Traffic Impact Study for the Creekside Estates Project

Prepared for the County of Butte

Submitted by
W-Trans

November 20, 2018

Table of Contents

Executive Summary 1
Introduction 2
Transportation Setting 4
Capacity Analysis 7
Alternative Transportation Modes 18
Access and Circulation 19
Conclusions and Recommendations 21
Study Participants and References 22
Figures

1. Study Area and Lane Configurations 3
2. Existing Traffic Volumes 9
3. Future Traffic Volumes 11
4. Site Plan 13
5. Project Traffic Volumes 15
Tables
6. Collision Rates at the Study Intersections 5
7. Bicycle Facility Summary 6
8. Intersection Level of Service Criteria 7
9. Existing Peak Hour Intersection Levels of Service 10
10. Future Peak Hour Intersection Levels of Service 12
11. Trip Generation Summary 14
12. Trip Distribution Assumptions 14
13. Existing and Existing plus Project Peak Hour Intersection Levels of Service 16
14. Future and Future plus Project Peak Hour Intersection Levels of Service 17
15. Intersection Sight Distance Criteria 19

Appendices

A. Collision Rate Calculations
B. BCAG Volume Data and Growth Factor Calculations
C. Intersection Level of Service Calculations
D. Turn Lane Warrants

Executive Summary

This report presents an analysis of the potential traffic impacts that would be associated with the proposed Creekside Estates, a residential subdivision with 46 single family homes. The project site is located on the south side of Durham-Dayton Highway, east of its intersection with Midway and is currently used as an orchard. A single access point on Durham-Dayton Highway would connect to Street A and serve all 46 residences. The proposed project would be expected to result in 434 new daily trips on average, including 34 trips during the morning peak hour and 46 trips during the evening peak hour.

Under Existing Conditions for the year 2018, all study intersections are currently operating acceptably at LOS C or better during both peak hours.

The Butte County Capital Improvement Program (CIP) Fiscal Years 2017 through 2026-27 includes the installation of a traffic signal at the intersection of Durham-Dayton Highway/Midway by the horizon year 2028. Under Future Conditions, and with the planned installation of a traffic signal at Durham-Dayton Highway/Midway, all study intersections are expected to operate acceptably at LOS A or B during both peak hours. The County of Butte should consider installing a roundabout at the intersection of Durham-Dayton Highway/Midway as an alternative to a traffic signal. A preliminary evaluation indicates that the intersection may be a good candidate for a roundabout.

Upon the addition of project-related traffic to existing volumes, all study intersections would be expected to continue operating acceptably at LOS C or better during both peak hours, and the project's short-term impact on operation would be considered less-than-significant.

Upon the addition of project-related traffic to the volumes anticipated for the year 2028, and with installation of a traffic signal or roundabout at Durham-Dayton Highway/Midway, all study intersections would be expected to operate at LOS A or B during both peak hours and the project's impact on long-term operation would be considered less-than-significant.

The project would provide a sidewalk along the entirety of its frontage with Durham-Dayton Highway; however, the project sidewalk would be disconnected from the surrounding pedestrian network. Because the project site is located within walking distance from the downtown core of Durham and the schools located west of Midway, it is recommended that the project provide a pedestrian path between the project site and Midway. Existing bicycle facilities along with those planned would provide adequate access for bicyclists. Existing transit service is adequate to accommodate the demand anticipated for the project.

As proposed in the site plan, on-site circulation would be expected to operate acceptably. Adequate sight distance is available along Durham-Dayton Highway at the project access to accommodate all turns. A left-turn lane would not be warranted on Durham-Dayton Highway at the project access point. Neither a right-turn lane, nor right-turn taper, would not be warranted at the project access point on Durham-Dayton Highway. Installation of any vegetation or signage at the project access point should be done in a manner that does not impede clear sight lines.

Introduction

Introduction

This report presents an analysis of the potential traffic impacts that would be associated with the proposed Creekside Estates, a residential subdivision with 46 single family homes. The project site is located in the community of Durham in unincorporated Butte County. The project would be located east of Midway and on the south side of Durham-Dayton Highway, with access being taken off Durham-Dayton Highway. The traffic study was completed in accordance with the criteria established by the County of Butte and is consistent with standard traffic engineering techniques. It is noted that a traffic study was completed for a residential project on this site in 2013, so data from that study was used in this update.

Prelude

The purpose of a traffic impact study is to provide County of Butte staff and policy makers such as Planning Commissioners and Board of Supervisors members with data which they can use to make an informed decision regarding the potential traffic impacts of a proposed project, and any associated improvements which would be required to mitigate these impacts to a level of insignificance as defined by the County's General Plan or other policies. Impacts to vehicular traffic are typically evaluated by determining the number of trips the new use would be expected to generate, distributing the new trips to the surrounding street system based on existing travel patterns or anticipated travel patterns specific to the proposed project, then analyzing the impact the new traffic would be expected to have on critical intersections included in the study. Impacts are also reviewed for alternative modes, including pedestrians, bicyclists and transit users. Based on the conditions projected, appropriate mitigation measures can be determined that would reduce the traffic impacts of the project to levels which are less than significant.

Project Profile

The proposed project consists of 46 single family homes with a total development area of approximately 50 acres. The project site is located on the south side of Durham-Dayton Highway, east of the intersection with Midway, and is currently used as an orchard, though the trees would be removed to make room for the project, and occupied by an existing single family dwelling, which would remain. A single access point on Durham-Dayton Highway would serve all 46 residences.

The location of the project site is shown in Figure 1.

Traffic Impact Study for the Creekside Estates Project
Figure 1 - Study Area and Lane Configurations

Transportation Setting

Operational Analysis

Study Area and Periods

The study area consists of the following intersections and the project access point:

1. Midway/Jones Avenue
2. Durham-Dayton Highway/Midway
3. Durham-Dayton Highway/Jones Avenue
4. Durham-Dayton Highway/Stanford Lane
5. Durham-Dayton Highway/Lott Road

Conditions during the weekday a.m. and p.m. peak periods were evaluated. The weekday morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute.

Study Intersections

Midway/Jones Avenue is a "tee" intersection with westbound Jones Avenue stop-controlled and both Midway approaches uncontrolled. The southbound approach on Midway includes a 75 -foot left-turn lane.

Durham-Dayton Highway/Midway is an all-way stop intersection located within the town center of Durham, with single lane approaches. Crosswalks are located on three approaches to the intersection.

Durham-Dayton Highway/Jones Avenue is a "tee" intersection with Durham-Dayton Highway uncontrolled and the approach of Jones Avenue stop-controlled. Class II bicycle lanes are provided on both sides of Durham-Dayton Highway.

Durham-Dayton Highway/Stanford Lane is a "tee" intersection with Durham-Dayton Highway uncontrolled and the approach of Stanford Lane stop-controlled. Class II bicycle lanes are provided on both sides of Durham-Dayton Highway.

Durham-Dayton Highway/Lott Road is two-way stop-controlled on the Lott Road approaches. Class II bicycle lanes are provided on both sides of Durham-Dayton Highway.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Collision History

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five-year period available is from January 1, 2013 through December 31, 2017. As presented in Table 1, the calculated collision rates for the study intersections were compared to average collision rates for similar facilities statewide, as indicated in 2014 Collision Data on California State Highways, California Department of Transportation (Caltrans).

The intersection of Durham-Dayton Highway/Lott Road had two reported collisions during the five-year study period, resulting in a calculated collision rate of 0.31 collisions per million vehicles entering ($c / m v e$). Although the calculated collision rate is slightly above the statewide average for similar facilities, because only two collisions occurred over a five-year period and only one collision involved an injury, no remedial measures appear necessary. All other study intersections had calculated collision rates that were lower than the statewide average rate for similar facilities. The collision rate calculations are provided in Appendix A.

Study Intersection	Number of Collisions (2013-2017)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)
1. Midway/Jones Ave	1	0.08	0.16
2. Durham-Dayton Hwy/Midway	4	0.30	0.32
3. Durham-Dayton Hwy/Jones Ave	1	0.11	0.14
4. Durham-Dayton Hwy/Stanford Ln	1	0.12	0.16
5. Durham-Dayton Hwy/Lott Rd	2	0.31	0.23

Alternative Transportation Modes

Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, benches, etc. Existing pedestrian facilities located within the study area are focused on Durham-Dayton Highway and Midway, as follows:

- Durham-Dayton Highway - A continuous sidewalk is provided on Durham-Dayton Highway west of the intersection with Midway. Crosswalks are located on the north, south, and west legs at the Midway intersection where there are all-way stops which provide a controlled crossing for pedestrians.
- Midway - Sidewalks extend south from the intersection with Durham-Dayton Highway on both sides of the road and to the north on the west side.

In general, the lack of continuous sidewalks in a rural area is typical. The distance a pedestrian will typically travel to reach a destination is generally half a mile and in a rural area few destinations are located within this threshold. However, the Creekside Estates site is located less than a half-mile from the core of Durham, near the intersection of Durham-Dayton Highway/Midway where there are commercial businesses and the post office. Durham Elementary School and High School are located on the north side of Durham-Dayton Highway, just west of the intersection with Midway. Given these uses in Durham, some pedestrian trips between the development and this downtown area of Durham are expected.

Bicycle Facilities

The Caltrans Highway Design Manual classifies bikeways into three categories.

- Class I Multi-Use Path - a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- Class II Bike Lane - a striped and signed lane for one-way bike travel on a street or highway.
- Class III Bike Route - signing only for shared use with motor vehicles within the same travel lane on a street or highway.

In the project area, Class II bike lanes exist on Durham-Dayton Highway between Midway and Lott Road. Table 2 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the Butte County Bicycle Plan.

Table 2 - Bicycle Facility Summary

Status Facility	Class	Length (miles)	Begin Point	End Point
Existing Durham-Dayton Hwy	II	2.8	McAnarlin Ave	Esquon Rd
Planned				
Jones Ave	III	2.2	Durham-Dayton Hwy	Midway
Lott Rd	II	2.1	Durham-Dayton Hwy	Oroville Chico Hwy
Midway	II	10.9	Durham-Dayton Hwy	Richvale Hwy

Source: Source: 2011 Butte County Bicycle Plan, County of Butte, 2011

Transit Facilities

Transit service in Butte County is provided by B-Line (Butte Regional Transit) operated by the Butte County Association of Governments, which provides fixed-route bus service as well as flexible route paratransit for seniors and those with disabilities. The B-Line's bus Route 32 operates Monday through Friday and stops at the intersection of Durham-Dayton Highway/Midway. This route offers transit service to Chico, Biggs, and Gridley five days a week twice a day, once in the morning and once in the evening. Bike racks are available on all B-Line buses on a first come first served basis.

Capacity Analysis

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using methodologies published in the Highway Capacity Manual (HCM), Transportation Research Board, 2010. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The intersection of Durham-Dayton Highway/Midway was analyzed using the "All-Way Stop-Controlled" Intersection methodology from the HCM, as the intersections are currently controlled with stop signs on all four approaches. This methodology evaluates delay for each approach based on turning movements, opposing and conflicting traffic volumes, and the number of lanes. Average vehicle delay is computed for the intersection as a whole, and is then related to a Level of Service.

The rest of the study intersections were analyzed using the "Two-Way Stop-Controlled" methodology, which determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection. The ranges of delay associated with the various levels of service are indicated in Table 3.

Table 3 - Intersection Level of Service Criteria

LOS	Two-Way Stop-Controlled	All-Way Stop-Controlled
A	Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.	Delay of 0 to 10 seconds. Upon stopping, drivers are immediately able to proceed.
B	Delay of 10 to 15 seconds. Gaps in traffic are somewhat less readily available than with LOS A, but no queuing occurs on the minor street.	Delay of 10 to 15 seconds. Drivers may wait for one or two vehicles to clear the intersection before proceeding from a stop.
C	Delay of 15 to 25 seconds. Acceptable gaps in traffic are less frequent, and drivers may approach while another vehicle is already waiting to exit the side street.	Delay of 15 to 25 seconds. Drivers will enter a queue of one or two vehicles on the same approach, and wait for vehicle to clear from one or more approaches prior to entering the intersection.
D	Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.	Delay of 25 to 35 seconds. Queues of more than two vehicles are encountered on one or more approaches.
E	Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.	Delay of 35 to 50 seconds. Longer queues are encountered on more than one approach to the intersection.
F	Delay of more than 50 seconds. Drivers may wait for long periods before there is an acceptable gap in traffic for exiting the side streets, creating long queues.	Delay of more than 50 seconds. Drivers enter long queues on all approaches.

[^0]
Traffic Operation Standards

The proposed project, along with all study intersections, is located within unincorporated Butte County. Therefore, traffic operation standards for the entire study area are based upon the County of Butte's policies, as contained in the Butte County General Plan 2030, policy CIR-P6.1:

The level of service for County-maintained roads within unincorporated areas of the county but outside municipalities' sphere of influences (SOI) shall be level of service (LOS) C or better during the PM peak hour. Within a municipality's SOI, the level of service shall meet the municipality's level of service policy.

None of the study intersections are located within a municipality's SOI, so the County's standard of LOS C was applied to all study intersections.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current operation based on existing traffic volumes during the weekday a.m. and p.m. peak hours. This condition does not include project-generated traffic volumes. Rather than collecting new counts, volume data collected for a previously proposed version of the project in 2013 was factored up to reflect volumes indicative of 2018.

The Butte County Association of Governments (BCAG) has a gravity demand model that provides volume projections from a base year of 2006 to a future year of 2035 for the entire county. The model indicates that volumes in the project vicinity are expected to increase at a rate of 2.24 percent annually during the morning peak hour and 1.65 percent annually during the p.m. peak hour. Accounting for the five years of growth that has occurred since the 2013 analysis, growth factors of 1.11 and 1.08 were applied to the 2013 volumes to determine likely existing volumes. The BCAD volume data and growth factor calculations are contained in Appendix B.

Intersection Levels of Service

Under Existing Conditions for the year 2018, all study intersections are currently operating acceptably at LOS C or better during both peak hours. (All the stop-controlled approaches are operating at LOS B.) The existing traffic volumes are shown in Figure 2 and a summary of the intersection levels of service is contained in Table 4. Copies of the Level of Service Calculations for all evaluated scenarios are provided in Appendix C.

Figure 2 - Existing Traffic Volumes

Table 4 - Existing Peak Hour Intersection Levels of Service

Study Intersection Approach	Existing Conditions			
	AM Peak		PM Peak	
	Delay	LOS	Delay	LOS
1. Midway/Jones Ave	0.5	A	0.9	A
Westbound Jones Ave Approach	10.6	B	10.0	B
2. Durham-Dayton Hwy/Midway	15.5	C	12.2	B
3. Durham-Dayton Hwy/Jones Ave	0.7	A	0.7	A
Southbound Jones Ave Approach	10.6	B	10.2	B
4. Durham-Dayton Hwy/Stanford Ln	1.1	A	0.7	A
Northbound Stanford Ln Approach	11.2	B	10.6	B
5. Durham-Dayton Hwy/Lott Rd	3.1	A	3.1	A
Northbound Lott Rd Approach	10.2	B	11.2	B
Southbound Lott Rd Approach	9.3	A	9.9	A

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics

Future Conditions

The same growth rates used to factor up the 2013 counts for Existing Conditions were applied to determine volumes representative of the horizon year 2028 (15 years from collection of the counts and 10 years into the future). Based on the BCAG data, growth factors of 1.34 and 1.25 were applied to the morning and evening peak hours, respectively. As contained in the Butte County Capital Improvement Program (CIP) Fiscal Years 2017 through 2026-27, the intersection of Durham-Dayton Highway/Midway is planned to be signalized by the horizon year 2028, so levels of service at this intersection were analyzed with the planned improvement, in addition to its existing controls.

Intersection Levels of Service

Under Future Conditions, and with the planned installation of a traffic signal at Durham-Dayton Highway/Midway, all study intersections are expected to operate acceptably at LOS B or better during both peak hours. Future volumes are shown in Figure 3 and the resulting levels of service are summarized in Table 5.

Traffic Impact Study for the Creekside Estates Project
Figure 3 - Future Traffic Volumes

Table 5 - Future Peak Hour Intersection Levels of Service

Study Intersection Approach	Future Conditions			
	AM Peak		PM Peak	
	Delay	LOS	Delay	LOS
1. Midway/Jones Ave	0.5	A	0.9	A
Westbound Jones Ave Approach	11.2	B	10.3	B
2. Durham-Dayton Hwy/Midway	30.0	D	15.3	C
Traffic Signal	14.8	B	14.5	B
Roundabout	10.5	B	8.1	A
3. Durham-Dayton Hwy/Jones Ave	0.8	A	0.7	A
Southbound Jones Ave Approach	11.3	B	10.6	B
4. Durham-Dayton Hwy/Stanford Ave	1.2	A	0.7	A
Northbound Stanford Ave Approach	12.1	B	11.2	B
5. Durham-Dayton Hwy/Lott Rd	3.2	A	3.2	A
Northbound Lott Rd Approach	10.6	B	11.7	B
Southbound Lott Rd Approach	9.5	A	10.2	B

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics; Bold text indicates unacceptable operation; Shaded cells represent conditions with planned or recommended improvements

In addition to a traffic signal, the intersection of Durham-Dayton Highway/Midway was evaluated as a roundabout after a preliminary analysis indicated that the intersection may be a good candidate for such a facility based on geometry, right-of-way availability, rural setting, and traffic volumes. The CIP cost estimate for the planned traffic signal is $\$ 450,000$ and a single-lane roundabout may likely be similar in cost. For this reason, along with the safety benefits that roundabouts provide, it is recommended that the County explore the possibility of installing a roundabout as opposed to a traffic signal. As shown in Table 5 above, doing so would result in delays less than those expected upon signalization.

Project Description

The proposed project consists of 46 single family homes with a total development area of approximately 50 acres. The project site is located on the south side of Durham-Dayton Highway, east of its intersection with Midway and is currently used as an orchard, though the trees would be removed to make room for the project, and occupied by an existing single family dwelling, which would remain. As proposed, the project would be constructed in three phases; the first phase would include construction of 16 homes and project Streets A, B, and C, the second phase would extend Street A to the southeast, construct Street D, and add 19 more homes, and the third phase would extend Street A to the southwest and construct 11 more homes. A single access point on Durham-Dayton Highway would connect to Street A and serve all 46 residences.

The proposed project site plan is shown in Figure 4.

Trip Generation

The anticipated trip generation for the proposed project was estimated using standard rates published by the Institute of Transportation Engineers (ITE) in Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017. Rates for "Single Family Detached Housing" (ITE LU \#210) were applied. Based on this land use, the proposed project would be expected to result in 434 new daily trips on average, including 34 trips during the morning peak hour and 46 trips during the evening peak hour. It should be noted that the existing orchard that would be removed as part of the project is likely generating a nominal amount of traffic so any trip generation credits were ignored to provide conservative results. The anticipated trip generation for the proposed project is shown in Table 6.

Table 6 - Trip Generation Summary

| Land Use | Units | Daily | | AM Peak Hour | | | | PM Peak Hour | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rate | Trips | Rate | Trips | In | Out | Rate | Trips | In | Out |
| Proposed
 Single Family Detached
 Housing 46 | 9.44 | 434 | 0.74 | 34 | 9 | 25 | 0.99 | 46 | 29 | 17 | |

Trip Distribution

The trip distribution was developed based on existing traffic patterns, volumes presented in the County's travel demand forecasting model, and the anticipated origins and destinations for residents of the project. As would be expected, the highest percentages were assigned to those roads connecting to Chico. Table 7 summarizes the distribution assumptions applied.

Table 7 - Trip Distribution Assumptions

Route	Percent
To/from West via Durham-Dayton Hwy	35%
To/from North via Midway	25%
To/from North via Jones Ave	5%
To/From South via Midway	10%
To/From North via Lott Rd	5%
To/From East via Durham-Dayton Hwy	$\mathbf{2 0 \%}$
TOTAL	$\mathbf{1 0 0 \%}$

Intersection Operation

Existing plus Project Conditions

Upon the addition of project-generated traffic to existing volumes, all study intersections are expected to continue operating acceptably at LOS C or better during the a.m. and p.m. peak hours. The project traffic volumes are shown in Figure 5 and LOS results are summarized in Table 8.

Traffic Impact Study for the Creekside Estates Project
Figure 5 - Project Traffic Volumes

Table 8 - Existing and Existing plus Project Peak Hour Intersection Levels of Service

Study Intersection		ting	ndi			ng	Pr	
Approach	AM	eak		eak	AM	eak		
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Midway/Jones Ave	0.5	A	0.9	A	0.5	A	0.9	A
Westbound Jones Ave Approach	10.6	B	10.0	B	10.6	B	10.0	B
2. Durham-Dayton Hwy/Midway	15.5	C	12.2	B	16.2	C	12.7	B
3. Durham-Dayton Hwy/Jones Ave	0.7	A	0.7	A	0.7	A	0.7	A
Southbound Jones Ave Approach	10.6	B	10.2	B	10.9	B	10.6	B
4. Durham-Dayton Hwy/Stanford Ave	1.1	A	0.7	A	1.1	A	0.6	A
Northbound Stanford Ave Approach	11.2	B	10.6	B	11.3	B	10.7	B
5. Durham-Dayton Hwy/Lott Rd	3.1	A	3.1	A	3.1	A	3.0	A
Northbound Lott Rd Approach	10.2	B	11.2	B	10.3	B	11.3	B
Southbound Lott Rd Approach	9.3	A	9.9	A	9.4	A	9.9	A

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics

It should be noted that with the addition of project-related traffic volumes, average delay at the intersections of Durham-Dayton Highway with Stanford Lane and Lott Road decreases slightly during the p.m. peak hour. While this is counter-intuitive, this condition occurs when a project adds trips to movements that are currently underutilized or have delays that are below the intersection average, resulting in a better balance between approaches and lower overall average delay. The project would add traffic predominantly to the through and right-turn movements at the aforementioned intersections during the evening peak hour, and these movements have delays that are lower than the averages for the intersections as a whole, resulting in a slight reduction in the overall average delay. The conclusion could incorrectly be drawn that the project actually improves operation at these intersections based on this data alone; however, it is more appropriate to conclude that the project trips are expected to make use of excess capacity, so drivers will experience little, if any, change in conditions as a result of the project.

Finding - Upon the addition of project-related traffic to existing volumes, all study intersections would be expected to continue operating acceptably at LOS C or better during both peak hours, and the project's shortterm impact on operation would be considered less-than-significant.

Future plus Project Conditions

Project-generated traffic was added to the traffic volumes obtained from the growth rates derived from the BCAG model to determine how the surrounding roadways would function under Future plus Project conditions. Upon the addition of project generated traffic, and with implementation of the planned traffic signal or roundabout at Durham-Dayton Highway/Midway, all study intersections would be expected to operate acceptably at LOS A or B during both peak hours; these results are summarized in Table 9.

Table 9 - Future and Future plus Project Peak Hour Intersection Levels of Service

Study Intersection Approach	Future Conditions				Future plus Project			
	AM Peak		PM Peak		AM Peak		PM Peak	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Midway/Jones Ave	0.5	A	0.9	A	0.5	A	0.9	A
Westbound Jones Ave Approach	11.2	B	10.3	B	11.3	B	10.3	B
2. Durham-Dayton Hwy/Midway	30.0	D	15.3	C	33.6	D	16.1	C
Traffic Signal	14.8	B	14.5	B	14.9	B	14.6	B
Roundabout	10.5	B	8.1	A	10.9	B	8.3	A
3. Durham-Dayton Hwy/Jones Ave	0.8	A	0.7	A	0.8	A	0.7	A
Southbound Jones Ave Approach	11.3	B	10.6	B	11.5	B	11.0	B
4. Durham-Dayton Hwy/Stanford Ln	1.2	A	0.7	A	1.2	A	0.7	A
Northbound Stanford Ln Approach	12.1	B	11.2	B	12.2	B	11.2	B
5. Durham-Dayton Hwy/Lott Rd	3.2	A	3.2	A	3.1	A	3.1	A
Northbound Lott Rd Approach	10.6	B	11.7	B	10.6	B	11.8	B
Southbound Lott Rd Approach	9.5	A	10.2	B	9.6	A	10.2	B

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in italics; Bold text indicates unacceptable operation; Shaded cells represent conditions with planned or recommended improvements

Finding - Upon the addition of project-related traffic to the volumes anticipated for the year 2028, and with installation of a traffic signal or roundabout at Durham-Dayton Highway/Midway, all study intersections would be expected to operate at LOS A or B during both peak hours and the project's impact on long-term operation would be considered less-than-significant.

Recommendation - As mentioned earlier in this report, the County should explore the feasibility of installing a roundabout at Durham-Dayton Highway/Midway, instead of a traffic signal.

Alternative Transportation Modes

Pedestrian Facilities

Given the rural nature of the area surrounding the project site, the lack of sidewalks near the project is generally acceptable. However, because the project is located less than half a mile from the downtown area of Durham, where there are markets, the post office as well as the Elementary and High School, some residents including students may wish to walk from the development to the downtown area. Therefore, it is recommended that an all-weather pedestrian walkway or path be provided on the south side of Durham-Dayton Highway between the proposed terminus of the project sidewalk at the property boundary and the intersection with Midway. Crosswalks are already present at the intersection of Durham-Dayton Highway/Midway where there is an all-way Stop control. With these improvements, students walking to the Durham schools could take the following route:

- Walking along the south side of Durham-Dayton Highway on the recommended sidewalk/all-weather pathway to the intersection with Midway (approximately 2,500 feet).
- Crossing to the northwest corner of the Midway intersection using the all-way Stop controlled crossing.
- Walking along the north side of Durham-Dayton Highway on the existing sidewalk/asphalt pathways to Goodspeed Street or Putney Drive which access the Elementary and High Schools (approximately 1,000 feet).

Finding - The project would provide a sidewalk/all-weather pathway along the entirety of its frontage with Durham-Dayton Highway; however, the project sidewalk would be disconnected from the surrounding pedestrian network in the core of Durham.

Recommendation - Because the project site is located within walking distance from the downtown core of Durham and the schools located west of Midway, it is recommended that the project provide an all-weather pedestrian path on the south side of Durham-Dayton Highway between the project site and the intersection with Midway.

Bicycle Facilities

The existing bicycle lanes on Durham-Dayton Highway would provide adequate bicycle access for the development. The planned bicycle facilities in the area, including bicycle lanes on Midway and Lott Road as well as a future Class III bicycle route on Jones Avenue, will further improve bicycle access in the area of the development. No additional bicycle improvements are included or needed as part of this project proposal.

Finding - Existing bicycle facilities along with those planned would provide adequate access for bicyclists.

Transit

Existing transit routes are adequate to accommodate project-generated transit trips. The existing transit stop at Durham-Dayton Highway/Midway is located approximately 0.5 miles from the project site, which is considered an acceptable walking distance. Because the development falls within the half-mile threshold that is often used as an upper limit of transit accessibility, no changes to existing services are recommended.

Finding - Existing transit service is adequate to accommodate the demand anticipated for the project.

Access and Circulation

Site Access

Access to the project site would be provided via a new public Street A, which would connect to the south side of Durham-Dayton Highway approximately 0.5 miles east of Midway. Street A would extend straight back from the middle of a horizontal curve in the alignment of Durham-Dayton Highway and from there would bend to the southeast where it would provide access to project Streets B, C, D, and E which would run perpendicular to Street A. All proposed project streets would be equipped with curbs, gutters, and sidewalks.

Finding - As proposed in the site plan, on-site circulation would be expected to operate acceptably.

Sight Distance

Sight distance along Durham-Dayton Highway was evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. At intersections of public streets, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. The recommended sight distance at intersections is based on corner sight distance, which uses the approach travel speeds as the basis for determining the recommended sight distance. Table 10 summarizes the minimum sight distance requirements.

Table 10 - Intersection Sight Distance Criteria			
Speed	Public Road Major Approach Stopping Sight Distance	Public Road Minor Approach Corner Sight Distance	Private Road and Rural Driveway Stopping Sight Distance
30 mph	200 feet	330 feet	200 feet
35 mph	250 feet	385 feet	250 feet
40 mph	300 feet	440 feet	300 feet

Source: Highway Design Manual, $6^{\text {th }}$ Edition, California Department of Transportation, 2017

The speed limit on the segment of Durham-Dayton Highway along the project frontage is 35 miles per hour. For a $35-\mathrm{mph}$ design speed, a public road intersection should have a corner sight distance of at least 385 feet. Based on a review of field conditions, sight distance at the proposed access points extends more than 400 feet in both directions, which is adequate for the posted speed limit.

Finding - Adequate sight distance is available at the project intersection to accommodate all turns.
Recommendation - To ensure that adequate sight lines are retained, it is recommended that any vegetation planted along the project frontages is maintained such that it is less than three, or more than seven, feet in height.

Access Analysis

Left-Turn Lane Warrants

The need for a left-turn lanes on Durham-Dayton Highway at the project access point was evaluated based on criteria contained in the Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985, as well as an update of the methodology developed by the Washington State Department of Transportation and published in the Method For Prioritizing

Intersection Improvements, January 1997. The NCHRP report references a methodology developed by M. D. Harmelink that includes equations that can be applied to expected or actual traffic volumes in order to determine the need for a left-turn pocket based on safety issues. Based on our research and discussions with Caltrans staff, this methodology is consistent with the Guidelines for Reconstruction of Intersections, August 1985, which was referenced in Section 405.2, Left-turn Channelization, of previous editions of the Caltrans HDM, though this reference has been deleted from the most recent edition of this manual.

Based on Future plus Project volumes, which represents worst-case conditions, a left-turn lane would not be warranted during either of the weekday peak hours.

Finding - A left-turn lane would not be warranted on Durham-Dayton Highway at the project access point.

Right-Turn Lane Warrants

The need for a right-turn lane or taper was also evaluated and would consist of a lane installed to the right of the travel lane and would be a minimum of ten feet wide, plus a shoulder where not adjacent to a curb. A right-turn taper is a shoulder area that gets progressively wider as the motorist drives toward the intersection. Both improvements are meant to provide an area for motorists turning right to move out of the traffic lane without impeding through traffic.

The need for a right-turn lane or taper on Durham-Dayton Highway was evaluated under the same worst-case conditions that left-turn lane warrants were evaluated. Based on Future plus Project volumes, no additional facilities in the form of either a right-turn lane or right-turn taper would be warranted during either of the weekday peak hours.

The turn-lane analysis sheets are contained in Appendix D.

Finding - Neither a right-turn lane, nor right-turn taper, would not be warranted at the project access point on Durham-Dayton Highway.

Conclusions and Recommendations

Conclusions

- Under Existing Conditions, all study intersections currently operate at LOS C or better during both the a.m. and p.m. peak hours, meeting the applicable County of Butte LOS standards.
- With the projected future growth in regional traffic, all study intersections are expected to continue to operate acceptably at LOS C or better during both peak hours, except for Durham-Dayton Highway/Midway which would be expected to deteriorate to LOS D during the morning peak hour. Upon installation of the planned traffic signal identified in the County's CIP, the intersection would be expected to operate acceptably at LOS B during the morning peak hour.
- The proposed project is expected to generate an average of 434 new daily trips on average, of which 34 would occur during the a.m. peak hour and 46 would occur during the p.m. peak hour.
- With the addition of project-generated traffic to existing volumes, all study intersections are expected to continue to operate acceptably. Likewise, acceptable operations are expected under Future plus Project Conditions, assuming installation of a traffic signal at Durham-Dayton Highway/Midway.
- The project would provide a sidewalk along its frontage with Durham-Dayton Highway; however, the sidewalk would terminate at the project boundaries leaving the site isolated from the downtown area and the schools west of Midway.
- Existing Class II bicycle lanes are located on both sides of Durham-Dayton Highway in the study area. Proposed bicycle facilities are planned for Midway, Jones Avenue, and Lott Road. These existing and proposed facilities provide adequate access for bicyclists.
- The project site is served by one transit line connecting the area of Durham with several nearby cities. This transit line is expected to accommodate the demand generated by the proposed development.
- On-site circulation would be expected to operate acceptably and adequate sight distance is available at the proposed access point to accommodate all turns into and out of the site.
- No additional right- or left-turn channelization facilities would be warranted on Durham-Dayton Highway at the project access point.

Recommendations

- As part of the Butte County Capital Improvement Program (CIP) Fiscal Years 2017 through 2026-27, the County of Butte should consider installing a roundabout at the intersection of Durham-Dayton Highway/Midway as an alternative to a traffic signal. A preliminary evaluation indicates that the intersection may be a good candidate for a roundabout.
- It is suggested that an all-weather path or walkway be provided on the south side of Durham-Dayton Highway, connecting the proposed development with the existing crosswalk and sidewalks at the intersection with Midway which lead to the core area of Durham.
- Installation of any vegetation or signage at the project access point should be done in a manner that does not impede clear sight lines.

Study Participants and References

Study Participants

Principal in Charge
Assistant Engineer
Editing/Formatting/Graphics
Report Review

Steve Weinberger, PE, PTOE
Cameron Nye, EIT
Alex Scrobonia, Katia Wolfe
Dalene J. Whitlock, PE, PTOE

References

2011 Butte County Bicycle Plan, County of Butte, 2011
2014 Collision Data on California State Highways, California Department of Transportation, 2017
B-Line (Butte Regional Transit), http://www.bcag.org/Transit/Routes--Schedules/index.html
Butte County Capital Improvement Program (CIP) Fiscal Years 2017 through 2026-27, County of Butte, 2017
Butte County General Plan 2030, County of Butte, 2010
Guide for the Preparation of Traffic Impact Studies, California Department of Transportation, 2002
Guidelines for Reconstruction of Intersections, Ichiro Fukutome, 1985
Highway Capacity Manual, Transportation Research Board, 2010
Highway Design Manual, 6 ${ }^{\text {th }}$ Edition, California Department of Transportation, 2017
Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No.
279, Transportation Research Board, 1985
Method for Prioritizing Intersection Improvements, Washington State Transportation Center, 1997
Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2012-2017
Trip Generation Manual, $10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017
BUX011

Appendix A

Collision Rate Calculations

Appendix B

BCAG Volume Data and Growth Factor Calculations

Butte County Association of Governments - Regional Traffic Volume Forecasts (2035)
Information Prepared October 20, 2008

				2006 Traffic Volumes *			2035 Traffic Volume Forecast **		
SITE_ID	JURISDICTION	ROUTE	LOCATION	Average Daily Traffic Volume	PM Peak Hour Volume	AM Peak Hour Volume	Average Daily Traffic Volume	PM Peak Hour Volume	AM Peak Hour Volume
1	City of Biggs	B ST	E of 7TH ST	2,312	191	173	4,150	410	310
2	City of Biggs	W BIGGS GRIDLEY RD	S of BANNOCK ST	1,865	170	130	5,390	510	410
3	Butte County	AFTON RD	W of AGUA FRIAS RD	79	8	10	110	10	20
4	Butte County	AGUAS FRIAS RD	S of DURHAM DAYTON RD	815	86	94	1,300	140	130
5	Butte County	AGUAS FRIAS RD	S of NELSON RD	491	50	44	980	100	80
6	Butte County	CHICO RIVER RD	W of ALBERTON RD	1,311	136	127	1,900	180	160
7	Butte County	COHASSET HWY	N of KEEFER RD	1,718	173	186	1,910	190	200
8	Butte County	COLUSA HWY	W of HATCH RD	496	52	54	720	70	70
9	City of Chico	DAYTON RD	S of ARCHER AVE	6,709	585	550	17,600	1,440	1,460
10	Butte County	DAYTON RD	N of HEGAN LN	3,533	342	336	3,890	410	390
11	Butte County	DUNSTONE DR	S of GRUBBS RD	195	25	20	200	30	30
12	Butte County	DURHAM DAYTON HWY	W of OROVILLE-CHICO HWY	2,215	198	257	2,810	240	300
13	Butte County	DURHAM PENZ RD	E of SR 99	8,289	818	1,017	13,370	1,030	1,920
14	Butte County	DURHAM PENZ RD	E of SR 191	2,255	197	229	3,050	250	330
15	Butte County	E GRIDLEY RD	At FEATHER RIVER BRIDGE	6,250	551	487	12,210	1,230	990
16	Butte County	ENTLER AVE	E of MIDWAY	1,230	128	111	1,240	130	120
17	Butte County	FORBESTOWN RD	S of OLD OLIVE HWY	2,978	266	259	6,250	520	550
18	Butte County	GARNER LN	N of SR 99	5,548	524	600	14,140	1,310	1,310
19	Butte County	HAMILTON CITY NORD	N of BENNETT RD	735	71	94	1,440	150	150
20	Butte County	HEGAN LN	E of FIMPLE LN	3,583	346	283	4,580	390	360
21	City of Chico	HICKS LN	N of EATON RD	3,239	311	308	17,680	1,640	1,540
22	Butte County	HONEY RUN RD	W of CENTERVILLE RD	1,598	148	175	1,600	150	180
23	Butte County	KEEFER RD	W of GARNER LN	1,109	109	102	1,250	130	130
24	Butte County	LARKIN RD	S of CHANDON AVE	2,672	250	218	4,550	440	370
25	City of Oroville	LARKIN RD	S of SR 162	4,098	358	311	7,500	670	560
26	Butte County	LOS VERJELES RD	S of LA PORTE RD	996	83	84	1,020	90	90
27	Butte County	LOWER WYANDOTTE RD	W of ALVERDA DR	7,210	573	461	12,880	1,000	870
28	Butte County	MERIDIAN RD	E of SR 99	1,145	112	119	1,150	120	120
29	Butte County	MIDWAY RD	S of DURHAM DAYTON RD	4,549	433	370	6,910	640	610
30	City of Chico	MIDWAY RD	S of E PARK AVE	16,545	1,399	1,307	31,840	3,030	2,380
31	Butte County	MIDWAY RD	S of HEGAN LN	9,114	857	771	17,240	1,740	1,300
32	Butte County	MIDWAY RD	N of NELSON SHIPPEE RD	1,511	151	133	1,770	170	160
33	Butte County	MINERS RANCH RD	S of SR 162	2,777	242	208	4,740	440	480
34	Butte County	OAKVALE AVE	S of SR 162	2,754	338	409	4,350	410	570
35	Butte County	OPHIR RD	E of FEATHER RIVER BLVD	6,999	613	546	17,730	1,490	1,490
36	Butte County	ORD FERRY RD	W of RIVER RD	3,244	322	271	4,430	440	360
37	Butte County	ORD FERRY RD	W of AGUAS FRIAS RD	3,753	365	346	4,430	440	410
38	Butte County	ORO-QUINCY HWY	At LAKE MADRONE BRIDGE	375	47	56	760	80	80
39	Butte County	ORO-BANGOR HWY	S of V-7 RD	1,949	196	197	3,670	360	330
40	Butte County	ORO-BANGOR HWY	E of FOOTHILL BLVD	1,747	178	237	2,300	250	330
41	Butte County	OROVILLE-BANGOR HWY	N of SWEDES FLAT RD	2,036	186	162	2,040	190	180
42	City of Oroville	ORO-QUINCY HWY	E of FOOTHILL BLVD	3,116	303	297	4,270	460	460
43	Butte County	PENNINGTON RD	S of W EVANS REIMER RD	253	24	23	450	40	40
44	Butte County	SKYLINE BLVD	S of SR 162	1,261	118	117	1,270	120	120
45	Butte County	SKYWAY	S of COUTOLENC RD	776	68	66	1,140	100	100
46	Butte County	SKYWAY	N of NIMSHEW RD	1,781	152	138	2,500	210	200
47	Butte County	SKYWAY	S of POWELLTON RD	1,054	96	88	1,420	120	120
48	Butte County	UPPER PALERMO RD	S of OPHIR RD/LOWER WYANDOTTE RD	3,904	311	378	4,860	380	480
49	Butte County	W SACRAMENTO AVE	W of MUIR AVE	961	102	78	970	110	80
50	City of Chico	BROADWAY	N of SR 32 (8TH ST)	10,097	945	796	13,220	1,230	1,220
51	City of Chico	BROADWAY	S of 2ND ST	7,306	681	619	8,720	950	680
52	City of Chico	BRUCE	N of LAKEWEST DR	12,581	1,159	970	21,480	2,060	1,700
53	City of Chico	BRUCE RD	S of HUMBOLT RD	10,487	1,001	886	24,340	2,390	2,030
54	City of Chico	BRUCE RD	N of SKYWAY	8,493	831	720	23,960	2,450	1,860
55	City of Chico	BRUCE RD	N of E 20TH ST	11,082	1,068	1,049	25,130	2,370	2,180
56	City of Chico	COHASSET RD	N of EAST AVE	17,728	1,498	1,379	19,820	1,850	1,670
57	City of Chico	COHASSET RD	N of EATON RD	11,033	1,228	1,162	18,310	2,030	1,780
58	City of Chico	COHASSET RD	S of EAST	24,961	2,097	1,867	31,880	2,780	2,360
59	City of Chico	E 1ST AVE	E of ESPLANADE	12,394	1,048	871	14,450	1,200	1,060
60	City of Chico	E 1ST AVE	W of ESPLANADE RD	10,981	894	750	12,130	950	810
61	City of Chico	E 1ST AVE	W of LONGFELLOW	14,138	1,196	1,106	17,370	1,570	1,420
62	City of Chico	E 1ST AVE	W of SHERMAN AVE	16,913	1,300	1,294	16,920	1,340	1,320

Segment	AM 2006	AM 2035	Growth Rate	PM 2006	PM 2035	Rate
*Midway S of Durham-Daton Hwy	370	610	2.24%	433	640	1.65%

*Source is Butte County Association of Governments - Regional Traffic Volumes Forecasts (2035)

2013 to 2018 AM GROWTH FACTOR	1.112
2013 to 2018 PM GROWTH FACTOR	1.082
2013 to 2028 AM GROWTH FACTOR	1.336
2013 to 2028 PM GROWTH FACTOR	1.247

Appendix C

Intersection Level of Service Calculations
Generated with PTV VISTRO
\qquad Movement, Approach, \& Intersection R

Version 5.00-00
(VW-Trans
AM Existing

Generated with PTV VISTRO Version $5.00-00$

Generatad with PTV VITTRO
Version $500-00$

Generated with PTV VISTRO
Version $5.00-00$

Version 5.00-00

Generated with PTV VISTRO
Version $5.00-00$

[^1]

Generated with PTV VISTRO Version 5.00-00

Generatad with PTV VISTRO
Version 500.00

Version $5.00-00$ PM Existing
Generated with PTV VISTRO
Version 5.00-00

(W-Trans

Generated with PTV VISTRO
Version $5.00-00$

\author{[^2]
 W-Trans
}

Generated with PTV VISTRO
Version 5.00-00

 (1)

Generated with PTV VISTRO

Movement, Approach, \& Intersection Results												
d_M, Delay for Movement [sven]	11.35	11.35	11.35	11.72	11.72	11.72	20.26	20.26	20.26	14.01	14.01	14.01
Movement LOS	в	в	в	B	B	в	c	c	c	B	в	в
d_A, Apprach Delay [siven]	11.35			11.72			20.26			14.01		
Approach Los	в			-								
d_LI, Intersection Delay [swen]	14.81											
Intersection LOS	в											
Intersection V/C	0.540											

$\mathrm{d} M$, Delay for Movement
 .

Lane Group Calculations				
Lane Group	c	c	c	c
C, Cycle Length [s]	60	60	60	60
L. Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00
11_p, Permitted Start-Up Lost Time [s]	2.00	2.00	2.00	2.00
12, Clearance Lost Time [s]	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	28	28	24	24
g / C, Green / Cycle	0.46	0.46	0.40	0.40
(v/s)_i Volume / Saturation Flow Rate	0.17	0.18	0.36	0.22
s, saturation flow rate [veV/h]	1639	1634	1106	1762
c, Capacity [veh/h]	832	822	536	778
d1, Uniform Delay [s]	10.27	10.52	17.36	13.52
k, delay calibration	0.50	0.50	0.15	0.11
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	1.08	1.20	2.91	0.50
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00
Lane Group Results				
X, volume / capacity	0.33	0.36	0.74	0.50
d, Delay for Lane Group [s/veh]	11.35	11.72	20.26	14.01
Lane Group LOS	B	B	c	B
Critical Lane Group	No	Yes	Yes	No
50th-Percentile Queue Length [veh]	2.32	2.34	5.23	3.47
50th-Percentile Queue Length [ft]	57.98	58.50	130.67	86.85
95 th-Percentile Queue Length [veh]	4.17	4.21	8.98	6.25
95th-Percentile Queue Length [ff]	104.36	105.30	224.40	156.32

 \qquad

Intersection Settings

Number of Conficting Circulating Lanes	1	1	1	1

Number of Conflicting Circulating Lanes	1			1			1			1		
Circulating Flow Rate [veh/h]	389			420			159			436		
Exiting Flow Rate [veh/h]	196			386			124			366		
Demand Flow Rate [veh/h]	68	170	40	34	88	170	189	158	52	34	310	44
Adjusted Demand Flow Rate [veh/h]	68	170	40	34	88	170	189	158	52	34	310	44

 \square

Generated with PTV VISTRO Version 5.00-00

Geneated win PTV VSTRO

Generated with PTV VISTRO
Version 5.00-00

[^3]

Pedestrian Recall
Detector Location $[f t]$
Detector Length $[f t]$
I, Upstream Filtering Factor

Offset $[$ ss]
Offset Reference
Permissive Mode
Lost time [s]
Phasing \& Timing

Generated with PTV VISTRO
Version 5.00000
Intersection Settings

Generated with PTV VISTRO

Generated with PTV VISTRO
\qquad

[^4]PM Future (Signal)

Generated with PTV VISTRO Version $5.00-00$

Generatad with PTV VISTRO
Version 500.00

Generatad with PTV VISTRO
Version 500.00

Generated with PTV VISTRO
Version $5.00-00$

[^5]Generated with PTV VISTRO

Version $5.00-00$
W-Trans

Generated with PTV VISTRO
Version 5.00-00

Generatad with PTV VISTRO
Version 500.00

Version $5.00-00$
AM Existing + Project
Generatad with PTV VISTRO
Version 500.00

Version $5.00-00$

Generated with PTV VISTRO
Version 5.00-00

Geneated with PTV VISTRO

Version $5.00-00$
PM Existing + Project

Generated with PTV VISTRO
Version $5.00-00$

Generated with PTV VISTRO

Version $5.00-00$

Generated with PTV VISTRO
Version 5.00-00

 (1)

Generated with PTV VISTRO

Generated with PTV VISTRO

Geneated win PTV VITRO
Verison Soo.en

Generated win PTV VITRO
Verision 50.0.00

Version $5.00-00$

Generated with PTV VISTRO
Version 5.00-00

 (1)

Generated with PTV/ VISTRO
Version 5.00-00

Sequence -

-

?

Generated with PTV VISTRO

Generatad with PTV VISTRO
Version 500.00

Generatad with PTV VISTRO
Version 500.00
Intersection Settings

Movement, Approach, $\&$ intersection Resuls
 \square
Version $5.00-00$

Generated with PTV VISTRO
Version $5.00-00$

Appendix D

Turn Lane Warrants

Turn Lane Warrant Analysis - Tee Intersections

[^6]
Turn Lane Warrant Analysis - Tee Intersections

[^7]
[^0]: Reference: Highway Capacity Manual, Transportation Research Board, 2010

[^1]: Creekside Estates TIS

[^2]: Creekside Estates TIS
 PM Existing

[^3]: Creekside Estates TIS

[^4]: Creekside Estates TIS

[^5]: Creekside Estates TIS

[^6]: Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997 The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.
 The left turn lane analysis is based on work conducted by M.D. Harmelink in 1967, and modified by Kikuchi and Chakroborty in 1991.

[^7]: Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997 The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.
 The left turn lane analysis is based on work conducted by M.D. Harmelink in 1967, and modified by Kikuchi and Chakroborty in 1991.

