

PHASE II ENVIRONMENTAL SITE ASSESSMENT

3rd and Fairfax – 6300 to 6332 West 3rd Street Los Angeles, California

Prepared For:

Wactor & Wick, LLP 3640 Grand Avenue, Suite 200 Oakland, California 94610

Prepared By:

Northgate Environmental Management, Inc. 24411 Ridge Route Drive, Suite 130 Laguna Hills, California 92653

March 1, 2018

Project No. 2047.15.02S

PHASE II ENVIRONMENTAL SITE ASSESSMENT

3rd and Fairfax – 6300 to 6332 West 3rd Street Los Angeles, California

March 1, 2018

Prepared For:

Wactor & Wick, LLP 3640 Grand Avenue, Suite 200 Oakland, California 94610

Prepared By:

Northgate Environmental Management, Inc. 24411 Ridge Route Drive, Suite 130 Laguna Hills, California 92653

Derrick S. Willis Principal Nicky G. Robinson, PE Project Engineer Dana R. Brown, PG Senior Geologist

TABLE OF CONTENTS

CER	TIFIC	ATION	iii
1.0	INTI	RODUCTION	
	1.1	Objectives	1
	1.2	Scope of Work	
2.0	BAC	CKGROUND	3
	2.1	Site Description	3
	2.2	Site History	3
	2.3	Regional and Local Geology and Hydrology	3
3.0	INV	ESTIGATION METHODS	5
	3.1	Pre-Field Activities	5
		3.1.1 Health and Safety Plan	5
		3.1.2 Underground Utility Clearance	5
	3.2	Soil Sampling and Analysis	5
	3.3	Groundwater Sampling	7
	3.4	Soil Vapor Survey	8
	3.5	Data Evaluation Criteria	9
4.0	INV	ESTIGATION RESULTS	
	4.1	Subsurface Conditions	10
	4.2	Analytical Results	10
		4.2.1 Soil Sampling Analytical Results	
		4.2.2 Groundwater Sampling Analytical Results	
		4.2.3 Soil Vapor Analytical Results	
5.0	THR	REE-DIMENSIONAL PLUME MODEL	
	5.1	Model Input Information & Assumptions	
	5.2	Plume Depictions and Volumetric Results	
6.0	CON	NCLUSIONS AND RECOMMENDATIONS	
	6.1	Soil	
		6.1.1 SCAQMD Rule 1166	
	6.2	Groundwater	18
	6.3	Soil Vapor	18
7.0	LIM	IITATIONS	19
8.0	REF	FERENCES	20

TABLES

- 1 Summary of Soil Analytical Results Total Petroleum Hydrocarbons
- 2 Summary of Soil Analytical Results Volatile Organic Compounds, Semi-Volatile Organic Compounds, Polychlorinated Biphenyls, Organochlorine Pesticides, and Asbestos

- 3 Summary of Soil Analytical Results Title 22 Metals
- 4 Summary of Groundwater Analytical Results Total Petroleum Hydrocarbons, Volatile Organic Compounds, and Title 22 Metals
- 5 Summary of Soil Vapor Analytical Results Total Petroleum Hydrocarbons and Volatile Organic Compounds

FIGURES

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Boring Location Map
- 4 Estimated Lateral Extent of Perched Groundwater
- 5a Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg) in Upper 1 Foot of Subsurface
- 5b Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg) 5 Feet below Ground Surface
- 5c Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg) Ten Feet below Ground Surface
- 5d Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg) Fifteen Feet below Ground Surface -
- Total Petroleum Hydrocarbon Motor Oil (Greater than 1,000 mg/kg) Within Upper 1 Foot of Subsurface
- 7 Total Petroleum Hydrocarbon Diesel in Groundwater
- 8a Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg), High View 3D
- 8b Total Petroleum Hydrocarbon Diesel (Greater Than 100 mg/kg), Low View 3D
- 9a Total Petroleum Hydrocarbon Motor Oil (Greater than 1,000 mg/kg), High View 3D
- 9b Total Petroleum Hydrocarbon Motor Oil (Greater than 1,000 mg/kg), Low View 3D
- 10 Total Petroleum Hydrocarbon Diesel (All Detections) 3D
- 11 Total Petroleum Hydrocarbon Motor Oil (All Detections) 3D

APPENDICES

- A Field Procedures
- B Boring Logs
- C Soil Vapor Probe Construction Details
- D Laboratory Analytical Reports

CERTIFICATION

All geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a Northgate California Professional Geologist.

Dana R. Brown, PG

March 1, 2018

Date

Senior Geologist

California Professional Geologist #7188

This document was prepared by:

Nicky G. Robinson, PE Date

Project Engineer

California Professional Engineer #83985

A Professional Geologist's or Engineer's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

This report presents the results of a Phase II Environmental Site Assessment (ESA) performed by Northgate Environmental Management, Inc. (Northgate) for Wactor & Wick LLP (Wactor & Wick) on behalf of its client Holland Partner Group, at the 3rd and Fairfax property located at 6300 to 6332 West 3rd Street in Los Angeles, California (the Site). The Site consists of approximately 3.06 acres of land located southwest of the intersection of West 3rd Street and South Ogden Drive. The southern portion of the Site is developed with a commercial structure occupied by various retail stores and restaurants, and the northern portion of the Site consists of a paved parking lot. The Site comprises the eastern portions of Assessor's Parcel Numbers (APNs) 5509-018-003 and -009 in Los Angeles County. A Site Vicinity Map is shown on Figure 1 and a Site Plan is shown on Figure 2.

1.1 Objectives

The primary objective of the Phase II ESA was to assess the potential presence of soil, groundwater, and soil vapor quality impacts related to issues of environmental concern identified in a Phase I ESA prepared for the Site by Northgate dated January 30, 2018 (Northgate, 2018), and to present the data to allow the decision makers to understand the extent of contamination for excavation and disposal cost estimating.

1.2 Scope of Work

The scope of the Phase II work included the following:

- Site walk to mark the proposed boring locations, and notification to Underground Service Alert (USA) for underground utility clearance;
- Preparing a Site-specific Health and Safety Plan (HASP);
- Advancing 15 borings to depths of 25 to 30 feet below ground surface (bgs) for collecting soil samples at depths of 1', 5', 10', 15', 20', 25' and 30' bgs to provide adequate data density for accurately modeling the extent of soil contamination using the CTech EVS model and to determine presence and depth of groundwater;
- Selecting and analyzing three soil samples per boring (total of 45 soil samples) for total petroleum hydrocarbons as gasoline/carbon-chain (TPH-g/cc), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs), a total of 41 soil samples for Title 22 metals, a total of 15 soil samples for organochlorine pesticides (OCPs), and 15 samples for asbestos;

1

• Collecting and analyzing six groundwater samples for TPH and VOCs;

- Installing five temporary soil vapor sample probes at depths between 8 and 25 feet bgs for collecting and analyzing soil vapor samples for TPH and VOCs;
- Boring locations were selected based on the results of the Phase I ESA which located relevant former oil field improvements including an abandoned oil well, oil tanks and oilfield sumps, as well as adding additional borings to obtain data in other accessible portions of the Site. Note that no samples could be obtained beneath existing buildings, and therefore no data is available in these areas;
- Creating a three-dimensional model using the C Tech Development Corporation's Earth Volumetric Studio (EVS) V17.6 visualization package to estimate the TPH-d and TPHmo concentrations at cell center locations within a convex hull grid; and
- Preparing this report.

2.0 BACKGROUND

2.1 Site Description

The Site consists of approximately 3.06-acres of land located at 6300 to 6332 West 3rd Street in the City of Los Angeles, California. The Site consists of two parcels identified as Assessor's Parcel Numbers (APN) 5509-018-003 and -009 in Los Angeles County. The Site is currently developed with a commercial structure on the southern portion of the Site that is occupied by various retail stores and restaurants, and a parking lot in the northern portion of the Site. A Site Vicinity Map is shown on Figure 1 and a Site Plan is shown on Figure 2.

2.2 Site History

Northgate previously conducted a Phase I ESA at the Site (Northgate, 2018) that indicates that the Site (primarily the northern portion of the Site) was originally developed as part of the Salt Lake Oil Fields from the early 1900's through the early 1930s. The Salt Lake Oil Field was a regional oil production area that operated through the early 1930s, prior to regional development for residential and commercial land use. One oil well was installed to an approximate depth of 2,909 feet bgs on the northeastern corner of the Site in 1906 and was abandoned in 1930. Three "sumps" (bermed ponds where oil field liquids are collected) were possibly present in the central portion of the Site during that time. The Site remained vacant land until the central portion of the Site was developed in 1948 with a commercial structure that extended onto the adjacent property to the west. The remainder of the Site was utilized for parking. In 1962, the Site was redeveloped into the current configuration with a multi-tenant commercial structure on the southern portion of the Site and parking on the northern portion. The Site is located within the Los Angeles designated Methane Zone.

2.3 Regional and Local Geology and Hydrology

The Site is located in the northern portion of the Los Angeles Basin. The basin is bound by the Santa Monica Mountains to the northwest and by the Santa Ana Mountains and San Joaquin Hills to the east and southeast. Sediments of the Lakewood and San Pedro formations of Pleistocene age extend to a maximum depth of 650 feet bgs in the area. A geotechnical investigation performed at the Site in 2017 indicated that subsurface soil at the Site consisted primarily of clays and sandy clays to depths of approximately 18 feet bgs underlain by interbedded layers of silty sand and sandy clay (KAI, 2017).

3

The Site is located within the southwestern portion Hollywood Groundwater Basin. The Hollywood Piedmont Slope and part of the La Brea Plain overlay the Hollywood Basin. A shallow perched zone of groundwater has been reported in the Site vicinity. The Exposition Aquifer, the first major aquifer beneath the Site, is present at about 120 feet bgs. Additional deeper aquifers beneath the Site include the Gardena/Gage, Lynwood, Silverado, and Sunnyside Aquifers (BEC, 2015).

Groundwater information collected in the Site vicinity by others indicates that groundwater has historically been encountered at depths between 20 and 30 feet bgs. Groundwater monitoring data from nearby sites indicates the groundwater flow direction has variably been directed towards the northwest (TRG, 2013) and the southwest (BEC, 2015). A geotechnical investigation performed at the Site in 2017 encountered groundwater at depths of approximately 18 feet bgs (KAI, 2017). Based on general topography and the regional groundwater flow direction, it is Northgate's opinion that groundwater flow at the Site is likely directed generally towards the southwest. However, dewatering or other pumping activities in the area can influence groundwater flow direction at properties that report groundwater flow directed towards the northwest.

4

3.0 INVESTIGATION METHODS

Northgate conducted soil, groundwater, and soil vapor sampling at the Site between January 29 and 31, 2018. Sampling locations are shown on Figure 4. Field investigation procedures are summarized in Appendix A.

3.1 Pre-Field Activities

Before sampling activities began, Northgate met with Mr. Dan Austin, the property manager for Town and Country Shopping Center and conducted a walk-through of the Site to mark proposed sampling locations and secure access. Other pre-field activities included the tasks outlined below.

3.1.1 Health and Safety Plan

Northgate prepared a Site-specific HASP for the Phase II ESA. The HASP was prepared in accordance with applicable federal and state regulations. The HASP addressed the potential for exposure to hazardous constituents, and delineated the general safety procedures that are required for the safe operation of mechanical equipment to be used while conducting the field operations at the Site.

3.1.2 Underground Utility Clearance

USA was notified, as required by law, 48-hours prior to any intrusive activities began in order to locate utilities in the vicinity of the borings. Northgate also contracted with Goldak, Incorporated, an independent geophysical utility locating company, to identify underground utilities and other subsurface obstructions so that the sampling locations were "clear" of any subgrade features.

3.2 Soil Sampling and Analysis

Fifteen borings (B-1 through B-15) were advanced across the Site as shown on Figure 3, and as described below. In general the borings were advanced to a depth of 30 feet bgs with samples collected at 1, 5, 10, 15, 20, 25, and 30 feet bgs for logging, screening and selection of samples for analysis. The samples collected at 1, 10, and 20 feet bgs were analyzed for TPH, VOCs, SVOCs, Title 22 metals, and PCBs. The samples collected at 1 foot bgs were also analyzed for OCPs and asbestos.

• Boring B-1 was advanced in the northwestern corner of the Site in the location of a historic oil field sump.

- Boring B-2 was advanced in the northwestern corner of the Site in the location of a historic oil field aboveground storage tank (AST).
- Boring B-3 was advanced in the northern portion of the Site in the location of a historic oil field sump.
- Boring B-4 was advanced in the northeastern portion of the Site in the location of a historic oil field tank and in the vicinity of the abandoned historic oil well. In addition to testing the 1, 10 and 20' bgs samples, the sample collected at 15 feet bgs was analyzed for TPH and VOCs based on field indicators described in the boring logs.
- Boring B-5 was advanced in the central portion of the Site north of a historic oil field sump. This boring had to be relocated north of the historic sump based on building and utility locations.
- Boring B-6 was advanced in the southern portion of the Site south of the location of a historic oil field process tanks.
- Borings B-7 through B-15 were advanced in the parking lot area next to the buildings in order to obtain representative soil quality data. Borings B-7, B-8, and B-11 through B-15 were located in the northern parking lots areas and borings B-9 and B-10 were located in the southern parking lot and alley portion of the Site. Samples from boring B-15 were not analyzed for Title 22 metals. In addition to testing the 1, 10 and 20' bgs samples, the sample collected at 15 feet bgs in Borings B-8 and B-13 were analyzed for TPH and VOCs based on field indicators described in the boring logs. No sample was collected at 20 feet in B-13 as perched groundwater was encountered at 19.5 feet bgs.

All borings were advanced by BC2 Environmental of Orange, California, using a track-mounted Geoprobe rig. During sampling, continuous cores of subsurface materials were collected in clear acetate liners. Upon removing the sampler from the borehole, the acetate liner containing the soil core was opened at various intervals, and soils were visually inspected and screened with a photoionization detector (PID) for the possible presence of contamination. Borings were logged in the field in accordance with the Unified Soil Classification System (USCS). Copies of the boring logs are attached as Appendix B.

Soil samples were collected from the borings at approximate 5-foot intervals. Sample intervals selected for non-volatile chemical analysis were cut from the liners, sealed with Teflon tape and plastic caps, labeled, and stored on ice in a cooler for transport to the testing laboratory under chain-of-custody control. Samples collected for TPH-g and VOC analysis were collected using LockⁿLoadTM sampler and preserved in ethanol and sodium bisulfate in volatile organic analysis (VOA) vials in compliance with Environmental Protection Agency (EPA) Method 5035.

After the sampling was completed, the borings were backfilled with hydrated bentonite and a concrete plug was placed at the surface to match existing conditions. Soil sampling methodology is further described in Appendix A.

Soil samples were transported to SunStar Laboratories, Inc. (SunStar), a California certified laboratory in Lake Forest, California under proper chain-of-control custody, for analysis. Soil samples were analyzed for TPH-g/cc using EPA Method 8015M, VOCs using EPA Method 8260, Title 22 metals using EPA Method 6010B/7471, SVOCs using EPA Method 8270C, PCBs using EPA Method 8082, OCPs using EPA Method 8081. In addition, soil samples collected at the surface, to depths of approximately 1 foot bgs, were submitted to Patriot Environmental Laboratory Services, Inc., a California ELAP-certified laboratory in Fullerton, California, for analysis for asbestos using polarized light microscopy (PLM).

3.3 Groundwater Sampling

Grab-groundwater samples were collected from borings B-2, B-3, B-4, B-11, B-13, and B-14, the only borings where groundwater was encountered, by lowering a disposable microbailer through a temporary well screen installed in the Geoprobe drive rods to the bottom of the boring. The borings were advanced to depths ranging between 25 and 30 feet bgs, respectively with groundwater encountered at a depths of approximately 19 to 23 feet bgs.

The groundwater sample locations are described below.

- B-2 was collected at a depth of 21.1 feet bgs in boring B-2 located in the northwestern corner of the Site in the location of a historic oil field AST;
- B-3 was collected at a depth of 23.3 feet bgs in boring B-3 located in the northern portion of the Site in the location of a historic oil field sump;
- B-4 was collected at a depth of 22.5 feet bgs in boring B-4 located in the northeastern portion of the Site in the location of a historic oil field AST and in the vicinity of the abandoned historic oil well;
- B-11 was collected at a depth of 22.1 feet bgs in boring B-11 located in the northern parking lot to provide areal groundwater quality data;
- B-13 was collected at a depth of 19.65 feet bgs in boring B-13 located in the northern parking lot to provide areal groundwater quality data; and
- B-14 was collected at a depth of 20.6 feet bgs in boring B-14 located in the northern parking lots areas in order to provide areal groundwater quality data.

The samples were placed in laboratory-supplied sample bottles, stored on ice in a cooler, and transported to SunStar under chain-of-custody control for analysis for TPH-g/cc using EPA Method 8015M and for VOCs using EPA Method 8260B. Groundwater sampling methodology is further described in Appendix A.

3.4 Soil Vapor Survey

Temporary soil vapor probes (SVPs) were installed at five locations (Borings B-4, B-6, B-11, B-12, and B-15) across the Site as shown on Figure 4; however, soil vapor samples could not be collected from borings B-11 and B-12 due to lack of sufficient soil vapor flow. The SVPs were installed using 2-1/4 inch inside-diameter hollow drill rods. The probe consisted of a 3/8" x 1" Stone PolyPro vapor probe implant with 1/4-inch Speed Fit installed at 5 feet bgs. Nylaflow tubing (1/4 inch diameter) was connected from the implant to the ground surface, and terminated above the existing concrete slab. The borehole annulus around the implant and tubing was filled through the drill rods with sand 6 inches above and below the implant, 12 inches of dry bentonite placed 1 foot above the sand and hydrated bentonite chips from above the sand to the ground surface.

The SVP locations are described below.

- B-4-15.0 was installed at a depth of 15 feet bgs in boring B-4 located in in the area of a historic oil field tank and in the vicinity of the abandoned historic oil well;
- B-6-10.0 was installed at a depth of 10 feet bgs in boring B-6 located in the area of a historic oil field process tanks;
- B-11-8.0 was installed at a depth of 8 feet bgs in boring B-11 located in the northern parking lots areas in order to obtain areal soil vapor quality data (no sample was able to be collected at this location);
- B-12-12.0 was installed at a depth of 12 feet bgs in boring B-12 located in the northern parking lots areas in order to obtain areal soil vapor quality data (no sample was able to be collected at this location); and
- B-15-25.0 was installed at a depth of 25 feet bgs in boring B-15 located in the northern parking lots areas in order to obtain areal soil vapor quality data.

After installation, each SVP was allowed to stabilize for two hours constructed in accordance with Department of Toxic Substances Control (DTSC) advisory for active soil gas investigations dated August, 2015 (DTSC, 2015)¹. Prior to sampling, each probe was purged of approximately

¹ DTSC, August, 2015. Advisory – Active Soil Gas Investigations.

three-well volumes of air. A vapor sample was then collected from each probe using a summa canister and flow regulator that maintained a flow rate of 150 milliliters per minute. There was insufficient airflow from SVPs installed in B-11 and B-12 so samples could not be collected. Each sample was transported to SunStar and analyzed for TPH-g using EPA Method TO-3, VOCs using EPA Method TO-15.

After the soil vapor survey was conducted, the SVPs were removed and the borings backfilled with hydrated bentonite to just below the surface and a concrete plug was placed at the surface to match existing conditions. Soil vapor sampling methodology is further described in Appendix A. Temporary vapor probe construction details are presented in Appendix C.

3.5 Data Evaluation Criteria

Chemical test results from soil samples collected during this investigation were evaluated with respect to landfill disposal site acceptance criteria to determine whether the soil must be sent to Class I, II or III disposal facilities or could be used as unrestricted fill on any construction site in the area.

The groundwater sample test results are compared to the California Maximum Contaminant Levels (MCLs), the State primary drinking water standards and influent requirements for the [Los Angeles Regional Water Quality Control Board (LARWQCB) Order No. R4-2013-0098 General National Pollutant Discharge Elimination System (NPDES) Permit No. CAG994004 Waste Discharge Requirements for Discharges of Groundwater from Construction and Project Dewatering to Surface Water in Costal Watersheds of Los Angeles and Ventura Counties (the NPDES Permit).

Soil vapor sample test results are compared to EPA RSLs and DTSC SLs for residential and commercial land use. The RSLs and SLs have been developed for indoor air concentrations; therefore, RSLs and SLs for soil vapor were calculated using an attenuation factor. A non-Site specific, conservative attenuation factor of 0.002 was applied to the RSLs and SLs for indoor residential indoor air, and a conservative attenuation factor of 0.001 was applied to the RSLs and SLs for commercial indoor air to develop calculated SLs for soil vapor. The attenuation factors were derived from the DTSC *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)* (DTSC, 2001). The purpose of this evaluation was to gain information about possible soil and groundwater contamination in the soil volume planned for excavation which was not reflected in the limited number of soil and groundwater samples collected.

4.0 INVESTIGATION RESULTS

4.1 Subsurface Conditions

All drilling locations were covered with approximately four to eight inches of asphalt. Subsurface soils encountered during drilling generally consisted of sand, silty sand, and clayey sand to approximately 5 feet bgs underlain by discontinuous interbedded sandy clayey silts and clayey silty sands to approximately 30 feet bgs, the total depth explored. Groundwater was encountered in only six of the 15 borings and was found to be located in the central portion of the parking lot, at depths ranging between approximately 19 and 23 feet bgs. The estimated lateral extent is shown on Figure 4; however, there may be other areas on the site where localized groundwater may be encountered. Boring logs are attached in Appendix B.

4.2 Analytical Results

Chemical test results for soil samples analyzed during this investigation are presented on Tables 1 (TPH), 2 (VOCs, SVOCs, PCBs, OCPs, and Asbestos), and 3 (Title 22 metals). The sampling shows that the most pervasive compounds of concern present in the subsurface are total petroleum hydrocarbons in two middle carbon ranges, C13-C28 (TPH-d) and C29-C40 (TPH-mo). Subject to site access limitations, this impacted soil is generally located in the northwestern portion of the parking lot (vicinity of borings B-2, B-11 and B-13) and the northeastern portion of the parking lot (vicinity of borings B-4, B-12, and B-15). No other compounds of concern were detected in soil, soil vapor or groundwater, other than relatively low concentrations of the chlorinated solvent TCE in two soil vapor samples that are coterminous with borings showing TPH soil contamination.

Groundwater sample test results are presented on Table 4 and soil vapor sample test results are presented on Table 5. Copies of the laboratory analytical reports are presented in Appendix D. Test results are discussed in detail the following sections.

4.2.1 Soil Sampling Analytical Results

As shown on Table 1, total petroleum hydrocarbons as diesel (TPH-d) were reported above laboratory reporting limits (RLs) in 28 of the 47 samples analyzed, at concentrations up to 1,100 mg/kg. TPH-d was measured in soil above the groundwater protection RWQCB TPH Maximum SSL of 100 milligrams per kilogram (mg/kg) and the EPA RSL for residential land use of 110 mg/kg in 10 samples at concentrations ranging between 160 and 1,100 mg/kg. These elevated concentrations were generally reported in samples collected at 1 foot bgs in the northeastern and northwestern portions of the Site. However, the highest concentration

(1,100 mg/kg) was reported at a depth of 15 feet bgs from boring B-4, which is located in the eastern portion of that parking lot-part of the Site at one of the historic oil field tanks and in the vicinity of the abandoned historic oil well. The approximate lateral extent of TPH-d impacted soil is shown on Figures 5a (one foot bgs), 5b (five feet bgs), 5c (10 feet bgs), and 5d (15 feet bgs). Soil exceeding 100 mg/kg TPH-d would typically be sent to a Class III landfill or recycling facility for disposal purposes and would not be used for unrestricted fill.

Total petroleum hydrocarbons as motor oil (TPH-mo) were reported in 24 of the 47 samples analyzed, at detected concentrations ranging from 20 to 1,300 mg/kg. The TPH-mo detections were found primarily at the same sample locations with reported concentrations of TPH-d. Reported concentrations of TPH-mo exceeded the groundwater protection RWQCB TPH-mo Maximum SSL of 1,000 mg/kg in five soil samples, at concentrations up to 1,300 mg/kg. Four of the exceedances were measured in shallow soil samples collected at one foot bgs and one was collected at a depth of 15 feet bgs from boring B-4. None of the samples collected at 10 feet bgs contained TPH-mo above the SSL of 1,000 mg/kg. The reported concentrations of TPH-mo did not exceed the EPA soil RSLs for residential or commercial land use. The approximate lateral extent of TPH-mo impacted soil is shown on Figures 6. Soil exceeding 1,000 mg/kg would typically be sent to a Class III landfill or recycling facility for disposal purposes and would not be used for unrestricted fill.

Low concentrations of total petroleum hydrocarbons as gasoline (TPH-g) were measured in B-5 at 10 feet bgs, B-8 at 10 feet bgs, B-11 at 10 feet bgs, and B-12 at 1 foot bgs; however, the reported concentrations did not exceed any regulatory screening criteria.

As shown on Table 2, several gasoline-related VOCs, including benzene, ethylbenzene, toluene, m,p-xylene, and sec-butylbenzene, were measured above the laboratory RLs. However, none of these reported concentrations exceeded their respective regulatory screening criteria. No SVOCs, PCBs, OCPs, or asbestos were reported above their respective laboratory RLs in any of the samples analyzed.

Low concentrations of several metals, including barium, chromium, cobalt, copper, nickel, vanadium, and zinc were reported in all of the 47 samples analyzed, as shown on Table 3. In addition, cadmium was measured above the laboratory RL in one sample. None of the reported concentrations of metals exceeded their respective EPA RSLs or DTSC SLs for residential or commercial/industrial land use.

4.2.2 Groundwater Sampling Analytical Results

Groundwater sample test results are shown on Table 4 and on Figure 7. TPH-d (carbon range C13 – C28) was the only TPH range contaminant reported in groundwater and was found in five of the six groundwater samples collected, at concentrations ranging between 520 and 2,000 μ g/L. Although there is no California MCL for TPH-d, the reported concentrations of TPH-d exceed the EPA RSL for tapwater of 5.5 μ g/L and the RWQCB NPDES discharge level of 100 μ g/L.

With the exception of a concentration of $0.92 \,\mu\text{g/L}$ of toluene found only in Boring B-2, no VOCs were measured in any of the groundwater samples. The reported concentration of toluene is well below the California MCL of $1,000 \,\mu\text{g/L}$.

The groundwater samples collected from borings B-2 and B-3 were also tested for dissolved metals. None of the reported concentrations of metals exceeded their respective California MCLs. The test results are shown on Table 4.

4.2.3 Soil Vapor Analytical Results

Soil vapor samples were collected from SVPs set in borings B-4, B-6, and B-15. Soil vapor samples could not be collected from SVPs set in borings B-11 and B-12 due to lack of flow. As shown on Table 5, TPH-g was reported in soil vapor from boring B-4 at a concentration of 11,600 micrograms per cubic meter ($\mu g/m^3$). The reported concentration did not exceed the calculated residential soil vapor RSL of 15,500 $\mu g/m^3$ or the calculated commercial soil vapor RSL of 130,000 $\mu g/m^3$. No residential or commercial SLs have been established for TPH-g. This TPH-g soil vapor detection indicates that there may have been a gasoline release in the area.

Trichloroethene (TCE) was reported in soil vapor in two wells, B-4 (at 15 feet bgs at 17 μ g/m³) and B-15 (at 15 feet at 770 μ g/m³). The reported concentration from B-15 exceeds the calculated EPA RSL for residential land use of 240 μ g/m³. Both B-4 and B-15 also showed TPH-d and TPH-mo and benzene soil contaminants.

Toluene was reported in soil vapor from boring B-4 at a concentration of 15 μ g/m³, which does not exceed the calculated residential or commercial soil vapor RSLs or SLs. Cyclohexane (another gasoline constituent) was reported at a concentration of 1,100 μ g/m³ in the sample from boring B-6. The result is well below the calculated residential RSL of 3,100,000 μ g/m³.

Isopropyl alcohol (IPA) was also measured in soil vapor from boring B-6 at a concentration of $3{,}100~\mu g/m^3$, which is well below the calculated residential RSL of $105{,}000~\mu g/m^3$ and commercial RSL of $880{,}000~\mu g/m^3$. Notably, because IPA was used as a leak detection compound during sampling, the detected IPA may be attributed to a faulty seal in the probe or dedicated sampling apparatus associated with the probe in B-6 only and is not derived from an on-site source.

5.0 THREE-DIMENSIONAL PLUME MODEL

Northgate calculated the approximate volume of soil beneath the Site that might require special handling or disposal during excavation activities due to the presence of contaminants reported in the subsurface soil. Testing performed at the Site during this investigation indicates that the most pervasive organic compounds present in the subsurface are total petroleum hydrocarbons in two carbon ranges, C13-C28 (TPH-d) and C29-C40 (TPH-mo). Model results are shown on Figures 5, 6, and 8-11.

5.1 Model Input Information & Assumptions

Fifteen borings were advanced to total depths of 20 to 30 feet bgs. As described in Section 3.2, soils samples were collected for chemical analysis at 1, 10, and 20 foot-foot depth intervals (with additional 15-foot intervals at certain locations based on field indicators). Figure 3 shows the locations of the borings on the site. The following data was input into the model:

- The surface coordinates of the 15 borings (all samples were assumed to be collected at the same x and y coordinates of the surface location);
- The depth below ground surface that the soil samples were collected;
- The concentration of TPH-d and TPH-mo in those samples;
- A proposed maximum depth of excavation of 18 feet bgs during construction;
- The geometry of the basement beneath the K-Mart store;
- The total soil volume to be excavated as part of site redevelopment is 55,000 cubic yards based on building excavation plans;
- The areal extent of the Site was based on a Google Earth TM image and assumes the Site is flat with no relief.
- The volume of the K-mart basement to be subtracted from the gross Site volume to 18 feet bgs was based on the building image from Google Earth ^{TM.}
- There are 47 discrete analyses for each of the chemicals evaluated.

From this information, a three-dimensional model was created using the C Tech Development Corporation's Earth Volumetric Studio (EVS) V17.6 visualization package to estimate the TPH-d and TPH-mo concentrations at cell center locations within a convex hull grid. A convex hull generated grid system with a nominal spacing of approximately 1.4 and 2.0 feet in the x and y directions respectively and proportional gridding in the z direction of from 0.2 feet to 0.6 in the z direction was established as the estimation grid. The ground surface, the proposed bottom of the

excavation (18 ft bgs) and the basement configuration of the K-Mart were used as constraining boundaries for the model.

The model application applies estimation techniques by using analytical data results of TPH concentrations from soil samples collected at known x, y and z coordinates in boreholes to calculate the TPH concentrations at grid locations without direct analytical results. The volume of soil impacted with TPH concentrations above 100 mg/kg (for diesel), or 1,000 mg/kg (motor oil) is then calculated spatially by summing the volume of each grid cell that contains soil with estimated concentrations above 100 mg/kg or 1,000 mg/kg, as applicable.

5.2 Plume Depictions and Volumetric Results

Plume models were generated for two scenarios for each of the TPH constituents described, creating four plume models:

- A plume of the estimated volume of TPH-d at greater than 100 mg/kg (Figures 8a and 8b).
- A plume of the estimated volume of TPH-mo greater than 1,000 mg/kg (Figure 9a and 9b).
- A plume showing the estimated volume of TPH-d greater than the laboratory reporting limit of 10 mg/kg (Figures 10a and 10 b).
- A plume showing the estimated volume of TPH-mo greater than the laboratory reporting limit of 10 mg/kg (Figures 11a and 11b).

Figures 5a, 5b, and 5c show a horizontal slice through the estimated TPH-d 1,000 mg/kg plume at the ground surface (samples collected at 1-foot bgs), 5 feet bgs, and 10 feet bgs, respectively.

Figure 6 shows a horizontal slice through the plume at the ground surface of the TPHmo 1,000 mg/kg plume.

The Figure 8 and 9 series views are from the northeast looking southwest as the volume of contaminated soil is greatest on the northern portion of the Site. The Figure 10 and 11 series views are shown from the southwest looking northeast as the estimation of the low concentration plumes are relatively pervasive across the Site. Figures 8 through Figure 10 all have a two times vertical exaggeration to assist in visualization.

The volume of impacted soil in the each of the estimated plumes was calculated by the model using the volumetric tool in the EVS application. The table below provides the results of that calculation.

Plume	Estimated Volume of
	Impacted Soil in cu yd
TPH-d plume equal to or greater than 100 mg/kg	5,526 yd ³
TPH-mo plume equal to or greater than 1000 mg/kg	69 yd ³
TPH-d plume equal to or greater than 10 mg/kg	43,641 yd ³
TPH-mo plume equal to or greater than 10 mg/kg	47,006 yd ³

Notably, the estimated confidence at the lower concentrations approaching (10 mg/kg) decreases fairly rapidly because the lowest values included in the dataset are very close to the 10 mg/kg value, which creates a significant upward bias (overestimation) of the volume estimation at or near the 10 mg/kg estimated concentration.

6.0 CONCLUSIONS AND RECOMMENDATIONS

This investigation included the analysis of 47 soil samples, five groundwater samples, and three soil vapor samples, collected from 15 borings and three soil vapor probes advanced in areas of the former oilfield production facilities that included storage tanks and sumps and a former oil and gas well, and in other areas to provide spatial coverage. Conclusions regarding subsurface conditions based on the chemical test results are presented below.

6.1 Soil

Petroleum hydrocarbons, primarily TPH-d, were detected above screening levels for residential and commercial land use in the soil at certain areas of the Site. Impacted soil above RWQCB TPH Maximum SSLs and EPA RSLs for residential and commercial land use was determined to be located primarily in the northeastern and northwestern portion of the Site. The impacts were primarily encountered in the very shallow soils, but extended to 15 feet bgs in three areas located in the north central part of the Site near the former oil well complex.

Based on the analytical data used in the model (not considering SCAQMD Rule 1166 – as discussed below), approximately 5,500 cubic yards (which is ten percent (10%) of the 55,000 cubic yards of soil extending from the ground surface down to the proposed construction excavation depth of 18 feet), would need to be disposed of or sent to a soil recycling facility as TPH contaminated soil. The model further estimates that the remaining 90% of soil (approximately 50,000 yards) of the excavated volume of soil would not need to be disposed of as TPH contaminated soil because the TPH concentrations in that volume are likely below RWQCB SSLs.

The 5,500 yards of TPH-impacted soil excavated during construction must be either disposed of at a licensed Class III disposal facility, at a licensed soil recycling or disposal facility permitted to accept such soil, or treated on-site in a licensed treatment process, or be used as landfill cover at a licensed facility.

6.1.1 SCAQMD Rule 1166

The excavation or grading of soil at a site containing VOC material including gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvent, resin, monomer, and/or any other material containing VOCs is subject to Rule 1166, and would require a mitigation plan ("1166 permit"). Such a plan would require segregation of the soil during excavation based on the soil analytical data, and field vapor readings generated by a properly calibrated photo ionization detector ("PID") conducted during excavation, compliance with South Coast Air

Quality Management District (SCAQMD) VOC emissions mitigation requirements, and soil management and health and safety plans to ensure worker health and safety. Soil that shows vapors exceeding 50 ppm on the PID will need to properly disposed of or treated off-site, as required by Rule 1166. Based on experience at other sites, the 1166 requirement could increase the volume of contaminated soil above the estimated 5,500 cubic yards estimated by the model. However, the probability of a significant increase above 5,500 yards may be mitigated by the minimally volatile nature of the TPH detected at the Site.

6.2 Groundwater

The perched groundwater beneath the Site is impacted with TPH-d. Given that groundwater is encountered at depths at about 20 feet bgs or deeper and excavation for the proposed development does not exceed 18 feet bgs, it is not anticipated that groundwater will be encountered during redevelopment. However, if groundwater is encountered and must be disposed of, then treatment will be required prior to discharge to the storm drain or the sanitary sewer.

6.3 Soil Vapor

TCE was reported in soil vapor in two samples collected from the northeastern portion of the Site in an area showing soil contamination exceeding unrestricted use levels. No source for the TCE was found in soil or groundwater. No other VOCs or TPH-g were detected above regulatory screening criteria in any of the three soil vapor samples collected during the investigation.

Because the Site is located within the Los Angeles designated Methane Zone, methane mitigation in compliance with parameters of the Los Angeles Department of Building and Safety will be required, which if properly designed, can be protective of human health and safety by mitigating any potential vapor intrusion and human health risks related to impacted groundwater or off-gassing from any impacted soil located below the total excavation depth.

7.0 LIMITATIONS

The purpose of this study is to reasonably characterize existing site conditions given practical access constraints. In performing such a study, it is understood that a balance must be struck between a reasonable inquiry into the site conditions and an exhaustive analysis of each conceivable environmental characteristic. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation is thorough enough to describe all conditions of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We assume no responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

8.0 REFERENCES

- Bowyer Environmental Consulting, Inc. (BEC), 2015. Remedial Progress, Risk Evaluation and Soil Closure Request Report 2nd Quarter 2015, Former wardrobe Cleaners, 8389 West 3rd Street, Los Angeles, California. July 21.
- Department of Toxic Substances Control (DTSC), 2001. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance),

 Department of Toxic Substances Control, California Environmental Protection Agency,
 October 2001.
- Krazan & Associates, Inc. (KAI), 2017. Preliminary Summary of Findings, Proposed Mixed Use Development, SEC of 3rd and Fairfax, Los Angeles, California, June 19.
- Northgate Environmental Management, Inc. (Northgate) 2018. *Phase I Environmental Site Assessment, 3rd and Fairfax 6300 to 6332 West 3rd Street, Los Angeles, California.* January 30.
- Regional Water Quality Control Board (RWQCB), 1996. *Interim Site Assessment & Cleanup Guidebook*. May.
- The Reynolds Group (TRG), 2013. Yoshioka Property, 371 South Fairfax Avenue, Los Angeles, California, LARWQCB No. 900360107, CUF No. 4202, Global ID No. T0603700891.

 January 18.

TABLES

TABLE 1
Summary of Soil Analytical Results - Total Petroleum Hydrocarbons

				Petroleum Hydroc EPA Method 8015	
~ .			C6-C12	C13-C28	C29-C40
Sample	Sample Top	Date Sampled	(TPH-g)	(TPH-d)	(TPH-mo)
Identification	(Feet bgs)	<u> </u>	mg/kg	mg/kg	mg/kg
B-1-1.0	1	1/29/2018	< 0.350	87	920
B-1- 10.0	10	1/29/2018	< 0.430	17	<10
B-1- 20.0	20	1/29/2018	< 0.290	<10	<10
B-2- 1.0	1	1/29/2018	< 0.380	260	860
B-2- 10.0	10	1/29/2018	< 0.350	<10	<10
B-2- 20.0	20	1/29/2018	< 0.410	11	<10
B-3-1.0	1	1/30/2018	< 0.350	33	180
B-3-10.0	10	1/30/2018	< 0.350	18	<10
B-3-20.0	20	1/30/2018	< 0.390	14	<10
B- 4-1.0	1	1/31/2018	< 0.400	210	1,300
B- 4-10.0	10	1/31/2018	< 0.500	<10	<10
B- 4-15.0	15	1/31/2018	< 0.400	1,100	1,000
B- 4-20.0	20	1/31/2018	< 0.330	31	42
B-5-1.0	1	1/30/2018	< 0.330	81	280
B-5-10.0	10	1/30/2018	0.380	68	65
B-5-20.0	20	1/30/2018	< 0.360	<10	<10
B-6- 1.0	1	1/29/2018	< 0.320	160	1,000
B-6- 10.0	10	1/29/2018	< 0.380	<10	<10
B-6- 20.0	20	1/29/2018	< 0.330	<10	<10
B-7-1.0	1	1/30/2018	<10	<10	67
B-7-10.0	10	1/30/2018	<10	<10	<10
B-7-20.0	20	1/30/2018	<10	<10	<10
B- 8-1.0	1	1/31/2018	<10	35	120
B- 8-10.0	10	1/31/2018	21	180	150
B- 8-15.0	15	1/31/2018	<10	46	48
B- 8-20.0	20	1/31/2018	<10	<10	<10
B-9-1.0	1	1/30/2018	<10	<10	110
B-9-10.0	10	1/30/2018	<10	<10	<10
B-9-20.0	20	1/30/2018	<10	31	20
B- 10-1.0	1	1/31/2018	< 0.370	<10	63
B- 10-10.0	10	1/31/2018	< 0.420	<10	<10
B- 10-20.0	20	1/31/2018	< 0.440	25	11
B-11- 1.0	1	1/29/2018	< 0.320	180	1,100
B-11- 10.0	10	1/29/2018	0.500	770	780
B-11- 20.0	20	1/29/2018	< 0.340	<10	<10

TABLE 1
Summary of Soil Analytical Results - Total Petroleum Hydrocarbons

				Petroleum Hydroc EPA Method 8015	
Sample Identification	Sample Top (Feet bgs)	Date Sampled	C6-C12 (TPH-g)	C13-C28 (TPH-d)	C29-C40 (TPH-mo)
rucintification	(Peet bgs)		mg/kg	mg/kg	mg/kg
B- 12-1.0	1	1/31/2018	23	260	950
B- 12-10.0	10	1/31/2018	<10	46	<10
B- 12-20.0	20	1/31/2018	<10	<10	<10
B-13-1.0	1	1/30/2018	< 0.320	250	890
B-13-10.0	10	1/30/2018	< 0.390	22	<10
B-13-15.0	15	1/30/2018	< 0.350	15	<10
B-14-1.0	1	1/30/2018	< 0.340	<10	49
B-14-10.0	10	1/30/2018	< 0.500	24	110
B-14-20.0	20	1/30/2018	< 0.640	<10	<10
B- 15-1.0	1	1/31/2018	< 0.370	490	1,200
B- 15-10.0	10	1/31/2018	< 0.430	47	<10
B- 15-20.0	20	1/31/2018	< 0.360	<10	<10
	REC	GULATORY SCI	REENING CRITI	ERIA	
RWQCB TPH Max	SSL <20 feet Abo	ove Groundwater	100	100	1,000
	EPA Reside	ential Soil RSLs	82	110	2,500
	EPA Comme	ercial Soil RSLs	420	600	33,000
DTSC Resi	dential Soil SLs (c	ancer endpoint)	NE	NE	NE
	nercial Soil SLs (c	i /	NE	NE	NE

- Not detected at or above the indicated laboratory method reporting limit
- -- Not tested
- **Bold** Detected above one or more regulatory screening levels
 - bgs Below ground surface
- DTSC Department of Toxic Substance Control
- EPA United States Environmental Protection Agency
- mg/kg Milligrams per kilogram (units)
 - NA Not available
 - ND Not detected
 - NE Not established
- RSL EPA Region 9 Regional Screening Level, updated November 2017
- RWQCB Regional Water Quality Control Board Los Angeles Region
 - SL Screening levels, updated January 2018
 - SSL RWQCB Maximum Soil Screening Levels Distance to groundwaterless than 20 feet, Interim Site Assessment Cleanup Guidance, May 1996.
 - TPH Total petroleum hydrocarbons
 - TPH-d Total petroleum hydrocarbons quantified as diesel
 - TPH-g Total petroleum hydrocarbons quantified as gasoline
- TPH-mo Total petroleum hydrocarbons quantified as motor oil

TABLE 2
Summary of Soil Analytical Results - Volatile Organic Compounds,
Semi-Volatile Organic Compounds, Polychlorinated Biphenyls,
Organochlorine Pesticides, and Asbestos

			8		Volati	le Organic Com	pounds		SVOCs EPA 8270C	PCBs EPA 8082	PLM EPA 8081A	Asbestos
Sample Identification	Sample Top (Feet bgs)	Date Sampled	Benzene	Ethylbenzene	m,p-Xylene	Toluene	sec-Butylbenzene	Other VOCs	SVOCs	PCBs	OCPs	Total Asbestos
			ug/kg	μg/kg	μg/kg	μg/kg	$\mu g/kg$	μg/kg	μg/kg	μg/kg	μg/kg	%
B-1-1.0	1	1/29/2018	<1.4	<1.4	< 2.9	14	<1.4	ND	ND	ND	ND	ND
B-1- 10.0	10	1/29/2018	<1.7	<1.7	<3.3	<1.7	<1.7	ND	ND	ND	-	
B-1- 20.0	20	1/29/2018	<1.5	<1.5	<3.1	<1.5	<1.5	ND	ND	ND		
B-2- 1.0	1	1/29/2018	<1.5	<1.5	<3.1	<1.5	<1.5	ND	ND	ND	ND	ND
B-2- 10.0	10	1/29/2018	4.1	<1.6	<3.2	<1.6	<1.6	ND	ND	ND		
B-2- 20.0	20	1/29/2018	<2.4	<2.4	<4.7	<2.4	<2.4	ND	ND	ND		
B-3-1.0	1	1/30/2018	<1.7	<1.7	<3.5	<1.7	<1.7	ND	ND	ND	ND	ND
B-3-10.0	10	1/30/2018	2.2	<1.7	<3.5	<1.7	<1.7	ND	ND	ND		
B-3-20.0	20	1/30/2018	7.6	<1.9	<3.8	2.3	<1.9	ND	ND	ND		
B- 4-1.0	1	1/31/2018	<1.9	<1.9	<3.8	<1.9	<1.9	ND	ND	ND	ND	ND
B- 4-10.0	10	1/31/2018	3.2	<1.8	<3.5	<1.8	<1.8	ND	ND	ND		
B- 4-15.0	15	1/31/2018	2.4	<2.2	<4.5	<2.2	<2.2	ND	ND			
B- 4-20.0	20	1/31/2018	3.3	<1.7	<3.4	<1.7	<1.7	ND	ND	ND		
B-5-1.0	1	1/30/2018	<1.7	<1.7	<3.3	<1.7	<1.7	ND	ND	ND	ND	ND
B-5-10.0	10	1/30/2018	3.6	<1.7	<3.5	<1.7	<1.7	ND	ND	ND		
B-5-20.0	20	1/30/2018	<1.8	<1.8	<3.6	<1.8	<1.8	ND	ND	ND		
B-6- 1.0	1	1/29/2018	<1.9	<1.9	< 3.9	<1.9	<1.9	ND	ND	ND	ND	ND
B-6- 10.0	10 20	1/29/2018	<1.7	<1.7	<3.4	<1.7	<1.7	ND	ND	ND		
B-6- 20.0 B-7-1.0	1	1/29/2018 1/30/2018	<1.8	<1.8	<3.6 <3.8	<1.8 <1.9	<1.8 <1.9	ND ND	ND ND	ND ND	ND	ND
B-7-10.0	10	1/30/2018	<1.9	<1.9	<3.6	<1.9	<1.9	ND	ND	ND		ND
B-7-10.0 B-7-20.0	20	1/30/2018	<2.9	<2.9	<5.8	<2.9	<2.9	ND	ND	ND		
B- 8-1.0	1	1/31/2018	<1.9	<1.9	<3.8	<1.9	<1.9	ND	ND	ND	ND	ND
B- 8-10.0	10	1/31/2018	<1.9	<1.8	<3.6	<1.8	2.0	ND	ND	ND		
B- 8-15.0	15	1/31/2018	<1.8	<1.8	<3.6	<1.8	5.8	ND	ND			
B- 8-20.0	20	1/31/2018	3.2	<1.8	<3.7	<1.8	<1.8	ND	ND	ND		
B-9-1.0	1	1/30/2018	<2.0	<2.0	<4.1	<2.0	<2.0	ND	ND	ND	ND	ND
B-9-10.0	10	1/30/2018	<1.9	<1.9	<3.8	<1.9	<1.9	ND	ND	ND		
B-9-20.0	20	1/30/2018	<2.0	<2.0	<4.0	<2.0	<2.0	ND	ND	ND		
B- 10-1.0	1	1/31/2018	<1.9	<1.9	<3.8	<1.9	<1.9	ND	ND	ND	ND	ND
B- 10-10.0	10	1/31/2018	1.7	<1.7	<3.4	<1.7	<1.7	ND	ND	ND		
B- 10-20.0	20	1/31/2018	1.9	<1.7	<3.5	<1.7	<1.7	ND	ND	ND		
B-11- 1.0	1	1/29/2018	<1.8	2.1	4.6	<1.8	<1.8	ND	ND	ND	ND	ND
B-11- 10.0	10	1/29/2018	<1.8	<1.8	<3.6	<1.8	<1.8	ND	ND	ND		
B-11- 20.0	20	1/29/2018	2.1	<1.7	<3.3	<1.7	<1.7	ND	ND	ND		
B- 12-1.0	1	1/31/2018	<1.9	<1.9	< 3.8	<1.9	<1.9	ND	ND	ND	ND	ND
B- 12-10.0	10	1/31/2018	<1.7	<1.7	< 3.4	<1.7	<1.7	ND	ND	ND		
B- 12-20.0	20	1/31/2018	<1.8	<1.8	<3.6	<1.8	<1.8	ND	ND	ND		
B-13-1.0	1	1/30/2018	<1.7	<1.7	<3.4	<1.7	<1.7	ND	ND	ND	ND	ND
B-13-10.0	10	1/30/2018	2.4	<2.1	<4.2	<2.1	<2.1	ND	ND	ND		
B-13-15.0	15	1/30/2018	4.4	<1.7	<3.4	<1.7	<1.7	ND	ND	ND		
B-14-1.0	1	1/30/2018	<1.6	<1.6	<3.3	<1.6	<1.6	ND	ND	ND	ND	ND
B-14-10.0	10	1/30/2018	< 2.1	<2.1	<4.3	<2.1	<2.1	ND	ND	ND		
B-14-20.0	20	1/30/2018	< 2.0	< 2.0	<4.0	<2.0	< 2.0	ND	ND	ND		
B- 15-1.0	1	1/31/2018	<1.8	<1.8	<3.7	<1.8	<1.8	ND	ND	ND	ND	ND
B- 15-10.0	10	1/31/2018	2.1	<1.9	<3.8	<1.9	<1.9	ND	ND	ND		
B- 15-20.0	20	1/31/2018	< 2.6	< 2.6	< 5.2	<2.6	<2.6	ND	ND	ND		

TABLE 2

Summary of Soil Analytical Results - Volatile Organic Compounds, Semi-Volatile Organic Compounds, Polychlorinated Biphenyls, Organochlorine Pesticides, and Asbestos

	Volatile Organic Compounds EPA Method 8260B S 8										PLM EPA 8081A	Asbestos	
Sample Sample T Identification (Feet bg		Date Sampled	Benzene	Ethylbenzene	m,p-Xylene	Toluene	sec-Butylbenzene	Other VOCs	SVOCs	PCBs	OCPs	Total Asbestos	
			ug/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	%	
	REGULATORY SCREENING CRITERIA												
RWQCB TPH	Maximum SSLs	for Sample Top at 1 Foot bgs		1,953	4,883	419	NE	NA	NA	NA	NA	NA	
RWQCB TPH	Maximum SSLs	for Sample Top							NA	NA	NA	NA	
DWOCD TRILL	Mayimayım CCI	at 10 Foot bgs s for Sample Top		1,260	3,150	270	NE	NA					
KWQCB IFH I	viaxiiiiuiii 55Ls	at 15 Foot bgs		1,260	3,150	270	NE	NA	NA	NA	NA	NA	
RWQCB TPH I	Maximum SSLs	s for Sample Top at 20 Foot bgs	_	1,260	3,150	270	NE	NA	NA	NA	NA	NA	
	EPA Reside	ntial Soil RSLs	1,200	5,800	550,000	4,900,000	7,800,000	NA	NA	NA	NA	NA	
	EPA Comme	rcial Soil RSLs	5,100	25,000	2,400,000	47,000,000	120,000,000	NA	NA	NA	NA	NA	
DTSC Residen	tial Soil SLs (c	ancer endpoint)	330	NE	NE	1,100,000*	2,200,000*	NA	NA	NA	NA	NA	
DTSC Commerc	cial Soil SLs (c	ancer endpoint)	1,400	NE	NE	5,400,000*	12,000,000*	NA	NA	NA	NA	NA	

Notes/Abbreviations:

VOCs

- < Not detected at or above the indicated laboratory method reporting limit
- -- Not tested
- * Noncancer endpoint value used as cancer endpoint value was not established
- bgs Below ground surface
- **Bold** Detected above one or more regulatory screening levels
- DTSC Department of Toxic Substance Control
- EPA United States Environmental Protection Agency
- NA Not available
- ND Not detected
- NE Not established
- OCPs Organochlorine pesticides
- PCBs Polychlorinated biphenyls
- PLM Polarized light microscopy
- RSL EPA Region 9 Regional Screening Level, updated November 2017
- RWQCB Regional Water Quality Control Board Los Angeles Region
 - SL Screening levels, updated January 2018
 - SSL RWQCB Maximum Soil Screening Levels Distance to groundwater less than 20 feet, Interim Site Assessment Cleanup Guidance, May 1996.
- SVOCs Semi-volatile organic compounds TPH Totsl petroleum hydrocarbons µg/kg Micrograms per kilogram (units)

Volatile organic compounds

TABLE 3
Summary of Soil Analytical Results - Title 22 Metals

										Title 22 EPA Meth									Mercury EPA 7471A
Sample Identification	Sample Top (Feet bgs)	Date Sampled	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B-1-1.0	1	1/29/2018	< 3.0	< 5.0	110	<1.0	< 2.0	26	13	9.8	<3.0	< 5.0	16	< 5.0	< 2.0	< 2.0	46	51	< 0.1
B-1- 10.0	10	1/29/2018	< 3.0	< 5.0	46	<1.0	< 2.0	22	12	11	< 3.0	< 5.0	23	< 5.0	< 2.0	< 2.0	36	36	< 0.1
B-1-20.0	20	1/29/2018	< 3.0	< 5.0	47	<1.0	< 2.0	17	6.7	5.4	<3.0	< 5.0	11	< 5.0	< 2.0	< 2.0	19	16	< 0.1
B-2- 1.0	1	1/29/2018	< 3.0	< 5.0	56	<1.0	< 2.0	22	12	5.0	<3.0	< 5.0	13	< 5.0	< 2.0	< 2.0	39	32	< 0.1
B-2- 10.0	10	1/29/2018	< 3.0	< 5.0	54	<1.0	< 2.0	23	12	9.3	< 3.0	< 5.0	19	< 5.0	< 2.0	< 2.0	26	33	< 0.1
B-2- 20.0	20	1/29/2018	< 3.0	< 5.0	91	<1.0	<2.0	35	17	15	<3.0	< 5.0	26	< 5.0	< 2.0	< 2.0	34	37	< 0.1
B-3-1.0	1	1/30/2018	< 3.0	< 5.0	79	<1.0	< 2.0	15	9.6	8.5	< 3.0	< 5.0	9.3	< 5.0	< 2.0	< 2.0	31	27	< 0.1
B-3-10.0	10	1/30/2018	< 3.0	< 5.0	60	<1.0	< 2.0	22	11	8.0	<3.0	< 5.0	21	< 5.0	< 2.0	< 2.0	27	34	< 0.1
B-3-20.0	20	1/30/2018	< 3.0	< 5.0	39	<1.0	< 2.0	18	8.9	8.1	< 3.0	< 5.0	16	< 5.0	< 2.0	< 2.0	27	30	< 0.1
B- 4-1.0	1	1/31/2018	< 3.0	< 5.0	84	<1.0	< 2.0	19	11	10	< 3.0	< 5.0	13	< 5.0	< 2.0	< 2.0	36	46	< 0.1
B- 4-10.0	10	1/31/2018	< 3.0	< 5.0	39	<1.0	< 2.0	19	9.0	7.3	<3.0	< 5.0	15	< 5.0	<2.0	< 2.0	27	24	< 0.1
B-5-1.0	1	1/30/2018	< 3.0	< 5.0	110	<1.0	< 2.0	19	11	9.2	<3.0	< 5.0	13	< 5.0	< 2.0	< 2.0	37	47	< 0.1
B-5-10.0	10	1/30/2018	< 3.0	< 5.0	76	<1.0	< 2.0	17	9.4	8.2	<3.0	< 5.0	17	< 5.0	<2.0	< 2.0	25	36	< 0.1
B-5-20.0	20	1/30/2018	<3.0	< 5.0	35	<1.0	<2.0	16	7.2	7.2	<3.0	< 5.0	12	< 5.0	<2.0	<2.0	25	22	< 0.1
B-6- 1.0	1	1/29/2018	< 3.0	< 5.0	79	<1.0	< 2.0	27	13	12	<3.0	< 5.0	15	< 5.0	< 2.0	< 2.0	55	55	< 0.1
B-6- 10.0	10	1/29/2018	< 3.0	< 5.0	71	<1.0	< 2.0	19	9.1	15	<3.0	< 5.0	20	< 5.0	<2.0	< 2.0	21	38	< 0.1
B-6- 20.0	20	1/29/2018	<3.0	< 5.0	120	<1.0	<2.0	19	8.8	12	<3.0	< 5.0	18	< 5.0	<2.0	<2.0	31	35	< 0.1
B-7-1.0	1	1/30/2018	< 3.0	< 5.0	75	<1.0	< 2.0	22	12	8.0	<3.0	< 5.0	15	< 5.0	<2.0	<2.0	42	45	< 0.1
B-7-10.0	10	1/30/2018	<3.0	< 5.0	37	<1.0	<2.0	15	5.5	5.0	<3.0	< 5.0	12	< 5.0	<2.0	<2.0	20	17	< 0.1
B-7-20.0	20	1/30/2018	<3.0	< 5.0	38	<1.0	<2.0	12	5.0	5.1	<3.0	< 5.0	13	< 5.0	<2.0	<2.0	14	11	< 0.1
B- 8-1.0	1	1/31/2018	<3.0	< 5.0	92	<1.0	<2.0	20	9.5	8.5	<3.0	< 5.0	14	< 5.0	<2.0	<2.0	33	33	<0.1
B- 8-10.0	10	1/31/2018	<3.0	< 5.0	53	<1.0	<2.0	9.5	6.4	6.0	<3.0	< 5.0	7.8	< 5.0	<2.0	<2.0	21	20	<0.1
B- 8-20.0	20	1/31/2018	<3.0	< 5.0	140	<1.0	<2.0	30	12	15	<3.0	< 5.0	21	< 5.0	<2.0	<2.0	34	49	<0.1
B-9-1.0	1	1/30/2018	<3.0	< 5.0	83	<1.0	<2.0	6.5	6.2	16	<3.0	< 5.0	6.1	< 5.0	<2.0	<2.0	16	38	<0.1
B-9-10.0	10	1/30/2018	<3.0	< 5.0	55	<1.0	<2.0	19	8.3	11	<3.0	< 5.0	18	< 5.0	<2.0	<2.0	23	33	<0.1
B-9-20.0	20	1/30/2018	<3.0	< 5.0	79	< 0.91	2.6	14	11	8.6	<2.7	<4.5	16	<4.5	<1.8	<1.8	19	28	<0.1
B- 10-1.0	1	1/31/2018	<3.0	< 5.0	86	<1.0	<2.0	19	10	9.6	<3.0	< 5.0	12	< 5.0	<2.0	<2.0	39	54	<0.1
B- 10-10.0	10	1/31/2018	<3.0	< 5.0	180	<1.0	<2.0	18	11	6.4	<3.0	< 5.0	10	< 5.0	<2.0	<2.0	41	56	<0.1
B- 10-20.0	20	1/31/2018	<3.0	< 5.0	35	<1.0	<2.0	11	6.6	7.5	<3.0	< 5.0	9.7	< 5.0	<2.0	<2.0	18	21	<0.1
B-11- 1.0	1	1/29/2018	<3.0	<5.0	87	<1.0	<2.0	18	11	8.5	<3.0	< 5.0	12	< 5.0	<2.0	<2.0	36	35	<0.1
B-11- 10.0	10	1/29/2018	<3.0	<5.0	73	<1.0	<2.0	26	23	12	<3.0	< 5.0	29	< 5.0	<2.0	<2.0	33	37	<0.1
B-11- 20.0	20	1/29/2018	<3.0	<5.0	79	<1.0	<2.0	29	15	14	<3.0	< 5.0	26	< 5.0	<2.0	<2.0	52	47	<0.1

Page 1 of 2 March 1, 2018

TABLE 3
Summary of Soil Analytical Results - Title 22 Metals

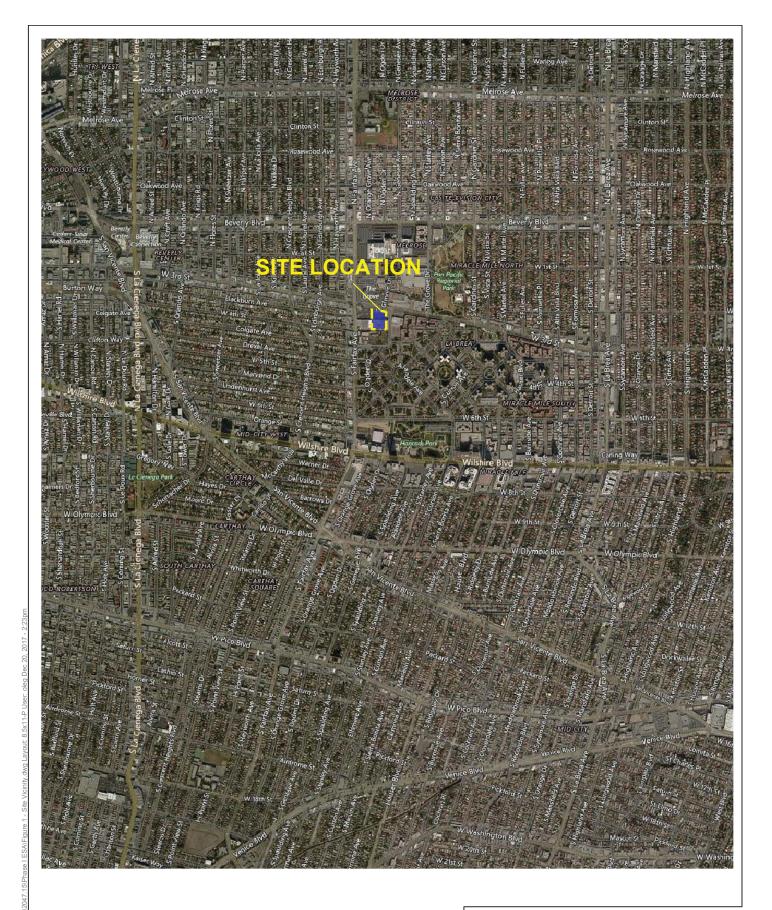
										Title 22 EPA Meth									Mercury EPA 7471A
Sample Identification	Sample Top (Feet bgs)	Date Sampled	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B- 12-1.0	1	1/31/2018	< 3.0	< 5.0	91	<1.0	< 2.0	18	9.6	11	< 3.0	< 5.0	14	< 5.0	< 2.0	< 2.0	33	34	< 0.1
B- 12-10.0	10	1/31/2018	< 3.0	< 5.0	51	<1.0	< 2.0	27	4.8	4.6	< 3.0	< 5.0	9.8	< 5.0	< 2.0	< 2.0	22	20	< 0.1
B- 12-20.0	20	1/31/2018	< 3.0	< 5.0	81	<1.0	< 2.0	18	14	13	< 3.0	< 5.0	15	< 5.0	< 2.0	< 2.0	23	30	< 0.1
B-13-1.0	1	1/30/2018	< 3.0	< 5.0	64	<1.0	< 2.0	20	12	6.6	< 3.0	< 5.0	13	< 5.0	< 2.0	< 2.0	40	32	< 0.1
B-13-10.0	10	1/30/2018	< 3.0	< 5.0	58	<1.0	< 2.0	19	11	10	< 3.0	< 5.0	20	< 5.0	< 2.0	< 2.0	30	32	< 0.1
B-13-15.0	15	1/30/2018	<3.0	< 5.0	370	<1.0	< 2.0	18	19	11	< 3.0	< 5.0	28	< 5.0	< 2.0	< 2.0	46	34	< 0.1
B-14-1.0	1	1/30/2018	< 3.0	< 5.0	78	<1.0	< 2.0	28	15	6.1	< 3.0	< 5.0	18	< 5.0	< 2.0	< 2.0	50	41	< 0.1
B-14-10.0	10	1/30/2018	< 3.0	< 5.0	39	<1.0	< 2.0	19	8.3	7.3	< 3.0	< 5.0	18	< 5.0	< 2.0	< 2.0	20	19	< 0.1
B-14-20.0	20	1/30/2018	< 3.0	< 5.0	33	<1.0	< 2.0	14	7.2	5.6	<3.0	< 5.0	12	< 5.0	< 2.0	< 2.0	20	16	< 0.1
]	REGULA '	TORY SCI	REENING	CRITER	IA								
	EPA Resider	ntial Soil RSLs	31	0.68	15,000	160	71	NE	23	3,100	80 1	390	1,500	390	390	0.78	390	23,000	10
	EPA Commer	cial Soil RSLs	470	3.0	220,000	2,300	980	NE	350	47,000	320 1	5,800	22,000	5,800	5,800	12	5,800	350,000	43
DTSC Residenti DTSC Commerci		<u> </u>	NE NE	0.11	1,600 6,900	NE NE	2,100 9,300	120,000 1,800,000	NE NE	NE NE	80* 320*	NE NE	15,000 54,000	NE NE	390* 1,500*	NE NE	390* 1,000*	NE NE	1.0* 4.5*

- < Not detected at or above the indicated laboratory method reporting limit
- -- Not tested
- California Human Health Screening Level (CHHSL) used for lead
- bgs Below ground surface
- DTSC Department of Toxic Substance Control
- EPA United States Environmental Protection Agency
- mg/kg Milligrams per kilogram (units)
- NA Not available
- ND Not detected
- NE Not established
- RSL EPA Region 9 Regional Screening Level, updated November 2017
- SL Screening levels, updated January 2018

TABLE 4
Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons,
Volatile Organic Compounds, and Title 22 Metals

				oleum Hydro Method 801		Vola Orga Compo EF Met 826	anic ounds A hod	Title 22 Metals EPA Method 6010B/7471		
Sample Identification	- I Denth I			C29-C40 (TPH-mo) Extractable	0	Тс	Other VOCs	Barium	Molybdenum	Other Metals
			μg/L	μg/L	μg/L	ug/L	ug/L	ug/L	ug/L	
B-2	21	1/29/2018		< 500	< 50	0.92	ND	150	< 50	ND
B-3	23	1/30/2018	2,000	< 500	< 50	< 0.50	ND	110	62	ND
B-4	23	1/31/2018	1,700	< 500	< 50	< 0.50	ND		-	
B-11	22	1/30/2018	< 500	< 500	< 50	< 0.50	ND		-	
B-13	20	1/30/2018	1,200	< 500	< 50	< 0.50	ND			
B-14	20	1/30/2018	710	< 500	< 50	< 0.50	ND			
		REGUL	ATORY SO	CREENING	CRITERI	[A				
	Califo	ornia MCL	NE	NE	NE	1,000	NA	2,000	NA	NA
	EPA Tap	water RSL	5.5	31	800	1,100	NA	3,800	100	NA

- Not detected at or above the indicated laboratory method reporting limit
- -- Not tested
- **Bold** Detected above one or more regulatory screening levels
- bgs Below ground surface
- EPA United States Environmental Protection Agency
- MCL Maximum contaminant level, California RWQCB, updated November 2017
- NA Not available
- ND Not detected
- NE Not established
- RSL EPA Region 9 Regional Screening Level, updated November 2017
- RWQCB Regional Water Quality Control Board Los Angeles region
 - TPH Total petroleum hydrocarbons
 - TPH-d Total petroleum hydrocarbons quantified as diesel
 TPH-g Total petroleum hydrocarbons quantified as gasoline
- TPH-mo Total petroleum hydrocarbons quantified as motor oil
 - μg/L Micrograms per liter (units)VOCs Volatile organic compounds


TABLE 5
Summary of Soil Vapor Analytical Results - Total Petroleum Hydrocarbons and Volatile Organic Compounds

					rganic Comp Method TO-			EPA Method TO-3/TO-14m
Sample Identification		Date Sampled	Cyclohexane	Isopropyl alcohol	Toluene	Trichloroethene	Other VOCs	ТРН-g
			$\mu g/m^3$	$\mu g/m^3$	μg/m ³	μg/m ³	μg/m ³	μg/m ³
B-4-15.0	15	1/31/2018	<3.5	<13	15	17	ND	11,600
B-6-10.0	10	1/31/2018	1,100	3,100	<190	<270	ND	<7,170
B-15-25.0	25	1/31/2018	<170	<130	<190	<i>770</i>	ND	<7,170
			TORY SCRE	ENING C				
	Resident	ial Indoor Air RSLs ¹	6,300	210	5,200	0.48	NA	31
		Attenuation Factor	0.002	0.002	0.002	0.002	NA	0.002
		l Soil Vapor RSLs	3,150,000	105,000	2,600,000	240	NA	15,500
(Commercial/Industr	ial Indoor Air RSLs ¹	26,000	880	22,000	3.0	NA	130
		Attenuation Factor	0.001	0.001	0.001	0.001	NA	0.001
Calcula	ted EPA Industria	l Soil Vapor RSLs	26,000,000	880,000	22,000,000	3,000	NA	130,000
D	TSC Residential SI	s (cancer endpoint)	NE	NE	310*	NE	NA	NA
	150 Residential SI	Attenuation Factor	0.002	0.002	0.002	$\frac{NE}{0.002}$	NA NA	NA NA
Cala 1:4	A DTCC Darit 1	ial Soil Vapor SLs	NE	NE		NE	NA NA	NA NA
		Ls (cancer endpoint)			155,000			
DISC Comm	ierciai/industrial SI		NE 0.001	NE 0.001	1,300*	NE	NA	NA
	I DEPART	Attenuation Factor	0.001	0.001	0.001	0.001	NA	NA
Calcula	ted DTSC Industr	ial Soil Vapor SLs	NE	NE	1,300,000	NE	NA	NA

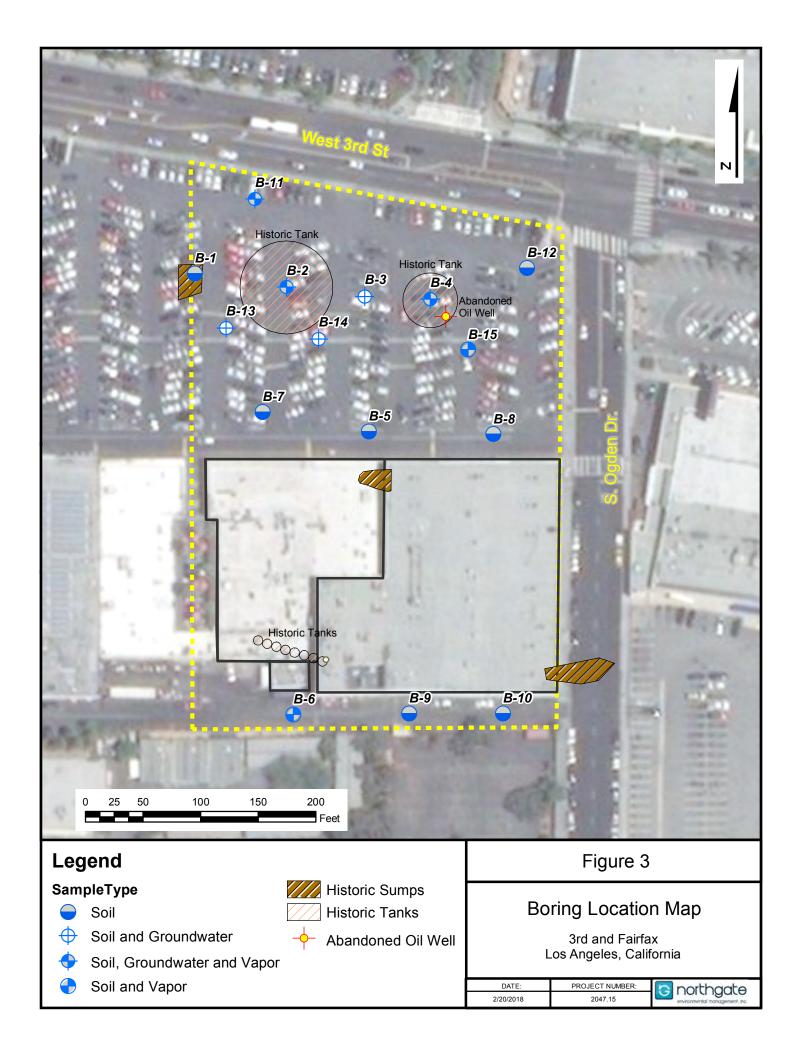
- * Non cancer endpoint value used as cancer endpoint value not established
- **Bold** Calculated screening criteria for soil vapor based on quotient of screening criteria for air and attenuation factor
- **Bold** Exceedance of screening criteria
 - Value provided is for indoor air, not soil vapor
- bgs Below ground surface
- DTSC Department of Toxic Substance Control
- EPA United States Environmental Protection Agency
- NA Not available
- ND Not detected
- NE Note Established
- RSL EPA Region 9 Regional Screening Level, updated November 2017
 - SL Screening Levels, updated January 2018
- μg/m³ Units are in micrograms per meter cubed
- VOCs Volatile organic compounds

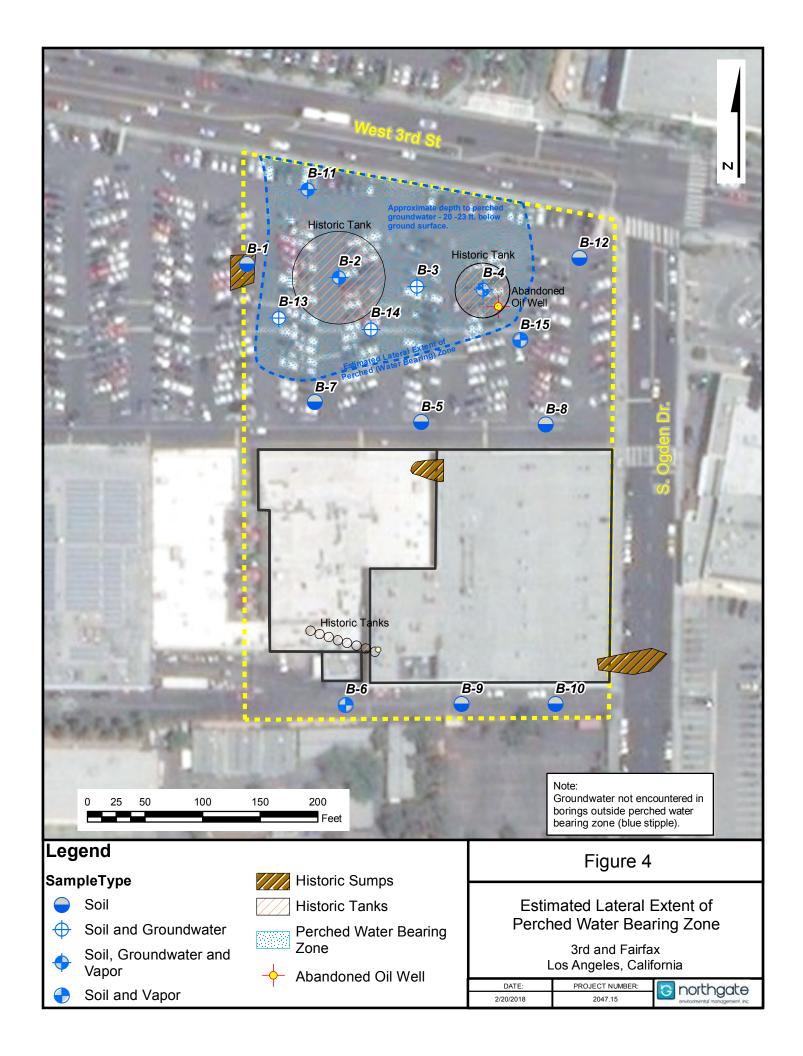
FIGURES

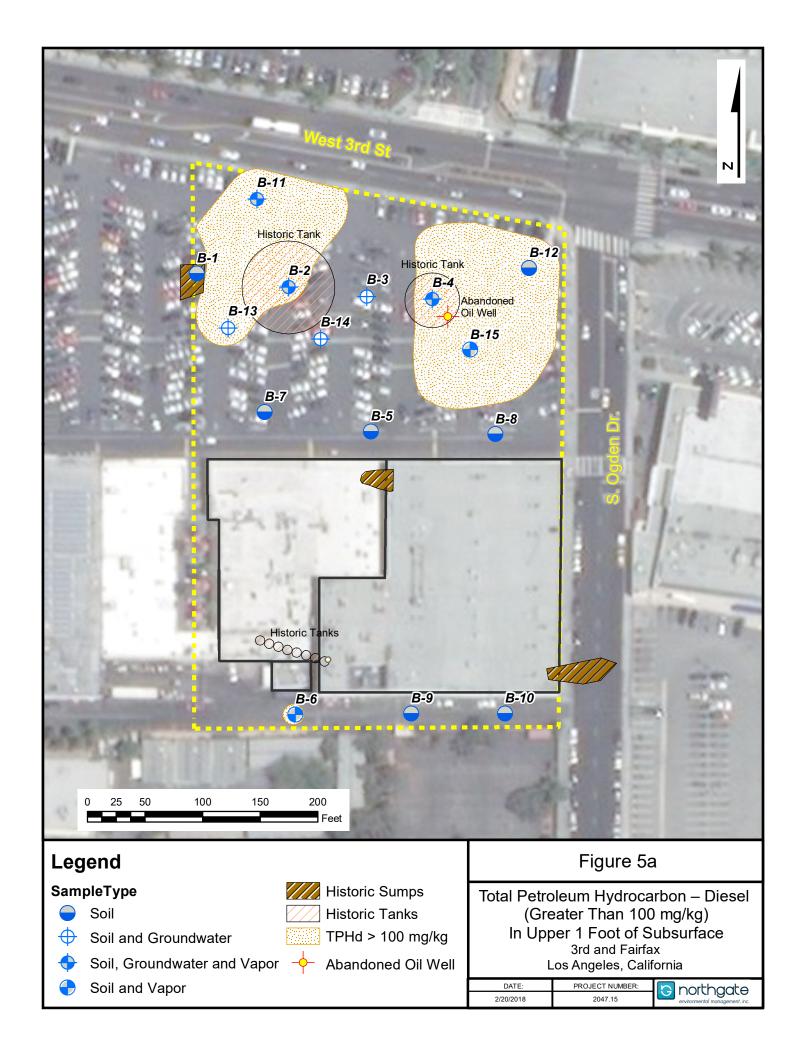
-N-0 1,000 2,000 Scale (Feet)

FIGURE 1 Site Vicinity Map

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California




-N-0 60 120 Scale (Feet)


FIGURE 2 Site Plan

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California

SampleType

Soil and Groundwater


Soil, Groundwater and Vapor Soil and Vapor

Historic Sumps Historic Tanks TPHd > 100 mg/kg

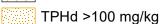
Abandoned Oil Well

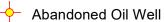
Total Petroleum Hydrocarbon – Diesel (Greater Than 100 mg/kg) 5 Feet Below Ground Surface 3rd and Fairfax Los Angeles, California

DATE:	PROJECT NUMBER:	northaate
2/20/2018	2047.15	environmental management, inc.

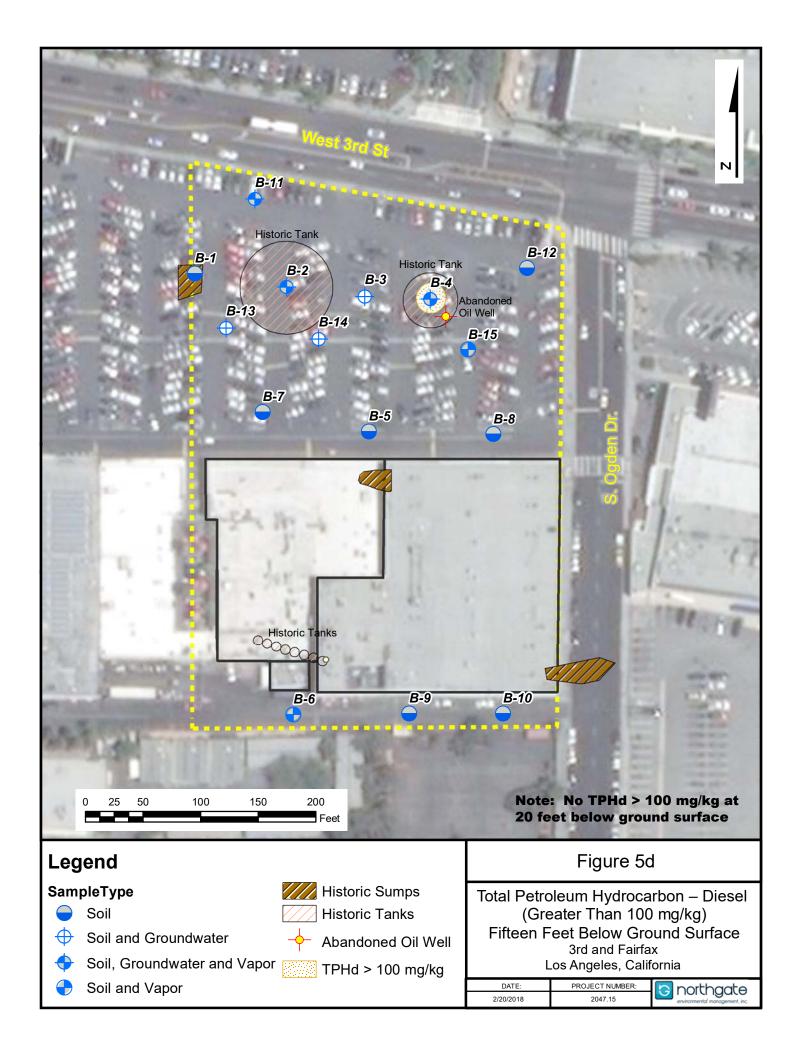
Soil

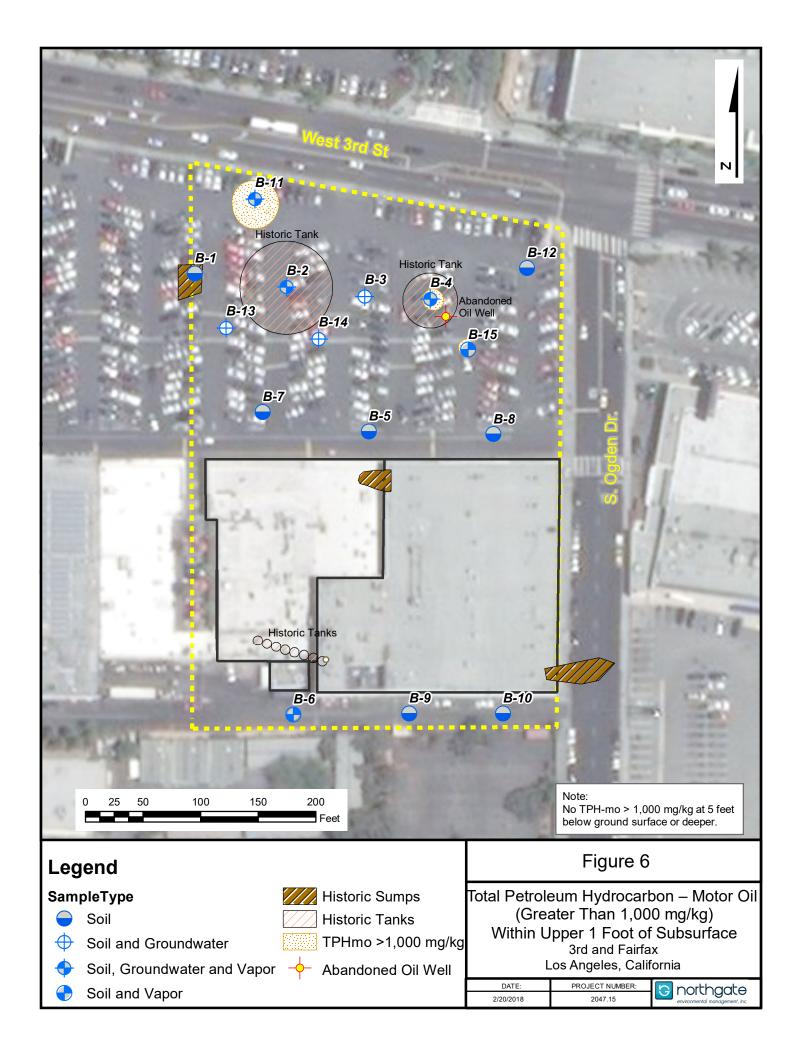
Soil and Groundwater

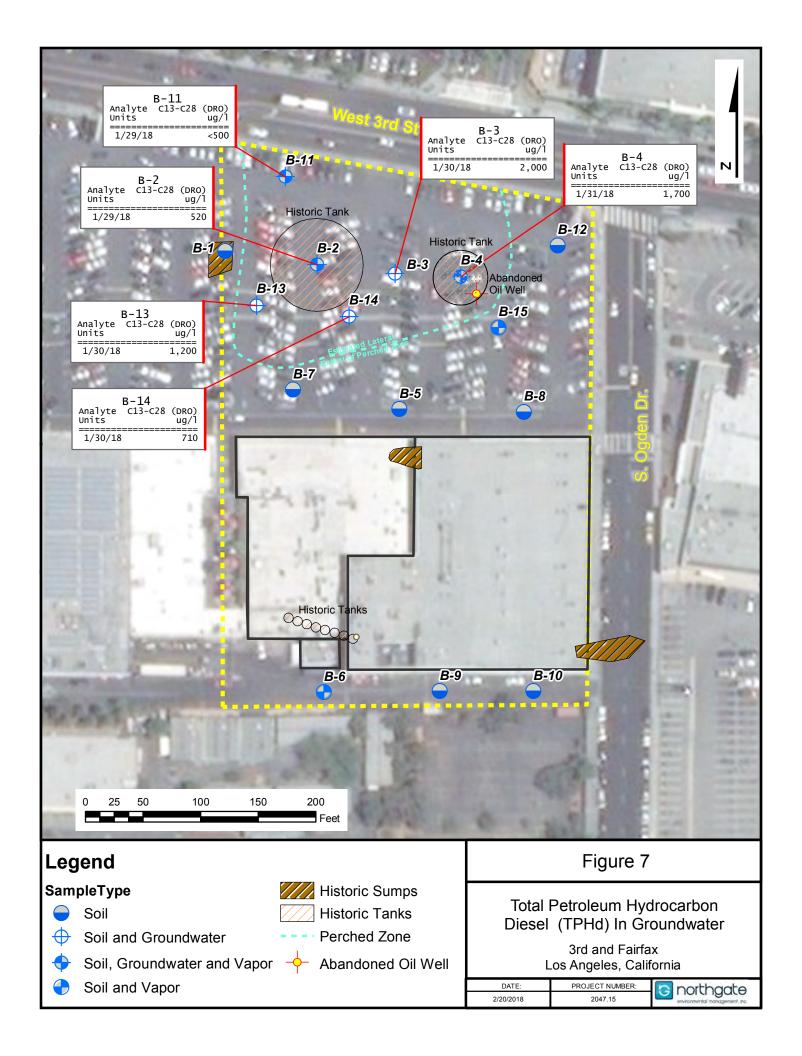



Soil, Groundwater and Vapor

Soil and Vapor

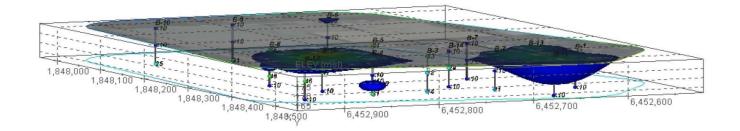


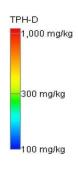




Total Petroleum Hydrocarbon – Diesel (Greater Than 100 mg/kg) Ten Feet Below Ground Surface 3rd and Fairfax Los Angeles, California

DATE:	PROJECT NUMBER:	PROJECT NUMBER: northgate environmental management, inc.
2/20/2018	2047.15	

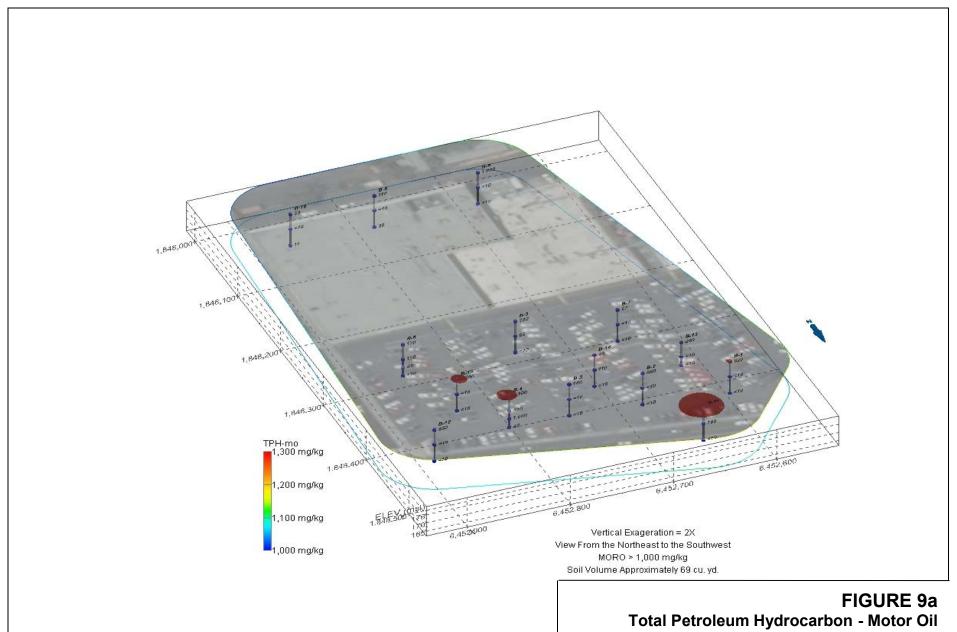

Total Petroleum Hydrocarbon -


Diesel (Greater than 100 mg/kg), High View - 3D

Phase II Environmental Site Assessment

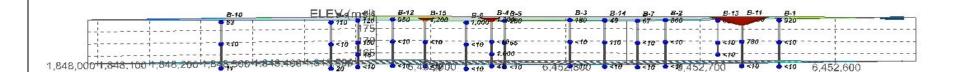
3rd and Fairfax - 6300 to 6332 West 3rd Street
Los Angeles, California

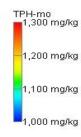
Vertical Exageration = 2X View From Northeast Looking Southwest DRO > 100 mg/kg Soil Volume Approximately 5526 cu. yd.


FIGURE 8b

Total Petroleum Hydrocarbon - Diesel (Greater than 100 mg/kg), Low View - 3D

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California


Project No. 2047.15



(Greater than 1,000 mg/kg), High View - 3D Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street

Los Angeles, California

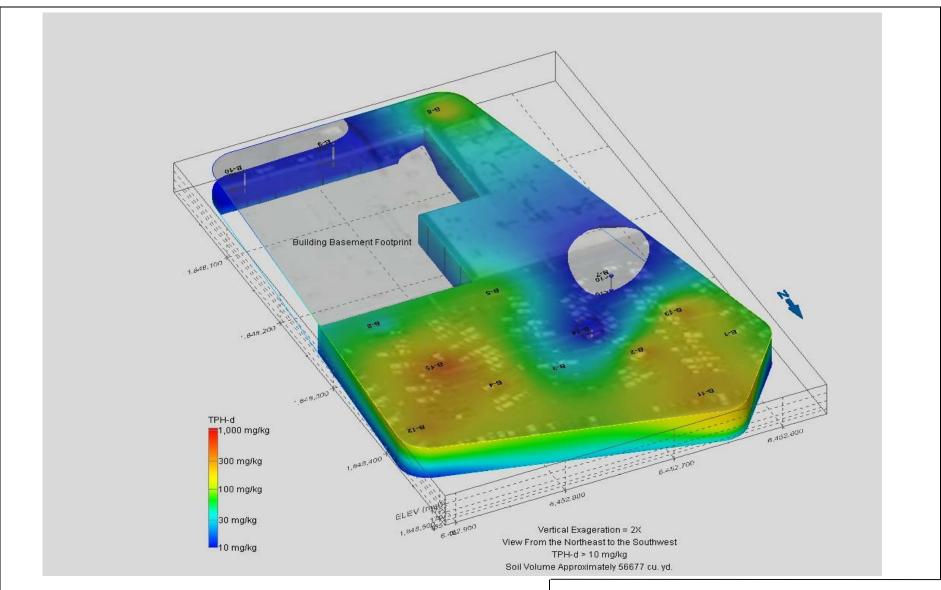

Vertical Exageration = 2X
View From the Northeast to the Southwest
MORO > 1,000 mg/kg
Soil Volume Approximately 69 cu. yd.

FIGURE 9b

Total Petroleum Hydrocarbon - Motor Oil (Greater than 1,000 mg/kg), Low View - 3D

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California

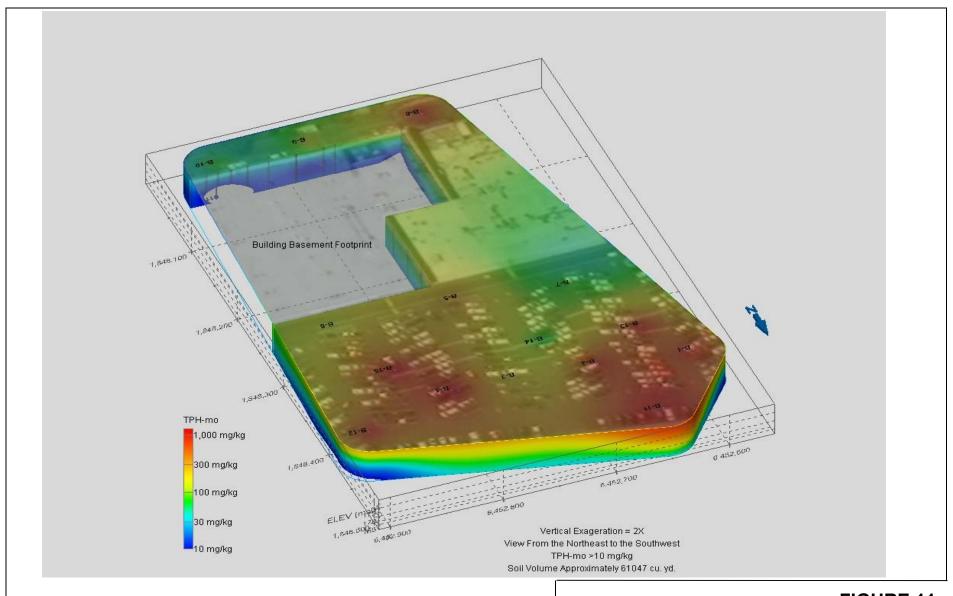


FIGURE 10 Total Petroleum Hydrocarbon - Diesel (All Detections) - 3D

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California

FIGURE 11 Total Petroleum Hydrocarbon - Motor Oil (All Detections) - 3D Phase II Environmental Site Assessment

Phase II Environmental Site Assessment 3rd and Fairfax - 6300 to 6332 West 3rd Street Los Angeles, California

APPENDIX A FIELD PROCEDURES

APPENDIX A – FIELD PROCEDURES

Drilling of Soil Borings

Prior to advancing the borings, proposed locations were outlined with white paint. Northgate then notified DigAlert (Underground Service Alert of Southern California) at least 48 hours prior to drilling activities, as required by law. As an additional precaution, Northgate contracted with Goldak, Incorporated, an independent geophysical utility locating company, to identify underground utilities and other subsurface obstructions so that the sampling locations were "clear" of any subgrade features. After underground features had been identified and underground utilities had been marked, boring locations were finalized.

All borings were advanced using 2.25" (outer diameter) direct-push drilling rods, with soil samples collected in advance of the bit face using a core sampler. Soil borings were advanced using a truck-mounted Geoprobe™ 6600 direct push rig. The borings were advanced using 2.25 inch diameter hollow rods. The lead drilling rod contained a removable 1.5 inch core sampler that was retrieved at the end of each run. Acetate sleeves were used as liners for the core sampler to collect undisturbed soil samples as the rods were advanced. Borings were advanced to depths of up to 30 feet bgs. All borings were located on private property, none were located in streets or sidewalks.

Installation of Temporary Monitoring Wells

Groundwater samples were collected from six separate boring locations using temporary monitoring wells installed with a direct-push drilling rig. The borings only remained open long enough to collect a groundwater sample before conversion to temporary soil vapor monitoring probes. Following collection of soil vapor samples, the borings were abandoned by backfilling with neat cement grout placed using the tremie method.

Polyvinyl chloride (PVC) well casing were installed in the deep borings to create temporary monitoring wells. The PVC casing terminated in five-feet of 0.010-inch slotted one inch SCH 40 PVC well screen, and threaded bottom cap. The screen was installed so it extended five feet into the saturated zone. The depth to static water within the well casing was determined, and the saturated thickness was calculated in order to facilitate well purging prior to sampling.

Groundwater samples were collected from the temporary wells using new, disposable Teflon bailers following purging of three casing volumes of water from the wells. Upon completion of groundwater and soil vapor sampling, the borings were abandoned by first removing the PVC well casing, and then backfilling with neat cement grout. The grout contained 3% by weight bentonite powder, and was emplaced using the tremie method from total depth to within three inches of the surface. The upper three inches were backfilled with asphalt patch or concrete to match the existing grade.

Installation of Temporary Soil Vapor Monitoring Probes

Temporary soil vapor probes (SMPs) were constructed in the five of the soil borings. Temporary SMPs were constructed inside the drill rods after they had advanced to total depth. Single completion SMPs were constructed at each location, with the probes set at various depths at each location between approximately 8 and 25 feet bgs.

The SMPs consisted of 6-inch long stainless steel implants set at the desired probe depths. Teflon tubing (0.33 inch diameter) was connected from the implant to the ground surface, and terminated above the existing surface with a valve. The borehole annulus around the implant and tubing was filled through the drill rods with sand 6 inches above and below the implant, 12 inches of dry bentonite placed 1 foot above the sand and hydrated bentonite chips from above the sand to the ground surface.

At the completion of vapor sampling, the borings were abandoned by removing the tubing and backfilling the borings with neat cement grout containing 3% hydrated bentonite powder. The upper three inches of the borings were abandoned using cold-patch asphalt or concrete to match the existing surface (see attached figure).

APPENDIX B
BORING LOGS

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring No.: B-1						
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader						
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/29/18	Date Completed: 01/29/18					
Drilling Contractor: BC2	Total Depth (ft bgs): 32.0	Depth to Water (ft bgs): NA					
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):					

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
1 2	B-1-1.0 07:55	X		Asphalt	4 inches of asphalt Poorly Graded Sand (SP): Dark brown 10YR (3/3), slightly moist, loose. 95% fine sand, 5% non-plastic fines. No odor or staining.		6.5	
3 4 5 6	B-1-5.0 08:14			SP			1.2	
8 9 10 11 12	B-1-10.0 08:19			SC	Clayey sand (SC): Yellowish brown, medium stiff, damp. 80% fine sand, 20% moderate to non-plastic fines. No odor or staining.		6.1	
13 14 15 16	B-1-15.0 08:21			SP	Poorly Graded Sand (SP): Medium brown, medium dense, damp. 95% fine sand, 5% non-plastic fines. No odor or staining.		5.1	
17 18 19				CL	Lean Clay with Sand (CL): Yellowish brown, medium stiff, damp. 15% fine sand, 85% moderate-plastic fines. No odor or staining.			

2047.15_3RD AND FAIRFAX.GPJ 2/22/18

DRB-ENVIRO BORING

24411 Ridge Route Drive, Suite 130

Boring Log

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 **Boring No.: B-1** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/29/18 Date Completed: 01/29/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-1-20.0 08:29 Lean Clay with Sand (CL): Yellowish brown, medium stiff, damp. 15% fine sand, 85% moderate-plastic fines. No odor or staining. -21 -22 -23 -24 -25 B-1-25.0 09:15 9.2 CL -26 -27 -28 -29 -30 B-1-30.0 -31 -32Total Depth = 32.0 feet -33 -34 -35 -36 -37 -38 -39 -40 -41 -42

Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring	No.: B-2
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/29/18	Date Completed: 01/29/18
Drilling Contractor: BC2	Total Depth (ft bgs): 25.0	Depth to Water (ft bgs): 21.15
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Collected groundwater sample B-2 @ 14:30 in temporary well constructed in boring. Boring abandoned with neat cement grout containing 3% bentonite powder.

	Sample I.D. Sample Time		USCS Code		Water Level	10.6 ev PID (ppm)
	B-2-1.0 13:30		Asphalt SP	4 inches of asphalt Poorly Graded Sand (SP): Dark brown, slightly moist, loose. 95% fine sand, 5% non-plastic fines. Moderate hydrocarbon odor, no staining.		31.7
	B-2-5.0 13:42		sc	Clayey sand (SC): Yellowish brown, medium stiff, damp. 80% fine sand, 20% moderate to non-plastic fines. No odor or staining.	-	5.0
0 1 2	B-2-10.0 13:48			Sandy Silt (ML): Olive green to greenish-gray, soft to medium-stiff, damp. 30% fine sand, 70% non to moderate-plastic fines. No odor or staining.		7.6
3 4	B-2-15.0 13:55		ML			6.3

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 Telephone: 949.716.0050

Boring Log

Fax: 949.716.0055 **Boring No.: B-2** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/29/18 Date Completed: 01/29/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-2-20.0 14:00 8.6 Sandy Silt (ML): Olive green to greenish-gray, soft to medium-stiff, damp. ML 30% fine sand, 70% non to moderate-plastic fines. No odor or staining. -21 Poorly Graded Sand (SP): Greenish gray, loose, damp. 95% fine sand, 5% non-plastic fines. No odor or staining. Static water level after groundwater sampling = 21.1' bgs -22 First water observed during drilling = 21.15' bgs SP -23 -24 -25 B-2-25.0 8.7 14:12 Total Depth = 25.0 feet -26 -27 -28 -29 -30 -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/18 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42 Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring	No.: B-3
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/30/18	Date Completed: 01/30/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): 22.85
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Collected groundwater sample B-3 @ 12:05 in temporary well constructed in boring. Boring abandoned with neat cement grout containing 3% bentonite powder.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)
				Asphalt	4 inches of asphalt Silty Sand (SM): Very dark greyish brown, loose, damp. 60% fine sand, 40%		
2 3	B-3-1.0 10:35	X		SM	non-plastic fines. No odor or staining.		3.3
-4					Clayey Sand (SC): Very dark grey, medium dense, slightly moist. 70% fine to coarse sand, 30% moderate to non-plastic fines. No odor or staining.		
-5	B-3-5.0				coarse sand, 30% moderate to non-plastic fines. No odor or staining.		4.3
-6	10:44	X		sc			
		/\					
-7							
-8					Lean Clay with Sand (CL): Dark grey 5Y (6/1), soft, damp. 20% fine sand,	+	
-9					80% moderate to high-plastic fines. No odor or staining.		
-10	D 0 40 0						
	B-3-10.0 10:48			-			3.3
-11				CL			
-12							
-13							
-14					O'll (MI) > Very deal area (TV (O(4)) = 40 - 1 + 400 / 5 - 1 + 000 / 1		
					Silt (ML): Very dark grey 5Y (3/1), soft, moist. 10% fine sand, 90% low to moderate-plastic fines. No odor or staining.		
-15	B-3-15.0 10:52						3.9
-16		\bigwedge		ML			
-17							
-18					Elastic Silt (MH): Dark grey 5Y (4/1), soft, moist. 10% fine sand, 90% moderate-plastic fines. No odor or staining.		
				МН	moderate-plastic lines. No oddi di stallling.		
-19							
					Page 1 of 2		

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Boring No.: B-3 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/30/18 Date Completed: 01/30/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-3-20.0 10:57 Elastic Silt (MH): Dark grey 5Y (4/1), soft, moist. 10% fine sand, 90% 2.5 moderate-plastic fines. No odor or staining. -21 -22 First water observed during drilling = 22.85' bgs ∇ -23 ▼ МН Static water level after groundwater sampling = 23.52' bgs -24 -25 B-3-25.0 11:00 2.7 -26 -27 Poorly Graded Sand (SP): Dark olive gray 5Y (3/2), loose, moist to wet. 95% fine to coarse sand, 5% moderate-plastic fines. No odor or staining. -28 SP -29 -30 B-3-30.0 0.1 Total Depth = 30.0 feet 11:12 -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/18 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42 Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Bori	ng No.: B-4
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/31/18	Date Completed: 01/31/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): 22.12
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Collected groundwater sample B-4 @ 10:25 in temporary well. Temporary soil vapor probe B-4-15.0 constructed. Boring abandoned with hydrated bentonite.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)
				Asphalt	4 inches of asphalt Poorly Graded Sand (SP): Black 5Y (7.5/1), loose, moist. 95% fine to coarse		
-1	B-4-1.0 09:35	X		SP	sand, trace of gravel. 5% moderate-plastic fines. Very faint petroleum odor, no staining.		18.5
-3					Silt (ML): Very dark grey 5Y (3/1), medium stiff, moist. 30%- very fine to coarse sand with trace gravels. 70%+ low to moderate-plastic fines. No odor or staining.		
-5 -6 -7	B-4-5.0 09:46	X		ML			14.2
-8 -9 -10	B-4-10.0 09:50			SM	Silty Sand (SM): Dark olive gray 5Y (3/2), loose, damp. 70% fine to very coarse sand, 10% fine subangular gravel, 20% moderate to non-plastic fines. No odor or staining.		7.3
-11 -12		X			Poorly Graded Sand (SP): Dark greyish brown 10Y (4/2), loose, moist. 95%		
-13 -14					fine to coarse sand, trace of gravel. 5% moderate-plastic fines. Moderate petroleum odor, no staining.		
-15 -16 -17	B-4-15.0 09:55	X		SP			38.4
-18				SM	Silty Sand (SM): Olive brown 2.5Y (4/3), loose to medium stiff, damp. 60% very fine to fine sand, 40% non-plastic fines. No odor or staining.		

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653 Telephone: 949.716.0050

Boring Log

Fax: 949.716.0055 **Boring No.: B-4** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/31/18 Date Completed: 01/31/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-4-20.0 10:00 Silty Sand (SM): Olive brown 2.5Y (4/3), loose to medium stiff, damp. 60% 15.5 very fine to fine sand, 40% non-plastic fines. No odor or staining. -21 SM -22 First water observed during drilling = 22.12' bgs Static water level after groundwater sampling = 22.5' bgs Elastic Silt with Sand (MH): Olive grey 5Y (5/2), soft, moist. 20% fine sand, -23 80% non to moderate-plastic fines. No odor or staining. -24 МН -25 B-4-25.0 11.4 10:05 -26 -27 Silty Sand (SM): Dark olive 5Y (3/2), loose to medium dense, wet. 65% fine sand, 35% non-plastic fines. No odor or staining. -28 SM -29 -30 B-4-30.0 Total Depth = 30.0 feet 10:09 -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/1 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42 Page 2 of 2

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring No.: B-5					
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader					
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/30/18	Date Completed: 01/30/18				
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA				
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):				

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	111111111111111111111111111111111111111
				Asphalt	4 inches of asphalt Clayey sand (SC): Black 10YR (7/1), medium dense, slightly moist. 70% fine			
2	B-5-1.0 07:31				to coarse sand, trace of gravel. 30% moderate to non-plastic fines. Moderate hydrocarbon odor, no discoloration or staining.		0.8	
3								
4				sc				
5	B-5-5.0 07:50				At 5.0' no odor or staining		4.1	
6 7		/\						
8								
9					Lean Clay (CL): Very dark grey 5Y (3/1), soft, damp. 5% fine sand, 95% moderate to high-plastic fines. No odor or staining.			
10	B-5-10.0						2.7	
11	07:55	X						
12								
13				CL				
14								
15								
	B-5-15.0 07:58	\bigvee			Increasing to 10% fine sand and moist at 15.0'		10.1	
16		/\						
17								
18					Clayey sand (SC): Very dark grey 5Y (3/1), medium dense, slightly moist. 70% fine sand, 5% fine gravel, 25% moderate to non-plastic fines. No odor or			
19				SC	staining.			
			111111	1	Page 1 of 2			<u> </u>

2047.15_3RD AND FAIRFAX.GPJ 2/22/18

DRB-ENVIRO BORING -42

-37

-38

-39

-40

-41

24411 Ridge Route Drive, Suite 130 **Boring Log** Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 **Boring No.: B-5** Project Number: 2047.15 Project Name: Holland 3rd & Fairfax Logged by: G. Baader Date Started: 01/30/18 Date Completed: 01/30/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-5-20.0 08:03 2.1 -21 Lean Clay with Sand (CL): Dark yellowish brown 10YR (4/6), medium dense, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. -22 -23 -24 -25 B-5-25.0 08:10 Color change to Dark yellowish brown 10YR (4/4) at 25.0' 1.1 CL -26 -27 -28 -29 -30 B-5-30.0 Total Depth = 30.0 feet -31 -32-33 -34 -35

Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Bori	ng No.: B-6
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/29/18	Date Completed: 01/29/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Temporary soil vapor probe B-6-10.0 constructed. Boring abandoned with hydrated bentonite. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)
				Asphalt	4 inches of asphalt Poorly Graded Sand (SP): Greenish gray 2Gley (5/1), loose, dry. 95% fine to	-	
1 2	B-6-1.0 15:37			SP	very coarse sand. 5% moderate-plastic fines. No odor or staining.		5.6
3 4					Silty Sand (SM): Dark grayish brown 2.5Y (4/2), loose, slightly moist. 70% very fine to medium sand, 10% fine subangular gravel, 20% moderate to non-plastic fines. No odor or staining.		
-5 -6 -7	B-6-5.0 15:45			SM			8.9
-8 -9 -10	B-6-10.0 15:51			ML	Sandy Silt (ML): Light grey 2.5Y (7/1), soft, slightly moist. 30% very fine to coarse sand, 70% low to moderate-plastic fines. No odor or staining. Mottled appearance.		10.2
-11 -12 -13				IVIL			
-14 -15	B-6-15.0				Lean Clay (CL): Light grey 10YR (7/1), medium stiff, damp. 5% fine sand, 95% moderate to high-plastic fines. No odor or staining. Mottled appearance.		7.4
-16 -17	15:56	X		CL			
-18				ML	Sandy Silt (ML): Light grey 2.5Y (7/1), very stiff, slightly moist. 30% very fine to coarse sand, 70% low to moderate-plastic fines. No odor or staining. Mottled appearance.		

2047.15_3RD AND FAIRFAX.GPJ 2/22/1

DRB-ENVIRO BORING

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653

Boring Log

Telephone: 949.716.0050 Fax: 949.716.0055 **Boring No.: B-6** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/29/18 Date Completed: 01/29/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill Sandy Silt (ML): Light grey 2.5Y (7/1), very stiff, slightly moist. 30% very fine 5.0 B-6-20.0 16:01 to coarse sand, 70% low to moderate-plastic fines. No odor or staining. Mottled appearance. -21 ML -22 Lean Clay (CL): Dary grey 10YR (4/1), soft, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. -23 -24 CL -25 B-6-25.0 6.5 16:06 -26 Sandy Silt (ML): Greenish grey 2Gley (5/1), soft, slightly moist. 30% very fine -27 to medium sand, 70% low to moderate-plastic fines. No odor or staining. -28 ML -29 -30 B-6-30.0 Total Depth = 30.0 feet -31 -32-33 -34 -35 -36 -37 -38 -39 -40 -41 -42

Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Borin	ng No.: B-7
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/30/18	Date Completed: 01/30/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
2	B-7-1.0 14:44			Asphalt SC	4 inches of asphalt Clayey sand (SC): Black 10YR (2/1), medium dense, slightly moist. 60% very fine to coarse sand, 40% moderate to high-plastic fines. No odor or staining.		5.9	
3 4 5 6	B-7-5.0 14:50			ML	Sandy Silt (ML): Olive gray 5Y (4/2), soft, slightly moist. 30% fine sand, 70% non to moderate-plastic fines. No odor or staining.	-	2.2	
9 10 11 12	B-7-10.0 14:53				Poorly Graded Sand (SP): Very dark gray 5Y (3/1), slightly moist, loose. 80% fine to coarse sand, 20% moderate-plastic fines. No odor or staining.	_	2.8	
13 14 15 16	B-7-15.0 14:56			SP	Increasing to 90% sand at 15.0'		3.4	
18								

2047.15_3RD AND FAIRFAX.GPJ 2/22/1

DRB-ENVIRO BORING

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653

Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Fax: 949.716.0055 Boring No.: B-7 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/30/18 Date Completed: 01/30/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-7-20.0 14:59 Poorly Graded Sand (SP): Very dark gray 5Y (3/1), slightly moist, loose. 80% 3.2 fine to coarse sand, 20% moderate-plastic fines. No odor or staining. SP -21 -22 Lean Clay with Sand (CL): Dark yellowish brown 10YR (5/4), medium stiff, slightly moist. 20% fine sand, 80% moderate to high-plastic fines. No odor or -23-24 CL -25 B-7-25.0 2.4 15:04 -26 -27 Elastic Silt (MH): Yellowish brown 10YR (5/6), medium stiff, slightly moist. 25% very fine to medium sand, 75% low to moderate-plastic fines. No odor or staining. -28 МН -29 -30 B-7-30.0 3.4 Total Depth = 30.0 feet 15:07 -31 -32-33 -34 -35 -36 -37 -38 -39 -40 -41 -42

Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Bori	ng No.: B-8
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/31/18	Date Completed: 01/31/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Asphal 1	4 inches of asphalt Lean Clay with Sand (CL): Dark brown 7.5YR (3/3), medium stiff, slightly moist. 20% very fine to coarse sand, 80% moderate to high-plastic fines. No odor or staining.	-	
GL B-8-5.0 O7:28 B-8-10.0 O7:33 B-8-15.0 O7:39 SC			0.3
B-8-10.0 07:33 11 12 13 15 B-8-15.0 07:39	Moderate to strong petroleum odor at 5.0'		80
SC B-8-15.0 O7:39	Clayey sand (SC): Olive gray 5Y (4/2), loose to medium dense, slightly moist. 60% very fine to medium sand, 40% moderate to high-plastic fines. Moderate hydrocarbon odor, no discoloration or staining.		31.1
0	Color change to Olive gray 5Y (5/2) with faint hydrocarbon odor at 15.0'		34.2
7 8 9 CL	Lean Clay (CL): Olive gray 5Y (5/2), slightly moist, very stiff. 10% fine sand, 90% moderate-plasticity fines. No odor or staining.	_	

Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Boring No.: B-8 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/31/18 Date Completed: 01/31/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-8-20.0 07:44 Lean Clay (CL): Olive gray 5Y (5/2), slightly moist, very stiff. 10% fine sand, 3.5 90% moderate-plasticity fines. No odor or staining. -21 CL -22 Elastic Silt (MH): Yellowish brown 10YR (5/6), very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. -23 -24 -25 B-8-25.0 07:50 5.0 -26 -27 Sandy Silt (ML): Yellowish brown 10YR (5/6), very stiff, slightly moist. 30% very fine to medium sand, 70% non to moderate-plastic fines. No odor or staining. -28 ML -29 -30 B-8-30.0 7.8 Total Depth = 30.0 feet -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/18 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42 Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Bori	Boring No.: B-9				
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader					
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/30/18	Date Completed: 01/30/18				
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA				
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):				

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
			Asphalt				
B-9-1.0 16:30	X		SP	to very coarse sand, 5% non to moderate-plastic fines. No odor or staining.		1.4	
		/////		Clayey sand (SC): Very dark grey 5Y (3/1), loose to medium dense, slightly			
				moist. 60% very fine to medium sand, 40% moderate to high-plastic fines. No odor or staining.			
B-9-5.0 16:40			SC			3.0	
				Lean Clay with Sand (CL): Gray 5Y (5/1), medium stiff, slightly moist. 20% very fine to medium sand. 80% moderate to high-plastic fines. No odor or	$\mid \cdot \mid$		
				staining.			
B-9-10.0 16:43	7					3.2	
	Λ						
			CL				
B-9-15.0	7					2.2	
10.50	X						
				Elastic Silt (MH): Olive gray 5Y (4/2), soft, slightly moist. 5% fine sand, 95%	$\mid \cdot \mid$		
			МН	moderate to non-plastic fines. No odor or staining.			
	B-9-1.0 16:30 B-9-5.0 16:40	B-9-1.0 16:30 B-9-5.0 16:40 B-9-10.0 16:43	B-9-1.0 16:30 B-9-5.0 16:40 B-9-10.0 16:43	B-9-1.0 16:30 B-9-5.0 16:40 SC B-9-15.0 16:50 CL	Asphalt 8 inches of asphalt Poorly Graded Sand (SP): Dark grey 5Y (4/1), loose, slightly moist. 95% fine to very coarse sand, 5% non to moderate-plastic fines. No odor or staining. Clayey sand (SC): Very dark grey 5Y (3/1), loose to medium dense, slightly moist. 60% very fine to medium sand, 40% moderate to high-plastic fines. No odor or staining. SC Lean Clay with Sand (CL): Gray 5Y (5/1), medium stiff, slightly moist. 20% very fine to medium sand, 80% moderate to high-plastic fines. No odor or staining. CL B-9-15.0 16-50 CL Elastic Silt (MH): Olive gray 5Y (4/2), soft, slightly moist. 5% fine sand, 95% moderate to non-plastic fines. No odor or staining.	Asphalt 8 inches of asphalt Poorty Graded Sand (SP): Dark grey 5Y (4/1), loose, slightly moist. 95% fine to very coarse sand, 5% non to moderate-plastic fines. No odor or staining. Clayey sand (SC): Very dark grey 5Y (3/1), loose to medium dense, slightly moist. 60% very fine to medium sand, 40% moderate to high-plastic fines. No odor or staining. B-9-5.0 16-40 SC Lean Clay with Sand (CL): Gray 5Y (5/1), medium stiff, slightly moist. 20% very fine to medium sand, 80% moderate to high-plastic fines. No odor or staining. CL B-9-15.0 16-50 Elastic Silt (MH): Olive gray 5Y (4/2), soft, slightly moist. 5% fine sand, 95% moderate to non-plastic fines. No odor or staining.	Asphet 8 inches of asphalt Poorty Graded Sand (SP): Dark grey 5Y (4/1), loose, slightly moist, 95% fine to very coarse sand, 5% non to moderate-plastic fines. No odor or staining. Clayey sand (SC): Very dark grey 5Y (3/1), loose to medium dense, slightly moist, 60% very fine to medium sand, 40% moderate to high-plastic fines. No odor or staining. SC Lean Clay with Sand (CL): Gray 5Y (5/1), medium stiff, slightly moist, 20% very fine to medium sand, 80% moderate to high-plastic fines. No odor or staining. 3.2 CL B-9-15.0 CL Elastic Silt (MH): Olive gray 5Y (4/2), soft, slightly moist, 5% fine sand, 95% moderate to non-plastic fines. No odor or staining.

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Fax: 949.716.0055 **Boring No.: B-9** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/30/18 Date Completed: 01/30/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-9-20.0 16:57 Elastic Silt (MH): Olive gray 5Y (4/2), soft, slightly moist. 5% fine sand, 95% 1.9 moderate to non-plastic fines. No odor or staining. -21 МН -22 Lean Clay with Sand (CL): Olive gray 5YR (4/2), medium stiff, slightly moist. 30% fine sand, 70% moderate to high-plastic fines. No odor or staining. -23 -24 -25 B-9-25.0 17:05 2.6 CL -26 -27 -28 -29 -30 B-9-30.0 Total Depth = 30.0 feet -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/18 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42 Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring No.: B-10				
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader				
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/31/18	Date Completed: 01/31/18			
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA			
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):			

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Boring abandoned with neat cement grout containing 3% bentonite powder. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
.				Asphalt	4 inches of asphalt Poorly Graded Sand (SP): Dark greyish brown 2.5Y (4/2), loose, slightly moist. 95% fine sand, trace gravel, 5% non to moderate-plastic fines. No odor			
2	B-10-1.0 13:12			SP	or staining.		5.4	
3					Silty sand (SM): Very dark greyish brown 2.5Y (3/2), loose to medium dense, slightly moist. 60% very fine to medium sand, 40% moderate to non-plastic			
4					fines. No odor or staining.			
-5	B-10-5.0 13:15			SM			9.0	
-6	10.13	X		. SIVI				
-7								
-8					Elastic Silt (MH): Dark greyish brown 10YR (4/2), soft to medium stiff, slightly			
-9					moist. 5% very fine to medium sand, 95% moderate to high-plastic fines. No odor or staining.			X
-10	B-10-10.0						9.5	X
-11	13:18	X		MH				
-12		/						
-13					Clayey Sand (SC): Very dark grayish brown 10YR (3/2), soft to medium-stiff,			
-14					slightly moist. 60% fine sand, 40% moderate to high-plastic fines. No odor or staining.			
-15	D 10 15 0						10 F	
-16	B-10-15.0 13:20			SC			10.5	
-17		/ \						X
-18								
				N.C.	Silt with Sand (ML): Dark gray 5Y (4/1), medium dense, slightly moist. 40% very fine to medium sand, 60% non-plastic fines. No odor or staining.			
-19				ML				

2047.15_3RD AND FAIRFAX.GPJ 2/22/18

DRB-ENVIRO BORING -42

-37

-38

-39

-40

-41

24411 Ridge Route Drive, Suite 130 **Boring Log** Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 Boring No.: B-10 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/31/18 Date Completed: 01/31/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-10-20.0 13:24 Silt with Sand (ML): Dark gray 5Y (4/1), medium dense, slightly moist. 40% 9.7 very fine to medium sand, 60% non-plastic fines. No odor or staining. -21 ML -22 Elastic Silt (MH): Dark gray 10YR (4/1), stiff, slightly moist. 10% fine sand, 90% moderate-plastic fines. No odor or staining. -23 -24 -25 B-10-25.0 7.6 13:28 МН -26 -27 -28 -29 -30 B-10-30.0 Total Depth = 30.0 feet 13:32 -31 -32-33 -34 -35 -36

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Borin	Boring No.: B-11				
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader					
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/29/18	Date Completed: 01/29/18				
Drilling Contractor: BC2	Total Depth (ft bgs): 28.0	Depth to Water (ft bgs): 22.1				
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):				

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Temporary vapor well B-11-8.0 constructed in boring. Boring abandoned with hydrated bentonite.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	Backfill
-1	B-11-1.0 10:00			Asphalt SP	4 inches of asphalt Poorly Graded Sand (SP): Dark brown 10YR (3/3), slightly moist, loose. 95% fine sand, 5% non-plastic fines. No odor or staining.		14.6	
-3 -4 -5 -6	B-11-5.0 10:11	X		SC	Clayey Sand (SC): Medium brown 10YR (5/3), medium dense, slightly moist. 80% fine sand, 20% moderate to high-plastic fines. No odor or staining.		5.7	
8 9 -10 11 12	B-11-10.0 10:15	X			Lean Clay with Sand (CL): Greenish gray Gley (6/1) to brown 7.5YR (2/2), medium-stiff to stiff, slightly moist to moist. 30% fine sand, 70% non to moderate-plastic fines. No odor or staining.		25.3	
13 14 15 16	B-11-15.0 10:20	X		CL			14.6	
17 18 19					Mottled appearance at 19.0'			

24411 Ridge Route Drive, Suite 130 **Boring Log** Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 Boring No.: B-11 Project Number: 2047.15 Project Name: Holland 3rd & Fairfax Logged by: G. Baader Date Started: 01/29/18 Date Completed: 01/29/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill Lean Clay with Sand (CL): Greenish gray Gley (6/1) to brown 7.5YR (2/2), medium-stiff to stiff, slightly moist to moist. 30% fine sand, 70% non to B-11-20.0 10:25 9.4 moderate-plastic fines. No odor or staining. -21 First water observed during drilling = 21.1' bgs Ţ -22 -23 CL -24 -25 B-11-25.0 10:30 8.4 -26 -27 -28

-	Total Depth = 28.0 feet	
-29		
30		
-31		
-32		
-33		
-34		
-35		
-36		
-37		
-38		
-39		
-37 -38 -39 -40 -41 -42		
-41		
-42		
	Page 2 of 2	

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Borir	ng No.: B-12
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader	
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/31/18	Date Completed: 01/31/18
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Temporary soil vapor probe B-12-15.0 constructed in boring. Boring abandoned with hydrated bentonite. Groundwater not encountered.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
2	B-12-1.0 08:10	X		Asphalt SM	4 inches of asphalt Silty Sand (SM): Black 5Y (2.5/1), loose, slightly moist. 60% very fine to medium sand, trace gravel, 40% moderate to non-plastic fines. Moderate hydrocarbon odor, no discoloration or staining.		40.5	
1 5 6	B-12-5.0 08:16	X			Clayey Sand (SC): Dark olive gray 5Y (3/2), medium dense, slightly moist. 60% very fine to medium sand, 40% moderate to high-plastic fines. No odor or staining.		9.1	
8 9 10 11	B-12-10.0 08:20	X		SC			10.2	
13 14 15 16	B-12-15.0 08:25	X		SP	Poorly Graded Sand (SP): Dark greyish brown 2.5Y (4/2), loose, slightly moist. 95% very fine to coarse sand, trace gravel, 5% non-plastic fines. No odor or staining.		11.2	
18 19				МН	Elastic Silt (MH): Gray 5Y (5/2), stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining.			

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653 Telephone: 949.716.0050

Boring Log

Fax: 949.716.0055 Boring No.: B-12 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/31/18 Date Completed: 01/31/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-12-20.0 08:28 Elastic Silt (MH): Gray 5Y (5/2), stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. 6.2 -21 Clayey Sand (SC): Dark olive gray 5Y (3/2): medium stiff, slightly moist. 60% fine sand, 40% moderate to high-plasticity fines. No odor or staining. -22 -23 -24 -25 B-12-25.0 08:33 10.3 SC -26 -27 -28 -29 -30 B-12-30.0 Total Depth = 30.0 feet -31 -32-33 -34 -35 -36 2047.15_3RD AND FAIRFAX.GPJ 2/22/18 -37 -38 -39 -40 -41 DRB-ENVIRO BORING -42

Page 2 of 2

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15

Boring No.: B-13

Project Name: Holland 3rd & Fairfax

Logged by: G. Baader

Location: 6300 West 3rd St. Los Angeles

Date Started: 01/30/18

Drilling Contractor: BC2

Double Dia. (in): 2.25

Drifface Elevation (ft MSL):

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Collected groundwater sample B-12 @ 14:03 in temporary well constructed in boring. Boring abandoned with neat cement grout containing 3% bentonite powder.

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (ppm)	
				Asphalt	4 inches of asphalt Clayey Sand (SC): Very dark brown 10YR (2/2), medium dense, slightly moist.			
·1	B-13-1.0 13:07				670% fine to coarse sand, trace gravel, 40% moderate to high-plastic fines. Moderate hydrocarbon odor, no discoloration or staining.		5.3	
-2								
-3								
-4				SC				
-5	D 40 5 0				No oden en delaire et 5 O		2.0	
	B-13-5.0 13:15				No odor or staining at 5.0'		2.0	
-6								
-7								
-8					Silt (ML): Very dark grey 5Y (3/1), soft, slightly moist. 20% very fine to medium sand, 80% low to moderate-plastic fines. No odor or staining.			
-9					medium sand, 60% low to moderate-plastic lines. No odor or staining.			
-10	B-13-10.0		7				2.6	
-11	13:18	X		ML				
-12		/ \						
-13					Poorly Graded Sand (SP): Dark gray 5Y (4/1), loose, slightly moist. 95% fine to coarse sand, 5% moderate-plastic fines. No odor or staining.			
-14								
-15	B-13-15.0 13:22						8.1	
-16	13.22	X						
-17				SP				
-18								
-19					First water observed during drilling = 19.67' bgs	Ţ		
			<u>padanta</u>	1	Page 1 of 2			_\\\

24411 Ridge Route Drive, Suite 130

Boring Log

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 **Boring No.: B-13** Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Location: 6300 West 3rd St. Los Angeles Date Started: 01/30/18 Date Completed: 01/30/18 ø

Depth (ft)	Sample I.D. Sample Time	Sample Type	Graphic Log	USCS Code	Material Description	Water Level	10.6 ev PID (p	Backfill
- 21 -	B-13-20.0 13:27	X		SP	Static water level after groundwater sampling = 19.65' bgs Poorly Graded Sand (SP): Dark gray 5Y (4/1), loose, slightly moist. 95% fine to coarse sand, 5% moderate-plastic fines. No odor or staining.		3.8	
-22 - -23 - -24				МН	Elastic Silt (MH): Dark grey 5Y (4/1), soft, wet. 10% fine sand, 90% moderate-plastic fines. No odor or staining.			
- -25 - -26	B-13-25.0 13:31	X			Total Depth = 25.0 feet		3.2	
- -27 -								
-28 - -29								
-30 - -31								
-32 -33								
-34 - -35								
-36 87/25/25/27								

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Borir	Boring No.: B-14					
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader						
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/30/18	Date Completed: 01/30/18					
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): 23.5					
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):					

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Collected groundwater sample B-14 @ 09:50 in temporary well constructed in boring. Boring abandoned with neat cement grout containing 3% bentonite powder.

Depth (ft)	Sample I.D. Sample Time	Sample Time Sample Time Sample Time Graphic Log Material Description		Water Level	10.6 ev PID (ppm)			
1 2	B-14-1.0 08:45	X		Asphalt	4 inches of asphalt Lean Clay (CL): Very dark grey 10 YR (3/1), slightly moist, very stiff. 5% fine sand, 95% moderate to high-plastic fines. Slight hydrocarbon odor, no discoloration or staining.		1.4	
-3 -4 -5 -6 -7	B-14-5.0 08:50	X		CL	No odor or staining at 5.0', coarsening to 10% fine sand.		5.8	
-8 -9 -10	B-14-10.0 08:59				Silty Sand (SM): Very dark gray 5YR (3/1), loose, slightly moist. 80% fine to medium sand, 20% moderate-plastic fines. No odor or staining.		3.1	
-12 -13 -14 -15	B-14-15.0 09:03			SM	Color change to dark olive gray 5YR (3/2) at 15.0', increasing to 85% fine to medium sand.		5.6	
·16 ·17 ·18 ·19								

24411 Ridge Route Drive, Suite 130 **Boring Log** Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055 Boring No.: B-14 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/30/18 Date Completed: 01/30/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-14-20.0 09:07 Silty Sand (SM): Very dark gray 5YR (3/1), loose, slightly moist. 80% fine to 3.8 medium sand, 20% moderate-plastic fines. No odor or staining. Trace of gravel at 20.0' -21 Static water level after groundwater sampling = 20.6' bgs -22 -23First water observed during drilling = 23.5' bgs $\sqrt{}$ -24 -25 SM B-14-25.0 Color change to olive gray 5Y (4/2) at 25.0', fines increasing to 40% 3.1 09:09 -26 -27 -28 Color change to dark gray 5Y (4/1) at 28.0', sand increasing to 70% -29 -30 B-14-30.0 Total Depth = 30.0 feet -31 -32-33 -34 -35 -36 -37

2047.15_3RD AND FAIRFAX.GPJ 2/22/1

DRB-ENVIRO BORING -42

-38

-39

-40

-41

Laguna Hills, CA 92653 Telephone: 949.716.0050 Fax: 949.716.0055

Boring Log

Project Number: 2047.15	Boring No.: B-15			
Project Name: Holland 3rd & Fairfax	Logged by: G. Baader			
Location: 6300 West 3rd St. Los Angeles	Date Started: 01/31/18	Date Completed: 01/31/18		
Drilling Contractor: BC2	Total Depth (ft bgs): 30.0	Depth to Water (ft bgs): NA		
Drilling Method: Direct Push	Borehole Dia. (in): 2.25	Surface Elevation (ft MSL):		

Remarks: Geoprobe 6400 limited access rig. Continuous core collected in acetate liners. Temporary soil vapor probe B-15-25.0 constructed in boring. Boring abandoned with hydrated bentonite. Groundwater not encountered.

Clayey Sand (SC): Black 10YR (2/1), medium dense, slightly moist. 70% very	10.6 ev PID (ppm)	Water Level	Material Description	Graphic Log	Sample Type	Sample I.D. Sample Time	Depth (ft)
to medium sand, 40% moderate to non-plastic fines. No odor or staining. Poorly Graded Sand (SP): Dark greyish brown 2.5Y (4/2), loose, slightly moist. 95% very fine to coarse sand, trace gravel, 5% non-plastic fines. No odor or staining. SP Elastic Silt (MH): Very dark grayish brown 2.5Y (3/2), very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. Caliche nodules to 1/4"	12.8		fine to medium sand, 30% moderate to high-plastic fines. Moderate petroleum		X		2
moist. 95% very fine to coarse sand, trace gravel, 5% non-plastic fines. No odor or staining. B-15-10.0 10:52 SP Elastic Silt (MH): Very dark grayish brown 2.5Y (3/2), very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. Caliche nodules to 1/4"	5.0		Silty Sand (SM): Very dark gray 2.5Y (3/1), loose, slightly moist. 60% very fine to medium sand, 40% moderate to non-plastic fines. No odor or staining.		X		
Elastic Sift (MH): Very dark grayish brown 2.5Y (3/2), Very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. Caliche nodules to 1/4"	2.5		moist. 95% very fine to coarse sand, trace gravel, 5% non-plastic fines. No			B-15-10.0 10:52	0
6 MH MH 8	3.1		Elastic Silt (MH): Very dark grayish brown 2.5Y (3/2), very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. Caliche nodules to 1/4"			B-15-15.0 10:55	44

2047.15_3RD AND FAIRFAX.GPJ 2/22/1

DRB-ENVIRO BORING

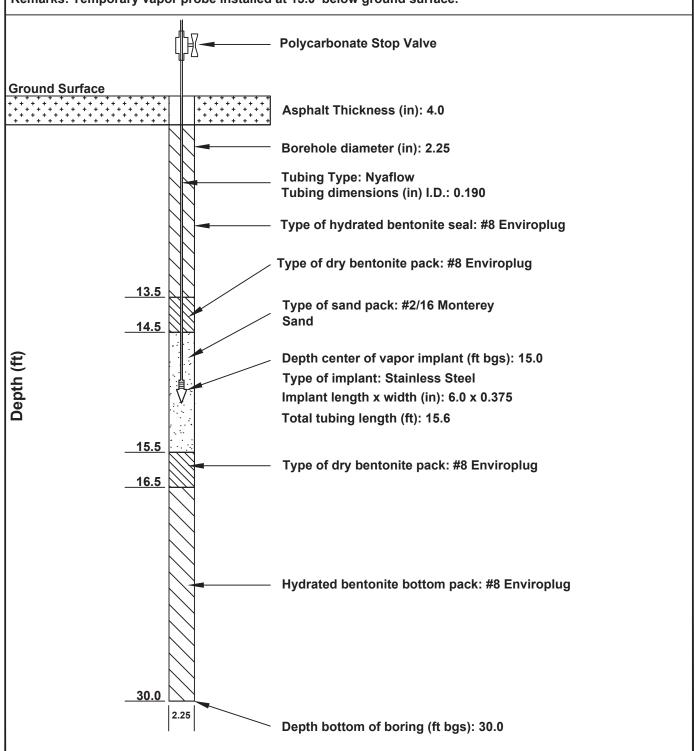
24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653

Telephone: 949.716.0050

Boring Log

Fax: 949.716.0055 Boring No.: B-15 Project Number: 2047.15 Logged by: G. Baader Project Name: Holland 3rd & Fairfax Date Started: 01/31/18 Date Completed: 01/31/18 Location: 6300 West 3rd St. Los Angeles 10.6 ev PID (ppm) Sample I.D. Sample Time Sample Type **Graphic Log USCS** Code Water Level Depth (ft) **Material Description** Backfill B-15-20.0 11:00 7.0 Elastic Silt (MH): Very dark grayish brown 2.5Y (3/2), very stiff, slightly moist. 15% fine sand, 85% moderate to high-plastic fines. No odor or staining. Caliche nodules to 1/4" -21 -22 -23 -24 -25 B-15-25.0 Color change to yellowish brown 10YR (5/6) at 25.0', sand decreasing to 10%, 5.7 11:09 some caliche nodules to 1/4" -26 -27 -28 Color change to dark gray 2.5Y (4/1) with trace of gravel to 3/4" at 28.0' -29 -30 B-15-30.0 6.2 Total Depth = 30.0 feet 11:15 -31 -32-33 -34 -35 -36 -37 -38 -39 -40 -41 -42 Page 2 of 2

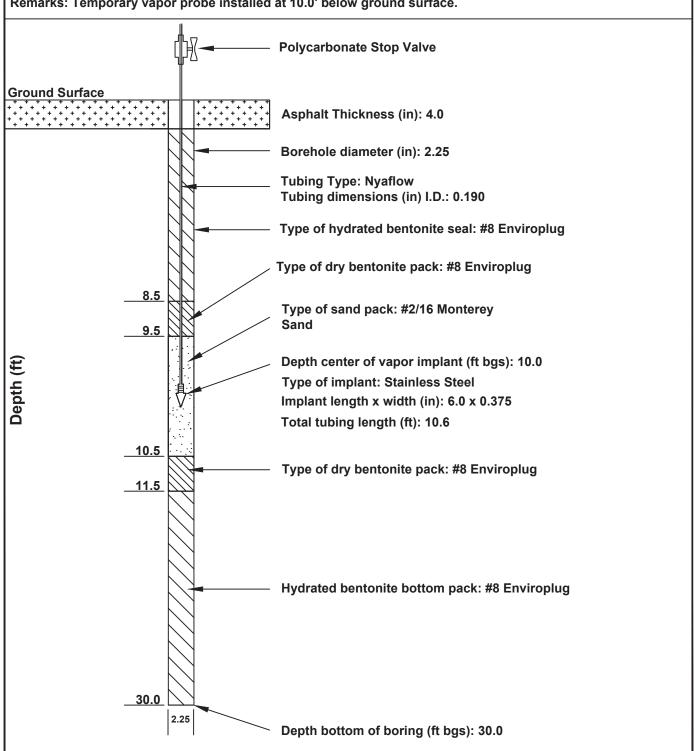
APPENDIX C SOIL VAPOR PROBE CONSTRUCTION DETAILS



Northgate Environmental Management 24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 (949) 716-0050; fax (949) 716-005**5**

Project Number: 2047.15		Probe Identification: B-4-15.0'		
Project Name: Holland 3rd & F	airfax	Location: 6300 W. 3rd Street, Los Angeles, CA		
Installed By: BC2 Environmen	tal	Drawn By: Dana R. Brown		
Drilling Method: Direct Push	Date Started: 1/31/2018	Date Completed: 1/31/2018		
Borehole Dia. (in): 2.25	Total Depth (ft): 30.0	Depth to Water (ft): 22.5		

Remarks: Temporary vapor probe installed at 15.0' below ground surface.

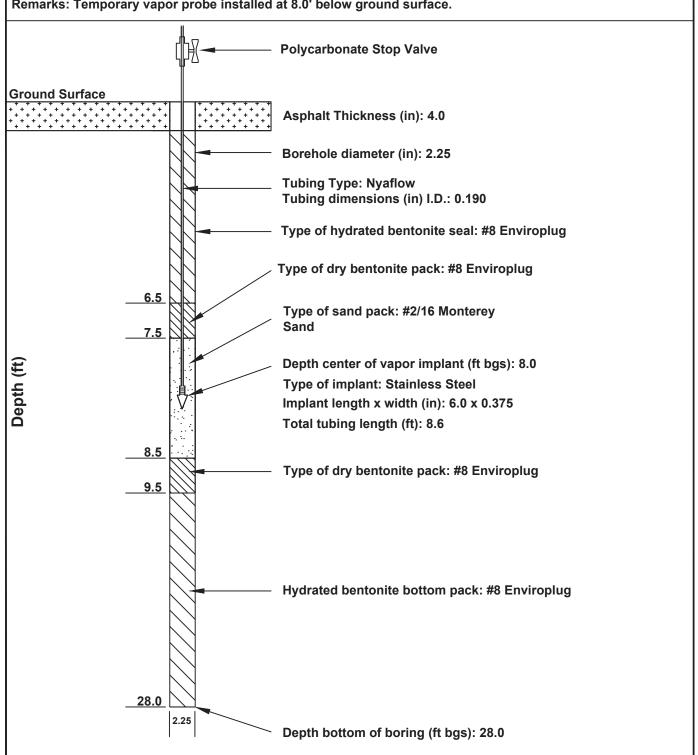


Northgate Environmental Management

24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 (949) 716-0050; fax (949) 716-005**5**

Project Number: 2047.15		Probe Identification: B-6-10.0'		
Project Name: Holland 3rd & Fa	airfax	Location: 6300 W. 3rd Street, Los Angeles, CA		
Installed By: BC2 Environment	al	Drawn By: Dana R. Brown		
Drilling Method: Direct Push	Date Started: 1/29/2018	Date Completed: 1/29/2018		
Borehole Dia. (in): 2.25	Total Depth (ft): 30.0	Depth to Water (ft): NA		

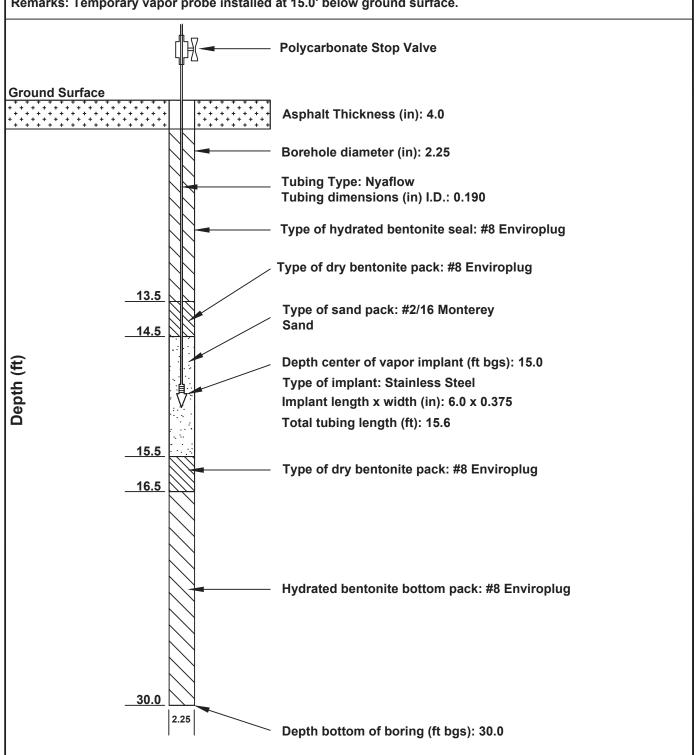
Remarks: Temporary vapor probe installed at 10.0' below ground surface.



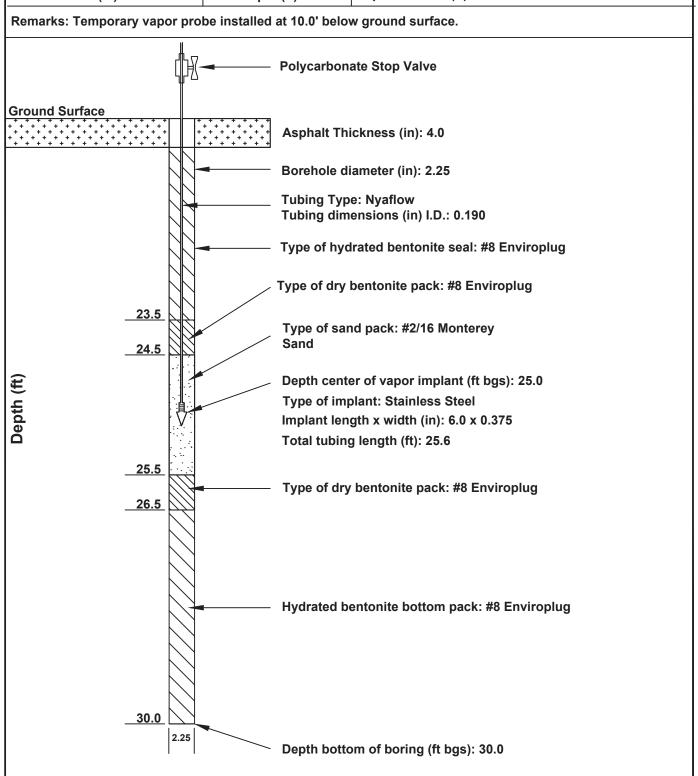
24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 (949) 716-0050; fax (949) 716-005**5**

Project Number: 2047.15		Probe Identification: B-11-8.0'		
Project Name: Holland 3rd & F	airfax	Location: 6300 W. 3rd Street, Los Angeles, CA		
Installed By: BC2 Environment	al	Drawn By: Dana R. Brown		
Drilling Method: Direct Push	Date Started: 1/29/2018	Date Completed: 1/29/2018		
Borehole Dia. (in): 2.25	Total Depth (ft): 28.0	Depth to Water (ft): 22.1		

Remarks: Temporary vapor probe installed at 8.0' below ground surface.



Northgate Environmental Management 24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 (949) 716-0050; fax (949) 716-005**5**


Project Number: 2047.15		Probe Identification: B-12-15.0'		
Project Name: Holland 3rd & Fa	airfax	Location: 6300 W. 3rd Street, Los Angeles, CA		
Installed By: BC2 Environment	al	Drawn By: Dana R. Brown		
Drilling Method: Direct Push	Date Started: 1/31/2018	Date Completed: 1/31/2018		
Borehole Dia. (in): 2.25 Total Depth (ft): 30.0		Depth to Water (ft): NA		

Remarks: Temporary vapor probe installed at 15.0' below ground surface.


Northgate Environmental Management 24411 Ridge Route Drive, Suite 130 Laguna Hills, CA 92653 (949) 716-0050; fax (949) 716-0055

Project Number: 2047.15		Probe Identification: B-15-25.0'			
Project Name: Holland 3rd & F	airfax	Location: 6300 W. 3rd Street, Los Angeles, CA			
Installed By: BC2 Environmen	tal	Drawn By: Dana R. Brown			
Drilling Method: Direct Push	Date Started: 1/31/2018	Date Completed: 1/31/2018			
Borehole Dia. (in): 2.25 Total Depth (ft): 30.0		Depth to Water (ft): NA			
4	•	•			

APPENDIX D LABORATORY ANALYTICAL REPORTS

07 February 2018

Derrick Willis
Northgate Environmental Management -- Laguna Hills
24411 Ridge Route Drive, Suite 130
Laguna Hills, CA 92653

RE: 3rd & Fairfax

Enclosed are the results of analyses for samples received by the laboratory on 01/30/18 16:02. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Fasheh

Project Manager

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/07/18 16:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1-1.0	T180355-01	Soil	01/29/18 07:55	01/30/18 16:02
B-1- 10.0	T180355-03	Soil	01/29/18 08:19	01/30/18 16:02
B-1- 20.0	T180355-05	Soil	01/29/18 08:29	01/30/18 16:02
B-2- 1.0	T180355-08	Soil	01/29/18 13:30	01/30/18 16:02
B-2- 10.0	T180355-10	Soil	01/29/18 13:48	01/30/18 16:02
B-2- 20.0	T180355-12	Soil	01/29/18 14:00	01/30/18 16:02
B-2	T180355-14	Water	01/29/18 14:30	01/30/18 16:02
B-6- 1.0	T180355-15	Soil	01/29/18 15:37	01/30/18 16:02
B-6- 10.0	T180355-17	Soil	01/29/18 15:51	01/30/18 16:02
B-6- 20.0	T180355-19	Soil	01/29/18 16:01	01/30/18 16:02
B-11- 1.0	T180355-22	Soil	01/29/18 10:00	01/30/18 16:02
B-11- 10.0	T180355-24	Soil	01/29/18 10:15	01/30/18 16:02
B-11- 20.0	T180355-26	Soil	01/29/18 10:25	01/30/18 16:02
B-11	T180355-28	Water	01/29/18 11:50	01/30/18 16:02

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

DETECTIONS SUMMARY

Sample ID: B-1-1.0	Labora	tory ID:	T180355-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	87	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	920	10	mg/kg	EPA 8015B	
Barium	110	1.0	mg/kg	EPA 6010B	
Chromium	26	2.0	mg/kg	EPA 6010B	
Cobalt	13	2.0	mg/kg	EPA 6010B	
Copper	9.8	1.0	mg/kg	EPA 6010B	
Nickel	16	2.0	mg/kg	EPA 6010B	
Vanadium	46	5.0	mg/kg	EPA 6010B	
Zinc	51	1.0	mg/kg	EPA 6010B	
Toluene	14	1.4	ug/kg	EPA 8260B/5035	
Sample ID: B-1- 10.0	Labora	tory ID:	T180355-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	17	10	mg/kg	EPA 8015B	
Barium	46	1.0	mg/kg	EPA 6010B	
Chromium	22	2.0	mg/kg	EPA 6010B	
Cobalt	12	2.0	mg/kg	EPA 6010B	
Copper	11	1.0	mg/kg	EPA 6010B	
Nickel	23	2.0	mg/kg	EPA 6010B	
Vanadium	36	5.0	mg/kg	EPA 6010B	
Zinc	36	1.0	mg/kg	EPA 6010B	
Sample ID: B-1- 20.0	Labora	tory ID:	T180355-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	47	1.0	mg/kg	EPA 6010B	
Chromium	17	2.0	mg/kg	EPA 6010B	
Cobalt	6.7	2.0	mg/kg	EPA 6010B	
Copper	5.4	1.0	mg/kg	EPA 6010B	
Nickel	11	2.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Project Number: 2047.15 Reported:

Laguna Hills CA, 92653 Project Manager: Derrick Willis 02/07/18 16:12

Sample ID: B-1- 20.0	Laborato	ry ID:	T180355-05		
	1	Reporting			
Analyte	Result	Limit	Units	Method	Notes
Vanadium	19	5.0	mg/kg	EPA 6010B	
Zinc	16	1.0	mg/kg	EPA 6010B	
Sample ID: B-2- 1.0	Laborato	ry ID:	T180355-08		
	1	Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	260	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	860	10	mg/kg	EPA 8015B	
Barium	56	1.0	mg/kg	EPA 6010B	
Chromium	22	2.0	mg/kg	EPA 6010B	
Cobalt	12	2.0	mg/kg	EPA 6010B	
Copper	5.0	1.0	mg/kg	EPA 6010B	
Nickel	13	2.0	mg/kg	EPA 6010B	
Vanadium	39	5.0	mg/kg	EPA 6010B	
Zine	32	1.0	mg/kg	EPA 6010B	
Sample ID: B-2- 10.0	Laborato	ry ID:	T180355-10		
	1	Reporting			
A I 4 -		~	Units	Method	Notes
Analyte	Result	Limit			
Analyte Barium	Result 54	Limit 1.0	mg/kg	EPA 6010B	
•				EPA 6010B EPA 6010B	
Barium	54	1.0	mg/kg		
Barium Chromium	54 23	1.0 2.0	mg/kg mg/kg	EPA 6010B	
Barium Chromium Cobalt	54 23 12	1.0 2.0 2.0	mg/kg mg/kg mg/kg	EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper	54 23 12 9.3	1.0 2.0 2.0 1.0	mg/kg mg/kg mg/kg mg/kg	EPA 6010B EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper Nickel	54 23 12 9.3 19	1.0 2.0 2.0 1.0 2.0	mg/kg mg/kg mg/kg mg/kg mg/kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper Nickel Vanadium	54 23 12 9.3 19 26	1.0 2.0 2.0 1.0 2.0 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper Nickel Vanadium Zinc Benzene	54 23 12 9.3 19 26 33	1.0 2.0 2.0 1.0 2.0 5.0 1.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper Nickel Vanadium Zinc Benzene	54 23 12 9.3 19 26 33 4.1	1.0 2.0 2.0 1.0 2.0 5.0 1.0 1.6	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	
Barium Chromium Cobalt Copper Nickel Vanadium Zinc Benzene Sample ID: B-2- 20.0	54 23 12 9.3 19 26 33 4.1	1.0 2.0 2.0 1.0 2.0 5.0 1.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg	EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Notes
Barium Chromium Cobalt Copper Nickel Vanadium Zinc Benzene Sample ID: B-2- 20.0	54 23 12 9.3 19 26 33 4.1 Laborato	1.0 2.0 2.0 1.0 2.0 5.0 1.0 1.6	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	EPA 6010B	
Barium Chromium Cobalt Copper Nickel Vanadium Zinc Benzene Sample ID: B-2- 20.0	54 23 12 9.3 19 26 33 4.1	1.0 2.0 2.0 1.0 2.0 5.0 1.0 1.6 Pry ID:	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg T180355-12	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130Project Number: 2047.15Reported:Laguna Hills CA, 92653Project Manager: Derrick Willis02/07/18 16:12

Sample ID:	B-2- 20.0	Labora	tory ID:	T180355-12		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Cobalt		17	2.0	mg/kg	EPA 6010B	
Copper		15	1.0	mg/kg	EPA 6010B	
Nickel		26	2.0	mg/kg	EPA 6010B	
Vanadium		34	5.0	mg/kg	EPA 6010B	
Zinc		37	1.0	mg/kg	EPA 6010B	
Sample ID:	B-2	Labora	tory ID:	T180355-14		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DI	RO)	0.52	0.50	mg/l	EPA 8015B	
Barium		150	50	ug/l	EPA 6010b	
Toluene		0.92	0.50	ug/l	EPA 8260B	
Sample ID:	B-6- 1.0	I alama	4ID.	T180355-15		
Sample ID:	D-0- 1.0	Labora	tory ID:	1180333-13		
A l4-		D14	Reporting	¥1	M-41 J	N-4
Analyte	20)	Result	Limit	Units	Method	Notes
C13-C28 (DI		160	10	mg/kg	EPA 8015B	
C29-C40 (M	JRO)	1000	10	mg/kg	EPA 6010B	
Barium Chromium		79	1.0 2.0	mg/kg	EPA 6010B EPA 6010B	
Cobalt		27	2.0	mg/kg	EPA 6010B	
		13	1.0	mg/kg		
Copper Nickel		12	2.0	mg/kg	EPA 6010B EPA 6010B	
Vanadium		15 55	5.0	mg/kg		
Vanadium Zinc		55 55	1.0	mg/kg	EPA 6010B EPA 6010B	
Zinc		55	1.0	mg/kg	EFA 0010B	
Sample ID:	B-6- 10.0	Labora	tory ID:	T180355-17		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		71	1.0	mg/kg	EPA 6010B	
		19	2.0	mg/kg	EPA 6010B	
Chromium				a	ED 4 (010D	
Chromium Cobalt		9.1	2.0	mg/kg	EPA 6010B	
		9.1 15	2.0 1.0	mg/kg mg/kg	EPA 6010B EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Project Number: 2047.15 Reported:

Laguna Hills CA, 92653 Project Manager: Derrick Willis 02/07/18 16:12

Sample ID: B-6- 10.0	Labora	Laboratory ID:			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Vanadium	21	5.0	mg/kg	EPA 6010B	
Zinc	38	1.0	mg/kg	EPA 6010B	
Sample ID: B-6- 20.0	Laborat	tory ID:	T180355-19		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	120	1.0	mg/kg	EPA 6010B	
Chromium	19	2.0	mg/kg	EPA 6010B	
Cobalt	8.8	2.0	mg/kg	EPA 6010B	
Copper	12	1.0	mg/kg	EPA 6010B	
Nickel	18	2.0	mg/kg	EPA 6010B	
Vanadium	31	5.0	mg/kg	EPA 6010B	
Zinc	35	1.0	mg/kg	EPA 6010B	
Sample ID: B-11- 1.0	Laborat	tory ID:	T180355-22		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	180	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	1100	10	mg/kg	EPA 8015B	
Barium	87	1.0	mg/kg	EPA 6010B	
Chromium	18	2.0	mg/kg	EPA 6010B	
Cobalt	11	2.0	mg/kg	EPA 6010B	
Copper	8.5	1.0	mg/kg	EPA 6010B	
Nickel	12	2.0	mg/kg	EPA 6010B	
Vanadium	36	5.0	mg/kg	EPA 6010B	
Zinc	35	1.0	mg/kg	EPA 6010B	
Ethylbenzene	2.1	1.8	ug/kg	EPA 8260B/5035	
m,p-Xylene	4.6	3.6	ug/kg	EPA 8260B/5035	
Sample ID: B-11- 10.0	Laborat	tory ID:	T180355-24		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C6-C12 (GRO)	500	350	ug/kg	EPA 8015B/5035	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

Sample ID: B-11- 10.0	Labora	tory ID:	T180355-24		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C29-C40 (MORO)	780	10	mg/kg	EPA 8015B	
Barium	73	1.0	mg/kg	EPA 6010B	
Chromium	26	2.0	mg/kg	EPA 6010B	
Cobalt	23	2.0	mg/kg	EPA 6010B	
Copper	12	1.0	mg/kg	EPA 6010B	
Nickel	29	2.0	mg/kg	EPA 6010B	
Vanadium	33	5.0	mg/kg	EPA 6010B	
Zinc	37	1.0	mg/kg	EPA 6010B	
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	79	1.0	mg/kg	EPA 6010B	
Chromium	29	2.0	mg/kg	EPA 6010B	
Cobalt	15	2.0	mg/kg	EPA 6010B	
Copper	14	1.0	mg/kg	EPA 6010B	
Nickel	26	2.0	mg/kg	EPA 6010B	
Vanadium	52	5.0	mg/kg	EPA 6010B	
Zinc	47	1.0	mg/kg	EPA 6010B	
Benzene	2.1	1.7	ug/kg	EPA 8260B/5035	
Sample ID: B-11	Lahana	tory ID:	T180355-28		

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	350	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		65.9 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	87	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	920	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		103 %	65-135		"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	110	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	26	2.0	"	"	"	"	"	"	
Cobalt	13	2.0	"	"	"	"	"	"	
Copper	9.8	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	16	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	46	5.0	"	"	"	"	"	"	
Zinc	51	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA M	ethod 8081A								
alpha-BHC	ND	50	ug/kg	10	8013136	01/31/18	02/01/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	50	"	"	"	"	"	"	R-07
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4´-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	R-07
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4´-DDD	ND	50	"	"	"	"	"	"	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4'-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	"	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		101 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		131 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		67.5 %	35-	140	"	"	"	"	·
Surrogate: Decachlorobiphenyl		50.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.4	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.4	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
Bromoform	ND	1.4	"	"	"	"	"	"	
Bromomethane	ND	1.4	"	"	"	"	"	"	
n-Butylbenzene	ND	1.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	1.4	"	"	"	"	"	"	
Chloroethane	ND	1.4	"	"	"	"	"	"	
Chloroform	ND	1.4	"	"	"	"	"	"	
Chloromethane	ND	1.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.4	"	"	"	"	"	"	
Dibromochloromethane	ND	1.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	2.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.4	"	"	"	"	"	"	
Dibromomethane	ND	1.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.4	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,4-Dichlorobenzene	ND	1.4	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.4	"	"	"	"	"	"	
Isopropylbenzene	ND	1.4	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.4	"	"	"	"	"	"	
Methylene chloride	ND	1.4	"	"	"	"	"	"	
Naphthalene	ND	1.4	"	"	"	"	"	"	
n-Propylbenzene	ND	1.4	"	"	"	"	"	"	
Styrene	ND	1.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Tetrachloroethene	ND	1.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.4	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.4	"	"	"	"	"	"	
Trichloroethene	ND	1.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.4	"	"	,,	"	"	"	
1,3,5-Trimethylbenzene	ND	1.4	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.4	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	1.4	"	"	"	"	"	"	
Benzene	ND	1.4	"	"	"	"	"	"	
Гoluene	14	1.4	"	"	"	"	"	"	
Ethylbenzene	ND	1.4	"	"	"	"	"	"	
m,p-Xylene	ND	2.9	"	"	"	"	"	"	
o-Xylene	ND	1.4	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.0 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	3000	ug/kg	10	8020137	02/01/18	02/05/18	EPA 8270C	R-07
Phenol	ND	10000	"	"	"	"	"	"	R-07
Aniline	ND	3000	"	"	"	"	"	"	R-07
2-Chlorophenol	ND	10000	"	"	"	"	"	"	R-07
1,4-Dichlorobenzene	ND	3000	"	"	"	"	"	"	R-07
N-Nitrosodi-n-propylamine	ND	3000	"	"	"	"	"	"	R-07
1,2,4-Trichlorobenzene	ND	3000	"	"	"	"	"	"	R-07
4-Chloro-3-methylphenol	ND	10000	"	"	"	"	"	"	R-07
2-Methylnaphthalene	ND	3000	"	"	"	"	"	"	R-07
l-Methylnaphthalene	ND	3000	"	"	"	"	"	"	R-07
Acenaphthene	ND	3000	"	"	"	"	"	"	R-07
4-Nitrophenol	ND	10000	"	"	"	"	"	"	R-07
2,4-Dinitrotoluene	ND	3000	"	"	"	"	"	"	R-07
Pentachlorophenol	ND	10000	"	"	"	"	"	"	R-07
Pyrene	ND	3000	"	"	"	"	"	"	R-07
Acenaphthylene	ND	3000	"	"	"	"	"	"	R-07
Anthracene	ND	3000	"	"	"	"	"	"	R-07
Benzo (a) anthracene	ND	3000	"	"	"	"	"	"	R-07
Benzo (b) fluoranthene	ND	3000	"	"	"	"	"	"	R-07
Benzo (k) fluoranthene	ND	3000	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Tasket

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Benzo (g,h,i) perylene	ND	10000	ug/kg	10	8020137	02/01/18	02/05/18	EPA 8270C	R-07
Benzo (a) pyrene	ND	3000	"	"	"	"	"	"	R-07
Benzyl alcohol	ND	3000	"	"	"	"	"	"	R-07
Bis(2-chloroethoxy)methane	ND	3000	"	"	"	"	"	"	R-07
Bis(2-chloroethyl)ether	ND	3000	"	"	"	"	"	"	R-07
Bis(2-chloroisopropyl)ether	ND	3000	"	"	"	"	"	"	R-07
Bis(2-ethylhexyl)phthalate	ND	3000	"	"	"	"	"	"	R-07
4-Bromophenyl phenyl ether	ND	3000	"	"	"	"	"	"	R-07
Butyl benzyl phthalate	ND	3000	"	"	"	"	"	"	R-07
4-Chloroaniline	ND	3000	"	"	"	"	"	"	R-07
2-Chloronaphthalene	ND	3000	"	"	"	"	"	"	R-07
4-Chlorophenyl phenyl ether	ND	3000	"	"	"	"	"	"	R-07
Chrysene	ND	3000	"	"	"	"	"	"	R-07
Dibenz (a,h) anthracene	ND	3000	"	"	"	"	"	"	R-07
Dibenzofuran	ND	3000	"	"	"	"	"	"	R-07
Di-n-butyl phthalate	ND	3000	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	3000	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	3000	"	"	"	"	"	"	R-07
2,4-Dichlorophenol	ND	10000	"	"	"	"	"	"	R-07
Diethyl phthalate	ND	3000	"	"	"	"	"	"	R-07
2,4-Dimethylphenol	ND	10000	"	"	"	"	"	"	R-07
Dimethyl phthalate	ND	3000	"	"	"	"	"	"	R-07
4,6-Dinitro-2-methylphenol	ND	10000	"	"	"	"	"	"	R-07
2,4-Dinitrophenol	ND	10000	"	"	"	"	"	"	R-07
2,6-Dinitrotoluene	ND	10000	"	"	"	"	"	"	R-07
Di-n-octyl phthalate	ND	3000	"	"	"	"	"	"	R-07
Fluoranthene	ND	3000	"	"	"	"	"	"	R-07
Fluorene	ND	3000	"	"	"	"	"	"	R-07
Hexachlorobenzene	ND	15000	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	3000	"	"	"	"	"	"	R-07
Hexachlorocyclopentadiene	ND	10000	"	"	"	"	"	"	R-07
Hexachloroethane	ND	3000	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1-1.0 T180355-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	3000	ug/kg	10	8020137	02/01/18	02/05/18	EPA 8270C	R-07
Isophorone	ND	3000	"	"	"	"	"	"	R-07
2-Methylphenol	ND	10000	"	"	"	"	"	"	R-07
4-Methylphenol	ND	10000	"	"	"	"	"	"	R-07
Naphthalene	ND	3000	"	"	"	"	"	"	R-07
2-Nitroaniline	ND	3000	"	"	"	"	"	"	R-07
3-Nitroaniline	ND	3000	"	"	"	"	"	"	R-07
4-Nitroaniline	ND	3000	"	"	"	"	"	"	R-07
Nitrobenzene	ND	10000	"	"	"	"	"	"	R-07
2-Nitrophenol	ND	10000	"	"	"	"	"	"	R-07
N-Nitrosodimethylamine	ND	3000	"	"	"	"	"	"	R-07
N-Nitrosodiphenylamine	ND	3000	"	"	"	"	"	"	R-07
2,3,5,6-Tetrachlorophenol	ND	3000	"	"	"	"	"	"	R-07
2,3,4,6-Tetrachlorophenol	ND	3000	"	"	"	"	"	"	R-07
Phenanthrene	ND	3000	"	"	"	"	"	"	R-07
Azobenzene	ND	3000	"	"	"	"	"	"	R-07
Pyridine	ND	3000	"	"	"	"	"	"	R-07
2,4,5-Trichlorophenol	ND	10000	"	"	"	"	"	"	R-07
2,4,6-Trichlorophenol	ND	10000	"	"	"	"	"	"	R-07
Surrogate: 2-Fluorophenol		89.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		72.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		77.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		64.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		72.4 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		89.9 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-1- 10.0 T180355-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	430	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		72.6 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	17	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		110 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	46	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	22	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	23	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	36	5.0	"	"	"	"	"	"	
Zinc	36	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1- 10.0 T180355-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		50.3 %	35-1	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		45.6 %	35-1	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.3	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1- 10.0 T180355-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-1-10.0 T180355-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.3	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		94.4 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.3 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by 1	FPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
l-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1- 10.0 T180355-03 (Soil)

Reporting

Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Anthracene ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene ND	300	"	"	"	"	"	"	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	

ND

300

SunStar Laboratories, Inc.

Fluorene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

47

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-1- 10.0 T180355-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		85.5 %	15-	121	"	"	"	"	·
Surrogate: Phenol-d6		75.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		89.2 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		85.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		77.0 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		104 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax 24411 Ridge Route Drive, Suite 130 Project Number: 2047.15

Laguna Hills CA, 92653 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-1- 20.0 T180355-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	290	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		99.9 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		109 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	47	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	17	2.0	"	"	"	"	"	"	
Cobalt	6.7	2.0	"	"	"	"	"	"	
Copper	5.4	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	11	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	19	5.0	"	"	"	"	"	"	
Zinc	16	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A) all

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1- 20.0 T180355-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Metho	od 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		63.4 %	35-1	'40	"	"	"	"	
Surrogate: Decachlorobiphenyl		51.8 %	35-1	40	"	"	"	"	
Volatile Organic Compounds by EPA Mo	ethod 8260B								
Bromobenzene	ND	1.5	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	1.5	"	"	"	"	"	"	
Bromodichloromethane	ND	1.5	"	"	"	"	"	"	
Bromoform	ND	1.5	"	"	"	"	"	"	
Bromomethane	ND	1.5	"	"	"	"	"	"	
n-Butylbenzene	ND	1.5	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.5	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.5	"	"	"	"	"	"	
Chlorobenzene	ND	1.5	"	"	"	"	"	"	
Chloroethane	ND	1.5	"	"	"	"	"	"	
Chloroform	ND	1.5	"	"	"	"	"	"	
Chloromethane	ND	1.5	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.5	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.5	"	"	"	"	"	"	
Dibromochloromethane	ND	1.5	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.1	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-1- 20.0 T180355-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.5	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dibromomethane	ND	1.5	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.5	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.5	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.5	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.5	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.5	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.5	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.5	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.5	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.5	"	"	"	"	"	"	
Isopropylbenzene	ND	1.5	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.5	"	"	"	"	"	"	
Methylene chloride	ND	1.5	"	"	"	"	"	"	
Naphthalene	ND	1.5	"	"	"	"	"	"	
n-Propylbenzene	ND	1.5	"	"	"	"	"	"	
Styrene	ND	1.5	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.5	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.5	"	"	"	"	"	"	
Tetrachloroethene	ND	1.5	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.5	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1-20.0 T180355-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Trichloroethene	ND	1.5	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.5	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.5	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.5	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.5	"	"	"	"	"	"	
Vinyl chloride	ND	1.5	"	"	"	"	"	"	
Benzene	ND	1.5	"	"	"	"	"	"	
Toluene	ND	1.5	"	"	"	"	"	"	
Ethylbenzene	ND	1.5	"	"	"	"	"	"	
m,p-Xylene	ND	3.1	"	"	"	"	"	"	
o-Xylene	ND	1.5	"	"	"	"	"	"	
Surrogate: Toluene-d8		92.3 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.2 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-1-20.0 T180355-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EI	PA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	,,	"	"	"	
Fluoranthene	ND	300	"	"	,,	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-1- 20.0 T180355-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		89.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		75.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		87.3 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		89.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		92.6 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		106 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	380	ug/kg	1	8013124	01/31/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		46.0 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	260	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	860	10	"	"	"	n .	"	n	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	56	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	22	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	5.0	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	13	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	39	5.0	"	"	"	"	"	"	
Zinc	32	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Suite 130 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/74	71								
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA M	Iethod 8081A								
alpha-BHC	ND	10	ug/kg	2	8013136	01/31/18	02/01/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	10	"	"	"	"	"	"	R-07
beta-BHC	ND	10	"	"	"	"	"	"	R-07
delta-BHC	ND	10	"	"	"	"	"	"	R-07
Heptachlor	ND	10	"	"	"	"	"	"	R-07
Aldrin	ND	10	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	10	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	10	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	10	"	"	"	"	"	"	R-07
Endosulfan I	ND	10	"	"	"	"	"	"	R-07
4,4´-DDE	ND	10	"	"	"	"	"	"	R-07
Dieldrin	ND	10	"	"	"	"	"	"	R-07
Endrin	ND	10	"	"	"	"	"	"	R-07
4,4´-DDD	ND	10	"	"	"	"	"	"	R-07
Endosulfan II	ND	10	"	"	"	"	"	"	R-07
4,4´-DDT	ND	10	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	10	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	10	"	"	"	"	"	"	R-07
Methoxychlor	ND	20	"	"	"	"	"	"	R-07
Endrin ketone	ND	10	"	"	"	"	"	"	R-07
Toxaphene	ND	400	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		70.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		65.2 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 28 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA Met	hod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		53.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		46.0 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Aethod 8260B								
Bromobenzene	ND	1.5	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.5	"	"	"	"	"	"	
Bromodichloromethane	ND	1.5	"	"	"	"	"	"	
Bromoform	ND	1.5	"	"	"	"	"	"	
Bromomethane	ND	1.5	"	"	"	"	"	"	
n-Butylbenzene	ND	1.5	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.5	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.5	"	"	"	"	"	"	
Chlorobenzene	ND	1.5	"	"	"	"	"	"	
Chloroethane	ND	1.5	"	"	"	"	"	"	
Chloroform	ND	1.5	"	"	"	"	"	"	
Chloromethane	ND	1.5	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.5	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.5	"	"	"	"	"	"	
Dibromochloromethane	ND	1.5	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.1	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.5	"	"	"	"	"	"	
Dibromomethane	ND	1.5	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2-1.0 T180355-08 (Soil)

	Reporting		TT ': 15'1' T						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	Aethod 8260B								
1,4-Dichlorobenzene	ND	1.5	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.5	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.5	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.5	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.5	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.5	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.5	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.5	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.5	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.5	"	"	"	"	"	"	
Isopropylbenzene	ND	1.5	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.5	"	"	"	"	"	"	
Methylene chloride	ND	1.5	"	"	"	"	"	"	
Naphthalene	ND	1.5	"	"	"	"	"	"	
n-Propylbenzene	ND	1.5	"	"	"	"	"	"	
Styrene	ND	1.5	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.5	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.5	"	"	"	"	"	"	
Tetrachloroethene	ND	1.5	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.5	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.5	"	"	"	"	"	"	
Trichloroethene	ND	1.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.5		,,	,,	,,	"	"	
1,2,3-Trichloropropane	ND	1.5	,,	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND ND	1.5	"	,,	,,	,,	,,	,,	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.5	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	1.5	"	"	"	"	"	"	
Benzene	ND	1.5	"	"	"	"	"	"	
Toluene	ND	1.5	"	"	"	"	"	"	
Ethylbenzene	ND	1.5	"	"	"	"	"	n .	
m,p-Xylene	ND	3.1	"	"	"	"	"	"	
o-Xylene	ND	1.5	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

A 1 4	D14	Reporting	T Inda	D:14; -	D-4-h	D 1	A 1 1	M-41 J	NI-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	.,	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 1.0 T180355-08 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		78.8 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		71.6 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		81.4 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		87.3 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		95.6 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Project Number: 2047.15 Reported:
Laguna Hills CA, 92653 Project Manager: Derrick Willis 02/07/18 16:12

B-2- 10.0 T180355-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons b	oy EPA 8015B								
C6-C12 (GRO)	ND	350	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		63.0 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		110 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	54	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	23	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	9.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	19	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	26	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-2- 10.0 T180355-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		55.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		50.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.6	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.6	"	"	"	"	"	"	
Bromodichloromethane	ND	1.6	"	"	"	"	"	"	
Bromoform	ND	1.6	"	"	"	"	"	"	
Bromomethane	ND	1.6	"	"	"	"	"	"	
n-Butylbenzene	ND	1.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.6	"	"	"	"	"	"	
Chlorobenzene	ND	1.6	"	"	"	"	"	"	
Chloroethane	ND	1.6	"	"	"	"	"	"	
Chloroform	ND	1.6	"	"	"	"	"	"	
Chloromethane	ND	1.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.6	"	"	"	"	"	"	
Dibromochloromethane	ND	1.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.2	"	"	"	"	"	n	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-2- 10.0 T180355-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Maryte	Result	Liiilit	Units	Dilution	Daten	1 icpaicd	Allaryzeu	Wichiou	110168
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.6	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Dibromomethane	ND	1.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.6	"	"	"	"	"	"	
Isopropylbenzene	ND	1.6	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.6	"	"	"	"	"	"	
Methylene chloride	ND	1.6	"	"	"	"	"	"	
Naphthalene	ND	1.6	"	"	"	"	"	"	
n-Propylbenzene	ND	1.6	"	"	"	"	"	"	
Styrene	ND	1.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.6	"	"	"	"	"	"	
Tetrachloroethene	ND	1.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.6	"	"	"	"	"	"	

ND

1.6

SunStar Laboratories, Inc.

1,1,1-Trichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

B-2-10.0 T180355-10 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	1ethod 8260B								
Trichloroethene	ND	1.6	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.6	"	"	"	"	"	"	
Vinyl chloride	ND	1.6	"	"	"	"	"	"	
Benzene	4.1	1.6	"	"	"	"	"	"	
Toluene	ND	1.6	"	"	"	"	"	"	
Ethylbenzene	ND	1.6	"	"	"	"	"	"	
m,p-Xylene	ND	3.2	"	"	"	"	"	"	
o-Xylene	ND	1.6	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.1 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by El	PA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2-10.0 T180355-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 10.0 T180355-10 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		64.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		78.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		90.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		96.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		109 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	oy EPA 8015B								
C6-C12 (GRO)	ND	410	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		85.3 %	65-1	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	11	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		99.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	91	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	35	2.0	"	"	"	"	"	"	
Cobalt	17	2.0	"	"	"	"	"	"	
Copper	15	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	26	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	34	5.0	"	"	"	"	"	"	
Zinc	37	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Met	thod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		62.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		57.0 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Method 8260B								
Bromobenzene	ND	2.4	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	2.4	"	"	"	"	"	"	
Bromodichloromethane	ND	2.4	"	"	"	"	"	"	
Bromoform	ND	2.4	"	"	"	"	"	"	
Bromomethane	ND	2.4	"	"	"	"	"	"	
n-Butylbenzene	ND	2.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.4	"	"	"	"	"	"	
Chlorobenzene	ND	2.4	"	"	"	"	"	"	
Chloroethane	ND	2.4	"	"	"	"	"	"	
Chloroform	ND	2.4	"	"	"	"	"	"	
Chloromethane	ND	2.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.4	"	"	"	"	"	"	
Dibromochloromethane	ND	2.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.4	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dibromomethane	ND	2.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.4	"	"	"	"	"	"	
Isopropylbenzene	ND	2.4	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.4	"	"	"	"	"	"	
Methylene chloride	ND	2.4	"	"	"	"	"	"	
Naphthalene	ND	2.4	"	"	"	"	"	"	
n-Propylbenzene	ND	2.4	"	"	"	"	"	"	
Styrene	ND	2.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.4	"	"	"	"	"	"	
Tetrachloroethene	ND	2.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.4	,,	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.4	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	2.4	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	2.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.4	"	"	"	"	"	"	
Vinyl chloride	ND	2.4	"	"	"	"	"	"	
Benzene	ND	2.4	"	"	"	"	"	"	
Toluene	ND	2.4	"	"	"	"	"	"	
Ethylbenzene	ND	2.4	"	"	"	"	"	"	
m,p-Xylene	ND	4.7	"	"	"	"	"	"	
o-Xylene	ND	2.4	"	"	"	"	"	"	
Surrogate: Toluene-d8		93.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.4 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	,,	,,	,,	,,	,,	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					

Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C
Benzo (a) anthracene	ND	300	"	"	"	"	"	"
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"
Benzo (a) pyrene	ND	300	"	"	"	"	"	"
Benzyl alcohol	ND	300	"	"	"	"	"	"
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"
1-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"
1-Chloroaniline	ND	300	"	"	"	"	"	"
2-Chloronaphthalene	ND	300	"	"	"	"	"	"
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"
Chrysene	ND	300	"	"	"	"	"	"
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"
Dibenzofuran	ND	300	"	"	"	"	"	"
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"
,2-Dichlorobenzene	ND	300	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"
Diethyl phthalate	ND	300	"	"	"	"	"	"
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"
Dimethyl phthalate	ND	300	"	"	"	"	"	"
1,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"
Fluoranthene	ND	300	"	"	"	"	"	"
Fluorene	ND	300	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-2- 20.0 T180355-12 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	;	SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		71.1 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		64.6 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		68.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		92.8 %	18.1		"	"	"	"	
S , , ,									

29.1-130

107 %

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-2 T180355-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8013123	01/31/18	01/31/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		96.3 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	0.52	0.50	mg/l	1	8013130	01/31/18	02/01/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		80.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									FILT
Antimony	ND	50	ug/l	1	8013139	01/31/18	02/01/18	EPA 6010b	
Silver	ND	50	"	"	"	"	"	"	
Arsenic	ND	50	"	"	"	"	"	"	
Barium	150	50	"	"	"	"	"	"	
Beryllium	ND	50	"	"	"	"	"	"	
Cadmium	ND	50	"	"	"	"	"	"	
Chromium	ND	50	"	"	"	"	"	"	
Cobalt	ND	50	"	"	"	"	"	"	
Copper	ND	50	"	"	"	"	"	"	
Lead	ND	50	"	"	"	"	"	"	
Molybdenum	ND	50	"	"	"	"	"	"	
Nickel	ND	50	"	"	"	"	"	"	
Selenium	ND	50	"	"	"	"	"	"	
Thallium	ND	50	"	"	"	"	"	"	
Vanadium	ND	50	"	"	"	"	"	"	
Zinc	ND	50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-2 T180355-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	LIIIII	Units	Dilution	Dateii	riepaied	Anaryzed	Memod	notes
		SunStar L	aborator	ies, Inc.					
Cold Vapor Extraction EPA 7470/747	71								FILT
Mercury	ND	0.50	ug/l	1	8013140	01/31/18	02/01/18	EPA 7470A Water	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8013122	01/31/18	01/31/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	,,	"	"	"	
1,2 Diemoropropane	ND	1.0							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-2 T180355-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	8013122	01/31/18	01/31/18	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	0.92	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	81-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-2

T180355-14 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Surrogate: Toluene-d8 106 % 88.8-117 8013122 01/31/18 01/31/18 EPA 8260B

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-6- 1.0 T180355-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	320	ug/kg	1	8013124	01/31/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		85.4 %	65-135		"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	160	10	mg/kg	1	8013128	01/31/18	02/01/18	EPA 8015B	
C29-C40 (MORO)	1000	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		101 %	65-135		"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	79	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	27	2.0	"	"	"	"	"	"	
Cobalt	13	2.0	"	"	"	"	"	"	
Copper	12	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	15	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	55	5.0	"	"	"	"	"	"	
Zinc	55	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 1.0 T180355-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Method	1 8081A								
alpha-BHC	ND	10	ug/kg	2	8013136	01/31/18	02/01/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	10	"	"	"	"	"	"	R-07
beta-BHC	ND	10	"	"	"	"	"	"	R-07
delta-BHC	ND	10	"	"	"	"	"	"	R-07
Heptachlor	ND	10	"	"	"	"	"	"	R-07
Aldrin	ND	10	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	10	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	10	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	10	"	"	"	"	"	"	R-07
Endosulfan I	ND	10	"	"	"	"	"	"	R-07
4,4'-DDE	ND	10	"	"	"	"	"	"	R-07
Dieldrin	ND	10	"	"	"	"	"	"	R-07
Endrin	ND	10	"	"	"	"	"	"	R-07
4,4´-DDD	ND	10	"	"	"	"	"	"	R-07
Endosulfan II	ND	10	"	"	"	"	"	"	R-07
4,4´-DDT	ND	10	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	10	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	10	"	"	"	"	"	"	R-07
Methoxychlor	ND	20	"	"	"	"	"	"	R-07
Endrin ketone	ND	10	"	"	"	"	"	"	R-07
Toxaphene	ND	400	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		91.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		83.3 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 51 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-6- 1.0 T180355-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		65.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		52.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 1.0 T180355-15 (Soil)

	Reporting							
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	SunStar La	aboratori	es, Inc.					
Iethod 8260B								
ND	1.9	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
ND	1.9	"	"	"	"	"	"	
ND	1.9		"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND	1.9	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		,,	"	"	"	"	"	
		"	"	"	"	"	"	
ND ND	1.9	,,	,,	,,	,,	,,	,,	
	ND N	Result Limit	ND	ND 1.9 ug/kg 1 Ug/kg Ug/kg 1 Ug/kg Ug/	ND	Result Limit Units Dilution Batch Prepared	ND	ND

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-6- 1.0 T180355-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.9	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.9	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		108 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project Number: 2047.15

Reporting

Limit

Result

ND

ND

ND

ND

ND

ND

ND

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

Notes

Method

Analyzed

B-6- 1.0 T180355-15 (Soil)

Units

Dilution

Batch

Prepared

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	

300 300

300

1500

300 1000

300

SunStar Laboratories, Inc.

Di-n-octyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Hexachlorocyclopentadiene

Fluoranthene

Fluorene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

Method

Notes

Analyzed

B-6- 1.0 T180355-15 (Soil)

Units

Dilution

Batch

Prepared

Reporting

Limit

Result

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by EPA Meth	nod 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	n .	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	n .	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	

62.3 %

78.3 %

75.7 %

82.5 %

86.9 %

101 %

15-121

24-113

21.3-119 32.4-102

18.1-105

29.1-130

SunStar Laboratories, Inc.

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-dl4

 $Surrogate:\ 2,4,6\hbox{-}Tribromophenol$

Surrogate: Phenol-d6

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

B-6- 10.0 T180355-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	380	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		68.5 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		104 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	71	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	9.1	2.0	"	"	"	"	"	"	
Copper	15	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	20	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	21	5.0	"	"	"	"	"	"	
Zinc	38	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

B-6- 10.0 T180355-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Method	1 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		56.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		55.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Met	hod 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Dibioinochiolomenane	1,2								

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 10.0 T180355-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	PA Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	,,	"	,,	"	
1,2,4-Trichlorobenzene	ND ND	1.7	"	"	,,	,,	,,	"	
1,1,2-Trichloroethane	ND ND	1.7	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND ND	1.7	"	"	,,	,,	,,	"	
1,1,1-Themorochiane	ND	1.7							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6-10.0 T180355-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8013121	01/31/18	02/01/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.5 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Method

Analyzed

02/07/18 16:12

Notes

B-6- 10.0 T180355-17 (Soil)

Units

SunStar Laboratories, Inc.

Dilution

Batch

Prepared

Reporting

Limit

Result

		Sunstai L	aboi atoi it	3, 1110.					
Semivolatile Organic Compounds by E	CPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	

300

1000

300

1000

1000

1000

300

300

300

ND

ND

ND

ND

ND

ND

ND

ND ND

SunStar Laboratories, Inc.

Diethyl phthalate

2,4-Dimethylphenol

Dimethyl phthalate

2,4-Dinitrophenol

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Di-n-octyl phthalate

4,6-Dinitro-2-methylphenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 10.0 T180355-17 (Soil)

Reporting

1		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		70.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		60.0 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		78.1 %	21.3		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.5 %	32.4		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		85.8 %	18.1		"	"	"	"	
o Saic. 2, 1,0 11 to to mophenot		05.0 /0	10.1	100					

112 %

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 20.0 T180355-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	330	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		72.1 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	120	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	8.8	2.0	"	"	"	"	"	"	
Copper	12	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	18	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	31	5.0	"	"	"	"	"	"	
Zinc	35	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 63 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 20.0 T180355-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Metho	d 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		55.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.6 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Me	thod 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 20.0 T180355-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND ND	1.8	,,	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-6- 20.0 T180355-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA Mo	ethod 8260B								
Trichloroethene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Γoluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		94.0 %	95.7	-135	"	"	"	"	S-GC
Semivolatile Organic Compounds by EP.	A Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-6- 20.0 T180355-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-6-20.0 T180355-19 (Soil)

Reporting

I .		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		74.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		61.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		70.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		97.5 %	29.1	-130	"	"	"	"	
S 1 7									

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax 24411 Ridge Route Drive, Suite 130 Project Number: 2047.15

Laguna Hills CA, 92653 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

7. Derrok Willis

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	320	ug/kg	1	8013124	01/31/18	01/31/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		47.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	180	10	mg/kg	1	8013128	01/31/18	02/01/18	EPA 8015B	
C29-C40 (MORO)	1100	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		108 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	87	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	8.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	36	5.0	"	"	"	"	"	"	
Zinc	35	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	10	ug/kg	2	8013136	01/31/18	02/01/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	10	"	"	"	"	"	"	R-07
beta-BHC	ND	10	"	"	"	"	"	"	R-07
delta-BHC	ND	10	"	"	"	"	"	"	R-07
Heptachlor	ND	10	"	"	"	"	"	"	R-07
Aldrin	ND	10	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	10	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	10	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	10	"	"	"	"	"	"	R-07
Endosulfan I	ND	10	"	"	"	"	"	"	R-07
4,4´-DDE	ND	10	"	"	"	"	"	"	R-07
Dieldrin	ND	10	"	"	"	"	"	"	R-07
Endrin	ND	10	"	"	"	"	"	"	R-07
4,4´-DDD	ND	10	"	"	"	"	"	"	R-07
Endosulfan II	ND	10	"	"	"	"	"	"	R-07
4,4'-DDT	ND	10	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	10	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	10	"	"	"	"	"	"	R-07
Methoxychlor	ND	20	"	"	"	"	"	"	R-07
Endrin ketone	ND	10	"	"	"	"	"	"	R-07
Toxaphene	ND	400	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		84.2 %	35-	140	"	"	"	"	R-07
Surrogate: Decachlorobiphenyl		89.7 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		65.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		51.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	
Trichloroethene	ND	1.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	2.1	1.8	"	"	"	"	"	"	
m,p-Xylene	4.6	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		70.1 %	85.5	-116	"	"	"	"	S-GO
Surrogate: 4-Bromofluorobenzene		67.0 %	81.2	-123	"	"	"	"	S-G
Surrogate: Dibromofluoromethane		100 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	CPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	

ND

300

SunStar Laboratories, Inc.

Hexachloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-11- 1.0 T180355-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		80.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		67.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		87.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		77.3 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		84.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 75 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Derrick Willis 02/07/18 16:12

B-11- 10.0 T180355-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	500	350	ug/kg	1	8013124	01/31/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		64.5 %	65-	135	"	"	"	"	S-0
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	770	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	780	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		98.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	73	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	26	2.0	"	"	"	"	"	"	
Cobalt	23	2.0	"	"	"	"	"	"	
Copper	12	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	29	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	33	5.0	"	"	"	"	"	"	
Zinc	37	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 76 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 10.0 T180355-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		55.2 %	35-1	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		48.3 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-11- 10.0 T180355-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-11- 10.0 T180355-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.8	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		83.9 %	85.5	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		78.4 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		109 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 10.0 T180355-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP.	A Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project Number: 2047.15

Reporting

Limit

Result

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

Method

Notes

Analyzed

B-11- 10.0 T180355-24 (Soil)

Units

Dilution

Batch

Prepared

Allaryte	Result	Liiiit	Omis	Dilution	Daten	Trepared	Anaryzeu	Wicthou	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		66.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		86.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		78.9 %	32.4	-102	"	"	"	"	

80.3 %

104 %

18.1-105

29.1-130

SunStar Laboratories, Inc.

Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Posher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11- 20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	340	ug/kg	1	8013124	01/31/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		65.5 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8013128	01/31/18	01/31/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		101 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8013127	01/31/18	02/01/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	79	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	29	2.0	"	"	"	"	"	"	
Cobalt	15	2.0	"	"	"	"	"	"	
Copper	14	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	26	2.0	"	"	"	"	"	n .	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	52	5.0	"	"	"	"	"	"	
Zinc	47	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 82 of 122

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/07/18 16:12

B-11- 20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8013126	01/31/18	02/01/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Men	thod 8082								
PCB-1016	ND	10	ug/kg	1	8013129	01/31/18	02/01/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		57.5 %	35-1	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.4 %	35-1	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.3	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11-20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-11-20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B			,					
Trichloroethene	ND	1.7	ug/kg	1	8013121	01/31/18	02/03/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	2.1	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.3	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		90.6 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.9 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		90.7 %	95.7	-135	"	"	"	"	S-GC
Semivolatile Organic Compounds by		•••							
Carbazole	ND	300	ug/kg "	1	8020137	02/01/18	02/05/18	EPA 8270C	
Aniline	ND	300		"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

B-11-20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/07/18 16:12

B-11- 20.0 T180355-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.1 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		70.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.9 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		82.0 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.5 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		108 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11 T180355-28 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons by	y EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8013123	01/31/18	01/31/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		108 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	ND	0.50	mg/l	1	8013130	01/31/18	02/01/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		77.4 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8013122	01/31/18	02/01/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

B-11 T180355-28 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	Aethod 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	8013122	01/31/18	02/01/18	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/07/18 16:12

B-11 T180355-28 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Ethylbenzene	ND	0.50	ug/l	1	8013122	01/31/18	02/01/18	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		109 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

Purgeable Petroleum Hydrocarbons by EPA 8015B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source	-	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013123 - EPA 5030 GC										
Blank (8013123-BLK1)				Prepared &	Analyzed:	01/31/18				
C6-C12 (GRO)	ND	50	ug/l							
Surrogate: 4-Bromofluorobenzene	118		"	100		118	65-135			
LCS (8013123-BS1)				Prepared &	Analyzed:	01/31/18				
C6-C12 (GRO)	1010	50	ug/l	1000		101	75-125			
Surrogate: 4-Bromofluorobenzene	122		"	100		122	65-135			
LCS Dup (8013123-BSD1)				Prepared &	Analyzed:	01/31/18				
C6-C12 (GRO)	980	50	ug/l	1000		98.0	75-125	2.80	20	
Surrogate: 4-Bromofluorobenzene	104		"	100		104	65-135			
Batch 8013124 - EPA 5035 GC										
Blank (8013124-BLK1)				Prepared &	Analyzed:	01/31/18				
C6-C12 (GRO)	ND	400	ug/kg							
Surrogate: 4-Bromofluorobenzene	101		"	100		101	65-135			
LCS (8013124-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
C6-C12 (GRO)	1560	400	ug/kg	2000		78.0	75-125			
Surrogate: 4-Bromofluorobenzene	87.0		"	100		87.0	65-135			
LCS Dup (8013124-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
C6-C12 (GRO)	1500	400	ug/kg	1980		75.6	75-125	4.09	20	
Surrogate: 4-Bromofluorobenzene	78.6		"	100		78.6	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 91 of 122

Northgate Environmental Management -- Laguna Hills

a II

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

$Extractable\ Petroleum\ Hydrocarbons\ by\ 8015B-Quality\ Control$

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8013128 - EPA 3550B GC										
Blank (8013128-BLK1)				Prepared &	Analyzed:	01/31/18				
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	105		"	102		103	65-135			
LCS (8013128-BS1)				Prepared &	Analyzed:	01/31/18				
C13-C28 (DRO)	580	10	mg/kg	505		115	75-125			
Surrogate: p-Terphenyl	105		"	101		104	65-135			
LCS Dup (8013128-BSD1)				Prepared &	Analyzed:	01/31/18				
C13-C28 (DRO)	580	10	mg/kg	500		116	75-125	0.519	20	
Surrogate: p-Terphenyl	103		"	100		103	65-135			
Batch 8013130 - EPA 3510C GC										
Blank (8013130-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
C13-C28 (DRO)	ND	0.50	mg/l							
C29-C40 (MORO)	ND	0.50	"							
Surrogate: p-Terphenyl	2.70		"	4.00		67.6	65-135			
LCS (8013130-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
C13-C28 (DRO)	16.5	0.50	mg/l	20.0		82.6	75-125			
Surrogate: p-Terphenyl	2.95		"	4.00		73.8	65-135			
LCS Dup (8013130-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
C13-C28 (DRO)	17.0	0.50	mg/l	20.0		85.0	75-125	2.79	20	
Surrogate: p-Terphenyl	2.99		"	4.00		74.8	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose forher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

RPD

Limit

Notes

%REC

Limits

RPD

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Units

Reporting

Result

Limit

Spike

Level

Source

Result

%REC

Amaryte	Result	Dillit	Cinto	LCVCI	Result	/UKLC	Lillits	KI D	Lillit	110103
Batch 8013127 - EPA 3050B										
Blank (8013127-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Гhallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (8013127-BS1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Arsenic	117	5.0	mg/kg	100		117	75-125			
Barium	112	1.0	"	100		112	75-125			
Cadmium	111	2.0	"	100		111	75-125			
Chromium	110	2.0	"	100		110	75-125			
Lead	118	3.0	"	100		118	75-125			
Matrix Spike (8013127-MS1)	Sourc	e: T180355-	-01	Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Arsenic	97.7	5.0	mg/kg	98.0	ND	99.7	75-125			
Barium	187	1.0	"	98.0	108	81.4	75-125			
Cadmium	92.9	2.0	"	98.0	0.875	93.8	75-125			
Chromium	116	2.0	"	98.0	26.2	91.2	75-125			
Lead	108	3.0	"	98.0	ND	110	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	resuit	Lillit	Units	LCVCI	result	/UKEC	PHHII	MD	Finit	110103
Batch 8013127 - EPA 3050B										
Matrix Spike Dup (8013127-MSD1)	Sourc	e: T180355-	01	Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Arsenic	88.2	5.0	mg/kg	98.0	ND	90.0	75-125	10.2	20	
Barium	189	1.0	"	98.0	108	82.6	75-125	0.643	20	
Cadmium	91.4	2.0	"	98.0	0.875	92.4	75-125	1.56	20	
Chromium	115	2.0	"	98.0	26.2	90.1	75-125	0.924	20	
Lead	109	3.0	"	98.0	ND	111	75-125	0.740	20	
Batch 8013139 - EPA 3010A										
Blank (8013139-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			FIL
Antimony	ND	50	ug/l							
Silver	ND	50	"							
Arsenic	ND	50	"							
Barium	ND	50	"							
Beryllium	ND	50	"							
Cadmium	ND	50	"							
Chromium	ND	50	"							
Cobalt	ND	50	"							
Copper	ND	50	"							
Lead	ND	50	"							
Molybdenum	ND	50	"							
Nickel	ND	50	"							
Selenium	ND	50	"							
Thallium	ND	50	"							
Vanadium	ND	50	"							
Zinc	ND	50	"							
LCS (8013139-BS1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			FIL
Arsenic	502	50	ug/l	500		100	75-125			
Barium	500	50	"	500		100	75-125			
Cadmium	501	50	"	500		100	75-125			
Chromium	500	50	"	500		100	75-125			
Lead	509	50	"	500		102	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8013139 - EPA 3010A										
Matrix Spike (8013139-MS1)	Sour	ce: T180355-	14	Prepared: (01/31/18 A	nalyzed: 02	2/01/18			FILT
Arsenic	524	50	ug/l	500	28.9	99.0	75-125			
Barium	604	50	"	500	154	89.9	75-125			
Cadmium	467	50	"	500	ND	93.3	75-125			
Chromium	489	50	"	500	21.5	93.4	75-125			
Lead	476	50	"	500	ND	95.2	75-125			
Matrix Spike Dup (8013139-MSD1)	Sour	ce: T180355-	14	Prepared: (01/31/18 A	nalyzed: 02	2/01/18			FILT
Arsenic	505	50	ug/l	500	28.9	95.3	75-125	3.64	20	
Barium	615	50	"	500	154	92.2	75-125	1.88	20	
Cadmium	477	50	"	500	ND	95.5	75-125	2.28	20	
Chromium	504	50	"	500	21.5	96.6	75-125	3.14	20	
Lead	476	50	"	500	ND	95.3	75-125	0.0936	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project Number: 2047.15

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8013126 - EPA 7471A Soil										
Blank (8013126-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	ND	0.10	mg/kg							
LCS (8013126-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	0.346	0.10	mg/kg	0.385		89.9	80-120			
Matrix Spike (8013126-MS1)	Sourc	e: T180355-	01	Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	0.361	0.10	mg/kg	0.397	ND	91.0	75-125			
Matrix Spike Dup (8013126-MSD1)	Sourc	e: T180355-	01	Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	0.355	0.10	mg/kg	0.397	ND	89.4	75-125	1.76	20	
Batch 8013140 - EPA 7470A Water										
Blank (8013140-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	ND	0.50	ug/l	-						
LCS (8013140-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	4.67	0.50	ug/l	5.00		93.4	80-120			
Matrix Spike (8013140-MS1)	Sourc	e: T180355-	14	Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	3.10	0.50	ug/l	5.00	ND	61.9	75-125			FILT, QM-0
Matrix Spike Dup (8013140-MSD1)	Sourc	e: T180355-	14	Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Mercury	3.09	0.50	ug/l	5.00	ND	61.7	75-125	0.293	20	FILT, QM-0

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

RPD

Limit

Notes

%REC

Limits

RPD

%REC

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Units

Reporting

Limit

Result

10.8

Spike

Level

Source

Result

Batch 8013136 - EPA 3550 ECD/GCM	1S						
Blank (8013136-BLK1)				Prepared: 01/31	/18 Analyzed: 02	2/01/18	
alpha-BHC	ND	5.0	ug/kg				
gamma-BHC (Lindane)	ND	5.0	"				
beta-BHC	ND	5.0	"				
delta-BHC	ND	5.0	"				
Heptachlor	ND	5.0	"				
Aldrin	ND	5.0	"				
Heptachlor epoxide	ND	5.0	"				
gamma-Chlordane	ND	5.0	"				
alpha-Chlordane	ND	5.0	"				
Endosulfan I	ND	5.0	"				
4,4′-DDE	ND	5.0	"				
Dieldrin	ND	5.0	"				
Endrin	ND	5.0	"				
4,4′-DDD	ND	5.0	"				
Endosulfan II	ND	5.0	"				
1,4′-DDT	ND	5.0	"				
Endrin aldehyde	ND	5.0	"				
Endosulfan sulfate	ND	5.0	"				
Methoxychlor	ND	10	"				
Endrin ketone	ND	5.0	"				
Гохарhene	ND	200	"				
Surrogate: Tetrachloro-meta-xylene	8.93		"	10.0	89.3	35-140	
Surrogate: Decachlorobiphenyl	11.1		"	10.0	111	35-140	
LCS (8013136-BS1)				Prepared: 01/31	/18 Analyzed: 02	2/01/18	
gamma-BHC (Lindane)	35.7	5.0	ug/kg	40.0	89.2	40-120	
Heptachlor	37.4	5.0	"	40.0	93.5	40-120	
Aldrin	35.8	5.0	"	40.0	89.5	40-120	
Dieldrin	37.6	5.0	"	40.0	94.1	40-120	
Endrin	37.8	5.0	"	40.0	94.4	40-120	
4,4′-DDT	38.4	5.0	"	40.0	95.9	33-147	
Surrogate: Tetrachloro-meta-xylene	8.65		"	10.0	86.5	35-140	

10.0

SunStar Laboratories, Inc.

Surrogate: Decachlorobiphenyl

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

108

35-140

Laguna Hills CA, 92653

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/07/18 16:12

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8013136 - EPA 3550 ECD/GCMS										
LCS Dup (8013136-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
gamma-BHC (Lindane)	36.7	5.0	ug/kg	40.0		91.7	40-120	2.75	30	
Heptachlor	38.5	5.0	"	40.0		96.1	40-120	2.81	30	
Aldrin	37.3	5.0	"	40.0		93.3	40-120	4.19	30	
Dieldrin	39.4	5.0	"	40.0		98.5	40-120	4.53	30	
Endrin	39.4	5.0	"	40.0		98.6	40-120	4.34	30	
4,4'-DDT	40.9	5.0	"	40.0		102	33-147	6.45	30	
Surrogate: Tetrachloro-meta-xylene	8.65		"	10.0		86.5	35-140			
Surrogate: Decachlorobiphenyl	11.3		"	10.0		113	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/07/18 16:12

RPD

%REC

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013129 - EPA 3550 ECD/GCMS										
Blank (8013129-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	6.44		"	10.1		63.8	35-140			
Surrogate: Decachlorobiphenyl	6.77		"	10.1		67.0	35-140			
LCS (8013129-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
PCB-1016	61.1	10	ug/kg	101		60.5	40-130			
PCB-1260	68.5	10	"	101		67.8	40-130			
Surrogate: Tetrachloro-meta-xylene	7.17		"	10.1		71.0	35-140			
Surrogate: Decachlorobiphenyl	6.98		"	10.1		69.1	35-140			
LCS Dup (8013129-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
PCB-1016	55.5	10	ug/kg	98.0		56.6	40-130	9.64	30	
PCB-1260	60.2	10	"	98.0		61.4	40-130	12.9	30	
Surrogate: Tetrachloro-meta-xylene	6.03		"	9.80		61.5	35-140			
Surrogate: Decachlorobiphenyl	6.49		"	9.80		66.2	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Note			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8013121 - EPA 5035 GCMS

Blank (8013121-BLK1)				Prepared: 01/31/18 Analyzed: 02/01/18
Bromobenzene	ND	2.0	ug/kg	
Bromochloromethane	ND	2.0	"	
Bromodichloromethane	ND	2.0	"	
Bromoform	ND	2.0	"	
Bromomethane	ND	2.0	"	
n-Butylbenzene	ND	2.0	"	
sec-Butylbenzene	ND	2.0	"	
tert-Butylbenzene	ND	2.0	"	
Carbon tetrachloride	ND	2.0	"	
Chlorobenzene	ND	2.0	"	
Chloroethane	ND	2.0	"	
Chloroform	ND	2.0	"	
Chloromethane	ND	2.0	"	
2-Chlorotoluene	ND	2.0	"	
4-Chlorotoluene	ND	2.0	"	
Dibromochloromethane	ND	2.0	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	
Dibromomethane	ND	2.0	"	
1,2-Dichlorobenzene	ND	2.0	"	
1,3-Dichlorobenzene	ND	2.0	"	
1,4-Dichlorobenzene	ND	2.0	"	
Dichlorodifluoromethane	ND	2.0	"	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	"	
1,2-Dichloropropane	ND	2.0	"	
1,3-Dichloropropane	ND	2.0	"	
2,2-Dichloropropane	ND	2.0	"	
1,1-Dichloropropene	ND	2.0	"	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Hexachlorobutadiene	ND	2.0	"	
Isopropylbenzene	ND	2.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8013121 - EPA 5035 GCMS										
Blank (8013121-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
p-Isopropyltoluene	ND	2.0	ug/kg							
Methylene chloride	ND	2.0	"							
Naphthalene	ND	2.0	"							
n-Propylbenzene	ND	2.0	"							
Styrene	ND	2.0	"							
,1,2,2-Tetrachloroethane	ND	2.0	"							
,1,1,2-Tetrachloroethane	ND	2.0	"							
etrachloroethene	ND	2.0	"							
1,2,3-Trichlorobenzene	ND	2.0	"							
,2,4-Trichlorobenzene	ND	2.0	"							
1,1,2-Trichloroethane	ND	2.0	"							
,1,1-Trichloroethane	ND	2.0	"							
Trichloroethene	ND	2.0	"							
richlorofluoromethane	ND	2.0	"							
,2,3-Trichloropropane	ND	2.0	"							
,3,5-Trimethylbenzene	ND	2.0	"							
,2,4-Trimethylbenzene	ND	2.0	"							
inyl chloride	ND	2.0	"							
Benzene	ND	2.0	"							
Toluene	ND	2.0	"							
Ethylbenzene	ND	2.0	"							
n,p-Xylene	ND	4.0	"							
-Xylene	ND	2.0	"							
Surrogate: Toluene-d8	41.6		"	39.6		105	85.5-116			
Surrogate: 4-Bromofluorobenzene	35.4		"	39.6		89.4	81.2-123			
Surrogate: Dibromofluoromethane	41.9		"	39.6		106	95.7-135			
LCS (8013121-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Chlorobenzene	30.0	2.0	ug/kg	40.0		75.0	75-125			
,1-Dichloroethene	48.5	2.0	"	40.0		121	75-125			
Trichloroethene	36.2	2.0	"	40.0		90.4	75-125			
Benzene	38.3	2.0	"	40.0		95.6	75-125			
Toluene	33.7	2.0	"	40.0		84.3	75-125			
Surrogate: Toluene-d8	42.1		"	40.0		105	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.3		"	40.0		95.7	81.2-123			
Surrogate: Dibromofluoromethane	43.6		"	40.0		109	95.7-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

RPD

%REC

Source

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013121 - EPA 5035 GCMS										
LCS Dup (8013121-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Chlorobenzene	36.3	2.0	ug/kg	39.6		91.5	75-125	18.8	20	
1,1-Dichloroethene	47.8	2.0	"	39.6		121	75-125	1.49	20	
Trichloroethene	42.8	2.0	"	39.6		108	75-125	16.7	20	
Benzene	46.4	2.0	"	39.6		117	75-125	19.2	20	
Toluene	40.2	2.0	"	39.6		101	75-125	17.4	20	
Surrogate: Toluene-d8	41.9		"	39.6		106	85.5-116			
Surrogate: 4-Bromofluorobenzene	36.4		"	39.6		91.9	81.2-123			
Surrogate: Dibromofluoromethane	42.2		"	39.6		106	95.7-135			
Batch 8013122 - EPA 5030 GCMS										
Blank (8013122-BLK1)				Prepared &	t Analyzed:	01/31/18				

Blank (8013122-BLK1)
Bromobenzene ND 1.0 ug/l
Bromochloromethane ND 1.0 "
Bromodichloromethane ND 1.0 "
Bromoform ND 1.0 "
Bromomethane ND 1.0 "
n-Butylbenzene ND 1.0 "
sec-Butylbenzene ND 1.0 "
tert-Butylbenzene ND 1.0 "
Carbon tetrachloride ND 0.50 "
Chlorobenzene ND 1.0 "
Chloroethane ND 1.0 "
Chloroform ND 1.0 "
Chloromethane ND 1.0 "
2-Chlorotoluene ND 1.0 "
4-Chlorotoluene ND 1.0 "
Dibromochloromethane ND 1.0 "
1,2-Dibromo-3-chloropropane ND 5.0 "
1,2-Dibromoethane (EDB) ND 1.0 "
Dibromomethane ND 1.0 "
1,2-Dichlorobenzene ND 1.0 "
1,3-Dichlorobenzene ND 1.0 "
1,4-Dichlorobenzene ND 1.0 "
Dichlorodifluoromethane ND 0.50 "
1,1-Dichloroethane ND 1.0 "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tosheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8013122 - EPA 5030 GCM

Blank (8013122-BLK1)				Prepared & Analyzed: 01/31/18
1,2-Dichloroethane	ND	0.50	ug/l	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	
p-Isopropyltoluene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013122 - EPA 5030 GCMS										
Blank (8013122-BLK1)				Prepared &	Analyzed:	01/31/18				
Surrogate: 4-Bromofluorobenzene	20.9		ug/l	20.0		104	83.5-119			
Surrogate: Dibromofluoromethane	22.6		"	20.0		113	81-136			
Surrogate: Toluene-d8	22.1		"	20.0		111	88.8-117			
LCS (8013122-BS1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Chlorobenzene	20.7	1.0	ug/l	20.0		103	75-125			
1,1-Dichloroethene	20.9	1.0	"	20.0		104	75-125			
Trichloroethene	19.1	1.0	"	20.0		95.4	75-125			
Benzene	21.0	0.50	"	20.0		105	75-125			
Toluene	21.1	0.50	"	20.0		105	75-125			
Surrogate: 4-Bromofluorobenzene	21.4		"	20.0		107	83.5-119			
Surrogate: Dibromofluoromethane	21.7		"	20.0		109	81-136			
Surrogate: Toluene-d8	21.3		"	20.0		106	88.8-117			
LCS Dup (8013122-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Chlorobenzene	21.0	1.0	ug/l	20.0		105	75-125	1.53	20	
1,1-Dichloroethene	20.9	1.0	"	20.0		104	75-125	0.0479	20	
Trichloroethene	20.3	1.0	"	20.0		101	75-125	6.00	20	
Benzene	21.8	0.50	"	20.0		109	75-125	4.16	20	
Toluene	21.5	0.50	"	20.0		108	75-125	1.93	20	
Surrogate: 4-Bromofluorobenzene	21.6		"	20.0		108	83.5-119			
Surrogate: Dibromofluoromethane	21.6		"	20.0		108	81-136			
Surrogate: Toluene-d8	21.2		"	20.0		106	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch &	020137 -	FDA	3550	FCD	CCN	1C

Blank (8020137-BLK1)				Prepared: 02/01/18 Analyzed: 02/05/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
2-Methylnaphthalene	ND	300	"	
1-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020137 - EPA 3550 ECD/GCMS

Blank (8020137-BLK1)				Prepared: 02/01/18 Analyzed: 02/05/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
Pyridine	ND	300	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasher

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Reported: 02/07/18 16:12

RPD

%REC

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020137 - EPA 3550 ECD/GCMS										
Blank (8020137-BLK1)				Prepared: ()2/01/18 Ar	nalyzed: 02	2/05/18			
Surrogate: 2-Fluorophenol	2550		ug/kg	3250		78.5	15-121			
Surrogate: Phenol-d6	2470		"	3250		76.0	24-113			
Surrogate: Nitrobenzene-d5	2510		"	3250		77.3	21.3-119			
Surrogate: 2-Fluorobiphenyl	2700		"	3250		83.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2880		"	3250		88.8	18.1-105			
Surrogate: Terphenyl-dl4	3500		"	3250		108	29.1-130			
LCS (8020137-BS1)				Prepared: (02/01/18 Ar	nalyzed: 02	2/05/18			
Phenol	2390	1000	ug/kg	3240		73.9	34-114			
2-Chlorophenol	2400	1000	"	3240		74.2	34-114			
1,4-Dichlorobenzene	2380	300	"	3240		73.5	34-114			
N-Nitrosodi-n-propylamine	2870	300	"	3240		88.6	30-110			
1,2,4-Trichlorobenzene	2450	300	"	3240		75.6	39-119			
4-Chloro-3-methylphenol	2120	1000	"	3240		65.4	50-130			
Acenaphthene	2530	300	"	3240		78.0	34-114			
Pentachlorophenol	1930	1000	"	3240		59.7	50-130			
Pyrene	2040	300	"	3240		62.9	30-110			
Surrogate: 2-Fluorophenol	2410		"	3240		74.4	15-121			
Surrogate: Phenol-d6	2550		"	3240		78.9	24-113			
Surrogate: Nitrobenzene-d5	2940		"	3240		91.0	21.3-119			
Surrogate: 2-Fluorobiphenyl	2660		"	3240		82.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2820		"	3240		87.2	18.1-105			
Surrogate: Terphenyl-dl4	3310		"	3240		102	29.1-130			
LCS Dup (8020137-BSD1)				Prepared: (02/01/18 Ar	nalyzed: 02	2/05/18			
Phenol	1860	1000	ug/kg	3330		55.9	34-114	24.7	42	
2-Chlorophenol	1990	1000	"	3330		59.7	34-114	18.7	40	
1,4-Dichlorobenzene	2060	300	"	3330		61.8	34-114	14.3	28	
N-Nitrosodi-n-propylamine	2220	300	"	3330		66.5	30-110	25.6	38	
1,2,4-Trichlorobenzene	2250	300	"	3330		67.4	39-119	8.48	28	
4-Chloro-3-methylphenol	2550	1000	"	3330		76.5	50-130	18.6	42	
Acenaphthene	2440	300	"	3330		73.3	34-114	3.34	31	
Pentachlorophenol	2160	1000	"	3330		65.0	50-130	11.4	50	
Pyrene	2090	300	"	3330		62.7	30-110	2.56	31	
Surrogate: 2-Fluorophenol	2230		"	3330		66.9	15-121			
Surrogate: Phenol-d6	2040		"	3330		61.1	24-113			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/07/18 16:12

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020137 - EPA 3550 ECD/GCMS

LCS Dup (8020137-BSD1)			Prepared: 02/01	/18 Analyzed: 02	2/05/18
Surrogate: Nitrobenzene-d5	2080	ug/kg	3330	62.3	21.3-119
Surrogate: 2-Fluorobiphenyl	2480	"	3330	74.4	32.4-102
Surrogate: 2,4,6-Tribromophenol	2880	"	3330	86.4	18.1-105
Surrogate: Terphenyl-dl4	3330	"	3330	100	29.1-130

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Project Number: 2047.15
Laguna Hills CA, 92653 Project Manager: Derrick Willis

Reported: 02/07/18 16:12

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

S-03 The surrogate recovery was below acceptance criteria in the sample because of a possible matrix effect. The surrogate recovery was

within acceptance criteria in the method blank and LCS.

R-07 Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s)

and/or matrix affect.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

FILT The sample was filtered prior to analysis.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fashel

SunStar Laboratories

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Sample Date Sample Container Container Sample Container Sample Container Sample Container Container
bon Chain 22 Metals letals

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client:

Address: Phone:

Project Name: Collector:

Client Project #: 7047

N

1 1 18 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1 1 18 14 14 14 14 14 14 14 14 14 14 Laboratory in #	1 1 18 14 14 14 14 14 14 14 14 14 14 Laboratory in #	Turn around time: Total # of containers Seals intact? Y/N/NA 227 237 Laboratory ID # 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals 6020 ICP-MS Metals 808/ OCP5 Laboratory ID #	Turn around time: Total # of containers Seals intact? Y/N/NA 22 23 24 24 25 24 25 26 Laboratory ID #	Turn around time: Received good condition/cold Total # of containers 22	## Bacton Break, OXY only ## 8260 Break, OXY only ## 8270 ## 8021 Break ## 8015M (gasoline) ## 8015M (gasoline) ## 8015M (gasoline) ## 8015M (diesel) ## 8015M Ext./Carbon Chain ## 6010/7000 Title 22 Metals ## 6020 ICP-MS Metals ## 6020 ICP-M	## Bacton Break, OXY only ## 8260 Break, OXY only ## 8270 ## 8021 Break ## 8015M (gasoline) ## 8015M (gasoline) ## 8015M (gasoline) ## 8015M (diesel) ## 8015M Ext./Carbon Chain ## 6010/7000 Title 22 Metals ## 6020 ICP-MS Metals ## 6020 ICP-M	## Bactor 14:00 Bactor Total # of containers Pals Fig. Pals Pals	B260 B260 + OXY B260 BTEX, OXY only B270	130-16	Sample Container Type S260 S260 + OXY S260 S260 + OXY S260 S260 + OXY S260 S260 + OXY S260 S260	Date Time Sample Container Type Type Type Type Type Type Type Type	Sample Container Type S260 S260 + OXY S260 S260 + OXY S260 S260 + OXY S260 S260 + OXY S260 S260
nd time: Total # of container Total # of container Seals intact? Y/N/N/N Seals y/N/N/N Seals intact? Y/N/N/N Seals intact.	around time: Total # of container Seals intact? Y/N/N/N Seals int	Chain of Custody seals rintact? Y/N/N/N	, and the state of	6 8015M (gasoline)	6 8015M (gasoline)	Bate Time Bate Time Bout Bate Time Bout Bate Time Bout Bate Bate Time Bout Bout Bate	Bate / Time Bate / Time Boate	Bate / Time Bate / Time Boats	Pickup Pickup Date / Time Date / Time Date / Time B260 8260 + OXY 8260 BTEX, OXY only 8270 8270 8021 BTEX 8015M (gasoline)	Pickup Pickup Pickup Date / Time Date / Time Date / Time Date / Time Box 8260 B260 + OXY B260 BTEX, OXY only B270 B	Sample Container Type	Date Time Sample Container April Type Sample Ontainer Sample Container Sample Container Sample Container Type Type Sample Ontainer Sample Container Sample Container Sample Container Type Type Sample Ontainer Sample Container Sample Container Sample Container Sample Ontainer Sample Ontainer Sample Ontainer Sample Ontainer Sample Ontainer Sample Ontainer Ontain	Date Time Sample Container Type Type Type Type Type Type Type Type
nd time Seals intac Seals intac sea sintac s	Total # of Custody sea Seals intac con Seals intac sea Sea Seals intac sea S	Received good con Seals intac con Chain 8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals 6020 ICP-MS Metals 8020 ICP-MS Metals 8	, and the state of	6 8015M (gasoline)	6 8015M (gasoline)	Bate Time Bate Time Bout Bate Time Bout Bate Time Bout Bate Bate Time Bout Bout Bate	Bate / Time Bate / Time Boate	Bate / Time Bate / Time Boats	Pickup Pickup Date / Time Date / Time Date / Time B260 8260 + OXY 8260 BTEX, OXY only 8270 8270 8021 BTEX 8015M (gasoline)	Pickup Pickup Pickup Date / Time Date / Time Date / Time Date / Time Box 8260 8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)	Sample Container Type S260 S260 + OXY S260 S260 + OXY S260 S260 + OXY S260 S26	Date / Time Received by: (signature) Date / Time Pickup	Date Time Type Type Type Type Type Type Type Typ
ad S S is 1 1 of a second control of the 22 Metals	around ti Of Custom Ext. Carbon Chain 6010/7000 Title 22 Metals	Received go Seals to a Seal to a Seals to a Seal to a Seals to a S	, and the state of	6 8015M (gasoline)	6 8015M (gasoline)	Bate Time Bate Time Bout Bate Time Bout Bate Time Bout Bate Bate Time Bout Bout Bate	Bate / Time Bate / Time Boate	Bate / Time Bate / Time Boats	Solution Solution	Pickup Pickup Date / Time Date / Time Date / Time Date / Time B260 8260 + OXY 8260 BTEX, OXY only 8270 8270 8021 BTEX 8015M (gasoline)	Sample Container Type	Date Time Sample Container April Type Sample Container April Container Type Type Sample Container Sample Container Type Type Sample Container Sample Container Type Type Sample Container Sample Sample Container Sample Sampl	Date Time Sample Container Type Type Type Type Type Type Type Type
	ou 15/W EXC./Carpon Chain	Recognition of CO Bottom Representation of CO Bottom Repre	, and the state of	6 8015M (gasoline)	6 8015M (gasoline)	Bate Time Bate Time Bout Bate Time Bout Bate Time Bout Bate Bate Time Bout Bout Bate	Bate / Time Bate / Time Boate	Bate / Time Bate / Time Boats	Solution Solution	Pickup Pickup Date / Time Date / Time Date / Time Date / Time B260 8260 + OXY 8260 BTEX, OXY only 8270 8270 8021 BTEX 8015M (gasoline)	Sample Container Type	Date Time Sample Container April Type Sample Container April Container Type Type Sample Container Sample Container Type Type Sample Container Sample Container Type Type Sample Container Sample Sample Container Sample Sampl	Date Time Sample Container Type Type Type Type Type Type Type Type

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:		T180355				
Client Name:	Northga	te - Laguna Hills	Project:		Hollan	d 3/Fairfax
Delivered by:	Client	SunStar Courier	☐ GSO [FedEx	Other	
If Courier, Received by:		Joey	Date/Time Cor Received:	urier	1-30-18	3 14:10
Lab Received by:	4,	Brian	Date/Time Lab Received:)	1-30-18	3 14:10
Total number of coolers re	eceived: 0					
Temperature: Cooler #1	4.9 °(C +/- the CF (- 0.2°C)	= 4.7	°C correct	ed temperature	•
Temperature: Cooler #2	°(C +/- the CF (- 0.2°C)	=	°C correct	ed temperature	9
Temperature: Cooler #3	°(C +/- the CF (- 0.2°C)	=	°C correct	ed temperature	9
Temperature criteria = < (no frozen containers)	≤6°C	Within cri	iteria?	⊠Yes	□No	
If NO:		•				
Samples received	on ice?	Yes		□No →	e Non-Conf	formance Sheet
If on ice, samples collected?	received san	ne day	Acceptable	\square No \rightarrow		formance Sheet
Custody seals intact on co	oler/sample	×		Yes	□No*	N/A
Sample containers intact				⊠Yes	□No*	
Sample labels match Chair	n of Custody	IDs		∑Yes	□No*	
Total number of container	rs received m	atch COC		Yes	⊠No*	
Proper containers received	for analyse	s requested on COC		Yes	□No*	
Proper preservative indica	ted on COC	containers for analyses	requested	⊠Yes	□No*	□N/A
Complete shipment receive containers, labels, volume holding times	_			Yes	⊠No*	
* Complete Non-Conforman	ce Receiving	Sheet if checked Coo	oler/Sample Revi	ew - Initials	and date:	BC 1-30-18
Comments:			p:			

SAMPLE NON-CONFORMANCE SHEET

Rose Fasheh

From: Derrick Willis [derrick.willis@ngem.com]
Sent: Tuesday, January 30, 2018 6:00 PM

To: Rose Fasheh
Cc: Dana Brown
Subject: Holland 3rd/Fairfax

Attachments: 2047.15 - COC_2018.01.30.pdf

Hi Rose,

Here is the COC filled out for 2047.15. Please let me know if you have any questions.

Thanks Derrick

Derrick S. Willis

Principal

Northgate Environmental Management, Inc.

24411 Ridge Route Drive, Suite 130, Laguna Hills, CA 92653 phone (949) 716-0050 ext. 101; cell (949) 375-7004; fax (949) 315-3365 http://www.ngem.com

CONFIDENTIALITY NOTICE:

This e-mail and its attachments from Northgate Environmental Management, Inc. contain information that is confidential and/or privileged and is intended for the sole use of the individual or entity named above. Any disclosure, copying, distribution, dissemination, or use of this information by any other person than the intended recipient is prohibited. If you have received this e-mail in error, please notify the sender via e-mail or by calling us at 510-839-0688.

25712 Commercentre Drive Lake Earect		
mmerce	9	E
がするファ	Š	
70 - 0V	5	mag.
Forost	Laboratories	

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Received good condition/cold Received good good good good good good good go	XXXXXX 8015M (gasoline)	8260 + OXY 8260 BTEX, OXY only	Sample Container & Type Type Type Type Type & Type	Time Type Type Type Type Type Received Received	Date Sampled 1/729/18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample ID B-1-1.0 B
--	-------------------------	----------------------------------	---	---	---	--

Chain of Custody Record

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

	And the second s		Notes	th 60	Total # of containers Chain of Custody seals Y/ONA Seals intact? Y/N/ISA Received good condition/cold Turn around time: How Colors Turn around time: How Colors The containers How Colors Turn around time: How Col	seals sould	Total # Chain of Custody s Seals int Received good c Turn around time	ounc	vain c	글	(0.	를 를 를	Date / Time Date / Time			ture)	(signa (signa signa	Received by: (signature) Received by: (signature) Received by: (signature)	- 78 Rg Rg			Date / Time Date / Time Date / Time	Relinquiehed by: (signature) Relinquished by: (signature) Relinquished by: (signature)	: (sign	Relinquished by: Relinquished by: Relinquished by:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Connection Con	上四十	1		22 23		 		\square	T X X			┼┼┼			<u> </u>					\$ 100 8 100	1	M		100	198	
Sample ID Sample Date Time Sample Date Type Paper Type Sample	74 11-11-11-11-11-11-11-11-11-11-11-11-11-	1 1 1 1 100		4222						++++++++++++++++++++++++++++++++++++		\ 		++++	YMA	M	1 2		HHH					5000	49/3/	
Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Sample Container Container Container Sample Container Container Container Sample Container Container Container Sample Container Cont	17/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4			उद्गर्भ य				XX		1111						44448			11111		###			-Udddo	श्वतिष्ठ ्रा	10,000,0
	The Lorente of Configures	1 Total # of containers	Comments/Preservative	5 Laboratory ID#	1 8081 OCOS	× 8082 PCB5	6020 ICP-MS Metals	K 6010/7000 Title 22 Metals				<u> </u>				}_	Conta			Time		Date Sampled Zg[l]	ar e e	O le lD	Sam	0 7

WORK ORDER

T180355

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh Project: 3rd & Fairfax Project Number: 2047.15

Report To:

Northgate Environmental Management -- Laguna Hills

Derrick Willis

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653

Date Due: 02/07/18 17:00 (5 day TAT)

Received By:Brian CharonDate Received:01/30/18 16:02Logged In By:Brian CharonDate Logged In:01/30/18 16:47

Samples Received at: 4.7°C

Custody Seals No Received On Ice Yes

COC/Labels Agree Yes
Preservation Confir Yes

Analysis	Due	TAT	Expires	Comments
T180355-01 B-1-1.0 [Soi (US &	l] Sampled 01/29/18 07:5	55 (GMT-0	8:00) Pacific Time	
6010 Title 22	02/07/18 15:00	5	07/28/18 07:55	
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 07:55	
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 07:55	
8081 Pesticides	02/07/18 15:00	5	02/12/18 07:55	
8082 PCB	02/07/18 15:00	5	02/12/18 07:55	
8260 5035	02/07/18 15:00	5	02/12/18 07:55	
8270C	02/07/18 15:00	5	02/12/18 07:55	

T180355-02 B-1- 5.0 [Soil] Sampled 01/29/18 08:14 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180355-03 B-1- 10.0 [Soil] Sampled 01/29/18 08:19 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/07/18 15:00	5	07/28/18 08:19
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 08:19
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 08:19
8082 PCB	02/07/18 15:00	5	02/12/18 08:19
8260 5035	02/07/18 15:00	5	02/12/18 08:19
8270C	02/07/18 15:00	5	02/12/18 08:19

WORK ORDER

T180355

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh

Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT Expires Comments

T180355-04 B-1- 15.0 [Soil] Sampled 01/29/18 08:24 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180355-05 B-1- 20.0 [Soil] Sampled 01/29/18 08:29 (GMT-08:00) Pacific Time (US &

6010 Title 22 02/07/18 15:00 5 07/28/18 08:29 8015 CC (D/MO) 02/07/18 15:00 5 02/12/18 08:29 8015 m 5035-GRO 02/07/18 15:00 5 02/12/18 08:29 8082 PCB 02/07/18 15:00 5 02/12/18 08:29 8260 5035 02/07/18 15:00 5 02/12/18 08:29

T180355-06 B-1- 25.0 [Soil] Sampled 01/29/18 09:15 (GMT-08:00) Pacific Time HOLD

5

02/12/18 08:29

02/07/18 15:00

(US & [NO ANALYSES]

8270C

T180355-07 B-1- 30.0 [Soil] Sampled 01/29/18 09:22 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180355-08 B-2- 1.0 [Soil] Sampled 01/29/18 13:30 (GMT-08:00) Pacific Time (US &

6010 Title 22 02/07/18 15:00 5 07/28/18 13:30 8015 CC (D/MO) 02/07/18 15:00 5 02/12/18 13:30 8015 m 5035-GRO 02/07/18 15:00 5 02/12/18 13:30 8081 Pesticides 02/07/18 15:00 5 02/12/18 13:30 8082 PCB 02/07/18 15:00 5 02/12/18 13:30 8260 5035 02/07/18 15:00 5 02/12/18 13:30 8270C 02/07/18 15:00 02/12/18 13:30

T180355-09 B-2- 5.0 [Soil] Sampled 01/29/18 13:42 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

WORK ORDER

T180355

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180355-10 B-2- 10.0 [S	oil] Sampled 01/29/18 13	3:48 (GMT	-08:00) Pacific Time	,
6010 Title 22	02/07/18 15:00	5	07/28/18 13:48	
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 13:48	
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 13:48	
8082 PCB	02/07/18 15:00	5	02/12/18 13:48	
8260 5035	02/07/18 15:00	5	02/12/18 13:48	
8270C	02/07/18 15:00	5	02/12/18 13:48	

[NO ANALYSES]

T180355-12 B-2- 20.0 [Soil] Sampled 01/29/18 14:00 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/07/18 15:00	5	07/28/18 14:00	
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 14:00	
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 14:00	
8082 PCB	02/07/18 15:00	5	02/12/18 14:00	
8260 5035	02/07/18 15:00	5	02/12/18 14:00	
8270C	02/07/18 15:00	5	02/12/18 14:00	

T180355-13 B-2- 25.0 [Soil] Sampled 01/29/18 14:12 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180355-14 B-2 [Water] Sampled 01/29/18 14:30 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/07/18 15:00	5	07/28/18 14:30
8015 CC (D/MO)	02/07/18 15:00	5	02/05/18 14:30
8015 m Gas Purge	02/07/18 15:00	5	02/12/18 14:30
8260	02/07/18 15:00	5	02/12/18 14:30

WORK ORDER

T180355

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180355-15 B-6- 1.0 [So (US &	oil] Sampled 01/29/18 15:	37 (GMT-0	08:00) Pacific Time	
6010 Title 22	02/07/18 15:00	5	07/28/18 15:37	
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 15:37	
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 15:37	
8081 Pesticides	02/07/18 15:00	5	02/12/18 15:37	
8082 PCB	02/07/18 15:00	5	02/12/18 15:37	
8260 5035	02/07/18 15:00	5	02/12/18 15:37	
8270C	02/07/18 15:00	5	02/12/18 15:37	

T180355-16 B-6- 5.0 [Soil] Sampled 01/29/18 15:45 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180355-17 B-6- 10.0 [So (US &	oil] Sampled 01/29/18 15:51	l (GMT-	08:00) Pacific Time
6010 Title 22	02/07/18 15:00	5	07/28/18 15:51
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 15:51
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 15:51
8082 PCB	02/07/18 15:00	5	02/12/18 15:51
8260 5035	02/07/18 15:00	5	02/12/18 15:51
8270C	02/07/18 15:00	5	02/12/18 15:51

T180355-18 B-6- 15.0 [Soil] Sampled 01/29/18 15:56 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180355-19 B-6- 20.0 (US &	[Soil] Sampled 01/29/18 16:01	(GMT-	08:00) Pacific Time
6010 Title 22	02/07/18 15:00	5	07/28/18 16:01
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 16:01
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 16:01
8082 PCB	02/07/18 15:00	5	02/12/18 16:01
8260 5035	02/07/18 15:00	5	02/12/18 16:01
8270C	02/07/18 15:00	5	02/12/18 16:01

T180355-20 B-6- 25.0 [Soil] Sampled 01/29/18 16:06 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

WORK ORDER

T180355

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT Expires Comments

T180355-21 B-6- 30.0 [Soil] Sampled 01/29/18 16:15 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

T180355-22 B-11- 1.0 [Soil] Sampled 01/29/18 10:00 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/07/18 15:00	5	07/28/18 10:00
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 10:00
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 10:00
8081 Pesticides	02/07/18 15:00	5	02/12/18 10:00
8082 PCB	02/07/18 15:00	5	02/12/18 10:00
8260 5035	02/07/18 15:00	5	02/12/18 10:00
8270C	02/07/18 15:00	5	02/12/18 10:00

T180355-23 B-11- 5.0 [Soil] Sampled 01/29/18 10:11 (GMT-08:00) Pacific Time HOLD (U.S. 8)

(US &

[NO ANALYSES]

T180355-24 B-11- 10.0 [Soil] Sampled 01/29/18 10:15 (GMT-08:00) Pacific Time

(US &				
6010 Title 22	02/07/18 15:00	5	07/28/18 10:15	
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 10:15	
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 10:15	
8082 PCB	02/07/18 15:00	5	02/12/18 10:15	
8260 5035	02/07/18 15:00	5	02/12/18 10:15	
8270C	02/07/18 15:00	5	02/12/18 10:15	

T180355-25 B-11- 15.0 [Soil] Sampled 01/29/18 10:20 (GMT-08:00) Pacific Time HOLD (US &

(05 &

[NO ANALYSES]

T180355-26 B-11- 20.0	Soil] Sampled 01/29/18	10:25 (GMT-08:00) Pacific Time
(US &		

6010 Title 22	02/07/18 15:00	5	07/28/18 10:25
8015 CC (D/MO)	02/07/18 15:00	5	02/12/18 10:25
8015 m 5035-GRO	02/07/18 15:00	5	02/12/18 10:25
8082 PCB	02/07/18 15:00	5	02/12/18 10:25
8260 5035	02/07/18 15:00	5	02/12/18 10:25
8270C	02/07/18 15:00	5	02/12/18 10:25

WORK ORDER

T180355

Expires

Comments

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh

TAT

Project: 3rd & Fairfax Project Number: 2047.15

T180355-27 B-11- 25.0 [Soil] Sampled 01/29/18 10:30 (GMT-08:00) Pacific Time HOLD

(US &

Analysis

[NO ANALYSES]

T180355-28 B-11 [Water] Sampled 01/29/18 11:50 (GMT-08:00) Pacific Time

Due

(US &

8015 CC (D/MO) 02/07/18 15:00 5 02/05/18 11:50 8015 m Gas Purge 02/07/18 15:00 5 02/12/18 11:50 8260 02/07/18 15:00 5 02/12/18 11:50

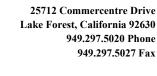
T180355-29 TB-20180129-A [Water] Sampled 01/29/18 10:30 (GMT-08:00) HOLD

Pacific Time (US &

[NO ANALYSES]

T180355-30 TB-20180129-B [Water] Sampled 01/29/18 10:30 (GMT-08:00) HOLD

Pacific Time (US &


[NO ANALYSES]

Analysis groups included in this work order

6010 Title 22

subgroup 6010B T22 7470/71 Hg

Reviewed By Date

08 February 2018

RE: 3rd & Fairfax

Derrick Willis
Northgate Environmental Management -- Laguna Hills
24411 Ridge Route Drive, Suite 130
Laguna Hills, CA 92653

Enclosed are the results of analyses for samples received by the laboratory on 01/30/18 16:02. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Fasheh

Project Manager

Northgate Environmental Management -- Laguna Hills

Fiojec

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-5-1.0	T180352-02	Soil	01/30/18 07:31	01/30/18 16:02
B-5-10.0	T180352-04	Soil	01/30/18 07:55	01/30/18 16:02
B-5-20.0	T180352-06	Soil	01/30/18 08:03	01/30/18 16:02
B-14-1.0	T180352-09	Soil	01/30/18 08:45	01/30/18 16:02
B-14-10.0	T180352-11	Soil	01/30/18 08:59	01/30/18 16:02
B-14-20.0	T180352-13	Soil	01/30/18 09:07	01/30/18 16:02
B-14	T180352-16	Water	01/30/18 09:50	01/30/18 16:02
B-3-1.0	T180352-17	Soil	01/30/18 10:35	01/30/18 16:02
B-3-10.0	T180352-19	Soil	01/30/18 10:48	01/30/18 16:02
B-3-20.0	T180352-21	Soil	01/30/18 10:57	01/30/18 16:02
B-3	T180352-24	Water	01/30/18 12:05	01/30/18 16:02
B-13-1.0	T180352-25	Soil	01/30/18 13:07	01/30/18 16:02
B-13-10.0	T180352-27	Soil	01/30/18 13:18	01/30/18 16:02
B-13-15.0	T180352-28	Soil	01/30/18 13:22	01/30/18 16:02
B-13	T180352-32	Water	01/30/18 14:03	01/30/18 16:02

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

DETECTIONS SUMMARY

Sample ID: B-5-1.0	Laborato	ory ID:	T180352-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	81	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	280	10	mg/kg	EPA 8015B	
Barium	110	1.0	mg/kg	EPA 6010B	
Chromium	19	2.0	mg/kg	EPA 6010B	
Cobalt	11	2.0	mg/kg	EPA 6010B	
Copper	9.2	1.0	mg/kg	EPA 6010B	
Nickel	13	2.0	mg/kg	EPA 6010B	
Vanadium	37	5.0	mg/kg	EPA 6010B	
Zinc	47	1.0	mg/kg	EPA 6010B	
Sample ID: B-5-10.0	Laborato	ory ID:	T180352-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C6-C12 (GRO)	380	350	ug/kg	EPA 8015B/5035	
C13-C28 (DRO)	68	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	65	10	mg/kg	EPA 8015B	
Barium	76	1.0	mg/kg	EPA 6010B	
Chromium	17	2.0	mg/kg	EPA 6010B	
Cobalt	9.4	2.0	mg/kg	EPA 6010B	
Copper	8.2	1.0	mg/kg	EPA 6010B	
Nickel	17	2.0	mg/kg	EPA 6010B	
Vanadium	25	5.0	mg/kg	EPA 6010B	
Zinc	36	1.0	mg/kg	EPA 6010B	
Benzene	3.6	1.7	ug/kg	EPA 8260B/5035	
Sample ID: B-5-20.0	Laborato	orv ID:	T180352-06		
•		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	35	1.0	mg/kg	EPA 6010B	
Chromium	16	2.0	mg/kg	EPA 6010B	
Cobalt	7.2	2.0	mg/kg	EPA 6010B	
Cooait	1.2	2.0	mg/kg	El A 0010D	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130Project Number: 2047.15Reported:Laguna Hills CA, 92653Project Manager: Derrick Willis02/08/18 18:10

Sample ID:	B-5-20.0	Laborat	ory ID:	T180352-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Copper		7.2	1.0	mg/kg	EPA 6010B	
Nickel		12	2.0	mg/kg	EPA 6010B	
Vanadium		25	5.0	mg/kg	EPA 6010B	
Zinc		22	1.0	mg/kg	EPA 6010B	
Sample ID:	B-14-1.0	Laborat	ory ID:	T180352-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C29-C40 (MC	ORO)	49	10	mg/kg	EPA 8015B	
Barium		78	1.0	mg/kg	EPA 6010B	
Chromium		28	2.0	mg/kg	EPA 6010B	
Cobalt		15	2.0	mg/kg	EPA 6010B	
Copper		6.1	1.0	mg/kg	EPA 6010B	
Nickel		18	2.0	mg/kg	EPA 6010B	
Vanadium		50	5.0	mg/kg	EPA 6010B	
Zinc		41	1.0	mg/kg	EPA 6010B	
Sample ID:	B-14-10.0	Laborat	ory ID:	T180352-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DR	O)	24	10	mg/kg	EPA 8015B	
C29-C40 (MC	ORO)	110	10	mg/kg	EPA 8015B	
Barium		39	1.0	mg/kg	EPA 6010B	
Chromium		19	2.0	mg/kg	EPA 6010B	
Cobalt		8.3	2.0	mg/kg	EPA 6010B	
Copper		7.3	1.0	mg/kg	EPA 6010B	
Nickel		18	2.0	mg/kg	EPA 6010B	
Vanadium		20	5.0	mg/kg	EPA 6010B	
Zinc		19	1.0	mg/kg	EPA 6010B	
Sample ID:	B-14-20.0	Laborat	ory ID:	T180352-13		
			Reporting			_
			_			
Analyte		Result	Limit	Units	Method	Notes

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

Sample ID: B-14-20.0	Labora	tory ID:	T180352-13		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chromium	14	2.0	mg/kg	EPA 6010B	
Cobalt	7.2	2.0	mg/kg	EPA 6010B	
Copper	5.6	1.0	mg/kg	EPA 6010B	
Nickel	12	2.0	mg/kg	EPA 6010B	
Vanadium	20	5.0	mg/kg	EPA 6010B	
Zinc	16	1.0	mg/kg	EPA 6010B	
Sample ID: B-14	Labora	tory ID:	T180352-16		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	0.71	0.50	mg/l	EPA 8015B	
Sample ID: B-3-1.0	Labora	itory ID:	T180352-17		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	33	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	180	10	mg/kg	EPA 8015B	
Barium	79	1.0	mg/kg	EPA 6010B	
Chromium	15	2.0	mg/kg	EPA 6010B	
Cobalt	9.6	2.0	mg/kg	EPA 6010B	
Copper	8.5	1.0	mg/kg	EPA 6010B	
Nickel	9.3	2.0	mg/kg	EPA 6010B	
Vanadium	31	5.0	mg/kg	EPA 6010B	
Zinc	27	1.0	mg/kg	EPA 6010B	
Sample ID: B-3-10.0	Labora	tory ID:	T180352-19		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	18	10	mg/kg	EPA 8015B	
Barium	60	1.0	mg/kg	EPA 6010B	
Chromium	22	2.0	mg/kg	EPA 6010B	
Cobalt	11	2.0	mg/kg	EPA 6010B	
Copper	8.0	1.0	mg/kg	EPA 6010B	
Nickel	21	2.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

Sample ID: B-3-10.0	Laborat	ory ID:	T180352-19		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Vanadium	27	5.0	mg/kg	EPA 6010B	
Zinc	34	1.0	mg/kg	EPA 6010B	
Benzene	2.2	1.7	ug/kg	EPA 8260B/5035	
Sample ID: B-3-20.0	Laborat	ory ID:	T180352-21		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	14	10	mg/kg	EPA 8015B	
Barium	39	1.0	mg/kg	EPA 6010B	
Chromium	18	2.0	mg/kg	EPA 6010B	
Cobalt	8.9	2.0	mg/kg	EPA 6010B	
Copper	8.1	1.0	mg/kg	EPA 6010B	
Nickel	16	2.0	mg/kg	EPA 6010B	
Vanadium	27	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
Benzene	7.6	1.9	ug/kg	EPA 8260B/5035	
Toluene	2.3	1.9	ug/kg	EPA 8260B/5035	
Sample ID: B-3	Laborat	ory ID:	T180352-24		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	2.0	0.50	mg/l	EPA 8015B	
Barium	110	50	ug/l	EPA 6010b	
Molybdenum	62	50	ug/l	EPA 6010b	
Sample ID: B-13-1.0	Laborat	ory ID:	T180352-25		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	250	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	890	10	mg/kg	EPA 8015B	
Barium	64	1.0	mg/kg	EPA 6010B	
Chromium	20	2.0	mg/kg	EPA 6010B	
Cobalt	12	2.0	mg/kg	EPA 6010B	
Copper	6.6	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Poss

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130Project Number: 2047.15Reported:Laguna Hills CA, 92653Project Manager: Derrick Willis02/08/18 18:10

Sample ID: B-13-1.0	Laboratory l	D:	T180352-25		
	Rep	orting			
Analyte	Result	Limit	Units	Method	Notes
Nickel	13	2.0	mg/kg	EPA 6010B	
Vanadium	40	5.0	mg/kg	EPA 6010B	
Zinc	32	1.0	mg/kg	EPA 6010B	
Sample ID: B-13-10.0	Laboratory 1	D:	T180352-27		
	Rep	orting			
Analyte		Limit	Units	Method	Notes
C13-C28 (DRO)	22	10	mg/kg	EPA 8015B	
Barium	58	1.0	mg/kg	EPA 6010B	
Chromium	19	2.0	mg/kg	EPA 6010B	
Cobalt	11	2.0	mg/kg	EPA 6010B	
Copper	10	1.0	mg/kg	EPA 6010B	
Nickel	20	2.0	mg/kg	EPA 6010B	
Vanadium	30	5.0	mg/kg	EPA 6010B	
Zinc	32	1.0	mg/kg	EPA 6010B	
Benzene	2.4	2.1	ug/kg	EPA 8260B/5035	
Sample ID: B-13-15.0	Laboratory l	D:	T180352-28		
	Rep	orting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	15	10	mg/kg	EPA 8015B	
Barium	370	1.0	mg/kg	EPA 6010B	
Chromium	18	2.0	mg/kg	EPA 6010B	
Cobalt	19	2.0	mg/kg	EPA 6010B	
Copper	11	1.0	mg/kg	EPA 6010B	
Nickel	28	2.0	mg/kg	EPA 6010B	
Vanadium	46	5.0	mg/kg	EPA 6010B	
Zinc	34	1.0	mg/kg	EPA 6010B	
Benzene	4.4	1.7	ug/kg	EPA 8260B/5035	
Sample ID: B-13	Laboratory 1	D:	T180352-32		
	Rep	orting			
Analyte	Result	Limit	Units	Method	Notes
11111115 00					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	330	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		101 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	81	10	mg/kg	1	8020522	02/05/18	02/06/18	EPA 8015B	
C29-C40 (MORO)	280	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		86.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	110	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	9.2	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	13	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	37	5.0	"	"	"	"	"	"	
Zinc	47	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9/

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471	l								
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Me	thod 8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/05/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4′-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4′-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4′-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 10 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		62.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		52.4 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.3	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.7	"	"	"	"	"	"	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Reporting

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,4-Dichlorobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	
Trichloroethene	ND	1.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.3	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8	<u> </u>	89.8 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Reporting

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by l	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	

ND

300

SunStar Laboratories, Inc.

Hexachloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-5-1.0 T180352-02 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	:	SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		66.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		75.3 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		104 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		96.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15

Reported: Project Manager: Derrick Willis 02/08/18 18:10

B-5-10.0 T180352-04 (Soil)

Project: 3rd & Fairfax

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	380	350	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		106 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	68	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	65	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	76	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	17	2.0	"	"	"	"	"	"	
Cobalt	9.4	2.0	"	"	"	"	"	"	
Copper	8.2	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	17	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	25	5.0	"	"	"	"	"	"	
Zinc	36	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-5-10.0 T180352-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Method	8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		56.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		50.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Meth	od 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-10.0 T180352-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-10.0 T180352-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	3.6	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.5	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		95.0 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by E	PA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Touchel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

Notes

Method

Analyzed

B-5-10.0 T180352-04 (Soil)

Units

Dilution

Batch

Prepared

Reporting

Limit

Result

ND

ND

ND

ND

ND ND 1000

1000

1000

300

300

300

SunStar L	aboratorie	s, Inc.					
300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	m .	
1000	"	"	"	"	"	n	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
300	"	"	"	"	"	"	
1000	"	"	"	"	"	"	
300	"	"	"	"	"	"	
1000	"	"	"	"	"	"	
300	"	"	"	"	"	"	
	300 300 300 300 300 300 300 300 300 300	300 ug/kg 300 "	300 " " " " " " " " " " " " " " " " " "	300 ug/kg 1 8020521 300 " " " " 300 " " " " 1000 " " " " 300 " " " " " 300 " " " " "	300 ug/kg 1 8020521 02/05/18 300 " " " " " 300 " " " " " 1000 " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " " 300 " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " " " 300 " " " " " " " " " " " " " " " " " "	300 ug/kg 1 8020521 02/05/18 02/06/18 300 " " " " " " " 300 " " " " " " " 1000 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " 300 " " " " " " " " 300 " " " " " " " " 300 " " " " " " " " 300 " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " 300 " " " " " " " " " " 300 " " " " " " " " " " 300 " " " " " " " " " " 300 " " " " " " " " " " " 300 " " " " " " " " " " " 300 " " " " " " " " " " " 300 " " " " " " " " " " " " 300 " " " " " " " " " " " " 300 " " " " " " " " " " " " " 300 " " " " " " " " " " " " " " " " " 300 " " " " " " " " " " " " " " " " " "	300 ug/kg 1 8020521 02/05/18 02/06/18 EPA 8270C 300 " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

4,6-Dinitro-2-methylphenol

2,4-Dinitrophenol

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Di-n-octyl phthalate

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-5-10.0 T180352-04 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	A Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		50.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		68.4 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		70.3 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		96.9 %	18.1	-105	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Reported:

Project Manager: Derrick Willis

Project: 3rd & Fairfax

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	360	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		69.7 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	35	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	16	2.0	"	"	"	"	"	"	
Cobalt	7.2	2.0	"	"	"	"	"	"	
Copper	7.2	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	n .	
Thallium	ND	2.0	"	"	"	"	"	n .	
Vanadium	25	5.0	"	"	"	"	"	"	
Zinc	22	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 22 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Metho	od 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		69.0 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		59.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Me	thod 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
	ND	1.8	"	,,	"	"	,,	"	
Dibromochloromethane	ND	1.0							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA M	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.8	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
sopropylbenzene	ND	1.8	"	"	"	"	"	"	
o-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Γetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Trichloroethene	ND	1.8	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		93.9 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.1 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	,,	,,		,,	"	,,	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-5-20.0 T180352-06 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		59.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		67.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		77.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		98.5 %	18.1		"	"	"	"	
Surrogate: Terphenyl-dl4		100 %	29.1	-130	"	"	"	"	
		20070	27.1						

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	340	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		68.7 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	49	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		72.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	78	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	28	2.0	"	"	"	"	"	"	
Cobalt	15	2.0	"	"	"	"	"	"	
Copper	6.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	18	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	50	5.0	"	"	"	"	"	"	
Zinc	41	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	' 1								
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	50	ug/kg	10	8020134	02/01/18	02/05/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	50	"	"	"	"	"	"	R-07
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4´-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	R-07
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4'-DDD	ND	50	"	"	"	"	"	"	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4′-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	"	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		92.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		107 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 29 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		74.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		58.4 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.6	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.6	"	"	"	"	"	"	
Bromodichloromethane	ND	1.6	"	"	"	"	"	"	
Bromoform	ND	1.6	"	"	"	"	"	"	
Bromomethane	ND	1.6	"	"	"	"	"	"	
n-Butylbenzene	ND	1.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.6	"	"	"	"	"	"	
Chlorobenzene	ND	1.6	"	"	"	"	"	"	
Chloroethane	ND	1.6	"	"	"	"	"	"	
Chloroform	ND	1.6	"	"	"	"	"	"	
Chloromethane	ND	1.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.6	"	"	"	"	"	"	
Dibromochloromethane	ND	1.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.3	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
Dibromomethane	ND	1.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA Mo	ethod 8260B								
1,4-Dichlorobenzene	ND	1.6	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.6	"	"	"	"	"	"	
Isopropylbenzene	ND	1.6	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.6	"	"	"	"	"	"	
Methylene chloride	ND	1.6	"	"	"	"	"	"	
Naphthalene	ND	1.6	"	"	"	"	"	"	
n-Propylbenzene	ND	1.6	"	"	"	"	"	"	
Styrene	ND	1.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.6	"	"	"	"	"	"	
Tetrachloroethene	ND	1.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.6	"	"	"	"	"	"	
Trichloroethene	ND	1.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.6	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Vinyl chloride	ND	1.6	"	"	"	"	"	"	
Benzene	ND	1.6	"	"	"	"	"	"	
Toluene	ND	1.6	"	"	"	"	"	"	
Ethylbenzene	ND	1.6	"	"	"	"	"	"	
m,p-Xylene	ND	3.3	"	"	"	"	"	"	
o-Xylene	ND	1.6	"	"	"	"	"	n .	
Surrogate: Toluene-d8		88.5 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.9 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	boratori	es, Inc.					

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	m .	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	m .	
Dibenzofuran	ND	300	"	"	"	"	"	m .	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	m .	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	m .	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-14-1.0 T180352-09 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Reporting							

Semivolatile Organic Compounds by EPA Method 8270C

Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.6 %	15-1.	21	"	"	"	"	
Surrogate: Phenol-d6		73.5 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		75.5 %	21.3-1	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.3 %	32.4-1	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		101 %	18.1-1	105	"	"	"	"	
Surrogate: Terphenyl-dl4		98.4 %	29.1-1	130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	500	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		70.2 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	24	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	110	10	"	"	"	"	"	n .	
Surrogate: p-Terphenyl		89.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	39	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	8.3	2.0	"	"	"	"	"	"	
Copper	7.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	18	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	n	"	"	"	"	"	
Zinc	19	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Met	hod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		63.0 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		60.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	1ethod 8260B								
Bromobenzene	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	2.1	"	"	"	"	"	"	
Bromodichloromethane	ND	2.1	"	"	"	"	"	"	
Bromoform	ND	2.1	"	"	"	"	"	"	
Bromomethane	ND	2.1	"	"	"	"	"	"	
n-Butylbenzene	ND	2.1	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.1	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.1	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.1	"	"	"	"	"	"	
Chlorobenzene	ND	2.1	"	"	"	"	"	"	
Chloroethane	ND	2.1	"	"	"	"	"	"	
Chloroform	ND	2.1	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.1	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.1	"	"	"	"	"	"	
Dibromochloromethane	ND	2.1	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.3	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	2.1	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.1	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.1	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.1	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.1	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.1	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.1	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.1	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.1	"	"	"	"	"	"	
Isopropylbenzene	ND	2.1	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.1	"	"	"	"	"	"	
Methylene chloride	ND	2.1	"	"	"	"	"	"	
Naphthalene	ND	2.1	"	"	"	"	"	"	
n-Propylbenzene	ND	2.1	"	"	"	"	"	"	
Styrene	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.1	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.1	"	"	"	"	"	"	
Tetrachloroethene	ND	2.1	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.1	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.1	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	2.1	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.1	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.1	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.1	"	"	"	"	"	"	
Benzene	ND	2.1	"	"	"	"	"	"	
Toluene	ND	2.1	"	"	"	"	"	"	
Ethylbenzene	ND	2.1	"	"	"	"	"	"	
m,p-Xylene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	2.1	"	"	"	"	"	"	
Surrogate: Toluene-d8		94.1 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.0 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	,,	,,	,,	,,	,,	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-14-10.0 T180352-11 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		60.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		65.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		75.8 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		96.7 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		92.9 %	29.1-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	640	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		65.3 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	33	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	14	2.0	"	"	"	"	"	"	
Cobalt	7.2	2.0	"	"	"	"	"	"	
Copper	5.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	16	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471	[
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Me	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		66.1 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		62.1 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.0	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	2.0	"	"	"	"	"	"	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Bromoform	ND	2.0	"	"	"	"	"	"	
Bromomethane	ND	2.0	"	"	"	"	"	"	
n-Butylbenzene	ND	2.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.0	"	"	"	"	"	"	
Chlorobenzene	ND	2.0	"	"	"	"	"	"	
Chloroethane	ND	2.0	"	"	"	"	"	"	
Chloroform	ND	2.0	"	"	"	"	"	"	
Chloromethane	ND	2.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
Dibromochloromethane	ND	2.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.0	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	"	"	"	"	
Isopropylbenzene	ND	2.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.0	"	"	"	"	"	"	
Methylene chloride	ND	2.0	"	"	"	"	"	"	
Naphthalene	ND	2.0	"	"	"	"	"	"	
n-Propylbenzene	ND	2.0	"	"	"	"	"	"	
Styrene	ND	2.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
Tetrachloroethene	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	2.0	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
Vinyl chloride	ND	2.0	"	"	"	"	"	"	
Benzene	ND	2.0	"	"	"	"	"	"	
Toluene	ND	2.0	"	"	"	"	"	"	
Ethylbenzene	ND	2.0	"	"	"	"	"	"	
m,p-Xylene	ND	4.0	"	"	"	"	"	"	
o-Xylene	ND	2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		90.0 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.9 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	,,	,,	,,	,,	,,	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		a a							

SunStar Laboratories, Inc.

Semivolatile Organic Compounds by 1	EDA Mothod 8270C	Sunstai L	aboratorie	,, 1110.				
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C
Benzo (a) anthracene	ND	300	"	"	"	"	"	"
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"
enzo (a) pyrene	ND	300	"	"	"	"	"	"
Benzyl alcohol	ND	300	"	"	"	"	"	"
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"
-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"
-Chloroaniline	ND	300	"	"	"	"	"	"
2-Chloronaphthalene	ND	300	"	"	"	"	"	"
-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"
Chrysene	ND	300	"	"	"	"	"	"
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"
Dibenzofuran	ND	300	"	"	"	"	"	"
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"
,2-Dichlorobenzene	ND	300	"	"	"	"	"	"
,3-Dichlorobenzene	ND	300	"	"	"	"	"	"
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"
Diethyl phthalate	ND	300	"	"	"	"	"	"
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"
Dimethyl phthalate	ND	300	"	"	"	"	"	"
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"
,4-Dinitrophenol	ND	1000	"	"	"	"	"	"
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"
Fluoranthene	ND	300	"	"	"	"	"	"
Fluorene	ND	300	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-14-20.0 T180352-13 (Soil)

Reporting

semivolatile Organic Compounds by EPA Method 827	SunStar L OC 1500 300 1000	aboratori ug/kg	es, Inc.					
	1500 300							
	300							
Mexachlorobenzene ND			1	8020521	02/05/18	02/06/18	EPA 8270C	
Iexachlorobutadiene ND	1000		"	"	"	"	"	
Mexachlorocyclopentadiene ND		"	"	"	"	"	"	
Mexachloroethane ND	300	"	"	"	"	"	"	
ndeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"	
sophorone ND	300	"	"	"	"	"	"	
-Methylphenol ND	1000	"	"	"	"	"	"	
-Methylphenol ND	1000	"	"	"	"	"	"	
Vaphthalene ND	300	"	"	"	"	"	"	
-Nitroaniline ND	300	"	"	"	"	"	"	
-Nitroaniline ND	300	"	"	"	"	"	"	
-Nitroaniline ND	300	"	"	"	"	"	"	
ND Nitrobenzene ND	1000	"	"	"	"	"	"	
-Nitrophenol ND	1000	"	"	"	"	"	"	
V-Nitrosodimethylamine ND	300	"	"	"	"	"	"	
I-Nitrosodiphenylamine ND	300	"	"	"	"	"	"	
,3,5,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
,3,4,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
henanthrene ND	300	"	"	"	"	"	"	
Azobenzene ND	300	"	"	"	"	"	"	
yridine ND	300	"	"	"	"	"	"	
,4,5-Trichlorophenol ND	1000	"	"	"	"	"	"	
,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"	
urrogate: 2-Fluorophenol	53.8 %	15-	121	"	"	"	"	
urrogate: Phenol-d6	59.7 %	24-	113	"	"	"	"	
urrogate: Nitrobenzene-d5	70.9 %	21.3	-119	"	"	"	"	
urrogate: 2-Fluorobiphenyl	72.1 %	32.4		"	"	"	"	
urrogate: 2,4,6-Tribromophenol	91.8 %	18 1	-105	"	"	"	"	

90.6 %

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14 T180352-16 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8020142	02/01/18	02/03/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		75.7 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	0.71	0.50	mg/l	1	8020233	02/02/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-14 T180352-16 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EF	'A Method 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laguna Hills CA, 92653

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax 24411 Ridge Route Drive, Suite 130 Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-14 T180352-16 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		111 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	350	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		60.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	33	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	180	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		89.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	79	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	15	2.0	"	"	"	"	"	"	
Cobalt	9.6	2.0	"	"	"	"	"	"	
Copper	8.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	9.3	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	31	5.0	"	"	"	"	"	"	
Zinc	27	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

•

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Me	ethod 8081A								
alpha-BHC	ND	50	ug/kg	10	8020134	02/01/18	02/05/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	50	"	"	"	"	"	"	R-07
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4´-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	R-07
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4´-DDD	ND	50	"	"	"	"	"	"	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4´-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	"	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		84.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		107 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		70.1 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.5	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.7	"	"	"	"	"	"	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fosher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA Method	hod 8260B								
1,4-Dichlorobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	
Trichloroethene	ND	1.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.5	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		90.4 %	85.5	-116	"	"	"	"	<u> </u>
Surrogate: 4-Bromofluorobenzene		80.5 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		110 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	A Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-3-1.0 T180352-17 (Soil)

Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Method 8270	C							
Indeno (1,2,3-cd) pyrene ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Isophorone ND	300	"	"	"	"	"	"	
2-Methylphenol ND	1000	"	"	"	"	"	"	
4-Methylphenol ND	1000	"	"	"	"	"	"	
Naphthalene ND	300	"	"	"	"	"	"	
2-Nitroaniline ND	300	"	"	"	"	"	"	
3-Nitroaniline ND	300	"	"	"	"	"	"	
4-Nitroaniline ND	300	"	"	"	"	"	"	
Nitrobenzene ND	1000	"	"	"	"	"	"	
2-Nitrophenol ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
Phenanthrene ND	300	"	"	"	"	"	"	
Azobenzene ND	300	"	"	"	"	"	"	
Pyridine ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol	57.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6	67.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5	72.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl	74.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol	98.1 %	18.1	-105	"	"	"	"	

90.3 %

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 56 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	350	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		65.3 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	18	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	60	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	22	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	8.0	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	21	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	27	5.0	"	"	"	"	"	"	
Zinc	34	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		64.8 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		64.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260R								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromoform Bromomethane	ND ND	1.7 1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
Bromomethane n-Butylbenzene	ND ND	1.7 1.7	"	"	"	"	"	"	
Bromomethane n-Butylbenzene sec-Butylbenzene	ND ND ND	1.7 1.7 1.7	" "	"	"	" "	" "	11 11	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ND ND ND ND	1.7 1.7 1.7 1.7	" "	" "	" "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND ND ND ND	1.7 1.7 1.7 1.7	" " "	" " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND ND ND ND	1.7 1.7 1.7 1.7 1.7	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	ND ND ND ND ND ND	1.7 1.7 1.7 1.7 1.7 1.7	n n n	" " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11	11 11 11 11	11 11 11 11	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	ND ND ND ND ND ND ND ND ND	1.7 1.7 1.7 1.7 1.7 1.7 1.7	" " " " " " "	" " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11 11	" " " " " " " " "	" " " " " " " " "	
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	ND	1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	" " " " " " " " " " " " " " " " " " " "		"				
Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene	ND N	1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	n n n			11 11 11 11 11 11			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	2.2	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.5	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		89.1 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.2 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		114 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	,,	,,	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-3-10.0 T180352-19 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Met	hod 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		60.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		67.0 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		76.6 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		97.7 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		97.1 %	29.1-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Tasket

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

Project: 3rd & Fairfax

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	390	ug/kg	1	8020130	02/01/18	02/01/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		62.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	14	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	n.	
Surrogate: p-Terphenyl		86.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	39	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	8.9	2.0	"	"	"	"	"	"	
Copper	8.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	16	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	27	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9/

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Metho	d 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		76.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		68.8 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Me	thod 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.9	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.9	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	7.6	1.9	"	"	"	"	"	"	
Toluene	2.3	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		90.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		121 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by I	EDA Mothod 9270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND		"	"	,,	"	"	"	
	ND	300		"					
	ND ND	1000	"	"	"	"	"	"	
4-Chloro-3-methylphenol							"	"	
4-Chloro-3-methylphenol 2-Methylnaphthalene	ND ND	1000	"	"	"	"			
4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene	ND ND ND	1000 300 300	"	"	"	"	"	"	
4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthene	ND ND ND ND	1000 300 300 300	" "	" "	"	"	"	11	
4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthene 4-Nitrophenol	ND ND ND ND	1000 300 300 300 1000	" "	n n n	" "	" " " "	"	n n	
4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene	ND ND ND ND ND	1000 300 300 300 1000 300	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	
4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthene 4-Nitrophenol	ND ND ND ND	1000 300 300 300 1000	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Jasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

Austral	D14	Reporting	T T:4-	Dilatian	D-4-l-	D 1	A1	M-4l d	N-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-3-20.0 T180352-21 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by l	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/06/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	n .	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	n .	
Hexachloroethane	ND	300	"	"	"	"	"	n .	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	n .	
Isophorone	ND	300	"	"	"	"	"	n .	
2-Methylphenol	ND	1000	"	"	"	"	"	n .	
4-Methylphenol	ND	1000	"	"	"	"	"	n .	
Naphthalene	ND	300	"	"	"	"	"	n .	
2-Nitroaniline	ND	300	"	"	"	"	"	n .	
3-Nitroaniline	ND	300	"	"	"	"	"	n .	
4-Nitroaniline	ND	300	"	"	"	"	"	n .	
Nitrobenzene	ND	1000	"	"	"	"	"	n .	
2-Nitrophenol	ND	1000	"	"	"	"	"	n .	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	n .	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	n .	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	n .	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	n .	
Phenanthrene	ND	300	"	"	"	"	"	n .	
Azobenzene	ND	300	"	"	"	"	"	n .	
Pyridine	ND	300	"	"	"	"	"	n .	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	n .	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		58.1 %	15-1.	21	"	"	"	"	
Surrogate: Phenol-d6		65.1 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		75.6 %	21.3-1	19	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.6 %	32.4-1	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		104 %	18.1-1	05	"	"	"	"	
Surrogate: Terphenyl-dl4		96.6 %	29.1-1	30	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-3 T180352-24 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8020142	02/01/18	02/03/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		91.4 %	65-135		"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	2.0	0.50	mg/l	1	8020233	02/02/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		75.7 %	65-135		"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	50	ug/l	1	8020242	02/02/18	02/06/18	EPA 6010b	
Silver	ND	50	"	"	"	"	"	"	
Arsenic	ND	50	"	"	"	"	"	"	
Barium	110	50	"	"	"	"	"	"	
Beryllium	ND	50	"	"	"	"	"	"	
Cadmium	ND	50	"	"	"	"	"	"	
Chromium	ND	50	"	"	"	"	"	"	
Cobalt	ND	50	"	"	"	"	"	"	
Copper	ND	50	"	"	"	"	"	"	
Lead	ND	50	"	"	"	"	"	"	
Molybdenum	62	50	"	"	"	"	"	"	
Nickel	ND	50	"	"	"	"	"	"	
Selenium	ND	50	"	"	"	"	"	"	
Thallium	ND	50	"	"	"	"	"	"	
Vanadium	ND	50	"	"	"	"	"	"	
Zinc	ND	50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Page 69 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-3 T180352-24 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.50	ug/l	1	8020243	02/02/18	02/06/18	EPA 7470A Water	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-3 T180352-24 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	83.3-119 81-136		"	,,	,,	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-3

Project: 3rd & Fairfax

T180352-24 (Water)

Reporting

Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Surrogate: Toluene-d8 110 % 88.8-117 8020127 02/01/18 02/01/18 EPA 8260B

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	320	ug/kg	1	8020130	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		49.7 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	250	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	890	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		87.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	64	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	20	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	6.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	13	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	40	5.0	"	"	"	"	"	"	
Zinc	32	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7	471								
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA	Method 8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/05/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4'-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4'-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4´-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9/

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		63.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.1 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.7	"	"	"	"	"	"	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Analyte

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Method

Analyzed

02/08/18 18:10

Notes

B-13-1.0 T180352-25 (Soil)

Units

Dilution

Batch

Prepared

Reporting

Limit

Result

ND

ND

ND

1.7

1.7

1.7

		SunStar L	aboratorie	s, Inc.				
Volatile Organic Compounds by EP.	A Method 8260B							
1,4-Dichlorobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"
Isopropylbenzene	ND	1.7	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"
Methylene chloride	ND	1.7	"	"	"	"	"	"
Naphthalene	ND	1.7	"	"	"	"	"	"
n-Propylbenzene	ND	1.7	"	"	"	"	"	"
Styrene	ND	1.7	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"
Tetrachloroethene	ND	1.7	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"
Γrichloroethene	ND	1.7	"	"	"	"	"	"

SunStar Laboratories, Inc.

Trichlorofluoromethane

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		85.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		75.6 %	81.2	-123	"	"	"	"	S-G
Surrogate: Dibromofluoromethane		119 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	1500	ug/kg	5	8020521	02/05/18	02/07/18	EPA 8270C	R-0
Aniline	ND	1500	"	"	"	"	"	"	R-0
Phenol	ND	5000	"	"	"	"	"	"	R-0
2-Chlorophenol	ND	5000	"	"	"	"	"	"	R-0
1,4-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-0
N-Nitrosodi-n-propylamine	ND	1500	"	"	"	"	"	"	R-0
1,2,4-Trichlorobenzene	ND	1500	"	"	"	"	"	"	R-0
4-Chloro-3-methylphenol	ND	5000	"	"	"	"	"	"	R-0
1-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-0
2-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-0
Acenaphthene	ND	1500	"	"	"	"	"	"	R-0
4-Nitrophenol	ND	5000	"	"	"	"	"	"	R-0
2,4-Dinitrotoluene	ND	1500	"	"	"	"	"	"	R-0
Pentachlorophenol	ND	5000	"	"	"	"	"	"	R-0
Pyrene	ND	1500	"	"	"	"	"	"	
Acenaphthylene	ND	1500	"	"	"	"	"	"	R-0
Anthracene	ND	1500	"	"	"	"	"	"	R-0
Benzo (a) anthracene	ND	1500	"	"	"	"	"	"	R-0
Benzo (b) fluoranthene	ND	1500	"	"	"	"	"	"	R-0
Benzo (k) fluoranthene	ND	1500	"	"	"	"	"	"	R-0

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Benzo (g,h,i) perylene	ND	5000	ug/kg	5	8020521	02/05/18	02/07/18	EPA 8270C	R-07
Benzo (a) pyrene	ND	1500	"	"	"	"	"	"	R-07
Benzyl alcohol	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethoxy)methane	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroisopropyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-ethylhexyl)phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Bromophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Butyl benzyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Chloroaniline	ND	1500	"	"	"	"	"	"	R-07
2-Chloronaphthalene	ND	1500	"	"	"	"	"	"	R-07
4-Chlorophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Chrysene	ND	1500	"	"	"	"	"	"	R-07
Dibenz (a,h) anthracene	ND	1500	"	"	"	"	"	"	R-07
Dibenzofuran	ND	1500	"	"	"	"	"	"	R-07
Di-n-butyl phthalate	ND	1500	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4-Dichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Diethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
2,4-Dimethylphenol	ND	5000	"	"	"	"	"	"	R-07
Dimethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4,6-Dinitro-2-methylphenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,6-Dinitrotoluene	ND	5000	"	"	"	"	"	"	R-07
Di-n-octyl phthalate	ND	1500	"	"	"	"	"	"	R-07
Fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Fluorene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorobenzene	ND	7500	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorocyclopentadiene	ND	5000	"	"	"	"	"	"	R-07
Hexachloroethane	ND	1500	"	,,	"	,,	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-1.0 T180352-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	resurt	Limit	Omio	Dittion	Duton	Tropured	7 11141 3 204	memod	110103
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	1500	ug/kg	5	8020521	02/05/18	02/07/18	EPA 8270C	R-07
Isophorone	ND	1500	"	"	"	"	"	"	R-07
2-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
4-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
Naphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
3-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
4-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
Nitrobenzene	ND	5000	"	"	"	"	"	"	R-07
2-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
N-Nitrosodimethylamine	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodiphenylamine	ND	1500	"	"	"	"	"	"	R-07
2,3,5,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
2,3,4,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
Phenanthrene	ND	1500	"	"	"	"	"	"	R-07
Azobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4,5-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyridine	ND	1500	"	"	"	"	"	"	R-07
2,4,6-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Surrogate: 2-Fluorophenol		67.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		77.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		82.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		91.1 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		99.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		99.4 %	29.1	-130	"	"	"	"	
-									

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Page 79 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

		Reporting	TT 1	D3 - 2	D . 1	ъ.		36.4.1	37
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	390	ug/kg	1	8020130	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		58.7 %	65-	135	"	"	"	"	S-0
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	22	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		78.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	58	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	10	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	20	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	30	5.0	"	"	"	"	"	"	
Zinc	32	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 80 of 126

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Met	thod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		55.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		56.9 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Method 8260B								
Bromobenzene	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	2.1	"	"	"	"	"	"	
Bromodichloromethane	ND	2.1	"	"	"	"	"	"	
Bromoform	ND	2.1	"	"	"	"	"	"	
Bromomethane	ND	2.1	"	"	"	"	"	"	
n-Butylbenzene	ND	2.1	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.1	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.1	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.1	"	"	"	"	"	"	
Chlorobenzene	ND	2.1	"	"	"	"	"	"	
Chloroethane	ND	2.1	"	"	"	"	"	"	
Chloroform	ND	2.1	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.1	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.1	"	"	"	"	"	"	
Dibromochloromethane	ND	2.1	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.2	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	2.1	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.1	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.1	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.1	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.1	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.1	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.1	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.1	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.1	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.1	"	"	"	"	"	"	
Isopropylbenzene	ND	2.1	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.1	"	"	"	"	"	"	
Methylene chloride	ND	2.1	"	"	"	"	"	"	
Naphthalene	ND	2.1	"	"	"	"	"	"	
n-Propylbenzene	ND	2.1	"	"	"	"	"	"	
Styrene	ND	2.1	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.1	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.1	"	"	"	"	"	"	
Tetrachloroethene	ND	2.1	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.1	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.1	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.1	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	2.1	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	2.1	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.1	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.1	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.1	"	"	"	"	"	"	
Benzene	2.4	2.1	"	"	"	"	"	"	
Toluene	ND	2.1	"	"	"	"	"	"	
Ethylbenzene	ND	2.1	"	"	"	"	"	"	
m,p-Xylene	ND	4.2	"	"	"	"	"	"	
o-Xylene	ND	2.1	"	"	"	"	"	"	
Surrogate: Toluene-d8		91.4 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.0 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		121 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
l-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
*									
Pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

A 1	D to	Reporting	I I'	Dil. C	D-4-1	D 1	A 1 1	M-41. 1	NT 4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-10.0 T180352-27 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		68.8 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		73.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		84.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.3 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		107 %	18.1	-105	"	"	"	"	S-GC
Surrogate: Terphenyl-dl4		105 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	350	ug/kg	1	8020130	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		52.9 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	15	10	mg/kg	1	8020522	02/05/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		87.1 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020239	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	370	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	19	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	28	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	46	5.0	"	"	"	"	"	"	
Zinc	34	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020238	02/02/18	02/05/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Method	8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		66.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		60.8 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Meth	od 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.4	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Towheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8020129	02/01/18	02/02/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	4.4	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		91.2 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.6 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	,,	,,	,,	,,	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Me	thod 8270C								
Anthracene	ND	300	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

B-13-15.0 T180352-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020521	02/05/18	02/07/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		70.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		73.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		87.8 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.3 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		104 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		99.3 %	29.1-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 18:10

B-13 T180352-32 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8020142	02/01/18	02/03/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		86.6 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	1.2	0.50	mg/l	1	8020233	02/02/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		76.0 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-13 T180352-32 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax 24411 Ridge Route Drive, Suite 130 Project Number: 2047.15

Laguna Hills CA, 92653 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

B-13 T180352-32 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Ethylbenzene	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		108 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Project Manager: Derrick Willis 02/08/18 18:10

Purgeable Petroleum Hydrocarbons by EPA 8015B - Quality Control

SunStar	Laboratories	, Inc.
---------	--------------	--------

	.	Reporting	TT 11	Spike	Source	0/DEC	%REC	DDD	RPD	37.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020130 - EPA 5035 GC										
Blank (8020130-BLK1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	ND	400	ug/kg							
Surrogate: 4-Bromofluorobenzene	126		"	100		126	65-135			
LCS (8020130-BS1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	1910	400	ug/kg	1980		96.5	75-125			
Surrogate: 4-Bromofluorobenzene	115		"	100		115	65-135			
LCS Dup (8020130-BSD1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	1750	400	ug/kg	1980		88.1	75-125	8.89	20	
Surrogate: 4-Bromofluorobenzene	106		"	100		106	65-135			
Batch 8020142 - EPA 5030 GC										
Blank (8020142-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/03/18			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate: 4-Bromofluorobenzene	76.8		"	100		76.8	65-135			
LCS (8020142-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
C6-C12 (GRO)	1090	50	ug/l	1000		109	75-125			
Surrogate: 4-Bromofluorobenzene	115		"	100		115	65-135			
LCS Dup (8020142-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
C6-C12 (GRO)	1020	50	ug/l	1000		102	75-125	7.35	20	
Surrogate: 4-Bromofluorobenzene	116		"	100		116	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

Extractable Petroleum Hydrocarbons by 8015B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020233 - EPA 3510C GC										
Blank (8020233-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	2/07/18			
C13-C28 (DRO)	ND	0.50	mg/l							
C29-C40 (MORO)	ND	0.50	"							
Surrogate: p-Terphenyl	3.02		"	4.00		75.6	65-135			
LCS (8020233-BS1)				Prepared: (02/02/18 A	nalyzed: 02	2/07/18			
C13-C28 (DRO)	16.0	0.50	mg/l	20.0		80.2	75-125			
Surrogate: p-Terphenyl	2.69		"	4.00		67.3	65-135			
LCS Dup (8020233-BSD1)				Prepared: (02/02/18 A	nalyzed: 02	2/07/18			
C13-C28 (DRO)	16.8	0.50	mg/l	20.0		84.2	75-125	4.92	20	
Surrogate: p-Terphenyl	2.62		"	4.00		65.6	65-135			
Batch 8020522 - EPA 3550B GC										
Blank (8020522-BLK1)				Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	68.7		"	100		68.7	65-135			
LCS (8020522-BS1)				Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
C13-C28 (DRO)	460	10	mg/kg	500		92.1	75-125			
Surrogate: p-Terphenyl	76.9		"	100		76.9	65-135			
LCS Dup (8020522-BSD1)				Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
C13-C28 (DRO)	500	10	mg/kg	500		101	75-125	9.03	20	
Surrogate: p-Terphenyl	87.3		"	100		87.3	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

RPD

%REC

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		/0KEC		KrD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020239 - EPA 3050B										
Blank (8020239-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Гhallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (8020239-BS1)				Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Arsenic	103	5.0	mg/kg	100		103	75-125			
Barium	106	1.0	"	100		106	75-125			
Cadmium	105	2.0	"	100		105	75-125			
Chromium	105	2.0	"	100		105	75-125			
Lead	112	3.0	"	100		112	75-125			
Matrix Spike (8020239-MS1)	Sou	rce: T180352-	-02	Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Arsenic	87.1	5.0	mg/kg	97.1	ND	89.7	75-125			
Barium	221	1.0	"	97.1	107	117	75-125			
Cadmium	94.4	2.0	"	97.1	0.889	96.3	75-125			
Chromium	116	2.0	"	97.1	19.3	99.9	75-125			
Lead	110	3.0	"	97.1	ND	114	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

RPD

%REC

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Keporting		Spike	Source		/okec		KFD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020239 - EPA 3050B										
Matrix Spike Dup (8020239-MSD1)	Sou	rce: T180352-	-02	Prepared: (02/02/18 A	nalyzed: 02	2/05/18			
Arsenic	84.3	5.0	mg/kg	96.2	ND	87.7	75-125	3.30	20	
Barium	159	1.0	"	96.2	107	54.0	75-125	32.7	20	QR-0
Cadmium	86.5	2.0	"	96.2	0.889	89.0	75-125	8.80	20	
Chromium	99.2	2.0	"	96.2	19.3	83.0	75-125	15.9	20	
Lead	102	3.0	"	96.2	ND	106	75-125	8.15	20	
Batch 8020242 - EPA 3010A										
Blank (8020242-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Antimony	ND	50	ug/l							
Silver	ND	50	"							
Arsenic	ND	50	"							
Barium	ND	50	"							
Beryllium	ND	50	"							
Cadmium	ND	50	"							
Chromium	ND	50	"							
Cobalt	ND	50	"							
Copper	ND	50	"							
Lead	ND	50	"							
Molybdenum	ND	50	"							
Nickel	ND	50	"							
Selenium	ND	50	"							
Thallium	ND	50	"							
Vanadium	ND	50	"							
Zinc	ND	50	"							
LCS (8020242-BS1)				Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Arsenic	475	50	ug/l	500		95.0	75-125			
Barium	485	50	"	500		97.1	75-125			
Cadmium	481	50	"	500		96.2	75-125			
Chromium	485	50	"	500		97.1	75-125			
Lead	509	50	"	500		102	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting			Source					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020242 - EPA 3010A										
Matrix Spike (8020242-MS1)	Source	e: T180352-	24	Prepared: (02/02/18 A	nalyzed: 02	/06/18			
Arsenic	493	50	ug/l	500	ND	98.5	75-125			
Barium	578	50	"	500	114	92.8	75-125			
Cadmium	462	50	"	500	ND	92.4	75-125			
Chromium	470	50	"	500	ND	94.0	75-125			
Lead	491	50	"	500	ND	98.3	75-125			
Matrix Spike Dup (8020242-MSD1)	Source	e: T180352-	24	Prepared: (02/02/18 A	nalyzed: 02	/06/18			
Arsenic	487	50	ug/l	500	ND	97.4	75-125	1.19	20	·
Barium	572	50	"	500	114	91.7	75-125	0.975	20	
Cadmium	454	50	"	500	ND	90.8	75-125	1.69	20	
Chromium	467	50	"	500	ND	93.4	75-125	0.641	20	
Lead	484	50	"	500	ND	96.7	75-125	1.57	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 18:10

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020238 - EPA 7471A Soil										
Blank (8020238-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	2/05/18			
Mercury	ND	0.10	mg/kg							
LCS (8020238-BS1)				Prepared: (02/02/18 A	nalyzed: 02	2/05/18			
Mercury	0.341	0.10	mg/kg	0.397		86.0	80-120			
Matrix Spike (8020238-MS1)	Sourc	e: T180352-	02	Prepared: (02/02/18 A	nalyzed: 02	2/05/18			
Mercury	0.382	0.10	mg/kg	0.403	0.0292	87.4	75-125			
Matrix Spike Dup (8020238-MSD1)	Sourc	e: T180352-	02	Prepared: (02/02/18 A	nalyzed: 02	2/05/18			
Mercury	0.371	0.10	mg/kg	0.403	0.0292	84.7	75-125	2.88	20	
Batch 8020243 - EPA 7470A Water										
Blank (8020243-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Mercury	ND	0.50	ug/l							
LCS (8020243-BS1)				Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Mercury	4.59	0.50	ug/l	5.00		91.8	80-120			
Matrix Spike (8020243-MS1)	Sourc	e: T180398-	01	Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Mercury	4.37	0.50	ug/l	5.00	ND	87.3	75-125			
Matrix Spike Dup (8020243-MSD1)	Sourc	e: T180398-	01	Prepared: (02/02/18 A	nalyzed: 02	2/06/18			
Mercury	4.36	0.50	ug/l	5.00	ND	87.3	75-125	0.0996	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

RPD

%REC

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 8020134 - EPA 3550 ECD/GCM	S									
Blank (8020134-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
alpha-BHC	ND	5.0	ug/kg							
gamma-BHC (Lindane)	ND	5.0	"							
beta-BHC	ND	5.0	"							
delta-BHC	ND	5.0	"							
Heptachlor	ND	5.0	"							
Aldrin	ND	5.0	"							
Heptachlor epoxide	ND	5.0	"							
gamma-Chlordane	ND	5.0	"							
alpha-Chlordane	ND	5.0	"							
Endosulfan I	ND	5.0	"							
4,4´-DDE	ND	5.0	"							
Dieldrin	ND	5.0	"							
Endrin	ND	5.0	"							
4,4′-DDD	ND	5.0	"							
Endosulfan II	ND	5.0	"							
4,4´-DDT	ND	5.0	"							
Endrin aldehyde	ND	5.0	"							
Endosulfan sulfate	ND	5.0	"							
Methoxychlor	ND	10	"							
Endrin ketone	ND	5.0	"							
Гохарһепе	ND	200	"							
Surrogate: Tetrachloro-meta-xylene	8.92		"	10.0		89.2	35-140			
Surrogate: Decachlorobiphenyl	8.62		"	10.0		86.2	35-140			
LCS (8020134-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	34.2	5.0	ug/kg	40.0		85.5	40-120			
Heptachlor	34.1	5.0	"	40.0		85.2	40-120			
Aldrin	32.0	5.0	"	40.0		80.0	40-120			
Dieldrin	32.6	5.0	"	40.0		81.5	40-120			
Endrin	32.7	5.0	"	40.0		81.9	40-120			
4,4´-DDT	30.7	5.0	"	40.0		76.8	33-147			
Surrogate: Tetrachloro-meta-xylene	8.47		"	10.0		84.7	35-140			
Surrogate: Decachlorobiphenyl	8.36		"	10.0		83.6	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Taskeh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020134 - EPA 3550 ECD/GCMS										
LCS Dup (8020134-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	32.4	5.0	ug/kg	40.0		81.1	40-120	5.30	30	
Heptachlor	32.6	5.0	"	40.0		81.5	40-120	4.51	30	
Aldrin	30.6	5.0	"	40.0		76.4	40-120	4.58	30	
Dieldrin	31.1	5.0	"	40.0		77.7	40-120	4.85	30	
Endrin	31.1	5.0	"	40.0		77.8	40-120	5.11	30	
4,4'-DDT	28.6	5.0	"	40.0		71.5	33-147	7.13	30	
Surrogate: Tetrachloro-meta-xylene	8.06		"	10.0		80.6	35-140			
Surrogate: Decachlorobiphenyl	8.56		"	10.0		85.6	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

115

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 18:10

$Polychlorinated\ Biphenyls\ by\ EPA\ Method\ 8082\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020133 - EPA 3550 ECD/GCMS										
Blank (8020133-BLK1)				Prepared: (02/01/18 Aı	nalyzed: 02	/02/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	7.49		"	10.0		74.9	35-140			
Surrogate: Decachlorobiphenyl	7.46		"	10.0		74.6	35-140			
LCS (8020133-BS1)				Prepared: (02/01/18 Aı	nalyzed: 02	/02/18			
PCB-1016	63.7	10	ug/kg	100		63.7	40-130			
PCB-1260	65.7	10	"	100		65.7	40-130			
Surrogate: Tetrachloro-meta-xylene	7.72		"	10.0		77.2	35-140			
Surrogate: Decachlorobiphenyl	7.73		"	10.0		77.3	35-140			
LCS Dup (8020133-BSD1)				Prepared: (02/01/18 Aı	nalyzed: 02	/02/18			
PCB-1016	69.0	10	ug/kg	100		69.0	40-130	7.99	30	
PCB-1260	61.7	10	"	100		61.7	40-130	6.28	30	
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.0		74.8	35-140			
Surrogate: Decachlorobiphenyl	7.15		"	10.0		71.5	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	8020127	- EPA	5030	CCMS
Daten	0020127	- LI A	2020	CIVIS

Blank (8020127-BLK1)				Prepared & Analyzed: 02/01/18
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020127 - EPA 5030 GCMS										

Blank (8020127-BLK1)				Prepared & Anal	lyzed: 02/01/18		
p-Isopropyltoluene	ND	1.0	ug/l				
Methylene chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
1,2,3-Trichlorobenzene	ND	1.0	"				
1,2,4-Trichlorobenzene	ND	1.0	"				
1,1,2-Trichloroethane	ND	1.0	"				
1,1,1-Trichloroethane	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
,2,3-Trichloropropane	ND	1.0	"				
,3,5-Trimethylbenzene	ND	1.0	"				
,2,4-Trimethylbenzene	ND	1.0	"				
Vinyl chloride	ND	1.0	"				
Benzene	ND	0.50	"				
Toluene	ND	0.50	"				
Ethylbenzene	ND	0.50	"				
n,p-Xylene	ND	1.0	"				
o-Xylene	ND	0.50	"				
Tert-amyl methyl ether	ND	2.0	"				
Tert-butyl alcohol	ND	10	"				
Di-isopropyl ether	ND	2.0	"				
Ethyl tert-butyl ether	ND	2.0	"				
Methyl tert-butyl ether	ND	1.0	"				
Surrogate: 4-Bromofluorobenzene	19.3		"	20.0	96.4	83.5-119	
Surrogate: Dibromofluoromethane	21.2		"	20.0	106	81-136	
Surrogate: Toluene-d8	21.8		"	20.0	109	88.8-117	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Taskeh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 18:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lillit	Ollits	Level	Result	70KEC	Lillits	KrD	Liiiit	Notes
Batch 8020127 - EPA 5030 GCMS										
LCS (8020127-BS1)				Prepared &	Analyzed:	02/01/18				
Chlorobenzene	21.5	1.0	ug/l	20.0		108	75-125			
1,1-Dichloroethene	21.2	1.0	"	20.0		106	75-125			
Trichloroethene	20.0	1.0	"	20.0		100	75-125			
Benzene	21.8	0.50	"	20.0		109	75-125			
Toluene	21.8	0.50	"	20.0		109	75-125			
Surrogate: 4-Bromofluorobenzene	22.2		"	20.0		111	83.5-119			
Surrogate: Dibromofluoromethane	21.2		"	20.0		106	81-136			
Surrogate: Toluene-d8	21.6		"	20.0		108	88.8-117			
LCS Dup (8020127-BSD1)				Prepared &	Analyzed:	02/01/18				
Chlorobenzene	21.2	1.0	ug/l	20.0		106	75-125	1.83	20	
1,1-Dichloroethene	21.3	1.0	"	20.0		106	75-125	0.235	20	
Trichloroethene	20.2	1.0	"	20.0		101	75-125	1.24	20	
Benzene	22.3	0.50	"	20.0		111	75-125	2.13	20	
Toluene	21.8	0.50	"	20.0		109	75-125	0.0458	20	
Surrogate: 4-Bromofluorobenzene	21.8		"	20.0		109	83.5-119			
Surrogate: Dibromofluoromethane	20.9		"	20.0		105	81-136			
Surrogate: Toluene-d8	21.3		"	20.0		106	88.8-117			
Batch 8020129 - EPA 5035 GCMS										
Blank (8020129-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	2/02/18			
Bromobenzene	ND	2.0	ug/kg							
Bromochloromethane	ND	2.0	"							
Bromodichloromethane	ND	2.0	"							
Bromoform	ND	2.0	"							
Bromomethane	ND	2.0	"							
n-Butylbenzene	ND	2.0	"							
sec-Butylbenzene	ND	2.0	"							
tert-Butylbenzene	ND	2.0	"							
Carbon tetrachloride	ND	2.0	"							
Chlorobenzene	ND	2.0	"							
Chloroethane	ND	2.0	"							
Chloroform	ND	2.0	"							
Chloromethane	ND	2.0	"							
2-Chlorotoluene	ND	2.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 18:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	2020120 -	FPA	5035	CCMS

Blank (8020129-BLK1)				Prepared: 02/01/18 Analyzed: 02/02/18
4-Chlorotoluene	ND	2.0	ug/kg	
Dibromochloromethane	ND	2.0	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	
Dibromomethane	ND	2.0	"	
1,2-Dichlorobenzene	ND	2.0	"	
1,3-Dichlorobenzene	ND	2.0	"	
1,4-Dichlorobenzene	ND	2.0	"	
Dichlorodifluoromethane	ND	2.0	"	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	"	
1,2-Dichloropropane	ND	2.0	"	
1,3-Dichloropropane	ND	2.0	"	
2,2-Dichloropropane	ND	2.0	"	
1,1-Dichloropropene	ND	2.0	"	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Hexachlorobutadiene	ND	2.0	"	
Isopropylbenzene	ND	2.0	"	
p-Isopropyltoluene	ND	2.0	"	
Methylene chloride	ND	2.0	"	
Naphthalene	ND	2.0	"	
n-Propylbenzene	ND	2.0	"	
Styrene	ND	2.0	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	
1,1,1,2-Tetrachloroethane	ND	2.0	"	
Tetrachloroethene	ND	2.0	"	
1,2,3-Trichlorobenzene	ND	2.0	"	
1,2,4-Trichlorobenzene	ND	2.0	"	
1,1,2-Trichloroethane	ND	2.0	"	
1,1,1-Trichloroethane	ND	2.0	"	
Trichloroethene	ND	2.0	"	
Trichlorofluoromethane	ND	2.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Reporting

Reported: 02/08/18 18:10

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: 3rd & Fairfax

SunStar Laboratories, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020129 - EPA 5035 GCMS										
Blank (8020129-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	2/02/18			
1,2,3-Trichloropropane	ND	2.0	ug/kg							
1,3,5-Trimethylbenzene	ND	2.0	"							
1,2,4-Trimethylbenzene	ND	2.0	"							
Vinyl chloride	ND	2.0	"							
Benzene	ND	2.0	"							
Γoluene	ND	2.0	"							
Ethylbenzene	ND	2.0	"							
m,p-Xylene	ND	4.0	"							
o-Xylene	ND	2.0	"							
Surrogate: Toluene-d8	40.3		"	39.6		102	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.9		"	39.6		98.1	81.2-123			
Surrogate: Dibromofluoromethane	44.2		"	39.6		112	95.7-135			
LCS (8020129-BS1)				Prepared: (02/01/18 A	nalyzed: 02	2/03/18			
Chlorobenzene	37.5	2.0	ug/kg	39.8		94.2	75-125			
1,1-Dichloroethene	48.2	2.0	"	39.8		121	75-125			
Trichloroethene	37.0	2.0	"	39.8		92.7	75-125			
Benzene	41.0	2.0	"	39.8		103	75-125			
Toluene	37.1	2.0	"	39.8		93.0	75-125			
Surrogate: Toluene-d8	37.8		"	39.8		94.9	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.9		"	39.8		97.5	81.2-123			
Surrogate: Dibromofluoromethane	47.4		"	39.8		119	95.7-135			
LCS Dup (8020129-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	2/03/18			
Chlorobenzene	39.7	2.0	ug/kg	39.4		101	75-125	5.63	20	
1,1-Dichloroethene	47.7	2.0	"	39.4		121	75-125	1.02	20	
Trichloroethene	37.7	2.0	"	39.4		95.8	75-125	2.05	20	
Benzene	42.3	2.0	"	39.4		107	75-125	3.14	20	
Toluene	38.1	2.0	"	39.4		96.7	75-125	2.71	20	
Surrogate: Toluene-d8	36.4		"	39.4		92.5	85.5-116			
Surrogate: 4-Bromofluorobenzene	39.8		"	39.4		101	81.2-123			
Surrogate: Dibromofluoromethane	46.4		"	39.4		118	95.7-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020521 - EPA 3550 ECD/GCMS

Blank (8020521-BLK1)				Prepared: 02/05/18 Analyzed: 02/06/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	2020521	- FDA	3550	FCD/CCI	MC

Blank (8020521-BLK1)				Prepared: 02/05/18 Analyzed: 02/06/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
Pyridine	ND	300	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

111115

Result

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

RPD

Limit

Notes

%REC

Limits

RPD

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C-Quality\ Control$

SunStar Laboratories, Inc.

Units

Reporting

Limit

Spike

Level

Source

Result

%REC

Allaryte	Result	LIIIII	Omis	Level	Resuit	/0KEC	Lillits	KrD	Liiiit	Notes
Batch 8020521 - EPA 3550 ECD/GCM	IS									
Blank (8020521-BLK1)				Prepared: (02/05/18 An	nalyzed: 02	2/06/18			
Surrogate: 2-Fluorophenol	1890		ug/kg	3370		56.0	15-121			
Surrogate: Phenol-d6	1990		"	3370		59.1	24-113			
Surrogate: Nitrobenzene-d5	2250		"	3370		66.6	21.3-119			
Surrogate: 2-Fluorobiphenyl	2370		"	3370		70.4	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2590		"	3370		76.9	18.1-105			
Surrogate: Terphenyl-dl4	3150		"	3370		93.5	29.1-130			
LCS (8020521-BS1)				Prepared: (02/05/18 An	nalyzed: 02	2/06/18			
Phenol	1840	1000	ug/kg	3320		55.4	34-114			
2-Chlorophenol	1990	1000	"	3320		59.8	34-114			
1,4-Dichlorobenzene	1900	300	"	3320		57.0	34-114			
N-Nitrosodi-n-propylamine	2350	300	"	3320		70.7	30-110			
1,2,4-Trichlorobenzene	2020	300	"	3320		60.6	39-119			
4-Chloro-3-methylphenol	2490	1000	"	3320		75.0	50-130			
Acenaphthene	2170	300	"	3320		65.3	34-114			
Pentachlorophenol	3020	1000	"	3320		90.9	50-130			
Pyrene	1860	300	"	3320		55.9	30-110			
Surrogate: 2-Fluorophenol	1870		"	3320		56.2	15-121			
Surrogate: Phenol-d6	2040		"	3320		61.3	24-113			
Surrogate: Nitrobenzene-d5	2220		"	3320		66.7	21.3-119			
Surrogate: 2-Fluorobiphenyl	2460		"	3320		74.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2780		"	3320		83.7	18.1-105			
Surrogate: Terphenyl-dl4	3260		"	3320		98.2	29.1-130			
LCS Dup (8020521-BSD1)				Prepared: (02/05/18 An	nalyzed: 02	2/06/18			
Phenol	1920	1000	ug/kg	3350		57.3	34-114	4.06	42	
2-Chlorophenol	2060	1000	"	3350		61.6	34-114	3.61	40	
1,4-Dichlorobenzene	1990	300	"	3350		59.5	34-114	4.94	28	
N-Nitrosodi-n-propylamine	2430	300	"	3350		72.6	30-110	3.32	38	
1,2,4-Trichlorobenzene	2160	300	"	3350		64.6	39-119	7.05	28	
4-Chloro-3-methylphenol	2630	1000	"	3350		78.5	50-130	5.24	42	
Acenaphthene	2290	300	"	3350		68.4	34-114	5.24	31	
Pentachlorophenol	2980	1000	"	3350		88.9	50-130	1.49	50	
Pyrene	1930	300	"	3350		57.8	30-110	3.87	31	
Surrogate: 2-Fluorophenol	1910		"	3350		57.2	15-121			
Surrogate: Phenol-d6	2080		"	3350		62.2	24-113			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 18:10

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020521 - EPA 3550 ECD/GCMS

LCS Dup (8020521-BSD1)			Prepared: 02/05/	/18 Analyzed: 02	2/06/18
Surrogate: Nitrobenzene-d5	2270	ug/kg	3350	67.9	21.3-119
Surrogate: 2-Fluorobiphenyl	2560	"	3350	76.5	32.4-102
Surrogate: 2,4,6-Tribromophenol	2770	"	3350	82.9	18.1-105
Surrogate: Terphenyl-dl4	3410	"	3350	102	29.1-130

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax 24411 Ridge Route Drive, Suite 130 Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 18:10

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

S-03 The surrogate recovery was below acceptance criteria in the sample because of a possible matrix effect. The surrogate recovery was

within acceptance criteria in the method blank and LCS.

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix

interference's.

R-07 Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s)

and/or matrix affect.

QR-04 The pecent recovery and/or RPD was outside acceptance criteria. Results accepted based upon percent recovery results in duplicate QC

sample and the CCV and CCB results.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Laguna Hills CA, 92653

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Record

949-297-5020 25712 Commercentre Drive, Lake Forest, CA 92630

10		<u> </u>						_														
	Relinguisbed by: (signature)	ト入	Relinquished by: (signature)	110111	Relinguished by (signature)	B-14-300	6-14-25.0	3-14-200	6-14-15-0	B-14-10.0	B-14-5.0	3-14-1.0	13-5,-30.0	3-5-25.0	13-5-200	B-S-150)	は一名。そう	-	TB-2018.01.30-A	Client: Northgate Envir Address: 24411 Aidse Ro Phone: (949) 716 0050 Project Manager: Derrick U	
	Date / Time	1-30-18 16	Date / Time	1-30-18 11	Date / Time	∀ ∂	0 .	0	0	0:	30	0	02	1 0	0	0	0	0	0	জ	on me	,
		16:02		नि:।ठ		१: ५ द	10.50	09.07	09:03	65.8	08:52	54:30	\$7:80	08:10	08:03	7:58	25:10	83:10	16:20	07:10		*
	Received by: (signature)	N	Received by:	7	Received by: (signature)	⟨ -													50	AQ		
	: (signature)		/: (signatyre)	1	/: (signature)	J			****	74 +C	VAAC	V+65	+				ĺ	VIAC	ሆ ተሬፓ	. V	716~0055 Container Type	
	-	1/8		٠٠.														·		-	8260	
	╽	130/18		1-30-18					4											_	8260 + OXY	
)ate /	_	Date /	60)ate /				_	_			\dashv							_	8260 BTEX, OXY only	
	Date / Time	16:02	Time	Ī	Date / Time			\dashv	\dashv	_	\dashv	-	_	_						\vdash	Batch #: Collector: Dans 8021 BTEX 8015M (gasoline) 8015M (diesel)	
	°	1	e	Q .i.	Ф		-		_		\dashv	\dashv	-				-				8015M (gasoline)	
Turn	_1			<u>ဂ</u>	_				_	_											8015M (gasoline)	
rn a	•	Rece		nain c											,						8015M (diesel) 8015M Ext./Carbon Chain	
oun.		ived :	တ	of Cu	_											•					8015M Ext./Carbon Chain 6010/7000 Title 22 Metals	
around time:	(good	eals i	stody	otal #																6020 ICP-MS Metals	
<u>е</u> 		cond	ntact	seal	# of c																9,	
		Received good condition/cold	Seals intact? Y/N/NA	s XX	Total # of containers																a infa	
	_		3	D	ners																	
		1,7			901	51	19	2/	12	"	01	09	8	07	96	20	04	os	n	10	Laboratory ID# EDF #:	
æ	Ŧ	PC	3	7	2							,									Page: 1 OfOfOfClient Project #: 204 7 EDF #:	
I A	リエ	, h)1	Ó	0,													-			ject:	
g So So	200	400	0,7		<u>}</u>																ect #: 204 7, 15	
Spo	3	र है	S S	> (Se (5)		:												,		ofof	
ž	, ~	ن اه	Š		es ,																	
11	Sis	- Acetare Core	12 2 802 a 105 Jev		Seel sagan Imones																ative Street	Ì
AQ=Agueous SO=Soil	ナリナのなかっていいってい	, , , , , , , , , , , , , , , , , , ,															·					
						7	7	7	7	7	7	7	7	7	7	7	7	7	1	17	Total # of containers	
	\	5					٠														Pa	g

Sample disposal Instructions: Disposal @ \$2.00 each

Return to client

Pickup

Coc 172264

Chain of Custody Record

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Collector Decet Name: 3 rd 1 fa 1 fa 20 fa 1		Relinedigned by: (signature) Date / Time Received by: (signature)	1000 1000	∄	1-30-18 14:10	Received by: (signature) Date / Time Received by: (signature)	25.0 1 13:31		3-	13-10.0	-13-50	13:07	15-3 12:05 AQ V+	B-3-30.0 11:12 V V	6-3-25.0 11:00 1	3-20.0	6-3-15.0 10:52	-10.0	+1 +1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-3-1.0	1-30-2018 09:50 AQ V+	Address: 2441 Ridge Porte #130, Lagura (4.1) Phone: (949) 716-0050 Project Manager: Describe Willis Date Sample ID Sampled Time Type Type Type
Client Project #: 20 47. IS EDF #: EDF #: Comments/Preservative Laboratory VINNINA Seals infact? VINNINA Seals infact? VINNINA Page: Comments/Preservative Comments/Preservative Comments/Preservative AC A A PAPAGEURS & SO = Soil			1/30/10) Date	1-30-18) Date / T					AC	65	PC						き	7	•	整整
Comments/Preservative C= Acetare Core C= Acetare Core A=Agreeus SO = Soi	Turn around time:	-		Seals intact? Y/N/NA/		Total # of containers	30	29	28	27	26	25	24	2.3	22	2(20	19	18	7,		6010/7000 Title 22 Metals 6020 ICP-MS Metals
TO	AF Anelys & Facil	>> -> -> -> -> -> -> -> -> -> -> -> -> -	十一十一日のかっていている	AC = Acerese Coro	67=802 glass)or	V=40 ml glissys VOA	7		4	£			6	1	7							Project #: 2047.

Sample disposal Instructions: Disposal @ \$2.00 each _

Return to client

coc 172251

Page 115 of 126

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Client:_

North gaze Environmental
24411 Ridge Rouse # 130 Laguna Hills

Fax: (949) 716-0055

Address:

Phone: (949) 716-00 50

Comments Preservetive Comm								-							ROS	\$	
Time Sample Container Sample Type Typ	Relinguished by: (signature)	Relinquished by: (signature)	(signatu					7						13-13	3-13-30-0		Sample ID
Sample Container Type Container Type Container Type Type Sample Container Type Type Sample Container Type Type Sample Container Sample Container Sample Container Sample Container Conta	Date / Ti		Date / Th						j.					1-30-18-		1-30-2018	Date Sampled
Table Time Received good condition/cold	me	0000 Bene	14:K						7					14:03		12:10	Time
Table Time Received good condition/cold	Received b	Received b	Received b											AQ	30	AQ	Sample Type
Bate / Time Bate / Time / Bate / Time Bate / Time / Bate / Time / Bate / Time Bate / Time / Bate /	y: (signature)		y: (signature)											エクセク	VACC	<	Container Type
Bate / Time Bate / Time / Bate / Time Bate / Time / Bate / Time / Bate / Time Bate / Time / Bate /		<i>(/</i>)	1-36-1					1		1	1				1	<u> </u>	
Turn around time: B015M (gasoline) B015M (diesel) B015M Ext./Carbon Chain B015M Ext./Carbon Chain G010/7000 Title 22 Metals G020 ICP-MS Metals	I I		% D	\vdash	+		_	+	-	+	-	\vdash				_	<u> </u>
Turn around time: B015M (gasoline) B015M (diesel) B015M Ext./Carbon Chain B015M Ext./Carbon Chain G010/7000 Title 22 Metals G020 ICP-MS Metals	ate /	ate / /6,	ate /	$\vdash \vdash$	+	Н	_	+	+	+	╁╴	Н		_			<u> </u>
Turn around time: B015M (gasoline) B015M (diesel) B015M Ext./Carbon Chain B015M Ext./Carbon Chain G010/7000 Title 22 Metals G020 ICP-MS Metals	Time	Time	ime	+	+		-	+	1	十	-	H			+	\vdash	
ondition/cold 4.7. Laboratory ID #				H	1			+	+	+	1	П			\parallel	T	
ondition/cold 4.7. Laboratory ID #	፟ឨ	ग	웃	\Box					\top	T	1	П			T	T	8015M (diesel)
ondition/cold 4.7. Laboratory ID #	n ar	<u> </u>	ain o					T									8015M Ext./Carbon Ćhain
ondition/cold 4.7. Laboratory ID #	ounc	yed c	f Cus						floor								6010/7000 Title 22 Metals
ondition/cold 4.7. Laboratory ID #		ials in	otal #	Ш						\perp					L	L	6020 ICP-MS Metals
Laboratory ID#	P.	ntact;	of co	Н		_		_	4	_	1		L	_		<u> </u>	
Laboratory ID#		tion/c	ontair Y/N	\vdash		┡	Ш	4	\bot	_	╄	 	_	\vdash	1	╀-	
		<u>ĕ</u> €	<u>S</u>												П		
Comments/Preservative Notes		17.4												32		12	Laboratory ID #
			Notes														

Batch #: 7/80352 EDF #:	Brown	Project Name: 3rd & Fairfox	Date: 1 -30 - 2018 Page: 3
	Client Project #: 2047.15		₩

Page 116 of 126

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	1180352			
Client Name:	MORTHGATE ENV	Project:		3RD & FAIRFAX
Delivered by:	☐ Client 🗵 Suns	Star Courier GSO	☐ FedEx	☐ Other
If Courier, Received by:	JOEY	Date/Time Co		1:30-18 / 14:10
Lab Received by:	BRIAN	Date/Time La Received:	ıb	1:30-18 / 16:02
Total number of coolers re				
Temperature: Cooler #1	1.7 °C +/- the C	CF (- 0.2°C) = 4.7	°C correct	ed temperature
Temperature: Cooler #2	°C +/- the C	CF (- 0.2°C) =	°C correct	ed temperature
Temperature: Cooler #3	°C +/- the C	CF (- 0.2°C) =	°C correct	ed temperature
Temperature criteria = 5 (no frozen containers)	≤6°C	Within criteria?	⊠Yes	□No
If NO:				
Samples received	on ice?	□Yes	□No → Complete	e Non-Conformance Sheet
If on ice, samples collected?	received same day	☐Yes → Acceptable	$\square N_0 \rightarrow$	e Non-Conformance Sheet
Custody seals intact on co	ooler/sample		□Yes	□No* ⊠N/A
Sample containers intact			Yes	□No*
Sample labels match Chai	in of Custody IDs		X Yes	□No*
Total number of container	rs received match COC		Y Yes	□No*
Proper containers received	d for analyses requested	d on COC	Y Yes	□No*
Proper preservative indica	ated on COC/containers	s for analyses requested	X Yes	□No* □N/A
Complete shipment receive containers, labels, volume holding times	·	-	Yes Yes	□ No*
* Complete Non-Conformar	nce Receiving Sheet if che	ecked Cooler/Sample Rev	iew - Initials	and date: 82 /-30-18
Comments:				
um in terminal de la companya de la La companya de la co				

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

	1:		<u> </u>	_						******	*****	**************	***************************************		-	opowerson				·			
Sample disposal Instructions:		Relinguisped by: (signature)	1	Relinquished by: (signature)	1/01/1	Relinguished by	Į.	B-14-25	B-14-2	8-14-1X	0 I	5-11-8	3-14-1	ر دي	b	,	1)	8-3-50	3-5-1.0	TA-2018:01.30		Client Northgare
		/: (signature)	1	r. (signature)	1	y/(signature)	0	5.0	20.0	०	o o	5.0	Ö	Ò	ò	20 à	SS	0,0	U		.30-A	· 1 - 1 - 1 - 1	n
Disposal @ \$2.00 each	:K	Date / Time	1-30-18	Date / Time	8787	Date /	. V		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10											81-30-18	8102/02/160	So Will Date Sampled	Environmental B Rouse #130
0 each		Time	16:02		14:0	Time	5): BG	109.09	109,07	50:00	P.S:80	25:80	54:30	08:23	01:30	08:03	\$5:10	25:20	07:50	5	0		0
Return to client		Received by: (signature)	N	Received by:	7	Received by: (signature)													-imera	50	A &		2000
client		: (signature)		: (Signature)	1	: (signature)	<				ジャ ネ ア	V L AC	V463	¥	AMICO 130			onadery .	SHAR ALB	Vitar	ς.	7(6-0055	
2			1/301	\ .	7				$oxed{ ext{Y}}$		X		X			X		X		X		8260 8260 + OXY	
Pickup		Ö	186	Ď	F3018		-	-	 -			-	-	<u> </u>				-		_		8260 BTEX, OXY only	
		te/	16	te/		(e)	┢	-	$\overline{}$	\vdash	\overline{x}	-	X		-	$\overline{\times}$		X		X		***************************************	T D
		Date / Time	16:02	Date / Time	I S	Date / Time	-	<u> </u>	È	-	_								_			8270 BB C C C C C C C C C C C C C C C C C C	Date:
7				. "-	δ		H	<u> </u>	×		X		X	_	_	Z		X	-	X	-	8015M (gasoline)	Date: 1-30 Project Name:
٠٠ ا			<u></u>		Ω	,	T	┢	<u> </u>		-	┢	┢		_		_		-	_	-	8270 8021 BTEX 8015M (gasoline) 8015M (diesel) 8015M Fyt /Carbon Chain	30 130
	<u> </u>		8		ain (• •		 	X	<u> </u>	X		X			X	******	X	 	X			W
	Turn around tin		Received good	S	S S				X	T	K	T	X			X		X		X	 	6010/7000 Title 22 Metals 6020 ICP-MS Metals	1-30.2018 Name: 3rd 4
	c din		good	eals	stody	Total			×	l	X	Г	X			×		X		X		GOOD ICD MS Motale	
4	<u>6</u>			intac	sea	# Of			×		K	-	×			X		X		X		808Z PCBs	なったかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかかか
		٠.	dition	2 ₹	S	onia							×							X		8081 OCA	3
			condition/cold	3	Chain of Custody seals Y/N(NA)	# of containers																	7
		÷	12.	Ĭ	ĺ	8	15	14	12	12	Ė	è	3	8	97	86	OS.	Pet	G,	2	5	Laboratory ID#	_ Page:
しったのがたって	AR-Aqueous 50=001	すりなる。	オート お客意でというだけ		as son alass Tar	V= 40m(Voks plass		A STATE OF THE PROPERTY OF THE								1						EDF #	e: 1 of 2
e de	100	1	ر ر ر		′.			<u></u>	<u> </u>		L	L	Ļ			_	<u> </u>	Ļ					
							£	2 -		5a 5	o	- 1	- 1						a fi	4 .9	M EA Y		

M

Client: North 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Project Manager Jess ich Villia	Phone (149) 7/6-04	Address: 2441/ Ald	client: Northgate Environmental	949-297-5020
51Ct- A. 1 6117	OSO FAX: CELE	POJIC #180	ENVIRON MONTO!	,
	Phone: (149) 7/6-0050 Fax: \(\frac{1}{2}\)	7/4-0055		
	Batch #:	Collector: Dana Brown	Project Name: 3 rd & Fairfax	Date: 1-30-2018
	EDF #.		うない	Page:
		Client Project #: < 0 1 / \ \		9 of C

Relinquished by: (signature)	Reinquisned by (signame)	1000		ismuished by: (3-13-25.0	20	1	B-13-10.0	6-13-50	8-13-10	B-2	اند		3	i	R-3 - 10:0		0.13.0	71.17	Sample ID	Project Mailager
Date / Time	Edio Canto	Time	1-30-18	Date / Time		13:27	12.22	8:51	17.71	13.07	12:05	11:12	11:00	10:57	10:52	81-10	124.61	0.35	-30-2018 09:50	Sampled Lillie	
Received by: (signature)		Received by: (signature)		Received by: (signature)	¥ ¥				1	20 N+03	AR INTER						- IVAR	SOLVAGE	A8 1776	+	Sample Container
Date / Ilme		Date / Time		Date / Ilme																	8260 + OXY 8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)
Turn around time:	Received good condition/cold	Seals intact? Y/N/NA	Chain of Custody seals Y/N/NA	lotal # of collainers	tainare l				XXX	予	1										8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals 6020 ICP-MS Metals 8622 FCBs
AF Analyze				3	8														A PROPERTY OF THE PROPERTY OF		Laboratory iD # Comments/Preservative
	- ½	L			-,, -	<u> </u>	4	7	-	J	4	L	1	N	F	卜	N	F	1	1	D Total # of containers

Sample disposal instructions:

Disposal @ \$2.00 each

Return to client

Pickup

coc 172251

712		
8	46	
Commercentre	Patron.	U
ē,	Ω)	
8	\mathbf{C}	emany emany
elli.	0	Û
	CHARGE .	0
Drive,	Q)	Ω
ത	Series.	econd
Lake	O	
~	BREEZE .	

e Forest, CA 92630 T.O.S

Active A																	DRO	j h si			
Received by: (signature) Date Time Date Time Controlled	Sample disposal Instructions: Die		Relinquished by: (signature)		Relinquished by: (signature)		Rejuguished by: (signature)				7					3-13	8-3-300	78-2018:01:30-13	Oction of		10 2 1 1 1 020
Received by: (signature) Date Time Date Time Controlled	posal @ \$2.00 eac		Date / Time		Date / Time		Date / Time									-		1		Date	Environ So Fa So Fa
Date: 1-30 - 2018	1					から		â								4:03		C		3	15 PM
Section Sect	Return to		Received by		Received by		Received by									As	1		2	Sample	
Project Name: 3 0 - 2018 Page: 3 0f 3	client		(signature)		r: (signature)	22	: (signature)						*			VAPE	4	\$ <		Container	2500, H bvr5
Date: 1 - 30 - 2018 Project Name: 3rd d Rainfox Collector: 0ca Brows Batch # Client Project # 2047.15 Batch # EDF # EDF # EDF # Comments/Preservative Turn around time: Turn around time: Date: 1 - 30 - 2018 Page: 3 Of 3 Foliate Project # 2047.15 Client Project # 2047.15 Client Project # 2047.15 Client Project # 2047.15 Comments/Preservative Comments/Preservative Notes Notes	Pick	The state of the s	-				,									X		7		3260 + OXY	
3rd & Fairfox 3rd & Fairfox Client Project #: 2o + 7. i5 EDF #: Comments/Preservative Laboratory ID # Comments/Preservative Notes Received good condition/cold	Б 		Date / Time		Date / Time		Date / Time									+		+		3270	Date:_ Project Collect Batch #
Client Project #: 2.0 4 7.15 EDF #: EDF #: Comments/Preservative a Comments/Preservative Joan Containers # of container		Turn		Z.		Cha										1			***	8015M (diesel)	Name:
Client Project #: 2.0 4 7.15 EDF #: EDF #: Comments/Preservative a Comments/Preservative Joan Containers # of container		around		ceived go	Sea	in of Custo	То		1		1	_			1	ľ		1		6010/7000 Title 22 Metals	2018 3rd
Client Project #: 2047.15 EDF #: Comments/Preservative Notes		time:		od conditi	ils intact?	ody seals	al # of cor					_				+				6020 ICP-MS Metals	
DF #: Comments/Preservative Notes				on/cold	Y/NWA	ANINA	tainers									1	1				
2 o 4 7. IS Notes)	 					E		-	-		-	-			+	+	$\frac{\parallel}{\parallel}$	*****	Laboratory ID #	Page:
	11 110000						Notes							The second secon			2			Comments/Preservative	3 of 3

8 172253

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh Project: 3rd & Fairfax Project Number: 2047.15

Report To:

Northgate Environmental Management -- Laguna Hills

Derrick Willis

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653

Date Due: 02/08/18 17:00 (5 day TAT)

Received By: Sunny Lounethone Date Received: 01/30/18 16:02 Logged In By: Sunny Lounethone Date Logged In: 01/30/18 16:25

Due

TAT

Samples Received at: 4.7°C

Custody Seals No Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir Yes

Analysis

T180352-01 TB-2018.01.30-A [Water] Sampled 01/30/18 07:10 (GMT-08:00) HOLD Pacific Time (US & [NO ANALYSES] T180352-02 B-5-1.0 [Soil] Sampled 01/30/18 07:31 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 07:31 8015 CC (D/MO) 02/08/18 15:00 5 02/13/18 07:31 8015 m 5035-GRO 02/08/18 15:00 5 02/13/18 07:31 8081 Pesticides 02/08/18 15:00 5 02/13/18 07:31 8082 PCB 02/08/18 15:00 5 02/13/18 07:31 8260 5035 02/08/18 15:00 5 02/13/18 07:31

02/13/18 07:31

5

Expires

Comments

T180352-03 B-5-5.0 [Soil] Sampled 01/30/18 07:50 (GMT-08:00) Pacific Time HOLD (US &

02/08/18 15:00

[NO ANALYSES]

8270C

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180352-04 B-5-10.0 [So (US &	oil] Sampled 01/30/18 07	:55 (GMT-	08:00) Pacific Time	2
6010 Title 22	02/08/18 15:00	5	07/29/18 07:55	
8015 CC (D/MO)	02/08/18 15:00	5	02/13/18 07:55	
8015 m 5035-GRO	02/08/18 15:00	5	02/13/18 07:55	
8082 PCB	02/08/18 15:00	5	02/13/18 07:55	
8260 5035	02/08/18 15:00	5	02/13/18 07:55	
8270C	02/08/18 15:00	5	02/13/18 07:55	

[NO ANALYSES]

T180352-06 B-5-20.0 [Soil] Sampled 01/30/18 08:03 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 08:03 8015 CC (D/MO) 02/08/18 15:00 5 02/13/18 08:03 8015 m 5035-GRO 02/08/18 15:00 5 02/13/18 08:03 8082 PCB 02/08/18 15:00 5 02/13/18 08:03 8260 5035 02/08/18 15:00 5 02/13/18 08:03 02/08/18 15:00 02/13/18 08:03 8270C

T180352-07 B-5-25.0 [Soil] Sampled 01/30/18 08:10 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180352-08 B-5-30.0 [Soil] Sampled 01/30/18 08:23 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180352-09 B-14-1.0 [Soil] Sampled 01/30/18 08:45 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 08:45 5 8015 CC (D/MO) 02/08/18 15:00 02/13/18 08:45 8015 m 5035-GRO 02/08/18 15:00 5 02/13/18 08:45 8081 Pesticides 02/08/18 15:00 5 02/13/18 08:45 8082 PCB 02/08/18 15:00 5 02/13/18 08:45 8260 5035 02/08/18 15:00 5 02/13/18 08:45 8270C 02/08/18 15:00 02/13/18 08:45

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh

Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT Expires Comments

T180352-10 B-14-5.0 [Soil] Sampled 01/30/18 08:52 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180352-11 B-14-10.0 [Soil] Sampled 01/30/18 08:59 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/29/18 08:59
8015 CC (D/MO)	02/08/18 15:00	5	02/13/18 08:59
8015 m 5035-GRO	02/08/18 15:00	5	02/13/18 08:59
8082 PCB	02/08/18 15:00	5	02/13/18 08:59
8260 5035	02/08/18 15:00	5	02/13/18 08:59
8270C	02/08/18 15:00	5	02/13/18 08:59

T180352-12 B-14-15.0 [Soil] Sampled 01/30/18 09:03 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

T180352-13 B-14-20.0 [Soil] Sampled 01/30/18 09:07 (GMT-08:00) Pacific Time (US &

(88 33				
6010 Title 22	02/08/18 15:00	5	07/29/18 09:07	
8015 CC (D/MO)	02/08/18 15:00	5	02/13/18 09:07	
8015 m 5035-GRO	02/08/18 15:00	5	02/13/18 09:07	
8082 PCB	02/08/18 15:00	5	02/13/18 09:07	
8260 5035	02/08/18 15:00	5	02/13/18 09:07	
8270C	02/08/18 15:00	5	02/13/18 09:07	

T180352-14 B-14-25.0 [Soil] Sampled 01/30/18 09:09 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

 $T180352\text{-}15\ B\text{-}14\text{-}30.0\ [Soil]\ Sampled\ 01/30/18\ 09\text{:}19\ (GMT\text{-}08\text{:}00)\ Pacific\ Time\ HOLD$

(US &

[NO ANALYSES]

T180352-16 B-14 [Water] Sampled 01/30/18 09:50 (GMT-08:00) Pacific Time

(US &			
8015 CC (D/MO)	02/08/18 15:00	5	02/06/18 09:50
8015 m Gas Purge	02/08/18 15:00	5	02/13/18 09:50
8260	02/08/18 15:00	5	02/13/18 09:50

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna **Project Manager:** Rose Fasheh

			Project Number:	2047.15
Analysis	Due	TAT	Expires	Comments
T180352-17 B-3-1.0 [Soil] (US &	Sampled 01/30/18 10:3	35 (GMT-0	8:00) Pacific Time	
6010 Title 22	02/08/18 15:00	5	07/29/18 10:35	
8015 CC (D/MO)	02/08/18 15:00	5	02/13/18 10:35	
8015 m 5035-GRO	02/08/18 15:00	5	02/13/18 10:35	
8081 Pesticides	02/08/18 15:00	5	02/13/18 10:35	
8082 PCB	02/08/18 15:00	5	02/13/18 10:35	
		_	02/13/18 10:35	
8260 5035	02/08/18 15:00	5	02/10/10 10/00	
8270C T180352-18 B-3-5.0 [Soil] (US &	02/08/18 15:00	5	02/13/18 10:35	HOLD
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil	02/08/18 15:00 Sampled 01/30/18 10:4	5 44 (GMT-0	02/13/18 10:35 8:00) Pacific Time	
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil (US &	02/08/18 15:00 Sampled 01/30/18 10:4	5 44 (GMT-0	02/13/18 10:35 8:00) Pacific Time	
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil	02/08/18 15:00 Sampled 01/30/18 10:4	5 44 (GMT-0 :48 (GMT-	02/13/18 10:35 8:00) Pacific Time 08:00) Pacific Time	
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil (US & 6010 Title 22	02/08/18 15:00 Sampled 01/30/18 10:4 [3] Sampled 01/30/18 10 02/08/18 15:00	5 44 (GMT-0 :48 (GMT-	02/13/18 10:35 8:00) Pacific Time 08:00) Pacific Time 07/29/18 10:48	
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil (US & 6010 Title 22 8015 CC (D/MO)	02/08/18 15:00 Sampled 01/30/18 10:4 Sampled 01/30/18 10 02/08/18 15:00 02/08/18 15:00	5 44 (GMT-0 :48 (GMT- 5 5	02/13/18 10:35 8:00) Pacific Time 08:00) Pacific Time 07/29/18 10:48 02/13/18 10:48	
8270C T180352-18 B-3-5.0 [Soil] (US & [NO ANALYSES] T180352-19 B-3-10.0 [Soil (US & 6010 Title 22 8015 CC (D/MO) 8015 m 5035-GRO	02/08/18 15:00 Sampled 01/30/18 10:4 1] Sampled 01/30/18 10 02/08/18 15:00 02/08/18 15:00 02/08/18 15:00	5 44 (GMT-0 :48 (GMT- 5 5 5	02/13/18 10:35 8:00) Pacific Time 08:00) Pacific Time 07/29/18 10:48 02/13/18 10:48 02/13/18 10:48	

T180352-21 B-3-20.0 [Soil] Sampled 01/30/18 10:57 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 10:57 8015 CC (D/MO) 02/08/18 15:00 5 02/13/18 10:57 8015 m 5035-GRO 5 02/08/18 15:00 02/13/18 10:57 8082 PCB 02/08/18 15:00 5 02/13/18 10:57 8260 5035 02/08/18 15:00 5 02/13/18 10:57

02/08/18 15:00

T180352-22 B-3-25.0 [Soil] Sampled 01/30/18 11:00 (GMT-08:00) Pacific Time HOLD (US &

5

02/13/18 10:57

[NO ANALYSES]

8270C

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna
Project Manager: Rose Fasheh
Project: 3rd & Fairfax
Project Number: 2047.15

Analysis Due TAT **Expires** Comments T180352-23 B-3-30.0 [Soil] Sampled 01/30/18 11:12 (GMT-08:00) Pacific Time HOLD (US & [NO ANALYSES] T180352-24 B-3 [Water] Sampled 01/30/18 12:05 (GMT-08:00) Pacific Time (US 6010 Title 22 02/08/18 15:00 5 07/29/18 12:05 8015 CC (D/MO) 02/08/18 15:00 5 02/06/18 12:05 8015 m Gas Purge 02/08/18 15:00 5 02/13/18 12:05 8260 02/08/18 15:00 5 02/13/18 12:05 T180352-25 B-13-1.0 [Soil] Sampled 01/30/18 13:07 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 13:07 8015 CC (D/MO) 02/08/18 15:00 5 02/13/18 13:07 8015 m 5035-GRO 02/08/18 15:00 5 02/13/18 13:07 8081 Pesticides 02/08/18 15:00 5 02/13/18 13:07 8082 PCB 02/08/18 15:00 5 02/13/18 13:07 8260 5035 02/08/18 15:00 5 02/13/18 13:07 8270C 02/08/18 15:00 5 02/13/18 13:07

T180352-26 B-13-5.0 [Soil] Sampled 01/30/18 13:14 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180352-27 B-13-10.0 [Soil] Sampled 01/30/18 13:18 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/29/18 13:18
8015 CC (D/MO)	02/08/18 15:00	5	02/13/18 13:18
8015 m 5035-GRO	02/08/18 15:00	5	02/13/18 13:18
8082 PCB	02/08/18 15:00	5	02/13/18 13:18
8260 5035	02/08/18 15:00	5	02/13/18 13:18
8270C	02/08/18 15:00	5	02/13/18 13:18

WORK ORDER

T180352

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT **Expires** Comments T180352-28 B-13-15.0 [Soil] Sampled 01/30/18 13:22 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/29/18 13:22 8015 CC (D/MO) 02/08/18 15:00 5 02/13/18 13:22 8015 m 5035-GRO 02/08/18 15:00 5 02/13/18 13:22 02/08/18 15:00 8082 PCB 5 02/13/18 13:22 8260 5035 02/08/18 15:00 02/13/18 13:22 5 8270C 02/08/18 15:00 02/13/18 13:22 5

T180352-29 B-13-20.0 [Soil] Sampled 01/30/18 13:27 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180352-30 B-13-25.0 [Soil] Sampled 01/30/18 13:31 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180352-31 TB-2018.01.30-B [Water] Sampled 01/30/18 12:10 (GMT-08:00) HOLD Pacific Time (US &

[NO ANALYSES]

T180352-32 B-13 [Water] Sampled 01/30/18 14:03 (GMT-08:00) Pacific Time (US &

8015 CC (D/MO) 02/08/18 15:00 5 02/06/18 14:03 8015 m Gas Purge 02/08/18 15:00 5 02/13/18 14:03 8260 02/08/18 15:00 5 02/13/18 14:03

Analysis groups included in this work order

6010 Title 22

subgroup 6010B T22 7470/71 Hg

Reviewed By Date

Page 6 of 6 Page 126 of 126

SunStar
Laboratories, Inc.

Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

08 February 2018

Derrick Willis
Northgate Environmental Management -- Laguna Hills
24411 Ridge Route Drive, Suite 130
Laguna Hills, CA 92653

RE: 3rd & Fairfax

Enclosed are the results of analyses for samples received by the laboratory on 01/31/18 16:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Fasheh

Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B- 8-1.0	T180381-02	Soil	01/31/18 07:25	01/31/18 16:25
B- 8-10.0	T180381-04	Soil	01/31/18 07:33	01/31/18 16:25
B- 8-15.0	T180381-05	Soil	01/31/18 07:39	01/31/18 16:25
B- 8-20.0	T180381-06	Soil	01/31/18 07:44	01/31/18 16:25
B- 12-1.0	T180381-09	Soil	01/31/18 08:10	01/31/18 16:25
B- 12-10.0	T180381-11	Soil	01/31/18 08:20	01/31/18 16:25
B- 12-20.0	T180381-13	Soil	01/31/18 08:28	01/31/18 16:25
B- 4-1.0	T180381-16	Soil	01/31/18 09:40	01/31/18 16:25
B- 4-10.0	T180381-18	Soil	01/31/18 09:50	01/31/18 16:25
B- 4-15.0	T180381-19	Soil	01/31/18 09:55	01/31/18 16:25
B- 4-20.0	T180381-20	Soil	01/31/18 10:00	01/31/18 16:25
B-4	T180381-23	Water	01/31/18 10:25	01/31/18 16:25
B- 15-1.0	T180381-24	Soil	01/31/18 10:45	01/31/18 16:25
B- 15-10.0	T180381-26	Soil	01/31/18 10:52	01/31/18 16:25
B- 15-20.0	T180381-28	Soil	01/31/18 11:00	01/31/18 16:25
B- 10-1.0	T180381-32	Soil	01/31/18 13:12	01/31/18 16:25
B- 10-10.0	T180381-34	Soil	01/31/18 13:18	01/31/18 16:25
B- 10-20.0	T180381-36	Soil	01/31/18 13:24	01/31/18 16:25

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

DETECTIONS SUMMARY

Sample ID: B- 8-1.0	Laborat	tory ID:	T180381-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	35	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	120	10	mg/kg	EPA 8015B	
Barium	92	1.0	mg/kg	EPA 6010B	
Chromium	20	2.0	mg/kg	EPA 6010B	
Cobalt	9.5	2.0	mg/kg	EPA 6010B	
Copper	8.5	1.0	mg/kg	EPA 6010B	
Nickel	14	2.0	mg/kg	EPA 6010B	
Vanadium	33	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	
Sample ID: B- 8-10.0	Laborat	tory ID:	T180381-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C6-C12 (GRO)	21	10	mg/kg	EPA 8015B	
C13-C28 (DRO)	180	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	150	10	mg/kg	EPA 8015B	
Barium	53	1.0	mg/kg	EPA 6010B	
Chromium	9.5	2.0	mg/kg	EPA 6010B	
Cobalt	6.4	2.0	mg/kg	EPA 6010B	
Copper	6.0	1.0	mg/kg	EPA 6010B	
Nickel	7.8	2.0	mg/kg	EPA 6010B	
Vanadium	21	5.0	mg/kg	EPA 6010B	
Zinc	20	1.0	mg/kg	EPA 6010B	
sec-Butylbenzene	2.0	1.8	ug/kg	EPA 8260B/5035	
Sample ID: B- 8-15.0	Laborat	tory ID:	T180381-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	46	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	48	10	mg/kg	EPA 8015B	
sec-Butylbenzene	5.8	1.8	ug/kg	EPA 8260B/5035	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

Sample ID:	3- 8-20.0	Laborat	ory ID:	T180381-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		140	1.0	mg/kg	EPA 6010B	
Chromium		30	2.0	mg/kg	EPA 6010B	
Cobalt		12	2.0	mg/kg	EPA 6010B	
Copper		15	1.0	mg/kg	EPA 6010B	
Nickel		21	2.0	mg/kg	EPA 6010B	
Vanadium		34	5.0	mg/kg	EPA 6010B	
Zinc		49	1.0	mg/kg	EPA 6010B	
Benzene		3.2	1.8	ug/kg	EPA 8260B/5035	
Sample ID:	3- 12-1.0	Laborat	ory ID:	T180381-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C6-C12 (GRO)		23	10	mg/kg	EPA 8015B	
C13-C28 (DRC)	260	10	mg/kg	EPA 8015B	
C29-C40 (MOI	RO)	950	10	mg/kg	EPA 8015B	
Barium		91	1.0	mg/kg	EPA 6010B	
Chromium		18	2.0	mg/kg	EPA 6010B	
Cobalt		9.6	2.0	mg/kg	EPA 6010B	
Copper		11	1.0	mg/kg	EPA 6010B	
Nickel		14	2.0	mg/kg	EPA 6010B	
Vanadium		33	5.0	mg/kg	EPA 6010B	
Zinc		34	1.0	mg/kg	EPA 6010B	
Sample ID:	3- 12-10.0	Laborat	ory ID:	T180381-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DRC)	46	10	mg/kg	EPA 8015B	
Barium		51	1.0	mg/kg	EPA 6010B	
Chromium		27	2.0	mg/kg	EPA 6010B	
Cobalt		4.8	2.0	mg/kg	EPA 6010B	
Copper		4.6	1.0	mg/kg	EPA 6010B	
Nickel		9.8	2.0	mg/kg	EPA 6010B	
Vanadium		22	5.0	mg/kg	EPA 6010B	
Zinc		20	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

Sample ID: B- 12-20.0	Labora	tory ID:	T180381-13		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	81	1.0	mg/kg	EPA 6010B	
Chromium	18	2.0	mg/kg	EPA 6010B	
Cobalt	14	2.0	mg/kg	EPA 6010B	
Copper	13	1.0	mg/kg	EPA 6010B	
Nickel	15	2.0	mg/kg	EPA 6010B	
Vanadium	23	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
Sample ID: B- 4-1.0	Labora	tory ID:	T180381-16		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	210	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	1300	10	mg/kg	EPA 8015B	
Barium	84	1.0	mg/kg	EPA 6010B	
Chromium	19	2.0	mg/kg	EPA 6010B	
Cobalt	11	2.0	mg/kg	EPA 6010B	
Copper	10	1.0	mg/kg	EPA 6010B	
Nickel	13	2.0	mg/kg	EPA 6010B	
Vanadium	36	5.0	mg/kg	EPA 6010B	
Zinc	46	1.0	mg/kg	EPA 6010B	
Sample ID: B- 4-10.0	Labora	tory ID:	T180381-18		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	39	1.0	mg/kg	EPA 6010B	
Chromium	19	2.0	mg/kg	EPA 6010B	
Cobalt	9.0	2.0	mg/kg	EPA 6010B	
Copper	7.3	1.0	mg/kg	EPA 6010B	
Nickel	15	2.0	mg/kg	EPA 6010B	
Vanadium	27	5.0	mg/kg	EPA 6010B	
Zinc	24	1.0	mg/kg	EPA 6010B	
		1.8		EPA 8260B/5035	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

Sample ID: B- 4-15.0	Labora	tory ID:	T180381-19		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	1100	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	1000	10	mg/kg	EPA 8015B	
Benzene	2.4	2.2	ug/kg	EPA 8260B/5035	
Sample ID: B- 4-20.0	Labora	tory ID:	T180381-20		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	31	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	42	10	mg/kg	EPA 8015B	
Benzene	3.3	1.7	ug/kg	EPA 8260B/5035	
Sample ID: B-4	Labora	tory ID:	T180381-23		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	1.7	0.50	mg/l	EPA 8015B	
Sample ID: B- 15-1.0	Labora	tory ID:	T180381-24		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	490	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	1200	10	mg/kg	EPA 8015B	
Sample ID: B- 15-10.0	Labora	tory ID:	T180381-26		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	47	10	mg/kg	EPA 8015B	
Benzene	2.1	1.9	ug/kg	EPA 8260B/5035	

No Results Detected

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

Sample ID:	B- 10-1.0	Labora	tory ID:	T180381-32		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C29-C40 (M0	ORO)	63	10	mg/kg	EPA 8015B	
Barium		86	1.0	mg/kg	EPA 6010B	
Chromium		19	2.0	mg/kg	EPA 6010B	
Cobalt		10	2.0	mg/kg	EPA 6010B	
Copper		9.6	1.0	mg/kg	EPA 6010B	
Nickel		12	2.0	mg/kg	EPA 6010B	
Vanadium		39	5.0	mg/kg	EPA 6010B	
Zinc		54	1.0	mg/kg	EPA 6010B	
Sample ID:	B- 10-10.0	Labora	tory ID:	T180381-34		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		180	1.0	mg/kg	EPA 6010B	
Chromium		18	2.0	mg/kg	EPA 6010B	
Cobalt		11	2.0	mg/kg	EPA 6010B	
Copper		6.4	1.0	mg/kg	EPA 6010B	
Nickel		10	2.0	mg/kg	EPA 6010B	
Vanadium		41	5.0	mg/kg	EPA 6010B	
Zinc		56	1.0	mg/kg	EPA 6010B	
Benzene		1.7	1.7	ug/kg	EPA 8260B/5035	
Sample ID:	B- 10-20.0	Labora	tory ID:	T180381-36		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DF	RO)	25	10	mg/kg	EPA 8015B	
C29-C40 (M0	ORO)	11	10	mg/kg	EPA 8015B	
Barium		35	1.0	mg/kg	EPA 6010B	
Chromium		11	2.0	mg/kg	EPA 6010B	
Cobalt		6.6	2.0	mg/kg	EPA 6010B	
Copper		7.5	1.0	mg/kg	EPA 6010B	
Nickel		9.7	2.0	mg/kg	EPA 6010B	
Vanadium		18	5.0	mg/kg	EPA 6010B	
		21	1.0	mg/kg	EPA 6010B	
Zinc		21	1.0	mg/kg	LITTOOTOB	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	35	10	"	"	"	"	"	"	
C29-C40 (MORO)	120	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		84.6 %	65-1	35	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	92	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	20	2.0	"	"	"	"	"	"	
Cobalt	9.5	2.0	"	"	"	"	"	"	
Copper	8.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	14	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	33	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA M	ethod 8081A								
alpha-BHC	ND	50	ug/kg	10	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	50	"	"	"	"	"	"	R-07
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4´-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	R-07
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4´-DDD	ND	50	"	"	"	"	"	"	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4'-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	"	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		89.8 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		109 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		60.7 %	35-	140	8020528	02/05/18	02/06/18	EPA 8082	
Surrogate: Decachlorobiphenyl		56.3 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/05/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dichloropropane	ND	1.9	ug/kg	1	8020132	02/01/18	02/05/18	EPA 8260B/5035	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	"	"	"	"	
Trichloroethene	ND	1.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A) The same of the

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Surrogate: Toluene-d8		86.0 %	85.5	-116	8020132	02/01/18	02/05/18	EPA 8260B/5035	
Surrogate: 4-Bromofluorobenzene		80.0 %	81.2	-123	"	"	"	"	S-GO
Surrogate: Dibromofluoromethane		109 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
4-Bromophenyl phenyl ether	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
/ I VIII CHIMINIC	TAD.	500							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 8-1.0 T180381-02 (Soil)

Project: 3rd & Fairfax

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by F	EPA Method 8270C								
4-Nitroaniline	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		67.6 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		77.5 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		83.4 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.1 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		109 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 8-10.0 T180381-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015B								
C6-C12 (GRO)	21	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	180	10	"	"	"	"	"	"	
C29-C40 (MORO)	150	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		85.3 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	53	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	9.5	2.0	"	"	"	"	"	"	
Cobalt	6.4	2.0	"	"	"	"	"	"	
Copper	6.0	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	7.8	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	21	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/747	71								
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 8-10.0 T180381-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		52.3 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		51.3 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	2.0	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B-8-10.0 T180381-04 (Soil)

Project: 3rd & Fairfax

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	,,	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	,,	,,	"	"	
Trichloroethene	ND	1.8	"	"	,,	,,	"	"	
Trichlorofluoromethane	ND ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND ND	1.8	"	"	,,	,,	"	"	
			"	,,	,,	,,	,,	"	
,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B-8-10.0 T180381-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		89.1 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.7 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		104 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
l-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-10.0 T180381-04 (Soil)

A 1 4	D 1/	Reporting	I I'	Dil. c	D-/ 1	D 1	A1 1	M-41. 1	NT 4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	,,	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	,,	"	"	"	"	"	
Hexachloroethane	ND	300	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 8-10.0 T180381-04 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		63.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		73.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		82.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		77.9 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		114 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 21 of 143

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 8-15.0 T180381-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons	s by 8015B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	46	10	"	"	"	"	"	"	
C29-C40 (MORO)	48	10	"	"	"	"	"	n .	
Surrogate: p-Terphenyl		86.0 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	5.8	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B-8-15.0 T180381-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
cis-1,2-Dichloroethene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	
Trichloroethene	ND	1.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
Vinyl chloride	ND	1.8	"	"	"	,,	"	"	
Benzene	ND	1.8	"	"	"	,,	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
	112	1.0							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-15.0 T180381-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B			•					
m,p-Xylene	ND	3.6	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		98.1 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by I	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B-8-15.0 T180381-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
<u> </u>						******	,		
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Bis(2-chloroisopropyl)ether	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 8-15.0 T180381-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Nitroaniline	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		70.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		72.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		82.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		90.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		79.9 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		122 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 8-20.0 T180381-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		85.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	140	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	30	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	15	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	21	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	34	5.0	"	"	"	"	"	"	
Zinc	49	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 8-20.0 T180381-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		64.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		61.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-20.0 T180381-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	,,	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8		,,	"	"	"	"	
Trichloroethene	ND ND	1.8	,,	"	"	"	"	"	
Trichlorofluoromethane	ND ND	1.8	,,	,,	,,	"	,,	"	
1,2,3-Trichloropropane	ND ND	1.8	"	,,	,,	,,	,,	"	
			"	,,	,,	,,	,,	"	
1,3,5-Trimethylbenzene	ND	1.8		"					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 15:47

B- 8-20.0 T180381-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	3.2	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.7	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		89.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.8 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		99.4 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 8-20.0 T180381-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

Method

Notes

Analyzed

B- 8-20.0 T180381-06 (Soil)

Units

Dilution

Batch

Prepared

Reporting

Limit

Result

	SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Indeno (1,2,3-cd) pyrene ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Isophorone ND	300	"	"	"	"	"	II .	
2-Methylphenol ND	1000	"	"	"	"	"	II .	
4-Methylphenol ND	1000	"	"	"	"	"	II .	
Naphthalene ND	300	"	"	"	"	"	II .	
2-Nitroaniline ND	300	"	"	"	"	"	II .	
3-Nitroaniline ND	300	"	"	"	"	"	II .	
4-Nitroaniline ND	300	"	"	"	"	"	II .	
Nitrobenzene ND	1000	"	"	"	"	"	II .	
2-Nitrophenol ND	1000	"	"	"	"	"	II .	
N-Nitrosodimethylamine ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol ND	300	"	"	"	"	"	"	
Phenanthrene ND	300	"	"	"	"	"	"	
Azobenzene ND	300	"	"	"	"	"	"	
Pyridine ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol	66.0 %	15-12	21	"	"	"	"	
Surrogate: Phenol-d6	72.6 %	24-11	13	"	"	"	"	

21.3-119

32.4-102

18.1-105

29.1-130

78.9 %

74.5 %

77.0 % 114 %

SunStar Laboratories, Inc.

Surrogate: Nitrobenzene-d5

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-dl4

Surrogate: 2,4,6-Tribromophenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	23	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	260	10	"	"	"	"	"	"	
C29-C40 (MORO)	950	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	91	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	9.6	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	14	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	33	5.0	"	"	"	"	"	"	
Zinc	34	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4′-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4′-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4′-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		53.8 %	35-	140	8020528	02/05/18	02/06/18	EPA 8082	
Surrogate: Decachlorobiphenyl		45.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

		ng							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dichloropropane	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	"	"	"	"	
Trichloroethene	ND	1.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	,,	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Surrogate: Toluene-d8		83.3 %	85.5	-116	8020132	02/01/18	02/06/18	EPA 8260B/5035	S-GC
Surrogate: 4-Bromofluorobenzene		77.7 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		105 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by E	PA Method 8270C								
Carbazole	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Aniline	ND	1500	"	"	"	"	"	"	R-07
Phenol	ND	5000	"	"	"	"	"	"	R-07
2-Chlorophenol	ND	5000	"	"	"	"	"	"	R-07
1,4-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodi-n-propylamine	ND	1500	"	"	"	"	"	"	R-07
1,2,4-Trichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
4-Chloro-3-methylphenol	ND	5000	"	"	"	"	"	"	R-07
1-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
Acenaphthene	ND	1500	"	"	"	"	"	"	R-07
4-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrotoluene	ND	1500	"	"	"	"	"	"	R-07
Pentachlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyrene	ND	1500	"	"	"	"	"	"	R-07
Acenaphthylene	ND	1500	"	"	"	"	"	"	R-07
Anthracene	ND	1500	"	"	"	"	"	"	R-07
Benzo (a) anthracene	ND	1500	"	"	"	"	"	"	R-07
Benzo (b) fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Benzo (k) fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Benzo (g,h,i) perylene	ND	5000	"	"	"	"	"	"	R-07
Benzo (a) pyrene	ND	1500	"	"	"	"	"	"	R-07
Benzyl alcohol	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethoxy)methane	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroisopropyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-ethylhexyl)phthalate	ND	1500	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
4-Bromophenyl phenyl ether	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Butyl benzyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Chloroaniline	ND	1500	"	"	"	"	"	"	R-07
2-Chloronaphthalene	ND	1500	"	"	"	"	"	"	R-07
4-Chlorophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Chrysene	ND	1500	"	"	"	"	"	"	R-07
Dibenz (a,h) anthracene	ND	1500	"	"	"	"	"	"	R-07
Dibenzofuran	ND	1500	"	"	"	"	"	"	R-07
Di-n-butyl phthalate	ND	1500	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4-Dichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Diethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
2,4-Dimethylphenol	ND	5000	"	"	"	"	"	"	R-07
Dimethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4,6-Dinitro-2-methylphenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,6-Dinitrotoluene	ND	5000	"	"	"	"	"	"	R-07
Di-n-octyl phthalate	ND	1500	"	"	"	"	"	"	R-07
Fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Fluorene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorobenzene	ND	7500	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorocyclopentadiene	ND	5000	"	"	"	"	"	"	R-07
Hexachloroethane	ND	1500	"	"	"	"	"	"	R-07
Indeno (1,2,3-cd) pyrene	ND	1500	"	"	"	"	"	"	R-07
Isophorone	ND	1500	"	"	"	"	"	"	R-07
2-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
4-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
Naphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
3-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 12-1.0 T180381-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
1-Nitroaniline	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Nitrobenzene	ND	5000	"	"	"	"	"	"	R-07
2-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
N-Nitrosodimethylamine	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodiphenylamine	ND	1500	"	"	"	"	"	"	R-07
2,3,5,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
2,3,4,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
Phenanthrene	ND	1500	"	"	"	"	"	"	R-07
Azobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4,5-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyridine	ND	1500	"	"	"	"	"	"	R-07
2,4,6-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Surrogate: 2-Fluorophenol		57.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		61.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		55.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		52.6 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		80.1 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 801	5B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020213	02/02/18	02/07/18	EPA 8015B	
C13-C28 (DRO)	46	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		91.7 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	·
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	51	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	27	2.0	"	"	"	"	"	"	
Cobalt	4.8	2.0	"	"	"	"	"	"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	9.8	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	22	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Soil

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		57.5 %	35	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		57.6 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.7	"	"	"	"	"	"	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Touchel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,4-Dichlorobenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	
Trichloroethene	ND	1.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	ND	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		88.4 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		75.0 %	81.2	-123	"	"	"	"	S-G
Surrogate: Dibromofluoromethane		104 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP.	A Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	,,	,,	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 15:47

B- 12-10.0 T180381-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					

Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		67.5 %	15-1.	21	"	"	"	"	
Surrogate: Phenol-d6		72.4 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		79.2 %	21.3-1	19	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		78.6 %	32.4-1	02	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		81.4 %	18.1-1	05	"	"	"	"	
Surrogate: Terphenyl-dl4		106 %	29.1-1	30	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A) all

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project: 3rd & Fairfax

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		86.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	81	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	14	2.0	"	"	"	"	"	"	
Copper	13	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	15	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	23	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Soil

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		76.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		66.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	
Trichloroethene	ND	1.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		91.8 %	85.5	-116	"	"	"	"	<u> </u>
Surrogate: 4-Bromofluorobenzene		85.0 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		91.0 %	95.7	-135	"	"	"	"	S-GC
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	

ND

300

SunStar Laboratories, Inc.

Hexachloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose fosher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 12-20.0 T180381-13 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		69.3 %	15-12	21	"	"	"	"	
Surrogate: Phenol-d6		75.6 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.2 %	21.3-1	19	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		79.7 %	32.4-1	02	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		76.3 %	18.1-1	05	"	"	"	"	
Surrogate: Terphenyl-dl4		112 %	29.1-1	30	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose families

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015B								
C6-C12 (GRO)	ND	400	ug/kg	1	8020131	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		35.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	210	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	1300	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	84	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	10	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	13	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	36	5.0	"	"	"	"	"	"	
Zinc	46	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Method	8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4′-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4′-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4′-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Page 53 of 143

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		70.4 %	35-140		"	"	"	"	
Surrogate: Decachlorobiphenyl		56.8 %	35-140		"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15 Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,4-Dichlorobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	,,	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	,,	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	,,	,,	"	"	
Trichloroethene	ND	1.9	"	"	,,	,,	"	"	
Trichlorofluoromethane	ND ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND ND	1.9	"	"	,,	,,	,,	"	
1,3,5-Trimethylbenzene	ND ND	1.9	"	"	,,	,,	,,	"	
1,3,3-11IIIIetifytbenzene	ND	1.9							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		81.2 %	85.5	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		69.0 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		100 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Aniline	ND	1500	"	"	"	"	"	"	R-07
Phenol	ND	5000	"	"	"	"	"	"	R-07
2-Chlorophenol	ND	5000	"	"	"	"	"	"	R-07
1,4-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodi-n-propylamine	ND	1500	"	"	"	"	"	"	R-07
1,2,4-Trichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
4-Chloro-3-methylphenol	ND	5000	"	"	"	"	"	"	R-07
2-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
1-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
Acenaphthene	ND	1500	"	"	"	"	"	"	R-07
4-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrotoluene	ND	1500	"	"	"	"	"	"	R-07
Pentachlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyrene	ND	1500	"	"	"	"	"	"	
Acenaphthylene	ND	1500	"	"	"	"	"	"	R-07
Anthracene	ND	1500	"	"	"	"	"	"	R-07
Benzo (a) anthracene	ND	1500	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	1500	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	1500	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

anager: Derrick Willis 02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	5000	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Benzo (a) pyrene	ND	1500	"	"	"	"	"	"	
Benzyl alcohol	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethoxy)methane	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroisopropyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-ethylhexyl)phthalate	ND	1500	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Butyl benzyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Chloroaniline	ND	1500	"	"	"	"	"	"	R-07
2-Chloronaphthalene	ND	1500	"	"	"	"	"	"	R-07
4-Chlorophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Chrysene	ND	1500	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1500	"	"	"	"	"	"	R-07
Dibenzofuran	ND	1500	"	"	"	"	"	"	R-07
Di-n-butyl phthalate	ND	1500	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4-Dichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Diethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
2,4-Dimethylphenol	ND	5000	"	"	"	"	"	"	R-07
Dimethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4,6-Dinitro-2-methylphenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,6-Dinitrotoluene	ND	5000	"	"	"	"	"	"	R-07
Di-n-octyl phthalate	ND	1500	"	"	"	"	"	"	R-07
Fluoranthene	ND	1500	"	"	"	"	"	"	
Fluorene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorobenzene	ND	7500	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorocyclopentadiene	ND	5000	"	"	"	"	"	"	R-07
Hexachloroethane	ND	1500	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 4-1.0 T180381-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Isophorone	ND	1500	"	"	"	"	"	"	R-07
2-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
4-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
Naphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
3-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
4-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
Nitrobenzene	ND	5000	"	"	"	"	"	"	R-07
2-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
N-Nitrosodimethylamine	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodiphenylamine	ND	1500	"	"	"	"	"	"	R-07
2,3,5,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
2,3,4,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
Phenanthrene	ND	1500	"	"	"	"	"	"	
Azobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4,5-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyridine	ND	1500	"	"	"	"	"	"	R-07
2,4,6-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Surrogate: 2-Fluorophenol		61.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		69.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		54.5 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		76.9 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 58 of 143

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	500	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		44.1 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		93.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	39	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	9.0	2.0	"	"	"	"	"	"	
Copper	7.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	15	2.0	"	"	"	"	"	n .	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	27	5.0	"	"	"	"	"	"	
Zinc	24	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 59 of 143

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorie	es, Inc.					
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		55.6 %	35-1	40	"	"	"	"	
Surrogate: Decachlorobiphenyl		54.0 %	35-1	40	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

		Reporting			D. I. D. I				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	,,	,,	"	"	
Tetrachloroethene	ND	1.8	"	,,	"	,,	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	,,	"	,,	"	"	
1,2,4-Trichlorobenzene	ND	1.8	,,	"	"	"	"	"	
1,1,2-Trichloroethane	ND ND	1.8	,,	"	"	"	"	"	
1,1,1-Trichloroethane	ND ND	1.8	"	,,	,,	,,	,,	"	
1,1,1-111611010eunane	ND	1.8		**	•	**			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	3.2	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.5	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		87.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		75.9 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		101 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Anthracene	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Towheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 4-10.0 T180381-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Hexachlorobenzene	ND	1500	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		70.3 %	15	121	"	"	"	"	
Surrogate: Phenol-d6		72.2 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		87.2 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		79.2 %	18.1-		"	"	"	"	
Surrogate: Terphenyl-dl4		106 %	29.1-		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 4-15.0 T180381-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons b	oy EPA 8015B								
C6-C12 (GRO)	ND	400	ug/kg	1	8020131	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		38.7 %	65-1	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	1100	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	1000	10	"	"	"	"	"	n .	
Surrogate: p-Terphenyl		87.0 %	65-1	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.2	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	2.2	"	"	"	"	"	"	
Bromodichloromethane	ND	2.2	"	"	"	"	"	"	
Bromoform	ND	2.2	"	"	"	"	"	"	
Bromomethane	ND	2.2	"	"	"	"	"	"	
n-Butylbenzene	ND	2.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.2	"	"	"	"	"	"	
Chlorobenzene	ND	2.2	"	"	"	"	"	"	
Chloroethane	ND	2.2	"	"	"	"	"	"	
Chloroform	ND	2.2	"	"	"	"	"	"	
Chloromethane	ND	2.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.2	"	"	"	"	"	"	
Dibromochloromethane	ND	2.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.5	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.2	"	"	"	"	"	"	
Dibromomethane	ND	2.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.2	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 4-15.0 T180381-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
Dichlorodifluoromethane	ND	2.2	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
1,1-Dichloroethane	ND	2.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.2	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.2	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.2	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.2	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.2	"	"	"	"	"	"	
Isopropylbenzene	ND	2.2	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.2	"	"	"	"	"	"	
Methylene chloride	ND	2.2	"	"	"	"	"	"	
Naphthalene	ND	2.2	"	"	"	"	"	"	
n-Propylbenzene	ND	2.2	"	"	"	"	"	"	
Styrene	ND	2.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.2	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.2	"	"	"	"	"	"	
Tetrachloroethene	ND	2.2	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.2	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.2	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.2	"	"	"	"	"	"	
Trichloroethene	ND	2.2	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.2	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.2	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.2	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.2	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-15.0 T180381-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
Vinyl chloride	ND	2.2	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Benzene	2.4	2.2	"	"	"	"	"	"	
Toluene	ND	2.2	"	"	"	"	"	"	
Ethylbenzene	ND	2.2	"	"	"	"	"	"	
m,p-Xylene	ND	4.5	"	"	"	"	"	"	
o-Xylene	ND	2.2	"	"	"	"	"	"	
Surrogate: Toluene-d8		81.6 %	85.5	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		68.5 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		109 %	95.7	-135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons b	oy EPA 8015B								
C6-C12 (GRO)	ND	330	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		48.7 %	65-1	135	"	"	"	"	S-0.
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	31	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	42	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		72.4 %	65-	135	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		62.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		55.4 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
				_					

SunStar Laboratories, Inc	SunStar	Lab	ora	tories,	Inc
---------------------------	---------	-----	-----	---------	-----

		SunStar L	aboratorie:	s, Inc.				
Volatile Organic Compounds by EPA Chloromethane	Method 8260B ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"
Dibromochloromethane	ND	1.7	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	3.4	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.7	"	"	"	"	"	"
Dibromomethane	ND	1.7	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"
,1-Dichloroethene	ND	1.7	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"
sopropylbenzene	ND	1.7	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"
Methylene chloride	ND	1.7	"	"	"	"	"	"
Naphthalene	ND	1.7	"	"	"	"	"	"
n-Propylbenzene	ND	1.7	"	"	"	"	"	"
Styrene	ND	1.7	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tetrachloroethene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	
Trichloroethene	ND	1.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	3.3	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		85.1 %	85.5	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		75.3 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		107 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by El	PA Method 8270C								
4-Nitrophenol	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	,,	,,	,,		"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
2,4-Dinitrophenol	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		72.6 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		73.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		81.3 %	32.4	-102	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 4-20.0 T180381-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					

Semivolatile Organic Compounds by EPA Method 8270C

Surrogate: 2,4,6-Tribromophenol	79.3 %	18.1-105	8020535	02/05/18	02/07/18	EPA 8270C
Surrogate: Terphenyl-dl4	99.3 %	29.1-130	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B-4 T180381-23 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons by	y EPA 8015B								
C6-C12 (GRO)	ND	50	ug/l	1	8020142	02/01/18	02/03/18	EPA 8015B	
Surrogate: 4-Bromofluorobenzene		78.4 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015B								
C13-C28 (DRO)	1.7	0.50	mg/l	1	8020233	02/02/18	02/07/18	EPA 8015B	
C29-C40 (MORO)	ND	0.50	"	"	"	"	"	"	
Surrogate: p-Terphenyl		75.3 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B-4 T180381-23 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130Project Number: 2047.15Laguna Hills CA, 92653Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B-4 T180381-23 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Ethylbenzene	ND	0.50	ug/l	1	8020127	02/01/18	02/01/18	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		110 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	370	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		31.1 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	490	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	1200	10	"	"	"	"	"	n .	
Surrogate: p-Terphenyl		69.2 %	65-	135	"	"	"	"	
Organochlorine Pesticides by EPA M	lethod 8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4´-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4´-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4´-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		52.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		46.6 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Tosheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	"	"	"	"	
Trichloroethene	ND	1.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.7	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		77.6 %	85.5	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		67.2 %	81.2	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		99.6 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by l	EPA Method 8270C								
Carbazole	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Aniline	ND	1500	"	"	"	"	"	"	R-07
Phenol	ND	5000	"	"	"	"	"	"	R-07
2-Chlorophenol	ND	5000	"	"	"	"	"	"	R-07
1,4-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodi-n-propylamine	ND	1500	"	"	"	"	"	"	R-07
1,2,4-Trichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
4-Chloro-3-methylphenol	ND	5000	"	"	"	"	"	"	R-07
1-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Methylnaphthalene	ND	1500	"	"	"	"	"	"	R-07
Acenaphthene	ND	1500	"	"	"	"	"	"	R-07
4-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrotoluene	ND	1500	"	"	"	"	"	"	R-07
Pentachlorophenol	ND	5000	"	"	"	"	"	"	R-07
Pyrene	ND	1500	"	"	"	"	"	"	R-07
Acenaphthylene	ND	1500	"	"	"	"	"	"	R-07
Anthracene	ND	1500	"	"	"	"	"	"	R-07
Benzo (a) anthracene	ND	1500	"	"	"	"	"	"	R-07
Benzo (b) fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Benzo (k) fluoranthene	ND	1500	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Benzo (g,h,i) perylene	ND	5000	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Benzo (a) pyrene	ND	1500	"	"	"	"	"	"	R-07
Benzyl alcohol	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethoxy)methane	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroethyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-chloroisopropyl)ether	ND	1500	"	"	"	"	"	"	R-07
Bis(2-ethylhexyl)phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Bromophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Butyl benzyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4-Chloroaniline	ND	1500	"	"	"	"	"	"	R-07
2-Chloronaphthalene	ND	1500	"	"	"	"	"	"	R-07
4-Chlorophenyl phenyl ether	ND	1500	"	"	"	"	"	"	R-07
Chrysene	ND	1500	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	1500	"	"	"	"	"	"	R-07
Dibenzofuran	ND	1500	"	"	"	"	"	"	R-07
Di-n-butyl phthalate	ND	1500	"	"	"	"	"	"	R-07
1,2-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
1,3-Dichlorobenzene	ND	1500	"	"	"	"	"	"	R-07
2,4-Dichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Diethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
2,4-Dimethylphenol	ND	5000	"	"	"	"	"	"	R-07
Dimethyl phthalate	ND	1500	"	"	"	"	"	"	R-07
4,6-Dinitro-2-methylphenol	ND	5000	"	"	"	"	"	"	R-07
2,4-Dinitrophenol	ND	5000	"	"	"	"	"	"	R-07
2,6-Dinitrotoluene	ND	5000	"	"	"	"	"	"	R-07
Di-n-octyl phthalate	ND	1500	"	"	"	"	"	"	R-07
Fluoranthene	ND	1500	"	"	"	"	"	"	R-07
Fluorene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorobenzene	ND	7500	"	"	"	"	"	"	R-07
Hexachlorobutadiene	ND	1500	"	"	"	"	"	"	R-07
Hexachlorocyclopentadiene	ND	5000	"	"	"	"	"	"	R-07
Hexachloroethane	ND	1500	"	"	"	"	"	"	R-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-1.0 T180381-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	1500	ug/kg	5	8020535	02/05/18	02/07/18	EPA 8270C	R-07
Isophorone	ND	1500	"	"	"	"	"	"	R-07
2-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
4-Methylphenol	ND	5000	"	"	"	"	"	"	R-07
Naphthalene	ND	1500	"	"	"	"	"	"	R-07
2-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
3-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
4-Nitroaniline	ND	1500	"	"	"	"	"	"	R-07
Nitrobenzene	ND	5000	"	"	"	"	"	"	R-07
2-Nitrophenol	ND	5000	"	"	"	"	"	"	R-07
N-Nitrosodimethylamine	ND	1500	"	"	"	"	"	"	R-07
N-Nitrosodiphenylamine	ND	1500	"	"	"	"	"	"	R-07
2,3,5,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
2,3,4,6-Tetrachlorophenol	ND	1500	"	"	"	"	"	"	R-07
Phenanthrene	ND	1500	"	"	"	"	"	"	R-07
Azobenzene	ND	1500	"	"	"	"	"	"	R-07
Pyridine	ND	1500	"	"	"	"	"	"	R-07
2,4,5-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
2,4,6-Trichlorophenol	ND	5000	"	"	"	"	"	"	R-07
Surrogate: 2-Fluorophenol		58.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		57.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		67.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		61.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		63.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		61.5 %	29.1	-130	"	"	"	"	
• •									

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 82 of 143

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Resuit	LIIIII	Units	Dilution	Daten	ricpared	Anaryzed	IVICUIOU	notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	430	ug/kg	1	8020131	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		38.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	47	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		86.5 %	65-	135	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		51.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		50.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

	:	SunStar L	aboratorie	s, Inc.				
Volatile Organic Compounds by EPA	A Method 8260B							
Chloromethane	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"
Dibromochloromethane	ND	1.9	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"
Dibromomethane	ND	1.9	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	II .
1,4-Dichlorobenzene	ND	1.9	"	"	"	"	"	II .
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	II .
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	II .
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	II .
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	II .
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	II .
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	II .
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	II .
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	II .
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	II .
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	II .
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	II .
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	II .
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"
Isopropylbenzene	ND	1.9	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"
Methylene chloride	ND	1.9	"	"	"	"	"	"
Naphthalene	ND	1.9	"	"	"	"	"	"
n-Propylbenzene	ND	1.9	"	"	"	"	"	"
Styrene	ND	1.9	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tetrachloroethene	ND	1.9	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	"	"	"	"	
Trichloroethene	ND	1.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	2.1	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		80.4 %	85.5-	-116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		69.4 %	81.2-	-123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		101 %	95.7-	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

Benzo (k) fluoranthene ND 300 " <th></th> <th>Notes</th>		Notes
Semivolatile Organic Compounds by EPA Method 8270C 4-Nitrophenol ND 1000 ug/kg 1 8020535 02/05/18 02/07/2 2,4-Dinitrotoluene ND 300 " " " " " Pentachlorophenol ND 1000 " <	11 11 11	
4-Nitrophenol ND 1000 ug/kg 1 8020535 02/05/18 02/07/ 2,4-Dinitrotoluene ND 300 " " " " " " " " " " " " " " " " " "	11 11 11	
2,4-Dinitrotoluene ND 300 " " " " " " " " " " " " " " " " "	11 11 11	
Pentachlorophenol ND 1000 " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Pyrene ND 300 "	" "	
Acenaphthylene Anthracene ND	"	
Anthracene ND 300 " " " " " " " " " " " " " " " " " "	"	
Benzo (a) anthracene ND 300 "		
Benzo (b) fluoranthene ND 300 " " " " " " " " " " " " " " " " " "		
Benzo (k) fluoranthene ND 300 " " " " " " " " " " Benzo (g,h,i) perylene ND 1000 " " " " " " " " " " " " " " " " "	"	
Benzo (g,h,i) perylene ND 1000 """""""""""""""""""""""""""""""	"	
Benzo (a) pyrene ND 300 "	"	
Benzyl alcohol ND 300 "	"	
Bis(2-chloroethoxy)methane ND 300 "	"	
Bis(2-chloroethyl)ether ND 300 "	"	
Bis(2-chloroisopropyl)ether ND 300 " <th< td=""><td>"</td><td></td></th<>	"	
Bis(2-ethylhexyl)phthalate	"	
4-Bromophenyl phenyl ether ND 300 " " " " " " " " " " " " " " " " " "	"	
Butyl benzyl phthalate ND 300 " <td>"</td> <td></td>	"	
4-Chloroaniline ND 300 " " " " " " 2-Chloronaphthalene ND 300 " " " " " " "	"	
2-Chloronaphthalene ND 300 " " " " " "	"	
2-Cinoronaphunaiche	"	
	"	
4-Chlorophenyl phenyl ether ND 300 " " " " "	"	
Chrysene ND 300 " " " " "	"	
Dibenz (a,h) anthracene ND 300 " " " " "	"	
Dibenzofuran ND 300 " " " " "	"	
Di-n-butyl phthalate ND 300 " " " " "	"	
1,2-Dichlorobenzene ND 300 " " " " "	"	
1,3-Dichlorobenzene ND 300 " " " " " "	"	
2,4-Dichlorophenol ND 1000 " " " " "	"	
Diethyl phthalate ND 300 " " " " "	"	
2,4-Dimethylphenol ND 1000 " " " " "	"	
Dimethyl phthalate ND 300 " " " " "	"	
4,6-Dinitro-2-methylphenol ND 1000 " " " " "	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar L	aboratorie	s, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2,4-Dinitrophenol	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	m .	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	m .	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	II .	
Surrogate: 2-Fluorophenol		66.0 %	15-1.	21	"	"	"	"	
Surrogate: Phenol-d6		70.1 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.2 %	21.3-1	19	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		79.7 %	32.4-1	02	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 15-10.0 T180381-26 (Soil)

Analyte	Reporting Result Limit	Units D	ilution Batch	Prepared	Analyzed	Method	Notes
	SunStar La	aboratories, I	nc.				
Semivolatile Organic Compounds by EPA Metho	d 8270C						
Surrogate: 2,4,6-Tribromophenol	83.6 %	18.1-105	8020535	02/05/18	02/07/18	EPA 8270C	
Surrogate: Terphenyl-dl4	98.6 %	29.1-130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.		-			
Purgeable Petroleum Hydrocarbons l	ov EPA 8015B			,••					
C6-C12 (GRO)	ND	360	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		67.3 %	65-1	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.6 %	65-	135	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/07/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		70.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		62.1 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.6	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
Bromochloromethane	ND	2.6	"	"	"	"	"	"	
Bromodichloromethane	ND	2.6	"	"	"	"	"	"	
Bromoform	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	2.6	"	"	"	"	"	"	
n-Butylbenzene	ND	2.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.6	"	"	"	"	"	"	
Chlorobenzene	ND	2.6	"	"	"	"	"	"	
Chloroethane	ND	2.6	"	"	"	"	"	"	
Chloroform	ND	2.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Chloromethane	ND	2.6	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
2-Chlorotoluene	ND	2.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.6	"	"	"	"	"	"	
Dibromochloromethane	ND	2.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.2	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.6	"	"	"	"	"	"	
Dibromomethane	ND	2.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.6	"	"	"	"	"	"	
Isopropylbenzene	ND	2.6	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.6	"	"	"	"	"	"	
Methylene chloride	ND	2.6	"	"	"	"	"	"	
Naphthalene	ND	2.6	"	"	"	"	"	"	
n-Propylbenzene	ND	2.6	"	"	"	"	"	"	
Styrene	ND	2.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.6	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Tetrachloroethene	ND	2.6	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
1,2,3-Trichlorobenzene	ND	2.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.6	"	"	"	"	"	"	
Trichloroethene	ND	2.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.6	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Benzene	ND	2.6	"	"	"	"	"	"	
Toluene	ND	2.6	"	"	"	"	"	"	
Ethylbenzene	ND	2.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.2	"	"	"	"	"	"	
o-Xylene	ND	2.6	"	"	"	"	"	"	
Surrogate: Toluene-d8		93.7 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		82.2 %	95.7	-135	"	"	"	"	S-GC
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

Project: 3rd & Fairfax

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
4-Nitrophenol	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	

ND

1000

SunStar Laboratories, Inc.

4,6-Dinitro-2-methylphenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
2,4-Dinitrophenol	ND	1000	ug/kg	1	8020535	02/05/18	02/07/18	EPA 8270C	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		60.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		67.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		65.1 %	32.4		"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 15-20.0 T180381-28 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Semivolatile Organic Compounds by EPA Method 8270C

 Surrogate: 2,4,6-Tribromophenol
 72.9 %
 18.1-105
 8020535
 02/05/18
 02/07/18
 EPA 8270C

 Surrogate: Terphenyl-dl4
 110 %
 29.1-130
 "
 "
 "
 "
 "
 "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 15:47

B- 10-1.0 T180381-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	370	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		30.8 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	63	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		74.3 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	86	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	10	2.0	"	"	"	"	"	"	
Copper	9.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	39	5.0	"	"	"	"	"	"	
Zinc	54	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

02/08/18 15:47

Reported:

B- 10-1.0 T180381-32 (Soil)

Reporting

1		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	
Organochlorine Pesticides by EPA Me	thod 8081A								
alpha-BHC	ND	50	ug/kg	10	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	n .	
alpha-Chlordane	ND	50	"	"	"	"	"	"	
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4′-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4′-DDD	ND	50	"	"	"	"	"	n .	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4′-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	n .	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		81.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		108 %	35-	140	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 10-1.0 T180381-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/07/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		68.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		55.0 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Touchel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 10-1.0 T180381-32 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,4-Dichlorobenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	,,	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	,,	"	"	"	"	
1,1,1-Trichloroethane	ND ND	1.9	"	"	"	"	"	"	
Trichloroethene	ND ND	1.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND ND	1.9	"	"	,,	"	,,	,,	
1,2,3-Trichloropropane	ND ND	1.9	"	"	,,	,,	,,		
			"	"	,,	,,	,,	"	
1,3,5-Trimethylbenzene	ND	1.9		"					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

B- 10-1.0

B- 10-1.0 T180381-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Volatile Organic Compounds by El	PA Method 8260B								
1,2,4-Trimethylbenzene	ND	1.9	ug/kg	1	8020132	02/01/18	02/07/18	EPA 8260B/5035	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		84.0 %	85.5	-116	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		68.0 %	81.2	-123	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		94.4 %	95.7	-135	"	"	"	"	S-04

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Project Number: 2047.15 Reported:
Laguna Hills CA, 92653 Project Manager: Derrick Willis 02/08/18 15:47

B- 10-10.0 T180381-34 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015B								
C6-C12 (GRO)	ND	420	ug/kg	1	8020131	02/01/18	02/02/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		32.6 %	65-	135	"	"	"	"	S-03
Extractable Petroleum Hydrocarbon	s by 8015B								
C13-C28 (DRO)	ND	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	180	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	18	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	6.4	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	10	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	41	5.0	"	"	"	"	"	"	
Zinc	56	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A Comment

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 10-10.0 T180381-34 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Method	1 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/07/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		69.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		66.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA Met	hod 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.4	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 15:47

B- 10-10.0 T180381-34 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reported: Project Manager: Derrick Willis 02/08/18 15:47

B- 10-10.0 T180381-34 (Soil)

Project: 3rd & Fairfax

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	1.7	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.4	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		88.1 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.1 %	81.2-1	23	"	"	"	"	
Surrogate: Dibromofluoromethane		98.2 %	95.7-1	35	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 10-20.0 T180381-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Purgeable Petroleum Hydrocarbons l	oy EPA 8015B								
C6-C12 (GRO)	ND	440	ug/kg	1	8020131	02/01/18	02/06/18	EPA 8015B/5035	
Surrogate: 4-Bromofluorobenzene		79.6 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarbons	s by 8015B								
C13-C28 (DRO)	25	10	mg/kg	1	8020213	02/02/18	02/08/18	EPA 8015B	
C29-C40 (MORO)	11	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020541	02/05/18	02/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	35	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	11	2.0	"	"	"	"	"	"	
Cobalt	6.6	2.0	"	"	"	"	"	"	
Copper	7.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	9.7	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	18	5.0	"	"	"	"	"	"	
Zinc	21	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

B- 10-20.0 T180381-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020540	02/05/18	02/06/18	EPA 7471A Soil	
Polychlorinated Biphenyls by EPA Met	hod 8082								
PCB-1016	ND	10	ug/kg	1	8020528	02/05/18	02/07/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		65.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		62.2 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Aethod 8260B								
Bromobenzene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Bromochloromethane	ND	1.7	"	"	"	"	"	"	
Bromodichloromethane	ND	1.7	"	"	"	"	"	"	
Bromoform	ND	1.7	"	"	"	"	"	"	
Bromomethane	ND	1.7	"	"	"	"	"	"	
n-Butylbenzene	ND	1.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.7	"	"	"	"	"	"	
Chlorobenzene	ND	1.7	"	"	"	"	"	"	
Chloroethane	ND	1.7	"	"	"	"	"	"	
Chloroform	ND	1.7	"	"	"	"	"	"	
Chloromethane	ND	1.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A Par

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax Project Manager: Derrick Willis

Reported:

02/08/18 15:47

B- 10-20.0 T180381-36 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP.	A Method 8260B								
1,2-Dibromoethane (EDB)	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Dibromomethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.7	"	"	"	"	"	"	
Isopropylbenzene	ND	1.7	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.7	"	"	"	"	"	"	
Methylene chloride	ND	1.7	"	"	"	"	"	"	
Naphthalene	ND	1.7	"	"	"	"	"	"	
n-Propylbenzene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.7	,,	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.7	,,	"	"	"	"	"	
Tetrachloroethene	ND	1.7	"	,,	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.7		,,	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.7	,,	,,	"	"	"	"	
1,1,2-Trichloroethane	ND ND	1.7	,,	"	"	"	"	"	
	ND ND	1.7	"	,,	,,	,,	,,	"	
1,1,1-Trichloroethane	ND	1./							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

B- 10-20.0 T180381-36 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratorie	s, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Trichloroethene	ND	1.7	ug/kg	1	8020132	02/01/18	02/06/18	EPA 8260B/5035	
Trichlorofluoromethane	ND	1.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.7	"	"	"	"	"	"	
Vinyl chloride	ND	1.7	"	"	"	"	"	"	
Benzene	1.9	1.7	"	"	"	"	"	"	
Toluene	ND	1.7	"	"	"	"	"	"	
Ethylbenzene	ND	1.7	"	"	"	"	"	"	
m,p-Xylene	ND	3.5	"	"	"	"	"	"	
o-Xylene	ND	1.7	"	"	"	"	"	"	
Surrogate: Toluene-d8		76.8 %	85.5-1	116	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		60.4 %	81.2-1	123	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		101 %	95.7-1	135	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

Purgeable Petroleum Hydrocarbons by EPA 8015B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
линун	Kesult	Lillit	Ullits	LEVEI	Kesuit	/OKEC	Lillits	KFD	Lillit	Notes
Batch 8020131 - EPA 5035 GC										
Blank (8020131-BLK1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	ND	400	ug/kg							
Surrogate: 4-Bromofluorobenzene	98.8		"	100		98.8	65-135			
LCS (8020131-BS1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	2110	400	ug/kg	1980		106	75-125			
Surrogate: 4-Bromofluorobenzene	127		"	100		127	65-135			
LCS Dup (8020131-BSD1)				Prepared &	Analyzed:	02/01/18				
C6-C12 (GRO)	2020	400	ug/kg	2000		101	75-125	4.41	20	
Surrogate: 4-Bromofluorobenzene	116		"	100		116	65-135			
Batch 8020142 - EPA 5030 GC										
Blank (8020142-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/03/18			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate: 4-Bromofluorobenzene	76.8		"	100		76.8	65-135			
LCS (8020142-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
C6-C12 (GRO)	1090	50	ug/l	1000		109	75-125			
Surrogate: 4-Bromofluorobenzene	115		"	100		115	65-135			
LCS Dup (8020142-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
C6-C12 (GRO)	1020	50	ug/l	1000		102	75-125	7.35	20	
Surrogate: 4-Bromofluorobenzene	116		"	100		116	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Proj

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Extractable Petroleum Hydrocarbons by 8015B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020213 - EPA 3550B GC										
Blank (8020213-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	87.5		"	100		87.5	65-135			
Surrogate: p-Terphenyl	87.5		"	100		87.5	65-135			
LCS (8020213-BS1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C13-C28 (DRO)	500	10	mg/kg	500		100	75-125			
C13-C28 (DRO)	500	10	"	500		100	75-125			
Surrogate: p-Terphenyl	83.3		"	100		83.3	65-135			
Surrogate: p-Terphenyl	83.3		"	100		83.3	65-135			
LCS Dup (8020213-BSD1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C13-C28 (DRO)	490	10	mg/kg	500		98.2	75-125	2.25	20	
C13-C28 (DRO)	490	10	"	500		98.2	75-125	2.25	20	
Surrogate: p-Terphenyl	87.1		"	100		87.1	65-135			
Surrogate: p-Terphenyl	87.1		"	100		87.1	65-135			
Batch 8020233 - EPA 3510C GC										
Blank (8020233-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C13-C28 (DRO)	ND	0.50	mg/l							
C29-C40 (MORO)	ND	0.50	"							
Surrogate: p-Terphenyl	3.02		"	4.00		75.6	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 109 of 143

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Extractable Petroleum Hydrocarbons by 8015B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020233 - EPA 3510C GC										
LCS (8020233-BS1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C13-C28 (DRO)	16.0	0.50	mg/l	20.0		80.2	75-125			
Surrogate: p-Terphenyl	2.69		"	4.00		67.3	65-135			
LCS Dup (8020233-BSD1)				Prepared: (02/02/18 A	nalyzed: 02	/07/18			
C13-C28 (DRO)	16.8	0.50	mg/l	20.0		84.2	75-125	4.92	20	
Surrogate: p-Terphenyl	2.62		"	4.00		65.6	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

RPD

Limit

Notes

%REC

Limits

RPD

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Units

Reporting

Result

Limit

Spike

Level

Source

Result

%REC

7 Hidry to	Result	Lillit	Cints	LCVCI	Result	/orche	Lillits	KI D	Lillit	110103
Batch 8020541 - EPA 3050B										
Blank (8020541-BLK1)				Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Гhallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (8020541-BS1)				Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
Arsenic	115	5.0	mg/kg	100		115	75-125			
Barium	112	1.0	"	100		112	75-125			
Cadmium	109	2.0	"	100		109	75-125			
Chromium	111	2.0	"	100		111	75-125			
Lead	117	3.0	"	100		117	75-125			
Matrix Spike (8020541-MS1)	Sourc	e: T180381-	-09	Prepared: (02/05/18 A	nalyzed: 02	2/06/18			
Arsenic	91.9	5.0	mg/kg	97.1	0.838	93.8	75-125			
Barium	202	1.0	"	97.1	91.1	114	75-125			
Cadmium	91.1	2.0	"	97.1	0.825	92.9	75-125			
Chromium	114	2.0	"	97.1	17.9	98.6	75-125			
Lead	101	3.0	"	97.1	ND	104	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

RPD

Limit

Notes

%REC

Limits

RPD

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Units

Reporting

Result

Limit

Spike

Level

Source

Result

%REC

Batch 8020541 - EPA 3050B									
Matrix Spike Dup (8020541-MSD1)	Source	: T180381-	-09	Prepared: (02/05/18 Aı	nalyzed: 02	2/06/18		
Arsenic	88.6	5.0	mg/kg	100	0.838	87.8	75-125	3.67	20
Barium	196	1.0	"	100	91.1	105	75-125	2.93	20
Cadmium	90.7	2.0	"	100	0.825	89.9	75-125	0.371	20
Chromium	114	2.0	"	100	17.9	95.9	75-125	0.129	20
Lead	96.4	3.0	"	100	ND	96.4	75-125	4.78	20

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project Number: 2047.15

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting	** *	Spike	Source	A/DEG	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020540 - EPA 7471A Soil										
Blank (8020540-BLK1)				Prepared: (02/05/18 A	nalyzed: 02	/06/18			
Mercury	ND	0.10	mg/kg							
LCS (8020540-BS1)		Prepared: (02/05/18 A	nalyzed: 02	/06/18					
Mercury	0.350	0.10	mg/kg	0.385		91.1	80-120			
Matrix Spike (8020540-MS1)	Sour	ce: T180381-	-09	Prepared: (02/05/18 A	nalyzed: 02	/06/18			
Mercury	0.387	0.10	mg/kg	0.417	ND	92.8	75-125			
Matrix Spike Dup (8020540-MSD1)	Sour	Source: T180381-09			02/05/18 A	nalyzed: 02	/06/18			
Mercury	0.379	0.10	mg/kg	0.410	ND	92.5	75-125	2.05	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 15:47

RPD

%REC

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 8020134 - EPA 3550 ECD/GCM	S									
Blank (8020134-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
alpha-BHC	ND	5.0	ug/kg							
gamma-BHC (Lindane)	ND	5.0	"							
beta-BHC	ND	5.0	"							
delta-BHC	ND	5.0	"							
Heptachlor	ND	5.0	"							
Aldrin	ND	5.0	"							
Heptachlor epoxide	ND	5.0	"							
gamma-Chlordane	ND	5.0	"							
alpha-Chlordane	ND	5.0	"							
Endosulfan I	ND	5.0	"							
4,4´-DDE	ND	5.0	"							
Dieldrin	ND	5.0	"							
Endrin	ND	5.0	"							
4,4′-DDD	ND	5.0	"							
Endosulfan II	ND	5.0	"							
4,4´-DDT	ND	5.0	"							
Endrin aldehyde	ND	5.0	"							
Endosulfan sulfate	ND	5.0	"							
Methoxychlor	ND	10	"							
Endrin ketone	ND	5.0	"							
Гохарһепе	ND	200	"							
Surrogate: Tetrachloro-meta-xylene	8.92		"	10.0		89.2	35-140			
Surrogate: Decachlorobiphenyl	8.62		"	10.0		86.2	35-140			
LCS (8020134-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	34.2	5.0	ug/kg	40.0		85.5	40-120			
Heptachlor	34.1	5.0	"	40.0		85.2	40-120			
Aldrin	32.0	5.0	"	40.0		80.0	40-120			
Dieldrin	32.6	5.0	"	40.0		81.5	40-120			
Endrin	32.7	5.0	"	40.0		81.9	40-120			
4,4´-DDT	30.7	5.0	"	40.0		76.8	33-147			
Surrogate: Tetrachloro-meta-xylene	8.47		"	10.0		84.7	35-140			
Surrogate: Decachlorobiphenyl	8.36		"	10.0		83.6	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020134 - EPA 3550 ECD/GCMS										
LCS Dup (8020134-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	32.4	5.0	ug/kg	40.0		81.1	40-120	5.30	30	
Heptachlor	32.6	5.0	"	40.0		81.5	40-120	4.51	30	
Aldrin	30.6	5.0	"	40.0		76.4	40-120	4.58	30	
Dieldrin	31.1	5.0	"	40.0		77.7	40-120	4.85	30	
Endrin	31.1	5.0	"	40.0		77.8	40-120	5.11	30	
4,4'-DDT	28.6	5.0	"	40.0		71.5	33-147	7.13	30	
Surrogate: Tetrachloro-meta-xylene	8.06		"	10.0		80.6	35-140			
Surrogate: Decachlorobiphenyl	8.56		"	10.0		85.6	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020528 - EPA 3550 ECD/GCMS										
Blank (8020528-BLK1)				Prepared: (02/05/18 Aı	nalyzed: 02	/06/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	5.93		"	9.80		60.5	35-140			
Surrogate: Decachlorobiphenyl	6.49		"	9.80		66.2	35-140			
LCS (8020528-BS1)	Prepared: 02/05/18 Analyzed: 02/06/18									
PCB-1016	58.3	10	ug/kg	99.0		58.9	40-130			
PCB-1260	65.4	10	"	99.0		66.1	40-130			
Surrogate: Tetrachloro-meta-xylene	6.25		"	9.90		63.1	35-140			
Surrogate: Decachlorobiphenyl	6.75		"	9.90		68.1	35-140			
LCS Dup (8020528-BSD1)				Prepared: (02/05/18 Aı	nalyzed: 02	/06/18			
PCB-1016	63.1	10	ug/kg	99.0		63.7	40-130	7.83	30	
PCB-1260	68.4	10	"	99.0		69.1	40-130	4.44	30	
Surrogate: Tetrachloro-meta-xylene	6.80		"	9.90		68.7	35-140			
Surrogate: Decachlorobiphenyl	7.06		"	9.90		71.3	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	8020127	- FPA	5030	CCMS
Daten	002012/	- LFA	ういうい	GUMS

Blank (8020127-BLK1)				Prepared & Analyzed: 02/01/18
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Datah	90201	27	EDA	5020	GCMS
ватсп	80201	Z / -	EPA	ついうい	CIVID

Blank (8020127-BLK1)				Prepared & Analyzed: 02/01/18
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
Surrogate: 4-Bromofluorobenzene	19.3		"	20.0 96.4 83.5-119
Surrogate: Dibromofluoromethane	21.2		"	20.0 106 81-136
Surrogate: Toluene-d8	21.8		"	20.0 109 88.8-117

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	LIIIIt	Ollits	Level	Result	70KEC	Lillits	KFD	Liiiit	Notes
Batch 8020127 - EPA 5030 GCMS										
LCS (8020127-BS1)				Prepared &	Analyzed:	02/01/18				
Chlorobenzene	21.5	1.0	ug/l	20.0		108	75-125			
1,1-Dichloroethene	21.2	1.0	"	20.0		106	75-125			
Trichloroethene	20.0	1.0	"	20.0		100	75-125			
Benzene	21.8	0.50	"	20.0		109	75-125			
Toluene	21.8	0.50	"	20.0		109	75-125			
Surrogate: 4-Bromofluorobenzene	22.2		"	20.0		111	83.5-119			
Surrogate: Dibromofluoromethane	21.2		"	20.0		106	81-136			
Surrogate: Toluene-d8	21.6		"	20.0		108	88.8-117			
LCS Dup (8020127-BSD1)				Prepared &	Analyzed:	02/01/18				
Chlorobenzene	21.2	1.0	ug/l	20.0		106	75-125	1.83	20	
1,1-Dichloroethene	21.3	1.0	"	20.0		106	75-125	0.235	20	
Trichloroethene	20.2	1.0	"	20.0		101	75-125	1.24	20	
Benzene	22.3	0.50	"	20.0		111	75-125	2.13	20	
Toluene	21.8	0.50	"	20.0		109	75-125	0.0458	20	
Surrogate: 4-Bromofluorobenzene	21.8		"	20.0		109	83.5-119			
Surrogate: Dibromofluoromethane	20.9		"	20.0		105	81-136			
Surrogate: Toluene-d8	21.3		"	20.0		106	88.8-117			
Batch 8020132 - EPA 5035 GCMS										
Blank (8020132-BLK1)				Prepared: ()2/01/18 Aı	nalyzed: 02	2/05/18			
Bromobenzene	ND	2.0	ug/kg	•		•				
Bromochloromethane	ND	2.0	"							
Bromodichloromethane	ND	2.0	"							
Bromoform	ND	2.0	"							
Bromomethane	ND	2.0	"							
n-Butylbenzene	ND	2.0	"							
sec-Butylbenzene	ND	2.0	"							
tert-Butylbenzene	ND	2.0	"							
Carbon tetrachloride	ND	2.0	"							
Chlorobenzene	ND	2.0	"							
Chloroethane	ND	2.0	"							
Chloroform	ND	2.0	"							
Chloromethane	ND	2.0	"							
2-Chlorotoluene	ND	2.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Tasheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	Q020132 _	FPA	5035	CCMS

Blank (8020132-BLK1)				Prepared: 02/01/18 Analyzed: 02/05/18
4-Chlorotoluene	ND	2.0	ug/kg	
Dibromochloromethane	ND	2.0	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	
Dibromomethane	ND	2.0	"	
1,2-Dichlorobenzene	ND	2.0	"	
1,3-Dichlorobenzene	ND	2.0	"	
1,4-Dichlorobenzene	ND	2.0	"	
Dichlorodifluoromethane	ND	2.0	"	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	"	
1,2-Dichloropropane	ND	2.0	"	
1,3-Dichloropropane	ND	2.0	"	
2,2-Dichloropropane	ND	2.0	"	
1,1-Dichloropropene	ND	2.0	"	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Hexachlorobutadiene	ND	2.0	"	
Isopropylbenzene	ND	2.0	"	
p-Isopropyltoluene	ND	2.0	"	
Methylene chloride	ND	2.0	"	
Naphthalene	ND	2.0	"	
n-Propylbenzene	ND	2.0	"	
Styrene	ND	2.0	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	
1,1,1,2-Tetrachloroethane	ND	2.0	"	
Tetrachloroethene	ND	2.0	"	
1,2,3-Trichlorobenzene	ND	2.0	"	
1,2,4-Trichlorobenzene	ND	2.0	"	
1,1,2-Trichloroethane	ND	2.0	"	
1,1,1-Trichloroethane	ND	2.0	"	
Trichloroethene	ND	2.0	"	
Trichlorofluoromethane	ND	2.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Project Number: 2047.15 Laguna Hills CA, 92653 Project Manager: Derrick Willis

Reported: 02/08/18 15:47

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: 3rd & Fairfax

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020132 - EPA 5035 GCMS										
Blank (8020132-BLK1)				Prepared: ()2/01/18 A	nalyzed: 02	2/05/18			
1,2,3-Trichloropropane	ND	2.0	ug/kg	-		-				
1,3,5-Trimethylbenzene	ND	2.0	"							
1,2,4-Trimethylbenzene	ND	2.0	"							
Vinyl chloride	ND	2.0	"							
Benzene	ND	2.0	"							
Toluene	ND	2.0	"							
Ethylbenzene	ND	2.0	"							
m,p-Xylene	ND	4.0	"							
o-Xylene	ND	2.0	"							
Surrogate: Toluene-d8	37.7		"	39.7		95.0	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.2		"	39.7		96.3	81.2-123			
Surrogate: Dibromofluoromethane	47.7		"	39.7		120	95.7-135			
LCS (8020132-BS1)				Prepared: (02/01/18 A	nalyzed: 02	2/06/18			
Chlorobenzene	38.6	2.0	ug/kg	39.8		97.0	75-125			
1,1-Dichloroethene	46.2	2.0	"	39.8		116	75-125			
Trichloroethene	37.7	2.0	"	39.8		94.8	75-125			
Benzene	44.8	2.0	"	39.8		113	75-125			
Toluene	36.8	2.0	"	39.8		92.5	75-125			
Surrogate: Toluene-d8	36.5		"	39.8		91.8	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.2		"	39.8		95.9	81.2-123			
Surrogate: Dibromofluoromethane	46.4		"	39.8		117	95.7-135			
LCS Dup (8020132-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	2/06/18			
Chlorobenzene	39.5	2.0	ug/kg	39.7		99.6	75-125	2.45	20	
1,1-Dichloroethene	46.7	2.0	"	39.7		118	75-125	1.21	20	
Trichloroethene	38.6	2.0	"	39.7		97.2	75-125	2.35	20	
Benzene	46.3	2.0	"	39.7		117	75-125	3.20	20	
Toluene	38.5	2.0	"	39.7		97.1	75-125	4.60	20	
Surrogate: Toluene-d8	35.5		"	39.7		89.4	85.5-116			
Surrogate: 4-Bromofluorobenzene	34.7		"	39.7		87.4	81.2-123			
Surrogate: Dibromofluoromethane	50.4		"	39.7		127	95.7-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020535 - EPA 3550 ECD/GCMS

Blank (8020535-BLK1)				Prepared: 02/05/18 Analyzed: 02/06/18
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Towheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 15:47

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020535 - EPA 3550 ECD/GC

Blank (8020535-BLK1)				Prepared: 02/05/18 Analyzed: 02/06/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 15:47

RPD

%REC

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		%KEC		KPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 8020535 - EPA 3550 ECD/GCMS						<u> </u>					
Blank (8020535-BLK1)		Prepared: 02/05/18 Analyzed: 02/06/18									
Surrogate: 2-Fluorophenol	2140		ug/kg	3270		65.4	15-121				
Surrogate: Phenol-d6	2310		"	3270		70.6	24-113				
Surrogate: Nitrobenzene-d5	2820		"	3270		86.3	21.3-119				
Surrogate: 2-Fluorobiphenyl	2480		"	3270		75.8	32.4-102				
Surrogate: 2,4,6-Tribromophenol	2220		"	3270		68.0	18.1-105				
Surrogate: Terphenyl-dl4	3370		"	3270		103	29.1-130				
LCS (8020535-BS1)				Prepared: (02/05/18 An	nalyzed: 02	2/06/18				
Phenol	2000	1000	ug/kg	3300		60.7	34-114				
2-Chlorophenol	1950	1000	"	3300		59.0	34-114				
1,4-Dichlorobenzene	1980	300	"	3300		60.1	34-114				
N-Nitrosodi-n-propylamine	2840	300	"	3300		85.9	30-110				
1,2,4-Trichlorobenzene	2040	300	"	3300		61.7	39-119				
4-Chloro-3-methylphenol	2550	1000	"	3300		77.2	50-130				
Acenaphthene	2360	300	"	3300		71.5	34-114				
Pentachlorophenol	2160	1000	"	3300		65.4	50-130				
Pyrene	2090	300	"	3300		63.4	30-110				
Surrogate: 2-Fluorophenol	1930		"	3300		58.5	15-121				
Surrogate: Phenol-d6	2150		"	3300		65.1	24-113				
Surrogate: Nitrobenzene-d5	2580		"	3300		78. I	21.3-119				
Surrogate: 2-Fluorobiphenyl	2350		"	3300		71.1	32.4-102				
Surrogate: 2,4,6-Tribromophenol	2300		"	3300		69.7	18.1-105				
Surrogate: Terphenyl-dl4	3560		"	3300		108	29.1-130				
LCS Dup (8020535-BSD1)				Prepared: (02/05/18 An	nalyzed: 02	2/06/18				
Phenol	2030	1000	ug/kg	3270		62.0	34-114	1.13	42		
2-Chlorophenol	1960	1000	"	3270		60.0	34-114	0.745	40		
1,4-Dichlorobenzene	1980	300	"	3270		60.5	34-114	0.405	28		
N-Nitrosodi-n-propylamine	2940	300	"	3270		90.1	30-110	3.76	38		
1,2,4-Trichlorobenzene	2080	300	"	3270		63.5	39-119	1.87	28		
4-Chloro-3-methylphenol	2710	1000	"	3270		82.8	50-130	6.03	42		
Acenaphthene	2450	300	"	3270		74.9	34-114	3.66	31		
Pentachlorophenol	2080	1000	"	3270		63.5	50-130	3.93	50		
Pyrene	1970	300	"	3270		60.3	30-110	5.91	31		
Surrogate: 2-Fluorophenol	1880		"	3270		57.7	15-121				
Surrogate: Phenol-d6	2160		"	3270		66.1	24-113				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported:

02/08/18 15:47

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C-Quality\ Control$

SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020535 - EPA 3550 ECD/GCMS

LCS Dup (8020535-BSD1)		Prepared: 02/05/18 Analyzed: 02/06/18							
Surrogate: Nitrobenzene-d5	2580	ug/kg	3270	79.0	21.3-119				
Surrogate: 2-Fluorobiphenyl	2400	"	3270	73.3	32.4-102				
Surrogate: 2,4,6-Tribromophenol	2320	"	3270	71.1	18.1-105				
Surrogate: Terphenyl-dl4	3430	"	3270	105	29.1-130				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130Project Number: 2047.15Reported:Laguna Hills CA, 92653Project Manager: Derrick Willis02/08/18 15:47

Notes and Definitions

S-GC	Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
S-03	The surrogate recovery was below acceptance criteria in the sample because of a possible matrix effect. The surrogate recovery was within acceptance criteria in the method blank and LCS.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.
R-07	Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s) and/or matrix affect.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Relinquished by: (signature) Relinquished by: (signature) Reinquished by: (signature) Project Manager: Phone:(949 Address: Client: Northgaze 6-12-25.0 3-8-20.0 -12-3-8-25,0 3-8-15-0 16-2018.01.31-4 3-8-10.0 3-8-5,0 3-8-1.0 20,0 Sample ID 0.51 30:0 ナナス 30 0 0.0 5.0 .0 716-0050 Dona Brown していった Ridge Disposal @ \$2.00 each Environmenta 1-31-2018 Sampled トンノータ 3 Date / Time Date / Time 1-31-18 Date / Time 20078# 130 1825 08:25 11:44 08:28 07:54 07:50 07:39 Fax: (949 07:28 07:01 18:20 07:25 Time 14:50 14:50 Received by: (signature) トト Received by: (signature) Received by: (signature) Sample Type AQ 00 Return to client agua Hills 716-0055 V+95 Container tas 150 Type ने 8260 Pickup 8260 + OXY -4-18 1420 Date / Time Date / Time Date / Time 8260 BTEX, OXY only Batch #: Project Name: 3rd Date: 1-31-2018 Collector: Dong 8270 8021 BTEX 8015M (gasoline) Chain of Custody seals Y/N/NA Turn around time: 8015M (diesel) Received good condition/cold 118038 8015M Ext./Carbon Chain mag 6010/7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers 6020 ICP-MS Metals 2.6 67 05 Page: 04 EDF #: Client Project #: 204 7, 15 00 6 14 09 80 90 03 Laboratory ID # 1.4 2.8 Comments/Preservative Notes Q W Total # of containers

Chain of Custody Record

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

	10010										d	Pickup		Return to client	Return 1	ach	Disposal @ \$2.00 each	Dispos	Sample disposal Instructions:	ple dispos	Samp
				Turn around time:	und	aro	Turn	Ļ													
	1.4								me	Date / Time	Date			Received by: (signature)	Received b	72	Date / Time		Relinquished by: (signature)	nquished	Relir
	2.8	2.6	ived good condition/cold	ood co	ed go	Receive	Re		М	16:25		1-31-18	10	XXXX	de	1625	1 8415	82/	Son Kitate	22	3
			Seals intact? Y/N/NA	als int	Sea				me	Date / Time	Date			Received by: (signature)	Received b		Date / Time	,	Relinquished by: (signature)	nquished	Relin
			eals Y/N/NA	ody s	Cust	in of	Cha		-1/18/1420	3	18-	at	whol	3 7/2 7	3	3 14: 5	1-31-18	とかの	Dana R Brows	11/6	Ca
	Notes	107	Total # of containers	tal#	To				me	Date / Time	Date			Received by: (signature)	Received b	3	Date / Time)	Relinquished by: (signature)	nquished	SE!
7		30	1											<	<	11:15	<		30,0	15-	22
7		29														11:00			25.0	-15-	a
7		28		-												11:00			20.0	-15-	S
7		27						1	1							10:55			15.0	-151-	3
7		26			L											10:52			10.0	-15-	C
7		K												V+SC		10:48			2.0	-15-	w
7		24												V+65	8	10:45			0	-15-	3
9	×	B												V+PB	AQ	10:25	.5			3-4	W
1		202	97													10109	_	34	30.0	1	S
V		21														10:05			25.0	-4-	S
7		20		L												0,00			20,0	141	Ç
7		19														55:30			5.0	1	ÇQ
7		/8			L								-			09:50			0,0	3-4-1	3
1		/7					-							V+SC	_	09:16			5,0	3-4-5	S
~1		16												VtaJ	S	04:40	-31-18	=	0	4-	5-
Total # of containers	Comments/Preservative	Laboratory ID #		6020 ICP-MS Metals	6010/7000 Title 22 Metals	8015M Ext./Carbon Chain	8015M (diesel)	8015M (gasoline)	8021 BTEX	8270	8260 BTEX, OXY only	8260 + OXY	8260	Container Type	Sample Type	Time	Date		Sample ID	S	2-,116
1	#:	EDF #:		3	18038	7115			Batch #:	Bat			1.			15	3	Desnick		Project Manager:	Pro
	Client Project #: 2047, US	Clien	2300	3	C	Danci	Da		Collector:	Col			9.	2500-912		Fax: (949)	50	216-0050	(949) 28.7	Phone:	Pho
			なったべ	a	3	30	.e.	Project Name:	ect	Pro			1	FIIS	Lasuna	130	ROUTE #	Ridge	244 Ric	Address:	Adc
	of O	Page:		4	200	8107.19.1	15	-	e.	Date:			1			Mal	COO Me	EM V	Northgate Environmental		Client:

coc 172279

Chain of Custody Record

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature) Project Manager: Phone: (949) 716 - 0050 Client: Northgate 1B-2018.01.31-B 3-101 5-101 3-10-つつつ -10--10ō Sample ID 1177 5.0 0,01 0 20,0 25.0 1-31-2018 Descion Ridge Rouse #130 Disposal @ \$2.00 each Environmental 1-31-2018 Sampled Date Date / Time Date / Time Date / Time SILLIS 1-1/-18 14:20 10:30 Fax: (949) 716-0055 3:24 3;20 Time 1865 Received by: (signature) Received by: (signature) Received by: (signature) Sample Laguna So Туре Return to client Container HILLS ta4 Type 81-18 T 8260 Pickup 8260 + OXY Date / Time Date / Time Date / Time 8260 BTEX, OXY only 1420 Collector: Dag Brown Date: 1-31-2018 Batch #: Project Name: 3rd d 8270 8021 BTEX 8015M (gasoline) Turn around time: Chain of Custody seals Y/N/NA Seals intact? Y/N/NA 8015M (diesel) Received good condition/cold 1180381 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals Total # of containers 6020 ICP-MS Metals 「なったのが 2.6 EDF #: 37 w 32 Client Project #: 23 80 34 Laboratory ID # coc 172290 1.00 Comments/Preservative 2047,15 Notes Q Total # of containers

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:		
Client Name: Northern	Project:	3no : FOIKFAX
Delivered by: Client 🔀 S	SunStar Courier GSO	☐ FedEx ☐ Other
If Courier, Received by:	Date/Time C Received:	1/31/18 14:20
Lab Received by:	Date/Time L Received:	.ab
Total number of coolers received: 3		
Temperature: Cooler #1 2.8 °C +/- t	he CF $(-0.2^{\circ}C) = 2.6$	°C corrected temperature
Temperature: Cooler #2 3.0 °C +/- t	he CF $(-0.2^{\circ}C) = 2.8$	°C corrected temperature
Temperature: Cooler #3 (.6 °C +/- t	he CF $(-0.2^{\circ}C) = 1.4$	°C corrected temperature
Temperature criteria = \leq 6°C (no frozen containers)	Within criteria?	∡Yes □No
If NO:		
Samples received on ice?	Yes	□No → Complete Non-Conformance Sheet
If on ice, samples received same day collected?	☐Yes → Acceptable	□No → Complete Non-Conformance Sheet
Custody seals intact on cooler/sample		☐Yes ☐No* ☑N/A
Sample containers intact		▼Yes □No*
Sample labels match Chain of Custody IDs		Yes No*
Total number of containers received match (COC	
Proper containers received for analyses requ	ested on COC	☐Yes ☐No*
Proper preservative indicated on COC/conta	iners for analyses requested	▼Yes □No* □N/A
Complete shipment received in good conditi containers, labels, volumes preservatives and holding times		Yes No*
* Complete Non-Conformance Receiving Sheet	f checked Cooler/Sample Re	view - Initials and date: BL 2/1/18
Comments: NO TAT ON EIT	HER: ORIGINAL COC	OR KEUISED

Page 1 of /

SunStar Laboratories 25712 Commercentre Drive. Lake Forest, C

Sample disposal Instructions: Disp	remiquation by. (aightune)	Delinguished by (cincolus)	Relinquished by: (signature)	1/al/12 Dang Brown	Reinquished by: (signature)	13-12-30:0	B-12-25.0	B-12 - 20.0	13-12-15.0	R-12-10.0	13-12-5.0	13-12-1.0	n-8-3010	13-8-250	13-8-20.0	13-8-15-0	Accessors 1	13-8-5,0	B-8-1.0	7B-2018:01:31-A	Sample ID	Project Manager: Derrick	Phone (949) 716 0050	2011/2012	200
Disposal @ \$2.00 each		Data / Tim	Date / Time	21-31-18	Date / Time	<			-	3	0)	_	_					1-31-2018	Date Sampled	3	50	-	
ch	a	Constitution	a		a	08:37	08:33	08:28	08:25	8:20	08:16	0):80	17:54	07:50	07:44	07:39	07:33	07:28	07:25	10:70	Time	5	Fax: (049		<u></u>
Return	Veneracon	Danaivad	Received		Received	<													SO	ΑQ	Sample Type		7		
Return to client	Lengther my. (ordinava.o.)	hy (cimphure)	Received by: (signature)	aleman de la companya	Received by: (signature)	<u> </u>					N + SC	V+65	<					V+3C	V+87	<	Container Type		76-0055		
								×		X,		X			X,	X	X		X.	F	8260	,	ľ		
Pickup		area or a construction of the construction of																			8260 + OXY				
ρ		Data / Time	Date / Time		Date / Time		_	_	_		_	_						_			8260 BTEX, OXY only	m	0 -	n (-,
I			H		TIT	_	_		-	X	_	X			X	X	X	_	X	_	8270 8021 BTEX	Batch #:	Collector: Dancy	5	Date:
	7	Ď	ਰ		លី	-	-	-	-	-	-		-	_	-	_			-	-	8015M (gasoline)	*	ctor:	4	
						-	┝	┝	-	_	-	-	_	-	_			-	-	-	8015M (diesel)		0		-31-2018
	Turn around time:	Rec		Chain of Custody seals Y/N/NA		-	\vdash	X	-		-	×	-	-	X	X	X		×	-	8015M Ext./Carbon Chain		10	23	2
	arou OL	Received good condition/cold		0,0		-	+	5	+	6	-	X	-		X		7	-	×	-	6010/7000 Title 22 Metals	and a second	00	2	0
	2	goo	Seals intact? Y	USto	Tota	-	\vdash	f	+	X	-	-	-			-		-	F	H	6020 ICP-MS Metals	-	Brown	0-	ob.
	3 e:	8	sinta	dy se	Total # of containers	-	\vdash	X	-	X	-	×			×		X		X		8082 PCBS		2	-	
		nditio	C(?)	als Y	Con	H	-		\vdash	-		X						T	×		रुटर ०८९s		- Spana		
		oo/nc	ANINA	Z	taine	_	T	\dagger	\dagger															and the same of th	
		ā	N T	D	-		_	-	-	_	_	0	e	2	0	0	0	0	0	0	(95.4)	m	0		"ס
	1				00	5	14	2	7	=	61	8	SZ.	97	L	05	٩	202	20	-	Laboratory ID #	EDF #:	ient	(Page:
Sc 172278					Notes																Comments/Preservative		Client Project #: 204 7.15	не в при	2 2
								_				_		ļ.	_		-	-	-	_		Applement com-			-
			***************************************	Daniel Committee		J	~	4	7	7	N	7	4	Н	L	7	7	1	И	N	Total # of containers				

SunStar Laboratories

Sample disposal Instructions: Dis		Relinquished by: (signature)	Cardinal Section of	Relinquished by (signature)	1/2 1/1 Dans C 50000	Relinquished by: (signature)	13-15-30.0	6-15-25.0	B-15-20.0	8-15-15.0	0.01-31-8	8-15-50	13-15-1.0	miles.	13-4 -30.0	1	\ <u>\</u>	B-4-15.0	B-4-10.0	8-4-5,0	15-4-80	Sample ID	Project Manager: Derrick	Phone: (949) 33 716.	-	Client Northgate Environmenta
Disposal @ \$2.00 each		Date / Time		manus Manus	1-31-18	Date / Time	<								gotto-nag						1-31-18	Date Sampled	3	716-0050	RIDGE ROUTE #130	WW CON NO
) 		a	•	0		O	51:12	20.	00:11	25:01	10:52	84:0	54:0	10:25	0000	50:01	0000	55:40	03:20	09/16	OH: 40	Time	S	Fax: (949)	-	T Q
Return to client		Received b		Received b		Received b	K						જ	AØ.							S	Sample Type		-	Lasura	
o client		Received by: (signature)		Received by: (signature)		Received by: (signature)	<					15+V	LYACI	VIPS						V+8C	V+63	Container Type		2500-912	H.IIS	
	ederal de la constante de la c							T	X		X	,	×	Z.			X	X.	X		X.	8260		1	i	1
Pickup																						8260 + OXY				
ਚ		Date		Date		Date																8260 BTEX, OXY only				
		Date / Time		Date / Time		Date / Time			×		X		X				X		X		X	8270	Bat	Col	Pro	Date:
		me		me		me																8021 BTEX	Batch #:	Collector:	ect	Ċ.
						*********			×		X		X	×			×	×	X		×	8015M (gasoline)		ň	Project Name:	y
	T L		R		CHa				L													8015M (diesel)		0	, co	3
	Turn around time:		Received good condition/cold		Chain of Custody seals Y/N/NA				X		X		X	X			×	X	X		X	8015M Ext./Carbon Chain		Service	36	-31-2018
	Ž		g bar	Se	Cus	7													×		X	6010/7000 Title 22 Metals		200	3	0
			000	Seals intact?	tody	Total # of containers			_													6020 ICP-MS Metals		5000	-0-	de
	100		cond	tact'	seal	0		L	X		X	L	\leq	L	L	<u></u>	X		5		X	8082 PCB1		3	TI	
	and the same of th		tion/	ンベア	X	ontai	L	Ļ	_	_	_	_	X	_	L	<u> </u>	_	_	L	L	X	8081 cc fs		2	2	
	-		<u>8</u>	YNNA YNNA	N	ners			-			-				and a second			-	-	-				ラマメ	
	-					101	30	2	28	27	26	25	24	7.3	22	21	20	19	18	3	8	Laboratory ID #	EDF #:	Client Project #:		Page:
000				-	bos-commute.	alaronno	T	Ī	T		Г	T		Ī	T	T							,##	a P		0
ŏ									-	- Construction		Tamping and a		Assessed Assessed			-		National Parkets		Caracteristica	Q		ojec		1
proce do							Li ecconomica de la constanta		-	Octobra de la constante de la		-		-					Commonweal			The state of the s		*		N
72279						_	-			-	-	Andrews Water		-								Comments/Preservative		N		
50	-					Notes					-			-	-		-			-		Te s		20		Q
0	-					60						The state of the s				Security of the Security of th		*				eva		2047,15		[4]
	***************************************						and the second								-		***************************************			e de la composição de l		Ve		5		W
	and the second s								-			-	-						-							
						-	1		1	1	-	1	7	-	V	V	7	V	4	V	7	Total # of containers				

100	2	paner.
Dance	me: 3/	-31-2018
Bro		3
1	できる	
Client Pro	3	Page:
ject #:		N
204		Q
51.5		W
	tor: Dang Brown Client Project #: 2047.15	1

SunStar Laboratories 25712 Commercentre Drive, Lake Forest

Sample disposal Instructions: Dis	Relinquished by: (signature)	Relinquished by: (signature)	1/2/1/ 1-31-2018	Relipquished by: (signature)				01	1		-		0-10-5:0	3-10-1.0	70-2018,01.31-3	Sample ID	Project Manager: Descick	Phone: (949) 716 - 0050	Address: 24411 Ridg	Client Northgare
Disposal @ \$2.00 each	Date / Time	Date / Time		Date / Time				4				and the second			1-31-208	Date Sampled	2		RIDGEROUTE	ENVIRONMENTS
ach	ne	ne		ne	***************************************			13:32	13:28	13:24	13:20	13:18	13:15	13:12	10:30	Time	This series	Fax: (949)	五130	NONTa
Return	Received b	Received b		Received b				<						So	AQ	Sample Type		-	Laguaa	
Return to client	Received by: (signature)	Received by: (signature)	(cinnet un)	Received by: (signature)				4	-				104SC	してなけ	<	Container		5500-912	Q HILLS	And to a common the company of the c
			-							×		X		×	CONTRACTOR	8260				
Pickup																8260 + OXY				
ð	Date / Time	Cale / Illia	3	Date / Time		44	4				_					8260 BTEX, OXY only	- m	0	77	
- Company	Ì		1	1		4	_						_			8270	Batch #:	Collector: 1	roje	Date:
	ne	ดิ	9	ne		44				_						8021 BTEX	#.	ctor	Č.	
						4	_			\times		X	<u> </u>	×	_	8015M (gasoline)	-	6	Project Name:	w
	5	Re	Chai			++	-						ļ			8015M (diesel)		San Ca	1)
	Turn around time:	ceive	n of a		\vdash	-	+	_		X	_	K	-	X		8015M Ext./Carbon Chain	-	3	300	1-31-2018
	ā	sea od go	Susta	To		++	+	_	_	×		r	_			6010/7000 Title 22 Metals	-	Brown	0	00
		od c	ydy s	Total # of	\vdash	++	+	_	_	X		×		X	_	6020 ICP-MS Metals	+	3	T	
		ondi	eals	of co		++	+-	-	_		-		-	X		8082 PCBs	-	C	3	and the second
		Seals Intact? Y/N/NA Received good condition/cold	Chain of Custody seals Y/N/NA	containers	\vdash	++	+	-	-	-	_	-	-			CCO MANAGEMENT	1	-	うかのみ	
		ă \$	Ä	N. S.				38	37	36	58	34	S	32	31	Laboratory ID #	EPF #	_ Client	1	Page:
coc 172290				Notes												Comments/Preservative	3.6	Client Project #: 20 47, 15		3 9 3
					H	++	+	1	7	7	7	V	7	7	N	Total # of containers		-	1	-

SunStar Laboratories 25712 Commercentre Drive, Lake Forest, (

Sample disposal Instructions: Dis	Relinquished by: (signature)		Relinquished by: (signature)	120114 Dava Brown	Rejnituished by (signature)	10-12-30 O	16-14-25.0	男/12 - 20,0	B-12-15.0	12-10-0	B-12-5.0	13-12-1,0	13-8-30:0	19-8-25-0		18-8-15-0	13-8-10.0	2-8-5,0	3-8-1.0	76-2018:01:31-A	Sample ID S.	<u> </u>	717 (Q D	24411 B	Client: Northaute G
Disposal @ \$2.00 each	Date / Time			12 1-31-18	Date / Time	W 10	0	0.5	0	10		[0]	0	0"	O	0	0	0	***************************************	ob.	Date	A		as Pourse	Charge Mark
						08:37	08:33	08:28	52:30	08:20	5:16	01:80	7:54	1:50	7:44	07:39	07:33	07:28	07:25	07:01	Time		ľС	 	<u>d</u>
Return to client	Received by		Received by		Received by	4													So	Αø	Sample Type		7) Lacuna	
o client	Received by: (signature)		Received by: (signature)		Received by: (signature)	<				-	25+ A	V+65	¢	42.			-4-	V+3C	V+95	<	Container Type		~ 1	NA HII	
								×		X		×			X	Z	X		X		8260	'	,	5	
Pickup																_					8260 + OXY				
i i	Date / Time		Date / Time		Date / Time		<u> </u>		ļ.,	_						Ļ,		_	Ļ		8260 BTEX, OXY only	D.	0	ים־	O
		ì) Tim		1	_	<u> </u>			\times	_	\succeq		_	×	X	X	_		<u></u>	8270 8021 BTEX	Doron #	Collector	Project Name:	Date:
	ि		6		លី		<u> </u>	ļ	_		-	-	-	_	_	_	-	\vdash		_	8015M (gasoline)	•	S S	2	
	L	1		<u>_</u>		-	<u> </u>	<u> </u>			-	_			-	-	-	_	-	-	8015M (diesel)		Ş	ame	-31-2018
	ä	Rec		hain			 -	X	\vdash	_	-			-	X	×	×	-	×	-	8015M Ext./Carbon Chain		S S		3
	Turn around time:	eive		og C			-				-	X	-	-	<u> </u>	Ľ.	G	_		-	6010/7000 Title 22 Metals			35	Ö
	đ	go	Seal	otsu	Tota		┝		\vdash	×			_			-	^		-	┢╾	6020 ICP-MS Metals		Š.	م	op
	Ħ e:	Received good condition/cold	Seals intact? Y/N/NA	Chain of Custody seals Y/N/NA	Total # of containers		_	×		×		×	-		$\overline{\times}$	┢━	X		X	 	8082 0085		325		
		nditio	23	als Y	80			-				×	_			┢	_	_	×	_	१८८ ००%				
		m/os	ZZ.	Ž	aine		<u> </u>						-			 									
		Ē	<u>></u>	,		_				********		Š	ø	97	2	05	ō.	20	0	0	Laboratory ID #	ŋ	Ω		מה ו
499] 	<u> </u>			8	2	14	13	2	=	10	9	8	7	,,	Ľ	A	5	(7		Laporatory ID #	<u> </u>	ent		Page;
coc 172278					Notes																Comments/Preservative		Client Project #: 204 7-15		0° 3
						J	~	7	7	7	7	7	-4	J	7	7	J	7	J	N	Total # of containers		į	i	ł
	L	Transpignación	·				L	Ĺ	لببا			L	L	L	<u> </u>	L	L	L		1, -					

SunStar Laboratories 25712 Commercentre Drive, Lake Forest,

Sample disposal Instructions: Disp		Relinguished by: (signature)		Relinquished by: (signature)		linquished by:	1000	8-15-25,0	- 5	8-15-15:0	0.01-51-6	3		<u>.</u>	- 1	25.0	B-4-20.0	B-4-15,0	0-4-100	1	ライエーで	Sample ID		Project Manager: Deric	(6hb)	3: 2441	client Northeate Environmenta
Disposal @ \$2.00 each		Date / Time		Date / Time	2 1-31-18	Date / Time	←			10	0)	0	6	5	0.1	_ _)	0	ල්	109	-31-18-10.	L		Derrick Willis	OSO Fax:	Ridge ROUTE #130	d cran Mexto
					47.		3	20	00;	0:53	10:52	84:0	54:0	10:25	60:01	20%	0,00	55.50	09:50	176	07:70				6		X
Return to client		Received b		Received b		Received b	*						8	Αø		-					ઇ		Sample			Lasuna H	
o client		Received by: (signature)		Received by: (signature)		Received by: (signature)	<					V+SC	13+N	V+P5	_					VISC	V 102	1717	Container		2500-911.	Y.I.S	
								T	×	生	×		×	Z.			×	X	×		×		3260	•	• / •		•
Pickup																		L		L	L	-	3260 + OXY				
Ę.		Date	-	Date		Date										L	L	L	1	_	L		3260 BTEX, OXY only		_		
		Date / Time		Date / Time		Date / Time	Ĺ		×	1	X		×		L	L	×	L	×	1	Y		3270	Batch #:	Collector:	जू जू	Date:
		me		ne		ne	L	_	1	1	_	Ļ	_	L	L	_	1	Ļ	Ļ	_	Ļ		3021 BTEX	**	Š	ğ	<u> </u>
	L		<u> </u>		L		\downarrow	1	1	4	×]_	×	M	1	Ļ	×	P	4	1	ľ		B015M (gasoline)		ŀ	Project Name	1-31-2018
	Ium		20		Chai		-	_	_	_	<u> </u>	<u> </u>	Ļ	Ļ	_	 	1		1	_	Ļ		3015M (diesel)		David	Ϊ΄	-
	aro		Ceive		nof		-	+	₽	4	<u> </u>	4	r	×	1	 	ľ	Y	╀	1	ľ		3015M Ext./Carbon Chain		2	300	2
	5		င်	Sea	Cust	ō	<u> </u>	+	+	-	+	+	╀	 	+	╀	╀	+	¥	+	¥		6010/7000 Title 22 Metals		Ø.		90
	Turn around time:		Ö	S	dys	#	-	╬	+	_	+	+	卡	╀	╬	+	$\frac{1}{2}$	+	+	+	Ł	7	6020 ICP-MS Metals		Brows		
	Ü		ondit	act?	eals	8	<u>`</u> -	+	-	4	¥	+	k	╁	╫	+	+	╁	╀	+	ť	7	8081 60 fs		2	123	1
			Received good condition/cold	Seals intact? Y/N/NA	Chain of Custody seals Y/N/NA	Total # of containers	-	┿	╬	+	+	╁	+	╁	╁	╁	╄	+	+	╁	ť	\dashv	0001 W.12		1-	うから	
			8	5	5		}	1	1	4	_	_	1	1	_	1	4	_	+	_	_	4					
						ζ	3 7	2 3	3 8	1 15	18	125	14	13	27	7	1/2	上	; ē	1	. 8	٦	Laboratory ID#	EDF #	lien		Page:
coc 172279				e de la constante de la consta	-	- VOICES	Nictor																Comments/Preservative	*:	Client Project #: 2047.15		2 0 2
	-						-	+	7		ار.	+	+	+	٦	+	+	+	1	+	+		Total # of containers	-	1		1
	L		********			-	1	71			1	T	4 P	<u>1</u>	7	1	<u>a)</u>	1	1	1	١'	<u> </u>	Liver & Or Containers	1			

SunStar Laboratories 25712 Commercentre Drive, Lake Forest

Date Time Sample Container Co	Sample disposal Instructions: Dis		Relinquished by: (signature)		Relinguished by (signature)	1/2/1/ 1-31-2018	Relipquished by: (signature)					5		100	١	۱ (5-10-510	- 1	70-2018:01.31-B	Sample ID	Project Manager: Derick	Phone: (949) 716 - 60	Address: 24411 Ridge	Client Northgare
190 LogyAno H.	posal @ \$2.00 eac		Date / Tim	(Date / Time	o Ā	Date / Time					<								Date Sampled	2	Q	Corre	Charcou monta
Date / Time Trum around time: COC 17229	¥ -		O .		9		9			10 10		3 27	3.28	3.24	2 0 0		2:5	12	0.30	Time	15		0514	on Tal
Date: 1 20 4	Return to		Received by		Received by		Received by					4					******	\$0	Æ æ	Sample Type		7000	, hasuno	
Date / Time Date / Time Turn around time: Total # Fair Lax Comments/Preservative Coc 17229 Coc 172	client	7	(signature)		(sionature)		(signature)							1			أسلا	となり	<	Container.		5500		
Date: 1 2 1 2 0 1 6 Page: Collector: David & Fairfax Collector: David & Fairfax Collector: David & Fairfax Batch #:	•													X		X		X						
Date: 173174X Collector: Dava Grown Client Project # 2047.15 Batch #: Batch #: Both #: Bot	Pick											_	_	_	_	_	_							
Name: 3rd d Fairfax Name: 3rd d Fairfax 8015M (gasoline) 8015M (clessel) X X 8015M Ext./Carbon Chain 8020 ICP-MS Metals 97 97 97 97 97 97 97 97 97 9	- 5		Date	-	Date		Date		_		_	4	_	4	4	_	_			***************************************	m	0	70	<u></u>
Name: 3rd d Fairfax Name: 3rd d Fairfax 8015M (gasoline) 8015M (clessel) X X 8015M Ext./Carbon Chain 8020 ICP-MS Metals 97 97 97 97 97 97 97 97 97 9			/Tim		3) Tim	-++	-	<u> </u>	\vdash	_	\dashv	\dashv	-	4	_		-		act	òlle	ži Je	ale:
COC 172291			ัด		ซี		ã		-		\vdash	-	-	_			_	_			#	S C C	of N	
COC 172291		Ļ								 - -	\vdash		-	$\stackrel{\sim}{\rightarrow}$	-	띡		×	-			O	ame	w
COC 172291		E .		Re		ha.			-	$\vdash\vdash$	\vdash	\dashv	-	1	\dashv	_		_		***		3		3
Comments/Preservative Fairfax Client Project #. 2047,15 EDF #. EDF #. Comments/Preservative 31 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		arou	٠	œive		ō.					Н	┰	-	3	-	$\widehat{\prec}$	-	$\frac{}{\times}$					3	0
Cilent Project # 2-0-17, 15 EDF #: EDF #: Comments/Preservative 31 31 32 37 38 38 37 Notes Is YININA dition/cold COC 172290		ind i		go Go	Sea	ojsuć	ď			┝╌┼╌	\vdash	\dashv	\dashv	4	\dashv	\exists	-				Ì	3	٥	90
Cilent Project # 2-0-17, 15 EDF #: EDF #: Comments/Preservative 31 31 32 37 38 38 37 Notes Is YININA dition/cold COC 172290		ime		odc	S D	dy s	# C		-	\vdash	H	-		ᅿ	\dashv	$\overline{\mathbf{x}}$	-	×			1	5	ת	
Client Project #. 2-0 47, 15 EDF #: Comments/Preservative 31 St Notes Notes				ondit :	3	eals	S CO		+	╂╾╂╼	H	\dashv	\dashv	-	\dashv	-	-	Z		WITH THE RESERVE THE PROPERTY OF THE PROPERTY		-		
Client Project #. 2-0 47, 15 EDF #: Comments/Preservative 31 St Notes Notes				on/c	ž	Ň	tain		_	$\vdash \vdash$	H	-	\dashv	ᅱ	\dashv	-		-	-				ta	
comments/Preservative Notes				8	5	\$	S			-		_	_	4	_						m		í	-
comments/Preservative Notes												%	57	36	\$\$	7,	\mathcal{Z}	32	31	Laboratory ID#	P	lien		age
Total # of containers	coc 172290						Notes													Comments/Preservative	***		and a successful and a	
	e de la compansión de l									Ш		7	7	7	~ J	V	٧	<u> </u>	N	Total # of containers				

Printed: 2/1/2018 4:27:30PM

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh Project: 3rd & Fairfax Project Number: 2047.15

Report To:

Northgate Environmental Management -- Laguna Hills

Derrick Willis

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653

Date Due: 02/08/18 17:00 (5 day TAT)

Received By: Sunny Lounethone Date Received: 01/31/18 16:25
Logged In By: Brian Charon Date Logged In: 02/01/18 07:18

Due

TAT

Samples Received at: 2.8°C

Custody Seals No Received On Ice Yes

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir Yes

Analysis

T180381-01 TB-2018.01.31 Pacific Time (US & [NO ANALYSES]	-A [Water] Sampled 01/	31/18 07	7:01 (GMT-08:00) HOLD
T180381-02 B- 8-1.0 [Soil] (US &	Sampled 01/31/18 07:25	(GMT-0	08:00) Pacific Time
6010 Title 22	02/08/18 15:00	5	07/30/18 07:25
8015 Carbon Chain	02/08/18 15:00	5	02/14/18 07:25
8081 Pesticides	02/08/18 15:00	5	02/14/18 07:25
8082 PCB	02/08/18 15:00	5	02/14/18 07:25
8260 5035	02/08/18 15:00	5	02/14/18 07:25
8270C	02/08/18 15:00	5	02/14/18 07:25

Expires

Comments

T180381-03 B- 8-5.0 [Soil] Sampled 01/31/18 07:28 (GMT-08:00) Pacific Time HOLD (US &

INIO ANIAI MODO

T180381-04 B- 8-10.0 [S (US &	oil] Sampled 01/31/18 07:33	3 (GMT-	·08:00) Pacific Time
6010 Title 22	02/08/18 15:00	5	07/30/18 07:33
8015 Carbon Chain	02/08/18 15:00	5	02/14/18 07:33
8082 PCB	02/08/18 15:00	5	02/14/18 07:33
8260 5035	02/08/18 15:00	5	02/14/18 07:33
8270C	02/08/18 15:00	5	02/14/18 07:33

Printed: 2/1/2018 4:27:30PM

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT **Expires** Comments T180381-05 B- 8-15.0 [Soil] Sampled 01/31/18 07:39 (GMT-08:00) Pacific Time (US & 02/08/18 15:00 5 8015 Carbon Chain 02/14/18 07:39 8260 5035 5 02/08/18 15:00 02/14/18 07:39 8270C 02/08/18 15:00 5 02/14/18 07:39 T180381-06 B- 8-20.0 [Soil] Sampled 01/31/18 07:44 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/30/18 07:44 8015 Carbon Chain 02/08/18 15:00 5 02/14/18 07:44 8082 PCB 02/08/18 15:00 5 02/14/18 07:44 8260 5035 02/08/18 15:00 5 02/14/18 07:44 8270C 02/08/18 15:00 5 02/14/18 07:44

T180381-07 B- 8-25.0 [Soil] Sampled 01/31/18 07:50 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-08 B- 8-30.0 [Soil] Sampled 01/31/18 07:54 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-09 B- 12-1.0 [Soil] Sampled 01/31/18 08:10 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/30/18 08:10	
8015 Carbon Chain	02/08/18 15:00	5	02/14/18 08:10	
8081 Pesticides	02/08/18 15:00	5	02/14/18 08:10	
8082 PCB	02/08/18 15:00	5	02/14/18 08:10	
8260 5035	02/08/18 15:00	5	02/14/18 08:10	
8270C	02/08/18 15:00	5	02/14/18 08:10	

T180381-10 B- 12-5.0 [Soil] Sampled 01/31/18 08:16 (GMT-08:00) Pacific Time HOLD (US &

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180381-11 B- 12-10.0 [Soil (US &] Sampled 01/31/18 (08:20 (GMT	Γ-08:00) Pacific Tim	ne
6010 Title 22	02/08/18 15:00	5	07/30/18 08:20	
8015 Carbon Chain	02/08/18 15:00	5	02/14/18 08:20	
8082 PCB	02/08/18 15:00	5	02/14/18 08:20	
8260 5035	02/08/18 15:00	5	02/14/18 08:20	
8270C	02/08/18 15:00	5	02/14/18 08:20	

T180381-12 B- 12-15.0 [Soil] Sampled 01/31/18 08:25 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-13 B- 12-20.0 [Soil] Sampled 01/31/18 08:28 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/30/18 08:28 8015 Carbon Chain 02/08/18 15:00 5 02/14/18 08:28 8082 PCB 02/08/18 15:00 5 02/14/18 08:28 8260 5035 02/08/18 15:00 5 02/14/18 08:28 8270C 02/08/18 15:00 5 02/14/18 08:28

T180381-14 B- 12-25.0 [Soil] Sampled 01/31/18 08:33 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-15 B- 12-30.0 [Soil] Sampled 01/31/18 08:37 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-16 B- 4-1.0 [Soil] Sampled 01/31/18 09:40 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/30/18 09:40 8015 CC (D/MO) 5 02/08/18 15:00 02/14/18 09:40 8015 m 5035-GRO 5 02/08/18 15:00 02/14/18 09:40 8081 Pesticides 02/08/18 15:00 5 02/14/18 09:40 8082 PCB 02/08/18 15:00 5 02/14/18 09:40 8260 5035 02/08/18 15:00 5 02/14/18 09:40 8270C 02/08/18 15:00 5 02/14/18 09:40

T180381-17 B- 4-5.0 [Soil] Sampled 01/31/18 09:46 (GMT-08:00) Pacific Time HOLD (US &

Printed: 2/1/2018 4:27:30PM

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180381-18 B- 4-10.0 [Set US &	oil] Sampled 01/31/18 09	9:50 (GMT	-08:00) Pacific Tin	ne
6010 Title 22	02/08/18 15:00	5	07/30/18 09:50	
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 09:50	
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 09:50	
8082 PCB	02/08/18 15:00	5	02/14/18 09:50	
8260 5035	02/08/18 15:00	5	02/14/18 09:50	
8270C	02/08/18 15:00	5	02/14/18 09:50	
T180381-19 B- 4-15.0 [See (US &	oil] Sampled 01/31/18 09	9:55 (GMT	'-08:00) Pacific Tin	ne
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 09:55	
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 09:55	
8260 5035	02/08/18 15:00	5	02/14/18 09:55	
T180381-20 B- 4-20.0 [Set (US &	oil] Sampled 01/31/18 10):00 (GMT	-08:00) Pacific Tin	ne
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 10:00	
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 10:00	
8082 PCB	02/08/18 15:00	5	02/14/18 10:00	
8260 5035	02/08/18 15:00	5	02/14/18 10:00	
8270C	02/08/18 15:00	5	02/14/18 10:00	
T180381-21 B- 4-25.0 [Se (US &	oil] Sampled 01/31/18 10):05 (GMT	-08:00) Pacific Tin	ne HOLD
[NO ANALYSES]				
T180381-22 B- 4-30.0 [Set (US &	oil] Sampled 01/31/18 10):09 (GMT	-08:00) Pacific Tin	ne HOLD
[NO ANALYSES]				
T180381-23 B-4 [Water] &	Sampled 01/31/18 10:2	5 (GMT-08	3:00) Pacific Time ((US
8015 CC (D/MO)	02/08/18 15:00	5	02/07/18 10:25	
8015 m Gas Purge	02/08/18 15:00	5	02/14/18 10:25	
8260	02/08/18 15:00	5	02/14/18 10:25	

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis	Due	TAT	Expires	Comments
T180381-24 B- 15-1.0 [S	Soil] Sampled 01/31/18 10	0:45 (GMT	-08:00) Pacific Tim	ne
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 10:45	
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 10:45	
8081 Pesticides	02/08/18 15:00	5	02/14/18 10:45	
8082 PCB	02/08/18 15:00	5	02/14/18 10:45	
8260 5035	02/08/18 15:00	5	02/14/18 10:45	
8270C	02/08/18 15:00	5	02/14/18 10:45	
T180381-25 B- 15-5.0 [S (US & [NO ANALYSES]	Soil] Sampled 01/31/18 10	0:48 (GMT	-08:00) Pacific Tim	ne HOLD
T180381-26 B- 15-10.0 (US &	[Soil] Sampled 01/31/18	10:52 (GM		me
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 10:52	
8015 m 5035-GRO	02/09/19 15:00	5	02/14/19 10 52	
8013 III 3033-GRO	02/08/18 15:00	5	02/14/18 10:52	

02/14/18 10:52

02/14/18 10:52

02/14/18 10:52

5

5

5

T180381-27 B- 15-15.0 [Soil] Sampled 01/31/18 10:55 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

8082 PCB

8260 5035

8270C

T180381-28 B- 15-20.0 [Soil] Sampled 01/31/18 11:00 (GMT-08:00) Pacific Time (US & 8015 CC (D/MO) 02/08/18 15:00 5 02/14/18 11:00 8015 m 5035-GRO 02/08/18 15:00 5 02/14/18 11:00

02/08/18 15:00

02/08/18 15:00

02/08/18 15:00

3270C	02/08/18 15:00	5	02/14/18 11:00
3260 5035	02/08/18 15:00	5	02/14/18 11:00
8082 PCB	02/08/18 15:00	5	02/14/18 11:00
5015 III 5055-GKO	02/06/16 13.00	3	02/14/16 11.00

T180381-29 B- 15-25.0 [Soil] Sampled 01/31/18 11:09 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-30 B- 15-30.0 [Soil] Sampled 01/31/18 11:15 (GMT-08:00) Pacific Time HOLD (US &

Printed: 2/1/2018 4:27:30PM

WORK ORDER

T180381

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Analysis Due TAT **Expires** Comments T180381-31 TB-2018.01.31-B [Water] Sampled 01/31/18 10:30 (GMT-08:00) HOLD Pacific Time (US & [NO ANALYSES] T180381-32 B- 10-1.0 [Soil] Sampled 01/31/18 13:12 (GMT-08:00) Pacific Time (US & 6010 Title 22 02/08/18 15:00 5 07/30/18 13:12 8015 CC (D/MO) 02/08/18 15:00 5 02/14/18 13:12 8015 m 5035-GRO 02/08/18 15:00 5 02/14/18 13:12 8081 Pesticides 02/08/18 15:00 5 02/14/18 13:12 8082 PCB 02/08/18 15:00 5 02/14/18 13:12 8260 5035 02/08/18 15:00 5 02/14/18 13:12

T180381-33 B- 10-5.0 [Soil] Sampled 01/31/18 13:15 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-34 B- 10-10.0 [Soil] Sampled 01/31/18 13:18 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/30/18 13:18
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 13:18
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 13:18
8082 PCB	02/08/18 15:00	5	02/14/18 13:18
8260 5035	02/08/18 15:00	5	02/14/18 13:18

T180381-35 B- 10-15.0 [Soil] Sampled 01/31/18 13:20 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180381-36 B- 10-20.0 [Soil] Sampled 01/31/18 13:24 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/30/18 13:24
8015 CC (D/MO)	02/08/18 15:00	5	02/14/18 13:24
8015 m 5035-GRO	02/08/18 15:00	5	02/14/18 13:24
8082 PCB	02/08/18 15:00	5	02/14/18 13:24
8260 5035	02/08/18 15:00	5	02/14/18 13:24

T180381-37 B- 10-25.0 [Soil] Sampled 01/31/18 13:28 (GMT-08:00) Pacific Time HOLD (US &

WORK ORDER

T180381

Client:	Northgate Environmental Management Laguna	Project Manager:	Rose Fasheh

Project: 3rd & Fairfax **Project Number:** 2047.15

Analysis Due TAT **Expires** Comments

T180381-38 B- 10-30.0 [Soil] Sampled 01/31/18 13:32 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

Analysis groups included in this work order

6010 Title 22

subgroup 6010B T22 7470/71 Hg

Reviewed By Date

08 February 2018

Derrick Willis
Northgate Environmental Management -- Laguna Hills
24411 Ridge Route Drive, Suite 130
Laguna Hills, CA 92653

RE: 3rd & Fairfax

Enclosed are the results of analyses for samples received by the laboratory on 01/31/18 16:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Fasheh

Project Manager

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 16:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-7-1.0	T180384-02	Soil	01/30/18 14:25	01/31/18 16:25
B-7-10.0	T180384-04	Soil	01/30/18 14:53	01/31/18 16:25
B-7-20.0	T180384-06	Soil	01/30/18 14:59	01/31/18 16:25
B-9-1.0	T180384-09	Soil	01/30/18 16:30	01/31/18 16:25
B-9-10.0	T180384-11	Soil	01/30/18 16:43	01/31/18 16:25
B-9-20.0	T180384-13	Soil	01/30/18 16:57	01/31/18 16:25

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

DETECTIONS SUMMARY

Sample ID:	B-7-1.0	Labora	tory ID:	T180384-02		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C29-C40 (M	ORO)	67	10	mg/kg	EPA 8015B	
Barium		75	1.0	mg/kg	EPA 6010B	
Chromium		22	2.0	mg/kg	EPA 6010B	
Cobalt		12	2.0	mg/kg	EPA 6010B	
Copper		8.0	1.0	mg/kg	EPA 6010B	
Nickel		15	2.0	mg/kg	EPA 6010B	
Vanadium		42	5.0	mg/kg	EPA 6010B	
Zinc		45	1.0	mg/kg	EPA 6010B	
Sample ID:	B-7-10.0	Labora	tory ID:	T180384-04		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		37	1.0	mg/kg	EPA 6010B	
Chromium		15	2.0	mg/kg	EPA 6010B	
Cobalt		5.5	2.0	mg/kg	EPA 6010B	
Copper		5.0	1.0	mg/kg	EPA 6010B	
Nickel		12	2.0	mg/kg	EPA 6010B	
Vanadium		20	5.0	mg/kg	EPA 6010B	
Zinc		17	1.0	mg/kg	EPA 6010B	
Sample ID:	B-7-20.0	Labora	tory ID:	T180384-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		38	1.0	mg/kg	EPA 6010B	
Chromium		12	2.0	mg/kg	EPA 6010B	
Cobalt		5.0	2.0	mg/kg	EPA 6010B	
Copper		5.1	1.0	mg/kg	EPA 6010B	
Nickel		13	2.0	mg/kg	EPA 6010B	
Vanadium		14	5.0	mg/kg	EPA 6010B	
Zinc		11	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

Sample ID:	B-9-1.0	Labora	tory ID:	T180384-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C29-C40 (M	MORO)	110	10	mg/kg	EPA 8015B	
Barium		83	1.0	mg/kg	EPA 6010B	
Chromium		6.5	2.0	mg/kg	EPA 6010B	
Cobalt		6.2	2.0	mg/kg	EPA 6010B	
Copper		16	1.0	mg/kg	EPA 6010B	
Nickel		6.1	2.0	mg/kg	EPA 6010B	
Vanadium		16	5.0	mg/kg	EPA 6010B	
Zinc		38	1.0	mg/kg	EPA 6010B	
Sample ID:	B-9-10.0	Labora	tory ID:	T180384-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		55	1.0	mg/kg	EPA 6010B	
Chromium		19	2.0	mg/kg	EPA 6010B	
Cobalt		8.3	2.0	mg/kg	EPA 6010B	
Copper		11	1.0	mg/kg	EPA 6010B	
Nickel		18	2.0	mg/kg	EPA 6010B	
Vanadium		23	5.0	mg/kg	EPA 6010B	
Zinc		33	1.0	mg/kg	EPA 6010B	
Sample ID:	B-9-20.0	Labora	tory ID:	T180384-13		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (D	DRO)	31	10	mg/kg	EPA 8015B	
C29-C40 (M	MORO)	20	10	mg/kg	EPA 8015B	
Barium		79	0.91	mg/kg	EPA 6010B	
Cadmium		2.6	1.8	mg/kg	EPA 6010B	
Chromium		14	1.8	mg/kg	EPA 6010B	
Cobalt		11	1.8	mg/kg	EPA 6010B	
		8.6	0.91	mg/kg	EPA 6010B	
Copper						
Copper Nickel		16	1.8	mg/kg	EPA 6010B	
		16 19	1.8 4.5	mg/kg mg/kg	EPA 6010B EPA 6010B	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons b	y 8015B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	67	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		89.7 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	75	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	22	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	8.0	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	15	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	42	5.0	"	"	"	"	"	"	
Zinc	45	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax
Project Number: 2047.15

Project Manager: Derrick Willis

Reported: 02/08/18 16:57

B-7-1.0

B-/-1.0 T180384-02 (Soil)

	D 1:	Reporting	**	D.1:	D . 1	ъ .		36.4.4	3.7
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA Mo	ethod 8081A								
alpha-BHC	ND	50	ug/kg	10	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	50	"	"	"	"	"	"	R-07
beta-BHC	ND	50	"	"	"	"	"	"	R-07
delta-BHC	ND	50	"	"	"	"	"	"	R-07
Heptachlor	ND	50	"	"	"	"	"	"	R-07
Aldrin	ND	50	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	50	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	50	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	50	"	"	"	"	"	"	R-07
Endosulfan I	ND	50	"	"	"	"	"	"	R-07
4,4´-DDE	ND	50	"	"	"	"	"	"	R-07
Dieldrin	ND	50	"	"	"	"	"	"	
Endrin	ND	50	"	"	"	"	"	"	R-07
4,4´-DDD	ND	50	"	"	"	"	"	"	R-07
Endosulfan II	ND	50	"	"	"	"	"	"	R-07
4,4′-DDT	ND	50	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	50	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	50	"	"	"	"	"	"	R-07
Methoxychlor	ND	100	"	"	"	"	"	"	R-07
Endrin ketone	ND	50	"	"	"	"	"	"	R-07
Toxaphene	ND	2000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		106 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		111 %	35-	140	"	"	"	"	
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	thod 8082								
Surrogate: Tetrachloro-meta-xylene		74.6 %	35-	140	8020133	02/01/18	02/02/18	EPA 8082	
Surrogate: Decachlorobiphenyl		59.0 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15

Project: 3rd & Fairfax

Reported: Project Manager: Derrick Willis 02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,2-Dichloropropane	ND	1.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	"	"	"	"	
Trichloroethene	ND	1.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.9	"	"	"	"	"	"	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Surrogate: Toluene-d8		103 %	85.5-	-116	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Surrogate: 4-Bromofluorobenzene		91.2 %	81.2-	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	95.7-	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
4-Bromophenyl phenyl ether	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	,,	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-1.0 T180384-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
4-Nitroaniline	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		67.1 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		77.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		84.5 %	21.3-	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.5 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		75.4 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		97.6 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

B-7-10.0 T180384-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		96.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	37	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	15	2.0	"	"	"	"	"	"	
Cobalt	5.5	2.0	"	"	"	"	"	"	
Copper	5.0	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	12	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	17	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 16:57

B-7-10.0 T180384-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		54.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		53.3 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.8	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.8	"	"	"	"	"	"	
Bromodichloromethane	ND	1.8	"	"	"	"	"	"	
Bromoform	ND	1.8	"	"	"	"	"	"	
Bromomethane	ND	1.8	"	"	"	"	"	"	
n-Butylbenzene	ND	1.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.8	"	"	"	"	"	"	
Chloroethane	ND	1.8	"	"	"	"	"	"	
Chloroform	ND	1.8	"	"	"	"	"	"	
Chloromethane	ND	1.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.8	"	"	"	"	"	"	
Dibromochloromethane	ND	1.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.8	"	"	"	"	"	"	
Dibromomethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-10.0 T180384-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,4-Dichlorobenzene	ND	1.8	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.8	"	"	"	"	"	"	
Isopropylbenzene	ND	1.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.8	"	"	"	"	"	"	
Methylene chloride	ND	1.8	"	"	"	"	"	"	
Naphthalene	ND	1.8	"	"	"	"	"	"	
n-Propylbenzene	ND	1.8	"	"	"	"	"	"	
Styrene	ND	1.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.8	"	"	"	"	"	"	
Tetrachloroethene	ND	1.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.8	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	1.8	"	"	,,	,,	"	"	
Trichloroethene	ND	1.8	"	"	,,	,,	"	"	
Trichlorofluoromethane	ND ND	1.8	"	"	,,	"	"	"	
1,2,3-Trichloropropane	ND ND	1.8	"	"	,,	,,	,,	,,	
1,3,5-Trimethylbenzene	ND ND	1.8	"	"	,,	,,	,,	"	
1,5,5-11imethylbenzene	ND	1.0							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-10.0 T180384-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.8	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	1.8	"	"	"	"	"	"	
Benzene	ND	1.8	"	"	"	"	"	"	
Toluene	ND	1.8	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	ND	3.6	"	"	"	"	"	"	
o-Xylene	ND	1.8	"	"	"	"	"	"	
Surrogate: Toluene-d8		108 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Method

02/08/18 16:57

Notes

B-7-10.0 T180384-04 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

Reporting

Limit

Result

ND

ND

ND

300 1000

300

	1	SunStar L	aboratorie	s, Inc.				
Semivolatile Organic Compounds by 1	EPA Method 8270C							
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C
Benzo (a) pyrene	ND	300	"	"	"	"	"	"
Benzyl alcohol	ND	300	"	"	"	"	"	"
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"
-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"
-Chloroaniline	ND	300	"	"	"	"	"	"
2-Chloronaphthalene	ND	300	"	"	"	"	"	"
-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"
Chrysene	ND	300	"	"	"	"	"	"
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"
Dibenzofuran	ND	300	"	"	"	"	"	"
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"
,2-Dichlorobenzene	ND	300	"	"	"	"	"	"
,3-Dichlorobenzene	ND	300	"	"	"	"	"	"
,4-Dichlorophenol	ND	1000	"	"	"	"	"	"
Diethyl phthalate	ND	300	"	"	"	"	"	"
,4-Dimethylphenol	ND	1000	"	"	"	"	"	"
Dimethyl phthalate	ND	300	"	"	"	"	"	"
,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"
,4-Dinitrophenol	ND	1000	"	"	"	"	"	"
6-Dinitrotoluene	ND	1000	"	"	"	"	"	"
pi-n-octyl phthalate	ND	300	"	"	"	"	"	"
luoranthene	ND	300	"	"	"	"	"	"
uorene	ND	300	"	"	"	"	"	"
lexachlorobenzene	ND	1500	"	"	"	"	"	"

SunStar Laboratories, Inc.

Hexachlorobutadiene

Hexachloroethane

Hexachlorocyclopentadiene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Analyte

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

Method

02/08/18 16:57

Notes

B-7-10.0 T180384-04 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

Reporting

Limit

Result

		SunStar L	aboratorie	s, Inc.				
Semivolatile Organic Compounds by	EPA Method 8270C							
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/05/18	EPA 8270C
Isophorone	ND	300	"	"	"	"	"	"
2-Methylphenol	ND	1000	"	"	"	"	"	"
4-Methylphenol	ND	1000	"	"	"	"	"	"
Naphthalene	ND	300	"	"	"	"	"	"
2-Nitroaniline	ND	300	"	"	"	"	"	"
3-Nitroaniline	ND	300	"	"	"	"	"	"
4-Nitroaniline	ND	300	"	"	"	"	"	"
Nitrobenzene	ND	1000	"	"	"	"	"	"
2-Nitrophenol	ND	1000	"	"	"	"	"	"
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"
Phenanthrene	ND	300	"	"	"	"	"	"
Azobenzene	ND	300	"	"	"	"	"	"
Pyridine	ND	300	"	"	"	"	"	"
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"
Surrogate: 2-Fluorophenol		52.5 %	15-12	21	"	"	"	"
Surrogate: Phenol-d6		60.3 %	24-113		"	"	"	"
Surrogate: Nitrobenzene-d5		74.8 %	21.3-1	19	"	"	"	"
Surrogate: 2-Fluorobiphenyl		78.2 %	32.4-1	02	"	"	"	"

79.0 %

115 %

18.1-105

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

 $Surrogate:\ 2,4,6\hbox{-}Tribromophenol$

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 8	015B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.9 %	65-1	!35	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	38	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	12	2.0	"	"	"	"	"	"	
Cobalt	5.0	2.0	"	"	"	"	"	"	
Copper	5.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	13	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"	"	"	
Zinc	11	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		58.0 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		59.0 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	2.9	"	"	"	"	"	"	
Bromodichloromethane	ND	2.9	"	"	"	"	"	"	
Bromoform	ND	2.9	"	"	"	"	"	"	
Bromomethane	ND	2.9	"	"	"	"	"	"	
n-Butylbenzene	ND	2.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.9	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.9	"	"	"	"	"	"	
Chlorobenzene	ND	2.9	"	"	"	"	"	"	
Chloroethane	ND	2.9	"	"	"	"	"	"	
Chloroform	ND	2.9	"	"	"	"	"	"	
Chloromethane	ND	2.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.9	"	"	"	"	"	"	
Dibromochloromethane	ND	2.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.9	"	"	"	"	"	"	
Dibromomethane	ND	2.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,4-Dichlorobenzene	ND	2.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	2.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.9	"	"	"	"	"	"	
Isopropylbenzene	ND	2.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.9	"	"	"	"	"	"	
Methylene chloride	ND	2.9	"	"	"	"	"	"	
Naphthalene	ND	2.9	"	"	"	"	"	"	
n-Propylbenzene	ND	2.9	"	"	"	"	"	"	
Styrene	ND	2.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.9	"	"	"	"	"	"	
Tetrachloroethene	ND	2.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.9	"	"	"	"	"	"	
Trichloroethene	ND	2.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.9	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Volatile Organic Compounds by EPA M	Method 8260B								
1,2,4-Trimethylbenzene	ND	2.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	2.9	"	"	"	"	"	"	
Benzene	ND	2.9	"	"	"	"	"	"	
Toluene	ND	2.9	"	"	"	"	"	"	
Ethylbenzene	ND	2.9	"	"	"	"	"	"	
m,p-Xylene	ND	5.8	"	"	"	"	"	"	
o-Xylene	ND	2.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		102 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by E	PA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					

		Sunstar L	aboratorie	s, inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-7-20.0 T180384-06 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		71.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		71.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		92.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		87.7 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		90.9 %	18.1	-105	"	"	"	"	

106 %

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbon	s by 8015B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	110	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.5 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	83	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.5	2.0	"	"	"	"	"	"	
Cobalt	6.2	2.0	"	"	"	"	"	"	
Copper	16	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.1	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"	"	"	
Zinc	38	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/74	71								
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Organochlorine Pesticides by EPA M	ethod 8081A								
alpha-BHC	ND	500	ug/kg	100	8020134	02/01/18	02/06/18	EPA 8081A	R-07
gamma-BHC (Lindane)	ND	500	"	"	"	"	"	"	R-07
beta-BHC	ND	500	"	"	"	"	"	"	R-07
delta-BHC	ND	500	"	"	"	"	"	"	R-07
Heptachlor	ND	500	"	"	"	"	"	"	R-07
Aldrin	ND	500	"	"	"	"	"	"	R-07
Heptachlor epoxide	ND	500	"	"	"	"	"	"	R-07
gamma-Chlordane	ND	500	"	"	"	"	"	"	R-07
alpha-Chlordane	ND	500	"	"	"	"	"	"	R-07
Endosulfan I	ND	500	"	"	"	"	"	"	R-07
4,4´-DDE	ND	500	"	"	"	"	"	"	R-07
Dieldrin	ND	500	"	"	"	"	"	"	R-07
Endrin	ND	500	"	"	"	"	"	"	R-07
4,4'-DDD	ND	500	"	"	"	"	"	"	R-07
Endosulfan II	ND	500	"	"	"	"	"	"	R-07
4,4´-DDT	ND	500	"	"	"	"	"	"	R-07
Endrin aldehyde	ND	500	"	"	"	"	"	"	R-07
Endosulfan sulfate	ND	500	"	"	"	"	"	"	R-07
Methoxychlor	ND	1000	"	"	"	"	"	"	R-07
Endrin ketone	ND	500	"	"	"	"	"	"	R-07
Toxaphene	ND	20000	"	"	"	"	"	"	R-07
Surrogate: Tetrachloro-meta-xylene		%	35-	140	"	"	"	"	S-01
Surrogate: Decachlorobiphenyl		%	35-	140	"	"	"	"	S-01
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Jasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported: 02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
Surrogate: Tetrachloro-meta-xylene		69.4 %	35-	140	8020133	02/01/18	02/02/18	EPA 8082	
Surrogate: Decachlorobiphenyl		52.6 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.0	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	2.0	"	"	"	"	"	"	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Bromoform	ND	2.0	"	"	"	"	"	"	
Bromomethane	ND	2.0	"	"	"	"	"	"	
n-Butylbenzene	ND	2.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.0	"	"	"	"	"	"	
Chlorobenzene	ND	2.0	"	"	"	"	"	"	
Chloroethane	ND	2.0	"	"	"	"	"	"	
Chloroform	ND	2.0	"	"	"	"	"	"	
Chloromethane	ND	2.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
Dibromochloromethane	ND	2.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.1	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	"	"	
Dibromomethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,2-Dichloropropane	ND	2.0	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
1,3-Dichloropropane	ND	2.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	"	"	"	"	
Isopropylbenzene	ND	2.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.0	"	"	"	"	"	"	
Methylene chloride	ND	2.0	"	"	"	"	"	"	
Naphthalene	ND	2.0	"	"	"	"	"	"	
n-Propylbenzene	ND	2.0	"	"	"	"	"	"	
Styrene	ND	2.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
Tetrachloroethene	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	"	"	
Trichloroethene	ND	2.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
Vinyl chloride	ND	2.0	"	"	"	"	"	"	
Benzene	ND	2.0	"	"	"	"	"	"	
Toluene	ND	2.0	"	"	"	"	"	"	
Ethylbenzene	ND	2.0	"	"	"	"	"	"	
m,p-Xylene	ND	4.1	"	"	"	"	"	"	
o-Xylene	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
Surrogate: Toluene-d8		103 %	85.5	-116	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Surrogate: 4-Bromofluorobenzene		90.4 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Reporting

		reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
4-Bromophenyl phenyl ether	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	

ND

300

SunStar Laboratories, Inc.

3-Nitroaniline

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

B-9-1.0 T180384-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	;	SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds b	y EPA Method 8270C								
4-Nitroaniline	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
*****	2.775								

Nitrobenzene	ND	1000							
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		78.9 %	15-1	21	"	"	"	"	
Surrogate: Phenol-d6		87.5 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		86.3 %	21.3-	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		98.1 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		93.2 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		105 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 16:57

B-9-10.0 T180384-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by 80	15B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		92.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	55	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	19	2.0	"	"	"	"	"	"	
Cobalt	8.3	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	18	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	23	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

B-9-10.0 T180384-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Metl	hod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		62.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		60.5 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA M	Iethod 8260B								
Bromobenzene	ND	1.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Bromochloromethane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	1.9	"	"	"	"	"	"	
Bromoform	ND	1.9	"	"	"	"	"	"	
Bromomethane	ND	1.9	"	"	"	"	"	"	
n-Butylbenzene	ND	1.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.9	"	"	"	"	"	"	
ert-Butylbenzene	ND	1.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.9	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Chloroethane	ND	1.9	"	"	"	"	"	"	
Chloroform	ND	1.9	"	"	"	"	"	"	
Chloromethane	ND	1.9	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.9	"	"	"	"	"	"	
Dibromochloromethane	ND	1.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	3.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.9	"	"	"	"	"	"	
Dibromomethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-10.0 T180384-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EF	PA Method 8260B								
1,4-Dichlorobenzene	ND	1.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.9	"	"	"	"	"	"	
Isopropylbenzene	ND	1.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.9	"	"	"	"	"	"	
Methylene chloride	ND	1.9	"	"	"	"	"	"	
Naphthalene	ND	1.9	"	"	"	"	"	"	
n-Propylbenzene	ND	1.9	"	"	"	"	"	"	
Styrene	ND	1.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.9	"	"	"	"	"	"	
Tetrachloroethene	ND	1.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	,,	"	"	"	
1,1,2-Trichloroethane	ND	1.9	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	1.9	"	"	,,	,,	"	"	
Trichloroethene	ND	1.9	"	"	,,	,,	"	"	
Trichlorofluoromethane	ND ND	1.9	"	"	,,	"	"	"	
1,2,3-Trichloropropane	ND ND	1.9	"	"	,,	,,	,,	"	
1,3,5-Trimethylbenzene	ND ND	1.9	"	,,	,,	,,	,,	"	
1,5,5-11imethylbenzene	ND	1.9							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

B-9-10.0 T180384-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	1.9	ug/kg	1	8013121	02/01/18	02/01/18	EPA 8260B/5035	
Vinyl chloride	ND	1.9	"	"	"	"	"	"	
Benzene	ND	1.9	"	"	"	"	"	"	
Toluene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.8	"	"	"	"	"	"	
o-Xylene	ND	1.9	"	"	"	"	"	"	
Surrogate: Toluene-d8		111 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by l	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 16:57

B-9-10.0 T180384-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by El	PA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Analyte

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

Notes

Method

B-9-10.0 T180384-11 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

Reporting

Limit

Result

		SunStar L	aboratorie	s, Inc.				
Semivolatile Organic Compounds by	EPA Method 8270C							
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C
Isophorone	ND	300	"	"	"	"	"	"
2-Methylphenol	ND	1000	"	"	"	"	"	"
4-Methylphenol	ND	1000	"	"	"	"	"	"
Naphthalene	ND	300	"	"	"	"	"	n .
2-Nitroaniline	ND	300	"	"	"	"	"	"
3-Nitroaniline	ND	300	"	"	"	"	"	"
4-Nitroaniline	ND	300	"	"	"	"	"	"
Nitrobenzene	ND	1000	"	"	"	"	"	"
2-Nitrophenol	ND	1000	"	"	"	"	"	n .
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	n .
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	n .
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	n .
Phenanthrene	ND	300	"	"	"	"	"	n .
Azobenzene	ND	300	"	"	"	"	"	"
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"
Pyridine	ND	300	"	"	"	"	"	"
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"
Surrogate: 2-Fluorophenol		91.1 %	15-12	21	"	"	"	"
Surrogate: Phenol-d6		77.8 %	24-11	3	"	"	"	"
Surrogate: Nitrobenzene-d5		78.3 %	21.3-1	19	"	"	"	"
Surrogate: 2-Fluorobiphenyl		95.5 %	32.4-1	02	"	"	"	"

81.3 %

113 %

18.1-105

29.1-130

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

 $Surrogate:\ 2,4,6\hbox{-}Tribromophenol$

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

B-9-20.0 T180384-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarbons by	y 8015B								
C6-C12 (GRO)	ND	10	mg/kg	1	8020135	02/01/18	02/02/18	EPA 8015B	
C13-C28 (DRO)	31	10	"	"	"	"	"	"	
C29-C40 (MORO)	20	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		90.3 %	65-1	35	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	2.7	mg/kg	1	8020228	02/02/18	02/05/18	EPA 6010B	
Silver	ND	1.8	"	"	"	"	"	"	
Arsenic	ND	4.5	"	"	"	"	"	"	
Barium	79	0.91	"	"	"	"	"	"	
Beryllium	ND	0.91	"	"	"	"	"	"	
Cadmium	2.6	1.8	"	"	"	"	"	"	
Chromium	14	1.8	"	"	"	"	"	"	
Cobalt	11	1.8	"	"	"	"	"	"	
Copper	8.6	0.91	"	"	"	"	"	"	
Lead	ND	2.7	"	"	"	"	"	"	
Molybdenum	ND	4.5	"	"	"	"	"	"	
Nickel	16	1.8	"	"	"	"	"	"	
Selenium	ND	4.5	"	"	"	"	"	"	
Thallium	ND	1.8	"	"	"	"	"	"	
Vanadium	19	4.5	"	"	"	"	"	"	
Zinc	28	0.91	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	0.10	mg/kg	1	8020227	02/02/18	02/05/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

B-9-20.0 T180384-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Mo	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8020133	02/01/18	02/02/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		77.5 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		70.7 %	35-	140	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	2.0	ug/kg	1	8013121	02/01/18	02/03/18	EPA 8260B/5035	
Bromochloromethane	ND	2.0	"	"	"	"	"	"	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Bromoform	ND	2.0	"	"	"	"	"	"	
Bromomethane	ND	2.0	"	"	"	"	"	"	
n-Butylbenzene	ND	2.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.0	"	"	"	"	"	"	
Chlorobenzene	ND	2.0	"	"	"	"	"	"	
Chloroethane	ND	2.0	"	"	"	"	"	"	
Chloroform	ND	2.0	"	"	"	"	"	"	
Chloromethane	ND	2.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
Dibromochloromethane	ND	2.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	"	"	
Dibromomethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 16:57

B-9-20.0 T180384-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
1,4-Dichlorobenzene	ND	2.0	ug/kg	1	8013121	02/01/18	02/03/18	EPA 8260B/5035	
Dichlorodifluoromethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	"	"	"	"	
Isopropylbenzene	ND	2.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.0	"	"	"	"	"	"	
Methylene chloride	ND	2.0	"	"	"	"	"	"	
Naphthalene	ND	2.0	"	"	"	"	"	"	
n-Propylbenzene	ND	2.0	"	"	"	"	"	"	
Styrene	ND	2.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
Tetrachloroethene	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	"	"	
Trichloroethene	ND	2.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.0	"	,,	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 16:57

B-9-20.0 T180384-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,2,4-Trimethylbenzene	ND	2.0	ug/kg	1	8013121	02/01/18	02/03/18	EPA 8260B/5035	
Vinyl chloride	ND	2.0	"	"	"	"	"	"	
Benzene	ND	2.0	"	"	"	"	"	"	
Toluene	ND	2.0	"	"	"	"	"	"	
Ethylbenzene	ND	2.0	"	"	"	"	"	"	
m,p-Xylene	ND	4.0	"	"	"	"	"	"	
o-Xylene	ND	2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		91.4 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.9 %	81.2	-123	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	95.7	-135	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Reporting

Project Manager: Derrick Willis

Project: 3rd & Fairfax

Reported:

02/08/18 16:57

B-9-20.0 T180384-13 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	:	SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (g,h,i) perylene	ND	1000	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	,,	"	"	"	
Fluoranthene	ND	300	"	"	,,	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
xx 11 1	1.2	200			_		_	_	

ND

300

SunStar Laboratories, Inc.

Hexachloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Analyte

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

Method

02/08/18 16:57

Notes

B-9-20.0 T180384-13 (Soil)

Units

Dilution

Batch

Prepared

Analyzed

Reporting

Limit

Result

. mary to	resurt	Limit	Cinto	Diration	Buten	Trepureu	1 mary zea	memou	110105
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
Indeno (1,2,3-cd) pyrene	ND	300	ug/kg	1	8020137	02/01/18	02/06/18	EPA 8270C	
Isophorone	ND	300	"	"	"	"	"	"	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		84.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		64.6 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		72.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.0 %	32.4	-102	"	"	"	"	

80.5 %

120 %

18.1-105

29.1-130

SunStar Laboratories, Inc.

 $Surrogate:\ 2,4,6\hbox{-}Tribromophenol$

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 16:57

Extractable Petroleum Hydrocarbons by 8015B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020135 - EPA 3550B GC										
Blank (8020135-BLK1)				Prepared: 0	02/01/18 A	nalyzed: 02	/02/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	83.0		"	98.0		84.6	65-135			
LCS (8020135-BS1)				Prepared: 0	02/01/18 A	nalyzed: 02	/02/18			
C13-C28 (DRO)	480	10	mg/kg	490		97.2	75-125			
Surrogate: p-Terphenyl	84.2		"	98.0		85.8	65-135			
LCS Dup (8020135-BSD1)				Prepared: 0	02/01/18 A	nalyzed: 02	/02/18			
C13-C28 (DRO)	480	10	mg/kg	490		98.3	75-125	1.09	20	
Surrogate: p-Terphenyl	88.2		"	98.0		90.0	65-135			

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

RPD

%REC

Source

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020228 - EPA 3050B										
Blank (8020228-BLK1)				Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	5.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Гhallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (8020228-BS1)				Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Arsenic	107	5.0	mg/kg	100		107	75-125			
Barium	112	1.0	"	100		112	75-125			
Cadmium	111	2.0	"	100		111	75-125			
Chromium	111	2.0	"	100		111	75-125			
Lead	116	3.0	"	100		116	75-125			
Matrix Spike (8020228-MS1)	Source	e: T180384-	-02	Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Arsenic	84.6	5.0	mg/kg	98.0	ND	86.3	75-125			
Barium	170	1.0	"	98.0	74.9	96.7	75-125			
Cadmium	91.7	2.0	"	98.0	0.897	92.6	75-125			
Chromium	117	2.0	"	98.0	21.8	96.9	75-125			
Lead	114	3.0	"	98.0	ND	116	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

RPD

%REC

02/08/18 16:57

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020228 - EPA 3050B										
Matrix Spike Dup (8020228-MSD1)	Sourc	e: T180384-	02	Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Arsenic	87.7	5.0	mg/kg	97.1	ND	90.3	75-125	3.56	20	
Barium	199	1.0	"	97.1	74.9	128	75-125	16.0	20	QR-04
Cadmium	91.3	2.0	"	97.1	0.897	93.1	75-125	0.428	20	
Chromium	115	2.0	"	97.1	21.8	96.2	75-125	1.39	20	
Lead	105	3.0	"	97.1	ND	108	75-125	7.67	20	

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/08/18 16:57

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020227 - EPA 7471A Soil										
Blank (8020227-BLK1)				Prepared: ()2/02/18 A	nalyzed: 02	/05/18			
Mercury	ND	0.10	mg/kg							
LCS (8020227-BS1)				Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Mercury	0.388	0.10	mg/kg	0.417		93.1	80-120			
Matrix Spike (8020227-MS1)	Sour	ce: T180384-	-02	Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Mercury	0.374	0.10	mg/kg	0.391	ND	95.8	75-125			
Matrix Spike Dup (8020227-MSD1)	Sour	ce: T180384-	-02	Prepared: (02/02/18 A	nalyzed: 02	/05/18			
Mercury	0.385	0.10	mg/kg	0.403	ND	95.4	75-125	2.71	20	

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 16:57

RPD

%REC

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

A 1.	D 1	Reporting	TT '	Spike	Source	0/DEC	%KEC	DDD	KPD	NT 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 8020134 - EPA 3550 ECD/GCMS										
Blank (8020134-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
alpha-BHC	ND	5.0	ug/kg							
gamma-BHC (Lindane)	ND	5.0	"							
oeta-BHC	ND	5.0	"							
delta-BHC	ND	5.0	"							
Heptachlor	ND	5.0	"							
Aldrin	ND	5.0	"							
Heptachlor epoxide	ND	5.0	"							
gamma-Chlordane	ND	5.0	"							
alpha-Chlordane	ND	5.0	"							
Endosulfan I	ND	5.0	"							
4,4′-DDE	ND	5.0	"							
Dieldrin	ND	5.0	"							
Endrin	ND	5.0	"							
4,4′-DDD	ND	5.0	"							
Endosulfan II	ND	5.0	"							
4,4′-DDT	ND	5.0	"							
Endrin aldehyde	ND	5.0	"							
Endosulfan sulfate	ND	5.0	"							
Methoxychlor	ND	10	"							
Endrin ketone	ND	5.0	"							
Гохарнепе	ND	200	"							
Surrogate: Tetrachloro-meta-xylene	8.92		"	10.0		89.2	35-140			
Surrogate: Decachlorobiphenyl	8.62		"	10.0		86.2	35-140			
LCS (8020134-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	34.2	5.0	ug/kg	40.0		85.5	40-120			
Heptachlor	34.1	5.0	"	40.0		85.2	40-120			
Aldrin	32.0	5.0	"	40.0		80.0	40-120			
Dieldrin	32.6	5.0	"	40.0		81.5	40-120			
Endrin	32.7	5.0	"	40.0		81.9	40-120			
4,4′-DDT	30.7	5.0	"	40.0		76.8	33-147			
Surrogate: Tetrachloro-meta-xylene	8.47		"	10.0		84.7	35-140			
Surrogate: Decachlorobiphenyl	8.36		"	10.0		83.6	35-140			

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

Organochlorine Pesticides by EPA Method 8081A - Quality Control

SunStar Laboratories, Inc.

Analyte Batch 8020134 - EPA 3550 ECD/GCMS	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (8020134-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/05/18			
gamma-BHC (Lindane)	32.4	5.0	ug/kg	40.0		81.1	40-120	5.30	30	
Heptachlor	32.6	5.0	"	40.0		81.5	40-120	4.51	30	
Aldrin	30.6	5.0	"	40.0		76.4	40-120	4.58	30	
Dieldrin	31.1	5.0	"	40.0		77.7	40-120	4.85	30	
Endrin	31.1	5.0	"	40.0		77.8	40-120	5.11	30	
4,4´-DDT	28.6	5.0	"	40.0		71.5	33-147	7.13	30	
Surrogate: Tetrachloro-meta-xylene	8.06		"	10.0		80.6	35-140			
Surrogate: Decachlorobiphenyl	8.56		"	10.0		85.6	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

RPD

%REC

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		reporting		Брис	Bource		, or en		111 2	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020133 - EPA 3550 ECD/GCMS										
Blank (8020133-BLK1)				Prepared: (02/01/18 A	nalyzed: 02	/02/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	7.49		"	10.0		74.9	35-140			
Surrogate: Decachlorobiphenyl	7.46		"	10.0		74.6	35-140			
LCS (8020133-BS1)				Prepared: (02/01/18 A	nalyzed: 02	/02/18			
PCB-1016	63.7	10	ug/kg	100		63.7	40-130			
PCB-1260	65.7	10	"	100		65.7	40-130			
Surrogate: Tetrachloro-meta-xylene	7.72		"	10.0		77.2	35-140			
Surrogate: Decachlorobiphenyl	7.73		"	10.0		77.3	35-140			
LCS Dup (8020133-BSD1)				Prepared: (02/01/18 A	nalyzed: 02	/02/18			
PCB-1016	69.0	10	ug/kg	100		69.0	40-130	7.99	30	
PCB-1260	61.7	10	"	100		61.7	40-130	6.28	30	
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.0		74.8	35-140			
Surrogate: Decachlorobiphenyl	7.15		"	10.0		71.5	35-140			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	2013121	_ FDA	5035	CCMS

Blank (8013121-BLK1)				Prepared: 01/31/18 Analyzed: 02/01/18
Bromobenzene	ND	2.0	ug/kg	
Bromochloromethane	ND	2.0	"	
Bromodichloromethane	ND	2.0	"	
Bromoform	ND	2.0	"	
Bromomethane	ND	2.0	"	
n-Butylbenzene	ND	2.0	"	
sec-Butylbenzene	ND	2.0	"	
tert-Butylbenzene	ND	2.0	"	
Carbon tetrachloride	ND	2.0	"	
Chlorobenzene	ND	2.0	"	
Chloroethane	ND	2.0	"	
Chloroform	ND	2.0	"	
Chloromethane	ND	2.0	"	
2-Chlorotoluene	ND	2.0	"	
4-Chlorotoluene	ND	2.0	"	
Dibromochloromethane	ND	2.0	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	
Dibromomethane	ND	2.0	"	
1,2-Dichlorobenzene	ND	2.0	"	
1,3-Dichlorobenzene	ND	2.0	"	
1,4-Dichlorobenzene	ND	2.0	"	
Dichlorodifluoromethane	ND	2.0	"	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	"	
1,2-Dichloropropane	ND	2.0	"	
1,3-Dichloropropane	ND	2.0	"	
2,2-Dichloropropane	ND	2.0	"	
1,1-Dichloropropene	ND	2.0	"	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Hexachlorobutadiene	ND	2.0	"	
Isopropylbenzene	ND	2.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

Reported: 02/08/18 16:57

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013121 - EPA 5035 GCMS										
Blank (8013121-BLK1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
p-Isopropyltoluene	ND	2.0	ug/kg							
Methylene chloride	ND	2.0	"							
Naphthalene	ND	2.0	"							
n-Propylbenzene	ND	2.0	"							
Styrene	ND	2.0	"							
1,1,2,2-Tetrachloroethane	ND	2.0	"							
1,1,1,2-Tetrachloroethane	ND	2.0	"							
Tetrachloroethene	ND	2.0	"							
1,2,3-Trichlorobenzene	ND	2.0	"							
1,2,4-Trichlorobenzene	ND	2.0	"							
1,1,2-Trichloroethane	ND	2.0	"							
1,1,1-Trichloroethane	ND	2.0	"							
Trichloroethene	ND	2.0	"							
Trichlorofluoromethane	ND	2.0	"							
1,2,3-Trichloropropane	ND	2.0	"							
1,3,5-Trimethylbenzene	ND	2.0	"							
1,2,4-Trimethylbenzene	ND	2.0	"							
Vinyl chloride	ND	2.0	"							
Benzene	ND	2.0	"							
Γoluene	ND	2.0	"							
Ethylbenzene	ND	2.0	"							
m,p-Xylene	ND	4.0	"							
o-Xylene	ND	2.0	"							
Surrogate: Toluene-d8	41.6		"	39.6		105	85.5-116			
Surrogate: 4-Bromofluorobenzene	35.4		"	39.6		89.4	81.2-123			
Surrogate: Dibromofluoromethane	41.9		"	39.6		106	95.7-135			
LCS (8013121-BS1)				Prepared: (01/31/18 A	nalyzed: 02	/01/18			
Chlorobenzene	30.0	2.0	ug/kg	40.0		75.0	75-125			
1,1-Dichloroethene	48.5	2.0	"	40.0		121	75-125			
Trichloroethene	36.2	2.0	"	40.0		90.4	75-125			
Benzene	38.3	2.0	"	40.0		95.6	75-125			
Toluene	33.7	2.0	"	40.0		84.3	75-125			
Surrogate: Toluene-d8	42.1		"	40.0		105	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.3		"	40.0		95.7	81.2-123			
Surrogate: Dibromofluoromethane	43.6		"	40.0		109	95.7-135			

SunStar Laboratories, Inc.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/08/18 16:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8013121 - EPA 5035 GCMS										
LCS Dup (8013121-BSD1)				Prepared: (01/31/18 A	nalyzed: 02	2/01/18			
Chlorobenzene	36.3	2.0	ug/kg	39.6		91.5	75-125	18.8	20	
1,1-Dichloroethene	47.8	2.0	"	39.6		121	75-125	1.49	20	
Trichloroethene	42.8	2.0	"	39.6		108	75-125	16.7	20	
Benzene	46.4	2.0	"	39.6		117	75-125	19.2	20	
Toluene	40.2	2.0	"	39.6		101	75-125	17.4	20	
Surrogate: Toluene-d8	41.9		"	39.6		106	85.5-116			
Surrogate: 4-Bromofluorobenzene	36.4		"	39.6		91.9	81.2-123			
Surrogate: Dibromofluoromethane	42.2		"	39.6		106	95.7-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020137 - EPA 3550 ECD/GCMS

Blank (8020137-BLK1)				Prepared: 02/01/18 Analyzed: 02/05/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/08/18 16:57

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	2020137	_ FDA	3550	FCD/CCMS

Blank (8020137-BLK1)				Prepared: 02/01/18 Analyzed: 02/05/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

RPD

%REC

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

SunStar Laboratories, Inc.

Spike

Source

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8020137 - EPA 3550 ECD/GCMS										
Blank (8020137-BLK1)				Prepared: ()2/01/18 Aı	nalyzed: 02	/05/18			
Surrogate: 2-Fluorophenol	2550		ug/kg	3250		78.5	15-121			
Surrogate: Phenol-d6	2470		"	3250		76.0	24-113			
Surrogate: Nitrobenzene-d5	2510		"	3250		77.3	21.3-119			
Surrogate: 2-Fluorobiphenyl	2700		"	3250		83.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2880		"	3250		88.8	18.1-105			
Surrogate: Terphenyl-dl4	3500		"	3250		108	29.1-130			
LCS (8020137-BS1)				Prepared: (02/01/18 Aı	nalyzed: 02	/05/18			
Phenol	2390	1000	ug/kg	3240		73.9	34-114			
2-Chlorophenol	2400	1000	"	3240		74.2	34-114			
1,4-Dichlorobenzene	2380	300	"	3240		73.5	34-114			
N-Nitrosodi-n-propylamine	2870	300	"	3240		88.6	30-110			
1,2,4-Trichlorobenzene	2450	300	"	3240		75.6	39-119			
4-Chloro-3-methylphenol	2120	1000	"	3240		65.4	50-130			
Acenaphthene	2530	300	"	3240		78.0	34-114			
Pentachlorophenol	1930	1000	"	3240		59.7	50-130			
Pyrene	2040	300	"	3240		62.9	30-110			
Surrogate: 2-Fluorophenol	2410		"	3240		74.4	15-121			
Surrogate: Phenol-d6	2550		"	3240		78.9	24-113			
Surrogate: Nitrobenzene-d5	2940		"	3240		91.0	21.3-119			
Surrogate: 2-Fluorobiphenyl	2660		"	3240		82.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2820		"	3240		87.2	18.1-105			
Surrogate: Terphenyl-dl4	3310		"	3240		102	29.1-130			
LCS Dup (8020137-BSD1)				Prepared: (02/01/18 Aı	nalyzed: 02	/05/18			
Phenol	1860	1000	ug/kg	3330		55.9	34-114	24.7	42	
2-Chlorophenol	1990	1000	"	3330		59.7	34-114	18.7	40	
1,4-Dichlorobenzene	2060	300	"	3330		61.8	34-114	14.3	28	
N-Nitrosodi-n-propylamine	2220	300	"	3330		66.5	30-110	25.6	38	
1,2,4-Trichlorobenzene	2250	300	"	3330		67.4	39-119	8.48	28	
4-Chloro-3-methylphenol	2550	1000	"	3330		76.5	50-130	18.6	42	
Acenaphthene	2440	300	"	3330		73.3	34-114	3.34	31	
Pentachlorophenol	2160	1000	"	3330		65.0	50-130	11.4	50	
Pyrene	2090	300	"	3330		62.7	30-110	2.56	31	
Surrogate: 2-Fluorophenol	2230		"	3330		66.9	15-121			
Surrogate: Phenol-d6	2040		"	3330		61.1	24-113			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/08/18 16:57

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C-Quality\ Control$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020137 - EPA 3550 ECD/GCMS

LCS Dup (8020137-BSD1)			Prepared: 02/01	/18 Analyzed: 02	2/05/18
Surrogate: Nitrobenzene-d5	2080	ug/kg	3330	62.3	21.3-119
Surrogate: 2-Fluorobiphenyl	2480	"	3330	74.4	32.4-102
Surrogate: 2,4,6-Tribromophenol	2880	"	3330	86.4	18.1-105
Surrogate: Terphenyl-dl4	3330	"	3330	100	29.1-130

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Reported:

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis

02/08/18 16:57

Notes and Definitions

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix

nterference's.

R-07 Reporting limit for this compound(s) has been raised to account for dilution necessary due to high levels of interfering compound(s)

and/or matrix affect.

QR-04 The pecent recovery and/or RPD was outside acceptance criteria. Results accepted based upon percent recovery results in duplicate QC

sample and the CCV and CCB results.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fasheh

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Relinquished by: (signature) Relinquished by: (signature) Sample disposal Instructions: Relinguished by: (signature) Phone: (949) Project Manager: Client Northgate Environmenta B-2018,01,30-C)-9-10.0 5-9-15.0 5-9-26.0 7:- 15:0 7:- 20:0 7:- 25:0 25,0 Sample ID 300 Ö 0500.912 Corrier Corrier Kidge ROUGE # 130 Disposal @ \$2.00 each -30-18 Date Sampled Date / Time Date / Time Date / Time Sill S 6 16:30 Tax: 7:05 Co.: 51 Time 80.1 116-005S Received by: (signature) Received by: (signature) Received by: (signature) Sample hasuna Return to client 465 Container Уре HIS XIT|8260 Pickup 8260 + OXY Date / Time Date / Time Date / Time 8260 BTEX, OXY only Collector: Dayo Date: 8270 Batch #: Project Name: 3rd 8021 BTEX 1-30-2018 8015M (gasoline) Turn around time: Chain of Custody seals Y/N/NA 8015M (dlesel) Received good condition/cold 1180384 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers Brown ٥ 6020 ICP-MS Metals 5082 RB Fair Cax OCPS රිරහි EDF # Client Project #: -aboratory ID# Page: Comments/Preservative 2047.15 Notes N Total # of containers

000

172252

25712	6	
25712 Commercentre	La	שט
	bol	וטח
Drive.	rat	rar

25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Dis	1	Relinquished by: (signature)		Relinquished by: (signature)	1211 Dana Brown	Relinguished by: (signature)	77-30	6-9-25-0	B-9-20.0	ا هم) P	373750	6-1-300	6-7-25.0	6-7-20.0	6-7-15.0	9-7-10.0	0-7-5.0	3-7-1.0	TB-2018.01.30-C	Address: 24411 Ridge Ro Phone: (949) 716-0050 Project Manager: Descrick Sample ID Sam	Client IVOCINOSING
Disposal @ \$2.00 each		Date / Time		Date / Time	and 1-31-18	Date / Time	4	`					*	<						1-30-18		てくし こうのこ からんしゅ
ach					14:20		80.1	17:05	6.57	05.3	10.40	15 C	10.51	10:04	14:5g	14.56	[4:53]	14:50	14:25	コンコ	Fax: (949)	36210
Return to client		Received by: (signature)		Received by: (signature)		Received by	_			;			4	4					05	ΑØ	Sam	_
client		r: (signature)		r: (signature)		(Signature)	4		*		* 01	15 + A	*	<				VISC	25+ A	<	9009 Hills 716-0055 Container De Type	
Pic					(X		7	<u> </u>	7	Ŧ		γ .		X		ኦ		8260 8260 + OXY	
Pickup		Date / Time		Date / Time	1-31-18	Date /					\ \{\}	ļ	T		メ		<u>У</u> .				8260 BTEX, OXY only	7
		Time		Time	1:20	Time		X		\dashv'		- '		-	/		<u>`</u>				8270 8021 BTEX 8015M (gasoline) 8015M (diesel)	-
													L								8015M (gasoline)	!
	Turn aı		ZD.		Cha					\perp		\bot	L		L		- 7				<u> </u>	ر ا
	aro		Receiv		in Of		_	X	_	_	<u> </u>	۲	┉	_	×		メ	-	メ	\vdash	L)
	ound time:		ived good condition/cold	လူ	Chain of Custody seals Y/N/NA	7		<u> </u>		_/	4		_	<u> </u>	×		メ		X		6010/7000 Title 22 Metals	トローの
	tim.		ood o	Seals intact? Y/N/NA	ody	Total # of containers				_	_	1	1	L							8082 PCBs	0
	1		bno	tact'	seak	<u>ရ</u> ရ		X.		/	싴	<u> </u>	+-	1	メ		X		×		8082 PCBs & D	•
	5		ition/	×	% }	ontai				1	1		上	_	_				×		8081 OCPs	
	0		<u>8</u>	Ā	ΣÑ	ners					١			١								
	K					100		-													Laboratory ID#	֖֖֖֝֞֝֝֞֝֞֝֞֝֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞֝֞
coc 172252						Notes															Client Project #: 2047.15 EDF #: Comments/Preservative	_
																			,			
	1						J	7	-	-1-	JI.	41-	1	ıN	N	Li	L t	N	L1	N	Total # of containers	

SAMPLE RECEIVING REVIEW SHEET

Delivered by: Client SunStar Courier GSO FedEx Other Date/Time Courier Received: 1-31-8 141-20 Date/Time Lab	Batch/Work Order #:	T180384	-	
If Courier, Received by: Carlos C	Client Name:	Northgate	Project:	3rd & Fair fax
If Courier, Received by: Lab Received by: So finy Received: Date/Time Lab Received: 7-31-16 140-20 Total number of coolers received: Total number of coolers received: Temperature: Cooler #1 2.6 °C+/- the CF (-0.2°C) = 7.4 °C corrected temperature Temperature: Temperature: Cooler #2 °C+/- the CF (-0.2°C) = °C corrected temperature Temperature: Temperature criteria = ≤6°C (no frozen containers) If NO: Samples received on ice? If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Custody seals intact on cooler/sample Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper greservative indicated on COC/containers for analyses requested Complete Non-Conformance Received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified *Cooler/Sample Review - Initials and date: *Cooler/Sample Revie	Delivered by:	☐ Client ☑ SunStar Courie	r 🗌 GSO	☐ FedEx ☐ Other
Temperature: Cooler #1	If Courier, Received by:	Chris	Received:	1-31-10 14:20
Total number of coolers received: Temperature: Cooler #1 2.6 °C +/- the CF (- 0.2°C) = 7.4 °C corrected temperature Temperature: Cooler #2 °C +/- the CF (- 0.2°C) = °C corrected temperature Temperature: Cooler #3 °C +/- the CF (- 0.2°C) = °C corrected temperature Temperature criteria = ≤6°C (no frozen containers) If NO: Samples received on ice?	Lab Received by:	Sonna		•
Temperature: Cooler #2 °C +/- the CF (- 0.2°C) = °C corrected temperature Temperature: Cooler #3 °C +/- the CF (- 0.2°C) = °C corrected temperature Temperature criteria = ≤6°C Within criteria?	Total number of coolers r			
Temperature: Cooler #3 °C +/- the CF (- 0.2°C) = °C corrected temperature Temperature criteria = ≤6°C (Within criteria?	Temperature: Cooler #1	2.6 °C +/- the CF (- 0.2°C)	= 7.4	°C corrected temperature
Temperature criteria = ≤6°C Within criteria? ✓ Yes	Temperature: Cooler #2	°C +/- the CF (- 0.2°C)	=	°C corrected temperature
If NO: Samples received on ice? If on ice, samples received same day collected? Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete Non-Conformance Sheet No → Complete Non-Conformance Sheet No → Complete Non-Conformance Sheet	Temperature: Cooler #3	°C +/- the CF (- 0.2°C)	=	°C corrected temperature
Samples received on ice? If on ice, samples received same day collected? Custody seals intact on cooler/sample Custody seals intact on cooler/sample Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified holding times * Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date: Ves		≤6°C Within c	riteria?	☑Yes □No
Samples received on ice?	If NO:			
If on ice, samples received same day collected?	Samples received	I on ice?	•	the state of the s
Sample containers intact Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified when the complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:				
Sample labels match Chain of Custody IDs Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Yes No* Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified Yes No* Yes No* Yes No* Yes No* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:	If on ice, samples	received some day	→ Acceptable	□No→
Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Yes No* Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified Yes No* Yes No* Yes No* Yes No* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:	If on ice, samples collected?	s received same day Yes -	→ Acceptable	☐No → Complete Non-Conformance Sheet
Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Yes No* No* Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified Yes No* Yes No* Yes No* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:	If on ice, samples collected? Custody seals intact on co	s received same day Yes -	→ Acceptable	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A
Proper preservative indicated on COC/containers for analyses requested Yes No* N/A Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified Yes No* holding times * Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:	If on ice, samples collected? Custody seals intact on co	s received same day Yes -	→ Acceptable	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No*
Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified * Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initials and date:	If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Chain	s received same day Yes - pooler/sample in of Custody IDs	→ Acceptable	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No* ☑Yes □No*
containers, labels, volumes preservatives and within method specified	If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Chairman Total number of containers	s received same day Yes - cooler/sample in of Custody IDs ers received match COC	→ Acceptable	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No* ☑Yes □No* ☑Yes □No*
JUK 2-189	If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Cha Total number of container Proper containers receive	s received same day Yes - cooler/sample ain of Custody IDs ers received match COC ed for analyses requested on COC		□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No* ☑Yes □No* ☑Yes □No* ☑Yes □No*
Comments:	If on ice, samples collected? Custody seals intact on consumple containers intact Sample labels match Change Total number of containers received Proper containers received Proper preservative indications complete shipment received containers, labels, volumers.	s received same day Yes - cooler/sample ain of Custody IDs ers received match COC ed for analyses requested on COC cated on COC/containers for analyse wed in good condition with correct	es requested temperatures,	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No* ☑Yes □No* ☑Yes □No* ☑Yes □No* ☑Yes □No*
	If on ice, samples collected? Custody seals intact on collected Sample containers intact Sample labels match Cha Total number of container Proper containers receive Proper preservative indic Complete shipment receive containers, labels, volume holding times	s received same day Yes - cooler/sample in of Custody IDs ers received match COC ad for analyses requested on COC ated on COC/containers for analyse wed in good condition with correct les preservatives and within method	es requested temperatures, I specified	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No*
	If on ice, samples collected? Custody seals intact on consumple containers intact Sample labels match Change Total number of containers received Proper containers received Proper preservative indical Complete shipment received containers, labels, volume holding times * Complete Non-Conformations and collected in the containers of the conformation of the collected in the collected	s received same day Yes - cooler/sample in of Custody IDs ers received match COC ad for analyses requested on COC ated on COC/containers for analyse wed in good condition with correct les preservatives and within method	es requested temperatures, I specified	□No → Complete Non-Conformance Sheet □Yes □No* ☑N/A ☑Yes □No*

Page 61 of 64

Printed: 2/1/2018 4:31:28PM

WORK ORDER

T180384

Client: Northgate Environmental Management -- Laguna **Project Manager:** Rose Fasheh Project: 3rd & Fairfax **Project Number:** 2047.15

Report To:

Northgate Environmental Management -- Laguna Hills

Derrick Willis

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653

Date Due: 02/08/18 17:00 (5 day TAT)

Received By: Sunny Lounethone Date Received: 01/31/18 16:25 Logged In By: Date Logged In: Joey Himes 02/01/18 08:54

Samples Received at: 2.6°C

Custody Seals No Received On Ice Yes

Containers Intact Yes COC/Labels Agree Yes Preservation Confir Yes

Analysis	Due	TAT	Expires	Comments
T180384-01 TB-2018.01.30- Pacific Time (US &	C [Water] Sampled	01/30/18 14	4:14 (GMT-08:00)	HOLD
[NO ANALYSES]				
T180384-02 B-7-1.0 [Soil] 8	Sampled 01/30/18 14:2	25 (GMT-0	98:00) Pacific Time	
6010 Title 22	02/08/18 15:00	5	07/29/18 14:25	
8015 Carbon Chain	02/08/18 15:00	5	02/13/18 14:25	
8081 Pesticides	02/08/18 15:00	5	02/13/18 14:25	
8082 PCB	02/08/18 15:00	5	02/13/18 14:25	
8260 5035	02/08/18 15:00	5	02/13/18 14:25	
8270C	02/08/18 15:00	5	02/13/18 14:25	

T180384-03 B-7-5.0 [Soil] Sampled 01/30/18 14:50 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180384-04 B-7-10.0 [Soil] Sampled 01/30/18 14:53 (GMT-08:00) Pacific Time (US & 6010 Title 22 5 02/08/18 15:00 07/29/18 14:53 8015 Carbon Chain 02/08/18 15:00 5 02/13/18 14:53 8082 PCB 02/08/18 15:00 5 02/13/18 14:53 02/08/18 15:00 8260 5035 5 02/13/18 14:53 8270C 02/08/18 15:00 5 02/13/18 14:53

Printed: 2/1/2018 4:31:28PM

WORK ORDER

T180384

Client: Northgate Environmental Management -- Laguna
Project Manager: Rose Fasheh
Project: 3rd & Fairfax
Project Number: 2047.15

Expires

Comments

TAT

T180384-05 B-7-15.0 [Soil] Sampled 01/30/18 14:56 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

Analysis

T180384-06 B-7-20.0 [Soil] Sampled 01/30/18 14:59 (GMT-08:00) Pacific Time (US &

Due

6010 1itle 22	02/08/18 15:00	5	07/29/18 14:59	
8015 Carbon Chain	02/08/18 15:00	5	02/13/18 14:59	
8082 PCB	02/08/18 15:00	5	02/13/18 14:59	
8260 5035	02/08/18 15:00	5	02/13/18 14:59	
8270C	02/08/18 15:00	5	02/13/18 14:59	

T180384-07 B-7-25.0 [Soil] Sampled 01/30/18 15:04 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180384-08 B-7-30.0 [Soil] Sampled 01/30/18 15:07 (GMT-08:00) Pacific Time $\,$ HOLD (US &

[NO ANALYSES]

T180384-09 B-9-1.0 [Soil] Sampled 01/30/18 16:30 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/29/18 16:30
8015 Carbon Chain	02/08/18 15:00	5	02/13/18 16:30
8081 Pesticides	02/08/18 15:00	5	02/13/18 16:30
8082 PCB	02/08/18 15:00	5	02/13/18 16:30
8260 5035	02/08/18 15:00	5	02/13/18 16:30
8270C	02/08/18 15:00	5	02/13/18 16:30

T180384-10 B-9-5.0 [Soil] Sampled 01/30/18 16:40 (GMT-08:00) Pacific Time HOLD (US &

[NO ANALYSES]

T180384-11 B-9-10.0 [Soil] Sampled 01/30/18 16:43 (GMT-08:00) Pacific Time (US &

6010 Title 22	02/08/18 15:00	5	07/29/18 16:43
8015 Carbon Chain	02/08/18 15:00	5	02/13/18 16:43
8082 PCB	02/08/18 15:00	5	02/13/18 16:43
8260 5035	02/08/18 15:00	5	02/13/18 16:43
8270C	02/08/18 15:00	5	02/13/18 16:43

WORK ORDER

T180384

Client: Northgate Environmental Management -- Laguna **Project Manager:** Rose Fasheh

Project: 3rd & Fairfax **Project Number:** 2047.15

TAT **Analysis** Due **Expires** Comments

T180384-12 B-9-15.0 [Soil] Sampled 01/30/18 16:50 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

T180384-13 B-9-20.0 [Soil] Sampled 01/30/18 16:57 (GMT-08:00) Pacific Time

(US &

6010 Title 22 02/08/18 15:00 5 07/29/18 16:57 8015 Carbon Chain 02/08/18 15:00 5 02/13/18 16:57 8082 PCB 02/08/18 15:00 5 02/13/18 16:57 8260 5035 02/08/18 15:00 5 02/13/18 16:57 8270C 02/08/18 15:00 5 02/13/18 16:57

T180384-14 B-9-25.0 [Soil] Sampled 01/30/18 17:05 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

T180384-15 B-9-30.0 [Soil] Sampled 01/30/18 17:08 (GMT-08:00) Pacific Time HOLD

(US &

[NO ANALYSES]

Analysis groups included in this work order

6010 Title 22

subgroup 6010B T22 7470/71 Hg

Reviewed By Date

12 February 2018

RE: 3rd & Fairfax

Derrick Willis
Northgate Environmental Management -- Laguna Hills
24411 Ridge Route Drive, Suite 130
Laguna Hills, CA 92653

Enclosed are the results of analyses for samples received by the laboratory on 02/01/18 12:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rose Fasheh

Project Manager

Rose Fasheh

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/12/18 16:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-6-10.0	T180397-01	Air	01/31/18 15:06	02/01/18 12:35
B-15-25.0	T180397-02	Air	01/31/18 16:10	02/01/18 12:35
B-4-15.0	T180397-03	Air	01/31/18 16:38	02/01/18 12:35

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/12/18 16:21

DETECTIONS SUMMARY

Result 3100 1100	Reporting Limit	Units	Method	
3100		Units	Method	
	120			Notes
1100	130	ug/m³ Air	TO-15	TO-14
1100	170	ug/m³ Air	TO-15	TO-14
Laborat	tory ID:	T180397-02		
	Reporting			
Result	Limit	Units	Method	Notes
770	270	ug/m³ Air	TO-15	TO-14
Laborat	tory ID:	T180397-03		
	Reporting			
Result	Limit	Units	Method	Notes
17	5.5	ug/m³ Air	TO-15	
15	3.8	ug/m³ Air	TO-15	
11600	7170	ug/m³ Air	TO-3/TO-14 m	
	Result A control of the control of	Result Limit 770 270 Laboratory ID: Reporting Result Limit 17 5.5 15 3.8	Result Limit Units	Result Limit Units Method

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/12/18 16:21

B-6-10.0 T180397-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorie	es, Inc.					
TO-15									
Acetone	ND	120	ug/m³ Air	1.71	8020144	02/01/18	02/01/18	TO-15	TO-14
1,3-Butadiene	ND	110	"	"	"	"	"	"	TO-14
Carbon Disulfide	ND	160	"	"	"	"	"	"	TO-14
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	390	"	"	"	"	"	"	TO-14
Isopropyl alcohol	3100	130	"	"	"	"	"	"	TO-14
Bromodichloromethane	ND	340	"	"	"	"	"	"	TO-14
Bromoform	ND	530	"	"	"	"	"	"	TO-14
Bromomethane	ND	200	"	"	"	"	"	"	TO-14
Carbon tetrachloride	ND	320	"	"	"	"	"	"	TO-14
Chlorobenzene	ND	230	"	"	"	"	"	"	TO-14
Chloroethane	ND	130	"	"	"	"	"	"	TO-14
Chloroform	ND	250	"	"	"	"	"	"	TO-14
Chloromethane	ND	110	"	"	"	"	"	"	TO-14
Cyclohexane	1100	170	"	"	"	"	"	"	TO-14
Heptane	ND	210	"	"	"	"	"	"	TO-14
Hexane	ND	180	"	"	"	"	"	"	TO-14
Dibromochloromethane	ND	430	"	"	"	"	"	"	TO-14
1,2-Dibromoethane (EDB)	ND	390	"	"	"	"	"	"	TO-14
1,2-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
1,3-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
1,4-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
Dichlorodifluoromethane	ND	250	"	"	"	"	"	"	TO-14
1,1-Dichloroethane	ND	210	"	"	"	"	"	"	TO-14
1,2-Dichloroethane	ND	210	"	"	"	"	"	"	TO-14
1,1-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
cis-1,2-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
trans-1,2-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
1,2-Dichloropropane	ND	240	"	"	"	"	"	"	TO-14
cis-1,3-Dichloropropene	ND	230	"	"	"	"	"	"	TO-14
trans-1,3-Dichloropropene	ND	230	"	"	"	"	"	"	TO-14
4-Ethyltoluene	ND	250	"	"	"	"	"	"	TO-14

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Jasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/12/18 16:21

B-6-10.0 T180397-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorie	es, Inc.					
TO-15									
Methylene chloride	ND	180	ug/m³ Air	1.71	8020144	02/01/18	02/01/18	TO-15	TO-14
Styrene	ND	220	"	"	"	"	"	"	TO-14
1,1,2,2-Tetrachloroethane	ND	350	"	"	"	"	"	"	TO-14
Tetrahydrofuran	ND	150	"	"	"	"	"	"	TO-14
Tetrachloroethene	ND	350	"	"	"	"	"	"	TO-14
1,1,2-Trichloroethane	ND	280	"	"	"	"	"	"	TO-14
1,1,1-Trichloroethane	ND	280	"	"	"	"	"	"	TO-14
Trichloroethene	ND	270	"	"	"	"	"	"	TO-14
Trichlorofluoromethane	ND	290	"	"	"	"	"	"	TO-14
1,3,5-Trimethylbenzene	ND	250	"	"	"	"	"	"	TO-14
1,2,4-Trimethylbenzene	ND	250	"	"	"	"	"	"	TO-14
Vinyl acetate	ND	180	"	"	"	"	"	"	TO-14
Vinyl chloride	ND	130	"	"	"	"	"	"	TO-14
1,4-Dioxane	ND	180	"	"	"	"	"	"	TO-14
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	TO-14
Methyl isobutyl ketone	ND	210	"	"	"	"	"	"	TO-14
Benzene	ND	160	"	"	"	"	"	"	TO-14
Toluene	ND	190	"	"	"	"	"	"	TO-14
Ethylbenzene	ND	220	"	"	"	"	"	"	TO-14
m,p-Xylene	ND	220	"	"	"	"	"	"	TO-14
o-Xylene	ND	220	"	"	"	"	"	"	TO-14
Total Volatile Organic Compounds	by TO-3 (modified)								
C6-C12 (GRO)	ND	7170	ug/m³ Air	1.71	8020145	"	02/01/18	TO-3/TO-14	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 5 of 21

m

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/12/18 16:21

B-15-25.0 T180397-02 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorio	es, Inc.					
ГО-15									
Acetone	ND	120	ug/m³ Air	2.06	8020144	02/01/18	02/01/18	TO-15	TO-14
1,3-Butadiene	ND	110	"	"	"	"	"	"	TO-14
Carbon Disulfide	ND	160	"	"	"	"	"	"	TO-14
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	390	"	"	"	"	"	"	TO-14
Isopropyl alcohol	ND	130	"	"	"	"	"	"	TO-14
Bromodichloromethane	ND	340	"	"	"	"	"	"	TO-14
Bromoform	ND	530	"	"	"	"	"	"	TO-14
Bromomethane	ND	200	"	"	"	"	"	"	TO-14
Carbon tetrachloride	ND	320	"	"	"	"	"	"	TO-14
Chlorobenzene	ND	230	"	"	"	"	"	"	TO-14
Chloroethane	ND	130	"	"	"	"	"	"	TO-14
Chloroform	ND	250	"	"	"	"	"	"	TO-14
Chloromethane	ND	110	"	"	"	"	"	"	TO-14
Cyclohexane	ND	170	"	"	"	"	"	"	TO-14
Heptane	ND	210	"	"	"	"	"	"	TO-14
Hexane	ND	180	"	"	"	"	"	"	TO-14
Dibromochloromethane	ND	430	"	"	"	"	"	"	TO-14
1,2-Dibromoethane (EDB)	ND	390	"	"	"	"	"	"	TO-14
1,2-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
1,3-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
1,4-Dichlorobenzene	ND	310	"	"	"	"	"	"	TO-14
Dichlorodifluoromethane	ND	250	"	"	"	"	"	"	TO-14
1,1-Dichloroethane	ND	210	"	"	"	"	"	"	TO-14
1,2-Dichloroethane	ND	210	"	"	"	"	"	"	TO-14
1,1-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
cis-1,2-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
trans-1,2-Dichloroethene	ND	200	"	"	"	"	"	"	TO-14
1,2-Dichloropropane	ND	240	"	"	"	"	"	"	TO-14
cis-1,3-Dichloropropene	ND	230	"	"	"	"	"	"	TO-14
trans-1,3-Dichloropropene	ND	230	"	"	"	"	"	"	TO-14
4-Ethyltoluene	ND	250	"	"	"	"	"	"	TO-14

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

47

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/12/18 16:21

B-15-25.0 T180397-02 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	aboratorie	es, Inc.					
TO-15									
Methylene chloride	ND	180	ug/m³ Air	2.06	8020144	02/01/18	02/01/18	TO-15	TO-14
Styrene	ND	220	"	"	"	"	"	"	TO-14
1,1,2,2-Tetrachloroethane	ND	350	"	"	"	"	"	"	TO-14
Tetrahydrofuran	ND	150	"	"	"	"	"	"	TO-14
Tetrachloroethene	ND	350	"	"	"	"	"	"	TO-14
1,1,2-Trichloroethane	ND	280	"	"	"	"	"	"	TO-14
1,1,1-Trichloroethane	ND	280	"	"	"	"	"	"	TO-14
Trichloroethene	770	270	"	"	"	"	"	"	TO-14
Trichlorofluoromethane	ND	290	"	"	"	"	"	"	TO-14
1,3,5-Trimethylbenzene	ND	250	"	"	"	"	"	"	TO-14
1,2,4-Trimethylbenzene	ND	250	"	"	"	"	"	"	TO-14
Vinyl acetate	ND	180	"	"	"	"	"	"	TO-14
Vinyl chloride	ND	130	"	"	"	"	"	"	TO-14
1,4-Dioxane	ND	180	"	"	"	"	"	"	TO-14
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	TO-14
Methyl isobutyl ketone	ND	210	"	"	"	"	"	"	TO-14
Benzene	ND	160	"	"	"	"	"	"	TO-14
Toluene	ND	190	"	"	"	"	"	"	TO-14
Ethylbenzene	ND	220	"	"	"	"	"	"	TO-14
m,p-Xylene	ND	220	"	"	"	"	"	"	TO-14
o-Xylene	ND	220	"	"	"	"	"	"	TO-14
Total Volatile Organic Compounds l	oy TO-3 (modified)								
C6-C12 (GRO)	ND	7170	ug/m³ Air	2.06	8020145	"	02/01/18	TO-3/TO-14	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Page 7 of 21

m

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/12/18 16:21

B-4-15.0 T180397-03 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar l	Laboratorie	es, Inc.					
TO-15									
Acetone	ND	12	ug/m³ Air	1.69	8020144	02/01/18	02/02/18	TO-15	
,3-Butadiene	ND	4.5	"	"	"	"	"	"	
Carbon Disulfide	ND	3.2	"	"	"	"	"	"	
,1,2-trichloro-1,2,2-trifluoroethane CFC 113)	ND	7.7	"	"	"	"	"	"	
sopropyl alcohol	ND	13	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
Bromoform	ND	11	"	"	"	"	"	"	
Bromomethane	ND	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Chloroethane	ND	2.7	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	11	"	"	"	"	"	"	
Cyclohexane	ND	3.5	"	"	"	"	"	"	
Ieptane	ND	4.2	"	"	"	"	"	"	
Iexane	ND	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	8.7	"	"	"	"	"	"	
,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	6.1	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	6.1	"	"	"	"	"	"	
,4-Dichlorobenzene	ND	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
,2-Dichloroethane	ND	4.1	"	"	"	"	"	"	
,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
is-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
,2-Dichloropropane	ND	4.7	"	"	"	"	"	"	
is-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
-Ethyltoluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15

Project Manager: Derrick Willis

Reported:

02/12/18 16:21

B-4-15.0 T180397-03 (Air)

Project: 3rd & Fairfax

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorie	es, Inc.					
TO-15									
Methylene chloride	ND	3.5	ug/m³ Air	1.69	8020144	02/01/18	02/02/18	TO-15	
Styrene	ND	4.3	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	3.0	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	17	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	18	"	"	"	"	"	"	
2-Butanone (MEK)	ND	15	"	"	"	"	"	"	
Methyl isobutyl ketone	ND	42	"	"	"	"	"	"	
Benzene	ND	3.3	"	"	"	"	"	"	
Toluene	15	3.8	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.8 %	40-1	60	"	"	"	"	
Total Volatile Organic Compounds b	y TO-3 (modified)								
C6-C12 (GRO)	11600	7170	ug/m³ Air	1.69	8020145	"	02/01/18	TO-3/TO-14	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

m

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/12/18 16:21

TO-15 - Quality Control

SunStar Laboratories, Inc.

											1
		Reporting		Spike	Source		%REC		RPD	ŀ	ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Ratch	8020144 -	Canister	Analysis
Datti	0040144 -	Camster	Allalysis

Blank (8020144-BLK1)			Prepared: 02/01/18 Analyzed: 02/02/1	8
Acetone	ND	12	n³ Air	
1,3-Butadiene	ND	4.5	n .	
Carbon Disulfide	ND	3.2	n .	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC	ND	7.7	"	
113)				
Isopropyl alcohol	ND	13	"	
Bromodichloromethane	ND	6.8	"	
Bromoform	ND	11	"	
Bromomethane	ND	4.0	"	
Carbon tetrachloride	ND	6.4	"	
Chlorobenzene	ND	4.7	"	
Chloroethane	ND	2.7	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	11	"	
Cyclohexane	ND	3.5	"	
Heptane	ND	4.2	"	
Hexane	ND	3.6	"	
Dibromochloromethane	ND	8.7	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,2-Dichlorobenzene	ND	6.1	"	
1,3-Dichlorobenzene	ND	6.1	"	
1,4-Dichlorobenzene	ND	6.1	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	4.1	"	
1,2-Dichloroethane	ND	4.1	"	
1,1-Dichloroethene	ND	4.0	"	
cis-1,2-Dichloroethene	ND	4.0	"	
trans-1,2-Dichloroethene	ND	4.0	"	
1,2-Dichloropropane	ND	4.7	"	
cis-1,3-Dichloropropene	ND	4.6	"	
trans-1,3-Dichloropropene	ND	4.6	"	
4-Ethyltoluene	ND	5.0	"	
Methylene chloride	ND	3.5	"	
Styrene	ND	4.3	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	
Tetrahydrofuran	ND	3.0	n	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fashel

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/12/18 16:21

TO-15 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020144 - Canister Analysis										

Blank (8020144-BLK1)				Prepared: 02/01/	18 Analyzed: 02	2/02/18	
Tetrachloroethene	ND	6.9	ug/m³ Air				
1,1,2-Trichloroethane	ND	5.6	"				
1,1,1-Trichloroethane	ND	5.6	"				
Trichloroethene	ND	5.5	"				
Trichlorofluoromethane	ND	5.7	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
Vinyl acetate	ND	3.6	"				
Vinyl chloride	ND	2.6	"				
1,4-Dioxane	ND	18	"				
2-Butanone (MEK)	ND	15	"				
Methyl isobutyl ketone	ND	42	"				
Benzene	ND	3.3	"				
Toluene	ND	3.8	"				
Ethylbenzene	ND	4.4	"				
m,p-Xylene	ND	8.8	"				
o-Xylene	ND	4.4	"				
Surrogate: 4-Bromofluorobenzene	33.6		"	45.3	74.2	40-160	

Duplicate (8020144-DUP1)	Source: T	180354	-01	Prepared: 02/01/18 Analyzed: 02/02/18	
Acetone	ND	12	ug/m³ Air	ND	30
1,3-Butadiene	ND	4.5	"	ND	30
Carbon Disulfide	ND	3.2	"	ND	30
1,1,2-trichloro-1,2,2-trifluoroethane (CFC	ND	7.7	"	ND	30
113)					
Isopropyl alcohol	ND	13	"	ND	30
Bromodichloromethane	ND	6.8	"	ND	30
Bromoform	ND	11	"	ND	30
Bromomethane	ND	4.0	"	ND	30
Carbon tetrachloride	ND	6.4	"	ND	30
Chlorobenzene	ND	4.7	"	ND	30
Chloroethane	ND	2.7	"	ND	30
Chloroform	ND	5.0	"	ND	30
Chloromethane	ND	11	"	ND	30
Cyclohexane	ND	3.5	"	ND	30
Heptane	ND	4.2	"	ND	30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasher

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project: 3rd & Fairfax

Project Number: 2047.15 Project Manager: Derrick Willis Reported:

02/12/18 16:21

TO-15 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratah	2020144	Conjetor	Analyzaia

Duplicate (8020144-DUP1)	Source	e: T180354	-01	Prepared: 02/01/18	Analyzed: 02/02/18	
Hexane	ND	3.6	ug/m³ Air	ND		30
Dibromochloromethane	ND	8.7	"	ND		30
1,2-Dibromoethane (EDB)	ND	7.8	"	ND		30
1,2-Dichlorobenzene	ND	6.1	"	ND		30
1,3-Dichlorobenzene	ND	6.1	"	ND		30
1,4-Dichlorobenzene	ND	6.1	"	ND		30
Dichlorodifluoromethane	ND	5.0	"	ND		30
1,1-Dichloroethane	ND	4.1	"	ND		30
1,2-Dichloroethane	ND	4.1	"	ND		30
1,1-Dichloroethene	ND	4.0	"	ND		30
cis-1,2-Dichloroethene	ND	4.0	"	ND		30
trans-1,2-Dichloroethene	ND	4.0	"	ND		30
1,2-Dichloropropane	ND	4.7	"	ND		30
cis-1,3-Dichloropropene	ND	4.6	"	ND		30
trans-1,3-Dichloropropene	ND	4.6	"	ND		30
4-Ethyltoluene	ND	5.0	"	ND		30
Methylene chloride	ND	3.5	"	ND		30
Styrene	ND	4.3	"	ND		30
1,1,2,2-Tetrachloroethane	ND	7.0	"	ND		30
Tetrahydrofuran	ND	3.0	"	ND		30
Tetrachloroethene	110	6.9	"	111	1.04	30
1,1,2-Trichloroethane	ND	5.6	"	ND		30
1,1,1-Trichloroethane	ND	5.6	"	ND		30
Trichloroethene	13.0	5.5	"	13.4	3.13	30
Trichlorofluoromethane	ND	5.7	"	ND		30
1,3,5-Trimethylbenzene	ND	5.0	"	ND		30
1,2,4-Trimethylbenzene	ND	5.0	"	ND		30
Vinyl acetate	ND	3.6	"	ND		30
Vinyl chloride	ND	2.6	"	ND		30
1,4-Dioxane	ND	18	"	ND		30
2-Butanone (MEK)	ND	15	"	ND		30
Methyl isobutyl ketone	ND	42	"	ND		30
Benzene	1.96	3.3	"	ND		30
Γoluene	9.49	3.8	"	10.1	6.49	30
C4hlh						
Ethylbenzene	2.60	4.4	"	2.67	2.53	30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hose Fasheh

Northgate Environmental Management -- Laguna Hills

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15
Project Manager: Derrick Willis

Reported:

02/12/18 16:21

TO-15 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8020144 - Canister Analysis

Duplicate (8020144-DUP1)	Source	: T180354-01	Prepared: 02	2/01/18 Aı	nalyzed: 02	2/02/18			
o-Xylene	4.20	4.4 ug/m³ Air		4.34			3.13	30	
Surrogate: 4-Bromofluorobenzene	37.4	"	45.3		82.6	40-160			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130 Laguna Hills CA, 92653 Project Number: 2047.15 Project Manager: Derrick Willis **Reported:** 02/12/18 16:21

Total Volatile Organic Compounds by TO-3 (modified) - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020145 - Canister Analysis									
Blank (8020145-BLK1)			Prepared: 0	02/01/18 A	nalyzed: 02	/02/18			
C6-C12 (GRO)	ND	7170 ug/m³ Air							
Duplicate (8020145-DUP1)	Sour	rce: T180397-01	Prepared: 0	02/01/18 A	nalyzed: 02	/02/18			
C6-C12 (GRO)	ND	7170 ug/m³ Air	·	1930				30	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh, Project Manager

Northgate Environmental Management -- Laguna Hills

Project: 3rd & Fairfax

24411 Ridge Route Drive, Suite 130

Laguna Hills CA, 92653

Project Number: 2047.15
Project Manager: Derrick Willis

Reported: 02/12/18 16:21

Notes and Definitions

TO-14 TO-15 analysis of sample was not performed due to high concentration of analyte(s). Sample was analyzed utilizing method TO-14 and

reporting limit has been adjusted accordingly.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rose Fasheh

AIR LABORATORY

Chain of Custody Record

Client: Northsate Environmental

Address: 24411 Aidse Rovie #130, Lasura Hills Pro
Phone: (949) 716-0050 Fax: (949) 716-0055 Co

Project Manager:

Bai

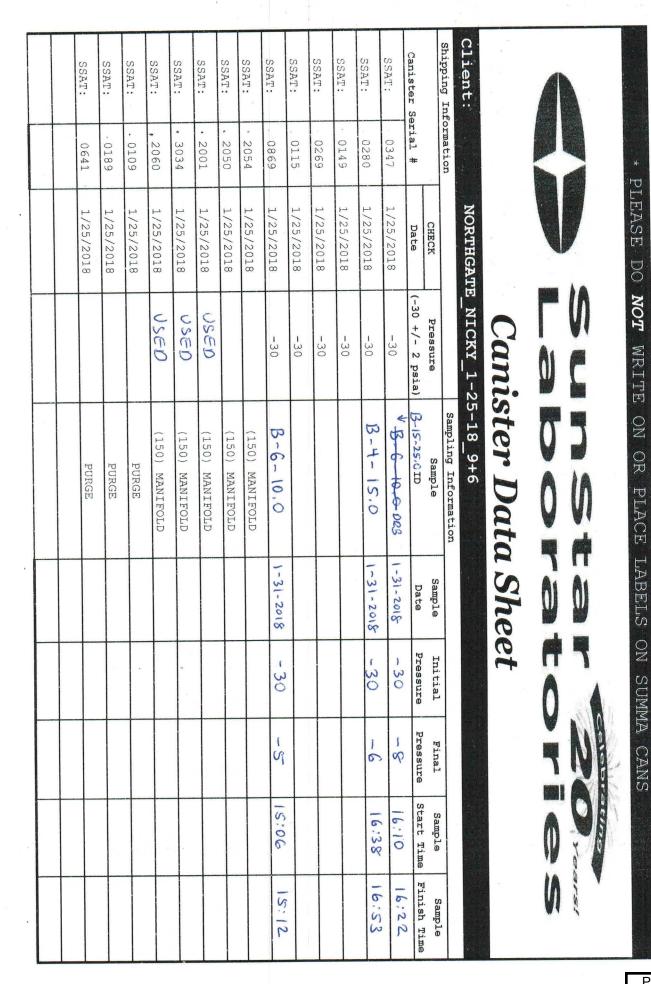
SunStar Laboratories, Inc.

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020

			5		
	Batch #:	Collector Dana Brown	Is Project Name: 3rd & Fairfax	Date: 1-31-2018	949-297-5020
	EDF#:	Client Project #: 2047, 15		Page:	
		2047,15		Of 1	
-		. [1		

*TO-15 SIM analysis available upon prior notification. (Precertified Summa cans needed)	Relinquished by: (signature)	Relinquished by: (signature)	1 la / 1 Dana Brown	Reinquished by: (signature)					1-31-18	Sald	10.31-4-8	8-15-25.0	3-6-10.0	Sample ID
pon prior notif	Date	Date	1 Cma	Date /							1-31-18	-	\vdash	Date Sampled
ication. (Date / Time	Date / Time	2 11:33	/Time							16:38	16.10	15:06	Start
Precertifi	Receive	Receive		Receive							16:03		15:06 15:12	Finish Time
ed Summ	Received by: (signature)	Received by: (signature)	N	Received by: (signature)							26	200	56	Sample Type: Soil Gas / Indoor Air
a cans neede	8		11 1	11					8		26	250	SC	Container Type: Summa Can /
d)	Date / Time	Date / Time	1	Date / Time							200	-30	-30	Initial Pressure
	Turn around time: Norma	Re	Chai	12:35							0	28	1500	Final
	aroun	Seals intact? Y/N/N/A Received good condition/cold	Chain of Custody seals								D	A	Þ	TO-3
	d tim	Seals intact?	ustod	Total		\Box	\perp	_					4	TO-14
	e Z	intac	y sea	Total # of containers		+	+	+	-	\vdash	1	> D	P	TO-15 8015m Methane
	073	t? Y/I	Is Y/N	conta			++	-			+	+	+	8015m Gasoline
	2	old (NAME OF THE PERSON OF THE PERS	iners	\vdash	+	\forall			+		\dagger	1	Fixed Gases by TCD
		T		w	\top	++	+	1		\vdash	H	T		
COCAL 165437		No state of the st	וו	Notes	-						3777170280	541-0371	2864 - 2864	umma Can # / C
											03	2	Õ	Laboratory ID #

SAMPLE RECEIVING REVIEW SHEET


Batch/Work Order #:	T180397					
Client Name:	NORTHGATE	Project:	_	31	40 d	FAIRFAX
Delivered by:	Client SunStar Courier	· GSO [FedEx	Othe	er	
If Courier, Received by:		Date/Time Cou Received:				•
Lab Received by:	BRINN	Date/Time Lab Received:		2/1/1	12:3	's
Total number of coolers re	eceived: »			/ /		
Temperature: Cooler #1	°C +/- the CF (- 0.2°C)	=	°C correct	ted temperati	ure	
Temperature: Cooler #2	°C +/- the CF (- 0.2°C)	=	°C correct	ted temperati	ure	
Temperature: Cooler #3	°C +/- the CF (- 0.2°C)	=	°C correct	ted temperati	ure	
Temperature criteria = 5 (no frozen containers)	≤ 6°C Within cr	riteria?	Yes	□No		
If NO:						
Samples received	on ice?		□No →	e Non-Co	nformana	e Sheet
If on ice, samples collected?	received same day	Acceptable	□No →	e Non-Co		
Custody seals intact on co	ooler/sample		Yes	□No*	N/A	
Sample containers intact			Yes	□No*		
Sample labels match Cha	in of Custody IDs		Yes	□No*		
Total number of container	rs received match COC		Yes	□No*		
Proper containers received	d for analyses requested on COC		Yes	□No*		
Proper preservative indica	ated on COC/containers for analyses	s requested	Yes	□No*	N/A	
	ved in good condition with correct to es preservatives and within method s		Yes Yes	□No*		
* Complete Non-Conformar	nce Receiving Sheet if checked Coo	oler/Sample Revie	w - Initials	and date:	Bc z	11/19
Comments:						/ /

Page 1 of __/_

Project Name: 3rd a	nd Fairfax	And the second			KATHERINE
Company: Northgat	е				V
Name: Nicky					^
Item		Quantity		Unit	
2 oz Jars 24/CS					
4 oz Jars 24/CS		15			
8 oz Jars 12/CS		45			
40 ml unpreserved VC	As 100/box	53(8-TP)		0.0000000000000000000000000000000000000	and the second
40 ml HCL-preserved		90			
250 ml Poly 24/CS		15-HN03			建筑建筑建筑
1 Liter Poly 12/CS		The second second			A CONTRACTOR OF THE STATE OF TH
500 ml Poly 16/CS		Carried States			
500 ml Amber Bottle \	Wide 12/CS	The second of	No. of the Control of		100000000000000000000000000000000000000
1 Liter Amber Bottle 1	2/CS	2000			4.575.055.05
1 Gallon Poly 4/box				100000000000000000000000000000000000000	
5035 kits:(2)Sodium E	Bisulfate VOAs 72/box	182	2		
	(1) Methanol VOA 72/box	91			
	(1)Syringe 50/pack	91			
Lock-N-Load Handle	1/pack			-	
Tedlar Bags 10/pack			9		
Sub Slab Insert w/ wa	sher & N/F				
Soil Gas SS 16" Drop	Tubes				
Gas Extraction Fitting			×		
Soil Gas Filters			3 2 × ×		
		# Sent	Used	Unused	Unreturned
	400cc				
Batch Certified	1L	9(3-P)	3	. 3	0
Summa Canisters	3L				
	6L		1		
	400cc				
Individually	1L				
Certified Summa	3L				
Canisters	6L				
ManifoldS: Inst. Samp		5-(150) MANIF	OLDS	CHARGE	7
Swagelok Fittings: No		5-NUTS/FERR		CHARGE	
Cooler (Sm, Med, Lrg		4-LRG		CHARGE	
Other: Poly Tube, Valv		1			
Canoni Toly Tube, Valv	es, emeeti Tape, etc.				
Prepared By: JH		Date: 1-25-	18		
Reviewed By:		Date:			

Effective Date: 01/01/2017

Page 20 of 21

-		
D		
_		
~		
3		
_		
_		
19		
-		
Ð		
1		
-		
-		
-		
()		
_		
_		
2		
\sim		

Asset Tag Asset Type Serial No Location Customer No. Customer Name 0115 1000cc: 1000cc Summa 0109 Sunstar Labs, Tustin Air Lab Northgate-Nicky Nicky Galloway 0149 1000cc: 1000cc Summa 0149 Sunstar Labs, Tustin Air Lab Northgate-Nicky Nicky Galloway 0189 1000cc: 1000cc Summa 0189 Sunstar Labs, Tustin Air Lab Northgate-Nicky Nicky Galloway 0280 1000cc: 1000cc Summa 0269 Sunstar Labs, Tustin Air Lab Northgate-Nicky Nicky Galloway 0347 1000cc: 1000cc Summa 0280 Sunstar Labs, Lake Forest Air Northgate-Nicky Nicky Galloway 0869 1000cc: 1000cc Summa 0347 Sunstar Labs, Lake Forest Air Northgate-Nicky Nicky Galloway 2001 Vapor Manifold: Vapor Manifold 2001 Sunstar Labs, SunStar Labs Northgate-Nicky Nicky Galloway 2050 Vapor Manifold: Vapor Manifold 2050 Sunstar Labs, SunStar Labs Northgate-Nicky Nicky Galloway 2060 Vapor Manifold: Vapor Manifold 2054 Sunstar Labs, Lake Forest Air	Check-In Date: 2/1/2018	e: 2/1/2018		User Name: Charon, Brian	1	
1000cc: 1000cc Summa 1000cc: 1	Asset Tag	Asset Type	Serial No	Location	Customer No.	Customer Name
1000cc: 1000cc Summa 0115 Sunstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0149 Sunstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0189 Sunstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0269 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0280 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0347 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0869 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, SunStar Labs - Northgate-Nicky South Sunstar Labs, SunStar Labs - Northgate-Nicky South Sunstar Labs, Lake Forest Air Northgate-Nicky Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, Lake Forest Air No	0109	1000cc: 1000cc Summa	0109		Northgate-Nicky	Nicky Galloway
1000cc: 1000cc: Summa 0149 Sunstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc: 1000cc Summa 0189 Sunstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0269 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0280 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0347 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0869 Sunstar Labs, SunStar Labs - Northgate-Nicky Northgate-Nicky Vapor Manifold: Vapor Manifold 2050 Sunstar Labs, Lake Forest Air SunStar Labs - Northgate-Nicky Northgate-Nicky Vapor Manifold: Vapor Manifold 2054 Sunstar Labs, Lake Forest Air SunStar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky	0115	1000cc: 1000cc Summa	0115		Northgate-Nicky	Nicky Galloway
1000cc: 1000cc Summa 0189 Sumstar Labs, Tustin Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0269 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0280 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0347 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0869 Sunstar Labs, SunStar Labs - South Northgate-Nicky Vapor Manifold: Vapor Manifold 2001 Sunstar Labs, SumStar Labs - South Northgate-Nicky Vapor Manifold: Vapor Manifold 2050 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2050 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky <td>0149</td> <td>1000cc: 1000cc Summa</td> <td>0149</td> <td></td> <td>Northgate-Nicky</td> <td>Nicky Galloway</td>	0149	1000cc: 1000cc Summa	0149		Northgate-Nicky	Nicky Galloway
1000cc: 1000cc Summa 0269 Sunstar Labs, Lake Forest Air Lab Northgate-Nicky 1000cc: 1000cc Summa 0280 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0347 Sunstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 0869 Sunstar Labs, SunStar Labs - Lab Northgate-Nicky Vapor Manifold: Vapor Manifold 2001 Sunstar Labs, SunStar Labs - South Northgate-Nicky Vapor Manifold: Vapor Manifold 2050 Sunstar Labs, Lake Forest Air SunStar Labs, Lake Forest Air Lab Northgate-Nicky Vapor Manifold: Vapor Manifold 2054 Sunstar Labs, Lake Forest Air Labs Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Labs Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Labs Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Labs Northgate-Nicky	0189	1000cc: 1000cc Summa	0189		Northgate-Nicky	Nicky Galloway
1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Summa 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Sumstar Labs, Lake Forest Air Northgate-Nicky 1000cc: 1000cc Sumstar	0269	1000cc: 1000cc Summa	0269	Sunstar Labs, Lake Forest Air	Northgate-Nicky	Nicky Galloway
1000cc: 1000cc Summa 0347 Lab 1000cc: 1000cc Summa 0869 Sunstar Labs, Lake Forest Air Vapor Manifold: Vapor Manifold Sunstar Labs, Lake Forest Air Vapor Manifold: Vapor Manifold Sunstar Labs, Lake Forest Air Lab Vapor Manifold: Vapor Manifold Sunstar Labs, Lake Forest Air Lab Sunstar Labs, Lake Forest Air Northgate-Nicky Sunstar Labs, Lake Forest Air Northgate-Nicky Sunstar Labs, Lake Forest Air Northgate-Nicky	0280	1000cc: 1000cc Summa	0280	Sunstar Labs, Lake Forest Air Lab	Northgate-Nicky	Nicky Galloway
1000cc: 1000cc Summa 0869 Sunstar Labs, SunStar Labs - Northgate-Nicky South Vapor Manifold: Vapor Manifold Sunstar Labs, Lake Forest Air Sunstar Labs, Lake Forest Air Vapor Manifold: Vapor Manifold Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Vapor Manifold: Vapor Manifold Sunstar Labs, SunStar Labs - Northgate-Nicky Lab Sunstar Labs, SunStar Labs - Northgate-Nicky South	0347	1000cc: 1000cc Summa	0347	Sunstar Labs, Lake Forest Air Lab	Northgate-Nicky	Nicky Galloway
Vapor Manifold: Vapor Manifold 2001 Sunstar Labs, SunStar Labs - Northgate-Nicky South Vapor Manifold: Vapor Manifold 2050 Vapor Manifold: Vapor Manifold 2054 Vapor Manifold: Vapor Manifold 2060 Vapor Manifold: Vapor Manifold 2060 Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, SunStar Labs - Northgate-Nicky South	0869	1000cc: 1000cc Summa	0869	Sunstar Labs, SunStar Labs - South	Northgate-Nicky	Nicky Galloway
Vapor Manifold: Vapor Manifold 2050 Vapor Manifold: Vapor Manifold 2054 Vapor Manifold: Vapor Manifold 2060 Vapor Manifold: Vapor Manifold 2060 Vapor Manifold: Vapor Manifold 3034 Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, SunStar Labs - Northgate-Nicky South	2001	Vapor Manifold: Vapor Manifold	2001	Sunstar Labs, SunStar Labs - South	Northgate-Nicky	Nicky Galloway
Vapor Manifold: Vapor Manifold 2054 Sunstar Labs, Lake Forest Air Northgate-Nicky Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, SunStar Labs - Northgate-Nicky South	2050	Vapor Manifold: Vapor Manifold	2050	Sunstar Labs, Lake Forest Air Lab	Northgate-Nicky	Nicky Galloway
Vapor Manifold: Vapor Manifold 2060 Sunstar Labs, Lake Forest Air Northgate-Nicky Lab Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, SunStar Labs - Northgate-Nicky South	2054	Vapor Manifold: Vapor Manifold	2054	Sunstar Labs, Lake Forest Air Lab	Northgate-Nicky	Nicky Galloway
Vapor Manifold: Vapor Manifold 3034 Sunstar Labs, SunStar Labs - Northgate-Nicky South	2060	Vapor Manifold: Vapor Manifold	2060	Sunstar Labs, Lake Forest Air Lab	Northgate-Nicky	Nicky Galloway
	3034	Vapor Manifold: Vapor Manifold	3034	Sunstar Labs, SunStar Labs - South	Northgate-Nicky	Nicky Galloway

641

1000cc: 1000cc Summa

Sunstar Labs, Tustin Air Lab

Northgate-Nicky

Nicky Galloway

WORK ORDER

T180397

Client: Northgate Environmental Management -- Laguna Project Manager: Rose Fasheh
Project: 3rd & Fairfax Project Number: 2047.15

Report To:

Northgate Environmental Management -- Laguna Hills

Derrick Willis

24411 Ridge Route Drive, Suite 130

Laguna Hills, CA 92653

Date Due: 02/12/18 17:00 (7 day TAT)

Received By: Brian Charon Date Received: 02/01/18 12:35 Logged In By: Brian Charon Date Logged In: 02/01/18 12:43

Samples Received at:

Custody Seals No Received On Ice No

Containers Intact Yes
COC/Labels Agree Yes
Preservation Confir No

Analysis	Due	TAT	Expires	Comments
T180397-01 B-6-10. (US &	0 [Air] Sampled 01/31/18 15:	06 (GMT-	08:00) Pacific Time	
TO-15	02/12/18 15:00	7	03/02/18 15:06	
TO-3	02/12/18 15:00	7	03/02/18 15:06	
(US & TO-15	02/12/18 15:00	7	03/02/18 16:10	
		,		
TO-3	02/12/18 15:00	7	03/02/18 16:10	
	0 [Air] Sampled 01/31/18 16:	38 (GMT-	08:00) Pacific Time	
(US &				
TO-15	02/12/18 15:00	7	03/02/18 16:38	

Reviewed By

Date

Certificate of Analysis

PLM Asbestos Identification

Northgate Environmental 100 Quail St., Ste. #102 Newport Beach, CA 92660 Report Number: 699561 Project Number: 2047 15

Project Name: 3rd and Fairfax

Project Location:

Date Collected: 1/30/2018 Collected By:
Date Received: 2/1/2018 Claim Number:
Date Analyzed: 2/7/2018 PO Number:

Date Reported: 2/7/2018 Number of Samples: 15

Lab/Client ID/Layer **Material Description** Color Composition (%) Location NA 699561-001 NA B-5-10 **Total Asbestos None Detected** 699561-002 NA NA B-14-10 **Total Asbestos None Detected** 699561-003 NA NA B-1-10**Total Asbestos None Detected** NA 699561-004 NA B-2-10 **Total Asbestos None Detected** 699561-005 NA NA B-6-10 **Total Asbestos None Detected** 699561-006 NA NA B-11-10 **Total Asbestos None Detected**

Certificate of Analysis

PLM Asbestos Identification

tel - 714-899-8900 free - 888-743-0998 fax - 714-899-1188 PatriotLab.com 1041 S. Placentia Avenue, Fullerton, CA 92831

Northgate Environ 100 Quail St., Ste. Newport Beach, C	#102	Report Number: Project Number: Project Name: Project Location:	699561 2047 15 3rd and Fairfax	
Date Collected: Date Received: Date Analyzed: Date Reported:	2/7/2018	Collected By: Claim Number: PO Number: Number of Samples:		
Lab/Client ID/La		Material Desc	ription Color	Composition (%)
699561-007 B-13-1 0	NA	NA		
Total Asbestos	None Detected			
699561-008 B-3-1 0	NA	NA		
Total Asbestos	None Detected			
699561-009 B-7-1 0	NA	NA		
Total Asbestos	None Detected			
699561-010 B-9-1 0	NA	NA		
Total Asbestos	None Detected			
699561-011 B-8-1 0	NA	NA		4
Total Asbestos	None Detected			
699561-012 B-12-1 0	NA	NA	Annive	rsary
Total Asbestos	None Detected		()	

Certificate of Analysis

PLM Asbestos Identification

tel - 714-899-8900 free - 888-743-0998 fax - 714-899-1188 PatriotLab.com 1041 S. Placentia Avenue, Fullerton, CA 92831

Northgate Environr 100 Quail St., Ste. a Newport Beach, CA	#102	Project Number:	699561 2047 15 3rd and Fairfax		
Date Collected:	1/30/2018	Collected By:			
Date Received:	2/1/2018	Claim Number:			
Date Analyzed:	2/7/2018	PO Number:			
Date Reported:	2/7/2018	Number of Samples:	15		
Lab/Client ID/La	yer Location	Material Descrip	ction Color C	Composition (%)	
699561-013	NA	NA			
B-4-1 0					
Total Asbestos	None Detected	4 1111			
699561-014 B-15-1 0	NA	NA			
Total Asbestos	None Detected				
699561-015 B-10-1 0	NA	NA			
Total Asbestos	None Detected	FREEZE	ALL		
<u> </u>	Paul Jonge	<u> </u>	ARAGO.	7/	
R	aul Lanuza - Analyst		Kwin Legaspi - Approved	Ву	

Bulk sample(s) submitted was (were) analyzed in accordance with the procedure outlined in the US Federal Register 40 CFR 763, Subpart F, Appendix A; EPA-600/R-93/116 (Method for Determination of Asbestos in Building Materials), and EPA-600/M4-82-020 (US EPA Interim Method for the Determination of Asbestos in Bulk Insulation Samples). Samples were analyzed using Calibrated Visual Estimations (CVES); therefore, results may not be reliable for samples of low asbestos concentration levels. Samples of wall systems containing discrete and separable layers are analyzed separately and reported as composite unless specifically requested by the customer to report analytical results for individual layers. This report applies only to the items tested. Results are representative of the samples submitted and may not represent the entire material from which the samples were collected. "None Detected" means that no asbestos was observed in the sample. "<1%" (less than one percent) means that asbestos was observed in the sample but the concentration is below the quantifiable level of 1%. This report was issued by a NIST/NVLAP (Lab Code 200358-0) and CADOHS- ELAP (Cert. No. 2540) accredited laboratory and may not be reproduced, except in full without the expressed written consent of Patriot Environmental Laboratory Services, Inc. This report may not be used to claim product certification, approval or endorsement by NIST, NVLAP, ELAP or any government agency.