

Thienes Engineering, Inc.

CIVIL ENGINEERING LAND SURVEYING

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (WQMP)

FOR: ONTARIO RANCH COMMERCE CENTER SEC OF EUCLID AVENUE AND EUCALYPTUS AVENUE ONTARIO, CALIFORNIA APNS: 1054-011-01, 1054-011-02, 1054-011-04, 1054-021-01, 1054-021-02, 1054-271-01, 1054-271-02, 1054-271-03, 1054-281-01, 1054-281-02 AND 1054-281-03

ONTARIO LAND DEVELOPMENT FILE NO. XXXXX

PREPARED FOR: REAL ESTATE DEVELOPMENT ASSOCIATES 4100 MACARTHUR BOULEVARD, SUITE 120 NEWPORT BEACH, CA 92660 PHONE: (949) 954-3087 CONTACT: BILL GOLTERMANN

> AUGUST 28, 2018 JUNE 18, 2019

> > JOB NO. 3635

PREPARED BY: THIENES ENGINEERING 14349 FIRESTONE BLVD. LA MIRADA, CALIFORNIA 90638 PHONE: (714) 521-4811 FAX: (714) 521-4173 CONTACT: LUIS PRADO (luisp@thieneseng.com)

PRELIMINARY WATER QUALITY MANAGEMENT PLAN (WQMP)

FOR

"ONTARIO RANCH COMMERCE CENTER"

PREPARED BY LUIS PRADO UNDER THE SUPERVISION OF:

6/18/2019 DATE

REINHARD STENZEL R.C.E. 56155 EXP. 12/31/2020

Preliminary Water Quality Management Plan (PWQMP)

For compliance with Santa Ana Regional Water Quality Control Board

Order Number R8-2010-0036 (NPDES Permit No. CAS618036)

for

Project Name:	Ontario Ranch Commerce Center			
Ontario Project #:	XXXXX			
Project Description:	Light Industrial			
Applicant Name:	Real Estate Development Associates			
Applicant Address:	4100 MacArthur Boulevard, Suite 120 Newport Beach, CA 92660			
Project Address:	SEC of Euclid Avenue and Eucalyptus Avenue			
Size of Development:	95.85 Acres (includes 11.80 of offsite areas)			

1st Submittal Date: <u>8/28/2018</u> 2nd Submittal Date: <u>6/18/2019</u>

Preliminary Water Quality Management Plan (PWQMP)

1. Introduction

~ .

The Preliminary Water Quality Management Plan (PWQMP) is a planning tool to improve integration of required water quality elements, stormwater management, water conservation, rainwater harvesting and re-use, and flood management in land use planning and the City's development process. The Preliminary WQMP will assist project applicants and planners in properly designing and laying out project sites so that water quality may be incorporated in the most effective manner and at the lowest cost for the developer.

The San Bernardino County Municipal Separate Storm Sewer System Permit (MS4 Permit) requires project-specific Water Quality Management plans (WQMP) to be prepared for all priority new development and significant redevelopment projects listed in Section 2 of this document. The MS4 Permit stipulates that the City of Ontario require priority project applicants to submit a Preliminary project-specific WQMP, as early as possible, during the environmental review or planning phase of a development project and that the Preliminary WQMP be approved prior to the issuance of land use entitlement.

2. Priority Projects (requiring a Preliminary WQMP)

Land Use entitlement shall not be issued for any of the listed projects, below, until a Preliminary WQMP has been approved by the City's Engineering Department. For construction projects not going through entitlement, a Preliminary and Final project-specific WQMP shall be approved, prior to the issuance of construction permits:

Check the appropriate project category below, for this project:

Check below	Project Categories
	1. All significant re-development projects. Significant re-development is defined as the addition or replacement of 5,000 or more square feet of impervious surface on an already developed site subject to discretionary approval of the Permittee. Redevelopment does not include routine maintenance activities that are conducted to maintain original line and grade, hydraulic capacity, original purpose of the facility, or emergency redevelopment activity required to protect public health and safety. Where redevelopment results in an increase of less than fifty percent of the existing development was not subject to WQMP requirements, the numeric sizing criteria discussed below applies only to the addition or replacement, and not to the entire developed site. Where redevelopment results in an increase of a previous surfaces of a previously to the addition or replacement, and not to the entire developed site. Where redevelopment results in an increase of fifty percent or more of the impervious surfaces of a previously existing development results in an increase of grave applies only to the addition or replacement, and not to the entire developed site. Where redevelopment results in an increase of fifty percent or more of the impervious surfaces of a previously existing developed site, the numeric sizing criteria applies to the entire development (new and existing).

Check below		Project Categories
x	2.	New development projects that create 10,000 square feet or more of impervious surface (collectively over the entire project site) including commercial, industrial, residential housing subdivisions (i.e., detached single family home subdivisions, multi-family attached subdivisions or townhomes, condominiums, apartments, etc.), mixed-use, and public projects. This category includes development projects on public and private land, which fall under the planning and building authority of the permitting agency.
	3.	
	4.	Restaurants and Food Service Establishments where the land area of development is 5,000 square feet or more.
	5.	Developments of 2,500 square feet of impervious surface or more adjacent to (within 200 feet) or discharging directly into environmentally sensitive areas (ESA's) such as areas designated in the Ocean Plan as areas of special biological significance or waterbodies listed on the CWA Section 303(d) list of impaired waters.
	6.	Parking lots of 5,000 square feet or more exposed to storm water. Parking lot is defined as land area or facility for the temporary storage of motor vehicles.
	7.	Retail Gasoline Outlets (RGOs) that are either 5,000 sq ft or more, or have a projected average daily traffic of 100 or more vehicles per day.
	8.	*This project is not covered under any of the categories listed above.

* If the development is not covered under any of the project categories listed in Section 2, the project is not required to design and install Site Design/LID BMPs or Treatment Control BMPs to treat the design storm event (Design Capture Volume) described in Section 4.

3. Preliminary WQMP Objectives

Through a combination of Site Design/LID BMPs (where feasible), Source Control, and/or Treatment Control BMPs, project-specific WQMPs shall address all identified pollutants and hydrologic conditions of concern from new development and significant re-development projects for the categories of projects (priority projects) listed in Section 2. Under each type of BMP, listed below, please indicate which BMPs are planned to be implemented and included in the Final WQMP for the project:

A. Site Design/LID (Low Impact Design) for Reducing Stormwater Runoff:

The MS4 Permit requires each priority development project to infiltrate, harvest and use, evapotranspire, or bio-treat the runoff from a 2-yr, 24-hour storm event (Design Capture Volume). If site conditions do not permit infiltration, harvest and use, evapotranspiration, and/or bio-treatment of the entire Design Capture Volume, at the project site, Site Design/LID techniques are required to be implemented to the Maximum Extent Practicable, at the project site, and the remainder of the DCV shall be infiltrated, harvested, bio-treated or treated by alternative measures.

Project applicants shall submit a Preliminary WQMP that documents the LID/Site Design BMPs, proposed for the project. Please indicate, in the table below, which Site Design/LID BMPs will be utilized on this project to accomplish this requirement:

Site Design/LID Practice	Planned	Not Planned
Provide at least the minimum effective area required for LID BMPs, to comply with the WQMP (see Table 3-1 below).		X ¹
Grade parking lot areas/drive aisles/roof drains to sheet flow runoff into landscaped swales, via curb cuts or zero-face curbs or otherwise disconnect direct drainage from MS4.		X ¹
Design landscaped areas as swales and grade to accept runoff from building roofs, parking lots and project roadways.		X ¹
Install surface retention basins or infiltration trenches to receive impervious area runoff.		X ²
Install pervious pavement in parking stalls, alleys, driveways, gutters, walkways, trails or patios.		X ²
Install underground stormwater retention chambers where downstream landscaped areas are limited.		X ²
Install approved Stormwater Drywells in detention areas.		X ²
Construct streets, sidewalks, and parking lot stalls to the minimum widths necessary.	Х	
Install on-site Biotreatment basins/trenches with underdrains, where soil type is poorly draining.	Х	
Install "Engineered Soil" to increase uptake/soil storage capacity and/or evapotranspiration.		X ²
Install Rainwater Harvesting/Use Equipment.		X ³
Utilize approved off-site retention/infiltration, biotreatment or proprietary treatment, where it is infeasible to install, on-site.		X ²

¹ Project capable of treating the full DCV onsite and not required to demonstrate this site design. ²The site will be captured and treated by the proposed Contech underground CMP systems (CMP) and Bio Clean Modular Wetlands Systems (MWS).

³Concept not utilized because the impervious area is much greater than landscape.

Table 3-1 Minimum Effective Area¹ Required for LID BMPs (surface + subsurface facilities) for Project WQMP to Demonstrate Infeasibility² (% of site)

Project Type	New	Re-Development
	Development	
SF/MF Residential < 7 du/ac	10%	5%
SF/MF Residential < 7 - 18 du/ac	7%	3.5%
SF/MF Residential > 18 du/ac	5%	2.5%
Mixed Use, Commercial/Industrial w/FAR< 1.0	10%	5%
Mixed Use, Commercial/Industrial w/FAR 1.0-2.0	7%	3.5%
Mixed Use, Commercial/Industrial w/FAR> 2.0	5%	2.5%
Podium (parking under > 75% of project)	3%	1.5%
Zoning allowing development to property lines	2%	1%
Transit Oriented Development ³	5%	2.5%
Parking	5%	2.5%

¹ "Effective area" is defined as land area which 1) is suitable for a retention/infiltration BMP (based on infeasibility criteria) and 2) is located down-gradient from building roof or paved areas, so that it may receive gravity flow runoff.

² Criteria only required if the project WQMP seeks to demonstrate that the full DCV cannot be feasibly managed on-site.

³ Transit oriented development is defined as a project with development center within one half mile of a mass transit center.

Key: du/ac = dwelling units/acre, FAR = Floor Area Ratio = ratio of gross floor area of building to gross lot area, MF = Multi Family, SF = Single Family

B. Source Control BMPs – The following BMPs are designed to control stormwater pollutants and runoff water at the location where it is generated. Please indicate which of the listed BMPs are planned to be implemented for the project:

Source Control BMPs	Planned	Not Planned
Minimize non-stormwater site runoff through efficient irrigation system design and controllers.	Х	
Minimize trash and debris in storm runoff through a regular parking lot, storage yard and roadway sweeping program.	X	
Provide proper covers/roofs and secondary containment for outside material storage & work areas.		X ¹
Provide solid roofs over all trash enclosures.	Х	
Site Owner(s)/Property Manager/HOA or POA will be familiar with the project WQMP and stormwater BMPs.	x	
Owner or HOA or POA to provide Education/Training of site occupants and employees on stormwater BMPs.	x	
Install stormwater placards/stenciled messages with a "No Dumping" message on all on-site/off-site storm drain inlets.	X	
Provide contained equipment/vehicle wash rack areas that discharge to sanitary sewer.		X ²

¹ Not applicable. No outside material storage or work areas. Secondary containment not needed. ² Not applicable, no vehicle wash areas. **C. Treatment Control BMPs –** The following BMPs are designed to control stormwater pollutants where it is not feasible to install on-site Site Design/LID BMPs, with the requisite capacity to treat the Design Capture Volume for identified Pollutants of Concern or where pretreatment of stormwater runoff is required, ahead of infiltration BMPs. Please indicate which of the listed BMPs are planned to be implemented for the project:

Treatment Control BMP	Planned	Not Planned
Gravity Separator devices for pretreatment of sediment, trash/litter or Oil & Grease	X ¹	
Proprietary Biofiltration vaults/devices	X ²	
Media Cartridge Filtration Vaults		Х
Proprietary Filter Inserts for on-site storm drain inlets or retention basin/trench overflow drains		x
Regional Treatment facilities are installed or are planned for installation, off-site, and provide a superior level of treatment or clear advantage to on-site treatment BMPs		x

¹The site will be pre-treated by the proposed Bio Clean Hydrodynamic Separators (DSBB). ²The site will be captured and treated by the proposed Bio Clean Modular Wetlands Systems (MWS).

4. Volume-based calculation (approximate) for sizing on-site or off-site Stormwater Retention/Infiltration, Harvest & Re-Use or Biotreatment facilities

- 1) Calculate the "Watershed Imperviousness Ratio", i, which is equal to the percent of impervious area in the BMP Drainage Area (DA) divided by 100.
- 2) Calculate the composite runoff coefficient C_{BMP} for the Drainage Area (DA) above using the following equation:

$$C_{BMP} = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$$

where: **C**_{BMP} = composite runoff coefficient; and,

i = watershed imperviousness ratio.

- 3) Determine the area-averaged "6-hour Mean Storm Rainfall", P₆, for the Drainage Area (DA). This is calculated by multiplying the area averaged 2-year 1-hour value (0.55"-0.6") by the appropriate regression coefficient from Table 1 (1.4807). The 2-yr, 1-hr value for southern Ontario is approximately to 0.5" (P₆ = 0.5*1.4807 = 0.74 and northern Ontario is approximately 0.6" in/hr (P₆ = 0.6*1.4807 = 0.89).
- 4) Determine the appropriate drawdown time. Use the regression constant a = 1.582 for 24 hours and a = 1.963 for 48 hours. Note: Regression constants are provided for both 24 hour and 48 hour drawdown times; however, 48 hour drawdown times should be used in most areas of California. Drawdown times in excess of 48 hours should be used with caution as vector breeding can be a problem after water has stood in excess of 72 hours. (Use of the 24 hour drawdown time should be limited to drainage areas with coarse soils (Class 'A' soils, that readily drain.)

5) Calculate the "Maximized Detention Volume", P₀, using the following equation:

 $\mathbf{P}_0 = \mathbf{a} \cdot \mathbf{C}_{\mathsf{BMP}} \cdot \mathbf{P}_6$

where: P_0 = Maximized Detention Volume, in inches a = 1.582 for 24 hour and a = 1.963 for 48 hour drawdown, C_{BMP} = composite runoff coefficient; and, P_6 = 6-hour Mean Storm Rainfall, in inches

6) Calculate the "Target Capture Volume", V₀, using the following equation:

 $V_0 = (P_0 \cdot A) / 12$

where: V_0 = Target Capture Volume, in acre-feet P_0 = Maximized Detention Volume, in inches; and, A = BMP Drainage Area (DA), in acres

Project	Volume-based	calculation	(approximate)	for	planned	on-site	or	off-site
Stormw	ater Retention/In	filtration, Ha	rvest & Re-Use	or Bi	otreatmer	nt facilitie	s:	

Variable	Factor/Formula	DA 1 CMP & MWS #1	DA 2 CMP & MWS #2	DA 3 CMP & MWS #3	DA 4 CMP & MWS #4
Ratio of impervious surface/total site surface	(i)	0.95	0.95	0.95	0.95
С _{ВМР} = runoff coefficient	$0.858i^{3} - 0.78i^{2} + 0.774i$ +0.04 =	0.807	0.807	0.807	0.807
P ₆ (inches)	**P ₆ = 2-yr,1- hr depth*1.4807 =	0.851	0.851	0.851	0.851
Detention Volume- inches	$P_0 = a * C_{BMP} * P_6 =$	1.3487	1.3487	1.3487	1.3487
Drawdown rate of basin/trench (a)	1.582 for 24-hr drawdown or 1.963 for 48-hr drawdown =	1.963	1.963	1.963	1.963
Project Total Area (ac)	(A)	11.65	9.70	16.10	10.75
Design Capture Volume, cu. ft. (DCV)	V ₀ = [(P ₀ * A)/12]*43560 =	57,036	47,489	78,822	52,630
Water Volume infiltrated in first 3 hrs of storm	Vol= in/hr/12 x ft ² of infiltration area x 3 hrs	N/A	N/A	N/A	N/A
Retention/treatment Volume provided, cu. ft.	*Retention capacity of basins, trenches, underground system or biotreatment proposed	57,182	47,709	79,336	52,821

Variable	Factor/Formula	DA 5 CMP & MWS #5	DA 6 CMP & MWS #6	DA 7 CMP & MWS #7	DA 8 CMP & MWS #8
Ratio of impervious surface/total site surface	(i)	0.95	0.95	0.95	0.95
CBMP= runoff coefficient	$0.858i^{3} - 0.78i^{2} + 0.774i$ +0.04 =	0.807	0.807	0.807	0.807
P ₆ (inches)	**P ₆ = 2-yr,1- hr depth*1.4807 =	0.851	0.851	0.851	0.851
Detention Volume- inches	$P_0 = a * C_{BMP} * P_6 =$	1.3487	1.3487	1.3487	1.3487
Drawdown rate of basin/trench (a)	1.582 for 24-hr drawdown or 1.963 for 48-hr drawdown =	1.963	1.963	1.963	1.963
Project Total Area (ac)	(A)	4.55	3.00	12.70	3.40
Design Capture Volume, cu. ft. (DCV)	V ₀ = [(P ₀ * A)/12]*43560 =	22,276	14,687	62,177	16,646
Water Volume infiltrated in first 3 hrs of storm	Vol= in/hr/12 x ft ² of infiltration area x 3 hrs	N/A	N/A	N/A	N/A
Retention/treatment Volume provided, cu. ft.	*Retention capacity of basins, trenches, underground system or biotreatment proposed	22,412	14,827	62,540	16,853

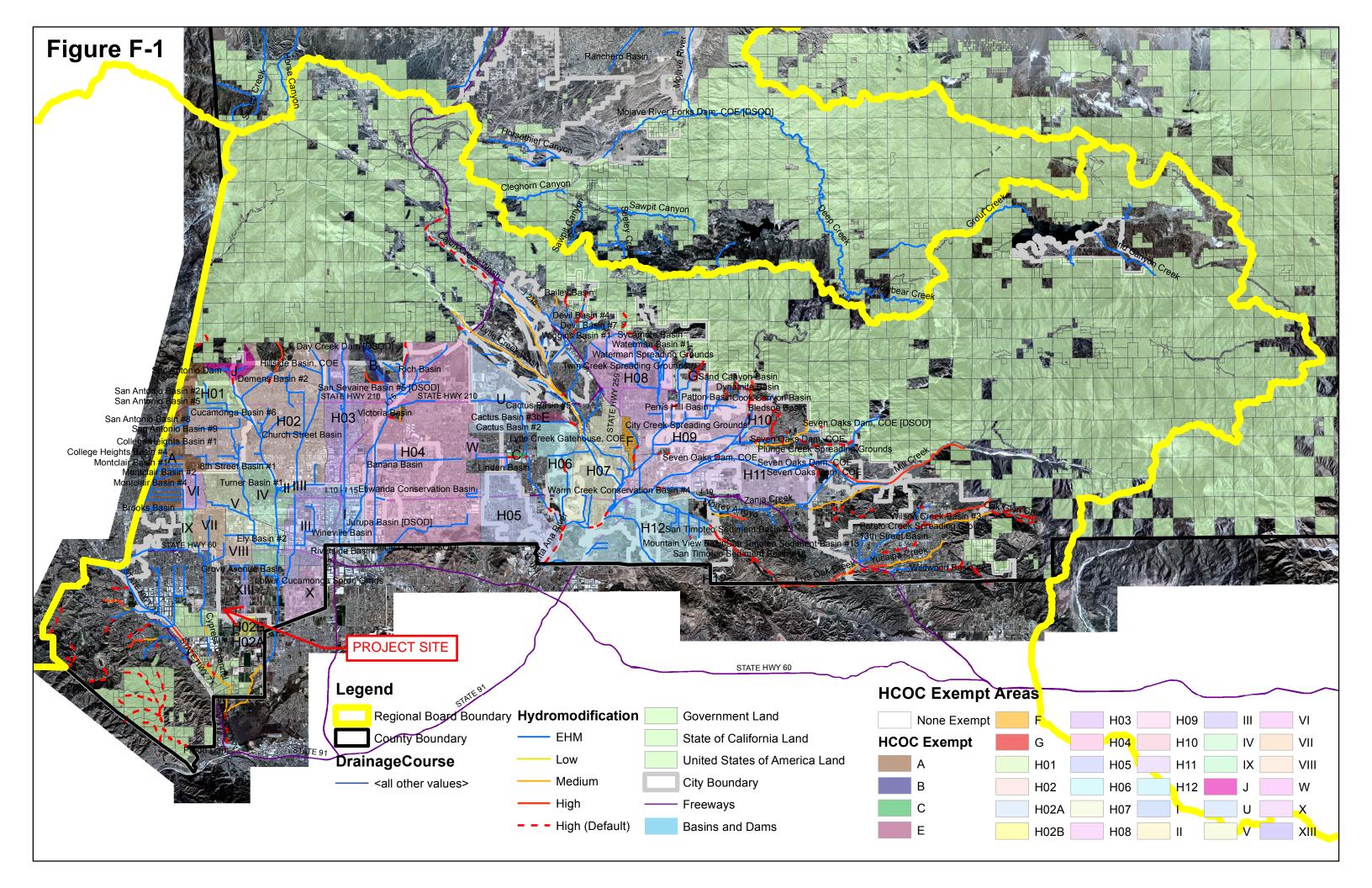
Variable	Factor/Formula	DA 9 CMP & MWS #9	DA 10 CMP & MWS #10	DA 11 CMP & MWS #11
Ratio of impervious surface/total site surface	(i)	0.95	0.95	0.95
CBMP= runoff coefficient	$0.858i^{3} - 0.78i^{2} + 0.774i$ +0.04 =	0.807	0.807	0.807
P ₆ (inches)	**P ₆ = 2-yr,1- hr depth*1.4807 =	0.851	0.851	0.851
Detention Volume- inches	Ро = а * Свмр * Р6 =	1.3487	1.3487	1.3487
Drawdown rate of basin/trench (a)	1.582 for 24-hr drawdown or 1.963 for 48-hr drawdown =	1.963	1.963	1.963
Project Total Area (ac)	(A)	1.55	4.50	3.70
Design Capture Volume, cu. ft. (DCV)	V ₀ = [(P ₀ * A)/12]*43560 =	7,588	22,031	18,114
Water Volume infiltrated in first 3 hrs of storm	Vol= in/hr/12 x ft ² of infiltration area x 3 hrs	N/A	N/A	N/A
Retention/treatment Volume provided, cu. ft.	*Retention capacity of basins, trenches, underground system or biotreatment proposed	7,754	22,280	18,390

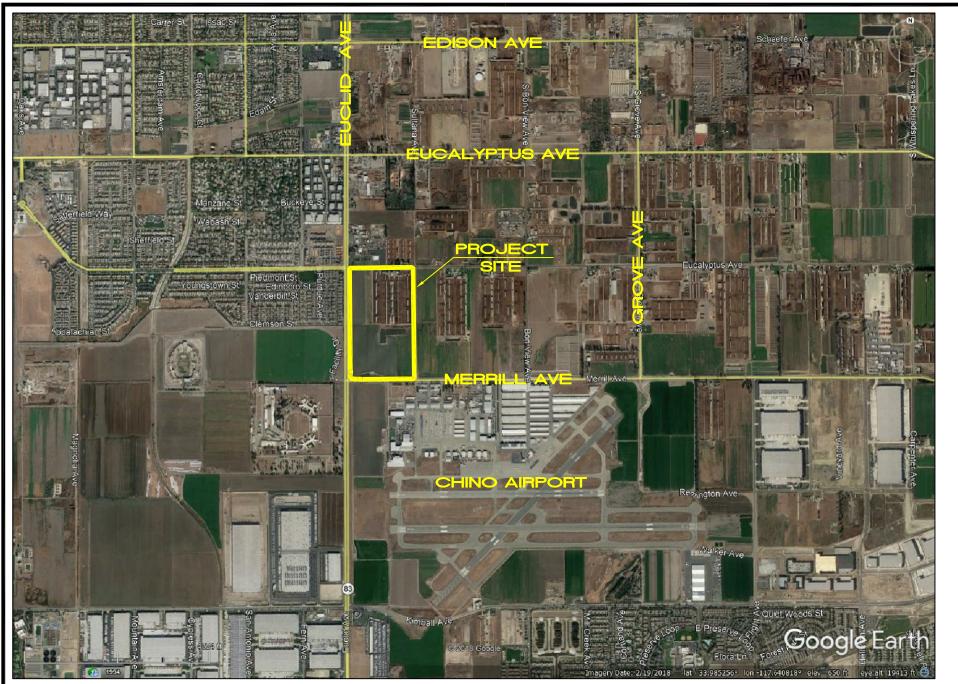
*Volume treated utilizing the Contech underground CMP systems (CMP) and Modular Wetlands Systems (MWS). Refer to the DCV Calculations section for calculations. **For P6 value, use site coordinates and NOAA website to determine project's average 2-yr, 1-hr rainfall depth, at: <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>.

Refer to the DCV Calculations section for onsite and offsite flow-based calculations.

5. Hydrologic Conditions of Concern (HCOC) and use of the on-line San Bernardino County HCOC Map for determining necessary mitigation steps necessary if there are HCOCs downstream of a project:

Project applicants may access the on-line HCOC Map at: <u>http://sbcounty.permitrack.com/WAP/</u>. The map will indicate any hydrology concerns with downstream waterways that are hydraulically connected to the project and will indicate if there are any approved regional projects downstream that could be utilized for off-site mitigation of HCOCs. Please indicate here if the project will or will not be able to retain/infilter, harvest and use or biotreat and detain the DCV, on-site, as calculated in Section 4 and if there are HCOCs identified downstream of the project:

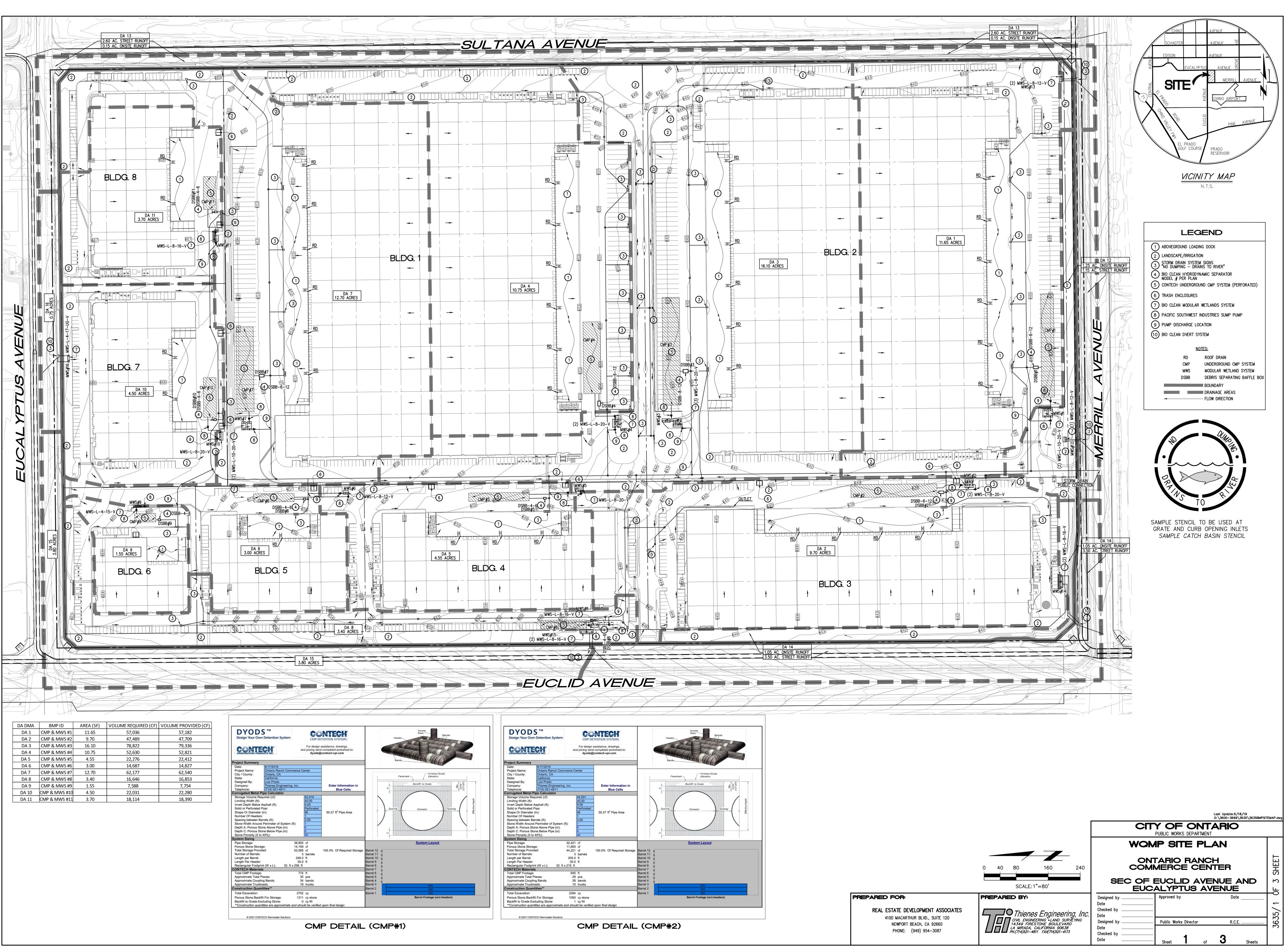

Retain or Harvest/Use the DCV on site?	Yes		No	X
Biotreat the DCV but not infilter the runoff?	Yes	Х	No	
HCOCs identified downstream of site?	Yes	X	No	

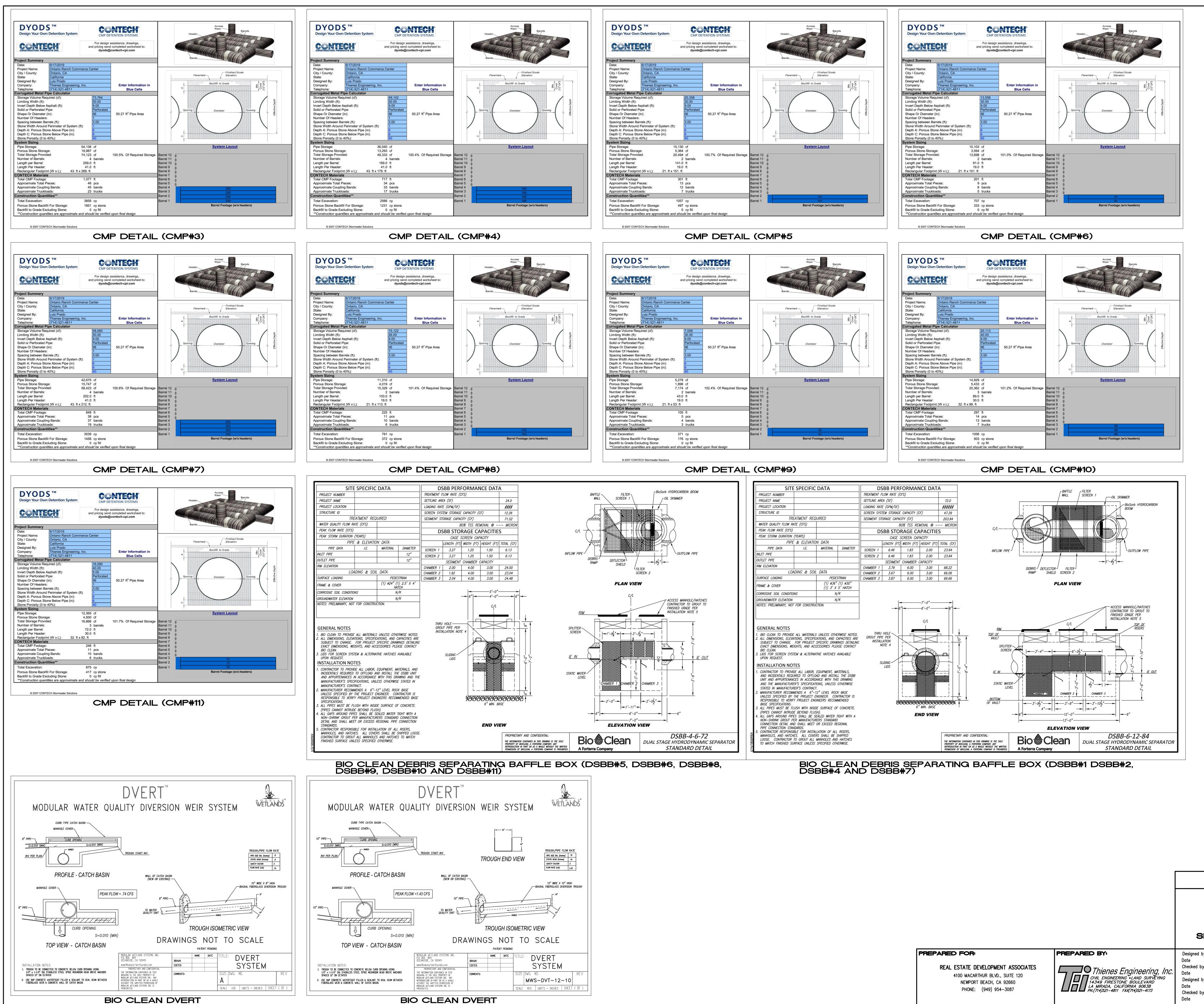

If the entire DCV will not be retained on site, the DCV is biotreated but not infiltered or additional detention capacity is needed to address identified HCOCs, downstream of the site, please list here, what additional mitigation measures will be utilized (on-site or off-site) to address HCOCs (see Section 4.2.1-4.2.3 of the SB County WQMP Technical Guidance):

Additional detention capacity is not required for HCOCs. Refer to HCOC Calculations.

6. Site Plan and Conceptual Grading/Drainage Plan requirements for submission with the Preliminary WQMP:

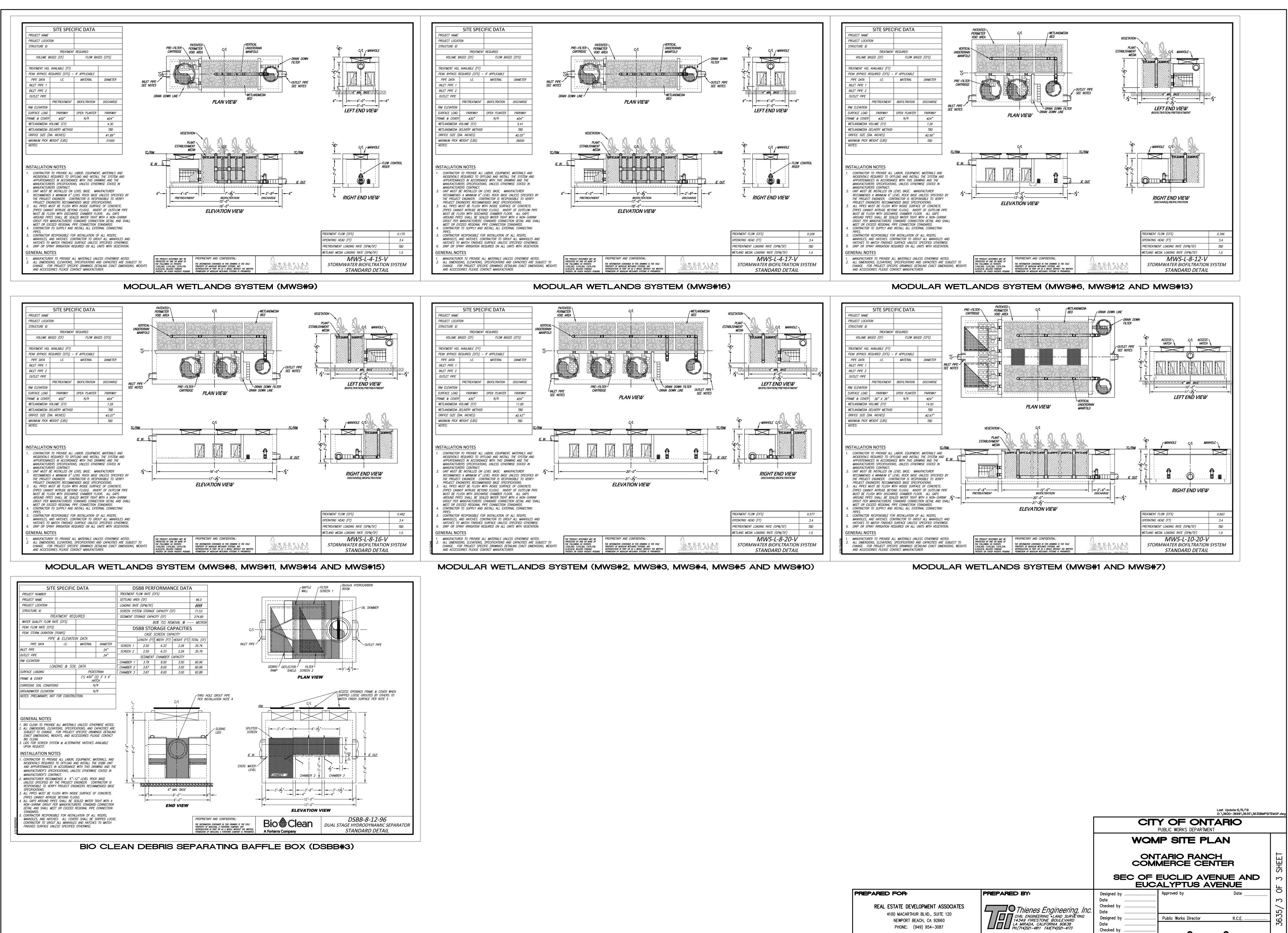
Provide a Site Plan and Conceptual Grading/Drainage Plan along with this Preliminary WQMP, which conceptually shows the proposed locations of buildings, homes, parking lots, parks, new paved roadways, landscaped areas, drainage patterns and drainage sub-areas, methods of conveyance, proposed retention/infiltration, harvest & use or biotreatment facilities that are planned for installation. Where it is determined to be infeasible to capture and detain design storm runoff volumes, on-site, please include other design features, as described in Section 3, above. Include numbered or lettered notes on the Site Plan with a legend detailing other BMPs, as described in Section 3.




Thienes Engineering, Inc. Civil engineering • land surveying 14349 firestone boulevard La mirada, california 90638 PH.(714)521-4811 FAX(714)521-4173

VICINITY MAP

FOR


ONTARIO RANCH COMMERCE CENTER

		C	
		WC	SMP
			NTAP MME
		SEC O	F EU
			ICAL
PREPARED FOR: REAL ESTATE DEVELOPMENT ASSOCIATES 4100 MACARTHUR BLVD., SUITE 120	PREPARED BY: Thienes Engineering, Inc. CIVIL ENGINEERING •LAND SURVEYING 14349 FIRESTONE BOULEVARD LA MIRADA, CALIFORNIA 90638 PH.(714)521-4811 FAX(714)521-4173	Designed by	

Last Update:6/18/19 0:\3600-3699\3635\3635BMPSITEMAP.dwg					
Y OF ONTARIO PUBLIC WORKS DEPARTMENT					
AP SITE PLAN					
TARIO RANCH MERCE CENTER	SHEET				
EUCLID AVENUE AND	3 SH				
ALYPTUS AVENUE	ОF				
Approved by Date					
	5/2				
Public Works Director R.C.E.	3635/				
	3(
Sheet 2 of 3 Sheets					

	CIT
	WON
	ON COM
	SEC OF I EUC
C *	Designed by Date Checked by Date Designed by Date Checked by Date

3

Sheet

3

Sheets

DCV CALCULATIONS

	rometeoro		ather Service sign Studie ata Server (PF					www.nws.noaa.gov
	Home	Site Map	News	Organization		Search	• N	
General Information Homepage Progress Reports FAQ	Data descriptio	n		Time series type: Pa		ENCY ESTIN	MATES:	CA
Glossary Precipitation Frequency Data Server GIS Grids Maps Time Series Temporals Documents Performance Probable Maximum	Select location 1) Manually: a) By locatio b) By station c) By addres	n (decimal degrees, t (list of CA stations) s Search	use "." for S and W):		735 Longitude:	-117.64815 Sub		124 GOV);
Procipitation Documents Miscellaneous Publications Storm Analysis Record Precipitation		Winterscore map is in		Schaefer Av	/e		Ave	a) Select location Move crosshair or double click b) Click on station icon Show stations on map
Contact Us Inquiries List-server				Eucalypa	us Ave	Grove Ave	walke	Location information: Name: Chino, California, USA* Latitude: 33.9867° Longitude: -117.6482° Elevation: 649.38 ft **
	Sonzalez Dr	1km 1km 0.6m 0.1Ave=		83	ill Ave Chino Airport Kimball Ave		Re NY	* Source: ESRI Maps
	PF	tabular		CIPITATION FR NFIDENCE INTERVALS NOAA Atlas 14, V Supplementary in	AND SUPPLEMENTAF olume 6, Version 2) ESTIMATES	2016 Y 181	Source: USGS

		PDS-based	precipitatio	n frequency	estimates w	vith 90% cor	fidence inte	rvals (in inc	hes) ¹	
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.115	0.151	0.199	0.238	0.290	0.331	0.373	0.417	0.476	0.522
	(0.096-0.139)	(0.126-0.183)	(0.165-0.241)	(0.196-0.291)	(0.231-0.368)	(0.258-0.430)	(0.283-0.496)	(0.307-0.571)	(0.336-0.681)	(0.356-0.775
10-min	0.165	0.217	0.285	0.340	0.416	0.475	0.535	0.597	0.682	0.749
	(0.138-0.200)	(0.181-0.263)	(0.237-0.346)	(0.281-0.417)	(0.332-0.528)	(0.370-0.616)	(0.406-0.711)	(0.440-0.818)	(0.481-0.976)	(0.510-1.11
15-min	0.200	0.262	0.345	0.412	0.503	0.574	0.647	0.722	0.825	0.905
	(0.167-0.242)	(0.219-0.318)	(0.287-0.418)	(0.340-0.504)	(0.401-0.638)	(0.447-0.745)	(0.491-0.860)	(0.532-0.989)	(0.582-1.18)	(0.616-1.34
30-min	0.296	0.389	0.510	0.610	0.745	0.850	0.958	1.07	1.22	1.34
	(0.247-0.358)	(0.324-0.470)	(0.424-0.620)	(0.503-0.747)	(0.594-0.945)	(0.662-1.10)	(0.727-1.27)	(0.788-1.46)	(0.862-1.75)	(0.913-1.99
60-min	0.438	0.575	0.755	0.902	1.10	1.26	1.42	1.58	1.81	1.98
	(0.366-0.530)	(0.480-0.696)	(0.628-0.917)	(0.744-1.11)	(0.879-1.40)	(0.981-1.63)	(1.08–1.89)	(1.17-2.17)	(1.28-2.59)	(1.35-2.94)
2-hr	0.655	0.859	1.12	1.33	1.61	1.82	2.03	2.24	2.52	2.73
	(0.547-0.791)	(0.717-1.04)	(0.933-1.36)	(1.10-1.63)	(1.28-2.04)	(1.42-2.36)	(1.54-2.70)	(1.65-3.06)	(1.78-3.60)	(1.86-4.05)
3-hr	0.823	1.08	1.41	1.66	2.00	2.26	2.51	2.76	3.10	3.35
	(0.688-0.995)	(0.901-1.31)	(1.17–1.71)	(1.37–2.04)	(1.60-2.54)	(1.76-2.93)	(1.91–3.34)	(2.04-3.78)	(2.19-4.43)	(2.28-4.97)
6-hr	1.15	1.50	1.95	2.31	2.77	3.12	3.46	3.81	4.26	4.60
	(0.958–1.39)	(1.25-1.82)	(1.63–2.37)	(1.90-2.83)	(2.21-3.52)	(2.43-4.05)	(2.63-4.61)	(2.81-5.21)	(3.01–6.09)	(3.13-6.82)
12-hr	1.50	1.97	2.58	3.05	3.68	4.16	4.63	5.10	5.74	6.21

60-day	6.77	9.38	13.0	16.2	20.8	24.6	28.7	33.2	39.6	44.9
	(5.99-7.81)	(8.29-10.8)	(11.5-15.1)	(14.2-18.9)	(17.6-25.1)	(20.4-30.3)	(23.3-36.2)	(26.1-43.0)	(30.0-53.4)	(32.9-62.7)
45-day	5.86	8.18	11.4	14.1	18.0	21.2	24.6	28.2	33.3	37.5
	(5.19-6.76)	(7.23-9.45)	(10.0-13.2)	(12.4–16.5)	(15.3–21.8)	(17.6-26.1)	(19.9–31.0)	(22.2-36.5)	(25.2-45.0)	(27.4–52.3)
30-day	4.94	6.92	9.59	11.8	15.0	17.5	20.1	22.9	26.8	29.9
	(4.37–5.70)	(6.11-7.99)	(8.46-11.1)	(10.4–13.8)	(12.7-18.1)	(14.5–21.5)	(16.3-25.4)	(18.0-29.6)	(20.3-36.1)	(21.8-41.7)
20-day	4.16	5.81	8.01	9.84	12.4	14.4	16.4	18.6	21.5	23.9
	(3.68-4.80)	(5.13-6.71)	(7.06-9.27)	(8.60-11.5)	(10.5-14.9)	(11.9-17.7)	(13.3–20.7)	(14.6-24.0)	(16.3-29.0)	(17.5-33.3)
10-day	3.46	4.79	6.54	7.98	9.97	11.5	13.1	14.7	17.0	18.8
	(3.06-3.99)	(4.23–5.53)	(5.77-7.57)	(6.98-9.32)	(8.44-12.0)	(9.55-14.2)	(10.6–16.5)	(11.6–19.1)	(12.9–22.9)	(13.7-26.2)
7-day	3.18 (2.81–3.66)	4.38 (3.87–5.06)	5.98 (5.27-6.92)	7.30 (6.38-8.52)	9.11 (7.72-11.0)	10.5 (8.73–13.0)	12.0 (9.71–15.1)	13.5 (10.6–17.5)	15.6 (11.8–21.0)	17.2 (12.6–24.0)
4-day	2.77 (2.45-3.19)	3.80 (3.36-4.39)	5.18 (4.57–6.00)	6.33 (5.53-7.38)	7.91 (6.70-9.54)	9.16 (7.60-11.3)	10.5 (8.46-13.2)	11.8 (9.30–15.3)	13.7 (10.4–18.5)	15.2 (11.1–21.2)
3-day	2.56	3.48	4.72	5.75	7.18	8.30	9.46	10.7	12.4	13.7
	(2.26-2.95)	(3.08-4.02)	(4.16-5.47)	(5.03-6.71)	(6.08-8.65)	(6.88-10.2)	(7.66-11.9)	(8.41–13.8)	(9.35-16.7)	(10.0-19.1)
2-day	2.38	3.20	4.29	5.18	6.41	7.36	8.34	9.37	10.8	11.9
	(2.10-2.74)	(2.83–3.69)	(3.78-4.96)	(4.53-6.05)	(5.43-7.73)	(6.11-9.06)	(6.76-10.5)	(7.38-12.1)	(8.15-14.5)	(8.68–16.6)
24-hr	1.96	2.60	3.42	4.09	4.98	5.66	6.35	7.05	8.00	8.73
	(1.74–2.26)	(2.30-3.00)	(3.02-3.96)	(3.57-4.77)	(4.22-6.00)	(4.70-6.97)	(5.14-8.00)	(5.56-9.13)	(6.05-10.8)	(6.38-12.2
	(1.25-1.82)	(1.65-2.39)	(2.14-3.13)	(2.52-3.74)	(2.93-4.67)	(3.24-5.39)	(3.52-6.16)	(3.76-6.99)	(4.05-8.21)	(4.23-9.22)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Estimates from the table in CSV format: Precipitation frequency estimates V Submit

Main Link Categories: Home | OWP

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service Office of Water Prediction (OWP) 1325 East West Highway Silver Spring, MD 20910 Page Author: HDSC webmaster Page last modified: April 21, 2017

Map Disclaimer Disclaimer Credits Glossary Privacy Poli About I Career Opportuniti

FLOW-BASED BMP DESIGN (ONSITE)

CBMP = 0.858(imp)3 - 0.78(imp)2 + 0.774(imp) + 0.04 IBMP = (0.575)(0.2787)(2) = 0.321 in/hr Q = CBMP * 0.321 * Area

DA 1 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#1

Region		Valley	
Drainage Area (acı	res)	11.65	acres
Drainage Area (sq·	-ft)	507,474	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NO</u>	AA	0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/	'nr)	0.321	
Flow (cfs)	Q =	3.01	

Use DSBB-6-12

80% @ 75 Micron treats 3.53 cfs

DA 2 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#2

Region		Valley	
Drainage Area (acres)		9.70	acres
Drainage Area (sq-ft)		422,532	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	2.51	

Use DSBB-6-12 80% @ 75 Micron treats 3.53 cfs

DA 3 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#3

Region		Valley	
Drainage Area (acres)		16.10	acres
Drainage Area (sq-ft)		701,316	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	4.16	

Use DSBB-8-12 80% @ 75 Micron treats 4.70 cfs

DA 4 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#4

Region		Valley	
Drainage Area (acres)		10.75	acres
Drainage Area (sq-ft)		468,270	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	2.78	

Use DSBB-6-12

80% @ 75 Micron treats 3.53 cfs

DA 5 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#5

Region		Valley	
Drainage Area (acres)		4.55	acres
Drainage Area (sq-ft)		198,198	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	1.18	

Use DSBB-4-6 80% @ 75 Micron treats 1.18 cfs

DA 6 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#6

Region		Valley	
Drainage Area (acres	5)	3.00	acres
Drainage Area (sq-ft))	130,680	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>	<u>L</u>	0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr))	0.321	
Flow (cfs)	Q =	0.78	

Use DSBB-4-6 80% @ 75 Micron treats 1.18 cfs

DA 7 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#7

Region		Valley	
Drainage Area (acres)		12.70	acres
Drainage Area (sq-ft)		553,212	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	3.28	

Use DSBB-6-12

80% @ 75 Micron treats 3.53 cfs

DA 8 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#8

Region		Valley	
Drainage Area (acres)		3.40	acres
Drainage Area (sq-ft)		148,104	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.88	

Use DSBB-4-6 80% @ 75 Micron treats 1.18 cfs

DA 9 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#9

Region		Valley	
Drainage Area (acres))	1.55	acres
Drainage Area (sq-ft)		67,518	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.40	

Use DSBB-4-6 80% @ 75 Micron treats 1.18 cfs

DA 10 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#10

Region		Valley	
Drainage Area (acres)		4.50	acres
Drainage Area (sq-ft)		196,020	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	1.16	

Use DSBB-4-6

80% @ 75 Micron treats 1.18 cfs

DA 11 – BIO CLEAN DEBRIS SEPARATING BAFFLE BOX – DSBB#11

Region		Valley	
Drainage Area (acres)		3.70	acres
Drainage Area (sq-ft)		161,172	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.81	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.96	

Use DSBB-4-6 80% @ 75 Micron treats 1.18 cfs

FLOW-BASED BMP DESIGN (OFFSITE)

DA 12 – FLOW-BASED MODULAR WETLANDS SYSTEM – MWS#12

STREET / MERRILL / CL TO ROW			
Region		Valley	
Drainage Area (acres)		1.15	acres
Drainage Area (sq-ft)		50,094	sq-ft
Impervious Coeff	i =	0.9	< 1.0
Runoff Coeff	C =	0.73	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.27	

STREET / MERRILL / PRIVATE RUN-ON

Region		Valley	
Drainage Area (acres)		1.25	acres
Drainage Area (sq-ft)		54,450	sq-ft
Impervious Coeff	i =	0.3	< 1.0
Runoff Coeff	C =	0.23	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.09	

Total Q = 0.27 + 0.09 = 0.36 cfs Use One (1) MWS-L-8-12-V 3.85' HGL treats 0.392 cfs each

DA 13 – FLOW-BASED MODULAR WETLANDS SYSTEM – MWS#13

STREET / EUCALYPTUS, SULTANA & MERRILL / CL TO ROW

Region		Valley	
Drainage Area (acres)		2.60	acres
Drainage Area (sq-ft)		113,256	sq-ft
Impervious Coeff	i =	0.9	< 1.0
Runoff Coeff	C =	0.73	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.61	

STREET / MERRILL / PRIVATE RUN-ON

Region		Valley	
Drainage Area (acres)		0.15	acres
Drainage Area (sq-ft)		6,534	sq-ft
Impervious Coeff	i =	0.1	< 1.0
Runoff Coeff	C =	0.11	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.01	

Total Q = 0.61 + 0.01 = 0.62 cfs Use Two (2) MWS-L-8-12-V 3.5' HGL treats 0.357 cfs each

DA 14 – FLOW-BASED MODULAR WETLANDS SYSTEM – MWS#14 STREET / EUCLID & MERRILL / CL TO ROW

Region		Valley	
Drainage Area (acres)		3.50	acres
Drainage Area (sq-ft)		152,460	sq-ft
Impervious Coeff	i =	0.9	< 1.0
Runoff Coeff	C =	0.73	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.82	

STREET / EUCLID & MERRILL / PRIVATE RUN-ON

Region		Valley	
Drainage Area (acres)		1.05	acres
Drainage Area (sq-ft)		45,738	sq-ft
Impervious Coeff	i =	0.1	< 1.0
Runoff Coeff	C =	0.11	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.04	

Total Q = 0.82 + 0.04 = 0.86 cfs Use Two (2) MWS-L-8-16-V 3.5' HGL treats 0.476 cfs each

DA 15 – FLOW-BASED MODULAR WETLANDS SYSTEM – MWS#15

STREET / EUCALYPTUS & EUCLID / CL TO ROW

-	-		
Region		Valley	
Drainage Area (acres)		3.80	acres
Drainage Area (sq-ft)		165,528	sq-ft
Impervious Coeff	i =	0.9	< 1.0
Runoff Coeff	C =	0.73	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.89	

Use Two (2) MWS-L-8-16-V 3.65' HGL treats 0.496 cfs each

DA 16 – FLOW-BASED MODULAR WETLANDS SYSTEM – MWS#16

STREET / EUCALYPTUS / CL	TO ROW		_
Region		Valley	
Drainage Area (acres)		0.75	acres
Drainage Area (sq-ft)		32,670	sq-ft
Impervious Coeff	i =	0.9	< 1.0
Runoff Coeff	C =	0.73	
<u>1-hr 2-yr from NOAA</u>		0.575	
Itensity Coeff		0.2787	
Intensity BMP (in/hr)		0.321	
Flow (cfs)	Q =	0.18	

Use One (1) MWS-L-4-17-V 3.4' HGL treats 0.206 cfs each

VOLUME-BASED BMP DESIGN

$$\begin{split} C_{\text{BMP}} &= 0.858(\text{imp})^3 - 0.78(\text{imp})^2 + 0.774(\text{imp}) + 0.04 \\ P6 &= (0.575)(1.4807) = 0.851 \text{ inches} \\ P0 &= (1.963)(C_{\text{BMP}})(0.851) \\ DCV &= (P0 * \text{Area}) / 12 \end{split}$$

DA 1 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #1

Region		Valley	
Drainage Area (acres)		11.65	acres
Drainage Area (sq-ft)		507,474	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		57,036	cu-ft
DCV		1.309	acre-ft
P0		1.3487	inches

WetlandMOD VOLUME BASED SIZING SHEET

Project Location Project Name Ontario Ranch Commerce Center (DA 1 City/Town Ontario State California Zip Code 91762	1)	Horizontal Flow Biofiltration Syste		
SIZING CALCULATIONS	Inputs	Units	Notes/References	
Impervious Area				
BMP Drainage Area (not required - manual entry - not part of formula)		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.	
Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100	
MODULAR WETLANDS				
Water Quality Volume (required)	57036	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.	
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.	
MWS - Linear Sizing		1		
MWS - Linear Model Number (from matrix)	MWS-L-10-20	quantity	Please choose size from "Model Size Matrix" Tab	
# Of Units	2	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.	
Discharge Rate (from matrix)	78.50	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.	
Volume Treated During Event Processed through MWS - Linear	3768.0	cubic feet	157.00 gals/minute	
Volume Treated Following Event				
MWS - Linear Static Capacity (from matrix)	349	cubic feet		
Volume Needed in Pre-Storage	52919	cubic feet	Set at zero to start. Size pre-storage system to hold this volume	
			Sizing complete when eqaul to value of zero.	
TOTAL STORMWATER TREATED	57036	cubic feet	Note: This amount should be equal to the "Water Quality Volume"	
Drain Down Time	42.41	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.	
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640)	

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Email: Info@modularwetlands.com

DYODS TM Design Your Own Detention System	CMP DE For design and pricing send	assistance, drawings, d completed worksheet to: contech-cpi.com	Access Riser Header Header Bands
Date: 6/17/2019			
Project Name: Ontario Ranch Com City / County: Ontario, CA State: California Designed By: Luis Prado Company: Thienes Engineerin		Enter Information in	Pavement Finished Grade Elevation Backfill to Grade UI3
Telephone: (714) 521-4811	J,	Blue Cells	3. [13]
Corrugated Metal Pipe Calculator			
Storage Volume Required (cf): Limiting Width (ft): Invert Depth Below Asphalt (ft): Solid or Perforated Pipe: Shape Or Diameter (in): Number Of Headers: Spacing between Barrels (ft): Stone Width Around Perimeter of System Depth A: Porous Stone Above Pipe (in): Depth C: Porous Stone Below Pipe (in): Stone Porosity (0 to 40%): System Sizing Pipe Storage:	(ft): 38,905 cf	50.27 ft ² Pipe Area	Spacing Diameter Spacing U
Porous Stone Storage: Total Storage Provided: Number of Barrels: Length per Barrel: Length Per Header:	14,159 cf 53,065 cf 3 barrels 248.0 ft 30.0 ft x 258. ft	100.3% Of Required Storage	Barrel 12 0 Barrel 11 0 Barrel 10 0 Barrel 9 0 Barrel 8 0
CONTECH Materials			Barrel 7
Total CMP Footage: Approximate Total Pieces: Approximate Coupling Bands: Approximate Truckloads: Construction Quantities** Total Excavation:	774 ft 35 pcs 34 bands 18 trucks 2752 cy		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 1 Barrel 1
Porous Stone Backfill For Storage: Backfill to Grade Excluding Stone: **Construction quantities are approximate	1311 cy stone 0 cy fill and should be verified	l upon final design	Barrel Footage (w/o headers)

DA 2 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #2

Region		Valley	
Drainage Area (acres)		9.70	acres
Drainage Area (sq-ft)		422,532	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	_
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		47,489	cu-ft
DCV		1.090	acre-ft
			_
P0		1.3487	inches

WetlandMOD VOLUME BASED SIZING SHEET

Project Location Project Name Ontario Ranch Commerce Center (DA 2 City/Town Ontario State California Zip Code 91762	2)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula) Runoff Coefficient "C"			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS		J	
Water Quality Volume (required)	47489	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-8-20	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	2	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	65.42	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	3140.0	cubic feet	130.83 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	348	cubic feet	
Volume Needed in Pre-Storage	44001	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	47489	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	42.37	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	odular Wetlands	Phone: 760.433.7640)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Email: Info@modularwetlands.com

DYODS TM Design Your Own Detention System CONSTRUCTION PRODUCTS INC.	CMP DE For design a and pricing send	ASSISTANCE, drawings, completed worksheet to: contech-cpi.com	Access Riser Header Barrels Bands
Date: 6/17/2019			
Project Name: Ontario Ranch Commerc	e Center		
City / County: Ontario, CA			Finished Grade
State: California			Pavement Elevation
Designed By: Luis Prado			
Company: Thienes Engineering, Inc.		Enter Information in	A Backlill to Grade Cover (12"-24")
Telephone: (714) 521-4811		Blue Cells	
Corrugated Metal Pipe Calculator			
Storage Volume Required (cf):	44,001		
Limiting Width (ft):	40.00		Jept
Invert Depth Below Asphalt (ft):	9.00		Spacing Diameter Spacing
Solid or Perforated Pipe:	Perforated	$z_{2} = z_{1}^{2} = z_{1}^{2}$	Spacing Diameter Spacing
Shape Or Diameter (in):	96	50.27 ft ² Pipe Area	
Number Of Headers: Spacing between Barrels (ft):	3.00		
Stone Width Around Perimeter of System (ft):	3.00		
Depth A: Porous Stone Above Pipe (in):	6		
Depth C: Porous Stone Below Pipe (in):	6		
Stone Porosity (0 to 40%):	40		
System Sizing			
	421 cf		System Layout
, , , , , , , , , , , , , , , , , , ,	300 cf		
	221 cf	100.5% Of Required Storage	Barrel 12 0
Number of Barrels:	3 barrels		Barrel 11
	5.0 ft		Barrel 10 0
0	0.0 ft		Barrel 9
Rectangular Footprint (W x L): 32. ft x 215	. ft		Barrel 8 0
CONTECH Materials			Barrel 7 0
	645 ft		Barrel 6
Approximate Total Pieces:	29 pcs		Barrel 5
Approximate Coupling Bands:	28 bands		Barrel 4
Approximate Truckloads:	15 trucks		Barrel 3 205
Construction Quantities**			Barrel 2 205
	294 cy		Barrel 1 205
	093 cy stone		Barrel Footage (w/o headers)
Backfill to Grade Excluding Stone:	1 cy fill		
**Construction quantities are approximate and s	hould be verified	upon final design	

DA 3 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #3

Region		Valley	
Drainage Area (acres)		16.10	acres
Drainage Area (sq-ft)		701,316	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	_
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		78,822	cu-ft
DCV		1.810	acre-ft
			_
P0		1.3487	inches

WetlandMOD VOLUME BASED SIZING SHEET

City/Town	Ontario Ranch Commerce Center (DA 3 Ontario California	Horizontal Flow Biofiltration System		
SIZING CALC	ULATIONS	Inputs	Units	Notes/References
Impervious	Area			
	BMP Drainage Area (not required - manual entry - not part of formula)	16.1	Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
	Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
WETLAN	Runoff Coefficient "C" (not required - manual entry - not part of formula)			
Wa	ater Quality Volume (required)	78822	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
	Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linea	ar Sizing		1	
MWS	- Linear Model Number (from matrix)	MWS-L-8-20	quantity	Please choose size from "Model Size Matrix" Tab
	# Of Units	3	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
	Discharge Rate (from matrix)	65.42	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Tre	ated During Event Processed through MWS - Linear	4710.0	cubic feet	196.25 gals/minute
Volume Tre	ated Following Event		_	
MWS	Linear Static Capacity (from matrix)	348	cubic feet	Set at zero to start. Size pre-storage system to hold this
	Volume Needed in Pre-Storage	73764	cubic feet	volume
				Sizing complete when eqaul to value of zero.
TOTAL S	TORMWATER TREATED	78822	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
	Drain Down Time	47.21	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fa	x or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.764	D

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Email: Info@modularwetlands.com

DYODS TM Design Your Own Detention System Image: Complete Com		assistance, drawings, d completed worksheet to:	Access Riser Header
Project Summary			Bands
Date: 6/17/2019			
Project Name: Ontario Ranch Comr City / County: Ontario, CA State: California Designed By: Luis Prado Company: Thienes Engineering		Enter Information in	Pavement Finished Grade Elevation Backfill to Grade
Telephone: (714) 521-4811		Blue Cells	A 12"-12"
Corrugated Metal Pipe Calculator		Dide Vell3	
Storage Volume Required (cf): Limiting Width (ft): Invert Depth Below Asphalt (ft): Solid or Perforated Pipe: Shape Or Diameter (in): Number Of Headers: Spacing between Barrels (ft): Stone Width Around Perimeter of System (Depth A: Porous Stone Above Pipe (in): Depth C: Porous Stone Below Pipe (in): Stone Porosity (0 to 40%): System Sizing Pipe Storage:	73,764 50.00 9.00 Perforated 96 1 3.00 1 6 6 40 54,136 cf	50.27 ft ² Pipe Area	Spacing Diameter Spacing U
Porous Stone Storage: Total Storage Provided: Number of Barrels: Length per Barrel: Length Per Header: Rectangular Footprint (W x L): 43. ft x	19,987 cf 74,123 cf 4 barrels 259.0 ft 41.0 ft 269. ft	100.5% Of Required Storage	Barrel 12 0 Barrel 11 0 Barrel 10 0 Barrel 9 0 Barrel 8 0
CONTECH Materials			Barrel 7 ₀
Total CMP Footage: Approximate Total Pieces: Approximate Coupling Bands: Approximate Truckloads: Construction Quantities** Total Excavation:	1,077 ft 46 pcs 45 bands 23 trucks 3856 cy		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 1 Barrel 1
Porous Stone Backfill For Storage: Backfill to Grade Excluding Stone: **Construction quantities are approximate a	1851 cy stone 0 cy fill nd should be verified	l upon final design	Barrel Footage (w/o headers)

DA 4 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #4

Region		Valley	
Drainage Area (acres)		10.75	acres
Drainage Area (sq-ft)		468,270	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	_
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		52,630	cu-ft
DCV		1.208	acre-ft
			-
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA 4 City/Town Ontario State California Zip Code 91762	4)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS		J	
Water Quality Volume (required)	52630	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-8-20	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	2	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	65.42	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	3140.0	cubic feet	130.83 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	348	cubic feet	
Volume Needed in Pre-Storage	49142	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	52630	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	47.28	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

DYODS TM Design Your Own Detention System Image: Construction System Image: Construction Products Inc. For design assistance, drawings, and pricing send completed worksheet to: dyods@contech-cpi.com Project Summary Project Summary		assistance, drawings, d completed worksheet to:	Access Riser Header Header Bands
Date: 6/17/2019			
Project Name:Ontario Ranch ComCity / County:Ontario, CAState:CaliforniaDesigned By:Luis PradoCompany:Thienes EngineeringTelephone:(714) 521-4811		Enter Information in Blue Cells	Pavement Finished Grade Elevation Backfill to Grade
Corrugated Metal Pipe Calculator		Bide Cells	
Storage Volume Required (cf): Limiting Width (ft): Invert Depth Below Asphalt (ft): Solid or Perforated Pipe: Shape Or Diameter (in): Number Of Headers: Spacing between Barrels (ft): Stone Width Around Perimeter of System (Depth A: Porous Stone Above Pipe (in): Depth C: Porous Stone Below Pipe (in): Stone Porosity (0 to 40%): System Sizing	6 6 40	50.27 ft ² Pipe Area	Spacing Diameter Spacing Uiameter
	36,040 cf 13,293 cf 49,333 cf 4 barrels 169.0 ft 41.0 ft x 179. ft	100.4% Of Required Storage	System Layout Barrel 12 Barrel 11 Barrel 10 Barrel 10 Barrel 9 Barrel 8 Depend 7
CONTECH Materials	747 4		Barrel 7
Total CMP Footage: Approximate Total Pieces: Approximate Coupling Bands: Approximate Truckloads: Construction Quantities** Total Excavation:	717 ft 34 pcs 33 bands 17 trucks 2566 cy		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 1 Barrel 1
Porous Stone Backfill For Storage: Backfill to Grade Excluding Stone: **Construction quantities are approximate a	1231 cy stone 0 cy fill and should be verified	l upon final design	Barrel Footage (w/o headers)

DA 5 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #5

Region		Valley	
Drainage Area (acres)		4.55	acres
Drainage Area (sq-ft)		198,198	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		22,276	cu-ft
DCV		0.511	acre-ft
			_
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA City/Town Ontario State California Zip Code 91762	5)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratic (not reguired - manual entry - not part of formula Runoff Coefficient "C')		Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS]	
Water Quality Volume (required)	22276	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-8-20	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	. 1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	65.42	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	r 1570.0	cubic feet	65.42 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	348	cubic feet	
Volume Needed in Pre-Storage	20358	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	22276	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	39.57	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	odular Wetlands	Phone: 760.433.764)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

DYODS TM Construction System Design Your Own Detention System Construction System Construction Products Inc. For design assistance, drawings, and pricing send completed worksheet to: dyods@contech-cpi.com Project Summary Project Summary		assistance, drawings, d completed worksheet to:	Access Riser Header Barrels Bands
Project Name:Ontario Ranch ComrCity / County:Ontario, CAState:CaliforniaDesigned By:Luis PradoCompany:Thienes EngineeringTelephone:(714) 521-4811		Enter Information in Blue Cells	Pavement Finished Grade Elevation Backfill to Grade
Corrugated Metal Pipe Calculator			
Storage Volume Required (cf): Limiting Width (ft): Invert Depth Below Asphalt (ft): Solid or Perforated Pipe: Shape Or Diameter (in): Number Of Headers: Spacing between Barrels (ft): Stone Width Around Perimeter of System (Depth A: Porous Stone Above Pipe (in): Depth C: Porous Stone Below Pipe (in): Stone Porosity (0 to 40%): System Sizing	6 6 40	50.27 ft ² Pipe Area	Spacing Diameter Spacing
Pipe Storage:	15,130 cf		<u>System Layout</u>
	5,364 cf 20,494 cf 2 barrels 141.0 ft 19.0 ft (151. ft	100.7% Of Required Storage	Barrel 12 Barrel 11 Barrel 10 Barrel 9 Barrel 8
CONTECH Materials			Barrel 7
Total CMP Footage: Approximate Total Pieces: Approximate Coupling Bands: Approximate Truckloads: Construction Quantities**	301 ft 13 pcs 12 bands 7 trucks		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 141
Total Excavation:	1057 cy		Barrel 1 141
Porous Stone Backfill For Storage: Backfill to Grade Excluding Stone: **Construction quantities are approximate a	497 cy stone 0 cy fill and should be verified	l upon final design	Barrel Footage (w/o headers)

DA 6 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #6

Region		Valley	
Drainage Area (acres)		3.00	acres
Drainage Area (sq-ft)		130,680	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		14,687	cu-ft
DCV		0.337	acre-ft
			_
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA City/Town Ontario State California Zip Code 91762	6)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratic (not reguired - manual entry - not part of formula Runoff Coefficient "C')		Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS]	
Water Quality Volume (required)	14687	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		7	
MWS - Linear Model Number (from matrix)	MWS-L-8-12	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	. 1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix	39.25	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	r 942.0	cubic feet	39.25 gals/minute
Volume Treated Following Event		_	
MWS - Linear Static Capacity (from matrix	187	cubic feet	Sat at zara to start. Size pro storage sustam to hold this
Volume Needed in Pre-Storage	13558	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	14687	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	43.77	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	odular Wetlands	Phone: 760.433.764)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

DYODS TM Design Your Own Detention System Image: Complete Com		Access Riser Header Header Bands
Date: 6/17/2019		
Project Name: Ontario Ranch Commerce Center City / County: Ontario, CA State: California Designed By: Luis Prado Company: Thienes Engineering, Inc.	Enter Information in	Pavement Finished Grade Elevation Backfill to Grade
Telephone: (714) 521-4811	Blue Cells	□ [13, CO N N N N N N N N N N N N N N N N N N
Corrugated Metal Pipe Calculator		
Storage Volume Required (cf):13,558Limiting Width (ft):30.00Invert Depth Below Asphalt (ft):9.00Solid or Perforated Pipe:PerforatedShape Or Diameter (in):96Number Of Headers:1Spacing between Barrels (ft):3.00Stone Width Around Perimeter of System (ft):1Depth A: Porous Stone Above Pipe (in):6Depth C: Porous Stone Below Pipe (in):6Stone Porosity (0 to 40%):40System Sizing10,103 cf	50.27 ft ² Pipe Area	Spacing Diameter Spacing Uiameter Spacing Spac
Porous Stone Storage:3,594cfTotal Storage Provided:13,698cfNumber of Barrels:2barrels	101.0% Of Required Storage	Barrel 12 0 Barrel 11 0
Length per Barrel: 91.0 ft		Barrel 10 ₀
Length Per Header: 19.0 ft		Barrel 9 0
Rectangular Footprint (W x L): 21. ft x 101. ft		Barrel 8 0
CONTECH Materials		Barrel 7
Total CMP Footage:201 ftApproximate Total Pieces:9 pcs		Barrel 6 d
Approximate Coupling Bands: 9 pcs 8 bands		Barrel 4
Approximate Coupling Dands. 6 Dands Approximate Truckloads: 5 trucks		Barrel 3
Construction Quantities**		
		31
Total Excavation: 707 cy		Barrel 1 91
Porous Stone Backfill For Storage: 333 cy stone Backfill to Grade Excluding Stone: 0 cy fill **Construction quantities are approximate and should be verified	d upon final design	Barrel Footage (w/o headers)

DA 7 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #7

Region		Valley	
Drainage Area (acres)		12.70	acres
Drainage Area (sq-ft)		553,212	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		62,177	cu-ft
DCV		1.427	acre-ft
			_
P0		1.3487	inches
			_

Project Location Project Name Ontario Ranch Commerce Center (DA 7 City/Town Ontario State California Zip Code 91762	7)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS]	
Water Quality Volume (required)	62177	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-10-20	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	2	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	78.50	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	3768.0	cubic feet	157.00 gals/minute
Volume Treated Following Event		_	
MWS - Linear Static Capacity (from matrix)	349	cubic feet	Pat at zara to start. Size are starage sustam to hold this
Volume Needed in Pre-Storage	58060	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	62177	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	46.50	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Design Your Own Detention System	assistance, drawings, d completed worksheet to: contech-cpi.com	Access Riser Header
Project Summary		Bands
Date: 6/17/2019		
Project Name:Ontario Ranch Commerce CenterCity / County:Ontario, CAState:CaliforniaDesigned By:Luis PradoCompany:Thienes Engineering, Inc.Telephone:(714) 521-4811	Enter Information in Blue Cells	Pavement Finished Grade Elevation Backfill to Grade
Corrugated Metal Pipe Calculator		
Storage Volume Required (cf):58,060Limiting Width (ft):50.00Invert Depth Below Asphalt (ft):9.00Solid or Perforated Pipe:PerforatedShape Or Diameter (in):96Number Of Headers:1Spacing between Barrels (ft):3.00Stone Width Around Perimeter of System (ft):1Depth A: Porous Stone Above Pipe (in):6Depth C: Porous Stone Below Pipe (in):6Stone Porosity (0 to 40%):40	50.27 ft ² Pipe Area	Spacing Diameter Spacing
Pipe Storage:42,675cfPorous Stone Storage:15,747cfTotal Storage Provided:58,423cfNumber of Barrels:4barrelsLength per Barrel:202.0ftLength Per Header:41.0ftRectangular Footprint (W x L):43. ft x 212. ft	100.6% Of Required Storage	System Layout Barrel 12 0 Barrel 11 0 Barrel 10 0 Barrel 9 0 Barrel 8 0
CONTECH Materials		Barrel 7
Total CMP Footage: 849 ft Approximate Total Pieces: 38 pcs Approximate Coupling Bands: 37 bands Approximate Truckloads: 19 trucks Construction Quantities** 19 trucks Total Excavation: 3039 cy Porous Stone Backfill For Storage: 1458 cy stone Backfill to Grade Excluding Stone: 0 cy fill		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 2 Barrel 1 Barrel Footage (w/o headers)

DA 8 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #8

Region		Valley	
Drainage Area (acres)		3.40	acres
Drainage Area (sq-ft)		148,104	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		16,646	cu-ft
DCV		0.382	acre-ft
			_
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA 8 City/Town Ontario State California Zip Code 91762	8)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS		J	
Water Quality Volume (required)	16646	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-8-16	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	52.33	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	1256.0	cubic feet	52.33 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	268	cubic feet	
Volume Needed in Pre-Storage	15122	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	16646	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	36.76	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Design Your Own Detention System	assistance, drawings, d completed worksheet to: contech-cpi.com	Access Riser Header Bands
Project Summary Date: 6/17/2019		
Date. 6/1//2019 Project Name: Ontario Ranch Commerce Center City / County: Ontario, CA State: California Designed By: Luis Prado Company: Thienes Engineering, Inc. Telephone: (714) 521-4811 Corrugated Metal Pipe Calculator Storage Volume Required (cf): Storage Volume Required (cf): 15,122	Enter Information in Blue Cells	Pavement Finished Grade Elevation
Storage Volume Required (cf):13,122Limiting Width (ft):26.00Invert Depth Below Asphalt (ft):9.00Solid or Perforated Pipe:PerforatedShape Or Diameter (in):96Number Of Headers:1Spacing between Barrels (ft):3.00Stone Width Around Perimeter of System (ft):1Depth A: Porous Stone Above Pipe (in):6Depth C: Porous Stone Below Pipe (in):6Stone Porosity (0 to 40%):40	50.27 ft ² Pipe Area	Spacing Diameter Spacing
Pipe Storage:11,310 cfPorous Stone Storage:4,019 cfTotal Storage Provided:15,329 cfNumber of Barrels:2 barrelsLength per Barrel:103.0 ftLength Per Header:19.0 ftRectangular Footprint (W x L):21. ft x 113. ft	101.4% Of Required Storage	System Layout Barrel 12 Barrel 11 Barrel 10 Barrel 9 Barrel 8 Damed 7
CONTECH Materials		Barrel 7 0
Total CMP Footage:225 ftApproximate Total Pieces:11 pcsApproximate Coupling Bands:10 bandsApproximate Truckloads:6 trucksConstruction Quantities**Total Excavation:791 cyPorous Stone Backfill For Storage:372 cy stone		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 1 Barrel 1 Barrel Footage (w/o headers)
Backfill to Grade Excluding Stone: 0 cy fill **Construction quantities are approximate and should be verified	d upon final design	

DA 9 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #9

			-
Region		Valley	
Drainage Area (acres)		1.55	acres
Drainage Area (sq-ft)		67,518	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		7,588	cu-ft
DCV		0.174	acre-ft
			_
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA 9 City/Town Ontario State California Zip Code 91762	9)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)	1.55	Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula)			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS			
Water Quality Volume (required)	7588	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing	-	1	
MWS - Linear Model Number (from matrix)	MWS-L-4-15	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	19.80	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	475.2	cubic feet	19.80 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	105	cubic feet	
Volume Needed in Pre-Storage	7008	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	7588	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	44.90	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

DYODS TM Design Your Own Detention System	CMP DE For design and pricing send	A completed worksheet to: Ocontech-cpi.com	Access Riser Header Bands
Date: 6/17/2019			
Project Name:Ontario Ranch CommCity / County:Ontario, CAState:CaliforniaDesigned By:Luis PradoCompany:Thienes Engineering,Telephone:(714) 521-4811		Enter Information in Blue Cells	Pavement Finished Grade Elevation Backfill to Grade
Corrugated Metal Pipe Calculator			
Storage Volume Required (cf): Limiting Width (ft): Invert Depth Below Asphalt (ft): Solid or Perforated Pipe: Shape Or Diameter (in): Number Of Headers: Spacing between Barrels (ft): Stone Width Around Perimeter of System (f Depth A: Porous Stone Above Pipe (in): Depth C: Porous Stone Below Pipe (in): Stone Porosity (0 to 40%): System Sizing	6 6 40	50.27 ft ² Pipe Area	Spacing Diameter Spacing Uiameter
Pipe Storage: Porous Stone Storage: Total Storage Provided: Number of Barrels: Length per Barrel: Length Per Header: Postongular Fostprint (Workly) 21, ft y	5,278 cf 1,896 cf 7,174 cf 2 barrels 43.0 ft 19.0 ft	102.4% Of Required Storage	System Layout Barrel 12 Barrel 11 Barrel 10 Barrel 9 Barr
Rectangular Footprint (W x L): 21. ft x	53. TI		Barrel 8
CONTECH Materials Total CMP Footage: Approximate Total Pieces: Approximate Coupling Bands: Approximate Truckloads:	105 ft 5 pcs 4 bands 3 trucks		Barrel 7 0 Barrel 6 0 Barrel 5 0 Barrel 4 0 Barrel 3 0
Construction Quantities**			Barrel 2 43
Total Excavation: Porous Stone Backfill For Storage: Backfill to Grade Excluding Stone: **Construction quantities are approximate and	371 cy 176 cy stone 0 cy fill nd should be verified	l upon final design	Barrel 1 43 Barrel Footage (w/o headers)

DA 10 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #10

Region		Valley	
Drainage Area (acres)		4.50	acres
Drainage Area (sq-ft)		196,020	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	_
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		22,031	cu-ft
DCV		0.506	acre-ft
			_
P0		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA City/Town Ontario State California Zip Code 91762	10)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Are (not required - manual entry - not part of formul		Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Rati (not reguired - manual entry - not part of formul Burnoff Cooofficient "C	la)	-	Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
MODULAR WETLANDS			
Water Quality Volume (required	22031	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duratio	n 3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix	⁽⁾ MWS-L-8-20	quantity	Please choose size from "Model Size Matrix" Tab
# Of Unit	s 1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix	() 65.42	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linea	ır 1570.0	cubic feet	65.42 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix	348	cubic feet	
Volume Needed in Pre-Storage	e 20113	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	22031	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	e 39.10	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to M	lodular Wetlands	Phone: 760.433.764)

Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

CONSTRUCTION PRODUCTS INC.	CMP DETENTION SYSTEMS or design assistance, drawings, icing send completed worksheet to: dyods@contech-cpi.com	Access Riser Header Barrels Bands
Project Summary		
Date:6/17/2019Project Name:Ontario Ranch Commerce CenterCity / County:Ontario, CAState:CaliforniaDesigned By:Luis PradoCompany:Thienes Engineering, Inc.Telephone:(714) 521-4811Corrugated Metal Pipe Calculator	r Enter Information in Blue Cells	Pavement Finished Grade Elevation
Storage Volume Required (cf):20,Limiting Width (ft):40.0Invert Depth Below Asphalt (ft):9.00Solid or Perforated Pipe:PerShape Or Diameter (in):96Number Of Headers:1Spacing between Barrels (ft):3.00Stone Width Around Perimeter of System (ft):1Depth A: Porous Stone Above Pipe (in):6Depth C: Porous Stone Below Pipe (in):6Stone Porosity (0 to 40%):40	00 0 forated 50.27 ft ² Pipe Area	Spacing Diameter Spacing Uiameter
Pipe Storage:14,929cfPorous Stone Storage:5,433cfTotal Storage Provided:20,362cfNumber of Barrels:3barLength per Barrel:89.0ftLength Per Header:30.0ftRectangular Footprint (W x L):32. ft x 99. ftCONTECH MaterialsTotal CMP Footage:297Total CMP Footage:14proximate Total Pieces:14pcs14	rrels	System Layout Barrel 12 Barrel 12 Barrel 11 Barrel 10 Barrel 9 Barrel 9 Barrel 8 Barrel 7 Barrel 6 Barrel 5 Bar
Approximate Fotal Froces: 14 pot Approximate Coupling Bands: 13 bar Approximate Truckloads: 7 true Construction Quantities** Total Excavation: 1056 cy Porous Stone Backfill For Storage: 503 cy Backfill to Grade Excluding Stone: 0 cy **Construction quantities are approximate and should be	nds cks stone fill	Barrel 4 Barrel 3 Barrel 2 Barrel 2 Barrel 1 Barrel Footage (w/o headers)

DA 11 – CONTECH UNDERGROUND CMP SYSTEM & MODULAR WETLANDS SYSTEM – CMP & MWS #11

Region		Valley	
Drainage Area (acres)		3.70	acres
Drainage Area (sq-ft)		161,172	sq-ft
Impervious Coeff	i =	0.95	< 1.0
Runoff Coeff	C =	0.807	
<u>1-hr 2-yr from NOAA</u>		0.575	
P6 Coeff		1.4807	_
Mean 6-hr (P6)		0.851	
Drawdown Rate (a)		1.963	
DCV		18,114	cu-ft
DCV		0.416	acre-ft
			-
PO		1.3487	inches

Project Location Project Name Ontario Ranch Commerce Center (DA 1 City/Town Ontario State California Zip Code 91762	1)		Horizontal Flow Biofiltration System
SIZING CALCULATIONS	Inputs	Units	Notes/References
Impervious Area			
BMP Drainage Area (not required - manual entry - not part of formula)	3.7	Acres	This includes all areas that will contribute runoff to the proposed BMP, including pervious areas, impervious areas, and off-site areas, whether or not they are directly or indirectly connected to the BMP.
Watershed Impervious Ratio (not reguired - manual entry - not part of formula) Runoff Coefficient "C"			Watershed Imperviousness Ratio", is equal to the percent of total impervious area in the "BMP Drainage Area" divided by 100
(not required - manual entry - not part of formula)			
Water Quality Volume (required)	18114	cubic feet	Use sizing procedures provided by state or local agencies to determine the appropriate Water Quality Volume. Intensities and design storms vary widely by region and method.
Design Storm Duration	3	hours	Varies depending on geographical region. Set at 0 for pump system set up. LA County 3 hours. Call for details.
MWS - Linear Sizing		1	
MWS - Linear Model Number (from matrix)	MWS-L-8-16	quantity	Please choose size from "Model Size Matrix" Tab
# Of Units	1	quantity	Select the number of systems required to treat the water quality volume. Will very depending on drain down time regulaitons.
Discharge Rate (from matrix)	52.33	gallons/minute	Rate of 0.26 gpm/sq ft or 25 in/hr. Field Verified.
Volume Treated During Event Processed through MWS - Linear	1256.0	cubic feet	52.33 gals/minute
Volume Treated Following Event			
MWS - Linear Static Capacity (from matrix)	268	cubic feet	
Volume Needed in Pre-Storage	16590	cubic feet	Set at zero to start. Size pre-storage system to hold this volume
			Sizing complete when eqaul to value of zero.
TOTAL STORMWATER TREATED	18114	cubic feet	Note: This amount should be equal to the "Water Quality Volume"
Drain Down Time	40.27	hours	Drain down time must be equal to or less than requirement of local juristiction. Default 48 hours.
Feel free to fax or email proposed sizing calculations to Mo	dular Wetlands	Phone: 760.433.7640	

Feel free to fax or email proposed sizing calculations to Modular Wetlands Systems, Inc. for assistance with sizing, compliance, and design.

Fax: 760.433.3176

Design Your Own Detention System	ANTECH® TENTION SYSTEMS assistance, drawings, d completed worksheet to: contech-cpi.com	Access Riser Header
Project Summary		Bands
Date: 6/17/2019		
Project Name:Ontario Ranch Commerce CenterCity / County:Ontario, CAState:California	-	Pavement Finished Grade
Designed By: Luis Prado	Enter Information in	Backfill to Grade
Company: Thienes Engineering, Inc.	Enter Information in	A Backtill to Grade Min. (12"-24")
Telephone: (714) 521-4811	Blue Cells	
Corrugated Metal Pipe Calculator		
Storage Volume Required (cf):16,590Limiting Width (ft):40.00Invert Depth Below Asphalt (ft):9.00Solid or Perforated Pipe:PerforatedShape Or Diameter (in):96Number Of Headers:1Spacing between Barrels (ft):3.00	50.27 ft ² Pipe Area	Spacing Diameter Spacing
Stone Width Around Perimeter of System (ft):1Depth A: Porous Stone Above Pipe (in):6Depth C: Porous Stone Below Pipe (in):6Stone Porosity (0 to 40%):40System Sizing40		
Pipe Storage: 12,365 cf		System Layout
Porous Stone Storage:4,500cfTotal Storage Provided:16,866cfNumber of Barrels:3barrelsLength per Barrel:72.0ftLength Per Header:30.0ftRectangular Footprint (W x L):32.ft x 82.	101.7% Of Required Storage	Barrel 12 Barrel 11 Barrel 10 Barrel 9 Barrel 8
CONTECH Materials		Barrel 7
Total CMP Footage:246 ftApproximate Total Pieces:11 pcsApproximate Coupling Bands:10 bandsApproximate Truckloads:6 trucksConstruction Quantities**		Barrel 6 Barrel 5 Barrel 4 Barrel 3 Barrel 2 Barrel 1 Barrel 1 Barrel 1 Barrel 4 Barrel 72 Barrel 4 Barrel 5 Barrel 72 Barrel 5 Barrel 7 Barrel 7 B
Total Excavation: 875 cy		Barrel 1 72
Porous Stone Backfill For Storage: 417 cy stone Backfill to Grade Excluding Stone: 0 cy fill **Construction quantities are approximate and should be verified	upon final design	Barrel Footage (w/o headers)

HCOC CALCULATIONS

Form 4.2-2 of HCOC Assessment

Does project have the potential to cause or contribute to an HCOC in a downstream channel: $\boxtimes Yes \ \Box No$

Go to: http://sbcounty.permitrack.com/WAP/

If "Yes", then complete HCOC assessment of site hydrology for 2yr storm event using Forms 4.2-3 through 4.2-5 and insert results below (Forms 4.2-3 through 4.2-5 may be replaced by computer software analysis based on the San Bernardino County Hydrology Manual)

ij No, then proceed to section 4.3 Project conjormance Analysis				
Condition	Runoff Volume (ft ³)	Time of Concentration (min)	Peak Runoff (cfs)	
Pre-developed	¹ 327,074	² TBD	³ TBD	
Fle-developed	Form 4.2-3 Item 12		Form 4.2-5 Item 10	
Dest developed	⁴ 658,771	⁵ TBD	⁶ TBD	
Post-developed	Form 4.2-3 Item 13	Form 4.2-3 Item 13 Form 4.2-4 Item 14		
Difference	⁷ 331,697	⁸ TBD	9 TBD	
Difference	ltem 4 – ltem 1	Item 5 – Item 2	Item 6 – Item 3	
Difference	¹⁰ 101%	¹¹ TBD	¹² TBD	
(as % of pre-developed)	ltem 7 / ltem 1	Item 8 / Item 2	Item 9 / Item 3	

To meet HCOC requirements, a mitigation volume must be achieved by using LID and/or hydromodification mitigation BMPs. The mitigation volume is approximately 298,758 cu-ft ((0.95 * 658,771) - 327,074). The total volume being detained by underground CMP and proprietary biofiltration devices is 401,309 cu-ft, which is greater than the mitigation volume needed. As a result, the mitigation volume has been contained by the proposed BMPs. Since the mitigation volume has been met, it is physically impossible for the project to avoid increasing the time of concentration and reducing peak runoff by more than five percent of pre-development conditions (see Section 5.6.1 of the Technical Guidance Document for more information).

For	m 4.2-3	HCOC A	ssessm	ent fo	r Runoff	Volume		
Compute weighted	Pre-developed DA			Post-developed DA				
curve number for pre	Add more columns if more than 4 DMA			Add more columns if more than 4 DMA				
and post developed conditions	DMA A	DMA B	DMA C	DMA D	DMA A	DMA B	DMA C	DMA D
¹ Land Cover type	Row Crops (Poor)	Impervious Cover			Roof, Asphalt & Concrete	Urban Cover Commercial Landscape		
² Hydrologic Soil Group (HSG)	В	В			В	В		
³ DMA Area, ft ² sum of areas of DMA should equal area of DA	3,442,403	218,815			3,478,157	183,061		
⁴ Curve Number (CN) Use Items 1 and 2 to select the appropriate CN from Appendix C-2 of the TGD for WQMP	81	98			98	56		
	⁵ Pre-Develo	Pre-Developed area-weighted CN: 82 ⁶ Post-Developed area-weighted CN: 96			96			
	⁷ Pre-developed soil storage capacity, S (in): 2.20 S = (1000 / Item 5) - 10 ⁸ Post-developed soil storage capac 0.42 S = (1000 / Item 6) - 10					ge capacity	r, S (in):	
	⁹ Initial abst I _a = 0.2 * Item	raction, I _a (in): 7	0.44		¹⁰ Initial abstraction, I _a (in): 0.08 I _a = 0.2 * Item 8			
¹¹ Precipitation for 2 yr, 24	hr storm (in)	: 2.60						
Go to: http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html								
¹² Pre-developed Volume (ft ³): 327,074								
$V_{pre} = (1 / 12) * (Item sum of Item 3) * [(Item 11 - Item 9)^2 / ((Item 11 - Item 9 + Item 7)$								
¹³ Post-developed Volume (ft ³): 658,771								
$V_{pre} = (1 / 12) * (Item sum of Item 3) * [(Item 11 - Item 10)^2 / ((Item 11 - Item 10 + Item 8)]$								
¹⁴ Volume Reduction needed to meet HCOC Requirement, (ft ³): 298,758 V _{HCOC} = (Item 13 * 0.95) – Item 12								

INFILTRATION FEASIBILITY

August 9, 2018

Real Estate Development Associates 4100 MacArthur Boulevard, Suite 120 Newport Beach, California 92660

- Attention: Mr. Chad Manista Vice President
- Project No.: **18G129-3**
- Subject: Results of Additional Infiltration Testing Ontario Gateway Center NEC Euclid Avenue and Merrill Avenue Ontario, California
- References: 1) <u>Geotechnical Feasibility Study, Proposed Commercial/Industrial Development,</u> <u>NEC Euclid Avenue and Merrill Avenue, Ontario, California</u>, prepared by Southern California Geotechnical, Inc. (SCG) for Real Estate Development Associates (REDA), SCG Project No. 18G129-1, dated April 11, 2018.

2) <u>Results of Infiltration Testing, Proposed Commercial/Industrial Development,</u> <u>NEC Euclid Avenue and Merrill Avenue, Ontario, California</u>, prepared by SCG for REDA, SCG Project No. 18G129-2, dated April 25, 2018.

SoCalGeo

SOUTHERN

CALIFORNIA

A California Corporation

GEOTECHNICAL

Gentlemen:

In accordance with your request, we have conducted additional infiltration testing at the subject site. We are pleased to present this report summarizing the results of the additional infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 18P181-2, dated June 12, 2018. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with the <u>Technical Guidance Document for Water Quality Management Plans</u> prepared for the County of San Bernardino Areawide Stormwater Program dated June 7, 2013. The San Bernardino County standards defer to guidelines published by Riverside County Department of Environmental Health (RCDEH).

Site and Project Description

The subject site is located at the northeast corner of Euclid Avenue and Merrill Avenue in Ontario, California. The site is bounded to the north by Eucalyptus Avenue, to the west by Euclid Avenue, to the south by Merrill Avenue, and to the east by an existing dairy farm. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report.

The overall site is a rectangular-shaped property consisting of several contiguous parcels, which total $84.1\pm$ acres in size. The northeastern portion of the site is presently developed as a dairy farm with cattle pens, multiple canopy structures, farm houses, and structures associated with milking activities. The buildings appear to be single-story structures of wood frame construction and the canopies appear to be of metal frame construction. We expect that these structures are supported on conventional shallow foundations. Ground surface cover generally consists of turf grass, asphaltic concrete, and concrete pavements surrounding the farm houses and the other structures, manure in the cattle pen areas, and exposed soils with sparse native grass and weed growth in the remaining areas.

The northwestern portion and southern half of the site are presently being utilized for agricultural purposes. The ground surface cover throughout these areas consists of row crops and limited areas of exposed soil. Additionally, a detention pond is located in the south-central portion of the overall site and is approximately 3 to 5 feet deep. Due to the existing row crops, the southwestern area of the site was inaccessible to drilling equipment.

Topographic information for the subject site was obtained from a grading plan prepared by Thienes Engineering, Inc. The plan indicates that the site topography generally slopes downward to the south at a gradient of 1 to $2\pm$ percent, with some local variations. The existing site grades range from an elevation of $667\pm$ feet mean sea level (msl) in the northern area of the site to $631\pm$ feet msl in the southern area of the site.

Proposed Development

Based on a site plan prepared by HPA, the subject site will be developed with eight (8) new commercial/industrial buildings. The buildings will be identified as Building 1 through Building 8. Building 1 will be located in the east-central area of the site and will have a footprint of $571,000 \pm ft^2$ and Building 2 will be located in the southeastern area of the site and will have a footprint of $588,000 \pm ft^2$. These two building will be constructed with dock-high doors along the north and south sides of the buildings. Building 3 through Building 6 will be located along the western side of the site and will have footprints that range from 39,000 to $217,700 \pm ft^2$. These buildings will be constructed with dock-high doors along the of the site and will be located in the northern area of the site and will have footprints of 85,400 and $96,400 \pm ft^2$, respectively. These buildings will be constructed with dock-high doors along a portion of their south walls. The buildings will be surrounded by asphaltic concrete pavements in the parking and drive areas, Portland cement concrete pavements in the truck court areas with concrete flatwork and landscape planters.

We understand that the proposed development will include on-site infiltration to dispose of storm water. Based on an infiltration test exhibit prepared by Thienes Engineering, Inc., the project civil engineer, the proposed infiltration system will consist of eleven (11) below-grade chamber systems (identified as Infiltration Chambers A through K) located throughout the subject site. The bottoms of the below-grade chambers will extend to depths ranging from 10 to $20\pm$ feet below the existing site grades.

Previous Studies

Southern California Geotechnical, Inc. (SCG) previously performed a geotechnical feasibility study at the subject site. As a part of this study, four (4) borings were advanced to depths of 10 to $30\pm$ feet below existing site grades. In addition to the four borings, four (4) trenches were excavated at the site to depths of 4 to $12\pm$ feet below existing site grades. Manure was present at the ground surface at two of the trenches and one of the boring locations, with thicknesses of 4 to $8\pm$ inches. Highly organic topsoil materials were encountered at one of the boring and trench locations. These materials were approximately 1 to $11/_2$ feet in thickness and generally consisted of silty fine sands, which contained manure and/or other fibrous organic material. Artificial fill soils were encountered at the ground surface or below the manure/topsoil at all but one of the boring and trench locations. The fill materials generally extend to depths of 2 to $41/_2\pm$ feet and consisted of loose to medium dense silty fine sands and fine sandy silts, and medium stiff to stiff clayey sands, and sandy clays with occasional silty clays.

Additional soils classified as possible fill were encountered at the ground surface at one boring and one trench location, extending to depths of $1\frac{1}{2}$ to $5\frac{1}{2}\pm$ feet. Native alluvial soils were encountered beneath the fill and possible fill soils at all of the boring and trench locations. The near-surface alluvium generally consisted of loose to medium dense silty fine sands to fine sandy silts, fine to medium sands, clayey fine sands, and soft to medium stiff fine sandy clays, silty clays, and clayey silts, extending to at least the maximum depth explored of $30\pm$ feet below existing site grades. Free water was not encountered during the drilling of any of the borings. Based on the lack of any water within the borings and the moisture contents of the recovered soil samples, the static groundwater is considered to have existed at a depth in excess of $30\pm$ feet at the time of the previous subsurface exploration.

SCG also previously performed infiltration testing at the subject site. The results of the previous infiltration testing were presented in the infiltration report referenced above. One (1) infiltration test was performed at the site as part of the previous infiltration testing. The infiltration testing was conducted for one of the chamber systems located in the northwestern area of the site. One (1) infiltration test boring (identified as Infiltration Test No. I-1) was advanced to a depth of $15\pm$ feet below existing site grades. Native alluvial soils were encountered at the ground surface at the infiltration boring location, extending to at least $15\pm$ feet below existing site grades. The alluvial soils generally consisted of loose to medium dense fine sandy silts, clayey fine sands, fine sandy clays, and silty fine to medium sands with varying amounts of coarse sand, fine gravel, clay, and silt content. Free water was not encountered during the drilling of the infiltration boring. The results indicated that the infiltration rate at the test location was 7.5 inches per hour. Based on this result, we preliminarily recommended a design infiltration rate of 7.5 inches per hour be used for the design of the proposed below-grade chamber system located in the northwestern area of the site.

The approximate locations of the four (4) borings, four (4) trenches, and one (1) infiltration boring from the previous studies are indicated on the Infiltration Test Location Plan, included as Plate 2 of this report.

Subsurface Exploration

Scope of Exploration

The subsurface exploration conducted for the additional infiltration testing consisted of fifteen (15) infiltration test borings, advanced to depths of 10 to $20\pm$ feet below the existing site grades. The borings were advanced using a truck-mounted drilling rig, equipped with 8-inch diameter hollow stem augers. The borings were logged during drilling by a member of our staff. The approximate locations of the infiltration borings (identified as I-2 through I-16) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Upon completion of the drilling, the bottom of each test boring was covered with $2\pm$ inches of clean $\frac{3}{4}$ -inch gravel. A sufficient length of 3-inch-diameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean $\frac{3}{4}$ -inch gravel was then installed in the annulus surrounding the PVC casing.

Geotechnical Conditions

Infiltration Boring Nos. I-2 through I-5 were drilled within the cattle pen areas, in the northeastern region of the site. Manure, which measured 2 to $4\pm$ inches in thickness, was present at the ground surface at these four (4) boring locations. Native alluvial soils were encountered beneath the manure and at the ground surface at all of the remaining boring locations, extending to at least $20\pm$ feet below the existing site grades. The alluvial soils generally consist of medium stiff to very stiff clayey silts, silty clays, and fine sandy clays, and loose to medium dense silty fine sands, clayey fine sands, and fine sandy silts. Infiltration Boring No. I-2 encountered a layer of dense silty fine to coarse sands with little fine gravel at depths ranging from $8\frac{1}{2}$ to $13\pm$ feet below existing site grades. The Boring No. I-3 encountered layers of dense to very dense fine to coarse sands with trace to little fine gravel and trace silt at depths ranging from 12 to $20\pm$ feet below existing site grades. The Boring Logs, which illustrate the conditions encountered at the boring locations, are included with this report.

Groundwater

Free water was not encountered during the drilling of any of the borings. Based on the lack of any water within the borings and the moisture contents of the recovered soil samples, the static aroundwater is considered to have existed at a depth in excess of $20\pm$ feet at the time of the subsurface exploration. As part of our research, we reviewed available groundwater data in order to determine regional groundwater depths. Recent water level data was obtained from the California State Water Resources Control Board, GeoTracker website. http://geotracker.waterboards.ca.gov/. Available data for a monitoring well, located approximately $4,200\pm$ feet west from the site, indicates a high groundwater level of $83\pm$ feet below the ground surface.

Infiltration Testing

The infiltration testing was performed in general accordance with <u>Technical Guidance Document</u> for Water Quality Management Plans, prepared for the County of San Bernardino Areawide <u>Stormwater Program</u>.

Pre-soaking

The first phase of the infiltration testing consisted of pre-soaking all fifteen (15) of the infiltration test holes. The pre-soaking process for the borings consisted of filling each test boring by inverting a full 5-gallon bottle of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of each infiltration boring. Pre-soaking was considered complete after all of the water had percolated through each test hole or after 15 hours since initiating the pre-soak. All of the infiltration test borings were pre-soaked one (1) day prior to when the infiltration testing was conducted.

Infiltration Testing

Following the pre-soaking process of the infiltration test borings, SCG performed the infiltration testing over the next few days. The test holes were filled with water to a depth of at least 5 times the hole's radius above the gravel at the bottom of the test holes prior to each test interval. In accordance with the San Bernardino County guidelines, since "sandy soils" were encountered at the bottom of Infiltration Boring Nos. I-2, I-3, I-7, I-11, and I-13 (where 6 inches of water infiltrated into the surrounding soils for two-consecutive 25-minute readings), readings were taken at 10-minute intervals for a total of 1 hour at these five (5) infiltration test locations. Since "non-sandy soils" were encountered at the bottom of Infiltration Boring Nos. I-4, I-5, I-6, I-8, I-9, I-10, I-12, I-14, I-15, and I-16, readings were taken at 30-minute intervals for a total of 6 hours at these ten (10) infiltration test locations. After each reading, water was added to each test boring so that the depth of the water was again at a level of at least 5 times the hole's radius above the bottom of each infiltration boring. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates for the tests are tabulated in inches per hour. In accordance with the typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration tests be used as the design infiltration rate. The rates are summarized below:

Infiltration Test No.	<u>Depth</u> (feet)	Soil Description	<u>Infiltration</u> <u>Rate</u> <u>(inches/hour)</u>
I-2	13	Silty fine to coarse Sand, little fine Gravel	8.7
I-3	20	Fine to coarse Sand, little fine Gravel, trace Silt	9.9
I-4	20	Silty Clay, trace fine Sand	0.0
I-5	131⁄2	Fine Sandy Clay, little Silt	0.2
I-6	14	Silty Clay, little fine Sand	0.1
I-7	16	Fine Sandy Clay, little medium Sand, trace Silt	0.8
I-8	17	Clayey fine Sand to fine Sandy Clay, trace Silt	0.3
I-9	15	Silty Clay, trace fine Sand	0.0
I-10	10	Silty Clay	0.0
I-11	12	Fine Sandy Silt, trace Clay	1.1
I-12	11	Silty Clay, trace fine Sand	0.1
I-13	20	Silty fine Sand	4.8
I-14	20	Silty fine Sand, little Clay	1.0
I-15	131⁄2	Silty Clay	0.0
I-16	14	Clayey Silt, trace fine Sand	0.2

Design Recommendations

A total of fifteen (15) infiltration tests were performed at the subject site. As noted above, the infiltration rates at these locations range from 0 to 9.9 inches per hour. The primary factors affecting the infiltration rates are the silt and clay content of the encountered soils, which vary at different depths and locations at the subject site. The high clay and silt content of the soils encountered at the bottom of Infiltration Boring Nos. I-4 through I-6, I-8 through I-10, I-12, I-15, and I-16 resulted in very low and nearly non-existent infiltration rates at these nine (9) infiltration test locations.

Based on the very low infiltration rates at the majority of the infiltration test locations, the on-site soils are generally not considered suitable for infiltration at the depths and locations tested. Although Infiltration Test Nos. I-2, I-3, I-11, I-13, and I-14 resulted in infiltration rates ranging from 1.0 to 9.9 inches per hour, the underlying interbedded silts and clays will restrict infiltration at this site. Therefore, we recommend that storm water infiltration not be utilized at this site.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and

preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rate contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the proposed storm water infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

<u>Closure</u>

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

No 23

Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

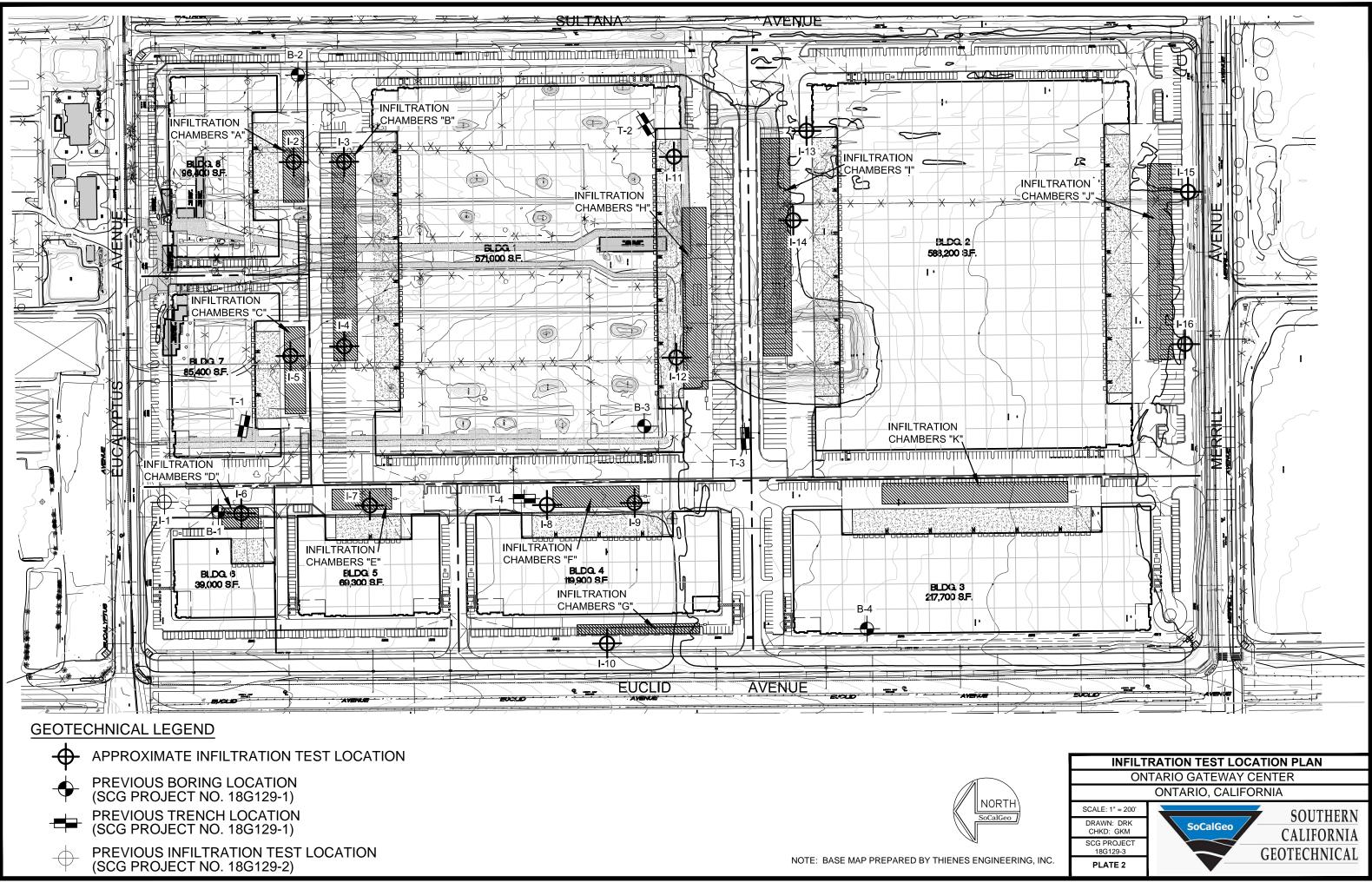
Meln

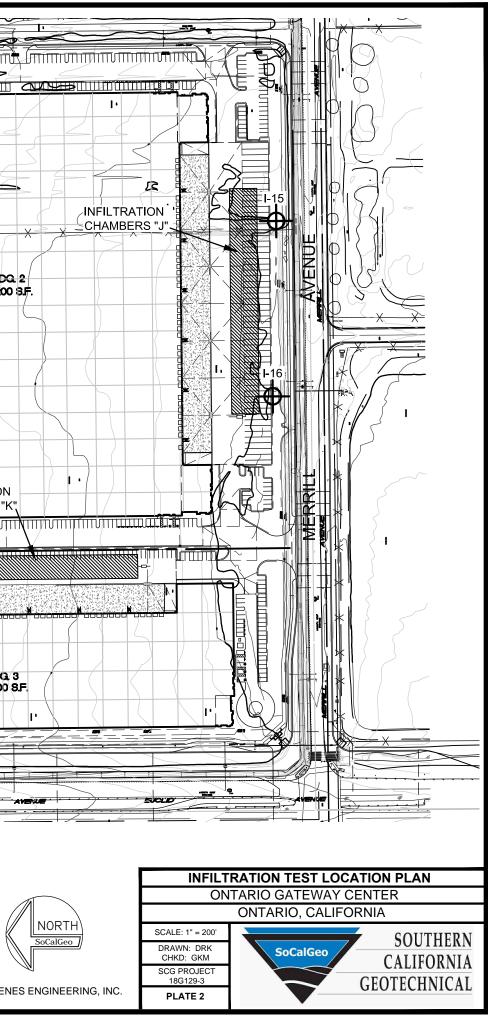
Scott McCann Staff Scientist

MHHU

Gregory K. Mitchell, GE 2364 Principal Engineer

Distribution: (1) Addressee


Enclosures: Plate 1 - Site Location Map Plate 2 - Infiltration Test Location Plan Boring Log Legend and Logs (17 pages) Infiltration Test Results Spreadsheets (15 pages) Grain Size Distribution Graphs (15 pages)



SOURCE: SAN BERNARDINO COUNTY THOMAS GUIDE, 2013

JOB NO.: 18G129-3DRILLING DATE: 7/12/18WATER DEPROJECT: Ontario Gateway CenterDRILLING METHOD: Hollow Stem AugerCAVE DEP"LOCATION: Ontario, CaliforniaLOGGED BY: Anthony LunaREADING T											ГН:		Completion
				JLTS			LAE						
חבסדט (בכבד)		SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		X	10 10			3½ inches Manure ALLUVIUM: Gray Brown fine Sandy Silt, loose to medium dense-moist to very moist	-	16 10					
	5		15	3.5		Light Gray Silty Clay, trace fine Sand, trace calcareous veining, stiff to very stiff-moist to very moist	-	15					
1(0-	$\overline{\langle}$	35			Light Brown Silty fine to coarse Sand, little fine Gravel, dense-damp	-	5			13		-
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18					• • • • • • • • • • • • • • • • • • •	Boring Terminated at 13'							
	ES	 T	BO	RIN	IG I	_OG							PLATE I-

	ЕСТ	: 0	ntario	Gatev	ay Center DRILLING DATE: 7/12/18 DRILLING METHOD: Hollow Stem Auger			WATE CAVE	DEP	TH: -		
LOCAT					ornia LOGGED BY: Anthony Luna			READ				Completion
=EET)			POCKET PEN. (TSF)		DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY P			PLASTIC	PASSING #200 SIEVE (%)	(9	COMMENTS
5		14 7			2 inches Manure <u>ALLUVIUM:</u> Gray Brown fine Sandy Silt, trace Clay, medium dense-moist	-	12 13					
	ζ	26	4.5+		Light Gray Silty Clay, trace fine Sand, little calcareous veining, very stiff-moist to very moist	-	15					
10		17	4.0		Light Gray fine Sandy Clay, trace calcareous and Iron oxide staining, very stiff-moist	-	14					
15	Ζ	44			Light Gray Brown fine to medium Sand, little coarse Sand, trace fine Gravel, trace Silt, dense-damp	-	3					
20	$\overline{\langle}$	82			Light Gray fine to coarse Sand, little fine Gravel, trace Silt, very dense-damp	-	2			5		
					Boring Terminated at 20'							
res [.]	T E	BO	RIN	IG I	.OG						 	PLATE I

	CT:	Ontario	Gatew	DRILLING DATE: 7/12/18 ay Center DRILLING METHOD: Hollow Stem Auger			WATE CAVE				
LOCAT			_	ornia LOGGED BY: Anthony Luna	LAF		READ				Completion
DEPTH (FEET)	DUNT		1	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)		PLASTIC	'E (%)	ORGANIC CONTENT (%)	COMMENTS
	7 16			4 inches Manure ALLUVIUM: Gray Brown fine Sandy Silt, trace Clay, trace calcareous veining, medium dense-moist	-	14					
5	8	4.5+		Gray Brown Silty Clay, trace fine Sand, little calcareous veining/nodules, stiff to very stiff-very moist	-	14 20					
10	7 17	4.0		-	-	18					
15	28			Light Gray Brown Silty fine Sand to fine Sandy Silt, trace medium Sand, medium dense-damp	-	7					
20	7 14	1.5		Light Gray Brown Silty Clay, trace fine Sand, stiff-very moist	-	28			87		
				Boring Terminated at 20'							
ES1	Г В() DRI	NG I	.OG							PLATE I

JOB NO.: 18 PROJECT: LOCATION:	Ontario	Gatew				WATE CAVE READ	DEP	TH: -		Completion
FIELD RES				LAE		ATOF				
DEPTH (FEET) SAMPLE BLOW COUNT			DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)		PLASTIC LIMIT	PASSING #200 SIEVE (%)		COMMENTS
10			3 inches Manure <u>ALLUVIUM:</u> Gray Brown fine Sandy Silt, trace Clay, loose to medium dense-moist to very moist		13					
5 11 14			Light Gray fine Sandy Clay, stiff-very moist	-	16 20					
10 17	4.5		Light Gray Brown fine Sandy Clay, little Silt, trace Iron oxide staining, trace calcareous nodules and veining, stiff to very stiff-very moist	-	18					
18	3 2.5			-	19			55		
			Boring Terminated at 13½'							
EST B	ORIN	IG L	.OG							PLATE I

JOB NO.: 18G129-3DRILLING DATE: 7/13/18WATER DEPTH: DryPROJECT: Ontario Gateway CenterDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Ontario, CaliforniaLOGGED BY: Anthony LunaREADING TAKEN: At Co												Completion
			JLTS			LAE	BORA					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		27 15			<u>ALLUVIUM:</u> Gray Brown fine Sandy Silt, trace Clay, medium dense-damp to moist	-	9 10					
5		7	3.0		Gray Silty Clay, little fine Sand, trace calcareous veining, stiff-very moist	-	22					-
10		11	2.5		- 	-	21					
		12	3.0		-	-	19			83		
					Boring Terminated at 14'							
8/9/18												
CALGEO.GDT												
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18												
	ST	BC) RIN	IG L	_OG							PLATE I-5

PR	JOB NO.: 18G129-3 DRILLING DATE: 7/13/18 WATER DEPTH: Dry PROJECT: Ontario Gateway Center DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Ontario, California LOGGED BY: Anthony Luna READING TAKEN: At Completion FIELD RESULTS LABORATORY RESULTS LABORATORY RESULTS												
			JLTS			LAE							
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
					<u>ALLUVIUM:</u> Gray fine Sandy Silt, loose to medium dense-very moist								
5		6			- - -	-	21 21						
		17	4.5+		Gray Silty Clay, little fine Sand, trace Iron oxide staining, very stiff-moist to very moist	-	16					-	
10		16	4.5		-	-	16					-	
15		24	2.0		Light Gray Brown fine Sandy Clay, little medium Sand, trace Silt, very stiff-moist to very moist	-	17			57			
					Boring Terminated at 16'								
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18													
SOCALGE													
G129-3.GPJ													
	ST	BC			_OG						 	PLATE I-6	

IOR	NO	· 18/	G129-3	3	DRILLING DATE: 7/13/18				R DE	ртн∙	Dry	
PRC	JEC	т: О	ntario	Gatew	vay Center DRILLING METHOD: Hollow Stem Auger						-	
LOC	ATIC	DN: (Ontario	o, Calif				READ	ING T	AKEN	I: At (Completion
FIEL	DF	RESL	JLTS			LAE	BOR/	ATOF	RY RI	ESUI	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
	S	В		U U U U	ALLUVIUM: Gray Brown fine Sandy Silt, loose to medium	D.F.	20			Π₩	00	0
		10	0.5		dense-moist Gray Silty Clay, trace fine Sand, trace calcareous veining, stiff	-	11					
5 -		9	3.5		to very stiff-very moist	-	19					-
		13	3.5			-	19					
10-	X	18	4.5		-	-	17					-
	-				Light Crow Prown Clavey fing Sand to fing Sandy Clay, trace	-						-
15 ·	-	18	4.0		Light Gray Brown Clayey fine Sand to fine Sandy Clay, trace Silt, trace calcareous nodules, very stiff to medium dense-very moist	-	20			52		-
	1X	10	4.0				20			52		
				,,,,,,,,	Boring Terminated at 17'							
/18												
3EO.GDT 8/9												
3PJ SOCALG												
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18												
	L ST	BC) RIN	IG L	_OG							PLATE I-7

JOB NO.:18G129-3DRILLING DATE:7/13/18WATER DEPROJECT:Ontario Gateway CenterDRILLING METHOD:Hollow Stem AugerCAVE DEPTLOCATION:Ontario, CaliforniaLOGGED BY:Anthony LunaREADING T												Completion
			JLTS			LAE				ESUI		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
					<u>ALLUVIUM:</u> Gray Brown fine Sandy Silt, trace Clay, medium dense-moist							
5		15				-	11 15					
		17	3.5		Gray Silty Clay, trace fine Sand, trace Iron oxide staining, stiff to very stiff-very moist	-	22					-
		13	3.5		- -		21					-
10						-						-
		20	4.0				26			87		-
-15		<u> </u>			Boring Terminated at 15'							
.GDT 8/9/18												
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18												
18G129-3.GPJ												
	ST	BC	RIN	IG I	_OG							PLATE I-8

PRO	DJEC	T: 0			DRILLING DATE: 7/13/18 ay Center DRILLING METHOD: Hollow Stem Auger ornia LOGGED BY: Anthony Luna			CAVE	ER DE DEP	ГН: -	-	Completion
			JLTS			LAE			RY R			
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		11			<u>ALLUVIUM:</u> Dark Gray Brown fine Sandy Silt, trace Clay, medium dense-very moist	-	28					
5		13	3.0		Gray Brown Clayey Silt to Silty Clay, trace fine Sand, stiff to very stiff-very moist	-	21					-
		9	3.5			-	19					
10		19	3.5		Gray Silty Clay, very stiff-very moist	-	21			92		-
TBL 186129-3.GPJ SOCALGEO.GDT 8/9/18					Boring Terminated at 10'							
	~-				06							

PRC	JEC	T: 0		Gatew	DRILLING DATE: 7/12/18 PRILLING METHOD: Hollow Stem Auger			WATE CAVE	DEP	ГН: -		Completic
			Ontario		ornia LOGGED BY: Anthony Luna	LAF						Completion
DEPTH (FEET)	SAMPLE		POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)		PLASTIC	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		10			<u>ALLUVIUM:</u> Gray Brown fine Sandy Silt, little Clay, loose to medium dense-very moist	-	27					
5		9			- Light Gray fine Sandy Silt, trace Clay, trace Iron oxide	-	24					-
		7			staining, loose-very moist to wet	-	42					
10-		9				-	37			71		-
					Boring Terminated at 12'							
DT 8/9/18												
SOCALGEO.G												
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18												
					06							Ι ΔΤΕ I-10

PR	OJEC	T: 0		Gatew	DRILLING DATE: 7/12/18 ay Center DRILLING METHOD: Hollow Stem Auger			CAVE		ГН:	-	Completic
			JLTS	o, Calif	ornia LOGGED BY: Anthony Luna	LAE						Completion
DEPTH (FEET)		BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL		MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		12	4.0		<u>ALLUVIUM:</u> Dark Gray Brown Silty Clay, trace fine Sand, slightly porous, very stiff-very moist to wet	-	39					-
5		13	4.5		Light Gray Silty Clay, trace fine Sand, trace calcareous	-	23					-
		14	2.5		nodules, stiff-very moist	-	22					-
10		11	2.0			-	26			89		-
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18					Boring Terminated at 11'							
	OT				00							

JOB NO.: 18G129-3DRILLING DATE: 7/11/18WATER DEPTH: DryPROJECT: Ontario Gateway CenterDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Ontario, CaliforniaLOGGED BY: Anthony LunaREADING TAKEN: At Completion												Completion
			JLTS			LAE			RY R			
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		12			<u>ALLUVIUM:</u> Dark Gray Brown fine Sandy Silt, little Clay, trace medium Sand, stiff-very moist	-	33 26					-
5		10	1.5		Gray Brown Silty Clay, stiff-very moist	-	27					-
10		9			Gray Silty fine Sand to fine Sandy Silt, loose-very moist		25					
15		5	0.5		Gray Brown Silty Clay, trace fine Sand, soft to medium stiff-very moist		27					
-20		17			Light Gray Brown Silty fine Sand, medium dense-moist	-	13			23		-
					Boring Terminated at 20'							
_												
CALGEO.GDT 8/9/1												
18G129-3.GPJ SOCALGEO.GDT 8/9/18												
≓ TE	ST	BC) RIN	IG L	.OG						P	LATE I-12

JOB NO.: 18G129-3DRILLING DATE: 7/11/18WATER DEPTH: 19.5 feetPROJECT: Ontario Gateway CenterDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Ontario, CaliforniaLOGGED BY: Anthony LunaREADING TAKEN: At Completion												
			JLTS			LABORATORY RESULTS						
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		10			ALLUVIUM: Dark Gray Brown fine Sandy Silt, loose to medium dense-very moist	-						No Sample Recovered
5		7			Gray Brown Silty Clay, stiff-very moist	-	30					-
		8	2.0		Gray Brown Silty fine Sand to fine Sandy Silt, medium		28					
10		10			dense-very moist	-	27					
15		24			Brown Silty fine Sand, little Clay, medium dense-very moist to	-	22					
-20		11			wet		33			45		
					Boring Terminated at 20'							
EO.GDT 8/9/18												
GPJ SOCALGE												
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18												
	EST	BC	RIN		.OG	1	1	1	1	1	P	LATE I-13

	JOB NO.: 18G129-3 DRILLING DATE: 7/11/18 WATER DEPTH: Dry PROJECT: Ontario Gateway Center DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:												
L	CA		N: C	Ontaric	, Calif				READ	ING T	AKEN	I: At	Completion
FI		D R	ESL	JLTS			LAE	30R/	ATOF	RY RI	ESUL	_TS	
		SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
	-		-		Ĩ	ALLUVIUM: Dark Gray Brown fine Sandy Silt, trace Clay,		20			H #		
		X	8			Dark Gray Brown Silty Clay, little fine Sand, stiff-very moist		28					
	5 +	X	10	2.5		-		23					-
		\mathbf{X}	13	2.5		Gray Brown Silty Clay, trace Iron oxide staining, stiff to very stiff-very moist		21					-
1		\mathbf{X}	18	3.0		- · · · · · · · · · · · · · · · · · · ·		23					-
	Ţ					-							-
		X	12	2.0		Gray Brown Silty Clay, stiff-very moist		26			92		-
TBL 18G129-3.GPJ SOCALGEO.GDT 8/9/18						Boring Terminated at 13 ¹ /2 ¹							
	ES	т	BC) RIN	IG L	_OG						P	LATE I-14

Р	JOB NO.: 18G129-3DRILLING DATE: 7/11/18WATER DEPTH: DryPROJECT: Ontario Gateway CenterDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Ontario, CaliforniaLOGGED BY: Anthony LunaREADING TAKEN: At Completion												
						ornia LOGGED BY: Anthony Luna	1 ^ -						Completion
	-===-)	SAMPLE		POCKET PEN. [TSF]	GRAPHIC LOG	DESCRIPTION		MOISTURE CONTENT (%)		PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
Ĺ		SAI	BLO	D S T	GR	SURFACE ELEVATION: MSL	R D D D	о И О И О	ΔZ	LIN LIN	PA(#20	<u>к</u> 8	СО
		\mathbb{X}	10 13	2.5 4.5		ALLUVIUM: Gray Brown fine Sandy Clay, stiff-very moist Dark Gray Brown Silty Clay, little fine Sand, medium stiff to stiff-very moist to wet	-	20 38					
	5 -	\leq	6	1.5			-	27					-
1	0-4	X	8	1.5		Dark Gray Brown Clayey Silt, trace fine Sand, medium stiff to stiff-very moist	-	32					-
		X	7	1.5		- -		29			87		
						Boring Terminated at 14'							
.GDT 8/9/18													
I SOCALGEO													
18G129-3.GPJ SOCALGEO.GDT 8/9/18													
TBL			BO			OG						P	I ATE I-15

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 13.3 (ft) I-2

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
P1	Initial	12:00 PM	25.0	11.51	1.79	0.90	8.09	
ГІ	Final	12:25 PM	25.0	13.30	1.79	0.90	0.09	Pre-Sat
P2	Initial	12:26 PM	25.0	11.60	1.70	0.95	8 02	-jre-
P2	Final	12:51 PM	25.0	13.30	1.70	0.85	8.03	
1	Initial	1:52 PM	10.0	11.60	1.04	1.18	9.27	
1	Final	2:02 PM	10.0	12.64	1.04	1.10	9.27	
2	Initial	2:03 PM	10.0	11.60	1.02	1.19	9.02	
2	Final	2:13 PM	10.0	12.62	1.02	1.13	9.02	Infiltration Testing
3	Initial	2:14 PM	10.0	11.60	1.01	1.20	8.90	esti
5	Final	2:24 PM	10.0	12.61	1.01	1.20	0.90	Ĕ
4	Initial	2:25 PM	10.0	11.60	1.01	1.20	8.90	tion
4	Final	2:35 PM	10.0	12.61	1.01	1.20	0.30	ltra
5	Initial	2:36 PM	10.0	11.60	0.99	1.21	8.66	Infi
5	Final	2:46 PM	10.0	12.59	0.33	1.21	0.00	
6	Initial	2:47 PM	10.0	11.60	0.99	1.21	8.66	
0	Final	2:57 PM	10.0	12.59	0.99	1.21	0.00	

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 19.8 (ft) I-3

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
P1	Initial	12:05 PM	25.0	18.10	1.70	0.85	8.03	
ГІ	Final	12:30 PM	25.0	19.80	1.70	0.85	0.05	Pre-Sat
P2	Initial	12:31 PM	25.0	18.10	1.70	0.85	0.02	-e-
P2	Final	12:56 PM	25.0	19.80	1.70	0.85	8.03	
1	Initial	1:57 PM	10.0	18.10	1.13	1.14	10.42	
1	Final	2:07 PM	10.0	19.23	1.13	1.14	10.42	
2	Initial	2:08 PM	10.0	18.10	1.13	1.14	10.42	
2	Final	2:18 PM	10.0	19.23	1.15	1.14	10.42	ing
3	Initial	2:19 PM	10.0	18.10	1.11	1.15	10.16	Infiltration Testing
5	Final	2:29 PM	10.0	19.21	1.11	1.15	10.10	Ē
4	Initial	2:30 PM	10.0	18.10	1.10	1.15	10.03	tion
4	Final	2:40 PM	10.0	19.20	1.10	1.15	10.05	ltra
5	Initial	2:41 PM	10.0	18.10	1.10	1.15	10.03	Infi
5	Final	2:51 PM	10.0	19.20	1.10	1.15	10.05	
6	Initial	2:52 PM	10.0	18.10	1.09	1.16	9.90	
0	Final	3:02 PM	10.0	19.19	1.09	1.10	5.50	

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 19.8 (ft)

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 10:10 AM 18.09 Initial 30.0 1.70 1 0.03 0.06 Final 10:40 AM 18.12 10:41 AM 18.10 Initial 2 30.0 0.02 0.04 1.69 18.12 Final 11:11 AM Initial 11:12 AM 18.08 3 30.0 0.02 1.71 0.04 11:42 AM 18.10 Final 11:43 AM 18.10 Initial 4 30.0 0.01 1.70 0.02 12:13 PM 18.11 Final Initial 12:14 PM 18.09 0.01 5 30.0 0.02 1.71 Final 12:44 PM 18.10 Initial 12:45 PM 18.10 6 30.0 0.02 1.69 0.04 Final 1:15 PM 18.12 1:16 PM 18.09 Initial 7 30.0 0.01 1.71 0.02 1:46 PM 18.10 Final 1:47 PM 18.10 Initial 8 30.0 0.01 1.70 0.02 2:17 PM 18.11 Final 18.10 2:18 PM Initial 9 30.0 0.01 1.70 0.02 18.11 Final 2:48 PM Initial 2:49 PM 18.10 10 30.0 0.02 1.69 0.04 Final 3:19 PM 18.12 Initial 3:20 PM 18.10 30.0 0.01 1.70 0.02 11 Final 3:50 PM 18.11 3:51 PM Initial 18.10 12 30.0 0.01 1.70 0.02 4:21 PM 18.11 Final

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth 4 (in) 13.3 (ft) I-5

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
1	Initial	10:00 AM	30.0	11.54	0.10	1.71	0.21	
	Final	10:30 AM		11.64	0110		0.2.	
2	Initial	10:31 AM	30.0	11.53	0.08	1.73	0.17	
2	Final	11:01 AM	00.0	11.61			0.17	
3	Initial	11:02 AM	30.0	11.59	0.09	1.67	0.20	
5	Final	11:32 AM	50.0	11.68	0.00	1.07	0.20	
4	Initial	11:33 AM	30.0	11.60	0.08	1.66	0.18	
4	Final	12:03 PM	50.0	11.68	0.00	1.00		
5	Initial	12:04 PM	30.0	11.60	0.08	1.66	0.18	
5	Final	12:34 PM	30.0	11.68		1.00		
6	Initial	12:35 PM	30.0	11.59	0.08	1.67	0.17	
0	Final	1:05 PM		11.67				
7	Initial	1:06 PM	30.0	11.58	0.07	1.69	0.15	
'	Final	1:36 PM	50.0	11.65	0.07	1.05	0.15	
8	Initial	1:37 PM	30.0	11.60	0.08	1.66	0.18	
0	Final	2:07 PM	30.0	11.68	0.00	1.00	0.10	
9	Initial	2:08 PM	30.0	11.60	0.08	1.66	0.18	
5	Final	2:38 PM	50.0	11.68	0.00	1.00	0.10	
10	Initial	2:39 PM	30.0	11.60	0.07	1.67	0.15	
10	Final	3:09 PM	50.0	11.67	0.07	1.07	0.15	
11	Initial	3:10 PM	30.0	11.59	0.07	1.68	0.15	
	Final	3:40 PM	00.0	11.66	0.07	1.00	0.15	
12	Initial	3:41 PM	30.0	11.60	0.07	1.67	0.15	
12	Final	4:11 PM	55.0	11.67	0.07	1.07	0.15	

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

$$\Delta t = Time Interval$$
 H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 14.2 (ft)

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 10:30 AM 12.00 Initial 30.0 1 0.06 2.17 0.10 Final 11:00 AM 12.06 11:01 AM 12.00 Initial 2 30.0 0.06 0.10 2.17 12.06 Final 11:31 AM Initial 11:32 AM 12.00 3 30.0 0.05 2.18 0.09 12:02 PM 12.05 Final 12:03 PM 12.00 Initial 0.07 4 30.0 0.04 2.18 12:33 PM 12.04 Final Initial 12:34 PM 12.00 5 30.0 0.07 0.04 2.18 12.04 Final 1:04 PM Initial 1:05 PM 12.00 6 30.0 0.04 2.18 0.07 Final 1:35 PM 12.04 1:36 PM 12.00 Initial 7 30.0 0.04 2.18 0.07 2:06 PM 12.04 Final 2:07 PM 12.00 Initial 8 30.0 0.03 2.19 0.05 12.03 2:37 PM Final 2:38 PM 12.00 Initial 9 30.0 0.04 2.18 0.07 12.04 Final 3:08 PM Initial 3:09 PM 12.00 10 30.0 0.04 2.18 0.07 Final 3:39 PM 12.04 Initial 3:40 PM 12.00 30.0 2.18 0.07 11 0.04 Final 4:10 PM 12.04 4:11 PM Initial 12.00 12 30.0 0.07 0.04 2.18 4:41 PM 12.04 Final

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 15.9 (ft) I-7

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 11:00 AM 13.90 Initial P1 25.0 1.14 1.43 3.43 Pre-Sat 15.04 11:25 AM Final 11:26 AM 13.90 Initial P2 25.0 0.78 1.61 2.11 11:51 AM 14.68 Final 11:52 AM 13.90 Initial 10.0 1 0.28 1.86 1.66 Final 12:02 PM 14.18 Initial 12:03 PM 13.90 2 10.0 0.24 1.88 1.41 14.14 Infiltration Testing Final 12:13 PM Initial 12:14 PM 13.90 3 10.0 0.15 0.86 1.93 12:24 PM 14.05 Final 13.90 Initial 12:25 PM 4 10.0 0.14 1.93 0.80 12:35 PM 14.04 Final Initial 12:36 PM 13.90 5 10.0 0.14 1.93 0.80 Final 12:46 PM 14.04 12:47 PM 13.90 Initial 6 10.0 0.14 1.93 0.80 Final 12:57 PM 14.04

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0

Ontario Gateway Center
Ontario, CA
18G129-3
Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 17.4 (ft)

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 10:00 AM 14.50 Initial 30.0 1 0.14 2.83 0.19 Final 10:30 AM 14.64 10:31 AM 14.64 Initial 2 30.0 0.15 0.21 2.69 14.79 Final 11:01 AM Initial 11:02 AM 14.79 3 30.0 0.15 2.54 0.22 11:32 AM 14.94 Final 11:33 AM 14.94 Initial 4 30.0 0.14 2.39 0.22 12:03 PM 15.08 Final Initial 12:04 PM 15.08 5 30.0 2.25 0.23 0.14 15.22 Final 12:34 PM 15.22 Initial 12:35 PM 6 30.0 0.25 0.14 2.11 Final 1:05 PM 15.36 1:06 PM 15.36 Initial 7 30.0 0.14 1.97 0.26 1:36 PM 15.50 Final 1:37 PM 15.50 Initial 8 30.0 0.13 1.84 0.26 2:07 PM 15.63 Final 2:08 PM 15.63 Initial 9 30.0 0.13 1.71 0.28 15.76 Final 2:38 PM Initial 2:39 PM 15.69 10 30.0 0.12 1.65 0.26 Final 3:09 PM 15.81 Initial 3:10 PM 15.70 30.0 1.64 0.27 11 0.12 Final 3:40 PM 15.82 3:41 PM Initial 15.70 12 30.0 0.12 1.64 0.27 4:11 PM 15.82 Final

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 14.7 (ft) I-9

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	10:30 AM	30.0	12.90	0.02	1.79	0.04
	Final	11:00 AM		12.92			
2	Initial	11:01 AM	30.0	12.92	0.01	1.78	0.02
2	Final	11:31 AM	00.0	12.93	0.01	1.70	0.02
3	Initial	11:32 AM	30.0	12.93	0.01	1.77	0.02
5	Final	12:02 PM	50.0	12.94	0.01	1.77	0.02
4	Initial	12:03 PM	30.0	12.94	0.01	1.76	0.02
4	Final	12:33 PM	30.0	12.95	0.01	1.70	0.02
5	Initial	12:34 PM	30.0	12.95	0.01	1.75	0.02
5	Final	1:04 PM	30.0	12.96	0.01	1.75	0.02
6	Initial	1:05 PM	30.0	12.96	0.00	1.74	0.00
	Final	1:35 PM	50.0	12.96	0.00	1.74	0.00
7	Initial	1:36 PM	30.0	12.96	0.01	1.74	0.02
'	Final	2:06 PM	50.0	12.97	0.01	1.74	0.02
8	Initial	2:07 PM	30.0	12.97	0.01	1.73	0.02
0	Final	2:37 PM	30.0	12.98	0.01	1.75	0.02
9	Initial	2:38 PM	30.0	12.98	0.01	1.72	0.02
5	Final	3:08 PM	50.0	12.99	0.01	1.72	0.02
10	Initial	3:09 PM	30.0	13.00	0.00	1.70	0.00
10	Final	3:39 PM	50.0	13.00	0.00	1.70	0.00
11	11 Initial 3:40 PM 30.0	30.0	13.00	0.01	1.70	0.02	
	Final	4:10 PM	00.0	13.01	0.01	1.70	0.02
12	Initial	4:11 PM	30.0	13.01	0.01	1.69	0.02
12	Final	4:41 PM	50.0	13.02	0.01	1.09	0.02

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

$$\Delta t = Time Interval$$
 H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth 4 (in) 10.0 (ft) I-10

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	8:00 AM	30.0	8.00	0.01	2.00	0.02
•	Final	8:30 AM	00.0	8.01	0.0.	2.00	0.01
2	Initial	8:31 AM	30.0	8.01	0.01	1.99	0.02
2	Final	9:01 AM	00.0	8.02	0.01	1.00	0.02
3	Initial	9:02 AM	30.0	8.02	0.00	1.98	0.00
0	Final	9:32 AM	00.0	8.02	0.00	1.00	0.00
4	Initial	9:33 AM	30.0	8.02	0.01	1.98	0.02
-	Final	10:03 AM	00.0	8.03	0.01	1.00	0.02
5	Initial	10:04 AM	30.0	8.03	0.01	1.97	0.02
0	Final	10:34 AM	00.0	8.04			
6	Initial	10:35 AM	30.0	8.04	0.01	1.96	0.02
	Final	11:05 AM	00.0	8.05	0.01	1.00	0.02
7	Initial	11:06 AM	30.0	8.05	0.00	1.95	0.00
,	Final	11:36 AM	00.0	8.05	0.00	1.00	0.00
8	Initial	11:37 AM	30.0	8.05	0.01	1.95	0.02
0	Final	12:07 PM	00.0	8.06	0.01	1.00	0.02
9	Initial	12:08 PM	30.0	8.06	0.01	1.94	0.02
ÿ	Final	12:38 PM	00.0	8.07	0.01		0.02
10	Initial	12:39 PM	30.0	8.07	0.00	1.93	0.00
10	Final	1:09 PM	00.0	8.07	0.00	1.00	0.00
11	Initial	1:10 PM	30.0	8.07	0.01	1.93	0.02
	Final	1:40 PM	00.0	8.08	0.01		0.02
12	Initial	1:41 PM	30.0	8.08	0.01	1.92	0.02
12	Final	2:11 PM	50.0	8.09	0.01	1.52	0.02

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

$$\Delta t = Time Interval$$
 H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 12.1 (ft) I-11

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 9:00 AM 10.34 Initial P1 25.0 0.67 1.43 2.02 Pre-Sat 11.01 9:25 AM Final 9:26 AM 10.33 Initial P2 25.0 0.50 1.52 1.42 10.83 Final 9:51 AM 9:52 AM 10.37 Initial 10.0 1 0.19 1.64 1.27 Final 10:02 AM 10.56 Initial 10:03 AM 10.40 2 10.0 0.17 1.62 1.14 10.57 Infiltration Testing Final 10:13 AM Initial 10:14 AM 10.40 3 10.0 0.16 1.62 1.07 10.56 10:24 AM Final 10.40 Initial 10:25 AM 4 10.0 0.17 1.62 1.14 10.57 Final 10:35 AM Initial 10:36 AM 10.40 5 10.0 0.16 1.62 1.07 Final 10:46 AM 10.56 10:47 AM 10.40 Initial 10.0 1.07 6 0.16 1.62 Final 10:57 AM 10.56

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0.4

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth 4 (in) 11.2 (ft) I-12

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	8:00 AM	30.0	9.41	0.05	1.77	0.10
	Final	8:30 AM		9.46	0.00		00
2	Initial	8:31 AM	30.0	9.46	0.04	1.72	0.08
2	Final	9:01 AM	00.0	9.50	0.04	1.72	0.00
3	Initial	9:02 AM	30.0	9.50	0.04	1.68	0.09
5	Final	9:32 AM	50.0	9.54	0.04	1.00	0.09
4	Initial	9:33 AM	30.0	9.47	0.04	1.71	0.09
4	Final	10:03 AM	50.0	9.51	0.04	1.71	0.09
5	Initial	10:04 AM	30.0	9.49	0.04	1.69	0.09
5	Final	10:34 AM	50.0	9.53			
6	Initial	10:35 AM	30.0	9.48	0.03	1.71	0.06
0	Final	11:05 AM	50.0	9.51	0.00	1.71	0.00
7	Initial	11:06 AM	30.0	9.49	0.03	1.70	0.06
,	Final	11:36 AM	00.0	9.52	0.00	1.70	0.00
8	Initial	11:37 AM	30.0	9.49	0.03	1.70	0.06
Ŭ	Final	12:07 PM	00.0	9.52	0.00	1.70	0.00
9	Initial	12:08 PM	30.0	9.50	0.04	1.68	0.09
	Final	12:38 PM	00.0	9.54	0.01	1.00	0.00
10	Initial	12:39 PM	30.0	9.48	0.03	1.71	0.06
10	Final	1:09 PM		9.51	0.00		0.00
11	Initial	1:10 PM	30.0	9.49	0.03	1.70	0.06
	Final	1:40 PM		9.52	0.00		0.00
12	Initial	1:41 PM	30.0	9.50	0.03	1.69	0.06
12	Final	2:11 PM	00.0	9.53	0.00	1.00	0.00

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

$$\Delta t = Time Interval$$
 H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 19.4 (ft) I-13

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 10:15 AM 17.70 Initial P1 25.0 1.53 0.93 6.67 Pre-Sat 19.23 10:40 AM Final 17.70 10:41 AM Initial P2 25.0 1.51 0.94 6.52 11:06 AM 19.21 Final 11:07 AM 17.60 Initial 10.0 5.02 1 0.68 1.46 Final 11:17 AM 18.28 Initial 11:18 AM 17.68 2 10.0 0.67 1.39 5.18 18.35 Infiltration Testing Final 11:28 AM Initial 11:29 AM 17.70 3 10.0 0.66 1.37 5.15 18.36 11:39 AM Final 17.69 Initial 11:40 AM 4 10.0 0.65 1.39 5.03 18.34 Final 11:50 AM Initial 11:51 AM 17.70 5 10.0 0.63 1.39 4.87 Final 12:01 PM 18.33 12:02 PM Initial 17.70 6 10.0 0.62 1.39 4.78 Final 12:12 PM 18.32

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth 4 (in) 19.8 (ft) I-14

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	10:00 AM	30.0	18.05	0.54	1.48	1.31
•	Final	10:30 AM	00.0	18.59	0.01	11.10	
2	Initial	10:31 AM	30.0	18.00	0.51	1.55	1.19
2	Final	11:01 AM	00.0	18.51	0.01	1.00	1.10
3	Initial	11:02 AM	30.0	18.08	0.48	1.48	1.17
5	Final	11:32 AM	50.0	18.56	0.40	1.40	1.17
4	Initial	11:33 AM	30.0	18.10	0.47	1.47	1.15
-	Final	12:03 PM	50.0	18.57	0.47	1.47	1.10
5	Initial	12:04 PM	30.0	18.10	0.45	1.48	1.10
Ŭ	Final	12:34 PM	00.0	18.55			
6	Initial	12:35 PM	30.0	18.09	0.44	1.49	1.06
	Final	1:05 PM	00.0	18.53	0.11	1.40	1.00
7	Initial	1:06 PM	30.0	18.10	0.43	1.49	1.04
	Final	1:36 PM	00.0	18.53	0.10	11.10	
8	Initial	1:37 PM	30.0	18.10	0.42	1.49	1.01
Ŭ	Final	2:07 PM	00.0	18.52	0.42	1.40	1.01
9	Initial	2:08 PM	30.0	18.09	0.42	1.50	1.01
Ŭ	Final	2:38 PM	00.0	18.51	0.12	1.00	
10	Initial	2:39 PM	30.0	18.08	0.42	1.51	1.00
10	Final	3:09 PM	00.0	18.50	0.12	1.01	
11	Initial	3:10 PM	30.0	18.10	0.41	1.50	0.99
	Final	3:40 PM	00.0	18.51	0		0.00
12	Initial	3:41 PM	30.0	18.10	0.41	1.50	0.99
12	Final	4:11 PM	00.0	18.51	0.41	1.50	0.00

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

$$\Delta t = Time Interval$$
 H above GS= 0

Project Name	Ontario Gateway Center
Project Location	Ontario, CA
Project Number	18G129-3
Engineer	Scott McCann

Test Hole Radius Test Depth

Infiltration Test Hole

4 (in) 13.3 (ft) I-15

Change in Water Level (ft) Average Head Height (ft) Infiltration Rate Q (in/hr) Water Depth (ft) Interval Number Time Interval (min) Time 8:15 AM 11.14 Initial 30.0 1 0.02 2.15 0.03 Final 8:45 AM 11.16 8:46 AM 11.16 Initial 2 30.0 0.02 0.03 2.13 11.18 Final 9:16 AM Initial 9:17 AM 11.18 3 30.0 0.01 2.12 0.02 9:47 AM 11.19 Final 9:48 AM 11.19 Initial 4 30.0 0.01 2.11 0.02 10:18 AM 11.20 Final Initial 10:19 AM 11.20 0.02 5 30.0 0.04 2.09 11.22 Final 10:49 AM 11.22 Initial 10:50 AM 6 30.0 0.01 2.08 0.02 Final 11:20 AM 11.23 11:21 AM 11.23 Initial 7 30.0 0.00 2.07 0.00 Final 11:51 AM 11.23 11:52 AM 11.23 Initial 8 30.0 0.01 2.07 0.02 12:22 PM 11.24 Final 11.24 12:23 PM Initial 9 30.0 0.01 2.06 0.02 11.25 Final 12:53 PM Initial 12:54 PM 11.25 10 30.0 0.00 2.05 0.00 Final 1:24 PM 11.25 Initial 1:25 PM 11.25 30.0 0.01 2.05 0.02 11 Final 1:55 PM 11.26 1:56 PM Initial 11.26 12 30.0 0.01 2.04 0.02 2:26 PM 11.27 Final

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0

Project Name	Ontario Gateway Center			
Project Location	Ontario, CA			
Project Number	18G129-3			
Engineer	Scott McCann			

Test Hole Radius Test Depth

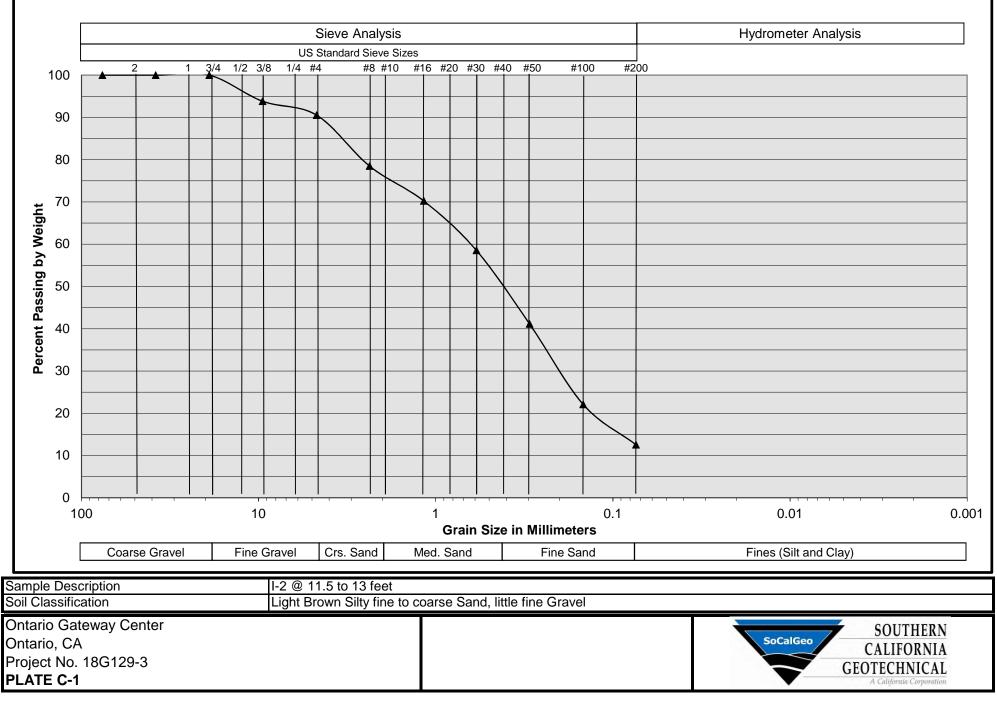
Infiltration Test Hole

4 (in) 14.3 (ft) I-16

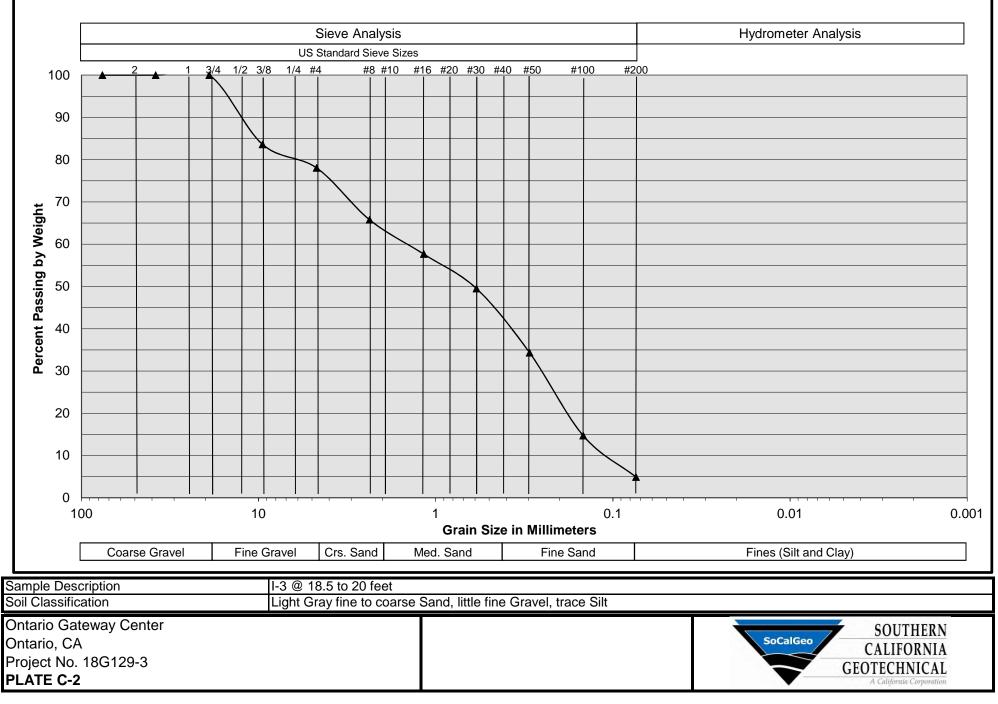
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)
1	Initial	8:00 AM	30.0	13.09	0.07	1.18	0.21
	Final	8:30 AM		13.16			
2	Initial	8:31 AM	30.0	13.08	0.06	1.19	0.18
	Final	9:01 AM		13.14			
3	Initial	9:02 AM	30.0	13.09	0.06	1.18	0.18
	Final	9:32 AM		13.15			
4	Initial	9:33 AM	30.0	13.10	0.06	1.17	0.18
	Final	10:03 AM		13.16			
5	Initial	10:04 AM	30.0	13.09	0.05	1.19	0.15
	Final	10:34 AM		13.14			
6	Initial	10:35 AM	30.0	13.10	0.05	1.18	0.15
	Final	11:05 AM		13.15			
7	Initial	11:06 AM	30.0	13.09	0.06	1.18	0.18
	Final	11:36 AM		13.15			
8	Initial	11:37 AM	30.0	13.09	0.05	1.19	0.15
	Final	12:07 PM		13.14			
9	Initial	12:08 PM	30.0	13.10	0.05	1.18	0.15
	Final	12:38 PM		13.15			
10	Initial	12:39 PM	30.0	13.10	0.05	1.18	0.15
	Final	1:09 PM		13.15			
11	Initial	1:10 PM	30.0	13.09	0.05	1.19	0.15
	Final	1:40 PM		13.14			
12	Initial	1:41 PM	30.0	13.10	0.05	1.18	0.15
	Final	2:11 PM		13.15			

Per County Standards, Infiltration Rate calculated as follows:

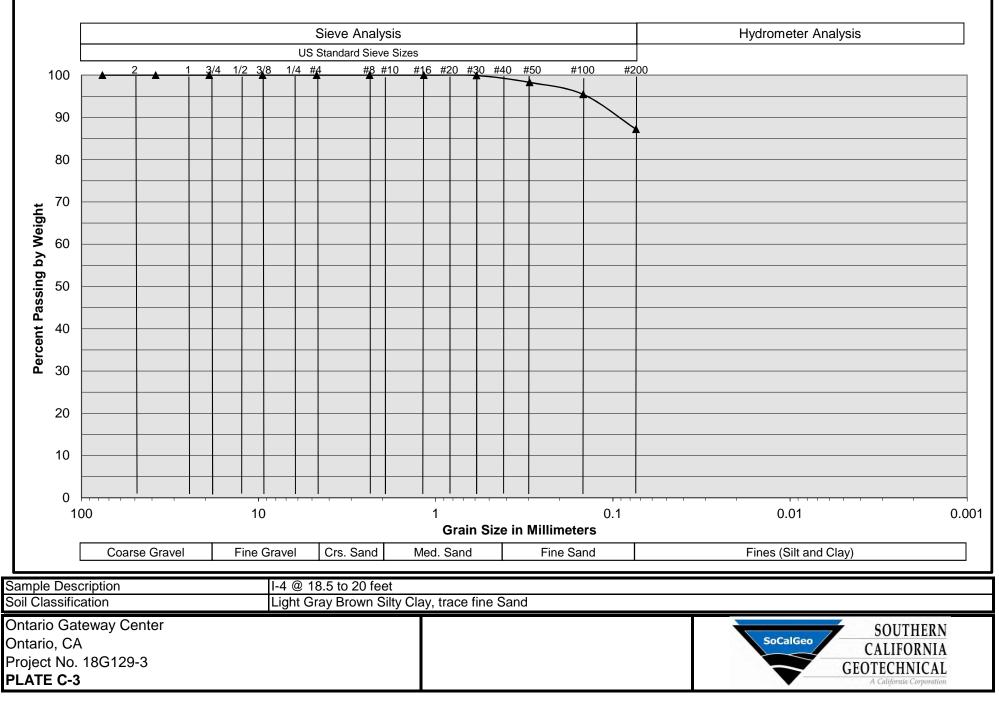
$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

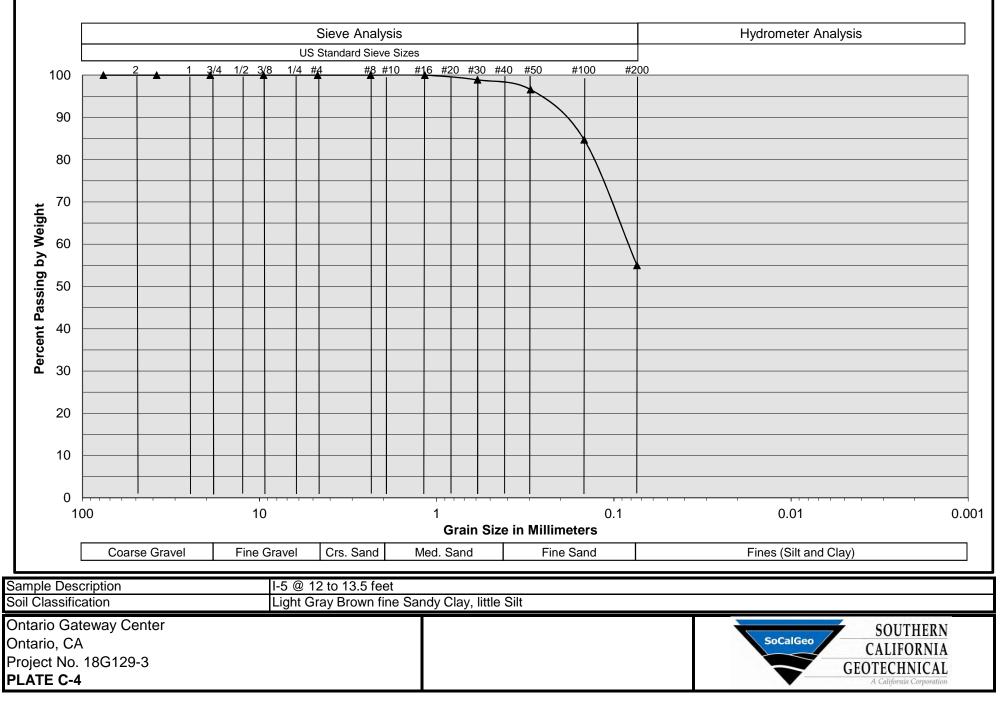

Where: Q = Infiltration Rate (in inches per hour)

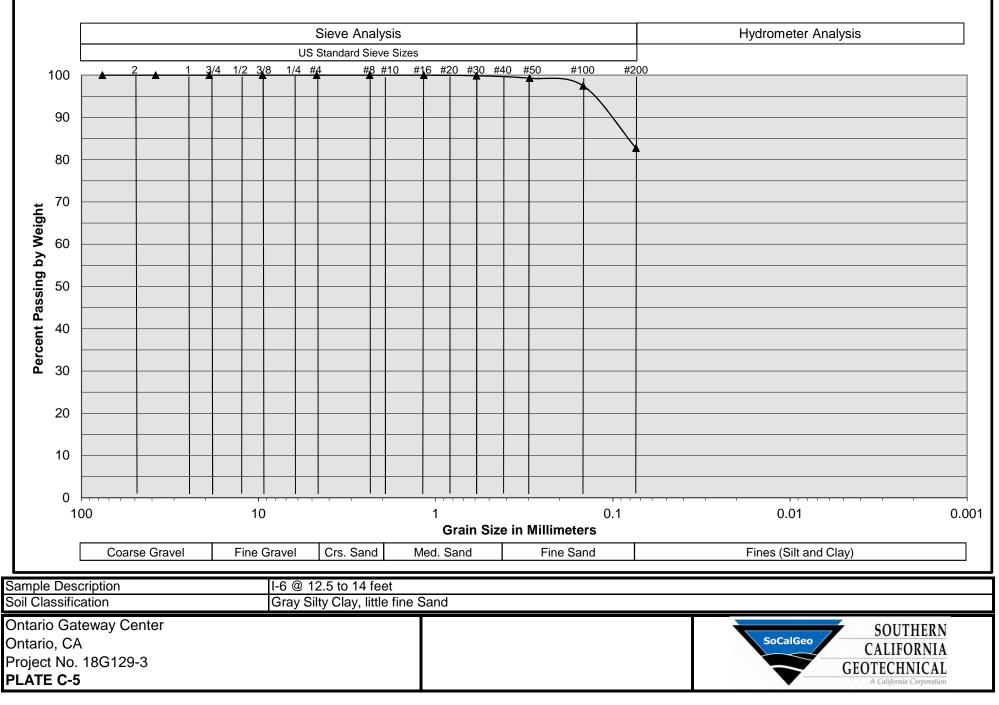
 ΔH = Change in Height (Water Level) over the time interval

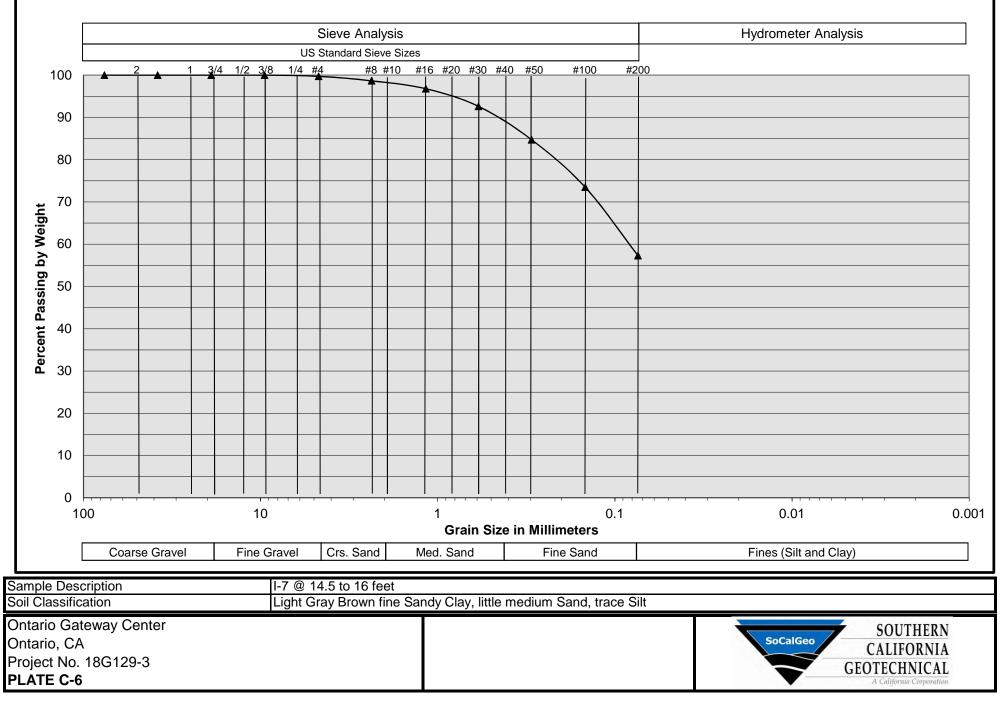

r = Test Hole (Borehole) Radius

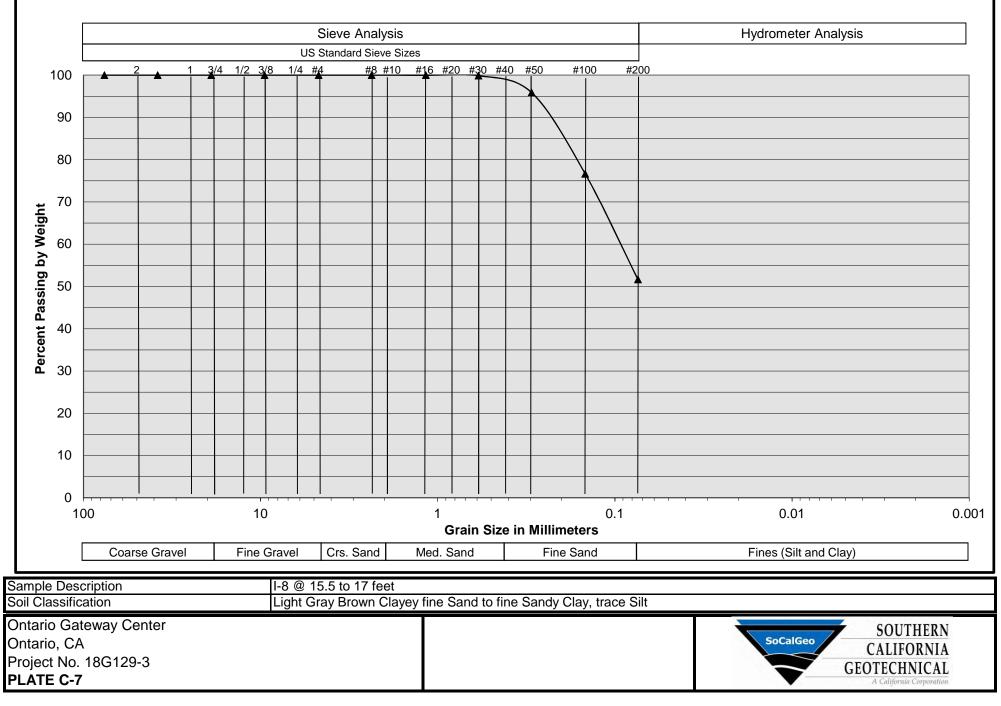
$$\Delta t = Time Interval$$
 H above GS= 0


Grain Size Distribution




Grain Size Distribution




Grain Size Distribution

