# APPENDIX H. PALEONTOLOGICAL RESOURCES MEMORANDUM



## PALEONTOLOGICAL RESOURCES IDENTIFICATION REPORT

ARE Science Village

City of San Diego, California

**April 2022** 

### PALEONTOLOGICAL RESOURCES IDENTIFICATION REPORT

ARE Science Village

City of San Diego, California

Prepared for: Alexandria Real Estate

10996 Torreyana Road San Diego, California 92121 Contact: Neil Hyytinen Phone: (858) 610-5420

Email: nhyytinen@hechtsolberg.com

Prepared by: Michael Baker International

9755 Clairemont Mesa Boulevard, Suite 100

San Diego, California 92124 Contact: Bob Stark, AICP Phone: (858) 614-5000

April 2022

#### **TABLE OF CONTENTS**

| Introduction                                     | 1 |
|--------------------------------------------------|---|
| Project Description                              | 1 |
| Toject bescription                               |   |
| Paleontological Resources Identification Methods | 3 |
| San Diego Museum of Natural History Search       | 3 |
| Summary of Findings and Recommendations          |   |
| References                                       | 5 |

#### **ATTACHMENTS**

Attachment 1: Exhibits

Attachment 2: San Diego Museum of Natural History Search Results



#### INTRODUCTION

In support of the Science Village redevelopment project located at 9363, 9373, and 9393 Towne Centre Drive (APNs 345-200-04 and -05, respectively) (project), Michael Baker International staff completed a literature review and San Diego Natural History Museum (SDNHM) paleontological resources records search to determine whether the project could result in adverse impacts to paleontological resources in accordance with the California Environmental Quality Act (CEQA). Methods, results, and recommendations are summarized below; exhibits are provided in **Attachment 1**.

#### PROJECT DESCRIPTION

#### **Proposed Project**

Alexandria Real Estate Equities (applicant) proposes to redevelop an existing commercial site in the community of La Jolla, located in the City of San Diego, California. The proposed project consists of two primary components: (1) demolition of the existing on-site buildings totaling approximately 138,400 square feet (sq. ft.) and (2) redevelopment of the site with approximately 369,878 sq. ft. of mixed-use research, retail, and office uses across two buildings. The project would consist of approximately 310,416 sq. ft. of scientific research and development (R&D) uses and 59,462 sq. ft. are planned as accessory/amenity space. The accessory/amenity space is expected to consist of a 7,655 sq. ft. market, 563 sq. ft. food and beverage space, 23,397 sq. ft. fitness center, and 27,847 sq. ft. conference space(s). Additionally, three levels of subterranean parking with approximately 938 parking spaces are proposed. Consistent with the current University Community Plan, accessory and amenity spaces would be provided on-site within the principal buildings (non-freestanding) and the uses are planned to be oriented towards the interior of the project.

TABLE 1. BUILDING USE SUMMARY

| Use by Building                       | Square Footage of Proposed Use |  |  |  |  |  |
|---------------------------------------|--------------------------------|--|--|--|--|--|
| Existing Buildings (to be Demolished) |                                |  |  |  |  |  |
| Scientific Research and Development   | 138,400                        |  |  |  |  |  |
| Total                                 | 138,400                        |  |  |  |  |  |
| Proposed Buildings                    |                                |  |  |  |  |  |
| Scientific Research and Development   | 310,416                        |  |  |  |  |  |
| Secondary Uses                        |                                |  |  |  |  |  |
| Food and Beverage                     | 563                            |  |  |  |  |  |
| Retail/Market                         | 7,655                          |  |  |  |  |  |
| Fitness Center                        | 23,397                         |  |  |  |  |  |
| Conference Space                      | 27,847                         |  |  |  |  |  |
| Subtotal                              | 59,462                         |  |  |  |  |  |
| Total                                 | 369,878                        |  |  |  |  |  |



Discretionary actions associated with the project include a Specific Plan Amendment (SPA) to the Nexus Technology Centre Specific Plan, Planned Development Permit (PDP), a Rezone, and a Community Plan Amendment (CPA). If approved, these entitlements would allow for the proposed redevelopment of the project site.

#### **Construction**

#### Schedule

Construction of the project is anticipated to occur over an approximate 47-month timeframe (approximately 4 years) from the onset of demolition through final construction. It is anticipated that the work would be completed in 8- or 10-hour shifts, with a total of five shifts per week (Monday-Friday). Overtime and weekend work would occur as necessary to meet scheduled milestones or accelerate the schedule and would comply with all applicable City ordinances.

#### Demolition

Demolition of the three existing buildings on-site is anticipated to take approximately 5 months. Demolition would be accomplished with cranes, dozers, and other heavy equipment. Waste materials would be uploaded onto large trucks using small cranes, forklifts, and other construction equipment as needed. Demolition equipment would be delivered to the site on low-bed trucks unless the equipment can be driven to the site (e.g., on boom trucks).

#### **Construction and Grading**

As the subject site is fairly level, project grading is expected to be minor; no mass grading is required or proposed. It is anticipated that necessary earthwork would require a total cut of approximately 315,000 cubic yards (c.y.), mainly to accommodate the 3 levels of subterranean parking, and a total fill of approximately 100 c.y. Therefore, approximately 314,900 c.y. of soil would be exported off-site and disposed of at a licensed facility. Grading would be accomplished with scrapers, motor graders, water trucks, dozers, and compaction equipment. Building materials would be off-loaded and installed using small cranes, boom trucks, forklifts, rubber-tired loaders, rubber-tired backhoes, and other small to medium-sized construction equipment as needed. Construction equipment would be delivered to the site on low-bed trucks unless the equipment can be driven to the site (e.g., on boom trucks). Existing on-site vegetation would be removed where necessary to allow for construction of the proposed development.



#### PALEONTOLOGICAL RESOURCES IDENTIFICATION METHODS

#### SAN DIEGO MUSEUM OF NATURAL HISTORY SEARCH

The SDNHM completed a paleontology collection records search for locality and specimen data on September 2, 2019 (McComas 2019: **Attachment 2**). The records search identified no previously identified fossil localities within the project site. The project site was identified as having early to middle Pleistoceneage very old paralic deposits (Lindavista Formation), middle Eocene-age Stadium Conglomerate, and middle Eocene-age (approximately 47 million years old) Scripps Formation.

The early to middle Pleistocene-age very old paralic (Lindavista Formation) deposits (approximately 1.5 to 0.5 million years old) underlie the majority of the project site. The Lindavista Formation is known to produce marine invertebrate and vertebrate fossil specimens throughout San Diego County. In other regions of San Diego County, the Lindavista Formation is identified as highly sensitive for paleontological resources. Within the project site and 1-mile vicinity, the Lindavista Formation is assigned a moderate sensitivity rating because only one fossil locality of pholad clams borings has been previously identified. Excavation between 15.5 and 24.9 feet deep will extend into the Lindavista Formation according to the geotechnical investigations completed for the project (Geocon 2017).

The middle Eocene-age Stadium Conglomerate includes non-marine deposits (approximately 44-42 million years old) that underlie the Lindavista Formation within the project site. No previous fossil localities from the upper or lower members of this formation have been identified within a 1-mile radius of the project site, but the members are assigned high resource sensitivity because they are known to produce fossilized plants, marine invertebrates, and scientifically important assemblages of fossilized mammals. However, the Stadium Conglomerate was not encountered during a geotechnical investigation of the project site, and therefore may or may not be present. The Stadium Conglomerate should be located between the Lindavista Formation and Scripps Formation, meaning excavation between 15.5 and 34 feet deep has the potential to extend into the Stadium Conglomerate (Geocon 2017).

The middle Eocene-age (approximately 47 million years old) Scripps Formation underlies either the Lindavista Formation or artificial fill deposits within the project site. The SDNHM has 49 recorded fossil collection localities from the Scripps Formation within a 1-mile radius of the project site that have included trace fossils, fossilized plant impressions or remains, marine invertebrates, and marine vertebrates. The Scripps Formation has high paleontological sensitivity. Excavation between 25 and 34 feet deep will extend into the Scripps Formation (Geocon 2017).

In summary, the project site is underlaid with the moderately sensitive Lindavista Formation at depths of 15.5 to 24.9 feet deep and the highly sensitive Scripps Formation at depths between 25 to 34 feet deep, as well as potentially underlaid by the highly sensitive Stadium Conglomerate at depths between 15.5 to 34 feet deep.



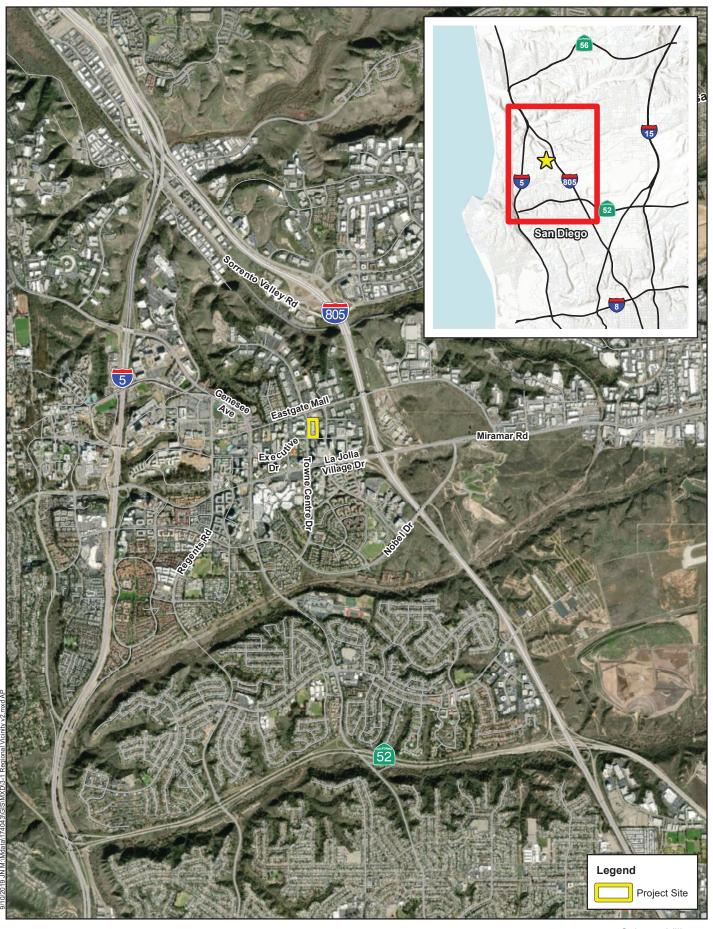
#### SUMMARY OF FINDINGS AND RECOMMENDATIONS

The project site is underlaid with the moderately sensitive Lindavista Formation at depths of 15.5 to 24.9 feet deep and the highly sensitive Scripps Formation at depths between 25 to 34 feet deep, as well as potentially underlaid by the highly sensitive Stadium Conglomerate at depths between 15.5 to 34 feet deep. Excavation for the project is planned at an approximate maximum depth of 71 feet. Excavation would therefore extend approximately 50 feet deeper than the existing development.

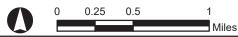
Due to anticipated excavation depths, the project may have the potential to encounter undiscovered paleontological resources. To ensure the protection of such resources, the project would be subject to requirements identified in the City of San Diego grading ordinance [Land Development Code (LDC) Section 142.0151, Paleontological Resources Requirements for Grading Activities], which requires monitoring for paleontological resources during project grading activities. Specifically, the ordinance requires monitoring for grading that involves 1,000 c.y. or greater, and 10 feet or greater in depth, in a High Resource Potential Geologic Deposit/Formation/Rock Unit; or grading that involves 2,000 c.y. or greater, and 10 feet or greater in depth, in a Moderate Resource Potential Geologic Deposit/Formation/Rock Unit (LDC Section 142.0151(a)). If paleontological resources, as defined in the General Grading Guidelines for Paleontological Resources (Appendix P of the City's Land Development Manual), are discovered during grading, all grading in the area of discovery shall cease until a qualified paleontological monitor has observed the discovery and the discovery has been recovered in accordance with the General Grading Guidelines for Paleontological Resources (LDC Section 142.0151(b).

Project conformance with regulatory requirements of the grading ordinance would preclude potential impacts to unknown paleontological resources. Impacts would be less than significant and no mitigation measures are required.




#### REFERENCES

- California Geological Society. 2010. "Geologic Map of California." Electronic resources, <a href="http://maps.conservation.ca.gov/cgs/gmc/">http://maps.conservation.ca.gov/cgs/gmc/</a>, accessed multiple.
- Geocon Incorporated. 2017. "Geotechnical Investigation: Podium 93 9363, 9737, and 9393 Towne Centre Drive, San Diego, California." Prepared for Alexandria Real Estates Equities.
- McComas, Katie. 2019. "Paleontological Records Search Podium 93." San Diego Natural History Museum.

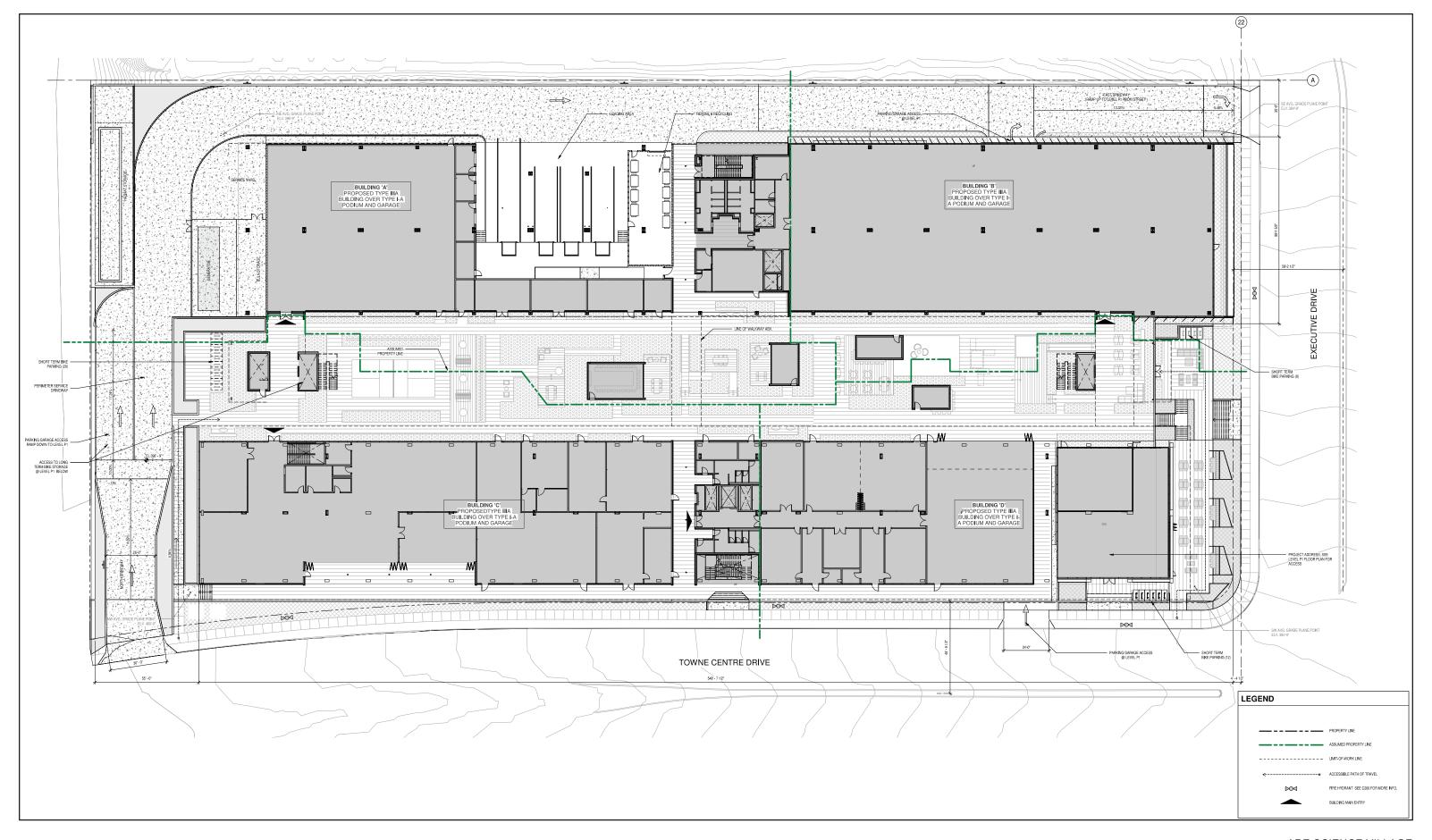





## Attachment 1: Exhibits








Science Village
Regional Map



Michael Baker

0 100 200 400 Feet Science Village Location Map







ARE SCIENCE VILLAGE
Site Plan



Attachment 2: San Diego Museum of Natural History Search Results

#### SAN DIEGO NATURAL HISTORY MUSEUM

3 September 2019

Margo Nayyar Michael Baker International 2729 Prospect Park Drive, Suite 220 Rancho Cordova, CA 95670

RE: Paleontological Records Search – Podium 93

Dear Ms. Nayyar:

This letter presents the results of a paleontological records search conducted for the Podium 93 project (Project), located in the northeastern portion of the University City neighborhood within the University community plan area of the City of San Diego, San Diego County, California. The Project site is bordered to the west by Towne Centre Drive, to the south by Executive Drive, and to the east and north by commercial/business development.

A review of published geological maps and the site-specific geotechnical investigation report covering the Project site and surrounding area was conducted to determine the specific geologic units underlying the Project site. Each geologic unit was subsequently assigned a paleontological resource sensitivity following City of San Diego guidelines (City of San Diego, 2011). In addition, a search of the paleontological collection records housed at the San Diego Natural History Museum (SDNHM) was conducted in order to determine if any documented fossil collection localities occur at the Project site or within the immediate surrounding area.

#### **Geologic Units Underlying the Project Area**

Published geological reports (e.g., Kennedy and Tan, 2008) covering the Project area indicate that the Project site is underlain by early to middle Pleistocene-age very old paralic deposits (broadly equivalent to the Lindavista Formation) and the underlying middle Eocene-age Stadium Conglomerate. However, the site-specific geotechnical investigation report for the Project indicates that the Lindavista Formation is instead underlain by the middle Eocene-age Scripps Formation (Geocon, 2017). These geologic units and their paleontological sensitivity are summarized below. The SDNHM has 55 recorded fossil localities within one mile of the Project site. Five of these localities are from the middle Eocene-age Ardath Shale, which is not anticipated to be impacted by construction of the Project. The remaining 50 localities are from the Lindavista Formation and Scripps Formation, and are discussed in more detail below.

very old paralic deposits (Lindavista Formation) – The marine and/or non-marine terrace deposits of the early to middle Pleistocene-age (approximately 1.5 to 0.5 million years old) Lindavista Formation underlie the majority of the Project site. More specifically, these deposits rest on the Linda Vista terrace (approximately 855,000 years old) of Kern and Rockwell (1992), and are equivalent to unit 9, very old paralic deposits, of Kennedy and Tan (2008). The SDNHM has one recorded fossil collection locality from the Lindavista Formation within a 1-mile radius of the Project site, which yielded trace fossil borings of pholad clams. Elsewhere in San Diego County, the Lindavista Formation has produced remains of nearshore marine invertebrates (e.g., clams, scallops, snails, barnacles, and sand dollars), as

well as sparse remains of marine vertebrates (e.g., sharks and baleen whales). Fossils have primarily been recovered from localities in Tierrasanta and Mira Mesa where the Lindavista Formation is assigned a high paleontological sensitivity; elsewhere in San Diego County, including in the vicinity of the Project site, the Lindavista Formation is assigned a moderate paleontological sensitivity.

Stadium Conglomerate – Non-marine deposits of the middle Eocene-age (approximately 44 to 42 million years old) Stadium Conglomerate underlie the Lindavista Formation within the Project site, and crop out at lower elevations in the southeastern corner of the site according to published geologic mapping (Kennedy and Tan, 2008). However, the Stadium Conglomerate was not encountered during a geotechnical investigation of the Project site, and therefore may or may not be present (Geocon, 2017). The SDNHM does not have any recorded fossil collection localities from the Stadium Conglomerate within a 1-mile radius of the Project site. The upper member of the Stadium Conglomerate has produced fossilized impressions or remains of plants (e.g., petrified wood), marine invertebrates (e.g., foraminifers and mollusks), and sparse remains of fossil mammals (e.g., opossums, insectivores, primates, rodents, carnivores, rhinoceroses, and artiodactyls). The lower member has yielded sparse marine fossil remains and a scientifically important assemblage of fossil mammals. While the upper and lower members of the Stadium Conglomerate have been assigned distinct paleontological resource sensitivities (high to moderate, and high, respectively), these deposits should be treated as having a high fossil potential when it is not possible to distinguish the two members.

Scripps Formation – The marine continental shelf deposits of the middle Eocene-age (approximately 47 million years old) Scripps Formation underlie either the Lindavista Formation or artificial fill deposits within the Project site, according to the site-specific geotechnical investigation report (Geocon, 2017). The SDNHM has 49 recorded fossil collection localities from the Scripps Formation within a 1-mile radius of the Project site. These localities produced trace fossils (e.g., borings in wood and shell, and burrows in sediment) and fossilized impressions or remains of plants (e.g., horsetail, tropical mangrove, willow, tropical almond, plane tree, and elm), marine invertebrates (e.g., snails, clams, mussels, oysters, tusk shells, barnacles, crabs, and heart urchins), and marine vertebrates (e.g., sharks and bony fish). Based on the diverse fossil assemblages known from this unit, as well as the co-occurrence of marine invertebrate and terrestrial vertebrate fossils, the Scripps Formation has been assigned a high paleontological sensitivity.

#### **Summary and Recommendations**

The moderate paleontological sensitivity of the Lindavista Formation and high paleontological sensitivity of the underlying Stadium Conglomerate and/or Scripps Formation in the City of San Diego (City of San Diego, 2011), as well as the presence of fossil collection localities in the vicinity of the Project site, suggest the potential for construction of the proposed Project to result in impacts to paleontological resources. Any proposed excavation activities that extend deep enough to encounter previously undisturbed deposits of these geologic units (i.e., deeper than any unmapped deposits of artificial fill present within the Project site, as reported by Geocon, 2017) have the potential to impact the paleontological resources preserved therein. For these reasons, implementation of a complete paleontological resource mitigation program during ground-disturbing activities is recommended.

The fossil collection locality information contained within this paleontological record search should be considered private and is the sole property of the San Diego Natural History Museum. Any use

project is prohibited. or reprocessing of information contained within this document beyond the scope of the Podium 93

0321 or kmccomas@sdnhm.org. If you have any questions concerning these findings please feel free to contact me at 619-255-

sincerely,

Katie McComas, M.S.

Paleontological Report Writer & GIS Specialist

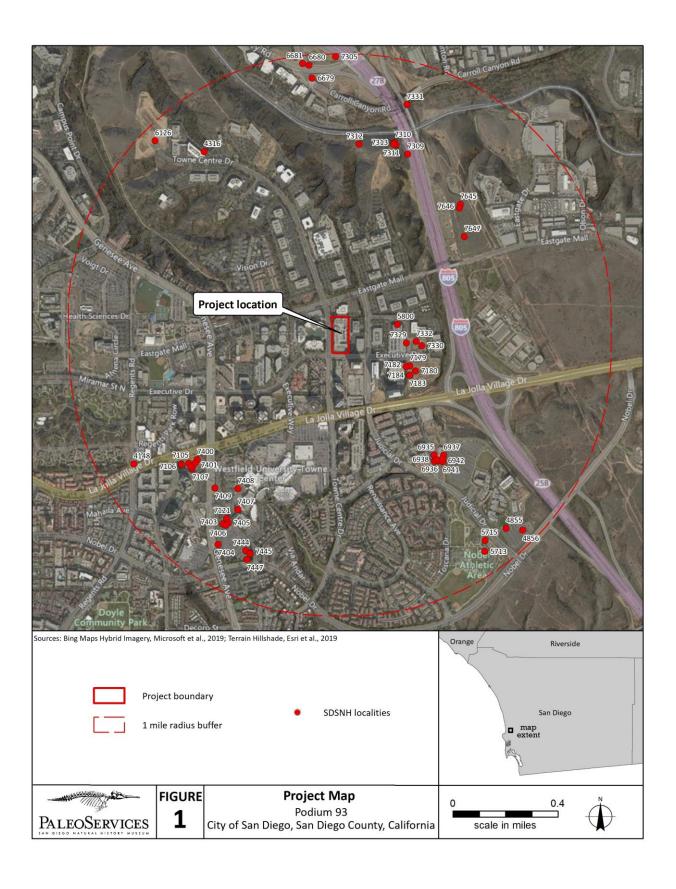
San Diego Natural History Museum

Enc: Figure 1: Project map

Appendix: List of SDNHM fossil localities in the vicinity of the project

# **Literature Cited**

City of San Diego. 2011. California Environmental Quality Act, Significance Determination Thresholds Development Services Department, 84 p.


Deméré, T.A., and S.L. Walsh. 1993. Paleontological Resources, County of San Diego. Unpublished technical report prepared for the San Diego County Department of Public Works: 1–68

Geocon Incorporated. 2017. Geotechnical Investigation: Podium 93 9363, 9737, and 9393 Towne Centre Baker International, 9755 Clairemont Mesa Blvd Suite 100, San Diego, CA 92124. Drive, San Diego, California. Prepared for Alexandria Real Estates Equities. On file with Michael

Kennedy, M.P., and Tan, S.S. 2008. Geologic Map of the San Diego 30'x 60' Quadrangle, California. California Geological Survey, Regional Geologic Map Series 1:100,000 scale, map no. 3.

Kern, J.P., and Rockwell, T.K. 1992. Chronology and deformation of Quaternary marine shorelines, San Systems. Society of Economic Paleontologists and Mineralogists, Special Publication 48: 377-Diego County, California. In, Quaternary Coasts of the United States: Marine and Lacustrine

San Diego Natural History Museum (SDNHM), unpublished paleontological collections data



### Appendix: Locality List San Diego Natural History Museum Department of Paleontology

| Locality Number | Locality Name                   | Location                                        | Elevation (feet) | Geologic Unit        | Era      | Period     | Epoch                |
|-----------------|---------------------------------|-------------------------------------------------|------------------|----------------------|----------|------------|----------------------|
| 7403            | UTC Expansion                   | City of San Diego, San Diego County, California | 352              | Lindavista Formation | Cenozoic | Quaternary | middle Pleistocene   |
| 4148            | University City Subsystem 1     | City of San Diego, San Diego County, California | 335              | Scripps Formation    | Cenozoic | Paleogene  | <null> Eocene</null> |
| 4316            | Eastgate Acres                  | City of San Diego, San Diego County, California | 343              | Scripps Formation    | Cenozoic | Paleogene  | <null> Eocene</null> |
| 4856            | Nobel Research Center           | City of San Diego, San Diego County, California | 355              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 5713            | Nobel Athletic Area and Library | City of San Diego, San Diego County, California | 329              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 5715            | Nobel Athletic Area and Library | City of San Diego, San Diego County, California | 340              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 5800            | La Jolla Commons                | City of San Diego, San Diego County, California | 358              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6935            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 312              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6936            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 317              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6937            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 322              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6938            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 323              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6939            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 324              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6940            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 325              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6941            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 332              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 6942            | La Jolla Crossroads             | City of San Diego, San Diego County, California | 328              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7105            | Monte Verde Towers              | City of San Diego, San Diego County, California | 318              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7106            | Monte Verde Towers              | City of San Diego, San Diego County, California | 325              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7107            | Monte Verde Towers              | City of San Diego, San Diego County, California | 330              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7108            | Monte Verde Towers              | City of San Diego, San Diego County, California | 340              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7121            | Monte Verde Genesee Sewer       | City of San Diego, San Diego County, California | 330              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7179            | i3                              | City of San Diego, San Diego County, California | 337              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7180            | i3                              | City of San Diego, San Diego County, California | 343              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7182            | i3                              | City of San Diego, San Diego County, California | 358              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7183            | i3                              | City of San Diego, San Diego County, California | 357              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7184            | i3                              | City of San Diego, San Diego County, California | 338              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7305            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 180              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7309            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 248              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7310            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 275              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7311            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 280              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7312            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 285              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7313            | Skanska I805N HOV BRT           | City of San Diego, San Diego County, California | 300              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |
| 7329            | Nexus Esplanade                 | City of San Diego, San Diego County, California | 302              | Scripps Formation    | Cenozoic | Paleogene  | middle Eocene        |

### Appendix: Locality List San Diego Natural History Museum Department of Paleontology

| Locality Number | Locality Name                                   | Location                                        | Elevation (feet) | Geologic Unit     | Era      | Period    | Epoch         |
|-----------------|-------------------------------------------------|-------------------------------------------------|------------------|-------------------|----------|-----------|---------------|
| 7330            | Nexus Esplanade                                 | City of San Diego, San Diego County, California | 344              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7331            | Nexus Esplanade                                 | City of San Diego, San Diego County, California | 352              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7332            | Nexus Esplanade                                 | City of San Diego, San Diego County, California | 358              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7400            | Monte Verde Towers                              | City of San Diego, San Diego County, California | 316              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7401            | Monte Verde Towers                              | City of San Diego, San Diego County, California | 307              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7404            | UTC Expansion                                   | City of San Diego, San Diego County, California | 344              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7405            | UTC Expansion                                   | City of San Diego, San Diego County, California | 336              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7406            | UTC Expansion                                   | City of San Diego, San Diego County, California | 350              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7407            | UTC Expansion                                   | City of San Diego, San Diego County, California | 340              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7408            | UTC Expansion                                   | City of San Diego, San Diego County, California | 350              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7409            | UTC Expansion                                   | City of San Diego, San Diego County, California | 326              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7444            | UTC Residential Tower                           | City of San Diego, San Diego County, California | 337              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7445            | UTC Residential Tower                           | City of San Diego, San Diego County, California | 343              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7446            | UTC Residential Tower                           | City of San Diego, San Diego County, California | 344              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7447            | UTC Residential Tower                           | City of San Diego, San Diego County, California | 347              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7645            | NCPWF Geotechnical Investigation, Eastgate Mall | City of San Diego, San Diego County, California | 366              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7646            | NCPWF Geotechnical Investigation, Eastgate Mall | City of San Diego, San Diego County, California | 377              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 7647            | NCPWF Geotechnical Investigation, Eastgate Mall | City of San Diego, San Diego County, California | 376              | Scripps Formation | Cenozoic | Paleogene | middle Eocene |
| 4855            | Nobel Research Center                           | City of San Diego, San Diego County, California | 353              | Ardath Shale      | Cenozoic | Paleogene | middle Eocene |
| 6126            | Summit Pointe Plaza                             | City of San Diego, San Diego County, California | 321              | Ardath Shale      | Cenozoic | Paleogene | middle Eocene |
| 6679            | Caltrans 805 Carroll Canyon Road                | City of San Diego, San Diego County, California | 82               | Ardath Shale      | Cenozoic | Paleogene | middle Eocene |
| 6680            | Caltrans 805 Carroll Canyon Road                | City of San Diego, San Diego County, California | 101              | Ardath Shale      | Cenozoic | Paleogene | middle Eocene |
| 6681            | Caltrans 805 Carroll Canyon Road                | City of San Diego, San Diego County, California | 111              | Ardath Shale      | Cenozoic | Paleogene | middle Eocene |