Michael Baker

INTERNATIONAL

PRELIMINARY HYDROLOGY REPORT

FOR
SARES-REGIS INDUSTRIAL DEVELOPMENT
(SARES-REGIS GROUP)

COUNTY OF RIVERSIDE
CALIFORNIA

July, 2019
Prepared by: Rick Howe
JN 152480

Table of Contents

Section 1 - Summary
INTRODUCTION
Existing Conditions
Proposed Conditions
Hydraulics
Overland Relief
Water Quality
Methodology
Conclusion
SECTION 2 - ApPENDIX
RCFC \& WCD BACKUP InFORMATION
Soil Group Map Plate C-1.29
Intensity-Duration Table Plate D-4.1
Sub-Areas - Soil Type and Land Use
Synthetic Unit Hydrographs (4) Plate E-2.1
2-Year Precipitation Plate E-5.5
100-Year Precipitation Plate E-5.6
Rainfall vs Return Period Plate E-5.7
Runoff Index Numbers Plate E-6.1
Infiltration Rate vs Runoff Index Numbers Plate E-6.2
Hydraulic Calculations
Existing Condition AES Computer Printout Results
10-Year Storm Event
100-Year Storm Event
Proposed Condition AES Computer Printout Results
10-Year Storm Event
100-Year Storm Event
Unit Hydrographs 10-year Storm AES Computer Printout Results
Existing Condition
Proposed Condition
Reference Plans (11x17)
Riverside County Drawing No. 4-1060
Riverside County As-Built File No. 964B
Facilities Drainage Boundaries
Master Drainage Plan for the Perris Valley Area
Master Plan of Drainage - Blow Up
Overland Relief Map
Folded Maps in the Rear Pocket (30x42)

SECTION 1 - SUMMARY

INTRODUCTION

The purpose of this report is to provide hydrologic analysis for Sares-Regis Group's development of 47.1 acres in the Perris Valley area into a two-building industrial "Site". The Site is bounded by Nandina Avenue to the north, Oleander Avenue to the south, and Decker Road to the east, and grading limits approximately 1800 ' east of Day Street to the east in a portion of unincorporated Riverside County. The Site is in the center of the larger 136.7 acre hydrologic boundary this report will study. The hydrologic boundaries extend westerly to Day St and 1000' further easterly of Decker Rd. This drainage study is intended to provide:

- Schematically map out the major storm drain infrastructure for the project area
- The County of Riverside has informed us that the storm drain system this site is tributary to is sized to convey 100-year ultimate buildout runoff from the area, but that further downstream Caltrans has constructed storm drain infrastructure designed to convey only the 10 -year runoff rates. Calculations of the 10-year and 100-year existing and proposed runoff rates will be provided. Per County of Riverside comments until Caltrans up-sizes their infrastructure (which we were told is planned for in the future) peak runoff rates for these storm events shall not increase due to development of the site.
- Calculations of the 10-year existing and proposed volume of storm runoff. The County of Riverside has told us that on-site extended detention will be required to prevent an increase in peak runoff rates due to development and the preliminary sizing of detention basins should be equivalent to the difference in runoff volume between the existing and proposed 10-year storm events.
- Show where off-site runoff from natural terrain is intercepted up-stream of the site and released back into natural terrain down-stream of the site
- Show that the Site is adequately protected in the event that all inlets are clogged and where runoff overland relief occurs.
- Show hydraulically that the immediate down-stream infrastructure is sufficiently sized to accept 100-year storm event runoff rates.

EXISTING CONDITIONS

(INFRASTRUCTURE, PEAK RUNOFF RATES, AND TOTAL VOLUME OF STORM RUNOFF)

The project site is currently vacant land with seasonal weeds and rock outcroppings. The project site is located within the San Jacinto River watershed. The site has a natural fall from west to east with three well defined watersheds for analysis. There are no identified USGS "blue lines" crossing the site. The local high point from which off-site flows originate is nearby, approximately 2000' to the west of the site.

Currently the three watersheds are broken up and named based on the storm drain lateral that the watershed is tributary to as follows (see also Preliminary Hydrology Map):

- Watershed B-9AA is 34.7 acres north-west of the intersection of Decker Rd and Harley Knox Blvd. Historically runoff from Watershed B-9AA flowed easterly and per Master Drainage Plan for Perris Valley Area June 1991 was intended to be tributary to storm drain Lateral B-9. Now upon construction of 30" RCP storm drain Lateral B-9AA per Riverside County File No. 964B runoff is picked up in a Decker Rd adjacent 48" riser tributary to storm drain Lateral B-9AA and ultimately Lateral B-9. The existing runoff rates are: Q10=33.67 CFS and Q100=53.35 CFS. Additionally, runoff from Lateral B-9AA2 located on the east side of Decker Rd (Not-A-Part) near Nandina Ave constructed per Riverside County File No. 964B adds 1.90 CFS to the Q100 totaling Q100=55.25 CFS.
Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 4.03 acre-feet of runoff.

Note: Included in the 34.7 acres is 5.6 acres (Sub-areas T and U) of partially offsite area to the north-west of the Site. Historically runoff from this area flowed north of Nandina Ave at the now Decker Rd intersection. Upon construction of Nandina Ave and Decker Rd circa 2017 an 18" culvert was installed per Riverside County As-Built File No. 964B directing runoff north of Nandina Ave to be picked up easterly in 36 " RCP storm drain Lateral B-9A (see reference plan in appendix). To be able to compare existing flow rates to proposed flow rates from equal areas it has assumed that the runoff from Sub-areas T and U joins other on-site runoff at the Decker Rd-Nandina Ave intersection. The amount of culvert runoff crossing Nandina Ave is: Q10=6.24 CFS and Q100=9.59 CFS.

Watershed B-8 is 71.0 acres beginning near the intersection of existing Day St and future Oleander Ave and ends at the future Decker Rd and is tributary to existing 48" RCP storm drain Lateral B-8. Historically runoff from Watershed B-8 flowed easterly and per Master Drainage Plan for Perris Valley Area June 1991 was intended to be tributary to storm drain Lateral B-8. Now upon construction of Harley Knox Blvd to Decker Rd and construction of the extension of Lateral B-8 per Riverside County Drawing No. 4-1060 it is (see appendix for reference plan). The existing runoff rates are: Q10=63.66 CFS and Q100=98.73 CFS.

Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 8.25 acre-feet of runoff.

- Watershed B-8A is 31.9 acres zoned for future industrial facility and is tributary to Lateral B-8 as historically intended per Master Drainage Plan for Perris Valley Area June 1991 by way of existing 48" RCP Lateral B-8A. This watershed is outside the area of the development but is analyzed because the project site is tributary to it and because it must be shown that Lateral B-8 is sufficiently sized. The existing runoff rates are: Q10=27.19 CFS and Q100=42.17 CFS.

Note that the runoff rate in the existing Nandina Ave 30" RCP storm drain Lateral B-9AA per the Riverside County File No. 964B plan is by our calculations under-reported at Q100=42.3 CFS; our calculations suggest the actual flow rate is Q100=44.52 CFS.

Note that the runoff rate in the existing 48 " RCP storm drain Lateral B-8 per Riverside County Drawing No. 4-1060 is by our calculations over-stated at Q100=182.0 CFS; our calculations suggest the actual flow rate is Q100=140.90 CFS

Summation of Existing Condition Hydrology for the 105.7 acre hydrologic boundary (Watersheds B-9AA and B-8):
10-year runoff volume $=12.28$ acre-feet
Q10=27.19 CFS
Q100=42.17 CFS.

PROPOSED CONDITIONS

(INFRASTRUCTURE, PEAK RUNOFF RATES, AND TOTAL VOLUME OF STORM RUNOFF

The proposed storm drain system will be made of HDPE or RCP pipe. Off-site flows will not be mixed with on-site flows prior to on-site flows being treated for water quality (see Proposed Condition Hydrology Map). Storm drain pipes will convey runoff to the existing down-stream storm drain systems. Proposed drainage patterns have the intent to respect the tributary drainage areas depicted on the Master Drainage Plan for Perris Valley Area June 1991. Proposed storm drain infrastructure and routing will ensure runoff rates are within the criteria imposed by the County of Riverside.

Street-side catch basins:
The two catch basins proposed on Harley Knox Blvd and the two catch basins on Decker Road southerly of Harley Knox Blvd will convey runoff to Lateral B-8 in Harley Knox Blvd. The three catch basins proposed near the intersection of Nandina Ave and Decker Rd will convey runoff to Lateral B-9AA in Nandina Ave.

Runoff from undeveloped areas tributary to the site:
The 2.8 acre Sub-area HH up-stream and north-west of the Site will be intercepted at an inlet structure near Nandina Ave and conveyed by storm drain pipe in Nandina Ave to Lateral B-9AA.

Runoff from the up-stream 56.2 acres of undeveloped (Portion of Watershed B-8) barren natural land up-stream of the Site will be intercepted by brow-ditches at the western edge grading limit. The runoff will be reintroduced into the existing 48" RCP storm drain Lateral B-8 at the intersection of Harley Knox Blvd.

Most runoff from the undeveloped areas is conveyed within obvious earthen gulleys as concentrated flow. Inlet structures are positioned where concentrated runoff flow occurs. Where runoff from undeveloped areas is conveyed by sheet-flow brow-ditches are proposed to capture runoff. Brow-ditches along the westerly grading limit shall not convey more than 10 CFS of runoff. Hydrologic calculations have shown that the maximum flowrate expected in any brow-ditch is Q100=3.9 CFS (see Sub-area D on the Proposed Hydrology Map). An access road for maintenance of the drainage inlets and brow-ditches runs the entire westerly edge of the site.

Runoff from undeveloped areas west of the Site flowing northerly across Nandina Ave:
With the extension of Nandina Ave northerly to future Day St runoff is disrupted. Culverts will be constructed under the proposed Nandina Ave roadway to intercept runoff at points of concentration on the southerly side and convey that runoff to the northerly side of Nandina Ave to maintain existing drainage patterns.

2:1 slope at the westerly edge of the Site:
A 2:1 slope is to be cut in the existing bedrock. Geotechnical investigation suggests that the slope will be solid rock. The slope will be treated as Commercial/Industrial cover type for hydologic calculations. Though shown to have terrace drainage, in final engineering it is not expected to exist, because erosion is not expected to occur on the solid rock face. At the bottom of the slope there will be a v-ditch intercepting all runoff that will be conveyed to the on-site storm drain system.

Watershed B-9AA:
Runoff from the 21.3 acre Watershed B-9AA is conveyed to the 30" RCP Lateral B-9AA at the intersection of Nandina Ave and Decker Rd. The proposed runoff rates to that location are Q10=31.35 CFS and Q100=45.25 CFS. Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 2.63 acre-feet of runoff. Analysis of peak runoff rate and storm volume shows a reduction in both, peak runoff rate and volume, as compared to the existing condition. Underground detention to mitigate for increased flow is not expected to be necessary, but in the event that in final engineering analysis determines differently it will be provided. The proposed hydrology map shows a place holder for underground retention if necessary.

Comparison of existing vs proposed runoff for Watershed B-9AA: Existing 10-year runoff volume $=4.03$ acre-feet, Q10 $=33.67$ CFS, Q100=53.35 CFS Proposed 10-year runoff volume=2.63 acre-feet, Q10=31.35 CFS, Q100=45.25 CFS

Watershed B-8:
Runoff from the 84.8 acre Watershed B-8 is conveyed to the 48 " RCP Lateral B-8 that currently terminates easterly of Decker Rd in Harley Knox Blvd. The proposed runoff rates to that location are Q10 $=90.53$ CFS and Q100 $=135.68$ CFS. Hydrograph analysis of the 10 -year/24-hour storm event shows that the total storm volume is 10.30 acre-feet of runoff. Analysis of peak runoff rate and storm volume shows an increase in both, peak runoff rate and volume, as compared to the existing condition. Underground detention to mitigate for increased flow will be required. Preliminary sizing of underground detention is based on the difference between the existing 10-year runoff volume and the proposed runoff volume. The proposed hydrology map shows a place holder for preliminarily sized underground retention.

Comparison of existing vs proposed runoff for Watershed B-8:
Existing 10-year runoff volume=8.25 acre-feet, Q10=63.66 CFS, Q100=98.73 CFS
Proposed 10-year runoff volume=10.30 acre-feet, Q10=90.53 CFS, Q100=135.68 CFS

The increased flow rates will be mitigated down to exiting condition flow rates by utilizing underground detention. The required volume of detention to reduce flow rates is equal to the increase in 10-year runoff volume $=2.05$ acre-feet $=89,300$ CF. Three locations on-site have been designated for underground storage: 17,000 CF at the south-east corner of the northern building, 47,000 CF at the north-east corner of the southern building, and 26,000 CF at the south-east corner of the southern building; 90,000 CF total.

Through routing of on-site runoff though underground storage the peak runoff rates for Watershed B-8 will be that of the existing condition Q10=63.66 CFS, Q100=98.73 CFS.

Watershed B-8A:
The 31.9 acre undeveloped parcel south-easterly of the Site and east of Decker Rd makes up Watershed B-8A. Flow rates attributed to this watershed are addressed in the existing condition section of this report. Off-site runoff from 71.0 acres of natural terrain will no longer be tributary to Watershed B-8A. The existing infrastructure on that parcel was designed to convey all of its runoff and the runoff from the 71.0 off-site acres. The existing infrastructure is assumed to be sufficiently sized to convey the lower proposed runoff flow rates.

Comparison of existing vs proposed runoff to the existing Watershed B-8A infrastructure: Existing Q10=90.85 CFS, Q100=140.90 CFS
Proposed Q10=27.19 CFS, Q100=42.17 CFS

Lateral B-8 Runoff Rates:

The total flow tributary to Lateral $B-8$ is the summation of runoff from Watersheds $B-8(Q 10=63.66$ CFS, Q100=98.73 CFS) and B-8A (Q10=27.19 CFS, Q100=42.17 CFS) $=$ Q10=90.85 CFS, Q100=140.90 CFS.

HYDRAULICS

Lateral B-9AA, 30" RCP, constructed per Riverside County File No. 964B was designed with a stated Q100=42.3 CFS. The existing plan does not state whether this is its capacity, but appears oversized based on HGL, so normal depth calculations have been performed. The existing and proposed flow rates were used in the analysis. Normal depth calculations show that in the existing condition with Q100 $=55.25$ CFS the 2.50^{\prime} pipe runs at 2.36 ' deep when using the minimum pipe slope of 1.5%. Normal depth calculations show that in the proposed condition with Q100=47.15 CFS the 2.50 ' pipe runs at 1.92 ' deep when using the minimum pipe slope of 1.5%. The pipe is sufficiently sized to convey the proposed runoff.

Lateral B-8, 48" RCP, constructed per Riverside County Drawing No. 4-1060 was designed to convey Q100=182.0 CFS (see reference plans in appendix). The proposed runoff rate to Lateral B-8 is Q100=140.90 CFS. This is a reduction to 77% of its approved conveyance rate and is therefore considered sufficiently sized.

OVERLAND PROTECTION

Infrastructure and private properties are protected in the event that all catch basin inlets are clogged. An "Overland Relief Map" showing the runoff flow-path in such an event is included in the appendix.

WATER QUALITY

The water treatment and runoff mitigation are not a part of this report; they are outlined in the Preliminary WQMP for this project. For reference though, the Treatment Control BMP for this project is volume-based under-ground retention followed by bio-filtration utilizing Modular Wetlands System.

The routing of runoff through underground retention basins is described below:

- There are 4 areas on-site in which runoff is collected and routed through underground retention basins. The areas are in the same location as the underground storm storage shown on the proposed hydrology map.
- Diversion structures route all first flush/low flow runoff into underground retention basins to capture the required volume of runoff.
- Runoff beyond the required capture volume by-passes the water quality basins and must enter the proposed underground storm detention storage basins as shown on the proposed hydrology map before leaving the site.
- Runoff that enters the water quality basins is metered out into Modular Wetlands System bio-filtration devices.
- The now cleaned runoff is reintroduced to the main storm drain system up-stream of the storm detention basins to be metered out for hydro-modification reasons.

METHODOLOGY

The Rational Method was used to calculate 100-year and 10-year peak storm runoff rates. The Advanced Engineering System (AES) computer program approved for the County of Riverside was utilized for the calculations. Input values/criteria came from the Riverside County Flood Control Hydrology Manual. Rainfall intensity values were obtained from Intensity-Duration Table plate D4.1 located in the Riverside County Flood Control Hydrology Manual for the Perris Valley Area (see appendix). This site is comprised primarily of type BC soils so Type C Soils was used for analysis (see Hydrologic Soils Group Map for Steele Peak Plate C-1.29 in the appendix).

Unit Hydrographs were developed to calculate the total volume of runoff for the 10-year/24 hour storm event. These calculations will be performed in the existing and proposed condition. The difference in total storm runoff volume between existing and proposed condition is a good approximation of the volume of runoff that will be required to be retained on-site to mitigate for an increase in runoff rates due to development.

Hydrographs were developed utilizing the Advanced Engineering System (AES) computer program approved for the County of Riverside. Input values/criteria came from the Riverside County Flood Control Hydrology Manual. Precipitation values for the 2-year and 100-year storms came from Isohyetal Maps (Plates E-5.5 and E-5.6 respectively). The 10-year precipitation was derived from the 2-year and 100-year values plotted on Plate E-5.7. Loss rates were determined by Plates E-6.1, E-6.2, and E2.1.

CONCLUSION

This report and associated calculations are based on preliminary engineering. Final engineering of the site will be completed and will incorporate a finalized hydrologic and hydraulic analysis, to be submitted in the future for final approval. Based on the findings in this report, it is concluded that the proposed development can be adequately protected according to the District's requirements in conjunction with the ultimate development and maintenance of the proposed facilities.

This drainage study provided:

- A schematic map of the major storm drain infrastructure for the project area (see the Existing and Proposed Hydrology Maps in the appendix.
- Calculations of the $10-y e a r$ and 100 year existing and proposed runoff rates reflect an increase in runoff rates that will be mitigated by routing runoff through underground detention facilities sized per the County of Riverside criteria.
- Calculations of the 10 -year runoff volume were used to determine preliminary sizing of underground detention facilities to reduce peak runoff rates down to existing condition.
- The plan shows where off-site runoff from natural terrain (westerly portion of the proposed Nandina Ave roadway) is intercepted up-stream of the site and released back into the natural terrain down-stream of the site where it previously flowed.
- Runoff rates are reduced or limited to the existing runoff rates to the tributary storm drain system. Hydraulic calculations show that the existing down-stream storm drain system is sufficiently sized to convey proposed runoff.
- In the unlikely event that every inlet is 100% clogged the Site is protected by overland relief.

MEAD VALLEY INDUSTRIAL PARK Sub-Areas - Soil Type and Land Use

Parameters for Loss Rate and Hydrograph Development
Proposed Condition

WATERSHED B-8 SUMMATION OF DIFFERENT COVER TYPES

Cover Type No.	$\begin{gathered} \text { Area } \\ \text { (acres) } \end{gathered}$	Percent of Pervious (\%)	Loss Rate Fp (in/hr)	$\begin{aligned} & \text { Soil } \\ & \text { Type } \end{aligned}$	Land	Curve Number (CN)		
						AMC		
						11	1	III
1	56.2	100	0.25	c	Barren	91	80	98
2	26.4	10	0.25	C	Commercial, Industrial	69	50	86
3	2.2	85	0.25	c	Turf, Good	72	53	89
Total	84.8							

WATERSHED B-9AA SUMMATION OF DIFFERENT COVER TYPES								
Cover Type No.	$\begin{gathered} \text { Area } \\ \text { (acres) } \end{gathered}$	Percent of Pervious (\%)	Loss Rate Fp (in/hr)	$\begin{aligned} & \text { Soil } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Land } \\ & \text { Use } \end{aligned}$	Curve	nber	N)
						AMC		
						11	1	III
1	2.8	100	0.25	C	Barren	91	80	98
2	16.3	10	0.25	C	Commercial, Industrial	69	50	86
3	2.2	85	0.25	c	Turf, Good	72	53	89
Total	21.3							

WATERSHED B-8A			SUMMATION OF DIFFERENT COVER TYPES					
Cover Type No.	$\begin{gathered} \text { Area } \\ \text { (acres) } \end{gathered}$	Percent of Pervious (\%)	Loss Rate Fp (in/hr)	$\begin{aligned} & \text { Soil } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Land } \\ & \text { Use } \end{aligned}$		nber	N)
						AMC		
						11	1	III
1	31.9	10	0.25	C	Barren	91	80	98
Total	31.9							


```
****************************************************************************
            HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
            (C) Copyright 1982-2013 Advanced Engineering Software (aes)
            Ver. 20.0 Release Date: 06/01/2013 License ID 1264
                    Analysis prepared by:
    TIME/DATE OF STUDY: 14:20 07/05/2019
================================================================================
    Problem Descriptions:
    Existing Condition Lateral B-9AA
***************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
--
    PIPE DIAMETER(FEET) = 2.500
    PIPE SLOPE (FEET/FEET) = 0.0150
    PIPEFLOW(CFS) = 55.25
    MANNINGS FRICTION FACTOR = 0.013000
    CRITICAL-DEPTH FLOW INFORMATION:
    CRITICAL DEPTH(FEET) = 2.36
    CRITICAL FLOW AREA(SQUARE FEET) = 4.796
    CRITICAL FLOW TOP-WIDTH (FEET) = 1.164
    CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) =
        1573.53
    CRITICAL FLOW VELOCITY(FEET/SEC.) = 11.520
    CRITICAL FLOW VELOCITY HEAD (FEET) = 2.06
    CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 4.12
    CRITICAL FLOW SPECIFIC ENERGY(FEET) = 4.42
    ==>NORMAL PIPEFLOW IS PRESSURE FLOW
```

```
****************************************************************************
            HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
            (C) Copyright 1982-2013 Advanced Engineering Software (aes)
            Ver. 20.0 Release Date: 06/01/2013 License ID 1264
                    Analysis prepared by:
    TIME/DATE OF STUDY: 14:22 07/05/2019
================================================================================
    Problem Descriptions:
    Proposed Lateral B-9AA
***************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
    PIPE DIAMETER(FEET) = 2.500
    PIPE SLOPE (FEET/FEET) = 0.0150
    PIPEFLOW(CFS) = 47.15
    MANNINGS FRICTION FACTOR = 0.013000
    CRITICAL-DEPTH FLOW INFORMATION:
    CRITICAL DEPTH(FEET) = 2.26
    CRITICAL FLOW AREA(SQUARE FEET) = 4.668
    CRITICAL FLOW TOP-WIDTH(FEET) = 1.473
    CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1234.36
    CRITICAL FLOW VELOCITY(FEET/SEC.) = 10.101
    CRITICAL FLOW VELOCITY HEAD (FEET) = 1.58
    CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 3.17
    CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.84
===============================================================================
    NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 1.92
    FLOW AREA(SQUARE FEET) = 4.05
    FLOW TOP-WIDTH(FEET) = 2.106
    FLOW PRESSURE + MOMENTUM(POUNDS) = 1282.31
    FLOW VELOCITY(FEET/SEC.) = 11.634
    FLOW VELOCITY HEAD (FEET) = 2.102
    HYDRAULIC DEPTH(FEET) =
    1.92
    FROUDE NUMBER = 1.478
    SPECIFIC ENERGY(FEET) = 4.03
```


END OF SUBAREA "V" GUTTER HYDRAULICS: $\quad 5.00$

 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<< REPRESENTATIVE SLOPE $=0.0360$ "V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$ PAVEMENT LIP (FEET) $=0.400$ MANNING'S N $=.0300$ | PAVEMENT CROXIMUM DEPTH (FEET) $=2.00$ |
| :--- |
| MAXIMAN $)=0.02000$ |

10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.339$
$\overline{* *)}$

$$
\begin{aligned}
& \text { RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON } \\
& \text { ERSIDE COUNTY FLOOD CONTROL \& WATER CONSERVATION DISTRICT }
\end{aligned}
$$

(c) Copyright 1982-2013 Advanced Engineering Software (aes)

Analysis prepared by:

************************** DESCRIPTION OF STUDY ********************************) * 10 YEAR STORM EVENT FOR WATERSHED B-8

FILE NAME: E10 B8.DAT
TIME/DATE OF STUDY: 11:46 06/18/2019
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE $=0.90$ 100 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=2.690$ SLOPE OF 10-YEAR INTENSITY-DURATION CURVE $=0.4909883$
$\stackrel{\circ}{2}$
$\stackrel{+}{2}$

$$
\begin{aligned}
& \text { RIVERSIDE COUNTY FLOOD CONTROL \& WATER CONSERVAT? } \\
& \text { (RCFC\&WCD) } 1978 \text { HYDROLOGY MANUAL }
\end{aligned}
$$

Release Date: 06/01/2013 License ID 1264

* MEAD VALLEY BUSINESS PARK
PRELIMINARY EXISTING CONDITION RATIONAL METHOD HYDROLOGY 10 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=1.880$ 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) $=0.780$ SLOPE OF 10 -YEAR INTENSITY-DURATION CURVE $=0.490983$
SLOPE OF 100 -YEAR INTENSITY-DURATION CURVE $=0.4890234$ COMPUTED RAINFALL INTENSITY DATA:

STORM EVENT $=10.00$ 1-HOUR INTENSITY (INCH/HOUR) $=0.788$

NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETELOW MODEL
 (FT) (FT) SIDE / SIDE/WAY (FT) (FT) (FT) (FT) (n)
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

1. Relative Flow-Depth $=0.00$ FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint $=$ *SIRE PIPE WITH A FLOW CAPACITY GREATER THAN
S EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

Date: 06/18/2019 File name: E10_B8.RES

END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH $($ FEET $)=1.20 \quad$ FLOOD WIDTH $($ FEET $)=5.00$
DEPTH $($ FEET $)=1.20$ FLOOD WIDTH $($ FEET $)=5.00$
FLOW VELOCITY $($ FEET $/$ SEC. $)=7.61$ DEPTH*VELOCITY
$\begin{array}{llll}\text { FLOW VELOCITY(FEET/SEC.) }= & 7.61 & \text { DEPTH*VELOCITY (FT*FT/SEC) }= & 9.13 \\ \text { LONGEST FLOWPATH FROM NODE } & 805.00 \mathrm{TO} \text { NODE } \quad 804.00= & 2740.00 \text { FEET. }\end{array}$
$* *$
FLOW PROCESS FROM NODE 804.00 TO NODE

TOTAL NUMBER OF STREAMS $=2$ STREAM 2 ARE:
CONFLUENCE VALUES USED FOR IN
TTME OF CONCENTRATION (MTN.) = RAINEALL INTENSITY (INCH/HR) $=1.41$ TOTAL STREAM AREA(ACRES) $=31.00$ TOTAL STREAM AREA (ACRES) $=$
PEAK FLOW RATE (CFS) AT CONFLU
** CONFLUENCE DATA **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 24.80 & 21.07 & 1.317\end{array}$
$\begin{array}{ll}21.07 & 1.317 \\ 18.20 & 1.415\end{array}$
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$
$\begin{array}{cccc}\text { MMBER } & 51.20 & 18.20 & 1.415 \\ 1 & 52.51 & 21.07 & 1.317\end{array}$
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) =

FLOW PROCESS FROM NODE 804.00 TO NODE 808.00 IS CODE $=31$

$* ~$
FLOW PROCESS FROM NODE 808.00 TO NODE 808.00 IS CODE $=1$
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS $=2$
CONELUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE：
TIME OF CONCNTRATION MIN）$=14.01$
RAINEALL INTENSITY（INCH／HR）$=1.61$
TOTAL STREAM AREA（ACRES）$=13.00$
PEAK FLOW RATE（CFS）AT CONFLUENCE $=13.99$

Stream	Runoff	Tc	intensity	AREA
NUMBER	（CFS）	（Min．）	（INCH／HOUR）	（ACRE）
1	51.20	19.36	1.373	58.00
1	52.51	22.22	1.283	58.00
2	13.99	14.01	1.609	13.00

RAINFALL INTENSITY AND time of CONCENTRATION RATIO
confluence formula used for 2 streams．
INTENSITY
（INCH／HOUR）
＊＊PeAK flow rate table＊＊
STREAM
RUNOFF
$\begin{array}{ccc}\text { STREAM } & \text { RUNOFF } & \text { TC } \\ \text { NUMBER } & \begin{array}{c}\text {（CFS）}\end{array} & \text {（MIN．）} \\ 1 & 51.04 & 14.01 \\ 2 & 63.13 & 19.36 \\ 3 & 63.66 & 22.22\end{array}$
1.607
1.373
1.283

		SISAtynt aohlak tunoilwy ao ang			
			で・で	$99 \cdot \varepsilon 9$	ε
			98.6τ	$\varepsilon \tau \cdot \varepsilon 9$	ح
			to．bt	50．ts	I
			（ ${ }^{\text {NIW }}$ ） $\mathrm{LI}^{\text {L }}$	（S可）${ }^{\text {O }}$	
				MOT， y $^{\text {a }}$	
		$99 \cdot \varepsilon 9$	＝（S凹）	aituy Mot	प्रस回
てでてて	$=(\cdot \mathrm{NIW})$ ）${ }^{\text {L }}$	0．IL	$=1 \mathrm{~s}$		HLOL
			：тєчНル	ns xanis	ana

end of rational method analysis

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER	
TC $=\mathrm{K}^{*}\left[\left(\right.\right.$ LENGTH**3) / (ELEVATION CHANGE) ${ }^{* * *} .2$	
INITIAL SUBAREA FLOW-LENGTH (FEET) $=1640.00$	
UPSTREAM ELEVATION(FEET) = 1595.00	
DOWNSTREAM ELEVATION (FEET) $=1556.00$	
ELEVATION DIFFERENCE (FEET) = 39.00	
$T C=0.533 *[(1640.00 * * 3) /(39.00)]^{* *} .2=21.732$	
10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.297$	
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6157$	
SOIL CLASSIFICATION IS "C"	
SUBAREA RUNOFF (CFS) = 3.03	
TOTAL AREA $($ ACRES $)=3.80$ TOTAL RUNOFF $($ CFS $)=$	3.03

**)
FLOW PROCESS FROM NODE 813.00 TO NODE 814.00 IS CODE $=91$

REPRESENTATIVE SLOPE $=0.0120$
CHANNEL LENGTH THRU SUBAREA $($ FEET $)=260.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$
REPRESENTATIVE SLOPE $=0.0120$
CHANNEL LENGTH THRU SUBAREA(FEET) $=260.00$
"V" GUTTER WIDTH (FEET) $=5.00 \quad$ GUTTER HIKE $($ FEET $)=0.800$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$
PAVEMENT
PAVEMENT LIP (FEET) $=0.400$ MANNING' $\mathrm{S} N=.0300$
PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$
MAXIMUM DEPTH $($ FEET $)=2.00$
10 YEAR RAINFALL INTENSITY (INCH/HOUR) $=1.255$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6092$
TRAVEL TTME COMPUTED USING ESTIMATED FLOW (CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=2.85$
AVERAGE FLOW DEPTH (FEET) $=0.80$ FLOOD WIDTH (FEET) $=5.00$
SUBAREA AREA $($ ACRES $)=5.00 \quad$ SUBAREA RUNOFF $($ CFS $)=3.82$
TOTAL AREA $($ ACRES $)=8.8$
NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) $=1.20 \quad$ FLOOD WIDTH $($ FEET $)=5.00$

TOTAL NUMBER OF STREAMS $=2$ ARE:
$\begin{array}{lll}\text { CONFLUENCE VALUES USED FOR } & \text { INDEPENDENT STREAM } \\ \text { TIME OF CONCENTRATION (MIN.) }= & 23.25 \\ \text { RAINFALL INTENSITY (INCH/HR) }= & 1.25 \\ \text { TOTAL STREAM AREA (ACRES) }= & 8.80 & \\ \text { PEAK FLOW RATE (CFS) AT CONFLUENCE }= & 6.86\end{array}$
$\begin{array}{lll}\text { CONFLUENCE VALUES USED FOR } & \text { INDEPENDENT STREAM } \\ \text { TIME OF CONCENTRATION (MIN.) }= & 23.25 \\ \text { RAINFALL INTENSITY (INCH/HR) }= & 1.25 \\ \text { TOTAL STREAM AREA (ACRES) }= & 8.80 & \\ \text { PEAK FLOW RATE (CFS) AT CONFLUENCE }= & 6.86\end{array}$
$\begin{array}{lll}\text { CONFLUENCE VALUES USED FOR } & \text { INDEPENDENT } & \text { STREAM } \\ \text { TIME OF CONCENTRATION (MIN.) })= & 23.25 & \\ \text { RAINFALL INTENSITY (INCH/HR) }= & 1.25 \\ \text { TOTAL STREAM AREA (ACRES) }= & 8.80 & \\ \text { PEAK FLOW RATE (CFS) AT CONFLUENCE }= & 6.86\end{array}$
6.86
TOTAL NUMBER OF STREAMS $=2$ $\begin{aligned} \text { RAE OF CONCENTRATION (MIN.) } & =23.25 \\ \text { RAINFALL INTENSITY (TNCH/HR) } & =1.25\end{aligned}$
6.86
beak flom rat (Crs) ar Conflublee

$\overline{* *)}$ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL \& WATER CONSERVATION DISTRICT (c) Copyright 1982-2013 Advanced Engineering Software (aes)
(Rational Tabling Version 20.0) Release Date: 06/01/2013 License ID 1264

$$
: K q \text { pəredəad sṭsKteut }
$$

*************************** DESCRIPTION OF STUDY ********************************) * OLEANDER BUSINESS PARK

PRELIMINARY EXISTING CONDITION RATIONAL METHOD HYDROLOGY

* 10 YEAR STORM EVENT FOR WATERSHED B-8A
FILE NAME: E10 B8A.DAT
TIME/DATE OF STUDY: 07:16 03/01/2019
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
SPECIFIED MINIMUM PIPE SIZE (INCH) $=6.00$
USER SPECIFIED STORM EVENT (YEAR) $=10.00$
SPECIFIED MINIMUM PIPE SIZE (INCH) $=6.00$

$10-$ YEAR STORM 10 -MINUTE INTENSITY(INCH/HOUR) $=1.880$
$10-$ YEAR STORM 60 -MINUTE INTENSITY (INCH/HOUR) $=0.780$
100 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=2.690$

SLOPE OF 10-YEAR INTENSITY-DURATION OF 100-YEAR INTENSITY-DURATION CURVE $=0.4890234$
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT $=10.00$ 1-HOUR INTENSITY $($ INCH/HOUR $)=0.788$
SLOPE OF INTENSITY DURATION CURVE $=0.4910$
RCFC\&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR
NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETELOW MODEL $\begin{array}{llllllll}\text { HALF- } & \text { CROWN TO } & \text { STREET-CROSSFALL: } & \text { CURB } & \text { GUTTER-GEOMETRIES: } & \text { MANNING } \\ \text { WIDTH } & \text { CROSSFALL } & \text { IN- / OUT-/PARK- } & \text { HEIGHT } & \text { WIDTH } & \text { LIP } & \text { HIKE } & \text { FACTOR }\end{array}$
 $\begin{array}{lllllllll}1 & 30.0 & 20.0 & 0.018 / 0.018 / 0.020 & 0.67 & 2.00 & 0.0313 & 0.167 & 0.0150\end{array}$ GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) as (Maxi (Vel (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAM

>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<< ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC $=\mathrm{K} *[($ LENGTH**3) $/($ ELEVATION CHANGE) $] * * .20$ UPSTREAM ELEVATION (FEET) = 1596.00 DOWNSTREAM ELEVATION (FEET) $=1575.00$
ELEVATION DIFFERENCE (FEET) $=\quad 21.00$
10 YEAR RAINFALL INTENSITY (INCH/HOUR) OIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) $=5.78$
5.78
FLOW PROCESS FROM NODE $\quad 816.00$ TO NODE 815.00 IS CODE $=91$
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
REPRESENTATIVE SLOPE $=0.0340$
REPRESENTATIVE SLOPE $=10.0340$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$
PAVEMENT LIP (FEET) $=0.400 \quad$ MANNING'S N $=.0300$
PAVEMENT CROSSFALT (DECTMAL NOTATION) $=0.02000$
MAXIMUM DEPTH(FEET) $=1.00$ (TNCH/HOUR) $=1.599$
10 YEAR RAINFALL INTENSITY (INCH/HOUR) $=1.599$ SOIL CLASSIFICATION IS "C
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=6.93$
AVERAGE FLOW DEPTH (FEET) $=1.20$
"V" GUTTER FLOW TRAVEL TIME (MIN.)
SUBAREA AREA (ACRES) $=10.10$ TOTAL AREA (ACRES) $=$
NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) $=1.20 \quad$ FLOOD WIDTH (FEET) $=5.00$

LONGEST FLOWPATH FROM NODE 803.00 TO NODE $815.00=1240.00$ FEET
***) FLOW PROCESS FROM NODE 815.00 TO NODE 815.00 IS CODE $=1$
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$ TTME OF CONCENTRATION (MTN.) $=14.20$ TIME OF CONCENTRATION (MIN.) $=14.20$
RAINFALL INTENSITY(INCH/HR) $=1.60$

END OF RATIONAL METHOD ANALYSIS

INITIAL SUBAREA FLOW-LENGTH (FEET) $=$ INITIAL SUBAREA FLOW-LENGTH (FEET) $=\quad 130.00$ DOWNSTREAM ELEVATION(FEET) $=1572$ ELEVATION DIFFERENCE (FEET) $=21.00$ $\mathrm{TC}=0.533 *[(730.00 * * 3) /(\quad 21.00)] * * .2=15.134$ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.549$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6490$ SOIL CLASSIFICATION IS "C" 3.02 SUBAREA RUNOFF (CFS) $=$
TOTAL AREA $($ ACRES $)=$
***) FLOW PROCESS FROM NODE 817.00 TO NODE 818.00 IS CODE $=91$

REPRESENTATIVE SLOPE $=0.0260$
CHANNEL LENGTH THRU SUBAREA (FEET) $=410.00$ PAVEMENT LTP (FEFT) $=0.400$ MANNING'S N $=.0300$ PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$
10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.473$ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6399$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET AVERAGE FLOW DEPTH (FEET) $=0.80$ FLOOD WIDTH AVERAGE FLOW DEPTH (FEET) $=0.80 \quad$ FLOOD
"V" GUTTER FLOW TRAVEL TIME (MIN.) $=\begin{aligned} & 1.63\end{aligned}$ SUBAREA AREA $($ ACRES $)=4.90$ TOTAL AREA (ACRES) =
NOTE: TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH
IN A FLOWING-FULL GUTTER (NORMAL DEPTH = GUTTER HIKE)
END OF SUBAREA "V" GUTTER HYDRAULICS: $\quad 5.00$
FLOW VELOCITY (FEET/SEC.) $=4.20$ DEPTH*VELOCITY $(F T * F T / S E C)=3.36$

>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
REPRESENTATIVE SLOPE $=0.0240$
FLOW LENGTH (FEET) $=490.00$ MANNING'S $N=0.013$
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=\begin{array}{r}8.61\end{array}$
ESTIMATED PIPE DIAMETER(INC
PIPE-FLOW (CFS) $=$
7.64
$\begin{array}{lccccc}\text { PIPE TRAVEL TIME (MIN.) }= & 0.95 & \text { TC (MIN.) }= & 17.71 \\ \text { LONGEST FLOWPATH FROM NODE } & 804.00 \text { TO NODE } & 811.00=1630.00 \text { FEET. }\end{array}$
®
$\stackrel{\text { ® }}{\circ}$
$\stackrel{\circ}{\circ}$

>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
TC $=$ K* [(LENGTH**3) / (ELEVATION CHANGE) $]$ **. 2
INITIAL SUBAREA FLOW-LENGTH (FEET) $=1000.00$
UPSTREAM ELEVATION (FEET) $=1691.00$
DOWNSTREAM ELEVATION(FEET) $=1602.00$
ELEVATION DIFFERENCE (FEET) $=89.00$
$\mathrm{TC}=0.533 *[(1000.00 * * 3) /(89.00)] * * .2=13.694$
10 YEAR RAINFALL INTENSITY (INCH/HOUR) $=1.627$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6578$
SOIL CLASSIFICATION IS "C"
SUBAREA RUNOFF (CFS) = 5.14
TOTAL AREA $($ ACRES $)=4.80$ TOTAL RUNOFF (CFS $)=5.14$
FLOW PROCESS FROM NODE 901.00 TO NODE 902.00 IS CODE $=91$
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
REPRESENTATIVE SLOPE $=0.0370$
CHANNEL LENGTH THRU SUBAREA(FEET) $=900.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$
PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$
MAXIMUM DEPTH (FEET) $=2.00$
10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.477$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6403$
SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 7.55
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 5.01
AVERAGE FLOW DEPTH (FEET) $=0.80$ FLOOD WIDTH (FEET) $=5.00$
"V" GUTTER FLOW TRAVEL TIME (MIN.) $=3.00 \mathrm{TC}(\mathrm{MIN})=$.
SUBAREA AREA (ACRES) $=5.10$ SUBAREA RUNOFF (CFS) $=4.82$
TOTAL AREA $($ ACRES $)=9.9$ PEAK FLOW RATE $($ CFS $)=9.96$
NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER(NORMAL DEPTH = GUTTER HIKE)
DEPTH (FEET) $=0.80$ FLOOD WIDTH (FEET) $=5.00$
FLOW VELOCITY(FEET/SEC.) $=\quad 5.01$ DEPTH*VELOCITY (FT*FT/SEC) $=4.01$LONGEST FLOWPATH FROM NODE $\quad 900.00$ TO NODE $902.00=1900.00$ FEET.
FLOW PROCESS FROM NODE 902.00 TO NODE 903.00 IS CODE $=91$
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
$\begin{aligned} & \text { REPRESENTATIVE SLOPE }=0.0150 \\ & \text { CHANNEL LENGTH THRU SUBAREA(FEET) }=200.00 \\ & \text { "V" GUTTER WIDTH (FEET) } \quad 5.00 \text { GUTTER HIKE (FEET) }=0.800 \\ & \text { PAVEMENT LIP }(\text { FEET })=0.400 \text { MANNING'S } \mathrm{N}=.0300 \\ & \text { PAVEMENT CROSSFALL (DECIMAL NOTATION) }=0.02000 \\ & \text { MAXIMUM DEPTH }(\text { FEET })=2.00 \end{aligned}$

ASSUMED INITIAL SUBAREA UNIFORM
ASSVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC $=K \star[($ LENGTH**3)/(ELEVATION CHANGE) $] * * .2$
 UPSTREAM ELEVATION(FEET) $=1715.00$ $\begin{aligned} \text { DOWNSTREAM ELEVATION }(\mathrm{FEET}) & =1670.00 \\ \text { ELEVATION DIFFERENCE }(\mathrm{FEET}) & =45.00\end{aligned}$

ELE (AIION DIFFERENCE (FEET) $=45.00$) TC $=0.533 *\left[\begin{array}{ll}(980.00 * * 3) / 1\end{array}\right.$ UNDEVELOPED WATERSHED RUNOFF SOIL CLASSIFICATION IS C 16.54

16.54
*********************************** 91
-->>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<<
REPRESENTATIVE SLOPE $=0.0350$
CHANNEL LENGTH THRU SUBAREA (FEET) $=1000.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET
PAVEMENT LIP (FEET) $=0.400$ MANNING' $\mathrm{S} N=.0300$
MAXIMUM DEPTH (FEET) $=2.00$
100 YEAR RAINFALL INTENSITY (INCH/HOUR) -2.025
SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)

AVERAGE FLOW DEPTH (FEET) $=1.20$ FLOOD WIDTH (FEET) $=5.00$
SUBAREA AREA (ACRES) $=8.50 \quad$ SUBAREA RUNOFF $($ CFS $)=11.95$ TOTAL AREA $($ ACRES $)=19.3$

END OF SUBAREA "V" GUTTER HYDRAULICS:
DFPTH $($ FEET $)=1.21$ FLOOD WIDTH (FEET)
DEPTH $(F E E T)=1.21$ FLOOD WIDTH $(\mathrm{FEET})=5.55$
FLOW VELOCITY $($ FEET/SEC. $)=7.07$ DEPTH*VELOCITY $(\mathrm{FT} * \mathrm{FT} / \mathrm{SEC})=8.52$
LONGEST FLOWPATH EROM NODE $\quad 800.00$ TO NODE $\quad 802.00=1980.00$ FEET,
$* *$
FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE $=91$
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
REPRESENTATIVE SLOPE $=0.0360$
REPRESENTATIVE SLOPE $=0.0360$
CHANNEL LENGTH THRU SUBAREA $($ FEET $)=1070.00$
CHANNEL LENGTH THRU SUBAREA(FEET) $=1070.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$
PAVEMENT LIP(FEET) $=0.400$ MANNING'S $\mathrm{N}=.0300$
PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$ MAXIMUM DEPTH (FEET) $=2.00$

100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.900$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6843$ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6843$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING

TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)

Date: 02/28/2019

 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
 SLOPE OF 10 -YEAR INTENSITY-DURATION CURVE $=0.4909883$
SLOPE OF 100 -YEAR INTENSITY-DURATION CURVE $=0.4890234$ SLOPE OF 100 -YEAR INTENSITY-DURATION CURVE
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT $=100.00 \quad$ 1-HOUR INTENSITY (INCH/HOUR) $=1.120$
SLOPE OF INTENSITY DURATION C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
SPECIFIED MINIMUM PIPE SIZE (INCH) $=6.00$ -
 10 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=1.880$
$10-$ YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) $=0.780$ 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) $=$ 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR)
100-YEAR STORM 60 -MINUTE INTENSITY (INCH/HOUR)
FILE NAME: E100 B8.DAT
TIME/DATE OF STUDY: $16: 4302 / 28 / 2019$

USER SPECIFIED STORM EVENT (YEAR) $=100.00$

* PRELIMINARY EXISTING CONDITION RATIONAL METHOD HYDROLOGY
* 100 YEAR STORM EVENT FOR WATERSHED B-8
$* *)$
FILE NAME: E100 B8.DAT
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON ROL \& WATER CONSERVATION (c) Copyright 1982-2013 Advanced Engineering Software (aes)

:Kq paredəad sțsKteuy
*************************** DESCRIPTION OF STUDY *******************************)
* OLEANDER BUSINESS PARK

FOR ALL DOWNSTREAM ANALYSES

$$
21
$$

GLO
*S
$\xrightarrow[+]{*}$

$\overline{* *}$
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL \& WATER CONSERVATION DISTRICT
(RCFC\&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2013 Advanced Engineering Software (aes)
(Rational Tabling Version 20.0)
Release Date: 06/01/2013 License ID 1264
Analysis prepared by:

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 7.18

$\ggg \gg$ COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA $\lll \ll$
$\ggg>$ USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) $\lll \lll$
REPRESENTATIVE SLOPE $=0.0090$
REPRESENTATIVE SLOPE $=0.0090$
FLOW LENGTH (FEET) $=330.00$ MANNING'S N $=0.013$
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.5 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) $=8.92$
ESTMMTED PTPE
REPRESENTATIVE SLOPE $=0.0090$
FLOW LENGTH (FEET) $=330.00$ MANNING'S N $=0.013$
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.5 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) $=8.92$
ESTMMTED PTPE
ESTIMATED PIPE DIAMETER (INCH) $=33.00$
PTPE TRAVEL TIME (MIN.) =
PIPE TRAVEL TIME (MIN.) $=0.62 \quad$ TC (MIN.) $=20.98$
LONGEST FLOWPATH FROM NODE 800.00 TO NODE $804.00=3380.00$ FEET.
$* *$
FLOW PROCESS FROM NODE 804.00 TO NODE 804.00 IS CODE $=1$ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS $=2$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) $=20.98$
RAINEALL INTENSITY (INCH/HR) $=1.87$
PEAK FLOW RATE (CFS) AT CONFLUENCE = 38.50
 $\ggg>$ RATIONAL METHOD INITIAL SUBAREA ANALYSIS $\lll \lll$ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER $\mathrm{TC}=\mathrm{K}^{*}[($ LENGH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH $(\mathrm{FEET})=1$
UPSTREAM ELEVATION $(\mathrm{FEET})=1733.00$
DOWNSTREAM ELEVATION (FEET) $=1663.00$ ELEVATION DIFFERENCE $(\mathrm{FEET})=70.00$
$\mathrm{TC}=0.533 *[(1000.00 * * 3) /(70.00)] *$
$\mathrm{TC}=0.533 *[(1000.00 * * 3) /(70.00)] * * .2=14.368$
100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.253$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7110$
SUBAREA RUNOFF (CFS) = 16.50

 JPS $\begin{aligned} & \text { DOWNSTREAM ELEVATION(FEET) } \\ & \text { ELEVATION DIFFERENCE }=-108 E T)\end{aligned}=108.00$

ELEVATION DIFFERENCE(FEET) $=1$ 108.00)]**
TC $=0.533 *[(1000.00 * * 3) /(108.00)] * * .2=13.174$
100 YEAR RAINFALL $\operatorname{INTENSITY}($ INCH $/$ HOUR $)=2.351$
100 YEAR RAINFALL INTENSITY (INCH/HOUR) $=2.351$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7172$ $\begin{aligned} & \text { SOLL CLASSIFICATION IS "C" } \\ & \text { SUBAREA RUNOFF (CES) }\end{aligned}=10.96$ SOBAREA REA (ACRES) $=$

 REPRESENTATIVE SLOPE $=0.0680$

Channel Leng th thru subarea (feet) $=340.00$ "V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$

MAXIMUM DEPTH $($ FEET $)=2.00$
100 YeAR RAINFALL INTENSITY (INCH/HOUR) $=2.302$ RSHED RUNOFF COEFFICIENI $=.7142$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=9.80$ AVERAGE FLOW DEPTH (FEET) $=1.20 \quad$ FLOOD WIDTH (FEET) $=5.00$

SUBAREA AREA (ACRES) $=6.50 \quad$ SUBAREA RUNOFF $($ CFS $)=10.69$ TOTAL AREA (ACRES) $=$

NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH (FEET) $=1.20$ FTOOD WIDTH (FEET)
$\operatorname{DEPTH}($ FEET $)=1.20 \quad \operatorname{FLOOD} \operatorname{WIDTH}($ FEET $)=5.00$
 ** flow Process from node
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$,
CONELUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: $\begin{array}{ll}\text { TIME OF CONCENTRATION (MIN.) } & =13.75 \\ \text { RAINFALL TNTENSTTY (TNCH/HR) } & =12.30\end{array}$

RATAL STREAM AREA (ACRES $)=13.00$
PEAK FLOW RATE (CES) AT CONELUENCE =
AREA
21.64
intensity

$\stackrel{\ddots}{E}$
** CONFLUENCE DATA **
STREAM RUNOFF

CONFLUENCE VALUES USED FOR Independent Stream 2 are: TIME OF CONCENTRATION(MIN.) $=18.24$ RAINEALL INTENSITY (INCH/HR) $=2.01$
TOTAL STREAM AREA(ACRES) $=31.00$ PEAK FLIOW RATE (CFS) AT CONFLUENCE $=$
** CONFLUENCE DATA **

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
(INCH/HOUR)
2.005
1.872

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS)
TOTAL AREA (ACRES)
LONGEST FLOWPATH FROM NODE
$* *$
FLOW PROCESS FROM NODE 804.00 TO NODE 808.00 IS CODE $=31$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA $\lll \lll$
$\ggg>$ USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) $\lll \ll$
REPRESENTATIVE SLOPE $=0.0090$
FLOW LENGTH (FEET) $=660.00$ MANNING ${ }^{2}$ INCHES PIPE-FLOW VELOCITY(FEET/SEC.) $=10.65$ PIPE-FLON ESTMATED PIPE DIAMETER (INCH) $=42.00$ PIPE-FLOW $($ CFS $)=81.54$ PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE
$* ~$ FLOW PROCESS FROM NODE
 TOTAL NUMBER OF STREAMS $=2$ ARE: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE. TIME OF CONCENTRATION (MIN.) $=22.01$
RAINEALL INTENSITY (INCH/HR) $=1.83$ RAINFALL INTENSITY(INCH/HR) $=1.83$
TOTAL STREAM AREA(ACRES) $=58.00$ PEAK FLOW RATE (CFS) AT CONFLUENCE =
\square

ASSUMED INITIAL SUBAREA UNIFORM $T C=K *[($ LENGTH**3)/(ELEVATION CHANGE) $] * * .22$ TC $\operatorname{INITITAL}$ SUBAREA FLOW-LENGTH (FEET) $=1640.00$ UPSTREAM ELEVATION(FEET) $=\quad 1595.00$ $\begin{aligned} & \text { DOWNSTREAM ELEVATION(FEET) }=\quad 1556.00 \\ & \text { ETEVATT }\end{aligned}$ ELEVATION DIFFERENCE(FEET) $=$ TC $=0.533 *[(1640.00 * * 3) /(39.00)] * * .2=21.732$
100 YEAR RAINFALL IN*ENSTY (INCH/HOUR) $=1.840$ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6790$ SUBAREA RUNOFE (CFS) IS $\quad 4.75$ $\begin{aligned} & \text { SUBAREA RUNOFF (CFS) })= \\ & \text { TOTAL AREA (ACRES) }\end{aligned}=$

TOTAL AREA $($ ACRES $)=\quad 3.80$

4.75

 FLOW PROCESS FROM NODE
 REPRESENTATIVE SLOPE $=0.0120$
CHANNEL LENGTH THRU SUBAREA $($ FEET $)=260.00$
"V" GUTTER WIDTH (FEET) $=5.00 \quad$ GUTTER HIKE (FEET) $=0.800$ REPRESENTATIVE SLOPE $=0.0120$
CHANNEL LENGTH THRU SUBAREA $($ FEET $)=260.00$
"V" GUTTER WIDTH (FEET) $=5.00 \quad$ GUTTER HIKE (FEET) $=0.800$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$ PAVEMENT LIP (FEET) $=0.400$ MANNING' $\mathrm{S} N=.0300$
PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$
MAXIMUM DEPTH (FEET) $=2.00$ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6751$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=4.12$ AVERAGE FLOW DEPTH (FEET) $=1.20$ FLOOD WIDTH (FEET) $=\begin{array}{r}5.00 \\ \hline\end{array}$
SUBAREA AREA (ACRES) $=5.00 \quad$ SUBAREA RUNOFF (CFS) $=6.07$ $\begin{array}{ll}\text { SUBAREA AREA }(\text { ACRES })= & 5.00 \\ \text { TOTAL AREA }(\text { ACRES })= & 8.8\end{array}$
NOTE: TRAVEL TIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
TTME OF CONCENTRATION (MIN.) $=22.78$
RAINFALL INTENSITY (INCH/HR) $=1.80$
TOTAL STREAM AREA (ACRES) $=8.80$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$
10.82

\qquad

 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE $=0.4890234$ SLOPE OF 100 -YEAR INTENSITY-DURATION CURVE
COMPUTED RAINFALL INTENSITY DATA:

STORM EVENT $=100.00 \quad$ 1-HOUR INTENSITY $($ INCH/HOUR $)=1.120$
SLOPE OF INTENSITY DURATION CURVE $=0.4890$ RCFC\&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
SPECIFIED MINIMUM PIPE SIZE(INCH) $=6.00$
 10 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=1.880$
$10-$ YEAR STORM 60 -MINUTE INTENSITY (TNCH/HOUR) $=0.780$ 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) $=0.780$
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT (YEAR) $=100.00$

* PRELIMINARY EXISTING CONDITION RATIONAL METHOD HYDROLOGY
* 100 YEAR STORM EVENT FOR WATERSHED B-8A

FILE NAME: E100_B8A.DAT
TIME/DATE OF STUDY: 06:57 03/01/2019
FOR ALL DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR
II \qquad

$\ggg>$ COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<
REPRESENTATIVE SLOPE $=0.0340$
CHANNEL LENGTH THRU SUBAREA (FEET) $=710.00$ PAVEMENT LIP (FEET) $=0.400$ MANNING'S N $=.0300$ PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$
100 YEAR RAINFALL INTENSITY (INCH/HOUR) $=2.266$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7119$ SOIL CLASSIFICATION IS "C
TRAVEL TIME COMPUTED USING
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=6.93$
AVERAGE FLOW DEPTH (FEET) $=1.20$ FLOOD WIDTH (FEET) $=5.00$ $\begin{aligned} \text { AVERAGE FLOW DEPTH }(F E E T)=1.20 \quad \text { FLOOD WIDTH }(\mathrm{FEET})= & 5.00 \\ \text { "V" GUTTER FLOW TRAVEL TIME (MIN.) }=1.71 \mathrm{Tc}(\text { MIN. })= & 14.20\end{aligned}$
SUBAREA AREA $($ ACRES $)=10.10 \quad$ SUBAREA RUNOFF $($ CFS $)=16.29$ TOTAL AREA (ACRES) =
NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL
DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]
END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH $($ FEET $)=1.20 \quad$ FLOOD WIDTH $(F E E T)=5.00$
$\begin{array}{ll}\text { FLOW VELOCITY (FEET/SEC.) }= & 6.93 \text { DEPTH*VELOCITY (FT*FT/SEC) }=8.32 \\ \text { LONGEST FLOWPATH FROM NODE } & 803.00 \mathrm{TO} \mathrm{NODE} 815.00=1240.00 \mathrm{FEET} .\end{array}$

FLOW PROCESS FROM NODE 815.00 TO NODE 815.00 IS CODE = 1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$\ggg \gg$ AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$
TIME OF CONCENTRATION (MTN.) $=14.20$
TIME OF CONCENTRATION (MIN.) $=14.20$
RAINFALL INTENSITY(INCH/HR) $=2.27$

>>>>>DES COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<<
TOTAL NUMBER OF STREAMS $=2$
 TIME OF CONCENTRATION (MIN.) $=$
RAINFALL INTENSITY(INCH/HR) $=$ RAINFALL INTENSITY (INCH/HR) $=2.04$ TOTAL STREAM AREA(ACRES) $=7.90$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$
** CONFLUENCE DATA ** $\begin{array}{ccc}\text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { (CFS) } & \text { (MTN } & \text { (TNCH/HOUR) }\end{array}$
$\begin{array}{ccc}\text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 31.91 & 15.29 & 2.185\end{array}$
$\begin{array}{lll}30.79 & 23.92 & 1.756 \\ 11.82 & 17.61 & 2.040\end{array}$
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$

END OF STUDY SUMMARY:
TOTAL AREA (ACRES)

END OF RATIONAL METHOD ANALYSIS
INITIAL SUBAREA FLOW-LENGTH (FEET) $=730.00$
UPSTREAM ELEVATION $(F E E T)=1593.00$ DOWNSTREAM ELEVATION (FEET) $=1572.00$ ELEVATION DIFFERENCE (FEET) $=21.00$ TC $\left.=0.533 *\left[\begin{array}{ll}(& 730.00 * * 3\end{array}\right) /(\quad 21.00)\right] * * .2=15.134$ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.197$ SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) $=$
TOTAL AREA $($ ACRES $)=$

$* ~$
FLOW PROCESS FROM NODE 818.00 TO NODE 811.00 IS CODE $=31$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<<===
REPRESENTATIVE SLOPE $=0.0240$
FLOW LENGTH (FEET) $=490.00$ MANNING'S N $=0.013$
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=9.63$
$\begin{aligned} \text { PIPE-FLOW VELOCITY(FEET/SEC.) } & =9.63 \\ \text { ESTIMATED PIPE DIAMETER(INCH) } & =18.00\end{aligned}$
PIPE-FLOW (CFS) $=11.82$
PIPE TRAVEL TIME (MIN.) $=0.85 \quad$ Tc (MIN.) $=$
LONGEST FLOWPATH FROM NODE 804.00 TO NODE

T9.LT

NUMBER OF PIPES = 1
17.61

$$
\star * * * * * * * *
$$

UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7006$ SOIL CLASSIFICATION IS "C"

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=4.52$
AVERAGE FLOW DEPTH (FEET) $=1.32 \quad$ FLOOD WIDTH $($ FEET $)=16.64$ V" GUTTER FLOW TRAVEL TIME (MIN.) $=0.74$ TC(MIN.) $=16.51$ 31.87
SUBAREA RUNOFF (CFS) $=16.23$
PEAK FLOW RATE (CFS) $=$ End Of subarea "V" GUtTer hydraulics:
$\operatorname{DEPTH}($ FEET $)=1.43$ FLOOD WIDTH $($ FEET $)=28.05$
FLOW VELOCITY (FEET/SEC.) $=4.08$ DEPTH*VELOCITY (FT*FT/SEC) $=5.84$
LONGEST FLOWPATH FROM NODE 900.00 TO NODE

 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEく<<<<
TOTAL NUMBER OF STREAMS $=2$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR In
TIME OF CONCENTRATION (MIN.) $=16.51$
RAINFALL INTENSITY (INCH/HR)
TOTAL STREAM AREA (ACRES) $=20.90$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=31.87$

TC $=\mathrm{K} *[($ LENGTH**3) $/($ ELEVATION CHANGE) $] * * .2$
UPSTREAM ELEVATION (FEET) $=1691.00$
DOWNSTREAM ELEVATION $($ FEET $)=1618.00$
ELEVATION DIFFERENCE (FEET) $=$
TC $=0.533 *\left[\begin{array}{l}(860.00 * * 3) /(73.00)] * *\end{array}\right.$
$\mathrm{TC}=0.533 *\left[\left(\begin{array}{ll}(860.00 * * 3\end{array}\right) /(73.00)\right] * * .2=13.015$
100 YEAR RAINFALL INTENSITY (INCH/HOUR) $=2.365$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7181$
SOIL CLASSIFICATION IS "C" 5.09
SUBAREA RUNOFF $(C F S)=$
TOTAL AREA $(A C R E S)=$

$==10$
CHANNEL LENGTH THRU SUBAREA (FEET) $=890.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE (FEET) $=0.800$ PAVEMENT LIP (FEET) $=0.400$ MANNING'S $\mathrm{N}=.0300$
PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$ PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$

100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.179$ MAXIMUM DEPTH $(F E E T)=2.00$

MAXIM Y 100 YEAR RAINFALL INTENSITY (
UNDEVELOPED WATERSHED RUNOFF
100 YEAR RAINFALL INTENSITY (INCH/HOUR) $=2.179$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7060$

PIPE-FLOW VELOCITY (FEET/SEC.) $=11.03$
ESTIMATED PIPE DIAMETER(INCH) $=30.00 \quad$ NUMBER OF PIPES $=1$
PIPE-FLOW (CFS) $=44.52$
PIPE TRAVEL TIME (MIN.) $=\quad 0.24 \quad$ TC (MIN.) $=16.75$
LONGEST FLOWPATH FROM NODE 900.00 TO NODE $908.00=260.00 ~ F E E T . ~$

 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) =
RAINFALL INTENSITY (INCH/HR) $=2.09$
TOTAL STREAM AREA (ACRES) $=29.10$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$
$* ~$
FLOW PROCESS FROM NODE 905.00 TO NODE 906.00 IS CODE $=21$
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH צ⿴囗 $\Lambda 0 \supset$ צood HLIM ałdoTa $T C=K *[(L E N G T H * * 3) /(E L E V A T I O N$ CHANGE) $] * .2$

UPSTREAM ELEVATION (FEET) $=1653.00$
DOWNSTREAM ELEVATION (FEET) $=\quad 1603.00$
ELEVATION DIFFERENCE (FEET) $=$
TC $=0.533 *[(640.00 * * 3) /(50.00)] * *$
100 YEAR RAINFALL INTENSITY (INCH/HOUR) OTT CTASSTFTCATTON TS "C"

SUBAREA RUNOFF (CFS) = 5.23
SUBAREA RUNOFF $(C F S)=$
TOTAL AREA $($ ACRES $)=$
$* ~$

$\ggg \gg$ COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<<
$==$
REPRESENTATIVE SLOPE $=0.0460$
REPRESENTATIVE SLOPE $=0.0460$
CHANNEL LENGTH THRU SUBAREA (FEET) $=810.00$
"V" GUTTER WIDTH (FEET) $=5.00$ GUTTER HIKE $($ FEET $)=0.800$ PAVEMENT $\operatorname{LIP}($ FEET $)=0.400$ MANNING'S $\mathrm{N}=.0300$ PAVEMENT CROSSFALL (DECIMAL NOTATION) $=0.02000$

100 YEAR RAINFALL INTENSITY (INCH/HOUR) $=2.268$ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.268$
UNDEVELOPED WATERSHED RUNOFE COEFFICIENT $=.7120$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USIN

TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) =
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) $=5.58$
AVERAGE FLOW DEPTH (FEET) $=0.80$ FLOOD WIDTH (FEET) $=5.00$

SUBAREA AREA $($ ACRES $)=2.70 \quad$ SUBAREA RUNOFF $($ CFS $)=4.36$
TOTAL AREA $($ ACRES $)=5.6$ PEAK FLOW RATE (CFS)

END OF SUBAREA "V" GUTTER HYDRAULICS:
DEPTH $($ FEET $)=1.20 \quad$ FLOOD WIDTH $($ FEET $)=5.00$

 FLOW PROCESS FROM NODE *

TOTAL AREA (ACRES) $=$ LONGEST FLOWPATH FROM NODE

 REPRESENTATIVE SLOPE $=0.0100$
FLOW LENGTH (FEET) $=240.00$ MANNING'S $N=0.013$
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=9.42$
$\begin{aligned} \text { PIPE-FLOW VELOCITY(FEET/SEC.) }= & 9.42 \\ \text { ESTIMATED PIPE DIAMETER (INCH) } & =33.00 \text { NUMBER OF PIPES }=1\end{aligned}$
PIPE-FLOW (CFS) $=($ M1.00
LONGEST FLOWPATH FROM NODE $\quad 800.00$ TO NODE $\quad 810.00=3240.00$ FEET.

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
TOTAL NUMBER OF STREAMS $=2$ CIME E CONADTAN (MTN) $=19.88$
RAINFALL INTENSITY (INCH/HR) $=1.36$
TOTAL STREAM AREA (ACRES) $=43.60$

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<							
TOTAL NUMBER OF STREAMS $=2$							
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:							
TIME OF CONCENTRATION (MIN.) = 11.13							
RAINFALL INTENSITY(INCH/HR) = 1.80							
TOTAL STREAM AREA (ACRES) = 1.90							
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.37							
** CONFLUENCE DATA **							
STREAM	RUNOFF	Tc	INTENSITY	AREA			
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)			
1	38.16	17.13	1.458	41.70			
1	39.20	19.45	1.370	41.70			
2	2.37	11.13	1.801	1.90			
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO							
CONFLUENCE FORMULA USED FOR 2 STREAMS.							
** PEAK FLOW RATE TABLE **							
STREAM RUNOFF Tc INTENSITY							
NUMBER (CFS) (MIN.) (INCH/HOUR)							
1	27.16	11.13	1.801				
2	40.07	17.13	1.458				
3	41.00	19.45	1.370				
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:							
PEAK FLOW RATE (CFS) $=41.00$ Tc (MIN.) $=19.45$ TOTAL AREA (ACRES) $=43.6$							
LONGEST	WPATH FR	1 NODE	800.00 TO NOD	807.00		3000.00	FEET.

 FLOW PROCESS FROM NODE
 TOTAL NUMBER OF STREAMS $=2$ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: $\begin{array}{lll}\text { TIME OF CONCENTRATION (MIN.) } & =19.45 \\ \text { RAINFALL INTENSITY (INCH/HR) } & =1.37\end{array}$

RAINFALL INTENSITY (INCH/HR) =
TOTAL STREAM AREA(ACRES) $=$
PEAK FLOW RATE (CFS) AT CONFI

$* ~$
FLOW PROCESS FROM NODE 809.00 TO NODE 807.00 IS CODE $=31$
 $* ~$
FLOW PROCESS FROM NODE 807.00 TO NODE 807.00 IS CODE $=1$

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
$==$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) $=9.09$ $\begin{array}{ll}\text { RAINFALL INTENSITY (INCH/HR) }= & 1.99 \\ \text { TOTAL STREAM AREA(ACRES) }= & 2.40\end{array}$ PEAK FLOW RATE (CFS) AT CONFLUENCE =
3.38
 $* ~$
FLOW PROCESS FROM NODE 816.00 TO NODE 819.00 IS CODE $=31$ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<<
 REPRESENTATIVE SLOPE $=0.0200$
FLOW LENGTH $($ FEET $)=380.00$

FLOW LENGTH (FEET) $=380.00$ MANNING'S $N=0.013$ DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=7.75$

PIPE-FLOW VELOCITY(FEET/SEC.) $=7.75$
ESTIMATED PIPE DIAMETER(INCH) $=15.00 \quad$ NUMBER OF PIPES $=1$
PIPE-FLOW (CFS) $=1$
PIPE-FLOW VELOCITY(FEET/SEC.) $=7.75$
ESTIMATED PIPE DIAMETER(INCH) $=15.00 \quad$ NUMBER OF PIPES $=1$
PIPE-FLOW (CFS) $=\quad 6.49$

LONGEST FLOWPATH FROM NODE 814.00 TO NODE $819.00=2240.00$ FEET. FLOW PROCESS FROM NODE $\quad 819.00$ TO NODE $\quad 819.00$ IS CODE $=1$ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<

TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM - ARE: TIME OF CONCENTRATION (MIN.) $=17.16$
RAINFALL INTENSITY (INCH/HR) $=1.43$ $\begin{array}{ll}\text { RAINFALL INTENSITY (INCH/HR) }=1.43 \\ \text { TOTAL STREAM AREA(ACRES) }= & 6.40\end{array}$

>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>
$===$
REPRESENTATIVE SLOPE $=0.0200$ REPRESENTATIVE SLOPE $=0.0200$
FLOW LENGTH $($ FEET $)=670.00$

FLOW LENGTH (FEET) $=670.00$ MANNING' $\mathrm{S} \mathrm{N}=0.013$
DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) $=\begin{array}{r}6.81 \\ \hline\end{array}$ PIPE-FLOW VELOCITY(FEET/SEC.) $=6.81$
ESTIMATED PIPE DIAMETER(INCH) $=12.00$ PIPE-FLOW (CFS) $=3.99$ PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE
 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

TOTAL NUMBER OF STREAMS $=2$ ARE:

CONFLUENCE VALUES USED FOR INDEPENDENT
TIME OF CONCENTRATION(MIN.) $=16.95$
RAINFALL INTENSITY (INCH/HR) $=1.47$
TOTAL STREAM AREA (ACRES) $=4.00$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=3.99$

>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
$===$
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC $=\mathrm{K} *[($ LENGTH**3) /(ELEVATION CHANGE) $] * * .2$
INITIAL SUBAREA FLOW-LENGTH (FEET) $=460.00$
DOWNSTREAM ELEVATION (FEET) $=1620.00$
ELEVATION DIFFERENCE (FEET) $=82.00$
TC $\left.=0.533^{*}\left[\begin{array}{ll}(& 460.00 * * 3\end{array}\right) /(\quad 82.00)\right] * * .2=8.736$
10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.029$
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6949$
SOIL CLASSIFICATION IS "C" 3.38
SOIL CLASSIFICATION IS
SUBAREA RUNOFF (CFS) =
TOTAL AREA (ACRES) $=$

FLOW PROCESS FROM NODE 818.00 TO NODE 816.00 IS CODE $=31$
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
$\ggg>$ USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) $\lll \lll$
$=========================-=000$
REPRESENTATIVE SLOPE $=0.0200$
FLOW LENGTH $($ FEET $)=140.00$ MANNING'S N $=0.013$
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=\begin{array}{r}6.60 \\ \hline 12.00\end{array}$
ESTIMATED PIPE DIAMETER (INCH)
PIPE-FLOW $($ CFS $)=3.38$
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE

6.49

*
FLOW PROCESS FROM NODE 821.00 TO NODE 819.00 IS CODE $=31$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
$\ggg \gg$ USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<

$==$ REPRESENTATIVE SLOPE $=0.0200$ FLOW LENGTH (FEET) $=150.00$ MANNING'S N $=0.013$ PIPE-FLOW VELOCITY (FEET/SEC.) $=4.61$ ESTIMATED PIPE DIAMETER (INCH) $=9.00$ $\begin{array}{ll}\text { PIPE-FLOW (CFS) }= & 0.78 \\ \text { PIPE TRAVEL TIME (MIN.) }= & 0.54 \\ \text { LONGEST FLOWPATH FROM NODE } & 820.0\end{array}$ | PIPE TRAVEL TIME (MIN.) $=0.54 \quad$ Tc (MIN.) $=$ |
| :--- |
| LONGEST FLOWPATH FROM NODE |

 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<

> TOTAL NUMBER OF STREAMS $=2$ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM $\begin{array}{ll}\text { TIME OF CONCENTRATION (MIN.) }= & 5.54 \\ \text { RAINFALL INTENSITY (INCH/HR) } & =2.54\end{array}$ MOTAI STREAM AREA (ACRES) $=0.40$

PEAK FLOW RATE (CFS) AT CONFLUENCE $=0.78$
** CONFLUENCE DATA **
$\begin{array}{ccc}\text { STREAM } & \text { RUNOFF } & \text { TC } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) }\end{array}$
$\begin{array}{ccc}\text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$
(INCH/HOU
1.905
1.432
1.432
2.537
(ACRE)
6.40
6.40
0.40
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$==$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) $=7.07$
RAINFALL INTENSITY (INCH/HR) $=2.25$
TOTAL STREAM AREA (ACRES) $=1.70$
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.01

 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$\ggg>$ AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) $=6.91$
RAINFAL INTENSITY (INCH $/$ HR) $=2.28$
RAINEALL INTENSITY (INCH/HR) $=2.28$
TOTAL STREAM AREA (ACRES) $=2.00$
PEAK FLOW RATE (CFS) AT CONFLUENCE =
4.01
$\begin{array}{ccccc}\text { ** CONFLUENCE DATA ** } & & & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 4.01 & 7.07 & 2.252 & 1.70 \\ 2 & 4.01 & 6.91 & 2.277 & 2.00\end{array}$
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
$\begin{array}{crcc} & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { STREAM } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ \text { NUMBER } & 7.93 & 6.91 & 2.277 \\ 1 & 7.98 & 7.07 & 2.252\end{array}$
$\begin{array}{crcc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 7.93 & 6.91 & 2.277 \\ 2 & 7.98 & 7.07 & 2.252\end{array}$

LE **
Tc
(MIN.)
$\begin{array}{crcc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 7.93 & 6.91 & 2.277 \\ 2 & 7.98 & 7.07 & 2.252\end{array}$
$\begin{array}{ll}\text { ** PEAK FLOW RATE } \\ \text { STREAM } & \text { RUNOFF }\end{array}$
$\begin{array}{crcc}\text { STREAM } & \text { RUNOFF } & \text { Tc } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 7.93 & 6.91 & 2.277 \\ 2 & 7.98 & 7.07 & 2.252\end{array}$
$\angle 0^{\circ} \mathrm{L}$

FLOW PROCESS FROM NODE 813.00 TO NODE 824.00 IS CODE $=31$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<<

REPRESENTATIVE SLOPE $=0.0400$

FLOW LENGTH (FEET) = 510.00
DEPTH OF FLOW IN 27.0 INCH PI PIPE-FLOW VELOCITY(FELIMATED PIPE DIAMETER(INCH)

ESTPE-FLOW (CFS) $=-53.00$

$* ~$
FLOW PROCESS FROM NODE 824.00 TO NODE 824.00 IS CODE $=10$

FLOW PROCESS FROM NODE $\quad 825.00$ TO NODE 826.00 IS CODE $=21$
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
$T C=K^{*}[($ LENGTH**3) $/($ ELEVATION CHANGE $)] * * .2$
INITIAL SUBAREA FLOW-LENGTH (FEET) $=290.00$
UPSTREAM ELEVATION (FEET) $=1622.00$
ELEVATION DIFFERENCE (FEET) $=24.00$
ELEVATION DIFFERENCE (FEET)
$\mathrm{TC}=0.303 *[(290.00 * * 3) /(24.00)] * * .2=4.819$
10 YEAR RAINFALI INTENSITY (INCH/HOUR) $=2.669$ COMMERCTAL

SOIL CLASSIFICATION IS "C" 4.01
SUBAREA RUNOFF $(C F S)=$
TOTAL AREA $(A C R E S)=$
***)
FLOW PROCESS FROM NODE
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>
$==============================$
REPRESENTATIVE SLOPE $=0.0100$

DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=\begin{array}{r}5.32 \\ 15.00\end{array}$
ESTIMATED PIPE DIAMETER(INCH)
PIPE-FLOW (CFS) $=$
4.01
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE

SI ${ }^{265}{ }^{\text {d }}$

TOTAL AREA (ACRES) $=1.70$ TOTAL RUNOFF (CFS) $=$
10. +

 ASSUMED INITIAL SUBAREA UNIFORM
$T C=K *[($ LENGTH**3)/(ELEVATION CHANGE) $] * * .2$
INITIAL SUBAREA FLOW-LENGTH $($ FEET $)=710.00$
INITAAL SUBAREA FLOW-LENGTH (FEET) $=$
UPSTREAM ELEVATION $(F E E T)=1628.00$
DOWNSTREAM ELEVATION (FEET) $=1597.00$
ELEVATION DIFFERENCE $($ FEET $)=31.00$

10 YEAR RAINFALL INTENSITY(INCH/HOUR)
COMMERCTAL DEVELOPMENT RUNOFF COEFFICIE
 SUBAREA RUNOFF (CFS)
TOTAL AREA $($ ACRES $)=$

 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$ TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR IN TIME OF CONCENTRATION (MIN.) = RAINFALL INTENSITY (INCH/HR) $=$ $\begin{array}{ll}\text { RAINFALL } \\ \text { TOTAL STREAM AREA (ACRES) }= & 0.90 \\ \text { PEAK FLOW RATE (CFS) AT CONFLUENCE }=\end{array}$
INTENSITY AREA CTME
PEAK FLOW RATE (CFS) AT CONFLUENCE $=0.90$
1.70

Date: 07/03/2019 File name: P10_B8.RES

＞＞＞＞＞DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE＜＜＜＜＜
$==$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE：
TIME OF CONCENTRATION（MIN．）$=10.63$
RAINFALL INTENSITY（INCH／HR）$=1.84$
TOTAL STREAM AREA（ACRES）$=4.90$
PEAK FLOW RATE（CFS）AT CONFLUENCE $=$
 \qquad ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
$\mathrm{TC}=\mathrm{K}^{*}[($ LENGTH＊＊3）／（ELEVATION CHANGE）$] * * .2$ INITIAL SUBAREA FLOW－LENGTH $($ FEET $)=240.00$
UPSTREAM ELEVATION $(F E E T)=1650.00$
1615.00
$\begin{aligned} \text { DOWNSTREAM ELEVATION（FEET）} & =1615.00 \\ \text { ELEVATION DIFFERENCE（FEET）} & =35.00\end{aligned}$

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN．
10 YEAR RAINFALL INTENSITY（INCH／HOUR）$=2.669$ 10 YEAR RAINFALL INTENSITY（INCH／HOUR）$=2.669$
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT $=.8835$ SOIL CLASSIFICATION IS＂C＂
SUBAREA RUNOFF（CFS）＝ $\tau \nabla^{\circ} \tau$
$* *$
FLOW PROCESS FROM NODE 847．00 TO NODE 845．00 IS CODE＝ 31 FLOW PROCESS FROM NODE 847．00 TO NODE 845．00 IS CODE $=31$

REPRESENTATIVE SLOPE $=260.00 \quad$ MANNING＇S N $=0.013$
FLOW LENGTH（FEET）$=2.02$
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.2 INCHES
PIPE－FLOW VELOCTTY（FEFT／SEC．）
ESTIMATED PIPE DIAMETER $($ INCH $)=9.00 \quad$ NUMBER OF PIPES $=1$ PIPE－FLOW $($ CFS $)=1.41$
PIPE TRAVEL TIME（MIN．）$=0.82 \quad$ TC（MIN．$)=5.82$
LONGEST FLOWPATH FROM NODE $\quad 846.00 \mathrm{TO}$ NODE $\quad 845.00=\quad 500.00$ FEET．
$* *$
FLOW PROCESS FROM NODE 845.00 TO NODE 845.00 IS CODE $=1$

TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE：
RAINFALL INTENSITY（INCH／HR）$=2.48$
TOTAL STREAM AREA（ACRES）$=0.60$
PEAK FLOW RATE（CFS）AT CONFLUENCE $=$
PEAK FLOW RATE（CFS）AT CONFLUENCE＝ 1.41
＊＊CONFLUENCE DATA＊＊

DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
PIPE－FLOW VELOCITY（FEET／SEC．）$=5.65$ PIPE－FLOW VELOCITY（FEET／SEC．）$=5.65$
ESTIMATED PIPE DIAMETER（INCH）$=9.00$ PIPE－FLOW（CFS）＝ PIPE TRAVEL TIME（MIN．）$\stackrel{1.94}{=} 0.3$
LONGEST FLOWPATH FROM NODE FLOW PROCESS FROM NODE
＞＞＞＞＞DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE＜＜＜＜＜＜

CONFLUENCE VALUES USED FOR INDEPENDENT
TIME OF CONCENTRATION（MIN．）$=9.34$
RATNFALL INTENSITY（INCH／HR）$=1.96$
RAINFALL INTENSITY（INCH／HR）$=1.96$
TOTAL STREAM AREA（ACRES）$=1.10$
PEAK FLOW RATE（CFS）AT CONFLUENCE
＊＊CONFLUENCE DATA＊＊
－山田日
＊＊CONFLUENCE DATA
STREAM RUNOFF
NUMBER
$\begin{array}{cc}1 & 6.47 \\ 2 & 1.94\end{array}$ 1.9

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS．
＊＊PEAK FLOW RATE TABLE＊＊
STREAM RUNOFF TC INTENSITY
1.964
9.34
10.05
7.94
8.33

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS：
PEAK FLOW RATE（CFS）$=\quad 8.33 \quad$ TC（MIN．）$=$
$\begin{array}{ll}\text { TOTAL AREA }(\text { ACRES })= & 4.9 \\ \text { LONGEST FLOWPATH FROM NODE } & 843.00 \text { TO NODE }\end{array}$

REPRESENTATIVE SLOPE $=0.0100$
FLOW LENGTH（FEET）$=220.00$ MANNING＇S $\mathrm{N}=0.013$
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
PIPE－FLOW VELOCITY（FEET／SEC．）$=\begin{array}{r}6.31 \\ \hline\end{array}$
ESTIMATED PIPE DIAMETER（INCH）
$\begin{array}{ll}\text { PIPE－FLOW }(\text { CFS })= & 8.33 \\ \text { PTPE TRAVE TTME（MIN．）}\end{array}$
$\begin{array}{lll} & 8 . & \\ \text { PIPE TRAVEL TIME（MIN．）}= & 0.58 \quad \text { TC（MIN．）}= \\ \text { LONGEST FLOWPATH FROM NODE } & 843.00 \text { TO NODE }\end{array}$

$\begin{array}{ccc}\text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）}\end{array}$
$\begin{array}{cc}\text {（MIN．）} & \text {（INCH／HOU }) \\ 10.05 & 1.894 \\ 9.34 & 1.964\end{array}$

NUMBER
1
P
10.05
－
$\begin{array}{ll}\text { ESTIMATE PIPE DIAMETER（INCH）} & =18.00 \quad \text { NUMBER OF PIPES }=1 \\ \text { PIPE－FLOW（CFS）}\end{array}$
PIPE TRAVEL TIME（MIN．）$=0.58 \quad$ Tc（MIN．）$=10.63$
845.00 TO

$\ggg \gg C O M P U T E ~ P I P E-F L O W$ TRAVEL TIME THRU SUBAREA<<<<<<
$\ggg>$ USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE F

$\begin{array}{lcccccl}\text { ** MAIN } & \text { STREAM CONFLUENCE DATA } & \text { ** } & & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } & \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } & \\ 1 & 17.63 & 7.12 & 2.243 & 15.10 & \\ 2 & 20.03 & 8.72 & 2.031 & 15.10 & \\ 3 & 22.87 & 11.11 & 1.803 & 15.10 & \\ 4 & 23.12 & 11.59 & 1.766 & 15.10 & \\ 5 & 23.32 & 11.82 & 1.749 & 15.10 & \\ 6 & 22.77 & 12.65 & 1.692 & 15.10 & \\ \text { LONGEST } & \text { FLOWPATH FROM NODE } & 843.00 \text { TO NODE } & 840.00= & 1600.00 \text { FEET. }\end{array}$

$840.00=$

FLOW PROCESS FROM NODE
$\ggg \gg$ DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$\ggg \gg A N D ~ C O M P U T E ~ V A R I O U S ~ C O N F L U E N C E D ~ S T R E A M ~ V A L U E S \lll \ll ~$
** CONFLUENCE DATA **

$$
\begin{array}{ccccc}
\text { STREAM } & \text { RUNOF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\
\text { NUMBER } & \begin{array}{c}
\text { (CFS) } \\
\text { (MIN.) }
\end{array} & \begin{array}{c}
\text { (INCH/HOUR) } \\
\text { (INCRE) }
\end{array} \\
1 & 16.38 & 7.04 & 2.256 & 13.60 \\
1 & 18.49 & 8.64 & 2.040 & 13.60 \\
1 & 20.91 & 11.03 & 1.809 & 13.60 \\
1 & 21.07 & 11.51 & 1.772 & 13.60 \\
1 & 21.24 & 11.74 & 1.755 & 13.60 \\
2 & 2.23 & 12.57 & 1.697 & 1.50
\end{array}
$$

RAINEALL INTENSITY AND TIME OF CONCENTRATION RATIO

CONFLUENCE FORMULA USED FOR 2 STREAMS.
 $\begin{array}{lcccc}\text { ** PEAK } & \text { FLOW RATE TABLE ** } & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY }\end{array}$
 NUMBER (CFS) (MIN.) (INCH/HOUR)
 $\begin{array}{cc}17.63 & 7.04 \\ 20.03 & 8.64\end{array}$
 $\begin{array}{rr}20.03 & 8.64 \\ 22.87 & 11.03 \\ 23.12 & 11.51\end{array}$
 స্ৰ ল゙ ল゙
 $\begin{array}{ll}\angle G \cdot Z \tau & \angle L \cdot Z Z \\ \sigma L \cdot \tau \tau & Z \varepsilon \cdot \varepsilon Z\end{array}$

[^0]
FLOW PROCESS FROM NODE $\quad 840.00$ TO NODE $\quad 840.00$ IS CODE $=12$

＞＞＞＞＞CONFLUENCE MEMORY BANK \＃ 1 WITH THE MAIN－STREAM MEMORY＜＜＜＜＜
$==$
＊＊MAIN STREAM CONFLUENCE DATA＊＊

$\begin{array}{lccll}\text {＊＊MAIN } & \text { STREAM CONFLUENCE DATA } & \text {＊＊} & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA }\end{array}$
NUMBER（CFS）（MIN．）

がッドゥの

28.60
32.04
33.79
34.43
34.43
34.43
34.57
33.67
$\begin{array}{rrr}24.63 & 8.38 & 2.210 \\ 28.60 & 8.93 & 2.007 \\ 32.04 & 10.76 & 1.832\end{array}$

21.90
21.90

둑 옥
832.00迎気
응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅅ

－山AGA 00．09T

 （CFS）（MIN．）（INCH／HOU
$\begin{array}{lll}33.96 & 6.88 & 2.282 \\ 36.89 & 7.32 & 2.213 \\ 37.58 & 7.48 & 2.190\end{array}$

FLOW PROCESS FROM NOD	901.00 TO NODE 901.00 I			E $=81$
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<				
10 YEAR RAINFALL INTENSITY(INCH/HOUR) $=1.823$				
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6774$				
SOIL CLASSIFICATION IS "C"				
SUBAREA AREA (ACRES)	1.70	SUBAREA RUNOFF (CFS)		2.10
TOTAL AREA (ACRES) $=$	3.7	TOTAL RUNOFF (CFS)	$=$	5.30
TC (MIN.) = 10.87				

$* ~$
 $=========================-===============-=================================1$
REPRESENTATIVE SLOPE $=0.0150$
REPRESENATIVE SLOPE $=10.0150$ MANNING'S $\mathrm{N}=0.013$
FLOW LENGTH (FEET) $=100$
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.3 INCHES
ESTIMATED PIPE DIAMETER (INCH) $=15.00$ NUMBER OF PIPES $=1$

$* ~$
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK \# 1 <<<<<
$* ~$
FLOW PROCESS FROM NODE $\quad 903.00$ TO NODE $\quad 904.00$ IS CODE $=21$
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
$T C=K *[(\operatorname{LENGTH} * * 3) /($ ELEVATION CHANGE $)] * * .2$
-
FILE NAME: P10_B9AA.DAT
TIME/DATE OF STUDY: $13: 32$ 07/03/2019

USER SPECIFIED STORM EVENT (YEAR) $=10.00$

SPECIFIED MINIMUM PIPE SIZE (INCH) $=$
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE $=0.90$ 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.880 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=2.690$ SLOPE OF 10-YEAR INTENSITY-DURATION CURVE $=0.4909883$ SLOPE OF 100 -YEAR INTENSITY-DURATION CURVE $=0.4890234$ COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT $=10.00$ 1-HOUR INTENSITY (INCH/HOUR) $=0.788$
SLOPE OF INTENSITY DURATTON CURVE $=0.4910$

NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* $\begin{array}{lllllll}\text { HALF- CROWN TO } & \text { STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: } & \\ \text { WIDTH } & \text { CROSSFALL } & \text { IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE } & \text { FACTOR }\end{array}$ NO. (FT) (FT) SIDE / SIDE/WAY (FT) (FT) (FT) (FT) (n) $\begin{array}{lllllllllll}30.0 & 20.0 & 0.018 / 0.018 / 0.020 & 0.67 & 2.00 & 0.0313 & 0.167 & 0.0150\end{array}$ GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
Relative Flow-Depth $=0.00$ FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)* (Velocity) Constraint $=6.0$ (FI
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN

FLOW PROCESS FROM NODE

$==============-==-===-=-=-=-10200$
REPRESENTATIVE SLOPE $=0.0200$
FLOW LENGTH (FEET) = 100.00 MANNING'S N $=0.013$
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.1 INCHES
$\begin{aligned} & \text { PIPE-FLOW VELOCITY (FEET/SEC.) }=6.14 \\ & \text { PTM }\end{aligned}$ PIPE-FLOW (CFS) = 2.47

PIPE TRAVEL TIME (MIN.) $=$
LONGEST FLOWPATH FROM NODE
 FLOW PROCESS FROM NODE
$\ggg \gg$ DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE $\lll \lll$
$\ggg>$ AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES $\lll \ll$
$==========================-2$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) $=9.17$ RIME OF CONCENTR INTENSITY (INCH/HR) = TOTAL STREAM AREA (ACRES) =
PEAK FLOW RATE (CFS) AT CONE
** Confluence data **
$\begin{array}{ccccr}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 8.07 & 8.96 & 2.005 & 4.60 \\ 1 & 8.31 & 9.59 & 1.938 & 4.60 \\ 2 & 2.47 & 9.17 & 1.981 & 1.40 \\ & & & & \\ \text { RAINFALL } & \text { INTENSITY AND TIME } & \text { OF } & \text { CONCENTRATION } & \text { RATIO } \\ \text { CONFLUENCE FORMULA USED FOR } & 2 & \text { STREAMS. } & \end{array}$ CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE
$\begin{array}{cr}\text { SUMBER } & \text { (CFS) } \\ 1 & 14.62\end{array}$

 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$\ggg>$ AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
$==$
TOTAL NUMBER OF STREAMS $=2$
CNFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) $=12.30$
RAINFALL INTENSITY (INCH/HR) $=1.71$
TOTAL STREAM AREA(ACRES) $=4.20$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$
TIME OF CONCENTRATION (MIN.) $=12.30$
RAINFALL INTENSITY (INCH/HR) $=1.71$
TOTAL STREAM AREA (ACRES) $=4.20$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=6.31$
TIME OF CONCENTRATION (MIN.) $=12.30$
RAINFALL INTENSITY (INCH/HR) $=1.71$
TOTAL STREAM AREA (ACRES) $=4.20$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=6.31$
TIME OF CONCENTRATION (MIN.) $=12.30$
RAINFALL INTENSITY (INCH/HR) $=1.71$
TOTAL STREAM AREA (ACRES) $=4.20$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=6.31$

$\stackrel{\rightharpoonup}{2}$
6.31

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
$===$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (MIN.) $=2.82$
RAINFALL INTENSITY (INCH/HR) $=2.48$
TOTAL STREAM AREA(ACRES) $=2.00$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=4.37$
** CONFLUENCE DATA **
$\begin{array}{ccccc}\begin{array}{cccc}\text { STREAM } \\ \text { NUMBER }\end{array} & \text { RUNOFF } & \text { (CFS) } & \text { TC } & \text { INTENSITY }\end{array} \begin{gathered}\text { AREA } \\ 1\end{gathered}$
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$
2.477
1.991
1.968
1.926

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) =
LOTAL AREA(ACRES FLOWPATH FROM NODE
**)
FLOW PROCESS FROM NODE
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>> USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

FLOW LENGTH (FEET) $=430.00$ MANNING'S $\mathrm{N}=0.013$
DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.2 INCHES
$\begin{aligned} \text { PIPE-FLOW VELOCITY (FEET/SEC.) } & =7.10 \\ \text { ESTIMATED PIPE DIAMETER (INCH) } & =21.00\end{aligned}$
PIPE-FLOW (CFS) $=$
PIPE-FLOW (CFS) $=14.13$
PIPE TRAVEL TIME (MIN.) $=1.01$
LONGEST FLOWPATH FROM NODE

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<-------------------------------------

\angle abed

TOTAL NUMBER OF STREAMS $=2$

＞＞＞＞＞AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES＜＜＜＜＜＜
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE： TIME OF CONCENTRATION（MIN．）$=8.61$
RAINFALL INTENSITY（INCH／HR）$=2.04$ RAINFALL INTENSITY（INCH／HR）$=1.04$ PEAK FLOW RATE（CFS）AT CONFLUENCE＝
3.11 $\begin{array}{cccc}\text { RUNOFF } & \text { Tc } & \text { INTENSITY } & \text { AREA } \\ \text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）} & \text {（ACRE）} \\ 3.30 & 12.89 & 1.676 & 2.80 \\ 3.11 & 8.61 & 2.043 & 1.80\end{array}$ $\begin{array}{cccc}\text { RUNOFF } & \text { Tc } & \text { INTENSITY } & \text { AREA } \\ \text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）} & \text {（ACRE）} \\ 3.30 & 12.89 & 1.676 & 2.80 \\ 3.11 & 8.61 & 2.043 & 1.80\end{array}$

＊＊CONFLUENCE DATA＊＊ $\begin{array}{cccc}\text { RUNOFF } & \text { Tc } & \text { INTENSITY } & \text { AREA } \\ \text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）} & \text {（ACRE）} \\ 3.30 & 12.89 & 1.676 & 2.80 \\ 3.11 & 8.61 & 2.043 & 1.80\end{array}$ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS．
＊＊PEAK FLOW RATE TABLE＊＊
INTENSITY
（INCH／HOUR）
2.043
1.676
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS：
PEAK FLOW RATE（CFS）$=$ $\begin{array}{lll}\text { TOTAL AREA（ACRES）}= & 4.6 \\ \text { LONGEST FLOWPATH FROM NODE } & 914.00 \text { TO NODE } \quad 916.00=\quad 1280.00 \text { FEET．}\end{array}$
 ＞＞＞＞＞COMPUTE PIPE－FLOW TRAVEL TIME THRU SUBAREA＜＜＜＜＜＜
$\ggg>$ USING COMPUTER－ESTIMATED PIPESIZE（NON－PRESSURE FLOW）$\lll \lll$

REPRESENTATIVE SLOPE $=0.0150$
FLOW LENGTH（FEET）$=130.00$ MANNING＇S $\mathrm{N}=0.013$
FLOW LENGTH（FEET）$=130.00$ MANNING＇ $\mathrm{S} \mathrm{N}=0.01$
DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.0 INCHES

ESTIMATED PIPE DIAMETER（INCH）$=15.00$
PIPE－FLOW（CFS）$=\quad 5.85$
PIPE TRAVEL TIME（MIN．）$=0.32 \quad$ TC（MIN．）$=13.21$
LONGEST FLOWPATH FROM NODE $\quad 914.00$ TO NODE $913.00=1410.00$ FEET．
FLOW PROCESS FROM NODE 913．00 TO NODE 913．00 IS CODE $=11$

＊＊MAIN STREAM CONFLUENCE DATA＊＊ARE $\begin{array}{r}\text { 可 } \\ \text { 岂 } \\ \text { 岂 } \\ \hline\end{array}$

$3.00=$
 913.00

［星明 0 \square

＊＊MEMORY BANK \＃ 2 CONFLUENCE DATA＊＊ $===$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE：
TIME OF CONCENTRATION（MIN．）$=12.89$
RAINFALL INTENSITY（INCH／HR）$=1.68$
TOTAL STREAM AREA（ACRES）$=2.80$
PEAK FLOW RATE（CFS）AT CONFLUENCE $=3.30$
 $===$

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL

[^1]| 10 YEAR RAINFALL INTENSITY（INCH／HOUR）$=2.083$ |
| :--- | UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.6990$

SUBAREA RUNOFF（CFS）$=$ TOTAL AREA $($ ACRES $)=$
$\mathrm{TC}($ MIN．$)=8.28$

＞＞＞＞＞COMPUTE PIPE－FLOW TRAVEL TIME THRU SUBAREA＜＜＜＜＜

REPRESENTATIVE SLOPE $=0.0200$
FLOW LENGTH（FEET）$=130.00$ MANNING＇S N $=0.013$
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7．1 INCHES

ESTIMATED PIPE DIAMETER（INCH）$=12.00$
PIPE－FLOW（CFS）$=$
PIPE TRAVEL TIME（MIN．）$=11$
PIPE TRAVEL TIME（MIN．）
LONGEST FLOWPATH FROM NODE

Page 11

$\begin{array}{crc}\text { ** PEAK } & \text { FLOW RATE TABLE ** } \\ \text { STREAM } & \text { RUNOFF } & \text { Tc } \\ \text { SUMBER } & \text { (CFS) } & \text { (MIN.) } \\ \text { 1 } & 23.55 & 7.64 \\ 2 & 26.73 & 9.08 \\ 3 & 27.16 & 9.24 \\ 4 & 30.29 & 10.81 \\ 5 & 30.37 & 11.03 \\ 6 & 31.05 & 11.45 \\ 7 & 31.05 & 11.63 \\ 8 & 31.35 & 13.03 \\ 9 & 31.11 & 13.49\end{array}$

>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	
ASSUMED INITIAL SUBAREA UNIFORMDEVELOPMENT IS: UNDEVELOPED WITH POOR COVER	
TC $=$ K* (LENGTH**3) / (ELEVATION CHANGE)]**. 2	
INITIAL SUBAREA FLOW-LENGTH (FEET) $=980.00$	
UPSTREAM ELEVATION(FEET) = 1715.00	
DOWNSTREAM ELEVATION(FEET) $=1670.00$	
ELEVATION DIFFERENCE (FEET) = 45.00	
TC $=0.533 *[(980.00 * * 3) /(45.00)] * * .2=15.506$	
100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.171$	
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT $=.7053$	
SOIL CLASSIFICATION IS "C"	
SUBAREA RUNOFF (CFS) = 16.54	
TOTAL AREA $($ ACRES $)=10.80$ TOTAL RUNOFF (CFS $)=$	16.54

REPRESENTATIVE SLOPE $=0.0390$
CHANNEL LENGTH THRU SUBAREA(FEET)
"V" GUTTER WIDTH $($ FEET $)=5.00 \quad$ GUTTER HIKE $(F E E T)=0.800$
PAVEMENT LIP (FEET) $=0.400$ MANNING'S $N=.0300$
MAXIMUM DEPTH $($ FEET $)=2.00$
100 YEAR RAINFALL INTENSITY(INCH/HOUR) $=2.004$ SOIL CLASSIFICATION IS "C"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) $=$

AVERAGE FLOW DEPTH (FEET) $=1.20$ FLOOD WIDTH (FEET)

V V GUTTER FLOW TRAVEL TIME (M	
SUBAREA AREA (ACRES)	$=$
.60	

TOTAL AREA (ACRES) $=$
END OF SUBAREA "V" GUTTER HYDRAULICS:
$\operatorname{DEPTH}($ FEET $)=1.20$ FLOOD WIDTH (FEET) $=5.23$
FLOW VELOCITY (FEET/SEC.) $=\quad 7.44$ DEPTH*VELOCITY (ET*FT/SEC) $=8.95$
LONGEST FLOWPATH FROM NODE $\quad 800.00$ TO NODE $802.00=8210.00$ FEET
$* ~$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>
REPRESENTATIVE SLOPE $=0.0200$
REPRESENTATIVE SLOPE $=300.00$ MANNING'S $\mathrm{N}=0.013$
FLOW LENGTH (FEET) $=300$
DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=11.01$
ESTIMATED PIPE DIAMETER(INCH) $=24.00$
ESTIMATED PIPE DIAMETER(INCH)
PIPE-FLOW (CFS) $=$
29.86

LONGEST FLOWPATH FROM NODE

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON (c) Copyright $1982-2013$ Advanced Engineering Software (aes)
(Rational Tabling Version 20.0)

Release Date: 06/01/2013 License ID 1264
Analysis prepared by:
************************** DESCRIPTION OF STUDY *******************************) MEAD VALIEY BUSINESS PARK

* PRELIMINARY PROPOSED CONDITION RATIONAL METHOD HYDROLOGY
* 100 YEAR STORM EVENT FOR AREA TRIBUTARY TO LATERAL B-8

FILE NAME: P100_B8.DAT
TIME/DATE OF STUDY: 11:33 07/03/2019
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
SPECIFIED MINIMUM PIPE SIZE (INCH) $=6.00$
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE $=0.90$ SPE-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=1.880$ 10 -YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) $=0.780$ 100 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=2.690$ SLOPE OF 1O-YEAR INTENSITY-DURATION CURVE $=0.4909883$ SLOPE OF 10-YEAR INTENSITY-DURATION CURVE $=-.490983$ COMPUTED RAINFALL INTENSITY DATA: COMPUTED RAINFALL
STORM EVENT $=100.0$ KLISNELNI AO BdOTS RCEC\&WCD HYDROLOGY
NOTE: CONSIDER ALI
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR $\begin{array}{llll}(\mathrm{FT}) & (\mathrm{FT}) \quad(\mathrm{FT}) \quad(\mathrm{FT}) \quad(\mathrm{n})\end{array}$ $\begin{array}{lllll}\text { ===== } \\ 0.67 & 2.00 & 0.0313 & 0.167 & 0.0150\end{array}$ $018 / 0.018 / 0.020 \quad 0.67$

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

1. Relative Flow-Depth $=0.00$ FEET
Relative Flow-Depth as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAM
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
Date: 07/03/2019 File name: P100_B8.RES
NO. (FT) $===$ $\begin{array}{rr}=== & =- \\ 1 & 30.0\end{array}$

$* ~$

[^2] REPRESENTATIVE SLOPE $=0.0200$
REPRESENTATIVE SLOPE $=0.0200$

FLOW LENGTH（FEET）$=150.00$ MANNING＇S N $=0.013$ DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES PIPE－FLOW VELOCITY（FEET／SEC．）$=\begin{array}{r}\text { ．} \\ \text { ．} \\ \hline\end{array}$ ESTIMATED PIPE DIAMETER（INCH）$=$

INTENSITY
（INCH／HOUR）
2.510

Sヨy ${ }^{8} 89^{-}$00Id ：ameu ə！！
$\begin{array}{ccc}\text { NUMBER } & \text {（CFS）} & \text {（MIN．）} \\ 1 & 45.99 & 11.52\end{array}$

PIPE－FLOW（CFS）＝ 4.13

PIPE TRAVEL TIME（MIN．）$=0.37 \mathrm{TC}($ MIN．$)=$
LONGEST FLOWPATH FROM NODE
811.00 TO NODE

TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE：
TIME OF CONCENTRATION（MIN．）$=12.20$
RAINFALL INTENSITY（INCH／HR）$=2.44$
$\begin{array}{ll}\text { RAINEALL INTENSITY（INCH／HR）}= & 2.44 \\ \text { TOTAL STREAM AREA（ACRES）} & = \\ 2.30\end{array}$
TOTAL STREAM AREA（ACRES）$=\quad 2.30$
PEAK FLOW RATE（CFS）AT CONFLUENCE $=$
＊＊CONFLUENCE DATA＊＊
药
SUMBER
INTENSITY
（INCH／HOUR）
2.510
2.050
1.930
2.441
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS．
＊＊PEAK FLOW RATE TABLE＊＊
$\begin{array}{cc}\text { STREAM RUNOFF } & \text { TC } \\ \text {（CFS）} & \text {（MIN．）}\end{array}$
AREA
（ACRE）
43.60
43.60
43.60
2.30
4.13
 ＞＞＞＞＞AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES＜＜＜＜＜＜

12.20
$\begin{array}{lr}1 & 62.00 \\ 1 & 63.45 \\ 2 & 4.13\end{array}$
（CFS）
42.09
62.00
63.45
RAINFALL INTENS
っ

>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

$* ~$
FLOW PROCESS FROM NODE 822.00 TO NODE 822.00 IS CODE $=1$
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: $\begin{array}{ll}\text { TIME OF CONCENTRATION (MIN.) } & =9.47 \\ \text { RAINFALL INTENSITY (INCH/HR) } & =2.76\end{array}$
TOTAL STREAM AREA (ACRES) $=3.50$
PEAK FTOW RATE (CFS) AT CONFLUENCE $=$
** CONFLUENCE DATA **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$
$\begin{array}{cccc}\text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 5.90 & 5.82 & 3.505\end{array}$
$\begin{array}{rrr}9.35 & 10.13 & 2.673 \\ 10.64 & 17.78 & 2.030 \\ 7.31 & 9.47 & 2.763\end{array}$

** PEAK FLOW RATE TABLE **
$\begin{array}{lrcc}* * & \\ \begin{array}{cc}\text { STREAM } & \text { RUNOF }\end{array} & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 10.39 & 5.82 & 3.505 \\ 2 & 16.05 & 9.47 & 2.763 \\ 3 & 16.43 & 10.13 & 2.673 \\ 4 & 16.01 & 17.78 & 2.030 \\ \text { COMPUTED CONFLUENCE } & \\ \text { PEAK FSTMATES ARE AS FOLLOWS: }\end{array}$

[^3]TOTAL STREAM AREA(ACRES) $=1.70$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$
 $* *$
FLOW PROCESS FROM NODE 827.00 TO NODE
 $===========================$
TOTAL NUMBER OF STREAMS $=2$ CONFLUENCE VALUES USED FOR INDEPENDENT $\begin{array}{lll}\text { TIME OF CONCENTRATION (MIN.) } & = & 6.91 \\ \text { RAINFALL INTENSITY (INCH/HR) } & = & 3.22\end{array}$ TOTAL STREAM AREA (ACRES) $=\quad 2.00$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=$ $+$
$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 5.70 & 6.94 & 3.216 & 1.70 \\ 2 & 5.71 & 6.91 & 3.224 & 2.00 \\ & & & & \\ \text { RAINFALL INTENSITY AND TIME OF } & \\ \text { CONCENTRATION RATIO }\end{array}$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) $=6.91$
5.
** CONFLUENCE DATA **
$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 5.70 & 6.94 & 3.216 & 1.70 \\ 2 & 5.71 & 6.91 & 3.224 & 2.00 \\ & & & & \\ \text { RAINFALL INTENSITY AND TIME OF } & \text { CONCENTRATION RATIO }\end{array}$
$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 5.70 & 6.94 & 3.216 & 1.70 \\ 2 & 5.71 & 6.91 & 3.224 & 2.00 \\ & & & & \\ \text { RAINFALL INTENSITY AND TIME OF } & \text { CONCENTRATION RATIO }\end{array}$
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 11.38 & 6.91 & 3.224 \\ 2 & 11.40 & 6.94 & 3.216\end{array}$
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { Tc } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 11.38 & 6.91 & 3.224 \\ 2 & 11.40 & 6.94 & 3.216\end{array}$
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) $=11.40 \quad \mathrm{TC}(\mathrm{MIN})=$. PEAK FLOW RATE (CFS) $=11.40$ (MN.)

LONGEST FLOWPATH FROM NODE 825.00 TO NODE
6.94

$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 5.70 & 6.94 & 3.216 & 1.70 \\ 2 & 5.71 & 6.91 & 3.224 & 2.00 \\ & & & & \\ \text { RAINFALL INTENSITY AND TIME OF } & \text { CONCENTRATION RATIO }\end{array}$
$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 5.70 & 6.94 & 3.216 & 1.70 \\ 2 & 5.71 & 6.91 & 3.224 & 2.00 \\ & & & & \\ \text { RAINFALL } & \text { INTENSITY AND TIME OF } & \text { CONCENTRATION RATIO }\end{array}$
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 11.38 & 6.91 & 3.224 \\ 2 & 11.40 & 6.94 & 3.216\end{array}$
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { Tc } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 11.38 & 6.91 & 3.224 \\ 2 & 11.40 & 6.94 & 3.216\end{array}$
$\begin{array}{cccc}\text { STREAM } & \text { RUNOFF } & \text { Tc } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } \\ 1 & 11.38 & 6.91 & 3.224 \\ 2 & 11.40 & 6.94 & 3.216\end{array}$
FLOW PROCESS FROM NODE 827.00 TO NODE 829.00 IS CODE $=31$
0
$\stackrel{1}{0}$
あ
0

 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<<
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< $==$
REPRESENTATIVE SLOPE $=0.0200$ FLOW LENGTH (FEET) $=260.00$ MANNING'S $\mathrm{N}=0.013$ DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC. $)=5.68$
NUMBER OF PIPES $=1$ PIPE-FLOW (CFS $)=$
PIPE TRAVEL TIME $($ MIN. $)=2.01$
$=0.76 \quad \mathrm{TC}($ MIN. $)=5.76$ 500.00 FEET.
 TOTAL NUMBER OF STREAMS $=2$ 2 ARE:
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: RAINFALL INTENSITY (INCH/HR) $=3.52$ $\begin{array}{ll}\text { RAINFALL INTENSITY (INCH/HR) }= & 3.52 \\ \text { TOTAL STREAM AREA(ACRES) }= & 0.60 \\ \text { PEAK FLOW RATE (CFS) AT CONFLUENCE }=\end{array}$
** CONFLUENCE DATA **

ㅇ․ㅇ․․

\section*{| 8 |
| :--- |
| $-\quad$. |
| 0 |}

Sヨy 89^{-}oold :2meu ə!!

>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) $=6.93$
$\begin{aligned} \text { PIPE-FLOW VELOCITY (FEET/SEC.) } & =6.93 \\ & 21.00\end{aligned}$
PIPE-FLOW (CFS) $=11.87$
PIPE TRAVEL TIME (MIN.)
LONGEST FLOWPATH FROM NODE
$* *$
FLOW PROCESS FROM NODE 845.00 TO NODE 845.00 IS CODE $=1$
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
$\begin{array}{ll}\text { TIME OF CONCENTRATION (MIN.) } & =10.55 \\ \text { RAINFALL INTENSITY(INCH/HR) } & =2.62\end{array}$

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$===$
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN.) $=11.46$
RAINFALL INTENSITY (INCH/HR) $=2.52$
TOTAL STREAM AREA(ACRES) $=7.70$
PEAK FLOW RATE (CFS) AT CONFLUENCE $=18.43$
$* *)$
**)
FLOW PROCESS FROM NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISく<<<<<
$===$

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT
$\begin{array}{ll}\text { TIME OF CONCENTRATION (MIN.) }=11.40 \\ \text { RAINFALL TNTENSITY (TNCH/HR) } & =2.52\end{array}$
TOTAL STREAM AREA (ACRES) $=3.70$
PEAK FLOW RATE (CFS) AT CONFLUENCE =
$\begin{array}{lccccc}* * \text { CONFLUENCE DATA ** } & & & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) }\end{array}$
ํํํ․
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
INTENSITY
(INCH/HOUR)
으N 긍
** PEAK FLOW RATE TABLE **
$\begin{array}{lll}\text { STREAM } \\ \text { NUMBER (CFS) } & \text { (MIN.) }\end{array}$
$\begin{array}{lll}1 & 18.12 & 6.75 \\ 2 & 21.95 & 8.45\end{array}$

\square

$* ~$
 >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<< REPRESENTATIVE SLOPE $=0.0150$
FLOW LENGTH $($ FEET $)=100.00 \quad$ MANNING'S N $=0.013$ FLOW LENGTH(FEET) $=100.00$ MANNING'S $\mathrm{N}=0.013$
DEPTH
 ESTIMATED PIPE DIAMETER (INCH) $=18.00 \quad$ NUMBER OF PIPES $=1$ $\begin{array}{ll}\text { PIPE TRAVEL TIME (MIN. })= & 0.23 \quad \text { TC (MIN. })= \\ 900.00 \text { TO NODE } & 11.10 \\ 902.00= & 1240.00 \text { FEET. }\end{array}$ ***) FLOW PROCESS FROM NODE 902.00 TO NODE 902.00 IS CODE $=10$
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK \# 1 <<<<<< **) FLOW PROCESS FROM NODE 903.00 TO NODE 904.00 IS CODE $=21$ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISく<<<<< ASSUMED INITIAL SUBAREA UNIFORM
$T C=K *[($ LENGTH**3) $/($ ELEVATION CHANGE $)] * * .2$
 ***AD VALLEY BUSINESS PARK PRELIMINARY PROPOSED CONDITION RATIONAL METHOD HYDROLOGY USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: SPECIFIED MINIMUM PIPE SIZE (INCH) $=6.00$
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE $=0.90$ 10 -YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) $=1.880$ 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) $=0.780$ 100 -YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) $=2.690$ SLOPE OF 10-YEAR INTENSITY-DURATION CURVE $=0.4909883$ SLOPE OF 10-YEAR INTENSITY-DURATION CURVE $=-0.4909834$
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE $=0.4890234$ COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT $=100.00 \quad$ 1-HOUR INTENSITY (INCH/HOUR) $=1.120$
SLOPE OF INTENSTTY DURATTON CURVE RCFC\&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL $\begin{array}{lllllll}\text { HALF- } & \text { CROWN TO } & \text { STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNG } \\ \text { WIDTH } & \text { CROSSFALL } & \text { IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR }\end{array}$ NO. (FT) (FT) SIDE/SIDE/WAY (FT) (FT) (FT) (FT) (F) $\begin{array}{llllllllll}1 & 30.0 & 20.0 & 0.018 / 0.018 / 0.020 & 0.67 & 2.00 & 0.0313 & 0.167 & 0.0150\end{array}$
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
Relative Flow-Depth $=0.00$ FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint $=6.0$ (FIZE PIPE WITH A FLOW CAPACITY GREATER THAN
SIZE PIPE WITH A EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

***)
FLOW PROCESS FROM NODE

$==============================$
REPRESENTATIVE SLOPE $=0.0200$
REPRESENATH
FLOW IENGTH $(F E E T)=100.00$ MANNING'S $\mathrm{N}=0.013$
DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES
$\begin{aligned} \text { PIPE-FLOW VELOCITY (FEET/SEC.) } & =6.65 \\ \text { (INCH) } & =12.00\end{aligned}$
ESTIMATED PIPE DIAMETER(INCH) =
$\begin{array}{ll}\text { PIPE-FLOW (CFS) }= & 3.53 \\ \text { PIPE TRAVEL TTME (MIN.) }=\end{array}$
PIPE TRAVEL TIME (MIN.)
LONGEST FLOWPATH FROM NODE
 FLOW PROCESS FROM NODE
$\ggg \gg$ DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
$\ggg>$ AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS $=2$
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
CONFLUENCE VALUES USED FOR IND
TIME OF CONCENTRATION (MIN.) =
TIME OF CONCENTRATION (MIN.) $=$
RAINFALL INTENSITY (INCH/HR) $=$
RAINEALL INTENSITY (INCH/HR)
TOTAL STREAM AREA (ACRES) =
PEAK FLOW RATE (CFS) AT CONFL
** Confluence data **
$\begin{array}{ccccc}\text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } & \text { AREA } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) } & \text { (ACRE) } \\ 1 & 11.40 & 8.79 & 2.865 & 4.60 \\ 1 & 11.80 & 9.55 & 2.751 & 4.60 \\ 2 & 3.53 & 9.15 & 2.809 & 1.40 \\ & & & & \\ \text { RAINEALL } & \text { INTENSITY } & \text { AND TIME } & \text { OF } & \text { CONCENTRATION RATIO } \\ \text { CONFLUENCE } & \text { FORMULA USED FOR } & 2 & \text { STREAMS. }\end{array}$
CONFLUENCE FORMULA USED FOR 2 STREAMS.

** CONFLUENCE DATA **
$\begin{array}{cr}\text { STREAM } & \text { RUNOFF } \\ \text { NUMBER } & \text { (CFS) } \\ 1 & 14.78 \\ 1 & 14.83 \\ 1 & 15.25 \\ 2 & 6.22\end{array}$
26.22

RAINEALL INTENSITY
CONFLUENCE FORMULA
$\begin{array}{lrc}* * & \text { PEAK } & \text { FLOW RATE TABLE ** } \\ \text { STREAM } & \text { RUNOFF } & \text { TC } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) }\end{array}$
$\begin{array}{lrc}* * & \text { PEAK } & \text { FLOW RATE TABLE ** } \\ \text { STREAM } & \text { RUNOFF } & \text { TC } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) }\end{array}$
$\begin{array}{lccc}\text { ** PEAK } & \text { FLOW RATE } & \text { TABLE ** } & \\ \text { STREAM } & \text { RUNOFF } & \text { TC } & \text { INTENSITY } \\ \text { NUMBER } & \text { (CFS) } & \text { (MIN.) } & \text { (INCH/HOUR) }\end{array}$
$\begin{array}{lll}15.87 & 5.82 & 3.506 \\ 19.83 & 8.91 & 2.847 \\ 19.78 & 9.27 & 2.792\end{array}$
$\begin{array}{llll}2 & 19.83 & 8.91 & 2.8792 \\ 3 & 19.78 & 9.27 & 2.79 \\ 4 & 20.10 & 9.67 & 2.735\end{array}$
$\begin{array}{cc}3 & 19.78 \\ 4 & 20.10 \\ \text { OMPUTED } & \\ \text { CONFLUENCE }\end{array}$
$\begin{array}{ll}\text { COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: } \\ \text { PEAK FLOW RATE (CFS) }= & 20.10 \quad \text { TC (MIN.) }= \\ \text { TOTAL AREA (ACRES) = } & 8.0 \\ \text { LONGEST FLOWPATH FROM NODE } & 907.00 \mathrm{TO} \text { NODE }\end{array}$
$\begin{array}{ll}\text { COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: } \\ \text { PEAK FLOW RATE (CFS) }= & 20.10 \quad \text { TC (MIN.) }= \\ \text { TOTAL AREA (ACRES) = } & 8.0 \\ \text { LONGEST FLOWPATH FROM NODE } & 907.00 \mathrm{TO} \text { NODE }\end{array}$
$* ~$
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<<
>>>>

FLOW LENGTH (FEET) $=430.00$ MANNING'S $N=0.013$
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.4 INCHES
$\begin{aligned} \text { PIPE-FLOW VELOCITY (FEET/SEC.) } & =7.77 \\ \text { ESTIMATED PIPE DIAMETER (INCH) } & =24.00\end{aligned}$
PIPE-FLOW (CFS) $=$
PIPE-FLOW (CFS) $=\quad$ 20.10
PIPE TRAVEL TIME (MIN.) $=0.92$
LONGEST FLOWPATH FROM NODE

>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<------------------------------------

＞＞＞＞＞AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES＜＜＜＜＜
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE： TIME OF CONCENTRATION（MIN．）$=8.59$
RAINFALL INTENSITY（INCH／HR）$=2.90$ RAINFALL INTENSITY（INCH／HR）$=2.90$ $=$ GONARTANOD LH（SAD）ALHU MOTA Y甘Gd
4.50

INTENSITY
（INCH／HOUR）
$\begin{array}{rccc}\text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）} & \text {（ACRE）} \\ 5.06 & 12.75 & 2.389 & 2.80 \\ 4.50 & 8.59 & 2.897 & 1.80\end{array}$ 2.897

$\begin{array}{cccc}\text { RUNOFF } & \text { Tc } & \text { INTENSITY } & \text { AREA } \\ \text {（CFS）} & \text {（MIN．）} & \text {（INCH／HOUR）} & \text {（ACRE）} \\ 5.06 & 12.75 & 2.389 & 2.80 \\ 4.50 & 8.59 & 2.897 & 1.80\end{array}$
＊＊CONFLUENCE DATA＊＊
RUNOFF

$\begin{array}{crr}1 & 7.91 & 8.59 \\ 2 & 8.77 & 12.75 \\ & & \\ \text { COMPUTED } & \text { CONFLUENCE } & \text { ESTIMATES }\end{array}$

 LONGEST FLOWPATH FROM NODE 914.00 TO NODE
$* ~$
FLOW PROCESS FROM NODE 916.00 TO NODE 913.00 IS CODE $=31$ ＞＞＞＞＞COMPUTE PIPE－FLOW TRAVEL TIME THRU SUBAREA＜＜＜＜＜＜
＞＞＞＞USING COMPUTER－ESTIMATED PIPESIZE（NON－PRESSURE FLOW）＜＜＜＜＜ REPRESENTATIVE SLOPE $=0.0150$

REPRESENTATIVE SLOPE $=130.00$ MANNING＇S N $=0.013$
FLOW LENGTH（FEET）$=18$
FLOW LENGTH（FEET）$=130.00$ MANNING＇S $\mathrm{N}=0.01$
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
PIPE－FLOW VELOCITY（FEET／SEC．）$=\begin{array}{r}7.51 \\ \hline 8.00\end{array}$
ESTIMATED PIPE DIAMETER（INCH）＝
PIPE－FLOW（CFS）$=$
LONGEST FLOWPATH FROM NODE
FLOW PROCESS FROM NODE 913.00 TO NODE 913.00 IS CODE $=11$
＞＞＞＞＞CONFLUENCE MEMORY BANK \＃ 2 WITH THE MAIN－STREAM MEMORY＜＜＜＜＜
＊＊MAIN STREAM CONFLUENCE DATA＊＊荷呱

80
4
4
4

$.00=$
 913.

 \square

StREAM	RUNOFF	Tc	INTENSITY		
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)		
1	33.81	7.50	3.097		
2	39.13	9.07	2.822		
3	39.46	9.15	2.809		
4	43.30	10.50	2.627		
5	43.61	10.86	2.583		
6	44.61	11.25	2.539		
7	44.63	11.56	2.506		
8	45.25	12.97	2.369		
9	45.02	13.29	2.341		
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:					
PEAK FLOW RATE (CFS)			25 Tc (MIN.) =	12.97	
TOTAL AREA $($ ACRES $)=$ e		21.3			
LONGEST	WPATH FR	M NODE	907.00 TO NODE	$919.00=$	2040.00 FEET.

STREAM	RUNOFF	Tc	INTENSITY		
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)		
1	33.81	7.50	3.097		
2	39.13	9.07	2.822		
3	39.46	9.15	2.809		
4	43.30	10.50	2.627		
5	43.61	10.86	2.583		
6	44.61	11.25	2.539		
7	44.63	11.56	2.506		
8	45.25	12.97	2.369		
9	45.02	13.29	2.341		
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:					
PEAK FLOW RATE (CFS)			45.25 Tc (MIN.)	12.97	
TOTAL AREA (ACRES) =			21.3		
LONGEST	OWPATH FR	M NODE	907.00 TO NODE	$919.00=$	2040.00 FEET.

F L O O D D R O U T I I N G A A N A L Y S S I S

a o a
$p \ggg \ggg \ggg \ggg \ggg \ggg$

a a
o a a
ararara

TIME (HRS)	VoLuME (AF)	Q (CFS)	0.	7.5	15.0	22.5	30.0
24.083	10.2962	0.17	Q	.	.	.	v.
24.166	10.2975	0.17	2	.	.	.	v.
24.250	10.2987	0.17	2	.	.	.	v.
24.333	10.2992	0.07	Q	.	.	.	v.
24.416	10.2996	0.07	\bigcirc	.	.	.	v.
24.500	10.3001	0.07	Q	.	.	.	v.
24.583	10.3004	0.04	Q	.	.	.	v.
24.666	10.3007	0.04	2	.	.	.	v.
24.750	10.3009	0.04	Q	.	.	.	v.
24.833	10.3011	0.02	Q	.	.	.	v.
24.916	10.3012	0.02	Q	.	.	.	v.
25.000	10.3014	0.02	Q	.	.	.	v.
25.083	10.3015	0.01	2	.	.	.	v.
25.166	10.3015	0.01	2	.	.	.	v.
25.250	10.3016	0.01	Q	.	.	.	v.
25.333	10.3017	0.01	Q	.	.	.	v.
25.416	10.3017	0.01	2	.	.	.	v.
25.500	10.3018	0.01	Q	.	.	.	v.

TIME DURATION (minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:
(Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)
$\begin{gathered}\text { Duration } \\ \text { (minutes) }\end{gathered}$
$========$
1530.0
525.0
465.0
420.0
360.0
225.0
210.0
180.0
45.0
30.0

\qquad
\qquad
\qquad

$\ggg \ggg \ggg \ggg$

ㄱス

 \mathfrak{r}

[^4]
\qquad
ora


```
                    \(a a a b p b p \gg\)
\(p \ggg\)
```


Q (CFS)
TIME (HRS) VOLUME (AF)

TIME (HRS)	VOLUME (AF)	Q (CES)	0.	2.5	5.0	7.5	10.0
24.083	2.6278	0.04	Q	.	.	.	V .
24.166	2.6280	0.04	Q	.	.	.	V .
24.250	2.6283	0.04	Q	.	.	.	V .
24.333	2.6283	0.01	2	.	.	.	V .
24.416	2.6284	0.01	Q	.	.	.	V.
24.500	2.6285	0.01	Q	.	.	.	V .
24.583	2.6285	0.01	Q	.	.	.	V.
24.666	2.6286	0.01	Q	.	.	.	V .
24.750	2.6286	0.01	2	.	.	.	V.

[^5]

 $\dot{\sim} \dot{N} \dot{\sim} \dot{\sim} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{\sim} \dot{N} \dot{N}$

\qquad
\qquad
\qquad

a a										
$p \ggg \ggg p$										

 ○. 0

[^6]
or
or a
a ala a a
.. a a a a a á a. a


```
                    a \(\begin{gathered}\text { a वa } \\ \ggg \ggg \gg p p\end{gathered}\)
```



```
    a वa a a a \(\quad\) a a a
            \(\rightarrow p \ggg>\)
gaabba
    \(>0\)
\(a\)
\(a\)
        3>>
            \(\ggg\)
    1.
    7
```


TIME (HRS)	VOLUME (AF)	Q (CFS)	0.	7.5	15.0	22.5	30.0
24.083	8.2421	0.15	Q				v.
24.166	8.2432	0.15	2		.	.	v .
24.250	8.2442	0.15	2	.	.	.	v.
24.333	8.2447	0.07	Q	.	.	.	v.
24.416	8.2452	0.07	Q	.	.	.	v.
24.500	8.2457	0.07	Q	.	.	.	v.
24.583	8.2460	0.04	2	.	.	.	v .
24.666	8.2462	0.04	Q	.	.	.	V.
24.750	8.2465	0.04	2	.	.	.	v.
24.833	8.2466	0.02	Q	.	.	.	v .
24.916	8.2468	0.02	Q	.	.	.	V .
25.000	8.2469	0.02	Q	.	.	.	v.
25.083	8.2471	0.01	2	.	.	.	v.
25.166	8.2472	0.01	Q	.	.	.	V .
25.250	8.2473	0.01	Q	.	.	.	v.
25.333	8.2473	0.01	Q	.	.	.	v .
25.416	8.2474	0.01	2	\cdot	.	-	V.
25.500	8.2475	0.01	Q	.	.	.	v .

TIME DURATION (minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:
(Note: 100% of Peak Flow Rate estimate assumed to have (Note: an instantaneous time duration)
$\begin{gathered}\text { Duration } \\ \text { (minutes) } \\ ========\end{gathered}$
1530.0
510.0
465.0
420.0
345.0
240.0
210.0
180.0
105.0
30.0

		\square ．． ．．．

\qquad
\qquad
\qquad
\qquad

$\rightarrow \gg$

[^7]
\qquad
ood a a

[^8]I
$\stackrel{-}{-}$
\circ
Q (CFS) 0

TIME (HRS) VOLUME (AF)

ala a

rhinc puan

 UNDERGROUND UTLLTIES NOTE

 UTILITY COMPANIES
 ENGINEER OF RECOPD NOTE GEOTECHNICAL
 ENGINEER OF RECORD NOTE
 Dr ind

CONSTRUCTION NOTES AND QUANTITY ESTIMATE*			
(1)		${ }^{\text {S, }}$	${ }_{\text {a }}^{\text {ass }}$
(2)		1:790	${ }_{\text {a }}^{\substack{\text { ass } \\ \text { ars }}}$
(3)		${ }^{1,6,60}$	coss
(4)	Lr- мıluwnur sink		
(5)		1.500	${ }^{\text {u }}$
(6)		3,760	w
(7)	CONSTRUCT Concrete mpron Ano tenstion Per deall on Sheil 10	330	sf
(8)	CONSTRUCT CONCREIE PIPE INLET TYPE GCP PER CALTRANS STD D75G MOCFFED TO $48^{\prime \prime}$ RISER PER DETA具 ON SHEET 10	'	${ }^{4}$
(9)		${ }^{80}$	ar
(1)		450	\checkmark
(1)			a
(12)	Construct 6 ' Soemakk at cure per rv. co. sto. no. 401	200	sf
(13)		27.500	${ }^{5}$
(14)		${ }_{6}^{5,500}$	r
(15)	Rewove Ex. Ac Pmenert	50	st
(18)	Smactr x Rewove Ex. Curs a Gutir	80	${ }_{5}$
(17)	ADust to craos	1	${ }_{5}$
(8)	PRomectiect w Place		a
(18)		'	${ }_{\sim}$
(2)			${ }^{\text {a }}$
(2)		${ }_{108}^{220}$,
(e)		${ }^{6}$	$\stackrel{\square}{18}$
(4)		1.500	v
(12)		15	r
3	Construct mentole no. 4 PER Recrawco sto. No. wnz54	,	4
(4)		+	E
	OEMOLIHH ExSITMG Catich hasi	,	Es

 = ASH IN-LIE FOR TRAFFIC SIGNAL
 RCFC PERMIT NO:

\qquad Sheet index \qquad
 P 25954 IP 160028

[^0]: COMPUTED CONFLUENCE ESTIMATE
 PEAK FLOW RATE (CFS)
 $\begin{array}{llll}\text { PEAK FLOW RATE (CFS) }= & 23.32 \quad \text { Tc (MIN.) }= & 11.74 \\ \text { TOTAL AREA (ACRES) }= & 15.1 & & \\ \text { LONGEST FLOWPATH FROM NODE } \quad 843.00 ~ T O ~ N O D E ~ & 851.00= & 1550.00 ~ F E E T .\end{array}$
 PEAK FLOW RATE (CFS) $=\quad 23.32 \quad$ Tc (MIN.) $=11.74$
 TOTAL AREA (ACRES) $=$
 LONGEST FLOWPATH FROM NODE $\quad 15.1$
 LOS

[^1]: ＞＞＞＞＞ADDITION OF SUBAREA TO MAINLINE PEAK FLOW＜＜＜＜＜＜

[^2]: ## ＞＞＞＞＞COMPUTE PIPE－FLOW TRAVEL TIME THRU SUBAREA＜＜＜＜＜ ＞＞＞＞

[^3]: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) $=16.43$ TC (MIN.) $=$
 TOTAL AREA $($ ACRES $)=$
 LONGEST FLOWPATH FROM

 -

 REPRESENTATIVE SLOPE $=0.0200$
 FLOW LENGTH (FEET) $=100.00$ MANNING'S $N=0.013$
 FLOW LENGTH (FEET) $=10.0$ MANNING 13.9 INCHES
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.9 IN
 LONGEST FLOWPATH FROM NODE

[^4]:

 aada ara a a a a a a a

[^5]: TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100\% of Peak Flow Rate estimate assumed to have an instantaneous time duration) $\begin{gathered}\text { Duration } \\ \text { (minutes) }\end{gathered}$
 $=======$
 1485.0
 510.0
 465.0
 420.0
 345.0
 225.0
 210.0
 165.0
 45.0
 15.0

[^6]:

[^7]:

[^8]:

