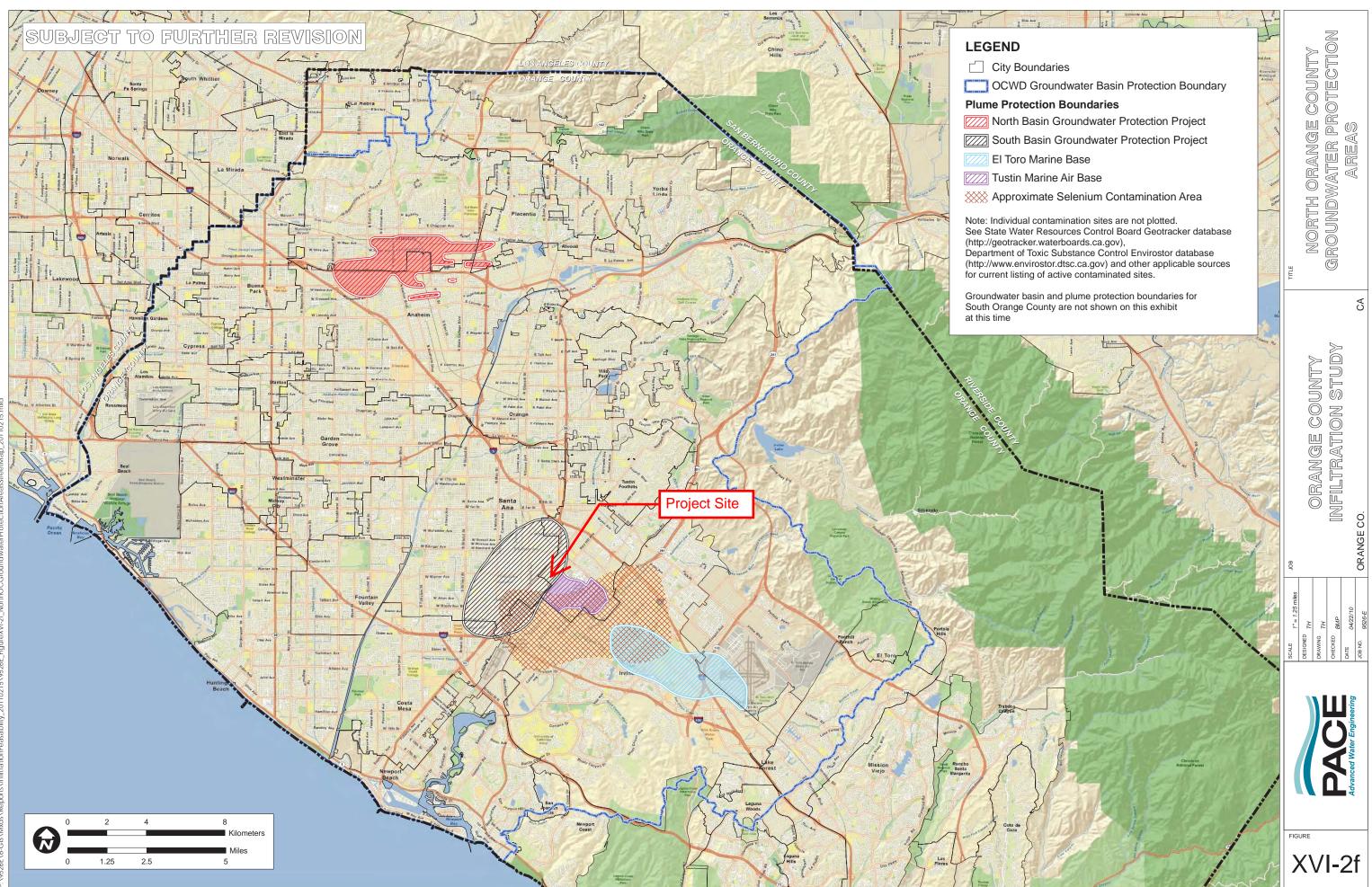
- Los Angeles Unified School District (LAUSD) Stormwater Technical Manual, Chapter 4: <u>http://www.laschools.org/employee/design/fs-studies-and-</u> <u>reports/download/white_paper_report_material/Storm_Water_Technical_Manual_2009-opt-</u> <u>red.pdf?version_id=76975850</u>
- Los Angeles County Stormwater BMP Design and Maintenance Manual, Chapter 9: <u>http://dpw.lacounty.gov/DES/design_manuals/StormwaterBMPDesignandMaintenance.pdf</u>
- Santa Barbara BMP Guidance Manual, Chapter 6: <u>http://www.santabarbaraca.gov/NR/rdonlyres/91D1FA75-C185-491E-A882-</u> <u>49EE17789DF8/0/Manual_071008_Final.pdf</u>

SECTION VII EDUCATIONAL MATERIALS


The educational materials included in this WQMP are provided to inform people involved in future uses, activities, or ownership of the site about the potential pitfalls associated with careless storm water management. "The Ocean Begins at Your Front Door" provides users with information about storm water that is/will be generated on site, what happens when water enters a storm drain, and its ultimate fate, discharging into the ocean. Also included are activities guidelines to educate anyone who is or will be associated with activities that have a potential to impact storm water runoff quality, and provide a menu of BMPs to effectively reduce the generation of storm water runoff pollutants from a variety of activities. The educational materials that may be used for the proposed project are included in Appendix C of this WQMP and are listed below.


EDUCATION MATERIALS				
Residential Materials (http://www.ocwatersheds.com)	Check If Attached	Business Materials (http://www.ocwatersheds.com)	Check If Attached	
The Ocean Begins at Your Front Door	\square	Tips for the Automotive Industry		
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar		
Tips for the Home Mechanic	\square	Tips for the Food Service Industry	\square	
Homeowners Guide for Sustainable Water Use		Proper Maintenance Practices for Your Business	\boxtimes	
Household Tips	\square	Other Materials		
Proper Disposal of Household Hazardous Waste	\boxtimes	(http://www.ocwatersheds.com) (https://www.casqa.org/resources/b mp-handbooks)	Check If Attached	
Recycle at Your Local Used Oil Collection Center (North County)		DF-1 Drainage System Operation & Maintenance	\boxtimes	
Recycle at Your Local Used Oil Collection Center (Central County)	\square	R-1 Automobile Repair & Maintenance		
Recycle at Your Local Used Oil Collection Center (South County)		R-2 Automobile Washing		
Tips for Maintaining Septic Tank Systems		R-3 Automobile Parking		
Responsible Pest Control	\square	R-4 Home & Garden Care Activities		
Sewer Spill		R-5 Disposal of Pet Waste	\boxtimes	
Tips for the Home Improvement Projects		R-6 Disposal of Green Waste		
Tips for Horse Care		R-7 Household Hazardous Waste		
Tips for Landscaping and Gardening		R-8 Water Conservation	\boxtimes	
Tips for Pet Care	\square	SD-10 Site Design & Landscape Planning	\square	
Tips for Pool Maintenance	\square	SD-11 Roof Runoff Controls		
Tips for Residential Pool, Landscape and Hardscape Drains	\square	SD-12 Efficient Irrigation	\square	
Tips for Projects Using Paint		SD-13 Storm Drain Signage	\boxtimes	
Tips for Protecting Your Watershed	\square	SD-31 Maintenance Bays & Docs		
Other: Children's Brochure		SD-32 Trash Storage Areas	\square	


APPENDICES


Appendix A	Supporting Calculations
Appendix B	Notice of Transfer of Responsibility
Appendix C	Educational Materials (To be Provided in Final WQMP)
Appendix D	BMP Maintenance Supplement / O&M Plan
Appendix E	Conditions of Approval (Pending Issuance)
Appendix F	Geotechnical Study
Appendix G	2-Year Hydrology Calculations

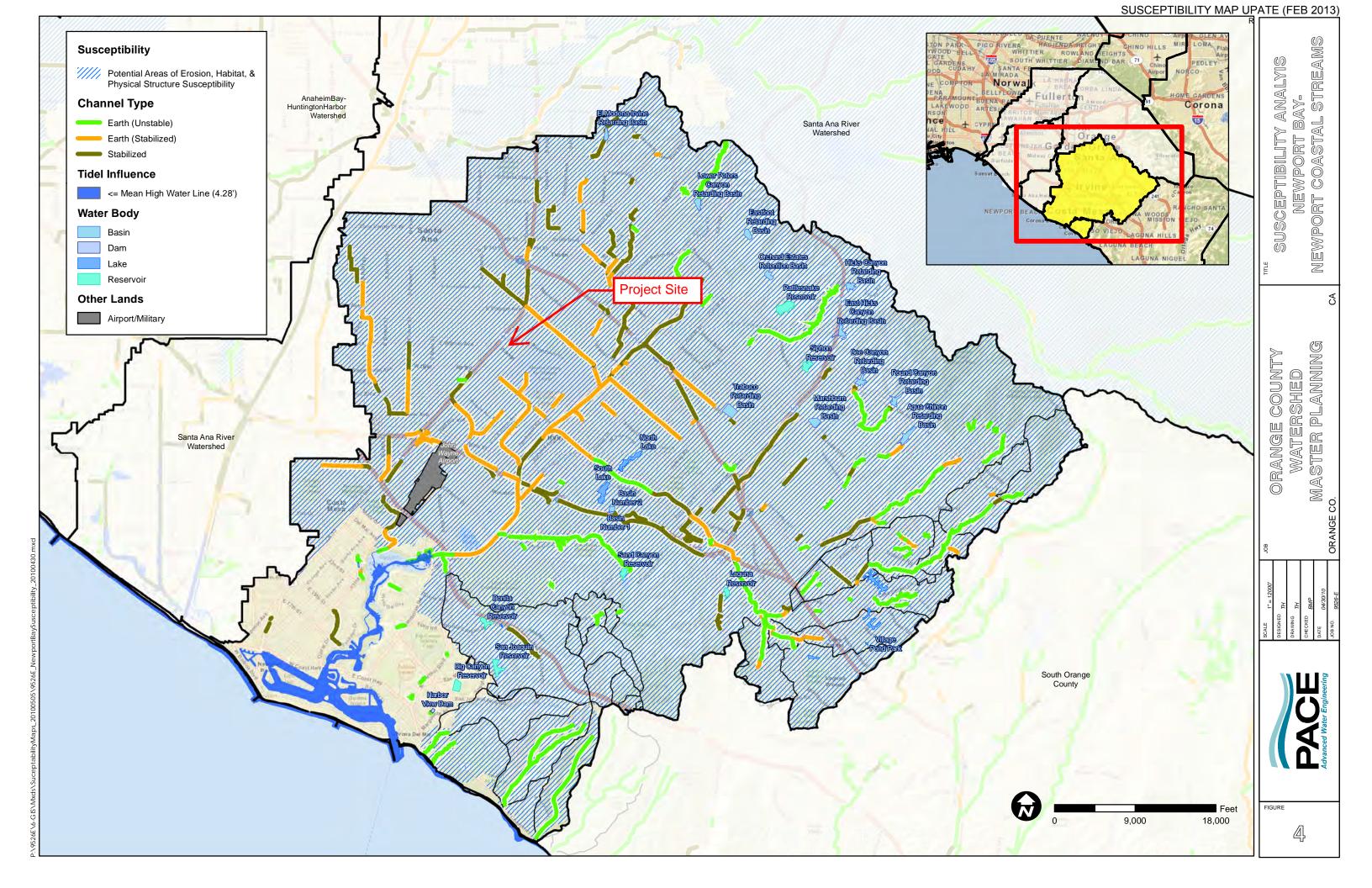

APPENDIX A SUPPORTING CALCULATIONS

Table 2.7: Infiltration BMP Feasibility Worksheet

	Infeasibility Criteria	Yes	No
1	Would Infiltration BMPs pose significant risk for groundwater related concerns? Refer to Appendix VII (Worksheet I) for guidance on groundwater-related infiltration feasibility criteria.	Х	
Provide	basis:		
South B	rated in the TGD Figure XVI-2f (see Appendix A), the project as a constant of the project and borders the Tustir nium Contamination Area.		
	ize findings of studies provide reference to studies, calcula vide narrative discussion of study/data source applicability.	tions, maps, da	ta sources,
2	Would Infiltration BMPs pose significant risk of increasing risk of geotechnical hazards that cannot be mitigated to an acceptable level ? (Yes if the answer to any of the following questions is yes, as established by a geotechnical expert): The BMP can only be located less than 50 feet away from slopes steeper than 15 percent The BMP can only be located less than eight feet from building foundations or an alternative setback. A study prepared by a geotechnical professional or an available watershed study substantiates that stormwater infiltration would potentially result in significantly increased risks of geotechnical hazards that cannot be mitigated to an acceptable level.		Х
Provide			
	rize findings of studies provide reference to studies, calcula vide narrative discussion of study/data source applicability.	tions, maps, da	ta sources,
3	Would infiltration of the DCV from drainage area violate downstream water rights?		Х
Provide	basis:		
	ize findings of studies provide reference to studies, calcula /ide narrative discussion of study/data source applicability.	tions, maps, da	ta sources,

	Partial Infeasibility Criteria	Yes	No
4	Is proposed infiltration facility located on HSG D soils or the site geotechnical investigation identifies presence of soil characteristics which support categorization as D soils?		х
Provid	e basis:	L	
	arize findings of studies provide reference to studies, calculatio ovide narrative discussion of study/data source applicability.	ons, maps, da	ta sources,
5	Is measured infiltration rate below proposed facility less than 0.3 inches per hour ? This calculation shall be based on the methods described in Appendix VII.	х	
Provid	e basis:	I	I
0.15 ir Summ	tion testing performed by LGC Geotechnical, Inc. observed a m h/hr which, according to Section 2.4.2.4 of the OC TGD, is cons arize findings of studies provide reference to studies, calculatio ovide narrative discussion of study/data source applicability.	idered infeas	ible.
	ovide flatrative discussion of study/data source applicability.		
6	Would reduction of over predeveloped conditions cause impairments to downstream beneficial uses, such as change of seasonality of ephemeral washes or increased discharge of contaminated groundwater to surface waters?		X
Provid	Would reduction of over predeveloped conditions cause impairments to downstream beneficial uses, such as change of seasonality of ephemeral washes or increased discharge of contaminated groundwater to surface waters? e citation to applicable study and summarize findings relative to	o the amount	x
Provid	Would reduction of over predeveloped conditions cause impairments to downstream beneficial uses, such as change of seasonality of ephemeral washes or increased discharge of contaminated groundwater to surface waters?	o the amount	x
Provid that is Summ	Would reduction of over predeveloped conditions cause impairments to downstream beneficial uses, such as change of seasonality of ephemeral washes or increased discharge of contaminated groundwater to surface waters? e citation to applicable study and summarize findings relative to		X of infiltration

Table 2.7: Infiltration BMP Feasibility Worksheet (continued)

	e citation to applicable study and summarize findings relative to permissible:	o the amount of infiltration
	arize findings of studies provide reference to studies, calculatio ovide narrative discussion of study/data source applicability.	ns, maps, data sources,
Infiltra	ation Screening Results (check box corresponding to resul	t):
	Is there substantial evidence that infiltration from the project would result in a significant increase in I&I to the sanitary sewer that cannot be sufficiently mitigated? (See Appendix XVII)	
8	Provide narrative discussion and supporting evidence:	
	Summarize findings of studies provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.	
	If any answer from row 1-3 is yes: infiltration of any volume is not feasible within the DMA or equivalent.	
9	Provide basis: <i>See above.</i>	x
	Summarize findings of infeasibility screening	
10	If any answer from row 4-7 is yes, infiltration is permissible but is not presumed to be feasible for the entire DCV. Criteria for designing biotreatment BMPs to achieve the maximum feasible infiltration and ET shall apply. Provide basis:	
	Summarize findings of infeasibility screening	

Table 2.7:	Infiltration	BMP Feasibility	v Worksheet	(continued)

	If all answers to rows 1 through 11 are no, infiltration of the full DCV is potentially feasible, BMPs must be designed to infiltrate the full DCV to the maximum extent practicable.	
11		

Worksheets from Orange County Technical Guidance Document (5-19-2011) See TGD for instructions and/or examples related to these worksheets www.ocwatersheds.com/WQMP.aspx

Harvest & Reuse Irrigation Demand Calculations

10/2/2019

Storm Water Design Caputre Volume (SQDV)

During and Arrow (lund and to al		Duneff	Design	Drainage		
Drainage Area /	Impervious	Irrigated		Runoff	Storm	Area		
Land Use Type	Area (ac)	Area (ac)	% impervious	Coefficient	Depth (in)	(acres)	DCV (ft ³)	DCV (gal)
Total Site	12.63	2.06	86%	0.795	0.75	14.690	31,794.9	237,825
				0.795			0.0	0
				0.150			0.0	0
				0.150			0.0	0
				0.150			0.0	0
				0.150			0.0	0

Irvine 3.00 Laguna Beach 2.75 Santa Ana 2.93

Modified EAWU = (<u>Eto x KL x LA x 0.015)</u> IE

EIATA = LA x KL (IE x Tributary Imp. Area)

Blend of High-Use and Low-Use Landscaping

													Minimum			
									EAWU/	Minimum EAWU/			EIATA			%
Drainage Area /	Total Area	Total Area		Impervious	Pervious /			Modified	Impervious	Impervious Acre			(interpo-	Drawdown	Drawdown	Capture
Land Use Type	(ac)	(sf)	% Impervious	(sf)	LA (sf)	Eto	KL	EAWU	A	(Table X.6)	Feasible?	EIATA	lated)	(daya)	(houro)	(Fig. III.2)
Land Ose Type	(ac)	(51)	/o impervious	(51)		ElO	RL	EAWU	Acre	(Table X.6)	reasible		iateu)	(days)	(hours)	(FIG: III.Z)
Total Site	14.690	639,896	86%	550,311	89,585	2.93	0.55	2,406.12	190.46	(Table X.6) 610	No	0.10	0.00	98.8	2,372	<40%

TABLE X.6: HARVESTED WATER DEMAND THRESHOLDS FOR MINIMUM PARTIAL CAPTURE

Design Capture Storm Depth, inches	Wet Season Demand Required for Minimum Partial Capture, gpd per impervious acre
0.60	490
0.65	530
0.70	570
0.75	610
0.80	650
0.85	690
0.90	730
0.95	770
1.00	810

TABLE X.8: MINIMUM IRRIGATED AREA FOR POTENTIAL PARTIAL CAPTURE FEASIBILITY

General Landscape Type	Cons	ervation Desi	gn: KL = 0.35	Active Turf Areas: KL = 0.7					
Closest ET Station	Irvine	Santa Ana	Laguna	Irvine	Santa Ana	Laguna			
Design Capture Storm Depth, inches	Minimum Required Irrigated Area per Tributary Impervious Acre for Potential Partial Capture, ac/ac								
0.60	0.66	0.68	0.72	0.33	0.34	0.36			
0.65	0.72	0.73	0.78	0.36	0.37	0.39			
0.70	0.77	0.79	0.84	0.39	0.39	0.42			
0.75	0.83	0.84	0.9	0.41	0.42	0.45			
0.80	0.88	0.9	0.96	0.44	0.45	0.48			
0.85	0.93	0.95	1.02	0.47	0.48	0.51			
0.90	0.99	1.01	1.08	0.49	0.51	0.54			
0.95	1.04	1.07	1.14	0.52	0.53	0.57			
1.00	1.1	1.12	1.2	0.55	0.56	0.6			

Source: Technical Guidance Document for the Preparation of Conceptual/Preliminary and/or Project Water Quality Management Plans (WQMPs). March 22, 2011. Appendix X.

Worksheet B: Simple Design Capture Volume Sizing Method

Project: Bowery

<u>Date</u>: 10-03-2019

		DMA =	DMA 1					
Step 1: Determine the design capture storm depth used for calculating volume								
1	Enter design capture storm depth from Figure III.1, <i>d</i> (inches)	d=	0.75	inches				
2	Enter the effect of provided HSCs, <i>d_{HSC}</i> (inches) (Worksheet A)	d _{HSC} =	0	inches				
3	Calculate the remainder of the design capture storm depth, $d_{remainder}$ (inches) (Line 1 – Line 2)	d _{remainder} =	0.75	inches				
Step	2: Calculate the DCV							
1	Enter Project area tributary to BMP(s), <i>A</i> (acres)	A=	14.690	acres				
2	Enter Project Imperviousness, <i>imp</i> (unitless)	imp=	86.0%	%				
3	Calculate runoff coefficient, C= (0.75 x imp) + 0.15	C=	0.795					
4	Calculate runoff volume, V _{design} = (C x d _{remainder} x A x 43560 x (1/12))	V _{design} =	31,794.9	cu-ft				
Step	3: Design BMPs to ensure full retention of th	e DCV						
Step	3a: Determine design infiltration rate							
1	Enter measured infiltration rate, <i>K</i> _{measured} (in/hr) (Appendix VII)	K _{measured} =	N/A	in/hr				
2	Enter combined safety factor from Worksheet H, S _{final} (unitless)	S _{final} =	N/A					
3	Calculate design infiltration rate, $K_{design} = K_{measured} / S_{final}$	K _{design} =	N/A	in/hr				
Step	3b: Determine minimum BMP footprint							
4	Enter drawdown time, <i>T</i> (max 48 hours)	T=		hours				
5	Calculate max retention depth that can be drawn down within the drawdown time (feet), $D_{max} = K_{design} \times T \times (1/12)$	D _{max} =	See Worksheet D	feet				
6	Calculate minimum area required for BMP (sq-ft), $A_{min} = V_{design}/d_{max}$	A _{min} =	_	sq-ft				

Worksheet D: Capture Efficiency Method for Flow-Based BMPs

Project: Bowery

Date: 10-03-2019

•			DMA 1	
Step	1: Determine the design capture storm depth used	for calcu	lating volume	
1	Enter the time of concentration, T_c (min) (See Appendix IV.2)	T _c =	5.0	min
	Using Figure III.4, determine the design intensity at which the estimated time of concentration (T _c) achieves 80% capture efficiency, <i>I</i> ₁	I ₁ =	0.260	in/hr
3	Enter the effect depth of provided HSCs upstream, <i>d</i> _{HSC} (inches) (Worksheet A)	d _{HSC} =	0	inches
4	Enter capture efficiency corresponding to d_{HSC} , Y_2 (Worksheet A)	Y ₂ =	0%	%
-	Using Figure III.4, determine the design intensity at which the time of concentration (T_c) achieves the upstream capture efficiency (Y_2) , I_2	I ₂ =	0	in/hr
	Determine the design intensity that must be provided by BMP, $I_{design} = I_1 - I_2$	I _{design} =	0.260	in/hr
Step	2: Calculate the design flowrate			
1	Enter Project area tributary to BMP(s), A (acres)	A=	14.690	acres
2	Enter Project Imperviousness, <i>imp</i> (unitless)	imp=	86.0%	%
3	Calculate runoff coefficient, C = (0.75 x imp) + 0.15	C=	0.795	
4	Calculate design flowrate, Q _{design} = (C x i _{design} x A)	Q _{design} =	3.036	cfs
Supp	porting Calculations			
Desc	ribe System:			
	Proprietary BioTreatment	<u>: (BIO-7):</u>		
L	Unit Size /	/ Model =	MWS-L-8-24-HC (3.75')	
	Unit Size / Model Treatment Ca		0.764	cfs
	Number of Units N		4	
	Total Bio-treatment Pr	rovided =	3.056	cfs
Provi	de time of concentration assumptions:			
	Conservative Tc of 5 minutes was used		5.0	min

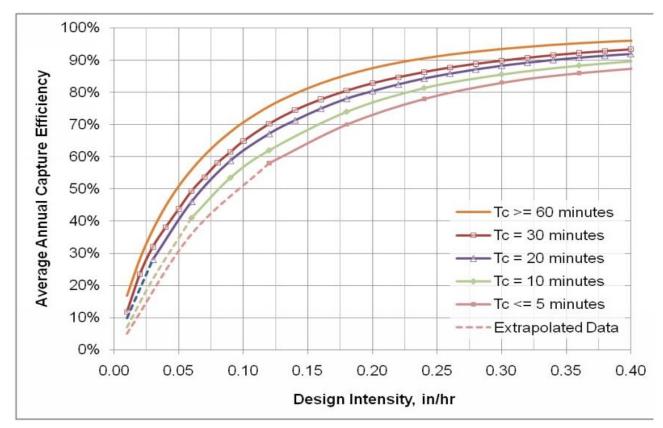


Figure III.4. Capture Efficiency Nomograph for Off-line Flow-based Systems in Orange County

APPENDIX B NOTICE OF TRANSFER OF RESPONSIBILITY

NOTICE OF TRANSFER OF RESPONSIBILITY

WATER QUALITY MANAGEMENT PLAN

The Bowery APN: 430-222-01 & 430-222-16

Submission of this Notice Of Transfer of Responsibility constitutes notice to the City of Santa Ana that responsibility for the Water Quality Management Plan ("WQMP") for the subject property identified below, and implementation of that plan, is being transferred from the Previous Owner (and his/her agent) of the site (or a portion thereof) to the New Owner, as further described below.

I. <u>Previous Owner/ Previous Responsible Party Information</u>

Company/ Individual Name:		Contact Person:		
Street Address:		Title:		
City:	State:	ZIP:	Phone:	

II. Information about Site Transferred

Name of Project (if applicable):	
Title of WQMP Applicable to site:	
Street Address of Site (if applicable):	
Planning Area (PA) and/	Lot Numbers (if Site is a portion of a tract):
or Tract Number(s) for Site:	
Date WQMP Prepared (and revised if applicable):	

III. <u>New Owner/ New Responsible Party Information</u>

Company/ Individual Name:		Contact Perso	n:
Street Address:		Title:	
City:	State:	ZIP:	Phone:

IV. <u>Ownership Transfer Information</u>

General Description of Site Transferred to New	General Description of Portion of Project/ Parcel
Owner:	Subject to WQMP Retained by Owner (if any):

Lot/ Tract Numbers of Site Transferred to New Owner:

Remaining Lot/ Tract Numbers Subject to WQMP Still Held by Owner (if any):

Date of Ownership Transfer:

Note: When the Previous Owner is transferring a Site that is a portion of a larger project/ parcel addressed by the WQMP, as opposed to the entire project/parcel addressed by the WQMP, the General Description of the Site transferred and the remainder of the project/ parcel no transferred shall be set forth as maps attached to this notice. These maps shall show those portions of a project/ parcel addressed by the WQMP that are transferred to the New Owner (the Transferred Site), those portions retained by the Previous Owner, and those portions previously transferred by Previous Owner. Those portions retained by Previous Owner shall be labeled as "Previously Transferred".

V. <u>Purpose of Notice of Transfer</u>

The purposes of this Notice of Transfer of Responsibility are: 1) to track transfer of responsibility for implementation and amendment of the WQMP when property to which the WQMP is transferred from the Previous Owner to the New Owner, and 2) to facilitate notification to a transferee of property subject to a WQMP that such New Order is now the Responsible Party of record for the WQMP for those portions of the site that it owns.

VI. <u>Certifications</u>

A. Previous Owner

I certify under penalty of law that I am no longer the owner of the Transferred Site as described in Section II above. I have provided the New Owner with a copy of the WQMP applicable to the Transferred Site that the New Owner is acquiring from the Previous Owner.

Printed Name of Previous Owner Representative:	Title:
Signature of Previous Owner Representative:	Date:

B. New Owner

I certify under penalty of law that I am the owner of the Transferred Site, as described in Section II above, that I have been provided a copy of the WQMP, and that I have informed myself and understand the New Owner's responsibilities related to the WQMP, its implementation, and Best Management Practices associated with it. I understand that by signing this notice, the New Owner is accepting all ongoing responsibilities for implementation and amendment of the WQMP for the Transferred Site, which the New Owner has acquired from the Previous Owner.

Printed Name of New Owner Representative:	Title:
Signature:	Date:

APPENDIX C EDUCATIONAL MATERIALS

RESIDENTIAL MATERIALS:

HTTPS://H2OC.ORG/RESOURCES/VIEW-ORDER-BROCHURES/RESIDENT-BROCHURES/

- The Ocean Begins at Your Front Door
- Tips for the Home Mechanic
- Household Tips
- Proper Disposal of Household Hazardous Waste
- Recycle at Your Local Used Oil Collection Center (Central County)
- Responsible Pest Control
- Tips for Pet Care
- Tips for Pool Maintenance
- Tips for Residential Pool, Landscape and Hardscape Drains
- Tips for Protecting your Watershed

BUSINESS MATERIALS:

HTTPS://H2OC.ORG/RESOURCES/VIEW-ORDER-BROCHURES/BUSINESS-BROCHURES/

- Tips for the Food Service Industry
- Proper Maintenance Practices for Your Business

SITE DESIGN MATERIALS:

HTTPS://WWW.CASQA.ORG/RESOURCES/BMP-HANDBOOKS/NEW-DEVELOPMENT-REDEVELOPMENT-BMP-HANDBOOK

- DF-1 Drainage System Operations & Maintenance
- R-5 Disposal of Pet Waste
- R-8 Water Conservation
- SD-10 Site Design & Landscape Planning
- SD-12 Efficient Irrigation
- SD-13 Storm Drain Signage
- SD-32 Trash Storage Areas

APPENDIX D BMP MAINTENANCE SUPPLEMENT / O&M PLAN

OPERATIONS AND MAINTENANCE (O&M) PLAN

Water Quality Management Plan

For

The Bowery

2300, 2310 & 2320 Red Hill Ave Santa Ana, CA 92705

APN: 430-222-01 AND 430-222-16

This page intentionally left blank

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX							
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Person or Entity with Operation & Maintenance Responsibility						
NON-STRUC	CTURAL SOURCE CONTROL BMPs							
Yes	N1. Education for Property Owners, Tenants and Occupants Educational materials will be provided to tenants, including brochures and restrictions to reduce pollutants from reaching the storm drain system. Examples include tips for pet care, household tips, and proper household hazardous waste disposal.	Educational materials will be provided to tenants annually. Materials to be distributed are found in Appendix C of this WQMP. Tenants will be provided these materials by the Property Management prior to occupancy and annually thereafter. <u>Frequency</u> : Annually	Vineyards Development Corporation					
Yes	N2. Activity Restrictions The owner shall develop ongoing activity restrictions that include those that have the potential to create adverse impacts on water quality. Activities include, but are not limited to: handling and disposal of contaminants, fertilizer and pesticide application restrictions, litter control and pick-up, and vehicle or equipment repair and maintenance in non- designated areas, as well as any other activities that may potentially contribute to water pollution.	The Owner will prescribe activity restrictions to protect surface water quality, through lease terms or other equally effective measure, for the property. Restrictions include, but are not limited to, prohibiting vehicle maintenance or vehicle washing. <u>Frequency</u> : Ongoing	Vineyards Development Corporation					

Operations and Maintenance Plan Page 4 of 13

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX								
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility						
Yes	N3. Common Area Landscape Management The Owner shall be responsible for ongoing maintenance and management of landscaped areas on the project site, consistent with OC DAMP Section 5.5, Management Guidelines for Use of Fertilizers as well as City standards. Program includes how to reduce the potential pollutant sources of fertilizer and pesticide uses, utilization of water-efficient landscaping practices, ongoing trimming and other landscape maintenance activities and proper disposal of landscape wastes by the owner and/or contractors.	Maintenance shall be consistent with City requirements. Fertilizer and/or pesticide usage shall be consistent with County Management Guidelines for Use of Fertilizers (OC DAMP Section 5.5). Maintenance includes mowing, weeding, and debris removal on a weekly basis. Trimming, replanting, and replacement of mulch shall be performed on an as-needed basis to prevent exposure of erodible surfaces. Trimmings, clippings, and other landscape wastes shall be properly disposed of in accordance with local regulations. Materials temporarily stockpiled during maintenance activities shall be placed away from water courses and storm drains inlets. <u>Frequency</u> : Monthly	Vineyards Development Corporation						
Yes	N4. BMP Maintenance The Owner will be responsible for the implementation and maintenance of each applicable LID and structural BMP prescribed for the project. Inspection and maintenance will be carried out by property management staff and/or contractors.	Maintenance of structural BMPs implemented at the project site shall be performed at the frequency prescribed in this WQMP. Records of inspections and BMP maintenance shall be kept by the Owner and shall be available for review upon request. <u>Frequency</u> : Ongoing	Vineyards Development Corporation						
No	N5. Title 22 CCR Compliance (How development will comply)	Not Applicable	·						
No	N6. Local Industrial Permit Compliance	Not Applicable							

OPERATIONS AND MAINTENANCE PLAN Page 5 of 13

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX							
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility					
No	N7. Spill Contingency Plan	Not Applicable	·					
No	N8. Underground Storage Tank Compliance	Not Applicable						
No N9. Hazardous Materials Disclosure Not Applicable								
No N10. Uniform Fire Code Implementation Not Applicable								
Yes	N11. Common Area Litter Control The property management will be responsible for performing trash pickup and sweeping of littered common areas as needed, and weekly at a minimum. Any trash/debris waste collected shall be properly disposed of in accordance with local regulations. Responsibilities will also include noting improper disposal of materials and reporting such violations for further investigation.	Litter patrol, violations investigations, reporting and other litter control activities shall be performed on a weekly basis and in conjunction with routine maintenance activities. <u>Frequency</u> : Weekly	Vineyards Development Corporation					
Yes N12. Employee Training All employees of the property owner/management and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, and housekeeping practices.		All employees of the property owner/management and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, employees/managers on storm water pollution prevention, particularly good housekeeping practices, prior to the start of the rainy season (October 1). Refresher courses shall be conducted on an as needed basis. Materials that may be utilized on BMP maintenance are included in Appendix D.						

Operations and Maintenance Plan Page 6 of 13

	BMP INSPECTION & M	AAINTENANCE RESPONSIBILITY MATRIX				
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility			
Yes	N13. Housekeeping of Loading Docks Housekeeping measures will be implemented by the Owner to keep the proposed loading dock and delivery areas clean and orderly condition. Includes sweeping, removal of trash & debris on a weekly basis, and use of dry methods for cleanup (e.g., sweeping).	Sweep area routinely and before October 1 each year. Keep area clean of trash and debris at all times. Spills shall be cleaned up immediately using dry methods. <u>Frequency</u> : Weekly	Vineyards Development Corporation			
Yes	N14. Common Area Catch Basin Inspection	Catch basin inlets shall be inspected and, if necessary, cleaned prior to the storm season by October 1st each year. <u>Frequency</u> : Annually	Vineyards Development Corporation			
Yes	Yes N15. Street Sweeping Private Streets and Parking Lots		Vineyards Development Corporation			
No	N16. Retail Gasoline Outlets	Not Applicable				
STRUCTURA	STRUCTURAL SOURCE CONTROL BMPs					

Operations and Maintenance Plan Page 7 of 13

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX								
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility						
Yes	S1. Provide storm drain system stenciling and signage The phrase "NO DUMPING! DRAINS TO OCEAN", or an equally effective phrase approved by the City, will be stenciled on all major storm drain inlets within the project site to alert the public to the destination of pollutants discharged into storm water. Stencils shall be in place prior to release of certificate of occupancy.	Stenciling shall be inspected for legibility no later than the beginning of the rainy season on October 1 st of each year. Stenciling must be re- stenciled to maintain legibility as necessary and when deemed necessary by the local inspecting agency. <u>Frequency</u> : Annually	Vineyards Development Corporation						
No	S2. Design and construct outdoor material storage areas to reduce pollution introduction		<u></u>						
Yes	 S3. Design and construct trash and waste storage areas to reduce pollution introduction Trash receptacles will be monitored and emptied by management of the Bowery. Trash will be taken from the interior trash rooms to the exterior trash storage areas at the time trash collection is set to occur. The four trash storage areas will drain into a water quality inlet to prevent discharge of spilled contaminants, consistent with local design standards. Frequency: Ongoing 		Vineyards Development Corporation						

Operations and Maintenance Plan Page 8 of 13

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX								
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility Vineyards Development Corporation						
Yes	S4. Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control The Owner will be responsible for the installation and maintenance of all common landscape areas utilizing similar planting materials with similar water requirements to reduce excess irrigation runoff. Includes implementation of efficient irrigation systems for common area landscaping including, but not limited to, provisions for water sensors and programmable irrigation cycles. This includes smart timers, rain sensors, and moisture shut- off valves.	In conjunction with routine maintenance, verify that landscape design continues to function properly by adjusting systems to eliminate overspray to hardscape areas and to verify that irrigation timing and cycle lengths are adjusted in accordance to water demands, given the time of year, weather, and day or nighttime temperatures. System testing shall occur twice per year. Water from testing/flushing shall be collected and properly disposed to the sewer system and shall not discharge to the storm drain system. <u>Frequency</u> : Monthly							
No	S5. Protect slopes and channels and provide energy dissipation	Not Applicable							
Yes	S6. Dock areas	Sweep area routinely and before October 1 each year. Keep area clean of trash and debris at all times. Spills shall be cleaned up immediately. See also BMP N13. <u>Frequency</u> : Weekly	Vineyards Development Corporation						
No	S7. Maintenance bays	Not Applicable							
No	S8. Vehicle wash areas	Not Applicable							
No	S9. Outdoor processing areas	Not Applicable							
No	S10. Equipment wash areas	Not Applicable							

OPERATIONS AND MAINTENANCE PLAN Page 9 of 13

	BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX							
BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility					
No	S11. Fueling areas	Not Applicable						
No S12. Hillside landscaping Not Applicable								
Yes	S13. Wash water control for food preparation areas	Adequate signs shall be provided and appropriately placed stating the prohibition of discharging wash water to the storm drain system. Employees shall be trained in discharge and safety requirements outlined in State Health & Safety Code 27520. All cooking utensils shall be cleaned in appropriate wash stations. <u>Frequency</u> : Ongoing	Vineyards Development Corporation					
No	S14. Community car wash racks	Not Applicable						

BMP INSPECTION & MAINTENANCE RESPONSIBILITY MATRIX							
BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility					
LOW IMPACT DEVELOPMENT BMPs							
Biotreatment BMP: Modular Wetland Systems (MWS) Modular Wetlands by Modular Wetlands Systems, Inc. are proprietary biotreatment systems that utilize multi-stage treatment processes. The pre-treatment chamber contains the first three stages of treatment, and includes a catch basin inlet filter to capture trash, debris, gross solids and sediments, a settling chamber for separating out larger solids, and a media filter cartridge for capturing fine TSS, metals, nutrients, and bacteria. Runoff then flows through the wetland chamber where treatment is achieved through a variety of physical, chemical, and biological processes. As storm water passes down through the planting soil, pollutants are filtered, adsorbed, biodegraded and sequestered by the soil and plants, functioning similar to bioretention systems. The discharge chamber at the end of the unit collects treated flows and discharges back into the storm drain system.	Inspect system at a minimum of once every six months, prior to the start of the rainy season (October 1), and after major storm events. Typical maintenance includes removing trash & debris from the catch basin screening filter (by hand), removal of sediment and solids in the settlement chamber (vacuum truck), replacement of the BioMediaGREENTM filter cartridge, and replacement of the BioMediaGREENTM drain down filter (if equipped). In addition, plants within the wetland chamber will require trimming in conjunction with landscape maintenance activities. See attached manufacturer's specifications for additional requirements. <u>Frequency</u> : 2x per year	Vineyards Development Corporation					

Required Permits

Permits are not required for the implementation, operation, and maintenance of the BMPs.

Forms to Record BMP Implementation, Maintenance, and Inspection

The form that will be used to record implementation, maintenance, and inspection of BMPs is attached.

Recordkeeping

All records must be maintained for at least five (5) years and must be made available for review upon request.

Waste Management

Any waste generated from maintenance activities will be disposed of properly. Wash water and other waste from maintenance activities is not to be discharged or disposed of into the storm drain system. Clippings from landscape maintenance (i.e. prunings) will be collected and disposed of properly offsite, and will not be washed into the streets, local area drains/conveyances, or catch basin inlets.

RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION

Today's Date: _____

Name of Person Performing Activity (Printed):

Signature: _____

BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed

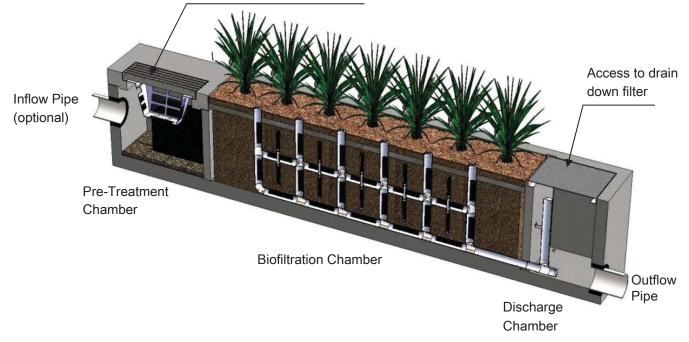
RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION

Today's Date: _____

Name of Person Performing Activity (Printed):

Signature: _____

BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed


Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
 - (5 minute average service time).
- Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
 - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
 - (10-15 minute per cartridge average service time).
- Replace Drain Down Filter Media average maintenance interval is 12 to 24 months.
 - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
 - (Service time varies).

System Diagram

Access to screening device, separation chamber and cartridge filter

Maintenance Procedures

Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

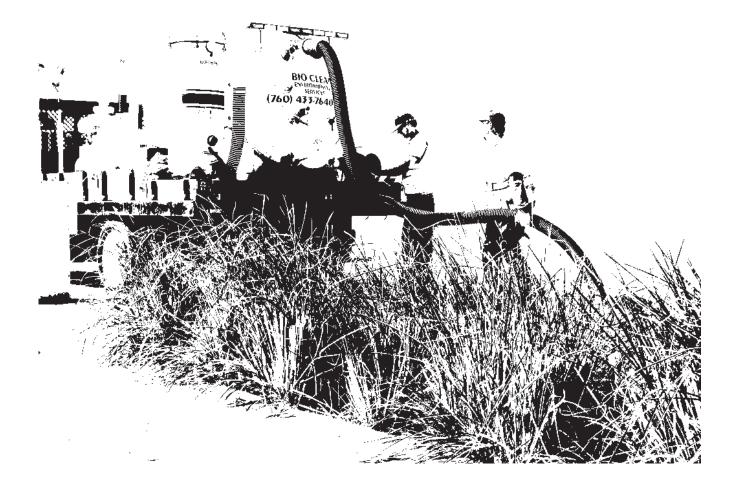

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com



Project Name										For Office Use On	ly
Project Address								(Reviewed By)			
Owner / Management Company								· · · · ·			
Contact Phone () -									(Date) Office personnel to co the lef		
Inspector Name					Date	_/	_/		Time		AM / PM
Type of Inspection Routin	ie 🗌 Fo	ollow Up		aint	Storm		Sto	orm Event i	n Last 72-ho	ours? 🗌 No 🗌 `	Yes
Weather Condition					Additional Not	es					
			I	nspect	ion Checkl	ist					
Modular Wetland System T	ype (Curb,	Grate or L		-			e (22'	, 14' or e	etc.):		
Structural Integrity:								Yes	No	Comme	nts
Damage to pre-treatment access pressure? Damage to discharge chamber a pressure?							ng				
Does the MWS unit show signs of	of structural of	leterioration	(cracks in the	e wall, dam	age to frame)?						
Is the inlet/outlet pipe or drain do	wn pipe dam	aged or othe	erwise not fun	ctioning pr	operly?						
Working Condition:											
Is there evidence of illicit dischargunit?	ge or excess	ve oil, greas	e, or other au	itomobile f	luids entering a	nd cloggir	ng the				
Is there standing water in inappro	opriate areas	after a dry p	eriod?								
Is the filter insert (if applicable) at											
Does the depth of sediment/trash specify which one in the commer							lf yes,				Depth:
Does the cartridge filter media ne	ed replacem	ent in pre-tre	eatment cham	nber and/or	r discharge cha	mber?				Chamber:	
Any signs of improper functioning	g in the disch	arge chambe	er? Note issu	ies in comr	ments section.						
Other Inspection Items:											
Is there an accumulation of sedin	nent/trash/de	bris in the w	etland media	(if applicat	ble)?						
Is it evident that the plants are all	ive and healt	hy (if applica	ble)? Please	note Plant	Information bel	ow.					
Is there a septic or foul odor coming from inside the system?											
Waste:	Yes	No		R	ecommende	d Maint	enan	се		Plant Inform	nation
Sediment / Silt / Clay				No Cleani	ing Needed					Damage to Plants	
Trash / Bags / Bottles				Schedule	Maintenance as	s Planned	k			Plant Replacement	
Green Waste / Leaves / Foliage Needs Immediate Maintenance F							Plant Trimming				

Additional Notes:

Maintenance Report

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Cleaning and Maintenance Report Modular Wetlands System

Project N	lame						For	Office Use Only
Project Address (city) (Zip Code) (Reviewed By)								ewed By)
Owner / Management Company						(Date))	
Contact				Phone ()	-	Offic	e personnel to complete section to the left.
Inspector	Name			Date	/	_/	Time	AM / PM
Type of I	nspection 🗌 Routir	ne 🗌 Follow Up	Complaint	Storm		Storm Event in	Last 72-hours?	🗌 No 🔲 Yes
Weather	Condition			Additiona	al Notes			
Site Map #	GPS Coordinates of Insert	Manufacturer / Description / Sizing	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Manufactures'
	Lat: Long:	MWS Catch Basins						
		MWS Sedimentation Basin						
		Media Filter Condition						
		Plant Condition						
		Drain Down Media Condition						
		Discharge Chamber Condition						
		Drain Down Pipe Condition						
		Inlet and Outlet Pipe Condition						
Commen	ts:							

APPENDIX E

CONDITIONS OF APPROVAL (PENDING ISSUANCE)

APPENDIX F GEOTECHNICAL REPORT

June 14, 2019

Project No. 19063-01

No. 2770

Mr. Jeremy Ogulnick *RHW Holdings* 240 Newport Center Drive, Suite 200 Newport Beach, CA 92660

Subject: Geotechnical EIR/Due-Diligence Level Report for the Proposed Mixed-Use Development, The Bowery, 2300 Red Hill Avenue, Santa Ana, California

In accordance with your request, LGC Geotechnical, Inc. is providing this geotechnical EIR/duediligence level report for the proposed mixed-use development located at 2300 Red Hill Avenue in the City of Santa Ana, California. The purpose of our study was to evaluate the existing onsite geotechnical conditions and to confirm that the site can be developed from a geotechnical perspective.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Dennis Boratynec, GE 2770

Vice President

Respectfully,

RLD/DJB/CNJ/aca

- Distribution: (4) Addressee (3 wet signed copies for agency submittal and 1 electronic copy) (1) EPD Solutions, Inc. (electronic copy)
 - Attn: Mr. Jeremy Krout

TABLE OF CONTENTS

Project No. 19063-01

<u>Section</u>

1.0	.0 INTRODUCTION				
	1.1	Purpose and Scope of Services	1		
	1.2	Project Description	1		
	1.3	Existing Conditions	4		
	1.4	Previous Site Geotechnical Information	4		
	1.5	Subsurface Exploration	5		
	1.6	Laboratory Testing	6		
2.0	GEOTECHNICAL CONDITIONS				
	2.1	Regional Geology			
	2.2	Site-Specific Geology			
		2.2.1 Older Artificial Fill (Map Symbol –afo)			
		2.2.2 Quaternary Young Alluvial Fan Deposits (Map Symbol – Qyf)			
	2.3	Landslides and Slope Stability			
	2.4	Groundwater			
	2.5	Field Infiltration Testing	8		
	2.6	Seismic Design Parameters	9		
	2.7	Faulting	11		
		2.7.1 Liquefaction and Dynamic Settlement	11		
		2.7.2 Lateral Spreading	12		
	2.8	Expansion Potential	12		
3.0	CON	CLUSIONS	13		
4.0	REC	OMMENDATIONS	15		
5.0	LIMI	TATIONS	17		

<u>Page</u>

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES, ILLUSTRATIONS, & APPENDICES

<u>Tables</u>

- Table 1 Estimated Structural Loads (Page 2)
- Table 2 Summary of Field Infiltration Testing (Page 8)
- Table 3 Seismic Design Parameters for Structures with a Period of Vibration ≤ 0.5 Second (Page 10)

<u>Figures</u>

- Figure 1 Site Location Map (Page 3)
- Figure 2 Geotechnical Exploration Location Map (Rear of Text)
- Figure 3 Recommended Retaining Wall Backfill Detail (Rear of Text)

<u>Appendices</u>

- Appendix A References
- Appendix B Boring Logs
- Appendix C Laboratory Test Results
- Appendix D Infiltration Test Results
- Appendix E Liquefaction Analysis

1.0 INTRODUCTION

1.1 <u>Purpose and Scope of Services</u>

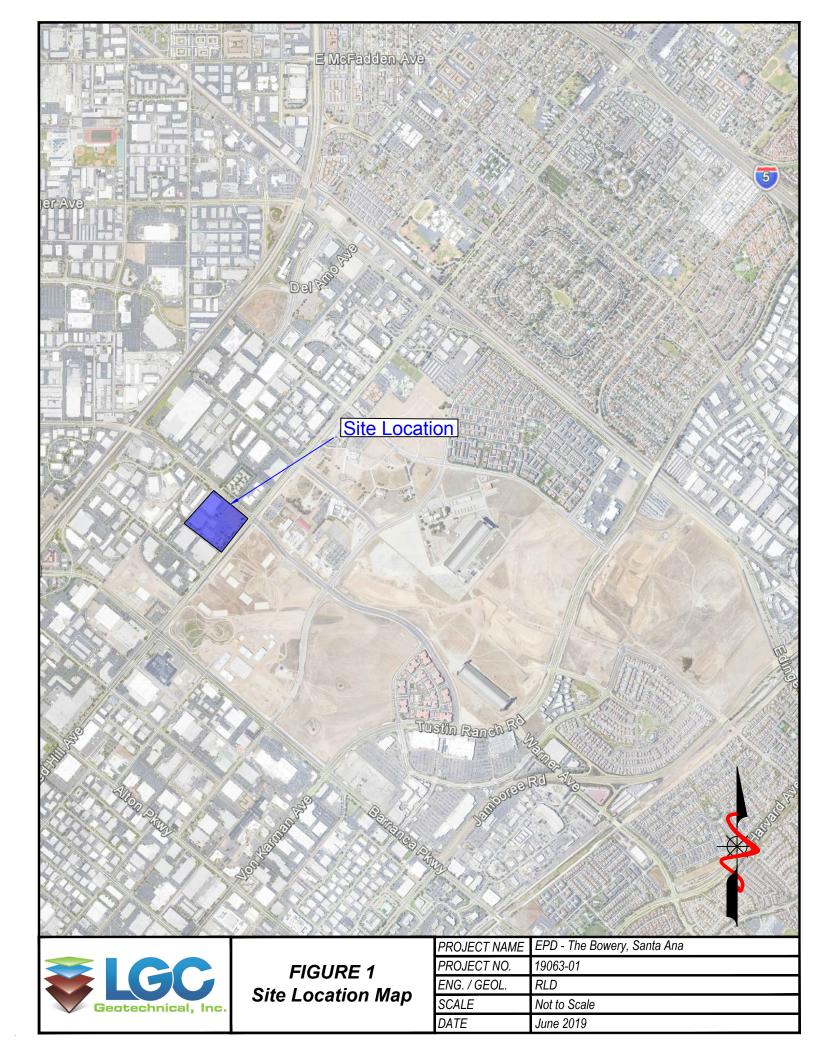
This report presents the results of our geotechnical EIR/due-diligence level report for the proposed mixed-use development located at 2300 Red Hill Avenue in the City of Santa Ana, California (see Site Location Map, Figure 1). The conceptual site plan by Architects Orange (AO, 2019) and site topo from Fuscoe Engineering (Fuscoe, 2019) was utilized as a base map for our Geotechnical Exploration Location Map (Figure 2).

The purpose of our study was to evaluate the existing onsite geotechnical conditions and to confirm that the site can be developed from a geotechnical perspective. As part of this report, we have: 1) reviewed available geotechnical reports, geologic maps, and satellite images pertinent to the site (Appendix A); 2) performed a limited subsurface geotechnical evaluation of the site consisting of the excavation of five small-diameter borings ranging in depth from approximately 5 to 50 feet below existing ground surface; 3) performed two field infiltration tests; 4) performed laboratory testing of select soil samples obtained during our subsurface evaluation; and 5) prepared this EIR/due-diligence level geotechnical evaluation report presenting our findings, conclusions and preliminary recommendations as it relates to the proposed mixed-use development.

The findings and conclusions presented herein should be considered preliminary and will need to be confirmed as part of a grading plan review report to be provided at a later date. It should be noted that LGC Geotechnical does not provide environmental consulting services.

1.2 <u>Project Description</u>

Based on the provided information and conceptual site plans by Architects Orange (AO, 2019), the proposed mixed-use development will consist of three parking structures along with at-grade retail and residential buildings. Parking Structure "A" will have 7 stories, Parking Structure "B" will have 6 stories and Parking Structure "C" will have 6-stories. The residential buildings are up to 7 stories high and amenity areas are planned within the residential and retail areas. Parking structures are anticipated to be reinforced concrete and the retail and residential structures are anticipated to be wood-framed.


We anticipate finish grades will not vary significantly (± 4 feet) from current grade. Two on-grade swimming pools and spas are proposed in the courtyard areas and one rooftop swimming pool, spa and deck amenity area is proposed on the roof of Parking Structure "A". A number of courtyards with lounges and other amenities are also proposed. A retail plaza with multiple retail buildings and on-grade parking is proposed in the south eastern portion of the site adjacent to Redhill Avenue. Presented in Table 1 is a summary of our <u>estimated</u> structural (dead plus live) loads for the proposed 7-story mixed-use residential/retail structures and the proposed 7-story parking structures. Please note that structural loads and a preliminary grading plan were not provided to us at the time of this report.

<u> TABLE 1</u>

Planned Structure	Column Loads (kips)	Wall Loads (kip/ft)
7-Story Parking Structure(s)	1200	-
7-Story Mixed-Use Structures	200	10

Estimated Structural Loads

The preliminary recommendations given in this report are based upon the proposed layout and estimated structural loading information above. We understand that the project plans are currently being developed at this time; LGC Geotechnical should be provided with updated project plans and the actual structural loads when they become available, in order to either confirm or modify the recommendations provided herein. This may include but is not limited to additional subsurface borings/CPTs, laboratory testing and analysis to provide a design level geotechnical report.

1.3 <u>Existing Conditions</u>

The relatively flat site is approximately 15 acres and is bound in the north easterly direction by Warner Avenue, in the south easterly direction by Red Hill Avenue and in the south westerly and north westerly directions by existing commercial/industrial buildings (see Figure 1 – Site Location Map). The site currently consists of three large existing industrial buildings, associated at-grade parking and drive aisles, and turf covered open space. Existing elevations range from approximately 57 to 65 feet above mean sea level (msl). In general, the site drains from north to south.

1.4 <u>Previous Site Geotechnical Information</u>

Review of historic aerial photographs indicate that in 1946 the site was agricultural land with a small residence in the eastern corner of the property. Red Hill and Warner Avenue are constructed in their present locations. Army barracks related to the Naval Reservation are visible across Red Hill Avenue. By 1980, the Ricoh Electronics Building and its parking lot at 2300 Red Hill Avenue was constructed. Adjacent buildings to the northwest and southwest of the site were constructed. By 1994, the site was constructed to its present condition (Historic Aerials, 2019).

Review of previous geotechnical compaction reports indicates much of the site fill soils have been geotechnically observed and tested. Documentation consists of the following reports:

In 1979, G.A. Nicoll & Associates (Nicoll) performed geotechnical observation and testing for the Ricoh Electronics Building at 2300 Red Hill Avenue (Nicoll, 1979a and 1979b). Geotechnical observation was primarily for the over-excavation of the building pad, underground structures, and associated utilities. After the area was cleared of vegetation and debris, soils within the building pad were excavated to depths of approximately 5 feet below existing grade. Fill was placed in approximate 8-inch thick lifts and compacted with heavy compaction equipment. Where tested using ASTM Test Method D1556, compaction soils were found to meet the project requirement of at least 90 percent relative compaction, as determined by ASTM Test Method D1557. Nicoll concluded, based on their observation and testing, that fill soils were compacted to at least the minimum required relative compaction.

In 1981, Nicoll performed geotechnical observation and testing for the REZ Toner Building at 2310 Red Hill Avenue (Nicoll, 1981). Geotechnical observation was primarily for the overexcavation of the building pad. After the area was cleared of vegetation and debris, soils within the building footprint and mechanical pit areas were excavated. Fill was placed in approximate 8-inch thick lifts and compacted with heavy compaction equipment. Where tested using ASTM Test Method D1556, soils were found to meet the project requirement of at least 90 percent relative compaction, as determined by ASTM Test Method D1557. Up to approximately 16.5 feet of artificial fill was placed in the mechanical pit area and up to approximately 9 feet of fill was placed in the building pad area. Fill was placed up to 15 feet beyond the limit of the building foundations. Nicoll concluded, based on their observation and testing, that fill soils were compacted to at least the minimum required relative compaction. In 1989, Lotus Consulting Engineers (Lotus) performed geotechnical observation and testing for the removal of an underground storage tank located between 2310 and 2320 Red Hill Avenue. The tank was removed, approximately 10 feet of crushed miscellaneous base followed by approximately 5 feet of onsite soils were placed in approximate 8-inch thick lists and compacted with heavy compaction equipment. Where tested, soils were found to meet the project requirement of at least 92 percent and 90 percent relative compaction for the crushed miscellaneous base and onsite soil, respectively, as determined by ASTM Test Method D1557. Lotus concluded, based on their observation and testing, that fill soils were compacted to at least the minimum required relative compaction.

In 1990, Nicoll performed geotechnical observation and testing for an addition to the Thermal Paper Plant at 2320 Red Hill Avenue (Nicoll, 1990). Geotechnical observation was primarily for the over-excavation of the building pad for a maintenance building addition. After the area was cleared of vegetation and debris, upper soils within the building addition pad were excavated approximately 10 to 13 feet below existing grade. The bottom was stabilized with approximately 24 inches of gravel prior to fill placement. Fill was placed in approximate 8-inch thick lifts and compacted with heavy compaction equipment. Where tested using ASTM Test Method D1556, soils were found to meet the project requirement of at least 90 percent relative compaction, as determined by ASTM Test Method D1557. Up to approximately 13 feet of artificial fill was placed and fill was placed up to 5 feet beyond the limit of the building foundations. Nicoll concluded, based on their observation and testing, that fill soils were compacted to at least the minimum required relative compaction.

1.5 <u>Subsurface Exploration</u>

A geotechnical field evaluation was performed by LGC Geotechnical. This program consisted of drilling and sampling five small-diameter borings.

The borings were drilled by CalPac Drilling under subcontract to LGC Geotechnical. The depth of the borings ranged from approximately 5 to 50 feet below existing grade. The upper approximate 5 feet were hand-augered due to potential utility line conflicts. An LGC Geotechnical representative observed the drilling operations, logged the borings, and collected soil samples for laboratory testing. The borings were performed using a B-61 truck-mounted drill rig equipped with 6-inch and 8-inch diameter hollow-stem augers. Driven soil samples were collected by means of the Standard Penetration Test (SPT) and Modified California Drive (MCD) sampler. The MCD is a split-barrel sampler with a tapered cutting tip and lined with a series of 1-inch tall brass rings. The SPT sampler (1.4-inch ID) and MCD sampler (2.4-inch ID, 3.0-inch OD) were driven using a 140-pound automatic hammer falling 30 inches to advance the sampler a total depth of 18 inches or until refusal. The raw blow counts for each 6-inch increment of penetration were recorded on the boring logs. Bulk samples were also collected and logged for laboratory testing at select depths. At the completion of drilling, the borings were backfilled with cement bentonite and the surface was replaced with asphalt cold-patch.

Infiltration testing was performed within two of the borings (I-1 through I-2) to depths of 5 feet below existing grade. An LGC Geotechnical staff geologist installed standpipes, backfilled the borings with crushed rock and pre-soaked the infiltration holes prior to testing. Infiltration

testing was performed per the County of Orange testing guidelines. The locations were subsequently backfilled with native soils at the completion of testing.

Boring logs are presented in Appendix B and their approximate locations are depicted on Figure 2.

1.6 <u>Laboratory Testing</u>

Representative driven and bulk samples were retained for laboratory testing during our field evaluation. Laboratory testing included in-situ unit weight and moisture content, fines content, Atterberg Limits (liquid limit and plastic limit), consolidation, laboratory compaction, expansion index, and corrosion (sulfate, chloride, pH, and minimum resistivity).

The following is a summary of the laboratory test results.

- Dry density of the samples collected ranged from approximately 91 pounds per cubic foot (pcf) to 126 pcf, with an average of 108 pcf. Field moisture contents ranged from approximately 14 percent to 36 percent, with an average of 22 percent.
- Four fines content (percent passing No. 200 sieve) tests ranging from approximately 47 percent to 93 percent. Based on the Unified Soils Classification System (USCS), three of the tested samples would be classified as "fine-grained" and one sample would be classified as "coarse-grained."
- Two Atterberg Limit (liquid limit and plastic limit) tests were performed. Results indicated Plasticity Index values ranging from 11 to 32.
- Two consolidation tests were performed. The stress vs. deformation plots are provided in Appendix C.
- One laboratory compaction test of a near surface sample indicated a maximum dry density of 122.5 pcf with an optimum moisture content of 12.0 percent.
- Two Expansion Index (EI) tests were performed. Results were EI values of 25 and 44, corresponding to "Low" expansion potential.
- Corrosion testing indicated soluble sulfate contents of approximately 0.1 percent or less, chloride content of 100 parts per million (ppm), pH value of 7.5, and minimum resistivity value of 515 ohm-cm.

A summary of the laboratory test results is presented in Appendix C.

2.0 GEOTECHNICAL CONDITIONS

2.1 <u>Regional Geology</u>

The subject site is generally located within the Peninsular Ranges Geomorphic Province of California, more specifically at the eastern edge of the Los Angeles Sedimentary Basin. The Los Angeles Basin is a northwest-plunging synclinal sedimentary deposit that is bounded to the south of the subject site by the broadly uplifted coastal mesa of Newport Beach and the San Joaquin Hills, to the north by the foothills of the Santa Ana mountain range. The site is located on young alluvial fan materials that include previous floodplain deposits. A channelized portion of the Peters Canyon Creek passes approximately two miles away from the site to the east. The creek drains into Upper Newport Bay located south of the site (Morton, 2004 & CDMG, 2001b).

2.2 <u>Site-Specific Geology</u>

The subject site covers a rectangular-shaped parcel on relatively flat alluvial flood plains, typical of the Los Angeles Basin. Based on our subsurface exploration and review of pertinent geologic literature and maps, the site is generally underlain by older artificial fill soils and Quaternary-aged young alluvial fan deposits.

It should be noted that geotechnical explorations are only representative of the location where they are performed and varying subsurface conditions may exist outside of each location. In addition, subsurface conditions can change over time. The soil descriptions provided above should not be construed to mean that the subsurface profile is uniform and that soil is homogeneous within the project area. A brief description of the materials encountered during drilling is presented in the following section, and the approximate boring locations are depicted on the Geotechnical Exploration Location Map (Figure 2). For details on the stratigraphy at the exploration locations, refer to the boring and test pit logs provided in Appendix B

2.2.1 <u>Older Artificial Fill (Map Symbol – afo)</u>

Older artificial fill was observed in the field explorations up to 7.5 feet below existing grade in borings HS-1 though HS-3. The fill was observed to consist of slightly moist to moist clays and silts with variable amounts of sand.

2.2.2 Quaternary Young Alluvial Fan Deposits (Map Symbol - Qyf)

Quaternary young alluvial fan deposits were observed underlying the older artificial fill. Where observed, the alluvial materials generally consisted of moist to wet, medium stiff to hard clays with variable sand content, as well as loose to medium dense, moist to wet clayey and silty sands to the maximum explored depth of approximately 50 feet below existing grade.

2.3 Landslides and Slope Stability

Document research and field observations do not indicate the presence of landslides on the site or in the immediate vicinity (Morton, 2004). Review of the Seismic Hazards Zone Map (CDMG, 2002b) and the Seismic Hazard Zone Report (CDMG, 2001a) for the Tustin 7.5 Minute Quadrangle indicates that the site is not located within a mapped area considered potentially susceptible to seismically-induced slope instability.

2.4 <u>Groundwater</u>

The measured depth of groundwater in our borings ranged from approximately 24 to 33 feet below existing grade. Historic high groundwater is estimated to be about 10 feet below existing grade (CDMG, 2001a).

It should be noted that higher localized and seasonal perched groundwater conditions may accumulate below the surface, and should be expected throughout the design life of the proposed improvements. In general, groundwater conditions below any given site may vary over time depending on numerous factors including seasonal rainfall and local irrigation among others.

2.5 <u>Field Infiltration Testing</u>

One field percolation test was performed in the area of the proposed infiltration trench, as directed by the project civil engineer, and the location is depicted on Figure 2 – Geotechnical Exploration Location Map. Test well installation consisted of placing a 3-inch diameter perforated PVC pipe in the excavated borehole and backfilling the annulus with crushed rock including the placement of approximately 2 inches of crushed rock at the bottom of the borehole. The infiltration test well was presoaked the day of installation and testing took place within 24 hours of presoaking. During the pre-test the water level was observed to drop less than 6 inches in 25 minutes for two consecutive readings. Therefore, the test procedure for fine-grained soils or "slow test" was followed. Test well installation and the estimation of infiltration rates were accomplished in general accordance with the guidelines set forth by the County of Orange (2013). In general, three-dimensional flow out of the test well (*percolation*), as observed in the field, is mathematically reduced to one-dimensional flow out of the bottom of the test well (*infiltration*). Infiltration tests are performed using relatively clean water, free of particulates, silt, etc. The results of our recent field infiltration testing are presented in Appendix D and summarized below.

TABLE 2

Summary of Field Infiltration Testing

Infiltration Test Identification	Approx. Depth Below Existing Grade (ft)	Observed Infiltration Rate* (in./hr.)	Measured Infiltration Rate** (in./hr.)
I-1	5	0.3	0.15

*Observed Infiltration Rates Do Not Include Factor of Safety.

**Measured Infiltration Rates Include a Factor of Safety of 2 in Order to Evaluate Feasibility.

The tested infiltration rates provided in this report are considered a general representation of the infiltration rates at the location of the proposed infiltration trench. Please note, the testing of infiltration rates is highly dependent upon the materials encountered at the point of testing (i.e. location and depth of testing). Varying subsurface conditions may exist outside of the test location which could alter the calculated infiltration rate.

2.6 <u>Seismic Design Parameters</u>

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2016 CBC. Since the site contains soils that are susceptible to liquefaction (refer to above Section "Liquefaction and Dynamic Settlement"), ASCE 7 which has been adopted by the CBC requires that site soils be assigned Site Class "F" and a site-specific response spectrum be performed. However, in accordance with Section 20.3.1 of ASCE 7, if the fundamental periods of vibration of the planned structure are equal to or less than 0.5 second, a site-specific response spectrum is not required and ASCE 7/2016 CBC site class and seismic parameters may be used in lieu of a site-specific response spectrum. It should be noted that the seismic parameters provided herein are not applicable for any structure having a fundamental period of vibration greater than 0.5 second. Should the structural engineer determine that any of the proposed structures have a fundamental period of vibration greater than 0.5 second. Should the structural engineer determine that any of the proposed structures have a fundamental period of vibration greater than 0.5 second. Should the structural engineer determine that any of the proposed structures have a fundamental period of vibration greater than 0.5 second.

Representative site coordinates of latitude 33.7099 degrees north and longitude -117.8395 degrees west were utilized in our analyses. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and S_{M1}) and adjusted design spectral response acceleration parameters (S_{DS} and S_{D1}) for Site Class F modified to Site Class D for building structures with a period of vibration equal to or less than 0.5 second are provided in Table 3 on the following page.

TABLE 3

Selected Parameters from 2016 CBC, Section 1613 - Earthquake Loads	Seismic Design Values	
Site Class per Chapter 20 of ASCE 7	D*	
Risk-Targeted Spectral Acceleration for Short Periods (S _S)**	1.508g	
Risk-Targeted Spectral Accelerations for 1-Second Periods (S ₁)**	0.558g	
Site Coefficient F _a per Table 1613.3.3(1)	1.000	
Site Coefficient F _v per Table 1613.3.3(2)	1.500	
Site Modified Spectral Acceleration for Short Periods (S_{MS}) for Site Class D [Note: $S_{MS} = F_aS_S$]	1.508g	
Site Modified Spectral Acceleration for 1- Second Periods (S_{M1}) for Site Class D [Note: $S_{M1} = F_vS_1$]	0.837g	
Design Spectral Acceleration for Short Periods (S_{DS}) for Site Class D [Note: $S_{DS} = (^2/_3)S_{MS}$]	1.006g	
Design Spectral Acceleration for 1-Second Periods (S_{D1}) for Site Class D [Note: $S_{D1} = (^2/_3)S_{M1}$]	0.558g	
Mapped Risk Coefficient at 0.2 sec Spectral Response Period, C _{RS} (per ASCE 7)	1.001	
Mapped Risk Coefficient at 1 sec Spectral Response Period, C_{R1} (per ASCE 7)	1.034	

Seismic Design Parameters for Structures with a Period of Vibration < 0.5 Second

* Site is Class F, seismic parameters provided herein are only applicable for structure period ≤ 0.5 second, refer to discussion above.

** From SEAOC, 2019

Section 1803.5.12 of the 2016 CBC (per Section 11.8.3 of ASCE 7) states that the maximum considered earthquake geometric mean (MCE_G) Peak Ground Acceleration (PGA) should be used for liquefaction potential. The PGA_M for the site is equal to 0.565g (SEAOC, 2019).

A deaggregation of the PGA based on a 2,475-year average return period indicates that an earthquake magnitude of 6.9 at a distance of approximately 3.1 km from the site would contribute the most to this ground motion (USGS, 2008).

2.7 <u>Faulting</u>

The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CGS, 2018). A fault is considered "active" if evidence of surface rupture in Holocene time (the last approximately 11,000 years) is present. The possibility of damage due to ground rupture is considered low since no active faults are known to cross the site. The closest known active faults are associated with the San Joaquin Hills Fault, located approximately 1.5 miles from the site; and the Newport-Inglewood Fault Zone, approximately 8.4 miles southwest of the site; and the Elsinore Fault Zone, approximately 13.2 miles northeast of the site.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Southern California region, which may affect the site, include ground lurching and shallow ground rupture, soil liquefaction, and dynamic settlement. These secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault and the onsite geology. A discussion of these secondary effects is provided in the following sections.

2.7.1 Liquefaction and Dynamic Settlement

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions coexist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Studies indicate that loose, saturated, near surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction potential. In general, cohesive soils are not considered susceptible to liquefaction (Bray & Sancio, 2006). Effects of liquefaction on level ground include settlement, sand boils, and bearing capacity failures below structures. Dynamic settlement of dry sands can occur as the sand particles tend to settle and densify as a result of a seismic event.

Based on our review of the State of California Seismic Hazard Zone for liquefaction potential (CDMG, 2001b), the site <u>is</u> located within a liquefaction hazard zone. In general, site soils consist of medium to high plasticity clays and silts and are not susceptible to liquefaction (Bray & Sancio, 2006). However, based on our field data, relatively isolated loose to medium dense sand layers, generally located approximately 40 to 50 feet below existing grade, are considered susceptible to liquefaction. The recent encountered in-situ groundwater depth of 25 feet below existing grade and historic high groundwater depth of 10 feet below existing grade were both used in the liquefaction analysis. The liquefaction evaluation was performed using data from boring HS-2. Liquefaction potential was evaluated using the procedures outlined by Special Publication 117A (SCEC, 1999 & CGS, 2008) and based on the seismic criteria of the 2016 California Building Code (CBC) and historic high groundwater depth. Liquefaction induced settlement was estimated using the PGA_M per the 2016 CBC and a moment magnitude of 6.9 (USGS, 2008).

Based on the PGA_M and our preliminary liquefaction analysis, seismic settlement potential in the upper approximate 50 feet is estimated to be on the order of 2 inches or less. Differential seismic settlement can be estimated as 1-inch over a horizontal span of about 40 feet. Seismically induced settlements were estimated by the procedure outlined by Tokimatsu and Seed (1987). Liquefaction calculations are provided in Appendix E.

2.7.2 Lateral Spreading

Lateral spreading is a type of liquefaction induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures.

Site soils are generally medium to high plasticity clays and silts and are not susceptible to liquefaction (Bray & Sancio, 2006). However, relatively isolated loose to medium dense sand layers are present and considered susceptible to liquefaction. These isolated layers were generally encountered at depths greater than 40 feet below existing grade. Based on the relatively flat topography of the site, lack of a free face nearby and general lack of potentially liquefiable layers in the upper 40 feet, the potential for lateral spreading is considered low.

2.8 <u>Expansion Potential</u>

Based on the results of our recent laboratory testing and previous background reports, site soils are anticipated to have a "Low" to "High" expansion potential. Final expansion potential of site soils should be determined at the completion of grading. Results of expansion testing at finish grades will be utilized to confirm final foundation design.

3.0 <u>CONCLUSIONS</u>

Based on the results of our subsurface evaluation and understanding of the proposed redevelopment, it is our opinion that the proposed development is feasible from a geotechnical standpoint. A summary of our conclusions are as follows:

- The field explorations generally indicate medium stiff to hard fine-grained clays interbedded with layers of medium dense sands with varying fines content to the maximum explored depth of approximately 50 feet below existing grade.
- Approximately 7.5 feet of previously placed undocumented artificial fill over native alluvial fan deposits was observed during this subsurface evaluation. Previous reports indicate that older artificial fill may be present up to approximately 17 feet below existing grade. Older artificial fill soils are primarily clays and silts with variable amounts of sand. Native alluvial fan deposits are primarily medium stiff to hard clays with variable sand content, as well as loose to medium dense clayey and silty sands to the maximum explored depth of approximately 50 feet below exiting grade.
- The near-surface soils are generally loose, dry and collapsible and are not suitable for the planned improvements in their present condition; removal and recompaction will be required.
- Groundwater was encountered during our recent subsurface evaluation at depths ranging from approximately 24 to 33 feet below existing ground surface. Historic high groundwater for the site is about 10 feet below existing ground surface (CDMG, 2001a).
- The site is located within a State of California Seismic Hazard Zone for liquefaction potential (CDMG, 2001b). In general, site soils generally consist of medium to high plasticity clays and silts and are not susceptible to liquefaction (Bray & Sancio, 2006). However, based on our field data, relatively isolated loose to medium dense sand layers generally located approximately 40 to 50 feet below existing grade are considered susceptible to liquefaction. Based on the PGA_M and our preliminary liquefaction analysis, seismic settlement potential in the upper approximate 50 feet is estimated to be on the order of 2 inches or less. Differential seismic settlement can be estimated as 1-inch over a horizontal span of about 40 feet.
- Based on the relatively flat topography of the site, lack of a free face nearby and general lack of potentially liquefiable layers in the upper 40 feet, the potential for lateral spreading is considered low.
- Due to site liquefaction potential, a site-specific response spectrum (not provided herein) will be required for any proposed structure with a fundamental period of vibration greater than 0.5 second.
- The proposed development will likely be subjected to strong seismic ground shaking during its design life. The site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CGS, 2018).
- Site contains soils with a "Low" to "High" expansion potential. Mitigation measures will be required for building foundations and flatwork.
- Based on Caltrans Corrosion Guidelines (2015), soils are considered corrosive if the pH is 5.5 or less, or the chloride concentration is 500 ppm or greater, or the sulfate concentration is 2,000 ppm (0.2

percent) or greater. Based on the test results, soils are not considered corrosive using Caltrans criteria (Caltrans, 2015).

- Due to the upper approximate 20 feet of the site consisting of fine-grained clays, presence of shallow groundwater and site liquefaction potential, intentional infiltration of storm water is not considered recommended.
- Excavations into the existing site soils should be feasible with heavy construction equipment in good working order. We anticipate that the sandy and silty earth materials generated from the excavations will be generally suitable for re-use as compacted fill, provided they are relatively free of rocks larger than 8 inches in dimension, construction debris, and significant organic material.
- Site contains clayey soils with high fines content and expansion potential that are not suitable for backfill of retaining walls. Therefore, import of sandy soils meeting project recommendations will be required.

4.0 <u>RECOMMENDATIONS</u>

A design-level geotechnical report based on the project grading and foundation plans should be prepared in order to provide design-level geotechnical recommendations (as necessary) for the proposed development. Additional field work and laboratory testing will likely be required. Additional and/or modified geotechnical recommendations will also likely be required.

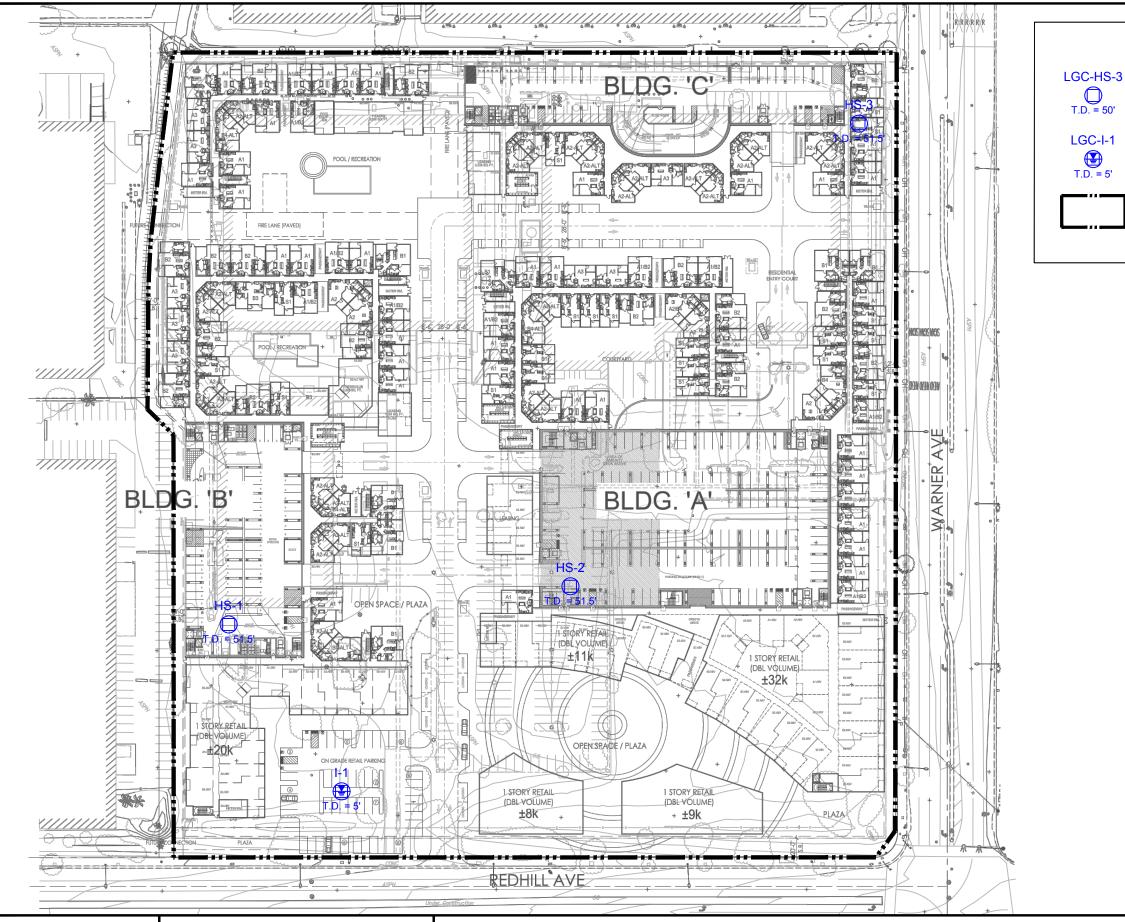
Based on our preliminary EIR/due-diligence level study, the following is a summary of our preliminary geotechnical recommendations.

- From a geotechnical perspective, the site is feasible for construction of the proposed mixed-use residential development, provided that the recommendations of the geotechnical consultant are followed and the grading is performed in general accordance with applicable plans, codes, and City of Santa Ana requirements. The site was evaluated to the 2016 California Building Code (CBC) standard.
- All undocumented fill and unsuitable soft alluvial deposits shall be removed to suitable competent native materials prior to placement of proposed artificial fill. Recommendations for removal and recompaction and removal depths will be provided in a subsequent comprehensive report.
- Native alluvial soils are generally considered fine grained, overconsolidated and moderately compressible clay soils that are anticipated to consolidate when building loads are applied. From a geotechnical perspective, onsite soils are anticipated to be suitable for use as general compacted fill (not retaining wall backfill) provided they are screened of organic materials, construction debris and any oversized material (8 inches in greatest dimension). It should be emphasized that soils in the upper approximate 10 to 20 feet above groundwater are generally well above optimum moisture content and will require significant moisture conditioning (drying back) to achieve adequate compaction.
- Due to the high moisture contents, soft and yielding soils near removal bottoms may be exposed to wet and pumping conditions. Crushed rock may be paced over the soft wet removal bottom soils to stabilize the subgrade and provide a base for the compaction of the required fill.
- Ideally, import soils should consist of non-corrosive (negligible sulfates and low chlorides) and predominantly granular soils with an Expansion Index (EI) of 20 or less. However, the minimum criteria for import soils may be changed by you. Potentially acceptable import soils should; therefore, not exceed sulfate levels of 1 percent by weight, chloride levels of 500 ppm or Expansion Indices of 130. It should be noted that increasing the minimum criteria for import soils such as sulfate content and Expansion Index would adversely affect the design of the foundations. Higher concrete compressive strengths and thicker more rigid slab sections would be needed to mitigate against expansive/corrosion imported soils.
- Due to the proximity of the proposed improvements to the property line in portions of the site, temporary shoring or "A-B-C" slot cuts may be required to achieve required earthwork removal and recompaction.
- Preliminary settlement estimates, <u>based on our estimated building loads</u>, are on the order of 2 to 4 inches for the parking structures and 1 to 2 inches for the apartment buildings. Please note that these are very preliminary estimates based on our estimated building loads. These assumptions must be verified based on additional subsurface work such as borings/CPTs and laboratory testing and re-

evaluated based on actual building/structure loads from the structural engineer. Please note the above settlement estimates are very preliminary and do not take into account earthwork removals, ground improvement (e.g., geopiers) or deep foundation systems.

- The proposed parking structures will likely have to be supported on ground improvement (e.g., geopiers) or a deep foundation system (piles). This is a result of the anticipated column loads and the presence of fine-grained relatively compressible clay soils in the upper approximate 10 to 30 feet, which would result in long-term settlement beyond tolerable limits. However, due to the presence of isolated sandy layers to approximately 45 feet below existing ground surface and lack of a "bearing structures be supported on ground improvement such as Rammed Aggregate Piers (RAP), also known as geopiers. Additional field work, laboratory testing and analysis will have to be performed once actual building loads are known to further evaluate and confirm this.
- The proposed 5 and 7-story apartments will likely be supported on a rigid shallow conventional foundation system designed to resist site expansive soils and anticipated long-term static settlement provided recommended earthwork removal and re-compaction is performed. Foundation design should be based on the expansion index of the site soils. Additional field work, laboratory testing and analysis will have to be performed once actual building loads are known to further evaluate and confirm this.
- Due to potential elevated pedestrian walkway structures between the parking structure and apartment buildings, total and differential settlement of the proposed structures may have to be considered in order to maintain level transitions between the structures.
- Based on laboratory sulfate test results, the near surface soils are anticipated to be designated to a class "S1" per ACI 318, Table 19.3.1.1 with respect to sulfates. Concrete in direct contact with the onsite soils can be designed according to ACI 318, Table 19.3.2.1 using the "S1" sulfate classification.
- Geotechnical stability and integrity of the project site is reliant upon appropriate handling of surface water. Due to the low infiltration rate, shallow groundwater and site liquefaction potential, we <u>strongly</u> recommend against the intentional infiltration of storm water.
- Additional geotechnical subsurface evaluation must be performed in order to provide design-level geotechnical recommendations for the proposed development. Based on our preliminary study, we recommend performing additional field work consisting of Cone Penetration Test (CPT) soundings and additional borings or test pits. Further evaluation of required earthwork removals, soil settlement due to static building loads and liquefaction must be performed. Based on the results of our field evaluation and laboratory testing, updated and/or amended geotechnical conclusions and recommendations may be required.
- Final design level recommendations utilizing the site grading plans and structure loads should be provided as part of a comprehensive geotechnical report. Additional field work and laboratory testing, as mentioned above, should be anticipated.

5.0 LIMITATIONS


Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

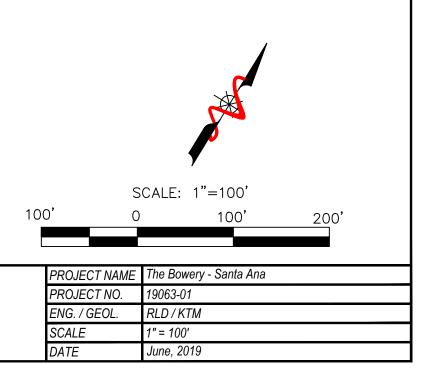
This report is based on data obtained from limited observations of the site, which have been extrapolated to characterize the site. While the scope of services performed is considered suitable to adequately characterize the site geotechnical conditions relative to the proposed development, no practical evaluation can completely eliminate uncertainty regarding the anticipated geotechnical conditions in connection with a subject site. Variations may exist and conditions not observed or described in this report may be encountered during construction.

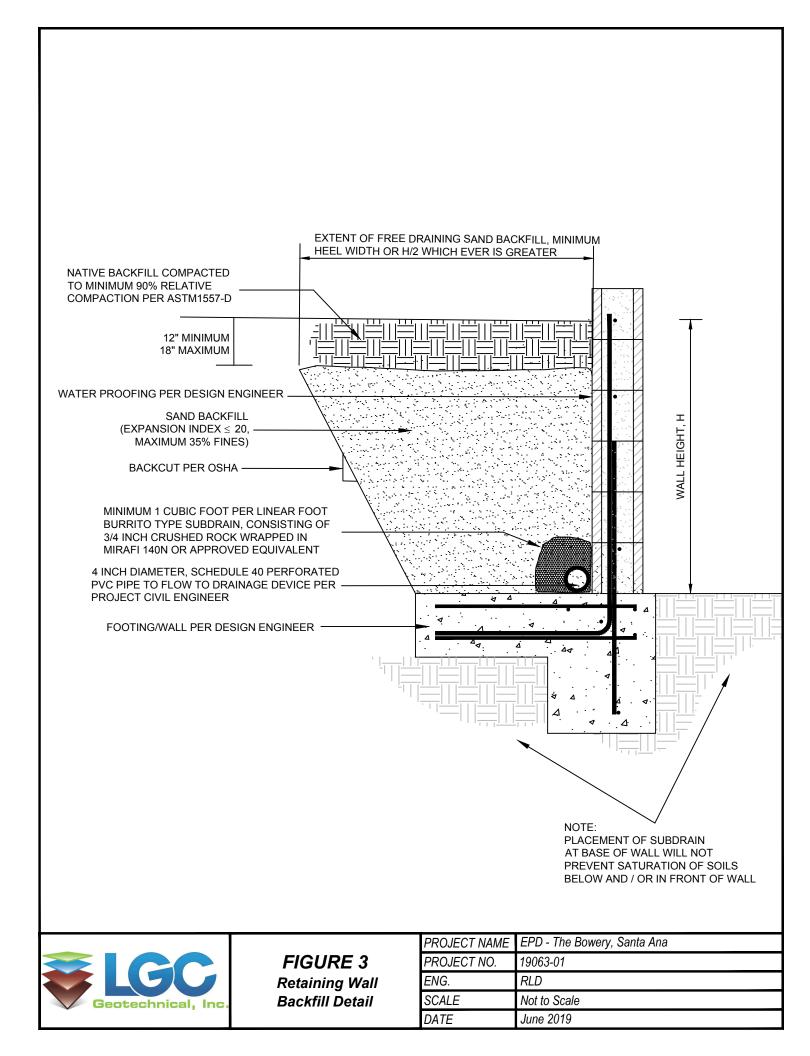
This report is issued with the understanding that it is the responsibility of the owner, or of his/her representative, to ensure that the information and recommendations contained herein are brought to the attention of the other consultants and incorporated into the plans. The contractor should properly implement the recommendations during construction and notify the owner if they consider any of the recommendations presented herein to be unsafe, or unsuitable.

The findings of this report are valid as of the present date. However, changes in the conditions of a site can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. The findings, conclusions, and recommendations presented in this report can be relied upon only if LGC Geotechnical has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. This report is intended exclusively for use by the client, any use of or reliance on this report by a third party shall be at such party's sole risk.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification.

LGC Geotechnical, Inc. 131 Calle Iglesia, Ste. 200 San Clemente, CA 92672 TEL (949) 369-6141 FAX (949) 369-6142


FIGURE 2 Geotechnical Exploration Location Map


LEGEND

Approximate Location of Hollow Stem Auger Boring, with Total Depth in Feet

Approximate Location of Hollow Stem Auger Infiltration Boring, with Total Depth in Feet

Approximate Limits of This Project

Appendix A References

APPENDIX A

<u>References</u>

- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, 2013.
- Architects Orange (AO), 2019, Conceptual Site Plan, The Bowery, Warner Avenue and Redhill Avenue, Santa Ana, California, dated March 26, 2019.
- Bray, J.D., and Sancio, R. B., 2006, Assessment of liquefaction susceptibility of fine-grained soils, *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, pp. 1165-1177, dated September 2006.
- California Building Standards Commission, 2016, California Building Code, California Code of Regulations Title 24, Volumes 1 and 2, dated July 2016.
- California Department of Conservation, Division of Mines and Geology (CDMG), 2001a, Seismic Hazard Evaluation of the Tustin 7.5-Minute Quadrangles, Orange County, California, Seismic Hazard Zone Report 97-20, Revised 2001.
- _____, 2001b, State of California Seismic Hazard Zones, Tustin Quadrangle, Official Revised Map Released: January 17, 2001.
- California Geological Survey (CGS), 2008, California Geological Survey Special Publication 117A: Guidelines for Evaluating and Mitigating Seismic Hazards in California, dated September 11, 2008.
- _____, 2018, Earthquake Fault Zones, Special Publication 42, Revised 2018.
- Caltrans, 2015, Corrosion Guidelines, Version 2.1, dated January 2015.
- Fuscoe Engineering, Inc. (Fuscoe), 2019, Site Topo, The Bowery, Santa Ana, received June 4, 2019.
- G.A. Nicoll & Associates (Nicoll), 1979a, Building Pad Certification, Ricoh Electronics Building, 2300 Red Hill Avenue, Warner & Red Hill Avenue, Santa Ana, California, Project No. 1993-51, dated June 12, 1979.
- _____, 1979b, Final Grading Report, Ricoh Electronics Building, 2300 Red Hill Avenue, Warner & Red Hill Avenue, Santa Ana, California, Project No. 1993-52, dated December 17, 1979.
- _____, 1981, Building Pad Verification Report, REI Toner Building, 2310 Red Hill Avenue, Red Hill and Warner Avenue, Santa Ana, California, Project No. 2415-51, dated September 14, 1981.
- _____, 1990, Rough Grading Report, Addition to Thermal Paper Plant, 2320 Red Hill Avenue, Santa Ana, California, Project No. 4111-04, dated February 20, 1990.

APPENDIX A (Cont'd)

References

- Historical Aerials, 2017, viewed June 11, 2019, Aerials viewed from: 1946, 1952, 1963, 1972, 1980, 1994 and 2012, https://www.historicaerials.com/
- Lew, et al, 2010, Seismic Earth Pressures on Deep Basements, Structural Engineers Association of California (SEAOC) Convention Proceedings.
- Lotus Consulting Engineers, 1989, Tank Excavation Backfill Report, Grading Permit No. 0346, Ricoh Corporation, 2310 Red Hill Avenue, Santa Ana, California, dated February 23, 1989.
- Morton, et al., 2004, Preliminary Digital Geological Map of the 30' X 60' Santa Ana Quadrangle, southern California, version 2.0, U.S. Geological Survey, dated 2004.
- NCEER, 1997, "Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", T. L. Youd and I. M. Idriss Editors, Technical Report NCEER-97-0022, NCEER, Buffalo, NY.
- Southern California Earthquake Center (SCEC), 1999, "Recommended Procedure for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigation Liquefaction Hazards in California", Edited by Martin, G.R., and Lew, M., dated March 1999.
- Tokimatsu, K., and Seed, H. B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking", Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp. 861-878.
- Structural Engineers Association of California (SEAOC), 2019, OSHPD Seismic Design Maps, Retrieved June 3, 2019, from: <u>https://seismicmaps.org/</u>
- United States Geological Survey (USGS), 2008, Unified Hazard Tool, Dynamic: Conterminous U.S. 2008 (v3.3.1), Retrieved June 3, 2019, from: <u>https://earthquake.usgs.gov/hazards/interactive/</u>
- Youd, T. L. et al., 2001, "Liquefaction Resistance of Soils, Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol. 127, No. 10, dated October 2001.
- Youd, T.L., Hansen, C.B., Bartlett, S.F., 2002, Revised multilinear regression equations for prediction of lateral spread displacement, *Journal of Geotechnical and Geoenvironmental Engineering*, December 2002, pp. 1007-1017.

Appendix B Boring Logs

			(Geot	techi	nica	Bor	ing Log Borehole HS-1	
Date:	5/7/2	2019						Drilling Company: Cal Pac Drilling	
			The Bo					Type of Rig: B-61	
Project Number: 19063-01								Drop: 30" Hole Diameter:	6"
Elevation of Top of Hole: ~59' MSL Hole Location: See Geotechnical Map								Drive Weight: 140 pounds	
Hole	Locat	tion:	See G		chnical	Мар		Page 1 d	of 2
			-		cf)			Logged By ARN	
÷		5	μ		ď		bol	Sampled By ARN	ц.
ר (f		Č	N	nut	sity	%)	УЛ	Checked By RLD	Ţē
Itio	ff (ff	ji Li	e	ပိ	len	nre	S		of
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test
Ē	ð	Ū	S	B	D	Š	ŝ	DESCRIPTION	Ţ
	0							@0' to 5' - Older Artificial Fill (afo) @0' Approximately 5 inches AC over 5 inches AB.	
	_		-				CL	@1' - CLAY with Sand: brown, moist, stiff	CR
	_	<u>н</u>	-					@5' to T.D Quaternary Young Alluvial Fan Deposits	
55-	- 5 —							(Qyf)	
	-		R-1	4 4 6	115.2	14.2	CL	@5' - Sandy CLAY: brown, moist, stiff; scattered pebbles	
	_		-				~ ~		
	_		R-2	3 5 9	113.0	18.1	SC	@7.5' - Clayey SAND: brown, very moist, medium dense	
50-	- 10								
	- 10		R-3	2 4 9	109.2	19.0	ML	@10' - SILT with Sand: Gray-brown, very moist, stiff; slight chemical odor	
	_		-	9					
	_		-						
45-	-		-						
	15 —		SPT-1	7 1 1		25.8		@15' - Sandy SILT: gray with red-orange, very moist,	
	_			3				medium stiff	
	_								
40-	_		-						
	20 —		R-4	3 4 6	100.1	26.5	CL	@20' - CLAY: gray and red-orange, very moist, stiff	
	-			6					
	_		[
35-	_							@24' Groundwater appointered	
	25 —		SPT-2	7 1		20.8		@24' - Groundwater encountered@25' - CLAY: brown, very moist to wet, stiff	
	_			2 4		20.0			
	_		-						
	_								
30-	30 —								
		I		1				LY AT THE LOCATION SAMPLE TYPES: TEST TYPES:	
					SUBS	SURFACE C	ONDITIONS I	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS	
			5		WITH PRES	THE PASS	AGE OF TIME A SIMPLIFICA	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRO TEST SAMPLE EI EXPANSION INDEX TOD OF THE ACTUAL CN CONSOLIDATION	
	Ge	ote	chnica	al, In	PRO	/IDED ARE	QUALITATIVI	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS E GROUNDWATER TABLE AL ATTERBERG LIMIT JANTITATIVE CO COLLAPSE/SWELL	s
				-		NEERING A		RV R-VALUE #200 % PASSING # 200	SIEVE

	: 5/7/2							ring Log Borehole HS-1 Drilling Company: Cal Pac Drilling	
Project Name: The Bowery								Type of Rig: B-61	
Project Number: 19063-01								Drop: 30" Hole Diameter:	6"
Elevation of Top of Hole: ~59' MSL								Drive Weight: 140 pounds	
Hole	ole Location: See Geotechnical Map							Page 2 o	12
			e		cf)			Logged By ARN	
t)		0	g		d)		pol	Sampled By ARN	št
n (f		Ď	Z Z	nut	sity	6)	УШ	Checked By RLD	ĕ
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		of
eva	sptf	ap	1 m	N		oist	ő		Type of Test
Ē	Ď	Ū	S	Ē	ם ا	ž	ŝ	DESCRIPTION	ŕ
	30		R-5	10 11 15	112.9	18.2	CL	@30' - CLAY: brown and light brown, very moist, very	
	_			15				stiff	
	-	-							
25-	-	-							
	35 —	-	SPT-3	559		19.8		@35' - Sandy CLAY: light pinkish brown, very moist,	
	-	-		9				very stiff	
	-	1							
20-		1							
20	40				444 7	10.0	N 41		
		-	R-6	7 9 17	111.7	18.8	ML	@40' - Sandy SILT: gray-brown and gray mottled, very moist, very stiff	
	-								
	-	-							
15-	_	-							
	45 —	1	SPT-4	35		27.1	SC	@45' - Clayey SAND: brown, wet, medium dense	
]							
	_								
10-	- 1	-							
	50 —	-	R-7	6	103.7	25.6	ML	@50' - Sandy SILT: reddish brown and gray, wet, very	
	-	-		6 8 10				stiff	
	-	1						Total Depth = 51.5'	
5-	-	1						Groundwater Encountered at Approximately 24' Backfilled with Cement Bentonite and Capped with AC	
5-	55							Cold-Patch 5/7/2019	
	-	-							
	-	-							
	-								
	60 —								
					OF T	HIS BORING	AND AT TH	NLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: TE TIME OF DRILLING. B BULK SAMPLE DS DRECT SHEAR May DIEFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY	
			R		LOCA	ATIONS AND	MAY CHAN	IGE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS IF THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRON	NETEF
					PRES CON	SENTED IS A DITIONS EN	A SIMPLIFIC. COUNTERE	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION	
	🥟 Ge	ote	chnic	al				/E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMITS UANTITATIVE CO COLLAPSE/SWELL	j.

	Geotechnical Boring Log Borehole HS-2								
Date	5/7/2	019						Drilling Company: Cal Pac Drilling	
			The B	owery	/			Type of Rig: B-61	
Project Number: 19063-01								Drop: 30" Hole Diameter:	6"
Elevation of Top of Hole: ~62' MSL								Drive Weight: 140 pounds	-
	Hole Location: See Geotechnical Map							Page 1 c	of 2
								Logged By ARN	
			per		pcf			Sampled By ARN	
(tt)		g	<u>E</u>	Lt	y ((%	qu	Checked By RLD	sst
Elevation (ft)	ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test
atic	Depth (ft)	hic	be	Ŭ)er	tur	S		of
eva	ept	ap		l §	Σ Γ	ois	S S S		/pe
Ē	Ď	Ū	S	Ē	D	Š	Š	DESCRIPTION	ŕ
	0							@0' to 5' - Older Artificial Fill (afo)	MD
00	_							@0' - Approximately 5 inches AC over 5 inches AB	EI
60-	_	Р-					CL	@1' - Below is CLAY with Sand: brown, moist, stiff	CR
	_								
	5 —								
	5—		R-1	5 9 13	119.0	15.6	ML	@5' - SILT with SAND: brown, moist, very stiff	
55-				13				@7.5' to T.D <u>Quaternary Young Alluvial Fan</u> Deposit (Qyf)	
55-		B-2	R-2	3	114.7	17.8	SC	@7.5' - Clayey SAND: brown, very moist, loose;	CN
				3 4 5				micaceous	-#200
	10						.		
	10 _		R-3	4 3 3	91.4	30.8	СН	@10' - Fat CLAY: dark yellowish brown, very moist, medium stiff	CN AL
50-	_			3					AL
00	_								
	_								
	15 —					29.1		@151. Eat CLAVI dark grow with some brown mattle	#200
	_		SPT-1	$\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$		29.1		@15' - Fat CLAY: dark gray with some brown mottle, very moist, medium stiff	-#200
45-	_								
	_		-						
	_		-						
	20 —		R-4	3	93.0	29.2	CL	@20' - CLAY: olive gray and brown mottled, very moist,	
	_			3 4 6	00.0	20.2	0L	stiff	
40-			l F						
	-		-						
	_		-						
	25 —		SPT-2	7 1		22.7		@25' - CLAY: brown, reddish brown, and gray mottled,	AL
	_							very moist, medium stiff	-#200
35-	_								
	_		-						
	_		-						
	30 —								
	THIS SUMMARY APPLIES OF OF THIS BORING AND AT SUBSURFACE CONDITIONS LOCATIONS AND MAY CHAN WITH THE PASSAGE OF TIM PRESENTED IS A SIMPLIFIC. CONDITIONS ENCOUNTERE PROVIDED ARE QUALITATIV AND ARE NOT BASED ON QUENCIEVE ON OUR SUBSCIEVE					HIS BORING SURFACE C ATIONS ANE I THE PASS SENTED IS / DITIONS EN /IDED ARE ARE NOT B	AND AT TH ONDITIONS MAY CHAN AGE OF TIMI A SIMPLIFICA ICOUNTEREI QUALITATIVI ASED ON QU	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS SPT STANDARD PENETRATION S& SIEVE AND HYDROID TEST SAMPLE CN CONSOLIDATION D. THE DESCRIPTIONS E FIELD DESCRIPTIONS	METER S

Last Edited: 5/29/2019

				Geo	techi	nica	Bor	ing Log Borehole HS-2	
Date:	5/7/2	019						Drilling Company: Cal Pac Drilling	
	Project Name: The Bowery							Type of Rig: B-61	
Project Number: 19063-01								Drop: 30" Hole Diameter:	6"
	Elevation of Top of Hole: ~62' MSL							Drive Weight: 140 pounds	
Hole	Locat	ion:	See C	Geote	chnical	Мар		Page 2	of 2
			<u> </u>		Ĵ			Logged By ARN	
			de		bc		ō	Sampled By ARN	
(ft)		og	L n	ut	Ę	(%)	qm	Checked By RLD	est
Ч	(ff)	СГ		no	ISU	e	Sy	,	⊢ ₩
/ati	ţ	phi	뤝	≥	De	stu	S		e e
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
ш		0				∠ 24.3		DESCRIPTION	
	30		R-5	7 9 10	103.0	24.3	CL	@30' - CLAY: brown and light brown mottled, very moist, very stiff	
30-	_			-					
	_	∇		-				@33.5' - Groundwater encountered	
	-	<u> </u>		-					
	35 —		SPT-3	7 6		17.8		@35' - Sandy CLAY: reddish brown, moist to very moist,	AL
	-			6 7 9				very stiff	-#200
25-	-			-					
	-			-					
	-			-					
	40		R-6	6 10 11	113.5	17.4	SM	@40' - Silty SAND: brown and gray mottled, moist to	
20	_			11				very moist, very stiff	
20-				-					
	45						00		
			SPT-4	5 9 13		32.0	SC	@45' - Clayey SAND: brown, wet, medium dense	
15-	_			-					
_	_								
	_			-					
	50 —		R-7	5	112.9	16.8	CL	@50' - Sandy CLAY: brown to reddish brown, moist,	
	_			5 10 12	112.0	10.0	02	very stiff	
10-	-		F	-				Total Depth = 51.5'	
	_			-				Groundwater Encountered at Approximately 33.5'	
				·				Backfilled with Cement Bentonite and Capped with AC	
	55			•				Cold Patch 5/7/2019	
	-			-					
5-	-			-					
	-								
	60 -								
	00-				TUO				
				C	OF T SUBS LOCA WITH	HIS BORING SURFACE C ATIONS AND I THE PASS	AND AT THE ONDITIONS I MAY CHANE AGE OF TIME	ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RINOS SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA SPT STANDARD PENETRATION S&H SIEVE ANALYSIS E. THE DATA TEST SAMPLE EI EXPANSION INDE	OMETER
		4			PRES CONI	SENTED IS A	A SIMPLIFICA COUNTERE	ATION OF THE ACTUAL LEST SAMPLE EI EXPANSION INDE D. THE DESCRIPTIONS CR CORROSION CR CORROSION	
	Ge	ote	chnic	al, Ir	C. AND	ARE NOT B	ASED ON QL	E FIELD DESCRIPTIONS JANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMI JANTITATIVE CO COLLAPSE/SWEL	
					ENG	NEERING A	INALYSIS.	RV R-VALUE #200 % PASSING # 200	SIEVE

				Geo	tech	nica	Bor	ing Log Borehole HS-3	
Date:	5/7/2	019						Drilling Company: Cal Pac Drilling	
			The E	Bower	/			Type of Rig: B-61	
			er: 190					Drop: 30" Hole Diameter:	6"
					~62' M	SL		Drive Weight: 140 pounds	-
	Hole Location: See Geotechnical Map							Page 1 d	of 2
								Logged By ARN	
			Sample Number		Dry Density (pcf)			Sampled By ARN	
(ff)		g	E	l t	کر ((%	qu	Checked By RLD	sst
) u	ft)	Ľ	Ī	Juc	lisit) 9	Syr		Ĕ
Elevation (ft)	Depth (ft)	Graphic Log	ple	Blow Count)er	Moisture (%)	USCS Symbol		Type of Test
e ć:	ept	rap	<u> </u>	≥	<u>ح</u>	ois	SC		/be
Ш	ð	Ū	Š	B	ā	Š	Š	DESCRIPTION	Ţ
	0			_				@0' to 5' - <u>Older Artificial Fill (afo)</u>	EI
60-				_			SC	@0' - Approximately 4 inches AC over 5 inches AB @1' - Clayey SAND: brown, slightly moist, stiff	
00	_		<u></u>	_			30	WT - Clayey SAND. DIOWN, Signily moist, Sun	
	_			_				@5' to T.D <u>Quaternary Young Alluvial Fan Deposits</u>	
	5 —		R-1	6	120.0	13.8	SC	(Qya)	
	_		11	6 8 12	120.0	10.0	00	@5' - Clayey SAND: brown and gray mottled, moist, medium dense	
55-	_			-					
	-		R-2	4 4 6	93.3	31.0	CL	@7.5' - Sandy CLAY: brown and gray mottled, very moist, stiff	
	_			0					
	10 —		R-3	8 8 7	99.4	22.4	SC	@10' - Clayey SAND: brown and gray mottled, very	
50	_			Ž				moist, medium dense	
50-	_			-					
	15 —					170		Q151 CLAV and have not that mainty matter	
	_		SPT-1	$ \begin{array}{c} 1\\2\\3\end{array} $		17.0	CL	@15' - CLAY: gray and brown mottled, moist, medium stiff; micaceous	
45-	_			-					
	_			-					
	_			-					
	20 —		R-4	3	99.5	25.9		@20' - CLAY: olive gray and brown mottled, very moist,	CN
	_			3 4 7				stiff	AL
40-	_			-					
	_			-					
	-	∇		-					
	25 —	<u> </u>	SPT-2	$\begin{bmatrix} 2\\1\\2 \end{bmatrix}$		35.7		@25' - CLAY: brown and gray mottled, wet, medium stiff;	
25	_			Ź 2				groundwater encountered	
35-									
	_			_					
	30 —			_					
	-							LY AT THE LOCATION SAMPLE TYPES: TEST TYPES:	
					SUBS	SURFACE C	ONDITIONS I	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GRAB SAMPLE (CA TOTHER SA SIEVE ANALYSIS	,
					WITH	I THE PASS	AGE OF TIME	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRO TEST SAMPLE EI EXPANSION INDEX	METER
					CON	DITIONS EN	COUNTERED	TION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR GROUNDWATER TABLE AL ATTERBERG LIMITS	s
	Ge	ote	chnic	al, Ir	IC- AND		ASED ON QL	JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE	
L								#200 % PASSING # 200 \$	SIEVE

Last Edited: 5/29/2019

				Geo	tech	nica	Bor	ing Log Borehole HS-3	
Date:	5/7/2	019						Drilling Company: Cal Pac Drilling	
			The B	ower	/			Type of Rig: B-61	
-			er: 190					Drop: 30" Hole Diameter:	6"
	Elevation of Top of Hole: ~62' MSL							Drive Weight: 140 pounds	
Hole	Hole Location: See Geotechnical Map							Page 2	of 2
			<u>د</u>					Logged By ARN	
			Sample Number		Dry Density (pcf)		_	Sampled By ARN	
(Ħ)		g))	(%	USCS Symbol	Checked By RLD	est
Elevation (ft)	(f)	Graphic Log	Ī	Blow Count	list	Moisture (%)	Syr		Type of Test
atic	Depth (ft)	hic	ple	Ŭ	Del	tu	ş		Ō
e<	ept	rap	am	Š	2	ois	SC		уре
Ш		G						DESCRIPTION	μ μ
	30		R-5	6 8 10	116.7	17.3	CL	@30' - CLAY: reddish brown, moist to very moist, very	
30-				10				stiff	
50	_			_					
	_			-					
	35 —		SPT-3	5		17.4		@35' - CLAY with Sand: brown with tan mottling, moist	
	_		511-5	5 9 9		17.4		to very moist, very stiff	•
25-	_			-					
	-			-					
	-		-	-					
	40 —		R-6	10	126.1	14.0		@40' - Sandy CLAY with some Gravel: brown, moist,	
	-		_	10 20 19		_		hard; scattered coarse grained sand	
20-	-			-					
	-			-					
	-			-					
	45		SPT-4	4 10		19.1	SC	@45' - Clayey SAND: brown, wet, medium dense	
	-			<u>1</u> 11					
15–	-			-					
	-			-					
	=0			-					
	50		R-7	5 9 13				@50' - No Recovery	
10				13					
10-				_				Total Depth = 51.5'	
				_				Groundwater Encountered at Approximately 25' Backfilled with Cement Bentonite and Capped with AC	
	55 —			_				Cold-Patch on 5/7/2019	
				-					
5-	_			-					
Ŭ	_			-					
	_			-					
	60 —			-					
	THIS SUMMARY APPLIES OF OF THIS BORING AND AT TH SUBSURFACE CONDITIONS LOCATIONS AND MAY CHAN WITH THE PASSAGE OF TIM					HIS BORING SURFACE C ATIONS AND I THE PASS	AND AT TH ONDITIONS MAY CHAN AGE OF TIMI	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDR	OMETER
		\neg			CON	DITIONS EN	COUNTERE	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION	
	Ge	ote	chnic	al, Ir	AND		ASED ON QL	E FIELD DESCRIPTIONS JANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMIT CO COLLAPSE/SWELL RV R-VALUE	-
					2.1.0			#200 % PASSING # 200	SIEVE

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

<u>Moisture and Density Determination Tests</u>: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on driven samples obtained from the test borings. The results of these tests are presented on the boring logs in Appendix B. Where applicable, only moisture content was determined from SPT or disturbed samples.

<u>Grain Size Distribution/Fines Content</u>: Representative samples were dried, weighed, and soaked in water until individual soil particles were separated (per ASTM D421) and then washed on a No. 200 sieve (ASTM D1140). Where applicable, the portion retained on the No. 200 sieve was dried and then sieved on a U.S. Standard brass sieve set in accordance with ASTM D6913 (sieve) or ASTM D422 (sieve and hydrometer).

Sample Location	Description	% Passing # 200 Sieve
HS-2 @ 7.5 ft	Clayey Sand	47
HS-2 @ 15 ft	Clay	93
HS-2 @ 25 ft	Clay	88
HS-2 @ 35 ft	Sandy Clay	60

<u>Atterberg Limits</u>: The liquid and plastic limits ("Atterberg Limits") were determined per ASTM D4318 for engineering classification of fine-grained material and presented in the table below. The USCS soil classification indicated in the table below is based on the portion of sample passing the No. 40 sieve and may not necessarily be representative of the entire sample. The plots are provided in this Appendix.

Sample Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	USCS Soil Classification
HS-2 @ 10 ft	55	23	32	СН
HS-2 @ 25 ft	36	19	17	CL
HS-2 @ 35 ft	32	12	20	CL
HS-3 @ 20 ft	33	22	11	CL

APPENDIX C (Cont'd)

Laboratory Test Results

<u>Consolidation</u>: Three consolidation tests were performed per ASTM D2435. A sample (2.4 inches in diameter and 1 inch in height) was placed in a consolidometer and increasing loads were applied. The sample was allowed to consolidate under "double drainage" and total deformation for each loading step was recorded. The percent consolidation for each load step was recorded as the ratio of the amount of vertical compression to the original sample height. The consolidation pressure curves are provided in this Appendix.

<u>Laboratory Compaction</u>: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557. The results of this tests are presented in the table below.

Sample Location	Sample Description	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
HS-2 @ 0-5 ft	Brown clay with sand	122.5	12.0

<u>Expansion Index</u>: The expansion potential of select representative samples were evaluated by the Expansion Index Test per ASTM D4829.

Sample Location	Expansion Index	Expansion Potential*	
HS-2 @ 0-5 ft	44	Low	
HS-2 @ 0-5 ft	25	Low	

* Per ASTM D4829

<u>Soluble Sulfates</u>: The soluble sulfate contents of a selected sample was determined by standard geochemical methods (CTM 417). The test results are presented in the table below.

Sample Location	Sulfate Content (%)
HS-1 @ 2-5 ft	0.06
HS-2 @ 0-5 ft	0.1

<u>Chloride Content</u>: Chloride content was tested per CTM 422. The results are presented below.

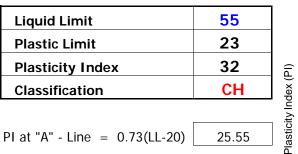
Sample Location	Chloride Content (ppm)
HS-2 @ 0-5 ft	100

APPENDIX C (Cont'd)

Laboratory Test Results

<u>Minimum Resistivity and pH Tests</u>: Minimum resistivity and pH tests were performed in general accordance with CTM 643 and standard geochemical methods. The results are presented in the table below.

Sample Location	рН	Minimum Resistivity (ohms- cm)
HS-2 @ 0-5 ft	7.5	515

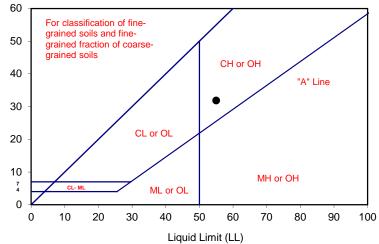

ATTERBERG LIMITS

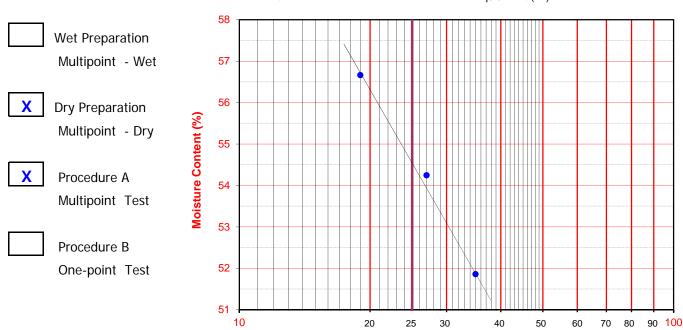
ASTM D 4318

Project Name:	Santa Ana	Tested By:	R. Manning	Date:	05/17/19
Project No. :	19063-01	Input By:	G. Bathala	Date:	05/24/19
Boring No.:	HS-2	Checked By:	J. Ward		
Sample No.:	R-3	Depth (ft.)	10.0		

Soil Identification: Dark yellowish brown fat clay (CH)

TEST	PLAST	IC LIMIT								
NO.	1	2	1	2	3	4				
Number of Blows [N]			35	27	19					
Wet Wt. of Soil + Cont. (g)	18.81	18.15	23.51	23.29	23.87					
Dry Wt. of Soil + Cont. (g)	17.40	16.82	20.16	19.84	20.17					
Wt. of Container (g)	11.30	11.06	13.70	13.48	13.64					
Moisture Content (%) [Wn]	23.11	23.09	51.86	54.25	56.66					



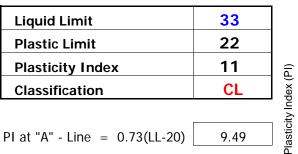

25.55

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

PI at "A" - Line = 0.73(LL-20)

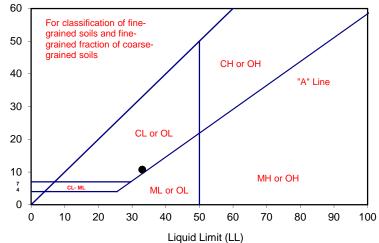
PROCEDURES USED

Number of Blows


ATTERBERG LIMITS

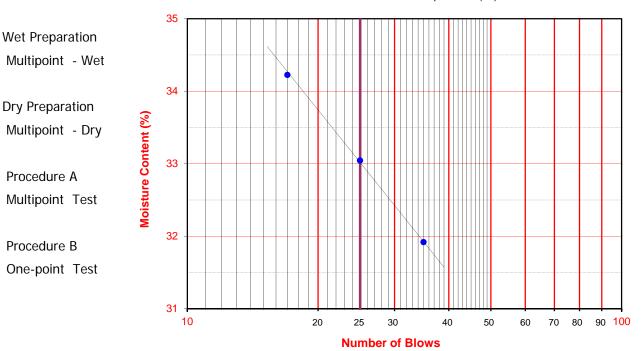
ASTM D 4318

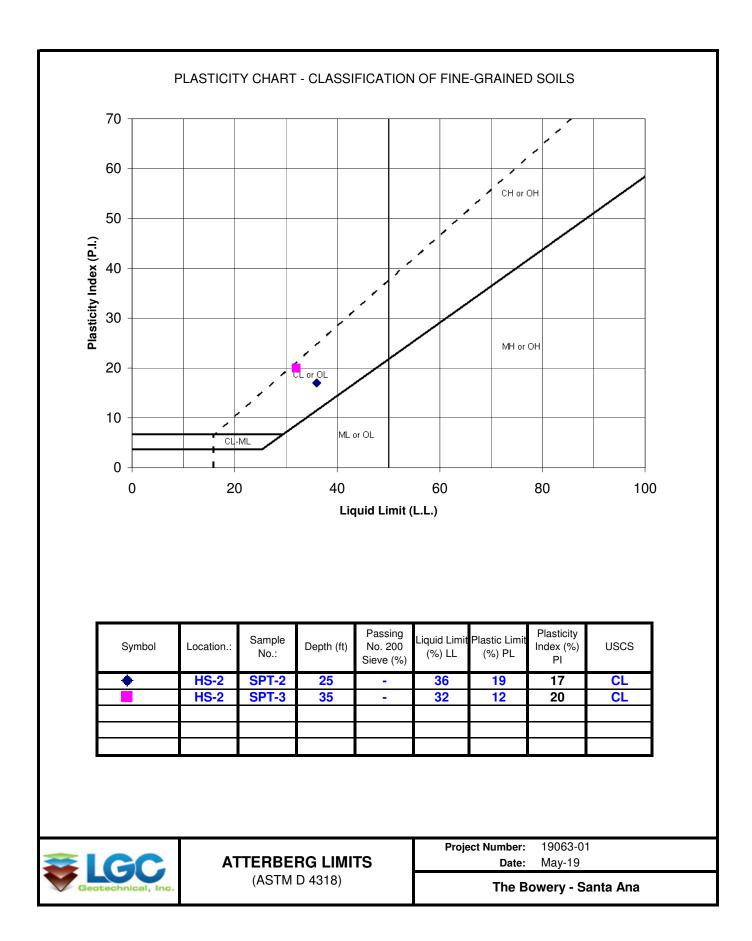
Project Name:	Santa Ana	Tested By:	R. Manning	Date:	05/16/19
Project No. :	19063-01	Input By:	G. Bathala	Date:	05/24/19
Boring No.:	<u>HS-3</u>	Checked By:	J. Ward		
Sample No.:	R-4	Depth (ft.)	20.0		


Soil Identification: Olive gray and brown clay (CL)

TEST	PLAST	IC LIMIT	LIQUID LIMIT						
NO.	1	2	1	2	3	4			
Number of Blows [N]			35	25	17				
Wet Wt. of Soil + Cont. (g)	19.64	19.57	23.88	24.13	23.91				
Dry Wt. of Soil + Cont. (g)	18.12	18.05	21.40	21.47	21.22				
Wt. of Container (g)	11.30	11.21	13.63	13.42	13.36				
Moisture Content (%) [Wn]	22.29	22.22	31.92	33.04	34.22				

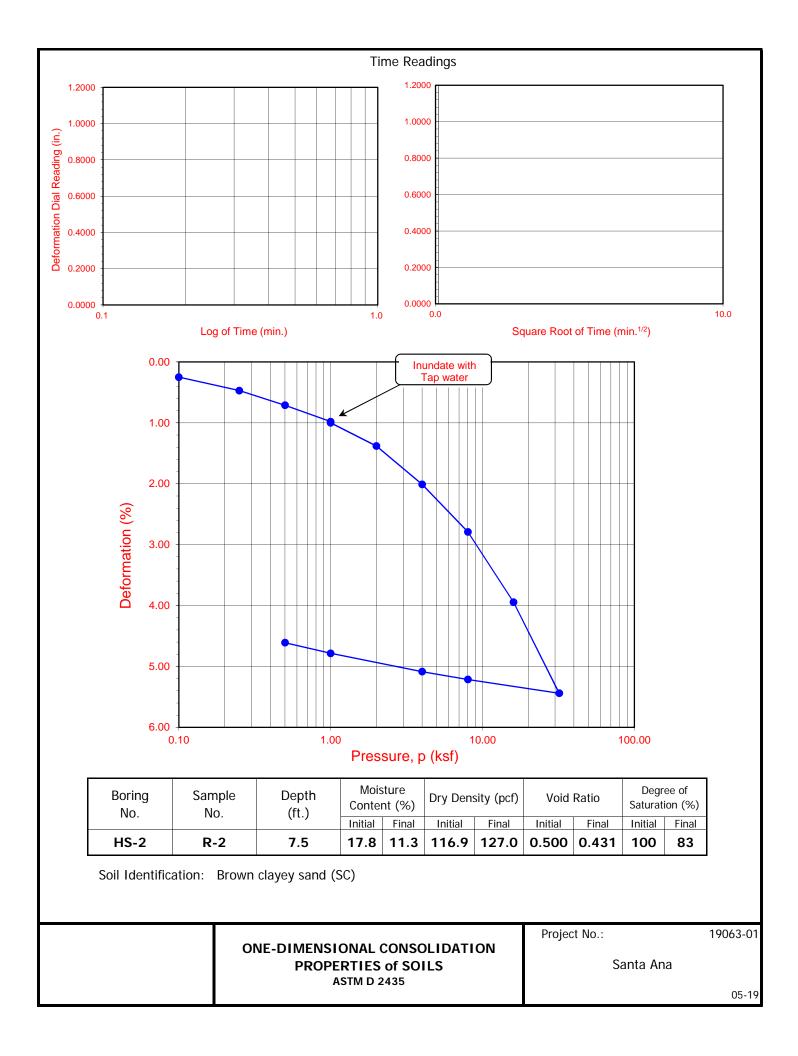
9.49


One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$



X

Χ



ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project N	ame:	Santa An	a					Tested By: G. Bathala Date: 05/16/1
Project N	0.:	19063-01	1					Checked By: J. Ward Date: 05/30/1
Boring No	D.:	HS-2		_				Depth (ft.): 7.5
Sample N	0.:	R-2		-				Sample Type: Ring
•		Brown cl	avev sand	_ L (SC)				
	moution	Brownion						
Sample D	iameter (ir	า.)	2.415	0.510	-			
Sample T	hickness (i	n.)	1.000		-			
Wt. of Sa	mple + Rir	ng (g)	208.61	0.500				Tap water
Weight of	Ring (g)		42.93					
Height aft	er consol.	(in.)	0.9539	0.490	-			
Before	Test				-			
Wt.Wet S	ample+Co	nt. (g)	485.28	0.480	-			
Wt.of Dry	Sample+	Cont. (g)	436.98		-			
Weight of	Container	· (g)	166.26	0.470				
Initial Moi	sture Cont	tent (%)	17.8	Void Ratio	-			
Initial Dry	Density (pcf)	116.9	č 0.460				
Initial Sat	uration (%	5)	100	oic	-			
Initial Ver	tical Read	ing (in.)	0.3189	> _{0.450}	-			
After Te	est				-			
Wt.of We	t Sample+	Cont. (g)	274.60	0.440	-			\
Wt. of Dry	y Sample+	Cont. (g)	258.15	_	-			
Weight of	Container	· (g)	69.53	0.430	-			
Final Mois	ture Conte	ent (%)	11.29	_	-			
Final Dry	Density (pcf)	127.0	0.420	-			
Final Satu	ration (%))	83		-			
Final Vert	ical Readir	ng (in.)	0.2652	0.410	-			
Specific G	ravity (ass	sumed)	2.81		0.10		1.00	10.00 10
Water De	nsity (pcf)		62.43				Pre	essure, p (ksf)
				1	1			
Pressure	Final	Apparant		Deformation		Corrected		Time Readings
(p)	Reading	Apparent Thickness	Load Compliance	% of	Void	Deforma-		
			(0()	Sample	Ratio			Elancod Square Deat Dial Edge

Pressure	Final	Apparent	Load	% of	Void	Corrected				me Reading	JS	
(p) (ksf)	Reading (in.)	Thickness (in.)	Compliance (%)	Sample Thickness	Ratio	Deforma- tion (%)		Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.3164	0.9975	0.00	0.25	0.497	0.25						
0.25	0.3138	0.9949	0.04	0.51	0.493	0.47	Ī					
0.50	0.3109	0.9920	0.09	0.80	0.490	0.71						
1.00	0.3071	0.9882	0.20	1.18	0.486	0.98						
1.00	0.3069	0.9880	0.20	1.20	0.485	1.00						
2.00	0.3013	0.9824	0.38	1.76	0.480	1.38						
4.00	0.2929	0.9740	0.59	2.60	0.470	2.01						
8.00	0.2825	0.9636	0.85	3.64	0.458	2.79						
16.00	0.2684	0.9495	1.11	5.06	0.441	3.95						
32.00	0.2505	0.9316	1.40	6.84	0.419	5.44						
8.00	0.2555	0.9366	1.13	6.35	0.422	5.22						
4.00	0.2582	0.9393	0.99	6.08	0.424	5.09						
1.00	0.2630	0.9441	0.81	5.59	0.429	4.78						
0.50	0.2652	0.9463	0.76	5.37	0.431	4.61						

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

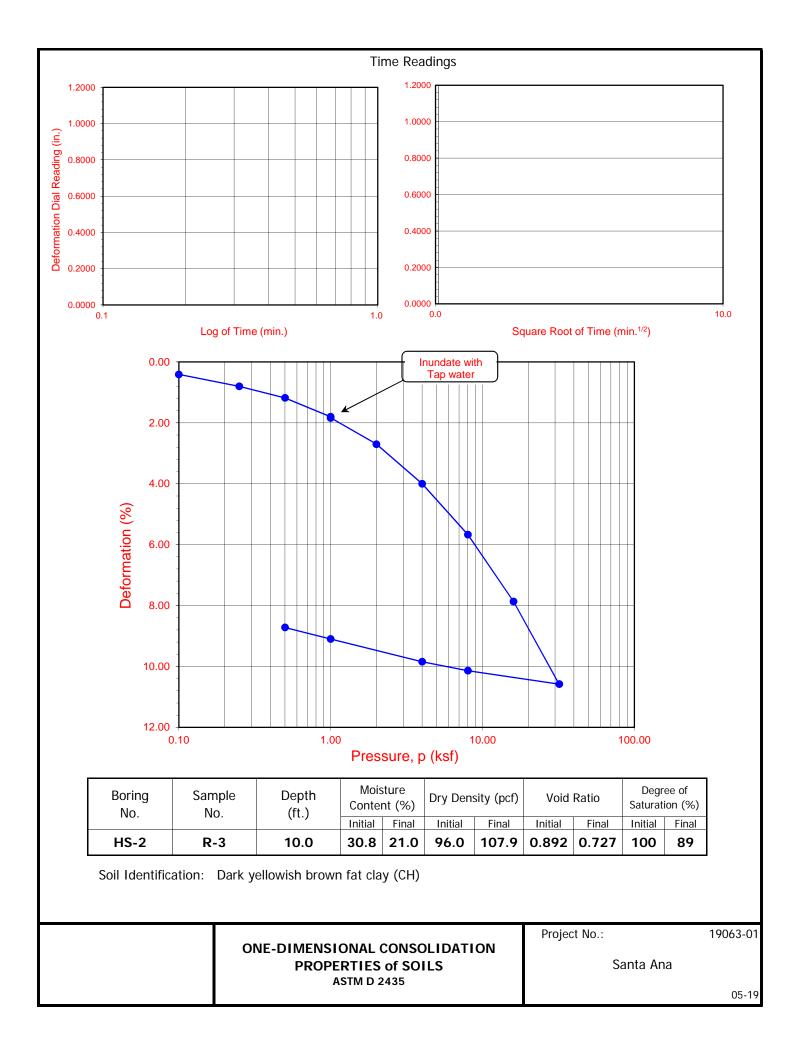
Project Name:SantaProject No.:1906Boring No.:HS-2Sample No.:R-3Soil Identification:Dark	3-01	wn fat clay (CH)	Tested By: G. BathalaDate:05/16/19Checked By: J. WardDate:05/30/19Depth (ft.):10.0Sample Type:Ring
Sample Diameter (in.) Sample Thickness (in.) Wt. of Sample + Ring (g) Weight of Ring (g) Height after consol. (in.) Before Test Wt.Wet Sample+Cont. (g)	2.415 1.000 196.83 45.82 0.9128 335.46	0.900	Inundate with Tap water
Wt.of Dry Sample+Cont. (Weight of Container (g) Initial Moisture Content (% Initial Dry Density (pcf) Initial Saturation (%) Initial Vertical Reading (in	39.40 30.8 96.0 100	0.800 Void Ratio	
After Test Wt.of Wet Sample+Cont. Wt. of Dry Sample+Cont. Weight of Container (g) Final Moisture Content (% Final Dry Density (pcf) Final Saturation (%) Final Vertical Reading (in.)	g) 254.81 g) 229.91 65.66	0.700	

2.91

62.43

Specific Gravity (assumed)

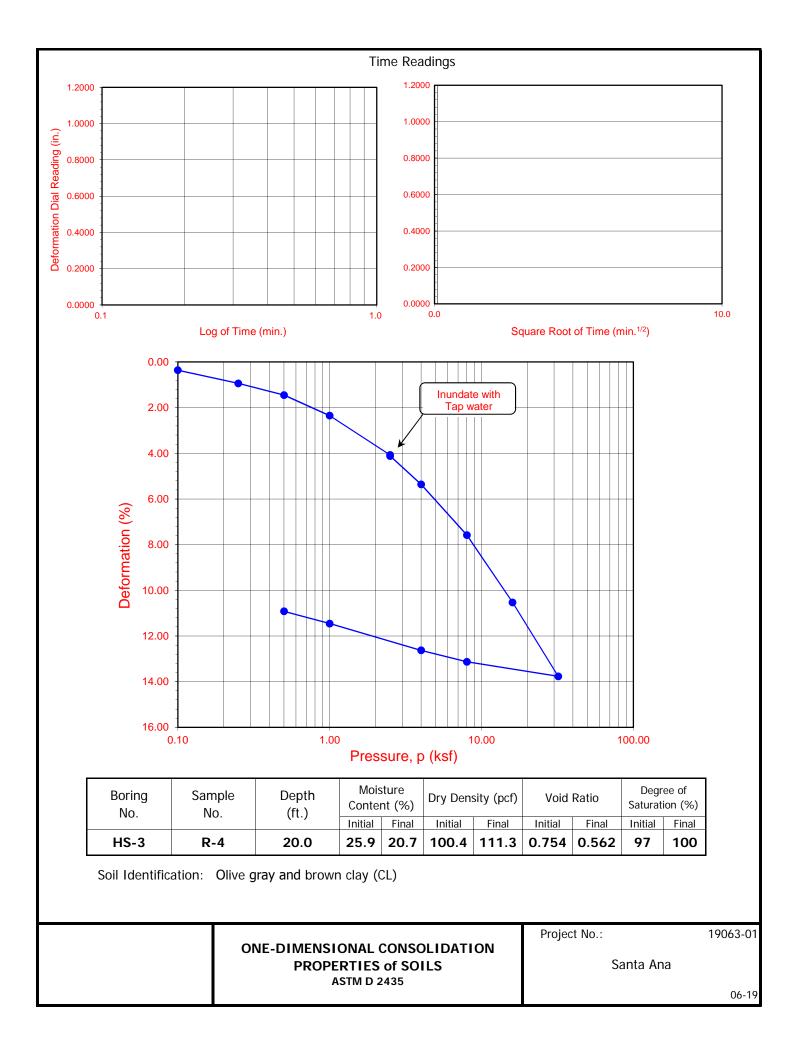
Water Density (pcf)


0.10

1.00 Pressure, p (ksf)

10.00

100.


Pressure	Final	ading Thickness Compliance % of Void Defor		Corrected		Tir	me Reading	gs			
(p) (ksf)	(in.)	(in.)	(%)	Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.2970	0.9959	0.00	0.41	0.884	0.41					
0.25	0.2920	0.9909	0.11	0.91	0.877	0.80					
0.50	0.2868	0.9857	0.25	1.43	0.869	1.18					
1.00	0.2790	0.9779	0.41	2.21	0.858	1.80					
1.00	0.2786	0.9775	0.41	2.25	0.857	1.84					
2.00	0.2679	0.9668	0.62	3.32	0.841	2.70					
4.00	0.2529	0.9518	0.82	4.82	0.816	4.00					
8.00	0.2341	0.9330	1.03	6.70	0.785	5.67					
16.00	0.2095	0.9084	1.29	9.16	0.743	7.87					
32.00	0.1795	0.8784	1.58	12.16	0.692	10.58					
8.00	0.1860	0.8849	1.37	11.51	0.700	10.14					
4.00	0.1902	0.8891	1.25	11.10	0.706	9.85					
1.00	0.1998	0.8987	1.03	10.13	0.720	9.10					
0.50	0.2046	0.9035	0.93	9.65	0.727	8.72					

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name: S	anta Ana						_		Teste	d By:	i. Batha	ala C	Date:	05/2	22/19
Project No.: 1	9063-01								Checke	ed By: J	Ward	C	Date:	06/0)5/19
Boring No.: H	S-3								Depth	(ft.):	20.0				
Sample No.: R	-4								Samp	le Typ	e:	Rir	ng	_	
Soil Identification: 0	live gray an	d brov	vn cl	ay (CL))									_	
				0.800 -										_	
Sample Diameter (in.)	2.	.415		0.000											
Sample Thickness (in.)) 1.	.000		-											
Wt. of Sample + Ring	(g) 19	8.04		-											
Weight of Ring (g)	40	6.12		0.750 🖕											
Height after consol. (in	n.) 0.8	8908		-							undate				
Before Test				-			\mathbb{N}				Fap wat	ter			
Wt.Wet Sample+Cont.	. (g) 33	6.15		0.700 +						$/ \mid \mid$					
Wt.of Dry Sample+Co	nt. (g) 27	5.03		0.700					K						
Weight of Container (g	g) 38	8.86	0	-											
Initial Moisture Conter	nt (%) 2	5.9	Ratio	-											
Initial Dry Density (pcf	f) 1(00.4	Ř	0.650 -											
Initial Saturation (%)		97	Void	-											
Initial Vertical Reading	y (in.) 0.3	3047	>	-											
After Test				0.600							N				
Wt.of Wet Sample+Co	ont. (g) 22	8.04		0.600											
Wt. of Dry Sample+Co	ont. (g) 20	3.37		-								\mathbf{A}			
Weight of Container (g) <mark>38</mark>	8.08		-		🖕						- ^			
Final Moisture Content	t (%) 20	0.70		0.550											
Final Dry Density (pcf	ř) 1'	11.3		1									$ \rangle $		
Final Saturation (%)	1	100		-							┾┿┼┼╴				
Final Vertical Reading	(in.) 0.1	1905		0.500											
Specific Gravity (assur	ned) 2	.82		+ 0.500 0.1	0			1.00		- · · - I-	10.0	0			100.
Water Density (pcf)	62	2.43							ssure	, p (ks					
-															

Pressure (p)	Final Reading	Apparent Thickness	Load Compliance	Deformation % of	Void	Corrected Deforma-	Time Readings				
(p) (ksf)	(in.)	(in.)	(%)	Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.3011	0.9964	0.00	0.36	0.748	0.36					
0.25	0.2950	0.9903	0.03	0.97	0.738	0.94					
0.50	0.2896	0.9849	0.06	1.51	0.729	1.45					
1.00	0.2800	0.9753	0.12	2.47	0.713	2.35					
2.50	0.2615	0.9568	0.25	4.33	0.683	4.08					
2.50	0.2610	0.9563	0.25	4.37	0.682	4.12					
4.00	0.2476	0.9429	0.35	5.71	0.660	5.36					
8.00	0.2236	0.9189	0.53	8.11	0.621	7.58					
16.00	0.1920	0.8873	0.74	11.27	0.569	10.53					
32.00	0.1572	0.8525	0.98	14.75	0.513	13.77					
8.00	0.1660	0.8613	0.74	13.87	0.524	13.13					
4.00	0.1719	0.8672	0.65	13.28	0.532	12.63					
1.00	0.1849	0.8802	0.53	11.99	0.553	11.46					
0.50	0.1905	0.8858	0.50	11.42	0.562	10.92					

Appendix D Infiltration Test Results

Infiltration Test Data Sheet													
				otechnical, Inc									
		131 Calle I	glesia Suite 200, San C	lemente, CA 92672 te	el. (949) 369-614	1							
			Project Name:	The Bowery - S	Santa Ana								
		Pr	oject Number:	19063-									
			Date:	5/8/20	5/8/2019								
		В	oring Number:	I-1									
			•										
	Test hole dir	mensions (if o	circular)		Test pit d	imensions (if	rectangular)						
		g Depth (feet)*:	5		-	Pit Depth (feet):	U ,						
		meter (inches):	8			Pit Length (feet):							
		meter (inches):	2.75			t Breadth (feet):							
*measured at time of test													
Minimum test Head (D _o): (Shallow) The value on the sounder tape													
(What the sounder tape should read)Boring Depth - (5 x Boring Radius)3.4 ftshould be close to this value duringtesting for DEEP testing fill to 4 feet													
Pre-Test (Sar	ndy Soil Criter	ia)*				-	top of hole						
					Final Depth	Total Change	Greater Than or						
Trial No.	Start Time	Stop Time	Time Interval	Initial Depth to	to Water	in Water Level	Equal to						
	(24:HR)	(24:HR)	(min)	Water (feet)	(feet)	(feet)	0.5 feet (yes/no)						
1	7:56	8:21	25.0	2.98	3.11	0.13	no						
2	8:21	8:46	25.0	3.11	3.25	0.14	no						
							additional hour with						
	-				least twelve m	neasurements per	nole over at least six hou						
(approximately 3)	0 minute intervals)	with a precision of	of at least 0.25 inche	25									
Main Test Do	ata												
	Chart Time a	Chair Times	I A I A I	Initial Double to	Final Depth	Change in	Calculated						
Trial No.	Start Time	Stop Time	Time Interval, Δt	Initial Depth to	to Water, D _f	Water Level,	Infiltration						
	(24:HR)	(24:HR)	(min)	Water, D _o (feet)	(feet)	∆D (feet)	Rate(in/hr)						
1	8:47	9:17	30.0	2.91	3.05	0.14	0.26						
2	9:17	9:46	29.0	3.05	3.2	0.15	0.30						
3	9:47	10:17	30.0	2.88	3.03	0.15	0.27						
4	10:17 10:48	10:47 11:18	30.0 30.0	3.03 2.95	3.19	0.16 0.15	0.31 0.28						
6	10:48	11:18	30.0	2.95	3.1 3.12	0.15	0.28						
7	11:48	11:48	30.0	3.12	3.28	0.16	0.30						
8	12:19	12:49	30.0	2.86	3.02	0.16	0.29						
9	12:49	13:19	30.0	3.02	3.19	0.10	0.33						
10	13:19	13:49	30.0	2.95	3.11	0.17	0.30						
10	13:50	14:20	30.0	2.97	3.13	0.16	0.30						
12	14:21	14:51	30.0	2.94	3.09	0.15	0.28						
		11		alculated Infiltratio			0.28						
			C		-	Factor of Safety							
			Cal	culated Infiltration		-							

Notes:

Ecotechnical, Inc.

Based on Guidelines from: Orange County 12/20/2013 Spreadsheet Revised on: 10/26/2016

Sketch:

Appendix E Liquefaction Analysis

LIQUEFACTION EVALUATION

Based on Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, December 31, 1997 and Evaluation of Settlments in Sand due to Earthquake Shaking, Tokimatsu and Seed, 1987

Seismic Event		Profile Constants		Depth to GWT		Project Name	The Bowery - Santa Ana
Moment Magnitude	6.9	Total Unit Weight (lb/ft ³)	120	During Investigation (ft)	25	Project Number	19063-01
Peak Ground Acceleration	0.57 g	Unit Weight of Water (lbs/ft	62.4	During Design Event (ft)	10	Boring	HS-2

Determination of Cyclic Resitance Ratio

	Sampling				Du	ring Investigatio	n		Sampling Correction Factors										
		Blow	Count	Thickness	Total Stress	Pore Pressure	Effective	Sampler	SPT	Overburden	Energy	Borehole	Rod Length	Sampler Type		Fines			
Depth (ft)	Depth (m)	SPT	Rings	(ft)	Stress (psf)	Pressure (psf)	Stress (psf)	Diameter	Nm	C _N	CE	CB	C _R	Cs	(N ₁) ₆₀	Content	(N1)60cs	K _σ	CRR _{7.5}
5	1.5		22	6.25	720	0	720	0.62	13.64	1.70	1.33	1.00	0.75	1.00	23.17	80	32.80	1.000	SPT >30 NF
7.5	2.3		9	2.5	1020	0	1020	0.62	5.58	1.43	1.33	1.00	0.75	1.00	7.96	47	14.56	1.000	0.157
10	3.0		6	3.75	1320	0	1320	0.62	3.72	1.26	1.33	1.00	0.75	1.00	4.67	93	10.60	1.000	0.115
15	4.6	5		5	1920	0	1920	1.00	5.00	1.04	1.33	1.00	0.85	1.10	6.48	93	12.78	1.000	0.138
20	6.1		10	5	2520	0	2520	0.62	6.20	0.91	1.33	1.00	0.95	1.00	7.13	88	13.56	0.964	0.141
25	7.6	5		5	3120	0	3120	1.00	5.00	0.82	1.33	1.00	0.95	1.10	5.68	88	11.82	0.924	0.118
30	9.1		19	5	3720	312	3408	0.62	11.78	0.78	1.33	1.00	0.95	1.00	11.65	88	18.98	0.907	0.186
35	10.7	16		5	4320	624	3696	1.00	16.00	0.75	1.33	1.00	1.00	1.10	17.59	60	26.11	0.890	0.269
40	12.2		21	5	4920	936	3984	0.62	13.02	0.72	1.33	1.00	1.00	1.00	12.54	35	19.98	0.875	0.189
45	13.7	22		5	5520	1248	4272	1.00	22.00	0.70	1.33	1.00	1.00	1.10	22.50	35	31.91	0.860	SPT >30 NF
50	15.2		22	2.5	6120	1560	4560	0.62	13.64	0.68	1.33	1.00	1.00	1.00	12.28	60	19.73	0.846	0.180

Determination of Cyclic Stress Ratio

Determina	ation of Cy	/ciic au	ess rai	10								
	Sampling Data				Du	ring Design Eve	ent					
		Blow	Count		Total Stress Pore Pressure Effective							
Depth (ft)	Depth (m)	SPT	Rings	Thickness	Stress (psf)	Pressure (psf)	Stress (psf)	r _d	CSR	MSF	FS	Depth
5	1.52		22	6.25	600	0	600	0.99024	0.366883	1.238	Above GWT	5
7.5	2.29		9	2.5	900	0	900	0.98456	0.36478	1.238	Above GWT	7.5
10	3.05		6	3.75	1200	0	1200	0.97914	0.362772	1.238	Bray Clay	10
15	4.57	5		5	1800	312	1488	0.96856	0.434094	1.238	Bray Clay	15
20	6.10		10	5	2400	624	1776	0.9569	0.479095	1.238	Bray Clay	20
25	7.62	5		5	3000	936	2064	0.94183	0.507194	1.238	Bray Clay	25
30	9.14		19	5	3600	1248	2352	0.92058	0.522052	1.238	Bray Clay	30
35	10.67	16		5	4200	1560	2640	0.89062	0.524959	1.238	Bray Clay	35
40	12.19		21	5	4800	1872	2928	0.85103	0.516899	1.238	0.45	40
45	13.72	22		5	5400	2184	3216	0.80363	0.499945	1.238	Corr. SPT>30	45
50	15.24		22	2.5	6000	2496	3504	0.75271	0.477535	1.238	0.47	50

Liquefaction-Induced Settlement Analysis

Depth	Vol. Strain (%) SP117 Fig7.11	Settlement (in.)
5.0		
7.5		
10.0		
15.0		
20.0		
25.0		
30.0		
35.0		
40.0	1.60	1.0
45.0		
50.0	1.60	0.5
	Total =	1.4

APPENDIX G 2-YEAR HYDROLOGY CALCULATIONS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355 Analysis prepared by: fuscoe engineering 16795 Von Karman Suite 100 Irvine, CA * Red Hill & Warner * Hydromodification Calculations * Existing Condition - 2-year storm event ******* FILE NAME: RED2EX.DAT TIME/DATE OF STUDY: 14:39 04/29/2019 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) NO. (FT) 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 30.0 1 **GLOBAL STREET FLOW-DEPTH CONSTRAINTS:** 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ***USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED** ************ FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 _____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 65.50 DOWNSTREAM(FEET) = 60.60 ELEVATION DATA: UPSTREAM(FEET) = Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.177

Page 1

A1

RED2EX * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.840 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE COMMERCIAL C 0.94 0.25 0.100 50 7.18 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 1.54 TOTAL AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) = 1.54 *********** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 ----->>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 60.60 DOWNSTREAM(FEET) = 60.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0037 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1,621 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN C 0.59 0.25 0.100 COMMERCIAL 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.51 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) =8.94 SUBAREA AREA(ACRES) =0.59SUBAREA RUNOFF(CFS) =0.85EFFECTIVE AREA(ACRES) =1.53AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) = 2.20 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 1.58 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 490.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<< ELEVATION DATA: UPSTREAM(FEET) = 56.00 DOWNSTREAM(FEET) = 53.00 FLOW LENGTH(FEET) = 422.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.91 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.20 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 10.37 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 912.00 FEET. FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

```
RED2EX
```

TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.37 RAINFALL INTENSITY(INCH/HR) = 1.49 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 1.53 TOTAL STREAM AREA(ACRES) = 1.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.20 FLOW PROCESS FROM NODE 101.00 TO NODE 105.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 65.50 DOWNSTREAM(FEET) = 60.40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.120 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.848 SUBAREA TC AND LOSS RATE DATA(AMC I): SCS SOIL AREA SCS TC DEVELOPMENT TYPE/ Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE С 0.89 0.25 0.100 50 7.12 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 1.46 TOTAL AREA(ACRES) = 0.89 PEAK FLOW RATE(CFS) = 1.46 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 60.40 DOWNSTREAM(FEET) = 60.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 101.00 CHANNEL SLOPE = 0.0020 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.670 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.75 0.25 0.100 50 COMMERCIAL C SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.01 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.22 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 1.38 Tc(MIN.) =8.50 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 1.11 EFFECTIVE AREA(ACRES) = 1.64 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 2.43

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 1.26 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 106.00 = 431,00 FEFT ************ FLOW PROCESS FROM NODE 106.00 TO NODE 104.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 55.00 DOWNSTREAM(FEET) = 53.00 FLOW LENGTH(FEET) = 182.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.94 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.43PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 9.01 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 613.00 FEET. FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< A5 MAINLINE $Tc(MIN_{,}) = 9.01$ * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.615 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN с COMMERCIAL 1.08 0.25 0.100 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =1.08SUBAREA RUNOFF(CFS) =1.55EFFECTIVE AREA(ACRES) =2.72AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 3.89 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.01 RAINFALL INTENSITY(INCH/HR) = 1.61 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.102.72 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 2.72 PEAK FLOW RATE(CFS) AT CONFLUENCE 📼 3.89 ** CONFLUENCE DATA ** Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE STREAM Q Tc Intensity Fp(Fm) NUMBER 2.2010.371.4890.25(0.03)0.101.5101.003.899.011.6150.25(0.03)0.102.7101.00 1 2

RED2EX

REDZEX

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER (ACRES) NODE (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER 5.96 9.01 1.615 0.25(0.02) 0.10 4.0 101.00 1 5.78 10.37 1.489 0.25(0.03) 0.10 4.2 101.00 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =5.96Tc(MIN.) =9.01EFFECTIVE AREA(ACRES) =4.05AREA-AVERAGED Fm(INCH/HR) =0.02 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 4.2LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 =912.00 FEFT. ************* FLOW PROCESS FROM NODE 104.00 TO NODE 107.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 53.00 DOWNSTREAM(FEET) = 52.00 FLOW LENGTH(FEET) = 184.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.70 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.96 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 9.55 107.00 = 1096.00 FEET. LONGEST FLOWPATH FROM NODE 101.00 TO NODE FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.55 RAINFALL INTENSITY(INCH/HR) = 1.56 AREA-AVERAGED Fm(INCH/HR) = 0.02AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 4.05 TOTAL STREAM AREA(ACRES) = 4.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.96 ********* FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 61.50 DOWNSTREAM(FEET) = 59.60 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.674

A6

RED2EX * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.650 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Tc Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL C 1.01 0.25 0.100 50 8.67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 1.48 TOTAL AREA(ACRES) = 1.01 PEAK FLOW RATE(CFS) = 1.48 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 59.60 DOWNSTREAM(FEET) = 57.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 634.00 CHANNEL SLOPE = 0.0032 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.173 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C 1.84 0.25 0.100 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.44 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.50 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 7,05 Tc(MIN.) = 15.72SUBAREA AREA(ACRES) =1.84SUBAREA RUNOFF(CFS) =1.90EFFECTIVE AREA(ACRES) =2.85AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 2.94 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 1.61 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 110.00 = 964.00 FEET. ************* FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 57.60 DOWNSTREAM(FEET) = 56.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 313.00 CHANNEL SLOPE = 0.0022 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.042 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE C 1.14 0.25 0.100 50 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.47 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.45

RED2EX AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 3.61 Tc(MIN.) = 19.33 SUBAREA RUNOFF(CFS) = 1.04 SUBAREA AREA(ACRES) = 1.14 EFFECTIVE AREA(ACRES) = 3.99 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 4.0 PEAK FLOW RATE(CFS) = 3.65 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 1.46 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 111.00 = 1277.00 FEET. *********************** FLOW PROCESS FROM NODE 111.00 TO NODE 107.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 54.00 DOWNSTREAM(FEET) = 52.00 FLOW LENGTH(FEET) = 192.00 MANNING'S N = 0.010DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.36 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.65 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 19.83 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 107.00 = 1469.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ______________________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 19.83 RAINFALL INTENSITY(INCH/HR) = 1.03 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.103.99 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 3.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.65 ** CONFLUENCE DATA ** Ae HEADWATER Q Tc Intensity Fp(Fm) STREAM Ар (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 5.969.551.5620.25(0.02)0.104.0101.005.7810.931.4450.25(0.03)0.104.2101.00 1 5.96 1 3.65 19.83 1.026 0.25(0.03) 0.10 4.0 108.00 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Ae HEADWATER Q Tc Intensity Fp(Fm) STREAM Ap (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER
 8.66
 9.55
 1.562
 0.25(0.02)
 0.10
 6.0

 8.64
 10.93
 1.445
 0.25(0.03)
 0.10
 6.4
 101.00 1 101.00 2
 7.73
 19.83
 1.026
 0.25(
 0.03)
 0.10
 8.2
 108.00
 3

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =8.66Tc(MIN.) =9.55EFFECTIVE AREA(ACRES) =5.97AREA-AVERAGED Fm(INCH/HR) =0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.2
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 107.00 = 1469.00 FEET.
************
 FLOW PROCESS FROM NODE 107.00 TO NODE 112.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) = 50.00
 FLOW LENGTH(FEET) = 206.00 MANNING'S N = 0.010
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.76
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               8.66
 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) =
                                   9.99
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE
                                   112.00 =
                                           1675.00 FEET.
FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9,99
 RAINFALL INTENSITY(INCH/HR) = 1.52
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
                         5.97
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 8.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.66
FLOW PROCESS FROM NODE 113.00 TO NODE 107.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 61.20 DOWNSTREAM(FEET) =
                                                59.10
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.502
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.669
 SUBAREA TC AND LOSS RATE DATA(AMC I):
                               Fp Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
                  C 1.39 0.25 0.100 50 8.50
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =2.06TOTAL AREA(ACRES) =1.39PEAK FLOW RATE(CFS) =
                                           2.06
```

```
Page 8
```

FLOW PROCESS FROM NODE 107.00 TO NODE 112.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< AIO >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 59.10 DOWNSTREAM(FEET) = 57.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 206.00 CHANNEL SLOPE = 0.0058 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.492 SUBAREA LOSS RATE DATA(AMC I): SCS DEVELOPMENT TYPE/ SCS SOIL AREA En Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.57 0.25 COMMERCIAL C 0.100 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.43 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.88 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.83 Tc(MIN.) = 10.33SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 0.75 EFFECTIVE AREA(ACRES) = 1.96 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 2.0 PEAK FLOW RATE(CFS) = 2.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.26 FLOW VELOCITY(FEET/SEC.) = 1.97 LONGEST FLOWPATH FROM NODE 113.00 TO NODE 112.00 = 536.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 10.33 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.492 SUBAREA LOSS RATE DATA(AMC I): SCS SOIL AREA DEVELOPMENT TYPE/ Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL GOOD COVER "GRASS" C 0.66 0.25 1.000 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) =0.66SUBAREA RUNOFF(CFS) =0.74EFFECTIVE AREA(ACRES) =2.62AREA-AVERAGED Fm(INCH/HR) =0.08 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.33 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 2.6 3.33 ************************* FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.33

RAINFALL INTENSITY(INCH/HR) = 1.49 AREA-AVERAGED Fm(INCH/HR) = 0.08AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.33EFFECTIVE STREAM AREA(ACRES) = 2.62 TOTAL STREAM AREA(ACRES) = 2.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33 ** CONFLUENCE DATA ** STREAM 0 Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 8.66 9.99 1.522 0.25(0.02) 0.10 6.0 1 101.00 1 8.64 11.38 1.412 0.25(0.03) 0.10 6.4 101.00 7.73 20.30 1.013 0.25(0.03) 0.10 1 8.2 108.00 3.33 10.33 1.492 0.25(0.08) 0.33 2 2.6 113.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NUMBER NODE 11.94 9.99 1.522 0.25(0.04) 0.17 8.5 1 101.00 11.98 10.33 1.492 0.25(0.04) 0.17 2 8.7 113.00 11.77 11.38 1.412 0.25(0.04) 0.17 9.1 3 11.7711.381.4120.25(0.04)0.179.19.9320.301.0130.25(0.04)0.1510.9 101.00 4 108.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.98 Tc(MIN.) = 10.33 EFFECTIVE AREA(ACRES) = 8.71 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.17 TOTAL AREA(ACRES) = 10.9 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 112.00 = 1675.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 10 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ********** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< $\wedge \wedge \wedge \wedge$ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 64.60 DOWNSTREAM(FEET) = 60.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 22,355 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.958 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL GOOD COVER "GRASS" 1.000 56 22.35 1.50 C 0.25 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000

AIZ

```
RED2EX
```

SUBAREA RUNOFF(CFS) = 0.96 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 0.96 ************ FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.35 RAINFALL INTENSITY(INCH/HR) = 0.96 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 1.50 TOTAL STREAM AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.96 ********** FLOW PROCESS FROM NODE 116.00 TO NODE 115.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< A13 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 273.00 ELEVATION DATA: UPSTREAM(FEET) = 61.50 DOWNSTREAM(FEET) = 60.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.116 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.714 SUBAREA TC AND LOSS RATE DATA(AMC I): SCS SOIL AREA SCS Tc DEVELOPMENT TYPE/ Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE с 0.36 0.25 0.100 50 8.12 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) = 0.55 ********** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.12 RAINFALL INTENSITY(INCH/HR) = 1.71 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.100.36 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.55 ** CONFLUENCE DATA ** Tc Intensity Fp(Fm) Ap HEADWATER STREAM Ae Q Page 11

RED2EX NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 0.96 22.35 0.958 0.25(0.25) 1.00 1 1.5 114.00 2 0.55 8.12 1.714 0.25(0.03) 0.10 0.4 116.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 1.26 8.12 1.714 0.25(0.16) 0.64 0.9 1 116.00 2 1.26 22.35 0.958 0.25(0.21) 0.83 1.9 114.99 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.26 Tc(MIN.) = 8.12 EFFECTIVE AREA(ACRES) = 0.90 AREA-AVERAGED Fm(INCH/HR) = 0.16 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.64 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 115.00 = 330.00 FEET. ********** FLOW PROCESS FROM NODE 115.00 TO NODE 117.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 53.00 DOWNSTREAM(FEET) = 51.00 FLOW LENGTH(FEET) = 174.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.13 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.26 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 8.68 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 117.00 = 504.00 FEET. FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 ----->>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.68 RAINFALL INTENSITY(INCH/HR) = 1.65 AREA-AVERAGED Fm(INCH/HR) = 0.16 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.64EFFECTIVE STREAM AREA(ACRES) = 0.90 TOTAL STREAM AREA(ACRES) = 1.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.26 ******************************** FLOW PROCESS FROM NODE 118.00 TO NODE 117.00 IS CODE = 21 ------>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 272.00 ELEVATION DATA: UPSTREAM(FEET) = 62.30 DOWNSTREAM(FEET) = 58.50

A14

RED2EX

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.724 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.910 SUBAREA TC AND LOSS RATE DATA(AMC I): SCS SOIL AREA SCS TC DEVELOPMENT TYPE/ Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE с 0.80 0.25 0.100 50 6.72 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 1.36 1.36 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = ****** FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 ----->>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.72 RAINFALL INTENSITY(INCH/HR) = 1.91 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 0.80 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.36 ** CONFLUENCE DATA ** Tc Intensity Fp(Fm) HEADWATER Ap Ae STREAM Q (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 8.68 1.649 0.25(0.16) 0.64 0.9 116.00 1 1.26 22.92 0.945 0.25(0.21) 0.83 1.26 1.9 114.00 1 6.72 1.910 0.25(0.03) 0.10 0.8 118.00 1.36 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** HEADWATER Tc Intensity Fp(Fm) Ар Ae STREAM Q (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 6.721.9100.25(0.09)0.351.58.681.6490.25(0.10)0.391.7 118.00 1 2.51 116.00 1.7 2 2.43 1.92 22.92 0.945 0.25(0.15) 0.61 2.7 114.00 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =2.51Tc(MIN.) =6.72EFFECTIVE AREA(ACRES) =1.50AREA-AVERAGED Fm(INCH/HR) =0.09 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35 TOTAL AREA(ACRES) = 2.7 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 504.00 FEET. 117.00 =************ FLOW PROCESS FROM NODE 117.00 TO NODE 112.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

Page 13

ELEVATION DATA: UPSTREAM(FEET) = 51.00 DOWNSTREAM(FEET) = 50.00 FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.010DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.12 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.51PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 6.96 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 112.00 = 590.00 FEET. FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 11 _____ >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< **** MAIN STREAM CONFLUENCE DATA **** Q Tc Intensity Fp(Fm) STREAM Ae HEADWATER Ap (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE
 2.51
 6.96
 1.872
 0.25(0.09)
 0.35
 1.5

 2.43
 8.92
 1.624
 0.25(0.10)
 0.39
 1.7
 1 118.00 2 1.7 116.00 1.92 23.18 0.939 0.25(0.15) 0.61 2.7 114.00 3 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 112.00 = 590.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 11.949.991.5220.25(0.04)0.178.511.9810.331.4920.25(0.04)0.178.7 1 101.00 8.7 2 113.00 9.1 11.77 11.38 1.412 0.25(0.04) 0.17 3
 11.//
 11.38
 1.412
 0.25(
 0.04)
 0.17
 9.1
 101.00

 9.93
 20.30
 1.013
 0.25(
 0.04)
 0.15
 10.9
 108.00
 101.00 4 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 112.00 = 1675.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)

 12.80
 6.96
 1.872
 0.25(
 0.05)
 0.21
 7.4

 13.84
 8.92
 1.624
 0.25(
 0.05)
 0.21
 9.3
 NUMBER (ACRES) NODE 1 118.00 2 116.00

 13.84
 8.92
 1.624
 0.25(
 0.05)
 0.21
 9.3

 14.34
 9.99
 1.522
 0.25(
 0.05)
 0.21
 10.3

 14.36
 10.33
 1.492
 0.25(
 0.05)
 0.21
 10.5

 14.12
 11.38
 1.412
 0.25(
 0.05)
 0.21
 10.9

 11.95
 20.30
 1.013
 0.25(
 0.06)
 0.23
 13.3

 11.09
 23.18
 0.939
 0.25(
 0.06)
 0.24
 13.5

 3 101.00 113.00 4 101.00 5 6 108.00 7 114.00 TOTAL AREA(ACRES) = 13.5 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.36 Tc(MIN.) = 10.332 EFFECTIVE AREA(ACRES) = 10.51 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 13.5 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 112.00 = 1675.00 FEET. FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 10.33 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.492

A15 & Alb (to warner)

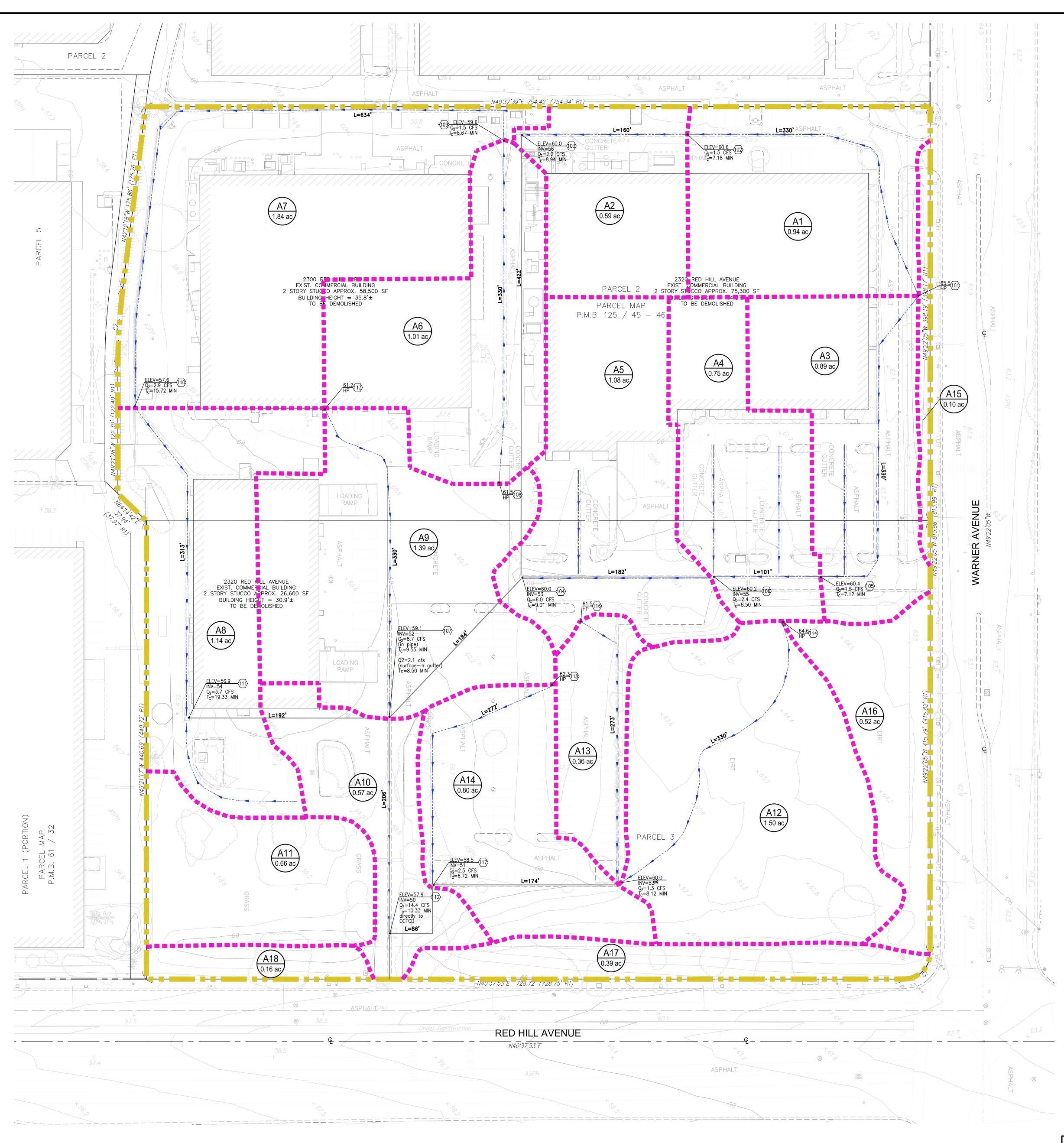
RED2EX

SUBAREA LOSS RATE DATA(AMC I): SCS SOIL AREA SCS DEVELOPMENT TYPE/ Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL GOOD COVER "GRASS" A15 C 0.10 0.25 1.000 56 NATURAL GOOD COVER Alb С "GRASS" 0.52 0.25 1.000 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) =0.62SUBAREA RUNOFF(CFS) =0.69EFFECTIVE AREA(ACRES) =11.13AREA-AVERAGED Fm(INCH/HR) =0.06 SUBAREA RUNOFF(CFS) = (0.69) AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.25 TOTAL AREA(ACRES) = 14.1 PEAK FLOW RATE(CFS) = 14.36 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE ************ FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 81 _____ A17 & A18 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 10.33 (to Red Utill) 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.492 SUBAREA LOSS RATE DATA(AMC I): SCS SOIL AREA Fp SCS DEVELOPMENT TYPE/ Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL GOOD COVER A17 C 0.39 "GRASS" 0.25 1.000 56 NATURAL GOOD COVER AIX "GRASS" C 0.16 0.25 1.000 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) =0.55SUBAREA RUNOFF(CFS) =0.62EFFECTIVE AREA(ACRES) =11.68AREA-AVERAGED Fm(INCH/HR) =0.07 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.29 TOTAL AREA(ACRES) = 14.7 PEAK FLOW RATE(CFS) = 14.93 ____________ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 14.7 TC(MIN.) = 10.33 EFFECTIVE AREA(ACRES) = 11.68 AREA-AVERAGED Fm(INCH/HR)= 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.289 PEAK FLOW RATE(CFS) = 14.93 ** PEAK FLOW RATE TABLE ** Tc Intensity Fp(Fm) HEADWATER STREAM Q Ap Ae (CFS) (MIN.) (INCH/HR) (INCH/HR) NODE NUMBER (ACRES) 6.96 1.872 0.25(0.08) 0.31 8.6 118.00 1 13.88 8.92 1.624 0.25(0.07) 0.30 14.60 10.5 116.00 2 9.99 1.522 0.25(0.07) 0.29 101.00 3 14.93 11.4 11.7 14.93 10.33 1.492 0.25(0.07) 0.29 4 113.00 14.61 11.38 1.412 0.25(0.07) 0.29 12.1 101.00 5 12.26 20.30 1.013 0.25(0.07) 0.29 6 14.5 108.00 11.40 23.18 0.939 0.25(0.08) 0.30 14.7 7 114.00 END OF RATIONAL METHOD ANALYSIS

۸

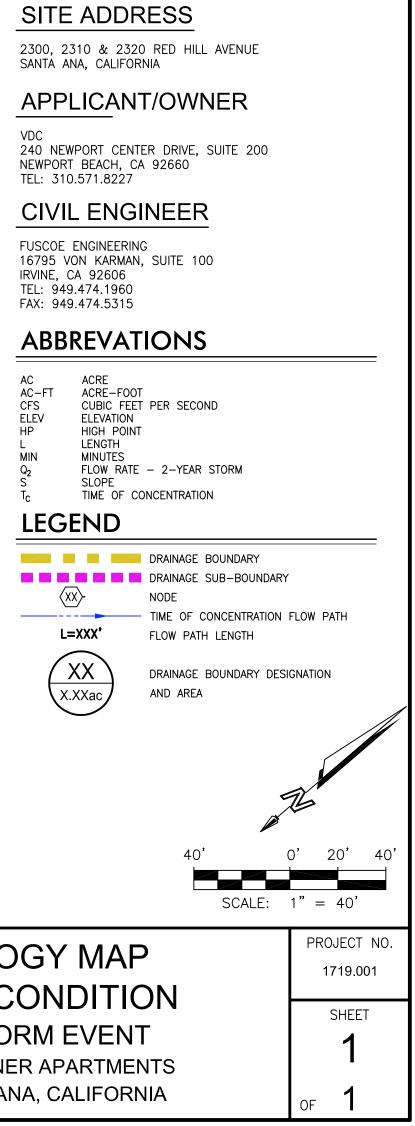
NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355 Analysis prepared by: fuscoe engineering 16795 Von Karman Suite 100 Irvine, CA _____ Problem Descriptions: Red Hill & Warner Hydromodification Calculations Existing Condition - 2-year Hydrograph *** NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC I: TOTAL 24-HOUR DURATION RAINFALL DEPTH = 2.05 (inches) SOIL-COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in./hr.) YIELD 28.90 69.(AMC II) 0.250 1 14.69 0.633 TOTAL AREA (Acres) = 14.69 AREA-AVERAGED LOSS RATE, Fm (in./hr.) = 0.072 AREA-AVERAGED LOW LOSS FRACTION, Y = 0.367Problem Descriptions: Red Hill & Warner Hydromodification Calculations (calibration coefficient: 0.716) Existing Condition - 2-year Hydrograph _____ RATIONAL METHOD CALIBRATION COEFFICIENT = 0.72 TOTAL CATCHMENT AREA (ACRES) = 14.69 SOIL-LOSS RATE, Fm, (INCH/HR) = 0.072 LOW LOSS FRACTION = 0.367 TIME OF CONCENTRATION (MIN.) = 10.33 SMALL AREA PEAK O COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FREQUENCY (YEARS) = 2 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.19 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40 1-HOUR POINT RAINFALL VALUE (INCHES) = 0.53 3-HOUR POINT RAINFALL VALUE (INCHES) = 0.89 6-HOUR POINT RAINFALL VALUE (INCHES) = 1.22

	CATCHMENT CATCHMENT			(ACRE-FEET) (ACRE-FEET)		1.24 1.27	
*******	*********	********	******	*********	*****	*******	*****
TIME	VOLUME	Q (Ο.	5.0	10.0	15.0	20.0
(HOURS)	(AF)	(CFS)					
0.16	0.0015	0.21	Q	•			•
0.33	0.0046	0.21	Q		•		•
0.51	0.0076	0.22	Q	•	•	•	•
0.68	0.0107	0.22	Q	•	•	•	•
0.85	0.0138	0.22	Q	•	•	•	•
1.02	0.0169	0.22	Q		•	•	•
1.19	0.0201	0.22	Q	•	•	•	•
1.37	0.0233	0.22	Q	•	•	•	•
1.54	0.0265	0.23	Q	•	•		•
1.71	0.0297	0.23	Q	•	•	•	•
1.88	0.0329	0.23	Q	•	•		•
2.05	0.0362	0.23	Q	•	•		•
2.23	0.0395	0.23	Q	•	•		•
2.40	0.0428	0.23	Q	•	•		•
2.57	0.0461	0.24	Q	•	•	•	•
2.74	0.0495	0.24	Q	•	•		
2.92	0.0529	0.24	Q	•	•		•
3.09	0.0563	0.24	Q	•	•		•
3.26	0.0598	0.24	Q	•	•	•	•
3.43	0.0633	0.25	Q	•	•	•	•
3.60	0.0668	0.25	Q	•	•		
3.78	0.0703	0.25	Q	•	•		•
3.95	0.0739	0.25	Q	•	•	•	•
4.12	0.0775	0.25	Q	•	•	•	•
4.29	0.0812	0.26	Q	•	•	•	•
4.46	0.0848	0.26	Q	•	•		•
4.64	0.0885	0.26	Q	•	•	•	•
4.81	0.0923	0.26	Q	•	•	•	•
4.98	0.0960	0.27	Q	•	•	•	•
5.15	0.0999	0.27	Q	•	•	•	•
5.33	0.1037	0.27	Q	•	•	•	•
5.50	0.1076	0.28	Q	•	•	•	•
5.67	0.1115	0.28	Q	•	•	•	•
5.84	0.1155	0.28	Q	•	•	•	•
6.01	0.1195	0.28	Q	•	•	•	•
6.19	0.1236	0.29	Q	•	•	•	•
6.36	0.1277	0.29		•	•	•	•
6.53	0.1318	0.29	Q	•	•	•	•
6.70	0.1360	0.30	Q	•	•	•	•
6.88	0.1402	0.30	Q	•	•	•	•
7.05	0.1445	0.30	Q	•	•	•	•
7.22	0.1489	0.31	Q	•	•	•	•
7.39	0.1533	0.31	Q	•	•	•	•
7.56	0.1577	0.32	Q	•	•	•	•
7.74	0.1622	0.32	Q	•	•	•	•
7.91	0.1668	0.32	Q	•	•	•	•
8.08	0.1714	0.33	Q	•	•	•	•
8.25	0.1761	0.33	Q	•	•	•	•
8.42	0.1808	0.34	Q	•	•	•	•
8.60	0.1856	0.34	Q	•	•	•	•
8.77	0.1905	0.34	Q	•	•	•	•
8.94	0.1955	0.35	Q	•	•	•	•


9.11	0.2005	0.36	Q				
9.29	0.2056	0.36	Q				
9.46	0.2108	0.37	Q				
9.63	0.2161	0.37	Q				
9.80	0.2214	0.38	Q				_
9.97	0.2269	0.39	Q	•	•	•	•
10.15	0.2324	0.39	Q	•	•	•	•
10.32	0.2324	0.40		•	•	•	•
			Q	•	•	•	•
10.49	0.2438	0.41	Q	•	•	•	•
10.66	0.2497	0.42	Q	•	•	•	•
10.84	0.2557	0.42	Q	•	•	•	•
11.01	0.2618	0.43	Q	•	•	•	•
11.18	0.2680	0.44	Q	•	•	•	•
11.35	0.2744	0.45	Q	•	•	•	•
11.52	0.2809	0.46	Q	•	•	•	•
11.70	0.2876	0.48	Q	•	•		
11.87	0.2944	0.48	Q		•		
12.04	0.3014	0.50	.Q			•	
12.21	0.3093	0.60	.Q		•	•	
12.38	0.3181	0.64	.Q				
12.56	0.3273	0.65	. Q				
12.73	0.3367	0.67	.Q				_
12.90	0.3464	0.69	.Q	•	•	•	•
13.07	0.3564	0.72	.Q	•	•	•	•
13.25	0.3667	0.72	.g	•	•	•	•
13.42		0.76		•	•	•	•
	0.3773		.Q	•	•	•	•
13.59	0.3883	0.78	.Q	•	•	•	•
13.76	0.3997	0.82	.Q	•	•	·	•
13.93	0.4116	0.85	.Q	•	•	•	•
14.11	0.4241	0.91	.Q	•	•	•	•
14.28	0.4374	0.96	.Q	•	•	•	•
14.45	0.4515	1.03	. Q	•	•	•	•
14.62	0.4664	1.07	. Q	•	•	•	•
14.79	0.4822	1.16	. Q	•	•	•	•
14.97	0.4992	1.22	. Q		•		
15.14	0.5178	1.39	. Q		•	•	
15.31	0.5387	1.54	. Q		•	•	
15.48	0.5614	1.65	. Q			•	
15.66	0.5865	1.88	. Q	•	•	•	
15.83	0.6218	3.08	. Q				
16.00	0.6756	4.48	. Q				
16.17	0.8137	14.93					
16.34						Q.	•
	0.9364	2.31	. Q	•	•	Q.	:
16.52	0.9364 0.9651	2.31 1.72	. Q . Q			Q.	•
	0.9651	1.72	. Q		•	Q.	•
16.69	0.9651 0.9864	1.72 1.28	. Q . Q			Q.	•
16.69 16.86	0.9651 0.9864 1.0035	1.72 1.28 1.11	. Q . Q . Q			Q.	
16.69 16.86 17.03	0.9651 0.9864 1.0035 1.0184	1.72 1.28 1.11 0.99	. Q . Q . Q .Q	• • • •		Q.	
16.69 16.86 17.03 17.21	0.9651 0.9864 1.0035 1.0184 1.0317	1.72 1.28 1.11 0.99 0.87	. Q . Q . Q .Q .Q			Q.	
16.69 16.86 17.03 17.21 17.38	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436	1.72 1.28 1.11 0.99 0.87 0.80	. Q . Q . Q .Q .Q .Q			Q.	
16.69 16.86 17.03 17.21 17.38 17.55	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546	1.72 1.28 1.11 0.99 0.87 0.80 0.75	. Q . Q . Q .Q .Q .Q .Q			Q.	
16.69 16.86 17.03 17.21 17.38 17.55 17.72	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70	. Q . Q . Q .Q .Q .Q .Q .Q .Q		· · · · ·	Q.	
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70 0.66	. Q . Q .Q .Q .Q .Q .Q .Q .Q		· · · · ·	Q.	
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0546 1.0649 1.0746 1.0838	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70 0.66 0.63	. Q . Q .Q .Q .Q .Q .Q .Q .Q .Q	· · · · · ·	· · · · · ·	Q.	
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70 0.66 0.63 0.49	· Q · Q · Q · Q · Q · Q · Q · Q · Q · Q	· · · · · ·	· · · · · · ·	Q.	
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70 0.66 0.63 0.49 0.47	· Q · Q · Q · Q · Q · Q · Q · Q · Q · Q	· · · · · ·	· · · · · ·	Q.	· · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051	1.72 1.28 1.11 0.99 0.87 0.80 0.75 0.70 0.66 0.63 0.49 0.47 0.45	. Q . Q . Q . Q . Q . Q . Q . Q . Q Q Q	· · · · · · ·	· · · · · · ·	Q.	· · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58 18.75	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051 1.1114	$1.72 \\ 1.28 \\ 1.11 \\ 0.99 \\ 0.87 \\ 0.80 \\ 0.75 \\ 0.70 \\ 0.66 \\ 0.63 \\ 0.49 \\ 0.47 \\ 0.45 \\ 0.43 \\ $. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	· · · · · · ·	· · · · · · ·	Q.	· · · · · · · · · · · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58 18.75 18.93	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051 1.1114 1.1173	$1.72 \\ 1.28 \\ 1.11 \\ 0.99 \\ 0.87 \\ 0.80 \\ 0.75 \\ 0.70 \\ 0.66 \\ 0.63 \\ 0.49 \\ 0.47 \\ 0.45 \\ 0.43 \\ 0.41 \\ $. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	· · · · · ·	· · · · · · ·	Q.	· · · · · · · · · · · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58 18.75 18.93 19.10	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051 1.1114 1.1173 1.1231	$1.72 \\ 1.28 \\ 1.11 \\ 0.99 \\ 0.87 \\ 0.80 \\ 0.75 \\ 0.70 \\ 0.66 \\ 0.63 \\ 0.49 \\ 0.47 \\ 0.45 \\ 0.43 \\ 0.41 \\ 0.40 \\ $. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	· · · · · · · ·	· · · · · · · · ·	Q.	· · · · · · · · · · · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58 18.75 18.93	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051 1.1114 1.1173	$1.72 \\ 1.28 \\ 1.11 \\ 0.99 \\ 0.87 \\ 0.80 \\ 0.75 \\ 0.70 \\ 0.66 \\ 0.63 \\ 0.49 \\ 0.47 \\ 0.45 \\ 0.43 \\ 0.41 \\ $. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	Q.	· · · · · · · · · · · · · · · · · · ·
16.69 16.86 17.03 17.21 17.38 17.55 17.72 17.89 18.07 18.24 18.41 18.58 18.75 18.93 19.10	0.9651 0.9864 1.0035 1.0184 1.0317 1.0436 1.0546 1.0649 1.0746 1.0838 1.0918 1.0986 1.1051 1.1114 1.1173 1.1231	$1.72 \\ 1.28 \\ 1.11 \\ 0.99 \\ 0.87 \\ 0.80 \\ 0.75 \\ 0.70 \\ 0.66 \\ 0.63 \\ 0.49 \\ 0.47 \\ 0.45 \\ 0.43 \\ 0.41 \\ 0.40 \\ $. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Q.	· · · · · · · · · · · · · · · · · · ·

19.62	1.1392	0.36	Q		•		
19.79	1.1442	0.35	Q	•	•		
19.96	1.1491	0.34	Q	•	•	•	•
20.13	1.1539	0.33	Q	•	•	•	•
20.30	1.1585	0.32	Q				
20.48	1.1630	0.31	Q				
20.65	1.1674	0.30	Q				
20.82	1.1717	0.30	Q				
20.99	1.1759	0.29	Q				
21.17	1.1800	0.28	Q				
21.34	1.1840	0.28	Q	•	•	•	•
21.51	1.1879	0.27	Q	•	•	•	•
21.68	1.1917	0.27	Q	•	•	•	•
21.85	1.1955	0.26	Q	•	•	•	•
22.03	1.1992	0.26	Q	•	•	•	•
22.20	1.2029	0.25	Q		•		
22.37	1.2064	0.25	Q		•		
22.54	1.2100	0.24	Q		•		
22.71	1.2134	0.24	Q		•		
22.89	1.2168	0.24	Q	•	•	•	•
23.06	1.2202	0.23	Q	•	•	•	•
23.23	1.2234	0.23	Q		•		
23.40	1.2267	0.23	Q		•		
23.58	1.2299	0.22	Q	•	•		•
23.75	1.2330	0.22	Q	•	•	•	•
23.92	1.2361	0.22	Q	•	•	•	•
24.09	1.2392	0.21	Q	•	•	•	•
24.26	1.2407	0.00	Q				

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have


an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes) =========
0%	1446.2
10%	82.6
20%	31.0
30%	10.3
40%	10.3
50%	10.3
60%	10.3
70%	10.3
80%	10.3
90%	10.3

HYDROLOGY MAP **EXISTING CONDITION** 2-YEAR STORM EVENT RED HILL & WARNER APARTMENTS CITY OF SANTA ANA, CALIFORNIA

EXISTING CONDITION 2-YEAR STORM EVENT

(CFS)

14.9 (total)

OCFCD)

430-222-07 & 16

ASSESSOR PARCEL NO.

14.4 (directly to 10.33

VOLUME

(AC-FT)

1.241

(MIN)

AREA (AC)

14.69

RED2PR

************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355 Analysis prepared by: fuscoe engineering 16795 Von Karman Suite 100 Irvine, CA * Red Hill & Warner * Hydromodification Calculations * Proposed Condition - 2-year storm event ******* FILE NAME: RED2PR.DAT TIME/DATE OF STUDY: 09:55 04/30/2019 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) --- ---- ----- ------ ----- ----- -----1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 **GLOBAL STREET FLOW-DEPTH CONSTRAINTS:** 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 65.00 DOWNSTREAM(FEET) = 63.50 ELEVATION DATA: UPSTREAM(FEET) = Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.692

RED2PR 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.548 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ар Fp Тс LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) **APARTMENTS** С 0.68 0.25 0.200 50 9.69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA RUNOFF(CFS) = 0.92TOTAL AREA(ACRES) = 0.68 PEAK FLOW RATE(CFS) = 0.92 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 ----->>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 9.69 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.548 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN **APARTMENTS** С 0.85 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) = 0.85 SUBAREA RUNOFF(CFS) = 1.15 EFFECTIVE AREA(ACRES) = 1.53 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) = 2.06 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 56.00 DOWNSTREAM(FEET) = 54.00 FLOW LENGTH(FEET) = 297.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.88 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 2.06 PIPE-FLOW(CFS) = PIPE TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 10.97 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 627.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 10.97 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.442 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN **APARTMENTS** C 0.93 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) =0.93SUBAREA RUNOFF(CFS) =1.17EFFECTIVE AREA(ACRES) =2.46AREA-AVERAGED Fm(INCH/HR) =0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20

RED2PR TOTAL AREA(ACRES) = 2.5 PEAK FLOW RATE(CFS) = 3.08 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.97 RAINFALL INTENSITY(INCH/HR) = 1.44 AREA-AVERAGED Fm(INCH/HR) = 0.05AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.20EFFECTIVE STREAM AREA(ACRES) = 2.46 TOTAL STREAM AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.08 FLOW PROCESS FROM NODE 101.00 TO NODE 104.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 65.00 DOWNSTREAM(FEET) = 63.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.692 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.548 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE APARTMENTS С 0.51 0.25 0.200 50 9.69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.51 PEAK FLOW RATE(CFS) = 0.69 FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 31 ----->>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 56.00 DOWNSTREAM(FEET) = 54.00 FLOW LENGTH(FEET) = 313.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.90 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.69 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 11.49 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 643.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____

RED2PR

MAINLINE Tc(MIN.) = 11.49 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.404 SUBAREA LOSS RATE DATA(AMC I): SCS SOIL AREA DEVELOPMENT TYPE/ Ap SCS Fp I AND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN APARTMENTS С 0.49 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 0.60 EFFECTIVE AREA(ACRES) = 1.00 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 1.0 1.22 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 ----->>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.49 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = 0.05AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20EFFECTIVE STREAM AREA(ACRES) = 1.00 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.22 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 65.00 DOWNSTREAM(FEET) = 63.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.692 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.548 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE 0.200 **APARTMENTS** С 0.32 0.25 50 9.69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) = 0.32 PEAK FLOW RATE(CFS) = 0.43 FLOW PROCESS FROM NODE 106.00 TO NODE 103.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 56.00 DOWNSTREAM(FEET) = 54.00 FLOW LENGTH(FEET) = 407.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 2.33 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.43 PIPE TRAVEL TIME(MIN.) = 2.91 Tc(MIN.) = 12.60 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 103.00 = 737.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 12.60 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.332 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE APARTMENTS С 1.13 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) =1.13SUBAREA RUNOFF(CFS) =1.30EFFECTIVE AREA(ACRES) =1.45AREA-AVERAGED Fm(INCH/HR) =0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 1.5 1.67 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.60 RAINFALL INTENSITY(INCH/HR) = 1.33 AREA-AVERAGED Fm(INCH/HR) = 0.05AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20EFFECTIVE STREAM AREA(ACRES) = 1.45 TOTAL STREAM AREA(ACRES) = 1.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.67 ** CONFLUENCE DATA ** STRFAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 1 3.08 10.97 1.442 0.25(0.05) 0.20 2.5 101.00 2 1.22 11.49 1.404 0.25(0.05) 0.20 1.0 101.00 3 1.67 12.60 1.332 0.25(0.05) 0.20 1.5 105.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STRFAM Q Tc Intensity Fp(Fm) HEADWATER Ae Ap NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 5.86 10.97 1.442 0.25(0.05)0.20 4.7 101.00

RED2PR

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

5.83 11.49

2

3

4.8

4.9 105.00

101.00

1.404 0.25(0.05) 0.20

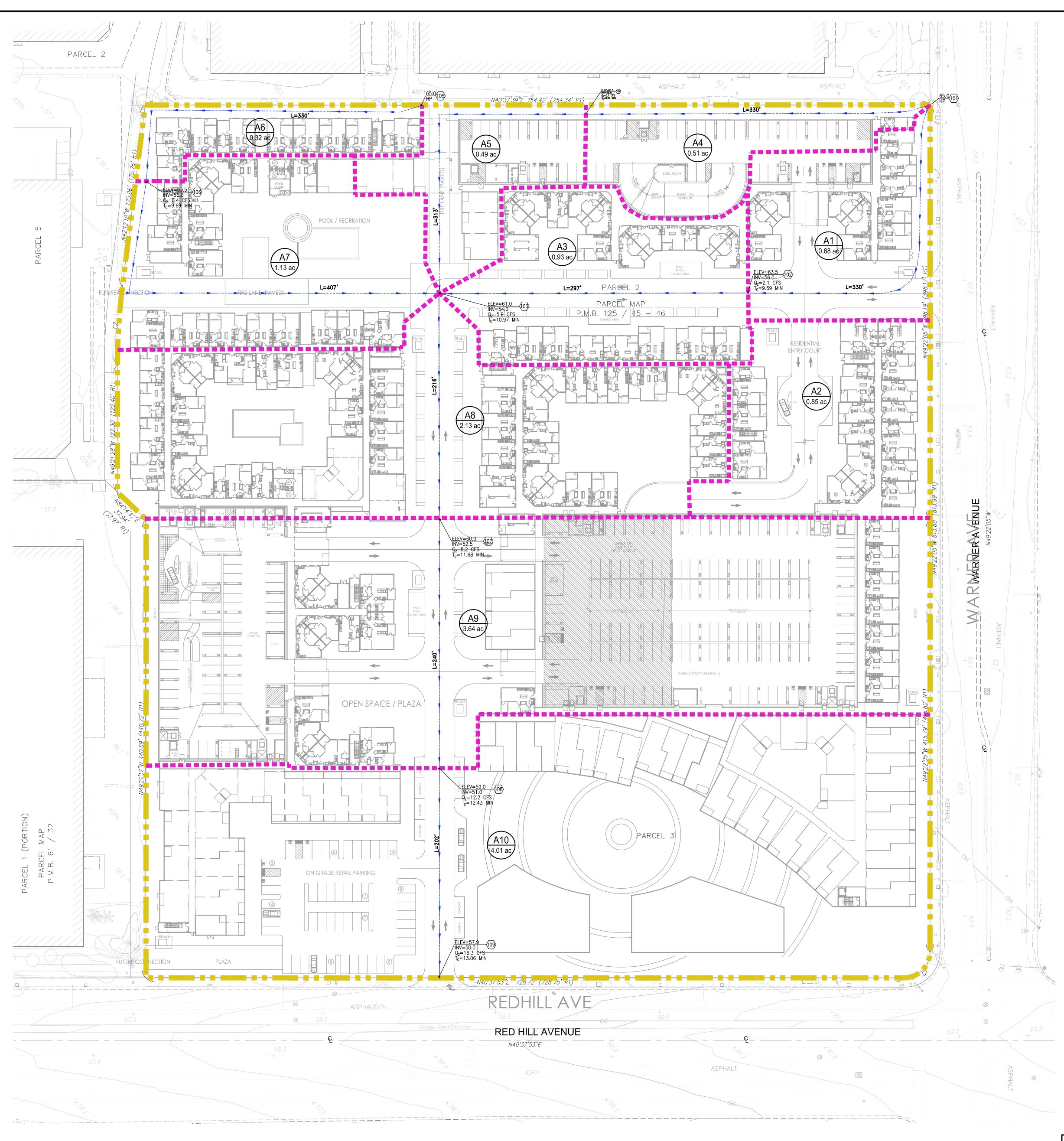
5.66 12.60 1.332 0.25(0.05) 0.20

RED2PR PEAK FLOW RATE(CFS) = 5.86 Tc(MIN.) = 10.97 EFFECTIVE AREA(ACRES) = 4.68 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 4.9 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 103.00 = 737.00 FEET. FLOW PROCESS FROM NODE 103.00 TO NODE 107.00 IS CODE = 31 ----->>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 54.00 DOWNSTREAM(FEET) = 52.50 FLOW LENGTH(FEET) = 216.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.09 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.86 PIPE TRAVEL TIME(MIN.) = 0.71 Tc(MIN.) = 11.68 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 107.00 = 953.00 FEET. FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 ----->>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 11.68 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.391 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN APARTMENTS С 2.13 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) = 2.13 SUBAREA RUNOFF(CFS) = 2.57 EFFECTIVE AREA(ACRES) = 6.81 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 7.0 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 8.22 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 52.50 DOWNSTREAM(FEET) = 51.00 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.33 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.22 PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) = 12.43 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 108.00 = 1193.00 FEET. FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____

RED2PR

MAINLINE Tc(MIN.) = 12.43 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.342 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN **APARTMENTS** С 3.64 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) = 3.64 SUBAREA RUNOFF(CFS) = 4.23 EFFECTIVE AREA(ACRES) = 10.45 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 10.7 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 12.15 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 51.00 DOWNSTREAM(FEET) = 50.00 FLOW LENGTH(FEET) = 202.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.34 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.15 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 13.06 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 109.00 = 1395.00 FEET. FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 13.06 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.305 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN APARTMENTS С 4.01 0.25 0.200 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA AREA(ACRES) =4.01SUBAREA RUNOFF(CFS) =4.53EFFECTIVE AREA(ACRES) =14.46AREA-AVERAGED Fm(INCH/HR) =0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 14.7 PEAK FLOW RATE(CFS) = 16.33 _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 14.7 TC(MIN.) = 13.06 EFFECTIVE AREA(ACRES) = 14.46 AREA-AVERAGED Fm(INCH/HR)= 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 16.33 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Δe HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 16.33 13.06 1.305 0.25(0.05) 0.20 14.5 1 101.00 16.06 13.58 1.276 0.25(0.05) 0.20 2 14.6 101.00 15.43 14.73 1.217 0.25(0.05) 0.20 14.7 3 105.00

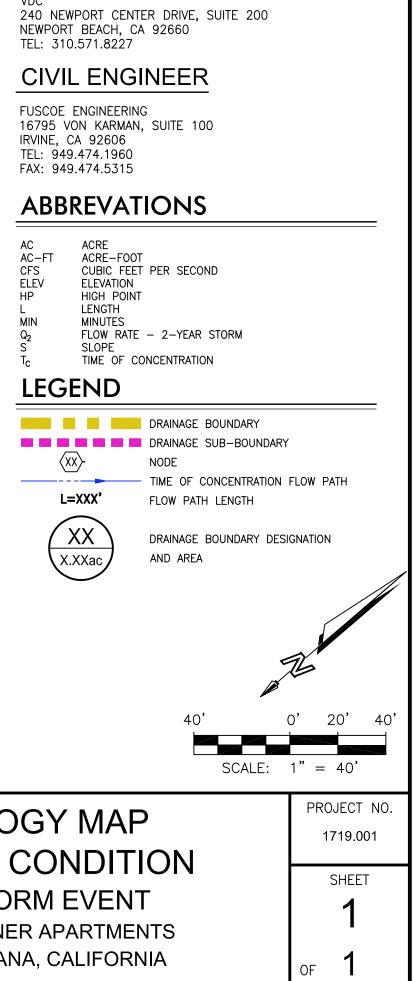
NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355 Analysis prepared by: fuscoe engineering 16795 Von Karman Suite 100 Irvine, CA _____ Problem Descriptions: Red Hill & Warner Hydromodification Calculations Proposed Condition - 2-year hydrograph *** NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC I: TOTAL 24-HOUR DURATION RAINFALL DEPTH = 2.05 (inches) SOIL-COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in./hr.) YIELD 20.00 69.(AMC II) 0.250 1 14.69 0.712 TOTAL AREA (Acres) = 14.69 AREA-AVERAGED LOSS RATE, Fm (in./hr.) = 0.050 AREA-AVERAGED LOW LOSS FRACTION, Y = 0.288Problem Descriptions: Red Hill & Warner Hydromodification Calculations (calibration coefficient: 0.889) Proposed Condition - 2-year hydrograph RATIONAL METHOD CALIBRATION COEFFICIENT = 0.89 TOTAL CATCHMENT AREA (ACRES) = 14.69 SOIL-LOSS RATE, Fm, (INCH/HR) = 0.050 LOW LOSS FRACTION = 0.288 TIME OF CONCENTRATION (MIN.) = 13.06 SMALL AREA PEAK O COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FREQUENCY (YEARS) = 2 5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.19 30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40 1-HOUR POINT RAINFALL VALUE (INCHES) = 0.53 3-HOUR POINT RAINFALL VALUE (INCHES) = 0.89 6-HOUR POINT RAINFALL VALUE (INCHES) = 1.22


24-HOUR POINT RAINFALL VALUE (INCHES) = 2.05

	CATCHMENT CATCHMENT	RUNOFF SOIL-LOSS		ME (ACRE-FEET) ME (ACRE-FEET)		1.70 0.81	
*******	********	******	****	*****	*****	*******	******
TIME	VOLUME	Q) .	5.0	10.0	15.0	20.0
(HOURS)	(AF)	(CFS)					
0.11	0.0014	0.30	Q				
0.33	0.0067	0.30	Q	•		•	
0.55	0.0121	0.30	Q	•		•	•
0.76	0.0176	0.30	Q	•	•		•
0.98	0.0231	0.31	Q	•		•	•
1.20	0.0286	0.31	Q	•		•	
1.42	0.0342	0.31	Q	•	•		•
1.63	0.0399	0.32	Q	•	•		•
1.85	0.0456	0.32	Q	•	•		
2.07	0.0513	0.32	Q	•		•	•
2.29	0.0571	0.33	Q				
2.50	0.0630	0.33	Q				
2.72	0.0689	0.33	Q				
2.94	0.0749	0.33	Q				
3.16	0.0810	0.34	Q				
3.38	0.0871	0.34	Q				
3.59	0.0933	0.35	Q				
3.81	0.0995	0.35	õ				
4.03	0.1059	0.35	õ				
4.25	0.1122	0.36	õ				
4.46	0.1187	0.36	õ				
4.68	0.1252	0.36	õ				
4.90	0.1319	0.37	õ				
5.12	0.1386	0.37	õ				
5.33	0.1453	0.38	õ				
5.55	0.1522	0.38	õ				
5.77	0.1592	0.39	õ				
5.99	0.1662	0.39	õ				
6.20	0.1733	0.40	õ				
6.42	0.1806	0.40	õ				
6.64	0.1879	0.41	õ	•	•	•	•
6.86	0.1954	0.42	õ				
7.08	0.2029	0.42	õ				
7.29	0.2106	0.43	õ				
7.51	0.2184	0.44	õ				
7.73	0.2263	0.44	õ	•	•	•	•
7.95	0.2343	0.45		•	•	•	•
8.16	0.2425	0.46	2				
8.38	0.2508	0.47	2 Q	•	•	•	•
8.60	0.2593	0.47	2 Q	•	•	•	•
8.82	0.2679	0.48	2 Q	•	•	•	•
9.03	0.2767	0.49	õ	•	•	•	•
9.25	0.2856	0.50	.Q	•	•	•	•
9.47	0.2947	0.51	.g	•	•	•	•
9.69	0.3040	0.52	.g	•	•	•	•
9.91	0.3135	0.52	.Q	•	•	•	•
10.12	0.3135	0.55	.Q .Q	•	•	•	•
10.12	0.3332	0.55	.Q .Q	•	•	•	•
10.54	0.3433	0.50	.Q .Q	•	•	•	•
10.58	0.3433	0.58	.Q .Q	•	•	•	•
10.99	0.3645	0.58	.Q	•	•	•	•
11.21	0.3754	0.62	.Q	•	•	•	•
****	0.0754	0.02	· Z	•	•	·	•

11.43	0.3867	0.64	.Q			•	
11.65	0.3983	0.65	.Q				
11.86	0.4103	0.68	.Q				
12.08	0.4226	0.69	.Q				
12.30	0.4367	0.88	.Q				
12.52	0.4527	0.90	.Q	•	•	•	•
12.73	0.4692	0.94	.g	•	•	•	•
12.95	0.4863	0.94	.Q .Q	•	•	•	•
				•	•	•	•
13.17	0.5040	1.01	. Q	•	•	•	•
13.39	0.5225	1.04	. Q	•	•	•	•
13.61	0.5417	1.10	. Q	•	•	•	•
13.82	0.5619	1.14	. Q	•	•	•	•
14.04	0.5831	1.22	. Q	•	•	•	•
14.26	0.6058	1.31	. Q	•	•	•	•
14.48	0.6305	1.43	. Q	•	•	•	•
14.69	0.6569	1.50	. Q				•
14.91	0.6858	1.71	. Q				•
15.13	0.7179	1.87	. Q			•	
15.35	0.7556	2.32	. Q				
15.56	0.7979	2.38	. Q				•
15.78	0.8502	3.44	Q				
16.00	0.9263	5.02		Q			_
16.22	1.1183	16.33	•	z	•	. Q	•
16.44	1.2891	2.66	. Q	•	•	• 2	•
16.65	1.3317	2.00	. <u>v</u> . Q	•	•	•	•
16.87	1.3645	1.58	. Q	•	•	•	·
17.09	1.3911	1.37		•	•	•	•
17.31	1.4140		. Q . Q	•	•	•	•
		1.18		•	•	•	•
17.52	1.4342	1.07	. Q	•	•	•	•
17.74	1.4527	0.99	.Q	•	•	•	•
17.96	1.4698	0.92	.Q	•	•	•	•
18.18	1.4852	0.80	.Q	•	•	•	•
18.39	1.4984	0.66	.Q	•	•	•	•
18.61	1.5100	0.63	.Q	•	•	•	•
18.83	1.5209	0.59	.Q	•	•	•	•
19.05	1.5314	0.57	.Q	•	•	•	•
19.27	1.5413	0.54	.Q	•	•	•	•
19.48	1.5508	0.52	.Q				
19.70	1.5599	0.50	Q			•	•
19.92	1.5687	0.48	Q			•	
20.14	1.5772	0.46	Q			•	
20.35	1.5854	0.45	Q			•	
20.57	1.5933	0.43	Q			•	•
20.79	1.6009	0.42	Q			•	•
21.01	1.6084	0.41	Q				
21.22	1.6156	0.40	Q				
21.44	1.6227	0.39	Q			•	•
21.66	1.6295	0.38	Q		-		
21.88	1.6362	0.37	Q	-	•		
22.09	1.6428	0.36	Q	•	•	•	•
22.31	1.6492	0.35	Q	•	•	•	•
22.53	1.6554	0.34	Q	•	•	•	•
22.55	1.6615	0.34	Q	•	•	•	•
22.75	1.6675	0.34		•	•	•	•
			Q	•	•	•	•
23.18	1.6734	0.32	Q	•	•	•	•
23.40	1.6792	0.32	Q	•	•	•	•
23.62	1.6848	0.31	Q	•	•	•	•
23.84	1.6904	0.31	Q	•	•	•	•
24.05	1.6958	0.30	Q	•	•	•	•
24.27	1.6985	0.00	Q	•	•	•	•

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)


Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
	========
0%	1449.7
10%	117.5
20%	39.2
30%	26.1
40 %	13.1
50%	13.1
60%	13.1
70%	13.1
80%	13.1
90%	13.1

HYDROLOGY MAP PROPOSED CONDITION 2-YEAR STORM EVENT RED HILL & WARNER APARTMENTS CITY OF SANTA ANA, CALIFORNIA

2300, 2310 & 2320 RED HILL AVENUE SANTA ANA, CALIFORNIA APPLICANT/OWNER VDC

PROPOSED CONDITION 2-YEAR STORM EVENT

Q (CFS)

ASSESSOR PARCEL NO.

AREA

(AC)

14.69

430-222-07 & 16

SITE ADDRESS

T_C (MIN)

16.3 13.06

VOLUME

(AC-FT)

1.699

