Appendix C

Air Quality and Greenhouse Gas Technical Report

RE Slate Solar Project

Air Quality and Greenhouse Gas Emissions Technical Report

June 2019 | REC 06.03

Prepared for:

RE Slate LLC 3000 Oak Road, Suite 300 Walnut Creek, CA 94597

Prepared by:

HELIX Environmental Planning, Inc. 11 Natoma Street, Suite 155 Folsom, CA 95630

RE Slate Solar Project

Air Quality and Greenhouse Gas Emissions Technical Report

Prepared for:

RE Slate LLC 3000 Oak Road, Suite 300 Walnut Creek, CA 94597

Prepared by:

HELIX Environmental Planning, Inc. 11 Natoma Street, Suite 155 Folsom, CA 95630

June 2019 | REC 06.03

TABLE OF CONTENTS

<u>Section</u>

Page

EXECU	TIVE SUP	MMARYES	5-1
1.0	PROJE	CT DESCRIPTION	1
	1.1 1.2 1.3 1.4 1.5	Project Overview Project Location Proposed Construction Phasing 1.3.1 Solar Facility 1.3.2 Energy Storage System 1.3.3 Overlapping Construction Operation and Maintenance Decomissioning and Site Reclamation	1 2 2 4 6 7 8
2.0	AIR QU	IALITY SETTING	9
	2.1 2.2 2.3	Criteria Pollutants Toxic Air Contaminants Regulatory Framework 2.3.1 Federal Clean Air Act	9 11 11 11
	2.4	2.3.2StateLocal2.4.1San Joaquin Valley Air Pollution Control District	13 14 14
3.0	GREEN	HOUSE GASES SETTING	16
	3.1 3.2 3.3	Climate Change Overview Types of Greenhouse Gases Regulatory Framework 3.3.1 Federal 3.3.2 State 3.3.3 Local	16 17 18 18 19 22
4.0	EXISTIN	NG CONDITIONS	22
	4.1 4.2	Climate and MeteorologyExisting Air Quality4.2.1Criteria Pollutants4.2.2Valley Fever4.2.3Greenhouse Gases	22 23 23 24 24
5.0	METHO	DDOLOGY AND SIGNIFICANCE CRITERIA	25
	5.1	 Methodology 5.1.1 Off-Road Construction Equipment 5.1.2 On-Site Vehicle Emissions from On-Road Vehicles 5.1.3 On-Road Vehicle Emissions	25 26 26 26

TABLE OF CONTENTS (cont.)

		5.1.4 Fugitive Dust	.26
		5.1.5 Methodology for Determining Health Risks	.27
	5.2	Significance Criteria	.28
		5.2.1 Air Quality	.28
		5.2.2 Greenhouse Gas Emissions	. 29
6.0	AIR QU	ALITY IMPACT ANALYSIS	. 30
	6.1	Consistency with Air Quality Plans	. 30
	6.2	Conformance to Federal and State Air Quality Standards	.30
		6.2.1 Construction	.31
		6.2.2 Operation	. 33
		6.2.3 Decommissioning	.34
	6.3	Cumulatively Considerable Net Increase of Nonattainment Criteria Pollutants	.34
	6.4	Impacts to Sensitive Receptors	. 35
		6.4.1 Carbon Monoxide Hot Spots	.36
		6.4.2 Exposure to TACs	.36
		6.4.3 Valley Fever	.37
	6.5	Odors	.37
7.0	GREEN	HOUSE GAS IMPACT ANALYSIS	.38
	7.1	Greenhouse Gas Emissions	.38
		7.1.1 Construction Emissions	.38
		7.1.2 Operational Emissions	. 39
	7.2	Consistency with Local Plans Adopted for the Purpose of Reducing Greenhouse Gas	
		Emissions	.40
8.0	MITIGA	TION MEASURES	.40
	8.1	Air Quality	.40
	8.2	Greenhouse Gases	.41
9.0	REFERE	NCES	.42
10.0	LIST OF	PREPARERS	.45

<u>....</u>

LIST OF APPENDICES

A	Emission	Calculations
A	Emission	Calculations

B HRA Modeling Files

TABLE OF CONTENTS (cont.)

LIST OF FIGURES

LIST OF TABLES

<u>No</u>. <u>Title</u>

Page

1	Solar Facility Construction Phasing and Workforce	3
2	Solar Facility On-Site Equipment and Vehicle Use By Construction Phase	3
3	Energy Storage System Construction Phasing and Workforce	5
4	Energy Storage System On-Site Equipment and Vehicle Use By Construction Phase	5
5	Overlapping Construction Trip Generation	6
6	Operations and Maintenance Equipment	8
7	Decommission Equipment	9
8	Ambient Air Quality Standards	12
9	San Joaquin Valley Air Basin Attainment Status	
10	Global Warming Potentials and Atmospheric Lifetimes	
11	Air Quality Monitoring Data	24
12	California Greenhouse Gas Emissions By Sector (MMT CO ₂ e)	25
13	SJVAPCD Air Quality Significance Thresholds	29
14	Annual Construction Emissions	31
15	Annual Construction Emissions with Use of Tier 4 Off-Road Construction Equipment	
16	Annual Operation Emissions	34
17	Annual Decommissioning Emissions	34
18	Health Risk Levels from Project Construction	
19	Estimated Construction GHG Emissions	

ACRONYMS AND ABBREVIATIONS

μg/m³	micrograms per cubic meter
AB	Assembly Bill
AC	alternating current
APCD	Air Pollution Control District
ВАСТ	best available control technology
BPS	best performance standards
CAA	Clean Air Act
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emission Estimator Model
CAFE	Corporate Average Fuel Economy
CalEPA	California Environmental Protection Agency
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CFC	chlorofluorocarbon
CH ₄	methane
СО	carbon monoxide
CO ₂	carbon dioxide
CO ₂ e	CO ₂ -equivalent
CUP	Conditional Use Permit
DPM	diesel particulate matter
DC	diret current
EO	Executive Order
ESS	Energy Storage System
F	Farenheit
Gen-tie line	generation intertie line
GHG	greenhouse gas
GWP	Global Warming Potential
НАР	Hazardous Air Pollutant
HFC	hydrofluorocarbon
HI	hazard index
HRA	health risk assessment
IPCC	Intergovernmental Panel on Climate Change
km	kilometer

ACRONYMS AND ABBREVIATIONS (cont.)

LCFS	Low Carbon Fuel Standard
LOS	Level of Service
MEI	maximally exposed individual
MMT	million metric tons
mpg	miles per gallon
mph	miles per hour
MT	metric ton
MW	megawatt
N ₂ O	nitrous oxide
NAAQS	National Ambient Air Quality Standards
NASA	National Aeronautics and Space Administration
NHTSA	National Highway Traffic Safety Administration
NIOSH	National Institute for Occupational Safety and Health
NOAA	National Oceanic and Atmospheric Administration
NO	nitrogen oxide
NO ₂	nitrogen dioxide
NO _x	nitrogen oxides
O ₃	ozone
ОЕННА	Office of Environmental Health Hazard
Pb	lead
PFC	perfluorocarbon
PG&E	Pacific Gas and Electric Company
PM	particulate matter
PM ₁₀	particulate matter less than 10 microns
PM _{2.5}	particulate matter less than 2.5 microns
ppm	parts per million
PV	photovoltaic
ROG	reactive organic gas
RPS	Renewable Portfolios Standard
SB	Senate Bill
SCADA	supervisory control and data acquisition
SCAQMD	South Coast Air Quality Management District
SF ₆	sulfur hexafluoride
SIP	State Implementation Plan
SJVAB	San Joaquin Valley Air Basin
SJVAPCD	San Joaquin Valley Air Pollution Control District
SO ₂	sulfur dioxide
SOx	sulfur oxides

ACRONYMS AND ABBREVIATIONS (cont.)

TACs	toxic air contaminants
URF USEPA	Unit Risk Factor United States Environmental Protection Agency
VERA VOC	Voluntary Emissions Reduction Agreement volatile organic compound

EXECUTIVE SUMMARY

This report presents an assessment of potential air quality and greenhouse gas (GHG) emission impacts associated with the proposed RE Slate Solar Project (project). The evaluation addresses the potential for criteria air pollutant and GHG emission impacts during the construction, operation, and decommissioning of the project. All analyses comply with the San Joaquin Valley Air Pollution Control District (SJVAPCD) *Guide for Assessing and Mitigating Air Quality Impacts* (March 2015) to satisfy California Environmental Quality Act (CEQA) requirements.

The project would result in emissions of criteria air pollutants and GHGs during construction, operation, and decommissioning. Construction emissions include fugitive dust, heavy construction equipment exhaust, and vehicle trips associated with workers commuting to and from the site and trucks delivering materials. Construction activities are assumed to begin October 2020 and be completed November 2021. In accordance with SJVAPCD Rules 8021 and 8071, fugitive dust control measures including the use of an on-site water truck to water down active grading areas and unpaved and paved roads at least twice daily are incorporated into the project design. Project operational emissions would include pollutants generated by vehicular traffic associated with staff activities and the occasional use of offroad equipment for maintenance and panel washing. Project emissions of criteria pollutants during construction would remain below the SJVAPCD emissions thresholds for all pollutants with the exception of nitrogen oxides (NO_x). Construction period NO_x emissions would be reduced to a less than significant level with the incorporation of Mitigation Measures AQ-1 and AQ-2. Project emissions of criteria pollutants during operations and decommissioning would be below the SJVAPCD emissions thresholds for all pollutants. Because the project would generate renewable energy, it would result in a net decrease of emissions of GHGs over the lifetime of the project because it would replace the use of fossil fuels that would have otherwise been used to generate similar amounts of energy.

A health risk assessment conducted for diesel particulate exposure during construction determined that the project would not result in risks that exceed standards established by the SJVAPCD. The project would not result in the formation of carbon monoxide (CO) hotspots. Exposure of workers to Valley Fever spores would be reduced to a less than significant level through Mitigation Measure AQ-3. An evaluation of potential odors from the project indicated that associated impacts would be less than significant.

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 **PROJECT DESCRIPTION**

1.1 **PROJECT OVERVIEW**

The project is being proposed by RE Slate, LLC (project applicant). The project applicant seeks a Conditional Use Permit (CUP) from Kings County to construct, operate, maintain, and eventually decommission a photovoltaic (PV) electricity generating and energy storage system (ESS) and associated infrastructure. The project would generate a total of 300 megawatts (MW) of alternating current (AC) electricity on approximately 2,490 acres of privately owned land in unincorporated western Kings County (see Figure 1, *Regional Location*, and Figure 2, *Aerial Map*). The project would provide solar power to utility customers by interconnecting to the nearby regional electricity grid at Pacific Gas and Electric Company's (PG&E) existing Mustang Switching Station located northwest of the project site (on the site for the operational RE Mustang Solar Generation Facility), utilizing a future shared generation intertie electric transmission line (gen-tie line) that will be built as part of the approved RE Mustang Two Solar Generation Facility, directly southwest of the project site (the project has been approved, but not yet constructed).

Components of the project would include:

- Solar arrays including PV modules and steel support structures, electrical inverters, transformers, cabling, fencing, and other infrastructure;
- Electrical substations and appurtenant equipment;
- Other necessary infrastructure, including one permanent operation and maintenance building, septic system and leach field, supervisory control and data acquisition (SCADA) system, meteorological data system, buried conduit for electrical wires, overhead collector lines, on-site roads, a shared busbar, other shared facilities, and security fencing;
- A 300-MW energy storage system with a 4-hour capacity or approximately 1,200 MW hours, consisting of battery or flywheel enclosures and electrical cabling and appurtenant equipment; and,
- A short gen-tie connection line consisting of power poles, conductors, insulators, optical fiber cables and safety equipment which would connect ("tie-in") to the future RE Mustang Two substation which will be located south of Kent Avenue near the western project site boundary. The tie-in would connect the project to a gen-tie interconnection line to the PG&E Mustang Switching Station which would be shared with the RE Mustang Two Solar Project.

Construction of the solar facility is expected to begin in the fourth quarter (October) of 2020. Construction could occur in phases and is expected to take 14 months. The project would operate yearround to generate solar electricity during daylight hours and would store and dispatch power at the ESS during both daylight and non-daylight hours. The anticipated operating life of the facility is up to 40 years. Following the operating period, the facility would be either repowered or decommissioned. With the exception of the short gen-tie line, all construction work for the solar generation facility would occur entirely within the fence line of the solar facility.

1.2 **PROJECT LOCATION**

The 2,490-acre project site is located in unincorporated Kings County, 0.2 mile southeast of Naval Air Station Lemoore (NAS Lemoore), 3.2 miles southwest of the City of Lemoore, and 10.5 miles west-southwest of the City of Hanford (Figure 1). The site is generally bound by Avenal Cutoff Road to the northwest, Jackson Avenue to the north, the Kings River and 23rd Avenue to the east, and Laurel Avenue to the south (Figure 2). The western site boundary generally follows unnamed agricultural roads. The project site occupies parts of Sections 25, 26, 34, 35, and 36 of Township 19 South, Range 19 East and Sections 1, 2, 11, 12, and 13 of Township 20 South, Range 19 East, Mount Diablo Base and Meridian. The majority of the project site is located within the "Westhaven, CA" and "Stratford, CA" USGS 7.5-minute quadrangles, with a portion of the northernmost parcels located within the "Lemoore, CA" 7.5-minute quadrangle.

The project site is used for various agricultural uses – for the past eight years, the project site has been alternately cropped and irrigated, grazed, and left fallow. Following 2014, the majority of the project site was left uncultivated and used as pastureland or fallowed. Surrounding land uses are a combination of agriculture and solar PV operations. The proposed project is located adjacent to and in the immediate vicinity of other existing and approved solar projects.

1.3 **PROPOSED CONSTRUCTION PHASING**

Construction equipment would operate between the hours of 7:00 a.m. and 7:00 p.m. Monday through Friday, for up to a maximum of 8 hours per piece of equipment, daily. Weekend construction work is not expected to be required, but may occur on occasion, depending on schedule considerations.

1.3.1 Solar Facility

For the purpose of the analysis, project construction would commence as early as October 2020 and be completed by December 2021. Solar facility construction phasing is assumed as follows:

- Phase 1, *Site Preparation*, extends for a duration of up to 10 weeks, or 49 working days.
- Phase 2, *PV Module System Installation*, would extend for a duration of up to 49 weeks, or 246 working days, and would overlap Phase 1 by approximately 2 weeks.
- Phase 3, *Installation of Inverters, Transformers, Substation and Electrical Collector System*, would extend for a duration of up to 35 weeks, or 173 working days, and overlap Phase 2 by about 21 weeks.

Table 1, *Solar Facility Construction Phasing and Workforce*, shows the average and maximum number of workers required for construction, the average number of daily trips, and the length of the phase. Because of overlaps in the construction phases, the total number of construction workers at any given time would range between 17 and 1,003, with the peak number of workers on the site during the two weeks that the Site Preparation and PV Module System Installation phases overlap. The majority of the labor force is expected to come from the surrounding communities with a maximum round-trip commute of up to 80 miles.

RE Slate Solar Project

Regional Location

Figure 1

RE Slate Solar Project

Aerial Map

Figure 2

	Construction Phase			
Construction Element	Site Preparation	PV Installation	Inverters, Substation, & Connection	
Phase Duration (work days)	49	246	173	
Workforce				
Average Number of Workers	421	332	17	
Maximum Number of Workers	561	442	23	
Average Daily Trip Generation				
Workers ¹	842	664	34	
Water Truck ²	66	8	8	
Construction Truck ³	20	18	4	
Freight Truck ³	40	4	0	

 Table 1

 SOLAR FACILITY CONSTRUCTION PHASING AND WORKFORCE

¹Passenger vehicle; ²Medium truck; ³Large truck

All materials for the project's construction would be delivered by truck. The majority of truck traffic would occur on designated truck routes and major streets. Flatbed trailers and trucks would be used to transport construction equipment and construction materials to the site. Project components would be assembled on the site. Traffic resulting from construction activities would be temporary and could occur along area roadways as workers and materials are transported to and from the project site. It was assumed that materials deliveries during construction would travel up to 40 miles one way from source to the project site.

Equipment to be used for the construction of the project is identified in Table 2, *Solar Facility On-Site Equipment and Vehicle Use by Construction Phase.*

Fauinment	Estimated Usage			
Equipment	Units	Hours/Day	Total Days Per Unit	
	Phase 1: Site	e Preparation		
Pickup Truck	18	4	36	
Bulldozers	104	7	37	
Water Trucks (10,000 gallon)	63	4	38	
Graders	4	7	33	
Flatbeds	32	4	37	
Skid Steers	18	7	36	
Front End Loaders	3	7	44	
Roller Compactor	9	7	49	
Backhoe	1	7	5	
Instrument	18	7	36	
Gravel Trucks (20 cubic-yard)	168	4	44	

Table 2SOLAR FACILITY ON-SITE EQUIPMENTAND VEHICLE USE BY CONSTRUCTION PHASE

Equipment.	Estimated Usage				
Equipment	Units	Hours/Day	Total Days Per Unit		
Phase 2: Photovoltaic Array Installation					
Water Trucks (10,000 gallon)	4	4	246		
Flatbeds	64	4	183		
Skid Steers	6	7	164		
Pile Drivers	6	7	164		
Forklifts	22	4	173		
Welders	44	4	173		
Trenchers	6	4	147		
Phas	se 3: Inverters Subs	stations and Connection	n		
Bulldozers	1	7	9		
Water Trucks (10,000 gallon)	1	4	9		
Graders	1	7	8		
Flatbeds	1	4	8		
Skid Steer	2	7	38		
Front End Loaders	1	7	8		
Roller Compactor	1	7	8		
Water Buffalo	1	4	8		
Pile Drivers	2	7	38		
Trenchers	3	4	173		
Backhoes	2	7	81		
Cranes	2	4	165		
Aerial Lifts	3	4	50		
Directional Drill Rig	1	7	20		
Concrete Trucks (10 cubic-yard)	31	4	1		

 Table 2 (cont.)

 SOLAR FACILITY ON-SITE EQUIPMENT AND VEHICLE USE BY CONSTRUCTION PHASE

1.3.2 Energy Storage System

The project could include, at the applicant's option, a battery or flywheel ESS capable of storing up to 300 MW of electricity and conducting energy to the regional electricity grid. The ESS would either be dispersed throughout the project site, connected to the PV array via direct current (DC; "DC-coupled"); or concentrated in one location on the site, connected to the PV array via alternating current ("AC-coupled").

The ESS would be largely assembled offsite and delivered to the project site for final installation. The ESS would be located on approximately 29 acres of the 2,490-acre project site. Heavy trucks and other equipment will be used to deliver and install the infrastructure and battery or flywheel enclosures. After a system is installed, it will be tested and commissioned. The ESS may be installed during installation of the PV arrays, or it could be installed later while the facility is in operation. ESS construction phasing is assumed as follows:

- Phase 1, *Site Preparation,* would extend for a duration of approximately 8 weeks or 40 working days.
- Phase 2, *Foundations, Structures, and Systems*, would extend for a duration of up to 35 weeks or 174 working days, and may overlap Phase 1 by up to one month.

• Phase 3, *Inverters, Substation, and Connection,* would extend for a duration of approximately 26 weeks or 131 working days and may overlap Phase 2 by up to one month.

As displayed in Table 3, *Energy Storage System Construction Phasing and Workforce*, the average number of workers ranges from 45 to 57 and the maximum numbers of workers could be 147 during the month that Phase 2 overlaps with Phase 3.

Construction Element	Site Preparation	Foundations, Structures and DC ¹ System Installation	Inverters, Substation, & Connection
Phase Duration (work days)	40	174	131
Workforce			
Average Number of Workers	45	57	54
Maximum Number of Workers	59	76	71
Average Daily Trip Generation			
Workers ²	90	114	108
Water Truck ³	0	0	0
Construction Truck ⁴	6	6	4
Freight Truck ⁴	68	70	0

 Table 3

 ENERGY STORAGE SYSTEM CONSTRUCTION PHASING AND WORKFORCE

¹Direct Current; ²Passenger vehicle; ³Medium truck; ⁴Large truck

Equipment to be used for the construction of the project is identified in Table 4, *Energy Storage System On-Site Equipment and Vehicle Use by Construction Phase*.

Table 4 ENERGY STORAGE SYSTEM ON-SITE EQUIPMENT AND VEHICLE USE BY CONSTRUCTION PHASE

Fauinment	Number of	Work Days per	Hours per
Equipment	Units	Unit	Day
	Phase 1: Site Prepara	tion	
Pickup	6	4	19
Bulldozers	9	7	30
Water Trucks (10,000 gallon)	6	4	40
Graders	6	7	15
Flatbeds	3	4	12
Skid Steers	1	7	5
Front End Loaders	3	7	25
Roller Compactor	3	7	25
Instrument	4	7	28
Gravel Trucks (20 cubic-yard)	78	4	33
Phase 2: F	oundations, Structures	and DC ¹ System	
Pickup	4	4	66
Water Trucks (10,000 gallon)	3	4	87
Skid Steers	3	7	87
Trenchers	2	4	65
Crane	4	4	109

Equipment	Number of Units	Work Days per Unit	Hours per Day		
Phase 3: Inverters Substation and AC ² System					
Skid Steer	2	7	37		
Pile Drivers	2	7	37		
Trenchers	7	4	131		
Backhoes	3	7	29		
Cranes	3	4	77		
Aerial Lifts	2	4	56		
Concrete Trucks (10 cubic-yard)	3	4	1		
1 Direct Connects 2 Alternative connect					

Table 4 (cont.) ENERGY STORAGE SYSTEM ON-SITE EQUIPMENT AND VEHICLE USE BY CONSTRUCTION PHASE

¹ Direct Current; ² Alternating current

1.3.3 **Overlapping Construction**

Construction phases of the solar facility and ESS may overlap for the duration of ESS construction activity.

Peak overlapping construction of the solar PV facility and energy storage facility is as follows:

- PV Phase 2 may overlap ESS Phase 1 and Phase 2 up to one month •
- PV Phase 2 and Phase 3 may overlap ESS Phase 2 and Phase 3 for up to one month •
- PV Phase 2 and Phase 3 may overlap ESS Phase 2 for up to 5 months •

Table 5, Overlapping Construction Trip Generation, presents average daily trips during the overlapping phases.

Overlapping Phase	Overlapping Duration	Vehicle	Average Daily Trips
		Workers ¹	868
PV Phase 2 (100%) + ESS Phases 1	Up to 1 Water Truck ²		8
(100%) and 2 (100%)	Month	60	
		Freight Truck ³	142
		Workers ¹	920
PV Phases 2 (100%) and 3 (100%) + ESS	Up to 1	Water Truck ²	16
Phases 2 (100%) and 3 (100%)	Month	Ionth Construction Truck ³ 3	
		Freight Truck ³	74
		Workers ¹	812
PV Phases 2 (100%) and 3 (100%) + ESS	Up to 5	Water Truck ²	16
Phase 2 (100%)	Months	Construction Truck ³	28
		Freight Truck ³	74

Table 5 **OVERLAPPING CONSTRUCTION TRIP GENERATION**

¹Passenger vehicle; ²Medium truck; ³Large truck

1.4 OPERATION AND MAINTENANCE

Upon commissioning, the project would enter the operation phase. The solar modules at the site would operate during daylight hours seven days per week, 365 days per year.

Operational activities at the project site would include:

- Solar module washing;
- Vegetation, weed, and pest management;
- Security;
- Responding to automated electronic alerts based on monitored data, including actual versus expected tolerances for system output and other key performance metrics;
- Occasional equipment repair and replacement; and
- Communicating with customers, transmission system operators, and other entities involved in facility operations.

Up to six permanent staff could be on the site at any one time for ongoing facility maintenance and repairs. The duration of scheduled maintenance activities would vary in accordance with the required task but could involve up to 20 workers full-time for up to two weeks up to four times a year for module washing, and a similar number and duration for workers regularly visiting the site for routine maintenance activities. On intermittent occasions, up to 25 workers could be remotely dispatched to the site if repairs or replacement of equipment were needed in addition to module washing. A record of inspections would be kept on the site. The maximum number of on-site staff at any time would be 31 (six permanent staff and 25 temporary staff). The personnel and time required for emergency maintenance would vary in accordance with the necessary response. The majority of the operational labor force is expected to be from the City of Fresno and the surrounding communities with a maximum anticipated commute of 40 miles one way.

During operation, a maximum of 31 worker vehicles (passenger vehicles) would result in 62 average daily trips. Water trucks would be on-site every three or four months for approximately two weeks at a time. A maximum of 20 water trucks (medium trucks) would be used for concurrent panel washing and routine maintenance which would generate a maximum of 40 average daily trips. This represents a conservative analysis as simultaneous tasks would not be an everyday occurrence. The most distant water source for water trucks would be 40 miles away during operation and maintenance activities.

Equipment to be used during operation and maintenance of the project is identified in Table 6, *Operations and Maintenance Equipment*.

Fauinmontl	Unite	Estimated Usage		
Equipment	Onits	Hours per Day	Days per Week	Total Days
All-Terrain Vehicles	2	12	5	10
Kubota Tractors	1	3	5	10
Honda Portable Generators	2	6	5	10
Portable Water Trailers with Pump	1	2	5	10
Ford F150 (Routine O&M)	6	30	4	10
Ford F150 (Water Wash Trucks)	2	30	2	10

Table 6 OPERATIONS AND MAINTENANCE EQUIPMENT

¹ for one quarterly maintenance period; O&M = operations and maintenance

1.5 DECOMISSIONING AND SITE RECLAMATION

The PV facility is anticipated to have an operating life of up to 40 years. After this period, the solar facility would be either repowered or decommissioned. Repowering after the operating life is not anticipated at this time; however, if repowering were to be pursued, it would require the facility owner to obtain all required permit approvals. Project decommissioning would occur in accordance with the expiration of the CUP and would involve the removal of above-grade facilities, buried electrical conduit, and all concrete foundations in accordance with a reclamation plan. Equipment would be repurposed off-site, recycled, or disposed of in a landfill as appropriate.

After the operating life of the solar facility is complete, the ESS would be decommissioned along with the rest of the solar facility. Batteries may be disposed of as hazardous waste, or recycled, depending on available technology. Lithium-ion batteries and their constituent parts will likely be recycled. Lithium-ion batteries contain a variety of valuable metals in addition to lithium, and recycling of these batteries is expected to become increasingly commonplace with the increased use of batteries in consumer goods and electric vehicles. Some batteries may have the capacity to be reused at the end of the operating life of the project. The chemical components of flow batteries may either be disposed of as hazardous waste (i.e., neutralization of the liquid within the battery), or they may comprise valuable elements which would also be recycled or reused.

Decommissioning would take approximately six months to be completed and would occur in three phases: Phase 1 would involve shutting down the systems and removing hazardous materials and wiring; Phase 2 would include removing the PV modules, inverters, and substations; and Phase 3 would include removing site fencing and driveways and the final soil reclamation process.

Approximately 81 to 87 workers may be on the site at a time for decommissioning activities. Decommissioning would involve the use of heavy equipment similar to what was used for construction. Appropriate hazardous materials control and erosion control measures would be used throughout the decommissioning process. It is anticipated that such controls would be substantially similar to those implemented during construction, although the intensity of activities would be much lower. Trips generated by decommissioning include worker vehicle trips, water truck trips and construction truck trips. Decommissioning would generate approximately 318 average daily worker trips, 4 water truck trips, and 40 construction truck trips.

Decommissioning phasing is assumed as follows:

- Phase 1, *Safe-off, Hazardous Materials and Wiring Removal*, extends for a duration of up to 6 weeks, or 28 working days, and may overlap with Phase 2 by approximately 3 weeks.
- Phase 2, *Removal of Inverter Blocks and Substation*, would extend for a duration of up to 13 weeks, or 63 working days, and may overlap Phase 3 by approximately 5 weeks.
- Phase 3, Removal of Site Fencing and Roads and Final Soil Reclamation Process, would extend for a duration of approximately 17 weeks or 85 working days, and may overlap Phase 4 by one week.
- *Phase 4, End of Decommission,* would extend for a duration of approximately 1 week or 5 working days.

Decommissioning would involve the use of heavy equipment and personnel similar to what was used for construction. Equipment to be used during decommissioning tasks are identified in Table 7, *Decommission Equipment*.

Reclamation Task	Equipment	Total Units	Total Days
Site Preparation / Removal of On-site Oils, Lubricants	Flat Bed Truck	2	8
Removal and Repuele of Underground Distribution Cables	Backhoe	4	77
Removal and Recycle of Onderground Distribution Cables	Flat Bed Truck	4	77
Removal and Recycle of Interconnection and Overhead	Aerial Lift	2	57
Distribution Cables	Flat Bed Truck	2	57
Removal and Disposal of PV Panels	Flat Bed Truck	4	251
Removal and Recycle of PV Modules Support Beams and Aluminum Racking	Flat Bed Truck	6	336
Removal and Recycle of Foundation Posts	Backhoe	5	165
Removal and Recycle of Electrical and Electronic Devices (including inverters and substation equipment)	Backhoe	2	24
	Crane	1	2
	Flat Bed Truck	2	24
Demoval and Degrade of Fensing	Backhoe	3	111
Removal and Recycle of Fencing	Flat Bed Truck	3	111
Removal of Compacted Area (roads, pathways)	Grader	2	7
Disc and Boyogetate Draiget Site	Tractor	5	241
Disc and Revegerate Project sile	Water Truck	2	48

Table 7 DECOMMISSION EQUIPMENT

2.0 AIR QUALITY SETTING

2.1 CRITERIA POLLUTANTS

Criteria pollutants are defined by state and federal law as a risk to the health and welfare of the general public. In general, air pollutants include the following compounds:

- Ozone (O₃)
- Reactive organic gases (ROGs) or volatile organic compounds (VOCs)
- Carbon monoxide (CO)
- Nitrogen dioxide (NO₂)
- Respirable particulate matter and fine particulate matter (PM₁₀ and PM_{2.5})
- Sulfur dioxide (SO₂)
- Lead (Pb)

The following specific descriptions of health effects for each of the air pollutants potentially associated with project construction and operation are based on information provided by the California Air Resources Board (CARB; 2009) and the U.S. Environmental Protection Agency (USEPA; 2017a).

Ozone. Ozone is considered a photochemical oxidant, which is a chemical that is formed when VOCs and nitrogen oxides (NO_x), both by-products of fuel combustion, react in the presence of ultraviolet light. Ozone is considered a respiratory irritant and prolonged exposure can reduce lung function, aggravate asthma, and increase susceptibility to respiratory infections. Children and those with existing respiratory diseases are at greatest risk from exposure to ozone.

Reactive Organic Gases. ROGs (also known as VOCs) are compounds composed primarily of hydrogen and carbon atoms. Internal combustion associated with motor vehicle usage is the major source of ROGs. Other sources of ROGs include evaporative emissions from paints and solvents, the application of asphalt paving, and the use of household consumer products such as aerosols. While ROGs can be a health concern indoors, CARB regulates ROGs outdoors mainly because of their ability to create photochemical smog under certain conditions.

Carbon Monoxide. CO is a by-product of fuel combustion. CO is an odorless, colorless gas. CO affects red blood cells in the body by binding to hemoglobin and reducing the amount of oxygen that can be carried to the body's organs and tissues. CO can cause health effects to those with cardiovascular disease and can also affect mental alertness and vision.

Nitrogen Dioxide. NO₂, a species of the aforementioned NO_x, is also a by-product of fuel combustion and is formed both directly as a product of combustion and in the atmosphere through the reaction of nitrogen oxide (NO) with oxygen. NO₂ is a respiratory irritant and may affect those with existing respiratory illness, including asthma. NO₂ can also increase the risk of respiratory illness.

Respirable Particulate Matter and Fine Particulate Matter. Respirable particulate matter, or PM₁₀, refers to particulate matter with an aerodynamic diameter of 10 microns or less. Fine particulate matter, or PM_{2.5}, refers to particulate matter with an aerodynamic diameter of 2.5 microns or less. Particulate matter in these size ranges have been determined to have the potential to lodge in the lungs and contribute to respiratory problems. PM₁₀ and PM_{2.5} arise from a variety of sources, including road dust, diesel exhaust, fuel combustion, tire and brake wear, construction operations, and windblown dust. PM₁₀ and PM_{2.5} can increase susceptibility to respiratory infections and can aggravate existing respiratory diseases such as asthma and chronic bronchitis. PM_{2.5} is considered to have the potential to lodge deeper in the lungs. Particulate matter originating from diesel exhaust, diesel particulate matter, discussed in further detail below, is classified a carcinogen by CARB.

Sulfur dioxide. SO₂ is a colorless, reactive gas that is produced from the burning of sulfur-containing fuels such as coal and oil and by other industrial processes. Generally, the highest concentrations of SO₂ are found near large industrial sources. SO₂ is a respiratory irritant that can cause narrowing of the airways leading to wheezing and shortness of breath. Long-term exposure to SO₂ can cause respiratory illness and aggravate existing cardiovascular disease.

Lead. Lead in the atmosphere occurs as particulate matter. With the phase-out of leaded gasoline, large manufacturing facilities are the sources of the largest amounts of lead emissions. Lead is also present in some aircraft and racing fuels. Lead has the potential to cause gastrointestinal, central nervous system, kidney and blood diseases upon prolonged exposure. Lead is also classified as a probable human carcinogen. Because emissions of lead are found only in specialty fuels and projects that are permitted by the local air district, lead is not an air quality of concern for the proposed project.

2.2 TOXIC AIR CONTAMINANTS

Toxic air contaminants (TACs) are a diverse group of air pollutants that may cause or contribute to an increase in deaths or in serious illness or that may pose a present or potential hazard to human health. TACs include both organic and inorganic chemical substances that may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities. TAC impacts are described by carcinogenic risk and by chronic (i.e., of long duration) and acute (i.e., severe but of short duration) adverse effects on human health. TACs are different than the criteria pollutants previously discussed because ambient air quality standards have not been established for TACs. TACs occurring at extremely low levels may still cause health effects, and it is typically difficult to identify levels of exposure that do not produce adverse health effects.

Diesel engines emit a complex mixture of air pollutants, composed of gaseous and solid material. The solid emissions in diesel exhaust are known as diesel particulate matter (DPM). In 1998, California identified DPM as a TAC based on its potential to cause cancer, premature death, and other health problems (e.g., asthma attacks and other respiratory symptoms). Those most vulnerable are children whose lungs are still developing and the elderly who may have other serious health problems. Overall, diesel engine emissions are responsible for the majority of California's known cancer risk from outdoor air pollutants. Diesel engines also contribute to California's PM_{2.5} air quality problems. In addition, diesel soot causes visibility reduction (CARB 2011).

2.3 REGULATORY FRAMEWORK

2.3.1 Federal Clean Air Act

Air quality is defined by ambient air concentrations of specific pollutants identified by the USEPA to be of concern with respect to health and welfare of the general public. The USEPA is responsible for enforcing the Federal Clean Air Act (CAA) of 1970 and its 1977 and 1990 Amendments. The CAA required the USEPA to establish National Ambient Air Quality Standards (NAAQS), which identify concentrations of pollutants in the ambient air below which no adverse effects on the public health and welfare are anticipated. In response, the USEPA established both primary and secondary standards for several criteria pollutants. Table 8, *Ambient Air Quality Standards*, shows the federal and state ambient air quality standards for these pollutants.

The CAA allows states to adopt ambient air quality standards and other regulations provided they are at least as stringent as federal standards. CARB has established the more stringent California Ambient Air Quality Standards (CAAQS) for the six criteria pollutants through the California Clean Air Act of 1988, and also has established CAAQS for additional pollutants, including sulfates, hydrogen sulfide (H₂S), vinyl chloride, and visibility-reducing particles. Areas that do not meet the NAAQS or the CAAQS for a particular pollutant are considered to be "nonattainment areas" for that pollutant.

Dellutent	Averaging	California	Federal Standards	
Pollutant	Time	Standards	Primary ¹	Secondary ²
0	1 Hour	0.09 ppm (180 μg/m³)	_	-
O ₃	8 Hour	0.070 ppm (137 μg/m ³)	0.070 ppm (137 μg/m³)	Same as Primary
DNA	24 Hour	50 μg/m³	150 μg/m³	Same as Primary
PIVI ₁₀	AAM	20 μg/m³	-	Same as Primary
DM	24 Hour	-	35 μg/m³	Same as Primary
P 1V12.5	AAM	12 μg/m³	12.0 μg/m³	15.0 μg/m³
	1 Hour	20 ppm (23 mg/m ³)	35 ppm (40 mg/m ³)	-
0	8 Hour	9.0 ppm (10 mg/m ³)	9 ppm (10 mg/m³)	-
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m³)	_	-
NO	1 Hour	0.18 ppm (339 μg/m ³)	0.100 ppm (188 μg/m³)	-
NO ₂	AAM	0.030 ppm (57 μg/m ³)	0.053 ppm (100 μg/m ³)	Same as Primary
	1 Hour	0.25 ppm (655 μg/m ³)	0.075 ppm (196 μg/m³)	-
SO ₂	3 Hour	_	_	0.5 ppm (1,300 μg/m³)
	24 Hour	0.04 ppm (105 μg/m ³)	_	-
	30-day Avg.	1.5 μg/m³	-	-
Lead	Calendar Quarter	-	1.5 μg/m³	
Leuu	Rolling 3-month Avg.	_	0.15 μg/m³	Same as Primary
Visibility Reducing Particles	8 Hour	Extinction coefficient of 0.23 per km – visibility ≥ 10 miles (0.07 per km – ≥30 miles for Lake Tahoe)	s No Federal Standards	
Sulfates	24 Hour	25 μg/m³		
Hydrogen Sulfide	1 Hour	0.03 ppm (42 μg/m ³)		
Vinyl Chloride	24 Hour	0.01 ppm (26 μg/m ³)		

Table 8 AMBIENT AIR QUALITY STANDARDS

Source: CARB 2016

¹ National Primary Standards: The levels of air quality necessary, within an adequate margin of safety, to protect the public health.

² National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

O₃: ozone; ppm: parts per million; μg/m³: micrograms per cubic meter; PM₁₀: particulate matter with an aerodynamic diameter of 10 microns or less;

AAM: Annual Arithmetic Mean; $PM_{2.5}$: fine particulate matter; CO: carbon monoxide; mg/m³: milligrams per cubic meter; NO_2 nitrogen dioxide; SO₂: sulfur dioxide; km: kilometer; -: No Standard.

The USEPA has classified air basins (or portions thereof) as being in "attainment," "nonattainment," or "unclassified" for each criteria air pollutant, based on whether or not the NAAQS have been achieved. If an area is designated unclassified, it is because inadequate air quality data were available as a basis for a nonattainment or attainment designation. The project site is located within the San Joaquin Valley Air Basin (SJVAB) and, as such, is in an area designated a nonattainment area for certain pollutants that are regulated under the CAA. Table 9, *San Joaquin Valley Air Basin Attainment Status*, lists the federal and state attainment status of the SJVAB for the criteria pollutants. The USEPA classifies the SJVAB as in attainment for PM₁₀; attainment/unclassified for CO, NO₂, SO₂; no designation/classification for lead; and in nonattainment for 8-hour ozone and PM_{2.5} with respect to federal air quality standards.

Criteria Pollutant	Federal Designation	State Designation
O₃ (1-hour)	(No federal standard)	Nonattainment/Severe
O₃ (8-hour)	Extreme Nonattainment	Nonattainment
СО	Attainment-Unclassified	Attainment-Unclassified
PM10	Attainment	Nonattainment
PM _{2.5}	Nonattainment	Nonattainment
NO ₂	Attainment-Unclassified	Attainment
SO ₂	Attainment-Unclassified	Attainment
Lead	(No designation/classification)	Attainment

Table 9 SAN JOAQUIN VALLEY AIR BASIN ATTAINMENT STATUS

Source: CARB 2017a and SJVAPCD 2018

The CAA (and its subsequent amendments) requires each state to prepare an air quality control plan referred to as the State Implementation Plan (SIP). The CAA Amendments dictate that states containing areas violating the NAAQS revise their SIPs to include extra control measures to reduce air pollution. The SIP includes strategies and control measures to attain the NAAQS by deadlines established by the CAA. The SIP is periodically modified to reflect the latest emissions inventories, plans, and rules and regulations of air basins as reported by the agencies with jurisdiction over them. The USEPA has the responsibility to review all SIPs to determine whether they conform to the requirements of the CAA.

2.3.2 State

California Clean Air Act

CARB, a part of the California EPA (CalEPA), is responsible for the coordination and administration of both federal and state air pollution control programs within California, including setting the California Ambient Air Quality Standards (CAAQS). CARB also conducts research, compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products (such as hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. CARB also has primary responsibility for the development of California's SIP, for which it works closely with the federal government and the local air districts.

In addition to primary and secondary AAQS, the state has established a set of episode criteria for ozone, CO, NO₂, SO₂, and PM. These criteria refer to episode levels representing periods of short-term exposure to air pollutants that actually threaten public health. Table 9, above, lists the state attainment status of

the SJVAB for the criteria pollutants. Under state designation, the SJVAB is currently in attainment for NO₂, SO₂, and lead; attainment/unclassified for CO; in nonattainment for 8-hour ozone, PM₁₀, and PM_{2.5}; and in severe nonattainment for 1-hour ozone.

Toxic Air Contaminants

California's air toxics control program began in 1983 with the passage of the Toxic Air Contaminant Identification and Control Act, better known as AB 1807 or the Tanner Bill. When a compound becomes listed as a TAC under the Tanner process, the CARB normally establishes minimum statewide emission control measures to be adopted by local air pollution control districts (APCDs). Later legislative amendments (AB 2728) required the CARB to incorporate all 189 federal hazardous air pollutants (HAPs) into the state list of TACs.

Supplementing the Tanner process, AB 2588 – the Air Toxics "Hot Spots" Information and Assessment Act of 1987 – currently regulates over 600 air compounds, including all of the Tanner-designated TACs. Under AB 2588, specified facilities must quantify emissions of regulated air toxics and report them to the local APCD. If the APCD determines that a potentially significant public health risk is posed by a given facility, the facility is required to perform a health risk assessment (HRA) and notify the public in the affected area if the calculated risks exceed specified criteria.

On August 27, 1998, CARB formally identified PM emitted in both gaseous and particulate forms by diesel-fueled engines as a TAC. The particles emitted by diesel engines are coated with chemicals, many of which have been identified by the USEPA as HAPs and by CARB as TACs. CARB's Scientific Advisory Committee has recommended a unit risk factor (URF) of 300 in 1 million over a 70-year exposure period for diesel particulate. In September 2000, the CARB approved the *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles* (Diesel Risk Reduction Plan; CARB 2000). The Diesel Risk Reduction Plan outlined a comprehensive and ambitious program that included the development of numerous new control measures over the next several years aimed at substantially reducing emissions from new and existing on-road vehicles (e.g., heavy-duty trucks and buses), off-road equipment (e.g., graders, tractors, forklifts, sweepers, and boats), portable equipment (e.g., pumps), and stationary engines (e.g., stand-by power generators). These requirements are now in force on a statewide basis.

2.4 LOCAL

2.4.1 San Joaquin Valley Air Pollution Control District

The California CAA designates local air districts as lead air quality planning agencies, requires air district to prepare air quality plans, and grants air districts authority to implement transportation control measures. The San Joaquin Valley Air Pollution Control District (SJVAPCD) is the administrator of air pollution rules and regulations within the SJVAB, including Kings County. The SJVAPCD is responsible for implementing measures and local air pollution rules that ensure NAAQS and CAAQS are achieved and maintained. The SJVAPCD issues stationary source air permits, develops emissions inventories, maintains air quality monitoring stations, and reviews air quality environmental documents required by the California Environmental Quality Act (CEQA). Because no stationary source equipment is planned for the project, no local registration or SJVAPCD permits are required for the facility. Rules that apply to the proposed solar facility project include:

- Rule 4101 Visible Emissions limits the visible plume from any source to 20 percent opacity.
- Rule 4102 Nuisance limits the amount of contaminants that may be a nuisance to the general public (odors).
- Rules 8011-8071 are designed to reduce PM₁₀ emissions (predominantly dust/dirt) generated by human activity, including construction and demolition, road construction, bulk materials storage, use of paved and unpaved roads, carryout and trackout, etc. Among the Regulation VIII rules applicable to the proposed project are the following:
 - Rule 8011 General Requirements;
 - Rule 8021 Construction, Demolition, Excavation, Extraction, and Other Earthmoving Activities;
 - Rule 8031 Bulk Materials;
 - Rule 8041 Carryout and Trackout;
 - Rule 8051 Open Areas;
 - Rule 8061 Paved and Unpaved Roads; and
 - Rule 8071 Unpaved Vehicle/Equipment Traffic Areas.
- Rule 9510 Indirect Source Review in order to reduce emissions of ozone precursors

 (i.e., ROG and NO_x) and PM₁₀ from new land use development projects, and achieve the
 attainment plans for each pollutant, the SJVAPCD adopted the Indirect Source Review Rule in
 2005 and amended the rule in 2017. The 2017 revisions became effective in March of 2018. The
 rule requires projects to reduce both construction and operational period emissions by specified
 amounts by applying the SJVAPCD-approved mitigation measures and/or paying fees to support
 off-site mitigation programs that reduce emissions. Fees apply to the unmitigated portion of the
 emissions and are based on estimated costs to reduce the emission reduction projects to
 be funded through the Indirect Source Review Rule include retrofitting heavy-duty engines,
 replacing agricultural machinery and pumps, paving unpaved roads and road shoulders, trading
 out combustion powered lawn and agricultural equipment with electrical and other equipment,
 as well as a number of other projects that result in quantifiable emissions reductions of PM₁₀
 and NO_x.

The SJVAPCD continuously monitors its progress in implementing air quality plans and periodically reports to CARB and USEPA. It also periodically revises its plans to reflect new conditions and requirements in accordance with mandated schedules.

The SJVAPCD has adopted several attainment plans to achieve compliance with the NAAQS and CAAQS. To address nonattainment status under the NAAQS and CAAQS for ozone, the SJVAPCD adopted the district's 2004 Extreme Ozone Attainment Demonstration Plan, however the EPA withdrew its plan approval in November 2012 and it is no longer a federally-approved plan. The most recent plan adopted by the SJVAPCD is the 2016 Plan for the 2008 8-Hour Ozone Standard which provides a comprehensive strategy to reduce NO_x emissions by over 60 percent between 2012 and 2031. The plan will bring the SJVAB into attainment of USEPA's 2008 8-hour ozone standard as expeditiously as practicable, no later than December 31, 2031.

On April 30, 2008, the SJVAPCD adopted the 2008 PM_{2.5} Plan satisfying all federal implementation requirements for the 1997 federal PM_{2.5} standard. Per guidance from USEPA, this plan addressed the 1997 PM_{2.5} standard under Subpart 1 of CAA Title 1, Part D. Subsequently, in 2013, the D.C. Circuit Court ruled that USEPA erred by solely using CAA Subpart 1 in establishing its PM_{2.5} implementation rule, without consideration of the PM-specific provisions in Subpart 4. In June 2014, EPA classified the Valley as a "Moderate" nonattainment area under Subpart 4 with an attainment date of April 5, 2015.

Until the exceptional weather conditions experienced due to the recent drought, the SJVAB was on the verge of attaining the 1997 federal PM_{2.5} standard (15 micrograms per cubic meter [μ g/m³] for annual, 35 μ g/m³ for 24-hour¹) with an average annual concentration of 14.7 μ g/m³ and average 24-hour concentration of 56.4 μ g/m³ at the SJVAB's historic peak PM_{2.5} sites in Bakersfield in 2012. Due to the extreme drought, stagnation, strong inversions, and historically dry conditions experienced over the winter of 2013-2014, attainment was impossible even if the SJVAB experienced zero PM_{2.5} pollution for the last three quarters of 2014. The CAA includes provisions for excluding uncontrollable "exceptional events" from a region's attainment determination, but the current USEPA framework specifically excludes stagnation and drought conditions. Given that attaining the standard in 2015 was physically impossible, the SJVAPCD was compelled to submit a formal request for reclassification to "Serious" non-attainment with a new attainment date of December 31, 2015. Unfortunately, the exceptional weather conditions experienced in 2013-2014 also made it impossible to meet the new attainment deadline of December 31, 2015. Therefore, the District submitted a request for a one-time extension of the attainment deadline for the 24-hour standard to 2018 and the annual standard to 2020 (SJVAPCD 2015).

The 2015 Plan for the 1997 PM_{2.5} Standard, approved by the District Governing Board on April 16, 2015, will bring the SJVAB into attainment of USEPA's 1997 PM_{2.5} standard as expeditiously as practicable, but no later than December 31, 2020 (SJVAPCD 2015). Currently, attainment strategies are being developed for the 1997, 2006, and 2012 PM_{2.5} standards under the pending 2018 PM Plans. Inputs and comments received through the public engagement process have resulted in identification of a comprehensive list of potential new measures to achieve additional emissions reductions from both stationary and mobile sources. The pending 2018 PM Plans are anticipated to be finalized in 2018 and will undergo a public process for review and adoption into the district SIP and subsequently through the CARB and USEPA.

3.0 GREENHOUSE GASES SETTING

3.1 CLIMATE CHANGE OVERVIEW

Global climate change refers to changes in average climatic conditions on Earth including temperature, wind patterns, precipitation, and storms. Global temperatures are moderated by atmospheric gases. These gases are commonly referred to as GHGs because they function like a greenhouse by letting sunlight in but preventing heat from escaping, thus warming the Earth's atmosphere.

GHGs are emitted by natural processes and human (anthropogenic) activities. Anthropogenic GHG emissions are primarily associated with: (1) the burning of fossil fuels during motorized transport, electricity generation, natural gas consumption, industrial activity, manufacturing, and other activities; (2) deforestation; (3) agricultural activity; and (4) solid waste decomposition.

 $^{^1\,}$ In December 2012, the EPA revised the primary annual PM_{2.5} standard from 15 $\mu g/m^3$ to 12 $\mu g/m^3$ for the protection of public health.

The temperature record shows a decades-long trend of warming, with 2016 global surface temperatures ranking as the warmest year on record since 1880. (National Aeronautics and Space Administration [NASA] 2018). The newest release in long-term warming trends announced 2017 ranked as the second warmest year with an increase of 1.62 degrees Fahrenheit compared to the 1951-1980 average (NASA 2018). GHG emissions from human activities are the most significant driver of observed climate change since the mid-20th century (Intergovernmental Panel on Climate Change [IPCC] 2013). The IPCC constructed several emission trajectories of GHGs needed to stabilize global temperatures and climate change impacts. The statistical models show a "high confidence" that temperature increase caused by anthropogenic GHG emissions could be kept to less than two degrees Celsius relative to pre-industrial levels if atmospheric concentrations are stabilized at about 450 parts per million (ppm) carbon dioxide equivalent (CO₂e) by the year 2100 (IPCC 2014).

3.2 TYPES OF GREENHOUSE GASES

The GHGs defined under California's Assembly Bill (AB) 32 include carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Carbon Dioxide. CO₂ is the most important and common anthropogenic GHG. CO₂ is an odorless, colorless GHG. Natural sources include the decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungi; evaporation from oceans; and volcanic outgassing. Anthropogenic sources of CO₂ include burning fuels, such as coal, oil, natural gas, and wood. Data from ice cores indicate that CO₂ concentrations remained steady prior to the current period for approximately 10,000 years. The atmospheric CO₂ concentration in 2010 was 390 ppm, 39 percent above the concentration at the start of the Industrial Revolution (approximately 280 ppm in 1750). As of February 2018, the CO₂ concentration exceeded 408 ppm, a 46 percent increase since 1750 (National Oceanic and Atmospheric Administration [NOAA] 2018).

Methane. CH₄ is the main component of natural gas used in homes. A natural source of methane is from the decay of organic matter. Geological deposits known as natural gas fields contain methane, which is extracted for fuel. Other sources are from decay of organic material in landfills, fermentation of manure, and cattle digestion.

Nitrous Oxide. N₂O is produced by both natural and human-related sources. N₂O is emitted during agricultural and industrial activities, as well as during the combustion of fossil fuels and solid waste. Primary human-related sources of N₂O are agricultural soil management, animal manure management, sewage treatment, mobile and stationary combustion of fossil fuel, adipic (fatty) acid production, and nitric acid production.

Fluorocarbons. Fluorocarbons are gases formed synthetically by replacing all hydrogen atoms in methane or ethane with chlorine and/or fluorine atoms. Chlorofluorocarbons are nontoxic, nonflammable, insoluble, and chemically nonreactive in the troposphere (the level of air at Earth's surface). Chlorofluorocarbons were first synthesized in 1928 for use as refrigerants, aerosol propellants, and cleaning solvents. They destroy stratospheric ozone; therefore, their production was stopped as required by the 1989 Montreal Protocol.

Sulfur Hexafluoride. SF_6 is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF_6 is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semi-conductor manufacturing, and as a tracer gas for leak detection.

GHGs have long atmospheric lifetimes that range from one year to several thousand years. Long atmospheric lifetimes allow for GHG emissions to disperse around the globe. Because GHG emissions vary widely in the power of their climatic effects, climate scientists have established a unit called global warming potential (GWP). The GWP of a gas is a measure of both potency and lifespan in the atmosphere as compared to CO₂. For example, because methane and N₂O are approximately 25 and 298 times more powerful than CO₂, respectively, in their ability to trap heat in the atmosphere, they have GWPs of 25 and 298, respectively (CO₂ has a GWP of 1). CO₂e is a quantity that enables all GHG emissions to be considered as a group despite their varying GWP. The GWP of each GHG is multiplied by the prevalence of that gas to produce CO₂e. The atmospheric lifetime and GWP of selected GHGs are summarized in Table 10, *Global Warming Potentials and Atmospheric Lifetimes*.

 GLOBAL WARMING POTENTIALS AND ATMOSPHERIC LIFETIMES

 Greenhouse Gas
 Atmospheric Lifetime (years)
 Global Warming Potential (100-year time horizon)

Table 10

Greenhouse Gas	(years)	(100-year time horizon)
Carbon Dioxide (CO ₂)	50-200	1
Methane (CH ₄)	12	25
Nitrous Oxide (N ₂ O)	114	298
HFC-134a	14	1,430
PFC: Tetraflouromethane (CF ₄)	50,000	7,390
PFC: Hexafluoroethane (C ₂ F ₆)	10,000	12,200
Sulfur Hexafluoride (SF ₆)	3,200	22,800

Source: IPCC 2007

HFC: hydrofluorocarbon; PFC: perfluorocarbon

3.3 **REGULATORY FRAMEWORK**

3.3.1 Federal

Federal Clean Air Act

The U.S. Supreme Court ruled on April 2, 2007, in *Massachusetts v. U.S. Environmental Protection Agency* (USEPA) that CO₂ is an air pollutant, as defined under the CAA, and that the USEPA has the authority to regulate emissions of GHGs. The USEPA announced that GHGs (including CO₂, CH₄, N₂O, HFC, PFC, and SF₆) threaten the public health and welfare of the American people. This action was a prerequisite to finalizing the USEPA's GHG emissions standards for light-duty vehicles, which were jointly proposed by the USEPA and the United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA). The standards were established on April 1, 2010 for 2012 through 2016 model year vehicles and on October 15, 2012 for 2017 through 2025 model year vehicles (USEPA 2017b; USEPA and NHTSA 2012).

Light-Duty Vehicle GHG Emissions Standards and Corporate Average Fuel Economy Standards

The USEPA and the NHTSA have been working together on developing a national program of regulations to reduce GHG emissions and to improve fuel economy of light-duty vehicles. The USEPA is finalizing the first-ever national GHG emissions standards under the CAA, and the NHTSA is finalizing Corporate Average Fuel Economy (CAFE) standards under the Energy Policy and Conservation Act. On April 1, 2010, the USEPA and NHTSA announced a joint Final Rulemaking that established standards for 2012 through

2016 model year vehicles. This was followed up on October 15, 2012, when the agencies issued a Final Rulemaking with standards for model years 2017 through 2025. The rules require these vehicles to meet an estimated combined average emissions level of 250 grams per mile by 2016, decreasing to an average industry fleet-wide level of 163 grams per mile in model year 2025. The 2016 standard is equivalent to 35.5 miles per gallon (mpg), and the 2025 standard is equivalent to 54.5 mpg if the levels were achieved solely through improvements in fuel efficiency. The agencies expect, however, that a portion of these improvements will be made through improvements in air conditioning leakage and the use of alternative refrigerants that would not contribute to fuel economy. These standards would cut GHG emissions by an estimated 2 billion metric tons (MT) and 4 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2017–2025). The combined USEPA GHG emission standards and NHTSA CAFE standards resolve previously conflicting requirements under both federal programs and the standards of the State of California and other states that have adopted the California standards (USEPA 2017b; USEPA and NHTSA 2012).

3.3.2 State

There are numerous State plans, policies, regulations, and laws related to GHG emissions and global climate change. Following is a discussion of some of these plans, policies, and regulations that (1) establish overall State policies and GHG emission reduction targets; (2) require State or local actions that result in direct or indirect GHG emission reductions for the proposed project; and (3) require CEQA analysis of GHG emissions.

Executive Order S-3-05

On June 1, 2005, Executive Order (EO) S-3-05 proclaimed that California is vulnerable to climate change impacts. It declared that increased temperatures could reduce snowpack in the Sierra Nevada, further exacerbate California's air quality problems, and potentially cause a rise in sea levels. To avoid or reduce climate change impacts, EO S-3-05 calls for a reduction in GHG emissions to the year 2000 level by 2010, to year 1990 levels by 2020, and to 80 percent below 1990 levels by 2050.

Assembly Bill 32 – Global Warming Solution Act of 2006

The California Global Warming Solutions Act of 2006, widely known as AB 32, requires that the CARB develop and enforce regulations for the reporting and verification of statewide GHG emissions. CARB is directed to set a GHG emission limit, based on 1990 levels, to be achieved by 2020. The bill requires CARB to adopt rules and regulations in an open public process to achieve the maximum technologically feasible and cost-effective GHG emission reductions.

Executive Order S-01-07

This EO, signed by Governor Schwarzenegger on January 18, 2007, directs that a statewide goal be established to reduce the carbon intensity of California's transportation fuels by at least 10 percent by the year 2020. It orders that a Low Carbon Fuel Standard (LCFS) for transportation fuels be established for California and directs CARB to determine whether a LCFS can be adopted as a discrete early action measure pursuant to AB 32. CARB approved the LCFS as a discrete early action item with a regulation adopted and implemented in April 2010. Although challenged in 2011, the Ninth Circuit reversed the District Court's opinion and rejected arguments that implementing LCFS violates the interstate commerce clause in September 2013. CARB is therefore continuing to implement the LCFS statewide.

Executive Order B-30-15

On April 29, 2015, EO B-30-15 established a California GHG emission reduction target of 40 percent below 1990 levels by 2030. The EO aligns California's GHG emission reduction targets with those of leading international governments, including the 28 nation European Union. California is on track to meet or exceed the target of reducing GHG emissions to 1990 levels by 2020, as established in AB 32. California's new emission reduction target of 40 percent below 1990 levels by 2030 will make it possible to reach the goal established by EO S-3-05 of reducing emissions 80 percent under 1990 levels by 2050.

Senate Bill 32

As a follow-up to AB 32 and in response to EO-B-30-15, Senate Bill (SB) 32 was passed by the California legislature in August 2016 to codify the EO's California GHG emission reduction target of 40 percent below 1990 levels by 2030.

California Air Resources Board: Scoping Plan

On December 11, 2008, CARB adopted the Scoping Plan (CARB 2008) as directed by AB 32. The Scoping Plan proposes a set of actions designed to reduce overall GHG emissions in California to the levels required by AB 32. Measures applicable to development projects include those related to energy-efficiency building and appliance standards, the use of renewable sources for electricity generation, regional transportation targets, and green building strategy. Relative to transportation, the Scoping Plan includes nine measures or recommended actions related to reducing vehicle miles traveled (VMT) and vehicle GHG emissions through fuel and efficiency measures. These measures would be implemented statewide rather than on a project by project basis.

In response to EO B-30-15 and SB 32, all state agencies with jurisdiction over sources of GHG emissions were directed to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 targets. CARB was directed to update the Scoping Plan to reflect the 2030 target and, therefore, is moving forward with the update process. The mid-term target is critical to help frame the suite of policy measures, regulations, planning efforts, and investments in clean technologies and infrastructure needed to continue driving down emissions. The 2017 Climate Change Scoping Plan Update, Proposed Strategy for Achieving California's 2030 Greenhouse Gas Target, was adopted in December 2017. The Scoping Plan Update establishes a proposed framework for California to meet a 40 percent reduction in GHGs by 2030 compared to 1990 levels.

Assembly Bill 1493 – Vehicular Emissions of Greenhouse Gases

AB 1493 (Pavley) requires that CARB develop and adopt regulations that achieve "the maximum feasible reduction of GHGs emitted by passenger vehicles and light-duty truck and other vehicles determined by CARB to be vehicles whose primary use is noncommercial personal transportation in the State." On September 24, 2009, CARB adopted amendments to the Pavley regulations that intend to reduce GHG emissions in new passenger vehicles from 2009 through 2016. In January 2012, CARB approved a new emissions-control program for model years 2017 through 2025. The program combines the control of smog, soot, and global warming gases and requirements for greater numbers of zero-emission vehicles into a single packet of standards called Advanced Clean Cars (CARB 2013).

California Code of Regulations, Title 24, Part 6

California Code of Regulations (CCR) Title 24 Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings were first established in 1978 in response to a legislative mandate to reduce California's energy consumption. Energy-efficient buildings require less electricity, natural gas, and other fuels. Electricity production from fossil fuels and on-site fuel combustion (typically for water heating) results in GHG emissions.

The Title 24 standards are updated approximately every three years to allow consideration and possible incorporation of new energy efficiency technologies and methods. The latest update to the Title 24 standards occurred in 2016 and went into effect on January 1, 2017. The 2016 update to the Building Energy Efficiency Standards focuses on several key areas to improve the energy efficiency of newly constructed buildings and alterations to existing buildings. The most significant efficiency improvements to the residential Standards include improvements for attics, walls, water heating, and lighting. The Standards are divided into three basic sets. First, there is a basic set of mandatory requirements that apply to all buildings. Second, there is a set of performance standards – the energy budgets – that vary by climate zone (of which there are 16 in California) and building type; thus, the Standards are tailored to local conditions. Finally, the third set constitutes an alternative to the performance standards, which is a set of prescriptive packages that are basically a recipe or a checklist compliance approach.

Renewable Energy Programs and Mandates (SB 1078, 107, 2 X1 and EO S-14-08)

A series of substantive and far-reaching legislative initiatives have been advanced at the State level in the last decade, focused on increasing the generation of electricity via renewable energy sources and promoting a shift from fossil- or carbon-based fuels as a key strategy to reduce GHG emissions, air pollution, and water use associated with the energy sector.

The proposed project would be an important asset in meeting energy demand in the State, as it would contribute toward meeting California legislative initiatives by providing a long-term source of renewable electricity. In 2002, California established the Renewable Portfolios Standard (RPS), SB 1078, requiring electric utilities in the State to increase procurement of eligible renewable energy resources to achieve a target of 20 percent of their annual retail sales by the year 2010. Then-Governor Arnold Schwarzenegger signed Executive Order S-14-08 in 2008, increasing that target to 33 percent by the year 2020. In 2011, in an effort to codify the 33 percent reduction in GHG emissions by 2020, Governor Jerry Brown signed the California Renewable Energy Resources Act, SB 2 X1, into law. SB 2 X1 legislatively broadens the scope of the State RPS to include retail electricity sellers; investor- and publicly owned utilities; municipal utilities; and community choice aggregators under the mandate to obtain 33 percent of their retail electrical energy sales from renewable sources by 2020.

Senate Bill 350

Approved by Governor Brown on October 7, 2015, SB 350 increases California's renewable electricity procurement goal from 33 percent by 2020 to 50 percent by 2030. This will increase the use of RPS eligible resources, including solar, wind, biomass, and geothermal. In addition, large utilities are required to develop and submit Integrated Resource Plans to detail how each entity will meet their customers resource needs, reduce GHG emissions, and increase the use of clean energy.

3.3.3 Local

San Joaquin Valley Air Pollution Control District

In December 2009, the SJVAPCD adopted the following guidance documents applicable to the project:

- Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA (SJVAPCD 2009a), and
- District Policy: Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency (SJVAPCD 2009b).

This guidance and policy are the documents referenced in the SJVAPCD's *Guidance for Assessing and Mitigating Air Quality Impacts* adopted in March 2015 (SJVAPCD 2015). Consistent with the District Guidance and District Policy above, SJVAPCD (2015) acknowledges the current absence of numerical thresholds, and recommends a tiered approach to establish the significance of the GHG impacts on the environment:

- 1. If a project complies with an approved GHG emission reduction plan or GHG mitigation program which avoids or substantially reduces GHG emissions within the geographic area in which the project is located, then the project would be determined to have a less than significant individual and cumulative impact for GHG emissions;
- 2. If a project does not comply with an approved GHG emission reduction plan or mitigation program, then it would be required to implement best performance standards (BPS); and
- 3. If a project is not implementing BPS, then it should demonstrate that its GHG emissions would be reduced or mitigated by at least 29 percent, compared to business-as-usual.

4.0 EXISTING CONDITIONS

4.1 CLIMATE AND METEOROLOGY

The SJVAB is comprised of an inland Mediterranean climate, averaging more than 260 sunny days per year. The valley floor is characterized by warm, dry summers and cooler winters. Average daily temperatures in the basin range from 44.6 degrees Fahrenheit (°F) in January to 76.7°F in July. Summer highs often exceed 100°F, averaging in the low 90s in the northern valley and high 90s to the south. Maximum temperatures of 90°F or greater occur about 88 days per year. Temperatures of 32°F and below occur about 22 days per year. Nearly 90 percent of the annual precipitation falls in the 6 months between November and April (SJVAPCD 2015).

The Basin is approximately 250 miles long and 35 miles wide; it is the second largest air basin in the state of California. The SJVAB is defined by the Sierra Nevada Mountains to the east (8,000 to 14,000 feet in elevation), the Coast Range to the west (averaging 3,000 feet in elevation), and the Tehachapi Mountains to the south (6,000 to 8,000 feet in elevation). The valley opens to the sea at the Carquinez Strait where the San Joaquin-Sacramento Delta discharges into San Francisco Bay. Within the majority of the San Joaquin Valley, air movement through and out of the basin is restricted by the hills and mountains surrounding it. Although marine air generally flows into the basin from the San Joaquin

River Delta, the Coast Range hinders wind access into the SJVAB from the west, the Tehachapi Mountains prevent the southerly passage of airflow, and the Sierra Nevada Mountains prevent airflow to the east. These topographic features result in weak airflow in the valley, which becomes blocked vertically by high barometric pressure over the Basin. As a result, the majority of the SJVAB is highly susceptible to pollutant accumulation (SJVAPCD 2015).

Wind speed and direction play an important role in the dispersion and transport of air pollutants. Ozone and inhalable particulates (PM_{10} and $PM_{2.5}$) are classified as regional pollutants because they can be transported away from the emission source before concentrations peak. In contrast, local pollutants, such as carbon monoxide (CO), tend to have their highest concentrations near the source of emissions. These local pollutants dissipate easily and therefore have the highest concentrations during low wind speeds. Wind speed and direction data indicate that during the summer, winds usually originate at the north end of the Basin and flow in a south/southeasterly direction through the Tehachapi Pass into the Mojave Desert Air Basin (SJVAPCD 2015).

Inversions occur when warm air sits over cooler air, trapping the cooler air at elevations near or above ground level. When these inversions occur in the SJVAB they trap pollutants from dispersing vertically while the mountains surrounding the San Joaquin Valley trap the pollutants from dispersing horizontally. Ground-level inversions occur frequently during early fall and winter (i.e., October through January) while elevated inversions which, contribute to the occurrence of high levels of ozone, generally occur in the summer months. Severe air stagnation occurs as a result of these inversions and high concentrations of primary pollutants can then be found (SJVAPCD 2015).

4.2 EXISTING AIR QUALITY

4.2.1 Criteria Pollutants

Attainment Designations

Attainment designations are discussed in Sections 2.3. Table 9, *San Joaquin Valley Air Basin Attainment Status*. The SJVAB is a federal and state nonattainment area for 8-hour ozone and PM_{2.5}, a state nonattainment PM₁₀, and a severe state nonattainment area for 1-hour ozone.

Monitored Air Quality

Criteria air pollutant concentrations are measured at several monitoring stations in the SJVAB. The closest station to the project site is identified as the Hanford Monitoring Station, located at 807 South Irwin Street, approximately 15 miles northeast of the project site. Equipment at the station measures ozone, PM₁₀, PM_{2.5}, and NO₂ levels. Table 11, *Air Quality Monitoring Data*, summarizes the air quality data from this station for the most recent three-year period (2014-2016).

The data show violations of the federal and state 8-hour ozone standards and the 1-hour ozone state standard in each of the three years sampled. The levels of NO_2 did not exceed state or federal standards in the last three years. PM_{10} levels exceeded the state 24-hour standard once in 2016. $PM_{2.5}$ levels exceeded the federal 24-hour standard in each of the three years sampled.

2014	2015	2016
0.108	0.119	0.097
5	4	2
0.094	0.094	0.088
39	42	49
14	22	20
131.3	136.9	152.2
138.8	*	121.2
0	*	0
96.7	98.2	59.7
34	28	25
-		
0.050	0.051	0.052
0	0	0
	2014 0.108 5 0.094 39 14 131.3 138.8 0 96.7 34 0.050 0	2014 2015 0.108 0.119 5 4 0.094 0.094 39 42 14 22 131.3 136.9 138.8 * 0 * 96.7 98.2 34 28 0 0

Table 11 AIR QUALITY MONITORING DATA

Source: CARB (2017b)

ppm = parts per million, µg/m³ = micrograms per cubic meter, <u>italic underline</u> = exceed standard *Insufficient data available

4.2.2 Valley Fever

Valley Fever is an illness caused by a fungus (*Coccidioides immitis* and *C. posadasii*) that grows in soils under certain conditions. Favorable conditions for the Valley Fever fungus include low rainfall, high summer temperatures, and moderate winter temperatures. In California, the counties with the highest incident of Valley Fever are Fresno, Kern and Kings Counties. When soils are disturbed by wind or activities like construction and farming, Valley Fever fungal spores can become airborne. The spores present a potential health hazard when inhaled. Individuals in occupations such as construction, agriculture, and archaeology have a higher risk of exposure due to working in areas of disturbed soils which may have the Valley Fever fungus. Most people who inhale the spores do not get sick. Usually, susceptible individuals experience flu-like symptoms and will feel better on their own within weeks, although some people require antifungal medication (CDC 2014). In extreme cases, the disease can be fatal. The average annual exposure rate in the San Joaquin Valley is more than 10 in 100,000 people (CDPH 2013).

4.2.3 Greenhouse Gases

CARB performs statewide GHG inventories. The inventory is divided into six broad sectors; agriculture and forestry, commercial, electricity generation, industrial, residential, and transportation. Emissions are quantified in MMT of CO₂e. Table 12, *California Greenhouse Gas Emissions by Sector*, shows the estimated statewide GHG emissions for the years 1990, 2000, 2010, and 2015.

Sector	1990	2000	2010	2015
Agriculture and Forestry	23.6 (5%)	32.1 (7%)	34.5 (8%)	34.6 (8%)
Commercial	14.4 (3%)	15.0 (3%)	21.6 (5%)	22.2 (5%)
Electricity Generation	110.6 (26%)	105.2 (22%)	90.5 (20%)	84.1 (19%)
Industrial	103.0 (24%)	105.4 (22%)	102.7 (23%)	103.0 (23%)
Residential	29.7 (7%)	31.8 (7%)	32.2 (7%)	26.9 (6%)
Transportation	150.7 (35%)	178.1 (38%)	173.7 (38%)	169.4 (39%)
Unspecified Remaining	1.3 (<1%)	1.2 (<1%)	0.8 (<1%)	0.82(<1%)
TOTAL	433.3	468.8	456.0	440.4

Table 12 CALIFORNIA GREENHOUSE GAS EMISSIONS BY SECTOR (MMT CO₂e)

Source: CARB 2007 and CARB 2017d

As shown in Table 12, statewide GHG emissions totaled 433 MMT CO₂e in 1990, 469 MMT CO₂e in 2000, 456 MMT CO₂e in 2010, and 440 MMT CO₂e in 2015. Transportation-related emissions consistently contribute the most GHG emissions, followed by industrial emissions and electricity generation.

5.0 METHODOLOGY AND SIGNIFICANCE CRITERIA

5.1 METHODOLOGY

The construction and operational emissions were estimated from several emissions models and associated spreadsheet calculations, depending on the source type and data availability. The primary emissions models used included CARB's EMFAC for on-road vehicle emissions factor model (CARB 2017e), CARB's OFFROAD for off-road equipment (CARB 2014b), and emission factors obtained from the USEPA AP-42 *Compilation of Air Pollutant Emission Factors* (USEPA 2011). Short-term and annual project emissions were estimated using appropriate emission factors and the associated schedules. Refer to Section 1.0, *Project Description*, and Appendix A for details on equipment fleet, hours of operation, VMT, and other assumptions used. The following construction and operational sources and activities were analyzed for emissions:

- On-site construction equipment exhaust emissions (all criteria pollutants and GHGs) based on EMFAC2017 emission factors for the SJVAPCD, and OFFROAD2011 emission factors and projected equipment schedules for Kings County.
- On-site construction equipment fugitive dust emissions (PM₁₀ and PM_{2.5}) based on USEPA AP-42 emission factors and project equipment schedules.
- On-site and off-site heavy-duty trucks (includes delivery, freight, dump, and water trucks) exhaust emissions (all criteria pollutants and GHGs) based on EMFAC2017 and estimated VMT.
- On-site and off-site entrained fugitive dust emissions for paved and unpaved road travel (PM₁₀ and PM_{2.5}) – based on AP-42 methodology and estimated VMT.

- Worker vehicle emissions for trips to and from the site (all criteria pollutants and GHGs) based on EMFAC2017 and estimated VMT.
- Worker vehicle entrained fugitive dust emissions for paved roads (PM₁₀ and PM_{2.5}) based on AP-42 methodology and estimated VMT.

Please note that the SJVAPCD requires the use of the California Emissions Estimator Model (CalEEMod) to determine compliance with the Indirect Source Rule (Rule 9510); however, that model is designed to provide emissions quantifications for typical residential and commercial land uses and is inadequate for the purposes of evaluating large scale solar power development. The analysis contained herein uses the same methodology and emission factors as those contained within the latest version of CalEEMod (version 2016.3.2).

5.1.1 Off-Road Construction Equipment

Off-road construction equipment exhaust emissions were estimated using primarily the OFFROAD2011 diesel emission factors. OFFROAD2011 was run for statewide with averaging days of Monday through Sunday for the years 2020 and 2021. All scenarios were run for three seasons – Annual, Summer, and Winter. The exhaust emission factors for each equipment at each horsepower range were back calculated from total daily emissions reported in the model output files. Construction equipment for each phase of the project incorporated into the calculations is presented in Appendix A. The exhaust emissions were calculated from the appropriate emission factors, the number of pieces of equipment, the engine duty, and the operating schedule. Refer to Section 1.0, *Project Description*, and Appendix A for equipment and scheduling.

5.1.2 On-Site Vehicle Emissions from On-Road Vehicles

On-site truck exhaust emissions were estimated using the EMFAC2017 emission factors for years 2020 and 2021 fleet mix for the SJVAPCD region. On-site construction vehicles include a mix of Class 2 and Class 7 vehicle weights. Vehicles include gasoline-powered light trucks and diesel-powered water trucks, flatbed trucks, gravel trucks, and concrete trucks. Vehicles were assumed to travel at an average speed of five miles per hour (mph) within the site. Vehicles used during the operational phase of the project include light duty trucks.

5.1.3 On-Road Vehicle Emissions

Off-site truck exhaust emissions were estimated using the EMFAC2017 emission factors for years 2020 and 2021 fleet mix for the SJVAPCD region. Off-site emission includes emissions from construction related vehicles, such as delivery trucks and equipment transportation and other construction related equipment that would be driven on-road, as well as construction phase emissions from worker commutes. Assumptions regarding vehicle trips, trips per day, and VMT are described in Section 1.0, *Project Description*.

5.1.4 Fugitive Dust

Paved and unpaved road entrained fugitive dust emissions were estimated using the AP-42 emission factors and VMT. The emission factors are calculated based on the silt content of the road and the average vehicle weight. The silt content was obtained from AP-42 (Table 4.2.2-1; USEPA 2011), based on

the mean silt value for construction sites. The average worker commute vehicle weight was assumed to be 2.2 tons while the average truck weight was assumed to be 20 tons.

For the site preparation phase grading and bulldozing activities, fugitive dust emissions were estimated using USEPA AP-42 Chapter 11.9 emission equations and factors. The emission factor was calculated based on the grading equipment mean speed and miles traveled.

5.1.5 Methodology for Determining Health Risks

Because of the potential for health risks associated with large-scale off-road diesel equipment use, an HRA was conducted with regard to diesel exhaust particulate matter. The significance threshold for health risks differs from that used for criteria pollutants in that no specific air quality standards have been established for diesel particulate emissions or many other TACs. Instead, significance thresholds are determined based on an analysis of the number of excess cancers relative to a chosen risk level. Excess cancer risks are defined as those occurring in excess of or above and beyond those risks that would normally be associated with a location or activity if toxic pollutants were not present.

The USEPA considers for risk management those pollutants that could cause carcinogenic risk between one in 10,000 (1.0×10^4 or 1.0E-04) and one in one million (1.0×10^6 or 1.0E-06), with the latter criteria generally used for development of Preliminary Remediation Goals. Passage of Proposition 65 (encoded in California Health and Safety Code Section 25249.6) in 1986 prohibits a person in the course of doing business from knowingly and intentionally exposing any individual to a chemical that has been listed as known to the state to cause cancer or reproductive toxicity without first giving clear and reasonable warning. For a chemical that is listed as a carcinogen, the "no significant risk" level under Proposition 65 is defined as the level which is calculated to result in not more than one excess case of cancer in 100,000 individuals (1×10^5) exposed over a 70-year lifetime. Since 2007, no San Joaquin Valley facilities have been determined to pose risks in excess of action levels, which are an increased cancer risk of more than 10 in 1 million after 70 years of exposure (SJVAPCD 2016). The 10 in 1 million threshold is based on the latest scientific data, and is designed to protect the most sensitive individuals in the population as each chemical's exposure level includes large margins of safety. In addition to this carcinogen threshold, the California Office of Environmental Health Hazard (OEHHA) recommends that the non-carcinogenic hazards for TACs at ground level should not exceed a chronic hazard index (HI) greater than one.

The first step of the HRA is to characterize the project-related emissions. Exhaust emissions of DPM from the construction equipment are below the 10 and 2.5 micron range (PM₁₀ and PM_{2.5}, respectively); therefore, all PM₁₀ exhaust emissions expected to occur onsite were included in the HRA. DPM is the only pollutant needed for the cancer risk analysis (which uses 70-year-average emission rates for residential sensitive receptor risks) since the cancer slope factor established by OEHHA for the assessment of DPM cancer risk includes consideration of the individual toxic species that could be adsorbed onto DPM particles.

The air dispersion modeling for the HRA was performed using the USEPA AERMOD dispersion model, version 18081. AERMOD is a steady-state, multiple-source, Gaussian dispersion model designed for use with emission sources situated in terrain where ground elevations can exceed the stack heights of the emission sources (not a factor in this case). The AERMOD model requires hourly meteorological data consisting of wind vector, wind speed, temperature, stability class, and mixing height. For this analysis, meteorological data from the Lemoore Naval Air Station (Station ID: 23110) was selected as being the nearest, most representative meteorology. The model was run to obtain the peak 24-hour and annual

average concentration. Receptors used included the discrete receptors for nearby sensitive receptors shown in Figure 2 and a 10-kilometer by 10-kilometer grid (6.2 miles x 6.2 miles) with a receptor spacing of 500 meters.

Various activities will occur at different locations throughout the approximately 2,490-acre project site. Because of the variability in equipment location and timing of specific construction actions, the entire 2,490-acre site was input to AERMOD as an area source. Emissions from construction trucks and equipment were assigned a release height of 10 feet, which is the approximate average height of the exhaust port plus a nominal amount of plume rise. The AERMOD results were then incorporated into CARB's Hotspot Analysis and Reporting Program Version 2 (HARP2) Air Dispersion Modeling and Risk Tool with the PM₁₀ exhaust emission rates estimated for all onsite activity to determine individual health risk levels.

5.2 SIGNIFICANCE CRITERIA

5.2.1 Air Quality

According to Appendix G of the State CEQA Guidelines and the SJVAPCD's *Guide for Assessing and Mitigating Air Quality Impacts*, a project would have a significant air quality environmental impact if it would:

- 1. Conflict with or obstruct implementation of the applicable air quality plan;
- 2. Violate any air quality standard or contribute substantially to an existing or projected air quality violation;
- 3. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
- 4. Expose sensitive receptors (i.e., day care centers, schools, retirement homes, and hospitals or medical patients in residential homes which could be impacted by air pollutants) to substantial pollutant concentrations; or
- 5. Create objectionable odors affecting a substantial number of people.

Appendix G of the State CEQA Guidelines states that the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the above determinations. The SJVAPCD has established significance thresholds to assess the impacts of project-related air pollutant emissions. The significance thresholds are updated, as needed, to appropriately represent the most current technical information and attainment status in the SJVAB. Table 13, *SJVAPCD Air Quality Significance Thresholds*, presents the most current significance thresholds, including thresholds for construction and operational emissions and maximum incremental cancer risk and hazard indices for TACs. Thresholds for decommissioning are the same as those presented for construction. A project with emission rates and risk values below these thresholds is generally considered to have a less than significant effect on air quality.

Mass Daily Thresholds (tons per year)								
Pollutant	Construction	Operation						
ROG	10	10						
NO _X	10	10						
СО	100	100						
PM10	15	15						
PM _{2.5}	15	15						
SOx	27	27						
Toxic Air Contaminants								
TACs ¹	Maximum Incremental Cancer I Chronic & Acute Hazard Index ≥	Risk ≥ 10 in 1 million ≥ 1.0 (project increment)						

Table 13 SJVAPCD AIR QUALITY SIGNIFICANCE THRESHOLDS

Source: SJVAPCD 2015

¹ TACs (carcinogenic and noncarcinogenic)

As set forth in the *Guidance for Assessing and Mitigating Air Quality Impacts*, any proposed project that would individually have a significant air quality impact would also be considered to have a significant cumulative air quality impact. Impacts of local pollutants (CO, TACs) are cumulatively significant when modeling shows that the combined emissions from the project and other existing and planned projects will exceed air quality standards.

5.2.2 Greenhouse Gas Emissions

Given the relatively small levels of emissions generated by a project in relationship to the total amount of GHG emissions generated on a national or global basis, individual projects are not expected to result in significant, direct impacts with respect to climate change. However, given the magnitude of the impact of GHG emissions on the global climate, GHG emissions from new development could result in significant, cumulative impacts with respect to climate change. Thus, the potential for a significant GHG impact is limited to cumulative impacts.

According to Appendix G of the State CEQA Guidelines, the following criteria may be considered in establishing the significance of GHG emissions:

Would the project:

- 1. Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?
- 2. Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs?

As discussed in Section 3.3, Regulatory Framework, the SJVAPCD has adopted the guidance in *Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA* and the policy, *Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency*. The guidance and policy rely on the use of BPS to assess significance of project specific GHG emissions on global climate change during the environmental review process. However, SJVAPCD's adopted BPS are specifically directed at reducing GHG emissions from stationary sources; therefore, the adopted BPS would not generally be applicable to RE Slate Solar Project as the project would not be a

stationary source of emissions. The SJVAPCD guidance does not limit a lead agency's authority in establishing its own process and guidance for determining significance of project related impacts on global climate change.

In the event that a local air district's guidance for addressing GHG impacts does not use numerical GHG emissions thresholds, at the lead agency's discretion, a neighboring air district's GHG thresholds may be used to determine impacts. Although the project is not located within the South Coast Air Quality Management District (SCAQMD), SCAQMD currently has a GHG threshold of 10,000 MT of CO2e per year for construction emissions (amortized over a 30-year project lifetime) plus annual operation emissions. This threshold is often used by agencies, such as the California Public Utilities Commission, to evaluate GHG impacts in areas that do not have specific thresholds (CPUC 2015). Therefore, because this threshold has been established by the SCAQMD in an effort to control GHG emissions in the largest metropolitan area in the State of California, this threshold is considered a conservative approach for evaluating the significance of GHG emissions in a more rural area, such as Kings County.

6.0 AIR QUALITY IMPACT ANALYSIS

This section evaluates potential direct impacts of the proposed project related to the air pollutant emissions.

6.1 CONSISTENCY WITH AIR QUALITY PLANS

The SJVAPCD has adopted several attainment plans that outline the long-term strategies designed to achieve compliance with the NAAQS and CAAQS. According to SJVAPCD (page 65; SJVACPD 2015), "projects with emissions below the thresholds of significance for criteria pollutants would be determined to not conflict or obstruct implementation of the District's air quality plan". The thresholds of significance for criteria pollutants established by the SJVAPCD are presented in Table 13. The project emissions reported in Appendix A, which are summarized in Tables 15 and 16, below, show that with the incorporation of the prescribed Mitigation Measure AQ-1 and Mitigation Measure AQ-2, emissions of all criteria pollutants are below the thresholds of significance. Therefore, the project would not conflict with or obstruct implementation of the applicable air quality plan, and impacts would be less than significant with mitigation.

6.2 CONFORMANCE TO FEDERAL AND STATE AIR QUALITY STANDARDS

The project would generate criteria pollutants in the short term during construction and the long term during operation. To determine whether a project would result in emissions that would violate any air quality standard or contribute substantially to an existing or projected air quality violation, a project's emissions are evaluated based on the quantitative emission thresholds established by the SJVAPCD (as shown in Table 13).

6.2.1 Construction

Project Emissions

This project's construction emissions were estimated using the emission factors and methods described in Section 5.1, *Methodology*. Project-specific input was based on general information provided in Section 1.0, *Project Description*, and assumptions to estimate reasonable worst-case conditions. Additional details of phasing, selection of construction equipment, and other input parameters are included in Appendix A.

The results of the calculations for project construction are shown in Table 14, *Annual Construction Emissions*. Emissions are summed annually and presented for comparison with the SJVAPCD thresholds.

A ativity	Criteria Air Pollutant Emissions (tons per year)							
Activity	ROG	СО	NOx	SOx	PM10	PM _{2.5}		
		2020						
Truck Trips	0.10	0.31	1.38	<0.01	1.36	0.35		
Worker Commute	0.18	4.08	0.45	0.01	2.72	0.69		
PV Phase 1: Site								
Preparation	0.53	1.98	4.67	0.01	0.21	0.12		
PV Phase 2: PV System								
Installation	0.32	1.54	2.31	<0.01	0.09	0.09		
2020 TOTAL	1.12	7.91	8.82	0.03	4.38	1.25		
		20	21					
Truck Trips	0.15	0.54	2.29	0.01	2.59	0.67		
Worker Commute	0.21	0.29	0.04	<0.01	<0.01	<0.01		
PV Phase 2: PV System								
Installation	1.09	5.98	8.43	0.02	0.31	0.30		
PV Phase 3: Collection,								
Substation(s), Switching								
Station, Gen-Ties; Site								
Restoration and								
Revegetation	0.12	0.85	1.22	<0.01	0.07	0.06		
ESS Phase 1: Site								
Preparation	0.13	0.42	1.32	<0.01	0.05	0.03		
ESS Phase 2: Foundations,								
Structures, and System	0.07	0.50	0.76	<0.01	0.03	0.03		
ESS Phase 3: Inverters,								
Substation, and								
Connection	0.13	0.94	1.31	<0.01	0.08	0.07		
2021 TOTAL	1.91	9.53	15.37	0.03	3.13	1.16		
MAX YEAR TOTAL	1.91	9.53	15.37	0.03	4.38	1.58		
SJVAPCD Thresholds	10	100	10	27	15	15		
Significant Impact?	No	No	Yes	No	No	No		

Table 14 ANNUAL CONSTRUCTION EMISSIONS

Modeling data is provided in Appendix A

As shown in Table 14, annual NO_x emissions would exceed the SJVACPD threshold. Emissions of all other criteria pollutants related to project construction would be below the significance thresholds. Thus, direct impacts from criteria pollutants generated during construction would be potentially significant.

The effects of using only construction equipment meeting USEPA-Certified Tier 4 emission standards for all off-road diesel powered equipment 50 hp or greater was evaluated to determine the effectiveness in reducing NOx emissions to below a level of significance. The evaluation is presented below.

Project Emissions with Mitigation

The results of the calculations for project construction with the use of Tier 4 off-road construction equipment are shown in Table 15, *Annual Construction Emissions with Use of Tier 4 Off-Road Construction Equipment*.

	Pollutant Emissions (tons per year)								
Activity	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}			
		2020							
Truck Trips	0.10	0.31	1.38	< 0.01	1.36	0.35			
Worker Commute	0.18	4.08	0.45	0.01	2.72	0.69			
PV Phase 1: Site Preparation	0.44	2.18	3.74	0.01	0.16	0.07			
PV Phase 2: PV System Installation	0.15	1.64	1.46	< 0.01	0.02	0.02			
2020 TOTAL	0.86	8.21	7.03	0.03	4.25	1.13			
		2021							
Truck Trips	0.15	0.54	2.29	0.01	2.59	0.67			
Worker Commute	0.21	0.29	0.04	<0.01	<0.01	<0.01			
PV Phase 2: PV System Installation	0.50	6.46	5.43	0.02	0.06	0.06			
PV Phase 3: Collection,									
Substation(s), Switching Station,									
Gen-Ties; Site Restoration and									
Revegetation	0.02	1.02	0.17	< 0.01	0.01	<0.01			
ESS Phase 1: Site Preparation	0.11	0.52	0.93	< 0.01	0.03	0.01			
ESS Phase 2: Foundations,									
Structures, and System	0.02	0.58	0.17	<0.01	<0.01	<0.01			
ESS Phase 3: Inverters, Substation,									
and Connection	0.02	1.05	0.15	<0.01	<0.01	<0.01			
2021 TOTAL	1.03	10.45	9.18	0.03	2.70	0.75			
MAX YEAR TOTAL	1.03	10.45	9.18	0.03	4.25	1.13			
SJVAPCD Thresholds	10	100	10	27	15	15			
Significant Impact?	No	No	No	No	No	No			

Table 15 ANNUAL CONSTRUCTION EMISSIONS WITH USE OF TIER 4 OFF-ROAD CONSTRUCTION EQUIPMENT

Modeling data is provided in Appendix A

As shown in Table 15, should all off-road, diesel powered 50 hp or greater construction equipment be Tier 4 standard, impacts associated with NO_x emissions would be less than significant; however, because there is the possibility that not all equipment will be able to be Tier 4, unless it can be guaranteed that all equipment would meet the Tier 4 standard, additional mitigation would be required.

Mitigation Measures

The following measures are prescribed to reduce NO_x emissions during construction.

MM AQ-1 Tier 4 Off-road Equipment. The applicant shall ensure that, whenever feasible, off-road diesel-powered construction equipment greater than 50 hp shall meet USEPA-Certified Tier 4 emission standards and shall be outfitted with best available control technology devices certified by the California Air Resources Board (CARB). A copy of each unit's certified tier specification, best available control technology documentation, and CARB or SJVAPCD operating permit shall be provided to the Kings County Community Development Agency at the time of mobilization of each applicable unit of equipment.

If all off-road diesel-powered construction equipment greater than 50 hp used for the project meet USEPA-Certified Tier 4 emission standards, emissions of all criteria pollutants would be below the thresholds of significance. The applicant, however, has indicated that, while it is likely that most or all of the off-road diesel-powered project construction equipment will meet this standard, it cannot guarantee that all off-road diesel-powered project construction equipment greater than 50 hp will meet Tier 4 emission standards. Therefore, implementation of MM AQ-2 is required to further address this impact.

MM AQ-2 Voluntary Emissions Reduction Agreement. If the applicant is unable to guarantee that all off-road diesel-powered construction equipment greater than 50 hp will meet Tier 4 emissions standards, then the project applicant will enter into a VERA with SJVAPCD to mitigate or reduce project emissions beyond the requirements of Rule 9510 through the payment of fees (on a per-ton basis) to SJVAPCD. The payment of fees will be made to SJVAPCD based on the fee schedule in the development mitigation contract and the amount of reduction necessary to offset project NO_x emissions below SJVAPCD thresholds.

6.2.2 Operation

Evaluation of operational emissions is analyzed based on the increase of emissions from the proposed project, as discussed in Section 5.1, *Methodology*. Project specific input was based on general information provided in Section 1.0, *Project Description*. As a worst-case scenario, it was assumed that 100 percent of the daily worker trips would also generate on-site trips, and one trip for every two quarterly maintenance employees would occur on-site. The average daily on-site trip would be 15 miles long, and 70 percent of the driveways on the project site would be dirt, and 30 percent would be paved/gravel.

As illustrated in Table 16, *Annual Operation Emissions*, the increase of daily maximum operational emissions related to the project would be low and well below the SJVAPCD significance criteria for all criteria pollutants and would not result in a significant direct impact related to operational emissions. No mitigation would be required.

Emission Source	Pollutant Emissions (tons per year)							
Emission Source	ROG	СО	NOx	SOx	PM10	PM _{2.5}		
Worker Commute	<0.01	0.05	0.01	<0.01	2.34	0.24		
Water Trucks	<0.01	0.05	0.01	<0.01	4.78	0.52		
Onsite Equipment	0.01	0.15	0.13	<0.01	0.01	0.01		
TOTAL	0.02	0.25	0.15	<0.01	7.13	0.77		
SJVAPCD Thresholds	10	100	10	27	15	15		
Significant Impact?	No	No	No	No	No	No		

Table 16 ANNUAL OPERATION EMISSIONS

Modeling data is provided in Appendix A

6.2.3 Decommissioning

This project's decommissioning emissions were estimated using the emission factors and methods described in Section 5.1, *Methodology*. Project-specific input was based on general information provided in Section 1.0, *Project Description*, and assumptions to estimate reasonable worst-case conditions. Additional details of phasing, selection of construction equipment, and other input parameters are included in Appendix A.

The results of the calculations for project decommissioning are shown in Table 17, *Annual Decommissioning Emissions*. Emissions are summed annually and presented for comparison with the SJVAPCD thresholds for construction activities (Table 13).

A attivity	Pollutant Emissions (tons per year)							
Activity	VOC	СО	NOx	SOx	PM10	PM2.5		
Truck Trips	0.01	0.17	0.81	< 0.01	1.78	0.44		
Worker Commute	0.02	0.84	0.04	< 0.01	1.55	0.39		
Onsite Equipment	0.03	0.44	0.38	< 0.01	0.01	<0.01		
TOTAL	0.06	1.45	1.23	0.01	3.33	0.84		
SJVAPCD Thresholds	10	100	10	27	15	15		
Significant Impact?	No	No	No	No	No	No		

Table 17 ANNUAL DECOMMISSIONING EMISSIONS

Modeling data is provided in Appendix A

As shown in Table 17, annual emissions during decommissioning would be less than the SJVAPCD significance criteria for all criteria pollutants and would not result in a significant direct impact. No mitigation would be required.

6.3 CUMULATIVELY CONSIDERABLE NET INCREASE OF NONATTAINMENT CRITERIA POLLUTANTS

The region where the project would be built is designated as nonattainment for the ozone precursors PM_{10} and $PM_{2.5}$. The SJVAPCD (2015) states that if project emissions exceed the significance thresholds for the criteria pollutants, a project would have a cumulative, as well as an individual, significant impact. This does not imply that if the project is below all significant thresholds, it cannot be cumulatively significant.

The SJVAPCD significance thresholds for PM_{10} and $PM_{2.5}$, presented in Table 13, are each 15 tons per year, for construction and operational emissions. Tables 14 and 15 show that PM_{10} from project construction activities is the pollutant emitted in the greatest quantity, totaling 3.94 tons per year before the applicant's mitigation, and 3.81 tons per year after mitigation. Emission levels below the significance thresholds are not expected to cause exceedance of the air quality standards in the vicinity of the source, which is the area of highest concentrations. In the case of the project, because the construction emissions of PM_{10} before the applicant's mitigation are less than the significance thresholds, the ambient air concentrations would also be expected to be below the air quality standards in the vicinity of the source, decreasing even further with distance from the source.

However, in order to assess cumulative impacts, the significance of the incremental effects of the project was estimated in connection with the effects of past, current, and probable future projects within the same geographic area. A list of projects considered for the cumulative analysis was compiled using data provided by the Kings County Community Development Agency. The projects with a potential to generate emissions that would cumulate with those of the proposed project are all solar plants, either under construction or operational.

Of the projects closest to the project site, the following may be under construction during the same timeframe as the project; American Kings, Westlands Aquamarine, Daylight Solar, and Westlands Solar. Assuming construction activities from these projects would occur during the exact timeframe as the proposed RE Slate Solar Project, the total construction emissions of PM₁₀ could be estimated to be about 14.5 tons per year, which is below the significance threshold of 15 tons per year for a project's construction emissions. In addition, the significance thresholds have been designed to provide reference emission levels for the most conservative scenario, which is a single source. Emissions originating from multiple sources distributed over an area have substantially lower air quality impacts compared to a single source. Therefore, it can be reasonably inferred that the cumulative air quality impacts of PM₁₀ emissions are expected to be well below the air quality standards and, therefore, would not result in a considerable net increase of PM₁₀ levels in the region.

Operational emissions from the project are lower than construction emissions and would cumulate with similar levels of operational emissions from a smaller number of projects compared to the projects under construction in the same area. Therefore, the cumulative impacts from operational emissions of PM₁₀ would also be expected to be below the air quality thresholds and, therefore, would not result in a considerable net increase of PM₁₀ levels in the region.

Therefore, the project would not result in a cumulatively considerable net increase of any criteria pollutants for which the region is nonattainment and impacts under this criterion would be less than significant.

6.4 IMPACTS TO SENSITIVE RECEPTORS

Sensitive receptors are described as residences, schools, day-care centers, playgrounds, medical facilities, or other facilities that may house individuals with health conditions (medical patients or elderly persons/athletes/students/children) that may be adversely affected by changes in air quality. Impacts to sensitive receptors are typically analyzed for operational period CO hot spots and exposure to TACs. An analysis of the project's potential to expose sensitive receptors to these pollutants is provided below.

6.4.1 Carbon Monoxide Hot Spots

A CO hot spot is an area of localized CO pollution caused by severe vehicle congestion on major roadways, typically near intersections. A quantitative screening is required in two instances: (1) if a project increases the average delay at signalized intersections operating at Level of Service (LOS) E or F; or (2) if a project causes an intersection that would operate at LOS D or better without the project to operate at LOS E or F with the project. Based on the results of Traffic Impact Analysis (TIA) prepared for the project, with implementation of the recommended measure of alternative worker schedules/shifts to eliminate peak-hour trips, the construction of the project is not anticipated to create or exacerbate any significant impacts to the existing study area during any phase of construction, operation, or maintenance (LSA 2018). Thus, the project would neither cause new severe congestion nor significantly worsen existing congestion. There would be no potential for a CO hot spot or exposure of sensitive receptors to substantial, project-generated, local CO emissions. The impact would be less than significant and no mitigation is required.

6.4.2 Exposure to TACs

Construction activities would result in short-term, project-generated emissions of DPM from the exhaust of off-road, heavy-duty diesel equipment. CARB identified DPM as a TAC in 1998. Additionally, the OEHHA has determined that chronic exposure to DPM can cause carcinogenic and non-carcinogenic health effects. The dose to which receptors are exposed is the primary factor used to determine health risk. Dose is a function of the concentration of a substance or substances in the environment and the duration of exposure to the substance. Thus, the risks estimated for a maximally exposed individual (MEI) are higher if a fixed exposure occurs over a longer time period. According to the OEHHA, HRAs, which determine the exposure of sensitive receptors to TAC emissions, should be based on a 30-year exposure; however, such assessments should be limited to the period/duration of activities associated with the project. As such, the exposure duration for the project was set to the duration of the construction activity, 14 months.

The USEPA AERMOD dispersion model was used to estimate concentrations of DPM from the construction of the project. The DPM construction equipment emissions were estimated using the methods described above in Section 5.1, *Methodology*. The emissions were represented in the model as an area source equal to the size of the project's construction area. An emission release height of 10 feet was also assumed. Receptor locations where construction impacts were calculated focused on residences located east-southeast of the project site. CARB's HARP2 model was then used to process the AERMOD results using OEHHA's recommended methodology to provide estimates of cancer risk and chronic non-cancer health risk. The AERMOD and HARP2 model outputs are provided in Appendix B.

Table 18, *Health Risk Levels from Project Construction*, provides the results of the HRA along with the SJVAPCD's significance thresholds for cancer and non-cancer health risks.

Metric	Dispersion Model Estimate ¹	Significance Threshold	Exceeds Threshold?
Cancer Risk	1.60 in 1 million	10 in 1 million	No
Chronic Non-Cancer HI	0.00037	1.0	No

Table 18 HEALTH RISK LEVELS FROM PROJECT CONSTRUCTION

HRA Modeling data is provided in Appendix B

¹ Computed at the MEI

The sensitive receptor with the highest cancer risk and HI is located approximately 0.25 miles east of the project site (depicted in Figure 2). As shown in Table 18, the cancer risk is estimated to be 1.60 in 1 million and the HI is 0.00037. As such, the project would not exceed the significance thresholds for cancer risk and chronic non-cancer hazard. The impact would be less than significant.

In terms of long-term operations, the proposed project does not include any new sources of TACs and therefore, would not generate substantial emissions of TACs.

6.4.3 Valley Fever

Workers may be exposed to Valley Fever spores during construction, which would be a significant impact. Although the applicant includes standard practices to reduce fugitive dust in all of their projects, implementation of MM AQ-3 would be required to reduce impacts to less than significant.

Mitigation Measures

The following measure is prescribed to reduce exposure to Valley Fever.

- **MM AQ-3 Reducing Valley Fever Exposure.** In order to reduce exposure of the public and workers from Valley Fever spores during ground disturbing activities, the following measures shall be implemented during project construction and decommissioning:
 - Implement the Dust Control Plan required to be approved for the project by the SJVAPCD under District Rule 8021 prior to ground disturbing activity.
 - When exposure to dust is unavoidable for workers who will be disturbing the top 2 to 12 inches of soil, provide workers with National Institute for Occupational Safety and Health- (NIOSH) approved respiratory protection with particulate filters rated as N95, N99, N100, P100, or HEPA, as recommended in the California Department of Public Health publication "Preventing Work-Related Coccidioidomycosis (Valley Fever)."

6.5 ODORS

Project construction equipment and activities would generate odors. Primary construction odor sources include diesel exhaust emissions from equipment operating on site. There may be situations where construction activity odors would be noticeable by passersby, but these odors would not be unfamiliar or necessarily objectionable. The odors would be temporary and would dissipate rapidly from the source

with an increase in distance. Therefore, the impacts would be short-term, would be detectable or noticeable to few people, and would be less than significant.

Land uses associated with odor complaints include agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting activities, refineries, landfills, dairies, and fiberglass molding operations. The project does not include land uses typically associated with odor sources. Impacts associated with odor sources are considered less than significant.

7.0 GREENHOUSE GAS IMPACT ANALYSIS

This section evaluates potential impacts of the proposed project related to the generation of GHG emissions.

7.1 GREENHOUSE GAS EMISSIONS

7.1.1 Construction Emissions

The project's construction GHG emissions were estimated using the emission factors and methods described in Section 5.1, *Methodology*. Project-specific input was based on general information provided in Section 1.0, *Project Description*, and assumptions to estimate reasonable worst-case conditions. Additional details of phasing, selection of construction equipment, and other input parameters are included in Appendix A.

Emissions of GHGs related to the construction of the project would be temporary. As shown in Table 19, *Estimated Construction GHG Emissions*, total GHG emissions associated with construction are estimated at 5,507 MT of CO₂e.

Source	Emissions (MT CO2e)
Truck Trips	1,064
Worker Commute	1,094
PV Site Preparation	849
PV Installation	1,860
PV Inverters, Substation & Connection	154
ESS Site Prep	244
ESS Foundations, Structures, and DC	96
ESS Inverters, Substation, and AC	146
TOTAL ¹	5,507
Amortized Construction Emissions ²	184

Table 19 ESTIMATED CONSTRUCTION GHG EMISSIONS

Modeling data is provided in Appendix A

¹ The total presented is the sum of the unrounded values.

² Construction emissions are amortized over 30 years in accordance with SCAQMD guidance.

Because GHG emission reduction measures for construction equipment are relatively limited, SCAQMD, in its *Draft Guidance Document – Interim CEQA GHG Significance Thresholds,* recommends that construction emissions be amortized over a 30-year project lifetime and considered to be an element of

operational emissions (SCAQMD 2008). The proposed construction activities, therefore, would contribute 184 MT CO₂e emissions per year over a 30-year project lifetime.

7.1.2 Operational Emissions

As described in Section 1.0, up to six permanent staff could be on the site at any one time for ongoing facility maintenance and repairs. On intermittent occasions, up to 25 workers could be remotely dispatched to the site if repairs or replacement of equipment were needed in addition to module washing. A total of up to 28 light duty truck trips per day could also occur during these quarterly maintenance activities. It was assumed that the project would result in a total of 3,184 annual trips at a roundtrip distance of 80 miles. Quarterly maintenance activities would also require the use of the off-road equipment as described in Section 1.0. Emissions from on- and off-road sources were estimated using the methods described in Section 5.1.

Operations and Maintenance activities were estimated to result in 73 MT CO₂e per year. The impact evaluation of construction emissions is typically performed as annual operating emissions by amortizing the construction emissions over the life of the project, nominally 30 years. Therefore, direct project GHG emissions would be approximately 184 MT CO₂e per year from construction activities and 73 MT CO₂e per year from long-term maintenance activities. A total of 257 MT CO₂e per year would be generated by the proposed project.

Conversely, the proposed solar facility would be capable of generating up to 300 MW of electricity under peak solar conditions. The energy generated by the proposed project is estimated at 684 gigawatt-hours per year. This electric power would be dispatched to the California Independent System Operator (CAISO) in accordance with a complex and dynamic formula that takes into account numerous variables in ongoing dispatching decisions to meet demand for electricity at any given time. One of those variables is compliance with the mandate to integrate electricity generated from renewable sources into the system at a predetermined rate, i.e., 33 percent by 2020 as mandated by the RPS (CAISO 2018). Since fossil fuel sources are typically less expensive and more reliable than renewable sources at the utility scale, it is expected that in the absence of an RPS mandate, these fossil sources would continue to be the dominant fuel source for electrical generation in California. Thus, renewable sources of electricity, such as solar generation, are considered to offset an equivalent amount of generation from other fuel sources, such as natural gas or coal, that would otherwise be dispatched by the CAISO in the absence of an RPS mandate. In other words, the installation and operation of solar facilities, such as the project, would result in a net reduction of fossil-based generation, and hence a net reduction in CO₂e emissions, relative to overall CO₂e emissions that would occur without the project. Using PG&E's emission factors, as detailed in Appendix A, it has been calculated that the project would result in the offset of up to 199,698 MT CO₂e per year.

As stated, a total of 257 MT CO₂e per year would be generated by the proposed project from construction and operational activities. With the offset of approximately 199,698 MT CO₂e per year from operation of the proposed facility, the project would have a net benefit of reducing global GHG emissions by approximately 199,442 MT CO₂e per year. Therefore, the implementation of the project would result in a net regional and global reduction of GHG emissions compared with the existing conditions.

GHG emissions from the project would not be cumulatively considerable; the project would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.

7.2 CONSISTENCY WITH LOCAL PLANS ADOPTED FOR THE PURPOSE OF REDUCING GREENHOUSE GAS EMISSIONS

As a solar power project, the RE Slate Project would fulfill a portion of the renewable portfolio that is mandated for California and reflected in the CARB AB 32 Scoping Plan and SB 2 X1, partially satisfying the goals of the California Renewable Energy Programs (as described above under Section 3.3, *Regulatory Framework*. Additionally, the emission reductions enabled by the project would help reach the AB 32 emission reduction goals for the electricity generation sector. Therefore, the project would conform to applicable plans, policies, and regulations related to GHG emission reductions and would have a less than significant impact.

8.0 MITIGATION MEASURES

8.1 AIR QUALITY

The following measures are prescribed to reduce NO_X emissions during construction.

MM AQ-1: Tier 4 Off-road Equipment. The applicant shall ensure that, whenever feasible, off-road diesel-powered construction equipment greater than 50 hp shall meet USEPA-Certified Tier 4 emission standards and shall be outfitted with best available control technology devices certified by the California Air Resources Board (CARB). A copy of each unit's certified tier specification, best available control technology documentation, and CARB or SJVAPCD operating permit shall be provided to the Kings County Community Development Agency at the time of mobilization of each applicable unit of equipment.

MM AQ-2: Voluntary Emissions Reduction Agreement. If the applicant is unable to guarantee that all off-road diesel-powered construction equipment greater than 50 hp will meet Tier 4 emissions standards, then the project applicant will enter into a VERA with SJVAPCD to mitigate or reduce project emissions beyond the requirements of Rule 9510 through the payment of fees (on a per-ton basis) to SJVAPCD. The payment of fees will be made to SJVAPCD based on the fee schedule in the development mitigation contract and the amount of reduction necessary to offset project NO_x emissions below SJVAPCD thresholds.

The following measure is prescribed to reduce exposure to Valley Fever.

MM AQ-3: Reducing Valley Fever Exposure. In order to reduce exposure of the public and workers from Valley Fever spores during ground disturbing activities, the following measures shall be implemented during project construction and decommissioning:

• Implement the Dust Control Plan required to be approved for the project by the San Joaquin Valley Air Pollution District under District Rule 8021 prior to ground disturbing activity.

• When exposure to dust is unavoidable for workers who will be disturbing the top 2 to 12 inches of soil, provide workers with NIOSH-approved respiratory protection with particulate filters rated as N95, N99, N100, P100, or HEPA, as recommended in the California Department of Public Health publication "Preventing Work-Related Coccidioidomycosis (Valley Fever)."

8.2 GREENHOUSE GASES

The proposed project would not result in a significant impact with respect to GHG emissions. Therefore, no mitigation is required.

9.0 **REFERENCES**

California Air Resources Board (CARB). 2017a. *Area Designations: Activities and Maps*. Available at: <u>http://www.arb.ca.gov/desig/adm/adm.htm</u>. Accessed January 2018.

2017b. *Top 4 Measurements and Days Above the Standard*. Available at: <u>http://www.arb.ca.gov/adam/topfour/topfour1.php</u>. Accessed February 2018.

2017c. The 2017 Climate Change Scoping Plan Update. 2017. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf. January 20, 2017.

2017d. California Greenhouse Gas Inventory for 2000-2015 – By Sector and Activity. June 6. Available at: <u>https://www.arb.ca.gov/cc/inventory/data/data.htm</u>. Accessed January 2018.

2017e. EMFAC 2017 Emissions Model.

2016. *Ambient Air Quality Standards.* May 4. Available at: <u>http://www.arb.ca.gov/research/aaqs/aaqs2.pdf</u>. Accessed January 2018.

2014a. First Update to the Climate Change Scoping Plan: Building on the Framework. Available at:

http://www.arb.ca.gov/cc/scopingplan/2013 update/first_update_climate_change_scoping_pla n.pdf. May. Accessed February 2018.

2014b. OFFROAD Emission Factors.

2013a. Clean Car Standards – Pavley, Assembly Bill 1493. Available at: <u>http://www.arb.ca.gov/cc/ccms/ccms.htm</u>. Accessed February 2018.

2013b. In-Use Off-Road Equipment (Construction, Industrial, Ground Support, and Oil Drilling). Microsoft[®] Access Database. <u>http://www.arb.ca.gov/msei/categories.htm#inuse_or_category</u>.

2009. *ARB Fact Sheet: Air Pollution and Health*. December 2. Available at: <u>http://www.arb.ca.gov/research/health/fs/fs1/fs1.htm</u>. Accessed January 2018.

2008. Climate Change Scoping Plan – A Framework For Change. December.

2007. California 1990 Greenhouse Gas Emissions Level and 2020 Emissions Limit. November 16.

2000. Diesel Risk Reduction Plan. September.

California Department of Public Health (CDPH). 2013. Valley Fever Fact Sheet. September. <u>http://www.cdph.ca.gov/HealthInfo/discond/Documents/VFGeneral.pdf</u>.

California Independent System Operator (CAISO). 2018. Integrating Renewables Reliably. <u>http://www.caiso.com/informed/Pages/CleanGrid/IntegratingRenewables.aspx</u>. Accessed February 2018.

- California Public Utilities Commission (CPUC). 2015. Section 4.7, "Greenhouse Gases." Final Environmental Impact Report for the Santa Barbara County Reliability Project. May 2015.
- Centers for Disease Control (CDC). 2013. Fungal Diseases Valley Fever (Coccidioidomycosis). July. http://www.cdc.gov/fungal/diseases/coccidioidomycosis/index.html.
- Intergovernmental Panel on Climate Change (IPCC). 2014. *Mitigation of Climate Change*. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

2013. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

2007. *Climate Change 2007: The Physical Science Basis. Summary for Policymakers* (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change). Boulder, CO: IPCC, Working Group I. February.

LSA Associates, Inc. (LSA) 2018. RE Slate LLC Solar Project-Construction Trip Generation Analysis. July.

- National Aeronautics and Space Administration, Goddard Institute for Space Studies (NASA). 2018. NASA News & Features Releases. Long-Term Warming Trend Continued in 2017: NASA, NOAA. <u>https://www.giss.nasa.gov/research/news/20180118/</u>. Accessed February 2018.
- National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA). 2018. Trends in Atmospheric Carbon Dioxide. Boulder, CO: NOAA. Available: <u>http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html</u>. Accessed January 2018.
- San Joaquin Valley Air Pollution Control District (SJVAPCD). 2018. Ambient Air Quality Standards & Valley Attainment Status. Available at: <u>http://www.valleyair.org/aqinfo/attainment.htm</u>. Accessed May 2018.

2016. 2015 Annual Air Toxics Report. March 17. Available at: http://www.valleyair.org/busind/pto/Tox Resources/2015 annual toxics-report.pdf.

2015. Final Draft – Guidance for Assessing and Mitigating Air Quality Impacts. March 19. Available at: <u>http://www.valleyair.org/transportation/GAMAQI_3-19-15.pdf</u>.

2009a. Guidance for Valley Land-Use Agencies in Addressing GHG Emission Impacts for New Projects Under CEQA. December 17. Available: <u>http://www.valleyair.org/programs/CCAP/12-17-09/3%20CCAP%20-%20FINAL%20LU%20Guidance%20-%20Dec%2017%202009.pdf</u>.

2009b. District Policy: Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency. December 17. Available at: http://www.valleyair.org/programs/CCAP/12-17-09/2%20CCAP%20-%20Dec%2017%202009.pdf.

- South Coast Air Quality Management District (SCAQMD). 2008 (October). Draft Guidance Document Interim CEQA Greenhouse Gas (GHG) Significance Thresholds.
- United States Environmental Protection Agency (USEPA). 2017a. Criteria Air Pollutants. Last updated April 3. Available at: <u>https://www.epa.gov/criteria-air-pollutants</u>

2017b (July 7, last update). Proposed Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Clean Air Act. https://www.epa.gov/ghgemissions/endangerment-and-cause-or-contribute-findings-greenhouse-gases-under-section-202a-clean

2016. USEPA Technology Transfer Network National Air Toxics 2011 National-Scale Air Toxics Assessment Glossary of Key Terms. Available at: <u>http://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms</u>. Accessed July 31.

2011. AP 42, Fifth Edition Compilation of Air Pollutant Emissions Factors, Volume 1: Stationary Point and Area Sources. Available at: <u>https://www.epa.gov/air-emissions-factors-and-guantification/ap-42-compilation-air-emissions-factors</u>

2007. The Effects of Air Pollutants – Health Effects. http://www.epa.gov/air/oaqps/eog/course422/ap7a.html#table.

U.S. Environmental Protection Agency and U.S. Department of Transportation, National Highway Traffic Safety Administration (USEPA and NHTSA). 2012 (October 15). 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards. *Federal Register* (Volume 77, No. 199, pp. 62623–63200).

10.0 LIST OF PREPARERS

Victor Ortiz Joanne M. Dramko, AICP Catherine Silvester Senior Air Quality Specialist Senior Technical Specialist, Quality Assurance Reviewer Project Manager

Appendix A

Emission Calculations

Construction Emissions Summary

		Uncontrolled Annual Emissions (Tons per Year)					
					PM10	PM2.5	
2020	ROG	со	NOx	SOx	Total	Total	MT CO2e
Truck Trips	0.10	0.31	1.38	0.00	1.36	0.35	369.02
Worker Commute	0.18	4.08	0.45	0.01	2.72	0.69	1,087.60
PV Site Prep	0.53	1.98	4.67	0.01	0.21	0.12	848.80
PV Installation	0.32	1.54	2.31	0.00	0.09	0.09	373.36
Total	1.12	7.91	8.82	0.03	4.38	1.25	2,678.77
					PM10	PM2.5	
2021	ROG	CO	NOx	SOx	Total	Total	MT CO2e
Truck Trips	0.15	0.54	2.29	0.01	2.59	0.67	694.90
Worker Commute	0.21	0.29	0.04	0.00	0.00	0.00	6.58
PV Installation	1.09	5.98	8.43	0.02	0.31	0.30	1,486.79
PV Inverters Substation & Connection	0.12	0.85	1.22	0.00	0.07	0.06	154.15
BESS Site Prep	0.13	0.42	1.32	0.00	0.05	0.03	243.91
BESS Foundations, Structures & DC	0.07	0.50	0.76	0.00	0.03	0.03	95.78
BESS Inverters, Substation & AC	0.13	0.94	1.31	0.00	0.08	0.07	146.05
Total	1.91	9.53	15.37	0.03	3.13	1.16	2,828.15
		Uncon	trolled Ann	ual Emissio	ons (Tons pe	er Year)	
					PM10	PM2.5	

					PM10	PM2.5	
Year	ROG	СО	NOx	SOx	Total	Total	MT CO2e
2020	1.12	7.91	8.82	0.03	4.38	1.25	2,678.77
2021	1.91	9.53	15.37	0.03	3.13	1.16	2,828.15
Max	1.91	9.53	15.37	0.03	4.38	1.25	2,828.15
SJVAPCD Threshold	10	100	10	27	15	15	
Exceed Threshold?	No	No	Yes	No	No	No	

	Decommissioning Annual Emissions (Tons per Year)						
					PM10	PM2.5	
2050	ROG	со	NOx	SOx	Total	Total	MT CO2e
Truck Trips	0.01	0.17	0.81	0.00	1.78	0.44	283.74
Worker Commute	0.02	0.84	0.04	0.00	1.55	0.39	375.61
Onsite Equipment	0.03	0.44	0.38	0.00	0.01	0.00	104.76
Total	0.06	1.45	1.23	0.01	3.33	0.84	764.12
SJVAPCD Threshold	10	100	10	27	15	15	
Exceed Threshold?	No	No	No	No	No	No	

Construction Emissions Summary

		Tier 4	Final Annu	al Emissior	ns (Tons per	Year)	
					PM10	PM2.5	
2020	ROG	СО	NOx	SOx	Total	Total	MT CO2e
Truck Trips	0.10	0.31	1.38	0.00	1.36	0.35	369.02
Worker Commute	0.18	4.08	0.45	0.01	2.72	0.69	1,087.60
PV Site Prep	0.44	2.18	3.74	0.01	0.16	0.07	848.80
PV Installation	0.15	1.64	1.46	0.00	0.02	0.02	373.36
Total	0.86	8.21	7.03	0.03	4.25	1.13	2,678.77
					PM10	PM2.5	
2021	ROG	СО	NOx	SOx	Total	Total	MT CO2e
Truck Trips	0.15	0.54	2.29	0.01	2.59	0.67	694.90
Worker Commute	0.21	0.29	0.04	0.00	0.00	0.00	6.58
PV Installation	0.50	6.46	5.43	0.02	0.06	0.06	1,486.79
PV Inverters Substation & Connection	0.02	1.02	0.17	0.00	0.01	0.00	154.15
BESS Site Prep	0.11	0.52	0.93	0.00	0.03	0.01	243.91
BESS Foundations, Structures & DC	0.02	0.58	0.17	0.00	0.00	0.00	95.78
BESS Inverters, Substation & AC	0.02	1.05	0.15	0.00	0.00	0.00	146.05
Total	1.03	10.45	9.18	0.03	2.70	0.75	2,828.15

		Tier 4	Final Annu	al Emissior	ns (Tons per	r Year)	
					PM10	PM2.5	
Year	ROG	со	NOx	SOx	Total	Total	MT CO2e
2020	0.86	8.21	7.03	0.03	4.25	1.13	2,678.77
2021	1.03	10.45	9.18	0.03	2.70	0.75	2,828.15
Max	1.03	10.45	9.18	0.03	4.25	1.13	2,828.15
SJVAPCD Threshold	10	100	10	27	15	15	
Exceed Threshold?	No	No	No	No	No	No	

	2020 -	- PV S	Site Prep							E	Emission Fac	tors (Onroa	d - g/hr; Offr	oad - g/hp-ł	ir)								Emi	ssions (Tor	ns/Year)					
Equipment Description	No. of Units	Tc Da Ui	otal Work ays Per nit	НР	LF		Daily Operatio n Per Unit (Hours)	ROG CO NOX SO2 PM10 Exh PM2.5 Exh PM10 dust (lb/hr) PM2.5 dust (lb/hr) PM2.5 dust (lb/hr) CO2 CH4 ROG 0.3600 1.5549 4.6323 0.0050 0.1750 0.1610 0.0258 0.0028 472.94 0.1530 0.9734												NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	РМ2.5 ТОТ	CO2 (MT)	CH4 (MT)	CO2e (MT)
Tracked dozer, large	10	4	37	21	2 (0.43	7	0.3600	1.5549	4.6323	0.0050	0.1750	0.1610	0.0258	0.0028	472.94	0.1530	0.9734	4.2043	12.5250	0.0135	0.4732	0.4353	0.1236	0.0133	0.5968	0.4487	1,160.08	0.3753	1,169.4
Grader		4	33	18	7 (0.41	7	0.3520	1.3418	4.6779	0.0050	0.1500	0.1380	0.0258	0.0028	475.30	0.1540	0.0275	0.1048	0.3653	0.0004	0.0117	0.0108	0.0985	0.0106	0.1102	0.0214	33.67	0.0109	33.9
Skid steer w auger/hoe	1	.8	36	6	5 (0.37	7	0.1880	3.2771	2.5046	0.0050	0.1080	0.1000			471.91	0.1530	0.0227	0.3965	0.3030	0.0006	0.0131	0.0121	-	-	0.0131	0.0121	51.80	0.0168	52.2
FE Loader		3	44	20	3 (0.36	7	0.2900	1.2689	3.4212	0.0050	0.1140	0.1040			469.51	0.1520	0.0216	0.0944	0.2547	0.0004	0.0085	0.0077	-	-	0.0085	0.0077	31.70	0.0103	31.9
Roller, vibratory		9	49	8) (0.38	7	0.3880	3.5314	3.8815	0.0050	0.2470	0.2280			473.86	0.1530	0.0399	0.3628	0.3988	0.0005	0.0254	0.0234	-	-	0.0254	0.0234	44.17	0.0143	44.5
Backhoe		1	5	9	7 (0.37	7	0.3310	3.6015	3.3257	0.0050	0.2100	0.1930			475.15	0.1540	0.0004	0.0045	0.0041	0.0000	0.0003	0.0002	-	-	0.0003	0.0002	0.54	0.0002	0.5
Pickup	1	8	36				4	0.8123	12.5191	1.2377	0.0436	0.0565	0.0520			4,405.67		0.0023	0.0358	0.0035	0.0001	0.0002	0.0001	-	-	0.0002	0.0001	11.44	-	11.4
Water Truck	6	3	38				4	1.0879	18.9087	0.9038	0.0442	0.1068	0.1022			4,675.61		0.0114	0.1978	0.0095	0.0005	0.0011	0.0011	-	-	0.0011	0.0011	44.36	-	44.3
Flatbed Truck	3	2	37				4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.0547	0.1072	0.4562	0.0009	0.0074	0.0071	-	-	0.0074	0.0071	86.22	-	86.2
Gravel Truck - 20 CY	16	8	44				4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.3451	0.6757	2.8765	0.0057	0.0469	0.0449	-	-	0.0469	0.0449	543.59	-	543.5
																	TOTAL	0.5256	1.9796	4.6717	0.0090	0.1145	0.1075	0.0985	0.0106	0.2130	0.1181	847.49	0.0524	848.8

	2020 - PV Sy	stem Inst	allation	า						Emission Fac	ctors (Onroa	d - g/hr; Offr	oad - g/hp-ł	nr)								Em	issions (To	ns/Year)					
Equipment Description	No. of Units	Total W Days Pe Unit	ork r	НР	LF	Daily Operatio n Per Unit ROG CO NOX SO2 PM10 Exh PM2.5 Exh PM10 (lb/r LF (Hours) 0.1880 3.2771 2.5046 0.0050 0.1080 0.1000								PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	СО2 (МТ)	CH4 (MT)	CO2e (MT)
Skid steer w auger/hoe	6	5	33	65	0.37	7	0.1880	3.2771	2.5046	0.0050	0.1080	0.1000			471.91	0.1530	0.0069	0.1197	0.0915	0.0002	0.0039	0.0037	-	-	0.0039	0.0037	15.63	0.0051	15.7
Pile Driver	6	5	33	221	0.50	7	0.1420	1.0677	1.8073	0.0050	0.0520	0.0480			466.83	0.1510	0.0238	0.1792	0.3033	0.0008	0.0087	0.0081	-	-	0.0087	0.0081	71.06	0.0230	71.64
Forklift	22	2	35	89	0.20	4	0.4590	3.7595	4.1330	0.0050	0.3080	0.2830			471.53	0.1530	0.0274	0.2241	0.2463	0.0003	0.0184	0.0169	-	-	0.0184	0.0169	25.50	0.0083	25.7
Welder	44	L I	35	46	0.45	4	0.9370	4.8400	4.3040	0.0070	0.2380	0.2380			568.30	0.0840	0.1299	0.6709	0.5966	0.0010	0.0330	0.0330	-	-	0.0330	0.0330	71.47	0.0106	71.73
Trencher	6	5	29	78	0.50	4	0.6100	3.8327	5.5195	0.0050	0.4130	0.3800			475.13	0.1540	0.0185	0.1165	0.1678	0.0002	0.0126	0.0116	-	-	0.0126	0.0116	13.10	0.0042	13.2
Water Truck	4	L	49			4	1.0879	18.9087	0.9038	0.0442	0.1068	0.1022			4,675.61		0.0009	0.0164	0.0008	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	3.68	-	3.68
Flatbed Truck	64	L I	37			4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.1090	0.2134	0.9082	0.0018	0.0148	0.0142	-	-	0.0148	0.0142	171.63	-	171.6
																	0.3164	1.5401	2.3145	0.0043	0.0915	0.0874	-	-	0.0915	0.0874	372.08	0.0511	373.36

	2021 - PV Sy	/stem Ins	tallati	on						Emission Fac	tors (Onroa	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (To	ons/Year)					
Equipment Description	Image: hor state Image:												СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	РМ2.5 ТОТ	СО2 (МТ)	СН4 (МТ)	CO2e (MT)			
Skid steer w auger/hoe	(5	131	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0260	0.4787	0.3456	0.0007	0.0140	0.0130	-	-	0.0140	0.0130	62.55	0.0203	63.06
Pile Driver	(5	131	221	0.50	7	0.1320	1.0642	1.5510	0.0050	0.0470	0.0430			467.99	0.1510	0.0886	0.7143	1.0410	0.0034	0.0315	0.0289	-	-	0.0315	0.0289	284.96	0.0919	287.26
Forklift	22	2	138	89	0.20	4	0.4120	3.7200	3.7559	0.0050	0.2670	0.2450			471.53	0.1530	0.0982	0.8869	0.8954	0.0012	0.0637	0.0584	-	-	0.0637	0.0584	101.98	0.0331	102.81
Welder	44	1	138	46	0.45	4	0.8290	4.7080	4.1330	0.0070	0.2030	0.2030			568.30	0.0740	0.4597	2.6105	2.2917	0.0039	0.1126	0.1126	-	-	0.1126	0.1126	285.87	0.0372	286.80
Trencher	(5	118	78	0.50	4	0.5560	3.7891	5.1059	0.0050	0.3710	0.3410			475.29	0.1540	0.0676	0.4608	0.6209	0.0006	0.0451	0.0415	-	-	0.0451	0.0415	52.44	0.0170	52.86
Water Truck		1	197			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0037	0.0660	0.0029	0.0001	0.0003	0.0003	-	-	0.0003	0.0003	14.39	-	14.39
Flatbed Truck	64	1	146			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.3500	0.7673	3.2338	0.0071	0.0435	0.0417	-	-	0.0435	0.0417	679.62	-	679.62
																TOTAL	1.0938	5.9845	8.4315	0.0170	0.3108	0.2963	-	-	0.3108	0.2963	1,481.80	0.1995	#######

20	21 - PV Inverters	Substation &	Connection					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (Tor	ns/Year)					
Equipment Description N	lo. of Units	Total Work Days Per Unit	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		1 9	212	0.43	7	0.3430	1.5146	4.3339	0.0050	0.1630	0.1500	0.0258	0.0028	472.92	0.1530	0.0022	0.0096	0.0274	0.0000	0.0010	0.0009	0.0073	0.0008	0.0084	0.0017	2.72	0.0009	2.74
Grader		1 8	187	0.41	7	0.3350	1.3069	4.3813	0.0050	0.1390	0.1280	0.0258	0.0028	474.54	0.1530	0.0016	0.0062	0.0207	0.0000	0.0007	0.0006	0.0058	0.0006	0.0064	0.0012	2.04	0.0007	2.05
Skid steer w auger/hoe		2 38	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0025	0.0456	0.0329	0.0001	0.0013	0.0012	-	-	0.0013	0.0012	5.96	0.0019	6.01
FE Loader		1 8	203	0.36	7	0.2660	1.2403	2.9977	0.0050	0.1000	0.0920			469.56	0.1520	0.0012	0.0056	0.0135	0.0000	0.0005	0.0004	-	-	0.0005	0.0004	1.92	0.0006	1.94
Roller, vibratory		1 8	80	0.38	7	0.3530	3.5072	3.5889	0.0050	0.2190	0.2020			473.90	0.1530	0.0007	0.0066	0.0067	0.0000	0.0004	0.0004	-	-	0.0004	0.0004	0.81	0.0003	0.81
Pile Driver		2 38	221	0.50	7	0.1320	1.0642	1.5510	0.0050	0.0470	0.0430			467.99	0.1510	0.0084	0.0681	0.0992	0.0003	0.0030	0.0027	-	-	0.0030	0.0027	27.15	0.0088	27.37
Trencher		3 173	78	0.50	4	0.5560	3.7891	5.1059	0.0050	0.3710	0.3410			475.29	0.1540	0.0495	0.3375	0.4548	0.0004	0.0330	0.0304	-	-	0.0330	0.0304	38.41	0.0124	38.72
Backhoe		2 81	97	0.37	7	0.2960	3.5707	2.9950	0.0050	0.1770	0.1620			475.36	0.1540	0.0132	0.1592	0.1335	0.0002	0.0079	0.0072	-	-	0.0079	0.0072	19.23	0.0062	19.38
Crane		2 165	231	0.29	4	0.3490	1.6782	4.1044	0.0050	0.1670	0.1530			472.91	0.1530	0.0339	0.1631	0.3989	0.0005	0.0162	0.0149	-	-	0.0162	0.0149	41.69	0.0135	42.03
Aerial Lift		3 50	63	0.31	4	0.1090	3.1762	1.7437	0.0050	0.0330	0.0310			472.11	0.1530	0.0014	0.0408	0.0224	0.0001	0.0004	0.0004	-	-	0.0004	0.0004	5.50	0.0018	5.54
Direction Drill Rig		1 20	221	0.50	7	0.1320	1.0642	1.5510	0.0050	0.0470	0.0430			467.99	0.1510	0.0023	0.0181	0.0264	0.0001	0.0008	0.0007	-	-	0.0008	0.0007	7.24	0.0023	7.30
Water Truck		1 9			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.16	-	0.16
Flatbed Truck		1 8			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0003	0.0007	0.0028	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.58	-	0.58
Concrete Truck - 10 CY	3	1 1			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0012	0.0025	0.0107	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	2.25	-	2.25
															TOTAL	0.1162	0.8547	1.2227	0.0018	0.0644	0.0592	0.0058	0.0006	0.0702	0.0598	152.93	0.0485	154.15

	2021 -	BESS Site P	ер						E	mission Fa	ctors (Onroa	d - g/hr; Offr	oad - g/hp-h	r)								Emi	ssions (To	ns/Year)					
Equipment Description	No. of Units	Total W Days Pe Unit	ork	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		9	30	212	0.43	7	0.3430	1.5146	4.3339	0.0050	0.1630	0.1500	0.0258	0.0028	472.92	0.1530	0.0648	0.2862	0.8190	0.0009	0.0308	0.0283	0.0806	0.0087	0.1114	0.0371	81.08	0.0262	81.7
Grader		6	15	187	0.41	7	0.3350	1.3069	4.3813	0.0050	0.1390	0.1280	0.0258	0.0028	474.54	0.1530	0.0180	0.0704	0.2359	0.0003	0.0075	0.0069	0.0208	0.0022	0.0283	0.0091	23.18	0.0075	23.3
Skid steer w auger/hoe		1	5	65	0.43 7 0.3430 1.5146 4.3339 0.0050 0.1630 0.1500 0.0258 0.0 0.41 7 0.3350 1.3069 4.3813 0.0050 0.1390 0.1280 0.0258 0.0 0.37 7 0.1780 3.2769 2.3659 0.0050 0.0960 0.0890 0.0380 0.36 7 0.2660 1.2403 2.9977 0.0050 0.1000 0.0920 0.0920 0.0383 0.01390 0.1280 0.0258 0.0 0.38 7 0.3530 3.5072 3.5889 0.0050 0.2190 0.2020 0.0383 0.01390 0.0422 0.0543 0.0499 0.0422 0.0543 0.0499 0.0422 0.0566 0.0924 0.0422 0.0424 <								471.98	0.1530	0.0002	0.0030	0.0022	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	0.40	0.0001	0.4		
FE Loader		3	25	203	0.36	7	0.2660	1.2403	2.9977	469.56	0.1520	0.0111	0.0518	0.1251	0.0002	0.0042	0.0038	-	-	0.0042	0.0038	17.78	0.0058	17.9					
Roller, vibratory		3	25	80	0.38	7	0.2660 1.2403 2.9977 0.0050 0.1000 0.0920 0.3530 3.5072 3.5889 0.0050 0.2190 0.2020 0.7135 11.2365 1.0754 0.0422 0.0543 0.0499 1.0550 19.0176 0.8448 0.0432 0.0966 0.0924 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100								473.90	0.1530	0.0061	0.0609	0.0623	0.0001	0.0038	0.0035	-	-	0.0038	0.0035	7.46	0.0024	7.5
Pickup		6	25 265 6.50 7 6.2000 1.2405 2.5577 6.0050 6.1000 6.0050 <											4,259.40		0.0003	0.0055	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.89	-	1.8	
Water Truck		3 25 203 0.36 7 0.2660 1.2403 2.9977 0.0050 0.1000 3 25 80 0.38 7 0.3530 3.5072 3.5889 0.0050 0.2190 0 6 19 4 0.7135 11.2365 1.0754 0.0422 0.0543 0 6 40 4 1.0550 19.0176 0.8448 0.0432 0.0966 0 3 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1 78 33 4 8.4840 18.5989 78.3905 0.1716 1.0556 1									0.0924			4,570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.34	-	4.3	
Flatbed Truck		3	25 80 0.38 7 0.3330 3.3072 3.3885 0.0030 19 4 0.7135 11.2365 1.0754 0.0422 40 4 1.0550 19.0176 0.8448 0.0432 12 4 8.4840 18.5989 78.3905 0.1716 33 4 8.4840 18.5989 78.3905 0.1716							1.0556	1.0100			18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.5	
Gravel Truck - 20 CY	-	78	19 4 0.7135 11.2365 1.0754 0.0422 0.0543 40 4 1.0550 19.0176 0.8448 0.0432 0.0966 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 33 4 8.4840 18.5989 78.3905 0.1716 1.0556							1.0100			18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.9		
																TOTAL	0.1339	0.4242	1.3237	0.0026	0.0278	0.0260	0.0208	0.0022	0.0486	0.0282	243.51	0.0158	243.9
	2021 - BESS Four	ndations, Sti	uctures	& DC					E	mission Fa	ctors (Onroa	d - g/hr; Offr	oad - g/hp-h	r)								Emi	ssions (To	ns/Year)					
Equipment Description	No. of Units	Total Wo Days Pe Unit	ork	нр	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (Ib/hr)	CO2	CH4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	РМ2.5 ТОТ	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		3	87	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0087	0.1593	0.1150	0.0002	0.0047	0.0043	-	-	0.0047	0.0043	20.82	0.0067	20.9
Trencher		2	65	78	0.50	4	0.5560	3.7891	5.1059	0.0050	0.3710	0.3410			475.29	0.1540	0.0124	0.0847	0.1141	0.0001	0.0083	0.0076	-	-	0.0083	0.0076	9.64	0.0031	9.7
Crane		4 1	09	231	0.29	4	0.3490	1.6782	4.1044	0.0050	0.1670	0.1530			472.91	0.1530	0.0450	0.2166	0.5298	0.0006	0.0216	0.0197	-	-	0.0216	0.0197	55.38	0.0179	55.8
Pickup		4	66			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4,259.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.46	-	4.4
•	1										1	ļ						0 0 0 0 0 0							0.0001	0.0001	4.79	_	4.7
Water Truck		3	87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0012	0.0220	0.0010	0.0000	0.0001	0.0001	-	-	0.0001				
Water Truck		3	87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79	TOTAL	0.0012 0.0682	0.0220 0.4956	0.0010 0.7612	0.0000 0.0011	0.0001 0.0347	0.0001 0.0319	- -	-	0.0001 0.0347	0.0319	95.09	0.0278	95.7
Water Truck		3	87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79	TOTAL	0.0012 0.0682	0.0220 0.4956	0.0010 0.7612	0.0000 0.0011	0.0001 0.0347	0.0001 0.0319	-	-	0.0001 0.0347	0.0319	95.09	0.0278	95.7
Water Truck	2021 - BESS Inv	3 erters, Subs	87 tation 8	AC		4	1.0550	19.0176	0.8448	0.0432	0.0966 ctors (Onroad	0.0924 d - g/hr; Offr	oad - g/hp-h	r)	4,570.79	TOTAL	0.0012 0.0682	0.0220 0.4956	0.0010 0.7612	0.0000 0.0011	0.0001 0.0347	0.0001 0.0319 Emi	- - ssions (Toi	- - ns/Year)	0.0001 0.0347	0.0319	95.09	0.0278	95.7
Water Truck Equipment Description	2021 - BESS Inv	3 erters, Subs Total W Days Pe Unit	tation &	AC HP	LF	4 Daily Operatio n Per Unit (Hours)	1.0550 ROG	19.0176 CO	0.8448 NOX	0.0432 mission Fac	0.0966 ctors (Onroad PM10 Exh	0.0924 d - g/hr; Offr PM2.5 Exh	oad - g/hp-h PM10 dust (lb/hr)	r) PM2.5 dust (lb/hr)	4,570.79 CO2	TOTAL CH4	0.0012 0.0682 ROG	0.0220 0.4956 CO	0.0010 0.7612 NOX	0.0000 0.0011 SO2	0.0001 0.0347 PM10 Exh	0.0001 0.0319 Emis PM2.5 Exh	- ssions (Toi PM10 dust	- ns/Year) PM2.5 dust	0.0001 0.0347 PM10 TOT	0.0319 PM2.5 TOT	95.09 CO2 (MT)	0.0278 CH4 (MT)	05.7 CO2e (MT)
Water Truck Equipment Description Skid steer w auger/hoe	2021 - BESS Inv No. of Units	3 erters, Subs Total W Days Pe Unit 2	tation &	AC HP 65	LF 0.37	4 Daily Operatio n Per Unit (Hours) 7	1.0550 ROG 0.1780	19.0176 CO 3.2769	0.8448 NOX 2.3659	0.0432 Emission Fac SO2 0.0050	0.0966 ctors (Onroad PM10 Exh 0.0960	0.0924 d - g/hr; Offr PM2.5 Exh 0.0890	oad - g/hp-h PM10 dust (lb/hr)	r) PM2.5 dust (Ib/hr)	4,570.79 CO2 471.98	TOTAL CH4 0.1530	0.0012 0.0682 ROG 0.0024	0.0220 0.4956 CO 0.0450	0.0010 0.7612 NOX 0.0325	0.0000 0.0011 SO2 0.0001	0.0001 0.0347 PM10 Exh 0.0013	0.0001 0.0319 Emi: PM2.5 Exh 0.0012	- ssions (Tor PM10 dust -	- ns/Year) PM2.5 dust -	0.0001 0.0347 PM10 TOT 0.0013	0.0319 PM2.5 TOT	95.09 CO2 (MT) 5.88	0.0278 CH4 (MT) 0.0019	CO2e (MT)
Water Truck Equipment Description Skid steer w auger/hoe Pile Driver	2021 - BESS Inv No. of Units	3 Total Wo Days Pe Unit 2	tation &	AC HP 65 221	LF 0.37 0.50	4 Daily Operatio n Per Unit (Hours) 7 7	1.0550 ROG 0.1780 0.1320	19.0176 CO 3.2769 1.0642	0.8448 NOX 2.3659 1.5510	0.0432 mission Fac SO2 0.0050 0.0050	0.0966 ctors (Onroad PM10 Exh 0.0960 0.0470	0.0924 d - g/hr; Offr PM2.5 Exh 0.0890 0.0430	oad - g/hp-h PM10 dust (lb/hr)	r) PM2.5 dust (lb/hr)	4,570.79 CO2 471.98 467.99	TOTAL CH4 0.1530 0.1510	0.0012 0.0682 ROG 0.0024 0.0083	0.0220 0.4956 CO 0.0450 0.0671	0.0010 0.7612 NOX 0.0325 0.0979	0.0000 0.0011 SO2 0.0001 0.0003	0.0001 0.0347 PM10 Exh 0.0013 0.0030	0.0001 0.0319 Emis PM2.5 Exh 0.0012 0.0027	- ssions (Toi PM10 dust -	- ns/Year) PM2.5 dust -	0.0001 0.0347 PM10 TOT 0.0013 0.0030	0.0319 PM2.5 TOT 0.0012 0.0027	95.09 CO2 (MT) 5.88 26.79	0.0278 CH4 (MT) 0.0019 0.0086	95.7 CO2e (MT)

	2021 -	BESS Site Prep						E	Emission Fa	ctors (Onroa	d - g/hr; Offr	road - g/hp-h	r)								Emi	issions (To	ns/Year)					
Equipment Description	2021 - BESS Site PrepIpment DescriptionNo. of UnitsTotal Work Days Per UnitHPLlcked dozer, large930212ider615187J steer w auger/hoe1565.oader325203ler, vibratory32580up6191ter Truck6401bed Truck3121Vel Truck - 20 CY78Total Work Days Per UnitTotal Work Days Per UnitHPLFsteer w auger/hoe387650icher265780ie41092310					ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		9 30	212	0.43	7	0.3430	1.5146	4.3339	0.0050	0.1630	0.1500	0.0258	0.0028	472.92	0.1530	0.0648	0.2862	0.8190	0.0009	0.0308	0.0283	0.0806	0.0087	0.1114	0.0371	81.08	0.0262	81.7
Grader		6 15	187	0.41	7	0.3350	1.3069	4.3813	0.0050	0.1390	0.1280	0.0258	0.0028	474.54	0.1530	0.0180	0.0704	0.2359	0.0003	0.0075	0.0069	0.0208	0.0022	0.0283	0.0091	23.18	0.0075	23.3
Skid steer w auger/hoe		1 5	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0002	0.0030	0.0022	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	0.40	0.0001	0.4
FE Loader		3 25	203	0.36	7	0.2660	1.2403	2.9977	0.0050	0.1000	0.0920			469.56	0.1520	0.0111	0.0518	0.1251	0.0002	0.0042	0.0038	-	-	0.0042	0.0038	17.78	0.0058	17.9
Roller, vibratory		3 25	80	0.38	7	0.3530	3.5072	3.5889	0.0050	0.2190	0.2020			473.90	0.1530	0.0061	0.0609	0.0623	0.0001	0.0038	0.0035	-	-	0.0038	0.0035	7.46	0.0024	7.5
Pickup	Emission Factors (Onroad - g/hr; Offroad - g/hp-hr) Total Work Days Per Unit LF Baily Operatio n Per Unit ROG CO NOX SO2 PM10 Exh PM2.5 Exh PM1.0 dust (lb/hr) PM2.5 dust (lb/hr) 9 30 212 0.43 7 0.3430 1.5146 4.3339 0.0050 0.1630 0.1500 0.0258 0.0028 6 15 158 0.44 7 0.3350 1.3069 4.3813 0.0050 0.1630 0.0258 0.0028 1 5 65 0.37 7 0.1780 3.2769 2.3659 0.0050 0.1390 0.0228 0.0028 3 2.5 80 0.38 7 0.3507 3.589 0.0050 0.1000 0.0920 6 19 4 0.7135 11.2365 10.0754 0.0422 0.0543 0.0492 0.0924 7 3 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 1.0100								4,259.40		0.0003	0.0055	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.89	-	1.8					
Water Truck	Emission Factors (Onroad - g/hr; Offroad - g/hp-hr) Inc. of Units Unit HP LF PAG CO NOX SO2 PM10 Exh PM2.5 Exh PM10 dust (lb/hr) PM2.5 dust (lb/hr) 9 30 212 0.43 7 0.3430 1.5146 4.3339 0.0050 0.1630 0.1500 0.0258 0.0028 1 5 65 0.37 7 0.1780 3.2769 2.3659 0.0050 0.0490 0.0228 0.0028 3 25 203 0.36 7 0.3530 3.5072 3.5889 0.0050 0.0490 0.0228 0.0028 3 25 80 0.38 7 0.3530 3.5072 3.5889 0.0050 0.2190 0.2020 - 3 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 78 33 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100							4,570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.34	-	4.3						
Flatbed Truck		3 12			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.5
Gravel Truck - 20 CY	7	8 33			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.9
						-									TOTAL	0.1339	0.4242	1.3237	0.0026	0.0278	0.0260	0.0208	0.0022	0.0486	0.0282	243.51	0.0158	243.9
													<u>,</u>															
	2021 - BESS Foun	dations, Struct	ures & DC					E	Emission Fa	ctors (Onroa	d - g/hr; Offr	road - g/hp-h	r)		1						Emi	issions (To	ns/Year)				1	
Equipment Description	No. of Units	Total Work Days Per Unit	HP	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	РМ2.5 ТОТ	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Skid steer wauger/hoe		3 87	65	0.37	7	0 1780	3 2769	2 3659	0.0050	0.0960	0 0890			471 98	0 1530	0 0087	0 1593	0 1150	0 0002	0 0047	0.0043	_	-	0 0047	0 0043	20.82	0.0067	20.9
Trencher		2 65	78	0.50	4	0.5560	3.7891	5.1059	0.0050	0.3710	0.3410			475.29	0.1540	0.0124	0.0847	0.1141	0.0001	0.0083	0.0076	_	-	0.0083	0.0076	9.64	0.0031	9.7
Crane		4 109	231	0.29	4	0.3490	1.6782	4.1044	0.0050	0.1670	0.1530			472.91	0.1530	0.0450	0.2166	0.5298	0.0006	0.0216	0.0197	_	-	0.0216	0.0197	55.38	0.0179	55.8
Pickup		4 66			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4.259.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001	_	-	0.0001	0.0001	4.46	-	4.4
Water Truck		3 87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0012	0.0220	0.0010	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.79	-	4.7
	8	*			1	B <u>\$</u>	3	*		i	3	4	8	3	TOTAL	0.0682	0.4956	0.7612	0.0011	0.0347	0.0319	-	-	0.0347	0.0319	95.09	0.0278	95.7
	2024 2500										1																	
	2021 - BESS INVE	erters, Substat	on & AC						mission Fa	ctors (Ohroa	a - g/nr; Offr I	road - g/np-n	r)		1						Em	issions (10	ns/Year)			-	1	
					Daily Operatio		60	NOY	502	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	CO2	СН4	ROG	со	NOX	SO2	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5	CO2 (MT)		CO2e
Equipment Description	No. of Units	Total Work Days Per Unit	НР	LF	n Per Unit (Hours)	ROG		NOA				(lb/hr)	(lb/hr)							Exh	Exh	dust	dust	тот	тот			(MT)
Equipment Description Skid steer w auger/hoe	No. of Units	Total WorkDays PerUnit237	HP 65	LF 0.37	n Per Unit (Hours) 7	ROG 0.1780	3.2769	2.3659	0.0050	0.0960	0.0890	(lb/hr)	(lb/hr)	471.98	0.1530	0.0024	0.0450	0.0325	0.0001	Exh 0.0013	Exh 0.0012	dust -	dust -	TOT 0.0013	TOT 0.0012	5.88	0.0019	(MT) 5.9

	2021	- BESS Site	Pren						F	mission Fac	tors (Onroa	d - g/hr: Offr	oad - g/hn-h	r)								Fm	issions (To	ns/Year)					
Equipment Description	No. of Units	Total Days I Unit	Work Per	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		9	30	212	0.43	7	0.3430	1.5146	4.3339	0.0050	0.1630	0.1500	0.0258	0.0028	472.92	0.1530	0.0648	0.2862	0.8190	0.0009	0.0308	0.0283	0.0806	0.0087	0.1114	0.0371	81.08	0.0262	81.73
Grader		6	15	187	0.41	7	0.3350	1.3069	4.3813	0.0050	0.1390	0.1280	0.0258	0.0028	474.54	0.1530	0.0180	0.0704	0.2359	0.0003	0.0075	0.0069	0.0208	0.0022	0.0283	0.0091	23.18	0.0075	23.36
Skid steer w auger/hoe		1	5	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0002	0.0030	0.0022	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	0.40	0.0001	0.40
FE Loader		3	25	203	0.36	7	0.2660	1.2403	2.9977	0.0050	0.1000	0.0920			469.56	0.1520	0.0111	0.0518	0.1251	0.0002	0.0042	0.0038	-	-	0.0042	0.0038	17.78	0.0058	17.92
Roller, vibratory		3 23 23 23 0.30 7 0.000 1.2403 2.1377 0.0030 0.1000 0.01000 0.0100 0.01000							473.90	0.1530	0.0061	0.0609	0.0623	0.0001	0.0038	0.0035	-	-	0.0038	0.0035	7.46	0.0024	7.52						
Pickup										4,259.40		0.0003	0.0055	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.89	-	1.89					
Water Truck										4,570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.34	-	4.34					
Flatbed Truck									18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.54						
Gravel Truck - 20 CY									18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.93						
	6 40 4 1.0550 19.01/6 0.8448 0.0432 0.0966 0.0924 3 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 78 33 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 Z021 - BESS Foundations, Structures & DC Emission Factors (Onroad - g/hr; Offroad - g/hp-hr) Daily Operatio n Per ROG CO NOX SO2 PM10 Exh PM2.5 Exh PM10 dust (lb/hr) PM2.5 dust (lb/hr)							•	TOTAL	0.1339	0.4242	1.3237	0.0026	0.0278	0.0260	0.0208	0.0022	0.0486	0.0282	243.51	0.0158	243.91							
	Image: Construction of the second s																												
	2021 - BESS Fo	undations,	Structur	res & DC					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (To	ns/Year)					
Equipment Description	No. of Units	3 25 203 0.36 7 0.2660 1.2403 2.9977 0.0050 0.1000 0.0920 3 25 80 0.38 7 0.3530 3.5072 3.5889 0.0050 0.2190 0.2020 6 19 4 0.7135 11.2365 1.0754 0.0422 0.0543 0.0499 6 40 4 1.0550 19.0176 0.8448 0.0432 0.0966 0.0924 3 12 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 78 33 4 8.4840 18.5989 78.3905 0.1716 1.0556 1.0100 Total Work Daily Operatio PP Mont ROG CO NOX SO2 PM10 Exh PM2.5 Exh PM10 dust Ph Unit Unit HP LF Unit Nox 3.2769 2.3659 0.0050 0.3710 0.3410 2 6								PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)				
Skid steer w auger/hoe		3	87	65	0.37	7	0.1780	3.2769	2.3659	0.0050	TOTAL TOTAL sion Factors (Onroad - g/hr; Offroad - g/hp-hr) O2 PM10 Exh PM2.5 Exh PM10 dust (lb/hr) PM2.5 dust (lb/hr) CO2 CH 0.0050 0.0960 0.0890 471.98 0.1 0.0050 0.3710 0.3410 475.29 0.1 0.0050 0.1670 0.1530 472.91 0.1						0.0087	0.1593	0.1150	0.0002	0.0047	0.0043	-	-	0.0047	0.0043	20.82	0.0067	20.99
Trencher		2	65	78	0.50	4	0.5560	3.7891	5.1059	0.0050							0.0124	0.0847	0.1141	0.0001	0.0083	0.0076	-	-	0.0083	0.0076	9.64	0.0031	9.72
Crane		4	109	231	0.29	4	0.3490	1.6782	4.1044	0.0050	0.1670	0.1530			472.91	0.1530	0.0450	0.2166	0.5298	0.0006	0.0216	0.0197	-	-	0.0216	0.0197	55.38	0.0179	55.82
Pickup		4	66			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4,259.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.46	-	4.46
Water Truck		3	87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0012	0.0220	0.0010	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.79	-	4.79
							· · · · ·	•				,			·	TOTAL	0.0682	0.4956	0.7612	0.0011	0.0347	0.0319	-	-	0.0347	0.0319	95.09	0.0278	95.78
															-							2	1	· · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	2021 - BESS II	nverters, Su	ubstatio	n & AC					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (To	ns/Year)					
Equipment Description	No. of Units	Total Days I Unit	Work Per	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		2	37	65	0.37	7	0.1780	3.2769	2.3659	0.0050	0.0960	0.0890			471.98	0.1530	0.0024	0.0450	0.0325	0.0001	0.0013	0.0012	-	-	0.0013	0.0012	5.88	0.0019	5.93
Pile Driver		2	37	221	0.50	7	0.1320	1.0642	1.5510	0.0050	0.0470	0.0430			467.99	0.1510	0.0083	0.0671	0.0979	0.0003	0.0030	0.0027	-	-	0.0030	0.0027	26.79	0.0086	27.00
Trencher		7	131	78	0.50	4	0.5560	3.7891	5.1059	0.0050	0.3710	0.3410			475.29	0.1540	0.0880	0.5995	0.8078	0.0008	0.0587	0.0539	-	-	0.0587	0.0539	68.21	0.0221	68.77
Backhoe		3	29	97	0.37	7	0.2960	3.5707	2.9950	0.0050	0.1770	0.1620			475.36	0.1540	0.0072	0.0870	0.0730	0.0001	0.0043	0.0039	-	-	0.0043	0.0039	10.51	0.0034	10.59
Crane		3	77	231	0.29	4	0.3490	1.6782	4.1044	0.0050	0.1670	0.1530			472.91	0.1530	0.0237	0.1140	0.2788	0.0003	0.0113	0.0104	-	-	0.0113	0.0104	29.15	0.0094	29.38
Aerial Lift		2	56	63	0.31	4	0.1090	3.1762	1.7437	0.0050	0.0330	0.0310			472.11	0.1530	0.0011	0.0306	0.0168	0.0000	0.0003	0.0003	-	-	0.0003	0.0003	4.13	0.0013	4.16
Concrete Truck - 10 CY		3	1			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0001	0.0002	0.0010	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.22	-	0.22
															•	TOTAL	0.1308	0.9435	1.3078	0.0017	0.0790	0.0725	-	-	0.0790	0.0725	144.88	0.0468	146.05

3
)
7
9
3
6
2

	2050	- Decommissio	oning					En	nission Fac	tors (Onroa	d - g/hr; Of	froad - g/hp	o-hr)								Emiss	ions (Tons/	'Year)					
Equipment Description	DescriptionNo. of Equipment Work DaysTotal Equipment HPImage: Amount Amount CFDaily Operation Per Unit (Hours)PAOE Amount Per Unit (Hours)PM 20 Por<											CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	CH4 (MT)	CO2e (MT)		
Tractor	1	241	97	0.37	7	0.2540	3.7030	1.4850	0.0060	0.0160	0.0160			568.30	0.0220	0.0170	0.2471	0.0991	0.0004	0.0011	0.0011	-	-	0.0011	0.0011	34.41	0.0013	34.44
Grader	1	7	187	0.41	7	0.1880	1.1330	0.3600	0.0060	0.0130	0.0130	0.0258	0.0028	568.30	0.0170	0.0008	0.0047	0.0015	0.0000	0.0001	0.0001	0.0044	0.0005	0.0045	0.0005	2.14	0.0001	2.14
Backhoe	1	377	97	0.37	7	0.2540	3.7030	1.4850	0.0060	0.0160	0.0160			568.30	0.0220	0.0265	0.3866	0.1550	0.0006	0.0017	0.0017	-	-	0.0017	0.0017	53.83	0.0021	53.88
Crane	1	2	231	0.29	4	0.1950	1.1440	0.3440	0.0060	0.0130	0.0130			568.30	0.0170	0.0001	0.0007	0.0002	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.30	0.0000	0.30
Aerial Lift	1	57	63	0.31	4	0.1610	3.3440	1.4070	0.0060	0.0120	0.0120			568.30	0.0140	0.0008	0.0164	0.0069	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	2.53	0.0001	2.53
Flatbed Truck	1	864			4	0.5419	9.2386	56.4617	0.1255	0.0419	0.0401			13,285.02		0.0021	0.0352	0.2151	0.0005	0.0002	0.0002	-	-	0.0002	0.0002	45.91	-	45.91
															TOTAL	0.0303	0.4436	0.3787	0.0012	0.0020	0.0019	0.0044	0.0005	0.0064	0.0024	104.71	0.0022	104.76

	2020	- PV Sit	te Prep						E	mission Fac	ctors (Onroa	d - g/hr; Off	road - g/hp-h	r)								Em	issions (Tor	ns/Year)					
Equipment Description	No. of Units	Tot Day Uni	Ootal Work Daily Daily Operatio NOX SO2 PM10 Exh PM2.5 Exh PM10 dust (lb/hr) PM2.5 dust (lb/hr) P													CH4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large	10	04	37	212	0.43	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	472.94	0.1530	0.1622	5.9485	0.7030	0.0135	0.0216	0.0216	0.1236	0.0133	0.1452	0.0350	1,160.08	0.3753	1,169.4
Grader		4	33	187	0.41	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	475.30	0.1540	0.0047	0.1718	0.0203	0.0004	0.0006	0.0006	0.0985	0.0106	0.0992	0.0113	33.67	0.0109	33.9
Skid steer w auger/hoe	-	18	36	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.91	0.1530	0.0145	0.4477	0.3315	0.0006	0.0010	0.0010	-	-	0.0010	0.0010	51.80	0.0168	52.2
FE Loader		3	44	203	0.36	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			469.51	0.1520	0.0045	0.1638	0.0194	0.0004	0.0006	0.0006	-	-	0.0006	0.0006	31.70	0.0103	31.9
Roller, vibratory		9	49	80	0.38	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			473.86	0.1530	0.0062	0.3801	0.0267	0.0005	0.0008	0.0008	-	-	0.0008	0.0008	44.17	0.0143	44.5
Backhoe		1	5	97	0.37	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.15	0.1540	0.0001	0.0046	0.0003	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.54	0.0002	0.5
Pickup	-	18	36			4	0.8123	12.5191	1.2377	0.0436	0.0565	0.0520			4,405.67		0.0023	0.0358	0.0035	0.0001	0.0002	0.0001	-	-	0.0002	0.0001	11.44	-	11.4
Water Truck	(63	38			4	1.0879	18.9087	0.9038	0.0442	0.1068	0.1022			4,675.61		0.0114	0.1978	0.0095	0.0005	0.0011	0.0011	-	-	0.0011	0.0011	44.36	-	44.3
Flatbed Truck	:	32	37			4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.0547	0.1072	0.4562	0.0009	0.0074	0.0071	-	-	0.0074	0.0071	86.22	-	86.2
Gravel Truck - 20 CY	16	58	44			4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.3451	0.6757	2.8765	0.0057	0.0469	0.0449	-	-	0.0469	0.0449	543.59	-	543.5
																TOTAL	0.4435	2.1845	3.7440	0.0090	0.0586	0.0562	0.0985	0.0106	0.1572	0.0669	847.49	0.0524	848.8

	2020 - PV	' Syste	em Installati	on				Emission Factors (Onroad - g/hr; Offroad - g/hp-hr)												Em	issions (To	ns/Year)							
Equipment Description	No. of Units	ר נ	Total Work Days Per Unit	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		6	33	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.91	0.1530	0.0044	0.1351	0.1001	0.0002	0.0003	0.0003	-	-	0.0003	0.0003	15.63	0.0051	15.7
Pile Driver		6	33	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			466.83	0.1510	0.0101	0.3692	0.0436	0.0008	0.0013	0.0013	-	-	0.0013	0.0013	71.06	0.0230	71.6
Forklift		22	35	89	0.20	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			471.53	0.1530	0.0036	0.2205	0.0155	0.0003	0.0005	0.0005	-	-	0.0005	0.0005	25.50	0.0083	25.7
Welder		44	35	46	0.45	4	0.1200	4.1000	2.7500	0.0070	0.0080	0.0080			568.30	0.0840	0.0166	0.5684	0.3812	0.0010	0.0011	0.0011	-	-	0.0011	0.0011	71.47	0.0106	71.7
Trencher		6	29	78	0.50	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.13	0.1540	0.0018	0.1125	0.0079	0.0002	0.0002	0.0002	-	-	0.0002	0.0002	13.10	0.0042	13.2
Water Truck		4	49			4	1.0879	18.9087	0.9038	0.0442	0.1068	0.1022			4,675.61		0.0009	0.0164	0.0008	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	3.68	-	3.6
Flatbed Truck		64	37			4	10.5652	20.6874	88.0635	0.1733	1.4358	1.3737			18,344.42		0.1090	0.2134	0.9082	0.0018	0.0148	0.0142	-	-	0.0148	0.0142	171.63	-	171.6
																TOTAL	0.1464	1.6354	1.4573	0.0043	0.0184	0.0177	-	-	0.0184	0.0177	372.08	0.0511	373.3

	2021 - PV Sy	/stem In	tallati	on						Emission Fac	ctors (Onroa	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (To	ns/Year)					
Equipment Description	No. of Units	Total \ Days F Unit	Vork er	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe	e	5	131	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0175	0.5405	0.4003	0.0007	0.0012	0.0012	-	-	0.0012	0.0012	62.55	0.0203	63.06
Pile Driver	6	5	131	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			467.99	0.1510	0.0403	1.4766	0.1745	0.0034	0.0054	0.0054	-	-	0.0054	0.0054	284.96	0.0919	287.26
Forklift	22	2	138	89	0.20	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			471.53	0.1530	0.0143	0.8821	0.0620	0.0012	0.0019	0.0019	-	-	0.0019	0.0019	101.98	0.0331	102.81
Welder	44	1	138	46	0.45	4	0.1200	4.1000	2.7500	0.0070	0.0080	0.0080			568.30	0.0740	0.0665	2.2734	1.5249	0.0039	0.0044	0.0044	-	-	0.0044	0.0044	285.87	0.0372	286.80
Trencher	E	5	118	78	0.50	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.29	0.1540	0.0073	0.4500	0.0316	0.0006	0.0010	0.0010	-	-	0.0010	0.0010	52.44	0.0170	52.86
Water Truck	Ĺ	1	197			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0037	0.0660	0.0029	0.0001	0.0003	0.0003	-	-	0.0003	0.0003	14.39	-	14.39
Flatbed Truck	64	1	146			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.3500	0.7673	3.2338	0.0071	0.0435	0.0417	-	-	0.0435	0.0417	679.62	-	679.62
																TOTAL	0.4996	6.4559	5.4300	0.0170	0.0577	0.0558		-	0.0577	0.0558	1,481.80	0.1995	#######

20	21 - PV Inverte	rs Substatio	n & Co	onnection					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (Tor	ns/Year)					
Equipment Description No	o. of Units	Total W Days Pe Unit	'ork er	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		1	9	212	0.43	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	472.92	0.1530	0.0004	0.0139	0.0016	0.0000	0.0001	0.0001	0.0073	0.0008	0.0074	0.0008	2.72	0.0009	2.74
Grader		1	8	187	0.41	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	474.54	0.1530	0.0003	0.0104	0.0012	0.0000	0.0000	0.0000	0.0058	0.0006	0.0058	0.0007	2.04	0.0007	2.05
Skid steer w auger/hoe		2	38	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0017	0.0515	0.0381	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	5.96	0.0019	6.01
FE Loader		1	8	203	0.36	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			469.56	0.1520	0.0003	0.0099	0.0012	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.92	0.0006	1.94
Roller, vibratory		1	8	80	0.38	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			473.90	0.1530	0.0001	0.0069	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.81	0.0003	0.81
Pile Driver		2	38	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			467.99	0.1510	0.0038	0.1407	0.0166	0.0003	0.0005	0.0005	-	-	0.0005	0.0005	27.15	0.0088	27.37
Trencher		3 2	173	78	0.50	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.29	0.1540	0.0053	0.3296	0.0232	0.0004	0.0007	0.0007	-	-	0.0007	0.0007	38.41	0.0124	38.72
Backhoe		2	81	97	0.37	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.36	0.1540	0.0027	0.1650	0.0116	0.0002	0.0004	0.0004	-	-	0.0004	0.0004	19.23	0.0062	19.38
Crane		2	L65	231	0.29	4	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			472.91	0.1530	0.0058	0.2138	0.0253	0.0005	0.0008	0.0008	-	-	0.0008	0.0008	41.69	0.0135	42.03
Aerial Lift		3	50	63	0.31	4	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			472.11	0.1530	0.0015	0.0475	0.0352	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	5.50	0.0018	5.54
Direction Drill Rig		1	20	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			467.99	0.1510	0.0010	0.0375	0.0044	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	7.24	0.0023	7.30
Water Truck		1	9			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.16	-	0.16
Flatbed Truck		1	8			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0003	0.0007	0.0028	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.58	-	0.58
Concrete Truck - 10 CY		31	1			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0012	0.0025	0.0107	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	2.25	-	2.25
																TOTAL	0.0241	1.0167	0.1708	0.0018	0.0030	0.0030	0.0058	0.0006	0.0088	0.0036	152.93	0.0485	154.15

	2021 - B	FSS Site Pren						F	mission Fa	tors (Onroa	d - g/hr· Offr	oad - g/hn-h	r)								Fm	issions (To	ns/Year)					
Equipment Description	No. of Units	Total Work Days Per	Цр	15	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Tracked dezer large			ПР 212	LF 0.42		0.0600	2 2000	0.2600	0.0050	0.0090	0 0090	0.0259	0 0029	472.02	0.1520	0.0112	0.4157	0.0401	0.0000	0.0015	0.0015	0.0906	0.0097	0.0921	0.0102	91.09	0.0262	01 7
Grador	9	30 30 1E	107	0.43	/ 7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	472.92	0.1530	0.0113	0.4157	0.0491	0.0009	0.0015	0.0015	0.0800	0.0087	0.0821	0.0102	81.08 22.19	0.0202	01.7
Skid steer wauger/hoe	1	5	107 65	0.41	7	0.0000	3 7000	2 7/100	0.0050	0.0080	0.0080	0.0238	0.0028	474.54	0.1530	0.0032	0.1184	0.0140	0.0003	0.0004	0.0004	0.0208	0.0022	0.0212	0.0027	23.18	0.0073	23.3
FE Loader	1	25	203	0.37	7	0.1200	2 2000	0.2600	0.0050	0.0080	0.0000			471.50	0.1530	0.0001	0.0034	0.0025	0.0000	0.0000	0.0000		_	0.0000	0.0000	17 78	0.0001	17 0.4
Roller vibratory	3	25	80	0.30	7	0.0600	3 7000	0.2000	0.0050	0.0000	0.0000			403.30	0.1520	0.0023	0.0510	0.0100	0.0002	0.0003	0.0003	_	_	0.0003	0.0003	7.46	0.0030	7 5
Pickup	6	5 <u>25</u> 5 19		0.50	, 4	0.7135	11,2365	1.0754	0.0422	0.0543	0.0499			4,259,40	0.1550	0.0003	0.0055	0.0005	0.0001	0.0001	0.0001	_	_	0.0001	0.0001	1.89	-	1.0
Water Truck	6	5 <u>40</u>			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4.570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	_	-	0.0001	0.0001	4.34	_	4.3
Flatbed Truck	3	3 12			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.5
Gravel Truck - 20 CY	78	3 33			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			, 18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.9
	3	1	1					1			11				TOTAL	0.1054	0.5161	0.9301	0.0026	0.0131	0.0126	0.0208	0.0022	0.0339	0.0148	243.51	0.0158	243.9
																	\$	<u>.</u>					*:				<u>.</u>	i
	2021 - BESS Found	ations, Struct	tures & DC					E	mission Fac	ctors (Onroa	d - g/hr; Offr	oad - g/hp-h	r)								Em	issions (To	ns/Year)					
	No. of Units	Total Work Days Per	115		Daily Operatio n Per Unit	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Equipment Description		01111		LF 0.27		0 1 2 0 0	2 7000	2 7400	0.0050	0.0090	0 0090			471.00	0 1 5 2 0		0 1700	0 1 2 2 2	0.0002	0.0004	0.0004			0.0004	0.0004	20.92	0.0067	20.0
Transhar	3	6 87 6 6 6 6	05 70	0.37	/	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0058	0.1799		0.0002	0.0004	0.0004	-	-	0.0004	0.0004	20.82	0.0067	20.8
Crano	2	100	70 721	0.30	4	0.0000	2 2000	0.2000	0.0030	0.0080	0.0080			473.29	0.1340	0.0013	0.0627	0.0038	0.0001	0.0002	0.0002	-	-	0.0002	0.0002	5.04	0.0031	9.1
Pickup	4	F 103	231	0.29	4	0.0000	11 2365	1.075/	0.0030	0.0080	0.0080			472.91	0.1330	0.0077	0.2840	0.0330	0.0000	0.0010	0.0010			0.0010	0.0010	JJ.38	0.0175	4/
Water Truck	2	8 87				1 0550	19.0176	0.8448	0.0422	0.0343	0.0455			4,233.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001	_	_	0.0001	0.0001	4.40		4.7
Water Huck		, 0,				1.0550	15.0170	0.0440	0.0452	0.0500	0.0524			4,570.75	ΤΟΤΑΙ	0.0170	0.5815	0.1748	0.0011	0.0018	0.0018	_	_	0.0018	0.0018	95.09	0.0278	95.7
																0.0170	0.0010	0.17 10	0.0011	0.0010	0.0010		<u> </u>	0.0010	0.0010	50.05	0.0170	
	2021 - BESS Inver	rters. Substat	ion & AC					E	mission Fac	ctors (Onroa	d - g/hr: Offr	oad - g/hp-h	r)								Em	issions (To	ns/Year)					
	No. of Units	Total Work Days Per Unit	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Equipment Description					· · ·																							
Skid steer w auger/hoe	2	2 37	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0016	0.0508	0.0376	0.0001	0.0001	0.0001	-	_	0.0001	0.0001	5.88	0.0019	5.9

	2021 -	BESS Site Prep						E	Emission Fa	ctors (Onroa	d - g/hr; Offi	road - g/hp-h	r)								Emi	issions (To	ns/Year)					
Fauinment Description	No. of Units	Total Work Days Per	ЦВ		Daily Operatio n Per Unit	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	CO2 (MT)	CH4 (MT)	CO2e (MT)
	NO. OF UNITS		пр	LF	(Hours)			0.0000		0.0000		0.0050			0.4500	0.0440				0.0045	0.0045	0.0000			0.0100		0.0000	
Tracked dozer, large		9 30	212	0.43	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	472.92	0.1530	0.0113	0.4157	0.0491	0.0009	0.0015	0.0015	0.0806	0.0087	0.0821	0.0102	81.08	0.0262	81.7
Grader		6 15	187	0.41	/	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	4/4.54	0.1530	0.0032	0.1184	0.0140	0.0003	0.0004	0.0004	0.0208	0.0022	0.0212	0.0027	23.18	0.0075	23.3
Skid steer w auger/hoe		1 5	65	0.37	/	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			4/1.98	0.1530	0.0001	0.0034	0.0025	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.40	0.0001	0.4
FE Loader		3 25	203	0.36	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			469.56	0.1520	0.0025	0.0918	0.0108	0.0002	0.0003	0.0003	-	-	0.0003	0.0003	17.78	0.0058	17.9
Roller, vibratory		3 25	80	0.38	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			473.90	0.1530	0.0010	0.0642	0.0045	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	7.46	0.0024	7.5
Pickup		6 19			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4,259.40		0.0003	0.0055	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.89	-	1.8
Water Truck		6 40			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.34	-	4.3
Flatbed Truck		3 12			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.5
Gravel Truck - 20 CY	7	8 33			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.9
															TOTAL	0.1054	0.5161	0.9301	0.0026	0.0131	0.0126	0.0208	0.0022	0.0339	0.0148	243.51	0.0158	243.9
	2021 - BESS Foun	dations, Struct	tures & DC					E	Emission Fa	ctors (Onroa	d - g/hr; Offi	road - g/hp-h	ir)								Emi	issions (To	ns/Year)					
Fauinment Description	No. of Units	Total Work Days Per Unit	НР	IF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	СО2 (МТ)	CH4 (MT)	CO2e (MT)
Skid steer w auger/boe		2 97		0.27	(110415)	0 1 2 0 0	2 7000	2 7/00	0.0050	0.0080	0 0080			171.08	0 1520	0.0058	0 1700	0 1222	0.0002	0.0004	0.0004			0.0004	0.0004	20.82	0.0067	20.0
Trencher		<u> </u>	78	0.37	/	0.1200	3.7000	0.2600	0.0050	0.0080	0.0080			471.30	0.1530	0.0038	0.1733	0.1332	0.0002	0.0004	0.0004	_		0.0004	0.0004	9.64	0.0007	20.9
Crano		2 05 4 100	70	0.30	4	0.0000	2 2000	0.2000	0.0050	0.0080	0.0080			475.25	0.1540	0.0013	0.0027	0.0038	0.0001	0.0002	0.0002	-	-	0.0002	0.0002	5.04	0.0031	5.1
Dickup		4 109	231	0.25	4	0.0000	11 2265	1.0754	0.0030	0.0080	0.0080			472.91	0.1330	0.0077	0.2840	0.0330	0.0000	0.0010	0.0010			0.0010	0.0010	1.16	0.0175	
Water Truck		4 00 2 97			4	1 0550	10 0176	0.8448	0.0422	0.0343	0.0499			4,239.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001			0.0001	0.0001	4.40	_	4.4
		5 67			4	1.0550	19.0170	0.0440	0.0452	0.0900	0.0924			4,370.79	τοται	0.0012	0.0220	0.0010	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.79	-	4.7
															TUTAL	0.0170	0.2812	0.1748	0.0011	0.0018	0.0018	-	-	0.0018	0.0018	95.09	0.0278	95.7
	2024 55001								· · · · · · · · · · · · ·				4								F							
	2021 - BESS INV	erters, Substat	tion & AC	1				E	mission Fa	ctors (Onroa	a - g/nr; Offi I	road - g/np-n	r)								Em	ssions (10	ns/Year)					
Equipment Description	No. of Units	Total Work Days Per Unit	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	РМ10 ТОТ	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		2 37	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0016	0.0508	0.0376	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	5.88	0.0019	5.9
Pile Driver		2 37	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			467.99	0.1510	0.0038	0.1388	0.0164	0.0003	0.0005	0.0005	-	-	0.0005	0.0005	26.79	0.0086	27.0
		2				_																						

	2021 -	BESS Site	e Prep			—T			E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Emi	issions (Tor	ns/Year)					
Equipment Description	No. of Units	Total Days I Unit	Work Per	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	СН4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Tracked dozer, large		9	30	212	0.43	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	472.92	0.1530	0.0113	0.4157	0.0491	0.0009	0.0015	0.0015	0.0806	0.0087	0.0821	0.0102	81.08	0.0262	81.73
Grader		6	15	187	0.41	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080	0.0258	0.0028	474.54	0.1530	0.0032	0.1184	0.0140	0.0003	0.0004	0.0004	0.0208	0.0022	0.0212	0.0027	23.18	0.0075	23.36
Skid steer w auger/hoe		1	5	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0001	0.0034	0.0025	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.40	0.0001	0.40
FE Loader		3	25	203	0.36	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			469.56	0.1520	0.0025	0.0918	0.0108	0.0002	0.0003	0.0003	-		0.0003	0.0003	17.78	0.0058	17.92
Roller, vibratory		3	25	80	0.38	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			473.90	0.1530	0.0010	0.0642	0.0045	0.0001	0.0001	0.0001	-		0.0001	0.0001	7.46	0.0024	7.52
Pickup		6	19			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4,259.40		0.0003	0.0055	0.0005	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	1.89	-	1.89
Water Truck		6	40			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0011	0.0199	0.0009	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.34	-	4.34
Flatbed Truck		3	12			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0013	0.0029	0.0121	0.0000	0.0002	0.0002	-	-	0.0002	0.0002	2.54	-	2.54
Gravel Truck - 20 CY		78	33			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0957	0.2099	0.8847	0.0019	0.0119	0.0114	-	-	0.0119	0.0114	185.93	-	185.93
																TOTAL	0.1054	0.5161	0.9301	0.0026	0.0131	0.0126	0.0208	0.0022	0.0339	0.0148	243.51	0.0158	243.91
												<u> </u>																	
	2021 - BESS Four	dations,	Structu	res & DC					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Emi	issions (Tor	ns/Year)					
Equipment Description	No. of Units	Total Days I Unit	Work Per	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		3	87	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0058	0.1799	0.1332	0.0002	0.0004	0.0004	-	-	0.0004	0.0004	20.82	0.0067	20.99
Trencher		2	65	78	0.50	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.29	0.1540	0.0013	0.0827	0.0058	0.0001	0.0002	0.0002	-	-	0.0002	0.0002	9.64	0.0031	9.72
Crane		4	109	231	0.29	4	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			472.91	0.1530	0.0077	0.2840	0.0336	0.0006	0.0010	0.0010			0.0010	0.0010	55.38	0.0179	55.82
Pickup		4	66			4	0.7135	11.2365	1.0754	0.0422	0.0543	0.0499			4,259.40		0.0008	0.0130	0.0012	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.46	-	4.46
Water Truck		3	87			4	1.0550	19.0176	0.8448	0.0432	0.0966	0.0924			4,570.79		0.0012	0.0220	0.0010	0.0000	0.0001	0.0001			0.0001	0.0001	4.79	-	4.79
																TOTAL	0.0170	0.5815	0.1748	0.0011	0.0018	0.0018	-	-	0.0018	0.0018	95.09	0.0278	95.78
	2021 - BESS Inv	erters, Su	ubstatio	n & AC					E	mission Fac	tors (Onroad	d - g/hr; Offr	oad - g/hp-h	r)								Emi	issions (Tor	ns/Year)					
Equipment Description	No. of Units	Total Days I Unit	Work Per	НР	LF	Daily Operatio n Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	PM10 dust (lb/hr)	PM2.5 dust (lb/hr)	CO2	CH4	ROG	со	NOX	SO2	PM10 Exh	PM2.5 Exh	PM10 dust	PM2.5 dust	PM10 TOT	PM2.5 TOT	CO2 (MT)	СН4 (МТ)	CO2e (MT)
Skid steer w auger/hoe		2	37	65	0.37	7	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			471.98	0.1530	0.0016	0.0508	0.0376	0.0001	0.0001	0.0001	-	-	0.0001	0.0001	5.88	0.0019	5.93
Pile Driver		2	37	221	0.50	7	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			467.99	0.1510	0.0038	0.1388	0.0164	0.0003	0.0005	0.0005	-	-	0.0005	0.0005	26.79	0.0086	27.00
Trencher		7	131	78	0.50	4	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.29	0.1540	0.0095	0.5854	0.0411	0.0008	0.0013	0.0013	-	-	0.0013	0.0013	68.21	0.0221	68.77
Backhoe		3	29	97	0.37	7	0.0600	3.7000	0.2600	0.0050	0.0080	0.0080			475.36	0.1540	0.0015	0.0902	0.0063	0.0001	0.0002	0.0002	-	-	0.0002	0.0002	10.51	0.0034	10.59
Crane		3	77	231	0.29	4	0.0600	2.2000	0.2600	0.0050	0.0080	0.0080			472.91	0.1530	0.0041	0.1495	0.0177	0.0003	0.0005	0.0005	-	-	0.0005	0.0005	29.15	0.0094	29.38
Aerial Lift		2	56	63	0.31	4	0.1200	3.7000	2.7400	0.0050	0.0080	0.0080			472.11	0.1530	0.0012	0.0357	0.0264	0.0000	0.0001	0.0001	-	-	0.0001	0.0001	4.13	0.0013	4.16
Concrete Truck - 10 CY		3	1			4	8.4840	18.5989	78.3905	0.1716	1.0556	1.0100			18,159.94		0.0001	0.0002	0.0010	0.0000	0.0000	0.0000	-	-	0.0000	0.0000	0.22	-	0.22
															1	TOTAL	0.0217	1.0505	0.1466	0.0017	0.0027	0.0027	-	-	0.0027	0.0027	144.88	0.0468	146.05

3
)
7
9
3
6
2

		RE Slate	e Solar Proj	ject		
	Co	nstruction and	Freight Tr	uck Emissio	ns	
Year		2020				
Trips		1,971				
Roundtrip D	istance	80				
Total VMT		157,680				
Grams per T	rip Emission I	Factors				
ROC	со	NOX	SOX	PM10	PM2.5	CO2
1.57	19.31	23.26	0.04	0.04	0.04	3,866.10
Grams per N	/lile Emission	Factors				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.53	1.30	7.58	0.02	7.75	2.02	1,892.05
Total Trip Er	nissions (tons	5)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.00	0.04	0.05	0.00	0.00	0.00	7.62
Total VMT E	missions (ton	s)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.09	0.23	1.32	0.00	1.35	0.35	298.34
Total Truck-	Related Emiss	sions (tpy)				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.10	0.27	1.37	0.00	1.35	0.35	305.96

1						
Voor		2021				
Trips		2021				
Poundtrin D	istanco	3,777				
	istance	202 107				
		502,197				
Grams per T	rip Emission I	Factors				
ROC	со	NOX	SOX	PM10	PM2.5	CO2
1.58	20.04	22.67	0.04	0.03	0.03	3,917.79
Grams per N	/lile Emission	Factors				
ROC	со	NOX	SOX	PM10	PM2.5	CO2
0.43	1.14	6.52	0.02	7.73	1.99	1,859.78
						,
Total Trip Er	nissions (tons	5)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.01	0.08	0.09	0.00	0.00	0.00	14.80
Total VMT E	missions (ton	is)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.14	0.38	2.17	0.01	2.57	0.66	562.02
Total Truck-	Related Emiss	sions (tpy)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.15	0.46	2.27	0.01	2.57	0.66	576.82
						_

RE Slate Solar Project Water Truck Emissions

Year		2020				
Trips		664				
Roundtrip D	istance	120				
Total VMT		79,728				
Grams per T	rip Emissic	on Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
-	-	-	-	-	-	-
Grams per N	1ile Emissio	on Factors				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.01	0.23	0.08	0.00	0.05	0.02	399.92
Total Trip En	nissions (to	ons)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
-	-	-	-	-	-	-
Total VMT E	missions (t	ons)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.00	0.04	0.01	0.00	0.01	0.00	63.06
Total Truck-	Related En	nissions (tpy)				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.00	0.04	0.01	0.00	0.01	0.00	63.06

Year		2021				
Trips		1,273				
Roundtrip Di	stance	120				
Total VMT		152,712				
Grams per T	rip Emissio	n Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
-	-	-	-	-	-	-
Grams per M	1ile Emissio	on Factors				
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.01	0.22	0.07	0.00	0.05	0.02	390.73
Total Trip En	nissions (to	ons)				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
-	-	-	-	-	-	-
Total VMT E	missions (t	ons)				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.00	0.07	0.02	0.00	0.02	0.01	118.08
Total Truck-	Related Em	nissions (tpy)				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.00	0.07	0.02	0.00	0.02	0.01	118.08

		Worker Co	mmute En	nissions		
Year		2020				
Total Trips		36,786				
Roundtrip Di	stance	80				
Total VMT		2,942,904				
Grams per T	rip Emissio	on Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
2.30	3.15	0.41	0.00	0.00	0.00	77.72
Grams per N	1ile Emissio	on Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.03	1.22	0.13	0.00	0.84	0.21	368.59
				0.00	0.00	
				0.01	0.00	
				0.04	0.02	
				0.79	0.19	
Trip Emission	ns (tpy)					
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.09	0.13	0.02	0.00	0.00	0.00	2.86
VMT Emissio	ons (tpy)					
ROC	СО	NOX	SOX	PM10	PM2.5	CO2
0.08	3.96	0.43	0.01	2.72	0.69	1,084.74
Total Worke	r Commute	e Emissions (tpv)				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.18	4 08	0.45	0.01	2 72	0.69	1 087 60
0.10	4.00	0.45	0.01	2.12	0.05	1,007.00

Year		2021				
Total Trips		87.013				
Roundtrip Di	istance	80				
Total VMT		6,961,024				
Grams per T	rip Emissio	n Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
2.18	3.03	0.37	0.00	0.00	0.00	75.25
Grams per N	Grams per Mile Emission Factors					
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.02	1.09	0.11	0.00	0.84	0.21	356.41
Trip Emissio	Trip Emissions (tpy)					
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.21	0.29	0.04	0.00	0.00	0.00	6.55
VMT Emissic	VMT Emissions (tpy)					
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.00	0.00	0.00	0.00	0.00	0.00	0.03
Total Worke	Total Worker Commute Emissions (tpy)					
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.21	0.29	0.04	0.00	0.00	0.00	6.58

RE Slate Solar Project Vorker Commute Emission

Decommissioning Truck Emissions							
Year		2050					
Trips		2,640					
Roundtrip Di	stance	80					
Total VMT		211,200					
Grams per Ti	Grams per Trip Emission Factors						
ROC	СО	NOX	SOX	PM10	PM2.5	CO2	
1.59	23.56	18.84	0.03	0.01	0.01	3,025.21	
Grams per N	Grams per Mile Emission Factors						
ROC	CO	NOX	SOX	PM10	PM2.5	CO2	
0.03	0.43	3.26	0.01	7.63	1.89	1,305.67	
Total Trip Emissions (tons)							
ROC	СО	NOX	SOX	PM10	PM2.5	CO2	
0.00	0.07	0.05	0.00	0.00	0.00	7.99	
Total VMT Emissions (tons)							
ROC	co	NOX	SOX	PM10	PM2.5	CO2	
0.01	0.10	0.76	0.00	1.78	0.44	275.76	
Total Truck-Related Emissions (tpy)							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2	
0.01	0.17	0.81	0.00	1.78	0.44	283.74	

RE Slate Solar Project

RE Slate Solar Project Decommissioning Worker Commute Emissions

		0				
Year		2050				
Trips		20,988				
Roundtrip Dis	stance	80				
Total VMT		1,679,040				
Crome per Tr	in Emissio	- Factors				
Grans per Tr		Tractors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.65	1.84	0.12	0.00	0.00	0.00	45.31
Grams per M	ile Emissio	n Factors				
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.00	0.43	0.02	0.00	0.84	0.21	223.14
Total Trip Emissions (tons)						
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.02	0.04	0.00	0.00	0.00	0.00	0.95
Total VMT Emissions (tons)						
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.00	0.79	0.03	0.00	1.55	0.39	374.66
Total Worker Commute-Related Emissions (tpy)						
ROC	CO	NOX	SOX	PM10	PM2.5	CO2
0.02	0.84	0.04	0.00	1.55	0.39	375.61

Fugitive Dust from Equipment Passes						
$FF_{max} = 0.051 \text{ x} (S)^{2.0} \text{ x} F_{max}$						
$= 0.04 \times (S)^2$	$\Gamma_{PM10} = 0.04 \times (0)^{2.5} \times \Gamma_{PM10}$					
$EF_{PM2.5} = 0.04 \text{ X} (S) \text{ X} F_{PM2.5}$						
S =	7.1					
F _{PM10} =	0.6					
F _{PM2.5} =	0.031					
EF _{PM10} =	1.5425					
EF _{PM2.5} =	0.1666					
VMT = As/Wb x 43,5	VMT = As/Wb x 43,560(sqft/acre)/5,280(ft/mile)					
Wb =	12					
Equipment Type Crawler Tractor Grader Rubber Tired Dozer Scraper	Acres/Hour 0.0625 0.0625 0.0625 0.1250					
VMT per Hour by Eq Crawler Tractor Grader Rubber Tired Dozer Scraper	uipment Type 0.04297 0.04297 0.04297 0.04297 0.08594					
Control Efficiency	61%					
E/hr = EF x VMT	PM10 F	PM2 5				
Crawler Tractor Grader Rubber Tired Dozer Scraper Source: USEPA AP-42 Sectio	0.0258 0.0258 0.0258 0.0258 0.0517	0.0028 lbs/hr 0.0028 lbs/hr 0.0028 lbs/hr 0.0056 lbs/hr				

Paved Roads Dust		Unpaved Roads	Unpaved Roads Dust																			
$E = k(sL)^{0.91} x (W)^{1.02}$		$E = k (s/12)^{a} (W/$	$E = k (s/12)^{a} (W/3)^{b}$																			
k _{PM10} =	0.0022	k _{PM10} =	1.5																			
k _{PM2.5} =	0.00054	k _{PM2.5} =	0.15																			
sL =	0.32	a =	0.9																			
W _{TRUCKS}	20	b =	0.45																			
W _{CAR}	2.2	s =	21.8																			
		W _{TRUCKS}	20																			
<u>Trucks</u>		W _{CAR}	2.2																			
E _{PM10}	0.0166 lbs/vmt																					
E _{PM2.5}	0.0041 lbs/vmt	Control Efficience	cy 61%																			
<u>Cars</u>		<u>Trucks</u>																				
E _{PM10}	0.0017 lbs/vmt	E _{PM10}	2.3511 lbs/vmt																			
E _{PM2.5}	0.0004 lbs/vmt	E _{PM2.5}	0.2351 lbs/vmt																			
Source: USEPA AP-42 Section 13.2.1		<u>Cars</u>	<u>Cars</u>																			
		E _{PM10}	0.8707 lbs/vmt																			
		E _{PM2.5}	0.0871 lbs/vmt																			
		Source: USEPA AP-42	Source: USEPA AP-42 Section 13.2.2																			
	2022 - O&M Equipment					Emission Factors (Onroad - g/hr; Offroad - g/hp-hr)						Emissions (Tons/Year)										
---------------------------	----------------------	-----------------------------	----	------	---	---	--------	--------	--------	----------	--------------	-----------------------	--------	--------	--------	--------	--------	----------	--------------	----------	----------	--------------
Equipment Description	No. of Units	Total Work Days Per Unit	HP	LF	Daily Operation Per Unit (Hours)	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	CO2	СН4	ROG	со	ΝΟΧ	SO2	PM10 Exh	PM2.5 Exh	СО2 (МТ)	СН4 (МТ)	CO2e (MT)
All-Terrain Vehicles	2	40	97	0.37	12	0.2960	3.5707	2.9950	0.0050	0.1770	0.1620	475.36	0.1540	0.0112	0.1356	0.1137	0.0002	0.0067	0.0062	16.38	0.0053	16.51
Kubota Tractors	1	40	97	0.37	3	0.2960	3.5707	2.9950	0.0050	0.1770	0.1620	475.36	0.1540	0.0014	0.0170	0.0142	0.0000	0.0008	0.0008	2.05	0.0007	2.06
Honda Portable Generat	c 2	40	84	0.74	6	0.3260	3.3610	2.8880	0.0060	0.1530	0.1530	568.30	0.0290	0.0107	0.1105	0.0950	0.0002	0.0050	0.0050	16.96	0.0009	16.98
Portable Water Trailers v	/ 1	40	84	0.74	2	0.3470	3.4120	2.9280	0.0060	0.1620	0.1620	568.30	0.0310	0.0019	0.0187	0.0161	0.0000	0.0009	0.0009	2.83	0.0002	2.83
					,								TOTAL	0.0140	0.1462	0.1253	0.0003	0.0068	0.0067	21.83	0.0017	21.87

	RE Slate Solar Project								
O&M Water Truck Emissions									
Year		2021							
Trips		800							
Roundtrip Dis	stance	89							
Total VMT		71,477							
Grams per Tri	in Emissio	n Factors							
	CO	NOY	SOX	DM10	DM2 5	CO3			
2.49	2.74		307	0.00	PIVIZ.5	04.25			
2.48	3.74	0.46	0.00	0.00	0.00	94.35			
Grams per IVI	lie Emissio	on Factors							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.03	0.63	0.14	0.00	60.65	6.58	443.08			
Total Trip Em	issions (to	ins)							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.00	0.00	0.00	0.00	0.00	0.08			
Total VMT Em	nissions (t	ons)							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.05	0.01	0.00	4.78	0.52	31.67			
Total Water T	ruck-Rela	ted Emissio	ns (tpy)						
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.05	0.01	0.00	4.78	0.52	31.75			

RE Slate Solar Project O&M Worker Commute Emissions

Year		2021							
Trips		2,384							
Roundtrip D	istance	89							
Total VMT		213,003							
Grams per Trip Emission Factors									
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
2.18	3.03	0.37	0.00	0.00	0.00	75.25			
Grams per N	/ile Emiss	ion Factors							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.02	0.58	0.11	0.00	29.70	3.09	356.41			
Total Trip Er	nissions (t	ons)							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.00	0.00	0.00	0.00	0.00	0.06			
Total VMT E	missions (tons)							
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.05	0.01	0.00	2.34	0.24	25.48			
Total Worke	r Commu	te-Related En	nissions (tp	oy)					
ROC	CO	NOX	SOX	PM10	PM2.5	CO2			
0.00	0.05	0.01	0.00	2.34	0.24	25.54			

	RE Slate Solar Project							
Emiss	ion Displacement Calculations							
Assumptions		/						
Capacity Factor		26%						
Conversion		8,766 Hours/Year						
Conversion		2,205 pounds/metric ton						
		Project Scenario						
Project Capacity (MW)		300						
Project Energy (MWh)		683,729						
Power Supply Emissions								
	Emission Factor ¹							
	(lbs/MWh)	Metric Ton						
Carbon Dioxide (CO2)	6.41E+02	198,903						
Methane (CH4)	2.90E-02	9						
Nitrous Oxide (N2O)	6.17E-03	2						
Total Emissions: Carbon Dioxide Equiv	valents							
	Global Warming							
	Potential ²	Metric Ton						
CO2	1	198,903.37						
CH4	25	224.85						
N2O	298	570.23						
CO2e Displacement		199,698.45						
References								
¹ CalEEMod 2016.3.2								
² IPCC2007								

Appendix B

HRA Modeling Files

** ***** ** ** AERMOD Input Produced by: ** AERMOD View Ver. 9.6.1 ** Lakes Environmental Software Inc. ** Date: 7/9/2018 ** File: H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Slate Solar.ADI * * ****** * * * * ***** ** AERMOD Control Pathway ++ * * CO STARTING TITLEONE H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl MODELOPT CONC FLAT ELEV AVERTIME 1 PERIOD POLLUTID DPM RUNORNOT RUN ERRORFIL "RE Slate Solar.err" CO FINISHED * * ** AERMOD Source Pathway * * * * SO STARTING ** Source Location ** ** Source ID - Type - X Coord. - Y Coord. ** LOCATION PAREA1 AREAPOLY 239665.290 4012937.958 66.890 ** DESCRSRC Site ** Source Parameters ** SRCPARAM PAREA1 9.9184E-08 3.048 128 AREAVERT PAREA1 239665.290 4012937.958 239669.016 4013092.725 AREAVERT PAREA1240355.6254013720.494240494.9034013716.853AREAVERT PAREA1240498.7694013851.371240842.1084014149.489AREAVERT PAREA1240799.1704014152.536241319.0254014613.669 241324.039 4014607.760 241925.239 4015116.551 241949.760 4015171.119 242031.073 4015276.227 242161.933 4015270.880 242159.278 4015485.254 AREAVERT PAREA1 AREAVERT PAREA1 AREAVERT PAREA1 242172.284 4015538.394 242177.317 4015729.460 AREAVERT PAREA1 242215.277 4015897.236 242217.217 4015901.355 AREAVERT PAREA1 242218.813 4015904.584 242220.625 4015907.776 242223.329 4015912.228 242225.695 4015915.704 AREAVERT PAREA1 AREAVERT PAREA1 242230.076 4015921.458 242233.493 4015925.460 AREAVERT PAREA1

AREAVERT	PAREA1	242240.357	4015925.810	242250.726	4015926.687
AREAVERT	PAREA1	242260.453	4015927.972	242273.709	4015930.305
AREAVERT	PAREA1	242289.928	4015934.223	242308.061	4015939.964
AREAVERT	PAREA1	242321.182	4015945.248	242332.481	4015950.624
AREAVERT	PAREA1	242344.964	4015957.276	242357.903	4015965.112
AREAVERT	PAREA1	242557.636	4016074.709	242779.166	4016063.401
AREAVERT	PAREA1	242778.082	4016018.076	242775.463	4015972.503
AREAVERT	PAREA1	242773.891	4015941.773	242770.389	4015900.655
AREAVERT	PAREA1	242486.122	4015525.029	242520.779	4015525.019
AREAVERT	PAREA1	242581.862	4015522.193	242607.625	4015520.625
AREAVERT	PAREA1	242614.897	4015507.388	242642.029	4015477.858
AREAVERT	PAREA1	242654.307	4015463.744	242655.966	4015460.436
AREAVERT	PAREA1	242665.272	4015442.431	242675.254	4015425.862
AREAVERT	PAREA1	242675.846	4015276.451	242670.962	4015254.845
AREAVERT	PAREA1	242668.592	4015250.180	242761.927	4015246.370
AREAVERT	PAREA1	242757.395	4015241.459	242717.474	4015161.740
AREAVERT	PAREA1	242632.855	4015088.138	242632.918	4015087.591
AREAVERT	PAREA1	242645.729	4015072.974	242637.359	4014953.879
AREAVERT	PAREA1	242563.961	4014640.837	242534.450	4014546.157
AREAVERT	PAREA1	242455.754	4014338.351	242415.177	4014237.522
AREAVERT	PAREA1	242389.355	4014187.108	242351.237	4014121.938
AREAVERT	PAREA1	242330.333	4014085.050	242303.339	4014039.407
AREAVERT	PAREA1	242268.965	4013998.485	242235.681	4013924.279
AREAVERT	PAREA1	242260.780	4013853.348	242302.248	4013776.414
AREAVERT	PAREA1	242437.018	4013616.545	242483.648	4013558.635
AREAVERT	PAREA1	242541.488	4013446.230	242586.232	4013320.729
AREAVERT	PAREA1	242625.007	4013218.643	242842.079	4012950.549
AREAVERT	PAREA1	242861.536	4012892.842	242863.882	4012846.929
AREAVERT	PAREA1	242775.383	4012434.835	242643.868	4012350.416
AREAVERT	PAREA1	242482.640	4012344.531	242220.042	4012282.252
AREAVERT	PAREA1	242040.910	4012289.314	241988.603	4010186.972
AREAVERT	PAREA1	242018.893	4010186.906	242018.959	4010191.855
AREAVERT	PAREA1	242640.405	4010177.039	242652.687	4010133.537
AREAVERT	PAREA1	242648.598	4010113.756	242649.248	4010094.885
AREAVERT	PAREA1	242651.592	4010071.175	242653.850	4010055.803
AREAVERT	PAREA1	242658.257	4010037.313	242659.225	4010019.899
AREAVERT	PAREA1	242663.821	4010006.967	242669.089	4009989.015
AREAVERT	PAREA1	242677.259	4009970.202	242687.585	4009936.330
AREAVERT	PAREA1	242695.679	4009913.185	242703.647	4009878.152
AREAVERT	PAREA1	242719.003	4009855.702	242732.752	4009827.533
AREAVERT	PAREA1	242762.934	4009784.943	242786.408	4009733.970
AREAVERT	PAREA1	242790.563	4009714.866	242790.958	4009701.452
AREAVERT	PAREA1	242786.223	4009671.861	242785.434	4009602.026
AREAVERT	PAREA1	242781.883	4009560.993	242816.998	4009559.809
AREAVERT	PAREA1	242788.809	4008768.478	241970.693	4008794.567
AREAVERT	PAREA1	241995.733	4009574.198	241998.115	4009575.686
AREAVERT	PAREA1	241981.889	4009576.282	241991.456	4009890.728
AREAVERT	PAREA1	242001.808	4009901.236	241949.633	4009864.040
AREAVERT	PAREA1	241774.418	4009630.104	241774.053	4009603.858
AREAVERT	PAREA1	241760.373	4009511.780	240380.422	4009556.555

```
AREAVERT PAREA1
                    240422.345 4011160.612 241152.522 4011139.733
                    241194.024 4012870.560 240480.000 4012920.000
  AREAVERT PAREA1
  SRCGROUP ALL
SO FINISHED
* *
*****
** AERMOD Receptor Pathway
******
* *
* *
RE STARTING
  INCLUDED "RE Slate Solar.rou"
RE FINISHED
* *
*****
** AERMOD Meteorology Pathway
* *
* *
ME STARTING
  SURFFILE "..\AERMET\2015 KNLC Lemoore.SFC"
  PROFFILE "..\AERMET\2015 KNLC Lemoore.PFL"
  SURFDATA 23110 2015
  UAIRDATA 93214 2015
  PROFBASE 71.3 METERS
ME FINISHED
* *
*****
** AERMOD Output Pathway
*****
* *
* *
OU STARTING
  RECTABLE ALLAVE 1ST
  RECTABLE 1 1ST
** Auto-Generated Plotfiles
  PLOTFILE 1 ALL 1ST "RE Slate Solar.AD\01H1GALL.PLT" 31
  PLOTFILE PERIOD ALL "RE Slate Solar.AD\PE00GALL.PLT" 32
  SUMMFILE "RE Slate Solar.sum"
OU FINISHED
 *** Message Summary For AERMOD Model Setup ***
 ----- Summary of Total Messages ------
A Total of
                  0 Fatal Error Message(s)
A Total of
                  2 Warning Message(s)
```

```
A Total of 0 Informational Message(s)
```

******* FATAL ERROR MESSAGES ******* *** NONE *** ******* WARNING MESSAGES ******* RE W213 182 RECART: ELEV Input Inconsistent With Option: Input Ignored UCART1 ME W186 126 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ********* *** SETUP Finishes Successfully *** *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** *** * * * 14:43:39 PAGE 1 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL * * * MODEL SETUP OPTIONS SUMMARY * * * **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC --**NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses RURAL Dispersion Only. **Model Allows User-Specified Options: 1. Stack-tip Downwash. 2. Allow FLAT/ELEV Terrain Option by Source, with 0 FLAT and 1 ELEV Source(s). 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Full Conversion Assumed for NO2. **Other Options Specified: CCVR_Sub - Meteorological data includes CCVR substitutions TEMP Sub - Meteorological data includes TEMP substitutions **Model Assumes No FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: DPM **Model Calculates 1 Short Term Average(s) of: 1-HR

and Calculates PERIOD Averages **This Run Includes: 1 Source(s); 1 Source Group(s); and 445 Receptor(s) with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 0 VOLUME source(s) and: 1 AREA type source(s) and: 0 LINE source(s) and: 0 OPENPIT source(s) 0 BUOYANT LINE source(s) with 0 line(s) and: **Model Set To Continue RUNning After the Setup Testing. **The AERMET Input Meteorological Data Version Date: 15181 **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 71.30 ; Decay Coef. = 0.000 ; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 3.6 MB of RAM. **Approximate Storage Requirements of Model = **Input Runstream File: aermod.inp **Output Print File: aermod.out **Detailed Error/Message File: RE Slate Solar.err **File for Summary of Results: RE Slate Solar.sum *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** * * * * * * 14:43:39 PAGE 2 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** AREAPOLY SOURCE DATA *** NUMBER EMISSION RATE LOCATION OF AREA BASE RELEASE NUMBER INIT. URBAN EMISSION RATE SOURCE ELEV. HEIGHT OF VERTS. SZ SOURCE SCALAR VARY PART. (GRAMS/SEC Х Y /METER**2) (METERS) (METERS) (METERS) (METERS) (METERS) ΒY ID CATS.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ PAREA1 0 0.99184E-07 239665.3 4012938.0 66.9 3.05 128 0.00 NO *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** *** * * * 14:43:39 PAGE 3 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** SOURCE IDS DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDs _____ _____ ALL PAREA1 , *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 14:43:39 *** AERMET - VERSION 15181 *** *** * * * PAGE 4 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** GRIDDED RECEPTOR NETWORK SUMMARY *** *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** *** X-COORDINATES OF GRID *** (METERS) 236200.0, 236700.0, 237200.0, 237700.0, 238200.0, 238700.0, 239200.0, 239700.0, 240200.0, 240700.0, 241200.0, 241700.0, 242200.0, 242700.0, 243200.0, 243700.0, 244200.0, 244700.0, 245200.0, 245700.0, 246200.0, *** Y-COORDINATES OF GRID *** (METERS) 4007400.0, 4007900.0, 4008400.0, 4008900.0, 4009400.0, 4009900.0, 4010400.0, 4010900.0, 4011400.0, 4011900.0, 4012400.0, 4012900.0, 4013400.0, 4013900.0, 4014400.0, 4014900.0, 4015400.0, 4015900.0, 4016400.0, 4016900.0, 4017400.0, *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** *** * * * 14:43:39 PAGE 5 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***

* ELEVATION HEIGHTS IN METERS *

Y-COORD				X-COORD	(METERS)				
(METERS)	236200.00	236700.00	237200.00	237700.00	238200.00	238700.00	239200.00	239700.00	240200.00
4017400.00	72.20	71.50	71.00	70.40	70.10	69.20	68.30	67.40	66.80
4016900.00	72.50	71.90	71.30	70.70	70.10	69.20	68.30	67.40	66.80
4016400.00	73.00	72.20	71.60	70.70	70.10	69.40	68.60	67.70	66.80
4015900.00	73.20	72.50	71.60	70.70	69.80	69.20	68.30	67.40	66.80
4015400.00	73.20	72.50	71.60	70.70	69.60	68.80	68.30	67.70	66.40
4014900.00	73.60	72.80	71.30	70.40	69.50	68.90	68.30	67.40	64.60
4014400.00	73.50	72.50	71.30	70.40	69.60	68.60	68.00	67.40	64.60
4013900.00	73.50	72.50	71.30	70.10	69.50	68.60	68.00	67.10	66.00
4013400.00	73.80	72.50	71.30	70.10	69.50	68.30	67.70	67.10	65.80
4012900.00	73.50	72.50	71.30	70.40	69.50	68.60	67.70	66.80	65.80
4012400.00	73.50	72.30	71.60	70.40	69.50	68.60	67.70	66.80	65.80
4011900.00	73.20	72.20	71.60	70.40	69.50	68.30	67.70	66.80	65.80
4011400.00	73.20	72.00	71.60	70.40	69.50	68.60	67.70	66.80	65.80
4010900.00	73.20	72.20	71.60	70.70	69.60	68.60	67.70	66.80	65.80
4010400.00	72.80	72.10	71.60	70.40	69.80	68.90	68.00	67.10	66.00
4009900.00	73.20	71.90	71.00	70.10	69.80	68.90	68.00	67.10	65.80
4009400.00	72.90	71.60	70.70	70.10	69.80	69.20	68.00	66.80	65.80
4008900.00	73.20	71.70	70.70	70.10	69.30	68.60	67.50	67.10	65.80
4008400.00	72.80	71.90	70.70	69.80	68.90	68.30	67.40	66.40	65.70
4007900.00	72.80	71.60	70.40	69.50	68.60	67.70	67.00	66.10	65.20
4007400.00	72.50	71.60	70.10	69.50	68.60	67.10	66.40	65.80	64.90
*** AERMOD - 7	VERSION 18081 *	** *** H:\W	ork\REC 06 -	RE Slate Sola	r\Analysis\AB	ERMOD\RE Slate	Solar\RE Sl	*** 07	/09/18
*** AERMET - 7	VERSION 15181 *	** ***						*** 14	:43:39
								PAG	GE 6
*** MODELOPTs	: NonDFAULT	CONC FLAT an	d ELEV RURA	L					
		*** NETWO	RK ID: UCART1	; NETWORK	TYPE: GRIDCA	ART ***			
			* ELEVAI	ION HEIGHTS I	N METERS *				
V-COORD				X-COORD	(M퍆┯퍆┍ <)				
(METERS)	240700 00	241200 00	241700 00	242200 00	242700 00	243200 00	243700 00	244200 00	244700 00
(HETERS) 									
4017400.00	65.80	65.20	65.70	64.90	63.50	62.60	62.50	62.50	63.10
4016900.00	65.80	65.50	65.60	64.60	63.40	62.60	62.80	63.40	63.10

Y-COORD				X-COORD	(METERS)				
(METERS)	240700.00	241200.00	241700.00	242200.00	242700.00	243200.00	243700.00	244200.00	244700.00
4017400.00	65.80	65.20	65.70	64.90	63.50	62.60	62.50	62.50	63.10
4016900.00	65.80	65.50	65.60	64.60	63.40	62.60	62.80	63.40	63.10
4016400.00	65.80	65.50	65.50	64.60	63.40	62.00	62.50	62.50	63.20
4015900.00	65.80	65.50	65.50	64.60	63.10	62.50	62.50	62.80	63.10
4015400.00	65.80	64.60	64.60	64.00	62.80	63.00	61.00	63.00	63.10
4014900.00	64.60	64.60	64.60	64.00	63.50	63.10	62.50	62.50	63.10
4014400.00	64.60	64.30	64.20	63.40	62.80	63.30	61.50	62.10	62.80
4013900.00	65.20	64.30	64.00	62.50	62.20	61.10	62.20	62.50	62.50
4013400.00	64.90	64.10	64.30	63.10	62.80	62.50	62.20	62.50	62.50
4012900.00	64.90	64.00	63.50	63.40	63.10	61.20	61.80	62.20	62.20
4012400.00	64.90	63.70	63.10	62.80	62.80	61.70	61.00	61.90	61.90

4011900.00	65.20	63.70	62.80	62.50	62.50	59.60	61.00	61.60	61.90
4011400.00	64.90	64.10	62.50	62.50	61.90	61.00	60.60	61.00	61.60
4010900.00	64.90	63.80	62.80	62.50	62.20	61.60	59.70	61.00	61.30
4010400.00	64.90	63.60	62.80	62.30	61.90	61.60	61.30	60.40	61.00
4009900.00	64.00	62.80	62.50	62.20	61.90	61.30	61.30	60.70	61.00
4009400.00	64.00	62.20	62.20	62.20	61.90	61.30	60.40	60.40	61.00
4008900.00	65.20	63.10	62.50	62.20	61.90	61.30	60.70	61.00	61.00
4008400.00	64.60	62.80	62.50	62.20	61.90	61.60	60.70	59.50	60.90
4007900.00	64.00	62.50	62.50	62.50	61.90	61.60	61.00	60.60	59.70
4007400.00	64.00	62.50	62.50	62.50	62.20	62.20	61.40	61.00	60.80
*** AERMOD - *** AERMET -	VERSION 18081 *** VERSION 15181 ***	*** H:\Wor ***	k∖REC 06 - RE	Slate Solar\	Analysis\AERM	NOD\RE Slate S	olar\RE Sl *** ***	07/0 14:4	9/18 3:39
*** MODELOPT:	s: NonDFAULT CON	C FLAT and	ELEV RURAL					PAGE	/

*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***

* ELEVATION HEIGHTS IN METERS *

_

Y-COORD				X-COORD (METERS)
(METERS)	245200.00 2	245700.00	246200.00	
4017400 00 L	62 70	64 00	64 00	
401/400.00	64 00	64.00	64.00	
4016400.00	64.00	64.00	64.00	
4016400.00	64.00	64.00	64.00	
4015900.00	64.00	64.00	64.10	
4015400.00	63.70	63.70	64.00	
4014900.00	63.40	63.40	64.00	
4014400.00	64.00	63.40	64.00	
4013900.00	63.40	63.40	64.00	
4013400.00	62.50	62.90	63.70	
4012900.00	62.50	62.60	63.40	
4012400.00	62.50	62.50	63.10	
4011900.00	62.50	62.50	62.80	
4011400.00	62.50	62.50	62.50	
4010900.00	62.20	62.50	62.20	
4010400.00	61.60	62.40	61.60	
4009900.00	61.00	61.30	61.00	
4009400.00	61.00	61.00	61.00	
4008900.00	61.00	61.00	61.00	
4008400.00	60.70	61.00	61.00	
4007900.00	59.80	61.00	61.00	
4007400 00	59 70	60 40	60 40	
100,100.00	55.70	00.10	00.10	
*** AERMOD - VERSI	ON 18081 ***	*** H:\W	ork\REC 06 - RE	Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18
*** AERMET - VERSI	ON 15181 ***	***		*** 14:43:39
				PAGE 8

*** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL

*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***

* HILL HEIGHT SCALES IN METERS *

Y-COORD				X-COORD	(METERS)				
(METERS)	236200.00	236700.00	237200.00	237700.00	238200.00	238700.00	239200.00	239700.00	240200.00
4017400.00	72.20	71.50	71.00	70.40	70.10	69.20	68.30	67.40	66.80
4016900.00	72.50	71.90	71.30	70.70	70.10	69.20	68.30	67.40	66.80
4016400.00	73.00	72.20	71.60	70.70	70.10	69.40	68.60	67.70	66.80
4015900.00	73.20	72.50	71.60	70.70	69.80	69.20	68.30	67.40	66.80
4015400.00	73.20	72.50	71.60	70.70	69.60	68.80	68.30	67.70	66.40
4014900.00	73.60	72.80	71.30	70.40	69.50	68.90	68.30	67.40	64.60
4014400.00	73.50	72.50	71.30	70.40	69.60	68.60	68.00	67.40	64.60
4013900.00	73.50	72.50	71.30	70.10	69.50	68.60	68.00	67.10	66.00
4013400.00	73.80	72.50	71.30	70.10	69.50	68.30	67.70	67.10	65.80
4012900.00	73.50	72.50	71.30	70.40	69.50	68.60	67.70	66.80	65.80
4012400.00	73.50	72.30	71.60	70.40	69.50	68.60	67.70	66.80	65.80
4011900.00	73.20	72.20	71.60	70.40	69.50	68.30	67.70	66.80	65.80
4011400.00	73.20	72.00	71.60	70.40	69.50	68.60	67.70	66.80	65.80
4010900.00	73.20	72.20	71.60	70.70	69.60	68.60	67.70	66.80	65.80
4010400.00	72.80	72.10	71.60	70.40	69.80	68.90	68.00	67.10	66.00
4009900.00	73.20	71.90	71.00	70.10	69.80	68.90	68.00	67.10	65.80
4009400.00	72.90	71.60	70.70	70.10	69.80	69.20	68.00	66.80	65.80
4008900.00	73.20	71.70	70.70	70.10	69.30	68.60	67.50	67.10	65.80
4008400.00	72.80	71.90	70.70	69.80	68.90	68.30	67.40	66.40	65.70
4007900.00	72.80	71.60	70.40	69.50	68.60	67.70	67.00	66.10	65.20
4007400.00	72.50	71.60	70.10	69.50	68.60	67.10	66.40	65.80	64.90
*** AFRMOD -	VERSION 18081 #	** *** u:\w	ork\REC 06 -	RF Slate Sola	r\Analveie\A	RMOD/RE Slate	Solar\RF Sl	*** 0'	7/09/18
*** AFRMET -	VERSION 15181 #	*** ***	OIN (ILEC 00	NE DIACC DOIA	I (Analysis (Al		. DOTAL (RE DI	*** 14	1:43:39
TIDICID I	VERDICIA ISICI							P	AGE 9
*** MODELOPTs	: NonDFAULT	CONC FLAT an	d ELEV RURA	L					102 9
		*** NETWO	RK ID: UCART1	; NETWORK	TYPE: GRIDCA	ART ***			
			* HILL H	EIGHT SCALES	IN METERS *				
Y-COORD				X-COORD	(METERS)				
(METERS)	240700.00	241200.00	241700.00	242200.00	242700.00	243200.00	243700.00	244200.00	244700.00
4017400.00	65.80	65.20	65.70	64.90	63.50	62.60	62.50	62.50	63.10
4016900.00	65.80	65.50	65.60	64.60	63.40	62.60	62.80	63.40	63.10
4016400.00	65.80	65.50	65.50	64.60	63.40	62.00	62.50	62.50	63.20
4015900.00	65.80	65.50	65.50	64.60	63.10	62.50	62.50	62.80	63.10
4015400.00	65.80	64.60	64.60	64.00	62.80	63.00	61.00	63.00	63.10
4014900.00	64.60	64.60	64.60	64.00	63.50	63.10	62.50	62.50	63.10

4014400.00	64.60	64.30	64.20	63.40	62.80	63.30	61.50	62.10	62.80
4013900.00	65.20	64.30	64.00	62.50	62.20	61.10	62.20	62.50	62.50
4013400.00	64.90	64.10	64.30	63.10	62.80	62.50	62.20	62.50	62.50
4012900.00	64.90	64.00	63.50	63.40	63.10	61.20	61.80	62.20	62.20
4012400.00	64.90	63.70	63.10	62.80	62.80	61.70	61.00	61.90	61.90
4011900.00	65.20	63.70	62.80	62.50	62.50	59.60	61.00	61.60	61.90
4011400.00	64.90	64.10	62.50	62.50	61.90	61.00	60.60	61.00	61.60
4010900.00	64.90	63.80	62.80	62.50	62.20	61.60	59.70	61.00	61.30
4010400.00	64.90	63.60	62.80	62.30	61.90	61.60	61.30	60.40	61.00
4009900.00	64.00	62.80	62.50	62.20	61.90	61.30	61.30	60.70	61.00
4009400.00	64.00	62.20	62.20	62.20	61.90	61.30	60.40	60.40	61.00
4008900.00	65.20	63.10	62.50	62.20	61.90	61.30	60.70	61.00	61.00
4008400.00	64.60	62.80	62.50	62.20	61.90	61.60	60.70	59.50	60.90
4007900.00	64.00	62.50	62.50	62.50	61.90	61.60	61.00	60.60	59.70
4007400.00	64.00	62.50	62.50	62.50	62.20	62.20	61.40	61.00	60.80
*** AERMOD - VE	RSION 18081 ***	*** H:\Wor	k\rec 06 - re	Slate Solar	Analysis\AERM	IOD\RE Slate S	olar\RE Sl ***	07/0	9/18
*** AERMET - VE	RSION 15181 ***	* * *					* * *	14:4	3:39
								PAGE	10
*** MODELOPTs:	NonDFAULT CO	NC FLAT and	ELEV RURAL						

*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***

* HILL HEIGHT SCALES IN METERS *

Y-COORD				X-COORD (METERS)
(METERS)	245200.00	245700.00	246200.00	
4017400 00	62 70	64 00	64 00	
4016000.00		64.00	64.00	
4016900.00	64.00	64.00	64.00	
4016400.00	64.00	64.00	64.00	
4015900.00	64.00	64.00	64.10	
4015400.00	63.70	63.70	64.00	
4014900.00	63.40	63.40	64.00	
4014400.00	64.00	63.40	64.00	
4013900.00	63.40	63.40	64.00	
4013400.00	62.50	62.90	63.70	
4012900.00	62.50	62.60	63.40	
4012400.00	62.50	62.50	63.10	
4011900.00	62.50	62.50	62.80	
4011400.00	62.50	62.50	62.50	
4010900.00	62.20	62.50	62.20	
4010400.00	61.60	62.40	61.60	
4009900.00	61.00	61.30	61.00	
4009400.00	61.00	61.00	61.00	
4008900.00	61.00	61.00	61.00	
4008400.00	60.70	61.00	61.00	
4007900.00	59.80	61.00	61.00	
4007400.00	59.70	60.40	60.40	

***	AERMOD - VERSION 18081 AERMET - VERSION 15181	*** *** H:\Work\REC	06 - RE Slate	Solar\Analysis\AE	RMOD\RE Slate	Solar\RE Sl	* * *	07/09/18 14:43:39 PAGE 11
* * *	MODELOPTs: NonDFAULT	CONC FLAT and ELEV	RURAL					11101 11
		*** D] (X-COORI	ISCRETE CARTESI D, Y-COORD, ZEL (METER	AN RECEPTORS *** EV, ZHILL, ZFLAG) S)				
	(243439.0, 4015355.0, (243210.0, 4008962.0,	61.4, 61.4, 61.3, 61.3,	0.0); 0.0);	(243679.0, (243437.0,	4010290.0, 4008380.0,	61.3, 61.3,	61.3, 61.3,	0.0); 0.0);
* * * * * *	AERMOD - VERSION 18081 AERMET - VERSION 15181	*** *** H:\Work\REC *** ***	06 - RE Slate	Solar\Analysis\AE	RMOD\RE Slate	Solar\RE Sl	* * *	07/09/18 14:43:39 PAGE 12
***	MODELOPTS: NonDFAULT	CONC FLAT and ELEV	RURAL FEOROLOGICAL DA	YS SELECTED FOR P	PROCESSING ***			

(1=YES; 0=NO)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

* * *	AERMOD - VERS	ION 18081	* * *	*** H:\Wor	k∖REC	06 - RE	Slate	Solar\Analysis\AERMOD\RE Slate	Solar\RE Sl	* * *	07/09/18
* * *	AERMET - VERS	ION 15181	* * *	* * *						* * *	14:43:39
											PAGE 13
* * *	MODELOPTs:	NonDFAULT	CONC	FLAT and	ELEV	RURAL					

*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

Surface	file:	\AERMET\2015 KNLC Lemoore.SFC	Met Version:	15181
Profile	file:	\AERMET\2015 KNLC Lemoore.PFL		
Surface	format:	FREE		
Profile	format:	FREE		

Surface stat	ion no.: Name: Year:	2311 UNKNOWN 2015	0.0		τ	Upper a	air statio	n no.: Name: Year:	932 UNKNOV 2015	214 WN 5					
First 24 hours YR MO DY JDY H	of scal R HO	ar data U*	W*	DT/DZ	ZICNV	ZIMCH	M-O LEN	ZO	BOWEN	ALBEDO	REF WS	WD	HT	REF TA	HT
15 01 01 1 0 15 01 01 1 0 15 01 01 1 0	1 -25.9 2 -9.5 3 -13.8	0.221 0.096 0.117	-9.000 -9.000 -9.000	-9.000 -9.000 -9.000	-999. -999. -999.	249. 82. 96.	37.6 8.3 10.4	0.04 0.06 0.05	0.74 0.74 0.74	1.00 1.00 1.00	3.76 2.44 2.95	128. 162. 218.	10.0 10.0 10.0	272.0 271.4 269.9	2.0 2.0 2.0
15 01 01 1 0 15 01 01 1 0 15 01 01 1 0 15 01 01 1 0	4 -5.6 5 -4.1 6 -999.0 7 -999.0	0.073 0.062 -9.000 -9.000	-9.000 -9.000 -9.000 -9.000	-9.000 -9.000 -9.000 -9.000	-999. -999. -999. -999.	47. 37. -999. -999.	6.2 5.1 -99999.0 -99999.0	0.05 0.04 0.04 0.04	0.74 0.74 0.74 0.74	1.00 1.00 1.00 1.00	1.93 1.72 0.00 0.00	237. 243. 0. 0.	10.0 10.0 10.0 10.0	269.9 269.9 269.2 269.9	2.0 2.0 2.0 2.0
15 01 01 1 0 15 01 01 1 0 15 01 01 1 1 15 01 01 1 1 15 01 01 1 1	8 -2.9 9 6.2 0 47.0	0.052 0.130 0.159	-9.000 0.171 0.440	-9.000 0.005 0.005	-999. 29. 65. 260	29. 112. 152.	4.4 -31.9 -7.7	0.04 0.04 0.04 0.04	0.74 0.74 0.74 0.74	0.65 0.36 0.26 0.22	1.48 1.64 1.69	111. 107. 124.	10.0 10.0 10.0	269.9 274.2 277.0 279.9	2.0 2.0 2.0 2.0
15 01 01 1 15 01 01 1 15 01 01 1 15 01 01 1	2 92.7 3 93.8 4 79.9	0.167 0.250 0.292	1.309 1.325 1.265	0.010 0.009 0.008	875. 896. 914.	163. 300. 378.	-4.5 -15.0 -28.0	0.04 0.03 0.04	0.74 0.74 0.74	0.21 0.21 0.22	1.72 3.00 3.52	98. 87. 120.	10.0 10.0 10.0	280.9 282.5 283.1	2.0 2.0 2.0 2.0
15 01 01 1 15 01 01 1 15 01 01 1 15 01 01 1	5 52.0 6 12.3 7 -8.2 8 -28.4	0.245 0.169 0.091 0.247	1.101 0.681 -9.000 -9.000	0.008 0.008 -9.000 -9.000	925. 928. -999. -999.	291. 169. 68. 295.	-25.4 -35.7 8.4 47.9	0.04 0.04 0.05 0.05	0.74 0.74 0.74 0.74	0.25 0.34 0.60 1.00	2.93 2.08 2.42 3.92	127. 148. 185. 229.	10.0 10.0 10.0 10.0	284.2 283.8 282.0 277.0	2.0 2.0 2.0 2.0
15 01 01 1 1 15 01 01 1 2 15 01 01 1 2 15 01 01 1 2 15 01 01 1 2	9 -10.8 0 -999.0 1 -7.7 2 -11.6	0.100 -9.000 0.085 0.103	-9.000 -9.000 -9.000 -9.000	-9.000 -9.000 -9.000	-999. -999. -999. -999.	95. -999. 59. 80.	8.4 -99999.0 7.1 8.7	0.04 0.04 0.04 0.04	0.74 0.74 0.74 0.74	1.00 1.00 1.00	2.79 0.00 2.36 2.86	257. 0. 260. 272.	10.0 10.0 10.0	277.0 275.9 274.2 273.8	2.0 2.0 2.0 2.0
15 01 01 1 2 15 01 01 1 2 15 01 01 1 2	3 -7.9 4 -999.0	0.085	-9.000 -9.000	-9.000 -9.000	-999. -999.	60. -999.	7.1 -99999.0	0.04	0.74 0.74	1.00	2.36	280.	10.0	272.0 271.4	2.0
First hour of YR MO DY HR HE 15 01 01 01	profile IGHT F 10.0 1	data WDIR 128.	WSPD AN 3.76	MB_TMP \$ 272.1	sigmaA 99.0	sigma -99.(aW sigmaV)0 -99.00	.							
F indicates to *** AERMOD - V *** AERMET - V	p of pro ERSION ERSION	file (=1 18081 ** 15181 **) or be * ***	elow (=(* H:\Wo) *)) ck\REC	06 – F	RE Slate S	olar\A	nalysis	5\AERMOD	\RE Slat	e Sola	r\RE S] *** ***	07/09/18 14:43:39 PAGE 14
*** MODELOPTs:	NonD	FAULT C	ONC FI	LAT and	ELEV	RURAI		CONCEN					anoun.		- + + +
		*	INCI	LUDING S	SOURCE	оо нкS) (S):	PAREA1	CONCEN	TRATION	N VALU	es for s	OURCE	GKOUP:	АЦЬ	<u></u>
			* * *	* NETWOR	RK ID:	UCART1	L ; NET	WORK T	YPE: GF S/M**3	RIDCART	* * *		* *		

Y-COORD				X-COORD	(METERS)				
(METERS)	236200.00	236700.00	237200.00	237700.00	238200.00	238700.00	239200.00	239700.00	240200.00
4017400.00	0.09137	0.10303	0.11388	0.12344	0.13283	0.14171	0.15001	0.16325	0.17049
4016900.00	0.09454	0.10690	0.12150	0.13527	0.14854	0.16254	0.17466	0.19032	0.20696
4016400.00	0.09880	0.11157	0.12842	0.14623	0.16491	0.18520	0.20489	0.22505	0.25169
4015900.00	0.10438	0.11735	0.13572	0.15667	0.18089	0.20885	0.24050	0.27135	0.31019
4015400.00	0.10986	0.12386	0.14284	0.16672	0.19556	0.23126	0.27582	0.32561	0.38448
4014900.00	0.11368	0.12991	0.15078	0.17637	0.21074	0.25511	0.31549	0.39128	0.48156
4014400.00	0.11379	0.13310	0.15686	0.18487	0.22325	0.27663	0.35556	0.47031	0.61970
4013900.00	0.11125	0.13246	0.15919	0.19044	0.23214	0.29301	0.39246	0.57047	0.87708
4013400.00	0.10828	0.12882	0.15717	0.19158	0.23592	0.30069	0.41282	0.72108	1.84200
4012900.00	0.10268	0.11977	0.14501	0.17778	0.22205	0.28249	0.37586	0.75863	1.48962
4012400.00	0.10113	0.11736	0.13983	0.16904	0.20876	0.26524	0.35982	0.49982	0.72329
4011900.00	0.10112	0.11654	0.13515	0.15839	0.19584	0.25857	0.34394	0.47376	0.64804
4011400.00	0.09579	0.10943	0.12857	0.15566	0.19609	0.24995	0.33340	0.47186	0.71136
4010900.00	0.08832	0.10275	0.12494	0.15474	0.19000	0.23638	0.31528	0.46639	0.81788
4010400.00	0.08396	0.09925	0.11987	0.14202	0.17071	0.21494	0.29067	0.43165	0.80779
4009900.00	0.07977	0.09433	0.10969	0.12846	0.15335	0.19217	0.25381	0.36834	0.68509
4009400.00	0.07340	0.08385	0.09582	0.11014	0.12978	0.16077	0.20803	0.28259	0.44443
4008900.00	0.06696	0.07671	0.08651	0.09885	0.11726	0.14364	0.17748	0.22969	0.31886
4008400.00	0.06310	0.06981	0.07854	0.08939	0.10515	0.12510	0.15156	0.19143	0.24714
4007900.00	0.05864	0.06495	0.07208	0.08218	0.09634	0.11312	0.13355	0.16554	0.19833
4007400.00	0.05412	0.05990	0.06688	0.07664	0.08829	0.10009	0.11763	0.14244	0.16606
*** 3 20000	VEDCION 10001	*** *** ***	owle) DEC. 06	DE Clata Cala	w moltraid A	EDMOD\DE Clata		* * *	07/00/19
*** AFRMET -	VERSION 16001	т·\W	OIK (KEC 00 -	RE STALE SOIA	II (AIIAIYSIS (A	ERMOD (RE STACE	: SOIAL (KE SI	* * *	11.12.20
- AERMEI -	VERSION ISIGI								14·43·39 DACE 15
*** MODELOPTs	S: NonDFAULT	CONC FLAT an	d elev rura	L					PAGE 15
		*** """"				VALUES FOR SC		NTT ** *	
		INCLUDING	SOURCE(S):	PAREA1	,	VALUES FOR SC	UNCE GROUP: A		
		*** NETW	ORK ID: UCART	1 ; NETWOR	K TYPE: GRID	CART ***			
		* *	CONC OF DPM	IN MICROG	RAMS/M**3		* *		
Y-COORD				X-COORD	(METERS)				
(METERS)	240700.00	241200.00	241700.00	242200.00	242700.00	243200.00	243700.00	244200.00	244700.00
4017400.00	0.17240	0.17493	0.16937	0.16115	0.15095	0.14373	0.15187	0.14784	0.13921
4016900.00	0.21314	0.22323	0.22700	0.21785	0.20103	0.20108	0.19722	0.18177	0.16593
4016400.00	0.27065	0.29033	0.32227	0.34674	0.32282	0.29981	0.25865	0.22558	0.20297
4015900.00	0.35037	0.39063	0.46850	0.77727	1.17764	0.46447	0.34014	0.28005	0.24223
4015400.00	0.45731	0.53990	0.69036	1.36675	1.32707	0.62409	0.42227	0.34082	0.28177
4014900.00	0.61609	0.82161	1.40825	2.17955	1.51977	0.74131	0.50913	0.39481	0.31992
4014400.00	0.89972	1.79387	2.46719	2.46267	1.34728	0.81465	0.57369	0.44192	0.35336

4013900.00	1.88821	2.60467	2.83840	2.53605	1.29010	0.85497	0.63323	0.48101	0.38001
4013400.00	2.50589	2.83145	3.02287	2.86480	1.61978	0.97614	0.68547	0.51697	0.40855
4012900.00	1.96013	2.55158	2.92672	2.94106	2.50615	1.07998	0.72461	0.54268	0.42765
4012400.00	1.00886	1.77892	2.71220	2.62052	2.15443	1.05909	0.71651	0.55134	0.44180
4011900.00	0.89382	1.71085	2.58978	1.72420	1.22375	0.88391	0.67555	0.53666	0.43594
4011400.00	1.01583	1.86391	2.58631	1.61706	1.06226	0.80403	0.63867	0.51421	0.41985
4010900.00	2.13551	2.54118	2.69958	1.60139	1.03214	0.77992	0.61849	0.50333	0.41186
4010400.00	2.28846	2.71467	2.78859	1.71260	1.11218	0.80931	0.62253	0.49095	0.40083
4009900.00	2.06529	2.49036	2.63543	2.52666	1.88354	0.89030	0.62600	0.48488	0.39477
4009400.00	0.89899	1.20547	1.45700	2.25882	2.18717	0.92365	0.60486	0.46513	0.37831
4008900.00	0.45995	0.60163	0.76414	1.73176	1.83956	0.80586	0.54139	0.42345	0.35257
4008400.00	0.31784	0.38709	0.47735	0.61543	0.69084	0.57541	0.44424	0.36017	0.30888
4007900.00	0.24081	0.28101	0.33793	0.39611	0.42220	0.40795	0.35958	0.30509	0.26520
4007400.00	0.19317	0.22011	0.25569	0.28774	0.30435	0.30301	0.29137	0.26323	0.23397
*** AERMOD -	VERSION 18081	*** *** H:\W	ork\REC 06 - F	RE Slate Solar	\Analvsis\AEF	MOD\RE Slate	Solar\RE Sl *:	** 07/	09/18
*** AERMET -	VERSION 15181	*** ***			(<u>1</u> (*:	** 14:	43:39
								PAG	E 16
*** MODELOPT:	s: NonDFAULT	CONC FLAT an	d elev rurai						
		*** THE PERIO	D (8760 HRS)	AVERAGE CONC	ΈΝΤΡΑΤΤΟΝ Ι	ALUES FOR SOU	RCE GROUP: AL	· ***	
		INCLUDING	SOURCE(S):	PAREA1	,			-	
		*** NETW	ORK ID: UCART1	; NETWORK	TYPE: GRIDCA	ART ***			
		* *	CONC OF DPM	IN MICROGR	AMS/M**3		* *		
Y-COORD	l			X-COORD	(METERS)				
(METERS)	245200.00	245700.00	246200.00						
4017400.00	0.13174	0.12605	0.12025						
4016900.00	0.15769	0.14745	0.13377						
4016400.00	0.18337	0.16370	0.14526						
4015900.00	0.21071	0.18269	0.16149						
4015400.00	0.23713	0.20383	0.17870						
4014900.00	0.26602	0.22624	0.19606						
4014400.00	0.29180	0.24498	0.21099						
4013900.00	0.31234	0.26425	0.22732						
4013400.00	0.33563	0.28102	0.23802						
4012900.00	0.35006	0.29173	0.24776						
4012400.00	0.36210	0.30048	0.25530						
4011900.00	0.36031	0.30273	0.25849						
4011400.00	0.35012	0.29728	0.25566						
4010900.00	0.34338	0.28907	0.24668						
4010400.00	0.33241	0.28111	0.24089						
4009900.00	0.32886	0.27748	0.23659						
4009400.00	0.31559	0.26822	0.23054						
4008900.00	0.29977	0.25803	0.22393						
4008400.00	0.26904	0.23771	0.21063						

4007900.00 4007400.00	0 0.23610 0 0 0.20897 0	0.211850.191570.189530.17186				
*** AERMOD *** AERMET	- VERSION 18081 *** - VERSION 15181 ***	*** H:\Work\REC 06 - ***	• RE Slate Solar\Analysi	.s\AERMOD\RE Slate S	olar\RE Sl *** ***	07/09/18 14:43:39 PAGE 17
*** MODELO	PTs: NonDFAULT CONC	FLAT and ELEV RUF	CAL			
	***]	THE PERIOD (8760 HF INCLUDING SOURCE(S):	RS) AVERAGE CONCENTRATIO PAREA1 ,	ON VALUES FOR SOUR	CE GROUP: ALL	***
		*** DISCRE	TE CARTESIAN RECEPTOR E	POINTS ***		
		** CONC OF DPM	IN MICROGRAMS/M**3	3	* *	
X-CO	ORD (M) Y-COORD (M)	CONC	X-COORD (M)	Y-COORD (M)	CONC	
24: 24:	3439.004015355.003210.004008962.00	0.50855 0.82015	243679.00 243437.00	4010290.00 4008380.00	0.62758	
*** AERMOD *** AERMET	- VERSION 18081 *** - VERSION 15181 ***	*** H:\Work\REC 06 -	RE Slate Solar\Analysi	.s\AERMOD\RE Slate S	olar\RE Sl *** ***	07/09/18 14:43:39 PAGE 18
*** MODELO	PTs: NonDFAULT CONC	FLAT and ELEV RUF	RAL			
	***]]	THE 1ST HIGHEST 1- INCLUDING SOURCE(S): *** NETWORK ID: UCAF	HR AVERAGE CONCENTRATIO PAREA1 , RT1 ; NETWORK TYPE: C	N VALUES FOR SOUR	CE GROUP: ALL	***
		** CONC OF DPM	IN MICROGRAMS/M**3	3	**	
Y-COORD (METERS)	236200.00	236700.00	X-COORD (METERS) 237200.00	237700	.00	238200.00
4017400.0 4016900.0 4016400.0	9.74676 (15120908 8.81662 (15120908 9.11357 (15121703	3) 10.81731 (1512 3) 10.38537 (1512 3) 9.27411 (1512	20908) 11.17150 (151 20908) 11.64599 (151 20908) 11.29053 (151	.20908) 10.73087 .20908) 12.30671 .20908) 12.65266	(15122619) (15120908) (15120908)	11.06740 (15121917) 11.82433 (15122619) 13.66469 (15120908)
4015900.0 4015400.0	11.06626 (15030704 13.13231 (15120806	$\begin{array}{cccc} 4) & 10.53292 & (1503) \\ 5) & 13.14092 & (1512) \\ 6) & 14.21646 & (1512) \\ \end{array}$	30704) 10.37419 (153 20806) 13.06081 (150 15.00000 (150) 15.00000 (150)	.21703) 12.30285 .30704) 12.70479 .20206) 16.12422	(15120908) (15030704)	13.92290 (15120908) 13.63665 (15120908)
4014400.0 4013900.0	11.50096 (15120806 12.41428 (15022604 14.25946 (15011905	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.09377 (15) 22604) 13.14226 (15) .0608) 16.67420 (15)	10.13433 022604) 16.84936 010608) 17.73103	(15120806) (15120806) (15010608)	19.38091 (15120806) 18.66399 (15010608)
4013400.0 4012900.0	14.55801 (15122707 11.76771 (15020218	7) 15.78590 (1512 3) 13.03710 (1502	22707) 17.43699 (151 20218) 14.47224 (150	.22707) 19.08228 020218) 16.19231	(15122707) (15020218)	21.10463 (15122707) 18.42808 (15012405)
4012400.0 4011900.0 4011400.0	12.42815 (15012405 12.70566 (15012004 14.98972 (15120718	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 16.30861 & (150) \\ 2004) & 17.87339 & (151) \\ 0.718) & 13.48650 & (151) \\ \end{array}$	12405) 17.31575 .20718) 19.06270 .20718) 16.19102	(15012004) (15120718) (15030101)	22.66718 (15120718) 19.36887 (15030101) 17.34689 (15011906)
4010900.0	11.18872 (15120718	3) 13.59624 (1503	30101) 13.36207 (150	30420) 15.16088	(15011906)	16.79352 (15011802)

4010400.0 4009900.0 4009400.0 4008900.0 4008400.0 4007900.0 4007400.0	<pre>12.50018 (15030101) 11.50528 (15122707) 11.56353 (15011906) 11.64798 (15011802) 11.33584 (15122618) 10.77960 (15122618) 8.32718 (15122618)</pre>	12.68564 (15030420) 12.57522 (15011906) 12.45462 (15011802) 12.16779 (15122618) 11.22763 (15122618) 9.86361 (15120718) 9.28751 (15022419)	13.52756 (15011906) 13.62556 (15011802) 13.49901 (15122618) 11.71628 (15122618) 10.94950 (15120718) 10.06086 (15022419) 10.87233 (15011802)	15.03483 (15011802) 15.05682 (15122707) 12.26562 (15122618) 11.95166 (15120718) 11.82885 (15120718) 11.93681 (15011802) 13.08755 (15122618)	16.32609 (15122618) 16.78709 (15122707) 13.15093 (15120718) 13.28197 (15120718) 13.27832 (15011802) 14.90892 (15122618) 14.80039 (15122618)
*** AERMOD *** AERMET *** MODELOI	- VERSION 18081 *** *** - VERSION 15181 *** *** PTS: NondFault Conc FL	H:\Work\REC 06 - RE S]	late Solar\Analysis\AERMOD [\]	RE Slate Solar\RE Sl *** ***	07/09/18 14:43:39 PAGE 19
MODELO	*** THE INCL	1ST HIGHEST 1-HR AVE UDING SOURCE(S): PA	ERAGE CONCENTRATION VALUE	S FOR SOURCE GROUP: ALL	***
	***	** CONC OF DPM	NETWORK TYPE: GRIDCART '	**	
Y-COORD (METERS)	238700.00	239200.00	X-COORD (METERS) 239700.00	240200.00	240700.00
4017400.0 4016900.0 4015400.0 4015400.0 4014900.0 4013900.0 4013400.0 4013400.0 4012900.0 4012400.0 4011900.0 4011400.0 4010900.0 4010900.0 4009900.0 4009900.0 4008900.0 4007900.0 4007900.0	12.18863 (15112106) 12.27604 (15050206) 13.25426 (15120908) 15.36322 (15120908) 15.99965 (15120908) 15.91930 (15030704) 20.57186 (15120806) 21.05040 (15120806) 24.87817 (15011905) 23.53018 (15012405) 25.33783 (15120718) 20.47078 (15011906) 19.34941 (15120806) 18.03384 (15120806) 17.76997 (15011905) 19.01988 (15122707) 14.95610 (15120718) 15.02625 (15011802) 17.19394 (15122618) 16.42495 (15122618) 16.50127 (15022306)	12.76597 (15012901) 13.71903 (15012901) 14.25639 (15112106) 15.51883 (15120908) 17.61868 (15120908) 17.61868 (15120908) 21.43217 (15120806) 26.06995 (15120806) 29.14552 (15010608) 32.17221 (15120718) 25.51915 (15011906) 23.52814 (15122618) 20.72044 (15120806) 22.10281 (15120806) 22.01584 (15122707) 18.28954 (15012405) 20.25685 (15122618) 18.75203 (15022419) 21.73043 (15022306) 22.97847 (15022306)	14.71136 (15111004) 14.07835 (15111004) 15.04062 (15121917) 16.60515 (15012901) 18.57738 (15120908) 20.93560 (15120908) 22.22402 (15120806) 35.35026 (15010608) 41.03139 (15120718) 29.67776 (15122618) 24.44969 (15120908) 24.11313 (15120908) 24.11313 (15120908) 24.64392 (15010608) 26.97156 (15122618) 24.64392 (15010608) 26.47583 (15122707) 24.75767 (15122618) 25.53549 (15022306) 28.63347 (15022306) 32.97874 (15021904) 32.39932 (15021904)	16.90653 (15022107) 17.42728 (15022107) 18.79709 (15111004) 19.59434 (15111004) 19.23251 (15111004) 22.65975 (15120908) 32.33069 (15120908) 32.33069 (15120806) 36.56483 (15120718) 37.51342 (15122618) 27.20342 (15122618) 24.66165 (15022306) 33.04879 (15120908) 32.67000 (15120806) 32.99156 (15120806) 34.92947 (15021904) 43.77924 (15021904) 45.66997 (15021904) 32.68495 (15021904) 32.68495 (15021904)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
*** AERMOD *** AERMET *** MODELOI	- VERSION 18081 *** *** - VERSION 15181 *** *** PTs: NondFault Conc FL	H:\Work\REC 06 - RE SJ	late Solar\Analysis\AERMOD\	RE Slate Solar\RE Sl *** ***	07/09/18 14:43:39 PAGE 20

16

	*** TH IN	E 1ST HIGHEST 1-HR A CLUDING SOURCE(S):	VERAGE CONCENTRATION VALU PAREA1 ,	JES FOR SOURCE GROUP: ALL	***
	*	** NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *	
		** CONC OF DPM	IN MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	241200.00	241700.00	242200.00	242700.00	243200.00
4017400.0	18.84689 (15011321)	20.53616 (15051424) 22.97504 (15123103)	29.70701 (15010507)	25.85499 (15012104)
4016900.0	20.63797 (15012204)	22.53921 (15051424) 25.46444 (15123103)	36.50867 (15010507)	25.72067 (15012104)
4016400.0	23.01617 (15012204)	25.07044 (15051424) 29.05298 (15123103)	43.00066 (15010507)	28.75453 (15010804)
4015900.0		28.49030 (15051424) 36.59683 (15051424)	41.22920 (15010507)	26.71803 (15010804)
4013400.0	29.31830 (15012204)	A1 10552 (15051424) 44.81220 (15010507)	24 74026 (15012104)	23.97045 (15013101) 20.26040 (15012101)
4014400 0	34.30393 (15012204)	39 14838 (15051424) $41.01071(15010507)$) $41.93101(15010507)$	33 03199 (15013101)	25.32076 (15013101)
4013900.0	36.38403 (15012204)	36.86907 (15051424) 38.98298 (15010507)	33.06660 (15011121)	25.97247 (15010804)
4013400.0	33.71328 (15012204)	35.92319 (15010507) 36.66812 (15010507)	35.04858 (15092402)	28.79278 (15010804)
4012900.0	38.08771 (15021904)	34.47445 (15021904) 35.76543 (15011121)	35.76523 (15010804)	25.96338 (15011306)
4012400.0	42.84653 (15021904)	34.42773 (15083121) 33.36442 (15122507)	33.69323 (15120117)	24.84269 (15030606)
4011900.0	44.99229 (15021904)	37.80502 (15031320) 30.10350 (15122507)	29.22060 (15122507)	20.99731 (15120117)
4011400.0	44.53704 (15021904)	40.55514 (15031320) 30.31403 (15120117)	25.32126 (15122507)	22.98029 (15120117)
4010900.0	42.24808 (15021904)	42.39800 (15031320) 31.41188 (15120117)	22.72661 (15122507)	20.31160 (15120117)
4010400.0	43.73928 (15031320)	43.19131 (15031320) 30.12974 (15122507)	21.80985 (15120117)	18.89034 (15011401)
4009900.0	45.96724 (15031320)	42.43334 (15031320) 36.40908 (15122507)	27.33490 (15120117)	21.16969 (15011306)
4009400.0	46.69689 (15031320)	39.87773 (15122507) 46.27436 (15122507)	36.26146 (15120117)	23.69340 (15012404)
4008900.0	40.60543 (15031320)	32.72217 (15012720) 49.53530 (15122507)	41.44700 (15120117)	23.13904 (15120117)
4008400.0	35.70367 (15031320)	28.56690 (15012720) 41.69817 (15122507)	38.61086 (15122507)	30.28466 (15120117)
4007900.0	31.72921 (15031320)	25.45682 (15012720) 32.04335 (15122507)	35.97585 (15122507)	31.59138 (15120117)
4007400.0	28.16793 (15031320)	23.05873 (15012720) 26.04078 (15122507)	34.15437 (15122507)	25.66616 (15120117)
*** AERMOD *** AERMET	- VERSION 18081 *** * - VERSION 15181 *** *	** H:\Work\REC 06 - RE **	Slate Solar\Analysis\AERMOI	D\RE Slate Solar\RE Sl *** ***	07/09/18 14:43:39
*** MODELO	PTs: NonDFAULT CONC	FLAT and ELEV RURAL			PAGE 21
	*** TH IN	E 1ST HIGHEST 1-HR A CLUDING SOURCE(S):	VERAGE CONCENTRATION VALU PAREA1 ,	JES FOR SOURCE GROUP: ALL	* * *
	*	** NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *	
		** CONC OF DPM	IN MICROGRAMS/M**3	**	
Y-COORD	I		X-COORD (METERS)		
(METERS)	243700.00	244200.00	244700.00	245200.00	245700.00

4017400.0	20,05282 (15092402)	19,73134 (15010804)	16,35079 (15121407)	13,15943 (15111802)	12,09857 (15092402)
4016900.0	23,38108 (15010804)	18,66823 (15121407)	14,66649 (15111802)	13,44624 (15092402)	13,79026 (15010804)
4016400 0	2157056(15010001)	17 31209 (15011121)	14 55144 (15010924)	$14 \ 80119 \ (15010804)$	15,79020 (19010001)
4015900 0	1974171(15011121)	17 13966 (15013101)	18 24291 (15013101)	17 77328 (15013101)	15 23762 (15013101)
4015400 0	$22 \ 30556 \ (15013101)$	21 79507 (15013101)	$18 \ 17271 \ (15013101)$	14 48884 (15122623)	13 38941 (15122623)
4014900 0	22.30330 (13013101)	19 89269 (15010804)	15, 72301, (15020305)	14.55749 (1502023)	13,30041 (15122025) 13,31379 (15011401)
4014900.0	22.80902 (15013101)	17 24262 (15010804)	15 99595 (15011401)	14.05749 (15020505)	12,09956,(15011401)
4013000.0	22.51021 (15010804)	16 07067 (15011401)	14, 24177, (15011401)	12 06020 (15012101)	10 40655 (15011401)
4013900.0	21.70190 (15010804)	15.07957 (15011401)	12 01000 (15110002)	12.05038 (15013101)	11 57071 (15110003)
4013400.0	19.02/34 (15013101)	15.56284 (15112203)	13.91889 (15112203)	12.01901 (15112203)	11.57871 (15112203)
4012900.0	21.89768 (15011306)	19.12239 (15011306)	17,27500 (15011306)	15.34555 (15011306)	14.00826 (15011306)
4012400.0	21.06336 (15011124)	19.39557 (15011124)	17.37599 (15011124)	15.44087 (15011124)	13.48248 (15011124)
4011900.0	19.33142 (15012404)	18.05629 (15012404)	15.73718 (15012404)	13.15679 (15012404)	12.77822 (15011124)
4011400.0	14.89839 (15040304)	13.70195 (15011201)	14.53198 (15012404)	14.62337 (15012404)	13.25490 (15012404)
4010900.0	16.08392 (15030507)	12.72700 (15012506)	11.89843 (15020305)	11.55887 (15011201)	11.64421 (15011201)
4010400.0	17.99165 (15120117)	11.55818 (15040304)	11.18818 (15012506)	9.94576 (15012506)	8.92962 (15110403)
4009900.0	17.78826 (15011306)	15.23397 (15011306)	13.44989 (15011306)	11.95524 (15011306)	10.78021 (15011306)
4009400.0	18.17985 (15011124)	16.11934 (15011124)	14.36466 (15011124)	12.42820 (15011124)	10.52739 (15011124)
4008900.0	18.66853 (15012404)	17.05642 (15012404)	14.50675 (15012404)	11.94027 (15011124)	11.60870 (15011124)
4008400.0	16.03278 (15012506)	14.28204 (15011201)	14.36239 (15012404)	13.66070 (15012404)	12.20817 (15012404)
4007900.0	19.54191 (15120117)	13.71903 (15012506)	12.18254 (15120117)	11.79924 (15011201)	11.67214 (15012404)
4007400.0	24.26116 (15120117)	13.96251 (15120117)	12.13321 (15012506)	11.00529 (15120117)	9.61726 (15011201)
*** AERMET	- VERSION 18081 *** ***	H. WOIK KEC 00 - KE S	Tate Solar (Analysis (Arrmor	D/RE SIACE SOLAT/RE SI ****	14:43:39
*** MODELOF	Ts: NonDFAULT CONC FL	AT and ELEV RURAL			PAGE 22
*** MODELOF	TS: NonDFAULT CONC FL *** THE INCL ***	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P	ERAGE CONCENTRATION VALU AREA1 , : NETWORK TYPE: GRIDCART	UES FOR SOURCE GROUP: ALL	PAGE 22
*** MODELOF	TS: NonDFAULT CONC FL *** THE INCL ***	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART	UES FOR SOURCE GROUP: ALL	PAGE 22
*** MODELOF	TS: NonDFAULT CONC FI *** THE INCL ***	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3	UES FOR SOURCE GROUP: ALL ***	PAGE 22
*** MODELOF	TS: NonDFAULT CONC FL *** THE INCL ***	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL ***	PAGE 22
*** MODELOF Y-COORD (METERS)	TS: NonDFAULT CONC FL *** THE INCL *** 246200.00	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS)	TS: NonDFAULT CONC FL *** THE INCL *** 246200.00	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS)	Ts: NonDFAULT CONC FL *** THE INCL *** 246200.00	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22 ***
*** MODELOF Y-COORD (METERS) 	TS: NonDFAULT CONC FL *** THE INCL 246200.00 	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22 ***
*** MODELOF Y-COORD (METERS) 4017400.0 4016900.0	PTs: NonDFAULT CONC FL *** THE INCL 246200.00 	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22 ***
*** MODELOF Y-COORD (METERS) 4017400.0 4016900.0 4016400.0	TS: NonDFAULT CONC FL *** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22 ***
*** MODELOF Y-COORD (METERS) 4017400.0 4016900.0 4016400.0 4015900.0	TS: NonDFAULT CONC FL *** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22 ***
<pre>*** MODELOF</pre>	TS: NonDFAULT CONC FL *** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS) 4017400.0 4016900.0 4016400.0 4015900.0 4015400.0 4015400.0 4014900.0	TS: NonDFAULT CONC FL *** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305) 12.55792 (15011401)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF (METERS) 	Ts: NonDFAULT CONC FL *** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305) 12.55792 (15011401) 10.38752 (15011401)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV UDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF (METERS) 4017400.0 4016900.0 4016400.0 4015400.0 4015400.0 4014900.0 4014900.0	Ts: NonDFAULT CONC FL *** THE INCL *** 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305) 12.55792 (15011401) 10.38752 (15011401) 9.74738 (15011401)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS) 4017400.0 4016900.0 4016400.0 4015400.0 4015400.0 401400.0 4013900.0 4013400.0 4013400.0	TS: NonDFAULT CONC FL *** THE INCL 246200.00 	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS) 	TS: NonDFAULT CONC FL **** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305) 12.55792 (15011401) 10.38752 (15011401) 10.71609 (15112203) 12.95751 (15011306)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22
*** MODELOF Y-COORD (METERS) 	PTs: NonDFAULT CONC FL **** THE INCL 246200.00 12.76774 (15010804) 11.82061 (15013101) 14.97521 (15013101) 12.20208 (15013101) 12.39027 (15020305) 12.55792 (15011301) 10.38752 (15011401) 10.38752 (15011401) 10.71609 (15112203) 12.95751 (15011306) 11.80212 (1501124)	AT and ELEV RURAL 1ST HIGHEST 1-HR AV JUDING SOURCE(S): P NETWORK ID: UCART1 ** CONC OF DPM	ERAGE CONCENTRATION VALU AREA1 , ; NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3 X-COORD (METERS)	UES FOR SOURCE GROUP: ALL *** **	PAGE 22

4011400.0 11.40832 (15012404) 4010800 0 12.12824 (15012404)				
4010400.0 9.93844 (15011201)				
4009900.0 9.76680 (15011306)				
4009400.0 9.18575 (15011306)				
4008900.0 11.06383 (15011124)				
4008400.0 9.63473 (15012404)				
4007900.0 11.53365 (15012404)				
4007400.0 10.18798 (15011201)				
*** AERMOD - VERSION 18081 *** *** H:\Work\R	EC 06 - RE Slate Solar\Ana	alysis\AERMOD\RE Slate Sola	r\RE Sl ***	07/09/18
A AERMET - VERSION 15181 AAAAAAAA			~ ~ ~	14:43:39 DACE 22
*** MODELOPTs: NonDFAULT CONC FLAT and EL	EV RURAL			PAGE 25
*** THE 1ST HIGH INCLUDING SOUR	EST 1-HR AVERAGE CONCENT CE(S): PAREA1 ,	RATION VALUES FOR SOURCE	GROUP: ALL	* * *
***	DISCRETE CARTESIAN RECEP	FOR POINTS ***		
** CONC	OF DPM IN MICROGRAMS	/M**3	* *	
X-COORD (M) Y-COORD (M) CONC (YYMMDDHH) X-(COORD (M) Y-COORD (M)	CONC (YYMMDDHH)
243439.00 4015355.00 23.14893 ()	15013101)	243679.00 4010290.00	17.80799 (15120117)
243210.00 4008962.00 21.56713 (2	15012404)	243437.00 4008380.00	21.91493 (15120117)
*** AERMOD - VERSION 18081 *** *** H:\Work\R: *** AERMET - VERSION 15181 *** ***	EC 06 - RE Slate Solar\Ana	alysis\AERMOD\RE Slate Sola:	r\RE Sl *** ***	07/09/18 14:43:39
*** MODELOPTS: NonDFAULT CONC FLAT and EL	EV RURAL			PAGE 24
*** THE :	SUMMARY OF MAXIMUM PERIOD	(8760 HRS) RESULTS ***		
** 2012 05 0	TN MTODOODAMO /M**		* *	

 GROUP ID
 AVERAGE CONC
 RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG)
 OF TYPE
 NETWORK GRID-ID

 ALL
 1ST HIGHEST VALUE IS
 3.02287 AT (241700.00, 4013400.00, 64.30, 64.30, 0.00) GC UCART1

 2ND HIGHEST VALUE IS
 2.94106 AT (242200.00, 4012900.00, 63.40, 63.40, 0.00) GC UCART1

 3RD HIGHEST VALUE IS
 2.92672 AT (241700.00, 4012900.00, 63.50, 63.50, 0.00) GC UCART1

 4TH HIGHEST VALUE IS
 2.86480 AT (242200.00, 4012900.00, 63.10, 63.10, 0.00) GC UCART1

 5TH HIGHEST VALUE IS
 2.86480 AT (241700.00, 4013400.00, 64.00, 64.00, 0.00) GC UCART1

 6TH HIGHEST VALUE IS
 2.83840 AT (241700.00, 4013400.00, 64.10, 64.10, 0.00) GC UCART1

 6TH HIGHEST VALUE IS
 2.83145 AT (241200.00, 4013400.00, 64.10, 64.10, 0.00) GC UCART1

 7TH HIGHEST VALUE IS
 2.78859 AT (241700.00, 4010400.00, 63.60, 63.60, 0.00) GC UCART1

 8TH HIGHEST VALUE IS
 2.71467 AT (241200.00, 4010400.00, 63.60, 63.60, 0.00) GC UCART1

 9TH HIGHEST VALUE IS
 2.71220 AT (241700.00, 4012400.00, 63.10, 63.10, 0.00) GC UCART1

10TH HIGHEST VALUE IS 2.69958 AT (241700.00, 4010900.00, 62.80, 62.80, 0.00) GC UCART1 *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** *** * * * 14:43:39 PAGE 25 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** THE SUMMARY OF HIGHEST 1-HR RESULTS *** ** CONC OF DPM IN MICROGRAMS/M**3 * * DATE NETWORK GROUP ID AVERAGE CONC (YYMMDDHH) RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG) OF TYPE GRID-ID HIGH 1ST HIGH VALUE IS 50.94106 ON 15021904: AT (240700.00, 4009900.00, 64.00, 64.00, 0.00) GC UCART1 ALL *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** AERMOD - VERSION 18081 *** *** H:\Work\REC 06 - RE Slate Solar\Analysis\AERMOD\RE Slate Solar\RE Sl *** 07/09/18 *** AERMET - VERSION 15181 *** *** * * * 14:43:39 PAGE 26 *** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ------A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) A Total of 401 Informational Message(s) A Total of 8760 Hours Were Processed A Total of 198 Calm Hours Identified 203 Missing Hours Identified (2.32 Percent) A Total of

******* FATAL ERROR MESSAGES ******* *** NONE ***

****** WARNING MESSAGES *******

RE W213	182	RECART: ELEV Input Inconsistent With Option: Input Ignored	UCART1
ME W186	126	MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used	0.50

*** AERMOD Finishes Successfully ***

HARP2 - HRACalc (dated 17023) 7/9/2018 3:28:01 PM - Output Log

Receptor Type: Resident Scenario: All Calculation Method: Derived

Start Age: -0.25 Total Exposure Duration: 30

Exposure Duration Bin Distribution 3rd Trimester Bin: 0.25 0<2 Years Bin: 2 2<9 Years Bin: 0 2<16 Years Bin: 14 16<30 Years Bin: 14 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True Mother's milk: True Water: False Fish: False Homegrown crops: False Beef: False Dairy: False Pig: False Chicken: False Egg: False

Daily breathing rate: LongTerm24HR

Worker Adjustment Factors Worker adjustment factors enabled: NO **Fraction at time at home** 3rd Trimester to 16 years: OFF 16 years to 70 years: ON

Deposition rate (m/s): 0.05 Soil mixing depth (m): 0.01 Dermal climate: Mixed

Tier2 not used.

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to: H:\Work\REC 06 - RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_CancerRisk.csv Cancer risk total by receptor saved to: H:\Work\REC 06 - RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_CancerRiskSumByRec.csv Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to: H:\Work\REC 06 - RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_NCChronicRisk.csv Chronic risk total by receptor saved to: H:\Work\REC 06 - RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to: H:\Work\REC 06 -RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_NCAcuteRisk.csv Acute risk total by receptor saved to: H:\Work\REC 06 - RE Slate Solar\Analysis\HARP\RE SLATE SOLAR\hra\REC06_NCAcuteRiskSumByRec.csv HRA ran successfully