

Mr. John R. Burroughs, LEED AP, President

Commerce Construction Co., L.P.
13191 Crossroads Parkway North $6^{\text {th }}$ Floor
City of Industry, CA 91746

Subject: Limited Borrow Site Study
 Borrow Site No. 3 (Export Fill Dirt Site No. 3) Cucamonga Avenue and West County Road City of Chino, CA

Dear Mr. Burroughs:
Presented herein are our preliminary findings and conclusions regarding the suitability of the soils within Borrow Site 3 to be used as engineered fill to balance the grades for the OC Prado site construction located on the southeast corner of Bickmore Avenue and Mountain Avenue, in the City of Chino.

In accordance with the revised Conceptual Grading Plan, the irregular hexagonal-shaped borrow site covers an area of about $44 \pm$ acres. The site is bounded by the California Institution for Women to the north, Prado Reservoir Park to the west, vacant land to the south and Cucamonga Avenue to the east. On the east side, the site borders Cucamonga Avenue over a distance of about 2230 feet, extending approximately 910 feet south of the intersection with West County Road. The width of the site is about 850 feet in its middle and 1510 feet in its southern portion that extends about 490 feet in the southerly direction.

A Vicinity Map with approximate ground contour elevations is presented in Appendix A as Figure A-1. The site is located entirely on the west side of Cucamonga Avenue, and the nearest street intersection is Cucamonga Avenue with West County Road.

Field Exploration and Laboratory Testing

The field exploration program for Borrow Site 3 was performed in two phases. The first phase of the field exploration was performed within the northern portion of the site and consisted of four test pits, TP-3 through TP-6, excavated on February 23, 2018. The second phase consisted of excavating thirteen test pits; TP-7 though TP-18 plus TP-15A on April 17, 2018. A rubber tire mounted backhoe was used to excavate the test pits ranging in depths from about 14 to 17 feet for the first phase and from 6 to 9 feet for the second phase. Test Pit 1 and 2 were excavated using a hand auger on April 24, 2018 due to the recent re-seeding and on-going irrigation. The locations of the test pits are shown on the Field Exploration Map, Figure A-2, presented in Appendix A. Bulk samples were obtained from the test pits and hand augering for laboratory testing.

Laboratory tests, including moisture content, \#200 sieve wash, expansion index, maximum density, pocket penetrometer and plasticity index were performed to aid in the classification of the materials encountered and to evaluate their engineering properties. The results of pertinent laboratory tests are presented on the test pit logs in Appendix B, and/or in Appendix C.

Site Geology

The site is located within the Upper Santa Ana River Valley, which consists of a series of coalescing alluvial fans formed by streams flowing out of the San Gabriel Mountains to the north. The valley lies within the Peninsular Ranges geomorphic province, which is characterized by alluviated basins, elevated erosion surfaces, and northwest-trending mountain ranges bounded by northwest trending faults. The site, which is located within the Chino Basin, is underlain by sediments deposited by the Santa Ana River and its tributaries such as the Chino Creek.

Morton and Miller (2006) show the site to be underlain by very old alluvial-fan deposits (See Figure A-3 in Appendix A). The sediments observed during the subsurface investigation consisted predominantly of clay at shallow depths.

Surface Site Conditions

The site has at least three entrances from Cucamonga Avenue to the east; one of these entrances is near the intersection of West County Road with Cucamonga Avenue. No buildings were present onsite at the time of our field exploration; however, there are power lines supported on pile foundations crossing the site about 100 feet north of West County Road. There are also remnants of concrete slabs on grade, which were observed in various locations. Portions of the site appear to have abandoned underground utilities. Other portions of the site support irrigation lines that are being used to water the recent seeding and other grass areas. More than one-half of the site was devoid of vegetation at the time of our field exploration and the remainder of the site contained mostly sparse to dense grass vegetation.

The southern portion of the site contains several water storage ponds that range in depth mostly from about 3 to 7 feet. At the time of our site exploration in April 2018, only the ponds located east of Test Pit 17 and northwest of Test Pit 18 contained water (approximately 1 to 3 feet). The ponds appear to have been created by excavating and mounding the native soils around the excavations. There was localized grass areas and low shrubs near the ponds at the time of our second phase of the field exploration.

The northern portion of the site slopes gently to the southwest while the southern portion generally slopes gently to the south. The existing elevations range between about 545 feet at the south end to 566 feet at the northeast corner of the site (NAVD88).

Soil Conditions

The subsurface soil profile consists generally of artificial fill underlain by alluvial deposits. The fill depth is variable, ranging from less than one foot to about 6 feet at the test pit locations. For
the most part, the fill materials are derived from onsite shallow soils and consist generally of lean clay with sand, sandy lean clay, and thin layers of clayey sand and silty sand at or near the surface with localized areas of fat clay. Organic material, including manure, was encountered in Test Pit 15A, which was excavated through a pond berm near the southwest corner of the site.

The alluvium soils consist predominantly of stiff to very stiff, medium to high plastic sandy clay, lean clay with sand, fat clay and sandy silt. Some clayey sand and silty sand layers were encountered below a depth of about 12 feet in some of the deeper test pits.

The soils were generally dry near the surface at the time of the Phase 2 field exploration. Except for organic material, for the soils below a depth of about 1 to 2 feet, the moisture contents of the clay soils are highly variable, ranging from about 9 to $41 \frac{1}{2}$ percent with an average on the order of 23 percent. At the time of our field exploration, the silty sand and clayey sand moisture contents ranged from about 3 to $231 / 2$ percent with an average of about $121 / 2$ percent. Based on the maximum density test performed and prior experience with similar soils, many of the clay sample moisture contents are about 8 to 12 percent above optimum for the soils sampled within the upper 8 feet of the ground surface (see Table 1 and Appendix C for maximum density test results).

The fines contents of the clay soils range from about 50 to 93 percent with an average of about 69 percent while the fine contents of the sands range from about 14 to 44 percent with an average of about $261 / 2$ percent. The average relatively low fines contents of the clay soils are attributed to the presence of concretions (hard matter formed by precipitation of mineral cement between particles) observed in many of the clay samples. The pocket penetrometer tests indicate unconfined compression strength on the order of 1 to 4.5 tsf with an average of about 2.8 tsf.

To aid in the soil classification and to correlate the soil plasticity with the soil expansion, one plasticity index test (Atterberg Limits) was performed on a sample of Test Pit 6 at a depth of 8 to 9 feet. As shown in Table 1, the Liquid limit, Plastic Limit and Plasticity Index for the tested sample are 75, 18 and 57 respectively, which indicate a high plasticity soil at that depth for this test pit.

Table 1 - Maximum Density and Plasticity Index

Test Pit Number	TP-6 @ 8 to 9 feet
Maximum Dry Density (pcf)	111.1
Optimum Moisture Content (\%)	16.2
Liquid Limit	75
Plastic Limit	18
Plasticity Index	57

The site soil expansion potential ranges from low to very high. Table 2 presents the data for 26 expansion index tests at depths ranging from 1 to 11 feet. These tests indicate expansion index variations from 32 to 208 with an average of about 94 . For the 13 tests on samples at depths
between 1 and $41 / 2$ feet, the expansion index ranges from about 32 to 100 with an average of approximately 65.

Table 2 - Expansion Index Test Results

Test Pit No.	Depth (feet)	Expansion Index	Field Moisture $\mathbf{(\%)}$	Fines Percent
*TP-1	$2-3$	64	17.7	76
*TP-1	$5-6$	175	22.4	50
*TP-2	$3-4$	100	21.8	71
*TP-3	$1.5-2.5$	53	17.9	66
*TP-3	$4-4.5$	99	23.7	63
*TP-3	$10-11$	96	25.5	51
*TP-4	$3-3.5$	80	33.8	54
*TP-4	$4-4.5$	56	29.1	60
*TP-5	$6-7$	176	28.4	74
*TP-5	$8-10$	190	31.3	50
*TP-6	$1-2$	32	17.9	56
*TP-6	$7-8$	172	30.6	73
*TP-6	$8-9$	208	30.4	57
TP-7	$4-4.5$	92	18.3	79
TP-7	$5.7-6.5$	101	22.8	68
TP-8	$6-6.5$	60	15.7	83
TP-9	$4-4.5$	62	18.4	65
TP-10	$6-7$	37	25.8	93
TP-11	$3.7-4.2$	32	22.0	50
TP-11	$5.5-6$	50	16.1	50
TP-13	$4.75-5$	100	18.7	53
TP-14	$6.7-7$	40	18.0	82
TP-15	$4.2-4.7$	79	25.0	82
TP-15	$5.5-6$	195	23.4	84
TP-17	$4-4.5$	40	22.8	90
TP-18	$4.5-5$	55		79

*Northern portion of proposed borrow site
We noted that the light-colored clay samples containing concretions tend to have higher expansion index. The expansion potential can change rapidly with depth as shown by two tests on TP-15 for depths of about $41 / 2$ and $51 / 2$ feet, where the expansion indices are 79 and 195, respectively.

There is a rough correlation between in situ natural moisture content and expansion index. For the same amounts of fines, site clay below the depth of seasonal moisture variation, soils with higher moisture and higher plasticity index tend to have higher expansion potential.

Corrosivity

The corrosivity tests performed indicates that the site soils are generally severely corrosive to metal. However, the tests performed did not indicate high corrosivity to concrete. The corrosivity test results are summarized in the following Table 3.

Table 3-Corrosion Test Results

Boring	Depth (ft)	Minimum Resistivity (ohm-cm)	$\mathbf{p H}$	Soluble Sulfate Content (ppm)	Soluble Chloride Content (ppm)
TP-5	$5-6$	566	7.7	235	490

Groundwater

Groundwater seepage was encountered in Test Pit 18 which was excavated within the slope of a pond containing water. The wet soil level in the test pit was at about the pond water level. Groundwater seepage was encountered at a depth of about $131 / 2$ feet in Test Pit 3. No seepage was encountered in the other test pits excavated to a maximum depth of 17 feet. Borings should be drilled if the groundwater level needs to be determined.

Conclusions and Recommendations

Based on the data collected from the field to date, it appears feasible to import material from Borrow Site 3 to use at the OC Prado site. However, it appears that on average only the upper 4 to $41 / 2$ feet of soils (once well blended and once clearing, grubbing and stripping of the topsoil is complete) could be suitable for foundation. It should be noted that for the southernmost portion of the site, the construction of the ponds has resulted in some of the expansive clay soils to be mixed with the less expansive soils and with some organics. Therefore, some material at shallow depth in the southernmost portion of the site may not be suitable for export to be used as engineered fill. Therefore, observation and testing during export of the material to the OC Prado site is advisable. All organic material, construction debris, and other unsuitable materials should be removed prior to export to the OC Prado site.

During the second phase of field exploration, we noted that the upper one to two feet of soils had low moisture contents due to drying weather conditions. Dry clay soils are undesirable from a geotechnical performance standpoint and require time to absorb moisture. Therefore, the surface conditions should be checked prior to export, and where the moisture contents are not above optimum, we recommend that the soils be pre-moisture conditioned in the borrow site prior to export. For the areas under active irrigation, the irrigation system should be stopped at least 3 to 4 weeks prior to soil export.

We anticipate that an excavation plan will be prepared by the project civil engineer. Appropriate setback should be set from existing foundations, slopes and property lines.

LIMITATIONS

Our work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Koury's profession practicing in the same locality, under similar conditions and at the date the services are provided.

CLOSURE

The findings and recommendations presented in this report were based on the results of our field and laboratory investigations, combined with professional engineering experience and judgment. The report was prepared in accordance with generally accepted engineering principles and practice. We make no other warranty, either expressed or implied. Subsurface variations between and beyond the test pits should be anticipated. Koury should be notified if subsurface conditions are encountered, which differ from those described in this report. Samples obtained during this investigation will be retained in our laboratory for a period of 45 days from the date of this report and will be disposed after this period.

Should you have any questions concerning this submittal, or the recommendations contained herewith, please do not hesitate to call our office.

Respectfully submitted,
KOURY ENGINEERING \& TESTING, INC

Distribution:

1. Addressee (pdf copy via e-mail)
2.File (B)

REFERENCES

1. California Division of Mines and Geological Survey, 1998, Seismic Hazard Zone Report 045 for the Prado Dam 7.5 Minute Quadrangle, California.
2. California Division of Mines and Geological Survey, 2003, Earthquake Fault Zones, Prado Dam Quadrangle, May 1, 2003.
3. City of Chino General Plan, Safety Element, 2010, Final Report.
4. US Army Corps of Engineers, Soil Investigations, Engineering Manual EM 1110-1-1804, dated 8/26/86.
5. US Army Corps of Engineers, Laboratory Soils Testing, Engineering Manual EM 1110-21906, dated 8/26/86.

APPENDICES

Appendix A: Maps and Plans

Vicinity Map - Figure A-1
Field Exploration Map - Figure A-2
Geology Map - Figure A-3
Appendix B: Field Exploratory Test Pits
Test Pits 1 through 18

Appendix C: Laboratory Test Results

APPENDIX A

Maps and Plans

APPENDIX B

Field Exploratory Test Pits

KEY TO LOGS

SOILS CLASSIFICATION					
MAJOR DIVISIONS			GRAPHIC LOG	USCS SYMBOL	TYPICAL NAMES
COARSE GRAINED SOILS	GRAVELS	CLEAN GRAVELS LESS THAN 5\% FINES		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
				GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LItTLE OR NO FINES
	$\begin{aligned} & \text { MORE THAN 50\% } \\ & \text { OF COARSE } \end{aligned}$	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
	LARGER THAN NO. 4 SIEVE	MORE THAN 12% FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
MORE THAN 50\% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SANDS	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
		LESS THAN 5\% FINES		SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	50\% OR MORE OF COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND-SILT MIXTURES
		MORE THAN 12\% FINES		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE GRAINED SOILS				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
	LIOUID LIMIT IS	LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
50\% OR MORE OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS			MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR GRAVELLY ELASTIC SILTS
	LIQUID LIMIT IS 50 OR MORE			CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			88	OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS				PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

GRAIN SIZES							
SILT AND CLAY	SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	COARSE		
	-	号		\#	遃	-	\#

KEY TO LOGS (continued)

| SPT/CD BLOW COUNTS VS. CONSISTENCYIDENSITY | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FINE-GRAINED SOILS (SILTS, CLAYS, etc.) | | GRANULAR SOILS (SANDS, GRAVELS, etc.) | | | |
| CONSISTENCY | *BLOWS/FOOT | | RELATIVE DENSITY | *BLOWS/FOOT | |
| | SPT | CD | | CD | |
| SOFT | $0-4$ | $0-4$ | VERY LOOSE | $0-4$ | $0-8$ |
| FIRM | $5-8$ | $5-9$ | LOOSE | $5-10$ | $9-18$ |
| STIFF | $9-15$ | $10-18$ | MEDIUM DENSE | $11-30$ | $19-54$ |
| VERY STIFF | $16-30$ | $19-39$ | DENSE | $31-50$ | $55-90$ |
| HARD | over 30 | over 39 | VERY DENSE | over 50 | over 90 |

* CONVERSION BETWEEN CALIFORNIA DRIVE SAMPLERS (CD) AND STANDARD PENETRATION TEST (SPT) BLOW COUNT HAS BEEN CALCULATED USING "FOUNDATION ENGINEERING HAND BOOK" BY H.Y. FANG. (VALUES ARE FOR 140 Lbs HAMMER WEIGHT ONLY)

DESCRIPTIVE ADJECTIVE VS. PERCENTAGE	
DESCRIPTIVE ADJECTIVE	PERCENTAGE REQUIREMENT
TRACE	$1-10 \%$
LITTLE	$10-20 \%$
SOME	$20-35 \%$
AND	$35-50 \%$

*THE FOLLOWING "DESCRIPTIVE TERMINOLOGY/ RANGES OF MOISTURE CONTENTS" HAVE BEEN USED FOR MOISTURE CLASSIFICATION IN THE LOGS.

APPROXIMATE MOISTURE CONTENT DEFINITION	
DEFINITION	DESCRIPTION
DRY	Dry to the touch; no observable moisture
SLIGHTLY MOIST	Some moisture but still a dry appearance
MOIST	Damp, but no visible water
VERY MOIST	Enough moisture to wet the hands
WET	Almost saturated; visible free water

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

Test Pit Log

APPENDIX C

Laboratory Test Results

DENSITY AND MOISTURE CONTENT DATA - EI TEST

Location/ Elevation	TP7 @ 4' - 4.5'		TP7 @ 5.75' - 6.5'		TP9 @ 4' - 4.5'				
USCS Symbol	CH/CL		CH / CL		CH / CL				
Normal Load (psf)	144		144		144				
SAMPLE CONDITION	Initial	Final	Initial	Final	Initial	Final			
Wt Specimen \& Ring (gr)	761.380		703.070		742.100				
Wt. of ring (gr)	367.47		364.16		366.64				
Wt. Specimen (gr)	393.910		338.910		375.460				
Specimen diameter (in)	4.010		4.010		4.010				
Specimen radius (cm)	5.09		5.09		5.09				
Area of Specimen (cm^{2})	81.479		81.479		81.479				
Init. Spec. height (in)	1.0020	N/A	0.9993	N/A	1.0020	N/A			
Height change (final)(in)	N/A	0.0926	N/A	0.1006	N/A	0.0623			
Adjusted Spec.height(in)	1.00	0.9094	1.00	0.8987	1.00	0.9397			
" ${ }^{\text {a }}$ (cm)	2.545	2.310	2.538	2.283	2.545	2.387			
Specimen Volume (cm^{3})	207.371		206.812		207.371				
Moist Density (pcf)	118.59		102.31		113.03				
MOISTURE CONTENT									
Wt. moist soil+tare(gr)	126.54	126.54	130.33	130.33	125.87	125.87			
Wt. dry soil+tare(gr)	115.59	115.59	113.23	113.23	113.23	113.23			
Wt. of tare(gr)	19.64	19.64	19.71	19.71	19.74	19.74			
Wt. dry soil (gr)	95.95	95.95	93.52	93.52	93.49	93.49			
Wt. of water (gr)	10.95	10.95	17.10	17.10	12.64	12.64			
M/C (\%)	11.41	11.41	18.28	18.28	13.52	13.52			
DRY DENSITY (pcf)	106.4		86.5		99.6				
\% Saturation* (48\%-52\%)	52.8		52.0		52.7				
*Assumes Gs =	2.7		2.7		2.7				
EXPANSION INDEX =	92		101		62				
Potential Expansion (per ASTM 4829-08)	High		High		Medium				
KOURY 			Project Name: \quad Borrow Site \#2				Project No.: 17-1021 Date: 4/25/18	Run by: MFP QA:	Lab: 18-0023 Series

DENSITY AND MOISTURE CONTENT DATA - EI TEST

Location/ Elevation	TP8 @ 6' - 6.5'		TP10 @ 6' - 7'		TP14 @ 6.5' - 7'				
USCS Symbol	CL		CL		CL				
Normal Load (psf)	144		144		144				
SAMPLE CONDITION	Initial	Final	Initial	Final	Initial	Final			
Wt Specimen \& Ring (gr)	752.450		718.350		762.070				
Wt. of ring (gr)	367.45		364.18		366.65				
Wt. Specimen (gr)	385.000		354.170		395.420				
Specimen diameter (in)	4.010		4.010		4.010				
Specimen radius (cm)	5.09		5.09		5.09				
Area of Specimen (cm^{2})	81.479		81.479		81.479				
Init. Spec. height (in)	1.0020	N/A	0.9993	N/A	1.0020	N/A			
Height change (final)(in)	N/A	0.0606	N/A	0.0369	N/A	0.0404			
Adjusted Spec.height(in)	1.00	0.9414	1.00	0.9624	1.00	0.9616			
" ${ }^{\text {a }}$ (cm)	2.545	2.391	2.538	2.444	2.545	2.442			
Specimen Volume (cm^{3})	207.371		206.812		207.371				
Moist Density (pcf)	115.91		106.91		119.04				
MOISTURE CONTENT									
Wt. moist soil+tare(gr)	132.38	132.38	136.31	136.31	148.38	148.38			
Wt. dry soil+tare(gr)	119.95	119.95	122.87	122.87	135.41	135.41			
Wt. of tare(gr)	19.71	19.71	31.57	31.57	17.30	17.30			
Wt. dry soil (gr)	100.24	100.24	91.30	91.30	118.11	118.11			
Wt. of water (gr)	12.43	12.43	13.44	13.44	12.97	12.97			
M/C (\%)	12.40	12.40	14.72	14.72	10.98	10.98			
DRY DENSITY (pcf)	103.1		93.2		107.3				
\% Saturation* (48\%-52\%)	52.8		49.1		107.3				
*Assumes Gs =	2.7		2.7		2.7				
EXPANSION INDEX =	60		37		40				
Potential Expansion (per ASTM 4829-08)	Medium		Low		Low				
KOURY 			Project Name: $\quad 10$				Project No.: 17-1021 Date: 4/27/18	Run by: MFP QA:	Lab: 18-0023 Series

DENSITY AND MOISTURE CONTENT DATA - EI TEST

Location/ Elevation	TP11 @ 3.7' - 4.3'		TP11 @ 5.5' - 6.0'				
USCS Symbol	CL		CL / CH				
Normal Load (psf)	144		144				
SAMPLE CONDITION	Initial	Final	Initial	Final			
Wt Specimen \& Ring (gr)	716.340		743.890				
Wt. of ring (gr)	367.47		364.17				
Wt. Specimen (gr)	348.870		379.720				
Specimen diameter (in)	4.010		4.010				
Specimen radius (cm)	5.09		5.09				
Area of Specimen (cm^{2})	81.479		81.479				
Init. Spec. height (in)	1.0020	N/A	0.9993	N/A			
Height change (final)(in)	N/A	0.0321	N/A	0.0502			
Adjusted Spec.height(in)	1.00	0.9699	1.00	0.9491			
" " (cm)	2.545	2.464	2.538	2.411			
Specimen Volume (cm^{3})	207.371		206.812				
Moist Density (pcf)	105.03		114.63				
MOISTURE CONTENT							
Wt. moist soil+tare(gr)	142.42	142.42	133.92	133.92			
Wt. dry soil+tare(gr)	125.20	125.20	120.63	120.63			
Wt. of tare(gr)	19.62	19.62	17.33	17.33			
Wt. dry soil (gr)	105.58	105.58	103.30	103.30			
Wt. of water (gr)	17.22	17.22	13.29	13.29			
M/C (\%)	16.31	16.31	12.87	12.87			
DRY DENSITY (pcf)	90.3		101.6				
\% Saturation* (48\%-52\%)	50.8		52.7				
*Assumes Gs =	2.7		2.7				
EXPANSION INDEX =	32		50				
Potential Expansion (per ASTM 4829-08)	Low		Medium				
KOURY 			Project Name	Borro	Project No.: 17-1021 Date: 4/23/18	Run by: MFP QA:	$\begin{array}{\|l} \text { Lab: } \\ 18-0023 \\ \text { Series } \end{array}$

DENSITY AND MOISTURE CONTENT DATA - EI TEST

			EXPANSION IND DENSITY AND MOISTURE CO	El TEST		
Location/ Elevation	TP17 @	' - 4.5'				
USCS Symbol						
Normal Load (psf)						
SAMPLE CONDITION	Initial	Final				
Wt Specimen \& Ring (gr)	714.050					
Wt. of ring (gr)	366.68					
Wt. Specimen (gr)	347.370					
Specimen diameter (in)	4.010					
Specimen radius (cm)	5.09					
Area of Specimen (cm^{2})	81.479					
Init. Spec. height (in)	1.0020	N/A				
Height change (final)(in)	N/A	0.0399				
Adjusted Spec.height(in)	1.00	0.9621				
$" \quad " \quad(\mathrm{~cm})$	2.545	2.444				
Specimen Volume (cm^{3})	207.371					
Moist Density (pcf)	104.58					
MOISTURE CONTENT						
Wt. moist soil+tare(gr)	155.07	155.07				
Wt. dry soil+tare(gr)	135.10	135.10				
Wt. of tare(gr)	19.73	19.73				
Wt. dry soil (gr)	115.37	115.37				
Wt. of water (gr)	19.97	19.97				
M/C (\%)	17.31	17.31				
DRY DENSITY (pcf)	89.1					
\% Saturation* (48\%-52\%)	52.5					
*Assumes Gs = EXPANSION INDEX =	$\begin{aligned} & \hline 2.7 \\ & 40 \end{aligned}$					
Potential Expansion (per ASTM 4829-08)	Low					
KOURY 			Project Name: Borrow Site \#2	Project No.: 17-1021 Date: 4/26/18	Run by: MFP QA:	$\begin{array}{\|c\|} \hline \text { Lab: } \\ 18-0023 \\ \text { Series } \\ \hline \end{array}$

These results are for the exclusive use of the client for whom they were obtained. They apply only to the samples tested and are not indicitive of apparently identical samples.

MATERIAL DESCRIPTION	LL	PL	PI	\%<\#40	\%<\#200	USCS
Light Pale Olive to Light Yellowish Brown Clay	75	18	57			CH

Project No. 17-1024 Client:
Project: Borrow Site \#2

Location: TP-6 @ 8' - 9'
Sample Number: 4838 Series
Koury Engineering \& Testing, Inc.
Chino, CA
Remarks:

- Lab \#4838 Series.

MAXIMUM DENSITY TEST REPORT

Curve No.: 4838 Series
Project No.: 17-1024
Date: 3/10/18
Project: Borrow Site \#2
Client:
Location: TP-6 @ 8' - 9'
Sample Number: 4838 Series
Remarks: Less than 5\% Material retained on the \#4 Sieve.

MATERIAL DESCRIPTION

Description: Light Pale Olive to Light Yellowish Brown Clay

Classifications -
Nat. Moist. =
Liquid Limit =

USCS: CH

TEST RESULTS	
Maximum dry density $=111.1 \mathrm{pcf}$	
Optimum moisture $=16.2 \%$	

Figure
\qquad

e are a key member of the construction team while safeguarding the public. We improve operational logistics and provide superior quality control through the continuing development of our engineering staff and technical expertise, utilization of classroom training and field supervisors, thus defining the industry standard.

KOURY ENGINEERING \& TESTING, INC.
CORPORATE OFFICE
14280 Euclid Avenue
Chino, California 91710
P: 909•606•61II
F: $909 \cdot 606 \cdot 6555$

BRANCH OFFICE
17800 South Main Street, Suite 302
Gardena, California 90248
P: $310-85 \mid-8685$
F: $310 \cdot 85 \mid \cdot 8692$

