

PREPARED FOR City of Redwood City

April 2020

Prepared for

City of Redwood

Project No. 047-60-19-23

Project Manager: Patrick Johnston P.E.

QA/QC Review: Polly Boissevain

WEST YOST ASSOCIATES

04-20-20

Date

04-20-20

Date

Concord

1001 Galaxy Way, Suite 310 Concord, CA 95420 (925) 949-5800

Davis

2020 Research Park Drive, Suite 100 Davis, CA 95618 (530) 756-5905

Eugene

1650 W 11th Ave. Suite 1-A Eugene, OR 97402 (541) 431-1280

Irvine

6 Venture, Suite 290 Irvine, CA 92618 (949) 517-9060

Phoenix

4505 E Chandler Boulevard, Suite 230 Phoenix, AZ 85048 (602) 337-6110

Pleasanton

6800 Koll Center Parkway, Suite 150 Pleasanton, CA 94566 (925) 426-2580

Portland

5 Centerpointe Drive, Suite 130 Lake Oswego, OR 97035 (503) 451-4500

Sacramento

8950 Cal Center Drive, Bldg. 1, Suite 363 Sacramento, CA 95826 (916) 306-2250

Santa Rosa

2235 Mercury Way, Suite 105 Santa Rosa, CA 95407 (707) 543-8506

WEST YOST ASSOCIATES

Table of Contents

1.0 Introduction	1
2.0 Potable Water System Analysis	5
 2.1 Existing Potable Water System 2.1.1 Existing System Description 2.1.2 Existing Model Demands 	5
2.2 Hydraulic Model Calibration	7
2.3 Analysis Criteria	9
 2.4 Analysis of Proposed Project	9 9 . 10 . 11 . 11
2.5 Summary of Potable Water System Improvements	. 13
3.0 Recycled Water System Analysis	. 17
3.1 Existing Recycled Water System3.1.1 Existing System Description3.1.2 Existing Recycled Water Use	. 17
3.2 Hydraulic Model	. 17
3.3 Analysis Criteria	. 18
3.4 Analysis of Proposed Development	. 18
3.5 Summary of Recycled Water System Improvements	. 19
4.0 Sewer System Analysis	. 23
 4.1 Existing Sewer System 4.1.1 Existing System Description 4.1.2 Existing and Future Sewer Flows 	. 23
4.2 Hydraulic Model	. 24
 4.3 Analysis Criteria 4.3.1 Flow Development 4.3.2 Pipeline Sizing 4.3.3 Pump Station Sizing 	. 25 . 25
4.4 Analysis of Proposed Development 4.4.1 Proposed Sewer System Facilities	
 4.5 Condition Assessment	. 29 . 29 . 30
4.6 Summary of Sewer System Improvements	. 31
5.0 Hydraulic Evaluation of Existing and Proposed Storm Drain Systems	. 36
5.1 Existing Condition Model	. 36

5.1.1 Existing Pipe Network 5.1.2 Existing Watersheds	
5.1.2 Existing Watersheds	
5.1.3 Existing Open Channel System	
5.2 Proposed Condition Model	
5.2.1 Proposed Pipe Network	
5.2.2 Proposed Watersheds	43
5.2.3 Open Channel System	
5.3 Model Results	
5.3.1 Gravity Main Results	
5.3.2 Open Channel Results	
5.3.3 Floodplain Results	
5.3.4 Conclusions	51
5.4 Condition Assessment	51
5.5 Infrastructure Capacity by Planning Area	

List of Tables

Table 2-1. Project Area Existing Potable Water Demands
Table 2-2. Field and Model Simulated Hydrant Flow Test Comparison
Table 2-3. Pre-Project and Project Potable Water Demands 10
Table 2-4. Proposed Greystar V Project Potable Water Demands10
Table 2-5. Summary of Fire Flow Availability for Near-Term MDD + Fire Flow Conditions
Table 2-6. Summary of Fire Flow Availability for Buildout MDD + Fire Flow Conditions
Table 3-1 Recycled Water Demands 17
Table 4-1. Existing and Future Average Dry Weather Flows in Project Area24
Table 4-2. PWWF Results, MGD
Table 4-3. PWWF Results, d/D
Table 4-4. CCTV Results and Recommendations – Maple Street from El Camino Real to Middlefield Road
Table 4-5. CIP Projects and PWWF Results, MGD
Table 5-1. Existing Sub-Watershed Snyder Parameters
Table 5-2 Proposed Condition Watershed Parameters
Table 5-3. Existing Condition Gravity Main Peak Flow
Table 5-4. Proposed Condition Gravity Main Peak Flow 46
Table 5-5. Open Channel Peak Flow47
Table 5-3. NPS Summary of Work Performed53
Table 5-6. Instructure Capacity Per Planning Area 54

Table of Contents

List of Figures

Figure 1-1. Location Map	2
Figure 1-2. Existing Land Use	3
Figure 1-3. Proposed Land Use	4
Figure 2-1. Existing Potable Water System Facilities	15
Figure 2-2. Proposed Potable Water System Facilities	16
Figure 3-1. Landuse and Planned Recycled System Facilities	20
Figure 3-2. Planned Recycled System Facilities	21
Figure 3-3. Service Area for Future Recycled Water System	22
Figure 4-1. Existing Sanitary Sewer Facilities	33
Figure 4-2. Proposed Sanitary Sewer Facilities	34
Figure 4-3. CIP Projects	35
Figure 5-1. Redirected Portion of Broadway Watershed to Redwood Watershed	37
Figure 5-2. Existing Pipe Network	38
Figure 5-3. Existing Watershed Refinement	39
Figure 5-4. Existing Open Channel Refinement	41
Figure 5-5. Proposed Pipe Network Improvements	42
Figure 5-6. Proposed Condition Watershed Refinement	43
Figure 5-7. Existing Condition Gravity Main Result Locations	45
Figure 5-8. Proposed Condition Gravity Main Result Locations	46
Figure 5-9. Existing 10-Year Floodplain	48
Figure 5-10. Proposed 10-Year Floodplain	48
Figure 5-11. Existing 30-Year Floodplain	49
Figure 5-12. Proposed 30-Year Floodplain	49
Figure 5-13. Existing 100-Year Floodplain	50
Figure 5-14. Proposed 100-Year Floodplain	50
Figure 5-15. CCTV and Inspection Locations	52
Figure 5-16. Project Planning Areas	54

List of Appendices

Appendix A: Preliminary Utility Summary Appendix B: Model Results Appendix C: CCTV Inspection

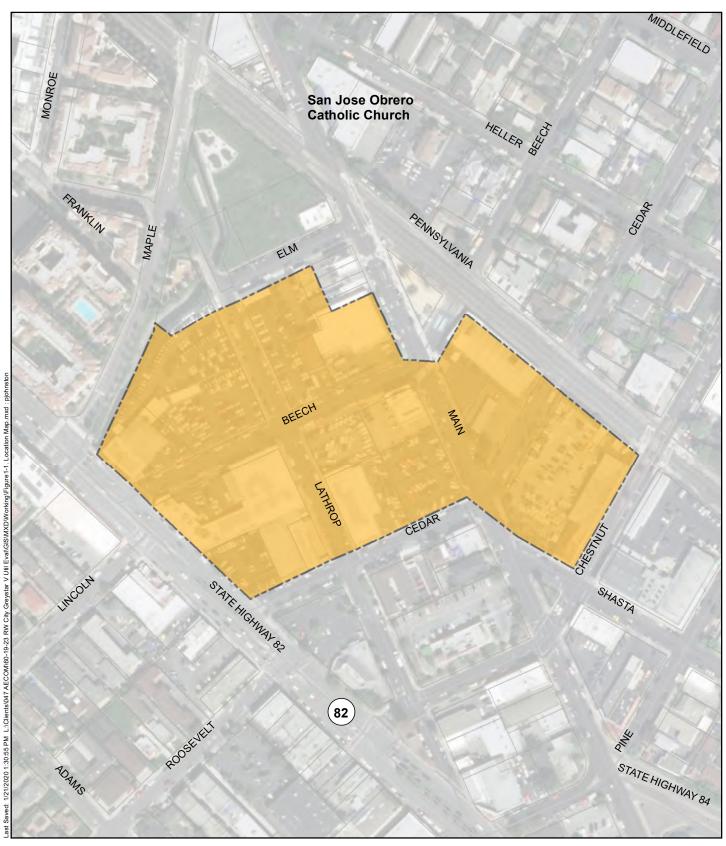
Appendix D: Sanitary Sewer Profiles

1.0 INTRODUCTION

The City of Redwood City (City) is preparing the Greystar V Project (Project), which is also known as the City's South Main Planning Area redevelopment project. The Project site includes 18 parcels in five planning areas and comprises 8.3 acres bounded by El Camino Real to the south, Elm Street to the west, Caltrain to the north, and Cedar/Chestnut Streets to the East. Figure 1-1 shows a location map for the Project area.

The Project will provide detailed recommendations for the South Main Planning Area. Figure 1-2 shows the existing land use within the Project area. Figure 1-3 shows the proposed land use within the Project area. Buildout of the Project will include mixed-use residential and office development across multiple blocks.

The purpose of this Engineering Report is to:


- Review locations and sizing of potable and recycled water, sewer, and storm utilities, in accordance with the City Engineering Standards to identify impacts of the proposed Project on each of the utility systems; and,
- Identify improvements required to mitigate any potential impacts.

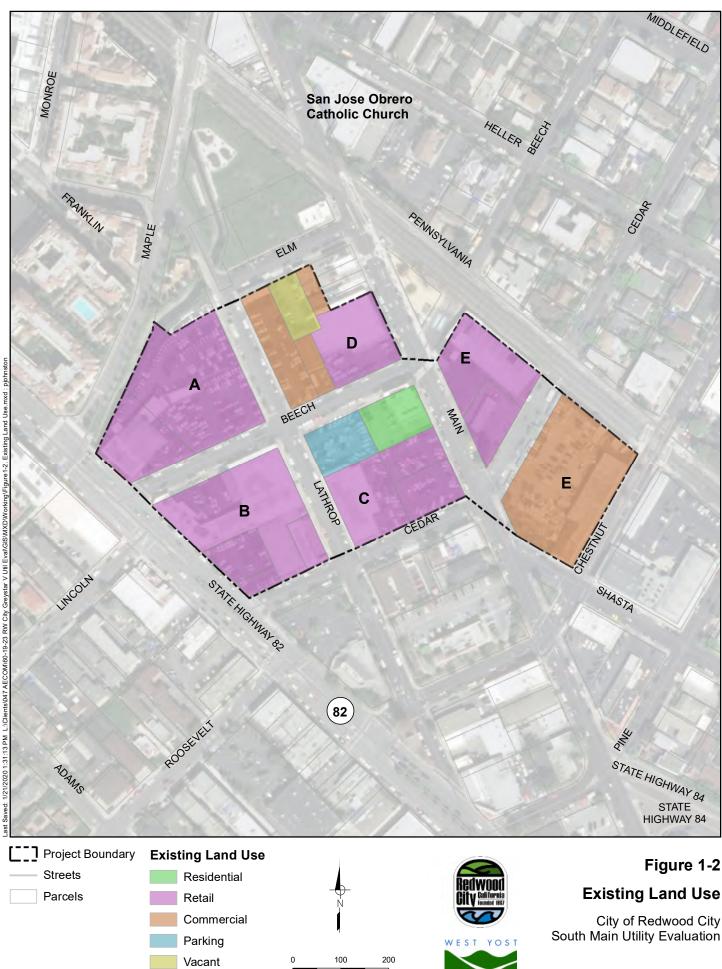
Following this Introduction section, the report is organized into the following sections:

- Section 2: Potable Water System Analysis
- Section 3: Recycled Water System Analysis
- Section 4: Sewer System Analysis
- Section 5: Storm Drain System Analysis

Each of the sections provides descriptions of the following:

- Existing infrastructure
- Existing conditions based on current demands or loads
- Hydraulic model used for the evaluation
- Evaluation criteria
- Results of the analysis
- Recommended infrastructure sizes

Project Boundary Parcels



Location Map

City of Redwood City South Main Utility Evaluation

100 200 Scale in Feet

ASSOCIATES

Scale in Feet

Note: Planning Areas A, B, C, D and E are displayed.

ASSOCIATES

Note: Planning Areas A, B, C, D and E are displayed.

2.0 POTABLE WATER SYSTEM ANALYSIS

The potable water system analysis summarizes required infrastructure, based on the results of a hydraulic analysis of pre-Project conditions and of proposed Project conditions. A hydraulic model developed for the City's 2011 Water System Master Plan (WMP) was used to evaluate existing and proposed conditions.

An analysis was conducted to evaluate pressures for normal operating conditions under Peak Hour Demand (PHD) for three different scenarios listed below:

- Existing system infrastructure and existing demands;
- Existing system with proposed developer infrastructure improvements, per the Preliminary Utility Summary, which is included in this report's Appendix A, with existing demands and buildout demands for the Project area estimated located in Appendix A as Attachment Q, and;
- Existing system with proposed developer infrastructure improvements, with buildout system demands from the 2011 WMP (base on Urban Water Management Plan and General Plan data) and buildout demands for the Project area estimated using Attachment Q, (located in Appendix A).

An analysis was conducted for two fire-flow scenarios:

- Existing system with proposed developer infrastructure improvements, with existing demands and buildout demands for the Project area, representing near-term development, and;
- Existing system with proposed developer infrastructure improvements, with buildout system demands and buildout demands for the Project area, representing 2030 conditions.

These evaluations were performed to determine whether the developer's proposed improvements to the potable water system to support the Project area are sufficient or additional improvements are needed.

2.1 Existing Potable Water System

This section describes the existing infrastructure and demands in the Project area. Refer to Figure 1-1 for a visual representation of the system described in the sections below.

2.1.1 Existing System Description

Potable water is supplied to the Project area from the Main City Pressure Zone. The Main City Pressure Zone is supplied by several turnout connections to the San Francisco Public Utility Commission's (SFPUC's) Regional Water System, located south of the Project area.

The Main City Pressure Zone has three existing storage reservoirs, with a total of 11.75 million gallons (MG) of storage, and a usable storage volume of just under nine MG. The reservoirs serve the pressure zone by gravity and are located on the southwest side of the pressure zone, approximately two miles from the Project area.

Figure 2-1 shows the existing potable water pipelines in the Project area. The Project area is currently served by an existing 10-inch diameter cast iron pipeline (CIP) (1935) that is located along Chestnut Street and an existing 8-inch diameter CIP (1969, 1956, 1967) along Lathrop. In addition, there is an 8-inch asbestos cement pipeline (ACP) (1983) located along Main Street. Lastly, there is a 4-inch diameter CIP (1918) located on Elm Street and 6-inch diameter CIPs along Beech Street (1956) and Cedar Street (1908).

2.1.2 Existing Model Demands

Historical water demands for the Project area were included in the potable water hydraulic model developed for the 2011 Water System Master Plan. Average day demand (ADD) was based on ADD developed for the WSMP but scaled to match recent ADD values provided by the City. Maximum day (MDD) and peak hour demands (PHD) were calculated using the following peaking factors from the 2011 WSMP:

- Maximum Day Demand = [Average Day Demand] x 2.0
- Peak Hour Demand = [Average Day Demand] x 3.2

Demand nodes corresponding to the five planning areas of the Greystar 5 development were identified in the model and the demands were summed. These demands are presented in Table 2-1.

As part of the Preliminary Utility Summary provided by the City, existing demands produced by the existing parcels in the Project site were estimated using the City's standard Attachment Q. Attachment Q is used to calculate both interior and irrigation demands using unit demand generation values. The calculations of the existing demands were compared to the existing demands found in the model, which are both presented in Table 2-1. Demands estimated using Attachment Q are much greater than the existing demands that are in the model. As a result, two existing scenarios had to be analyzed; an existing scenario with the model existing demands, and an existing scenario with demands adjusted to match the Attachment Q, located in Appendix A, estimated demands. The results of these scenarios, as well as the results of the Project scenario, are discussed in Sections 2.4 and 2.5.

Table 2-1. Project Area Existing Potable Water Demands						
Planning Area	Model Existing ADD, gpd	Attachment Q, Estimated Existing ADD, gpd				
А	274	9,120				
В	850	28,020				
С	101	12,810				
D	720	7,140				
E ^(a)	7,963	18,900				
Total	9,907	75,990				
a) Elevated demands for Planning Area E are due to a self-serve car wash.						

2.2 Hydraulic Model Calibration

The hydraulic model of the potable water system was developed using the Innovyze InfoWater software which runs within ArcGIS. The model transforms information about the physical water system into a mathematical model that solves for flows and pressures in the system, based on specified supply and demand conditions. The model was developed for the City as part of the City's 2011 Water System Master Plan.

The hydraulic model was calibrated in the Project area using hydrant test data provided by the City for tests performed on December 6, 2019. The City conducted three hydrant tests in the vicinity of the proposed Project. The hydrant tests were performed at the hydrants located at the intersections of Elm Street at Lathrop Street, Main Street at Beech Street and Buckeye Street at Shasta Street. For all three of the hydrant tests, pressures were measured at an observation hydrant located at Beech Street and Lathrop Street.

Table 2-2 compares the field pressures and model simulated pressures for the field flow tests. Field test data were used to compare modeled pressures with field pressure. The model used the existing average day demand scenario to represent test conditions.

West Yost reviewed C-factors within the planning area, and made no adjustments, since the assigned C-factors are reasonable for the pipeline materials and age.

The C-factors that are assigned to the existing pipelines within the project area are listed as follows:

- C-factor of 100 for the existing 6-inch diameter cast iron pipeline installed in 1956 along Beech Street.
- C-factor of 120 for the existing 8-inch diameter cast iron pipeline installed in 1967 along Lathrop Street.
- C-factor of 130 for the existing 8-inch diameter asbestos cement pipeline installed in 1983 along Main Street.
- C-factor of 65 for the existing 4-inch diameter cast iron pipeline installed in 1918 along Elm Street.
- C-factor of 65 for the existing 6-inch diameter cast iron pipeline installed in 1908 along Cedar Street.

As noted above, the current C-factors assigned to the existing pipelines are reasonable based on the pipeline materials and age.

Table 2-2. Field and Model Simulated Hydrant Flow Test Comparison									
			Field Pressure, psi		Model Simulated Pressure, psi		Comparison		
Hydrant Flow Test	Location	Field Hydrant Flow, gpm	Static	Residual	Differential Pressure, psi	Static	Residual	Differential Pressure, psi	of Differential Pressure, psi
Hydrant Flow Test 1	Hydrant at Elm/Lathrop	839	66	43	23	68	44	24	
Observed Hydrant Test 1	Beech/Lathrop		68	67	1	67	66	1	0
Hydrant Flow Test 2	Hydrant at Main/Beech	1169	68	62	6	67	63	4	
Observed Hydrant Test 2	Beech/Lathrop		68	66	2	67	66	1	1
Hydrant Flow Test 3	Hydrant at Buckeye/Shasta	1314	68	61	7	66	63	3	
Observed Hydrant Test 3	Beech/Lathrop		68	68	0	67	66	1	-1

2.3 Analysis Criteria

Pipelines within the Project area were sized to meet pipeline velocity, pipeline headloss, and system pressure criteria developed from the Water System Master Plan and from the City's design and construction standards. These criteria are summarized below.

Pipeline Sizing Criteria

- Maximum Velocity (under normal conditions) = four feet per second (fps)
- Maximum Headloss (under normal conditions) = four ft per 1,000 ft of pipe
- Maximum Velocity (under fire flow conditions) = seven fps
- Maximum Headloss (under fire flow conditions) = 10 ft per 1,000 ft of pipe
- Minimum Pipeline Diameter = 8-inch

System Pressure Criteria

- Maximum Allowable Pressure = 120 pounds per square inch (psi)
- Minimum Service Pressure under Normal Conditions = 35 psi
- Minimum Service Pressure under Fire Flow Conditions = 20 psi

2.4 Analysis of Proposed Project

The proposed Project is broken down into five planning areas. The Preliminary Utility Summary presents proposed land use within the planning areas, from which proposed project demands have been calculated. Additionally, the Preliminary Utility Summary presents proposed improvements to the infrastructure within the Project area.

2.4.1 Proposed Developer Improvements

Figure 2-2 shows potable water system improvements proposed by the developer. A City ordinance requires the replacement of existing water mains less than six inches in diameter along the Project's frontage. This includes replacing the four-inch diameter main along Elm Street with a six-inch diameter water line from Lathrop to Main Street. Additionally, due to the abandonment of Cedar Street between Main Street and the Caltrain right of way and its respective water main, a new looped connection located along Pennsylvania Avenue will be provided.

To evaluate the proposed water system infrastructure, three scenarios were evaluated for regular operating conditions and two scenarios were evaluated for fire flow conditions.

Figures of the proposed system are included in the Preliminary Utility Summary.

2.4.2 Proposed Project Demands

Table 2-3 summarizes pre-Project and Project average day demands estimated for the Project planning areas using Attachment Q, located in Appendix A. Estimates were provided by Talus Engineering in the Preliminary Utility Summary completed October 21, 2019.

Table 2-3. Pre-Project and Project Potable Water Demands					
Planning Area	Attachment Q Estimated Pre- Pojrect ADD, gpd	Attachment Q, Estimated Project ADD, gpd			
А	9,120	26,425			
В	28,020	24,873			
С	12,810	8,072			
D	7,140	12,494			
Е	18,900	13,466			
Total	75,990	84,330			

The estimated pre-Project demand and Project demand calculated using Attachment Q, located in Appendix A are very similar, even though the proposed planning areas will include higher intensity development than the existing parcels. This is because Redwood City enacted City Ordinance No. 2335 which requires the use of recycled water for landscape irrigation and building plumbing. The proposed buildings will be constructed to provide dual plumbing that will include a separate system for toilets, urinals, trap primers, and landscape irrigation. The existing development uses potable water for all those services, and the proposed Project will use recycled water, effectively decreasing the potable water demand. Due to this, the total increase in estimated potable water demand from the existing to future scenarios is 8,340 gpm, just under 10 percent of the proposed Project demand. The proposed recycled water demands are discussed further in Section 3.0.

Proposed MDD and PHD were calculated based on the peaking factors from the 2011 Water System Master Plan and presented in Section 2.3. The MDD and PHD for buildout of the Project are estimated to be approximately 119 and 190 gpm, respectively, based on an ADD of 59 gpm. The ADD, MDD and PHD are presented in Table 2-4.

Table 2-4. Proposed Greystar V Project Potable Water Demands					
Planning Area	ADD, gpm	MDD, gpm	PHD, gpm		
A	18	37	59		
В	17	35	55		
С	6	11	18		
D	9	18	29		
E	9	18	29		
Totals	59	119	190		

2.4.3 Proposed Fire Flow Requirements

The fire flow requirement was provided by the City in the Preliminary Utility Summary prepared in October of 2019 by Talus Engineering. The fire flow requirement provided for the proposed site was considered for the largest proposed building. Fire Service Requirements per the California Fire Code (CFC) are as follows:

Building Type I

- Max. Building Area = 142,058 square feet (from architect)
- Fire Flow = 6,000 gpm per CFC Table B105.1

3,000 gpm (with 50 percent reduction for sprinklers) plus 500 gpm for sprinkler demand.

2.4.4 Evaluation Scenarios

Three scenarios were evaluated under regular, non-fire flow operations:

- Existing system infrastructure and existing demands;
- Existing system with proposed developer infrastructure improvements with existing demands and buildout demands for the Project area estimated using Attachment Q, and;
- Existing system with proposed developer infrastructure improvements, with buildout system demands and buildout demands for the Project area estimated using Attachment Q. located in Appendix A.

Each one of these operational scenarios were evaluated under average day demand (ADD), maximum day demand (MDD), and peak hour demand (PHD) creating 12 total non-fire flow scenarios.

Two fire flow scenarios were evaluated:

- Existing system with proposed developer infrastructure improvements, with existing demands and buildout demands for the Project area, representing near-term development, and;
- Existing system with proposed developer infrastructure improvements, with buildout system demands and buildout demands for the Project area, representing 2030 conditions.

The figures displaying the results for the PHD and the fire flow scenarios are included in Appendix B.

2.4.5 Normal Operations Results

Under existing system peak hour condition, the hydraulic model results indicate that the pressures under peak hour demand conditions within the Project area range from 60-65 psi.

Under existing system peak hour conditions with proposed buildout demands for the Project area, the hydraulic model results indicate that the pressures under peak hour demand conditions within the Project area range from 60-65 psi.

Under buildout system peak hour condition with proposed buildout demands for the Project area, the hydraulic model results indicate that the peak hour demand pressures within the Project area range from 60-64 psi.

Under all three of the PHD scenarios the minimum system normal operating pressure requirement of 35 psi is met.

2.4.6 Maximum Day Plus Fire Flow Evaluations Results

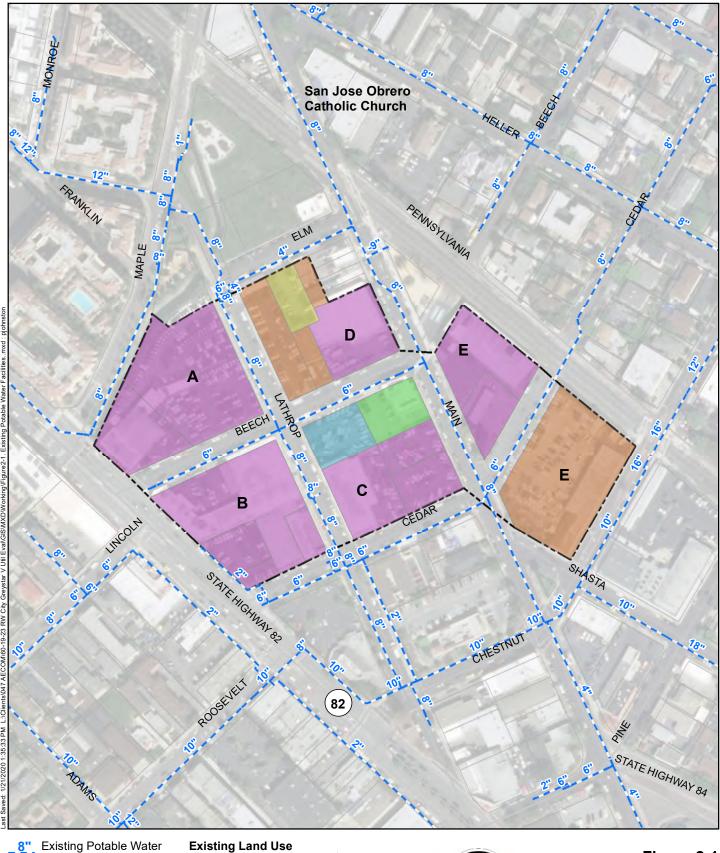
To simulate near-term conditions, West Yost used the hydraulic model to simulate fire flow availability while flowing hydrants under existing system maximum day demand and Project buildout maximum day conditions while maintaining 20 psi residual pressure and a maximum pipeline velocity of seven feet per second in proposed pipelines. Existing pipelines were not subject to any velocity criterion.

To simulate buildout conditions, the hydraulic model was used to simulate fire flow availability while flowing hydrants under buildout system maximum day demand and Project buildout maximum day demand conditions while maintaining 20 psi residual pressure and a maximum pipeline velocity of seven feet per second in proposed pipelines. Improvement projects recommended in the 2011 WSMP were not included.

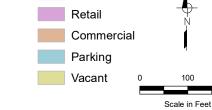
The system was analyzed with the improvements as proposed. The analysis indicated insufficient fire flow capacity at many of the hydrants adjacent to the project area. The system was then analyzed after increasing the diameter of several of the improvements from eight inches to ten inches. The improvements that were increased from eight inches to ten inches include El Camino Real between Maple Street and Cedar Street, Lathrop Street between Elm Street and Cedar Street, and Beech Street between El Camino Real and Lathrop Street. With the increases in diameter, the system was found to have sufficient fire flow capacity. Table 2-5 summarizes the simulated fire flow availability at the hydrant locations that serve each planning area of the project area for the near-term scenario with the increased pipeline diameters. Table 2-6 summarizes the simulated fire flow availability at the hydrant locations that serve each planning area of the project area under buildout demand conditions with the increased pipeline diameters.

For the planning areas within the Project area, there are multiple adjacent hydrants, several of which are included in Tables 2-5 and 2-6. While the model results indicate that not all hydrants within the project area can meet the fire flow requirements, each planning area has at least one hydrant adjacent to it that can meet the fire flow requirements. Therefore, the model results indicate that the potable water system can provide adequate fire flow to all planning areas within the Project area with the recommended increases in diameter for some of the improvements.

The City indicated that the setting of the El Camino Real pressure reducing valve (PRV) is such that it rarely provides supply into the system. However, the model indicates that with the provided setting for this PRV it would provide supply into the system under fire flow conditions. To determine the effect of the El Camino Real PRV the model was used to analyze the system both with and without the El Camino Real PRV allowed to provide supply into the system. The model indicates that the El Camino Real PRV has minimal effect on the ability of the system to meet the fire flow requirements.


Planning Area	Model Junction	Available Design Fire Flow, gpm	Hydrant Pressure at Design Flow, psi
А, В	WY_G5_J5	3,236	63
A, B, C, D	WY_G5_J4	3,663	62
C, D, E	J-MAIN-26586	3,478	48
С	WY_G5_J8	605	20
A, D	WY_G5_2	3,582	63
D	WY_G5_J3	2,526	58
C, D, E	J-MAIN-26588	4,946	37
C, D, E	J-MAIN-26584	3,485	48

Planning Area	Model Junction	Available Design Fire Flow, gpm	Hydrant Pressure at Design Flow, psi
А, В	WY_G5_J5	3,214	62
A, B, C, D	WY_G5_J4	3,689	60
C, D, E	J-MAIN-26586	3,464	47
С	WY_G5_J8	600	20
A, D	WY_G5_2	3,489	62
D	WY_G5_J3	2,525	57
C, D, E	J-MAIN-26588	4,942	35
C, D, E	J-MAIN-26584	3,465	47

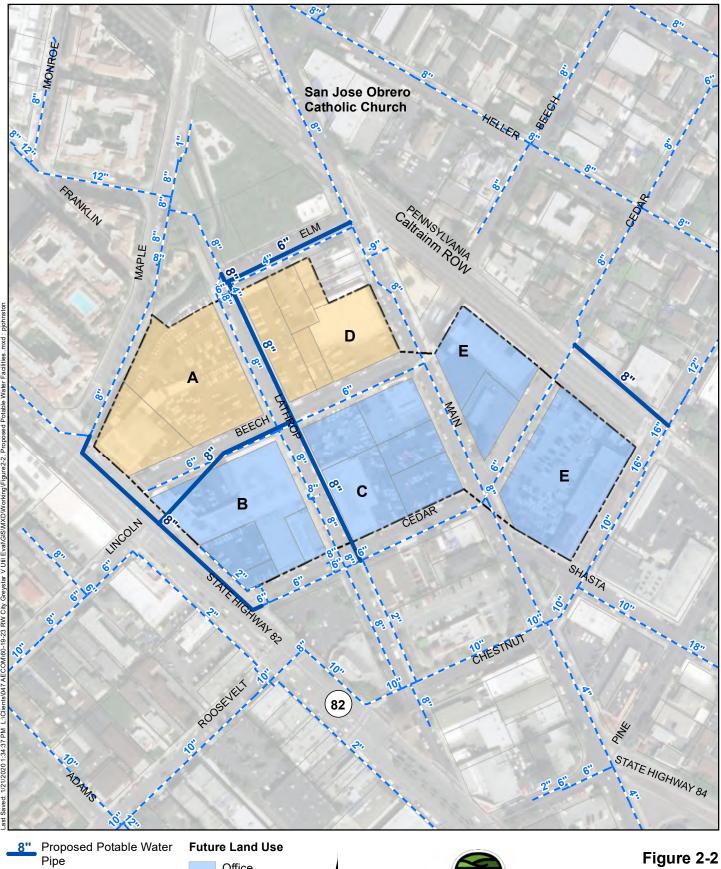

2.5 Summary of Potable Water System Improvements

With the recommended increases in diameter for some of the proposed water system improvements in the Preliminary Utility Summary, the water system will meet all analysis criteria. It recommended to increase the diameter from eight inches to ten inches for the improvements in El Camino Real between Maple Street and Cedar Street, Lathrop Street between Elm Street and Cedar Street, and Beech Street between El Camino Real and Lathrop Street.

An additional recommended adjustment to the improvements proposed in the Preliminary Utility Summary is that the proposed replacement pipeline on Elm Street between Lathrop Street and Main Street be installed as an eight-inch pipeline rather than the proposed six-inch pipeline, as the minimum pipeline diameter for the City is eight inches.

Residential

ASSOCIATES


200

100

Figure 2-1

Existing Potable Water Facilities

Note: Planning Areas A, B, C, D and E are displayed.

City of Redwood City South Main Utility Evaluation

B" Proposed Potable Water Pipe
 B" Existing Potable Water Pipe
 Project Boundary
 Streets
 Parcels

200

Scale in Feet

Note: Planning Areas A, B, C, D and E are displayed

3.0 RECYCLED WATER SYSTEM ANALYSIS

This section summarizes the results of a hydraulic analysis of the recycled water system with future system demands and the Project built out. While City Ordinance No. 2335 requires that recycled water be used for landscape irrigation and building plumbing, recycled water service has not yet been extended to the Project area.

A hydraulic model developed for evaluation of future recycled water facilities was used for the analysis. The recycled system hydraulic model was used to evaluate operating pressures under peak hour demand conditions. This evaluation was performed to determine the proposed improvements to the recycled water system to support the Project Area.

3.1 Existing Recycled Water System

3.1.1 Existing System Description

Recycled water will be supplied to the Project area from the Silicon Valley Clean Water (SVCW) treatment plant in Redwood Shores via an existing 24-inch diameter pipeline that currently ends at the intersection of Marshall Street and Main Street.

3.1.2 Existing Recycled Water Use

There is currently no existing recycled water use in the Project area.

3.2 Hydraulic Model

Preliminary studies by greywater specialists indicate that recycled water demand serving indoor uses could be approximated as 25 percent of the typical potable water indoor residential use and 80 percent of the typical potable water indoor office and retail use. The irrigation demands are not included in these ratios and are considered to be 100 percent recycled. The total recycled water demand is estimated to be 65,507 gpd and is summarized in Table 3-1.

Table 3-1 Recycled Water Demands						
Planning Area	Water Demand (gpd)	Potable Indoor (gpd)	Recycled Indoor (gpd)	Recycled Irrigation (gpd)	Recycled Water Total (gpd)	
A	36,485	25,362	10,038	1,085	11,123	
В	37,285	21,795	13,679	1,811	15,490	
С	22,189	4,248	16,994	947	17,941	
D	33,747	24,660	8,220	867	9,087	
E	37,354	25,488	9,948	1,918	11,866	
Total	167,060	101,553	58,879	6,628	65,507	

The City provided a hydraulic model updated by Kennedy/Jenks Consultants in 2015 for a future planning scenario in which average annual recycled water use is estimated to be 3,238 acre-feet/year. The City recently updated the model to include recent changes in development, including many new recycled water customers in the downtown area of Redwood

City. The model includes existing recycled water facilities and customers as well as future recycled water facilities and customers in Seaport and downtown Redwood City. This model scenario was used as a starting point to evaluate recycled water facilities pipeline sizing for the Project area, and to evaluate pressures in the recycled water system at buildout of the future phases.

The project demand for the Project area was updated in the model to include recycled water demand at buildout of the Project area based on a worst-case peak hour demand for each proposed planning area within the Project area.

3.3 Analysis Criteria

Pipelines within the Project area were sized to meet pipeline velocity, pipeline headloss, and system pressure criteria. These criteria are:

<u>Pipeline Criteria</u>

- Maximum Velocity = 5 feet per second (fps)
- Maximum Headloss = 1 psi per 5,000 ft of pipe (or 2.3 ft / 5,000 ft of pipe, or 0.5 ft / 1,000 ft)

Pressure Criteria

- Maximum Allowable Pressure = 100 pounds per square inch (psi)
- Minimum Service Pressure = 55 psi, preferred, 45 psi, minimum

3.4 Analysis of Proposed Development

3.4.1 Proposed Development Demands

The land use within the Project area is shown on Figure 3-1. The City provided proposed recycled water demand for each development area within the Specific Plan area based on indoor and outdoor uses. The proposed recycled water alignments for the Project area are shown on Figure 3-2. The future project demand in the model was updated to reflect estimated recycled water demand for the proposed Project. Projected project model demands are based on a Peak Hour Demand (PHD) and were calculated based on the following criteria:

- Peak Hour Demand (gpm) = [Average Daily Irrigation Demand (gpm) x 10]
- Peak Hour Demand (gpm) = [Average Daily Interior Residential Demand (gpm) x 8]
- Peak Hour Demand (gpm) = [Average Daily Interior Commercial Demand (gpm) x 2]

The modeled PHD is estimated to be approximately 880 gpm, which includes both irrigation and interior demands.

3.4.2 Proposed Recycled Water Facilities

A new recycled water transmission main is required to serve recycled water to the Project area. The planned route for the transmission main is shown on Figures 3-1 and 3-2. The existing system ends at the intersection of Marshall Street and Walnut Street. The new transmission main would extend

south along Walnut Street to the Project area. Two proposed alignment options are shown on Figure 3-2. After current and projected recycled water demands for the downtown area were added to the hydraulic model, the modeling results indicate that the new transmission main must be a 24-inch pipeline to meet the City's maximum headloss criterion.

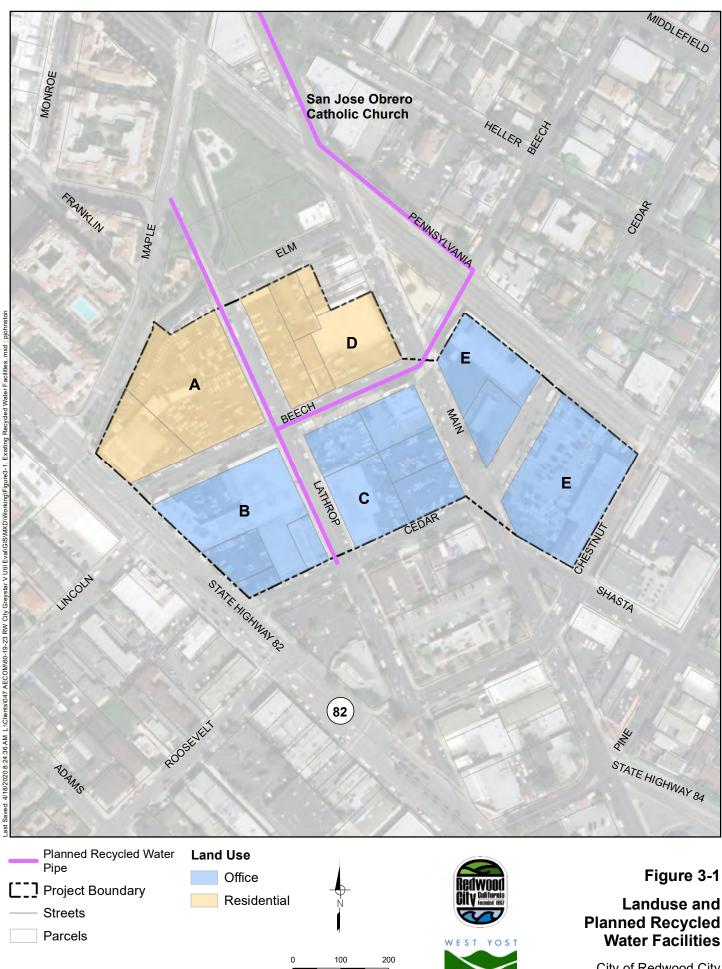
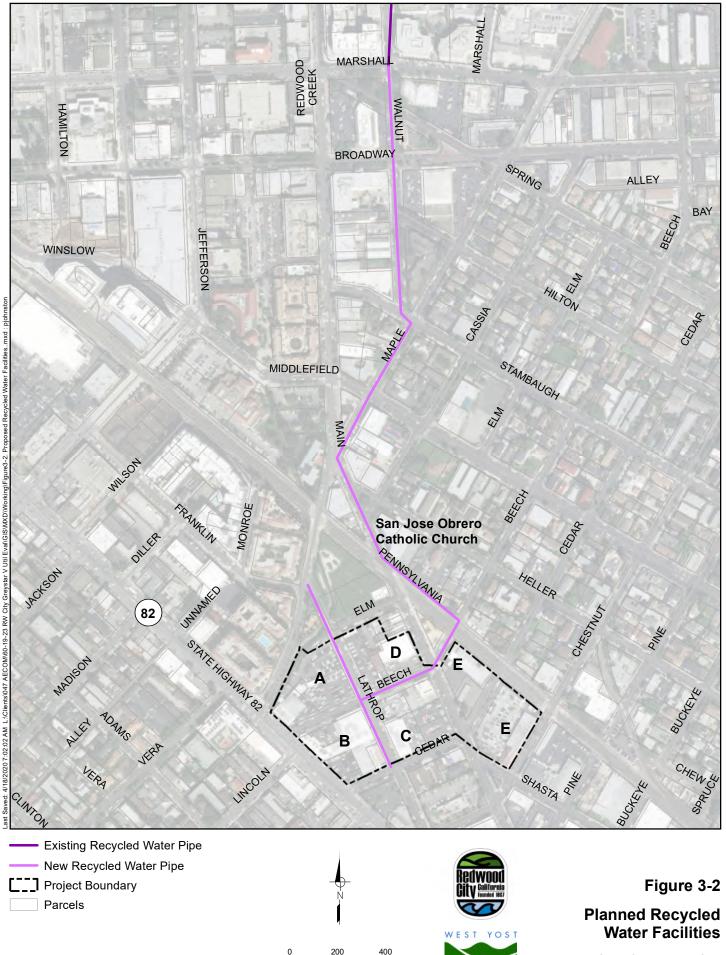

Two new pipelines are required to serve recycled water within the Project area. These pipelines are shown on Figures 3-1 and 3-2. Each pipeline was sized using the City's maximum headloss criterion. The pipeline along Cedar Street must be a 10-inch diameter pipeline that would tie into the 24-inch diameter recycled water main in Main Street. The pipeline along Beech Street must be a 14-inch diameter pipeline that would tie into the 24-inch diameter recycled water main in Main Street.

Figure 3-3 shows the buildout plan for the recycled water system that has been adjusted to accommodate recent changes in development in the downtown area.

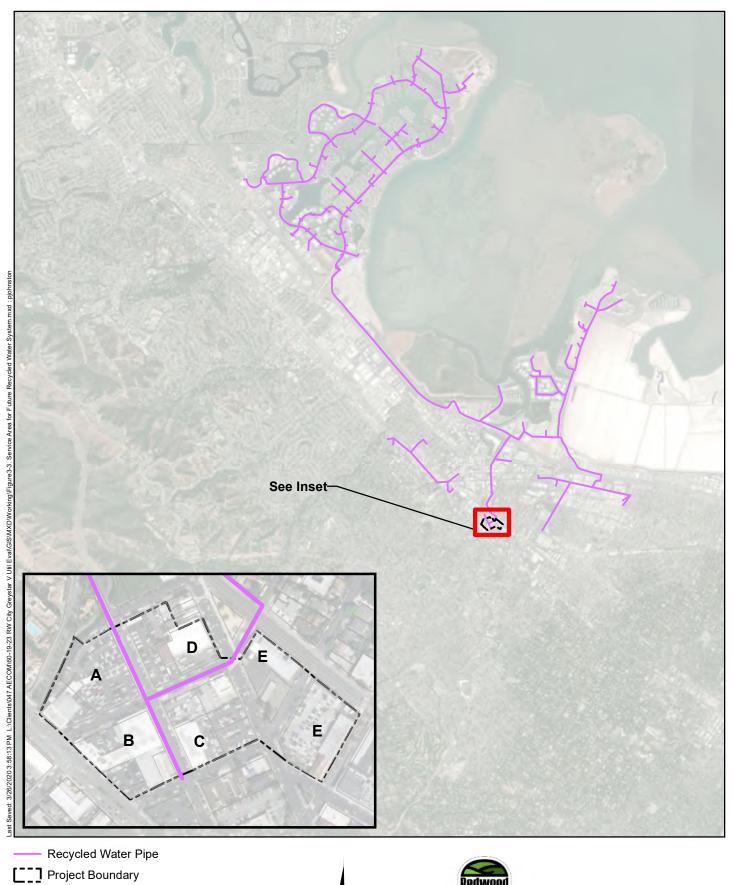
3.5 Summary of Recycled Water System Improvements

The following new recycled water pipelines are needed for the Project area, with some variation between the two options:


- 220 feet of new 10-inch diameter pipeline to serve Cedar Street;
- 450 feet of new 14-inch diameter pipeline to serve Beech Street;
- 3,200 feet of new 24-inch diameter pipeline to connect the Project area to the existing recycled water system.

Scale in Feet

Note: Planning Areas A, B, C, D and E are displayed.


Landuse and Water Facilities

Note: Planning Areas A, B, C, D and E are displayed.

ASSOCIATES

Scale in Feet

5,000

2,500

Scale in Feet Note: Planning Areas A, B, C, D and E are displayed.

ASSOCIATES South

Figure 3-3

Service Area for Future Recycled Water System

4.0 SEWER SYSTEM ANALYSIS

This section summarizes the results of a hydraulic analysis of both existing and future flow conditions, with and without the proposed Project.

A hydraulic model developed for the 2008 Sewer System Master Plan (SSMP) was used to evaluate both existing and future conditions. The sewer system hydraulic model was used to evaluate sewer capacity under Peak Wet Weather Flow (PWWF) conditions.

The analysis was conducted for four scenarios:

- Existing system flows with existing level of development;
- Existing system flows with buildout of the Project area (near-term development);
- Buildout system with flow projections for Project area based on original land uses; and
- Buildout system flows with buildout of the Project area based on proposed land uses.

These evaluations were performed to determine proposed improvements to the sewer collection system to support the Project area.

4.1 Existing Sewer System

4.1.1 Existing System Description

The City's sewer collection system consists of gravity mains, force mains, and pump stations. Most of the City's sewer flows are directed to the Maple Street Pump Station, and are then transmitted to and treated in the Silicon Valley Clean Water (SVCW) Wastewater Treatment Plant in Redwood Shores, and eventually further treated and delivered to the City's recycled water system or discharged into the San Francisco Bay. SVCW's 10-year capital improvement plan calls for the construction of a new pipeline and reconstruction/replacement of regional SVCW pump stations. SVCW's new 48-inch diameter force main will connect the San Carlos and Maple Street pump stations.

Figure 4-1 shows the existing sanitary sewer system in the vicinity of the Project area. The existing sewer system within the Project area consists of a 10-inch Vitrified Clay Pipe (VCP) sewer main along Maple Street, 8-inch VCP sewer mains along El Camino Real, Main Street and Caltrain, a 6-inch VCP sewer main along Lathrop Street that connects with a 10-inch VCP sewer main in Maple Street and 12-inch PVC and 16-inch VCP sewer mains along the south side of El Camino Real. Additionally, two bypass trunks exist that extend across Caltrain at the north end of Beech Street, which consist of 27- and 18-inch VCP mains in Beech Street and Main Street, respectively. All of the sewer mains ultimately transport flow northerly and discharge at the treatment facility in Redwood Shores.

4.1.2 Existing and Future Sewer Flows

The City has a standard method of estimating sewer flows by assuming 95 percent of the water demand estimated for a parcel. These calculations are completed using the City's "Attachment L" located in Appendix A. Existing and future average dry weather sewer flows (ADWF) were estimated for the

Project areas using attachment L, provided by Talus Engineering in the Preliminary Utility Summary dated October 21, 2019.

Table 4-1. Existing and Future Average Dry Weather Flows in Project Area						
Planning Area	Existing ADWF, gpd	Future ADWF, gpd	Net Increase, gpd			
А	8,664	33,630	24,966			
В	26,619	33,700	7,081			
С	11,571	20,180	8,609			
D	6,783	31,236	24,453			
E	17,955	33,664	15,709			
Total	71,592	152,410	80,818			

The future flows provided by Talus are presented in Table 4-1. Comparison between the existing flows and the proposed flows shows that the proposed development more than doubles the sanitary sewer flow from the Project area.

4.2 Hydraulic Model

The hydraulic model of the City's sanitary sewer system was developed in the InfoWorks CS software for the City's 2008 Sewer Master Plan. InfoWorks CS is a fully dynamic open channel modeling platform distributed by Innovyze. The hydraulic model was updated and re-calibrated by West Yost in 2013 as part of the 2013 Sewer Master Plan Update.

The hydraulic model is a skeletonized model that contains the collection system's gravity main interceptors. It was not developed to assess the capacity of the city's small diameter gravity main collectors, and the model includes only a few gravity mains less than 10-inches in diameter where required for connectivity. The hydraulic model was updated as follows in the Project Area for this analysis:

• The Project Area originally contained two subcatchments for flow loading. Subcatchments were re-drawn to correspond to the proposed development areas summarized in Table 4-1, so that the flow from each proposed development area can be loaded in an individual subcatchment. The RTK¹ method was used to develop estimates of rain-dependent infiltration and inflow (RDII) and develop peak wet weather flows. Wet weather RTK factors were not changed for the re-drawn subcatchments and are consistent with wet weather basin C11 as described in the 2013 Sewer Master Plan Update.

¹ West Yost used the RTK method to calculate RDII inputs to the City's hydraulic model. The RTK method generates hydrographs from each subcatchment that represent estimated flows during and immediately after rainfall events caused by potential seepage of water into the collection system. The RTK method generates a series of three triangular hydrographs that represent short-term, medium-term, and long-term rainfall response. The RTK parameters are: (1) R is the area of the graph representing the portion of rainfall falling on a subcatchment that enters the sewer collection system. (2) T is the time from the onset of rainfall to the peak of the triangle. (3) K is the ratio of the "time to recession" to the "time to peak" of the hydrograph.

- The hydraulic model did not include any of the collection system in the Seaport/Pacific Shores area north of the Maple Street PS. The collection system in this area consists primarily of small diameter gravity main collectors that flow to small pump stations that discharge directly to the SVCW force main system, and therefore this infrastructure was not considered to be part of the trunk system in either the 2008 Master Plan or the 2013 Master Plan Update.
- Scenarios in the model were updated to include flows from previously constructed or projects on Bair Island and 333 Main Street and planned projects at 353 Main Street and 557 East Bayshore Road.

4.3 Analysis Criteria

The following criteria were used as part of this analysis.

4.3.1 Flow Development

Project Area sanitary sewer flows were developed as follows:

- For the Project Area, Base Wastewater Flow (BWF) projections were calculated from water demand projections using Attachment L. located in Appendix A.
- Peak Dry Weather Flow (PDWF) is the maximum value generated by the ADWF and the diurnal curve applied to the flow
- Peak Wet Weather Flow (PWWF) = PDWF plus Rainfall-Dependent Infiltration/Inflow (RDI/I)
- RDI/I is calculated in the hydraulic model and has been calibrated to multiple storms
- RDI/I is based upon calibrated RTK values in combination with a design storm
- Consistent with the 2013 Sewer Master Plan Update, the design storm is a nested 10year 24-hour storm, timed for peak-to-peak conditions.

4.3.2 Pipeline Sizing

The following criteria were used for sizing gravity mains:

- Minimum Gravity Main Pipeline Size = eight-inch diameter
- Gravity mains were determined to have sufficient capacity when wastewater flows did not cause the flow to exceed three-fourths ($\frac{3}{4}$) full at peak flow condition, or d/D = 0.75 where d is depth of flow and D is diameter of the sewer pipe. This criterion is based on Volume 3, Part VI of the City's Engineering Standards
- A design storm establishes the volume and distribution of rainfall that the collection system will experience during a single rainfall event. A synthetic design storm with a 10-year recurrence interval and 24-hour duration, as provided through the National Oceanographic and Atmospheric Administration rainfall atlas and distributed using the Soil Conservation Service Type 1 distribution, was used for the Peak Wet Weather Flow (PWWF) analysis. The 10-year, 24-hour design storm criterion is

consistent with criteria in use by SVCW for planning future pumping, conveyance, and wet weather storage improvements.

• Manhole surcharging limited to within five feet of the manhole rim during PWWF

4.3.3 Pump Station Sizing

Pump Station Firm Capacity is defined as the capacity of the pump station with the largest pump out of service. Pump Station Firm Capacity shall be greater than or equal to the PWWF at the pump station.

4.4 Analysis of Proposed Development

4.4.1 Proposed Sewer System Facilities

In order to evaluate the sanitary sewer infrastructure for the Project area, the estimated sewer flows for the proposed development area were loaded into the collection system model. The flows from the proposed development are assigned to subcatchments M_1730 and M_1740 within the hydraulic model. These subcatchments are then assigned to a trunk main to the west of the proposed development, with M_1730 assigned to manhole 916 and M_1740 assigned to manhole 1672. Manholes 916 and 1672 are along a 10-inch trunk main along Maple Street. After the flows from the development enter the trunk main along Maple Street, the flows continue north along Maple Street, north along Main Street, east along Bradford Street and then north along Walnut Street to the Maple Street Pump Station.

When proposed and existing infrastructure are evaluated using existing flows plus flows from the previously constructed or planned projects for the remainder of the City, existing infrastructure relevant to the study area is found to have capacity deficiencies for PWWF along Maple Street, Main Street, Bradford Street and Walnut Street in certain sections of trunk main. When the flows for the proposed Project are added to system, the extents of the capacity deficiencies are greater, with more sections of trunk main showing capacity deficiencies for PWWF. The results from the evaluation using the hydraulic model are presented in Tables 4-2 and 4-3. The sections of trunk main highlighted in Table 4-3 are those that do not meet the evaluation criteria for d/D < 0.75.

Table 4-2. Peak Wet Weather Flow (PWWF) Results, MGD								
					Existing		Future	
Pipe ID	Upstream Node ID	Downstream Node ID	Diameter (in)	Pipe Full Capacity (mgd)	2013 Master Plan Update plus Developments	With Project (Greystar)	2013 Master Plan Update plus Developments	With Project (Greystar)
Greystar P	roject Pipelines							
918.1	918	910	10	0.75	0.52	0.52	0.52	0.52
910.1	910	917	10	0.85	0.66	0.66	0.66	0.66
917.1	917	916	10	0.78	0.66	0.66	0.66	0.66
916.1	916	1674	10	0.73	0.68	0.77	0.69	0.77
1674.1	1674	7	10	0.72	0.68	0.77	0.69	0.77
7.1	7	1673	10	0.73	0.68	0.77	0.69	0.77
1673.1	1673	1672	10	0.77	0.68	0.77	0.69	0.77
1672.1	1672	2677	10	1.27	0.80	0.99	0.81	1.00
2677.1	2677	2678	10	0.91	0.80	0.99	0.81	1.00
2678.1	2678	2673	10	1.15	0.91	1.10	0.92	1.11
2673.1	2673	2715	12	5.70	0.96	1.15	0.99	1.18
2715.1	2715	2716	12	1.87	0.97	1.17	1.02	1.25
2716.1	2716	2706	12	1.94	0.97	1.17	1.02	1.24
2706.2	2706	2705	12	2.40	1.00	1.18	1.03	1.30
2705.1	2705	4234	27	7.86	9.25	9.47	10.15	10.38
4234.1	4234	2970	27	9.32	9.56	9.90	9.91	10.29
2970.2	2970	2972	27	6.52	9.56	9.90	9.90	10.29
2972.1	2972	4220	27	7.29	10.91	11.26	11.32	11.70
4220.1	4220	2976	48	-39.83	25.41	26.05	26.57	27.25
2976.1	2976	2977	48	180.78	25.41	26.05	26.57	27.25
2977.1	2977	2978	48	33.62	37.82	38.64	39.51	40.34
2978.1	2978	2981	48	28.00	37.82	38.64	39.51	40.34
2981.1	2981	6429	48	30.40	37.82	38.64	39.51	40.34
6429.2	6429	6180	60	70.02	23.21	23.71	24.30	24.80
6180.1	6180	6184	48	118.82	38.16	38.98	39.96	40.79
6184.1	6184	5905	48	149.74	38.16	38.98	39.96	40.79

					Existi	ng	Futu	ıre
Pipe ID	Upstream Node ID	Downstream Node ID	Diameter (in)	Length (ft)	2013 Master Plan Update plus Developments	With Project (Greystar)	2013 Master Plan Update plus Developments	With Project (Greystar)
Breystar Pro	ject Pipelines							
918.1	918	910	10	90	0.670	0.670	0.671	0.672
910.1	910	917	10	325	0.720	0.810	0.720	0.820
917.1	917	916	10	245	0.790	1.000	0.790	1.000
916.1	916	1674	10	75	0.790	2.000	0.790	2.000
1674.1	1674	7	10	115	0.780	2.000	0.790	2.000
7.1	7	1673	10	114	0.780	0.940	0.780	0.950
1673.1	1673	1672	10	286	0.730	0.860	0.740	0.870
1672.1	1672	2677	10	259	0.740	1.000	0.750	1.000
2677.1	2677	2678	10	353	0.730	2.000	0.740	2.000
2678.1	2678	2673	10	525	0.680	0.820	0.690	0.860
2673.1	2673	2715	12	6	0.420	0.490	0.440	0.530
2715.1	2715	2716	12	354	0.510	0.820	0.740	1.000
2716.1	2716	2706	12	350	1.000	1.000	1.000	1.000
2706.2	2706	2705	12	37	1.000	1.000	1.000	1.000
2705.1	2705	4234	27	305	2.000	2.000	2.000	2.000
4234.1	4234	2970	27	360	2.000	2.000	2.000	2.000
2970.2	2970	2972	27	236	2.000	2.000	2.000	2.000
2972.1	2972	4220	27	128	2.000	2.000	2.000	2.000
4220.1	4220	2976	48	11	0.800	0.820	0.850	0.870
2976.1	2976	2977	48	17	0.920	0.950	0.970	0.990
2977.1	2977	2978	48	130	0.920	0.940	0.960	0.980
2978.1	2978	2981	48	440	0.880	0.900	0.920	0.940
2981.1	2981	6429	48	429	0.760	0.770	0.780	0.790
6429.2	6429	6180	60	358	0.380	0.390	0.390	0.400
6180.1	6180	6184	48	93	0.410	0.410	0.420	0.420
6184.1	6184	5905	48	53	0.360	0.360	0.370	0.370

Note: A d/D ratio of 1.0 represents backwater conditions, indicating a downstream capacity deficiency. A d/D ratio of 2.0 represents surcharge conditions, indicating a capacity deficiency.

In addition to evaluating existing flows plus flows from the previously constructed or planned projects for the remainder of the City to determine immediate infrastructure recommendations, the proposed Project area flows were modeled in combination with buildout flows for the remainder of the City to determine long-term infrastructure needs. The results for evaluating the system under buildout flows are similar to the results for the evaluation under existing flows, except that the extents of the capacity deficiencies are greater, with one additional section of trunk main showing a capacity deficiency. Similarly, when the flows from the proposed Project are added to the system, the extents of the capacity deficiencies are greater with one additional section of trunk main showing a capacity deficiency.

4.5 Condition Assessment

Several sanitary sewer gravity mains in the Project area were identified by the City at the outset of the project as requiring condition assessment by closed-circuit television (CCTV) inspection and subsequent condition assessment. Selected mains had not undergone inspection as part of the City's routine maintenance program and included approximately 2,322 feet of gravity main in the following locations: Maple Street between El Camino Real and Middlefield Road (1,525 linear feet); Elm Street between Lathrop Street and Main Street (225 linear feet); and along the railroad right-of-way between Elm Street and Cedar Street (572 linear feet)

4.5.1 CCTV Inspection and Condition Assessment Methodology

National Plant Services, Inc. (NPS) performed CCTV pipeline inspections using the National Association of Sewer Service Companies (NASSCO) Pipeline Assessment Certification Program (PACP) assessment and scoring system. NASSCO's PACP was established in 2002 to provide standardization and consistency to evaluation of underground infrastructure and is the industry standard in pipeline condition assessment. PACP provides a standard system to code pipeline defects associated with both Structural and Operation & Maintenance (O&M) categories. Defect codes are assigned grades to capture the severity of the observed defect. Grades range from 1 to 5 with 5 being the most significant and indicative of poor condition. Structural defects are categorized for pipe integrity and include defects such as sags, fractures, holes, other damage, and joint issues. O&M defects are categorized for service integrity and include observations of roots and other foreign debris, and infiltration. The PACP "Quick Rating" is a shorthand way of expressing the number of occurrences for the two highest severity defect grades, and thus provides a quick reference for evaluating the structural and O&M condition of each pipe.

Using the CCTV inspection results, condition assessment was performed by reviewing the inspection log files, spot checking the PACP grade 5 defects, identifying any PACP grade 3, 4, or 5 defects, and identifying mitigation measures for each defect.

4.5.2 CCTV Inspection Results

Prior to inspection, mains were cleaned by hydro-jetting. Many mains required heavy cleaning to remove grease buildup and debris. After cleaning, CCTV inspection was completed for Maple Street between El Camino Real and Middlefield Road for approximately 1,511 linear feet of 10-inch VCP. The 16-inch segment in Maple Street was identified as 10-inch in the inspection. Inspection in

Elm Street between Lathrop Street and Main Street was not completed as the gravity mains were 4-inch diameter or smaller and could not be inspected with a conventional CCTV crawler. Inspection in the Caltrain right-of-way between Main Street and Cedar Street was removed from the scope of work as the Caltrain permit could not be obtained in time.

4.5.3 Condition Assessment Results

A summary of the inspection results and recommendations for each pipe segment including the PACP Structural and O&M Quick Ratings is shown in Table 4-4.

Table 4-4. CCTV Results and Recommendations – Maple Street from El Camino Real to Middlefield Road							
US to DS MH	PACP O&M Quick Rating	PACP Structural Quick Rating	Condition and Defect Summary	Recommendation			
1187 to 1179	2C00	2400	88-feet of 10" VCP (identified as 16" in GIS); Minor deposits (grease and settled sediment)	Regular cleaning			
1179 to 1186	4131	3B2F	327-feet of 10" VCP; Several Grade 3 structural sags; Grade 3 lining failure/bulges; Minor deposits (attached grease); Grade 3 roots at MH1186	Regular cleaning; Remove roots and grout with a root inhibitor additive; Monitor changes to lining and repair as needed			
1186 to 1185	2L00	3121	256-feet of 10" VCP: Grade 3 lining failure/bulge; Minor deposits (attached grease)	Regular cleaning			
1185 to 1852	5141	0000	72-feet of 10" VCP; Grade 5 deposits (attached grease)	Regular cleaning			
1852 to 1851	3126	3923	227-feet of 10" Clay tile; 90-degree bend in pipe; Grade 3 structural sag; Grade 3 lining failure/blister	Regular cleaning; Monitor changes to lining and repair as needed			
1851 to 1850	2D00	322B	285-feet of 10" VCP; Two Grade 3 lining failures; Broken service tap; Minor deposits (attached grease);	Regular cleaning; Monitor changes to lining and repair as needed			
1850 to 2646	4121	3A22	256-feet of 10" VCP; Several Grade 3 and Grade 2 structural sags; Camera underwater due to sag; Minor deposits (attached grease)	Regular cleaning			

In general, CCTV inspections indicate that the sewer gravity mains are in serviceable condition, with no grade 4 or 5 severity structural defects. Significant effort was spent cleaning the mains, and even then, notable grease and other deposits remained during inspection.

O&M recommendations include regular cleaning of the gravity mains. Structural repair recommendations include monitoring changes to the conditions of the lining and repairs as needed. It is also recommended for one gravity main section (10-inch VCP, manhole 1179 to manhole 1186) that root removal is performed, following by grouting of the joints with a root inhibitor additive.

See Appendix C for the detailed CCTV inspection reports.

4.6 Summary of Sewer System Improvements

The sanitary sewer system improvements required for the Project area, as well as the allocation of these improvements to proposed development areas within the Project, are summarized below.

The proposed Project sewer improvements include replacing the existing 27-inch trunk main on Beech Street with a 33-inch trunk main along a different alignment, as shown on Figure 4-2. The Project also proposes to realign Beech Street itself. The upsizing of the trunk main corresponds with the recommendation for CIP project P12 in the 2013 Sewer Master Plan Update Technical Memorandum (SMPU). Therefore, this proposed sewer improvement project is appropriate.

The increased flows from the Project affect trunk mains along Maple Street, Main Street, Bradford Street and Walnut Street that are included in the SMPU as capital improvement program (CIP) projects P11, P10 and P13. The trunk mains along Maple Street and Main Street are included in CIP project P11. The trunk mains along Bradford Street and along Walnut Street south of Veterans Boulevard are included in CIP project P10. The trunk mains along Walnut Street north of Veterans Boulevard are included in CIP project P13. The CIP projects are shown on Figure 4-3.

CIP project P11 consists of upsizing 10-inch and 12-inch trunk mains to 15-inch trunk mains. CIP project P10 consists of upsizing 27-inch trunk mains to 33-inch trunk mains in the area affected by the Project flows. CIP project P13 consists of upsizing 48-inch trunk mains to 54-inch trunk mains.

The system was analyzed after incorporating the upsized trunk mains for CIP projects P11, P10 and P13. The results for the buildout scenario with the proposed Project flows are presented in Table 4-5 and indicate that with the CIP projects, the system will have sufficient capacity to eliminate surcharging during PWWF conditions. However, there are five sections of trunk main along projects P11, P10 and P13 for which the d/D ratio will not meet the criterion of d/D<0.75. The exceedance of the criterion is small and may be acceptable to the City. As the City is currently updating its Sewer Master Plan, it is recommended that the City review the buildout flow projections that are currently being developed for the Sewer Master Plan Update to determine if buildout flows for these three CIP projects have increased or decreased. This will allow the City to determine if the recommended diameters for CIP projects P11, P10 and P13 need to be increased to accommodate the proposed flows from the Project.

Figures are included in Appendix D that show the extent of the surcharging for each of the scenarios included in Tables 4-2, 4-3 and 4-5. The gravity mains that show the most surcharging in the scenarios analyzed are the 27-inch gravity mains that are upsized in CIP project P10, which consists of upsizing approximately 1,000 feet of 27-inch gravity main with 33-inch gravity main. Surcharging in the 27-inch gravity mains is less than two feet above the crown of the gravity main, and the surcharging is more than 10 feet from the ground surface in all of the scenarios analyzed. There are some gravity mains within the boundaries of CIP project P11 that show surcharging, but the surcharging is relatively minimal and is less than one foot in the scenarios analyzed. However, the gravity mains within CIP project P11 are relatively shallow, with the gravity mains within three feet of the ground surface in a few locations. Therefore, it is recommended that the City consider implementing CIP project P10 and at least portions of CIP project P11 after verifying the proposed diameters through its update of the Sewer Master Plan.

							Exis	Existing CIP		P	CIP with Proje	ect 10 Upsized
Pipe ID	Upstream Node ID	Downstream Node ID	Street Name	Existing Diameter (in)	Length (ft)	Proposed CIP Project	Existing Diameter (in)	Future Without Project (d/D)	Proposed Diameter in CIP (in)	Future With Project (d/D)	Proposed Diameter (in)	Future With Project (d/D)
Breystar Pro	ject Pipelines											
918.1	918	910	Maple	10	90	11	10	0.671	15	0.354	15	0.350
910.1	910	917	Maple	10	325	11	10	0.720	15	0.370	15	0.370
917.1	917	916	Maple	10	245	11	10	0.790	15	0.420	15	0.390
916.1	916	1674	Maple	10	75	11	10	0.790	15	0.420	15	0.390
1674.1	1674	7	Maple	10	115	11	10	0.790	15	0.420	15	0.390
7.1	7	1673	Maple	10	114	11	10	0.780	15	0.420	15	0.390
1673.1	1673	1672	Maple	10	286	11	10	0.740	15	0.410	15	0.380
1672.1	1672	2677	Main	10	259	11	10	0.750	15	0.430	15	0.380
2677.1	2677	2678	Main	10	353	11	10	0.740	15	0.430	15	0.380
2678.1	2678	2673	Main	10	525	11	10	0.690	15	0.400	15	0.360
2673.1	2673	2715	Main	12	6	11	12	0.440	15	0.350	15	0.310
2715.1	2715	2716	Main	12	354	11	12	0.740	15	0.420	15	0.380
2716.1	2716	2706	Main	12	350	11	12	1.000	15	0.560	15	0.410
2706.2	2706	2705	Main	12	37	11	12	1.000	15	0.820	15	0.640
2705.1	2705	4234	Bradford	27	305	10	27	2.000	33	0.800	36	0.660
4234.1	4234	2970	Walnut	27	360	10	27	2.000	33	0.810	36	0.700
2970.2	2970	2972	Walnut	27	236	10	27	2.000	33	0.810	36	0.700
2972.1	2972	4220	Walnut	27	128	10	27	2.000	33	0.730	33	0.710
4220.1	4220	2976	Walnut	48	11		48	0.850	48	0.710	48	0.700
2976.1	2976	2977	Walnut	48	17		48	0.970	48	0.830	48	0.820
2977.1	2977	2978	Walnut	48	130	13	48	0.960	54	0.740	54	0.730
2978.1	2978	2981	Walnut	48	440	13	48	0.920	54	0.730	54	0.720
2981.1	2981	6429	Walnut	48	429	13	48	0.780	54	0.650	54	0.640
6429.2	6429	2997	Walnut	60	16	13	48	0.610	54	0.540	48	0.630
6180.1	2997	6180	Walnut	48	351	13	48	0.610	54	0.540	48	0.620

ASSOCIATES

Note: Planning Areas A, B, C, D and E are displayed.

Residential

Commercial

Scale in Feet

Retail

Parking Vacant

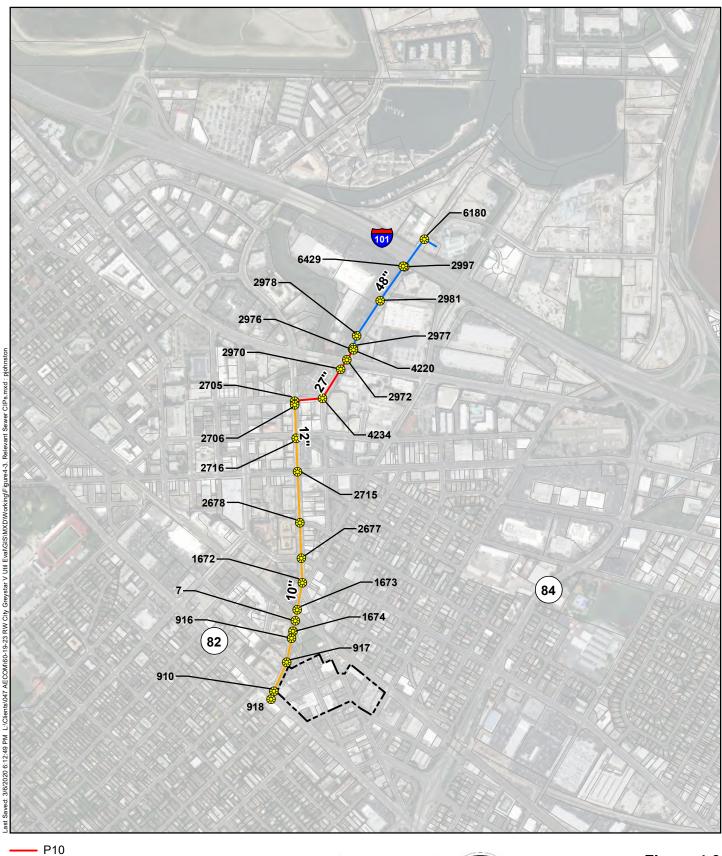
Manhole

Streets

Parcels

Project Boundary

60



200

ASSOCIATES

Scale in Feet Note: Planning Areas A, B, C, D and E are displayed.

City of Redwood City South Main Utility Evaluation

Project Boundary

----- Streets

Parcels

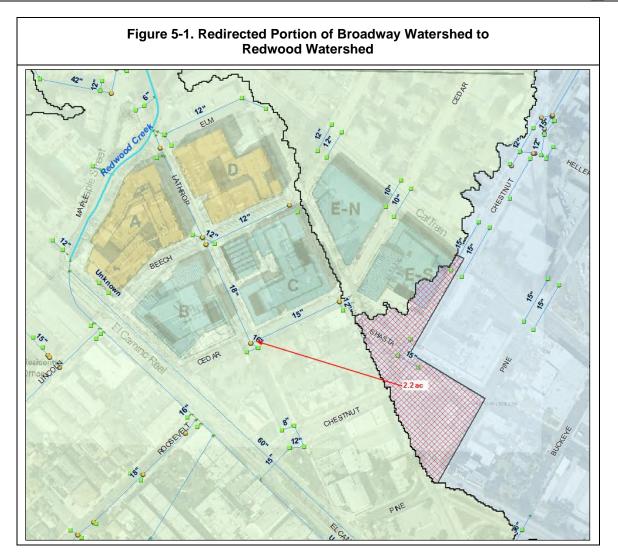
500 1,000 Scale in Feet

ASSOCIATES

Figure 4-3

Relevant Sewer CIPs

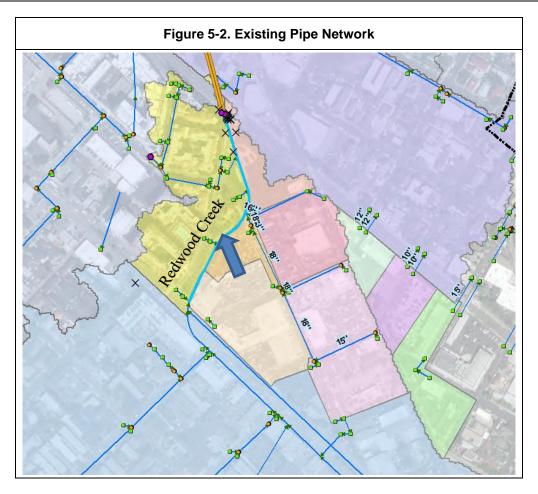
City of Redwood City South Main Utility Evaluation


5.0 HYDRAULIC EVALUATION OF EXISTING AND PROPOSED STORM DRAIN SYSTEMS

This section discusses the hydraulic analysis of the storm drain system for the existing condition (prior to Project development) and proposed condition (post Project development) for the 10-year, 30-year, and 100-year frequency design storms. The analysis reflected changes to land use and assessed the performance of the proposed storm drain system improvements.

5.1 Existing Condition Model

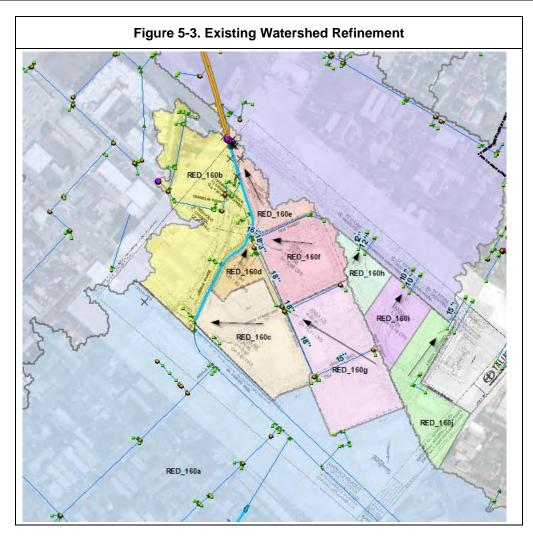
The Project area covers watersheds that have previously been evaluated in two different storm drain models. Review of the Project area indicated there was no need to combine the Eastern Low-Lying Area (ELLA) Drainage Master Plan (DMP) and ELLA Modification models to accomplish the goals of this analysis. The small portion of watershed included in the Broadway drainage system (ELLA Modification model) to be redirected toward the Redwood Creek drainage system (ELLA DMP model) as part of the Project is only 2.2 acres in size. Any impact to the Broadway system will be beneficial (reduced flows and lower water surface elevations) and impacts to the Redwood Creek system can be assessed using only the ELLA DMP model. The Redwood Creek sub-watersheds (green), Broadway sub-watersheds (blue), and the portion of Broadway watershed to be redirected toward the Redwood Creek system (hatched red) are shown in Figure 5-1.



The existing condition Project model was based on the existing condition ELLA DMP model and had refinements to focus on the Project area. The refinements included subdividing existing watersheds, adding the local onsite drainage system and high density 2D representation of the development area. All model features outside the vicinity of the Project area in the existing condition Project model are the same as the ELLA DMP model. The following sub-sections describe only the components of the existing condition ELLA DMP model that were refined and incorporated in the existing condition Project model.

5.1.1 Existing Pipe Network

The existing pipe network in Figure 5-2 of the Project area consists of 15-inch to 18-inch diameter gravity mains that drain North towards Redwood Creek, as illustrated in below. These pipes were added to the ELLA DMP model to assess the local on-site drainage characteristics.



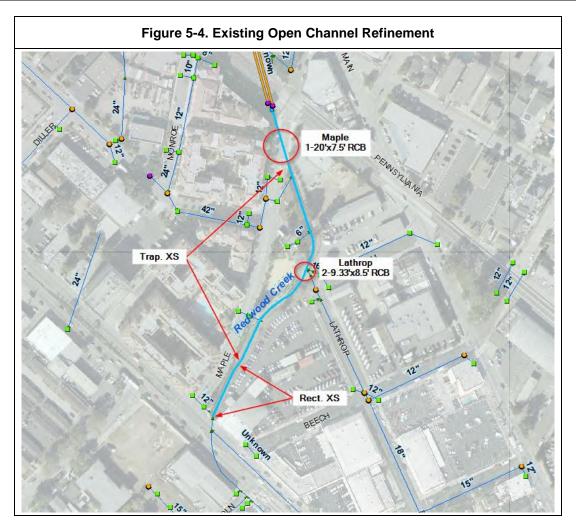
5.1.2 Existing Watersheds

The existing watersheds in the ELLA DMP model were refined to reflect the local drainage pattern around the Project area. This involved sub-dividing the large upland watershed designated in the ELLA DMP model as ID: RED_160. As shown in Figure 5-3, the upper portion of watershed RED_160 was cut along El Camino Real creating sub-watershed RED_160a. The general Project area was cut along the Redwood Creek and in between Cedar and Chestnut Streets creating sub-watersheds RED_160c through RED_160j, which reflect the detailed existing drainage conditions at this location. The remaining portion of RED_160 (yellow) was cut along Redwood Creek creating sub-watersheds are unchanged in the existing condition.

The land use and soil datasets were unchanged and reflected the existing condition as defined in the ELLA DMP model. Only the newly subdivided watersheds from RED_160 have updated Snyder runoff transformation parameters. All hydrologic methods were consistent with the ELLA DMP model.

Table 5-1 presents the subdivided watershed's (RED_160a – RED_160j) Snyder runoff parameters for the existing condition Project model.

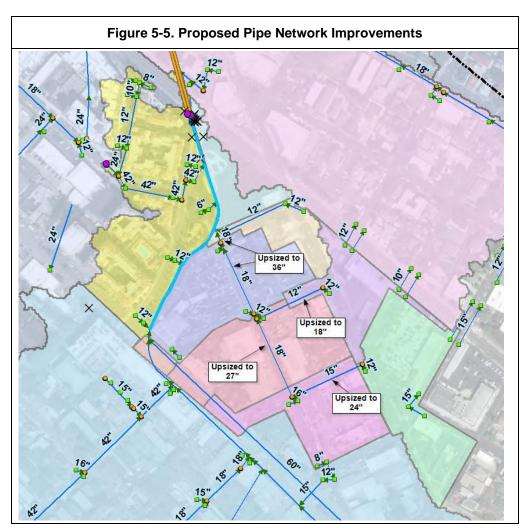
	Table 5-2. Existing Sub-Watershed Snyder Parameters											
Identifier	Area (ac)	Lag Time (mins)	Peaking Factor	Percent Impervious	Percent Soil A	Percent Soil B	Percent Soil C	Percent Soil D				
RED_160a	3354.8	40	0.5	20.4	0.1	30.1	44.8	4.6				
RED_160b	6.5	5	0.5	85	-	-	-	15				
RED_160c	3.5	5	0.5	85	-	-	-	15				
RED_160d	1	5	0.5	85	-	-	-	15				
RED_160e	1.2	5	0.5	90	-	-	-	10				
RED_160f	2.6	5	0.5	85	-	-	-	15				
RED_160g	4.6	5	0.5	85	-	-	-	15				
RED_160h	1	5	0.5	85	-	-	-	15				
RED_160i	1.5	5	0.5	85	-	-	-	15				
RED_160j	2.5	5	0.5	85	-	-	-	15				


The sub-watersheds RED_160c through RED_160_j were assigned imperviousness values consistent with the ELLA DMP study based on the existing land use dataset which are designated as Commercial (85 impervious) and Multiuse (90 percent impervious) for this location.

The flow hydrograph from upper portion of the RED_160 was injected to the model where the 15-foot by seven foot by five foot Reinforced Culvert Box (RCB) along El Camino Real daylights into open channel. The flow hydrograph from the general Project area was injected to Redwood Creek where the Lathrop Street drainage system outfalls. And the remaining portion of RED_160 was injected along the reach of Redwood Creek channel downstream of Lathrop Street.

5.1.3 Existing Open Channel System

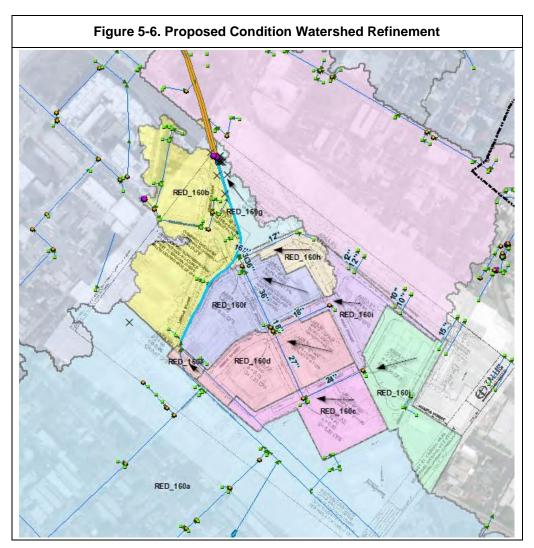
The open channel reach of Redwood Creek from El Camino Real to Maple Street was refined to more accurately define channel section geometry, account for headlosses at culvert crossings along the reach, and allow for lateral spill to the overbank. The open channel reach contains two street crossings, at Lathrop Street (two 9.33-foot by 8.5-foot RBC) and at Maple Street (one 20-foot by 7.5-foot RCB) per as-built drawing M-166 (01732.tif) dated 1967. The channel cross section varies from rectangular and trapezoid cross-sections per M-166. The culvert locations and channel cross-section shape extents are shown in Figure 5-4.



5.2 Proposed Condition Model

The proposed (developed) condition Project model is based on the existing condition Project model discussed in Section 5.1 and has refinements for the improvements in the Project area. All model features outside the vicinity of the Project area in the proposed condition Project model are the same as the existing condition Project model. The following sub-sections describe only the refined components of the existing condition Project model now incorporated in the proposed condition Project model.

5.2.1 Proposed Pipe Network


The proposed condition involves the improvement of the local drainage system by upsizing gravity mains, as shown in Figure 5-5.

5.2.2 Proposed Watersheds

The proposed watershed refinement process was similar to the process for refinement of existing watersheds. RED_160 was divided into RED_160a through RED_160j to reflect the proposed drainage systems watersheds as shown in Figure 5-6. Note, in the proposed condition RED_160h, RED_160i and RED_160j now drain towards Redwood Creek rather than toward the siphons along the Caltrain corridor.

The PROJECT sub-watershed (RED_160a-j) Snyder runoff parameters for the proposed condition model are presented in Table 5-2.

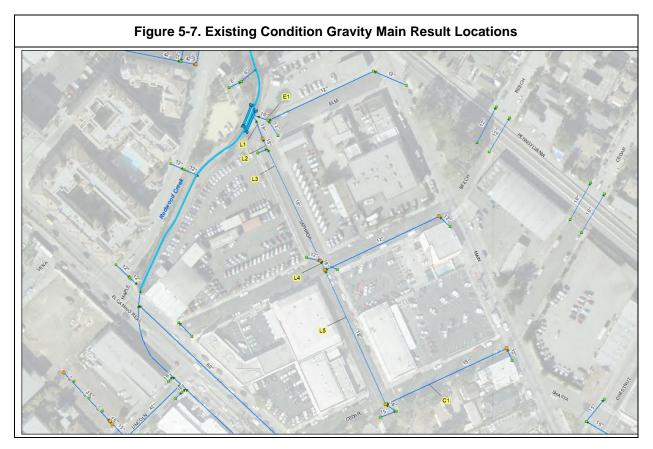
	Table 5-3 Proposed Condition Watershed Parameters											
Identifier	Area (ac)	Lag Time (mins)	Peaking Factor	Percent Impervious	Percent Soil A	Percent Soil B	Percent Soil C	Percent Soil D				
RED_160a	3354.8	40	0.5	20.4	0.1	30.1	44.8	4.6				
RED_160b	6.5	5	0.5	85	-	-	-	15				
RED_160c	2.8	5	0.5	85	-	-	-	15				
RED_160d	3.9	5	0.5	85	-	-	-	15				
RED_160e	0.3	5	0.5	85	-	-	-	15				
RED_160f	3.6	5	0.5	80	-	-	-	20				
RED_160g	1.2	5	0.5	90	-	-	-	10				
RED_160h	1.2	5	0.5	80	-	-	-	20				
RED_160i	1.9	5	0.5	85	-	-	-	15				
RED_160j	3.9	5	0.5	85	-	-	-	15				

The sub-watersheds in RED_160c-RED_160j were assigned imperviousness values per the proposed land use map provided by the developer. The proposed condition designates the northern parcels land use as residential, and the southern and eastern parcels as office space, which translates to Apartments (80 percent impervious), and Commercial (85 percent impervious), respectively. Sub-watershed RED_160g remains as it did in the existing condition as Multiuse (90 percent impervious).

One considerable difference between the existing and proposed condition Project models is that the three eastern sub-watersheds (RED_160h, RED_160i and RED_160j) drain into the upsized 18" and 24" gravity mains instead of towards the siphons at the Caltrain railroad tracks.

5.2.3 Open Channel System

There are no changes to the open channel system in the existing and proposed Project models.


5.3 Model Results

The existing and proposed condition models were quality checked for numerically stability and validity. Model results for gravity mains, Redwood Creek open channel, and overland floodplains are discussed below.

5.3.1 Gravity Main Results

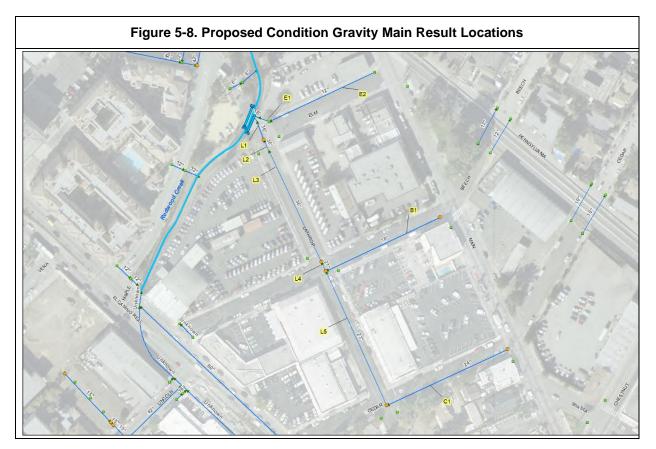

The existing condition model gravity main peak flows are shown in Table 5-3. The values in Table 5-3 correspond the mains labeled in Figure 5-7.

Table 5-3. Existing Condition Gravity Main Peak Flow									
Street	ID	Existing Diameter (in)	Existing 10-yr Flow (cfs)	Existing 30-yr Flow (cfs)	Existing 100-yr Flow (cfs)				
Lathrop	L1	18	7	9	12				
Lathrop	L2	18	7	9	12				
Lathrop	L3	18	6	7	10				
Lathrop	L4	18	6	7	10				
Lathrop	L5	18	4	4	5				
Elm	E1	16	4	6	9				
Cedar	C1	15	3	4	4				

The proposed condition model gravity main peak flows are shown in Table 5-4. The values in 5-4 correspond the mains labeled in Figure 5-8.

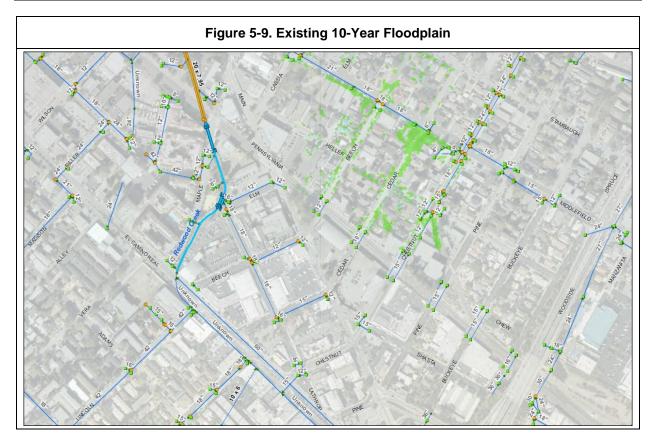
Table 5-4. Proposed Condition Gravity Main Peak Flow									
Street	Identifier	Proposed Diameter (in)	Proposed 10-yr Flow (cfs)	Proposed 30-yr Flow (cfs)	Proposed 100- yr Flow (cfs)				
Lathrop	L1	36	21	27	40				
Lathrop	L2	36	16	21	28				
Lathrop	L3	36	16	21	25				
Lathrop	L4	27	11	15	18				
Lathrop	L5	27	9	12	14				
Elm	E1	16	3	6	9				
Elm	E2	12	2	2	3				
Beech	B1	18	2	3	4				
Cedar	C1	25	5	7	8				

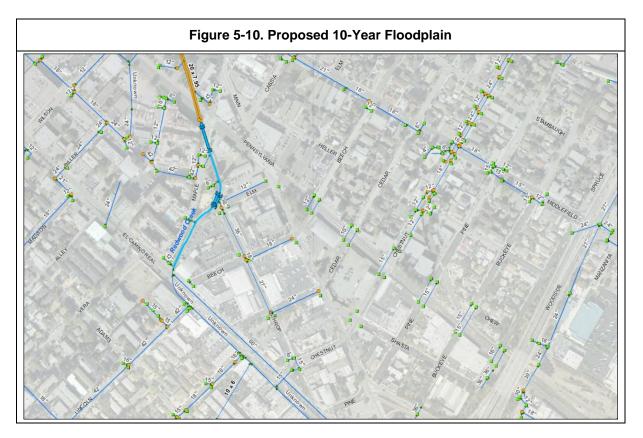
The existing gravity mains meet the 30-year level of service criteria established by Redwood City. The proposed gravity mains exceed the criteria and have a 100-year level of service.

However, it should be noted that in both the existing and proposed condition models, high water levels in Redwood Creek during the 100-year design storm event cause backflow into the local storm gravity mains. Installation of flap gates on the new gravity main outfalls at Lathrop Street are highly recommended for the proposed condition to eliminate backflow and limit flooding. Without flap gates, the 100-year design storm is expected to surcharge into the street and result in similar floodplains in the existing and proposed condition.

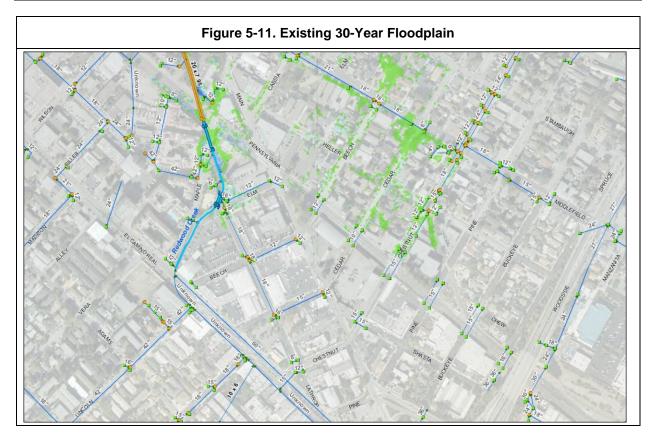
5.3.2 Open Channel Results

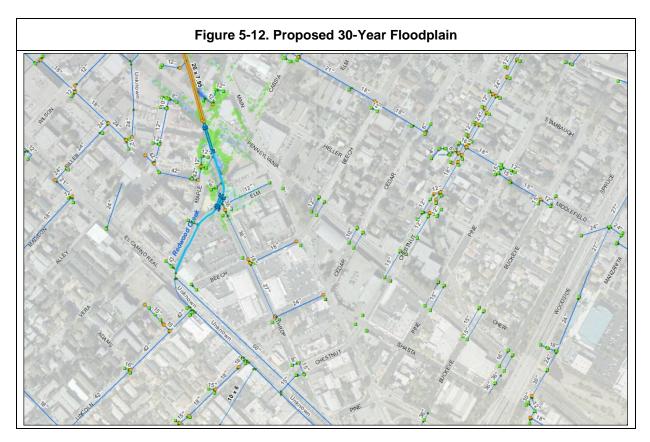
The existing and proposed condition model peak flows in Redwood Creek at the downstream face of the Lathrop culvert crossing for the 10-year, 30-year, and 100-year design storm events are presented in Table 5-5. There is no significant change in channel flow in the vicinity of the development between existing and proposed conditions; flow further downstream in the system is almost identical.

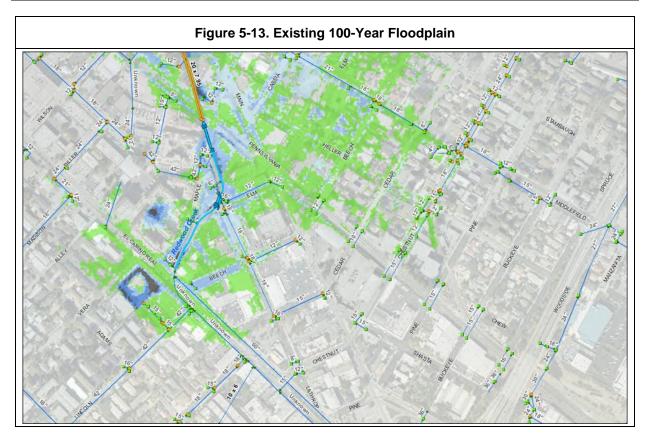

Table 5-5. Open Channel Peak Flow								
Existing Condition Peak ChannelProposed Condition Peak ChannelDesign Storm EventFlow (cfs)Flow (cfs)								
100-year	1,530	1,540						
30-year	1,090	1,090						
10-year	650	650						

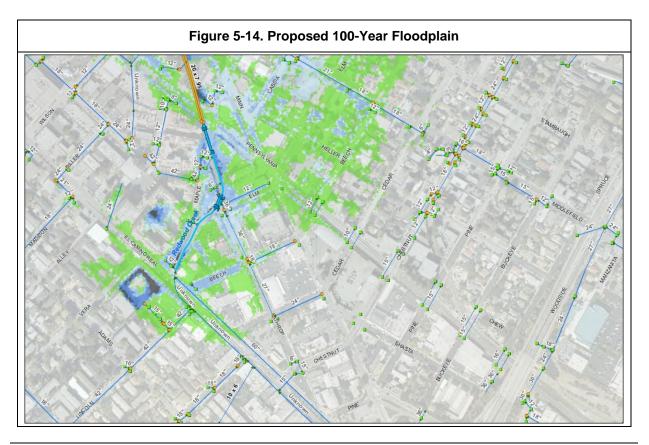

In the existing and proposed condition models for the 100-year design storm event, spill from the right bank of Redwood Creek occurs due to high water levels. In the proposed condition model, the channel water level peaks at approximately 17 to 18 feet NAVD88 for about 1hr duration. The channel peak stage occurs approximately 30 minutes later than the peak onsite runoff.

5.3.3 Floodplain Results


The existing condition and proposed condition model floodplains for the are shown in Figure 5-9 through Figure 5-14. The floodplains for the 10-year and 30-year design storms are minimal in the development area because the system capacity is adequate. In the 100-year design event flooding is expected due to channel spill and the peak flood elevation is approximately 17-18 feet NAVD88.

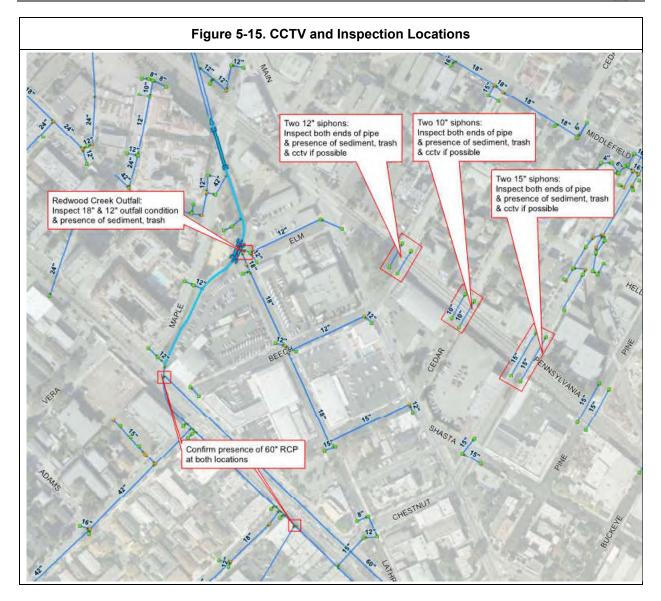






5.3.4 Conclusions

The proposed development infrastructure capacity meets Redwood City drainage criteria. No significant changes are observed in Redwood Creek due to the proposed development. The redirection of Planning Area E in the developed condition (to drain towards Redwood Creek rather than overland towards the Caltrain siphons) results in reduced floodplains in all design storm events analyzed. The 100-year event results in high water levels in Redwood Creek and it is recommended that flap gates be installed on the new outlet gravity mains at Lathrop Street crossing.


5.4 Condition Assessment

CCTV condition assessments and inspections were performed by National Plant Services, Inc. (NPS) for the stormwater conduits. NPS operators performed NASSCO PACP inspections and completed hydro-cleaning prior to inspections by jetting and a vacuum truck. The complete technical memo and inspections report prepared by NPS is available in Appendix C.

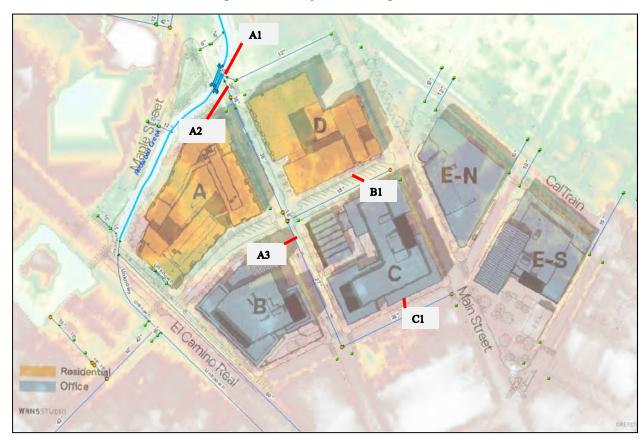
Approximately 700 feet of stormwater conduit was selected for CCTV and inspection. The locations are listed below and shown in Figure 5-15.

- (2) Siphons at Beech Street and Pennsylvania Avenue/Caltrain ROW: approximately 174 LF of 12-inch CMP.
- (2) Siphons at Cedar Street and Pennsylvania Avenue/Caltrain ROW: approximately 189 LF of 10-inch CMP.
- (2) Siphons at Chestnut Street and Pennsylvania Avenue /Caltrain ROW: approximately 332 LF of 15-inch RCP.
- (2) Outfalls to Redwood Creek at Lathrop Street: approximately 26 LF of 16-inch RCP and 43 LF of 16-inch RCP gravity mains.
- Confirm presence of 60-inch RCP gravity main at two locations:
 - El Camino Real between Maple Street and Beech Street
 - El Camino Real, south of Roosevelt Avenue (in front of 1708 and 1710 El Camino Real)

NPS was able to perform inspections for almost all locations. A summary of their work performed for stormwater conduits is presented in Table 5-6.

Table 5-6. NPS Summary of Work Performed							
Description	Status as of 3/23/2020						
Two (2) Siphons at Beech Street and Pennsylvania Avenue/Caltrain ROW: approximately 174 LF of 12-inch CMP	Able to camera the majority of both siphons						
Two (2) Siphons at Cedar Street and Pennsylvania Avenue/Caltrain ROW: approximately 189 LF of 10-inch CMP	Unable to camera with repeated visits/attempts with mini crawler due to access being blocked by cars or activity, and due to being full of water from rains.						
Two (2) Siphons at Chestnut Street and Pennsylvania Avenue /Caltrain ROW: approximately 332 LF of 15-inch RCP	Able to camera the majority of both siphons						
Two (2) Outfalls to Redwood Creek at Lathrop Street: approximately 26 LF of 16-inch RCP and 43 LF of 16-inch RCP gravity mains	Able to camera the pipes from the outfalls to the upstream drainage inlet						
Confirm presence of 60-inch RCP gravity main at two locations	Presence confirmed at both locations (walked box culvert at each end to locate tie-in of 60" to the box culvert).						

NPS performed PACP coding using Wincan VX PACP Version 6 software. The PACP quick score ratings for structural, operations and maintenance and the overall pipe rating were assigned for each pipe segment.


The CCTV and inspections found that the conduits are in serviceable condition. Recommendations are provided for both operations and maintenance (O&M), and structural deficiencies. For O&M deficiencies, NPS recommends performing routine cleaning of the conduit segments by jetting. For structural deficiencies, NPS found that some of the 10" and 12" conduit (syphons) under the Caltrans ROW are experiencing corrosion and should be monitored overtime with corrective actions taken if needed. NPS also found that one of the 10" Caltrans conduits has a joint offset deficiency that should be repaired with CIPP or replaced, and one 12" conduits has a hole that should be repaired with CIPP lining. The 15" Caltrans conduits and conduits that outfall to Redwood Creek were found to be in good condition. The presence of the larger 60" conduits on El Camino Real were confirmed at both locations inspected.

See Appendix C for complete results and recommendations by NPS for each inspected conduit.

5.5 Infrastructure Capacity by Planning Area

The infrastructure capacities serving the Project Planning Areas are presented in Table 5-7. The table corresponds to the Project Planning Areas shown in Figure 5-16. The infrastructure capacity (gravity main full flow capacity) provided for the parcel should not exceed the design values in Table 5-7. If parcel areas are sub-divided in the future, allowable discharge (runoff) form the sub-divided areas should be proportioned based on area and not exceed the provided infrastructure capacity when combined. This information shall be used in future evaluations by the City to determine impact fees associated with development of the Project area.

Figure	5-16	Proi	act	Plan	nina	Aroas
Iguie	5-10.	FIU	ECL	гіаш	my	Aleas

Table 5-7. Instructure Capacity Per Planning Area										
Planning Areas	Gravity Main ID Serving Planning Area	Gravity Main Diameter Serving Planning Area	Gravity Main Full Flow Capacity (cfs)							
А	Line A2	36" RCP	35							
В	Line A3	27" RCP	16							
С	Line A3	27" RCP	16							
D	Line A1	36" RCP	38							
E-N	Line B1	18" RCP	6							
E-S	Line C1	24" RCP	12							

APPENDIX A Preliminary Utility Summary

Preliminary Utility Summary

1601 El Camino Real Redwood City, California, 94063

October 21, 2019

PREPARED FOR:

Greystar GP II, LLC 450 Sansome Street, Suite 500 San Francisco, CA 94111

PREPARED BY:

TALUS | ENGINEERING 811 San Ramon Valley Blvd, #201 Danville, California 94526 Ph: (415) 948-0440 Job No.: 18190

TABLE OF CONTENTS

OVERVIEW .		3
SECTION 1	DOMESTIC WATER	3
SECTION 2	FIRE SERVICE	4
SECTION 3	SANITARY SEWER	5
SECTION 4	STORM DRAINAGE	7

ATTACHMENTS

- Utility System Upgrade Exhibits (SS, SD, W)
- RWC Standards Attachment Q Water Demand Projection Worksheet (Existing)
- RWC Standards Attachment Q Water Demand Projection Worksheet (Proposed)
- RWC Standards Attachment Q Supplemental Pages 2 and 3
- RWC Standards Attachment L Sewage Generation Projection Worksheet (Existing)
- RWC Standards Attachment L Sewage Generation Projection Worksheet (Proposed)
- CFC Fire Table B105.1
- Fire Flow Test Results
- Region Hydrology Exhibit (Existing)
- Region Hydrology Exhibit (Proposed)
- SWMP Exhibit Post-Development (Sheet C-109)
- Hydrology and C.3 Sizing Tables (Parcels A E)
- Special Projects Worksheet (Entire Project)
- RWC C.3 Checklist (Attachment R1)
- RWC Standards Attachment G IDF Curves
- RWC Standards Attachment O Post-Development Storm Water Storage
- Flood Insurance Rate Map (Community Panel #06081C0301F Apr 5, 2019)
- Redwood City Utility GIS Maps

OVERVIEW

Talus has performed preliminary utility design of the proposed redevelopment of the South Main Planning Area located at in Redwood City, San Mateo County, California. The project site includes 18 parcels (APN's 053-181-07, 08, 09, 10 & 11; 053-182-02 & 04; 053-183-01 & 02; 053-184-02, 03, 04 & 05; 053-185-04, 05, 06 & 07; 053-186-01) and comprises approximately 8.3 acres. The properties are approximately bound by El Camino Real to the south, Elm Street to the west, Caltrain to the north and Cedar/Chestnut Streets to the east. The preliminary development program includes mixed-use residential and office development across multiple blocks with infrastructure repair and replacement for roadways adjacent to the project sites. This report is based on discussions with the client and City staff and based on experience with similar projects in Redwood City.

SECTION 1 DOMESTIC WATER

1.1 Existing Water System

Water service in the area is provided by the City of Redwood City. Existing public water mains are available along all City streets fronting of the project including a 10" main in Chestnut street, 8" mains in Lathrop and Main Streets, 6" mains in Beech and Cedar Streets, and a 4" main in Elm Street.

1.2 Existing and Proposed Water Demand

The total future domestic water demand was based on the conceptual development program provided by the architect, including 501 residential units and 567,601 sf of commercial (office & retail) space. Existing demands are calculated based on existing building floor area and use on each property. The anticipated project water demand is calculated using Attachment Q of the Redwood City Design Standards; the results are summarized as follows:

Parcel	Existing Water Demand (gpd)	Future Water Demand (gpd)	Net Water Demand Increase (gpd)
А	9,120	36,485	27,365
В	28,020	37,285	9,265
С	12,810	22,189	9,379
D	7,140	33,747	26,607
E	18,900	37,354	18,454
Total	75,990	167,060	91,070

1.3 Offsite Water Improvements

City ordinance requires that a developer must replace any existing water mains less than 6" along the project's frontage. The existing 4" main in Elm Street will be replaced from Lathrop Street to Main Street with a new 8" water line. Although currently included in the scope of work for the proposed development, the adjacent project at 1180 Main Street is required by City code to install this improvement if approved earlier. Due to

the abandonment of Cedar Street between Main Street and Caltrain right of way, including the removal of the existing water main, a new looped connection in Pennsylvania Avenue is provided.

1.4 Recycled Water

City Ordinance No. 2335 requires the use of recycled water for landscape irrigation and building plumbing. The proposed buildings will be conditioned to provide dual plumbing that will include a separate system for water closets, urinals, trap primers, and landscaping irrigation. The proposed project includes routing of a recycled water pipe to serve all buildings within the development with a future off-site connection to the City's existing system. Preliminary plans show routing of the system through Beech Street and across Caltrain. Routing of the off-site system to the ultimate connection point to the existing system will be negotiated with the City and their consultants. The recycled water pipe size is anticipated to be 6". However, the City recycled water model report by their third-party consultant will give final recommendations to the pipe size.

Based on preliminary studies by greywater specialists, a preliminary estimate of recycled water demand was provided with a ratio of 27% recycled for residential use and 62% recycled for office and retail use (Child Care excluded). Irrigation demands are not included in these ratios and are considered 100% recycled.

Parcel	Water Demand	Potable	Non- potable	Irrigation	Total Recycled
А	36,485	26,425	8,975	1,085	10,060
В	37,285	24,873	10,601	1,811	12,412
С	22,189	8,072	13,170	947	14,117
D	33,747	12,494	20,386	867	21,253
E	37,354	13,466	21,970	1,918	23,888
Total	167,060	85,330	75,102	6,628	81,730

• Child Care is excluded from non-potable uses.

Project Recycled Water Demand = 81,730 gpd

SECTION 2 FIRE SERVICE

2.1 Fire Code Requirements

Fire Flow

Talus has considered fire flow requirements for the largest proposed building, and Fire Service Requirements per the California Fire Code (CFC) are as follows:

- Building Type: Type I
- Max. Building Area = 142,058 square feet (from architect)
 - = 4,250 gpm per CFC Table B105.1
 - = 2,125 gpm (with 50% reduction for sprinklers)

The City has performed a fire flow test in the project vicinity that shows a flow rate of 2,871 gpm with a residual pressure of 20 psi. This flow rate is sufficient to comply with fire code requirements. Additional modeling of new water line installations will be provided by the City's consultant, including full build out of the proposed development.

2.2 Fire Access

Fire Code requires fire truck access to be a maximum of 150 feet from all faces of the building. Fire access to all sides of the proposed buildings is provided from public streets fronting the projects, with the exception of Parcels A and E. Parcel A will provide a manual exterior wet standpipe along the pedestrian corridor along the Redwood Channel as well as in the interior courtyard for use by the fire department. Parcel E provides a 26-foot wide emergency access road along the existing Cedar Street alignment, with a hammerhead turnaround at the Caltrain right of way.

SECTION 3 SANITARY SEWER

3.1 Existing Sewer Facilities

Sanitary sewer service to the project site is provided by the City of Redwood City. The existing sewer system serving the project area include a 10" sewer main in El Camino Real, 8" sewer in Main Street, and an 8" main running through Caltrain adjacent to the project's northerly boundary. An existing 6" sewer main is located in Lathrop Street heading northerly to the 10" main in Maple Street. Two bypass trunk mains run through the project area including an existing 24" main in Beech Street and an 18" main through Main Street. Both trunk mains extend across Caltrain right of way at the termination of Beech Street. All sewer pipes drain generally to the north and are ultimately treated at the treatment facility in Redwood Shores.

3.2 Sanitary Sewer Demand

The total estimated sanitary sewer demand is based on the preliminary development program provided by the architect, including 501 residential units and 567,601 sf of commercial (office & retail) space. The sewer demand is calculated using the Redwood City Engineering Design Standards Attachment L (attached). The results are summarized as follows:

Parcel	Existing Sewer Demand (gpd)	Future Sewer Demand (gpd)	Net Sewer Demand Increase (gpd)
А	8,664	33,630	24,966
В	26,619	33,700	7,081
С	11,571	20,180	8,609
D	6,783	31,236	24,453
E	17,955	33,664	15,709
Total	71,592	152,410	80,818

Peak flow was found to occur during business hours due to the large amount of office use. Peak flows by Parcel are summarized as follows:

Total:	Avg. Daily Demand =	152,410 gpd;	Peak Flow = 398.3 gpm*
Parcel E:	Avg. Daily Demand =	33,664 gpd;	<u> Peak Flow = 116.9 gpm</u>
Parcel D:	Avg. Daily Demand =	31,236 gpd;	Peak Flow = 108.5 gpm
Parcel C:	Avg. Daily Demand =	20,180 gpd;	Peak Flow = 70.1 gpm
Parcel B:	Avg. Daily Demand =	33,700 gpd;	Peak Flow = 117.0 gpm
Parcel A:	Avg. Daily Demand =	33,630 gpd;	Peak Flow = 112.5 gpm

* Refer to table below for peak flow (398.3 gpm / 1.07 cfs during business hours)

Peak Flow	Bus. Hrs	Off-Hrs	Max.(gpm)	Max. (cfs)	Receiving Pipe Size	% Capacity Use
Parcels A & B	168.0	159.3	168.0	0.45	10"	45%
Parcels C & D	103.5	136.5	136.5	0.37	8″	67%
Parcel E	116.9	46.8	116.9	0.31	18"	6%
Total	398.3*	342.5	398.3*	1.07	-	-

3.3 Sanitary Sewer Improvements

This report assumes that capacities are available in the proposed sewer mains to serve the development. During environmental review of the project, additional studies will be performed including system investigations and flow studies of the existing sewer facilities as well as a City-wide sewer system model by the City's consultant. At that time a more intensive study will be prepared to identify alternative routing considerations.

The proposed project is designed to split building sewage to the City's existing system including the 10" main in El Camino Real (Parcels A & B), 8" main In Main Street (Parcels C & D) and the 18" trunk main in Beech Street (Parcel E). Based on the proposed sewer service connections, the project's impact to the existing system is provided herein as a percent capture of the receiving pipes capacity with a percent full ratio of d/D = 75%.

A preliminary estimate of peak flow rates and receiving pipe capacities are provided as follows:

Pipe Capacity		
18" @ 0.25% (d/D = 0.75)	4.79	cfs
10" @ 0.25% (d/D = 0.75)	1.00	cfs
8" @ 0.25% (d/D = 0.75)	0.55	cfs

3.4 Sanitary Sewer CIP Fee

The City has implemented a Sanitary Sewer CIP program that requires developers to contribute their fair share cost towards the planned sewer improvements serving their properties. The City has allowed for developers to mitigate their impacts to the CIP projects through in-lieu payments for system upgrades. The fees are based on sanitary sewer line remediation costs to reduce rainfall dependent inflow and infiltration (RDI/I) in an amount equal to the additional sewage generated by the project. This reduction would

result in a net-zero impact to the City's system.

CIP Fee Calculation

The City has established a fee based on the total increased project flow divided by 37.6 times \$300. The project demand of 152,410 gpd is offset by the existing demand of 71,592 gpd, for a net increase of 80,818 gpd.

Increased Average Daily Sewage Flow from Project = 80,818 gpd Project CIP Fair Share Cost = 80,818 / 37.6 x \$300 = **\$ 644,824**

3.5 Project 11 / Additional CIP Impacts

The sanitary sewer CIP fee above will provide the developer's fair share portion of the existing planned CIP improvements. However, the planned CIP improvements were modeled in anticipation of scattered development throughout the City and may not account for concentrated development in one area. The City's Sewer Model Study will identify whether additional impacts not covered by the CIP are triggered by the proposed development and give recommendations for additional off-site sewer improvements that may be required for this project.

3.6 Beech Street Sewer Upgrade

The existing 27" trunk main in Beech Street serving upstream development is undersized to handle the peak wet weather flows directed through the project site. As a condition of approval, the developer is requested to upsize the trunk main to 36" or larger depending on the findings of a third-party review of the City's master sewer system infrastructure. Relocation of the trunk main alignment will be required for both the relocation of Beech Street between Lathrop and El Camino Real, as well as to maintain continuous operation of the system during construction.

SECTION 4 STORM DRAINAGE

4.1 Existing Site Drainage

The majority of the project site runoff drains generally by surface flow to the street gutters along parcel frontages where it is collected into a public storm drain system. The storm drain system drains to an existing 18" diameter concrete pipe in Lathrop Street, draining north to the Redwood Channel just north of Elm Street. The portion of the project to the east of Main Street drains towards the Caltrain right of way, where it drains through shallow pipes ranging from 10" to 15" in diameter crossing the Caltrain tracks.

4.2 Proposed Site Drainage

Project drainage from each parcel will be collected through the building's plumbing and directed to the existing public storm drain system after adequate treatment and detention requirements have been met. Due to inadequate infrastructure serving Parcel E, the entire project site will be directed to a central storm drain system in Lathrop Street, discharging to the Redwood Channel. Regulatory permitting will be required through USACE, CA DFW and CA RWQCB as noted on the project plans. Existing Caltrain bubbler pipes are not taken into consideration with project hydrology design. They are shown to remain at the request of the City as overland release in case of system failure or surcharge.

4.3 Regional Hydrology Impacts

A preliminary hydrology study of the existing and proposed drainage volumes is provided (exhibits attached) showing the impacts of the proposed development for the 100-year storm event (i=2.50). Existing runoff from the project area is currently split between the Redwood Channel and the shallow syphon storm drain lines at Caltrain. Existing hydrology is split between the two at rates of 26.3 cfs to the Redwood Channel and 10.2 cfs to Caltrain.

Since existing site conditions are largely impervious, the proposed development does not account for a net increase in storm water runoff, especially when accounting for on-site detention requirements listed below. However, the redirection of stormwater from Caltrain to the Redwood Channel will create a net increase of 5.9 cfs to the Redwood Channel.

Due to the concentration of project runoff through Lathrop Street towards the Redwood Channel, the existing storm drain system will be upsized to handle the larger flows. During environmental review of the project, a more detailed study will be provided that includes the design hydraulic grade in the Redwood Channel and accounts for any in-line detention that may be required to offset the diversion of project runoff at Parcel E.

4.4 On-site Storm Water Detention

Due to the increase in impervious surfaces and the City's higher drainage coefficient for roof areas, peak flows discharging from the site will be increased by the proposed project. Detention of storm waters will be required to mitigate any adverse impacts to the existing system. The City's design standards require that the proposed 30-year storm event be compared to the existing 10-year event, which increases the detention requirement. Onsite detention for the proposed development will be provided in detention vaults or underground pipes placed on the individual parcels.

4.5 Storm Water Treatment

The proposed development qualifies as a Special Project based on Appendix J Section J.4 of the MRP, category C: Transit Oriented Development. Depending on parcel design, non-LID treatment credits are available in the range of 55% to 75%. For each site, a portion of the building roof will drain to LID flow-through treatment planters, with the remainder of the site handled through non-LID media filter devices. Treatment sizing calculations are or included in this report.

4.6 Flood Protection - FEMA

Based on the Flood Insurance Rate Map (FIRM# 06081C0301E dated April 5, 2019) project site is situated in Flood Zone X, identified as areas less than 0.2 percent chance flood. No processing with FEMA will be required for development on the site.

	WATER D	EMAND PROJE		SHEET	
JOB TITLE 10 JOB NUMBER JOB LOCATION	501 ECR - Pcl <u>18190</u> <u>Redwood C</u>		CAL. BY _ CHKD. BY DATE _		-
	INDO	OR WATER DE	MAND PROJE	CTION	
A. RESIDENT	AL				
	Family (1-7 Ur Units X	nits/Acre) 2.8 Persons	=	Persons	
	Family (8-20 U Units X	Jnits/Acre) 2.5 Persons	=	Persons	
3. High -	Density (21+ U Units X	Jnits/Acre) 2.2 Persons	=	Persons	
	P	ersons X 6	0 [*] GPD =		GPD Projected
B. OFFICE/CC		0.13 gpd/sqft	=	_GPD Proj	ected
C. HOTEL	rooms X	195 gpd/room	=	GPD Proj	ected
D. RESTAUR		30 gpd/seat	=	GPD Proj	ected
E. ALL OTHE	RS SEE PAG	E 3:	=9,120	GPD Proj	ected
	LANDS		R DEMAND PR	OJECTION	
	sqft X 3.	5 cuft of water /s landscape per		CUI	T/YR
To convert to GPI		gal/ X 1 yr/ cuft 365 d	=	GPI) Projected
	TOTAL	OMESTIC WA	TER DEMAND	PROJECTIC	N
INDOOR + LAI	NDSCAPING	PROJECTION	=9,1	<u>20</u> GF	D Projected
Section E Calcu		•			
Retail : 90 ft x 4					
Service: 10 bay	$s \ge 750 \text{ gpd} =$	7,500 gpd			

	WATER DEMAND PRO	OJECTION WORKSHEET
JOB NUMBER	601 ECR - Pcl B - Existing 18190 Redwood City, CA	CHKD. BY EM
	INDOOR WATER	DEMAND PROJECTION
A. RESIDENT	IAL	
	e Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
	Density (21+ Units/Acre) Units X 2.2 Persons	=Persons
	Persons X	60 [*] GPD =GPD Projected
B. OFFICE/CO		t =GPD Projected
C. HOTEL	rooms X 195 gpd/roon	m =GPD Projected
D. RESTAUR	ANTS seats X 30 gpd/seat	=GPD Projected
E. ALL OTHE	RS SEE PAGE 3:	= 28,020 GPD Projected
	LANDSCAPING WA	TER DEMAND PROJECTION
	sqft X 3.5 cuft of wate landscape	
Fo convert to GPI	cuft/yr X 7.48 gal/ X 1	yr/ = GPD Projected
	TOTAL DOMESTIC V	VATER DEMAND PROJECTION
INDOOR + LA	NDSCAPING PROJECTIC	ON = 28,020 GPD Projected
Section E Calcu	ulation Summary	
	450 gpd / 25 ft = 2,520 gpc	d

	WATER DEMAND PROJECTION WORKSHEET
JOB TITLE JOB NUM JOB LOCA	
	INDOOR WATER DEMAND PROJECTION
A. RESI	DENTIAL
	Single Family (1-7 Units/Acre) Units X 2.8 Persons =Persons
	Multi - Family (8-20 Units/Acre) Units X 2.5 Persons =Persons
3. 1	High - Density (21+ Units/Acre) 24 Units X 2.2 Persons = <u>53</u> Persons
	53 Persons X 60^* GPD = 3,180 GPD Projected
C. HOTE	sqft X 0.13 gpd/sqft =GPD Projected Lrooms X 195 gpd/room =GPD Projected AURANTS
	seats X 30 gpd/seat =GPD Projected
E. ALL C	THERS SEE PAGE 3: = <u>9,000</u> GPD Projected
	LANDSCAPING WATER DEMAND PROJECTION
_	sqft X 3.5 cuft of water /sqft of =CUFT/YR landscape per year
To convert	to GPD: cuft/yr X 7.48 gal/ X 1 yr/ = GPD Projected cuft 365 days
	TOTAL DOMESTIC WATER DEMAND PROJECTION
	+ LANDSCAPING PROJECTION = 12,810 GPD Projected
INDOOR	
	Calculation Summary

	WATER	DEMAND PROJ	ECTION WOF	KSHEET	
JOB NUMBER	18190	cl D - Existing City, CA	CAL. BY CHKD. E DATE)
	IND	OOR WATER DE	MAND PRO	JECTION	
A. RESIDENT	IAL				
	Family (1-7 l Units X	Jnits/Acre) 2.8 Persons	=	Persons	
	Family (8-20 Units X	Units/Acre) 2.5 Persons	=	_Persons	
	Density (21+ Units X	Units/Acre) 2.2 Persons	=	_Persons	
		Persons X (60 [*] GPD =		GPD Projected
B. OFFICE/C		0.13 gpd/sqft	=	GPD Pro	jected
C. HOTEL	rooms X	195 gpd/room	=	GPD Pro	jected
D. RESTAUR		30 gpd/seat	=	GPD Pro	jected
E. ALL OTHE	RS SEE PA	GE 3:	=7,140	GPD Pro	ojected
	LANDS	CAPING WATE	R DEMAND F	ROJECTION	4
	sqft X :	3.5 cuft of water / landscape per		c	JFT/YR
Fo convert to GP		8 gal/ X 1 yr/ cuft 365 c	=	GF	D Projected
	TOTAL	DOMESTIC WA	TER DEMAN	D PROJECT	ION
INDOOR + LA		G PROJECTION	-	1.40	PD Projected
Saction E Cala	ulation Sumr	nary			
Section E Cale		-	x 30 gpd = 1,		

	WATER DEMAND PROJ	ECTION WORKSHEET
JOB NUMBER	601 ECR - Pcl E - Existing 18190 Redwood City, CA	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>09/20/2019</u>
	INDOOR WATER D	EMAND PROJECTION
A. RESIDENT	IAL	
	Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
	Density (21+ Units/Acre) Units X 2.2 Persons	=Persons
	Persons X	60 [*] GPD =GPD Projected
B. OFFICE/CO		=GPD Projected
C. HOTEL	rooms X 195 gpd/room	=GPD Projected
D. RESTAUR		=GPD Projected
E. ALL OTHE	RS SEE PAGE 3:	= 18,900 GPD Projected
	LANDSCAPING WATE	ER DEMAND PROJECTION
	sqft X 3.5 cuft of water landscape pe	· · · · · · · · · · · · · · · · · · ·
o convert to GP	uft/yr X 7.48 gal/ X 1 yr/	=GPD Projected
	TOTAL DOMESTIC WA	ATER DEMAND PROJECTION
INDOOR + LA	NDSCAPING PROJECTION	
Health Club: 13	<u>ulation Summary</u> 3,800 sf / 50 sf/pp = 276 pp x /s x 750 gpd = 12,000 gpd	for BAWSCA Agencies " , $25 \text{ gpd} = 6,900 \text{ gpd}$

	WATER DEMAND PROJ	ECTION WORKSHEET
JOB TITLE JOB NUMBEF JOB LOCATIO	$\frac{1601 \text{ ECR} - \text{Pcl A} - \text{Future}}{\text{R} \frac{18190}{\text{Redwood City, CA}}}$	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>10/21/2019</u>
	INDOOR WATER DI	EMAND PROJECTION
A. RESIDEN	ITIAL	
	gle Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	ti - Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
3. High _25	n - Density (21+ Units/Acre) <u>2 </u> Units X 2.2 Persons	= <u>554</u> Persons
	554 Persons X	60 [*] GPD = 33,240 GPD Projected
B. OFFICE	COMMERCIAL	
	sqft X 0.13 gpd/sqft	= GPD Projected
C. HOTEL	RANTS	=GPD Projected
	seats X 30 gpd/seat	=GPD Projected
E. ALL OTH	ERS SEE PAGE 3:	= 2,160 GPD Projected
	LANDSCAPING WATE	R DEMAND PROJECTION
15,132	landscape per	
o convert to G 52,962	GPD: _cuft/yr X 7.48 gal/ X 1 yr/ cuft	
	TOTAL DOMESTIC WA	TER DEMAND PROJECTION
INDOOR + L	ANDSCAPING PROJECTION	= <u>36,485</u> GPD Projected
Section E Ca	lculation Summary	
	$t \ge 450 \text{ gpd} / 25 \text{ ft} = 2,160 \text{ gpd}$	

	WATER DEMAND PROJ	IECTION WORKSHEET
JOB NUMBER	$\frac{1601 \text{ ECR} - \text{Pcl B} - \text{Future}}{18190}$ N Redwood City, CA	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>10/21/2019</u>
	INDOOR WATER D	EMAND PROJECTION
A. RESIDEN	TIAL	
-	e Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	- Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
•	- Density (21+ Units/Acre) Units X 2.2 Persons	=Persons
	Persons X	60 [*] GPD = GPD Projected
D. RESTAUR	RANTS	= GPD Projected = GPD Projected = GPD Projected
	LANDSCAPING WATE	ER DEMAND PROJECTION
25,251	sqft X 3.5 cuft of water landscape pe	
o convert to GF 88,379	cuft/yr X 7.48 gal/ X 1 yr/	= <u>1,811</u> GPD Projected days
	TOTAL DOMESTIC WA	ATER DEMAND PROJECTION
	ANDSCAPING PROJECTION	= <u>37,285</u> GPD Projected

	WATER DEMAND PRO	JECTION WORKSHEET
JOB NUMBER	$\frac{1601 \text{ ECR} - \text{Pcl C} - \text{Future}}{\frac{18190}{\text{Redwood City, CA}}}$	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>10/21/2019</u>
	INDOOR WATER D	EMAND PROJECTION
A. RESIDEN	ITIAL	
•	le Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	i - Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
3. High	n - Density (21+ Units/Acre) Units X 2.2 Persons	=Persons
	Persons X	60 [*] GPD = GPD Project
C. HOTEL D. RESTAUF E. ALL OTHI		=GPD Projected =GPD Projected =GPD Projected
	LANDSCAPING WAT	ER DEMAND PROJECTION
13,202	sqft X 3.5 cuft of water landscape pe	
Fo convert to Gl 	cuft/yr X 7.48 gal/ X 1 yr/	/ = <u>947</u> GPD Projected days
	TOTAL DOMESTIC W/	ATER DEMAND PROJECTION
INDOOR + LA	ANDSCAPING PROJECTION	Sector Se
	PUC Demand Study by URS, " Pi no of August 2006.	rojected Water Usage for BAWSCA Agencies

	WATER D	DEMAND PROJ	ECTION W	ORKSHEET	
JOB NUMB	1601 ECR - Pc ER 18190 FION Redwood (BY <u>EM</u> D. BY <u>EM</u> <u>10/21/20</u>	19
	INDO	OR WATER D		OJECTION	
A. RESID	ENTIAL				
	ngle Family (1-7 U Units X		=	Persons	
	ulti - Family (8-20 Units X		=	Persons	
	gh - Density (21+ 249 Units X		= 543	8Persons	
	548 F	Persons X	60 [*] GPD	= 32,880	GPD Projected
C. HOTEL D. RESTA	rooms X	0.13 gpd/sqft 195 gpd/room 30 gpd/seat SE 3:	=	GPD Pr GPD Pr	ojected
	LANDS	CAPING WATE	R DEMAN	D PROJECTIO	N
12,0		.5 cuft of water landscape pe	/sqft of =	10.010	UFT/YR
o convert to 42,319		-	= days	⁸⁶⁷ G	PD Projected
	TOTAL	DOMESTIC WA		AND PROJEC	TION
INDOOR +	LANDSCAPING	PROJECTION	=	33,747	GPD Projected
	FPUC Demand Stu emo of August 200		ojected Wat	er Usage for BA	WSCA Agencies ",

	WATER DEMAND PROJ	ECTION WORKSHEET
JOB NUMBER	$\frac{1601 \text{ ECR - Pcl E - Future}}{18190}$ N Redwood City, CA	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>10/21/2019</u>
	INDOOR WATER DE	EMAND PROJECTION
A. RESIDEN	TIAL	
-	le Family (1-7 Units/Acre) Units X 2.8 Persons	=Persons
	- Family (8-20 Units/Acre) Units X 2.5 Persons	=Persons
-	- Density (21+ Units/Acre) Units X 2.2 Persons	=Persons
	Persons X 6	60 [*] GPD = GPD Projected
D. RESTAUF		=GPD Projected =GPD Projected =GPD Projected
	LANDSCAPING WATE	R DEMAND PROJECTION
26,746	landscape per	
o convert to GF 93,611	PD: cuft/yr X 7.48 gal/ X 1 yr/ cuft 365 c	= <u>1,918</u> GPD Projected days
	TOTAL DOMESTIC WA	TER DEMAND PROJECTION
INDOOR + LA	ANDSCAPING PROJECTION	= <u>37,354</u> GPD Projected
	$\frac{\text{lculation Summary}}{\text{t x 450 gpd / 25 ft} = 1,980 gpd}$	

ATTACHMENT Q (2 of 3)

WATER DEMAND PROJECTION WORKSHEET OCCUPANT LOADS

JOB TITLE	
JOB NUMBER	
JOB LOCATION	

CAL. BY	
CHKD. BY	
DATE	

OCCUPANT LOAD OF FLOOR AREA

20 sqft/person

50 sqft/person/shift (3 shifts per day)

200 sqft/person

35 sqft/person

300 sqft/person

DESIGNED USE OF THE FACILITY

A. SCHOOL/CLASSROOM

B. HEALTH CLUB

C. MANUFACTURING AREAS

D. NURSERIES (DAY-CARE)

E. STORAGE FACILITIES

ATTACHMENT Q (3 of 3)

WATER DEMAND PROJECTION WORKSHEET UNIT LOADS

JOB TITLE	
JOB NUMBER	
JOB LOCATION	

TYPE OF ESTABLISHMENT

Assembly Halls **Bowling Alley** Churches Dance Halls **General Hospitals Health Clubs** Laundries Manufacturing (excluding industrial usage) Motels with bath, toilet and kitchen wastes Nursing homes/Daycare Medical Offices (other than hospitals) **Research and Development** Schools Service Station Storage facilities Stores (Retail type) (Food -- non-restaurant type) Trailer parks or tourist camps (with built-in bath)

CAL. BY	
CHKD. BY _	
DATE	

VOLUME OF CONSUMPTION/DAY

2 gal per seat 75 gal per lane 7 gal per seat 2 gal per person 0.27 gal per sqft 25 gal per person 400 gal per machine 30 gal per person/shift 170 gal per room 75 gal per person 0.18 gal per sqft 0.21 gal per sqft 35 gal per person 750 gal per bay 1 gal per person 450 gal per 25 ft frontage 900 gal per 25 ft frontage 50 gal per person

JOB TITLE 160 JOB NUMBER JOB LOCATION	$\begin{array}{r} \text{D1 ECR - Pcl A - Ex} \\ \hline 18190 \\ \hline \text{Redwood City, C} \end{array}$	_ CAI	L. BY <u>EM</u> KD. BY <u>EM</u> TE <u>09/20/2019</u>	
			BEFORE PROCEEDING	IECTION
Key: GPD _W =	GPD Water Dema GPD Sewer Dema	and Projected from	OR WATER DEMAND PRO	JECTION
A. RESIDENTIA	L			
	_ GPD _W X 0.95 =		GPDs	
B. OFFICE/COM	IMERCIAL			
	_ GPD _W X 0.95 =		GPDs	
C. HOTEL				
	_ GPD _W X 0.95 =		GPDs	
D. RESTAURAN	NTS			
D. RESTAURAN	NTS GPD _W X 0.95 =		GPDs	
E. ALL OTHER	$_{\rm GPD_W} X 0.95 =$ S TO BE REVIEWS 20 x 0.95 = 8,664	ED ON A CASE BY		
E. ALL OTHERS =9,1 F. INFILTRATIC 1. PVC pipe:	_ GPD _W X 0.95 = S TO BE REVIEW 20 x 0.95 = 8,664 DN miles X	ED ON A CASE BY GPD _S	Y CASE BASIS diameter (in.) =	GPDs
E. ALL OTHERS =9,1 F. INFILTRATIC	_ GPD _w X 0.95 = S TO BE REVIEW 20 x 0.95 = 8,664 DN miles X miles X	ED ON A CASE BY GPD _S	Y CASE BASIS	GPDs GPDs

OB TITLE 16 OB NUMBER OB LOCATION	01 ECR - Pcl B - Existi 18190 Redwood City, CA	ng CAL. CHKI DATE	00/20/2010	
			EFORE PROCEEDING	
			R WATER DEMAND PRO	DJECTION
•	GPD Water Demand I GPD Sewer Demand	•	tachment Q	
RESIDENTI	AL			
	GPD _W X 0.95 =		GPDs	
. OFFICE/CO	MMERCIAL			
	GPD _W X 0.95 =		GPDs	
. HOTEL				
	GPD_w X 0.95 =		GPDs	
. RESTAURA	NTS			
	GPD_w X 0.95 =		GPDs	
. ALL OTHER	S TO BE REVIEWED O	ON A CASE BY	CASE BASIS	
=28,0	$020 \ge 0.95 = 26,619$	GPD _S		
. INFILTRATIO				
PVC pipe:	miles X 10	00 GPD X	diameter (in.) =	GPDs
Clay pipe:	miles X 50	00 GPD X	diameter (in.) =	
. AVERAGE	DAILY FLOW =	26,619	GPD (SUM OF A - F)	
1. Peak Busi [(A+D)/12	RLY FLOW* FOR PUM ness Hr. Flow = [(B+C+ hrs]/60 min =	E)/12 hrs + (F/24 92.4 GPM	hrs)] x 2.5/60min +	
	Hrs. Flow = [(A+C+D)/12 hrs)/60 min =	hrs + (F/24hrs)] x 37.0 GPM		
((= =)=				

JOB TITLE JOB NUMBER JOB LOCATIO	$\frac{1601 \text{ ECR - Pcl C -}}{18190}$ N Redwood City,	_ `		. BY <u>EM</u> D. BY <u>EM</u> E <u>09/20/2019</u>	
				BEFORE PROCEEDING	IECTION
Key: GPD _w	 GPD Water De GPD Sewer De 	mand Pro	jected from A		JECTION
A. RESIDENT	TIAL				
3,180	GPD _W X 0.95	=	3,021	GPDs	
B. OFFICE/C	OMMERCIAL				
	GPD _W X 0.95	=		GPDs	
C. HOTEL					
	GPD _w X 0.95	=		GPDs	
D. RESTAUR	ANTS	-			
	GPD _w X 0.95	=		GPDs	
	$000 \ge 0.95 = 8,550$	GPI			
			- 5		
F. INFILTRAT		V 100		diameter (in) -	CDD
1. PVC pipe: 2. Clay pipe:		X 100 X 500		diameter (in.) = diameter (in.) =	GPD _S GPD _S
	DAILY FLOW		11,571	GPD (SUM OF A - F)	
1. Peak Bu [(A+D)/1	2 hrs]/60 min	(B+C+E)/ =3	12 hrs + (F/24 33.9 GPN	1 hrs)] x 2.5/60min + 1	
	f-Hrs. Flow = [(A+C 2 hrs)/60 min		2.4 GPN		
* Peak hourly occur at sep		fective 12	-hour day and	d that office and residential p	beaks
			XII-23		

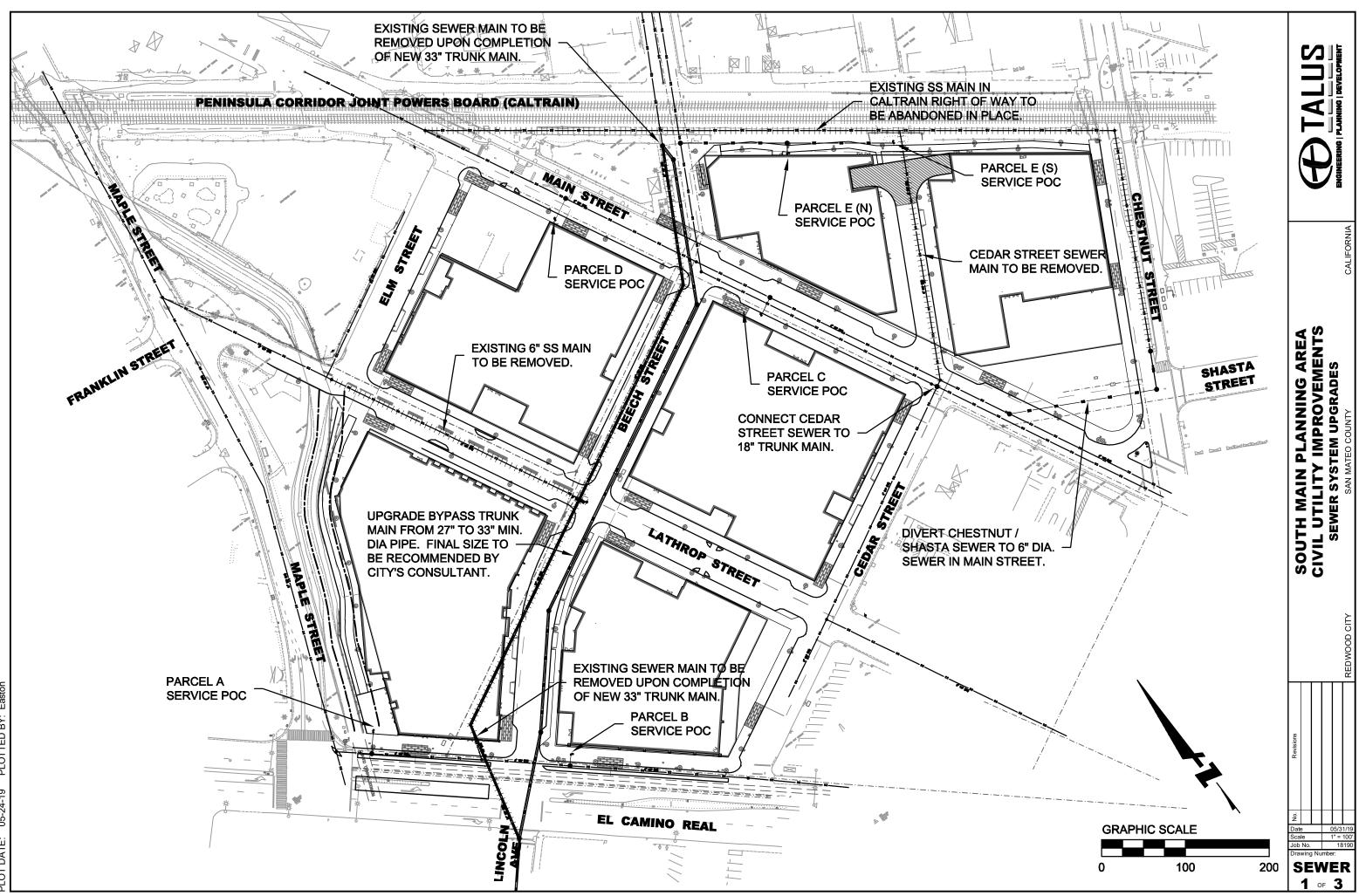
JOB TITLE <u>16</u> JOB NUMBER JOB LOCATION	01 ECR - Pcl D - 18190 Redwood City,		CHKD. BY	2M 2M 9/20/2019	
					FOTION
Key: GPD _W =	GPD Water Der GPD Sewer Der	mand Projected		R DEMAND PROJ	ECTION
A. RESIDENTIA	AL				
	GPD_W X 0.95	=	GP	D _S	
B. OFFICE/COI	MMERCIAL				
	GPD _W X 0.95	=	GP	D _S	
C. HOTEL					
	GPD_W X 0.95	=	GP	D _S	
D. RESTAURA	NTS				
				-	
	GPD X 0.95	=	GP	D _S	
E. ALL OTHER	S TO BE REVIE 40 x 0.95 = 6,783	WED ON A CAS	SE BY CASE B		GPDs
E. ALL OTHER = $\frac{7,1}{1}$ F. INFILTRATIC	S TO BE REVIEN 40 x 0.95 = 6,783 DN miles	WED ON A CAS ³ GPD _S	SE BY CASE B	ASIS	GPDs GPDs
E. ALL OTHER =7,1 F. INFILTRATIO 1. PVC pipe:	S TO BE REVIEN 40 x 0.95 = 6,783 DN miles miles	WED ON A CAS 3 GPD _S X 100 GPD 3	SE BY CASE B	ASIS eter (in.) =	

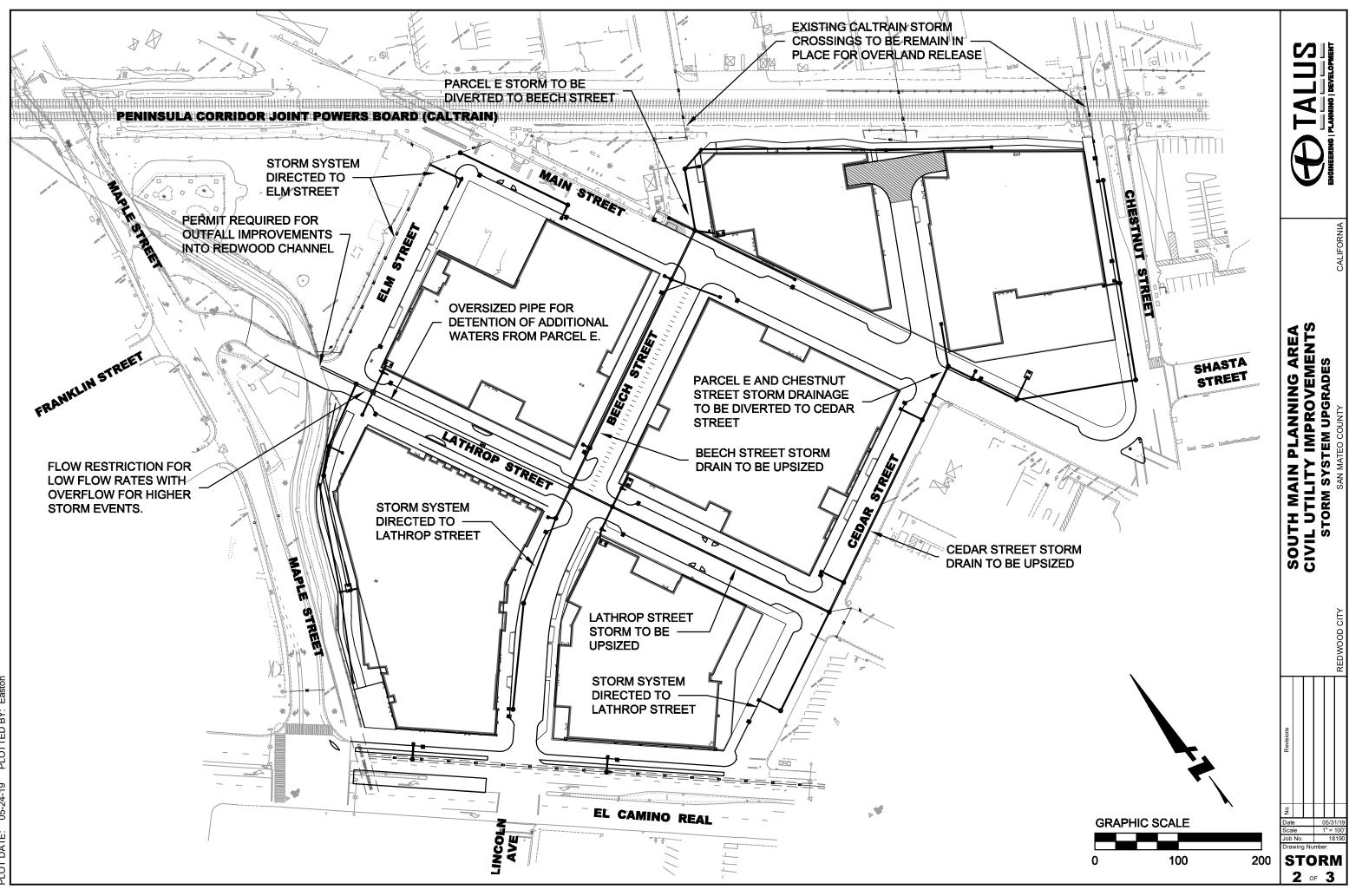
IOB TITLE 10 IOB NUMBER IOB LOCATION	01 ECR - Pcl E - Existing 18190 Redwood City, CA	g CAL. B' CHKD. DATE		
	ACHMENT Q MUST BE			IFOTION
Key: GPD _W =	ATION IS BASED ON 99 GPD Water Demand P GPD Sewer Demand P	rojected from Attac		JECTION
A. RESIDENTI	AL			
	GPD_W X 0.95 =		GPD _S	
B. OFFICE/CO	MMERCIAL			
3,711	GPD_w X 0.95 =	3,525	GPDs	
C. HOTEL				
	GPD_w X 0.95 =		GPDs	
D. RESTAURA	NTS			
	GPD _W X 0.95 =		GPDs	
	S TO BE REVIEWED O		ASE BASIS	
	900 x 0.95 = 17,955 G DN miles X 100 miles X 500) GPD X	_diameter (in.) = diameter (in.) =	
=18, F. INFILTRATIO 1. PVC pipe:	DN miles X 100 miles X 500) GPD X		GPD _S GPD _S

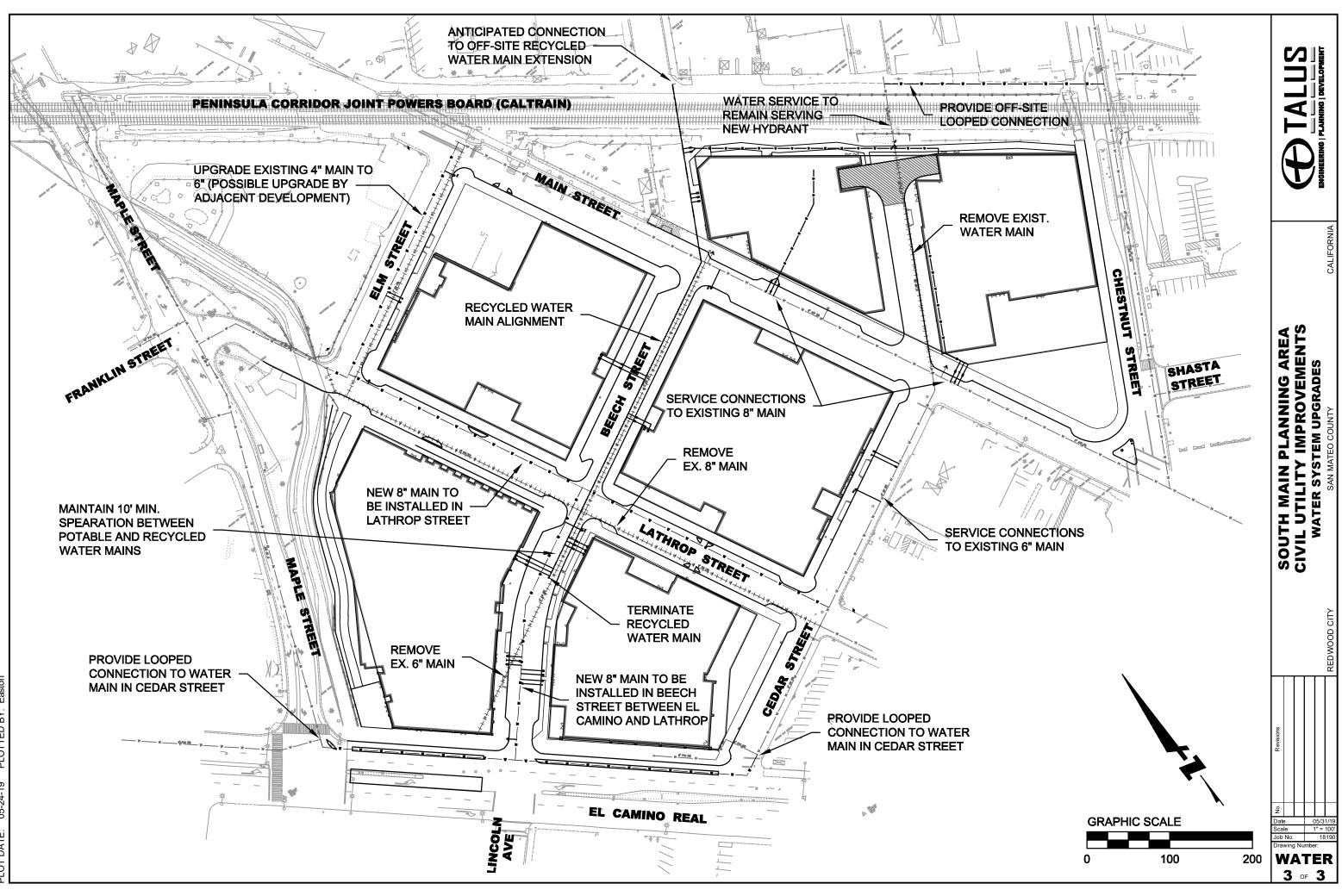
SEWAGE GENERATION PROJE	CTION WORKSHEET
JOB NUMBER $\frac{18190}{2}$ C	AL. BY <u>EM</u> HKD. BY <u>EM</u> ATE <u>10/21/2019</u>
ATTACHMENT Q MUST BE COMPLET	BEFORE PROCEEDING
SEWER GENERATION IS BASED ON 95% OF IND	OOR WATER DEMAND PROJECTION
Key:GPD_w =GPD Water Demand Projected fromGPD_s =GPD Sewer Demand Projected	Attachment Q
A. RESIDENTIAL	
$33,240 \qquad \text{GPD}_{W} \times 0.95 = 31,578$	GPD _S
B. OFFICE/COMMERCIAL	
GPD _W X 0.95 =	GPD _S
C. HOTEL	
GPD _W X 0.95 =	GPD _S
D. RESTAURANTS	
GPD _W X 0.95 =	GPDs
E. ALL OTHERS TO BE REVIEWED ON A CASE I	
= $2,160 \ge 0.95 = 2,052$ GPDs	ST CASE BASIS
<u></u>	
F. INFILTRATION	
1. PVC pipe: miles X 100 GPD X	diameter (in.) = GPDs
2. Clay pipe: miles X 500 GPD X	diameter (in.) =GPD _S
G. AVERAGE DAILY FLOW = <u>33,630</u>	GPD (SUM OF A - F)
2. Peak Off-Hrs. Flow = [(A+C+D)/12hrs + (F/24hrs ((B+E)/12 hrs)/60 min = <u>112.5</u> G * Peak hourly flows assume an effective 12-hour day	/24 hrs)] x 2.5/60min + PM)] x 2.5/60 min + PM
occur at separate times.	
XII_23	

лп 60

IOB NUMBER	$ \begin{array}{r} 01 \text{ ECR - Pcl} \\ \frac{18190}{\text{Redwood C}} \end{array} $			BY <u>EM</u> D. BY <u>EM</u> 10/21/2019	
				EFORE PROCEEDING R WATER DEMAND PRO	JECTION
Key: GPD _W = GPD _S =	GPD Water GPD Sewer			tachment Q	
A. RESIDENTIA	AL.				
).95 =		GPDs	
B. OFFICE/COI	MMERCIAL				
14,219).95 =	13,508	GPDs	
C. HOTEL					
	GPD _W X ().95 =		GPDs	
D. RESTAURA	0.80				
	GPD _W X ().95 =		GPDs	
	- S TO BE RE'		A CASE BY	CASE BASIS	
E. ALL OTHER					
E. ALL OTHER = 21	,255 x 0.95 =	20,192 00			
=		20,192 0			
=	DN		GPD X	diameter (in) =	GPDe
=	DN m	niles X 100 niles X 500		diameter (in.) = diameter (in.) =	GPD _s
= F. INFILTRATIO 1. PVC pipe:	DN m	niles X 100 niles X 500			
=	DN m DAILY FLOW	niles X 100 niles X 500 =	GPD X 33,700	diameter (in.) = GPD (SUM OF A - F)	
=	DN m m DAILY FLOW RLY FLOW* F ness Hr. Flow	niles X 100 niles X 500 = FOR PUMPIN = [(B+C+E)/	GPD X 33,700 IG STATIONS 12 hrs + (F/24	diameter (in.) = GPD (SUM OF A - F) S hrs)] x 2.5/60min +	
=	DN m DAILY FLOW RLY FLOW* F	niles X 100 niles X 500 = FOR PUMPIN = [(B+C+E)/ =1 A+C+D)/12hrs	GPD X 33,700 IG STATIONS 12 hrs + (F/24 7.0 GPM	diameter (in.) = GPD (SUM OF A - F) S hrs)] x 2.5/60min +	


JOB TITLE <u>160</u> JOB NUMBER JOB LOCATION	01 ECR - Pcl C - Future 18190 Redwood City, CA	CAL. BY <u>EM</u> CHKD. BY <u>EM</u> DATE <u>10/21/2019</u>
	ACHMENT Q MUST BE COMPL	
		NDOOR WATER DEMAND PROJECTION
Key: GPD _w =	GPD Water Demand Projected	from Attachment Q
GPD _S =	GPD Sewer Demand Projected	
A. RESIDENTIA	AL.	
	GPDX 0.95 =	GPDs
B. OFFICE/COM	MMERCIAL	
21,242	$GPD_W X 0.95 = 20,3$	80 GPDs
C. HOTEL		
	GPD _w X 0.95 =	GPDs
D. RESTAURAI	 NTS	
D. RECINCIUM	GPD _w X 0.95 =	GPDs
	S TO BE REVIEWED ON A CAS	
	STO BE REVIEWED ON A CAS	DE DI CASE DASIS
	0105	
F. INFILTRATIC		
1. PVC pipe: 2. Clay pipe:	miles X 100 GPD X miles X 500 GPD X	
G. AVERAGE D		
1. Peak Busi [(A+D)/12	RLY FLOW* FOR PUMPING STA ness Hr. Flow = [(B+C+E)/12 hrs hrs]/60 min = 70.1	+ (F/24 hrs)] x 2.5/60min + GPM
	Hrs. Flow = $[(A+C+D)/12hrs + (F/2)/160 min = 28.0]$	4hrs)] x 2.5/60 min + GPM


SEWAGE GENERATION PROJECTION WORKSHEET

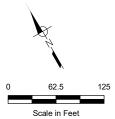

JOB TITLE 160 JOB NUMBER JOB LOCATION	<u>01 ECR - Pcl D - Fu</u> ture <u>18190</u> Redwood City, CA	CAL. BY CHKD. B DATE		
ATTA	CHMENT Q MUST BE CO	MPLETE BEFO	DRE PROCEEDING	
SEWER GENER	ATION IS BASED ON 95%	OF INDOOR W	ATER DEMAND PROJECTI	ON
	GPD Water Demand Proje GPD Sewer Demand Proje		nment Q	
A. RESIDENTIA	L			
32,880	_ GPD _W X 0.95 =	31,236	GPDs	
B. OFFICE/COM	IMERCIAL			
	_ GPD _W X 0.95 =		GPDs	
C. HOTEL				
	GPD _W X 0.95 =		GPD _S	
D. RESTAURAN	 NTS		_	
	GPD _W X 0.95 =		GPDs	
	S TO BE REVIEWED ON A	CASE BY CAS		
=	GPD			
F. INFILTRATIC1. PVC pipe:	miles X 100 G	SPD X 0	diameter (in.) = G	PDs
2. Clay pipe:	miles X 500 G		diameter (in.) =G	PDs
G. AVERAGE D	AILY FLOW =3	1,236	GPD (SUM OF A - F)	
 Peak Busir [(A+D)/12 Peak Off-F ((B+E)/12 	Irs. Flow = [(A+C+D)/12hrs +	2 hrs + (F/24 hrs 4 GPM - (F/24hrs)] x 2.5 3.50 GPM	/60 min +	
occur at separa				

SEWAGE GENERATION PROJECTION WORKSHEET


JOB TITLE 16 JOB NUMBER JOB LOCATION	01 ECR - Pcl E - 1 18190 Redwood City,		CAL. BY _ CHKD. BY DATE _	EM EM 10/21/2019	
				RE PROCEEDING	
SEWER GENER	ATION IS BASED	O ON 95% OF	INDOOR WA	TER DEMAND PROJE	CTION
	GPD Water Der GPD Sewer Der			nent Q	
A. RESIDENTI	AL				
	GPD _W X 0.95	=		GPD _S	
B. OFFICE/CO	MMERCIAL				
33,456	GPD X 0.95	=31	,783	GPD _S	
C. HOTEL					
	GPD_W X 0.95	=		GPD _S	
D. RESTAURA	NTS				
	GPD _W X 0.95	=		GPDs	
	S TO BE REVIEW			BASIS	
	$80 \ge 0.95 = 1,881$				
	,				
F. INFILTRATIO		Y 100 CDD	X dia		CDD
1. PVC pipe: 2. Clay pipe:		X 100 GPD X 500 GPD		ameter (in.) = ameter (in.) =	_GPDs GPDs
G. AVERAGE I		= 31,78			_01 DS
G. AVERAGE			G	PD (SUM OF A - F)	
	RLY FLOW* FOR iness Hr. Flow = [(x 2 5/60 min +	
	hrs]/60 min	= 116.9	GPM	X 2.3/0011111	
•• /	Hrs. Flow = [(A+C+			0 min +	
((B+E)/12	hrs)/60 min	=46.8	GPM		
* Peak hourly flo occur at separ	ows assume an eff rate times.	fective 12-hour	r day and that o	office and residential pea	ks

APPENDIX B Model Results

- Parcels Planning Area A Planning Area B Planning Area C Planning Area D
 - Planning Area E
- 55 psi 65 psi


Pipe Pressure

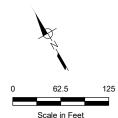
Less than 45 psi

• 45 psi - 50 psi

- **Pipe Velocity**
- —— 0 fps 4 fps
- —— 4 fps 7 fps ----- Greater than 7 fps
- 50 psi 55 psi
- Greater than 65 psi

Figure A-1

Existing Peak Hour Demand Existing Infrastructure



Parcels **Junction Pressure** Planning Area A Planning Area B

- 45 psi 50 psi Planning Area C • 50 psi - 55 psi Planning Area D
- Planning Area E
- Less than 45 psi
 - —— 4 fps 7 fps
 - ----- Greater than 7 fps
- 55 psi 65 psi
 - Greater than 65 psi

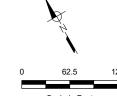
Scale in Feet

Figure A-2

Existing Plus Project Peak Hour Demand **Proposed Infrastructure**

- Parcels **Junction Pressure** Planning Area A Planning Area B Planning Area C Planning Area D
 - Planning Area E

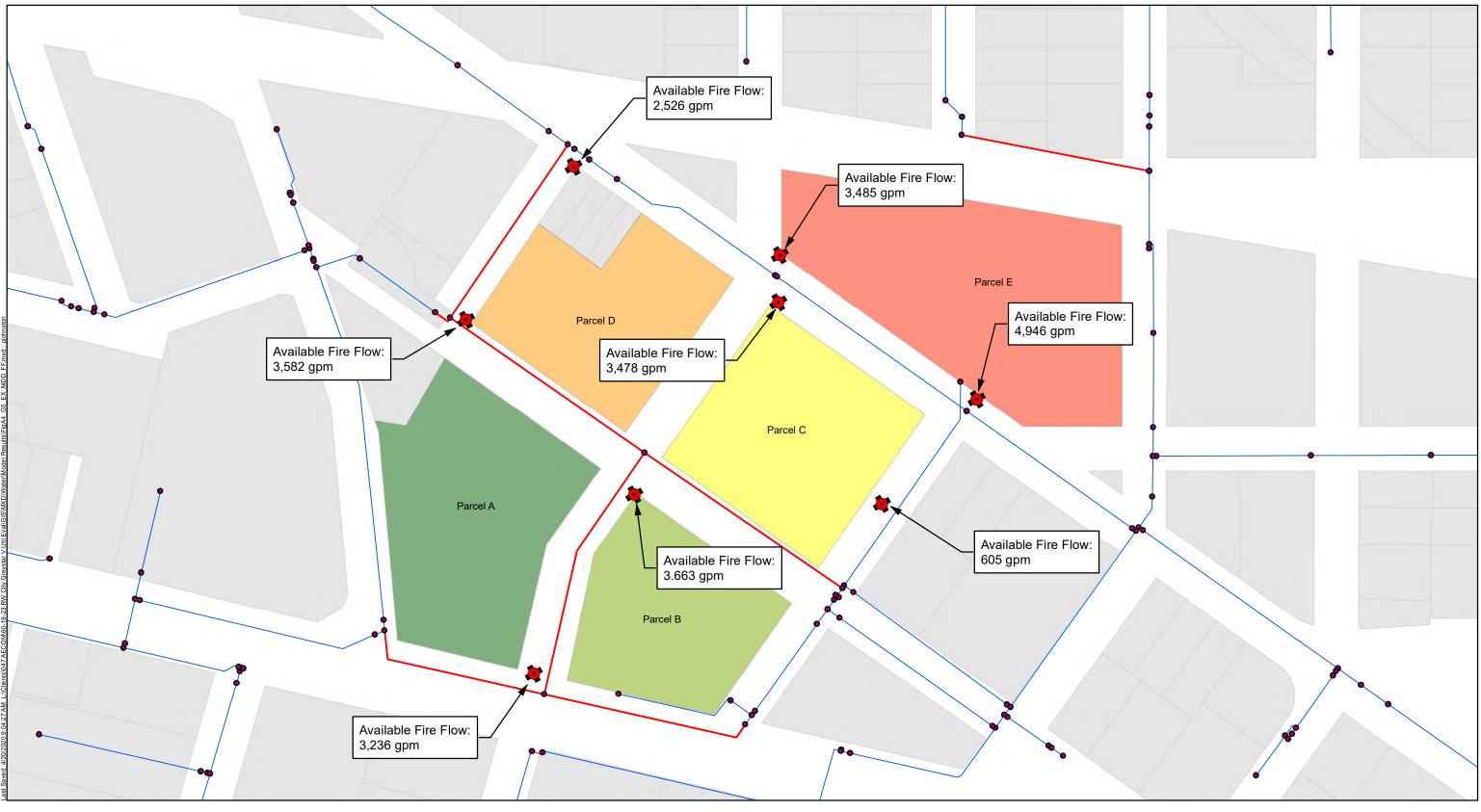
• Less than 45 psi


• 45 psi - 50 psi

• 50 psi - 55 psi

- **Pipe Velocity**
- —— 0 fps 4 fps
- 4 fps 7 fps
- ----- Greater than 7 fps

• Greater than 65 psi



Scale in Feet

Figure A-3

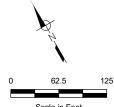
Future Plus Project Peak Hour Demand **Proposed Infrastructure**

City Limits

Area of ______

Parcels

Planning Area B


Planning Area C

Planning Area D

Planning Area E

Proposed Fire Hydrant Planning Area A

- junction Proposed Water Main
 - Existing Water Main

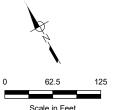
Note: Results shown incorporate a maximum velocity criterion of 7 feet per second

Scale in Feet

Figure A-4

Existing Plus Project MDD + Fire Flow **Proposed Infrastructure**

City Limits


Area of ______

Other Parcels Planning Area A Planning Area B Planning Area C Planning Area D Planning Area E

Proposed Fire Hydrant

Proposed Water Main

- Existing Water Main

Note: Results shown incorporate a maximum velocity criterion of 7 feet per second

Scale in Feet

Figure A-5

Future Plus Project MDD + Fire Flow **Proposed Infrastructure**

APPENDIX C CCTV Inspection

<u>Cleaning and CCTV Inspection Services for</u> <u>Redwood City and Greystar GP II LLC</u>

DATE: April 6th, 2020

PREPARED BY:

Michelle D. Beason, PE

Regional Manager

National Plant Services, Inc.

www.nationalplant.com

mbeason@nationalplant.com

CCTV Inspection and Equipment

Greystar GP II LLC contracted National Plant Services, Inc. (NPS) to perform Hydro cleaning and Closed-Circuit Television Video (CCTV) inspections for some sewer and storm pipe segments owned by Redwood City.

CCTV inspection involves a process of inserting remotely controlled robotic CCTV cameras into the pipes through existing manholes. High resolution videos of the inspections are recorded during these inspections.

NPS conducted inspections totaling approximately 1,932.11 LF of pipe with diameters between 10" and 15".

Table 1 below shows a summary of the pipe information for the completed inspections.

Diameter	VCP	CAST IRON	CONC	CLAY TILE	RCP	total	Length
10	7		2	2		11	1620.32
12		4				4	198.89
15			0		2	2	112.9
TOTAL						17	1932.11

Table 1: Showing the summary information of pipes inspected.

CCTV Truck and Camera Equipment

The Closed-Circuit Television Video (CCTV) equipment is contained in a compact Mercedes Sprinter van, powered by a generator. The generator is fully enclosed and designed for quiet operation.

The CCTV camera and tractors are conventional pan-tilt-zoom cameras. NPS Operators performed NASSCO PACP-certified inspections of all sewer pipes in the scope of work.

For hydro cleaning, NPS used the Jetting and Vacuum truck to ensure the pipe segments were cleaned and ready for CCTV inspections.

Original Scope of Work

Sanitary Sewer: approximately 2,322 LF of 8-inch, 10-inch, and 16-inch diameter sanitary sewer gravity mains highlighted in Attachment A and detailed as:

- Elm Street, from Lathrop Street to Main Street: approximately 225 LF of 8-inch main
- Caltrain ROW, from Main Street to Cedar Street: approximately 572 LF of 8-inch main
- Maple Street, from El Camino Real to Middlefield Road: approximately 1,435 LF of 10-inch and 90 LF of 16-inch main

Storm Sewer: approximately 695 LF 10-inch, 12-inch, 15-inch siphons; and 69 LF of 16-inch outfalls, highlighted in Attachment B and detailed as:

- (2) Siphons at Beech Street and Pennsylvania Avenue/Caltrain ROW: approximately 174 LF of 12-inch CMP.
- (2) Siphons at Cedar Street and Pennsylvania Avenue/Caltrain ROW: approximately 189 LF of 10-inch CMP.
- (2) Siphons at Chestnut Street and Pennsylvania Avenue /Caltrain ROW: approximately 332 LF of 15-inch RCP.
- (2) Outfalls to Redwood Creek at Lathrop Street: approximately 26 LF of 16-inch RCP and 43 LF of 16-inch RCP gravity mains.
- Confirm presence of 60-inch RCP gravity main at two locations:
 - El Camino Real between Maple Street and Beech Street
 - El Camino Real, south of Roosevelt Avenue (in front of 1708 and 1710 El Camino Real)

Summary of Inspection Results

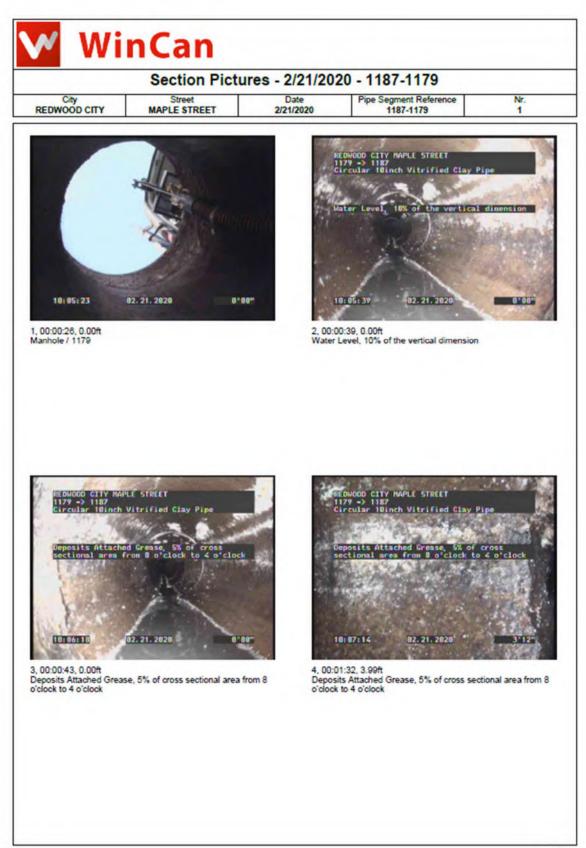
Generally, the CCTV inspections for Redwood City was a success. NPS inspected most of the line segments in the scope provided above.

NPS performed PACP coding using Wincan VX PACP Version 6 software. The PACP quick score ratings for structural, operations and maintenance and the overall pipe rating were assigned for each pipe segment.

A summary table with all inspection results can be found in Appendix A.

The table below gives the details for work performed.

	1
Description	Status as of 3/23/2020
Elm Street, from Lathrop Street to Main Street: approximately 225 LF of 8-inch main	Incomplete - mains located in field are 4" or smaller. Can't access with convential CCTV crawler, to long of stretch to use push camera
Caltrain ROW, from Main Street to Cedar Street: approximately 572 LF of 8-inch main	Removed from scope for now
	Performed additional cleaning to remove heavy grease, dewatered, and
Maple Street, from El Camino Real to Middlefield Road: approximately 1,435 LF of 10-	completed CCTV. Appears to have either a very shallow/minor siphon, or a major
inch and 90 LF of 16-inch main	sag for a portion of the line
(2) Siphons at Beech Street and Pennsylvania Avenue/Caltrain ROW: approximately 174 LF of 12-inch CMP	Able to camera the majority of both siphons
(2) Siphons at Cedar Street and Pennsylvania Avenue/Caltrain ROW: approximately 189 LF of 10-inch CMP	Unable to cameara with repeated visits/attempts with mini crawler due to access being blocked by cars or activty, and due to being full of water from rains.
(2) Siphons at Chestnut Street and Pennsylvania Avenue /Caltrain ROW: approximately 332 LF of 15-inch RCP	Able to camera the majority of both siphons
(2) Outfalls to Redwood Creek at Lathrop Street: approximately 26 LF of 16-inch RCP and 43 LF of 16-inch RCP gravity mains	Able to camera the pipes from the outfalls to the upstream drainage inlet
Confirm presence of 60-inch RCP gravity main at two locations	Presence confirmed at both locations (walked box culvert at each end to locate tie- in of 60" to the box culvert).



Sample report generated for each inspection. The PACP Scoring in Appendix C shows the PACP coding for all lines inspected.

			Inspe	ection report	:			
Date: 2/21/2020	Work C	Order:	Weather: Dry	Surveyed R.DION N		rtificate Number. -816-07005058		
Year laid:	Pre-cle	aning:	Direction: Upstream	Pipe Joint Le	ength:	Total Length:	Length	Surveyed:
ity: treet: ocation Code: ocation Details: lipe shape: lipe size: lipe material: ining Method: dditional Info:	REDWOOD CITY MAPLE STREET Light highway Circular 10 " Vitrified Clay Pi	r	Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner:	Not Controlled Sanitary SEC Routine Assessme	Up f Dow Dow Tota Join	tream MH: Rim to Invert: Instream MH: In Rim to Invert: Il gallons used: Its passed: Its failed:	1187 0.0 1179 0.0 0.0 0	
1:664	Distance	Code	Observation			Count	ter Photo	Grade
	0.00 0.00 3.99 7.18 S01 7.18 S02 16.36	AMH MWL DAGS DAGS DAGS DAGS	Deposits Attack 8 o'clock to 4 o Deposits Attack 8 o'clock to 4 o Deposits Attack 10 o'clock, Stat Deposits Attack o'clock, Start	0% of the vertical dim hed Grease, 5% of cro volock hed Grease, 5% of cro volock hed Grease, 5% of cro	oss sectional oss sectional oss sectional	area from 00:01: area at 00:01: area at 2 00:02:	.39 2 .43 3 .32 4,5 .59 6,7 .03 8,9	M2 M2 52
† IN	27.63	MWLS	Water Level, S	ag in pipe, 15% of the	vertical dime	nsion 00:04:	32 12, 13	S2
	38.10	MWLS	Water Level, S	ag in pipe, 15% of the	vertical dime	nsion 00:05:	13 14, 15	\$2
	53.36	MWLS	Water Level, S	ag in pipe, 15% of the	vertical dime	nsion 00:06	09 16, 17	\$2
	57.75 F01	DAGS	Deposits Attac 10 o'clock, Fini	hed Grease, 5% of cro ish	oss sectional	area at 00:06:	33 18, 19	M2
	57.75 F02	DAGS	Deposits Attac o'clock, Finish	hed Grease, 5% of cro	oss sectional	area at 2 00:06:	36 20, 21	M2
	75.81	DSF	Deposits Settle o'clock to 7 o'd	ed Fine, 10% of cross lock	sectional area	from 5 00:07:	42 22, 23	M2
F	85.38	DSF	Deposits Settle o'clock to 7 o'cl	ed Fine, 5% of cross s lock	ectional area	from 5 00:08:	23 24, 25	M2
\bigcirc	87.88	AMH	Manhole / 1187	7		00:08	:50 26	

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 1

Defect Summary and Recommendations

The most common defects found were deposits and sags.

Appendix A summarizes the condition codes observed, along with the structural quick, O&M quick, and overall PACP scores for each segment. A © after a code indicates a continuous defect. A defect with a "(Code) x 2, etc." indicates the number of incidences of a defect.

Field inspections identified the following types of defects:

Operational & Maintenance Defects: deposits attached grease, deposits attached encrustation, deposits of silt and gravel, roots, etc.

Structural Defects: hole, joint offset, lining defects, and surface damage.

The PACP Version 6 Code Guide (including Code definitions) is included in Appendix D. The PACP codes that were observed were as follows:

Deposits – DAE/DAGS/DAZ/DSF/DSGV/DSC

Most of the pipes had deposits. These pipes should be cleaned to restore full capacity of these segments, and to avoid further accumulation of debris.

Sags – MWLS

Line segments with sags and high water levels should be cleaned more frequently to prevent buildup that could cause an overflow.

Surface Damage -SCP

A few of the pipe segments showed surface damage. These issues should be monitored to see if this condition worsens, and rehabilitation planned, if required.

<u>Hole - H</u>

One of the pipe segments has a hole. This can be fixed through a CIPP point repair.

Lining features -LFB/LFOC/LFUC

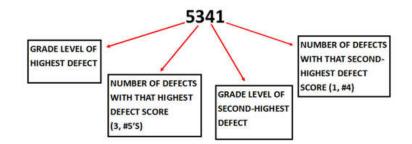
Some pipe segments were CIPP lined and exhibited lining issues. These conditions should be monitored to ensure the condition does not worsen, and repairs planned as needed.

Roots – RMC

One segment had visible roots at one joint. Root foaming may stop the forward progress of roots for 2-3 years, or the use of injection grout with root inhibitor can also be used. Alternatively, CIPP point repairs can be performed for a more permanent fix.

<u> Joint - JOL</u>

The defect at the joint can be fixed through a CIPP point repair.



Recommendations/Conclusions

The pipelines inspected are in serviceable condition. From the results found, recommendations for repair and maintenance were made for these pipe segments. These recommendations can be found in the last two columns of the summary spreadsheet in Appendix A, and are also summarized in this report. The Owner must make the final determination on the rehabilitation and maintenance schedule and methods to be used based on available budget and City-wide project prioritizations. These inspections results should be considered a guide to do so.

PACP Quick Scores and the Overall Pipe Rating were used to prioritize the extent of the PACP defects observed. The PACP defect scores are rolled up to indicate the overall condition of a pipe segment. The most severe codes are a grade 5, and lines with no defects are given a grade 0.

The quick scores indicate the two highest defect scores encountered in a line segment, and the number of each. There is a quick score for Structural Defects, and then one for O&M Defects. Both are listed in Appendix A, and summarized from the scoring report per Appendix D.

PACP SCORE OF '5341'

Overall, the pipes segments are in a good working condition. Most of the pipe segments had debris codes including settled deposits, grease, and encrustation.

For lines with deposits, sags, and high-water levels, it is recommended that these lines are cleaned on a regular basis to prevent further buildup and possible overflows.

Some rehabilitation and repair items are recommended in Appendix A.

A Note About Estimating Remaining Useful Life:

Estimating remaining useful life is a process that considers initial life expectancy of the sewer pipelines and then assesses the current deterioration state and factors that contribute to failure. Accurate remaining useful life forecasting is based on regular monitoring and assessment of pipelines over time.

These project results should be considered as a baseline assessment, since this was the first time these assets have been inspected. Only with regular inspections and tracking over time can we determine any changes in corrosion measurements and defects, deterioration factors such as H2S or

customer discharges, and increased or decreased maintenance practices. That allows us to accurately estimate the rate of degeneration and therefore life expectancy, of a particular sewer or stormwater pipeline.

<u>Re-inspection Strategy</u>:

All buried sewer pipelines, regardless of size, should be assigned re-inspection frequencies that are set and adjusted from time-to-time based on their changing conditions. Setting inspection cycles will allow the City to schedule these activities to determine when RUL is approaching a benchmark that triggers a maintenance, rehabilitation, or replacement activity. For large-diameter pipelines, targeted rehabilitation is preferred due to the cost of replacement or rehabilitation. Preventative maintenance combined with a risk-based asset management plan also allows the City to select additional inspection tools and refine RUL estimates.

Appendix A – Summary Table of Inspections and Assessments

Appendix B – CCTV Videos (To Be Delivered)

Appendix C – PACP Scoring Report

Appendix D – PACP Defect Code Guide

1461 Harbor Avenue Long Beach, CA 90813-2741 p: (562) 436-7600 f: (562) 495-1528 www.nationalplant.com

APPENDIX A Summary of Inspections and Assessments (Excel Spreadsheet)

Date	Upstream Manhole	Downsteam Manhole	Street	Actual Diameter	Actual Material	LENGTH INSPECTED	NOTES	STRUCTURAL QUICK	O&M QUICK	OVERALL PACP SCORE		PACP SCORE 1	PACP SCORE 2	PACP SCORE 3	PACP SCORE 4	PACP SCORE 5		PACP SCORE 7		PACP SCORE 9	MAINTENANCE RECOMMENDATIONS	REPAIR RECOMMENDATIONS
2/21/2020	1186	1185	Maple street	10	VCP	255.75		3121	2L00	2	D	DAZ	DAGSx2	DAZ©	DAGS©x3	LFBU	MWLS				CLEAN LINE SEGMENT	MONITOR CHANGES TO LINING CONDITION AND REPAIR AS NEEDED.
2/21/2020	1179	1186	Maple street	10	VCP	326.57	Manhole has roots in channel	3B2F	4131	2.2	D	DAZX2	DAGSX3	DAZ©	DAGS©x3	MWLSX6	MWLS ©X4	LFBUX5	мси	RMC	CLEAN LINE SEGMENT. REMOVE ROOTS	MONITOR CHANGES TO LINING CONDITION AND REPAIR AS NEEDED.REMOVE ROOTS AND GROUT WITH ROOT INHIBITOR ADDITIVE
						87.88						DAGSX	DAGS©X2	MWLSX							CLEAN LINE SEGMENT	
2/21/2020	1187	1179	Maple street Maple street		VCP VCP	56.95	MSA/ Survey abandoned. Reverse was performed. The	2400	2C00 5141	2 3.7	D	DAGSX	MSA GREASE	4	DSFX2						CLEAN LINE SEGMENT	
2/24/2020	1851	1850	Maple street	10	VCP	284.87		322B	2D00	2	T	FD	DAZ©	LFOC	MWLS	LFUC	MWLS ©				CLEAN LINE SEGMENT	MONITOR CHANGES TO LINING CONDITION AND REPAIR AS NEEDED.
2/24/2020	1850	2646	Maple street	10	VCP	256.25	MCU/ Camera under water	3A22	4121	2.2	D	DAZ©	MWLSX3	MWLS ©	MCU						CLEAN LINE SEGMENT	
2/26/2020	H6	H7	Chestnut street		CONC	53.06	MMC/Corrugated metal pipe. MSA/Survey	2100	2111	1.7	D	DAGS	MSC/8"/10"	MMC - CORR METAL	LD	JOL	MSA - DUE TO JOL				CLEAN LINE SEGMENT	POINT REPAIR TO FIX JOINT OFFSET.
2/26/2020	H4	H5	Chestnut street		Cast Iron	18.75	MSA/Survey abandoned. Reverse performed	3100	3124	2.3	D	DAE	DAE©	DSC	SCP	MSA - DSC 25%					CLEAN LINE SEGMENT	MONITOR FOR INCREASED CORROSION AND TAKE CORRECTIVE ACTION AS NEEDED.
2/26/2020	F163	F164	Beech street		Cast Iron	39.6	MSA/Survey abandoned/OBR	5131	2111	2.8			Н	LD	DSF	MSA - OBR					CLEAN LINE SEGMENT/REMOVE OBSTACLE	POINT REPAIR TO FIX HOLE. MONITOR SURFACE CORROSION AND TAKE ACTION AS NEEDED.
2/26/2020	H4_Reverse	H5_Reverse	Chestnut street	10/12	Cast Iron/Clay tile	59.35	MSA/ Survey abandoned. Size change to 12	0000	3121	2.5	D		MMC/Clay pipe/cast iron/CHANGE TO 12"	MSA							CLEAN LINE SEGMENT	
2/26/2020	H6_Reverse	H7_Reverse	Chestnut street	10	CONC	52.37	MSA/Size change	0000	2100	2	D	DSF	MSC/6"/8"	MSA							CLEAN LINE SEGMENT	
2/26/2020	F165	F166	Beech street	12	Cast Iron	81.19		3B00	1100	2.9	S	SCP©	LD									MONITOR FOR INCREASED CORROSION AND TAKE CORRECTIVE ACTION AS NEEDED.
2/26/2020 2/26/2020	F101 F102	Redwood Redwood	Redwood Redwood		RCP RCP	25.53 34.31		0000	0000	0												
	1185-post		Maple street		VCP	72.81	Post cleaning	0000	4128	2.1			MGO - POST CLEANING INSPECTION	DAGSX	DAGS©						CLEAN LINE SEGMENT	
	1852_Rever						MSA/survey abandoned. 90		-120	2.1				MWLS		MSA - 90 DEGREE						MONITOR CHANGES TO LINING CONDITION AND REPAIR AS NEEDED.
3/23/2020		1851_Reverse	Maple street	10	Clay tile	90.93	degree alignment MGO/MH 63. MSA/ Survey abandoned/90 bend. Reverse	3823	5126	2.6	~	MWM	LFB©	©	DAGS© MSA - 90 DEGREE	ALIGN					CLEAN LINE SEGMENT	
3/23/2020	1852	1851	Maple street	10	Clay tile	135.94	performed	3100	3100	3	D	DAGS	MWLS	MGO	BEND						CLEAN LINE SEGMENT	
					Total	1932.11																

STRUCTURAL ITEMS ARE SHADED IN PINK

1461 Harbor Avenue Long Beach, CA 90813-2741 p: (562) 436-7600 f: (562) 495-1528 www.nationalplant.com

APPENDIX B CCTV Videos Delivered Separately

1461 Harbor Avenue Long Beach, CA 90813-2741 p: (562) 436-7600 f: (562) 495-1528 www.nationalplant.com

APPENDIX C PACP Scoring Report

WinCan

Section Profile Project REDWOOD CITY SEWER AND STORM CCTV [Greystar] 2/21/2020 Nr. Upstream Downstream Date Street Media Label Material Total Length Surveyed MH ΜН Length 1187 1179 2/21/2020 MAPLE STREET Vitrified Clay 87.88 87.88 1 Pipe 2 1179 1186 2/21/2020 MAPLE STREET Vitrified Clay 326.57 326.57 Pipe Vitrified Clay 3 1186 1185 2/21/2020 MAPLE STREET 255.75 255.75 Pipe 4 1185 1852 2/21/2020 MAPLE STREET Vitrified Clay 56.95 56.95 Pipe Vitrified Clay 5 1851 1850 2/24/2020 MAPLE STREET 284.87 284.87 Pipe Vitrified Clay 6 1850 2646 2/24/2020 MAPLE STREET 256.25 256.25 Pipe H5 CHESTNUT ST 7 H4 2/26/2020 Cast Iron 59.35 59.35 7 H4 H5 2/26/2020 CHESTNUT ST Cast Iron 59.35 18.75 2/26/2020 CHESTNUT ST 8 H6 H7 Concrete 53.06 53.06 Pipe (non-reinforced) 8 H6 H7 2/26/2020 CHESTNUT ST Concrete 53.06 52.37 Pipe (non-reinforced) 13 1852 1851 3/23/2020 MAPLE ST Clay Tile (not 135.94 90.93 vitrified clay) 13 1852 1851 3/23/2020 MAPLE ST Clay Tile (not 135.94 135.94 vitrified clay) Vitrified Clay 1185-POST 1852 3/20/2020 MAPLE STREET 72.81 72.81 15 Pipe 13 x Circular 10 = 1589.43 Total Length (1589.43 Length Surveyed) Nr. Upstream Downstream Date Street Media Label Material Total Length MH мн Length Surveyed 9 F163 F164 2/26/2020 BEECH ST 39.60 39.60 Cast Iron F165 F166 2/26/2020 BEECH ST 81.19 81.19 10 Cast Iron

2 x Circular 12 = 120.79 Total Length (120.79 Length Surveyed)

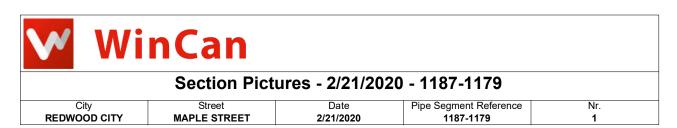
Nr.	Upstream MH	Downstream MH	Date	Street	Media Label	Material	Total Length	Length Surveyed
11	F101	REDWOOD CREEK OUT FALL #1	2/26/2020	REDWOOD CREEK		Reinforced Concrete Pipe	25.53	25.53
12	F102	REDWOOD CREEK OUT FALL #2	2/26/2020	REDWOOD CREEK		Reinforced Concrete Pipe	34.31	34.31

2 x Circular 15 = 59.85 Total Length (59.85 Length Surveyed)

Total: 17 = 1770.07 Total Length (1770.07 Length Surveyed)

				Inspe	ction report				
Date: 2/21/2020		Work Ord	ler:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate N U-816-070		Pipe Segr 1187-	nent Ref. -1179
Year laid:	F	Pre-cleani	ing:	Direction: Upstream	Pipe Joint Length:	Total Ler	igth:	Length S	urveyed:
ity: treet: ocation Code: ocation Details: ipe shape: ipe size: ipe material: ning Method: dditional Info:	REDWOO MAPLE S Light high Circular 10 " Vitrified C	TREET way		Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner:	Not Controlled Sanitary SEC Routine Assessment	Upstream MH Up Rim to Inve Downstream I Down Rim to I Total gallons u Joints passed Joints failed:	ert: MH: nvert: used:	1187 0.0 1179 0.0 0.0 0 0	
1:664	Distance		Code	Observation			Counter	Photo	Grade
1179	0.00		AMH	Manhole / 1179			00:00:26	1	
	0.00		MWL	Water Level, 10	% of the vertical dimension		00:00:39	2	
	0.00		DAGS	Deposits Attach 8 o'clock to 4 o'd	ed Grease, 5% of cross sec clock	ctional area from	00:00:43	3	M2
	3.99		DAGS	Deposits Attach 8 o'clock to 4 o'd	ed Grease, 5% of cross sec clock	ctional area from	00:01:32	4, 5	M2
	7.18	S01	DAGS	Deposits Attach 10 o'clock, Start	ed Grease, 5% of cross sec t	ctional area at	00:01:59	6, 7	
	7.18	S02	DAGS	Deposits Attach o'clock, Start	ed Grease, 5% of cross sec	ctional area at 2	00:02:03	8, 9	
	16.36		MWLS	Water Level, Sa	ag in pipe, 15% of the vertic	al dimension	00:03:44	10, 11	S2
	27.63		MWLS	Water Level, Sa	ag in pipe, 15% of the vertic	al dimension	00:04:32	12, 13	S2
	38.10		MWLS	Water Level, Sa	ag in pipe, 15% of the vertic	al dimension	00:05:13	14, 15	S2
	53.36		MWLS	Water Level, Sa	ag in pipe, 15% of the vertic	al dimension	00:06:09	16, 17	S2
	57.75		DAGS	10 o'clock, Finis			00:06:33		M2
	57.75	F02	DAGS	o'clock, Finish	ed Grease, 5% of cross sec		00:06:36		M2
	75.81		DSF	o'clock to 7 o'clo			00:07:42		M2
	85.38		AMH	o'clock to 7 o'clo Manhole / 1187		ai died liuifi J	00:08:23		M2

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 1



3, 00:00:43, 0.00ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock

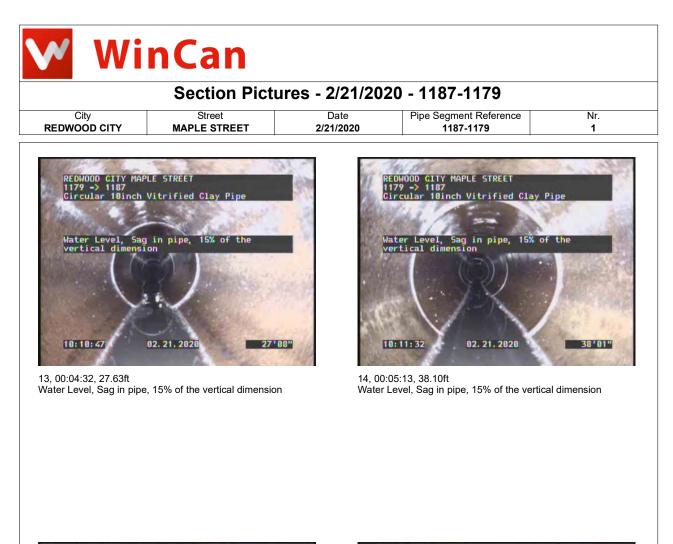
4, 00:01:32, 3.99ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock

5, 00:01:32, 3.99ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock

6, 00:01:59, 7.18ft Deposits Attached Grease, 5% of cross sectional area at 10 o'clock, Start

7, 00:01:59, 7.18ft Deposits Attached Grease, 5% of cross sectional area at 10 o'clock, Start

8, 00:02:03, 7.18ft Deposits Attached Grease, 5% of cross sectional area at 2 o'clock, Start


Deposits Attached Grease, 5% of cross sectional area at 2 o'clock, Start

11, 00:03:44, 16.36ft Water Level, Sag in pipe, 15% of the vertical dimension

12, 00:04:32, 27.63ft Water Level, Sag in pipe, 15% of the vertical dimension

15, 00:05:13, 38.10ft Water Level, Sag in pipe, 15% of the vertical dimension

16, 00:06:09, 53.36ft Water Level, Sag in pipe, 15% of the vertical dimension

Section Pictures - 2/21/2020 - 1187-1179

City REDWOOD CITY Street MAPLE STREET Date 2/21/2020 Pipe Segment Reference 1187-1179

Nr.

17, 00:06:09, 53.36ft Water Level, Sag in pipe, 15% of the vertical dimension

18, 00:06:33, 57.75ft Deposits Attached Grease, 5% of cross sectional area at 10 o'clock, Finish

19, 00:06:33, 57.75ft Deposits Attached Grease, 5% of cross sectional area at 10 o'clock, Finish

20, 00:06:36, 57.75ft Deposits Attached Grease, 5% of cross sectional area at 2 o'clock, Finish

Section Pictures - 2/21/2020 - 1187-1179

City REDWOOD CITY Street MAPLE STREET Date 2/21/2020

Pipe Segment Reference 1187-1179

e

Nr.

21, 00:06:36, 57.75ft Deposits Attached Grease, 5% of cross sectional area at 2 o'clock, Finish

22, 00:07:42, 75.81ft Deposits Settled Fine, 10% of cross sectional area from 5 o'clock to 7 o'clock

23, 00:07:42, 75.81ft Deposits Settled Fine, 10% of cross sectional area from 5 o'clock to 7 o'clock

24, 00:08:23, 85.38ft Deposits Settled Fine, 5% of cross sectional area from 5 o'clock to 7 o'clock

Section Pictures - 2/21/2020 - 1187-1179

City REDWOOD CITY Street MAPLE STREET 2

Date 2/21/2020 Pipe Segment Reference 1187-1179

Nr.

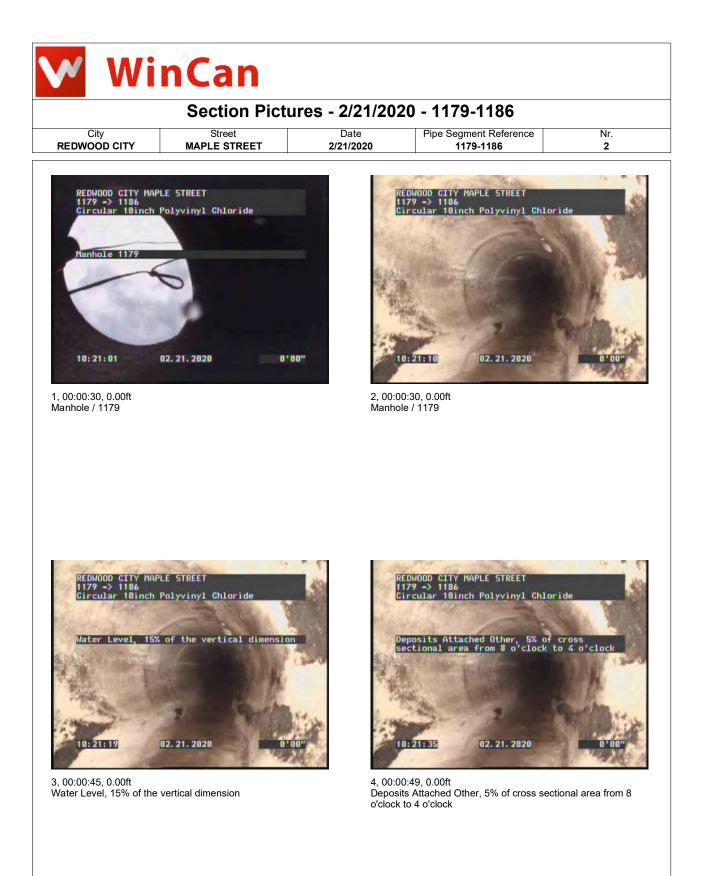
25, 00:08:23, 85.38ft Deposits Settled Fine, 5% of cross sectional area from 5 o'clock to 7 o'clock

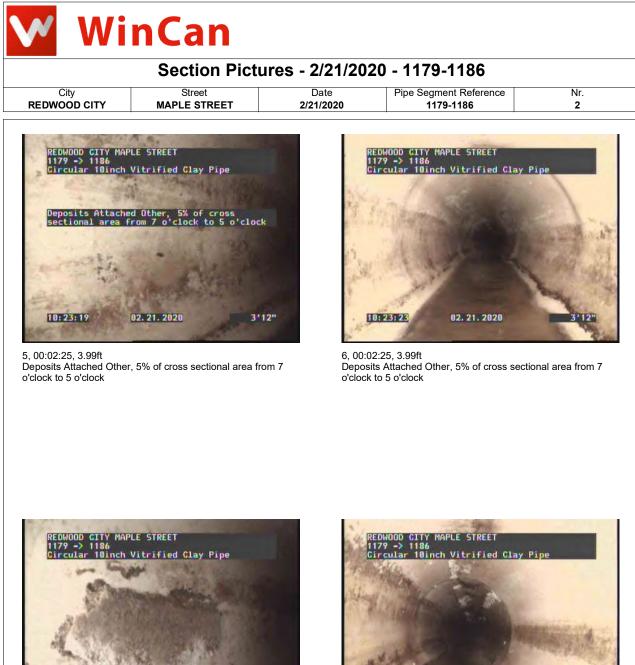
26, 00:08:50, 87.88ft Manhole / 1187

				Inspec	tion report				
Date: 2/21/2020		Work Orc	ler:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate N U-816-070		Pipe Segr 1179-	
Year laid:		Pre-clean	ing:	Direction: Downstream	Pipe Joint Length:	Total Len	igth:	Length S	urveyed:
City: ctreet: ocation Code: ocation Details: Pipe shape: Pipe size: Pipe material: ining Method:	MAPLE Light hi Circular 10 "	Clay Pipe		Sheet Number: Sewer Use: Sewer Category:	Not Controlled Sanitary SEC Routine Assessment	Upstream MH Up Rim to Inve Downstream M Down Rim to I Total gallons u Joints passed Joints failed:	ert: MH: nvert: used: :	1179 0.0 1186 0.0 0.0 0 0	
dditional Info:	Distance		Carla	Observation			Countor	Dhata	Grada
1:1153	Distanc	e	Code	Observation			Counter	Photo	Grade
1179	0.0	0	AMH	Manhole / 1179			00:00:30	1, 2	
	0.0	0	MWL	Water Level, 15%	of the vertical dimension		00:00:45	3	
	0.0	0	DAZ	Deposits Attache o'clock to 4 o'cloc	d Other, 5% of cross section k	onal area from 8	00:00:49	4	M2
	3.9	9	DAZ	Deposits Attache o'clock to 5 o'cloc	d Other, 5% of cross section k	onal area from 7	00:02:25	5, 6	M2
	10.4	7	DAGS	Deposits Attache 11 o'clock	d Grease, 5% of cross sec	tional area at	00:03:05	7, 8	M2
	13.6	7 S01 	DAZ	Deposits Attache o'clock to 5 o'cloc	d Other, 5% of cross sectio k, Start	onal area from 7	00:03:33	9, 10	
	13.6	7 S02	DAGS		d Grease, 5% of cross sec clock, Start / WONDERS	tional area from	00:03:43	11, 12	
	27.9	3	MWLS	Water Level, Sag	in pipe, 20% of the vertica	al dimension	00:04:41	13, 14	S2
	46.8	8	MWLS	Water Level, Sag	in pipe, 25% of the vertica	al dimension	00:05:49	15	S2
	66.5	3 F01 -	DAZ	Deposits Attache o'clock to 5 o'cloc	d Other, 5% of cross sectio k, Finish	onal area from 7	00:07:34	16, 17	M2
	71.8	2	MWLS	Water Level, Sag	in pipe, 25% of the vertica	al dimension	00:07:59	18, 19	S2
	76.6	0	MWLS	Water Level, Sag	in pipe, 35% of the vertica	al dimension	00:08:22	20, 21	S3
	81.3	9	MWLS	Water Level, Sag	in pipe, 45% of the vertica	al dimension	00:08:52	22, 23	S3
/	89.6	7 S03	MWLS	Water Level, Sag Start	in pipe, 40% of the vertica	al dimension,	00:09:24	24	
	97.5	5	TFA	Tap Factory Mad	e Active at 9 o'clock, 6inch	dim	00:09:50	25	
	07.7	5 F02	DAGS	Doposito Attacho	d Grease, 5% of cross sec	tional area from	00.40.00	26, 27	M2

Date: 2/21/2020	Work O	rder:	Weather:	Surveyed By: R.DION N.P.S	Certificate N U-816-070		Pipe Segn 1179-	
Year laid:	Pre-clea	ining:	Dry Direction: Downstream	Pipe Joint Length:	Total Ler		Length S	
	tance 03.04 F03	Code MWLS	Observation Water Level, Sag in Finish	pipe, 40% of the vertical	dimension,	Counter 00:10:27	Photo 28, 29	Grac S3
1	10.82	MWLS	Water Level, Sag in	pipe, 25% of the vertical	dimension	00:10:53	30, 31	S2
	18.40 S04	MWLS	Water Level, Sag in Start	pipe, 25% of the vertical	dimension,	00:11:24	32, 33	
1:	53.91	DAGS	Deposits Attached G o'clock	Grease, 5% of cross section	onal area at 1	00:13:22	34, 35	M2
	60.49	DAGS	Deposits Attached G 11 o'clock to 1 o'cloc	Grease, 5% of cross secti ck	onal area from	00:14:00	36, 37	M2
	76.05	LFBU	Lining Failure Bulge	s at 3 o'clock		00:14:52	38, 39	S3
	80.04 S05	DAGS		Grease, 5% of cross secti ck, Start / DEFECT WON		00:15:21	40, 41	
	89.52 F05	DAGS		Grease, 5% of cross secti ck, Finish / DEFECT WO		00:16:05	42, 43	M2
2	13.65	LFBU	Lining Failure Bulge	s from 8 o'clock to 4 o'clo	ock, within 8	00:17:25	44, 45	Sa
2	23.63	LFBU	Lining Failure Bulge	s from 8 o'clock to 4 o'clo	ock, within 8	00:18:25	46, 47	S3
22	28.22 F04	MWLS	Water Level, Sag in Finish	pipe, 25% of the vertical	dimension,	00:18:58	48, 49	S2
2	34.40 S06	MWLS	Water Level, Sag in Start	pipe, 25% of the vertical	dimension,	00:19:20	50, 51	
2	36.40	LFBU	Lining Failure Bulge	s from 9 o'clock to 3 o'clo	ock	00:19:45	52, 53	Sa
2	54.85	LFBU	Lining Failure Bulge	s from 11 o'clock to 1 o'c	lock, within 8	00:21:06	54, 55	Sa
2	79.09 S07	MWLS	Water Level, Sag in Start	pipe, 35% of the vertical	dimension,	00:22:16	56	
2	84.97 F06	MWLS	Water Level, Sag in Finish	pipe, 25% of the vertical	dimension,	00:22:41	57	S2
	98.34 S08	DAGS		Grease, 5% of cross secti k, Start / DEFECT WOND		00:23:33	58	
3:	20.58	MCU	Camera Underwater			00:26:01	59	M4

Inspection report

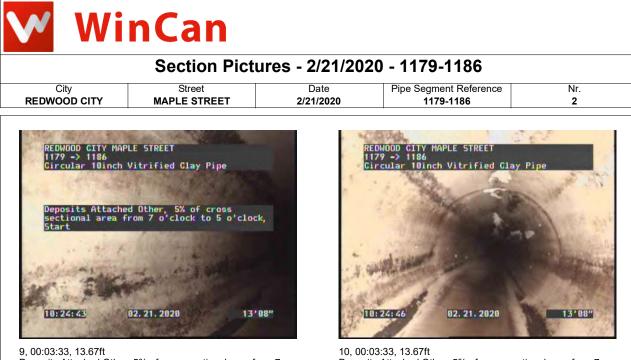



In	spe	ction	report	

			Inspecti	on report				
Date: 2/21/2020	Work O	rder:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate N U-816-070		Pipe Segn 1179-	1186
Year laid:	Pre-clea	ning:	Direction: Downstream	Pipe Joint Length:	Total Ler	ngth:	Length S	urveyed:
	stance 325.17 F07	Code MWLS		pipe, 50% of the vertical	dimension,	Counter 00:26:36	Photo 60	Grade S3
1186	25.17 F08	DAGS		Grease, 5% of cross secti K, Finish / DEFECT WON		00:26:40	61	M2
	25.17	RMC		nection from 8 o'clock to 4		00:26:48	62	M3
	26.57	AMH	Manhole / 1186 MANHOLE HAS RO	OTS IN THE CHANNEL		00:27:13	63	

QSR	QMR	SPR	MPR	OPR	SPRI	MPRI	OPRI
3B2F	4131	129.0	87.0	216.0	2.3	2.1	2.2

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 11


7, 00:03:05, 10.47ft Deposits Attached Grease, 5% of cross sectional area at 11 o'clock

8, 00:03:05, 10.47ft Deposits Attached Grease, 5% of cross sectional area at 11 o'clock

82. 21. 2020

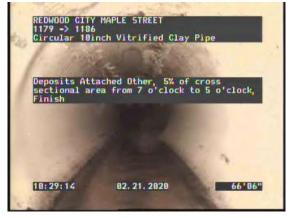
10:24:20

10'06"

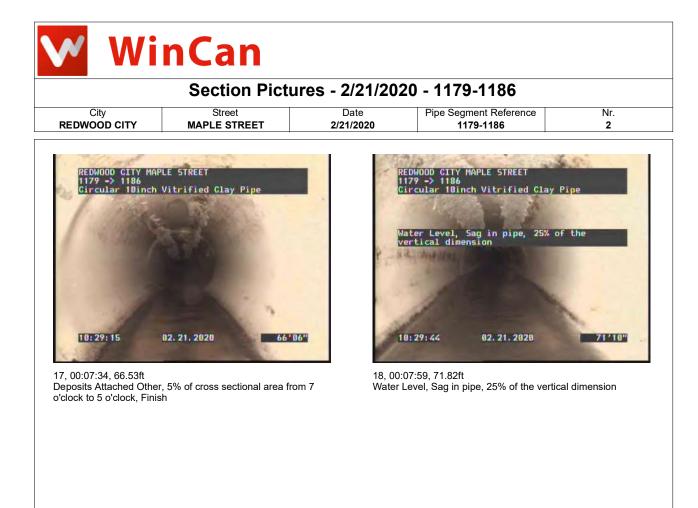
Deposits Attached Other, 5% of cross sectional area from 7 o'clock to 5 o'clock, Start

10, 00:03:33, 13.67ft Deposits Attached Other, 5% of cross sectional area from 7 o'clock to 5 o'clock, Start

11, 00:03:43, 13.67ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, Start / WONDERS

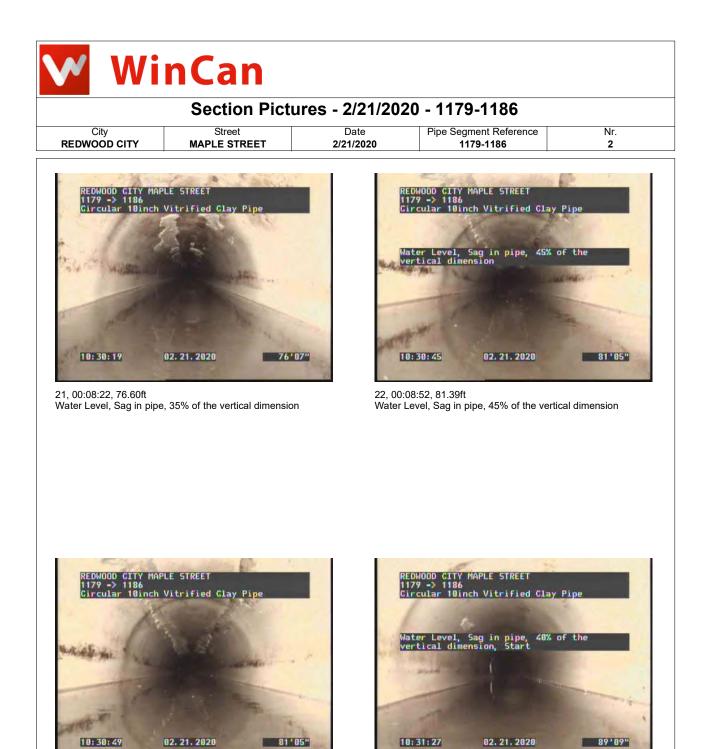


12, 00:03:43, 13.67ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, Start / WONDERS

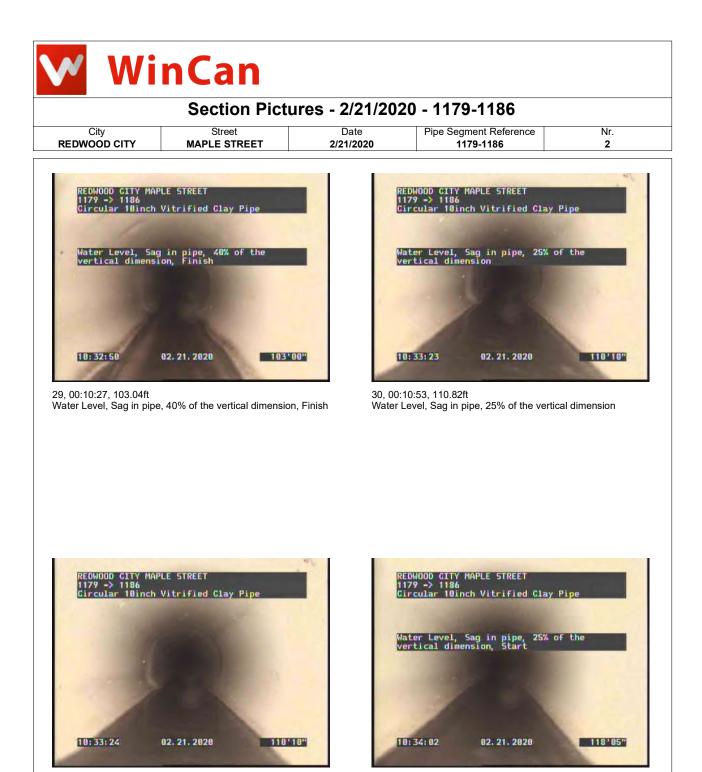


15, 00:05:49, 46.88ft Water Level, Sag in pipe, 25% of the vertical dimension

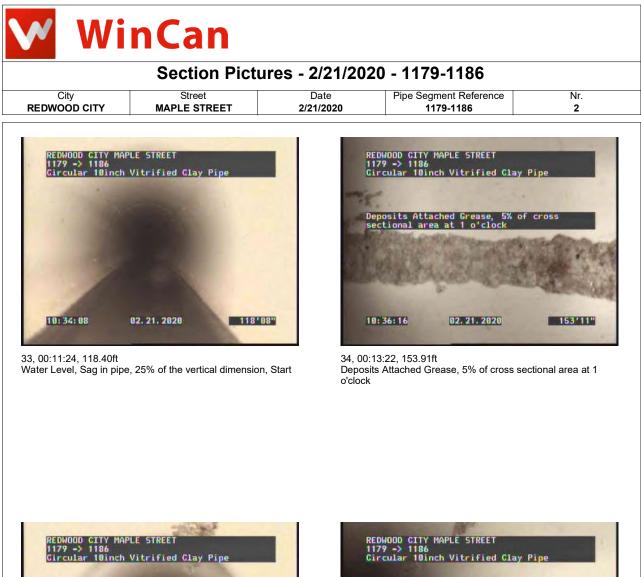
16, 00:07:34, 66.53ft Deposits Attached Other, 5% of cross sectional area from 7 o'clock to 5 o'clock, Finish



19, 00:07:59, 71.82ft Water Level, Sag in pipe, 25% of the vertical dimension


20, 00:08:22, 76.60ft Water Level, Sag in pipe, 35% of the vertical dimension

23, 00:08:52, 81.39ft Water Level, Sag in pipe, 45% of the vertical dimension

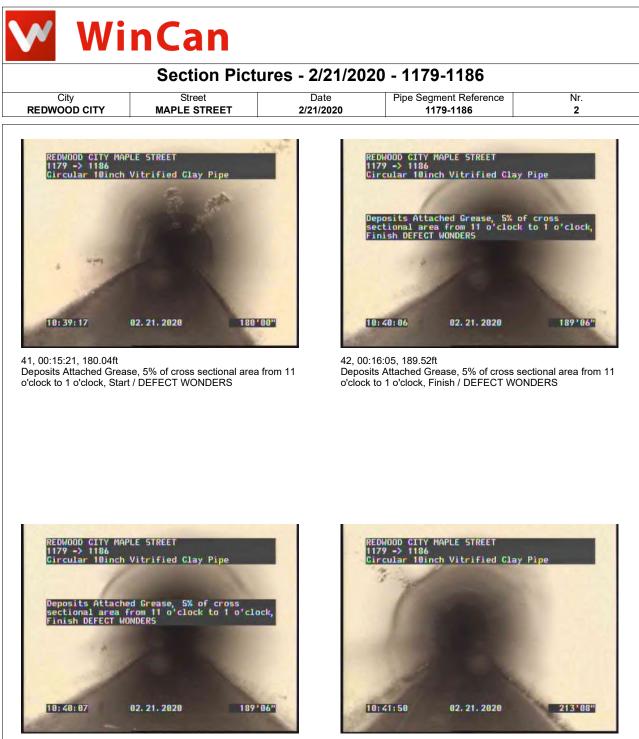

24, 00:09:24, 89.67ft Water Level, Sag in pipe, 40% of the vertical dimension, Start

31, 00:10:53, 110.82ft Water Level, Sag in pipe, 25% of the vertical dimension

32, 00:11:24, 118.40ft Water Level, Sag in pipe, 25% of the vertical dimension, Start

35, 00:13:22, 153.91ft Deposits Attached Grease, 5% of cross sectional area at 1 o'clock

36, 00:14:00, 160.49ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock


39, 00:14:52, 176.05ft Lining Failure Bulges at 3 o'clock

40, 00:15:21, 180.04ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, Start / DEFECT WONDERS

02.21.2020

18:39:11

180'00"

43, 00:16:05, 189.52ft

Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, Finish / DEFECT WONDERS

^{44, 00:17:25, 213.65}ft Lining Failure Bulges from 8 o'clock to 4 o'clock, within 8 inch

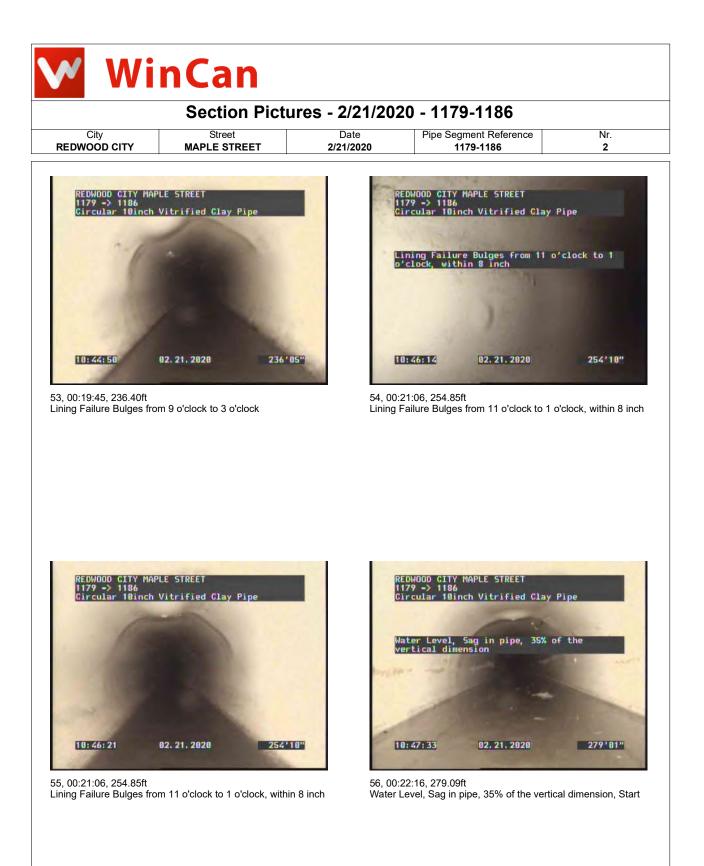
47, 00:18:25, 223.63ft Lining Failure Bulges from 8 o'clock to 4 o'clock, within 8 inch

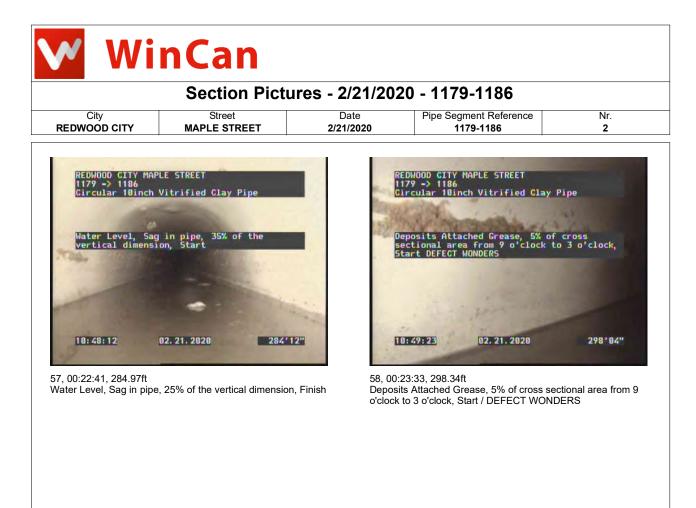
48, 00:18:58, 228.22ft Water Level, Sag in pipe, 25% of the vertical dimension, Finish

82.21.2820

234'05"

10:44:08

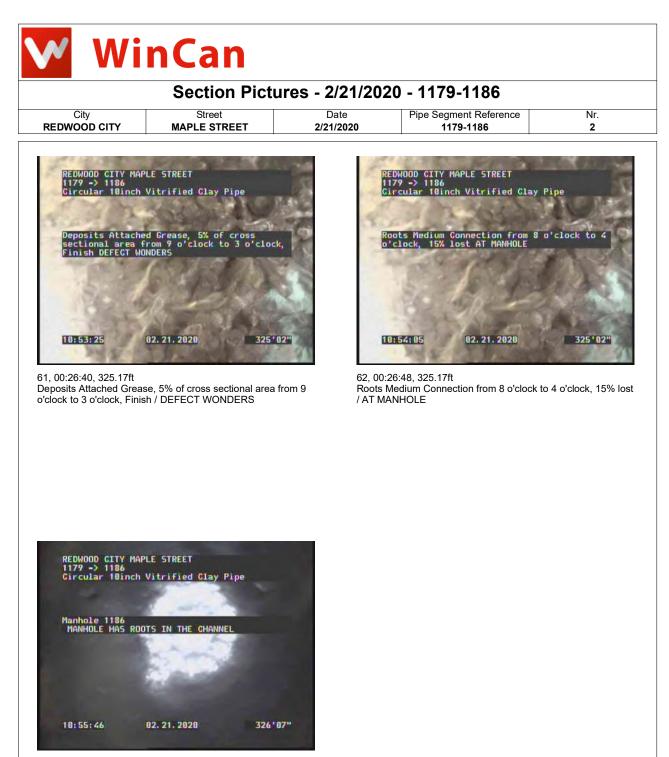

51, 00:19:20, 234.40ft Water Level, Sag in pipe, 25% of the vertical dimension, Start


52, 00:19:45, 236.40ft Lining Failure Bulges from 9 o'clock to 3 o'clock

02.21.2020

10: 44: 49

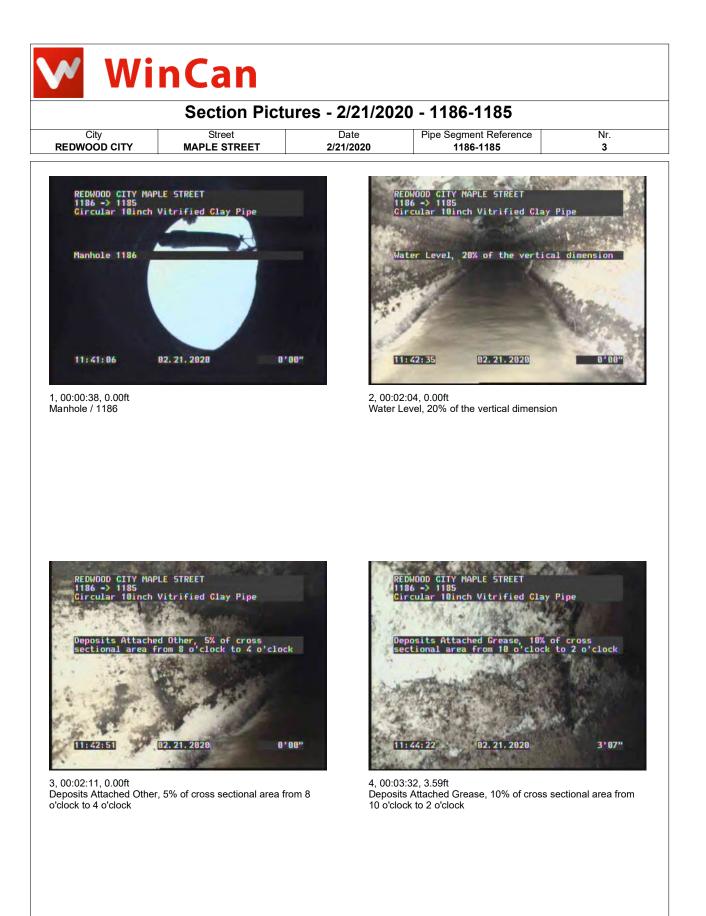
236'05"



59, 00:26:01, 320.58ft Camera Underwater

 $60,\,00{:}26{:}36,\,325{.}17ft$ Water Level, Sag in pipe, 50% of the vertical dimension, Finish

63, 00:27:13, 326.57ft Manhole / 1186 MANHOLE HAS ROOTS IN THE CHANNEL

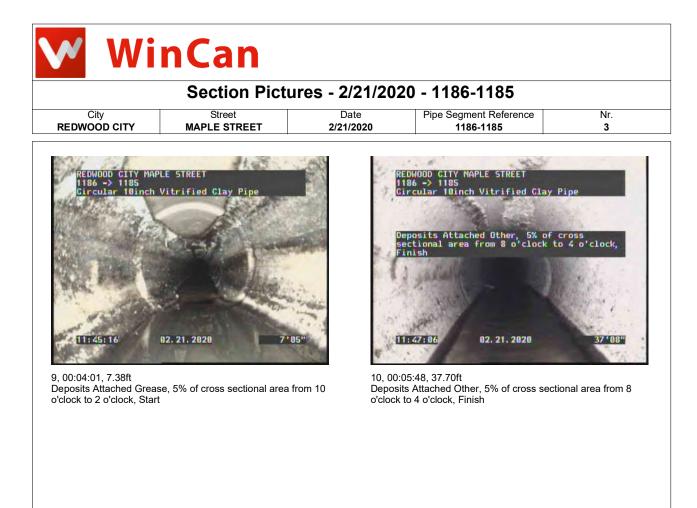

			Inspec	ction report				
Date:	Wor	k Order:	Weather:	Surveyed By:	Certificate N		Pipe Segr	
2/21/2020 Year laid:	Pre-(leaning:	Dry Direction:	R.DION N.P.S Pipe Joint Length:	U-816-070 Total Len		1186- Length S	
		Joannig.	Downstream		Total Lei	igui.	Length O	urveyeu.
City:	REDWOOD C	ITY	Drainage Area:		Upstream MH	:	1186	
itreet:	MAPLE STRE	ET	Media Label:		Up Rim to Inve	ert:	0.0	
ocation Code:	Light highway	/	Flow Control:	Not Controlled	Downstream N	ИH:	1185	
ocation Details:			Sheet Number:		Down Rim to I		0.0	
Pipe shape:	Circular		Sewer Use:	Sanitary	Total gallons u		0.0	
Pipe size:	10 " Vitrified Class	Dime	Sewer Category:	SEC	Joints passed		0	
Pipe material: ining Method:	Vitrified Clay Cured in Plac	•	Purpose: Owner:	Routine Assessment	Joints failed:		0	
Additional Info:	Cureu III Flac	e	Owner.					
1:1507	Distance	Code	Observation			Counter	Photo	Grade
1186	0.00		Manhala / 1100			00.00.28	4	
	0.00	AMH	Manhole / 1186			00:00:38	1	
	0.00	MWL	Water Level, 209	% of the vertical dimension		00:02:04	2	
	0.00	DAZ	Deposits Attache o'clock to 4 o'clo	ed Other, 5% of cross sectio ck	nal area from 8	00:02:11	3	M2
	3.59	DAGS	Deposits Attache from 10 o'clock t	ed Grease, 10% of cross se o 2 o'clock	ctional area	00:03:32	4, 5	M2
	7.38 SO	1 DAZ	Deposits Attache o'clock to 4 o'clo	ed Other, 5% of cross sectio ck, Start	nal area from 8	00:03:59	6, 7	
	7.38 S0	2 DAGS	Deposits Attache 10 o'clock to 2 o	ed Grease, 5% of cross sect 'clock, Start	ional area from	00:04:01	8, 9	
	37.70 F0	1 DAZ	Deposits Attache o'clock to 4 o'clo	ed Other, 5% of cross sectio ck, Finish	nal area from 8	00:05:48	10, 11	M2
	42.79	LFBU	Lining Failure Buinch	ulges from 7 o'clock to 8 o'cl	ock, within 8	00:06:13	12, 13	S3
	78.60 F0	2 DAGS	Deposits Attache 10 o'clock to 2 o	ed Grease, 5% of cross sect 'clock, Finish	ional area from	00:08:29	14, 15	M2
	87.58	DAGS	Deposits Attache 10 o'clock to 2 o	ed Grease, 5% of cross sect 'clock	ional area from	00:09:10	16, 17	M2
F	96.45	MWL	Water Level, 259	% of the vertical dimension /	MWLS	00:09:58	18, 19	
	128.07 S0	3 DAGS		ed Grease, 5% of cross sect 'clock, Start / WONDERS	ional area from	00:11:59	20, 21	
	131.96	TF	Tap Factory Mac	de at 9 o'clock, 6inch dim		00:12:31	22	
	136.45	MWL	Water Level, 359	% of the vertical dimension		00:13:19	23	
	\ \$0	4 DAGS		ed Grease, 5% of cross sect clock, Start / WONDERS	ional area from	00:17:45	24, 25	
	182.53	TFB	Ton Foston Mar	de Abandoned at 10 o'clock,	Circola alima	00:18:54	26, 27	

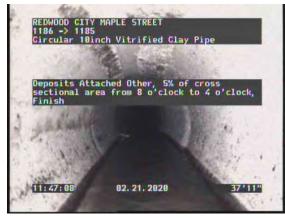
		Inspectio	on report		
Date: 2/21/2020	Work Order:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate Number: U-816-07005058	Pipe Segment Ref.: 1186-1185
Year laid:	Pre-cleaning:	Direction: Downstream	Pipe Joint Length:	Total Length:	Length Surveyed:

1:1507	Distance	Code	Observation	Counter	Photo	Grade
,	216.65	MWLS	Water Level, Sag in pipe, 30% of the vertical dimension	00:20:11	28, 29	S2
	245.67	F03 DAGS	Deposits Attached Grease, 10% of cross sectional area from 8 o'clock to 4 o'clock, Finish / WONDERS	00:21:38	30	M2
	255.75	F04 DAGS	Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / WONDERS	00:22:45	31, 32	M2
1185	255.75	AMH	Manhole / 1185	00:22:48	33	

QSR	QMR	SPR	MPR	OPR	SPRI	MPRI	OPRI

5, 00:03:32, 3.59ft Deposits Attached Grease, 10% of cross sectional area from 10 o'clock to 2 o'clock


6, 00:03:59, 7.38ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Start

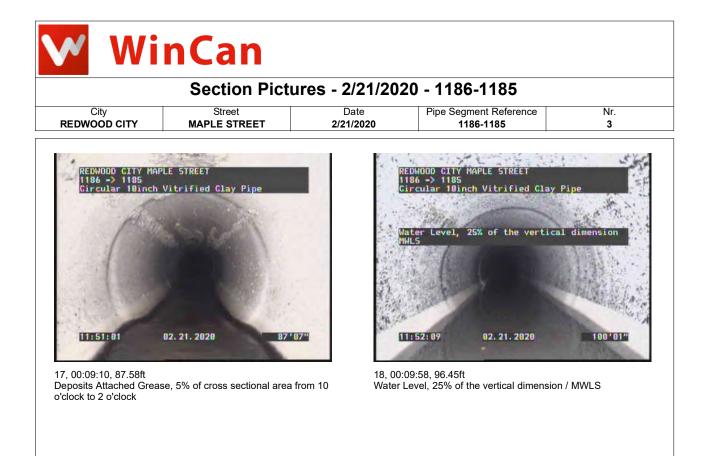


7, 00:03:59, 7.38ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Start

8, 00:04:01, 7.38ft Deposits Attached Grease, 5% of cross sectional area from 10 o'clock to 2 o'clock, Start



11, 00:05:48, 37.70ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish



12, 00:06:13, 42.79ft Lining Failure Bulges from 7 o'clock to 8 o'clock, within 8 inch

Deposits Attached Grease, 5% of cross sectional area from 10 o'clock to 2 o'clock, Finish

16, 00:09:10, 87.58ft Deposits Attached Grease, 5% of cross sectional area from 10 o'clock to 2 o'clock

19, 00:09:58, 96.45ft Water Level, 25% of the vertical dimension / MWLS

20, 00:11:59, 128.07ft Deposits Attached Grease, 5% of cross sectional area from 10 o'clock to 2 o'clock, Start / WONDERS

22, 00:12:31, 131.96ft Tap Factory Made at 9 o'clock, 6inch dim

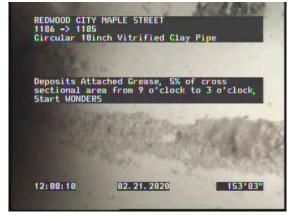
92. 21. 2920

132'01"

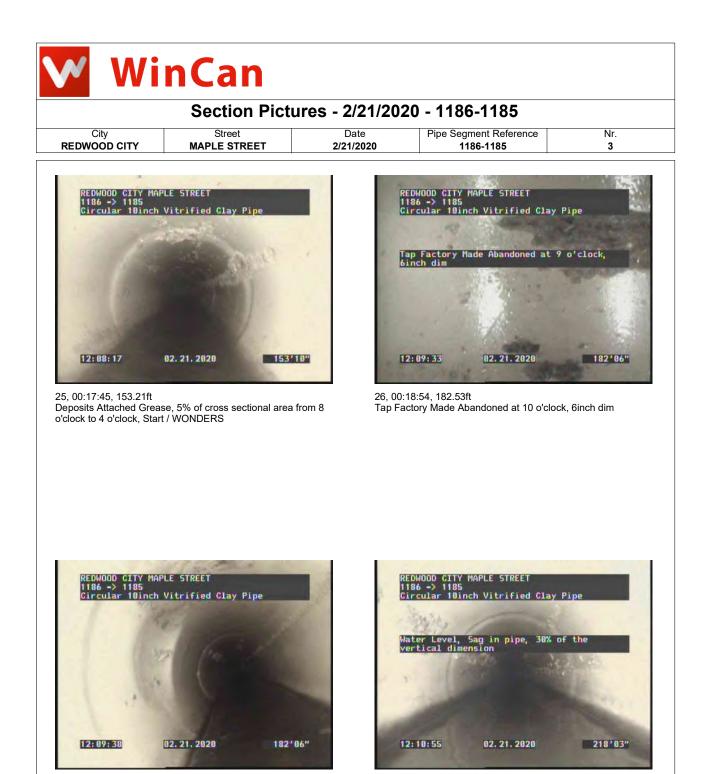
11:55:11

02.21.2020

Deposits Attached Grease, 5% of cross sectional area from 10

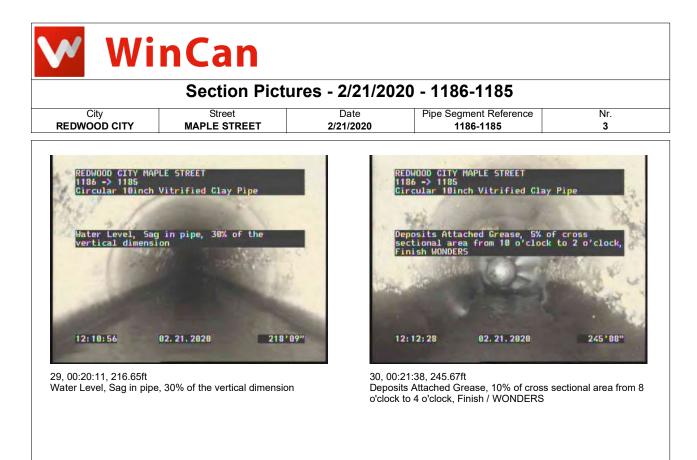

128'81"

23, 00:13:19, 136.45ft Water Level, 35% of the vertical dimension


11:54:12

21, 00:11:59, 128.07ft

o'clock to 2 o'clock, Start / WONDERS



24, 00:17:45, 153.21ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Start / WONDERS

27, 00:18:54, 182.53ft Tap Factory Made Abandoned at 10 o'clock, 6inch dim

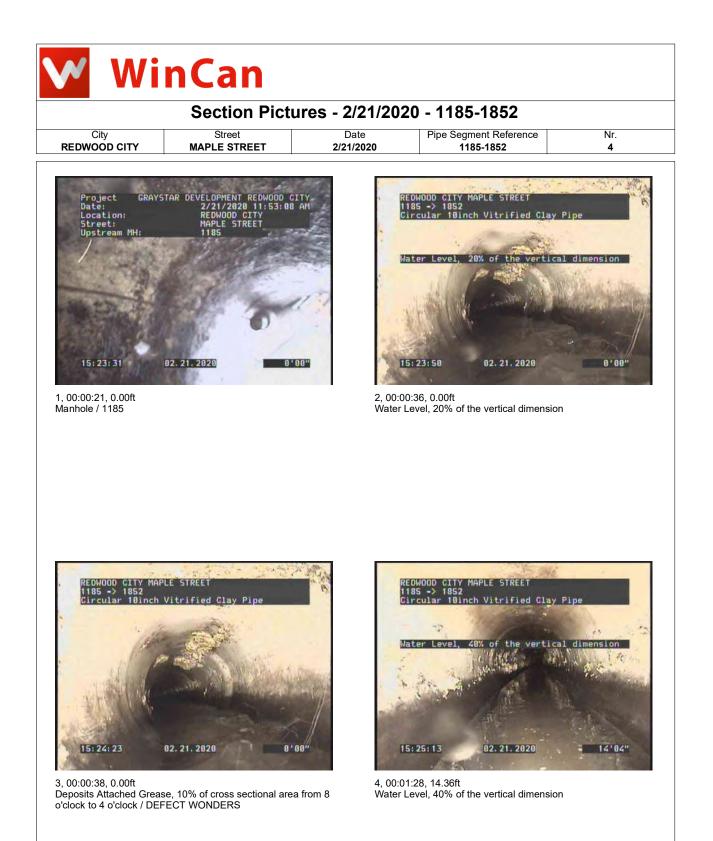
28, 00:20:11, 216.65ft Water Level, Sag in pipe, 30% of the vertical dimension

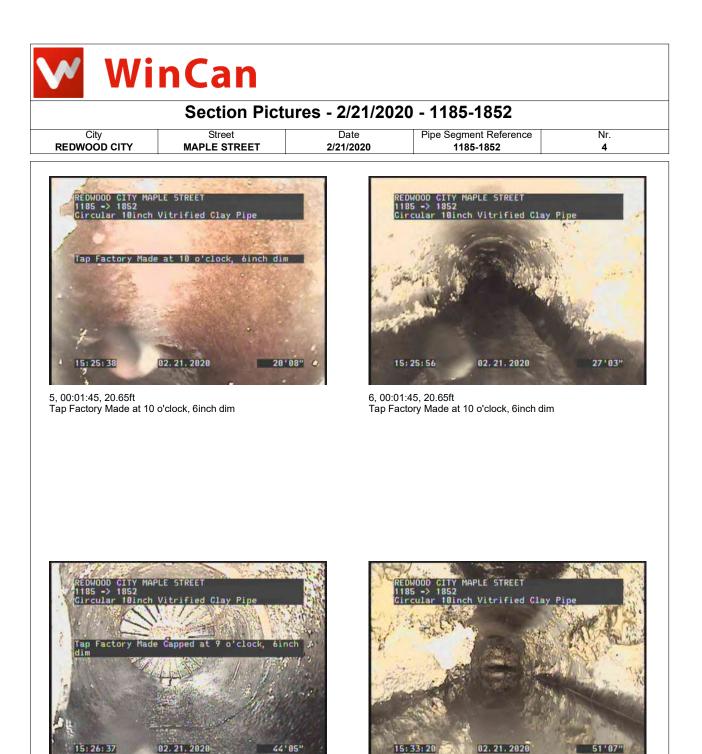
31, 00:22:45, 255.75ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / WONDERS

32, 00:22:45, 255.75ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / WONDERS

255 09"

33, 00:22:48, 255.75ft Manhole / 1185


12:13:54


02.21.2020

			Inspecti	on report				
Date: Work Order:		Weather: Surveyed By: Certificate N			Number:	ment Ref.:		
2/21/2020 Year laid: Pre-cleaning:			Dry Direction:	R.DION N.P.S Pipe Joint Length	U-816-07			-1852 Surveyed:
		5	Downstream			3		,
City: Street: ocation Code: ocation Details: Pipe shape: Pipe size:	REDWOOD MAPLE STI Light highv Circular 10 "	REET vay	Sewer Category: SE		Upstream MI Up Rim to In Downstream Down Rim to Total gallons Joints passe	vert: MH: Invert: used: d:	1185 0.0 1852 0.0 0.0 0.0	
Pipe material: ining Method: additional Info:	Vitrified Cla Cured in Pl		Purpose: Ro Owner:	utine Assessment	Joints failed:		0	
1:430	Distance	Code	Observation			Counter	Photo	Grade
1185	0.00	АМН	Manhole / 1185			00:00:21	1	
	0.00	MWL	Water Level, 20% of	f the vertical dimensio	n	00:00:36	2	
	0.00	DAGS	Deposits Attached G from 8 o'clock to 4 o	Grease, 10% of cross s 'clock / DEFECT WOI	sectional area NDERS	00:00:38	3	M2
	14.36	MWL	Water Level, 40% of	f the vertical dimensio	n	00:01:28	4	
	20.65	TF	Tap Factory Made a	t 10 o'clock, 6inch dim	1	00:01:45	5, 6	
	44.39	TFC	Tap Factory Made C	Capped at 9 o'clock, 6i	nch dim	00:02:40	7	
♦	51.57	С	Remark: ***** Comb	ined *****				
	51.57	С	Remark: Inspection	from the other side				
	51.57	С	Remark: Uninspecte	ed Length: 0.0				
	51.57	С	Remark: Inspection	from the other side				
	51.57	С	Remark: ***** Comb	ined *****				
	51.57	MSA	Survey Abandoned	GREASE 50%		00:06:02	8, 9	
	51.87 56.95	DAGS	9 o ['] clock	Grease, 25% of cross s Grease, 50% of cross s 'clock		00:03:13 00:04:14		M4 M5
1852								

٦

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 39

7, 00:02:40, 44.39ft Tap Factory Made Capped at 9 o'clock, 6inch dim

8, 00:06:02, 51.57ft Survey Abandoned / GREASE 50%

V WinCar	1
----------	---

Section Pictures - 2/21/202	20 - 1185-1852
-----------------------------	----------------

City	Street
REDWOOD CITY	MAPLE STREET

Date 2/21/2020 Pipe Segment Reference 1185-1852

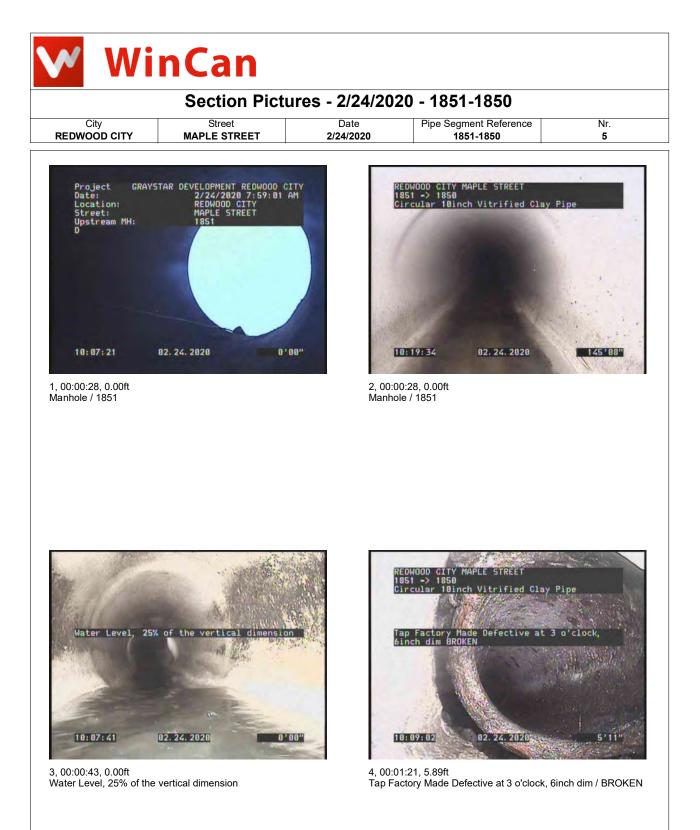
Nr. 4

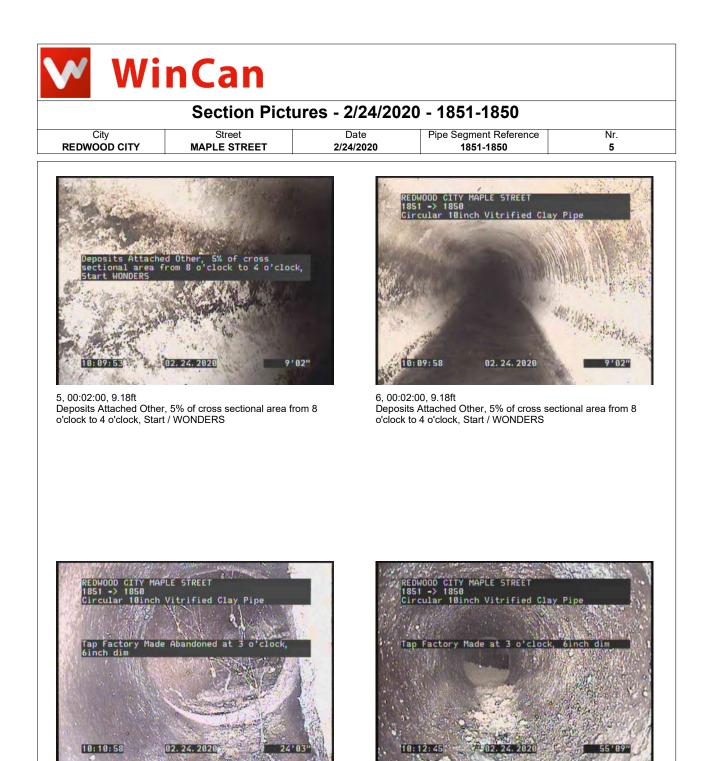
9, 00:06:02, 51.57ft Survey Abandoned / GREASE 50%

10, 00:03:13, 51.87ft Deposits Attached Grease, 25% of cross sectional area at 9 o'clock

11, 00:03:13, 51.87ft Deposits Attached Grease, 25% of cross sectional area at 9 o'clock

12, 00:04:14, 56.95ft Deposits Attached Grease, 50% of cross sectional area from 9 o'clock to 3 o'clock


City	Street	Date	Pipe Seament Reference	Nr.
REDWOOD CITY	MAPLE STREET	2/21/2020	1185-1852	4



13, 00:04:14, 56.95ft Deposits Attached Grease, 50% of cross sectional area from 9 o'clock to 3 o'clock

				Inspe	ction report				
Date: Work Order: 2/24/2020		der:	Weather: Surveyed By: Certificate N Dry R.DION N.P.S U-816-0700				ment Ref. -1850		
Year laid: Pre-cleaning: City: REDWOOD CITY Street: MAPLE STREET Location Code: Light highway Location Details:				Direction: Downstream				Length S	urveyed:
				Drainage Area: Upstream MH: Media Label: Up Rim to Inve Flow Control: Downstream M Sheet Number: Down Rim to I			vert: 0.0 MH: 1850		
ipe shape: ipe size: ipe material: ining Method: dditional Info:	Circular 10 " Vitrified C Cured in		9	Sewer Use: Sewer Category: Purpose: Owner:	Sanitary SEC Routine Assessment	Total gallons u Joints passed Joints failed:		0.0 0 0	
1:2150	Distance		Code	Observation			Counter	Photo	Grade
1851	0.00		AMH	Manhole / 1851			00:00:28	1, 2	
	0.00		MWL	Water Level, 25	% of the vertical dimension		00:00:43	3	
	5.89		TFD	Tap Factory Ma BROKEN	de Defective at 3 o'clock, 6ii	nch dim /	00:01:21	4	M2
	9.18	S01	DAZ		ed Other, 5% of cross section bock, Start / WONDERS	onal area from 8	00:02:00	5, 6	
	24.24		TFB	Tap Factory Ma	de Abandoned at 3 o'clock,	6inch dim	00:02:54	7	
	55.76		TF	Tap Factory Ma	de at 3 o'clock, 6inch dim		00:04:34	8	
	55.76		LFOC	Lining Failure O o'clock	vercut Connection from 7 o	clock to 10	00:04:42	9, 10	S3
	100.44		MWLS	Water Level, Sa	ag in pipe, 30% of the vertica	al dimension	00:07:07	11	S2
	141.34		LFUC	Lining Failure U o'clock	ndercut Connection from 2	o'clock to 5	00:09:40	12, 13	S 3
	141.34		TFA	Tap Factory Ma	de Active at 10 o'clock, 6inc	h dim	00:09:28	14	
	\145.63	F01	DAZ		ed Other, 5% of cross section bock, Finish / DEFECT WON		00:10:41	15, 16	M2
	198.89	S02	MWLS	Water Level, Sa Start / DEFECT	ag in pipe, 30% of the vertica WONDERS	al dimension,	00:12:44	17	
	225.22		TFA	Tap Factory Ma	de Active at 10 o'clock, 4inc	h dim	00:14:04	18	
	281.98	F02	MWLS	Water Level, Sa Finish / DEFEC	ng in pipe, 30% of the vertica T WONDERS	al dimension,	00:17:25	19, 20	S2
	284.87		AMH	Manhole / 1850			00:18:05	21	

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 44


7, 00:02:54, 24.24ft Tap Factory Made Abandoned at 3 o'clock, 6inch dim

8, 00:04:34, 55.76ft Tap Factory Made at 3 o'clock, 6inch dim

18:13:19

10, 00:04:42, 55.76ft

02. 24. 202

Lining Failure Overcut Connection from 7 o'clock to 10 o'clock

10:13:13

9, 00:04:42, 55.76ft

11, 00:07:07, 100.44ft Water Level, Sag in pipe, 30% of the vertical dimension



82. 24. 2828

Lining Failure Overcut Connection from 7 o'clock to 10 o'clock

55'09"

12, 00:09:40, 141.34ft Lining Failure Undercut Connection from 2 o'clock to 5 o'clock

15, 00:10:41, 145.63ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / DEFECT WONDERS

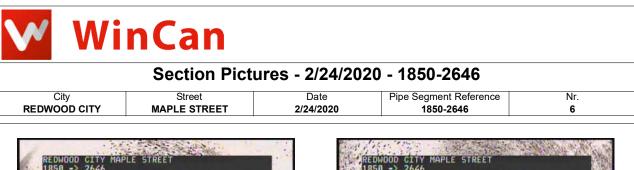
16, 00:10:41, 145.63ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / DEFECT WONDERS

19, 00:17:25, 281.98ft Water Level, Sag in pipe, 30% of the vertical dimension, Finish / DEFECT WONDERS

20, 00:17:25, 281.98ft Water Level, Sag in pipe, 30% of the vertical dimension, Finish / DEFECT WONDERS

	Section Pict	ures - 2/24/20	20 - 1851-1850	
City	Street	Date	Pipe Segment Reference	Nr.
EDWOOD CITY	MAPLE STREET	2/24/2020	1851-1850	5

10:27:48


21, 00:18:05, 284.87ft Manhole / 1850 02. 24. 2020

284 10"

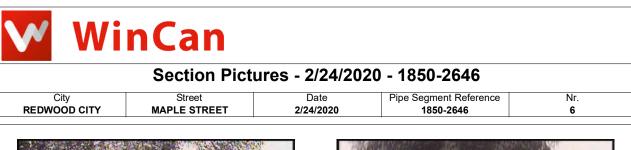
				Inspec	tion report				
Date: 2/24/2020		Work Ord	er:				lumber: 05058		ment Ref.: -2646
Year laid:		Pre-cleani	ng:	Direction: Downstream	Pipe Joint Length:	Total Ler	ngth:	Length S	Surveyed:
City: Street: .ocation Code: .ocation Details: Pipe shape: Pipe size: Pipe material: .ining Method: .dditional Info:	REDWOC MAPLE S Light hig Circular 10 " Vitrified C	TREET		Sheet Number: Sewer Use: Sewer Category:	Not Controlled Sanitary SEC Routine Assessment	Upstream MH Up Rim to Inve Downstream M Down Rim to I Total gallons o Joints passed Joints failed:	ert: MH: Invert: used:	1850 0.0 2646 0.0 0.0 0 0	
1:1934	Distance		Code	Observation			Counter	Photo	Grade
1850	0.00 0.00 5.89 20.85 38.60 92.16 140.74	S01	AMH MWL DAZ MWLS TF MWLS TF	Deposits Attache o'clock to 4 o'cloc Water Level, Sag Water Level, Sag Tap Factory Mac Water Level, Sag	% of the vertical dimension ad Other, 5% of cross section ck, Start / STAINING g in pipe, 35% of the vertica g in pipe, 30% of the vertica le at 10 o'clock, 4inch dim / g in pipe, 30% of the vertica le at 9 o'clock, 6inch dim	al dimension al dimension GREASE	00:00:23 00:00:46 00:00:49 00:01:19 00:02:07 00:03:02 00:03:02 00:05:40	2 3, 4 5, 6 7, 8 9 10, 11	S3 S2 S2
2646	209.66 229.41 254.75 254.75 256.25	F01	MWLS MCU DAZ MWLS AMH	Start Camera Underwa Deposits Attache o'clock to 4 o'cloc	g in pipe, 35% of the vertica ater ed Other, 5% of cross section ck, Finish / STAINING g in pipe, 35% of the vertica	onal area from 8	00:12:13 00:13:23 00:14:55 00:14:59 00:15:17	15 16 17	M4 M2 S3

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 51

 $5,\,00{:}01{:}19,\,5{.}89\text{ft}$ Water Level, Sag in pipe, 35% of the vertical dimension

6, 00:01:19, 5.89ft Water Level, Sag in pipe, 35% of the vertical dimension

7, 00:02:07, 20.85ft Water Level, Sag in pipe, 30% of the vertical dimension



8, 00:02:07, 20.85ft Water Level, Sag in pipe, 30% of the vertical dimension

11, 00:05:40, 92.16ft Water Level, Sag in pipe, 30% of the vertical dimension

12, 00:08:01, 140.74ft Tap Factory Made at 9 o'clock, 6inch dim

13, 00:12:13, 209.66ft Water Level, Sag in pipe, 35% of the vertical dimension, Start

14, 00:12:13, 209.66ft Water Level, Sag in pipe, 35% of the vertical dimension, Start

15, 00:13:23, 229.41ft Camera Underwater

16, 00:14:55, 254.75ft Deposits Attached Other, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish / STAINING

17, 00:14:59, 254.75ft Water Level, Sag in pipe, 35% of the vertical dimension, Finish

18, 00:15:17, 256.25ft Manhole / 2646

\mathbf{v}	W	inC	a	n						
					ctio	on report				
Date: 2/26/2020	Work Order:			Weather: Surveyed By: Dry R.DION N.P.S			Certificate U-816-07	005058	Pipe Segment Ref H4-H5	
Year laid:		Pre-clean	ing:	Direction: Upstream		Pipe Joint Length:	Total Le	ength:	Length	Surveyed:
City: Street: Location Code: Location Details: Pipe shape: Pipe size: Pipe material: Lining Method: Additional Info:		ar		Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner:	Not Stor	SN H Controlled mwater tine Assessment	Upstream MI Up Rim to Inv Downstream Down Rim to Total gallons Joints passed Joints failed:	vert: MH: Invert: used: d:	H4 0.0 H5 0.0 0.0 0 0	
1:448	Distar	nce	Code	Observation				Counter	Photo	Grade
H5	0	.00	ACB	Catch Basin / H	1-5			00:00:32	1, 2	
	0	.00	MWL	Water Level, 15	5% of t	he vertical dimension	ı	00:01:04	3, 4	
\$	0	.00	DSGV	Deposits Settle o'clock to 7 o'cl		rel, 5% of cross secti	onal area from 5	00:01:25	5, 6	Μ2
	59	.25 .35 .35	MMC TFI MSA	Tap Factory Ma intrusion	ade Int	t iron / CP TO CAST ruding at 9 o'clock, 6 SIZE CHANGE TO 12	nch dim, 3inch	00:03:50 00:04:19 00:05:13	9	МЗ
QSR		MR	SPR			OPR 5.0	SPRI	MPRI		OPRI
0000	3'	121	0.0	CITY SEWER ANI		5.0	0.0	2.5		2.5

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 57

City	
REDWOOD	CITY

Street CHESTNUT ST Date

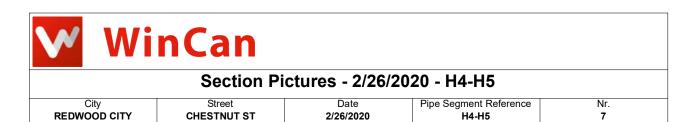
2/26/2020

Pipe Segment Reference H4-H5

Nr.

7

5, 00:01:25, 0.00ft Deposits Settled Gravel, 5% of cross sectional area from 5 o'clock to 7 o'clock


6, 00:01:25, 0.00ft Deposits Settled Gravel, 5% of cross sectional area from 5 o'clock to 7 o'clock

7, 00:03:50, 58.25ft Material Change, Cast iron / CP TO CAST IRON 12 INCH

8, 00:03:50, 58.25ft Material Change, Cast iron / CP TO CAST IRON 12 INCH

9, 00:04:19, 59.35ft Tap Factory Made Intruding at 9 o'clock, 6inch dim, 3inch intrusion

10, 00:05:13, 59.35ft Survey Abandoned / SIZE CHANGE TO 12

11, 00:05:13, 59.35ft Survey Abandoned / SIZE CHANGE TO 12

			Inspec	ctio	n report				
Date: 2/26/2020 Year laid:		Vork Order: Pre-cleaning:	Weather: Dry Direction: Downstream	1	Surveyed By: R.DION N.P.S Pipe Joint Length:	Certificate N U-816-070 Total Ler	05058	H4	ment Ref.: -H5 Surveyed:
City: Street: Location Code: Location Details:	REDWOO CHESTNU Sidewalk		Drainage Area: Media Label: Flow Control: Sheet Number:	BAIS Not C	ontrolled	Upstream MH Up Rim to Inve Downstream I Down Rim to	ert: MH: Invert:	H4 0.0 H5 0.0	
Pipe shape: Pipe size: Pipe material: Lining Method: Additional Info:	Circular 10 " Cast Iron		Sewer Use: Sewer Category: Purpose: Owner:	SEC	nwater ne Assessment	Total gallons of Joints passed Joints failed:		0.0 0 0	
1:448	Distance	Code	Observation				Counter	Photo	Grade
H4	0.00	ACB	Catch Basin / H-	1-4			00:00:25	1	
	0.00	MWL	Water Level, 15	5% of th	e vertical dimension		00:00:47	2	
	0.00	DAE	Deposits Attache from 8 o'clock to		crustation, 5% of cross	s sectional area	00:01:06	3, 4	M2
	5.59	S01 DAE	Deposits Attache from 8 o'clock to		rustation, 5% of cross ock, Start	s sectional area	00:01:36	5, 6	
	18.75	DSC	Deposits Settlec from 4 o'clock to		pacted, 15% of cross s pock	sectional area	00:02:45	7	М3
	18.75	F01 DAE	Deposits Attache from 8 o'clock to		rustation, 5% of cross ock, Finish	s sectional area	00:03:06	8	M2
	18.75	SCP	Surface Corrosio	ion Met	al Pipe from 8 o'clock	to 4 o'clock	00:03:14		S3
*	18.75	MSA	Survey Abandor	ned / D	SC 25 %		00:03:34	11, 12	
	59.35		End of pipe						
H5 QSR	QMR	SPR	MPR		OPR	SPRI	MPRI		OPRI
3100	3124	3.0	CITY SEWER AND		14.0	3.0	2.2		2.3

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 61

3, 00:01:06, 0.00ft Deposits Attached Encrustation, 5% of cross sectional area from 8 o'clock to 4 o'clock

4, 00:01:06, 0.00ft Deposits Attached Encrustation, 5% of cross sectional area from 8 o'clock to 4 o'clock

7, 00:02:45, 18.75ft Deposits Settled Compacted, 15% of cross sectional area from 4 o'clock to 8 o'clock

18:43:46 02. 26. 2020 18'99

8, 00:03:06, 18.75ft Deposits Attached Encrustation, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish

18'89"

9, 00:03:14, 18.75ft Surface Corrosion Metal Pipe from 8 o'clock to 4 o'clock

02. 26. 2020

18:44:03

10, 00:03:14, 18.75ft Surface Corrosion Metal Pipe from 8 o'clock to 4 o'clock

11, 00:03:34, 18.75ft Survey Abandoned / DSC 25 %

12, 00:03:34, 18.75ft Survey Abandoned / DSC 25 %

V W	/inCa	n				
Inspection report						
Date:	Work Order:	Weather:	Surveyed By:	Certificate Number:		
2/26/2020		Dry	R.DION N.P.S	U-816-07005058		
Year laid:	Pre-cleaning:	Direction:	Pipe Joint Length:	Total Length:		
-		Downstream				
City: RE	DWOOD CITY	Drainage Area: BA	Upstream MH:			

Media Label:

Flow Control:

Sewer Use:

Purpose:

Sheet Number:

Sewer Category:

Street:

Location Code:

Location Details:

Pipe shape:

Pipe material:

Lining Method:

Additional Info:

1:401

H6

Pipe size:

CHESTNUT ST

Concrete Pipe (non-reinforced)

Circular

10 "

		,	Owner:	
Dis	stance	Code	Observation	Counter
	0.00	ACB	Catch Basin / H-7	00:00:29
$\overline{\ }$	0.00	MWL	Water Level, 0% of the vertical dimension	00:00:43
	17.06	DAGS	Deposits Attached Grease, 5% of cross sectional area from 5 o'clock to 7 o'clock	00:01:26
	29.03	MSC	Shape or Size Change, 8inch dim, 10inch dim	00:02:30
	29.03	MMC	Material Change, Corrugated metal pipe / TOP OF PIPE	00:02:51

Not Controlled

Routine Assessment

Stormwater

SEC

Pipe Segment Ref.: H6-H7

Length Surveyed:

Grade

M2

H6

0.0

H7

0.0

0.0

0

0

Photo

1

2

3, 4

5, 6

7, 8

9, 10

11, 12

M1

S2

00:04:11

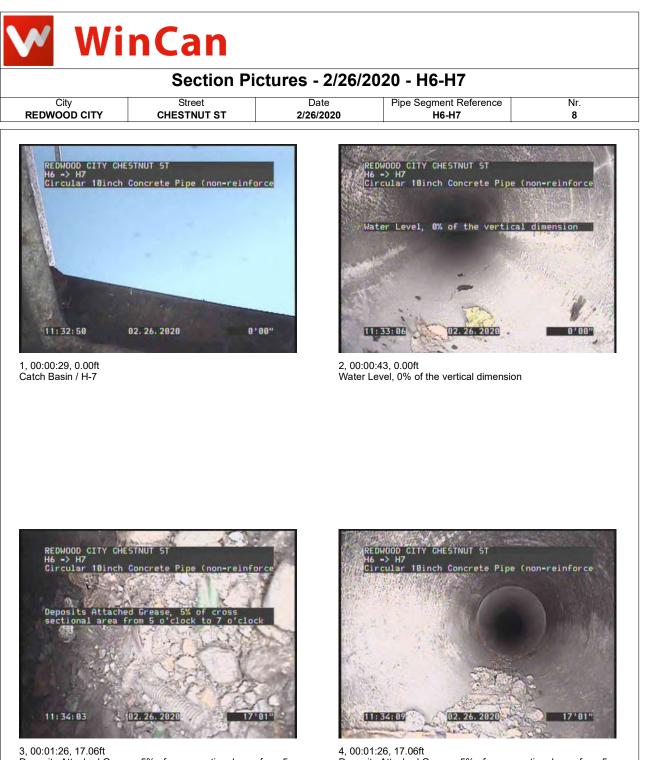
00:04:43

Up Rim to Invert:

Downstream MH:

Down Rim to Invert:

Total gallons used:


Joints passed:

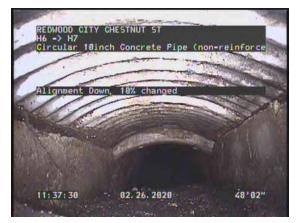
Joints failed:

48.18	LD	Alignment Down, 10% changed
53.06	JOL	Joint Offset Large, 1Inch
53.06	MSA	Survey Abandoned / JOINT OFFSET LARGE

	53.06	MSA Su	Survey Abandoned / JOINT OFFSET LARGE			00:05:00	13, 14	
QSR	QMR	SPR	MPR	OPR	SPRI	MPRI	OPRI	
2100	2111	2.0	3.0	5.0	2.0	1.5	1.7	

REDWOOD CITY SEWER AND STORM CCTV [Greystar] // Page: 65

Deposits Attached Grease, 5% of cross sectional area from 5 o'clock to 7 o'clock


4, 00:01:26, 17.06ft Deposits Attached Grease, 5% of cross sectional area from 5 o'clock to 7 o'clock

7, 00:02:51, 29.03ft Material Change, Corrugated metal pipe / TOP OF PIPE

8, 00:02:51, 29.03ft Material Change, Corrugated metal pipe / TOP OF PIPE

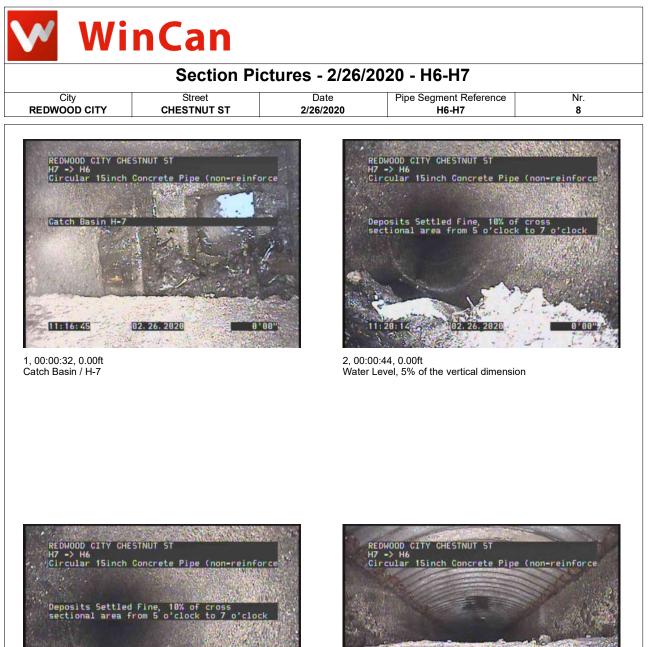
9, 00:04:11, 48.18ft Alignment Down, 10% changed

10, 00:04:11, 48.18ft Alignment Down, 10% changed

11, 00:04:43, 53.06ft Joint Offset Large, 1Inch

12, 00:04:43, 53.06ft Joint Offset Large, 1Inch

WinCan									
Section Pictures - 2/26/2020 - H6-H7									
City REDWOOD CITY	Street CHESTNUT ST	Date 2/26/2020	Pipe Segment Reference H6-H7	Nr. 8					


13, 00:05:00, 53.06ft Survey Abandoned / JOINT OFFSET LARGE

14, 00:05:00, 53.06ft Survey Abandoned / JOINT OFFSET LARGE

V	WinCan
---	--------

			Inspec	ction report				
Date: 2/26/2020	Work	Order:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate U-816-07		Pipe Segi	ment Ref.: -H7
Year laid:	Pre-cl	eaning:	Direction: Upstream	Pipe Joint Length				urveyed:
City:	REDWOOD CI	ГҮ		BAISN H	Upstream MI		H6	
treet:	CHESTNUT ST	-	Media Label:		Up Rim to In		0.0	
ocation Code:				Not Controlled	Downstream		H7	
ocation Details:			Sheet Number:		Down Rim to	Invert:	0.0	
ipe shape:	Circular		Sewer Use:	Stormwater	Total gallons	used:	0.0	
ipe size:	10 "		Sewer Category:	SEC	Joints passe	d:	0	
ipe material:	Concrete Pipe (non	-reinforced)	Purpose:	Routine Assessment	Joints failed:		0	
ning Method:			Owner:					
dditional Info:								
1:401	Distance	Code	Observation			Counter	Photo	Grade
H7								
	0.00	ACB	Catch Basin / H-	7		00:00:32	1	
	0.00	MWL	Water Level, 5%	of the vertical dimension	n	00:00:44	2	
	0.00	DSF	Deposits Settled o'clock to 7 o'clo	Fine, 10% of cross sect	ional area from 5	00:00:49	3	M2
1								
	52.37	MSC	Shape or Size C	hange, 6inch dim, 8inch	dim	00:03:17	4, 5	
	52.37	MSA		ed / SIZE CHANGE		00:04:00	6	
H6	53.06		End of pipe					
QSR	QMR	SPR	MPR	OPR	SPRI	MPRI		OPRI
0000	2100	0.0	2.0	2.0	0.0	2.0		2.0

3, 00:00:49, 0.00ft Deposits Settled Fine, 10% of cross sectional area from 5 o'clock to 7 o'clock

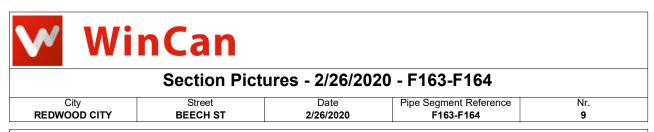
4, 00:03:17, 52.37ft Shape or Size Change, 6inch dim, 8inch dim

02. 26. 2020

11:23:01

52'04"

💙 Wi	nCan							
Section Pictures - 2/26/2020 - H6-H7								
City REDWOOD CITY	Street CHESTNUT ST	Date 2/26/2020	Pipe Segment Reference H6-H7	Nr. 8				



5, 00:03:17, 52.37ft Shape or Size Change, 6inch dim, 8inch dim

6, 00:04:00, 52.37ft Survey Abandoned / SIZE CHANGE

			Inspecti	on report				
Date: 2/26/2020	Work	Order:	Weather: Dry	Surveyed By: R.DION N.P.S	Certificate U-816-07		Pipe Segr F163	ment Ref. -F164
Year laid:	Pre-cle	eaning:	Direction: Upstream	Pipe Joint Length:				urveyed:
ity:	REDWOOD CIT	Υ	Drainage Area: BA	NSN F	Upstream M	H:	F163	
treet:	BEECH ST		Media Label:		Up Rim to In	vert:	0.0	
ocation Code:			Flow Control:		Downstream	MH:	F164	
ocation Details:			Sheet Number:		Down Rim to	Invert:	0.0	
ipe shape:	Circular		Sewer Use: Ste	ormwater	Total gallons	s used:	0.0	
pe size:	12 "		Sewer Category: SE	C	Joints passe	d:	0	
ipe material:	Cast Iron		Purpose: Ro	outine Assessment	Joints failed:		0	
ning Method:			Owner:					
dditional Info:								
1:299	Distance	Code	Observation			Counter	Photo	Grade
F164								
	0.00	ACB	Catch Basin / F164			00:00:27	1	
	0.00	MWL	Water Level, 10% o	f the vertical dimensior	1	00:00:40	2	
	0.00	SCP	Surface Corrosion N	Metal Pipe from 8 o'cloc	k to 4 o'clock	00:03:39	3, 4	S3
\$								
	28.93	Н	Hole from 10 o'clocl	k to 2 o'clock, within 8 i	nch	00:02:10	5, 6	S5
	31.32	LD	Alignment Down, 10	0% changed		00:02:30	7, 8	M1
	35.01	DSF	Deposits Settled Fir o'clock	ne, 10% of cross sectio	nal area at 8	00:02:53	9, 10	M2
	39.60	MSA	Survey Abandoned	/ OBR		00:03:58	11	
QSR	QMR	SPR	MPR	OPR	SPRI	MPRI		OPRI
QUIN	2111	8.0	3.0	11.0	4.0	1.5		2.8

1, 00:00:27, 0.00ft Catch Basin / F164

2, 00:00:40, 0.00ft Water Level, 10% of the vertical dimension

3, 00:03:39, 0.00ft Surface Corrosion Metal Pipe from 8 o'clock to 4 o'clock

4, 00:03:39, 0.00ft Surface Corrosion Metal Pipe from 8 o'clock to 4 o'clock

5, 00:02:10, 28.93ft Hole from 10 o'clock to 2 o'clock, within 8 inch

6, 00:02:10, 28.93ft Hole from 10 o'clock to 2 o'clock, within 8 inch

7, 00:02:30, 31.32ft Alignment Down, 10% changed

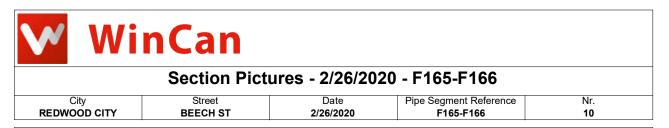
8, 00:02:30, 31.32ft Alignment Down, 10% changed

9, 00:02:53, 35.01ft Deposits Settled Fine, 10% of cross sectional area at 8 o'clock

10, 00:02:53, 35.01ft Deposits Settled Fine, 10% of cross sectional area at 8 o'clock

11, 00:03:58, 39.60ft Survey Abandoned / OBR

2/26/2020 Year laid: City: REDWOC Street: BEECH S Location Code: Location Details: Pipe shape: Circular Pipe size: 12 " Pipe material: Cast Iron Lining Method: Additional Info: 1:613 Distance F166 0.00 0.00 0.00	Work Order: Pre-cleaning: DD CITY ST	Unspe Weather: Dry Direction: Upstream Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner:	Ction report	Certificate Number. U-816-07005058 Total Length: Up Rim to Invert: Downstream MH: Down Rim to Invert: Total gallons used: Joints passed: Joints failed: Coun	F165 Length S 0.0 F166 0.0 0.0 0 0 0	ment Ref.: 5-F166 Surveyed: Grade
2/26/2020 Year laid: City: REDWOC Street: BEECH S Location Code: Location Details: Pipe shape: Circular Pipe size: 12 " Pipe material: Cast Iron Lining Method: Additional Info: 1:613 Distance F166 0.00 0.00 0.00 23.64	Pre-cleaning:	bry Direction: Upstream Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Use: Sewer Category: Purpose: Owner:	R.DION N.P.S Pipe Joint Length: Stormwater SEC Routine Assessment	U-816-07005058 Total Length: Upstream MH: Up Rim to Invert: Downstream MH: Down Rim to Invert: Total gallons used: Joints passed: Joints failed:	F165 Length S 0.0 F166 0.0 0.0 0 0 0	5-F166 Surveyed:
City: REDWOC Street: BEECH S Location Code: Location Details: Pipe shape: Circular Pipe size: 12 " Pipe material: Cast Iron Lining Method: Additional Info: 1:613 Distance F166 0.00 0.00 0.00 0.00	DD CITY ST Cod	Upstream Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner:	Stormwater SEC Routine Assessment	Upstream MH: Up Rim to Invert: Downstream MH: Down Rim to Invert: Total gallons used: Joints passed: Joints failed:	F165 0.0 F166 0.0 0.0 0 0	
Street: BEECH S Location Code: Location Details: Pipe shape: Circular Pipe size: 12 " Pipe material: Cast Iron Lining Method: Additional Info: 1:613 Distance F166 0.00 0.00 0.00 0.00	ST Coc	Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Purpose: Owner: Me Observation	SEC Routine Assessment	Up Rim to Invert: Downstream MH: Down Rim to Invert: Total gallons used: Joints passed: Joints failed:	0.0 F166 0.0 0.0 0	Grade
F166 0.00 0.00 0.00 23.64	AC		166	Coun	ter Photo	Grade
0.00 0.00 0.00 23.64		B Catch Basin / F	166			
0.00	MM		100	00:00	:24 1	
201 20		L Water Level, 10	0% of the vertical dimensior	n 00:00	:33 2	
201 20	S01 SC	P Surface Corros Start	ion Metal Pipe from 7 o'cloo	ck to 5 o'clock, 00:00	:37 3, 4	
) Alignment Dow	n, 5% changed	00:01	:45 5	М1
79.70 81.19 F165	F01 SC	Finish	ion Metal Pipe from 7 o'cloo	ck to 5 o'clock, 00:03 00:03		S3
QSR QMR 3B00 1100		PR MPR 3.0 1.0	OPR 49.0	SPRI MP 3.0 1.		OPRI 2.9

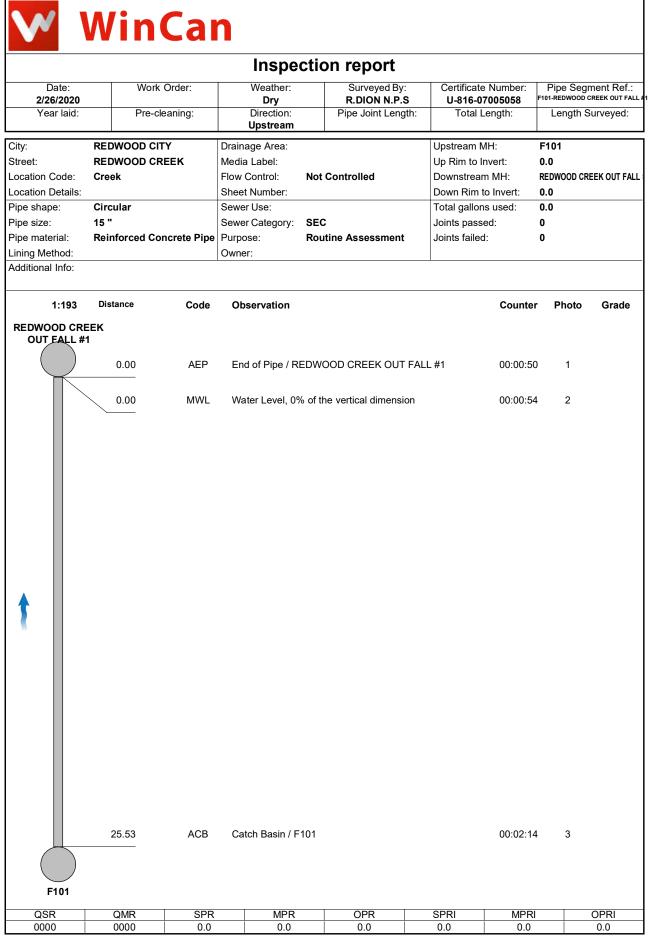


3, 00:00:37, 0.00ft Surface Corrosion Metal Pipe from 7 o'clock to 5 o'clock, Start

4, 00:00:37, 0.00ft Surface Corrosion Metal Pipe from 7 o'clock to 5 o'clock, Start



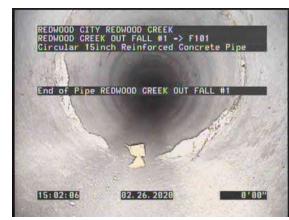
5, 00:01:45, 23.64ft Alignment Down, 5% changed


6, 00:03:38, 79.70ft Surface Corrosion Metal Pipe from 7 o'clock to 5 o'clock, Finish

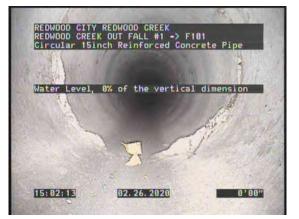
7, 00:03:38, 79.70ft Surface Corrosion Metal Pipe from 7 o'clock to 5 o'clock, Finish

8, 00:03:51, 81.19ft Catch Basin / F165

Section Pictures - 2/26/2020 - F101-REDWOOD CREEK OUT FALL #1


City **REDWOOD CITY**

Street REDWOOD CREEK


Date 2/26/2020

Pipe Segment Reference F101-REDWOOD CREEK Nr.

11


1, 00:00:50, 0.00ft End of Pipe / REDWOOD CREEK OUT FALL #1

2, 00:00:54, 0.00ft Water Level, 0% of the vertical dimension

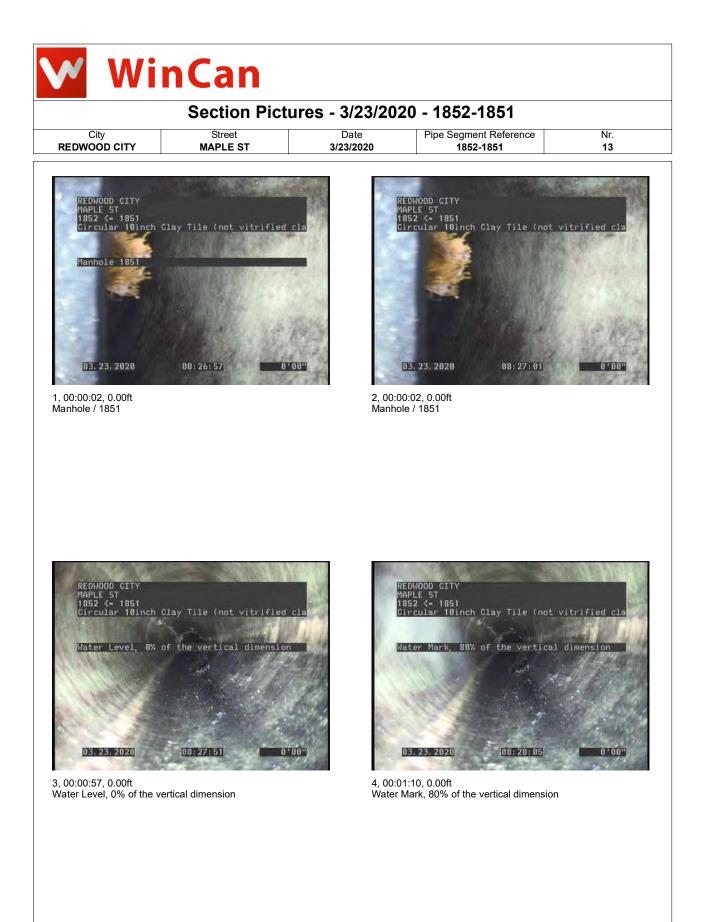
3, 00:02:14, 25.53ft Catch Basin / F101

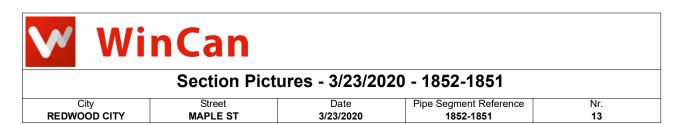
Section Pictures - 2/26/2020 - F102-REDWOOD CREEK OUT FALL #2

City	Street
REDWOOD CITY	REDWOOD CREEK

Date 2/26/2020

e 020 Pipe Segment Reference F102-REDWOOD CREEK Nr. 12




1, 00:00:28, 0.00ft Water Level, 0% of the vertical dimension

2, 00:02:38, 34.31ft Catch Basin / F102

			Inspe	ction report				
Date: 3/23/2020		Work Order:	Weather:	Surveyed By: ORNELAS F	Certificate N U-717-83		Pipe Segr 1852-	-1851
Year laid:		Pre-cleaning:	Direction: Upstream	Pipe Joint Length:	Total Len	gth:	Length S	urveyed:
City: Street: ocation Code: ocation Details: Pipe shape: Pipe size: Pipe material: ining Method: dditional Info:	Circular 10 "		Drainage Area: Media Label: Flow Control: Sheet Number: Sewer Use: Sewer Category: Ay Purpose: Owner:	De-Watered using Jetter SEC Maintenance Related	Upstream MH: Up Rim to Inve Downstream M Down Rim to I Total gallons u Joints passed: Joints failed:	ert: //H: nvert: used:	1852 0.0 1851 0.0 0.0 0 0	
1:1026	Distance	Cod	e Observation			Counter	Photo	Grade
1851	0.00	AMI	H Manhole / 185′	1		00:00:02	1, 2	
	0.00	MW	L Water Level, 0 ⁴	% of the vertical dimension		00:00:57	3	
	0.00	MW	M Water Mark, 80	0% of the vertical dimension		00:01:10	4, 5	M5
	10.60	S01 LFE	3 Lining Failure E inch, Start	Blistered from 7 o'clock to 5 c	'clock, within 8	00:02:46	6, 7	
	51.52	F01 LFE	3 Lining Failure E inch, Finish	Blistered from 7 o'clock to 5 c	clock, within 8	00:05:36	8, 9	S3
	55.42	S03 MWL	.S Water Level, S Start	ag in pipe, 15% of the vertica	al dimension,	00:06:05	10, 11	
	58.52	S02 DAG		hed Grease, 5% of cross sec o'clock, within 8 inch, Start	tional area from	00:06:35	12, 13	
	70.52	F03 MWL	S Water Level, S Finish	ag in pipe, 15% of the vertica	al dimension,	00:07:29	14, 15	S2
	90.93	F02 DAG		hed Grease, 5% of cross sec o'clock, within 8 inch, Finish	tional area from	00:09:31	16, 17	M2
	90.93	ΜS	A Survey Abando	oned / 90 DEGREE ALGINMI	NET	00:09:53	18, 19	
	135.94		End of pipe					
1852								

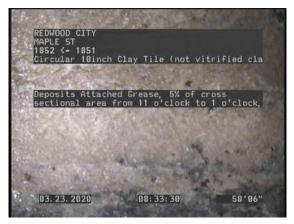
5, 00:01:10, 0.00ft Water Mark, 80% of the vertical dimension

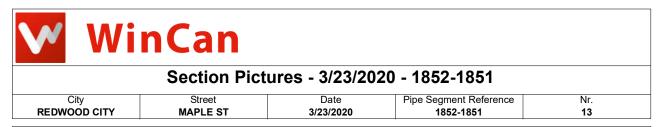
6, 00:02:46, 10.60ft Lining Failure Blistered from 7 o'clock to 5 o'clock, within 8 inch, Start

7, 00:02:46, 10.60ft Lining Failure Blistered from 7 o'clock to 5 o'clock, within 8 inch, Start

8, 00:05:36, 51.52ft Lining Failure Blistered from 7 o'clock to 5 o'clock, within 8 inch, Finish

💙 Wi	nCan							
Section Pictures - 3/23/2020 - 1852-1851								
City REDWOOD CITY	Street MAPLE ST	Date 3/23/2020	Pipe Segment Reference 1852-1851	Nr. 13				


9, 00:05:36, 51.52ft Lining Failure Blistered from 7 o'clock to 5 o'clock, within 8 inch, Finish


10, 00:06:05, 55.42ft Water Level, Sag in pipe, 15% of the vertical dimension, Start

11, 00:06:05, 55.42ft Water Level, Sag in pipe, 15% of the vertical dimension, Start

12, 00:06:35, 58.52ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, within 8 inch, Start

13, 00:06:35, 58.52ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, within 8 inch, Start

14, 00:07:29, 70.52ft Water Level, Sag in pipe, 15% of the vertical dimension, Finish

15, 00:07:29, 70.52ft Water Level, Sag in pipe, 15% of the vertical dimension, Finish

16, 00:09:31, 90.93ft

Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 1 o'clock, within 8 inch, Finish

18, 00:09:53, 90.93ft Survey Abandoned / 90 DEGREE ALGINMNET

Deposits Attached Grease, 5% of cross sectional area from 11

19, 00:09:53, 90.93ft Survey Abandoned / 90 DEGREE ALGINMNET

17, 00:09:31, 90.93ft

o'clock to 1 o'clock, within 8 inch, Finish

	Vin		•					
			Inspec	ction report				
Date: 3/23/2020	ORNELAS F U-717-		17-8333		e Segment Ref.: 1852-1851			
Year laid:	Pre-cie	eaning:	Direction: Downstream	Pipe Joint Length:	Total Le	engtn:	Length S	urveyed:
ity: treet: ocation Code: ocation Details:	REDWOOD CIT MAPLE ST Main highway -		Drainage Area: Media Label: Flow Control: Sheet Number:	De-Watered using Jetter	Upstream MI Up Rim to In Downstream Down Rim to	vert: MH:	1852 0.0 1851 0.0	
ipe shape: ipe size: ipe material: ining Method: dditional Info:	Circular 10 " Clay Tile (not v	itrified clay	0,	SEC Maintenance Related	Total gallons Joints passe Joints failed:	d:	0.0 0 0	
1:1026	Distance	Code	Observation			Counter	Photo	Grade
1852	0.00	АМН	Manhole / 1852			00:00:02	1, 2	
	0.00	MWL	Water Level, 609	% of the vertical dimension		00:00:30	3	
	6.00	DAGS	Deposits Attache from 10 o'clock t	ed Grease, 20% of cross se o 2 o'clock	ectional area	00:01:48	4, 5	МЗ
•	87.93	MWLS	Water Level, Say	g in pipe, 50% of the vertic	al dimension	00:05:19	6	S3
	108.04	TF	Tap Factory Mac	de at 3 o'clock, 6inch dim		00:06:45	7	
	119.84	MGO	General Observa	ation / MH 63		00:07:51	8	
	135.94	MSA	Survey Abandon	ed / 90 BEND		00:09:59	9, 10	

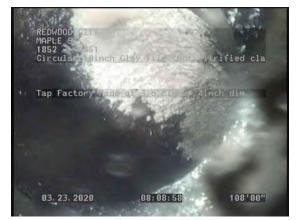
💙 Wi	nCan							
Section Pictures - 3/23/2020 - 1852-1851								
City REDWOOD CITY	Street MAPLE ST	Date 3/23/2020	Pipe Segment Reference 1852-1851	Nr. 13				

1, 00:00:02, 0.00ft Manhole / 1852

2, 00:00:02, 0.00ft Manhole / 1852

3, 00:00:30, 0.00ft Water Level, 60% of the vertical dimension

4, 00:01:48, 6.00ft Deposits Attached Grease, 20% of cross sectional area from 10 o'clock to 2 o'clock



5, 00:01:48, 6.00ft Deposits Attached Grease, 20% of cross sectional area from 10 o'clock to 2 o'clock

6, 00:05:19, 87.93ft Water Level, Sag in pipe, 50% of the vertical dimension

7, 00:06:45, 108.04ft Tap Factory Made at 3 o'clock, 6inch dim

8, 00:07:51, 119.84ft General Observation / MH 63

WinCan							
Section Pictures - 3/23/2020 - 1852-1851							
Cit REDWOO	, , , , , , , , , , , , , , , , , , , ,	Street MAPLE ST	Date 3/23/2020	Pipe Segment Reference 1852-1851	Nr. 13		

9, 00:09:59, 135.94ft Survey Abandoned / 90 BEND

10, 00:09:59, 135.94ft Survey Abandoned / 90 BEND

V	W	'n	Ca	n
---	---	----	----	---

3/20/2020	v	/ork Order:	Weather: Dry	Surveyed By: R.DION N.P.S			Pipe Seg	ST-1852
Year laid:	P	re-cleaning:	Direction: Downstream	Pipe Joint Leng				Surveyed:
City: Street: .ocation Code: .ocation Details:	REDWOOD MAPLE ST		Drainage Area: Media Label: Flow Control: Sheet Number:	De-Watered using Jet	Down Rim to	ert: MH: Invert:	1185-POST 0.0 1852 0.0	
vipe shape: Vipe size: Vipe material: ining Method: Indditional Info:	Circular 10 " Vitrified Cl Cured in P POST CLE	lace	5,	SEC Routine Assessment	Total gallons Joints passed Joints failed:	:	0.0 0 0	
1:550	Distance	Code	Observation			Counter	Photo	Grade
1185-POST								
	0.00	AMH	Manhole / 1185-F	POST		00:00:13	1	
	0.00	MWL	Water Level, 30%	of the vertical dimens	ion	00:00:00	2	
	0.00	DAZ	Deposits Attache o'clock to 3 o'cloc	d Other, 5% of cross s k	ectional area from 9	00:00:32	3, 4	M2
	0.00	MGO	General Observa	tion / POST CLEAN		00:00:41	5	
	0.00	DAGS	Deposits Attache 11 o'clock to 12 c	d Grease, 5% of cross 'clock	sectional area from	00:05:17	6	M2
	4.39	DAGS	Deposits Attache o'clock	d Grease, 5% of cross	sectional area at 2	00:06:17	7, 8	M2
	13.37	S01 DAGS	Deposits Attache 8 o'clock to 4 o'cl	d Grease, 5% of cross ock, Start	sectional area from	00:07:37	9, 10	
♦	21.15	TF	Tap Factory Mad	e at 10 o'clock, 4inch d	im	00:07:59	11	
	44.99	TFC	Tap Factory Mad	e Capped at 4 o'clock,	4inch dim	00:08:58	12	
	60.45	DAGS	Deposits Attache from 9 o'clock to	d Grease, 25% of cros 3 o'clock	s sectional area	00:11:52	13, 14	M4
	72.81	F01 DAGS	Deposits Attache 8 o'clock to 4 o'cl	d Grease, 5% of cross ock, Finish	sectional area from	00:13:56	15, 16	M2
	72.81	AMH	Manhole / 1852			00:13:57	17	
1852								
QSR	QMR	SPR	MPR	OPR	SPRI	MPRI	1	OPRI

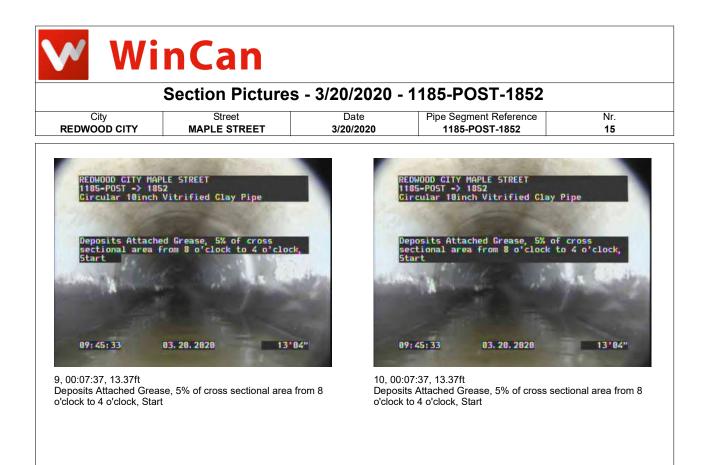
1, 00:00:13, 0.00ft Manhole / 1185-POST

2, 00:00:00, 0.00ft Water Level, 30% of the vertical dimension

3, 00:00:32, 0.00ft Deposits Attached Other, 5% of cross sectional area from 9 o'clock to 3 o'clock

4, 00:00:32, 0.00ft Deposits Attached Other, 5% of cross sectional area from 9 o'clock to 3 o'clock

5, 00:00:41, 0.00ft General Observation / POST CLEAN


6, 00:05:17, 0.00ft Deposits Attached Grease, 5% of cross sectional area from 11 o'clock to 12 o'clock

7, 00:06:17, 4.39ft Deposits Attached Grease, 5% of cross sectional area at 2 o'clock

8, 00:06:17, 4.39ft Deposits Attached Grease, 5% of cross sectional area at 2 o'clock

11, 00:07:59, 21.15ft Tap Factory Made at 10 o'clock, 4inch dim

12, 00:08:58, 44.99ft Tap Factory Made Capped at 4 o'clock, 4inch dim

Section Pictures - 3/20/2020 - 1185-POST-1852

City	L
REDWOOD CITY	L

Street MAPLE STREET Date 3/20/2020 Pipe Segment Reference 1185-POST-1852

Nr.

15

13, 00:11:52, 60.45ft

Deposits Attached Grease, 25% of cross sectional area from 9 o'clock to 3 o'clock

14, 00:11:52, 60.45ft Deposits Attached Grease, 25% of cross sectional area from 9 o'clock to 3 o'clock

15, 00:13:56, 72.81ft Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish

16, 00:13:56, 72.81ft

Deposits Attached Grease, 5% of cross sectional area from 8 o'clock to 4 o'clock, Finish

09:52:36

17, 00:13:57, 72.81ft Manhole / 1852 83. 28. 2828

72/18"

1461 Harbor Avenue Long Beach, CA 90813-2741 p: (562) 436-7600 f: (562) 495-1528 www.nationalplant.com

APPENDIX D PACP Defect Guide

Appendix C - Code Index

A Carylon Company

NASSCO'S PIPELINE ASSESSMENT & CERTIFICATION PROGRAM (PACP)@

Added: None None
•REFEATED* 4-1 "Repeat frontinuous defects occur at regular intervals along the sawer. These occur at pipe joints and include: -Encrustation -Open Joints -Oreuniferential Fractures
TRU1A 4-1 "Truly" continuous defects run along the searcr without any ident program of the search without any fect (1 metro). Examples: - Longindinal Fractures - Longindinal Fractures

NATIONAL PLANT SERVICES

ctural Defect Coding (Module 6A) C tru Ľ, Section

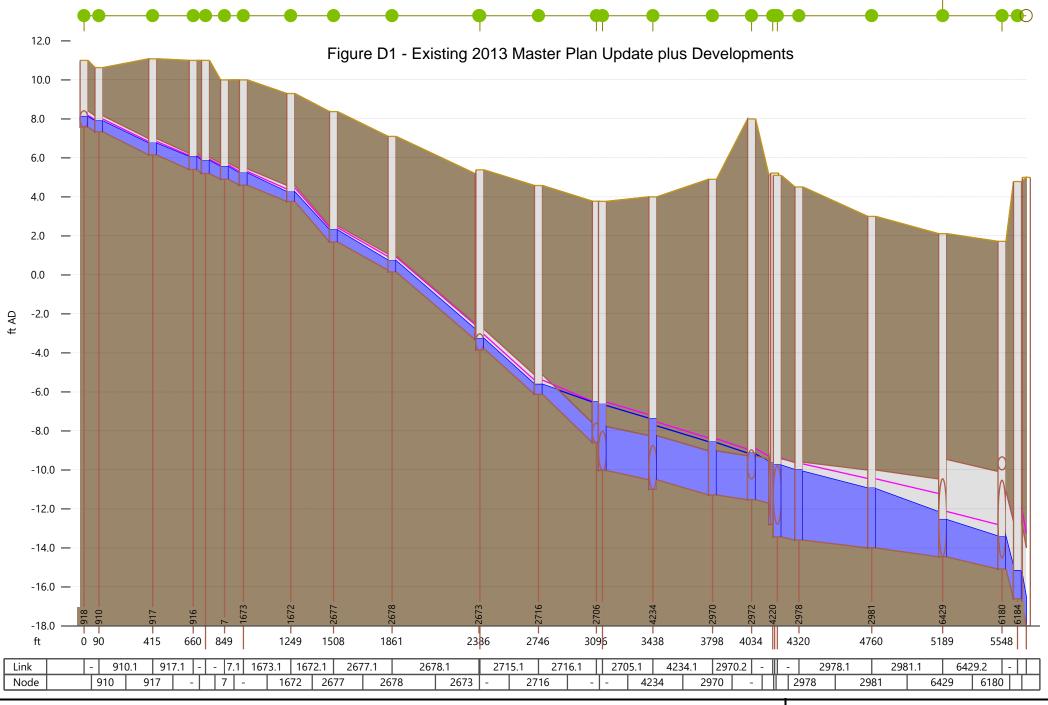
	5-26 5-26 1 5-26 5-26	5-31 16 5-31 11 5-31 11 10 10 10 10 10 10 10 10 10 10 10 10 1	5 549 6 549 6 549 749 549 549 549 549 549 549 549 549 549 5	д [3	0
	J JOINT JO Joint Offset (Displaced) JS Joint Separated (Open) J Joint Angular	S SURFACE DANAGE SRC Reinforcement Corroted SRC -N - Mechanical SRC -C - Cleanical Mack SRC -C - Offermical Mack	LF LLNING FEATURES FEATURES commed LFOC Overon Service LEVC Overon Service LEVC Overon Service LERE Buedded Lining LFMS Annular Space	Updated July 2013	copyright © 2001, NASSCO
				15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t © 2(
	X COLLAPSE 5-23 XP Pipe Collapse 5-23 XB Brick Collapse 5-23	S SURFACE 5-31 DAMAGE 5-31 SRP Reinforcement 5-31 SRP - 1 - Nechmical 5-31 SRP - 2 - Plot Evident SRP - 2 - Plot Evident	LF LINING FEATURES 5-49 (1)70 Intereted Ling 5-49 (1)70 Intereted Ling 5-49 (1)70 Effective Ling 5-49 (1)70 Sector	BRICKWORK 5-75 MM Missing Mortar 5-75 S Small 5-75 N M Missing Mortar 5-75 L -Large 5-75	copyrigh
	61-5 61-3 61-3 ()	5-31 5-31	545 545 545 545 545	5-75 5-75 5-75 5-75 5-75	
	D. DEFORMED 5 DV Deformed 5 Vertically (hrick) DH Deformed 5 Hortzontally (brick)	S SURFACE DAMAGE SRV Reiforcenent Visible SRV - M - Mechanical SRV - Z - Vol Mack SRV - Z - Vol Evideat	K BUCKLING KW Wall KD Dimpling KI Inverse Curvature	BRICKWORK DB Displaced MB Missing D1 Drupped Invert	
	5-17 5-17 5-17	5-31 5-31	5-31 5-32 d	2 5-69 5-69 5-69 5-69 5-69	
dule 6A)	H HOLF TISV Soll Visible Reyond Defect HV V - Void Visible Reyond Defect	S SURFACE DAMACE SAM Aggregate SAM Aggregate SAM - Morensel SAM - Z - PortBrankel SAM - Z - PortBrankel	S SURFACE DAMAGE 5. DAMAGE 5. SCP Corrosion 5. (mictal pipe) °10 modifiers used	RP POINT R/P 5-69 RP -0.01 -0.02 -0.02 RP -0.01 -0.02 -0.02 RP -0.01 -0.01 -0.02 RP -0.06 -0.01 -0.02 RP -0.06 -0.01 -0.01	C-2
Mo	5-15 5-15 5-15	16-9 16-9	5-31 5-32	R 5-69 5-69 5-69 5-69	
Section 5—Structural Detect Coding (Module 6A)	B BROKEN BSV Solt Vishle Reyond Defect RVV - Vuid Visible Reyond Defect	S SURFACE DAMAGE SAP Aggregate Projecting SAP A. Netuneal SAP - C. Channeal SAP - Z You Existen	SURFACE DAMAGE 5 SZ Other 5 SZ - M - Mechanical SZ - C - Chemical Attack SZ - Z - Not Evident	RP POINT REPAIR 5-69 RFR Pipe Rejueed 5-69 RFR -DDeferive 5-69 RFP -DDeferive 5-69 RFP -DDeferire 5-69	gram
etec	557 557 557 557 557 557 557	5-31 5-31	5.31 5.32	5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67	n Pro ₈
ructural De	F FRACTURE EL Longiudinal FC Longiudinal FC Multiple FM Multiple FS Spiral FH Hinge	S SURFACE DAMAGE SAV Agregate SAV - Mechanical SAV - Z - Chemical SAV - Z - Not Evident	SURFACE DAMAGE SSS Surface Spatling SSS - M - Medimical SSS - C - Chemical Aurock SSS - Z - Not Evident	WF WELD AULTRE WEL Longtodinal WFC Creamberedial WFC Creamberedial WFS Shrail WFS Shrail WFS Luidentified	Pipeline Assessment Certification Program
	5-2 5-2 5-2 5-2 5-2	E-S	5-31 5-32 ck	S-49 S-56 S-56 S-56 S-56 S-56 S-56 S-56	Assess
Section 5-	C CRACK CL Longitudinal CC Uncumferential CN Multiple CS Spiral CH Hinge	S SURFACE DAMAGE SRI Roughness SRI Roughness SRI M - Machineal SRI C - chonneal SRI-Z - Noi Exident	S SURFACE 5 DAMAGE 5 SMW Missing wall 5 SMW - Mechanical SWW - C - Chemical Artuck SWW - Z - Not fitvident	LF LINING FEATURES 5 1.3940 biogeo LEPU Dischemion LFPR Resis Sing LFPH Physics LFPH Physics LFP Physics LFZ Other	Pipeline Assessment Cer

Pipeline Assessment Certification Program Version 6.0.2 July 2013

Appendix C - Code Index

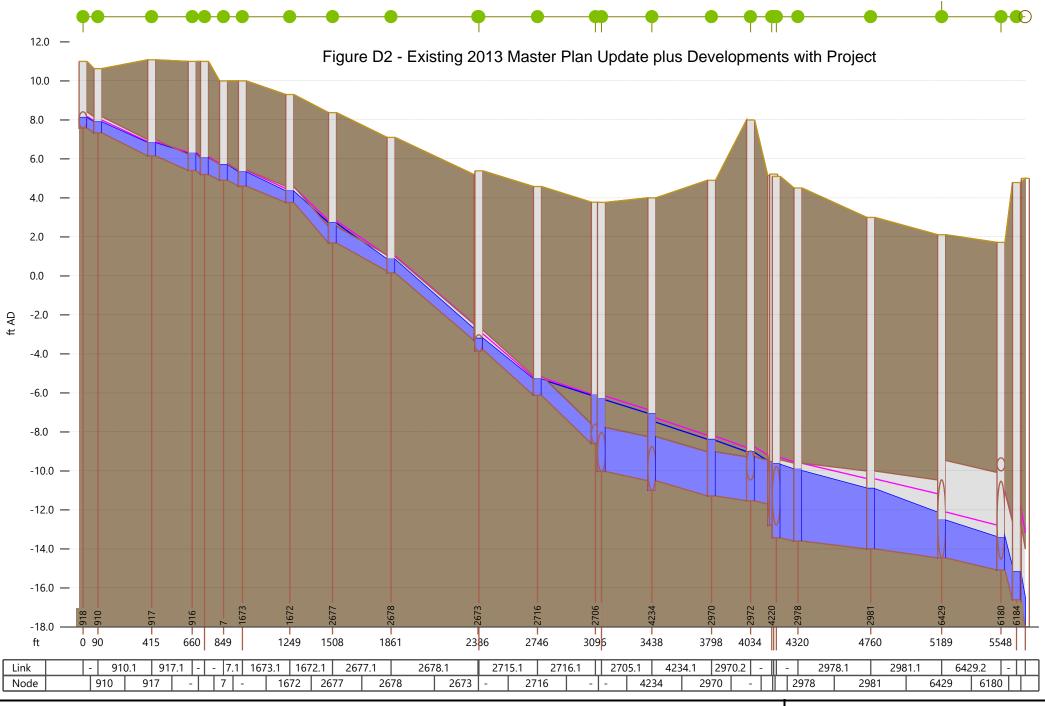
A Carylon Company

NATIONAL PLANT SERVICES

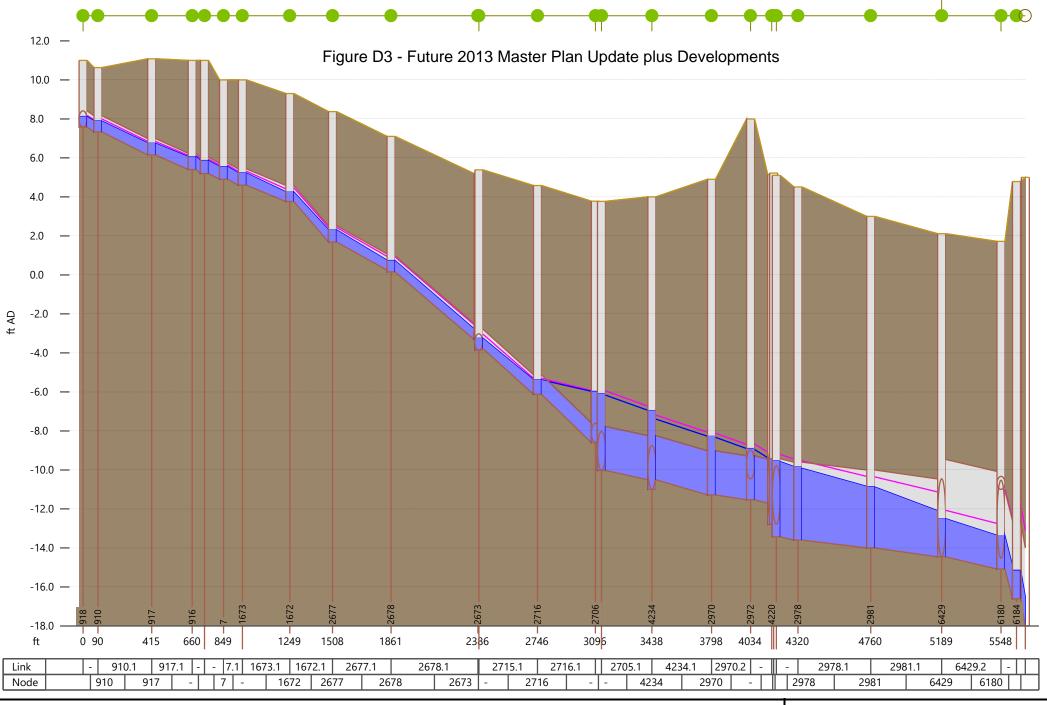

NASSCO'S PIPELINE ASSESSMENT & CERTIFICATION PROGRAM (PACP)@

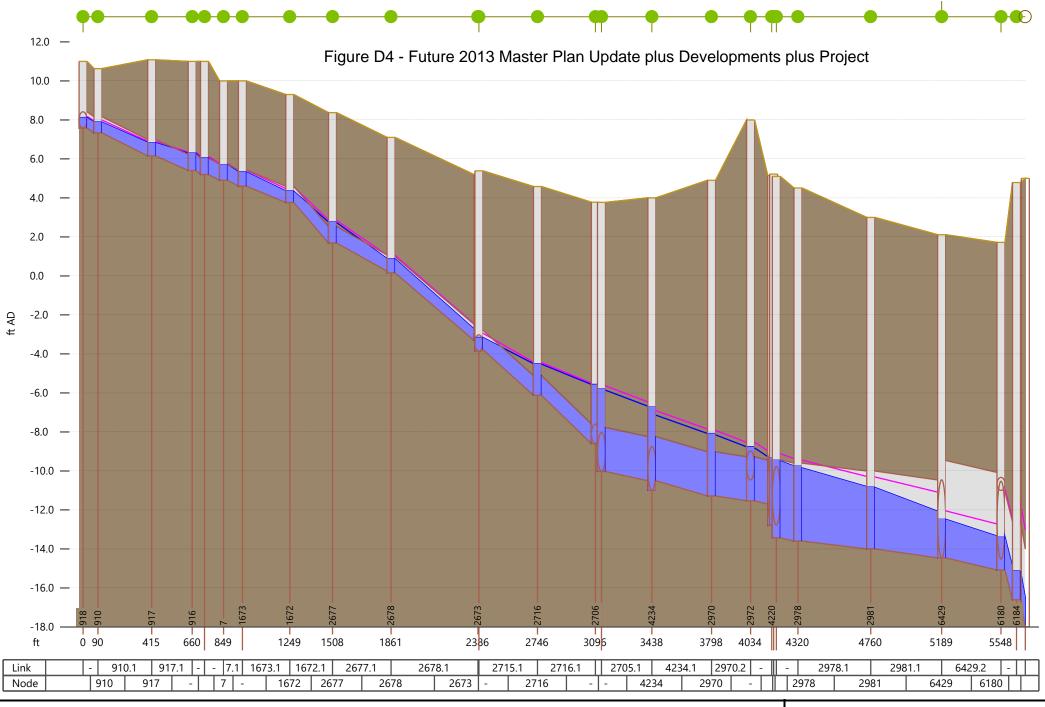
Section 6—Operational and Maintenance (Module 6B)

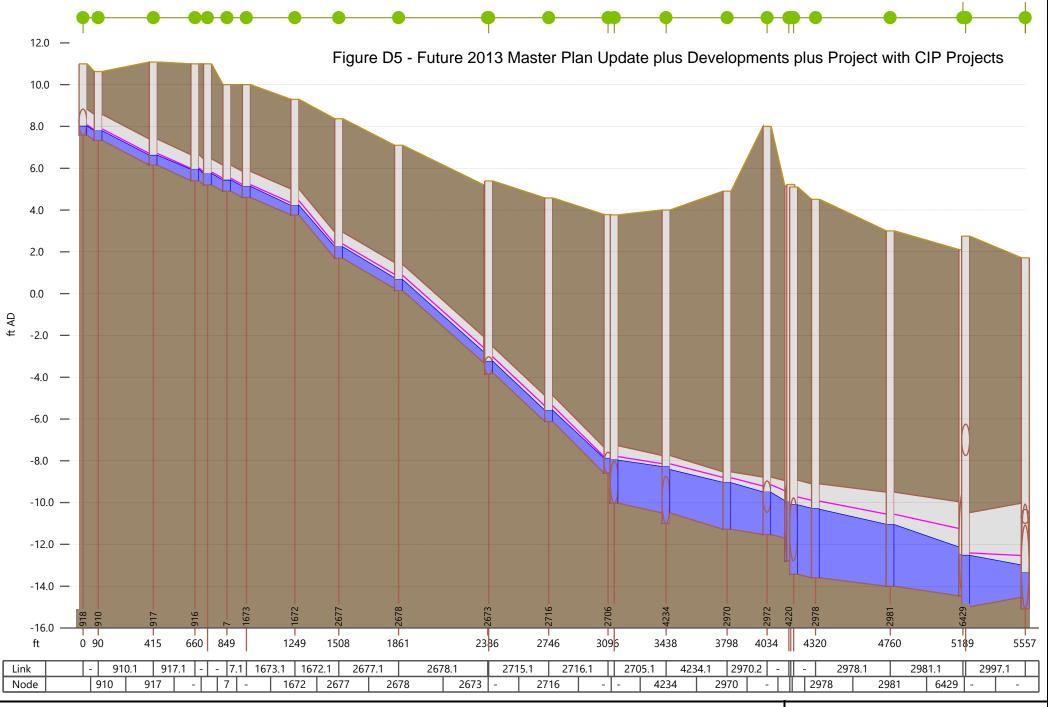
6-7 6-7 6-7 6-7 6-7 6-8	5T 6-33 6-34 6-34 6-34 6-34 6-34		EALING
ROOTS Ball Ball Barlel -Barrel -Barrel -Connection	G GROUT TEST & SEAL GTU Grout Test Unable GTU 1-Ion GTU-1-Ion GTU-1-Ion GTU-1-Ion GTU-1-Ion GTU-1-Ion		IS INTRUDING SEALING MATERIAL 7.0
R RBB RBB RBB RBC RBC RBU	G G G G G G G G G G G G G G G G G G G		LINI S
6-7 65-7 6-7 6-7 6-7 6-8	6-33 6-33 6-33 6-33 6-33 6-33 6-33		-
<u>s</u>	EST		SNI
ROOTS Medium Barrel Jateral Connection	G GROUT TRST & SEAL GTP Grout Test GTP Grout Test		SEAL
R F RMI RMI RMI RMI RMI RMI	G GROUT & SE GTP Grut 1 Passed GTP -1-Joint GTP -1-Joint		INTRUDING
5 55558	6-31 6-31 6-31 6-31		IS INTRUDING SEALING MATERIAL
(OOTS ap Barrel Lateral Connection	VERMIN Rat Cuckruach Other		
≃	and the second second		1-1
R RTR RTC RTC	V VR VC VZ		
5 5-5 5-8 5-8	6-19 6-19 6-20 6-20 6-20	ŝ	T TAP
S	IS FACLES/ RUCTIONS iff into instructure metruction Debris ber	ule	н
ROOTS Fine Barrel -Lateral -Connection	OF S B SOF	lodi	_
R RF RFG RFG RFG RFG	OB OBS OBS OBS OBZ		1-1
2 35 35	6-19 6-19 6-19 6-19	ding	
(pur	OB OBSTACLES/ OBSTRUCTIONS 6-19 OBJ Object wedged In joint 6-19 OBC Object through connection/junction 6-19 Cable 6-19 Cable 6-19	ບິ	TAP
DEPOSITS (continued) Ingress +ine (sitt & sand) -Other	OB OBSTACLES OBSTRUCTTONN OBJ Object wedged in joint ORC Object through ORC Object through ORP External Pipe Cable	res	н
ANU NU DNC	OB OBJ OBJ OBC COMP	atu	7-1
I IIII	6-19 6-19 6-19 g 6-19	Fe	1
	OB OBSTRCLES/ OBSTRCCTIONS (OBB Brick or Masomy OBN Pipe Material In Invert OBI Object portroling through wall (tion	n .
D DEPOSITS DS Settled DS1+1:e -1:ie DS2+1:e -1:ie DS2+1:e -1:ie DS3-1:e -1:ie DS4-1:e -1:ie DS5-1:e -1:ie DS5-1:e -1:ie DS5-1:e -1:ie DS5-1:e -1:ie	OB OBSTACLES/ OBSTRUCTIONN OBSTRUCTIONN OBST Brick or Masoury OBM Phys Material In Invert OBI Object protrud through wall	ruct	TAP
D D D DSF DSCV DSC	OB O	nst	H
<u>7</u> 38888		Section 7—Construction Features Coding (Module 6C)	7-1 7-1
SITS wed station ng	ATION	n 7.	dade -
DEPOSITS Attached -Encrustation - Lireae - Rugging - Other	FIL/TR Stain Weeper Dripper Runner Gusher	ctio	T TAP
D 1 DAE DAUS DAUS DAR DAR	I INI SEARCH	Se	нË


0-1 0-1 0-1	7-13 7-14 7-14	cn
IS INTRUDING SEALING MATERIAL 7-9 ISGT Grout 7-9 ISZ Other 7-9	A ACCESS POINT ACB Catch Basin AFP End of Pige	Updated July 2013
	V FF	
EALING 7-9 7-9 7-9 7-9	7-13 7-14 7-14 7-14 7-14	ES 8-1
IS INTRUDING SEALING MATERIAL 7-9 SSR Sealing Ring 7-9 SSR Hugaug 55R - 1-008	A ACCESS POINT ACO Clean Out ACO - Mainline ACOP - Property ACOH - Hauss	MISCELLANEOUS FEATURES
IS I N ISSR ISSRH ISSRH ISSRL	A AC ACO ACOM ACOM ACOP	TAN
	ন্ধ্রব্	CEL
7-1 1-7 2-1 2-1 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2	VT 7-13 7-13 7-13 7-13 7-14	M MISCELLAN
TAP FAbabilitated -Intruding -Active Capped -Abardemed -Defective	A ACCESS POINT 7-13 AOC Other Special 7-13 Chamber 7-13 AM Meter 7-13 AWW Wet Well 7-13 AM ¹ Junction Bas	6D)
T TAP TR Rehr TRI -Intruc TRG -Antru TRG -Antru TRU -Antru TRU -Defect	A ACCE ACC Other 8 Chamb AM Meter AWW Wet W AJB Junctic	- le
CREERE	A NA WA WA	s di
		MO
7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2	7-13 7-13 7-13 7-13 7-13	EAT
TAP Saddle -inruding -Arbaid Abandoned -Abandoned	POINT ter ter totion	laneous Features Coding (Module 6D) ^{as & 1} M MISCELLANEOUS FEATURES ^{& 1}
T I. T I. TSA States TSG AC	A ACCESS I AMH Manhole AWA Wastewal ADP Discharg ATC Tee Com	SCEI SCEI
L RARAS	A A AMH AWA ADP ADP ADP	MIL
		atu
7.1 2.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7-11	це П
		S
Hann Pred	di) Down	
TAP Break In/Hammer Intuding Arthe Cupped Abundoned Defective	LINE (of sever) Right Up Right Down Up	ne *-
	L I (6 10 10 10 10 10 10 10 10 10 10 10 10 10	
H RETER	- 2322	ATU CO
		TiS .
<u>75</u> 22222	7-11 7-11 11-7 11-7 11-7	tion 8-Miscellane
		TAN 8
And Made	K Wer) Down	U D
TAP autory Mi Intruding -Active Capted Abandomed	LJNE (of sever) (of sever) Left Left Up Left Down Right	wils will
T TAP TF Factory Made TF Factory Made TF -Intruling TF -Asrice TFP -Abarisoned TFP -Defeative	T T	Section 8—Misce

APPENDIX D Sanitary Sewer Profiles


Section for Network - 2012 _Cal_ModRev2_IH_Dev


Section for Network - 2012 _Cal_ModRev2_IH_Dev


Section for Network - 2012 Cal ModRev2 IH Dev Fut

Section for Network - 2012 _Cal_ModRev2_IH_Dev_Fut

Section for Network - 2012 Cal ModRev2 IH Dev Fut

