GEOTECHNICAL REPORT

KAISER PERMANENTE SFNT 2018 MLF HESPERIA MOB D0476, VACANT PARCELS 5-9, APN #3057-011-22-0-00 THRU 3057-011-26-0-000, ESCONDIDO AVENUE HESPERIA, CALIFORNIA

GEOTECHNICAL REPORT

KAISER PERMANENTE SFNT 2018 MLF HESPERIA MOB D0476, VACANT PARCELS 5-9, APN #3057-011-22-0-00 THRU 3057-011-26-0-000, ESCONDIDO AVENUE HESPERIA, CALIFORNIA

Prepared for:

Kaiser Foundation Health Plan, Inc. Fontana, California

By:

GEOBASE, INC. 23362 Peralta Drive, Unit 4 Laguna Hills, California 92653 (949) 588-3744

> May 2018 Project No. C.314.84.10

TABLE OF CONTENTS

COVER TABLE	PAGE OF CONTENTS	l ii
I.	INTRODUCTION	. 1 . 1
II.	REVIEW OF AVAILABLE REPORT	. 2
III.	SITE AND PROJECT DESCRIPTIONS 3.1 Site Description 3.2 Project Description	. 3
IV.	SITE INVESTIGATION	. 4
V.	SUBSURFACE CONDITIONS5.1 Subsoils Conditions5.2 Groundwater Conditions	. 6
VI.	SEISMICITY. 6.1 Site Accelerations	. 7 . 7 . 8 . 8 . 8 . 9 . 9
	(MCE _G) Peak Ground Acceleration	10 11 11 11

Page

TABLE OF CONTENTS continued...

/III. SITE DEVELOPMENT RECOMMENDATIONS. 14 8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 16 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21	VI.	SEISMICITY continued	
6.2.6 Lateral Spreading 13 6.2.7 Subsidence 13 /II. CONCLUSIONS 13 /III. SITE DEVELOPMENT RECOMMENDATIONS 14 8.1 General 14 8.2 Clearing 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		6.2.4 Surface Rupture 1	2
6.2.7 Subsidence. 13 /II. CONCLUSIONS. 13 /III. SITE DEVELOPMENT RECOMMENDATIONS. 14 8.1 General 14 8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad. 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Deep Foundations 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER		6.2.5 Seismically Induced Landsliding 1	3
6.2.7 Subsidence. 13 /II. CONCLUSIONS. 13 /III. SITE DEVELOPMENT RECOMMENDATIONS. 14 8.1 General 14 8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad. 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Deep Foundations 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER			
/III. SITE DEVELOPMENT RECOMMENDATIONS. 14 8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 16 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
/III. SITE DEVELOPMENT RECOMMENDATIONS. 14 8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 16 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.1 General 14 8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21	VII.	CONCLUSIONS1	3
8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21	VIII.	SITE DEVELOPMENT RECOMMENDATIONS1	4
8.2 Clearing. 14 8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		8.1 General	4
8.3 Subgrade Preparation 15 8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.3.1 Building Pad 15 8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		•	
8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas 16 8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.3.3 Footing Foundations 16 8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		5	
8.3.4 Deep Foundations 17 8.4 Fill Placement 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 8.7 Trench Backfill 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.4 Fill Placement. 17 8.4.1 Preparation of Bottom of Excavations 17 8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.4.1 Preparation of Bottom of Excavations178.4.2 Compaction178.4.3 Fill Material188.4.4 Shrinkage188.5 Surface Drainage188.6 Temporary Excavations198.7 Trench Backfill198.7 Trench Backfill199.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21		•	
8.4.2 Compaction 17 8.4.3 Fill Material 18 8.4.4 Shrinkage 18 8.5 Surface Drainage 18 8.5 Surface Drainage 18 8.6 Temporary Excavations 19 8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21			
8.4.3 Fill Material188.4.4 Shrinkage188.5 Surface Drainage188.6 Temporary Excavations198.7 Trench Backfill198.7 Trench Backfill19X.FOUNDATION RECOMMENDATIONS209.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21			
8.4.4 Shrinkage188.5 Surface Drainage188.6 Temporary Excavations198.7 Trench Backfill198.7 Trench Backfill19X.FOUNDATION RECOMMENDATIONS209.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21		•	
8.5 Surface Drainage188.6 Temporary Excavations198.7 Trench Backfill19X.FOUNDATION RECOMMENDATIONS209.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21			
8.6 Temporary Excavations198.7 Trench Backfill19X.FOUNDATION RECOMMENDATIONS209.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21			
8.7 Trench Backfill 19 X. FOUNDATION RECOMMENDATIONS 20 9.1 General 20 9.2 Foundation Alternatives 20 9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		-	
 X. FOUNDATION RECOMMENDATIONS. 9.1 General 9.2 Foundation Alternatives 9.3 GEOPIER Ram Aggregate Piers (RAP) 9.4 Footings 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 			
9.1 General209.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21			J
9.2 Foundation Alternatives209.3 GEOPIER Ram Aggregate Piers (RAP)209.4 Footings219.4.1 Soil Bearing Pressures219.4.2 Lateral Load Resistance21	IX.	FOUNDATION RECOMMENDATIONS2	20
9.3 GEOPIER Ram Aggregate Piers (RAP) 20 9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		9.1 General	20
9.4 Footings 21 9.4.1 Soil Bearing Pressures 21 9.4.2 Lateral Load Resistance 21		9.2 Foundation Alternatives 2	20
9.4.1 Soil Bearing Pressures		9.3 GEOPIER Ram Aggregate Piers (RAP) 2	20
9.4.1 Soil Bearing Pressures		9.4 Footings	21
		9.4.2 Lateral Load Resistance	21
9.4.3 Footings Adjacent to Trenches or Existing Footings		9.4.3 Footings Adjacent to Trenches or Existing Footings 2	22
9.4.4 Settlement			
9.4.5 Footing Observations		9.4.5 Footing Observations	2
9.5 Minor Structures		•	
9.6 Retaining Walls			
9.6.1 Earth Pressures			

Page

TABLE OF CONTENTS continued...

IX.	9.6. 9.7 Ulti	ATION RECOMMENDATIONS continued 2 Wall Backfill and Drainage	24
Х.	SOIL C	ORROSIVITY	25
XI.	PAVEM 11.1 11.2	ENT RECOMMENDATIONS	25
XII.	PLAN F	REVIEW, OBSERVATIONS AND TESTING	27
XIII.	LIMITA	TIONS 2	27
REFER	ENCES.		30
LIST OI	F TABLE	S	
TABLE	I MC	E _R Mapped Accelerations	9
TABLE	II Maj	oped Design Response Spectrum	0
TABLE	III Cor	npaction Requirements1	7
TABLE	IV Loa	d Factors for Ultimate Design 2	24
TABLE	V Asp	haltic Concrete Pavement Sections	25
TABLE	VI PC	C Pavement Section	26

Page

LIST OF APPENDICES

APPENDIX A

Figure A-1	Site Location Map
Figure A-2	Site, Boring and CPT Locations Plan
Figure A-3	ALTA Survey Plan
Figure A-4	Seismic Hazards Zones Map
Figure A-5	FEMA Flood Map
APPENDIX B	
Figure B-1	Explanation of Terms and Symbols Used
Figure B-2	Log of Boring B-1
Figure B-3	Log of Boring B2
Figure B-4	Log of Boring B3
Figure B-5	Log of Boring B4
Figure B-6	Log of Boring B5
Figure B-7	Log of Boring B6
Figure B-8	Log of Boring B7
Figure B-9	Log of Boring B8
Figure B-10	Log of Boring B9
Figure B-11	Log of Boring B10
Figure B-12	Log of Boring B11
Figure B-13	Log of Boring B12
Figure B-14	Log of CPT-1
Figure B-15	Log of CPT-2
Figure B-16	Log of CPT-3
Figure B-17	Log of CPT-4
Figure B-18	Log of CPT-5
Figure B-19	Log of CPT-6
Figure B-20	Log of CPT-7

GEOBASE, INC., 2017

Figure B-21	Log of Boring B1
Figure B-22	Log of Boring B2
Figure B-23	Log of Boring B3
Figure B-24	Log of Boring B4

LIST OF APPENDICES continued...

APPENDIX C

- Figure C-1 Summary of Laboratory Test Results
- Figure C-2 HAI Laboratory Test Results Transmittal
- Figure C-3Particle-Size Analysis of Soils
- Figure C-4Particle-Size Analysis of Soils
- Figure C-5 Particle-Size Analysis of Soils
- Figure C-6 Particle-Size Analysis of Soils
- Figure C-7 Particle-Size Analysis of Soils
- Figure C-8Particle-Size Analysis of Soils
- Figure C-9 Particle-Size Analysis of Soils
- Figure C-10Particle-Size Analysis of Soils
- Figure C-11 Particle-Size Analysis of Soils
- Figure C-12 Particle-Size Analysis of Soils
- Figure C-13 Particle-Size Analysis of Soils
- Figure C-14 Particle-Size Analysis of Soils
- Figure C-15 Atterberg Limits
- Figure C-16 Expansion Index of Soils
- Figure C-17 Consolidation Test Results
- Figure C-18 Swell/Collapse Test Results
- Figure C-19 Swell/Collapse Test Results
- Figure C-20 Swell/Collapse Test Results
- Figure C-21 Swell/Collapse Test Results
- Figure C-22 Swell/Collapse Test Results
- Figure C-23 Swell/Collapse Test Results
- Figure C-24 Swell/Collapse Test Results
- Figure C-25 Swell/Collapse Test Results
- Figure C-26 Swell/Collapse Test Results
- Figure C-27 Direct Shear Test Results
- Figure C-28 Direct Shear Test Results
- Figure C-29 Direct Shear Test Results
- Figure C-30 Direct Shear Test Results
- Figure C-31 Direct Shear Test Results
- Figure C-32 Direct Shear Test Results
- Figure C-33 Direct Shear Test Results
- Figure C-34 Summary of Other Test Results (EI, S04, Ch, pH, and ER; MP-OMC; and R-Value)
- Figure C-35 Corrosivity Series Test Results by Anaheim Test Laboratory
- Figure C-36 Laboratory Compaction Test by Modified Effort
- Figure C-37 Resistance R-Value by Anaheim Test Laboratory

LIST OF APPENDICES continued...

APPENDIX D

GEOBASE, INC., 2017, Appendix C

- Figure C-1 Summary of Laboratory Test Results
- Figure C-2 HAI Laboratory Test Results Transmittal
- Figure C-3 Particle-Size Analysis of Soils
- Figure C-4 Particle-Size Analysis of Soils
- Figure C-5 Particle-Size Analysis of Soils
- Figure C-6 Particle-Size Analysis of Soils
- Figure C-7 Particle-Size Analysis of Soils
- Figure C-8 Atterberg Limits
- Figure C-9 Expansion Index of Soils
- Figure C-10 Consolidation Test Results
- Figure C-11 Consolidation Test Results
- Figure C-12 Consolidation Test Results
- Figure C-13 Consolidation Test Results
- Figure C-14 Direct Shear Test Results
- Figure C-15 Direct Shear Test Results
- Figure C-16 Direct Shear Test Results
- Figure C-17 Summary of Other Test Results (EI, S04, Ch, pH and ER, MP and OMC; and R-Value)
- Figure C-18 Corrosivity Series Test Report by Anaheim Test Laboratory
- Figure C-19 Laboratory Compaction Test by Modified Effort
- Figure C-20 Resistance R-Value Test by Anaheim Test Laboratory

I. INTRODUCTION

1.1 <u>General</u>

Kaiser Foundation Health Plan, Inc. is planning the construction of the Kaiser Permanente - SFNT 2018 MLF Hesperia MOB D0476. The site consists of vacant parcels 5-9, APN #3057-011-22-0-00 thru 3057-011-26-0-000, and is located on Escondido Avenue in the City of Hesperia, California. The site location is shown on the Location Map, Figure A-1, Appendix A. GEOBASE, INC. (GEOBASE) was retained by Kaiser Foundation Health Plan, Inc. to complete a geotechnical report for the proposed development at the subject site.

For this geotechnical report we were provided with the following:

- An architectural plan prepared by HMC Architects; the field investigation was directed towards this plan which is reproduced herein as Figure A-2, Appendix A, Site, Boring and CPT Locations Plan.
- ALTA/NSPS Land Title Survey prepared by CDS, dated July 20, 2017. The ALTA Survey Plan is reproduced herein as Figure A-3, Appendix A.

This report describes the site investigation and summarizes the results of both field and laboratory testing. These results are discussed with reference to the proposed development. Both general and specific recommendations pertinent to suitable site development and foundation design, respectively, are provided. Construction guidelines related to the geotechnical aspects of the project are also addressed.

1.2 <u>Objectives of the Geotechnical Report</u>

The objectives of the geotechnical investigation were to obtain soil parameters and subsequently, evaluate the subsoils conditions in order to provide recommendations pertinent to suitable site development and foundation design. These recommendations will assist with final design and construction of the project as planned.

1.3 <u>Scope of Services</u>

To achieve the objectives of the geotechnical report, stated above, the services provided during the course of this investigation included:

- Review of available published and unpublished geotechnical, geological, and seismological reports and maps pertinent to the site;
- Review of previous soils reports and related documents (see references);
- Field exploration program consisting of advancing twelve (12) borings (these borings were logged and samples representative of the materials encountered were selected for laboratory testing);
- Field testing consisting of advancing seven (7) Cone Penetration Tests (CPT's);
- Field testing consisting of the Standard Penetration Test (SPT);
- Selection of appropriate laboratory tests and laboratory testing;
- Evaluation of data obtained from the above;
- Engineering analyses; and,
- Preparation of this report describing the field investigation, summarizing the results of field testing, laboratory testing and engineering analyses, and providing appropriate recommendations for site development and foundation design.

II. REVIEW OF AVAILABLE REPORT

GEOBASE, INC. had previously completed a geotechnical evaluation of the proposed site as part of a ten (10) acre undeveloped site that was acquired by Kaiser Foundation Health Plan, Inc. The result of this evaluation was presented in a report titled "Geotechnical Evaluation and Preliminary Recommendations, Land Purchase High Desert (Hesperia) Medical Office Building, Vacant Parcels 5-9, APN #3057-011-22-0-00 thru 3057-011-26-0-000, Escondido Avenue, Hesperia, California", dated August 2017.

The review of the available data and report noted above indicate the following:

- the subsoils to a depth of up to seven (7) feet were observed to be in "very loose" to "loose" state and considered not suitable for foundation support.
- the site is not within areas currently mapped as susceptible to subsidence, landslide, liquefaction or current State of California Earthquake Fault Zones.
- laboratory test results indicated that the subsoils are collapsible. Collapsible soils undergo significant volume reduction (settlement) upon wetting, with or without additional loading. A maximum collapse strain in the order of four (4) percent at a vertical stress of 1,600 psf was obtained at the locations.

III. SITE AND PROJECT DESCRIPTIONS

3.1 <u>Site Description</u>

The project site is roughly rectangular-shaped undeveloped vacant lot, approximately ten (10) acres. It consists of vacant parcels 5-9, APN #3057-011-22-0-00 thru 3057-011-26-0-000, and is located on Escondido Avenue in the City of Hesperia, California. It is bounded to the east by Escondido Avenue, to the west by future Mountain Vista Avenue and vacant land to the north and south.

The site is slightly elevated from the northeast to the southwest with elevations ranging from 3504 to 3524 feet above mean sea level (asml). Drainage appears to direct towards the northeast and the nearby street. Ground surface cover consists of grass and weeds with occasional small to large shrubs. Dirt roads were observed on and outside the property lines; noticeably, a dirt road traverses along the southern property line that was constructed at approximately five (5) feet above adjacent grade.

3.2 <u>Project Description</u>

The upper five (5) to six (6) feet of soils will be removed to lower the project site to the proposed elevation. Proposed development is planned in phases and is anticipated to include:

- an at-grade three (3) storey, 41,000 square foot MOB (Phase I);
- a one (1) storey, at-grade 11,830 square foot Eye Services Physical Therapy building;
- a three (3) storey, at-grade, 44,600 square foot MOB (Phase 2);
- an at-grade, one (1) storey, 1,600 square foot, Community Center building; and,
- at-grade parking and associated facilities.

The layout of the proposed development is shown on the Site, Boring and CPT Locations Plan, Figure A-2, Appendix A.

IV. SITE INVESTIGATION

4.1 <u>Field Program</u>

The field investigation was carried out on March 29th and 30th, 2018, and consisted of advancing twelve (12) borings and seven (7) CPTs at the site, at the approximate locations shown on the Site, Boring and CPT Locations Plan, Figure A-2, Appendix A. The borings were located in the field utilizing cloth tape and boring elevations were estimated from topographic contours. Therefore, the boring locations and elevations should be considered accurate only to the degree implied by the methods used.

The borings were advanced to a maximum depth of fifty-one and one-half (51.5) feet using a truck-mounted CME-75 drill rig, fitted with hollow stem augers. The Log of Borings, together with an Explanation of Terms and Symbols used are given in Appendix B, Figures B-1 thru B-13, inclusive.

The CPT's were advanced to a maximum depth of approximately sixty (60) feet and refusal was obtained at two (2) CPT locations, at approximate depths of forty (40) and fifty (50) feet. The CPT Plots are presented in Appendix B, Figures B-14 thru B-20, inclusive. The Cone Penetration Tests (CPT's) were performed in accordance with ASTM D 3441. The CPT equipment consists of a cone assembly mounted at the end of a series of hollow sounding rods. A set of hydraulic rams is used to push the cone and rods into the soil, and a continuous record of cone tip and friction resistance versus depth is obtained in digital form at the ground surface. A specially designed

truck is used to transport and house the test equipment and to provide a ten (10) ton reaction to the thrust of the hydraulic rams. Near-continuous CPT records provide: approximate correlations with soil classification; relatively accurate definition of the thickness of various soil layers; subsoils data for seismic settlement analyses; and, engineering properties of the subsoils for static settlement analyses.

Field testing also consisted of the Standard Penetration Test (SPT). The SPT test involves failure of the soil around the tip of a split spoon sampler for a condition of constant energy transmittal. The split spoon, two (2) inches outside diameter and one and three-eights (1-3/8) inches inside diameter, is driven eighteen (18) inches and the number of blows required to drive the sampler the last foot is recorded as the "N" value, or SPT blow count. The driving energy is provided by a 140-pound weight dropping thirty (30) inches.

Sampling consisted of:

- Collection of bulk samples at selected locations retrieved from the auger;
- Collection of samples retrieved from the Standard Penetration Test (SPT) split spoon; and,
- Collection of soil samples at selected locations using a California Modified Sampler. The soil samples were retained in a series of brass rings, each having an inside diameter of 2.41 inches and a height of one (1) inch. These ring samples were placed in close- fitting, moisture-tight containers for shipment to the laboratory.

Borings from the geotechnical evaluation (GEOBASE, INC., 2017) are presented herein as Figures B-21 thru B-24, inclusive, Appendix B.

4.2 Laboratory Testing

The samples obtained during the field program were returned to the laboratory for visual examination and testing. The soils were classified in accordance with ASTM D 2487 and D 2488. The laboratory testing program consisted of the following:

• Laboratory determination of water (moisture) content of soil, rock, and

soil-aggregate mixtures (ASTM D 2216) and dry density (ASTM D2937);

- Particle size analysis of soils (ASTM D 422);
- Standard Method for the amount of material in soils finer than the No. 200 sieve (ASTM D 1140);
- Atterberg limits (ASTM D4318);
- Direct shear test of soils (ASTM D 3080);
- Swell/Collapse Potential (ASTM D 4546);
- Consolidation tests (ASTM D 2435);
- Expansion potential of soils (ASTM D 4829);
- Laboratory compaction characteristics of soils using Modified Effort (ASTM D1557);
- Resistance "R" Value of soils (CT 301); and,
- Water soluble sulfates content of soils (CT-417), pH, electrical resistivity (CT-643) and water soluble chlorides (CT-422).

The laboratory test results are presented on the Log of Borings, Figures B-2 thru B-13, inclusive, Appendix B, where applicable, and in Appendix C.

Laboratory test results from the geotechnical evaluation (GEOBASE, INC. 2017) are presented on the log of borings, Figures B-21 thru B-24, inclusive, Appendix B, where applicable, and in Appendix D.

V. SUBSURFACE CONDITIONS

5.1 <u>Subsoils Conditions</u>

The generalized stratigraphic profile at the boring locations consists of approximately one (1) foot of surface soils with abundant grass and roots. These surface soils are underlain by poorly graded sands with little to some silt to the maximum depth of exploration, sixty (60) feet. At various locations, as observed during the current and

previous (GEOBASE, INC., 2017) investigations, occasional seams and layers of very stiff/dense silts/silty sands and clayey sands were encountered.

Laboratory test results show that the subsoils at the site are relatively dry, with in-situ moisture contents typically not exceeding six (6) percent; however, in the clayey sands and silt/silty sand layers, moisture contents up to eleven (11) percent were obtained. The consolidation tests showed collapse potential for the on-site soils with a maximum collapse strain in the order of twelve (12) percent at a vertical stress of 1,600 psf.

Based on the SPT test results, the subsoils below a depth of seven (7) feet below existing grade are generally inferred to be in a "dense", high dry strength state; however, when subject to wetting the potential of hydro-collapse is classified as "severe trouble".

5.2 <u>Groundwater Conditions</u>

Borings and CPT's advanced at the site to a maximum depth of sixty (60) feet did not encounter groundwater to the total depth investigated.

According to the USGS National Water Information System Mapper, approximately one (1) to two (2) miles to the northwest and west of the site, respectively, active wells data from 1996 to the present show historical high groundwater levels ranging in depth from 550 to 650 feet below ground surface (bgs). Therefore, the historical highest groundwater level at the site was judged to be in excess of 500 feet bgs.

VI. SEISMICITY

- 6.1 <u>Site Accelerations</u>
- 6.1.1 *Site Coordinates*

The site latitude and longitude are 34.4235 degrees north and 117.3750 degrees west, respectively.

6.1.2 Site Classification

The site classification procedure recommended by CBC 2016, subsection 1613.3.2, which references ASCE 7-10, Chapter 20, was adhered to.

The average field Standard Penetration Resistance (SPT "N" value) for the upper 100 feet is between fifteen (15) and fifty (50). Therefore, to develop seismic design criteria, the subsoils within the upper 100 feet at the site are judged to be Site Class D.

6.1.3 Seismic Design Criteria

Based on CBC 2016, subsection 1616.1.3, which references and modifies ASCE 7-10, subsection 11.4.7, since the structure is assigned to Seismic Design Category D and S_1 is less than 0.75g (see subsection 6.1.3.2), a site-specific GMHA was not completed. The following subsections present the seismic design parameters based on mapped parameters.

6.1.3.1 Mapped Accelerations Response Spectra

Mapped, risk-targeted maximum considered earthquake, MCE_R , spectral response accelerations for 0.2 and 1.0 second periods are provided in maps published in the ASCE 7-10, which is the reference used in the CBC 2016. These maps are prepared by the USGS and the California portion of the map was prepared jointly with the CGS. These maps use results of seismic hazard analyses from both probabilistic and deterministic procedures, and are applicable to Site Class B and five (5) percent of critical damping. The mapped site accelerations are adjusted for site class effects using parameters Fa and Fv, which are functions of site class and mapped site spectral accelerations.

The mapped design horizontal spectral accelerations were evaluated in accordance with ASCE 7-10, using the US Seismic Design Maps Application (USGS, 2018) available at the USGS website: <u>http://geohazards.gov/designmaps/us/application.php.</u> This web application requires the inputs of site location (coordinates) and site soil classification.

The project site is Site Class D and coefficient values Fa and Fv of 1.0 and 1.5,

respectively, are obtained for the site. Mapped MCE_R accelerations obtained for the project site are summarized in Table I.

TABLE I				
MCE _R MAPPED ACCELERATIONS				
Site Class D				
PERIOD (SECONDS)	MAPPED ACCELERATION PARAMETERS (g)	MCE _R ACCELERATIONS ADJUSTED FOR SITE CLASS EFFECTS (g)	RISK COEFFICIENTS	
0.2	S _s : 1.50	1.50	C _{RS} = 1.085	
1.0	S ₁ : 0.60	0.90	C _{R1} = 1.043	

Based on Table I, the mapped spectral response accelerations, adjusted for Site Class D, S_{MS} and S_{M1} are 1.50g and 0.90g, respectively.

6.1.3.2 Seismic Design Category

The mapped spectral response acceleration parameter at one (1) second period (S_1) is 0.60g which is less than 0.75g. The design spectral response acceleration coefficients S_{DS} and S_{D1} are 1.0 and 0.6g, respectively. Therefore, a Seismic Design Category D should be used for the design of the proposed structure per Section 1613.3.5 of CBC 2016.

6.1.3.3 Design Spectra Based on Mapped Parameters

Section 11.4.5 of ASCE 7-10 describes a procedure to obtain a design response spectra curve for use in cases where a design response spectrum is required by the ASCE 7-10 standard, and site-specific ground motion procedures are not used. This procedure is based on the use of the mapped spectral response accelerations adjusted for site class effects in the determination of the design response spectra curve. Using this procedure, numerical values of the design spectral response accelerations based on the mapped parameters for the project site are provided in Table II, below.

	Manad Design Spectral Despense Assolutation (7)
Period (Seconds)	Mapped Design Spectral Response Acceleration (g)
0.00	0.40
0.12	1.00
0.20 (S _{DS})	1.00
0.40	1.00
0.60	1.00
0.70	0.86
0.80	0.75
0.90	0.67
1.00 (S _{D1})	0.60
2.00	0.30
3.00	0.20
4.00	0.15
5.00	0.12

 TABLE II

 MAPPED DESIGN RESPONSE SPECTRUM

6.1.3.4 Maximum Considered Earthquake Geometric Mean (MCE_G) Peak Ground Acceleration

From Figure 22-7 of ASCE 7-10, PGA = 0.50g is multiplied by the site coefficient F_{PGA} = 1.0 (Table 11.8-1) to obtain the mapped MCE Geometric Mean Peak Ground Acceleration (PGA_M). For Site Class D, PGA_M = F_{PGA} x PGA. Therefore, PGA_M = 0.50g may be used for evaluation of liquefaction, lateral spreading, seismic settlements and soil-related issues.

6.1.3.5 Seismic Hazard Deaggregation

Relative contributions of various combinations of earthquake magnitudes and distances to a particular seismic hazard at a site are determined using deaggregation of the seismic hazards. Magnitude-distance deaggregation, obtained from Unified Hazard Tool "Dynamic: Conterminous US 2008 (V.3.3.1)" edition that is available on the

USGS website, indicates that the deaggregated mode magnitude and distance for the peak ground acceleration at the project site are M7.9 and 18.9 kilometers, respectively.

6.2 <u>Earthquake Effects</u>

6.2.1 *Liquefaction*

Liquefaction occurs when the pore pressures generated within a soil mass equals the overburden pressure. This results in a loss of strength and the soil then possesses a certain degree of mobility.

Factors considered to evaluate liquefaction potential include groundwater conditions, soil type, particle size distribution, earthquake magnitude and acceleration, and soil density obtained through the Standard Penetration Test (SPT) and Cone Penetration Test (CPT). Soils subject to liquefaction comprise saturated fine grained sands to coarse silts. Coarser-grained soils are considered free-draining and therefore dissipate excess pore pressures, while fine-grained soils posses undrained shear strength.

The Seismic Hazards Zones Map indicates that the project site is not located in an area subject to liquefaction, Figure A-4, Appendix A. Furthermore, the subsoils are considered "dense" to "very dense" with a historic highest groundwater table at a depth greater than 500 feet; therefore, the subsoils at the site possess a very low potential for liquefaction.

6.2.2 Seismically Induced Settlements

The proposed structures will be underlain primarily by dense (N>30) to very dense native soils; therefore, seismically induced settlements are anticipated to be negligible.

6.2.3 Tsunamis, Inundation, Seiche and Flooding

A tsunami is a sea wave generated by a submarine earthquake, landslide, or volcanic event. The site is not located within a coastal area. Therefore, a tsunami hazard at the site is considered very low.

A seiche is an earthquake induced wave in a confined body of water, such as a lake, reservoir, or bay. Resulting oscillations could cause waves up to tens of feet high, which in turn could cause extensive damage along the shoreline. The most serious consequence of a seiche would be the overtopping and failure of a dam. The site is not located downstream of any large bodies of water that could adversely affect the property in the event of earthquake failures or seiches.

According to the Federal Emergency Management Agency (FEMA), map numbers 06071C475H and 06071C6490H, dated August 28, 2008, Flood Insurance Rate Map, San Bernardino County and Incorporated Areas, California, the proposed project site is located in Zone X, area of minimal flood hazard (Figure A-5, Appendix A).

6.2.4 Surface Rupture

Ground surface displacement along a fault, although more limited in area than the ground shaking associated with it, can have disastrous consequences when structures are located straddling a fault or near a fault zone. Fault displacement involves forces so great that in most cases it is not practically feasible (structurally or economically) to design and build structures to accommodate rapid displacement and remain intact. Amounts of movement during a single earthquake can range from several inches to tens of feet. Another aspect of fault displacement comes not from the violent movement associated with earthquakes, but the barely perceptible movement along a fault called "fault creep". Damage by fault creep is usually expressed by the rupture or bending of buildings, fences, railroad tracks, streets, pipelines, curbs, and other linear features.

No faulting was observed during our field reconnaissance. In addition, active, potentially active, and other major inactive faults, noted on fault maps, do not cross nor project toward the site. Furthermore, the site is not located within any Alquist-Priolo Earthquake Fault zone (APEQFZ) Map as designated by the California Geological Survey (CGS), Figure A-4, Appendix A. The closest active (APEQFZ) fault to the site is the Cleghorn fault located approximately 14.6 km to the south. Therefore, the possibility of any hazard due to ground surface rupture or fault offset at the property is considered low; however, cracking due to shaking from distant events is not considered a significant hazard, although it is a possibility at any site.

6.2.5 Seismically Induced Landsliding

The site area is relatively flat and the site is not located within a designated area where previous occurrence of landslide movement, or local topographic, geological, geotechnical and subsurface water conditions indicate a potential for permanent ground displacement such that mitigation would be required.

6.2.6 *Lateral Spreading*

Seismically induced lateral spreading involves primarily movement of earth materials due to ground shaking. Lateral spreading is demonstrated by near vertical cracks with predominantly horizontal movement of the soil mass involved. The potential for liquefaction at the site is considered very low. Therefore, the potential for lateral spreading at the subject site is considered very low.

6.2.7 *Subsidence*

Subsidence refers to the sudden sinking or gradual downward settling and compaction of soils and other surface material with little or no horizontal motion. It may be caused by a variety of human and natural activities, including changes in groundwater level, soil moisture and earthquakes. Since the site is underlain by dense to very dense native soils and groundwater level is very deep, it is our opinion that the potential hazard associated with subsidence at the site is very low.

VII. CONCLUSIONS

It is our opinion that the site is geotechnically suitable for the proposed development provided that the geotechnical recommendations presented herein are incorporated in the project plans and specifications, and properly carried out in the field during construction. The following presents a summary of the findings:

• Based on observations at the boring and CPT locations, the generalized stratigraphic profile consists of up to seven (7) feet of "very loose" to "loose" soils overlying primarily cohesionless soils which become "dense" to "very dense" below seven (7) feet below existing grade.

- the laboratory test results indicate that the subsoils at the site are collapsible. Collapsible soils undergo significant volume reduction (settlement) upon wetting, with or without additional loading. The potential of hydro-collapse is classified as "severe trouble".
- Groundwater was not encountered at the site during the field geotechnical investigation to the total depth of exploration, sixty (60) feet. Published historic highest groundwater level is in excess of 500 feet below existing grade.
- The project site is classified as Site Class D per CBC 2016.
- The project site is not mapped in an area susceptible to subsidence, landslides, liquefaction, or current City of Hesperia/State of California APEQFZ.
- On site soils were possess a "very low" expansion potential (Expansion Index of 0) and, have a "moderate" sulfate concentration and are "moderately corrosive" to metals.
- The flood insurance rate map (FIRM) prepared by the Federal Emergency Management Agency (FEMA), map numbers 06071C475H and 06071C6490H, effective date August 28, 2008 shows the site to be in Zone X, an area of minimal flood hazard.

VIII. SITE DEVELOPMENT RECOMMENDATIONS

8.1 <u>General</u>

The proposed development, outlined in subsection 3.2, is feasible from a geotechnical engineering standpoint; project plans and specifications should take into account the appropriate geotechnical features of the site and conform to the recommendations of the geotechnical report.

8.2 <u>Clearing</u>

All undocumented fills, surface vegetation, trash and debris should be cleared and

removed from the site. The existing "very loose" to "loose" soils should also be removed and may be re-used as structural fill provided that they do not contain any deleterious materials or particles over six (6) inches in largest dimension. Topsoil and soils with organic inclusions are not considered suitable for reuse as structural fill, but it may be stockpiled for future landscape use. In this respect, approximately one (1) foot of topsoil and grass were observed at various boring locations.

Underground facilities such as utilities, pipes or underground storage tanks may exist at the site. Removal of underground tanks is subject to state law as regulated by County or City Health and/or Fire Department agencies. If storage tanks containing hazardous or unknown substances are encountered, the proper authorities must be notified prior to any attempts at removing such objects.

Septic tanks should be removed in their entirety. Cesspools or seepage pits should be pumped of their contents and removed in their entirety. Any wells, if encountered during construction, should be exposed and capped in accordance with the requirements of the regulating agencies.

Depressions resulting from the removal of foundation of existing structures, buried pipes, obstructions and/or tree roots should be backfilled with properly compacted material.

- 8.3 <u>Subgrade Preparation</u>
- 8.3.1 *Building Pad*

Within the building pads, all undocumented fills/"very loose" to "loose" soils should be removed and replaced as properly compacted fill. Depth of the aforementioned soils, as observed at the boring locations, was to found range up to approximately seven (7) feet below existing grade. If these soils are observed to extend deeper at other locations, they should be removed and replaced as properly compacted fill. The lateral extent of overexcavation should be at least equal to the depth of fill. Of the aforementioned seven (7) feet, it is understood that up to six (6) feet of soils will be removed to lower the site to the proposed elevation. The exposed subgrade should be observed to verify the removal of all unsuitable materials.

Construction activities and exposure to the environment can cause deterioration of the subgrade. Therefore, it is recommended that the condition of the subgrade soils be observed and/or tested by GEOBASE immediately prior to construction.

Additional subgrade preparation recommendations pertinent to footing foundations and deep foundations are presented in the following.

8.3.2 Minor Structures, Walkways, Flatwork and Pavement Areas

In order to minimize the potential for excessive settlement of minor structures which are structurally separated from the building structure, the footing subgrade areas should be overexcavated to provide a uniform compacted fill blanket a minimum three (3) feet in thickness below adjacent grade, or at least two (2) feet below footing bottoms, whichever is greater. The lateral extent of removal beyond the footing limits should be equal to at least the depth of overexcavation. The fill should be compacted to a minimum of ninety (90) percent relative compaction (ASTM D 1557).

The subsoils within the concrete walkways, flatwork and parking areas, and within two (2) feet of their proposed limits, should be over excavated at least two (2) feet and replaced as properly compacted fills.

The above subgrade preparation recommendations may only be considered if future maintenance as a result of settlement of underlying undocumented fills and hydro-collapsible soils can be tolerated. Alternatively, all undocumented fills should be removed and replaced as properly compacted fills, and hydro-collapsible soils should be treated as described in subsection 8.3.3 below.

8.3.3 Footing Foundations

Footing foundations may be used where the maximum footing width is ten (10) feet.

The depth of removal should be a minimum of seven (7) feet below footing base. The exposed bottom should be thoroughly wetted (ponding) prior to fill placement. The lateral extent of removal beyond footing limits should be equal to the depth of removal.

8.3.4 *Deep Foundations*

Deep foundations are likely to consist of GEOPIER Ram Aggregate Piers (RAP). The subgrade for deep foundations may be prepared as described in subsections 8.3.1 and 8.4.1. Subgrade preparation should be completed prior to RAP construction.

8.4 <u>Fill Placement</u>

8.4.1 *Preparation of Bottom of Excavations*

Prior to placing any fill, the exposed surface soils should be scarified to a minimum depth of eight (8) to ten (10) inches, moisture-conditioned to at least optimum moisture content and compacted to a minimum of ninety (90) percent relative compaction based on ASTM D 1558. Within the building pad areas, exposed bottom of overexcavations (surface soils) should be thoroughly wetted (ponding) prior to compaction.

8.4.2 *Compaction*

Cohesive soils should be placed in loose lifts not exceeding six (6) inches, moisture-conditioned to approximately two (2) to four (4) percentage points above optimum moisture content, and compacted to the minimum densities listed in Table III below.

TABLE III COMPACTION REQUIREMENTS			
RELATIVE COMPACTION (ASTM D Type of Fill/Area 1557) MINIMUM PERCENT			
Fills within building pad area	95		
All other structural fill	90		

Granular fill materials should be placed in loose lifts of six (6) to eight (8) inches, moisture-conditioned to near-optimum, and compacted to the minimum densities listed in the preceding table.

8.4.3 *Fill Material*

The on-site soils have a "very low" expansion potential (Expansion Index = 0). The on-site soils may be reused as compacted fill provided they are free of organics, deleterious materials, debris and particles over six (6) inches in largest dimension.

Any soils imported to the site for use as fill for subgrade materials should be predominantly granular and non expansive (Expansion Index less than 20) and should contain sufficient fines (approximately twenty [20] percent) so as to be relatively impermeable when compacted. The imported soils should be approved by GEOBASE, INC. prior to importing.

8.4.4 *Shrinkage*

The on-site soils will undergo some volume change when excavated and replaced as properly compacted fill. Since an accurate determination of in-place and compacted densities cannot be made over the entire project area, accurate earthwork shrinkage estimates cannot be provided. Based on our experience with similar soils, a shrinkage value in the order of ten (10) to twenty-five (25) percent may be used as a guideline for the on-site soils.

8.5 <u>Surface Drainage</u>

To enhance future site performance, it is recommended that all pad drainage be collected and directed away from proposed structures to disposal areas. For soils areas, we recommend that a minimum of five (5) percent gradient away from foundation elements be maintained. All roof drains should be connected to solid pipes discharging to the curb or other suitable area drains. It is important that drainage be directed away from foundations and that proper drainage patterns be established at the time of construction and maintained throughout the life of the structures.

Landscape areas within fifteen (15) feet of the building perimeter should consist of drought tolerant planters that have sealed bottoms and bottom drains to prevent infiltration of water into the adjacent foundation soils, due to the collapsible nature of the subsoils. The surface of the ground in these areas should also be maintained at a

minimum gradient of five (5) percent towards surface area drains

Care should be exercised in controlling surface runoff onto permanent and temporary slopes. The area back of slope crests should be graded such that water will not be allowed to flow freely onto the slope face. If excavations of temporary slopes are carried out in the rainy season, appropriate erosion protection measures may be required to minimize erosion of the slope cuts.

8.6 <u>Temporary Excavations</u>

Temporary construction excavations are anticipated for construction of the basement, utility trenches, footings and removal of existing undocumented fills.

Temporary construction excavations in soils may be made vertically without shoring to a depth of approximately four (4) feet below adjacent surrounding grade. For deeper cuts in soils, the slopes should be properly shored or sloped back at least 1H:1V (Horizontal:Vertical) or flatter. The exposed slope face should be kept moist (but not saturated) during construction to reduce local sloughing. No surcharge loads should be permitted within a horizontal distance equal to the height of cut from the crest of excavation unless the cut is properly shored. Excavations that extend below an imaginary plane inclined at forty-five (45) degrees below the edge of any nearby adjacent existing site facilities including foundations of existing buildings and underground pipelines, should be properly shored to maintain foundation support of the adjacent structures and utilities.

All excavations and shoring systems should meet, as a minimum, the requirements given in the State of California Occupational Safety and Health Standards. Stability of temporary slopes are the responsibility of the contractor.

8.7 <u>Trench Backfill</u>

It is our opinion that utility trench backfill could be placed and compacted by mechanical means. Jetting or flooding of backfill material is not recommended.

If utility contractors indicated that it is undesirable to use compaction equipment in

close proximity to a buried conduit, other methods of utility trench compaction may also be appropriate, as approved by the geotechnical engineer at the time of construction.

IX. FOUNDATION RECOMMENDATIONS

9.1 <u>General</u>

The following recommendations have been formulated from visual, physical and analytical considerations of existing site conditions and are believed to be applicable for the proposed development.

The on-site soils possess a "severe trouble" hydro-collapse potential and a "very low" expansion potential. The following recommendations are based on the anticipated hydro-collapse and expansion potential of the subsoils.

9.2 <u>Foundation Alternatives</u>

The results of the site investigation indicate that the foundations for the proposed developments may be influenced by the potentially collapsible nature of the subsoils.

Although no column loads have been determined for the proposed structures at this time, based on our past experience with similar developments, the following foundation alternatives are considered suitable for the proposed structures and are evaluated in the following subsections:

- deep foundations/GEOPIER Ram Aggregate Piers (RAP); and,
- a footing foundation with overexcavation and recompaction.
- 9.3 <u>GEOPIER Ram Aggregate Piers (RAP)</u>

The GEOPIER RAP constructs a highly densified inclusion of rammed crushed aggregates to form relatively stiff columns to the target depth of improvement. This is accomplished by applying direct vertical ramming energy to compact successive lifts

of the aggregates. Constructed RAP elements provide a reinforced soil profile with less compressibility than the existing soil. These elements typically range from twenty (20) to thirty (30) inches in diameter and can extend to depths of up to twenty (20) to thirty (30) feet, depending on construction technique and/or design requirement.

RAP allowable dead-plus-live bearing pressures of 6,000 psf may be used. RAP lengths can be estimated in the order of twenty (20) feet and the upper portion should be constructed to account for potential collapse of the subsoils.

Lateral loads against structures may be resisted by friction between the bottom of foundations and the supporting soils. An allowable friction coefficient of 0.35 is recommended. An allowable lateral bearing pressure equal to an equivalent fluid weight of 150 pounds per cubic foot acting against the foundations to a maximum of 2,250 pounds per square foot may be used, provided the foundations are poured tight against compacted soil. The total frictional resistance and lateral resistance of the soils can be combined without reduction in determining the total lateral resistance.

9.4 <u>Footings</u>

Footings based in compacted fills as described in subsection 8.3.3 may be used to support the proposed structures.

9.4.1 *Soil Bearing Pressures*

Spread or continuous footings should have a minimum width of eighteen (18) inches and should be placed a minimum of three (3) feet below the lowest adjacent grade. Footings based on seven (7) feet of compacted fills constructed as described in subsection 8.3.2 may be designed for an allowable dead-plus-live load bearing pressure of 4,000 psf.

9.4.2 *Lateral Load Resistance*

Lateral loads (wind or seismic) against structures may be resisted by friction between the bottom of foundations and the supporting soils. An allowable friction coefficient of 0.35 is recommended. An allowable lateral bearing pressure equal to an equivalent fluid weight of 150 pounds per cubic foot to a maximum of 2,250 pounds per square foot acting against the foundations may also be used, provided the foundations are poured tight against compacted fill.

9.4.3 *Footings Adjacent to Trenches or Existing Footings*

Where footings are located adjacent to utility trenches, they should extend below a one-to-one plane projected upward from the inside bottom corner of the trench. Footings excavations adjacent to the footings of existing buildings should be carried put such that the existing footings are not undermined.

9.4.4 *Settlement*

Total static settlement of the footings are not anticipated to exceed one (1) inch and the differential settlement is not expected to exceed one-half ($\frac{1}{2}$) an inch. Seismic settlements are estimated to be negligible.

Notwithstanding the above, the settlement of the footings foundation system should be reviewed by GEOBASE once the configuration of the footings are finalized.

9.4.5 *Footing Observations*

All foundation excavations should be observed by GEOBASE prior to placement of forms, or reinforcement. Materials from footing excavations should not be spread in slab-on-grade areas unless compacted.

All foundation excavations should be observed by GEOBASE prior to the placement of forms, reinforcement, or concrete, for verification of conformance with the intent of these recommendations and confirmation of the bearing capacities. All loose or unsuitable materials should be removed prior to the placement of concrete. Materials from footing excavations should not be spread in slab-on-grade areas unless compacted.

9.5 <u>Minor Structures</u>

Minor structures may be designed using the presumptive load-bearing values outlined in CBC 2016, provided that the risk of future settlements/hydro-collapse of the subsoils and associated maintenance can be tolerated.

9.6 Retaining Walls

9.6.1 *Earth Pressures*

Retaining walls backfill is anticipated to consist of "very low" expansive soils. The site retaining walls should be designed to resist lateral pressures imposed by the surrounding soils and surcharge loads. For static-loading conditions, walls which are free to rotate at the top (at least 0.01 radian deflection) should be designed to resist lateral earth pressures imposed equivalent fluid weighing thirty-five (35) pounds per cubic foot.

In addition, a uniform pressure equal to one-third (1/3) of any vertical pressure adjacent to the site walls should be assumed to act on the walls. These aforementioned pressures assume that positive drainage will be provided as recommended in subsection 9.6.2.

For seismic loading conditions, where appropriate, the dynamic loading increment of active earth pressures may be taken as fifteen (15) psf per foot of wall height distributed in an inverted triangular distribution.

Footings for the proposed site retaining walls may be designed as recommended in subsections 9.4 and 9.5 for minor walls.

9.6.2 *Wall Backfill and Drainage*

The backfill for retaining walls shall be granular soils as described in subsection 8.4.3 and the walls should be provided with backdrains to relieve possible hydrostatic pressures on the walls. A pre-fabricated drainage system such as Miradrain, Eakadrain or equivalent, installed in accordance with the manufacturer's recommendations, may

be used. The drainage system should meet the minimum requirements of CBC 2016 subsections 1805.4.2 and 1805.4.3.

The retaining walls should be waterproofed to prevent moisture build up on the interior sides of the walls as a result of water migration from the soils in contact with the walls. The water proofing should be applied for the full height of the walls, and meet as a minimum the requirements of the CBC 2016, subsection 1805.3.

9.7 <u>Ultimate Values</u>

The recommended design values presented herein are for use with loadings determined by a conventional working stress design. When considering an ultimate design approach, the recommended design values may be multiplied by the factors given in Table IV:

LOAD FACTORS FOR ULTIMATE DESIGN			
Foundation Loading Ultimate Design Loading			
Bearing Value	3		
Passive Pressure	1.33		
Coefficient of Friction	1.25		

TABLE IV LOAD FACTORS FOR ULTIMATE DESIGN

In no event, should the foundation sizes be reduced from those required for support of dead-plus-live loads when using working stress values.

9.8 Floor Slabs

In moisture sensitive areas, as a minimum, the floor slabs should be damproofed per CBC 2016, subsection 1805.2; specific recommendations can be provided by a Waterproofing Consultant.

The subgrade for the floor slab should be prepared in accordance with subsection 8.4.1. In this respect, it should be noted that the floor slab may require future maintenance, in the event of water/sewer leaks, as a result of settlement of the underlying collapsible soils. Alternatively, the footing foundation subgrade preparation

alternative or a slab supported by the Geopier RAM may be used.

Slab on grade floors should be designed by the Structural Engineer using applicable CBC requirements and designed for the intended use and loading. As a minimum, slabs should be reinforced with # 4 bars at twelve (12) inch spacing, located at mid height of the slab. Thickness of floor slabs should be at least five (5) inches actual and determined by the project Structural Engineer for the project loading and service conditions. Actual slab reinforcement and thickness should be determined by the project Structural Engineer.

X. SOIL CORROSIVITY

Electrical conductivity, pH, chloride and water soluble sulfate tests were conducted on representative samples by Anaheim Test Lab, and the results are provided in Appendix C. The tests results indicate that the subsoils at the site have a "moderate" corrosive potential with respect to concrete and "moderately corrosive" potential with respect to steel and other metals. Therefore, Type II Portland cement should be used for the construction of concrete structures in contact with the subgrade soils.

XI. PAVEMENT RECOMMENDATIONS

11.1 Asphaltic Concrete Pavement

The following alternative minimum pavement sections may be used based on a R-Value of fifty (50). The traffic index assumed in Table V, below, **should be confirmed by the Civil Engineer** and R-value tests should be performed during grading, prior to finalizing the pavement sections.

ASPHALTIC CONCRETE PAVEMENT SECTIONS				
PAVEMENT UTILIZATION	TRAFFIC INDEX	ASPHALTIC CONCRETE (INCHES)	AGGREGATE BASE (INCHES)	
Automobile parking areas	5	3	4	
Truck and bus loading/unloading areas and driveways	6	4	4	
Extension of Major Place Street	7	4	5	

TABLE	V
SPHALTIC CONCRETE P	AVEMENT SECTION

The top two (2) feet of subgrade soils, below the aggregate base, should be scarified, moisture conditioned and recompacted to a minimum of ninety-five (95) and ninety (90) percent relative compaction for the upper and lower foot, respectively, at to slightly above optimum moisture content, based on ASTM D 1557.

The aggregate base must meet CALTRANS "Class 2 Aggregate Base" specifications and should be compacted to at least ninety-five (95) percent relative compaction based on ASTM D 1557. Asphaltic concrete should be compacted to at least ninety five (95) percent of the density obtained with the California Kneading Compactor (CAL 304).

11.2 <u>Rigid Pavement</u>

A Portland Cement concrete (PCC) pavement may also be used. In the design of the PCC pavement section shown in Table VI, below, the following design parameters were used:

•	Modulus of subgrade reaction of the soil, k	 250 pci
•	Modulus of rupture of concrete, MR	 550 psi
•	Traffic Category, TC	 С
•	Average daily truck traffic, ADTT	 100

The traffic category and average daily truck traffic should be confirmed by the civil engineer and R-value tests should be performed during grading, prior to finalizing PCC thickness.

Based on the design parameters presented above, the following rigid pavement section, calculated in general conformance with the procedure recommended by ACI 330R-01, may be used.

TABLE VI PCC PAVEMENT SECTION	
Truck loading/unloading areas (TC = C)	6

The upper twelve (12) inches of subgrade soils below the PCC should be scarified, moisture conditioned and recompacted to a minimum of ninety-five (95) percent relative compaction, at to slightly above optimum moisture content, based on ASTM D 1557.

The PCC pavement reinforcement should be designed by the structural engineer for shrinkage, temperature stresses and loading conditions including vehicular traffic. A thickened edge should be constructed on the outside of concrete pavements subject to wheel loads. Control joints should be included in the design of the PCC by the structural engineer at a maximum spacing of fifteen (15) feet each way.

XII. PLAN REVIEW, OBSERVATIONS AND TESTING

Post-investigation services are an important and integrated part of this investigation and should be carried out by GEOBASE. The project foundation and grading plans, and specifications should be forwarded to GEOBASE for review for conformance with the intent of the soils recommendations.

Geotechnical observations of excavation bottoms should be carried out prior to fill placement. Observations and testing of all fill placement should be carried out on a continuous basis to verify the design assumptions and conformance with the intent of the recommendations. Observations of footing bases should be carried out prior to concrete pour.

XIII. LIMITATIONS

This investigation was performed in accordance with generally accepted geotechnical engineering principles and practices. No warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

This report is intended for use by the client and its representatives, and with regard to the specific project discussed herein. Any changes in the design or location of the proposed new structure, however slight, should be brought to our attention so that we may determine how they may affect our conclusions. The conclusions and recommendations contained in this report are based on the data relating only to the

specific project and location discussed herein. This report does not relate any conclusions or recommendations about the potential for hazardous and/or contaminated materials existing at the site.

The analyses and recommendations submitted in this report are based upon the observations noted during drilling of the borings, interpretation of laboratory test results, and geological evidence. This report does not reflect any variations which may occur away from the borings and which may be encountered during construction. If conditions observed during construction are at variance with the preliminary findings, we should be notified so that we may modify our conclusions and recommendations, or provide alternate recommendations, if necessary.

The recommendations presented herein assume that the plan review, observations and testing services, outlined in Section XII of the report, will be provided by GEOBASE. During execution of the aforementioned services, GEOBASE can finalize the report recommendations based on observations of actual subsurface conditions evident during construction. GEOBASE cannot assume liability for the adequacy of the recommendations if another party is retained to observe construction.

This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project, and incorporated into the plans and specifications. In this respect, it is recommended that we be allowed the opportunity to review the project plans and the specifications for conformance with the geotechnical recommendations.

This office does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for other than our own personnel on the site. Therefore, the safety of others is the responsibility of the contractor. The contractor should notify the owner if he considers any of the recommended actions presented herein to be unsafe.

Page 29 of 30

C.314.84.10 May 9, 2018

This report is subject to review by the appropriate regulating agencies.

Respectfully submitted GEOBASE, INC.

H. D. Nguyen, P.E. R.C.E. 82460 Associate Engineer

J-M. Chevallier, P.E., G.E. R.C.E. 39198; G.E. 2056 Managing Principal

REFERENCES

American Society of Civil Engineers, 2010 "Minimum Design Loads for Buildings and Other Structures", ASCE Standard, ASCE/SEI 7-10 with March 2013 errata.

California Building Standards Commission, 2016, California Building Code (CBC): California Code of Regulations, Title 24, Part 2, Volumes 1 and 2.

City of Hesperia, General Plan 2020, Safety Element, updated May 05, 2014.

City of Hesperia, Safety Element, Map Showing the Seismic Hazards In and Near Hesperia, California. Exhibit SF-1, Page SF-9.

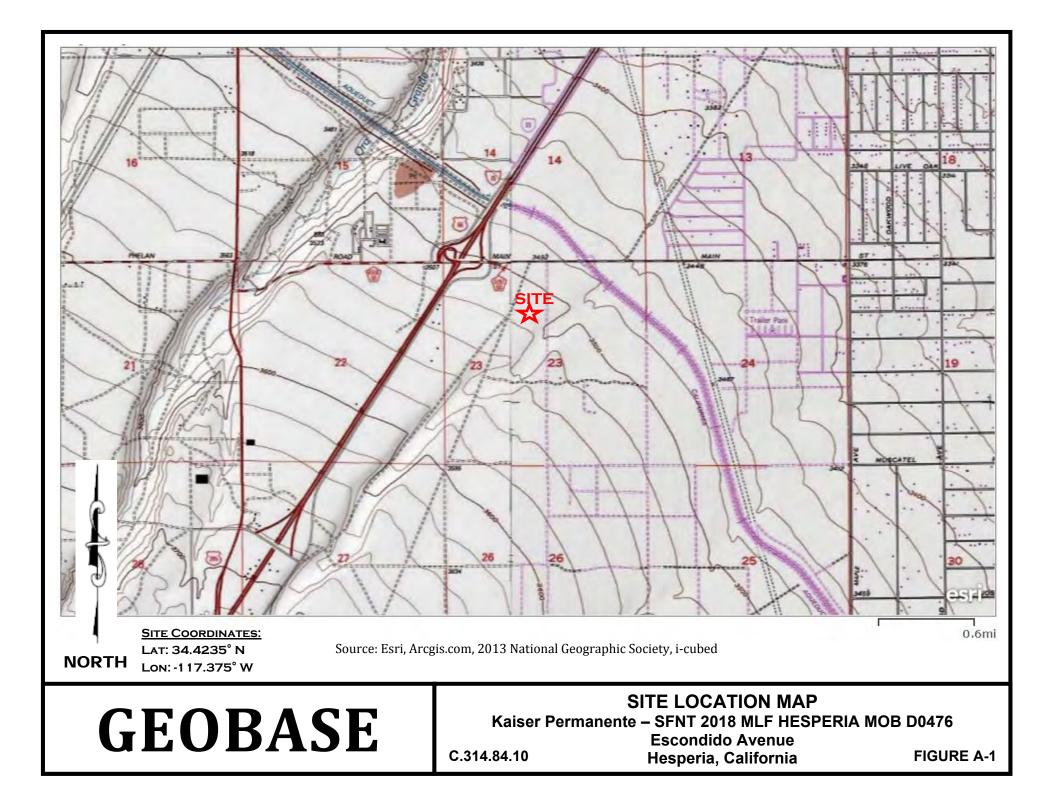
Coduto, DP (2001), "Foundation Design: Principles and Practices 2nd Edition". Prentice - Hall (1999).

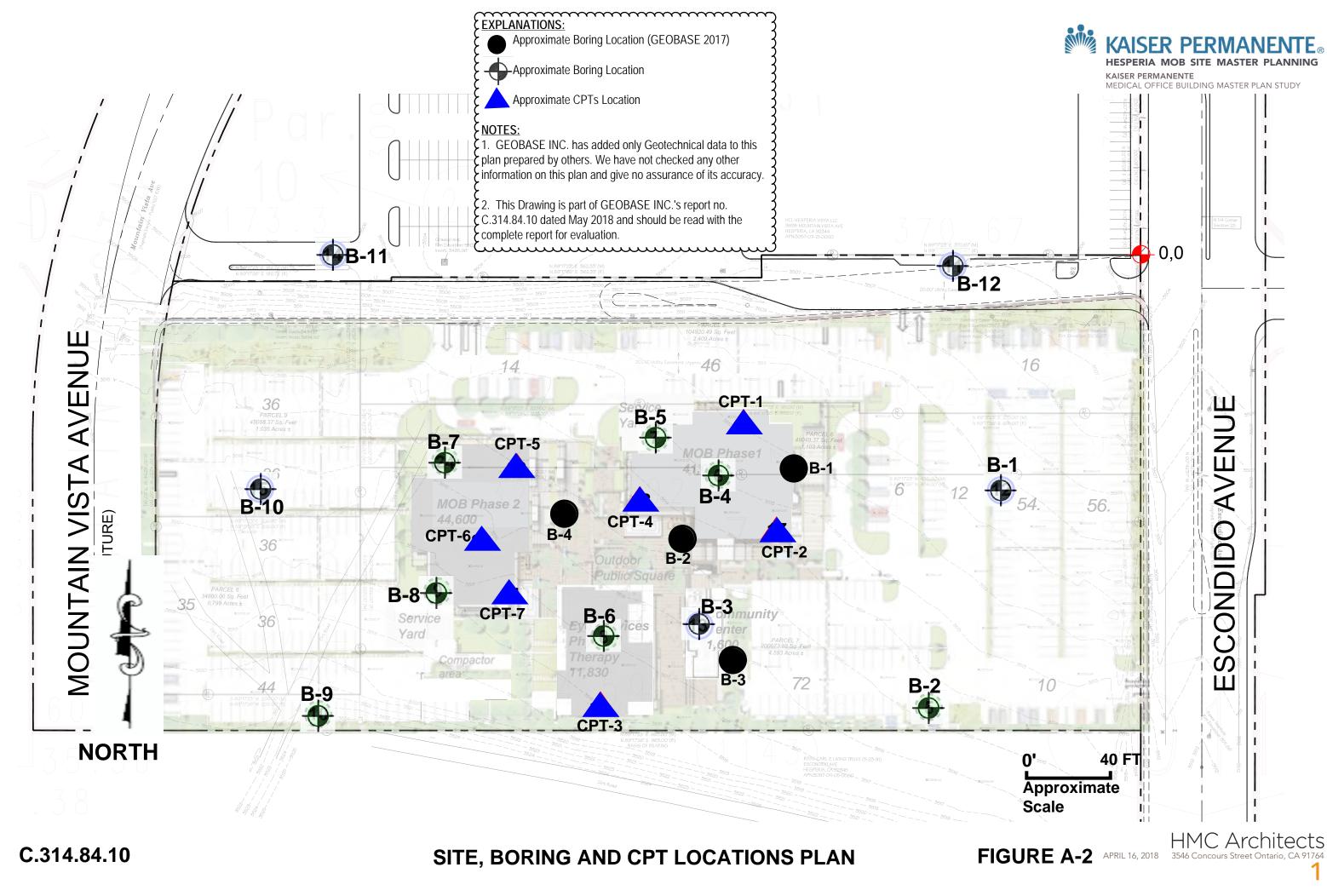
Day, S., R. Graves, J. Bielak, D. Dreger, S. Larsen, K. Olsen, A. Pitarka, and L. Petersen, M. and others, 2008. Documentation for the 2008 update of the national seismic hazard maps, USGS OFR 08-1128. Available on the web at <u>http://pubs.usgs.gov/of/2008/1128/.</u>

GEOBASE, INC., 2017, "Geotechnical Evaluation and Preliminary Recommendations, Land Purchase High Desert (Hesperia) Medical Office Building, Vacant Parcels 5-9, APN #3057-011-22-0-000 THRU 3057-011-26-0-000, Escondido Avenue, Hesperia, California", prepared for Kaiser Foundation Health Plan, Inc., Fontana, California, dated August 2017, project number: C.314.84.00

Federal Emergency Management Agency (FEMA), San Bernardino County, California and Incorporated Areas, Flood Insurance Rate Map, Map Numbers 06071C6490H and 06071C6475H, effective date August 28, 2008.

Lawton, E.C., Fragaszy, R.S. and Hetherington, M.D., "Review of Wetting-Induced Collapse in Compacted Soil", Journal of geotechnical Engineering, ASCE, 118-9 (1992), 1376-94.


Tokimatsu, K., and Seed, H.B., 1987 "Evaluation of Settlements in Sands due to Earthquake Shaking", J. Geotechnical Engineering Division, ASCE, Vol. 113, No. 8, pp. 861-878.


United Society of Geological Survey (USGS), US Seismic Design Maps, 2018.

GEOBASE, INC.

APPENDIX A

Figure A-1	Site Location Map
Figure A-2	Site, Boring and CPT Locations Plan
Figure A-3	ALTA Survey Plan
Figure A-4	Seismic Hazards Zones Map
Figure A-5	FEMA Flood Map

This survey coordinated, but not performed, by Commercial Due Diligen	nce Services. Survey obtained from and certified to by a land surveyor licensed in the state property is located.	This survey coordinated, but not performed, by Commercial
This survey	COMMERCIAL DUE DILIGENCE SERVICES	13 LAND
THE LAND REFERRED TO IN THIS COMMITMENT IS SITUATED IN THE CITY OF HESPERIA, COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS:	19 SURVEY DRAWING	Total Acrea 432932.11 9.939 Acres
PARCELS 5, 6 AND 7 OF PARCEL MAP NO. 14623, IN THE CITY OF HESPERIA, COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA, AS PER PLAT RECORDED IN BOOK 175, PAGE(S) 37, 38 AND 39 OF PARCEL MAPS, RECORDS OF SAID COUNTY; AND AS AMENDED BY AMENDING PARCEL MAP NO. 14623, RECORDED IN BOOK 179, PAGE(S) 49, 50 AND 51 OF PARCEL MAPS, RECORDS OF SAID COUNTY.	3 SCHEDULE 'B' ITEMS	14 BUILD
	NOTES CORRESPONDING TO SCHEDULE "B":	NO BUILDING PROPERTY
AN EASEMENT FOR THE CONSTRUCTION, MAINTENANCE AND OPERATION OF A SIGN OVER, ON AND UNDER THAT CERTAIN PROPERTY SET OUT IN THAT CERTAIN "FREEWAY PYLON SIGN EASEMENT" RECORDED JULY 7, 1994 AS INSTRUMENT NO. 94-296280 OF OFFICIAL RECORDS AS AMENDED BY AMENDMENT TO FREEWAY PYLON SIGN EASEMENT DATED MAY 21, 1996 AND RECORDED JUNE 12, 1996 AS INSTRUMENT NO. 96- 208237 OF OFFICIAL RECORDS PARCEL 1B:	AN EASEMENT FOR PUBLIC UTILITIES AND INCIDENTAL PURPOSES, RECORDED MAY 27, 1929 AS BOOK 504, PAGE 176 AND RECORDED ON JULY 1, 1929 AS BOOK 515, PAGE 194 BOTH OF OFFICIAL RECORDS. IN FAVOR OF: THE PACIFIC TELEPHONE AND TELEGRAPH COMPANY	15 BUILDIN
ALL THOSE CERTAIN RECIPROCAL EASEMENTS AS SET OUT IN THAT CERTAIN "RECIPROCAL EASEMENT AND OPERATION AGREEMENT" RECORDED JULY 7, 1994 AS INSTRUMENT NO. 94- 296279 OF OFFICIAL RECORDS.	AFFECTS: AS DESCRIBED THEREIN THE LOCATION OF THE EASEMENT CANNOT BE DETERMINED FROM RECORD INFORMATION. (UNABLE PLOT INSUFFICIENT LEGAL DESCRIPTION)	PROPERTY
PARCEL 2: PARCELS 8 AND 9 OF PARCEL MAP NO. 14623, IN THE CITY OF HESPERIA, COUNTY OF SAN	ABUTTER'S RIGHTS OF INGRESS AND EGRESS TO OR FROM STREET, HIGHWAY, OR FREEWAY HAVE BEEN RELINQUISHED IN THE DOCUMENT RECORDED AUGUST 23, 1962 AS BOOK 5755, PAGE 904 OF OFFICIAL RECORDS . (DOES NOT AFFECT)	
BERNARDINO, STATE OF CALIFORNIA, AS PER PLAT RECORDED IN BOOK 175, PAGES 37, 38 AND 39, OF PARCEL MAPS, RECORDS OF SAID COUNTY; AND AS AMENDED BY AMENDING PARCEL MAP NO. 14623, RECORDED IN BOOK 179, PAGES 49, 50 AND 51 OF PARCEL MAPS, RECORDS OF SAID COUNTY.	AN OFFER OF DEDICATION FOR HIGHWAY, ROAD AND UTILITIES AND INCIDENTAL PURPOSES, RECORDED FEBRUARY 12, 1985 AS INSTRUMENT NO.	
APN: 3057-011-22-0-000 (PARCEL 5 OF PARCEL NO. 1) 3057-011-23-0-000 (PARCEL 6 OF PARCEL NO. 1) 3057-011-24-0-000 (PARCEL 7 OF PARCEL NO. 1) 3057-011-25-0-000 (PARCEL 8 OF PARCEL 2) 3057-011-26-0-000 (PARCEL 9 OF PARCEL 2)	85-034069 OF OFFICIAL RECORDS. TO: THE COUNTY OF SAN BERNARDINO, A BODY CORPORATE AND POLITIC OF THE STATE OF CALIFORNIA, AND TO THE PUBLIC IN GENERAL SAID OFFER WAS ACCEPTED BY RESOLUTION, A CERTIFIED COPY OF WHICH WAS RECORDED DECEMBER 7, 1992 AS INSTRUMENT NO. 92-502387 OF OFFICIAL	
THE LAND SHOWN IN THIS SURVEY IS THE SAME AS THAT DESCRIBED IN FIRST AMERICAN TITLE INSURANCE COMPANY COMMITMENT NUMBER NCS-851808-SF WITH AN EFFECTIVE DATE OF MAY 16, 2017.	RECORDS. (DOES NOT AFFECT, LIES WITHIN ESCONDIDO AVENUE RIGHT-OF-WAY) AN EASEMENT FOR PIPELINES, UTILITIES AND ACCESS AND INCIDENTAL	
2 TITLE INFORMATION	 AN EASEMENT FORTH ELEMES, OTHERTIES AND ACCESS AND INCIDENTAL PURPOSES, RECORDED FEBRUARY 19, 1988 AS INSTRUMENT NO. 88-051463 OF OFFICIAL RECORDS. IN FAVOR OF: HESPERIA WATER DISTRICT AFFECTS: AS DESCRIBED THEREIN (AFFECTS, PLOTTED AND SHOWN) 	
THE TITLE DESCRIPTION AND SCHEDULE B ITEMS HEREON ARE FROM FIRST AMERICAN TITLE INSURANCE COMPANY, COMMITMENT NO. NCS-851808-SF, DATED MAY 16, 2017.	THE FACT THAT THE LAND LIES WITHIN THE BOUNDARIES OF THE HESPERIA REDEVELOPMENT PROJECT AREA, AS DISCLOSED BY THE DOCUMENT RECORDED JULY 21, 1993 AS INSTRUMENT NO. 1993-310136 OF OFFICIAL RECORDS. (AFFECT, CONTAINS NO PLOTTABLE ITEMS)	
4 SURVEYOR CERTIFICATION	 THE TERMS, PROVISIONS AND EASEMENT(S) CONTAINED IN THE DOCUMENT ENTITLED "EASEMENT AND OPERATION AGREEMENT" RECORDED JULY 07, 1994 AS INSTRUMENT NO. 94-296279 OF OFFICIAL RECORDS. DOCUMENT(S) DECLARING MODIFICATIONS THEREOF RECORDED OCTOBER 25, 2005 AS INSTRUMENT NO. 2005- 0798765 AND RECORDED ON JANUARY 25, 2006 AS INSTRUMENT NO. 2006-0054889 BOTH OF OFFICIAL RECORDS. (AFFECTS, CONTAINS NO PLOTTABLE ITEMS) 	
To First American Title Insurance Company, Commercial Due Diligence Services This is to certify that this map or plat and the survey on which it is based were made in accordance with the 2016 Minimum Standard Detail Requirements for ALTA/NSPS Land Title Surveys, jointly established and adopted by ALTA and NSPS, and includes Items 2, 3, 4, 5, 6(a), 6(b), 7(a), 7(b)(1), 7(c), 8, 9, 11 (Observed evidence together with evidence from plans obtained from utility companies or provided by client, and markings by utility companies and other appropriate sources), 13, 14, 16, 19, and 20 of Table A thereof. The fieldwork was completed on 7/20/2017.	 THE TERMS, PROVISIONS AND EASEMENT(S) CONTAINED IN THE DOCUMENT ENTITLED "FREEWAY PYLON SIGN EASEMENT AGREEMENT" RECORDED JULY 07, 1994 AS INSTRUMENT NO. 94-296280 OF OFFICIAL RECORDS. DOCUMENT(S) DECLARING MODIFICATIONS THEREOF RECORDED JUNE 12, 1996 AS INSTRUMENT NO. 1996- 0208237 OF OFFICIAL RECORDS. (DOES NOT AFFECT) 	
Date of Plat or Map: 7/24/2017	AN EASEMENT FOR PIPELINES AND INCIDENTAL PURPOSES, RECORDED AUGUST 02, 1996 AS INSTRUMENT NO. 96-281512 OF OFFICIAL RECORDS. IN FAVOR OF: HESPERIA WATER DISTRICT AFFECTS: AS DESCRIBED THEREIN (AFFECTS, PLOTTED AND SHOWN)	
Surveyor's signature printed name and seal with Registration/License Number surveyor@firstam.com		
	6 CEMETERY	
	There is no visible evidence of cemeteries on the subject property at the time of survey.	
	ZONING NOT PROVIDED TO THE SURVEYOR AT THE TIME OF THE ALTA SURVEY.	
	7 STATEMENT OF ENCROACHMENTS	
5 FLOOD INFORMATION	of the	
By graphic plotting only, this property is located in Zone "X" of Flood Insurance Rate Map, Community Panel No. 06071C64 which bears an effective date of 8/28/2008 and IS NOT locat special flood hazard area. No field surveying was performed determine this Zone and an elevation certificate may be need	475H, ted in a d to ded to	
Surveyors Name: Buckley D. Blew Zone "X" - Area of minimal flood hazard, usually depicted on FIRMs above the 500-year flood level. Zone C may have ponding and local dr.	s as	
Address: 524 W. Sycamore St. Ste 4 Telephone Number: 479-443-4506 email: survey@blewinc.com	odplain.	
	Copyright © Commercial Due Diligence Services. This format and style is protected by Copyright, without prior all rights are reserved. Any use of this format and style is strictly prohibited without	

C.314.84.10

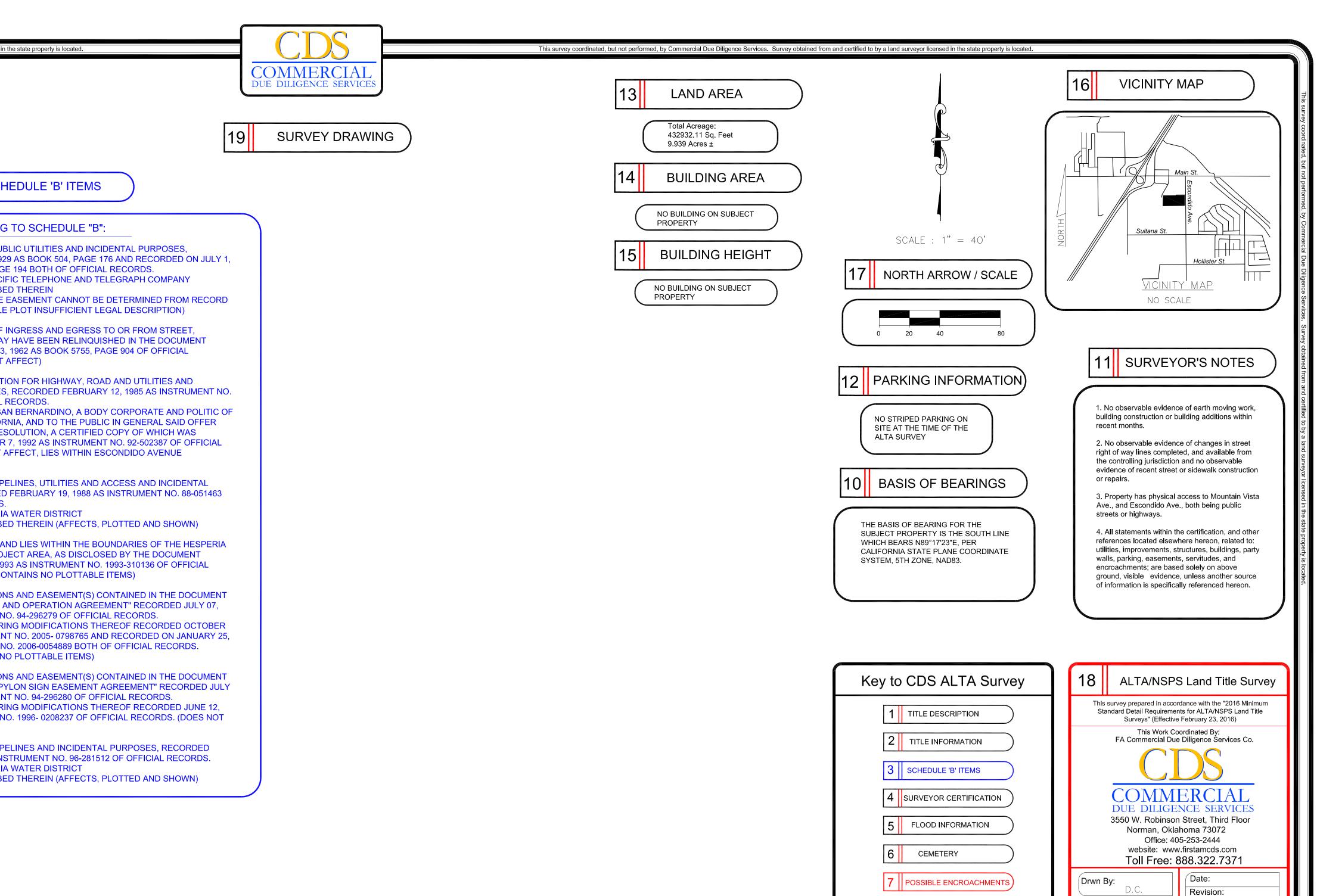


FIGURE A-3 Page 1 of 2

Surveyor Ref.No: 17–1333

7/20/2017

TWP

1"=40'

Aprvd By:

Field Date:

Client Ref. No:

20

(Scale:

Date: Revision:

Date: Revision:

Date:

PROJECT ADDRESS

ESCONDIDO AVE, HESPERIA, CA

Project Name: KAISER HESPERIA LAND

CDS Project Number:

17-06-0219

Prepared For:

Revision:

8 ZONING INFORMATION

LEGEND

10 BASIS OF BEARING

11 SURVEYOR'S NOTES

12 PARKING INFORMATION

LAND AREA

BUILDING AREA

VICINITY MAP

17 NORTH ARROW / SCALE

18 CLIENT INFORMATION BOX

19 SURVEY DRAWING

20 PROJECT ADDRESS

15 BUILDING HEIGHT

9

13

14

16

Sheet <u>1</u> of <u>2</u>

This survey coordinated, but not performed, by Commercial Due Diligence Services. Survey obtained from and certified to by a land surveyor licensed in the state property is located.

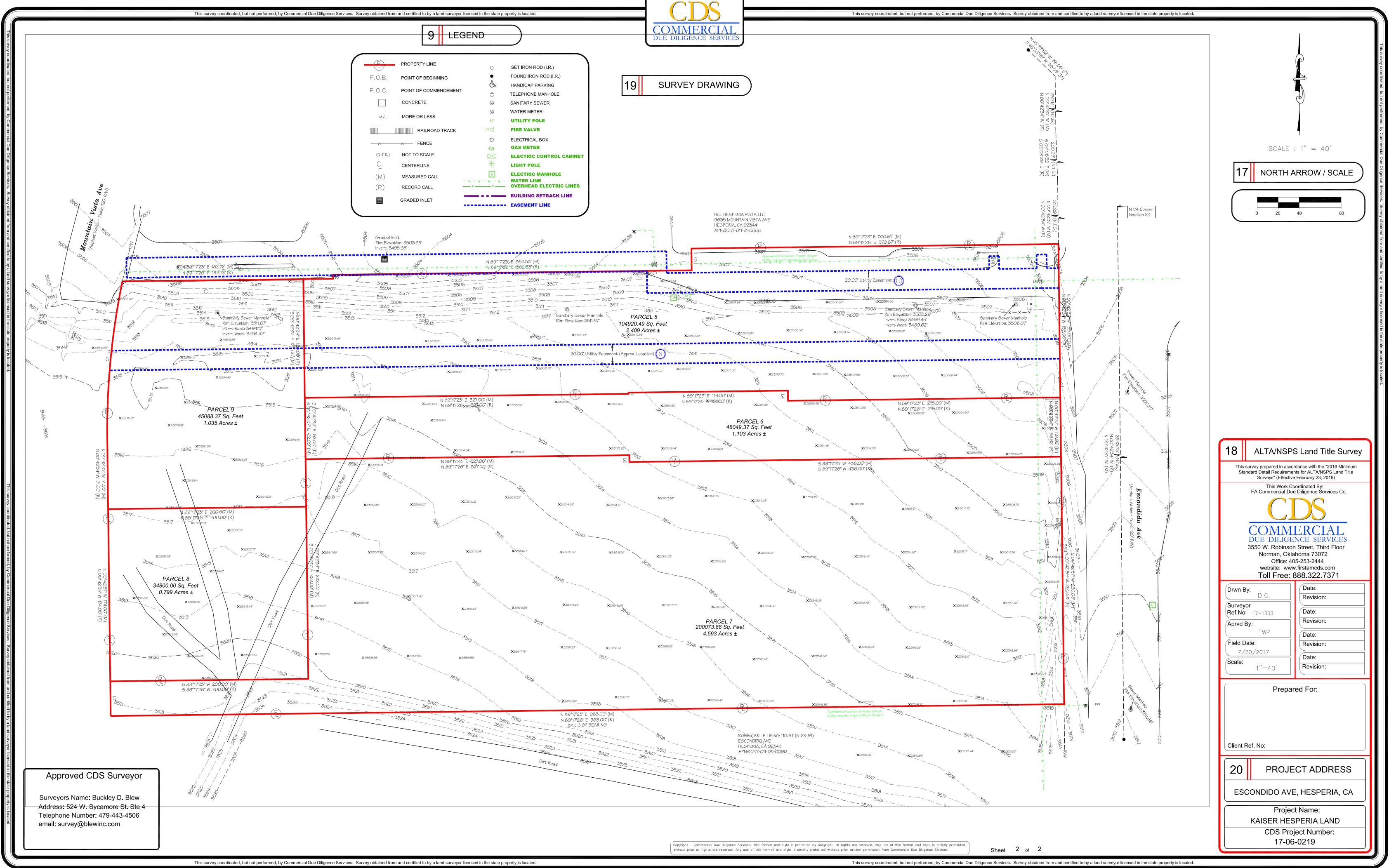
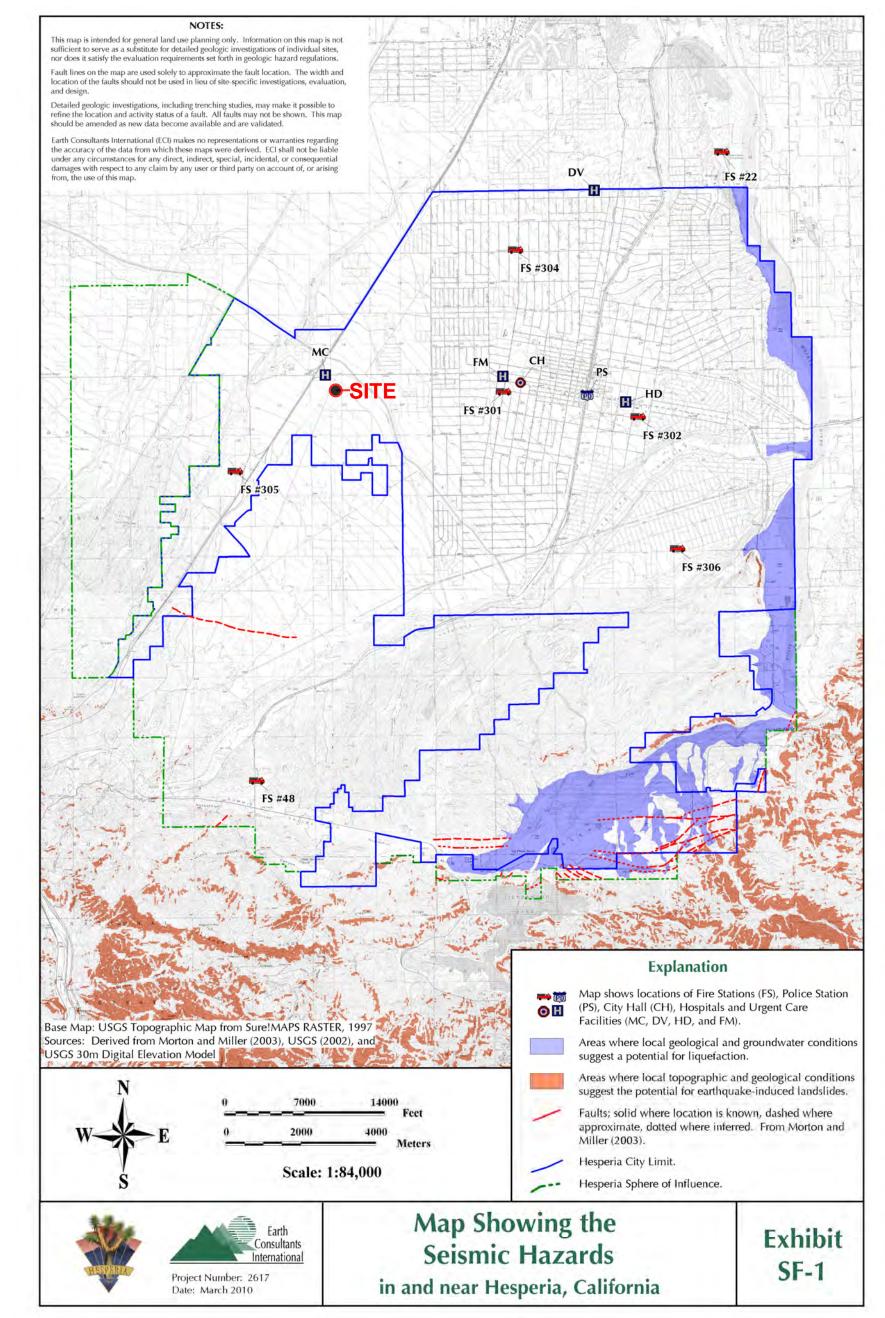



FIGURE A-3 Page 2 of 2

SAFETY

EXHIBIT SF-1 SEISMIC HAZARDS

C.314.84.10

SEISMIC HAZARDS ZONES MAP

FIGURE A-4

City of Hesperia General Plan 2010

The SITE is in **Zone X** – Area of minimal flood hazard

FEMA FLOOD MAP Kaiser Permanente – SFNT 2018 MLF HESPERIA MOB D0476 **Escondido Avenue** C.314.84.10 Hesperia, California

FIGURE A-5

APPENDIX B

Figure B-1	Explanation of Terms and Symbols Used
Figure B-2	Log of Boring B-1
Figure B-3	Log of Boring B2
Figure B-4	Log of Boring B3
Figure B-5	Log of Boring B4
Figure B-6	Log of Boring B5
Figure B-7	Log of Boring B6
Figure B-8	Log of Boring B7
Figure B-9	Log of Boring B8
Figure B-10	Log of Boring B9
Figure B-11	Log of Boring B10
Figure B-12	Log of Boring B11
Figure B-13	Log of Boring B12
Figure B-14	Log of CPT-1
Figure B-15	Log of CPT-2
Figure B-16	Log of CPT-3
Figure B-17	Log of CPT-4
Figure B-18	Log of CPT-5
Figure B-19	Log of CPT-6
Figure B-20	Log of CPT-7

GEOBASE, INC., 2017

Figure B-21	Log of Boring B1
Figure B-22	Log of Boring B2
Figure B-23	Log of Boring B3
Figure B-24	Log of Boring B4

GEOBASE, INC.

The terms and symbols used on the Log of Borings to summarize the results of the field investigation and subsequent laboratory testing are described in the following:

It should be noted that materials, boundaries, and conditions have been established only at the boring locations, and are not necessarily representative of subsurface conditions elsewhere across the site.

A. PARTICLE SIZE DEFINITION (ASTM D2487 AND D422)

Boulder	larger than 12-inches	Sand, medium	No.40 to No. 10 sieves
Cobble	3-inches to 12-inches	Sand, fine	No.200 to No. 40 sieves
Gravel, coarse	3/4-inch to 3-inches	Silt	5µm to No. 200 sieves
Gravel, fine	No.4 sieve to 3/4 -inch	Clay	smaller than 5 µm
Sand, coarse	No.10 to No.4 sieve		

B. <u>SOIL CLASSIFICATION</u>

Soils and bedrock are classified and described according to their engineering properties and behavioral characteristics. The soil of each stratum is described using ASTM D2487 and D2488.

The following adjectives may be employed to define percentage ranges by weight of minor components:

trace	 1-10%	some	 20-35%
little	 10-20%	"and" or "y"	 35-50%

The following descriptive terms may be used for stratified soils:

parting	 0 to 1/16-in. thickness;	layer	¹ / ₂ -in. to 12-in. thickness;
seam	 1/16 to ½-in. thickness;	stratum	greater than 12-in. thickness.

C. SOIL DENSITY AND CONSISTENCY

The density of coarse grained soils and the consistency of fine grained soils are described on the basis of the Standard Penetration Test:

COARSE GR	AINED SOILS		FINE G	RAINED SOILS
Density	SPT Density Blows per Foot		D SPT CY BLOWS PER F	ESTIMATED RANGE OF UNCONFINED FOOT COMPRESSIVE STRENGTH (TSF)
very loose loose medium dense very dense	less than 4 5 to 10 11 to 30 31 to 50 over 50	very soft soft firm (mediu stiff very stiff hard	2 to 4 m) 5 to 8 9 to 15	2 less than 0.25 0.25 to 0.50 0.50 to 1.0 1.0 to 2.0 2.0 to 4.0
			GEOBASE	EXPLANATION OF TERMS AND SYMBOLS USED Figure B-1 Page 1 of 3

D. STANDARD PENETRATION TEST (SPT) -- D1586

The SPT test involves failure of the soil around the tip of a split spoon sampler for a condition of constant energy transmittal. The split spoon, 2-inches outside diameter and 1 3/8-inches inside diameter, is driven eighteen (18) inches. The sampler is seated in the first six (6) inches and the number of blows required to drive the sampler the last foot is recorded as the "N" value or SPT blow count. The driving energy is provided by a 140 pound weight dropping thirty (30) inches.

E. <u>ABBREVIATION OF LABORATORY TEST DESIGNATIONS</u>

- C Consolidation
- CBR California Bearing Ratio
- Ch Water Soluble Chlorides
- DS Direct Shear
- EI Expansion Index
- ER Electrical Resistivity
- k Permeability
- MD Moisture
- MP Modified Proctor Compaction Test
- O Organic Content

- рН рН
- pp Pocket Penetrometer
- PS Particle Size
- RV R-Value
- SE Sand Equivalent
- SG Specific Gravity
- SO₄ Water Soluble Sulfates
- TX Triaxial Compression
- TV Torvane Shear
- U Unconfined Compression

F. STRATIFICATION LINES

The stratification lines indicated on the boring logs and profiles represent the *approximate* boundary between material types and the transition may be gradual.

GEOBASE

EXPLANATION OF TERMS AND SYMBOLS USED

Page 2 of 3

Figure B-1

SOIL CLASSIFICATION SYSTEM (ASTM D 2487)

MAJOR	DIVISION		GRAPHIC	TVDICAL DE	SCRIPTION	CLASS	IFICATION	
HIGHLY OR	GANIC SOILS	Pt		Peat and other highly	organic soils	Strong color or ador and often fibrous texture		
	CLEAN GRAVELS	GW		Well-graded Gravels, (modures (<5% fines)	$C_{U} = \frac{D_{60}}{D_{10}} > 4 C_{c} = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$			
ELS talf coar ger thar re eize)	CLEAN GRAVELS	GP		Poorly-graded Gravels Sand mixtures (<5% fir		Not meeting all requirements	above	
GRAVELS (More than haif coerse fraction larger than No. 4 sleve size)	DIRTY GRAVELS	GM	*****	Silty Gravels, Gravel-So (>12% fines)	and-Sill modures	Atterberg limits or Ip<4	below "A" line	
(Mo fra	Ditti Gioriceo	GC		Clayey Gravels, Gravel modures (>12% fines)	-Sand-Clay	Atterberg limits or Ip>7	above "A" line	
1(86 en	CLEAN SANDS	sw		Well-graded Sands, Gr (<5% fines)	avelly Sands	$C_{u^{=}} \frac{D_{60}}{D_{10}} > 6 C_{0}$	$c = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$	
SANDS han half coa n emalter th 4 eleve alze	C.D.T.G.T.D.	SP		Poorly-graded Sands of (<5% fines)	Gravelly Sands	Not meeting all a requirements	above	
SANDS (More than half coarse fraction emelter than No. 4 steve size)	DIRTY SANDS	SM		Silly Sands, Sand-Sill m (>12% fines)	idures	Atterberg limits i or 1p <4	below "A" line	
C. Mo	DIRTT SANUS	SC		Clayey Sands, Sand-Cla (>12% fines)	ay mòduros	Atterberg limits : or 1p>7	above "A" line	
	SILTS	ML		Inorganic Silts and very Flour, Silty Sands of slig		W L< 50		
chart	line on plasticity : negligible nic content	мн		Inorganic Sills micaceo diatomaceous, fine San		W L> 50		
	LAYS	CL		Inorganic Clays of low p Gravelly, Sandy, or Silty		W L< 30		
Above "A" line on plasticity chart: negligible		СІ		Inorganic Clays of media Silly Clays	W L> 30, <50 See chart below			
	lic content	СН		inorganic Clays of high j fat Clays	W 1> 50			
	NIC SILTS & NIC CLAYS	OL		Organic Silts and organi of low plasticity	c Silty Clays	W L < 50		
	"A" line on city chart	ОН		Organic Clays of high pl	asticity	W ر> 50		
D2488 modified dium plasticity*	alum is described usin d slightly so that an ino is recognized. IONAL SOIL CLASSIFI	ganic clay of		with increasin	PLASTICITY i i d dry strength increa g plasticity index what is at equal liquid lim	ase CH		
8	Fill Soil							
Frate	Ss Sandst	one		20	· ·	ALLINE	MH or _OH	
	Cs Claysic	nə		10	ML			
	Ms Siltston	e			a	50 60 7	0 80 90	
			I					
			GE	EOBASE	AND	SYMBOL	S USED	
							F	

	LOG OF BORING										
SAN	NPLE	TYPE:	THIN WALLED SPT			NIA D SA	MPLER		BED N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	N	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (Peneti	Content (%): C W P) II ration, blows/foo	Liquid Limit (W L)	REMAF OTHER T	
	<u>, 17</u>	GRASS AND F	ROOTS,				10	20 30	40 50		
- - - 5		gravels, very lo			of SP-SM						
-		medium dens	se, medium- to coarse-gra	ined			•				
-		<u>SAND</u> , light bro	own, silty, fine-grained, der	nse.	SM		•			200 Wash	
—10 -		trace of grave	els				•				
- - 15 - -		End of Boring a Boring dry at co Backfilled with	ompletion of drilling.								
- 20 -											
_									······································		
25 -											
-											
- 30											
-											
- 35			Ka	iser Perman	enteSENT	2019		SPERIA MOB D	00476		
_	_		PROJECT	E	scondido A					BORING NO.	B-1
GE	OB/	ASE, INC.	DEPTH TO WATER	ieet ±			5 feet	LOGGED BY	HDN	PROJECT NO.	C.314.84.10
DEPTH TO SLOUGH DRILL RIG CME-75 DATE DOUCH FIG Note: This log of boring should be evaluated in conjunction with the complete geotechnical report. This log of boring represents conditions observed at the specific boring location and at the date indicated. DATE DATE DOUCH FIG									FIGURE NO. B		

	LOG OF BORING										
SAMPLE TYPE: THIN WALLED SPT CALIFORNIA SOLIT SPOON MODIFIED SAMPLER											
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION		SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V	RY DENSITY (PC 90 100 110 Content (%): W_{P} \longmapsto Liq ation, blows/foot: 20 30 40	120	REMAF OTHER 1	
	<u>, 17</u> <u>1</u>	GRASS AND R	<u>OOTS,</u>		•			20 30 40			
- - 5			nedium grained, little silt, very loos	e. s	SP						
10		very loose, tra			-						
-		SAND, brown, s gravels, very de	silty, fine- to medium-grained, little ense.	s	ЭМ .		•			200 Wash	
			e of gravels, very dense			X	•			Blow count = 8 CP, DS	9/11 in. PS,
- 20 -		coarse-grained,	n, micaceous, medium dense.	SP	P-SM		•	—	/		
- 25 - -		4 IN SILT lay	er, fine-grained, medium dense		-					200 Wash	
- 30 -		medium- to co dense	parse-grained, little silt and gravels	,		\times	•		.	Blow count = 6	0/12 in.
- - 35		End of Boring a Boring dry at co Backfilled with	ompletion of drilling. soil cuttings.								
			PROJECT	Escondid	lo Av		MLF HES e, Hesperi	SPERIA MOB D047 ia, CA	6	BORING NO.	B-2
GE	OB/	ASE, INC.	DEPTH TO WATER feet		3		5 feet		IDN	PROJECT NO.	C.314.84.10
Note	: This	log of boring sho		DRILL F	R 2	2R D	rilling		9/2018 orina	FIGURE NO. E	
repre	Note: This log of boring should be evaluated in conjunction with the complete geotechnical report. This log of boring page 1 of 1 page 1 of 1										

	LOG OF BORING										
SAMPLE TYPE:											
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION		SOIL CLASSIFICATION	SAMPLE	80 Water (Plastic Limit (V	Content (%):	110 • Liqu Limi	120	REMARKS/ OTHER TESTS
	<u>, 17</u> <u>1</u>	GRASS AND F	ROOTS,		•,			20 30	40		
- - 5 -			little silt and gravels, very loose. um-grained, trace of silt, medium den		SP-SM		P	L.		· · · · · · · · · · · · · · · · · · ·	200 Wash
- 		some silt , tra	ace of gravels, very dense			X					Blow count = 50/3 in. PS, DS.
- 		coarse-graine	ed, little gravels, micaceous, dense.				•			 	
- 20 -	trace of silt and gravels, dense						•				
- 25 -		trace of silt a	nd fine-gravels, very dense				•				Blow count = 90/12 in. PS.
- 30 -		fine- to mediu	um-grained				•			····	
- - <u>35</u>		End of Boring a Boring dry at co Backfilled with	ompletion of drilling. soil cuttings.	mente	QENT.	2049			D0476		
			PROJECT	Escon	dido A	venu	MLF HES e, Hesperi	a, CA			BORING NO. B-3
GE	OB/	ASE, INC.		ELEV		8516 CMF		LOGGED B DATE	Y HI	ON	PROJECT NO. C.314.84.10
Note	: This	log of boring sho	DEPTH TO SLOUGH	DRILI	LER plete g	2R D geote	rilling chnical rep	LOGGED	03/29/ g of bor		FIGURE NO. B-4
repre	esents	conditions obser	ved at the specific boring location and	d at the	date in	dicat	ed.			-	page 1 of 1

	LOG OF BORING												
SAN													
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	DN	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (Penet	90 100 Content (%): C (W P) I ration, blows/f	110 Liqui H Limit	120 id t (W _)	REMARKS/ OTHER TEST		
	<u></u>	GRASS AND R	<u>OOTS,</u>		0)		10	20 30	40	50			
-		SAND, brown, l	ittle silt and gravels, very	loose.	SP-SM								
5 - - -		medium- to co medium dense	oarse-grained, little silt, m	icaceous,			•				200 Wash Bulk sample 5-10 f Ch, ER, pH, SO₄	t. RV.	
			ïne- to medium-grained, o ivels, very dense.	ementation,	SM		•				-		
		<u>SAND</u> , light bro little silt, very de		of 1-in gravels,	SP-SM		•				Blow count = 50/3 CP, DS.	in. PS,	
- - - 25		cementation,	trace of silt, dense								Blow count = 76/12	9 in 200	
- 30 - 30 - 30 - 35 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4													
			PROJECT Ka		ondido A		MLF HE		D0476		BORING NO. B-	4	
GE	OBA	ASE, INC.	DEPTH TO WATER	Teet + ELE		3513		LOGGED B	IY HC	DN	PROJECT NO. C.	314.84.10	
Note	· Thie	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conjur	🐺 DR	ILL RIG ILLER	2R D	rilling		03/29/2		FIGURE NO. B-5		
repre	esents	conditions observ	red at the specific boring I	ocation and at th	ne date ir	ndicat	ed.		,		page 1 of 2		

	LOG OF BORING MPLE TYPE: ■ THIN WALLED □ SPT SPLIT SPOON SPLIT SPOON CALIFORNIA MODIFIED SAMPLER ☐ DISTURBED NO RECOVERY ☐ CORE													
SAN														
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	N	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V	90 100 1 Content (%):	IO 120 Liquid Limit (W L) t:	REMAF OTHER T				
- - - - - - - - - - - - - - - - - - -		SAND, light bro and gravels, ver some silt dense	wn, medium- to coarse-gr ry dense.	ained, little	silt _{SP-S}					Blow count = 5	0/4 in.			
- 50 - -		dense, trace o	of silt and gravels											
- 55 - -		End of Boring a Boring dry at cc Backfilled with s	ompletion of drilling.											
- 60 - - - 65														
- - - _70			PROJECT Ka		Escondido	Avenu		SPERIA MOB DO	476	BORING NO.	B-4			
GE	OBA	ASE, INC.	DEPTH TO WATER	feet Ϋ	SURFACE	3513		LOGGED BY	HDN	PROJECT NO.	C.314.84.10			
Note	: This	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conjur	The tion with the test	DRILL RIC DRILLER he complete	2R D geote	rilling chnical re	DATE LOGGED 03 port. This log of	/29/2018 boring	FIGURE NO. B				
repre	sents	conditions observ	ed at the specific boring le	ocation and	at the date	Indica	ted.			puge Z				

	LOG OF BORING												
SAN	Z DRY DENSITY (PCF)												
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIO	NC	SOIL CLASSIFICATION	SAMPLE	80 Wate Plasti Limit	90 100 r Content (%	0 110 6): Liqu Liqu Lim rs/foot:	120	REMARKS/ OTHER TESTS		
	<u>, 1, 1, ., 1</u>	GRASS AND R	COOTS,					20 30	<u> 40 </u>				
-		<u>SAND</u> , brown, I	ittle silt and gravels, very	loose.	SP-SM								
			e, some silt, fine-grained				•				-		
		<u>SAND</u> , brown, r gravels, dense.	medium-grained, little silt	, trace of	SM					•	-		
		SAND, light bro gravels, dense.	wn, coarse-grained, trac	e of silt, little	SP-SM		•				- PS		
20 - - -		1-in gravels,					•		· · · · · · · · · · · · · · · · · · ·		Blow count = 93/12 in. C DS.	;P,	
25 - - -		dense					•				-		
30 - - - - 35		coarse-graine	ed, little silt, trace of grave				•				Blow count = 85/12 in. F	°S	
	_		PROJECT		ondido A				DB D0476	j	BORING NO. B-5		
GE	OB/	ASE, INC.	DEPTH TO WATER	ELI	RFACE EV. 3	3513 CME		LOGGED DATE	BY H	DN	PROJECT NO. C.314.84	4.10	
Note	: This	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conju	DR nction with the c	ILLER	2R D geote	rilling chnical re	LOGGED) 03/29/ log of bo	2018 ring	FIGURE NO. B-6		
repre	esents	conditions observ	ed at the specific boring	location and at the	he date ir	ndicat	ed.				page 1 of 2		

	LOG OF BORING IPLE TYPE: ■ THIN WALLED III SPT CALIFORNIA MODIFIED SAMPLER III DISTURBED NO RECOVERY III CORE													
SAN	Z DRY DENSITY (PCF)													
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	N	SOIL CLASSIFICATION	SAMPLE	80 Water (Plastic Limit (V	90 100 11 Content (%):	0 120 • iquid .imit (W L) :	REMAF OTHER T				
- - - - - - - -		SAND, light bro silt, 1-in gravels	wn, medium- to coarse-g s, dense.	rained, trace o	of SP-SM					Blow count = 5	0/4 in.			
- 45 - -		dense												
50 - -		dense, trace o	of silt and gravels				•							
55 - - - - - - - - - - - - - - - - -		End of Boring a Boring dry at co Backfilled with s	ompletion of drilling.											
- 70														
	ı — I		PROJECT Ka		nteSFNT condido A			PERIA MOB D04 a, CA	476	BORING NO.	B-5			
GE	OBA	ASE, INC.	DEPTH TO WATER	feet ⊻ S	SURFACE	3513	feet	LOGGED BY	HDN	PROJECT NO.	C.314.84.10			
Note	: This	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conju	nction with the	ORILL RIG ORILLER complete	2R D geote	rilling chnical rep	DATE LOGGED 03/ port. This log of		FIGURE NO. B				
repre	sents	conditions observ	ed at the specific boring	ocation and at	t the date in	ndica	ted.	-	-	page 2	012			

	LOG OF BORING MPLE TYPE: THIN WALLED SPT SPLIT SPOON CALIFORNIA MODIFIED SAMPLER DISTURBED NO RECOVERY CORE											
SAN	MPLE	TYPE:	THIN WALLED SPT		CALIFOR MODIFIE	RNIA D SA	MPLER		N			
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTI	NC	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V	RY DENSITY (PC 90 100 110 Content (%): $(M_{P}) \longmapsto Liq Liq Lin ation, blows/foot: 20 30 40$	120	REMARKS/ OTHER TESTS		
	<u>, 17</u> <u>1</u>	GRASS AND R	ROOTS,					20 30 40				
- - - 5			ittle silt and gravels, very		SP-SM	1	· · · · · · · · · · · · · · · · · · ·			Bulk sample 0-5 ft. RV Ch, ER, pH, SO₄		
			e, some silt, fine-grained				•			200 Wash		
-		SAND, brown, i gravels, mediur	medium-grained,some si n dense.	t, trace of	SM		•			Blow count = 93/12 in. PS, CP, DS.		
		light brown, coa	arse-grained, little silt, me	dium dense.			•			200 Wash		
		cementation,	silty, very dense							Blow count = 50/6 in. CP, 200 Wash		
		trace of silt, me		nedium-grained	I, SP-SM		•			200 Wash		
- - - - 35		fine-grained,							6	Blow count = 50/6 in. 200 Wash		
	PROJECT Kaiser PermanenteSFNT 2018 MLF HESPERIA MOB D0476 Escondido Avenue, Hesperia, CA BORING NO. B-6											
GE	OB/	ASE, INC.	DEPTH TO WATER	EL		3517			IDN	PROJECT NO. C.314.84.10		
		less of bands	DEPTH TO SLOUGH	▲ DI	RILL RIG	2R D	rilling		9/2018	FIGURE NO. B-7		
repre	esents	conditions observ	uld be evaluated in conju ed at the specific boring	location with the o	the date i	yeote ndica	ted.	port. This log of be	onng	page 1 of 2		

	LOG OF BORING MPLE TYPE: ■ THIN WALLED □ SPT SPIT SPOON SALIFORNIA MODIFIED SAMPLER □ DISTURBED NO RECOVERY □ CORE												
SAN	Z DRY DENSITY (PCF)												
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	ON	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V	90 100 Content (%): W _P) I I ation, blows/fo	Liquid Limit (W L)	REMAF OTHER T			
_		SAND, brown, i clayey, cement	medium- to coarse-graine ation, dense.	ed, some silt a		1				200 Wash			
-		<u>SAND</u> , light bro silt.	own, medium- to coarse-g	rained, trace o	of SP-SN	1							
40 - -		very dense, li	ttle gravels				•			Blow count = 5 Wash	0/4 in. 200		
- 45 - -		fine-grained,	dense				•			200 Wash			
- 50 -		fine-grained,	very dense				•			200 Wash			
- 55 - -		End of Boring a Boring dry at co Backfilled with s	ompletion of drilling.										
- 60 -													
- 65 -													
- - - _70				<u> </u>									
			PROJECT	Es	scondido A			SPERIA MOB D ia, CA	JU476	BORING NO.	B-6		
GE	OBA	ASE, INC.	DEPTH TO WATER			3517		LOGGED BY	/ HDN	PROJECT NO.	C.314.84.10		
Note	: This	log of borina sho	DEPTH TO SLOUGH uld be evaluated in conju	nction with the	DRILL RIG DRILLER e complete	2R C	Drilling echnical re	DATE LOGGED 0 port. This log	03/29/2018 of boring	FIGURE NO. B			
repre	Note: This log of boring should be evaluated in conjunction with the complete geotechnical report. This log of boring page 2 of 2 page 2 of 2												

	LOG OF BORING MPLE TYPE: THIN WALLED SPT SPOON CALIFORNIA MODIFIED SAMPLER DISTURBED NO RECOVERY CORE												
SAN													
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTI	NC	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (Peneti	90 100 Content (%): W P) I ration, blows/i	110 Liqu Liqu Limi foot:	120 nid it (W _L)	REMARKS/ OTHER TESTS		
	<u>, 1, ., 1</u>	GRASS AND R	ROOTS,				10	20 30	40	50			
- - - 5			ittle silt, trace of gravels,		SP-SM						Bulk sample 0-5 ft. PS, EI, MP, 95 RC.		
- - - 											200 Wash		
-		SAND, brown, o medium dense.	coarse-grained, little silt,	1-in gravels,	SM						200 Wash		
		SAND, light bro	wn, little silt, micaceous,	dense.	SP-SM		•		.	A	Blow count = 51/12 in. PS, CP.		
20 - - -		trace of silt, n	nedium dense				•				200 Wash		
-25 - - -		fine- to mediu	ım-grained, very dense			$\left \right\rangle$	•		.		Blow count =83/12 in. 200 Wash		
30 - - - - - 35		medium-grair									200 Wash		
			PRUJECI		ondido A		B MLF HES e, Hesper		D0476	5	BORING NO. B-7		
GE	OB/	ASE, INC.	DEPTH TO WATER	ELI			5 feet		BY H	DN	PROJECT NO. C.314.84.10		
Note	· Thie	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conju	🗛 DR	ILL RIG	2R D	rilling		03/30/		FIGURE NO. B-8		
repre	esents	conditions observ	ed at the specific boring	location and at the	he date i	ndica	ted.		5, 501	9	page 1 of 2		

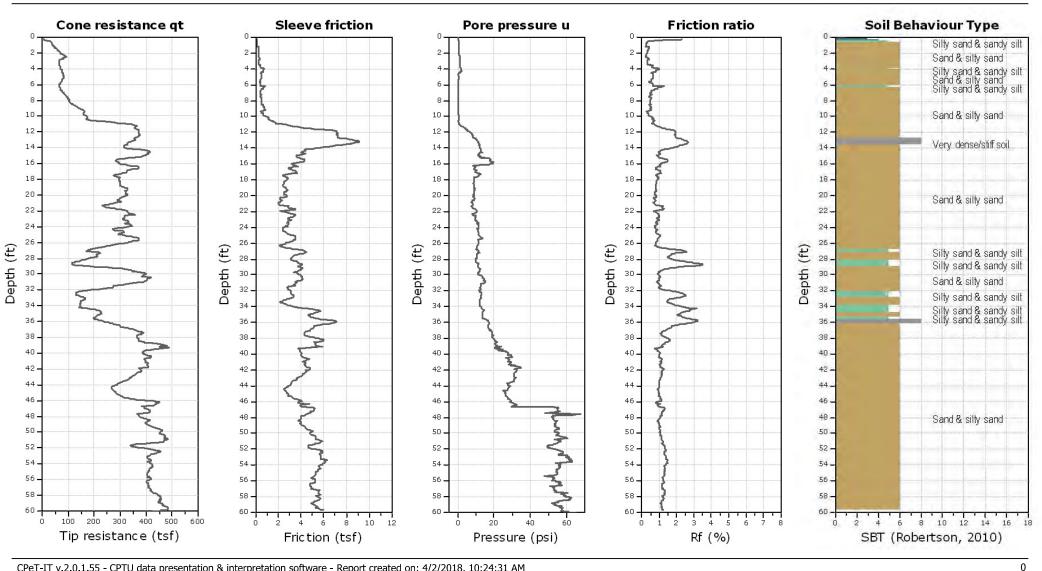
	LOG OF BORING MPLE TYPE: ■ THIN WALLED □ SPT SPLIT SPOON CALIFORNIA MODIFIED SAMPLER □ DISTURBED NO RECOVERY □ CORE											
SAN	MPLE	TYPE:	HIN WALLED SPT UBE SPLIT		ALIFOR ODIFIEI	NIA D SAI	MPLER		JRBED	N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIO	N	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (DRY DENSI 90 100 Content (% (W p) ration, blows 20 30): • Liquid 	20 W _L)	REMAF OTHER T	
-		<u>SAND</u> , brown, s dense.	silty, fine-grained, cementa	tion, very	SC-SM			I		>>	Blow count = 5 Wash	0/5 in. 200
-		<u>SAND</u> , light bro gravels, very de	wn, fine- to medium graine ense.	d, little silt and	SP-SM							
-40 - -		very dense					•				N = 100, PS	
- - 45		fine-grained, t	trace of silt and gravels, ve	ry dense			•				200 Wash	
- - 50	50SILTY, cementation, very dense 200 Wash											
200 Wash												
- 60 -												
- - 65										· · · · · · · ·		
	+ +		PROJECT Kais	ser Permanente Escor	SFNT	2018 venu	MLF HE e, Hespei	SPERIA MO ria. CA	B D0476	:	BORING NO.	B-7
GE	OBA	ASE, INC.	DEPTH TO WATER	feet ¥ SUR ELE	RFACE V. :	3515.	5 feet	LOGGED	BY HDN		PROJECT NO.	C.314.84.10
Net-	. Th:-		DEPTH TO SLOUGH	🔺 DRII	LL RIG LLER	2R D	rilling	DATE LOGGED	03/30/20	18	FIGURE NO. B	- 8
repre	esents	conditions observ	uld be evaluated in conjunc red at the specific boring lo	cation with the col	e date i	yeote ndicat	conical re	eport. This l	og of boring	y	page 2	of 2

	LOG OF BORING AMPLE TYPE: ■ THIN WALLED □ SPT CALIFORNIA SPLIT SPOON CALIFORNIA MODIFIED SAMPLER ☐ DISTURBED NO RECOVERY I CORE													
SAI	AMPLE TYPE: ■ THIN WALLED □ SPT SPLIT SPOON CALIFORNIA MODIFIED SAMPLER □ DISTURBED NO RECOVERY □ CORE													
DEPTH (feet)	GRAPHIC LOG	S	DIL DESCRIPTION		SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (0 120 • Liquid Limit (W L) :	REMAR OTHER 1				
	<u>xt 1, </u>	GRASS AND R	<u>OOTS,</u>		0,		10		0 50					
- - - 5			ittle silt, trace of gravels, very		SM									
-		tan brown, sill	ty, fine-grained, medium dens	se			•							
10 		very dense					•	•		Blow count = 5 DS, 200 Wash				
		SAND, light bro dense.	wn, fine-grained, trace of silt,	very	SP-SM					-				
20 - - -		coarse-graine	d with gravels, very dense				•		▲ _ J	Blow count = 5	i0/6 in. CP			
25 - - -		medium-dens	e				•			-				
30 - - - - 35	some slit with trace of gravels, very dense													
			PROJECT	Escor	ndido A		MLF HES e, Hesper	SPERIA MOB DO ia, CA	476	BORING NO.	В-8			
GE	OBA	ASE, INC.		DRIL	L RIG	3518 CME	-75	LOGGED BY DATE	HDN	PROJECT NO.				
Note	e: This	log of boring shou	DEPTH TO SLOUGH uld be evaluated in conjunction red at the specific boring locar	DRIL A DRIL	<u>LER</u> nplete g	2R D geote	rilling chnical re		/ 30/2018 boring	FIGURE NO. E				

SAMPLE TYPE: THIN WALLED SPT SPT SPT MODIFIED SAMPLER DISTURBED NO RECOVERY Image: California (19) H SOIL DESCRIPTION NO DRY DENSITY (PCF) Image: California <	s/
B Penetration, blows/foot: 0 10 20 30 40 50	
SAND tan brown silty fine-orained very dense	
-40light brown, coarse-grained with 2-in rock fragment, very dense.	3 in.
-45trace of silt, fine-grained, dense	
 End of Boring at 51.5 feet. Boring dry at completion of drilling. Backfilled with soil cuttings. 	
	3-8
GEOBASE, INC. DEPTH TO WATER feet SURFACE LOGGED BY HDN PROJECT NO. C	.314.84.10
DEPTH TO SLOUGH DRILL RIG CME-75 DRILLER DATE LOGGED DOJ30/2018 FIGURE NO. B-9 Note: This log of boring should be evaluated in conjunction with the complete geotechnical report. This log of boring represents conditions observed at the specific boring location and at the date indicated. DATE	

				LOG	G OF B	OR	ING					
SAN	MPLE TYPE: ■ THIN WALLED SPT CALIFORNIA Isturbed Isturbed NO RECOVERY CORE Image: Second control of the second contrel of the second contecontrol of the second contecontrol of the s											
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	DN	SOIL CLASSIFICATION	SAMPLE	80 Water (Plastic Limit (V	90 100 110 120 Content (%): ● W _P) ├─── Liquid Limit (W	REMARKS/ OTHER TESTS			
—	<u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>	GRASS AND F	ROOTS,				10	20 30 40 30				
- - 5			some silt and gravels, ver	y loose.	SM				· · · · · · · · · · · · · · · · · · ·			
-		fine-grained,	silty, loose						PS			
		silty to clayey	v, very dense				•		Blow count = 50/6 in. PS. CP, DS.	3		
		<u>SAND</u> , light bro gravels, mediur	own, medium-grained, trad m dense.	ce of silt and	SP-SN				······			
-		coarse-graine	ed with gravels, dense						Blow count = 67/12 in.			
-25 - - -		medium- to c	oarse-grained, trace of si	t, dense			•		 			
		End of Boring a	ompletion of drilling.						······			
	. — –		PROJECT Ka	Es	scondido A			PERIA MOB D0476 a, CA	BORING NO. B-9			
GE	OB/	ASE, INC.	DEPTH TO WATER	reet 🛨 E		3523		LOGGED BY HDN	PROJECT NO. C.314.84	i.10		
Note	· Thie	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conju		DRILL RIG	2R D	rilling	DATE LOGGED 03/30/2018				
repre	esents	conditions observ	ved at the specific boring	location and a	t the date i	ndica	ed.		page 1 of 1			

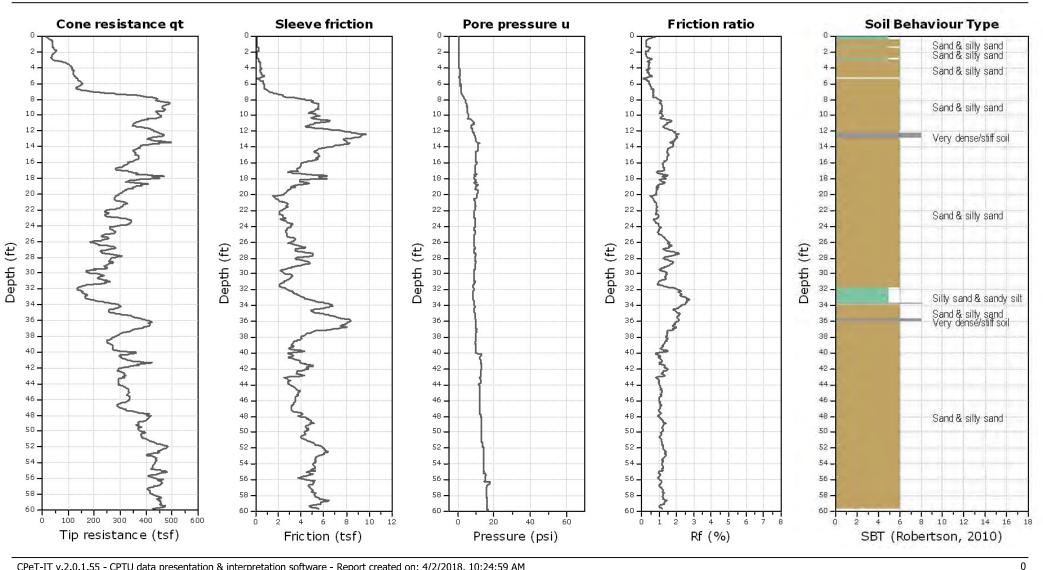
				LOO	G OF B	OR	ING							
SAN	IPLE TYPE: THIN WALLED SPT CALIFORNIA MODIFIED SAMPLER DISTURBED NO RECOVERY CORE Image: Construction of the second seco													
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	ON	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V Penetra	90 100 Content (%): N _P I I I ation, blows/fo	Liquid Limit (W _L)	REMAR OTHER T				
	<u>, 17</u> . <u>.(l</u>	GRASS AND R	ROOTS,				10	20 30	40 50					
-		SAND, brown, s	silty, very loose.		SM									
		<u>SAND</u> , brown, f gravels, very de	fine- to medium-grained, l ense.	ittle silt and	SP-SM	X	•			Blow count = 5	0/5.5 in.			
-		cementation,	well-graded, dense.				•							
-10 -		trace of silt, m	nedium dense				•							
- - - - - - - - - - - - 20		End of Boring a Boring dry at cc Backfilled with s	ompletion of drilling.							· · · ·				
- - 25 -														
- - 30														
- - - - 35														
			PROJECT Ka	E	scondido A			PERIA MOB D a, CA	00476	BORING NO.	B-10			
GE	OBA	ASE, INC.	DEPTH TO WATER	teet ±			5 feet	LOGGED BY	HDN	PROJECT NO.	C.314.84.10			
Note	: This	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conjur red at the specific boring	nction with the	DRILL RIG DRILLER e complete g at the date in	2R D geote	rilling chnical rep	DATE LOGGED 0 port. This log		FIGURE NO. B				


LOG OF BORING											
SAMPLE TYPE: THIN WALLED SPT CALIFORNIA SPLIT SPOON MODIFIED SAMPLER											
DEPTH (feet)	GRAPHIC LOG	SOIL DESCRIPTION		N	SOIL CLASSIFICATION	SAMPLE	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		REMAR OTHER T		
		<u>PAVEMENT</u> , A	C = 3 IN; AB = 6 IN				10	20 30	40 50	-	
- - - - - - -		SAND, brown, o	coarse-grained, little gravel	s, trace of silt.	SP-SM		•			Bulk sample 0-	
- 10 -							•			· · ·	
- 15 - -		Boring dry at co	End of Boring at 11.5 feet. Boring dry at completion of drilling. Backfilled with soil cuttings.								
- 										· - - -	
25 - - -										-	
30 - - - - 35										-	
PROJECT Kaiser PermanenteSFNT 2018 MLF HESPERIA MOB D0476 Escondido Avenue, Hesperia, CA							BORING NO.	B-11			
GEOBASE, INC.			DEPTH TO WATER	ELI		3506 1		LOGGED B	Y HDN	PROJECT NO.	C.314.84.10
Note	: This	log of boring sho conditions observ	DEPTH TO SLOUGH uld be evaluated in conjunc red at the specific boring lo	tion with the co	DRILL RIG CME-75 DATE DRILLER 2R Drilling LOGGED 03/30/2018 he complete geotechnical report. This log of boring at the date indicated			03/30/2018 of boring	FIGURE NO. B- 12 page 1 of 1		

LOG OF BORING											
SAMPLE TYPE: THIN WALLED SPT CALIFORNIA SPLIT SPOON MODIFIED SAMPLER SISTURBED NO RECOVERY											
DEPTH (feet)	GRAPHIC LOG			SOIL CLASSIFICATION	SAMPLE	$\begin{array}{c c} & DRY DENSITY (PCF) \\ \hline \hline 80 & 90 & 100 & 110 & 120 \\ \hline Water Content (\%): \\ Plastic \\ Limit (W_P) \\ \hline \\ Penetration, blows/foot: \\ \hline \end{array}$		REMAF OTHER T			
		PAVEMENT, A	C = 4.5 IN; AB = 3 IN					20 30 4	10 50		
-		SAND, brown, o	coarse-grained, little grav loose	els, trace of s	silt. SP					200 Wash	
5 - - - 10			ne Clay, medium dense nedium- to coarse-grained	1						200 Wash	
- - - - - - - - - - - - - - - - - - -		End of Boring at 11.5 feet. Boring dry at completion of drilling. Backfilled with soil cuttings.									
- - - - - - - - - - - - - - - 35											
	PROJECT Kaiser PermanenteSFNT 2018 MLF HESPERIA MOB D0476 Escondido Avenue, Hesperia, CA							0476	BORING NO.	B-12	
GE	OBA	ASE, INC.	DEPTH TO WATER		SURFACE	3506 ·		LOGGED BY	HDN	PROJECT NO.	C.314.84.10
			DEPTH TO SLOUGH	T	DRILL RIG DRILLER	CME 2R D	-75 Frilling	DATE LOGGED 03		FIGURE NO. B	- 13
repre	: This esents	conditions observ	uld be evaluated in conju ved at the specific boring	location with th	at the date i	geote ndica	cnnical re	port. This log o	i poling	page 1	of 1

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

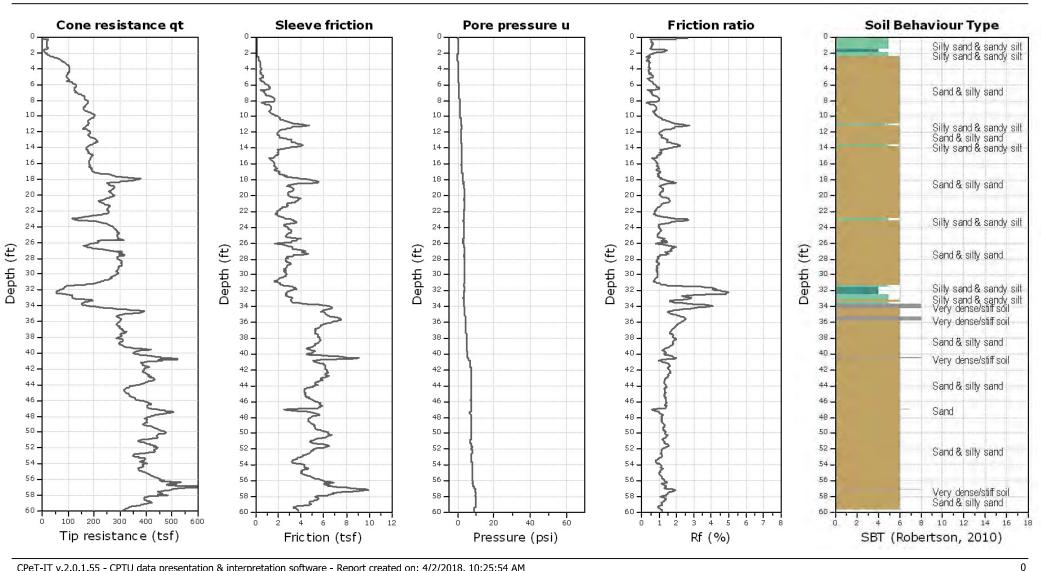
Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA


CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:24:31 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

Total depth: 60.06 ft, Date: 3/30/2018 Cone Type: Vertek

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

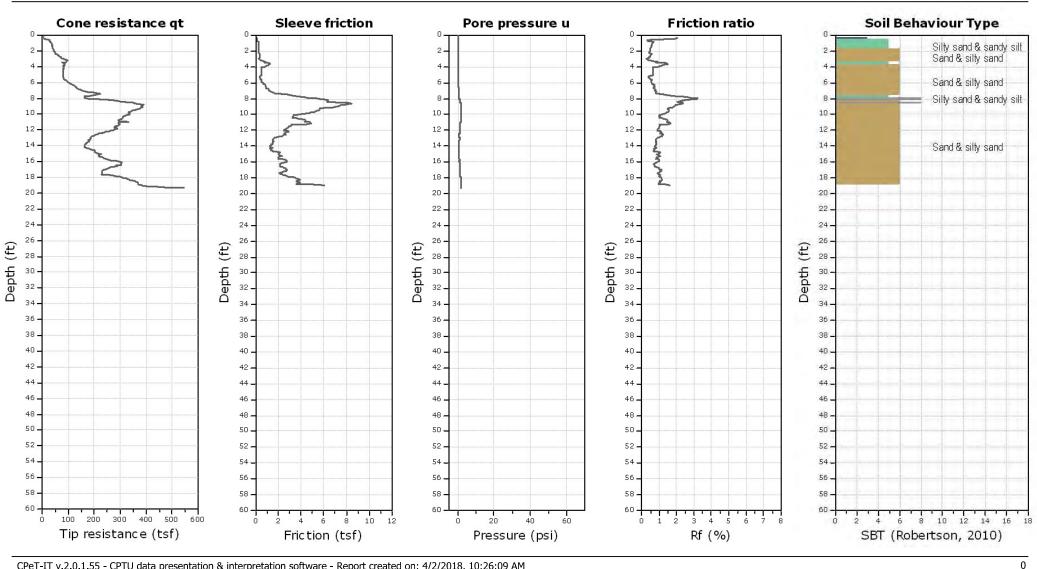
Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA


CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:24:59 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

Total depth: 60.05 ft, Date: 3/30/2018 Cone Type: Vertek

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

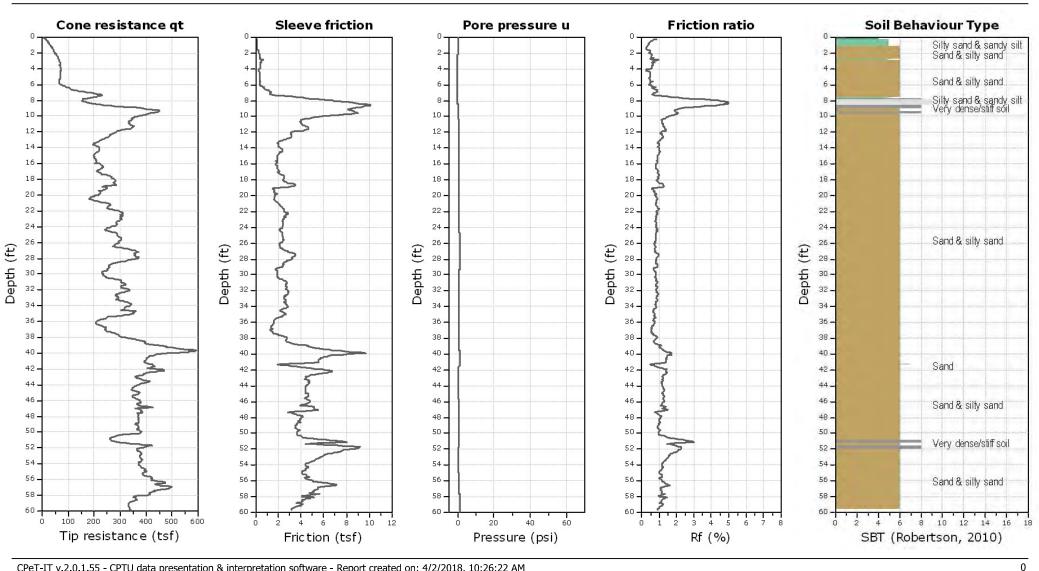
Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA


CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:25:54 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

Total depth: 60.12 ft, Date: 3/30/2018 Cone Type: Vertek

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

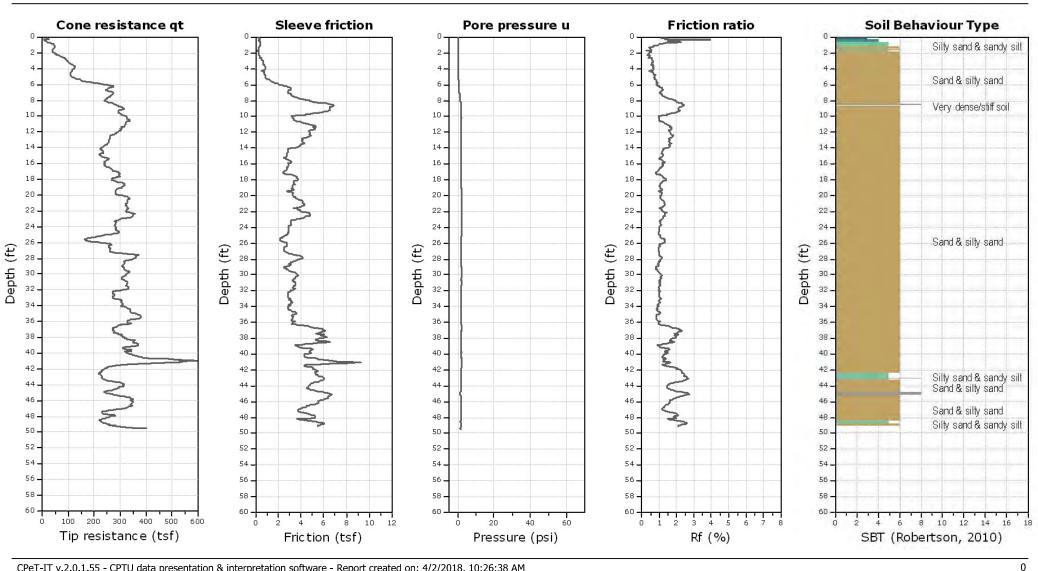
Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA


CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:26:09 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

CPT-4 Total depth: 19.30 ft, Date: 3/30/2018 Cone Type: Vertek

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA

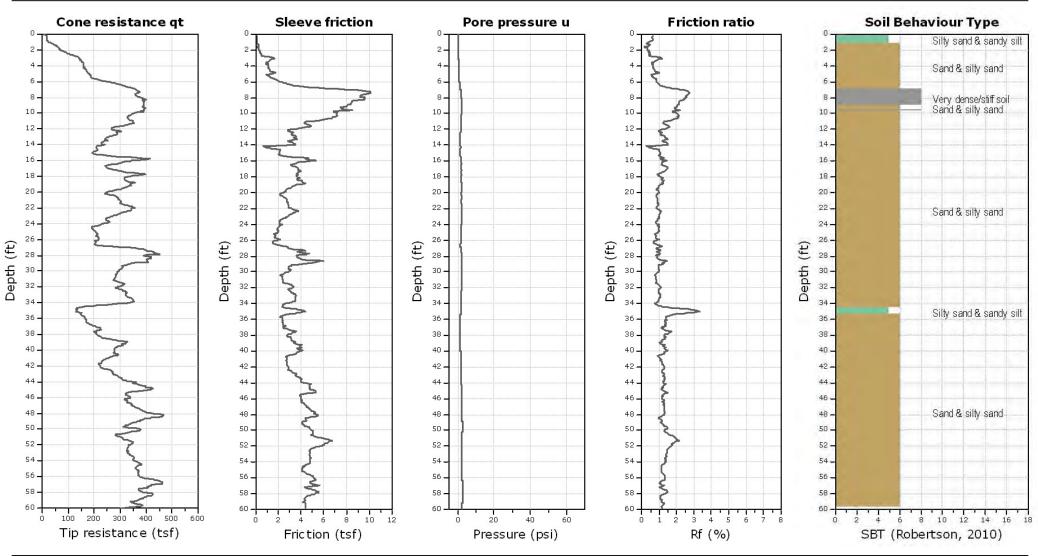

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:26:22 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

CPT-4B Total depth: 59.98 ft, Date: 3/30/2018 Cone Type: Vertek

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:26:38 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt


Total depth: 49.48 ft, Date: 3/30/2018 Cone Type: Vertek

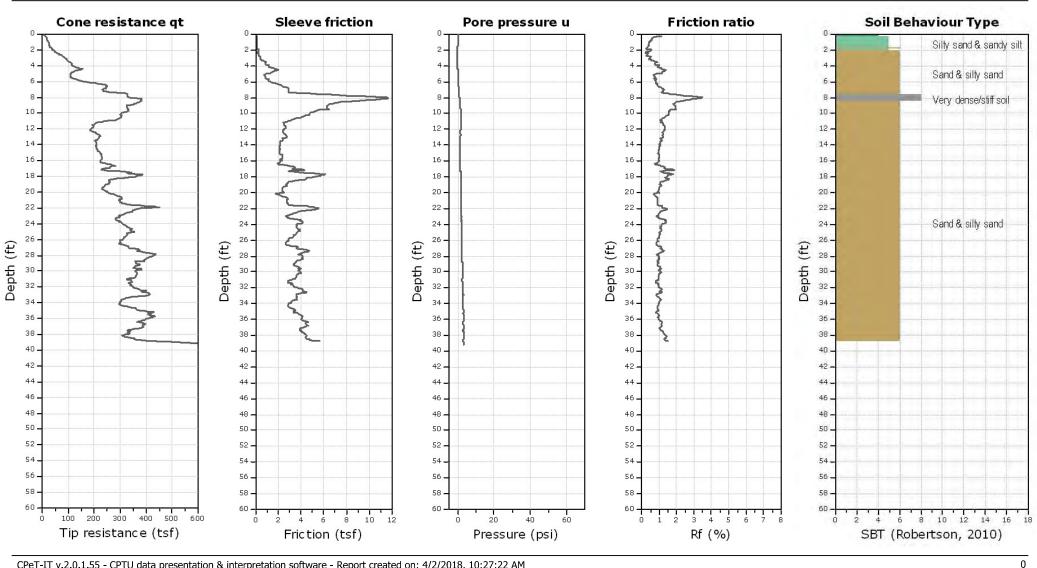
Kehoe Testing and Engineering

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:27:08 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

CPT-6 Total depth: 60.11 ft, Date: 3/30/2018 Cone Type: Vertek


0

Kehoe Testing and Engineering

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

Project: GEOBASE, Inc. Location: 9492 Escondido Avenue Hesperia, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/2/2018, 10:27:22 AM Project file: C:\GeobaseHesperia3-18\Plot Data\Plots.cpt

CPT-7 Total depth: 39.12 ft, Date: 3/30/2018 Cone Type: Vertek

			LOG	OF B	OR	ING					
SAN	MPLE	TYPE:		ALIFOR 10DIFIE	NIA D SAN	MPLER		BED	N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION	SOIL CLASSIFICATION	SAMPLE	80 Water C Plastic Limit (W Penetra	RY DENSITY 90 100 Content (%): V P)	110 12 Liquid Limit (V	V _) ■	REMAR OTHER T	
		GRASS AND R	OOTS,				20 00	+0 00			
- - - 5 -		gravels, very lo	y, fine- to medium grained, silty, trace of ose. n- to coarse-grained, trace of silt,	SP-SM		.			· · · · · · · · · · · · · · · · · · ·	Bulk sample fro El, MP, 95 RC 200 Wash	om 0-5 feet.
-		<u>SAND</u> , light bro cementation, de	wn, little silt, fine- to coarse-grained, ense.	SM							
		trace of grave								PS, C, DS. Blo 85/9 in.	w count =
- - - 20		trace of silt, n				•		\		200 Wash	
-			vn, trace of silt, medium- to , micaceous, dense.	SP-SM		•	/)		200 Wash, C, I count = 62/12 i	
-25 - - -		fine- to mediu	ım- grained, dense			•	•			200 Wash	
30 - - - - - 35		little silt, dens				•				200 Wash. Blo 46/12 in.	w count =
			Vacant Parcels	5-9 Fs	nente condi	Hesperia do Avenue	a MOB e, Hesperia, (CA		BORING NO.	B-1
GE	OB/	ASE, INC.	DEPTH TO WATER feet ¥ SU	_v	3512 f	eel	LOGGED B	Y HDN		PROJECT NO.	C.314.84.00
Note	: This	log of boring sho	DEPTH TO SLOUGH	ILL RIG	2R D	rilling chnical rep	DATE LOGGED oort. This log			FIGURE NO. B page 1	

Figure B-21, page 1 of 2

			LOG	GOF B	OR	ING				
SAM	1PLE	TYPE:	THIN WALLED SPT] CALIFOR MODIFIE	NIA D SA	MPLER		D N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION	SOIL CLASSIFICATION	SAMPLE	80 Water C Plastic Limit (W Penetra	V _P) Lation, blows/foot:	iquid imit (W _L)	REMAR OTHER T	
		SAND, reddish dense.	brown, fine-grained, silty to clayey,	SC				0 50	. 200 Wash	
40 			own, fine- to medium-grained, little silt, 5 in, very dense.	SP-SM		•			PS	
45 		trace of silt ar	nd gravels, dense			•		•	200 Wash	
		trace of silt, d	lense			•			- 200 Wash	
- 		End of Boring a Boring dry at co Backfilled with s	ompletion of drilling							
60 - - -										
65 - - - - 70									-	
			Vacant Parce		nente cond	Hesperia ido Avenue	a MOB e, Hesperia, CA		BORING NO.	B-1
GEC)BA	ASE, INC.		SURFACE <u>LEV.</u> CRILL RIG	3512 CMF	leel	LOGGED BY DATE	HDN	PROJECT NO.	
Note:	This	log of boring sho		ORILLER	2R C	orilling chnical rep	LOGGED 07/		FIGURE NO. B	

Figure B-21, page 2 of 2

			L	OG C)F B	OR	ING					
SAN	MPLE	TYPE:	THIN WALLED SPT TUBE SPLIT SPOO		ALIFOR ODIFIEI	NIA D SA	MPLER		RBED	N	IO RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION		SOIL CLASSIFICATION	SAMPLE	80 Water (Plastic Limit (V	RY DENSITY 90 100 Content (%): W p)	110 Liqu Liqu Limi	120	REMAF OTHER T	
		GRASS AND R					10					
- - 5		gravels, very lo	ay, fine- to medium grained, silty, t ose. ained, little silt, trace of gravels	race of	SP-SM		•			••••••••••••••••••••••••••••••••••••••	Blow count = 1	5/12 in.
-		SAND, light bro dense.	wn, fine- to medium-grained, little	e silt,	SM		•		\			
		SAND, light rec	ldish brown, clayey, little silt, dens	e.	SC		•				200 Wash	
15 			own, fine- to coarse-grained, trace sturbed, very dense.	of silt,	SP-SM		•	•			PS, Blow coun	t = 81/12 in.
-20 - - -		tan brown, mi	icaceous, dense.				•				-	
25 - - -		coarse-graine	ed, little gravels, very dense				•				PS, Blow coun	t = 75/12 in.
30 - - - - 35		fine-grained,	little silt, dense				•				-	
				Parcels	5-9, Es	nente cond	Hesperi do Avenu	a MOB e, Hesperia,	СА		BORING NO.	B-2
GE	OB/	ASE, INC.	DEPTH TO WATER feet	* ELE		3516		LOGGED B	Y HI	N	PROJECT NO.	C.314.84.00
Note	: This	log of boring sho	DEPTH TO SLOUGH uld be evaluated in conjunction wi	The contract the the the the the the the the the th	LL RIG <u>LLER</u> mplete g	2R D geote	rilling chnical rep		07/28/ g of bor		FIGURE NO. B	
repre	esents	conditions observ	ed at the specific boring location	and at the	e date ir	ndica	ted.				page 1	012

Figure B-22, page 1 of 2

			L	OG C)F B	OR	ING			
SAN	MPLE	TYPE:	THIN WALLED SPT TUBE SPLIT SPOO		ALIFOR ODIFIEI	NIA D SA	MPLER		O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION		SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (V Penetra	W _P) Limit (W _L) ation, blows/foot:	REMAR OTHER TI	
			brown, fine-grained, silty to claye	y, very	SC		10	20 30 40 50	200 Wash	
- - - 40		dense.	own, fine- to medium-grained, little	silt						
- - - 45		and gravels, ve		SIIL	SP-SM		•			
-		trace of silt a	nd gravels						- - - -	
50 -		SAND, light bro dense.	own, fine- to medium grained, som	e silt,	SM		•	•	200 Wash	
- 		End of Boring a Boring dry at co Backfilled with	ompletion of drilling							
			PROJECT Vacant	Parcels	5-9, Es	nente cond	Hesperi do Avenu	ia MOB le, Hesperia, CA	BORING NO.	B-2
GE	OB/	ASE, INC.	DEPTH TO WATER feet	ELE		3516		LOGGED BY HDN	PROJECT NO.	C.314.84.00
Note	· Thia	log of boring abo	DEPTH TO SLOUGH	🖣 🛛 DRIL	LL RIG	2R D	rilling	DATE LOGGED 07/28/2017	FIGURE NO. B-	
repre	esents	conditions observ	uld be evaluated in conjunction wi ved at the specific boring location	and at the	e date ir	ndica	ted.		page 2 d	
C.31	4.84	.10						Figure	e B-22, page	2 of 2

Figure B-22, page 2 of 2

				LOG	OF B	OR	ING					
SAN	MPLE	TYPE:	THIN WALLED SPT		ALIFOR	NIA D SA	MPLER		RBED	N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIO	N	SOIL CLASSIFICATION	SAMPLE	80 Wate Plasti Limit	(W _P)	110 Eiqu Liqu Limit	120	REMAF OTHER T	
		GRASS AND R	<u>KOOTS,</u>						-+0			
- - - 5		gravels, very lo	ay, fine- to medium graine ose. ained, little silt, trace of g		SP-SM							
-		eee,e g	,						· · · · · · · · · · · · · · · · · · ·	····:	200 Wash, C,	DS
-		SAND, orange trace of roots,	brown, fine- to medium-g very dense.	grained, little silt,	SM	X	•				Blow count = 7	6/12 in.
		CLAY, light red cemented, den	dish brown, little silt and se.	sands,	CL			I		/ I	- - -	
15 		SAND, light bro	own, fine-grained, silty, m	nedium dense.	SM						-	
20 - - -		silty, dense					•				Blow count = 5	5/12 in.
-25 - - -		silty, trace of	clay, medium dense				•					
30 - - - - <u>-</u> 35			own, medium- to coarse-g els, medium dense.		SP-SM		•				Blow count = 4	1/12 in.
			PROJECT	Vacant Parcels	s 5-9, Es	nente condi	Hespe do Aven	eria MOB ue, Hesperia,	CA		BORING NO.	В-3
GE	OB/	ASE, INC.	DEPTH TO WATER	Teet 🛨 ELE			5 feet	LOGGED B	Y HC	ON	PROJECT NO.	C.314.84.00
Note	Thic	log of boring abo	DEPTH TO SLOUGH	🖣 🗛	ILL RIG	2R D	rilling		07/28/2		FIGURE NO. B	- 4
repre	esents	conditions observ	uld be evaluated in conju ved at the specific boring	location and at th	ne date ir	ndicat	ted.		זטמ וט נ	шy	page 1	of 2

Figure B-23, page 1 of 2

			LOG	G OF	BC	DR	ING				
SAN	MPLE	TYPE:	THIN WALLED SPT TUBE SPLIT SPOON		ORN IED	IIA SAI	MPLER		ED N		
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTION	SOIL CLASSIFICATION		SAMPLE	80 Water Plastic Limit (V	Content (%): ; W _P) II ation, blows/foo	10 120 Liquid Limit (W L)	REMAF OTHER T	
-		<u>SAND</u> , reddish dense.	brown, fine-grained, silty to clayey, ver		-						
-40 - - - 45		SAND, light bro and gravels, de trace of silt a		t _{SP-s}	SM		•			-	
- - - 50			own, fine- to medium- grained, some silt	^{t,} SN	И		•		_	· · ·	
- - 55 - - - - - - - - - - 00 -		End of Boring a Boring dry at co Backfilled with s	ompletion of drilling.							· · · ·	
- - 										· · ·	
			Vacant Parc	els 5-9, l	Esc	ente ondi	Hesperi do Avenu	ia MOB le, Hesperia, CA		BORING NO.	B-3
GE	OB/	ASE, INC.	DEPTH TO WATER feet ¥	SURFAC ELEV.	E 3	514.	5 feet	LOGGED BY		PROJECT NO.	C.314.84.00
Note	: This	log of boring sho	DEPTH TO SLOUGH	DRILL RI DRILLER complet	te g	2R D eote	rilling chnical rep	DATE LOGGED 07 port. This log o		FIGURE NO. B	

Figure B-23, page 2 of 2

				LOG	OF B	OR	ING				
SAN	MPLE	TYPE:	HIN WALLED SPT		ALIFOR	NIA D SA	MPLER		URBED	N N	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTIC	N	SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (DRY DENS 90 100 r Content (% c (W P) I tration, blow 20 30	0 110 6): Liqu Liqu Lim /s/foot:	120	REMARKS/ OTHER TESTS
		GRASS AND R	ROOTS,						<u> </u>		
- - 5 -			wn, silty, trace of gravels, little silt, medium dense	very loose.	SP-SM		•				· · · · · · · · · · · · · · · · · · ·
-			ldish brown, fine- to med	ium-grained,	SC			·····;····;		·····	
-		little silt and cla	y, dense.				•				Bulk sample from 5-10 feet. RV, Ch, ER, pH, SO₄
		<u>SAND</u> , light bro and gravels, ve	wn, medium to coarse-gr ry dense.	ained, little silt	SM		•				Blow count = 50/6 in.
		SAND, light bro dense.	own, trace of silt, some gr	avels up to 1 in.,	SP-SM		•		·····	–	PS. Blow count = 68/12 in.
-20 - - -		fine-grained,	trace of silt, dense				•				- - -
25 - - -		coarse-graine	ed, little gravels, very den:	se			•				Blow count = 90/12 in.
30 - - - - 35		fine- to mediu	ım-grained, trace of silt, c				•				
			PROJECT	Vacant Parcel	s 5-9, Ese	nente condi	Hespe do Aveni	ria MOB ue, Hesperi	a, CA		BORING NO. B-4
GE	OB/	ASE, INC.	DEPTH TO WATER	EL			5 feet	LOGGED	BY H	DN	PROJECT NO. C.314.84.00
Note	. This	log of boring sha	DEPTH TO SLOUGH uld be evaluated in conju	🔺 DR	ILL RIG	2R D	rilling	DATE LOGGED	07/28	/2017	FIGURE NO. B- 5
repre	esents	conditions observ	ed at the specific boring	location and at t	he date ir	<u>idica</u>	ted.			ing	page 1 of 2

Figure B-24, page 1 of 2

				LOO	g OI	F B	OR	ING					
SAI	MPLE	TYPE:	THIN WALLED	IT SPOON		_IFORI DIFIE[NIA D SAI	MPLER		RBED	N	O RECOVERY	
DEPTH (feet)	GRAPHIC LOG	S	OIL DESCRIPTI	ON		SOIL CLASSIFICATION	SAMPLE	80 Water Plastic Limit (\ Penetra	W _P) Here ation, blows/f	110 1 Liquid H Limit	(W <u>∟</u>) ■	REMAF OTHER T	
			own, medium-grained, tra	ace of silt and	5	ഗ SP-SM		10	20 30	40	50		
- - - 40		gravels, dense.	els, difficult to drill, auger	plug, dense				•					
- - 45 -		End of Boring a Boring dry at co Backfilled with	ompletion of drilling										
- 50 -													
- 55 -													
- 60 -													
- 65 -													
- - 70			PROJECT	Ka Vacant Par	aiser P	erman -9. Esc	ente	Hesperi do Avenu	ia MOB le, Hesperia,			BORING NO.	B-4
GE	OBA	ASE, INC.	DEPTH TO WATER		SURF	ACE		5 feet	LOGGED B		N	PROJECT NO.	C.314.84.00
		-	DEPTH TO SLOUGH	T Instian with th	DRILL DRILL	_ RIG _ER	CME- 2R D	-75 HT rilling	DATE LOGGED			FIGURE NO. B	- 5
Note	e: This esents	log of boring sho conditions observ	ould be evaluated in conju ved at the specific boring	unction with th	e com	piete g date in	geote Indicat	cnnical rej ed	port. This log	g of borir	ıg	page 2	of 2

APPENDIX C

Figure C-1	Summary of Laboratory Test Results
Figure C-2	HAI Laboratory Test Results Transmittal
Figure C-3	Particle-Size Analysis of Soils
Figure C-4	Particle-Size Analysis of Soils
Figure C-5	Particle-Size Analysis of Soils
Figure C-6	Particle-Size Analysis of Soils
Figure C-7	Particle-Size Analysis of Soils
Figure C-8	Particle-Size Analysis of Soils
Figure C-9	Particle-Size Analysis of Soils
Figure C-10	Particle-Size Analysis of Soils
Figure C-11	Particle-Size Analysis of Soils
Figure C-12	Particle-Size Analysis of Soils
Figure C-13	Particle-Size Analysis of Soils
Figure C-14	Particle-Size Analysis of Soils
Figure C-15	Atterberg Limits
Figure C-16	Expansion Index of Soils
Figure C-17	Consolidation Test Results
Figure C-18	Swell/Collapse Test Results
Figure C-19	Swell/Collapse Test Results
Figure C-20	Swell/Collapse Test Results
Figure C-21	Swell/Collapse Test Results
Figure C-22	Swell/Collapse Test Results
Figure C-23	Swell/Collapse Test Results
Figure C-24	Swell/Collapse Test Results
Figure C-25	Swell/Collapse Test Results
Figure C-26	Swell/Collapse Test Results
Figure C-27	Direct Shear Test Results
Figure C-28	Direct Shear Test Results
Figure C-29	Direct Shear Test Results
Figure C-30	Direct Shear Test Results
Figure C-31	Direct Shear Test Results
Figure C-32	Direct Shear Test Results
Figure C-33	Direct Shear Test Results
Figure C-34	Summary of Other Test Results (EI, S04, Ch, pH, and ER; MP-OMC; and R-Value)
Figure C-35	Corrosivity Series Test Results by Anaheim Test Laboratory
Figure C-36	Laboratory Compaction Test by Modified Effort
Figure C-37	Resistance R-Value by Anaheim Test Laboratory

GEOBASE, INC.

				(GEC	BAS	SE, II	NC.				Figure C-1
			Sum	MARY	of L	ABORA	TORY	Fest F	RESULT	S		Page 1 of 4
PROJECT:	Kaiser Permaner D0476	nte - SFNT 2018 I	MLF Hesperia MO	В	PRO	JECT N	0: C.31	4.84.10		DATE:	May 9, 2018	
BORING	DEPTH	MOISTURE	DRY DENSITY	ATTE	RBERG	LIMITS	PAR	FICLE SI	IZE DISTR	BUTION	OTHER TESTS	DESCRIPTION
	(feet)	CONTENT (Percent)	(pcf)	LL (%)	PL (%)	PI (%)	CLAY (%)	SILT (%)	SAND (%)	GRAVEL (%)		AND REMARKS
B-1	5.0-6.5	4					2	5		75	200 Wash	SM
	7.0-8.5	3										SP-SM
	10.0-11.5	2										SP-SM
B-2	5.0-6.5	2										SP-SM
	10.0-11.5	3					2	5		75	200 Wash	SM
	15.0-16.5	3	123.0				1	-	80	1	CP, DS	SM
	20.0-21.5	6					-					SM
	25.0-26.5	11					4	6		54	200 Wash	SM-ML
	30.0-31.5	2	113.9									SP-SM
B-3	5.0-6.5	1					9			91	200 Wash	SP-SM
	10.0-11.5	5	109.9				2	6	69	5	DS	SM
	15.0-16.5	3										SP-SM
	20.0-21.5	1										SP-SM
	25.0-26.5	1	114.7				8	}	90	2		SP-SM
	30.0-31.5	1										SP-SM
B-4	5.0-6.5	2					1	<u> </u> 5		85	200 Wash	SM
	5.0-10.0			<u> </u>				-				SM
	10.0-11.5	5	1									SM
	15.0-16.5	2	92.5				1	6	76	8	CP, DS	SP-SM
	20.0-21.5	4						-				SP-SM
	25.0-26.5	2	113.2				6	I }		92	200 Wash	SP-SM
	30.0-31.5	2										SP-SM
B-4	35.0-36.5	6	119.0	1	1	ļ						SM

				(GEC	BAS	SE, II	NC.				Figure C-1
			Sum	MARY	of L	ABORA	TORY	lest F	Result	S		Page 2 of 4
PROJECT:	Kaiser Permaner D0476	nte - SFNT 2018 I	MLF Hesperia MO	В	PRO	JECT N	0: C.31	4.84.10		DATE:	May 9, 2018	
BORING	DEPTH	MOISTURE	DRY DENSITY	ATTE	RBERG	LIMITS	PAR	TICLE SI	ZE DISTR	BUTION	OTHER TESTS	DESCRIPTION
	(feet)	CONTENT (Percent)	(pcf)	LL (%)	PL (%)	РІ (%)	CLAY (%)	SILT (%)	SAND (%)	GRAVEL (%)		AND REMARKS
	40.0-41.5	2										SP-SM
	45.0-46.5	2										SP-SM
	50.0-51.5	3										SP-SM
B-5	5.0-6.5	2										SP-SM
	10.0-11.5	4										SM
	15.0-16.5	2					7	1	82	11		SW-SM
	20.0-21.5	2	118.1								CP, DS	SP-SM, Disturbed
	25.0-26.5	2										SP-SM
	30.0-31.5	2	115.2				6	}	91	1		SW-SM
	35.0-36.5	2						[SP-SM
	40.0-14.5	3	112.1									SP-SM
	45.0-46.5	3										SP-SM
	50.0-51.5	4										SP-SM
B-6	0-5.0										ph, ER, S04, Ch, RV	Bulk sample 0-5 feet, SM
	5.0-6.5	3					1	3		87	200 Wash	SM
	10.0-11.5	6	120.6				2	7	69	4	CP, DS	SM
	15.0-16.5	4					1	9		81	200 Wash	SM
	20.0-21.5	5	116.1				4			59	200 Wash, CP	SM
	25.0-26.5	2					ç			91	200 Wash	SP-SM
	30.0-31.5	1	106.5				۲ ۲			95	200 Wash	SP-SM
B-6	35.0-36.5	6					4	3		57	200 Wash	SC-SM

				(GEC	BAS	SE, II	NC.				Figure C-1
			Sum	IMARY	of L	ABORA	TORY	lest F	Result	S		Page 3 of 4
PROJECT:	Kaiser Permaner D0476	nte - SFNT 2018 I	MLF Hesperia MO	В	PRO	JECT N	0: C.314	4.84.10		DATE:	May 9, 2018	
BORING	DEPTH	MOISTURE	DRY DENSITY	ATTE	RBERG	LIMITS	PAR	TICLE SI	ZE DISTR	RIBUTION	OTHER TESTS	DESCRIPTION
	(feet)	CONTENT (Percent)	(pcf)	LL (%)	PL (%)	РІ (%)	CLAY (%)	SILT (%)	SAND (%)	GRAVEL (%)		AND REMARKS
	40.0-41.5	2	117.3				1	1		89	200 Wash	SP-SM
	45.0-46.5	2					8	}		92	200 Wash	SP-SM
	50.0-51.5	2					1.	2		88	200 Wash	SP-SM
B-7	0-5.0						1	6	70	8	EI=0, RV, MP, RC	Bulk sample 0-5 feet, SM
	5.0-6.5	11					3	9		62	200 Wash	SC
	10.0-11.5	5					2	3		77	200 Wash	SM
	15.0-16.5	2					7	1	70	23	СР	SW-SM
	20.0-21.5	2	117.8				6)		94	200 Wash	SP-SM
	25.0-26.5	2					6)		94	200 Wash	SP-SM
	30.0-31.5	2	113.4				4	ŀ		96	200 Wash	SP
	35.0-36.5	6					4	1		59	200 Wash	SC
	40.0-41.5	2	130.5	26	13	13	1	1	64	25		SW-SM
	45.0-46.5	2					6)		94	200 Wash	SP-SM
	50.0-51.5	5					3.	4		66	200 Wash	SM
B-8	5.0-6.5	3										SM
	10.0-11.5	4	97.7				2	0		80	200 Wash, CP, DS	SM
	15.0-16.5	1		1	1				1			SP-SM
	20.0-21.5	2	112.0								СР	SP-SM
	25.0-26.5	2										SP-SM
	60.0-31.5	1	107.9				2	1		79	200 Wash	SM
	35.0-36.5	3										SP-SM
B-8	40.0-41.5	2	112.7		1							SP-SM

GEOBASE, INC.										Figure C-1		
			Sum	MARY	of L	ABORA	TORY 1	est F	RESULT	S		Page 4 of 4
PROJECT:	Kaiser Permanente - SFNT 2018 MLF Hesperia MOB D0476				PROJECT NO: C.314.84.10					DATE:	May 9, 2018	
BORING	DEPTH	MOISTURE	DRY DENSITY	ATTE	RBERG	LIMITS	PARTICLE SIZE DISTR			BUTION	OTHER TESTS	DESCRIPTION
	(feet)	CONTENT (Percent)	(pcf)	LL (%)	PL (%)	РІ (%)	CLAY (%)	SILT (%)	SAND (%)	GRAVEL (%)		AND REMARKS
	45.0-46.5	2										SP-SM
	50.0-51.5	4										SP-SM
B-9	5.0-6.5	3					1	8	78	4		SM
	10.0-11.5	10	124.9				4	1	59	0	CP, DS	SC-SM
	15.0-16.5	3										SP-SM
	20.0-21.5	3	121.3									SP-SM
	25.0-26.5	3										SP-SM
	30.0-31.5	15										SM
B-10	5.0-6.5	3	111.9									SM
	7.0-8.5	5										SP-SM
	10.0-11.5	3										SP-SM
B-11	5.0-6.5	2	121.8				9)	88	3		SW-SM
	7.0-8.5	2										SP-SM
	10.0-11.5	3										SP-SM
B-12	3.0-4.5	3					6)		94	200 Wash	SP-SM
	7.0-8.5	11					4			59	200 Wash	SC
	10.0-11.5	6		1								SP-SM

C:\Users\GEOBASE\Documents\GEOBASE DOCUMENTS\GEOBASE DOCUMENTS\Documents\2018\May 2018\C3148410 FIGURE C-1 Summary of Laboratory Test Results Table.tbl.wpd

p. (562) 690-3737 **w.** haieng.com **e.** hai@haieng.com

April 17, 2018

Geobase, Inc. 23362 Peralta Dr., Unit 4 Laguna Hills. CA 92653

Attention: Mr. Hai Nguyen

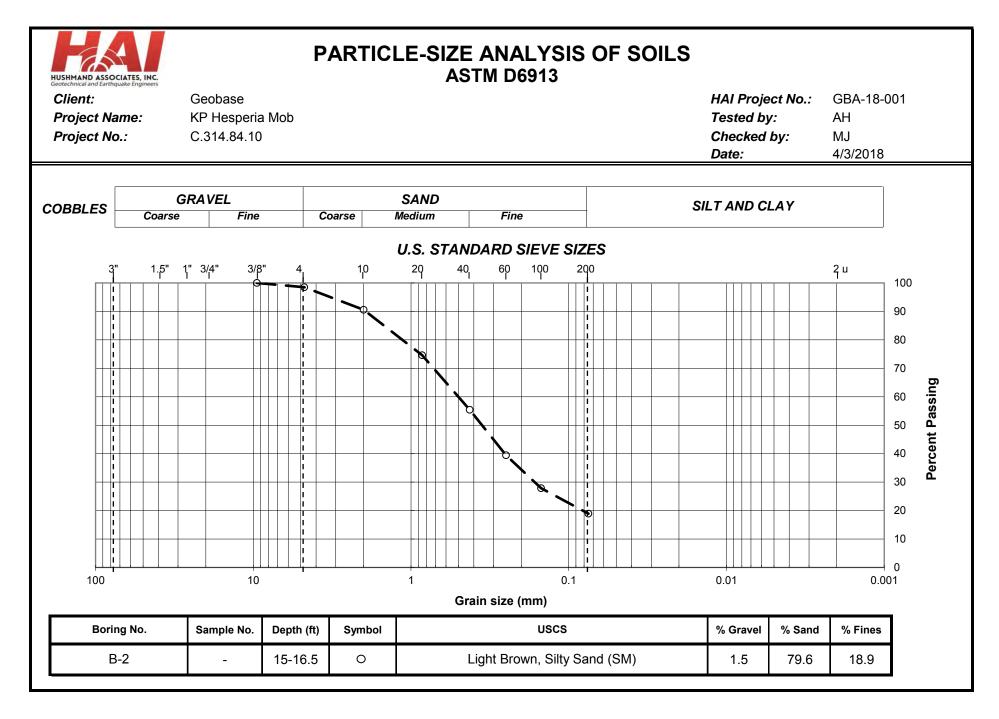
SUBJECT: Laboratory Test Results Geobase Project Name: KP Hesperia Mob Geobase Project No.: C.314.84.10 HAI Project No.: GBA-18-001

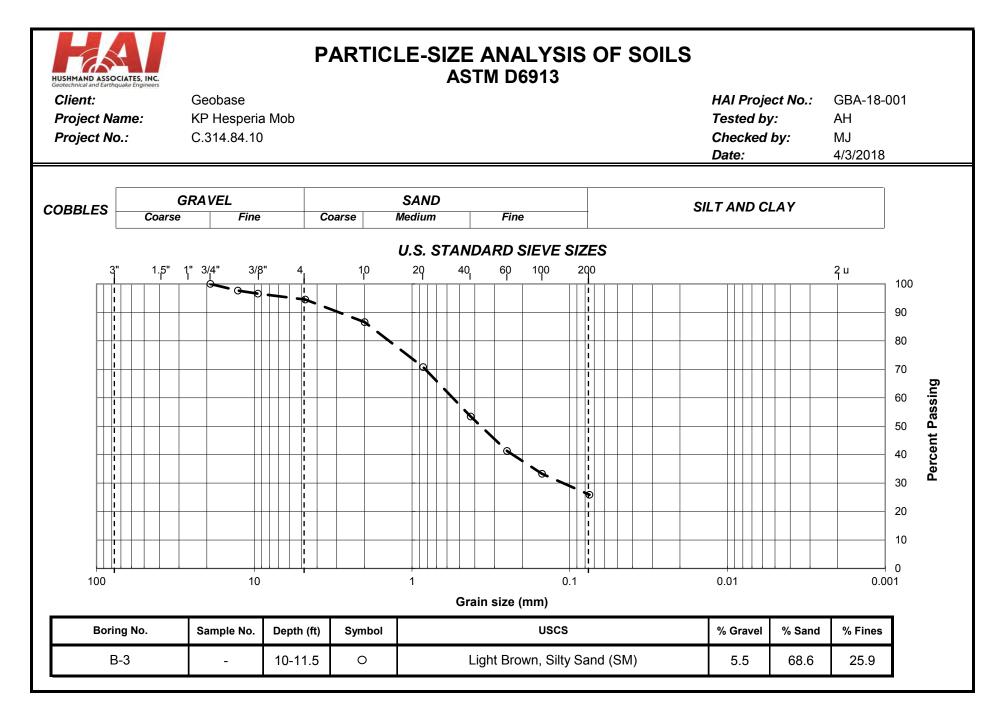
Dear Mr. Nguyen,

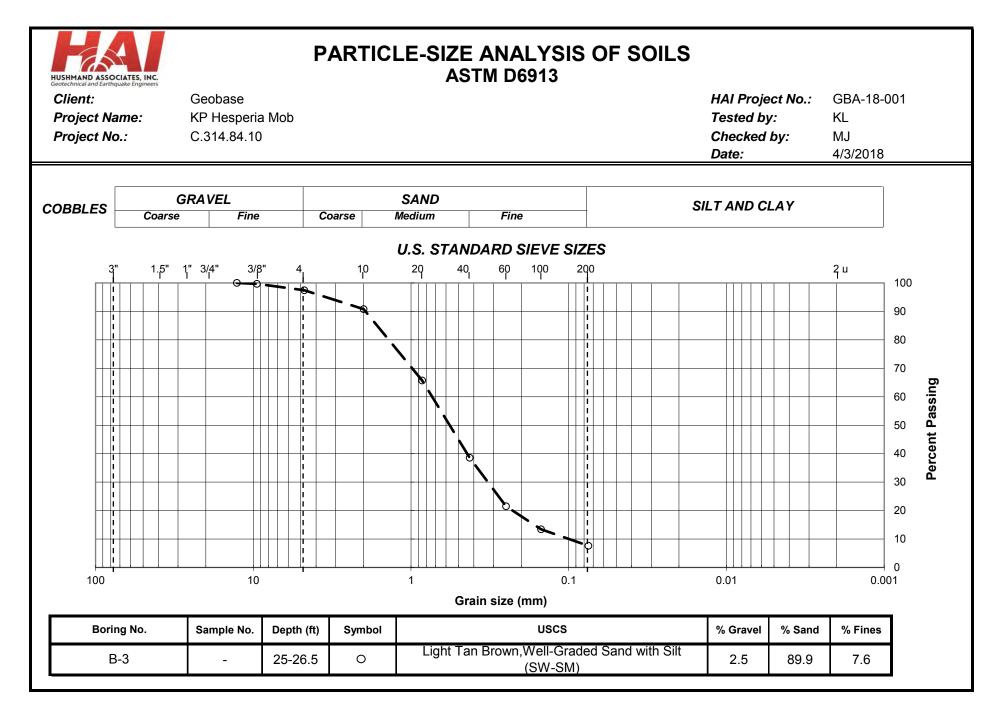
Enclosed is the result of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with the following test procedure:

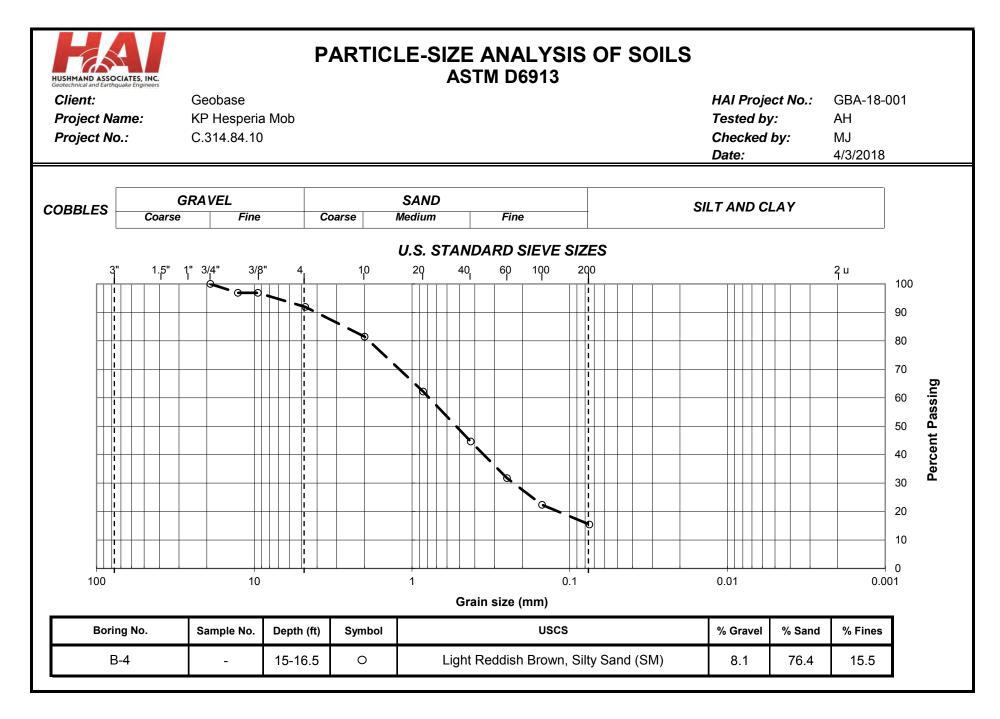
Type of Test	Test Procedure
Moisture Content	ASTM D2216
Moisture Content & Dry Density	ASTM D2937
Percentage Passing #200 Sieve	ASTM D1140
Particle Size Analysis (Sieve only)	ASTM D6913
Atterberg Limits	ASTM D4318
Modified Proctor Compaction	ASTM D1557
Direct Shear (Consolidated & Drained)	ASTM D3080
Consolidation	ASTM D2435
Swell / Collapse Potential	ASTM D4546
Expansion Index	ASTM D4829

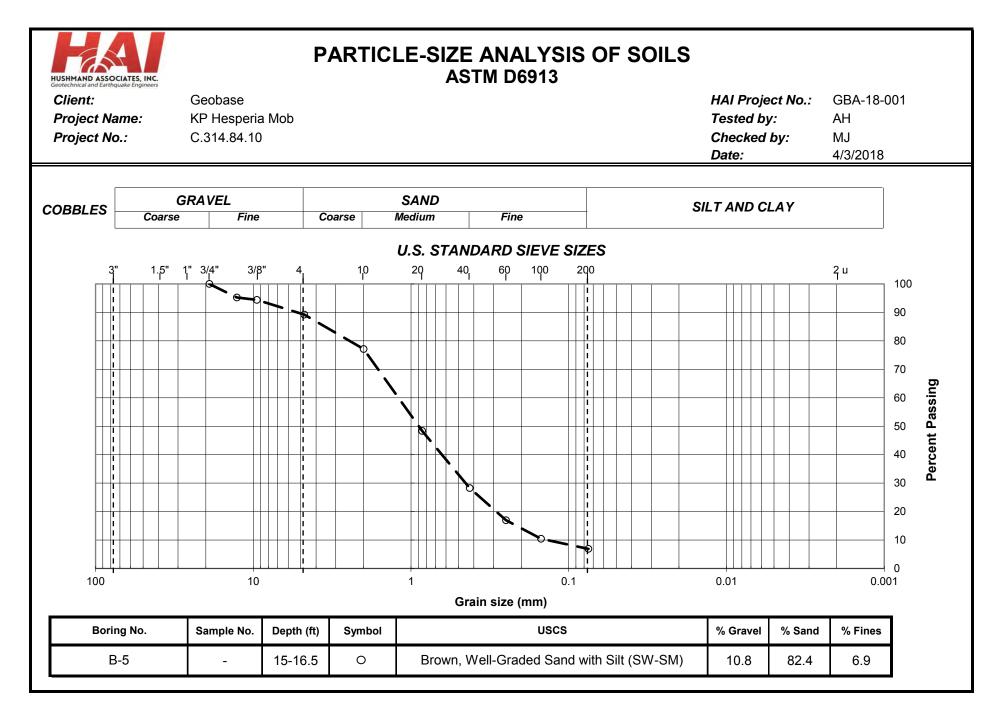
Attached is: fifty-five (55) Moisture Content test results; twenty-four (24) Moisture Content & Dry Density test results; twenty-seven (27) Percentage passing #200 Sieve test results; thirteen (13) Particle Size Analysis (Sieve only) test results; one (1) Atterberg Limits test result; one (1) Modified Proctor Compaction test result; seven (7) 3-point Direct Shear test results; one (1) Consolidation test result with one (1) sample remolding; nine (9) Swell / Collapse Potential test results; and one (1) Expansion Index test result.

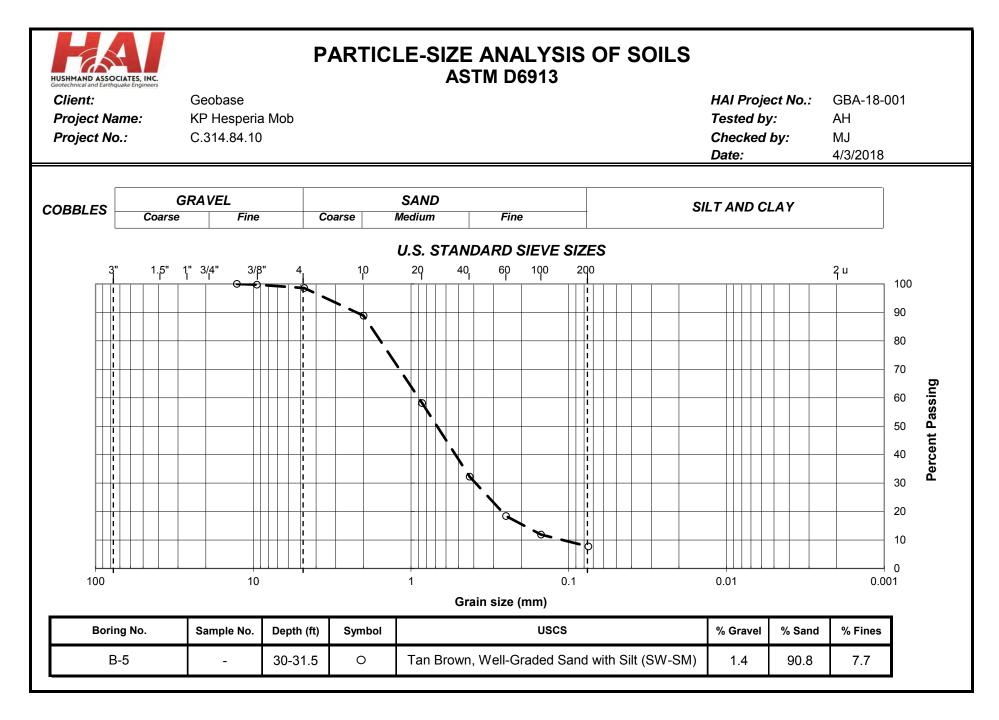

We appreciate the opportunity to provide our testing services to Geobase, Inc. If you have any questions regarding the test results, please contact us.

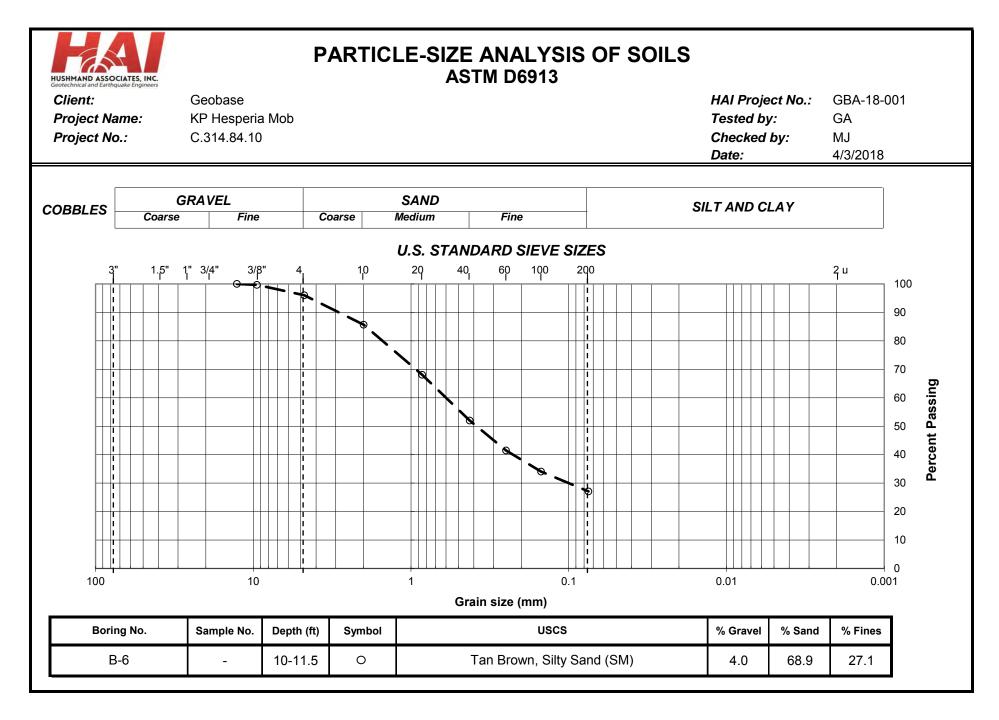

Sincerely,

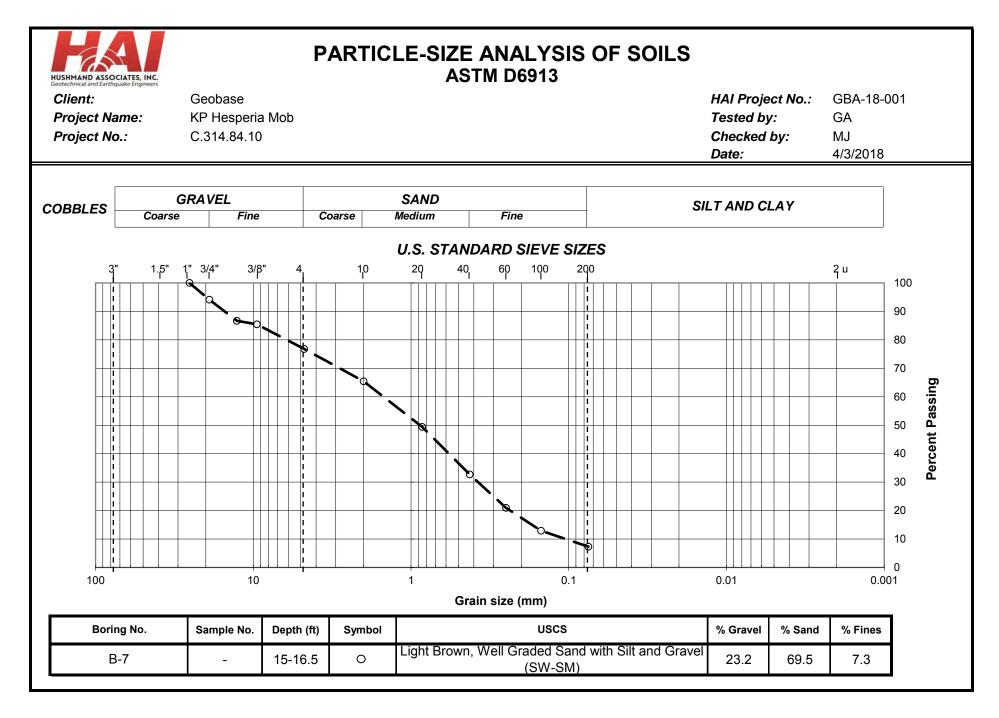

HUSHMAND ASSOCIATES, INC.

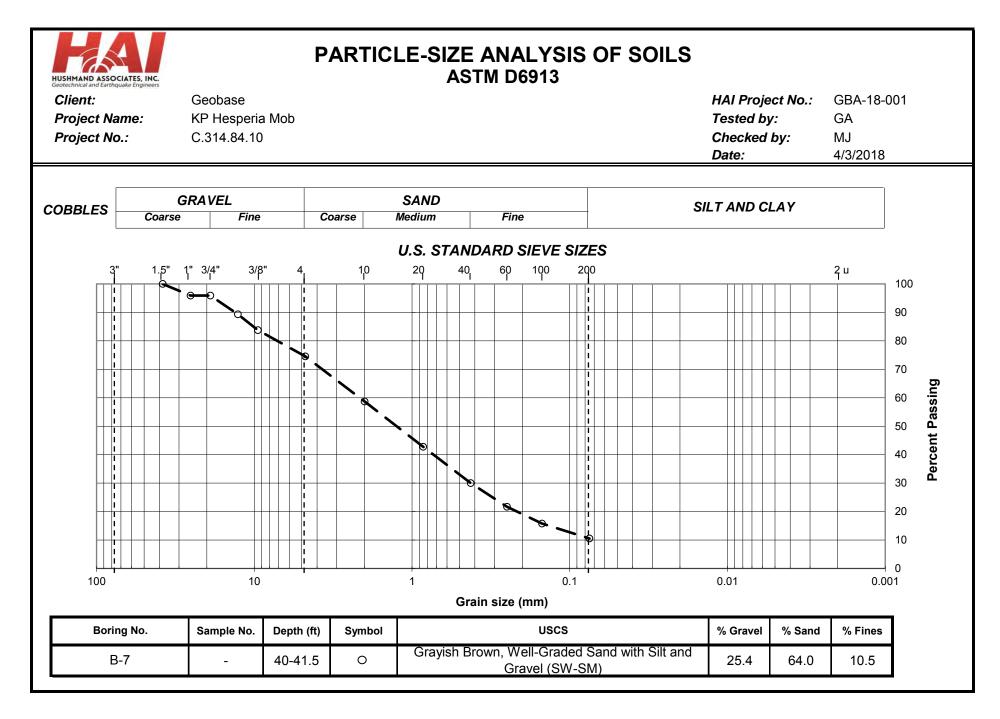

Woongju (MJ) Mun, Ph.D. Senior Staff Engineer / Research Scientist / Lab Manager

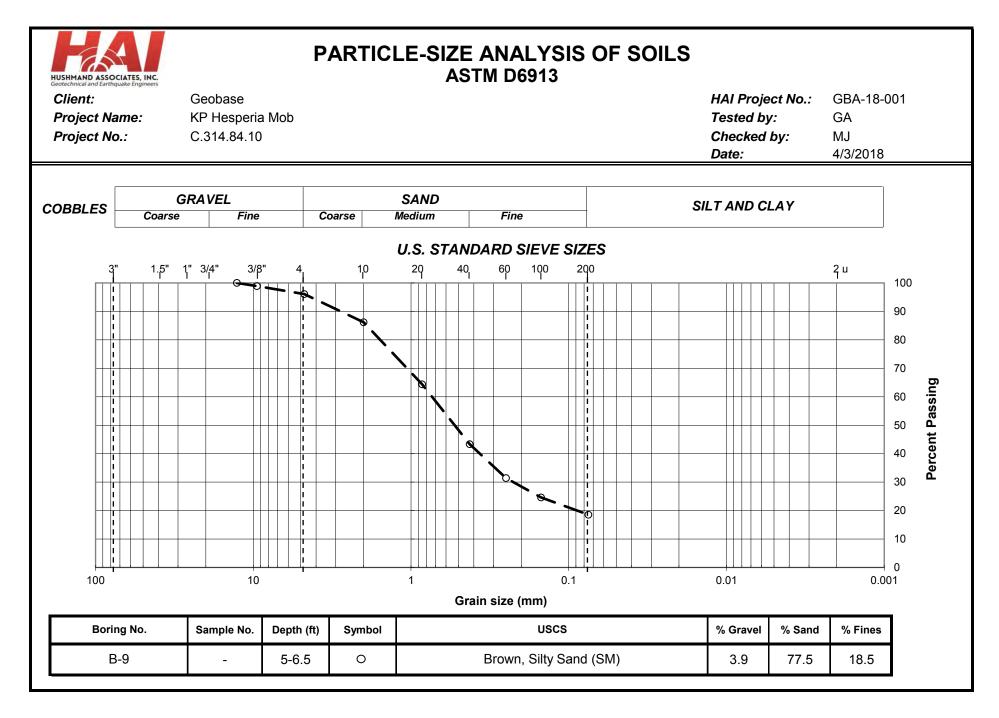

Min Zhang, Ph.D., P.E. Senior Staff Engineer

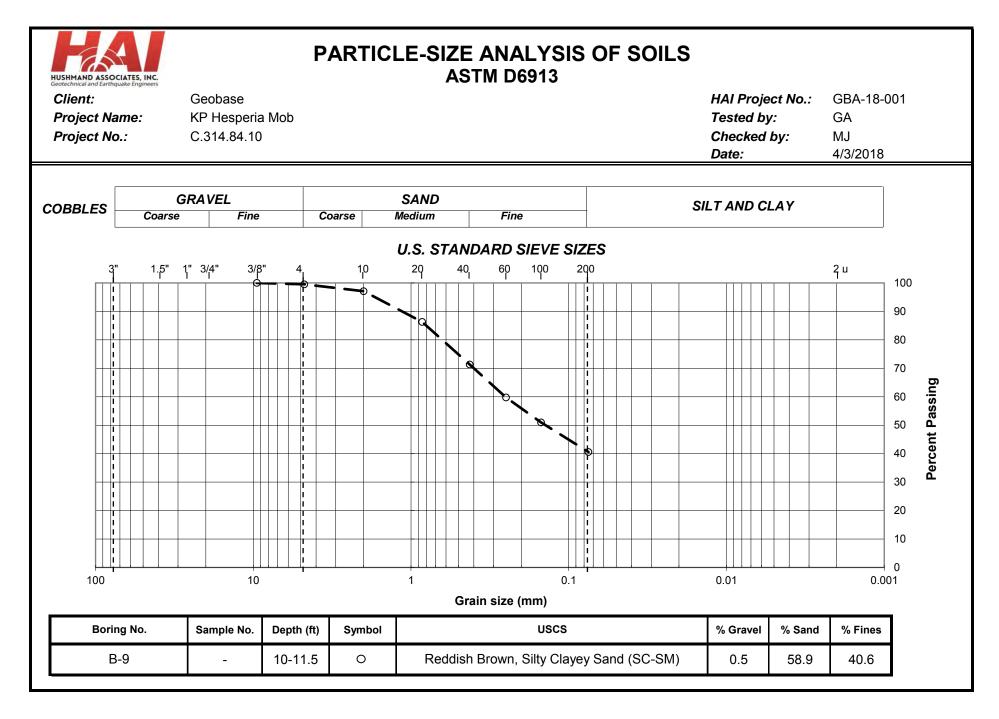


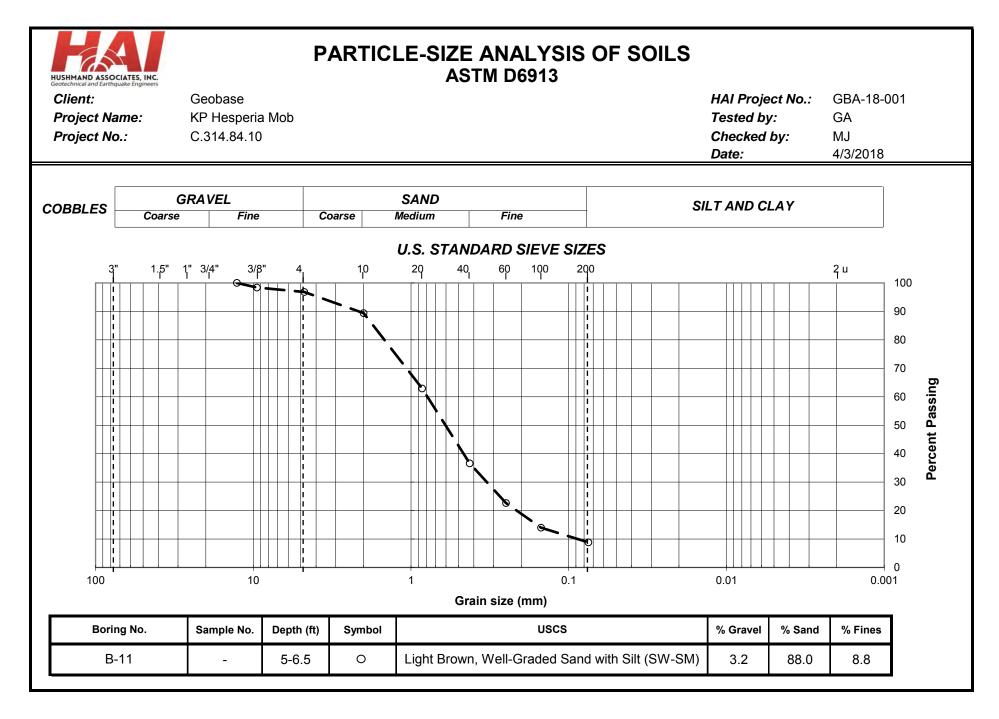












ATTERBERG LIMITS ASTM D 4318

Client: Project Name: Project No.: Boring No.: Sample No.:						ct No.: /: by:	GBA-18-001 KL MJ 4/3/2018	
Depth (ft): Soil Description:	35-36.5 Reddish Brown, Claye	y Sand (So	ing #200)					
	Test		LL	LL	LL	PL	PL	1
	No. of blows	-	32	24	15	-	-]
	Wt. of wet soil + tare	(g)	23.13	23.48	23.74	10.27	10.49	
	Wt. of dry soil + tare	(g)	20.74	20.91	20.96	9.22	9.43	
	Wt. of tare	(g)	11.11	11.07	11.22	1.12	1.11	
	Water content	(%)	24.8	26.1	28.5	13.0	12.7	
	id Limit (LL)	26	nt (%)	29				
	ic Limit (PL)	13	conte	27				
Plasti	city Index (PI)	13	re c	26		\sim		
	USCS	CL	oistu	25				
				-				
		Plasticit		24 L 10 or Compres	sibility (Silt	25 Number c	of blows	100
	LOW	ME	EDIUM			HIGH	1	
40				,UT LI	ie	Ň	A" Line	
(%) Е Х. 30				c	H or OH			
PLASTICITY INDEX, PI (%)		СL	or OL		M	H or OH		
10	•							
0	CL - ML 10 20 3	ML 30	40	50	60	70	80	90 100
0				LIMIT, LL (10	00	30 100

EXPANSION INDEX

ASTM D4829

Client:	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-7
Sample No.:	-
Depth (ft):	0-5

Soil Description: Reddish Brown, Silty Sand (SM)

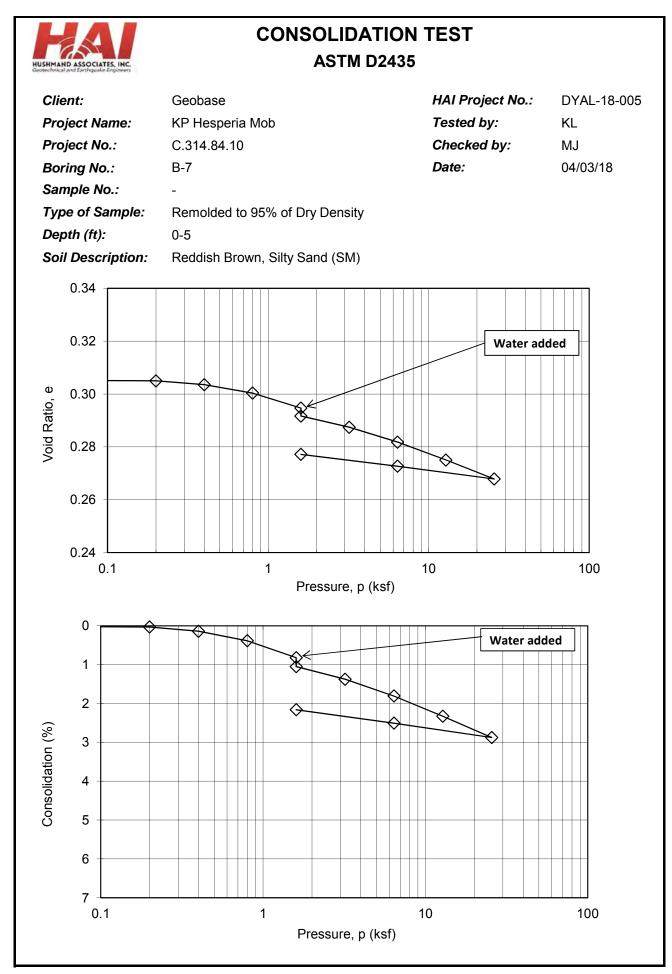
INITIAL SPECIME	EN INFO	
Wt. of wet soil + cont.	101.41	g
Wt. of dry soil + cont.	94.70	g
Wt. of container	4.96	g
Wt. of water	6.71	g
Wt. of dry soil	89.74	g
Moisture Content	7.48	%
Wt. of wet soil + ring	613.10	g
10/t of ring	100.00	
Wt. of ring	190.82	g
Wt. of wet soil	422.28	g g
Ũ		-
Wt. of wet soil	422.28	g
Wt. of wet soil Wet density of soil	422.28 128.0	g pcf

HAI Project No.:	GBA-18-001
Apparatus #:	2
Tested by:	AH
Checked by:	MJ
Date:	4/3/2018

FINAL SPECIMEN INFO							
Wt. of wet soil + o		624.61	g				
Wt. of dry soil + c	cont.		577.50	g			
Wt. of container			190.82	g			
Wt. of water			47.11	g			
Wt. of dry soil		386.68	g				
Moisture Conter	nt		12.2	%			
Date & Time	Elapsed Time (min)	Dial Reading	∆h, Expansion				
4/18/2018 12:52	0	0	-				
4/18/2018 13:02	-						
Add Distilled Water to Sample							
4/19/2018 12:52	1440	0.0000	0.00	000			

Expansion Index =

0



CONSOLIDATION TEST ASTM D2435

Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-7
Sample No.:	-
Type of Sample:	Remolded to 95% of Dry Density
Depth (ft):	0-5
Soil Description:	Reddish Brown, Silty Sand (SM)

HAI Project No.:	DYAL-18-005
Tested by:	KL
Checked by:	MJ
Date:	4/3/2018

					al Weight	Final Tota	•		ry Weight	
					g)	(g			(g)	
				163.43 16		168	68.72 153.66			
				Init	tial Conditio	ns	Fi	inal Conditi	ons	
Height		Н	(in)		1.000			0.978	0.978	
Height of S	olids	Hs	(in)		0.766			0.766		
Height of W	Vater	Hw	(in)		0.130			0.200		
Height of A	ir	На	(in)		0.104			0.012		
Dry Densit	y	(pcf)			127.6			133.3		
Water Con	itent	(%)			6.4			9.8		
Saturation			(%)		55.6			94.4		
* Saturati	on is calcu	alted base	d on Gs=	2.67						
Load	δH	Н	Voids		Cons	sol.	a _v	Mv	Commen	
(ksf)	(in)	(in)	(in)	е	(%)		(ksf⁻¹)	(ksf⁻¹)	Comment	
0.01		1.0000	0.234	0.305	0					
0.2	0.0003	0.9997	0.234	0.305	0.0	0	2.1E-03	1.6E-03		
0.4	0.0014	0.9986	0.233	0.304	0.1	1	7.2E-03	5.5E-03		
0.8	0.0039	0.9962	0.230	0.300	0.4	4	8.0E-03	6.1E-03		
1.6	0.0082	0.9918	0.226	0.295	0.8	8	7.1E-03	5.5E-03		
1.6	0.0105	0.9895	0.223	0.292	1.1	1		Water Adde	d	
3.2	0.0138	0.9863	0.220	0.287	1.4	4	2.7E-03	2.1E-03		
6.4	0.0181	0.9820	0.216	0.282	1.8	В	1.8E-03	1.4E-03		
12.8	0.0233	0.9768	0.211	0.275	2.3	3	1.1E-03	8.3E-04		
25.6	0.0288	0.9713	0.205	0.268	2.9	9	5.6E-04	4.4E-04		
6.4	0.0251	0.9750	0.209	0.273	2.	5		Unloaded		
1.6	0.0216	0.9784	0.212	0.277	2.2	2		Unioaded		

SWELL / COLLAPSE TEST **ASTM D4546**

HAI Project No.:

Tested by:

Date:

Checked by:

GBA-18-001

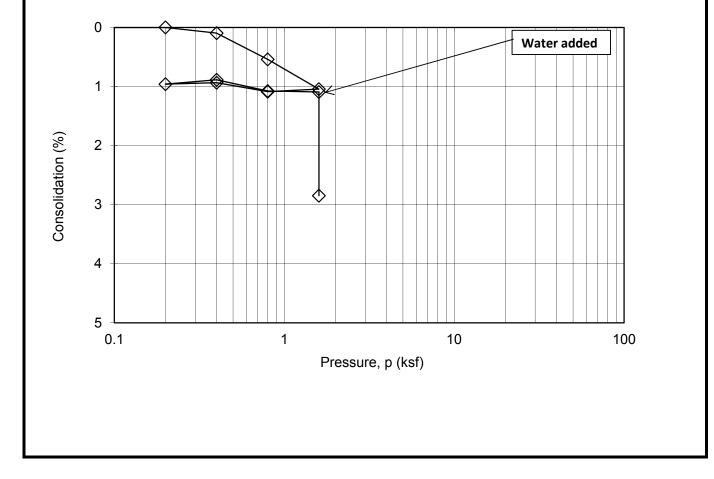
KL

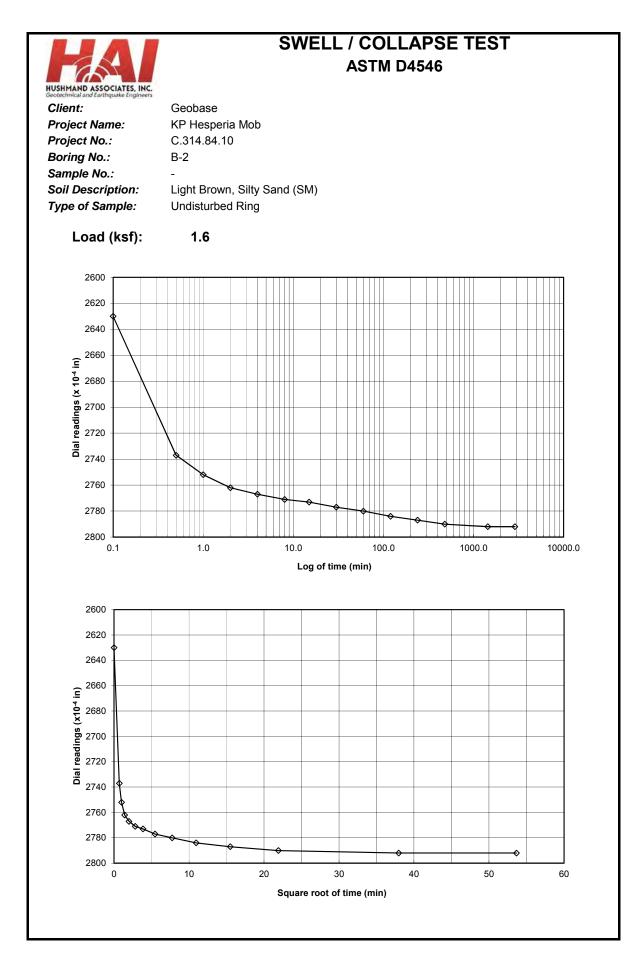
MJ

04/03/18

Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-2
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	15-16.5
Soil Description:	Light Brown, Silty Sand (SM)

Soil Descr	iption:	Light Brown	, Silty Sand	(SM)						
				·						
					al Weight		al Weight		ry Weight	
					g)		g)		(g)	
				144	.00	158	3.55	13	9.15	
				Init	tial Conditio	ons	F	inal Conditi	ons	
Height		Н	(in)		1.025			0.996		
Height of S	olids	Hs	(in)		0.691			0.691		
Height of W		Hw	(in)		0.065			0.258		
Height of A		На	(in)		0.269			0.046		
Dry Densit	у		(pcf)		112.8			116.6		
Water Con	tent		(%)		3.5			13.9		
Saturation			(%)		19.3		84.8			
* Saturation	is calcualte	d based on								
Load	δН	н	Voids		Con	sol.	a _v	Mv	0	
(ksf)	(in)	(in)	(in)	е	(%)		(ksf⁻¹)	(ksf⁻¹)	Comment	
0.01		1.0250	0.334	0.483	()	-	-		
0.2	0.0000	1.0250	0.334	0.483	0.	.0	0.0E+00	0.0E+00		
0.4	0.0010	1.0240	0.333	0.482	0.	.1	7.2E-03	4.9E-03		
0.8	0.0055	1.0195	0.328	0.475	0.	.5	1.6E-02	1.1E-02		
1.6	0.0107	1.0143	0.323	0.468	1.	.0	9.3E-03	6.3E-03		
0.8	0.0112	1.0139	0.323	0.467	1.	.1				
0.4	0.0096	1.0154	0.324	0.469	0.	.9	Unloaded			
0.2	0.0098	1.0152	0.324	0.469	1.	.0				
0.4	0.0091	1.0159	0.325	0.470	0.	.9	-5.4E-03	-3.7E-03		
0.8	0.0111	1.0140	0.323	0.467	1.	.1	7.1E-03	4.8E-03		
1.6	0.0112	1.0138	0.323	0.467	1.	.1	2.7E-04	1.8E-04		
1.6	0.0292	0.9958	0.305	0.441	2.	.8		Water Adde	ed	

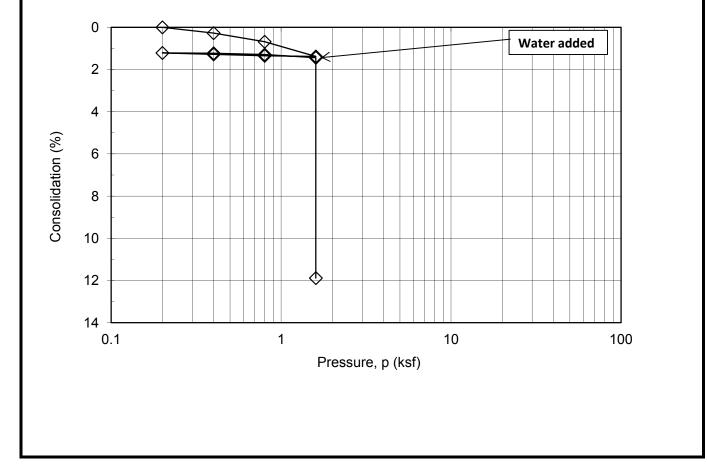


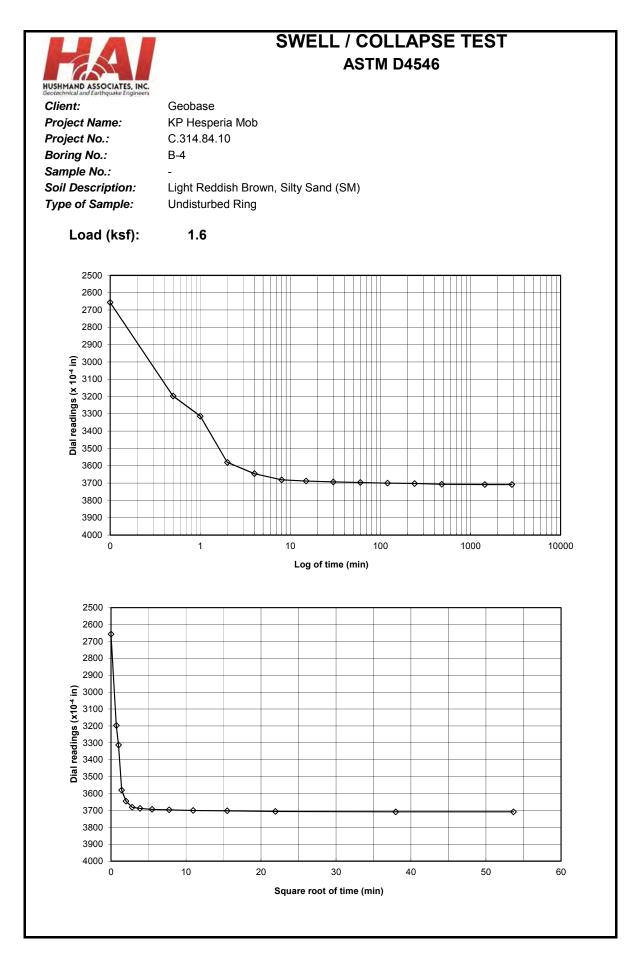

SWELL / COLLAPSE TEST

ASTM D4546

Client:	Geobase				
Project Name:	KP Hesperia Mob				
Project No.:	C.314.84.10				
Boring No.:	B-2				
Sample No.:	-				
Type of Sample:	Undisturbed Ring				
Depth (ft):	15-16.5				
Soil Description:	Light Brown, Silty Sand (SM)				

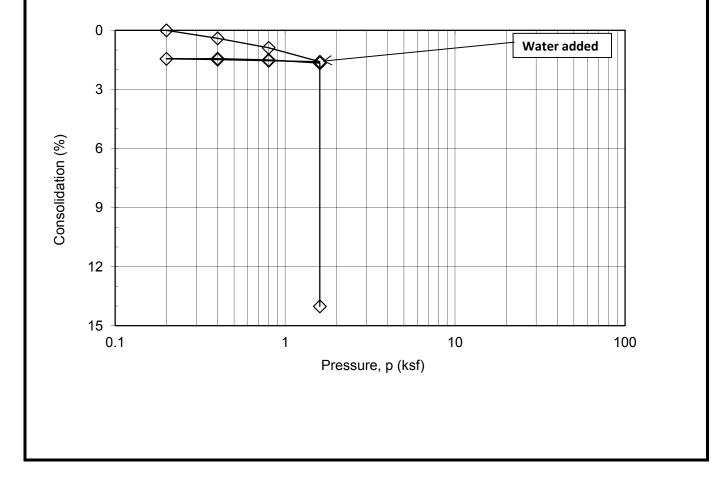
HAI Project No.:	GBA-18-001			
Tested by:	KL			
Checked by:	MJ			
Date:	04/03/18			

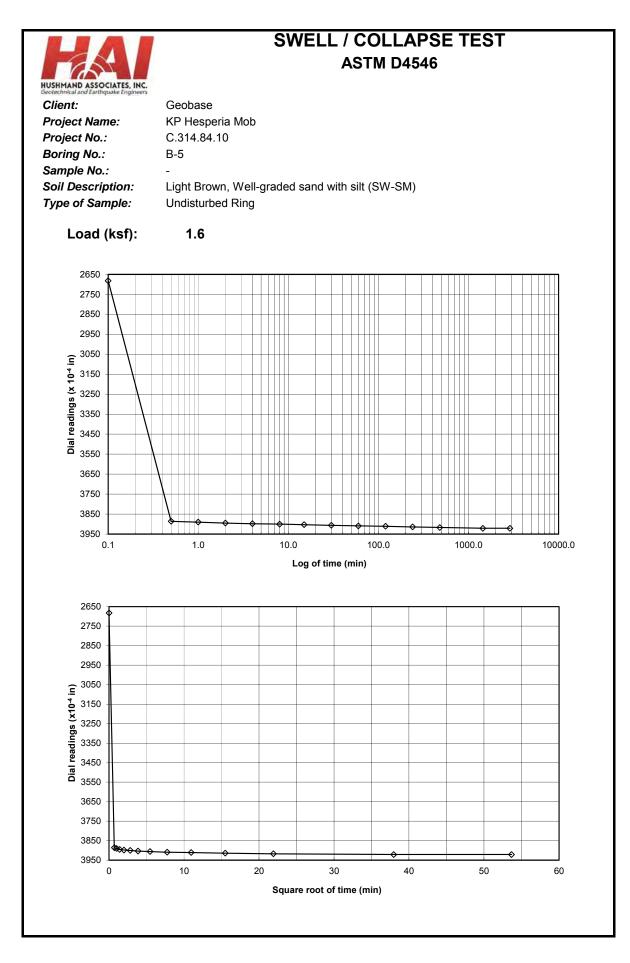

SWELL / COLLAPSE TEST ASTM D4546


Client :	Geobase	HAI Project No.:	GBA-18-001	
Project Name:	KP Hesperia Mob	Tested by:	KL	
Project No.:	C.314.84.10	Checked by:	MJ	
Boring No.:	B-4	Date:	04/03/18	
Sample No.:	-			
Type of Sample:	Undisturbed Ring			
Depth (ft):	15-16.5			
Soil Description:	Light Reddish Brown, Silty Sand (SM)			

				(g)		tal Weight Final Dry Weig (g) (g)		ry Weight	
								(g)	
						13	38.24 120.42		
				Init	tial Condition	ne	F	inal Conditi	0.005
Height		Н	(in)		1.017	///5	0.896		
Height of S	olids	Hs	(in) (in)	0.598		0.598			
-			(in) (in)	0.037		0.330			
Height of A	•		(in)	0.382		0.061			
•		(pcf)	98.4		124.5				
Water Con	-		(%)		2.3		14.8		
		(%)	8.8		79.6				
* Saturatior	n is calcualte	d based on					1		
Load	δH	Н	Voids	_	e Consol. (%)		a _v	M _v	
(ksf)	(in)	(in)	(in)	e			(ksf⁻¹)	(ksf⁻¹)	Commen
0.01		1.0170	0.419	0.700	0				
0.2	0.0000	1.0170	0.419	0.700	0.0		0.0E+00	0.0E+00	
0.4	0.0028	1.0143	0.416	0.696	0.3		2.3E-02	1.4E-02	
0.8	0.0069	1.0101	0.412	0.689	0.7		1.7E-02	1.0E-02	
1.6	0.0141	1.0030	0.405	0.677	1	.4	1.5E-02 8.9E-03		
0.8	0.0137	1.0033	0.405	0.677	1	.3	Unloaded		
0.4	0.0131	1.0040	0.406	0.679	1	.3			
0.2	0.0124	1.0047	0.407	0.680	1	.2			
0.4	0.0125	1.0046	0.406	0.680	1	1.2		5.0E-04	
0.8	0.0131	1.0039	0.406	0.678	1.3		2.7E-03	1.6E-03	
1.6	0.0147	1.0024	0.404	0.676	1.4		3.2E-03	1.9E-03	
1.6	0.1208	0.8962	0.298	0.498	11	.9	Water Added		

Client:	Geobase	HAI Project No.:	GBA-18-001			
Project Name:	KP Hesperia Mob	Tested by:	KL			
Project No.:	C.314.84.10	Checked by:	MJ			
Boring No.:	B-4	Date:	04/03/18			
Sample No.:	-					
Type of Sample:	Undisturbed Ring					
Depth (ft):	15-16.5					
Soil Description:	Light Reddish Brown, Silty Sand (SM)					




Geobase	HAI Project No.:	GBA-18-001			
KP Hesperia Mob	Tested by:	KL			
C.314.84.10	Checked by:	MJ			
B-5	Date:	04/03/18			
-					
Undisturbed Ring					
20-21.5					
Light Brown, Well-graded sand with silt (SW-SM)					
	KP Hesperia Mob C.314.84.10 B-5 - Undisturbed Ring 20-21.5	KP Hesperia MobTested by:C.314.84.10Checked by:B-5Date:-Undisturbed Ring20-21.5-			

				Initial Total Weight Fina (g) 134.71		Final	otal Weight		ry Weight
							(g)	(g)	
							150.00	13	2.14
				Init	ial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.014			0.872	
Height of S	olids	Hs	(in)		0.656			0.656	
Height of W	/ater	Hw	(in)		0.034			0.238	
Height of A	ir	На	(in)		0.323			0.000	
Dry Densit	у		(pcf)		108.2			144.4	
Water Con	tent		(%)		1.9			13.5	
Saturation			(%)		9.6			100.0	
* Saturatior	n is calcualte	d based on	Gs=2.68	-					
Load	δH	Н	Voids		Con	isol.	a _v	Mv	Common
(ksf)	(in)	(in)	(in)	е	(%	%)	(ksf⁻¹)	(ksf⁻¹)	Comment
0.01		1.0140	0.358	0.545	()			
0.2	0.0000	1.0140	0.358	0.545	0.	.0	0.0E+00	0.0E+00	
0.4	0.0041	1.0099	0.354	0.539	0.	.4	3.1E-02	2.0E-02	
0.8	0.0090	1.0051	0.349	0.531	0.	.9	1.8E-02	1.2E-02	
1.6	0.0162	0.9979	0.342	0.520	1.	.6	1.4E-02	9.0E-03	
0.8	0.0157	0.9984	0.342	0.521	1.	.5			
0.4	0.0151	0.9989	0.343	0.522	1.	.5		Unloaded	
0.2	0.0147	0.9994	0.343	0.523	1.	.4		7	
0.4	0.0146	0.9994	0.343	0.523	1.	.4	-3.8E-04	-2.5E-04	
0.8	0.0153	0.9988	0.342	0.522	1.	.5	2.5E-03	1.6E-03	
1.6	0.0169	0.9972	0.341	0.519	1.	.7	3.0E-03	2.0E-03	
1.6	0.1421	0.8719	0.216	0.328 14.0 Water Add		Water Adde	ed		

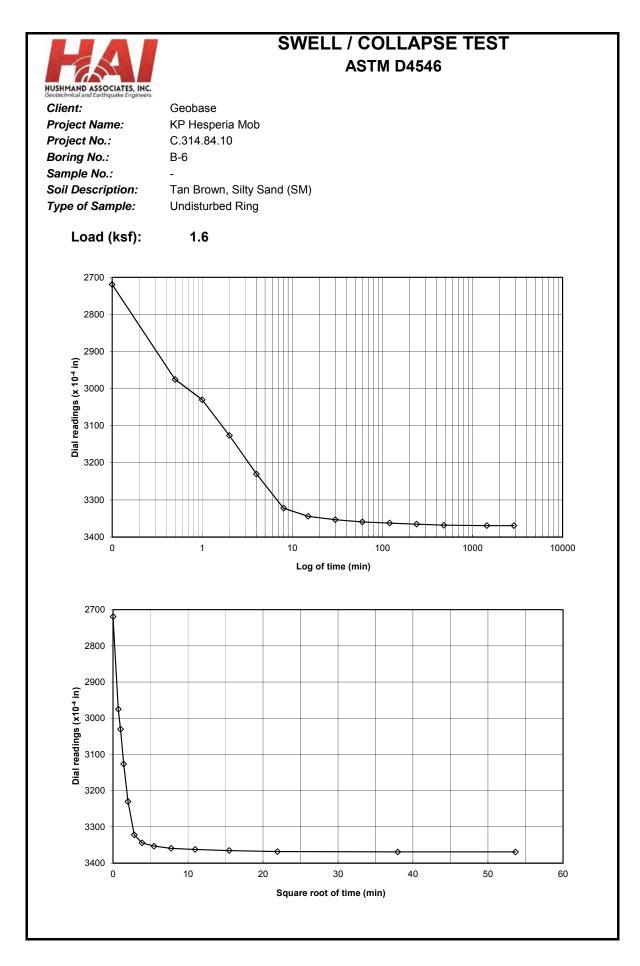
Client:	Geobase	HAI Project No.:	GBA-18-001			
Project Name:	KP Hesperia Mob	Tested by:	KL			
Project No.:	C.314.84.10	Checked by:	MJ			
Boring No.:	B-5	Date:	04/03/18			
Sample No.:	-					
Type of Sample:	Undisturbed Ring					
Depth (ft):	20-21.5					
Soil Description:	Light Brown, Well-graded sand with silt (SW-SM)					

GBA-18-001

KL

MJ 04/03/18

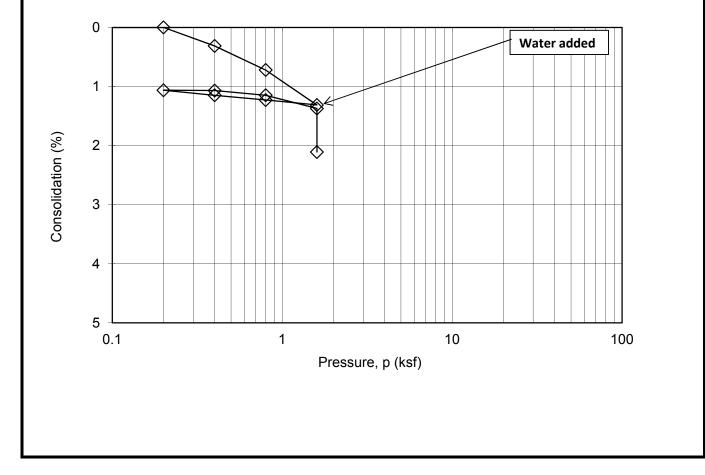
Client :	Geobase	HAI Project No.:
Project Name:	KP Hesperia Mob	Tested by:
Project No.:	C.314.84.10	Checked by:
Boring No.:	B-6	Date:
Sample No.:	-	
Type of Sample:	Undisturbed Ring	
Depth (ft):	10-11.5	
Soil Description:	Tan Brown, Silty Sand (SM)	

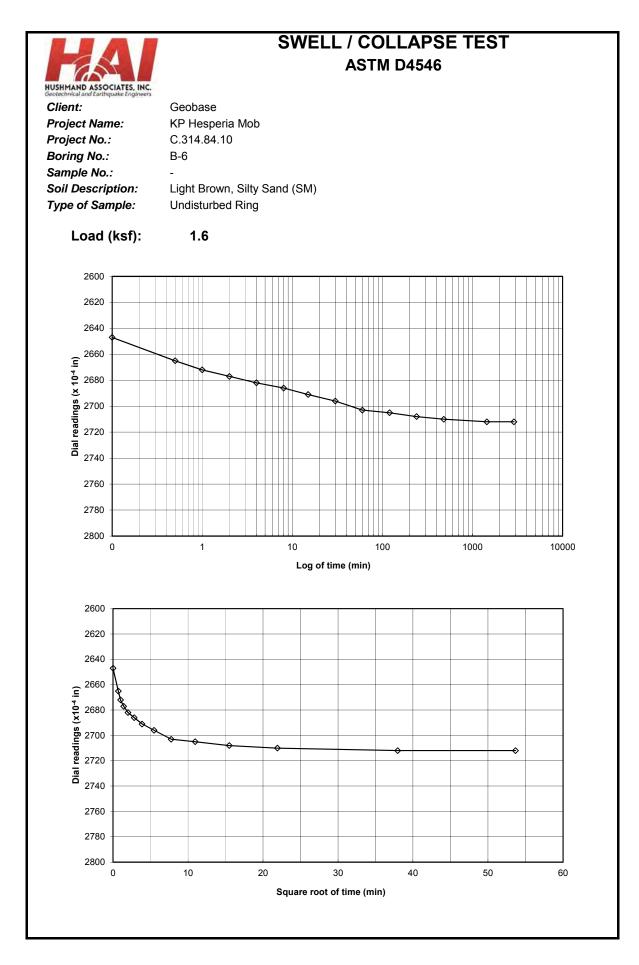

				(9	al Weight g)		otal Weight (g)		ry Weight (g)
				156	6.56	1	59.87	14	8.07
				Init	tial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.021			0.934	
Height of S	olids	Hs	(in)		0.735			0.735	
Height of W	/ater	Hw	(in)		0.113			0.157	
Height of A	ir	На	(in)		0.173			0.042	
Dry Densit	у		(pcf)		120.5			141.0	
Water Con	tent		(%)		5.7			8.0	
Saturation			(%)		39.6			79.1	
* Saturation	n is calcualte	d based on	Gs=2.68						
Load	δH	Н	Voids	е	Con	sol.	a _v	M _v	Comment
(ksf)	(in)	(in)	(in)	e	(%	%)	(ksf⁻¹)	(ksf⁻¹)	Comment
0.01		1.0210	0.286	0.388	()			
0.2	0.0000	1.0210	0.286	0.388	0.	.0	0.0E+00	0.0E+00	
0.4	0.0055	1.0155	0.280	0.381	0.	.5	3.7E-02	2.7E-02	
0.8	0.0116	1.0095	0.274	0.373	1.	.1	2.1E-02	1.5E-02	
1.6	0.0200	1.0010	0.266	0.361	2.	.0	1.4E-02	1.1E-02	
0.8	0.0196	1.0015	0.266	0.362	1.	.9			
0.4	0.0189	1.0021	0.267	0.363	1.	.9		Unloaded	
0.2	0.0182	1.0028	0.267	0.364	1.	.8			
0.4	0.0183	1.0027	0.267	0.363	1.	.8	6.8E-04	5.0E-04	
0.8	0.0188	1.0023	0.267	0.363	1.	.8	1.5E-03	1.1E-03	
1.6	0.0209	1.0001	0.265	0.360	2.	.0	3.7E-03	2.7E-03	
1.6	0.0869	0.9341	0.199	0.270	8.	.5		Water Adde	d

Client:	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-6
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	10-11.5
Soil Description:	Tan Brown, Silty Sand (SM)

HAI Project No.:	GBA-18-001
Tested by:	KL
Checked by:	MJ
Date:	04/03/18

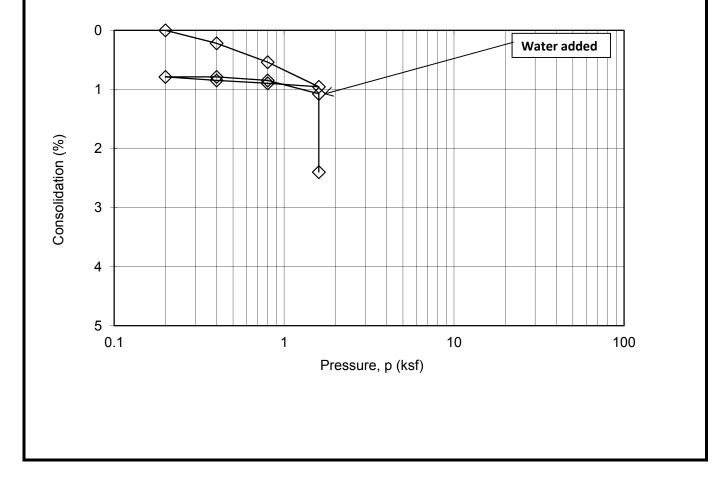
Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-6
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	20-21.5
Soil Description:	Light Brown, Silty Sand (SM)

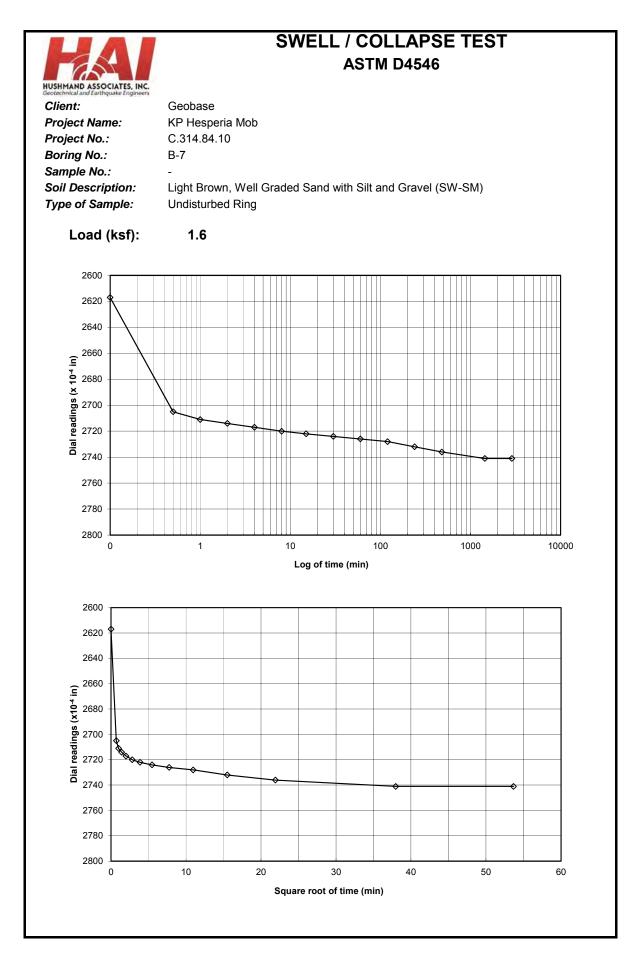

HAI Project No.:	GBA-18-001
Tested by:	KL
Checked by:	MJ
Date:	04/03/18


				(g) (tal Weight		ry Weight	
						(g)		(g) 0.65	
				147	.90	10	9.94	14	0.05
				Init	tial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.005			0.984	
Height of S	olids	Hs	(in)		0.699			0.699	
Height of W	/ater	Hw	(in)		0.097			0.257	
Height of A	ir	На	(in)		0.209			0.028	
Dry Densit	ÿ		(pcf)		116.2			120.7	
Water Con	tent		(%)		5.2			13.7	
Saturation			(%)		31.8			90.0	
* Saturatior	n is calcualte	d based on	Gs=2.68						
Load	δH	н	Voids	е	Con	sol.	a _v	M _v	Comment
(ksf)	(in)	(in)	(in)	6	(%	%)	(ksf⁻¹)	(ksf⁻¹)	Comment
0.01		1.0050	0.306	0.439	()			
0.2	0.0000	1.0050	0.306	0.439	0.	.0	0.0E+00	0.0E+00	
0.4	0.0031	1.0019	0.303	0.434	0.	.3	2.3E-02	1.6E-02	
0.8	0.0073	0.9978	0.299	0.428	0.	.7	1.5E-02	1.0E-02	
1.6	0.0132	0.9918	0.293	0.420	1.	.3	1.1E-02	7.5E-03	
0.8	0.0124	0.9927	0.294	0.421	1.	.2			
0.4	0.0116	0.9935	0.295	0.422	1.	.1		Unloaded	
0.2	0.0107	0.9943	0.296	0.423	1.	.1			
0.4	0.0108	0.9943	0.296	0.423	1.	.1	3.6E-04	2.5E-04	
0.8	0.0116	0.9935	0.295	0.422	1.	.1	2.9E-03	2.0E-03	
1.6	0.0138	0.9912	0.293	0.419	1.	.4	4.0E-03	2.8E-03	
1.6	0.0212	0.9838	0.285	0.408 2.1 Water Added		ed			

Client:	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-6
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	20-21.5
Soil Description:	Light Brown, Silty Sand (SM)

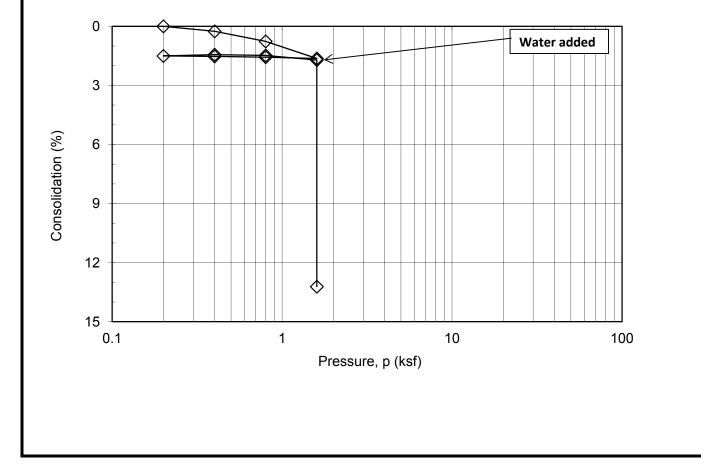
HAI Project No.:	GBA-18-001
Tested by:	KL
Checked by:	MJ
Date:	04/03/18

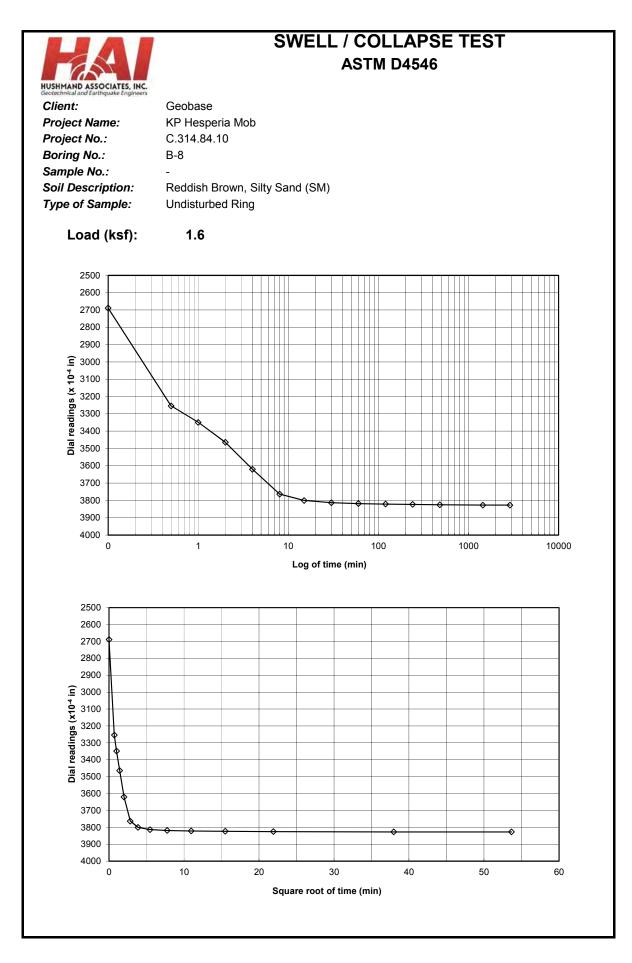



Client :	Geobase	HAI Project No.:	GBA-18-001	
Project Name:	KP Hesperia Mob	Tested by:	KL	
Project No.:	C.314.84.10	Checked by:	MJ	
Boring No.:	B-7	Date:	04/03/18	
Sample No.:	-			
Type of Sample:	Undisturbed Ring			
Depth (ft):	15-16.5			
Soil Description:	Light Brown, Well Graded Sand with Silt and G	ravel (SW-SM)		

				Initial Tot (g 140			otal Weight (g) 56.11		ry Weight (g) 7.84
				Init	ial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.004			0.980	
Height of S	olids	Hs	(in)		0.685			0.685	
Height of W	Vater	Hw	(in)		0.035			0.243	
Height of Air	На	(in)		0.284			0.052		
Dry Densit	^t y		(pcf)		114.0			119.2	
Water Con	itent		(%)		1.9			13.3	
Saturation	Ì		(%)		10.9			82.4	
* Saturatior	n is calcualte	d based on	Gs=2.68	-					
Load	δH	н	Voids		Con	sol.	a _v	Mv	Comment
(ksf)	(in)	(in)	(in)	e	(%	6)	(ksf ⁻¹)	(ksf⁻¹)	Comment
0.01		1.0040	0.319	0.466	()			
0.2	0.0000	1.0040	0.319	0.466	0.	.0	0.0E+00	0.0E+00	
0.4	0.0022	1.0018	0.317	0.463	0.	.2	1.6E-02	1.1E-02	
0.8	0.0054	0.9986	0.314	0.459	0.	.5	1.2E-02	8.0E-03	
1.6	0.0096	0.9944	0.310	0.452	1.	.0	7.7E-03	5.3E-03	
0.8	0.0090	0.9950	0.310	0.453	0.	.9			
0.4	0.0085	0.9955	0.311	0.454	0.	.8		Unloaded	
0.2	0.0079	0.9961	0.311	0.455	0.	.8			
0.4	0.0079	0.9961	0.311	0.455	0.	.8	0.0E+00	0.0E+00	
0.8	0.0085	0.9955	0.311	0.454	0.	.8	2.2E-03	1.5E-03	
1.6	0.0108	0.9932	0.309	0.451	1.	.1	4.2E-03	2.9E-03	
1.6	0.0241	0.9799	0.295	0.431	2.	.4		Water Adde	ed

Client:	Geobase	HAI Project No.:	GBA-18-001
Project Name:	KP Hesperia Mob	Tested by:	KL
Project No.:	C.314.84.10	Checked by:	MJ
Boring No.:	B-7	Date:	04/03/18
Sample No.:	-		
Type of Sample:	Undisturbed Ring		
Depth (ft):	15-16.5		
Soil Description:	Light Brown, Well Graded Sand with Silt a	and Gravel (SW-SM)	


Client :	Geobase	HAI Project No.:	GBA-18-001
Project Name:	KP Hesperia Mob	Tested by:	KL
Project No.:	C.314.84.10	Checked by:	MJ
Boring No.:	B-8	Date:	04/04/18
Sample No.:	-		
Type of Sample:	Undisturbed Ring		
Depth (ft):	10-11.5		
Soil Description:	Reddish Brown, Silty Sand (SM)		


					al Weight	Final	Fotal Weight		ry Weight	
					g)		(g)		(g)	
				126	6.28		139.45	12	1.50	
				Init	tial Condition	ons	Fi	inal Conditi	ons	
Height		Н	(in)		1.004			0.871		
Height of S	olids	Hs	(in)		0.603			0.603		
Height of W	/ater	Hw	(in)		0.064			0.239		
Height of A	ir	На	(in)		0.337			0.029		
Dry Densit	y		(pcf)		100.5			132.9		
Water Con	tent		(%)		3.9			14.8		
Saturation			(%)		15.9			89.2		
* Saturatior	n is calcualte	d based on	Gs=2.68							
Load	δH	Н	Voids	•	Con	isol.	a _v	Mv	Commen	
(ksf)	(in)	(in)	(in)	е	(%	6)	(ksf⁻¹)	(ksf⁻¹)	Commen	
0.01		1.0040	0.401	0.664	(C				
0.2	0.0000	1.0040	0.401	0.664	0	.0	0.0E+00	0.0E+00		
0.4	0.0025	1.0015	0.398	0.660	0	.2	2.1E-02	1.2E-02		
0.8	0.0077	0.9964	0.393	0.651	0	.8	2.1E-02	1.3E-02		
1.6	0.0164	0.9876	0.384	0.637	1	.6	1.8E-02	1.1E-02		
0.8	0.0158	0.9883	0.385	0.638	1	.6				
0.4	0.0153	0.9887	0.385	0.638	1	.5		Unloaded		
0.2	0.0151	0.9890	0.385	0.639	1	.5				
0.4	0.0144	0.9896	0.386	0.640	1	.4	-5.4E-03	-3.3E-03		
0.8	0.0149	0.9892	0.386	0.639	1	.5	1.9E-03	1.1E-03		
1.6	0.0172	0.9868	0.383	0.635	1	.7	4.9E-03	3.0E-03		
1.6	0.1327	0.8713	0.268	0.444	13	3.2		Water Adde	ed	

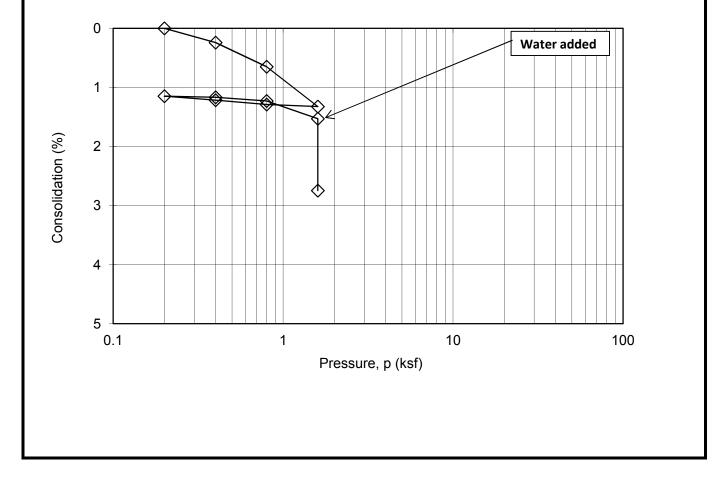
Client:	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-8
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	10-11.5
Soil Description:	Reddish Brown, Silty Sand (SM)

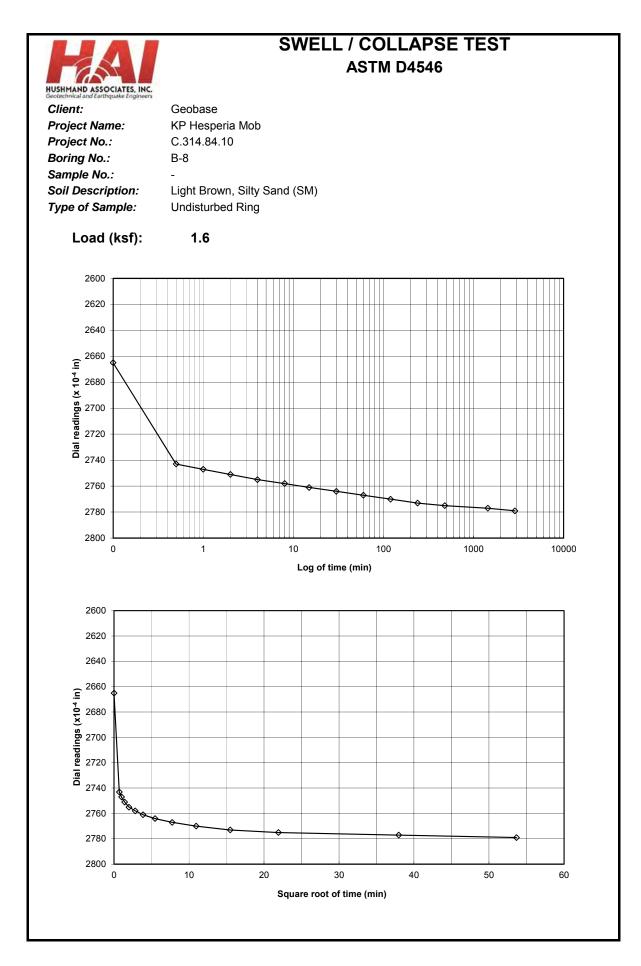
HAI Project No.:	GBA-18-001
Tested by:	KL
Checked by:	MJ
Date:	04/04/18

GBA-18-001

KL

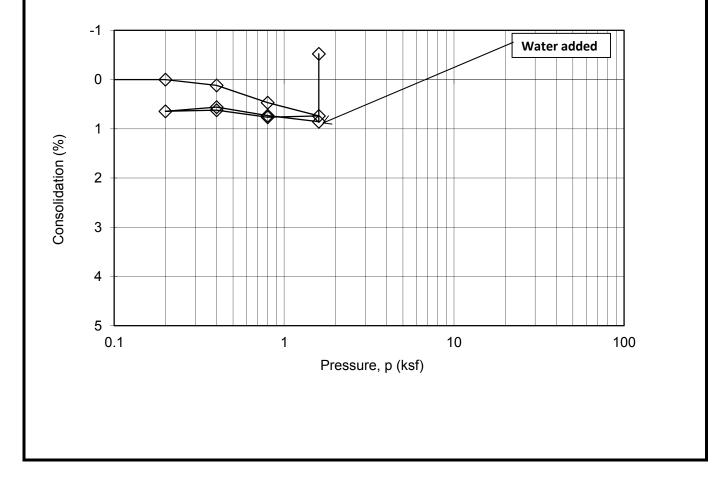
MJ 04/04/18

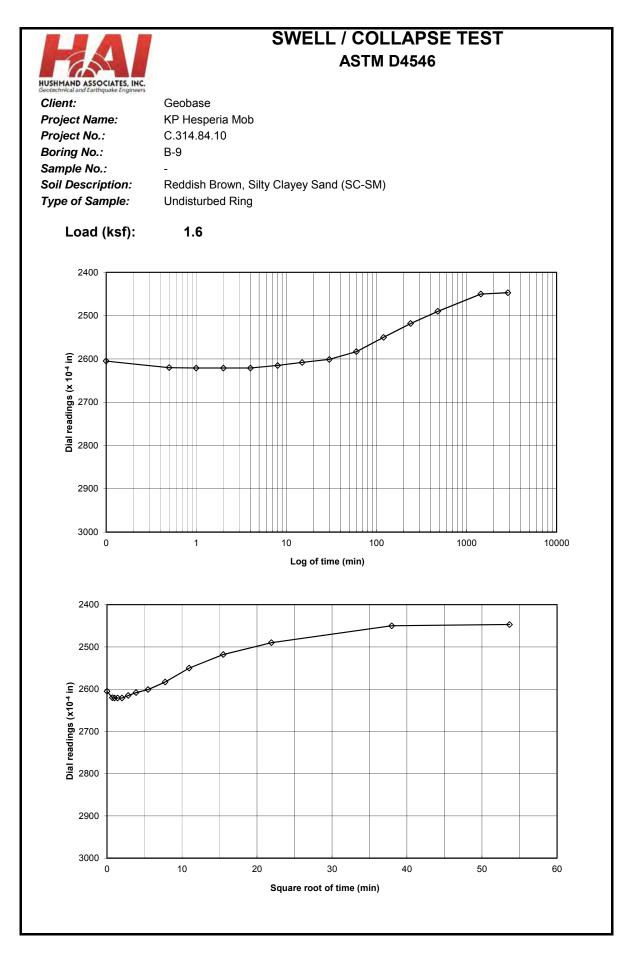

Client :	Geobase	HAI Project No.:
Project Name:	KP Hesperia Mob	Tested by:
Project No.:	C.314.84.10	Checked by:
Boring No.:	B-8	Date:
Sample No.:	-	
Type of Sample:	Undisturbed Ring	
Depth (ft):	20-21.5	
Soil Description:	Light Brown, Silty Sand (SM)	


					al Weight		al Weight		ry Weight
				-	g) 7.34		g) 2.78		(g) 5.19
				137	.34	102	2.70	13	5.19
				Init	tial Conditio	ons	F	inal Conditi	ons
Height		Н	(in)		1.016			0.988	
Height of S	olids	Hs	(in)		0.671			0.671	
Height of W	/ater	Hw	(in)		0.029			0.234	
Height of A	ir	На	(in)		0.316			0.082	
Dry Densit	у		(pcf)		110.5			115.0	
Water Con	tent		(%)		1.6			13.0	
Saturation			(%)		8.3			73.9	
* Saturation	is calcualte	ed based on	Gs=2.68						
Load	δH	Н	Voids	е	Con	sol.	a _v	M _v	Comment
(ksf)	(in)	(in)	(in)	e	(%	%)	(ksf⁻¹)	(ksf⁻¹)	Comment
0.01		1.0160	0.345	0.513	()			
0.2	0.0000	1.0160	0.345	0.513	0.	.0	0.0E+00	0.0E+00	
0.4	0.0024	1.0136	0.342	0.509	0.	.2	1.8E-02	1.2E-02	
0.8	0.0066	1.0094	0.338	0.503	0.	.6	1.5E-02	1.0E-02	
1.6	0.0135	1.0026	0.331	0.493	1.	.3	1.3E-02	8.5E-03	
0.8	0.0131	1.0029	0.331	0.494	1.	.3			
0.4	0.0124	1.0037	0.332	0.495	1.	.2		Unloaded	
0.2	0.0117	1.0044	0.333	0.496	1.	.1			
0.4	0.0119	1.0042	0.333	0.495	1.	.2	1.5E-03	1.0E-03	
0.8	0.0125	1.0035	0.332	0.494	1.	.2	2.4E-03	1.6E-03	
1.6	0.0156	1.0005	0.329	0.490	1.	.5	5.7E-03	3.8E-03	
1.6	0.0279	0.9881	0.317	0.472	2.	.7		Water Adde	ed

Client:	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.10
Boring No.:	B-8
Sample No.:	-
Type of Sample:	Undisturbed Ring
Depth (ft):	20-21.5
Soil Description:	Light Brown, Silty Sand (SM)

HAI Project No.:	GBA-18-001
Tested by:	KL
Checked by:	MJ
Date:	04/04/18




Client :	Geobase	HAI Project No.:	GBA-18-001
Project Name:	KP Hesperia Mob	Tested by:	KL
Project No.:	C.314.84.10	Checked by:	MJ
Boring No.:	B-9	Date:	04/17/18
Sample No.:	-		
Type of Sample:	Undisturbed Ring		
Depth (ft):	10-11.5		
Soil Description:	Reddish Brown, Silty Clayey Sand (SC-SM)		

					al Weight g)	Final T	otal Weight (g)		ry Weight (g)		
				165	5.22	1	71.26	15	0.57		
				Init	tial Conditio	ons	F	inal Conditi	ons		
Height		Н	(in)		1.016			1.021			
Height of S	olids	Hs	(in)		0.748			0.748			
Height of W	•		(in)	0.195				0.275			
Height of A	ight of Air		(in)	0.073		0.000					
Dry Densit	y Density		(pcf)		123.1			119.9			
Water Con	ater Content						9.7			13.7	
Saturation			(%)		72.7			100.0			
* Saturatior	n is calcualte	d based on	Gs=2.68				ł				
Load	δH	Н	Voids		Con	isol.	a _v	Mv			
(ksf)	(in)	(in)	(in)	е	(%	%)	(ksf ⁻¹)	(ksf⁻¹)	Comment		
0.01		1.0160	0.268	0.359	()					
0.2	0.0000	1.0160	0.268	0.359	0.	.0	0.0E+00	0.0E+00			
0.4	0.0012	1.0148	0.267	0.357	0.	.1	8.0E-03	5.9E-03			
0.8	0.0048	1.0113	0.263	0.352	0.	.5	1.2E-02	8.8E-03			
1.6	0.0075	1.0085	0.261	0.349	0.	.7	4.6E-03	3.4E-03			
0.8	0.0078	1.0083	0.260	0.348	0.	.8					
0.4	0.0063	1.0097	0.262	0.350	0.	.6		Unloaded			
0.2	0.0066	1.0095	0.262	0.350	0.	.6					
0.4	0.0057	1.0103	0.262	0.351	0.	.6	-5.7E-03	-4.2E-03			
0.8	0.0074	1.0086	0.261	0.349	0.	.7	5.9E-03	4.3E-03			
1.6	0.0087	1.0073	0.259	0.347	0.	.9	2.1E-03	1.6E-03			
1.6	-0.0053	1.0213	0.273	0.366	-0	.5		Water Adde	ed		

Client:	Geobase	HAI Project No.:	GBA-18-001
Project Name:	KP Hesperia Mob	Tested by:	KL
Project No.:	C.314.84.10	Checked by:	MJ
Boring No.:	B-9	Date:	04/17/18
Sample No.:	-		
Type of Sample:	Undisturbed Ring		
Depth (ft):	10-11.5		
Soil Description:	Reddish Brown, Silty Clayey Sand (SC-SI	M)	

					DIRE	CT S	SHEAR	TEST							
HUSHMAND ASSOCIATES, IN Geotechnical and Earthquake Engined	C.				AS	TM C	03080					HA	I Pr No	 : GBA-	18-001
Client:	Geobase											Те	ested b	y: KL	
Project Name:	KP Hesperia Mot	C										Che	cked b	y: MJ	
Project Number:	C.314.84.10												Dat	e: 4/3/2	018
Boring No.:	B-2														
Sample No.:	-						6								
Sample Type:	Undisturbed Ring)					5					 			
Depth (ft):	15-16.5					(J	-				*****	*****	****		
Soil description:	Light Brown, Silty	/ Sand (SM)			s (ks	4					 			
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3	***			····₽₽₽ _₽ ₽	******	•====		
	Test No.		1	2	3	lear	2					 			
						1									
	Symbol					S S	1								
	Symbol al Stress (ksf)		2	4	6	У У	1								
Norma			2 0.004	4 0.004	6 0.004	S S			0.05	0.1		0 15		0.2	
Norma Deformat	al Stress (ksf)	0		-	-			0).05	0.1 Horizor	ital Deforr	0.15 nation (ir	n)	0.2	C
Norma Deformat Peak Shear	al Stress (ksf) tion Rate (in/min)	0 X	0.004	0.004	0.004		6	0					n)	• Pea	
Norma Deformat Peak Shear	al Stress (ksf) tion Rate (in/min) Stress (ksf)	_	0.004	0.004	0.004 4.68		0 6 5	0					ר)	1	
Norma Deformat Peak Shear Shear Stress @	al Stress (ksf) tion Rate (in/min) Stress (ksf)	_	0.004	0.004	0.004 4.68		0 6 5 4	0			tal Deforr		n)	• Pea	
Norma Deformat Peak Shear Shear Stress @ Initial Heig	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 2.05 1.38	0.004 3.53 2.34	0.004 4.68 4.27		0 6 5	0		Horizor	tal Deforr		ר)	• Pea	
Norma Deformat Peak Shear Shear Stress @ Initial Heig Height of San	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in)	X	0.004 2.05 1.38 1.000	0.004 3.53 2.34 1.000	0.004 4.68 4.27 1.000		0 6 5 4	0		Horizor	tal Deforr		ר) 	• Pea	
Norma Deformat Peak Shear Shear Stress @ Initial Heig Height of San Diamete	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X (in)	0.004 2.05 1.38 1.000 0.9780	0.004 3.53 2.34 1.000 0.9641	0.004 4.68 4.27 1.000 0.9362	Shear Stress (ksf) S	0 6 5 4 3			Horizor	tal Deforr		ר)	• Pea	
Norma Deformat Peak Shear Shear Stress @ Initial Heig Height of San Diamete Initial Moi	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (er of Sample (in)	X	0.004 2.05 1.38 1.000 0.9780 2.416	0.004 3.53 2.34 1.000 0.9641 2.416	0.004 4.68 4.27 1.000 0.9362 2.416		0 6 5 4 3	•		Horizor	tal Deforr		ר)	• Pea	

HA I					DIRE	CT S	HEAF	R TES	т								
HUSHMAND ASSOCIATES, INC Geotechnical and Earthquake Enginee	C.				AS	TM D	03080						H	AI Pr N	lo.: GB	۹ -18-00	1
Client:	Geobase												T	ested	by: KL		
Project Name:	KP Hesperia Mot	C											Che	ecked	by: MJ		
Project Number:	C.314.84.10													Da	nte: 4/3/	2018	
Boring No.:	B-3																
Sample No.:	-						6				1		1				
Sample Type:	Undisturbed Ring	J					5		 		i i		i i		 		
Depth (ft):	10-11.5					(J											
Soil description:	Light Brown, Silty	/ Sand (SM)			s (ks	4									*****	**
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3									₩₩₩₩ ₩	
7	Test No.		1	2	3	hear	2	. 🗳		*****			 				
															i		
	Symbol					S	1						<u>· · ·</u>		***	****	
	Symbol al Stress (ksf)		2	4	6	ى ا	1										
Norma	•		2 0.004	4 0.004	6 0.004	S S			0.05		0.1		0 15		0.2		0 '
Norma	al Stress (ksf) ion Rate (in/min)	0							0.05		0.1 zontal E	Deform	0.15 nation (i	in)	0.2		0.2
Norma Deformat Peak Shear	al Stress (ksf) ion Rate (in/min)	0 X	0.004	0.004	0.004	ω Ι	6		0.05			Deform		in)	O Pe		0.2
Norma Deformat Peak Shear	al Stress (ksf) ion Rate (in/min) Stress (ksf)	_	0.004	0.004 3.17	0.004		0		0.05					in)	O Pe	ak d of Test	0.2
Norma Deformat Peak Shear Shear Stress @ I	al Stress (ksf) ion Rate (in/min) Stress (ksf)	_	0.004	0.004 3.17	0.004		0 6 5 4		0.05	Hori		Deform		in)	O Pe		0.2
Norma Deformat Peak Shear Shear Stress @ I Initial Heig	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.34 1.34	0.004 3.17 3.17	0.004 3.94 3.94		0 6 5		0.05					in)	O Pe		0.2
Norma Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.34 1.34 1.000	0.004 3.17 3.17 1.000	0.004 3.94 3.94 1.000		0 6 5 4		0.05	Hori				in)	O Pe		0.:
Norma Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X (in)	0.004 1.34 1.34 1.000 0.9316	0.004 3.17 3.17 1.000 0.9308	0.004 3.94 3.94 1.000 0.8816	Shear Stress (ksf) S	0 6 5 4 3		0.05	Hori				in)	O Pe		0.:
Norma Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete Initial Mois	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (er of Sample (in)	X	0.004 1.34 1.34 1.000 0.9316 2.416	0.004 3.17 3.17 1.000 0.9308 2.416	0.004 3.94 3.94 1.000 0.8816 2.416		0 6 5 4 3			Hori				in)	O Pe		0.2

65					DIRE	CT S	HEAF	R TE	ST							
USHMAND ASSOCIATES, ING Seotechnical and Earthquake Enginee	C.				AS	TM C	03080						HAI	Pr No.:	GBA-1	8-001
Client:	Geobase												Test	ted by:	KL	
Project Name:	KP Hesperia Mot	b											Check	ked by:	MJ	
Project Number:	C.314.84.10													Date:	4/3/20	18
Boring No.:	B-4															
Sample No.:	-						6						1		1	
Sample Type:	Undisturbed Ring	9					5				 		 		 	
Depth (ft):	15-16.5					(J							 			
Soil description:	Light Reddish Bro	own, Sil	ty Sand (S	M)		(ks	4				 					*****
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3		 		*****	****				
	-			1	1	ar St				****						
	Test No.		1	2	3	Shea	2			*******	╪┲┲ [┲] ╼╺ ╎ ╵		 		 	
	Symbol						1			*****						
Norma	al Strace (kef)												1		1	
	al Stress (ksf)		2	4	6	-		a second					1			
	ion Rate (in/min)		0.004	4 0.004	6 0.004		0	and the second s	0.05) 1	0	15		0.2	
]	0		0.05).1 ontal De		15 on (in)		0.2	C
	ion Rate (in/min)	0]	0		0.05						0.2	C
Deformat Peak Shear	ion Rate (in/min) Stress (ksf)	O X	0.004	0.004	0.004				0.05						0.2	T
Deformat	ion Rate (in/min) Stress (ksf)	O X	0.004	0.004 2.64	0.004		0		0.05						I	
Deformat Peak Shear	ion Rate (in/min) Stress (ksf)		0.004	0.004 2.64	0.004	(ksf)	6		0.05		ontal De	formati			• Peak	
Deformat Peak Shear Shear Stress @ I	ion Rate (in/min) Stress (ksf)		0.004	0.004 2.64	0.004	ess (ksf)	0 6 5 4		0.05			formati			• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig	ion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.30 1.30	0.004 2.64 2.64	0.004 3.94 3.90	r Stress (ksf)	0 6 5		0.05	Horiz	ontal De	formati			• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam	ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in)	X	0.004 1.30 1.30	0.004 2.64 2.64 1.000	0.004 3.94 3.90 1.000	hear Stress (ksf)	0 6 5 4		0.05		ontal De	formati			• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete	ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X (in)	0.004 1.30 1.30 1.000 0.8767	0.004 2.64 2.64 1.000 0.8807	0.004 3.94 3.90 1.000 0.8355	Shear Stress (ksf)	0 6 5 4 3		0.05	Horiz	ontal De	formati			• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete Initial Mois	ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) aple before Shear (er of Sample (in)	X (in)	0.004 1.30 1.30 1.000 0.8767 2.416	0.004 2.64 2.64 1.000 0.8807 2.416	0.004 3.94 3.90 1.000 0.8355 2.416	Shear Stress (ksf)	0 6 5 4 3			Horiz	ontal De	formati			• Peak	

					DIRE	CI S	HEAR	TEST				
HUSHMAND ASSOCIATES, IN Geotechnical and Earthquake Enginee	C. ers				AS	TM D	3080				HAI Pr	• No.: GBA-18-00
Client:	Geobase										Teste	d by: KL
Project Name:	KP Hesperia Mot)									Checked	d by: MJ
Project Number:	C.314.84.10										L	Date: 4/3/2018
Boring No.:	B-5											
Sample No.:	-						6	1	1			
Sample Type:	Undisturbed Ring	J					5					
Depth (ft):	20-21.5					f)				******		
Soil description:	Light Brown, Wel	I-Grade	d Sand wit	h Silt (SW-	-SM)	s (ks	4					
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3		,₽ [₽] ₽₽₽₽₽₽₽		 	
	Test No.		1	2	3	lear	2		 			
	Symbol				•	<u>ن</u>	_ 1 🖌					
Norma	al Stress (ksf)		2	4	6				1		 	
Deformat	ion Rate (in/min)		0.004	0.004	0.004		0 🐇	0.05	- 0	4	0.45	
			1	1]	0	0.05		1 ntal Deform	0.15 nation (in)	0.2
Peak Shear	Stress (ksf)	0	1.73	3.67	5.02]	•	0.05				
Peak Shear		O X	1	1]	6	0.05		ntal Deform		• Peak
Peak Shear	Stress (ksf)		1.73	3.67	5.02	ksf)	0 6 5	0.05				
Peak Shear Shear Stress @	Stress (ksf)		1.73	3.67	5.02	ess (ksf)	0 6 5 4	0.05		ntal Deform		• Peak
Peak Shear Shear Stress @ Initial Heig	Stress (ksf) End of Test (ksf)	X	1.73 1.46	3.67 3.60	5.02 4.82	· Stress (ksf)	0 6 5	0.05	Horizo	ntal Deform		• Peak
Peak Shear Shear Stress @ Initial Heig Height of San	Stress (ksf) End of Test (ksf) ght of Sample (in)	X	1.73 1.46 1.000	3.67 3.60 1.000	5.02 4.82 1.000	near Stress (ksf)	0 6 5 4		Horizo	ntal Deform		• Peak
Peak Shear Shear Stress @ Initial Heig Height of San Diamete	Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X	1.73 1.46 1.000 0.9651	3.67 3.60 1.000 0.9634	5.02 4.82 1.000 0.9603	Shear Stress (ksf)	0 6 5 4 3	0.05	Horizo	ntal Deform		• Peak
Peak Shear Shear Stress @ Initial Heig Height of San Diamete Initial Moi	Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (er of Sample (in)	X	1.73 1.46 1.000 0.9651 2.416	3.67 3.60 1.000 0.9634 2.416	5.02 4.82 1.000 0.9603 2.416	Shear Stress (ksf)	0 6 5 4 3		Horizo	ntal Deform		• Peak

					DIRE	CT S	SHEAF	R TES	ST							
HUSHMAND ASSOCIATES, INC Geotechnical and Earthquake Enginee	C.				AS	TM C	03080						HA	l Pr No	.: GBA	-18-001
Client:	Geobase												Te	sted by	/: KL	
Project Name:	KP Hesperia Mot	C											Chec	ked by	/: MJ	
Project Number:	C.314.84.10													Date	e: 4/3/2	018
Boring No.:	B-6															
Sample No.:	-						6		1		1		1		1	
Sample Type:	Undisturbed Ring	J					5				 +				 	
Depth (ft):	10-11.5					(J							****	****		••••
Soil description:	Tan Brown, Silty	Sand (S	SM)			s (ks	4		 							
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******	****				
-	Test No.		1	2	3	hear	2				 		 			
	Symbol					S	1 2			-						
	Symbol al Stress (ksf)		2	4	6	S	1									
Norma	5		2 0.004	4 0.004	6 0.004	S.	1									
Norma	al Stress (ksf)				-	S			0.05	Hor	0.1 izontal D		0.15 ation (in)	0.2	
Norma	al Stress (ksf) tion Rate (in/min)	0			-				0.05	Hor)	0.2	
Norma Deformat Peak Shear	al Stress (ksf) tion Rate (in/min)	0 X	0.004	0.004	0.004	S S	6		0.05	Hor)	• Pea	
Norma Deformat Peak Shear	al Stress (ksf) tion Rate (in/min) Stress (ksf)		0.004	0.004	0.004		·		0.05	Hor	izontal D)	• Pea	k of Test
Norma Deformat Peak Shear	al Stress (ksf) tion Rate (in/min) Stress (ksf)		0.004	0.004	0.004		6		0.05	Hor	izontal D)	• Pea	
Norma Deformati Peak Shear Shear Stress @ I	al Stress (ksf) tion Rate (in/min) Stress (ksf)		0.004	0.004	0.004		6 5 4		0.05		izontal D)	• Pea	
Norma Deformati Peak Shear Shear Stress @ I Initial Heig	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.45 1.38	0.004 3.02 2.94	0.004 4.44 4.19		6		0.05	Hor	izontal D)	• Pea	
Norma Deformati Peak Shear Shear Stress @ I Initial Heig Height of Sam	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in)	X	0.004 1.45 1.38 1.000	0.004 3.02 2.94 1.000	0.004 4.44 4.19 1.000		6 5 4		0.05		izontal D)	• Pea	
Norma Deformati Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X (in)	0.004 1.45 1.38 1.000 0.9444	0.004 3.02 2.94 1.000 0.9288	0.004 4.44 4.19 1.000 0.9284	Shear Stress (ksf) S	6 — 5 — 4 — 3 —		0.05		izontal D)	• Pea	
Norma Deformati Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete Initial Mois	al Stress (ksf) tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (er of Sample (in)	X (in)	0.004 1.45 1.38 1.000 0.9444 2.416	0.004 3.02 2.94 1.000 0.9288 2.416	0.004 4.44 4.19 1.000 0.9284 2.416		6 — 5 — 4 — 3 —				izontal D)	• Pea	

					DIRE	CT S	HEAR	TEST					
HUSHMAND ASSOCIATES, ING Geotechnical and Earthquake Enginee	IC.				AS	TM D	03080				HAI F	Pr No.: GBA-18-00)1
Client:	Geobase										Test	ed by: KL	
Project Name:	KP Hesperia Mot)									Check	ed by: MJ	
Project Number:	C.314.84.10											Date: 4/3/2018	
Boring No.:	B-8												
Sample No.:	-						6	1		1			
Sample Type:	Undisturbed Ring	J					5	; ; 		 			
Depth (ft):	10-11.5					(J	-			1 1 1			
Soil description:	Reddish Brown, S	Silty Sa	nd (SM)			; (ks	4			 			••
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3		****	******			
	Test No.		1	2	3	lear	2			· · · · · · · · · · · · · · · · · · ·	┍ <mark>┍╕╋╋╋╋╼╸╸</mark>		
	Symbol					रु				1 1 1			
Norma	al Stress (ksf)		2	4	6						<u></u>	<u>*****</u> ******	*
	al Stress (ksf) tion Rate (in/min)		2 0.004	4 0.004	6 0.004								*
Deformat	tion Rate (in/min)		0.004	0.004	0.004]		0.05	0. Horizc	.1 ontal Deform	0.15 mation (in)	0.2	0
Deformat Peak Shear	tion Rate (in/min) Stress (ksf)	0	0.004	0.004	0.004]	-	0.05					0
Deformat Peak Shear	tion Rate (in/min)	O X	0.004	0.004	0.004]	6	0.05				• Peak	
Deformat Peak Shear	tion Rate (in/min) Stress (ksf)		0.004	0.004	0.004	(sf)	0 6 5	0.05					
Deformat Peak Shear Shear Stress @ I	tion Rate (in/min) Stress (ksf) End of Test (ksf)		0.004 0.72 0.71	0.004 2.71 2.71	0.004 3.85 3.85	ss (ksf)	6	0.05				• Peak	
Deformat Peak Shear Shear Stress @ I	tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in)	X	0.004 0.72 0.71 1.000	0.004 2.71 2.71 1.000	0.004 3.85 3.85 1.000	Stress (ksf)	0 6 5	0.05	Horizo	ontal Deform		• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam	tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X	0.004 0.72 0.71 1.000 0.8945	0.004 2.71 2.71 1.000 0.7989	0.004 3.85 3.85 1.000 0.7908	ear Stress (ksf)	0 6 5 4 3	0.05		ontal Deform		• Peak	
Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete	tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (er of Sample (in)	X	0.004 0.72 0.71 1.000	0.004 2.71 2.71 1.000	0.004 3.85 3.85 1.000	Shear Stress (ksf)	0 6 5 4	0.05	Horizo	ontal Deform		• Peak	
Deformation Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete Initial Mois	tion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X	0.004 0.72 0.71 1.000 0.8945 2.416	0.004 2.71 2.71 1.000 0.7989 2.416	0.004 3.85 3.85 1.000 0.7908 2.416	Shear Stress (ksf)	0 6 5 4 3	0.05	Horizo	ontal Deform		• Peak	

					DIRE	CT S	SHEA	R TE	ST								
USHMAND ASSOCIATES, ING Geotechnical and Earthquake Enginee	C.				AS	тм с	03080						НА	I Pr No	o.: GBA-	18-001	
Client:	Geobase												Те	ested b	y: KL		
Project Name:	KP Hesperia Mot	C											Che	cked b	у : МЈ		
Project Number:	C.314.84.10													Dat	t e: 4/3/2	018	
Boring No.:	B-9																
Sample No.:	-						6 T		1								
Sample Type:	Undisturbed Ring	J					5		 				i i				
Depth (ft):	10-11.5					<u> </u>	Ŭ										
Soil description:	Reddish Brown, S	Silty Cla	iyey Sand ((SC-SM)		s (ksi	4		 		****	****			*****	****	
Type of test:	Consolidated, D	rained				Shear Stress (ksf)	3			****							
7	Test No.		1	2	3	ıear	2 -			,			 		 		
	Symbol					0)	1						1		*****		
	Symbol al Stress (ksf)		2	4	6	0)	1						 			*****	
Norma	,		2 0.004	4 0.004	6 0.004	0)											<u> </u>
Norma Deformat	al Stress (ksf) ion Rate (in/min)		0.004	0.004	0.004	05			0.05	Hor	0.1 izontal l		0.15 ation (ir	n)	0.2	* * <u>* * *</u>	0.
Norma Deformat Peak Shear	al Stress (ksf) ion Rate (in/min) Stress (ksf)	0			-		• -		0.05	Hor				n)		I	0.
Norma Deformat Peak Shear	al Stress (ksf) ion Rate (in/min)	0 X	0.004	0.004	0.004		6		0.05	Hor				n)	• Peal		0.
Norma Deformat Peak Shear	al Stress (ksf) ion Rate (in/min) Stress (ksf)		0.004	0.004 2.98	0.004 4.13		6 5		0.05	Hor		Deform		n)			0.
Norma Deformat Peak Shear Shear Stress @ I	al Stress (ksf) ion Rate (in/min) Stress (ksf)		0.004	0.004 2.98	0.004 4.13	s (ksf)	0 6 5 4		0.05					n)	• Peal		0.
Norma Deformat Peak Shear Shear Stress @ I	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.70 1.13	0.004 2.98 2.93	0.004 4.13 3.86	s (ksf)	6 5		0.05	Hor		Deform		n)	• Peal		0.
Norma Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf)	X	0.004 1.70 1.13 1.000	0.004 2.98 2.93 1.000	0.004 4.13 3.86 1.000	s (ksf)	0 6 5 4					Deform		n)	• Peal		0.
Norma Deformat Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) nple before Shear (X (in)	0.004 1.70 1.13 1.000 1.0034	0.004 2.98 2.93 1.000 0.9763	0.004 4.13 3.86 1.000 0.9325		0 6 5 4 3		0.05			Deform		n)	• Peal		0.
Norma Deformati Peak Shear Shear Stress @ I Initial Heig Height of Sam Diamete Initial Mois	al Stress (ksf) ion Rate (in/min) Stress (ksf) End of Test (ksf) ght of Sample (in) aple before Shear (er of Sample (in)	X (in)	0.004 1.70 1.13 1.000 1.0034 2.416	0.004 2.98 2.93 1.000 0.9763 2.416	0.004 4.13 3.86 1.000 0.9325 2.416	s (ksf)	0 6 5 4 3					Deform		n)	• Peal		0.

EXPANSION POTENTIAL

EAP	ANSION PC ASTM D4							
SOIL SAMPLE LOCATION (feet)	EXPANSI	ON INDEX	EXP	ANSION POTENTIAL				
B-7 at 0-5.0		0		Very Low				
B-1 at 0-5.0 (GEOBASE 2017)		0		Very Low				
WATER	CT. 417							
SOIL SAMPLE LOCATION (feet)		SULFATES PM		NTIAL FOR ATTACK ON CONCRETE				
B-4 at 5.0-10.0		201		Moderate				
B-6 at 0-5.0	1	76		Moderate				
B-4 at 5.0-10.0 (GEOBASE 2017)		346		Moderate				
SOIL SAMPLE LOCATION (feet)	рН (СТ 643)	SOLUBLE CHLORIDE (CT.422) (PPM)	ELEC. RESISTIVITY (CT.643) (OHM-CM)	POTENTIAL FOR ATTACK ON STEEL (SENATOROFF)				
B-4 at 5.0-10.0	6.8	76	10,000	Moderately Corrosive				
B-6 at 0-5.0	6.9	69	15,000	Mildly Corrosive				
B-4 at 5.0-10.0 (GEOBASE, Inc. 2017)	6.7	87	6,200	Moderately Corrosive				
R-VALUE (DEPARTMENT OF TRANSPORTATION, STATE OF CALIFORNIA, MATERIALS AND RESEARCH TEST METHOD NO. 301)								
SOIL SAMPLE LOCATION (feet)		R-'	VALUE BY E	XUDATION				
B-4 at 5.0-10.0			70					
B-6 at 0-5.0			78					

B-11 at 0-5.0 B-4 at 5.0-10.0 (GEOBASE, Inc., 2017)

MAXIMUM DRY DENSITY/OPTIMUM MOISTURE CONTENT ASTM D1557

74

53

Boring No.	Maximum Dry Density (Pcf)	Optimum Moisture Contents (%)
B-7 at 0-5.0	134.4	6.4
B-4 at 5.0-10.0 (GEOBASE, Inc. 2017)	129.4	7.1

GEOBASE, INC.

ANAHEIM TEST LABORATORY

3008 ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267

TO:

GEOBASE 23362 PERALTA DRIVE, # 4&6 LAGUNA HILLS, CA. 92653

DATE: 04/04/18

P.O. NO: VERBAL

LAB NO: C-1728 1-2

SPECIFICATION: CA-417/422/643

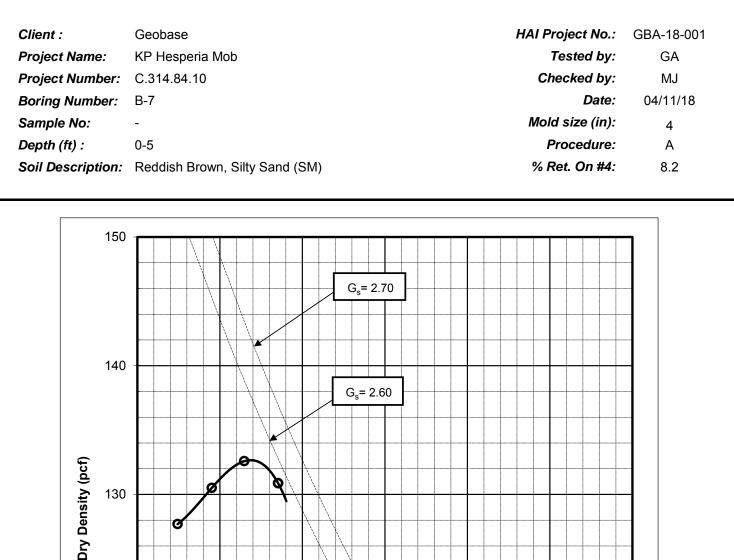
MATERIAL: SOIL

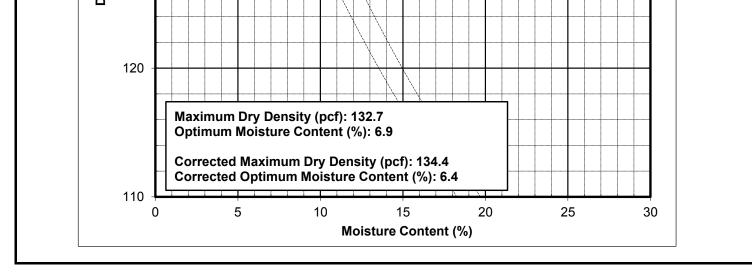
PROJECT #: C3148410 KP Hesperia MOB

ANALYTICAL REPORT

CORROSION SERIES SUMMARY OF DATA

	PH	SOLUBLE SULFATES per CA. 417 ppm	SOLUBLE CHLORIDES per CA. 422 ppm	MIN. RESISTIVITY per CA. 643 ohm-cm
1) B-4 @ 5′-10′	6.8	201	76	10,000
2) B-6 @ 0-5′	6.9	176	69	15,000


RESPECTFULLY SUBMITTED



WES BRIDGER CHEMIST

COMPACTION CHARACTERISTICS OF SOILS ASTM D1557

ANAHEIM TEST LAB, INC

3008 ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267

TO:

GEOBASE 23362 PERALTA DRIVE, # 4&6 LAGUNA HILLS, CA. 92653 DATE: 04/05/18

P.O. NO: VERBAL

LAB NO: C-1728 1-3

SPECIFICATION: CT 301

MATERIAL: Soil

PROJECT #: C3148410 KP Hesperia MOB

ANALYTICAL REPORT

<u>"R" VALUE</u>

BY EXUDATION BY EXPANSION

1) B-4 @ 5'-10'	70	N/A
2) B-6 @ 0-5'	78	N/A
3) B-11 @ 0-5′	74	N/A

RESPECTFULLY SUBMITTED

WES BRIDGER CHEMIST

APPENDIX D

GEOBASE, INC., 2017, Appendix C

- Figure C-1 Summary of Laboratory Test Results
- Figure C-2 HAI Laboratory Test Results Transmittal
- Figure C-3 Particle-Size Analysis of Soils
- Figure C-4 Particle-Size Analysis of Soils
- Figure C-5 Particle-Size Analysis of Soils
- Figure C-6 Particle-Size Analysis of Soils
- Figure C-7 Particle-Size Analysis of Soils
- Figure C-8 Atterberg Limits
- Figure C-9 Expansion Index of Soils
- Figure C-10 Consolidation Test Results
- Figure C-11 Consolidation Test Results
- Figure C-12 Consolidation Test Results
- Figure C-13 Consolidation Test Results
- Figure C-14 Direct Shear Test Results
- Figure C-15 Direct Shear Test Results
- Figure C-16 Direct Shear Test Results
- Figure C-17 Summary of Other Test Results (EI, S04, Ch, pH and ER, MP and OMC; and R-Value)
- Figure C-18 Corrosivity Series Test Report by Anaheim Test Laboratory
- Figure C-19 Laboratory Compaction Test by Modified Effort
- Figure C-20 Resistance R-Value Test by Anaheim Test Laboratory

GEOBASE, INC.

					GE	OBA	ASE,	INC	•			Figure C-1
			Su	JMMAF	RY OF	LABO	RATOR	Y TEST	r R esu	ILTS		Page 1 of 2
PROJECT:	ECT: KAISER PERMANENTE - Land Purchase High Desert (Hesperia) Medical Office Building, Vacant Parcels 5-9, APN #3057-011-22-0-000 thru 3057-011-26-0-000, Escondido Avenue in the City of Hesperia, California				PROJECT NO: C.314.84.00 DATE:				.00	DATE:	August 28, 2017	
BORING	DEPTH (feet)	MOISTURE CONTENT (Percent)	DRY DENSITY (pcf)	ATTE	RBERG PL (%)	LIMITS PI (%)	PAR ⁻ CLAY (%)	FICLE SI SILT (%)	ZE DISTF SAND (%)	GRAVEL (%)	OTHER TESTS	DESCRIPTION AND REMARKS
B-1	0-5.0			(10)		(10)		(10)	(,		EI = 0, MP, 95 RC	Bulk Sample at 0-5 feet, SP-SM
	5.0-6.5	3					8			92	200 Wash	SC
	10.0-11.5	5	127.3				23		79	3	C, DS	SM
	15.0-16.5	3					14			87	200 Wash	SP-SM
	20.0-21.5	2	114.6				7			93	200 Wash, C, DS	SP-SM
	25.0-26.5	2					9			91	200 Wash	SP-SM
	30.0-31.5	2	111.9				11			89	200 Wash	SC
	35.0-36.5	5					39			61	200 Wash	SM
	40.0-41.5	2					12 83		83	5		SP-SM
	45.0-46.5	2					8			92	200 Wash	SP-SM
	50.0-51.5	1					ç)		91	200 Wash	
B-2	5.0-6.5	3	116.9									SM
	7.0-8.5	2										SM
	10.0-11.5	3					8	3		77	200 Wash	SC
	15.0-16.5	2	95.0				9)	93	8		SP-SM
	20.0-21.5	3										SP-SM
	25.0-26.5	2	94.4				6)	89	5		SP-SM
	30.0-31.5	2										SM
	35.0-36.5	5					4	3		57	200 Wash	SC
	40.0-41.5	2										SP-SM
	45.0-46.5	1										SP-SM
	50.0-51.5	3					2	2		78	200 Wash	SM

					GE	OBA	ASE,	INC	•			Figure C-1
	SUMMARY OF LABORATORY TEST RESULTS Page 2 of 2											Page 2 of 2
PROJECT: KAISER PERMANENTE - Land Purchase High Desert (Hesperia) Medical Office Building, Vacant Parcels 5-9, APN #3057-011-22-0-000 thru 3057-011-26-0-000, Escondido Avenue in the City of Hesperia, California PROJECT NO: C.314.84.00 DATE: August 28, 2017												
BORING	DEPTH	MOISTURE	DRY DENSITY	ATTE	RBERG	LIMITS	PAR	FICLE SI	ZE DISTR	BUTION	OTHER TESTS	DESCRIPTION AND
	(feet)	CONTENT (Percent)	(pcf)	LL (%)	PL (%)	PI (%)	CLAY (%)	SILT (%)	SAND (%)	GRAVEL (%)		REMARKS
B-3	5.0-6.5	5										SM
	7.0-8.5	2	113.9				24	4		76	200 Wash, C, DS	SM
	10.0-11.5	6		23	14	9						CL
	15.0-16.5	3										SM
	20.0-21.5	3	109.2									SM
	25.0-26.5	6										SM
	30.0-31.5	3	110.4									SP
	35.0-36.5	5										SC
	40.0-41.5	2										SP-SM
	45.0-46.5	2										SP-SM
	50.0-51.5	4										SM
B-4	5.0-6.5	2										SM
	5.0-10.0										ph, ER, S04, Ch, RV	Bulk sample: 5-10 ft. SM
	7.0-8.5	3										SM
	10.0-11.5	4	110.9									SM
	15.0-16.5	2	109.1				1	1	79	10		SP-SM
	20.0-21.5	2										SP-SM
	25.0-26.5	1	110.1									SP-SM
	30.0-31.5	1										SP-SM
	35.0-36.5	1										SP-SM
	40.0-41.5	2										SP-SM

p. (562) 690-3737 **w.** haieng.com **e.** hai@haieng.com

August 14, 2017

Geobase, Inc. 23362 Peralta Dr., Unit 4 Laguna Hills. CA 92653

Attention: Mr. Hai Nguyen, P.E.

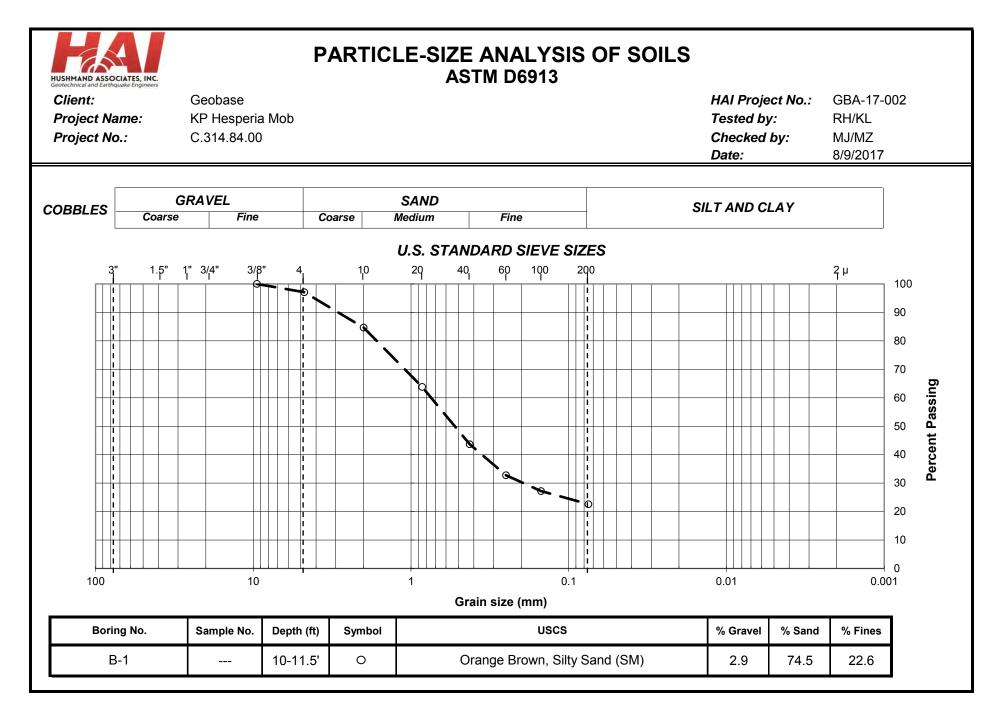
SUBJECT: Laboratory Test Results Geobase Project Name: KP HESPERIA MOB Geobase Project No.: C3148400 HAI Project No.: GBA-17-002

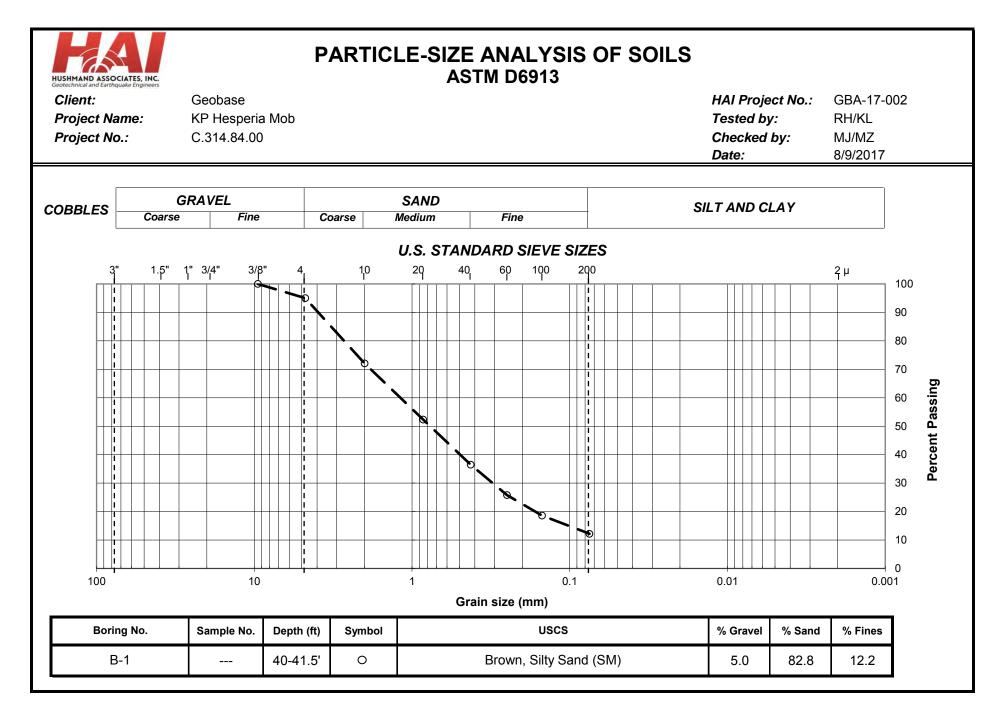
Dear Mr. Nguyen,

Enclosed are the result of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with the following test procedure:

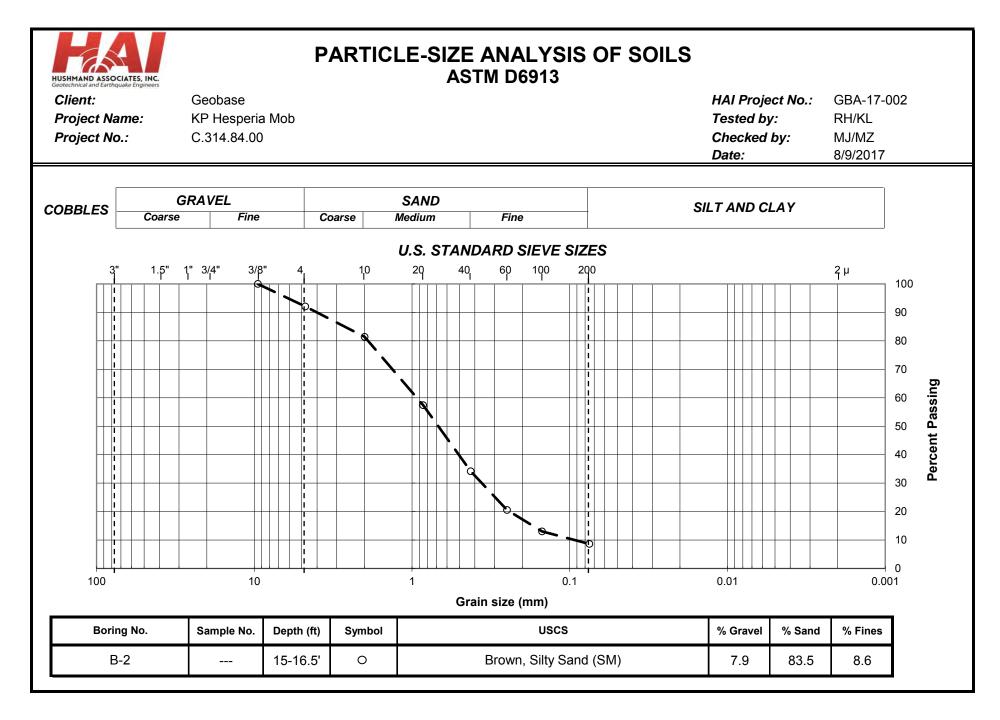
Type of Test	Test Procedure
Moisture Content & Dry Density	ASTM D2937
Moisture Content	ASTM D2216
Percentage Passing #200 Sieve	ASTM D1140
Particle Size Analysis (Sieve only)	ASTM D422
Atterberg Limits	ASTM D4318
Modified Proctor Compaction	ASTM D1557
Direct Shear (Consolidated & Drained)	ASTM D3080
Consolidation	ASTM D2435
Expansion Index	ASTM D4829

Attached are: twelve (12) Moisture Content & Dry Density test results; twenty-nine (29) Moisture Content test results; twelve (12) Percentage passing #200 Sieve test results; five (5) Particle Size Analysis (Sieve only) test results; one (1) Atterberg Limits test result; one (1) Modified Proctor Compaction test results; three (3) 3-point Direct Shear test results; three (3) Consolidation test results with one (1) sample remolding; and one (1) Expansion Index test results.

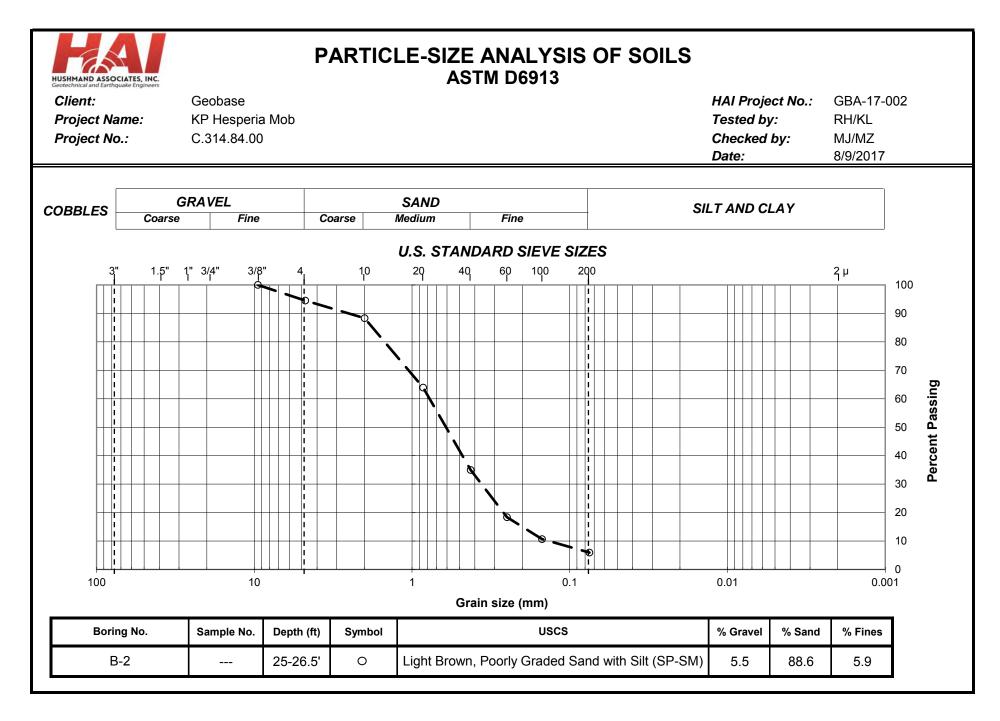

We appreciate the opportunity to provide our testing services to Geobase, Inc. If you have any questions regarding the test results, please contact us.

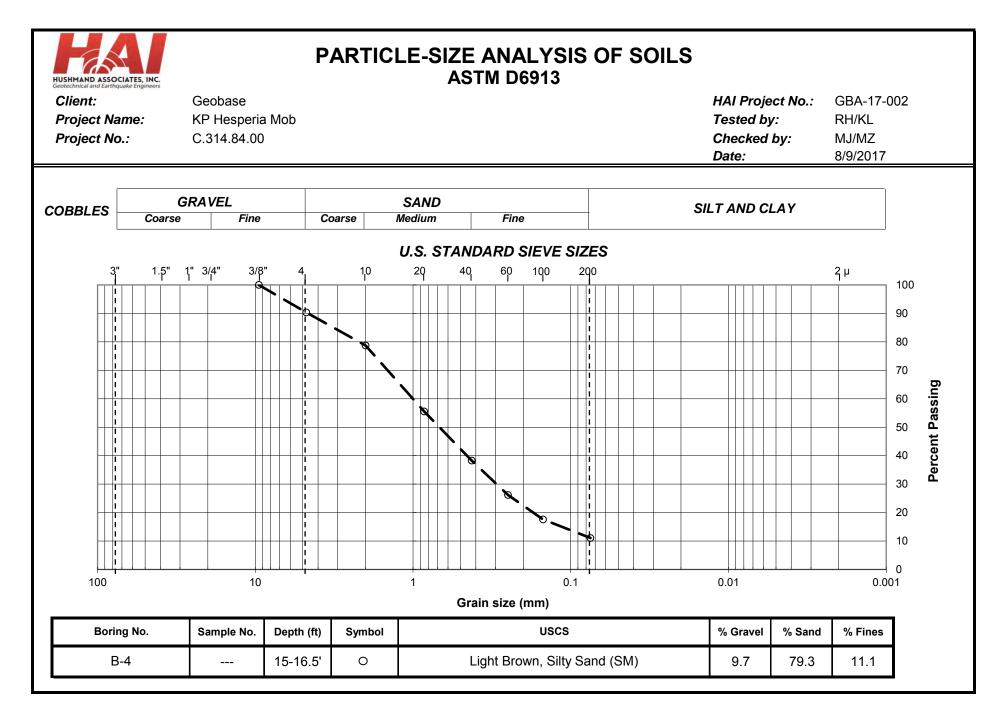

Sincerely,

HUSHMAND ASSOCIATES, INC.


Woongju (MJ) Mun, Ph.D. Senior Staff Engineer / Research Scientist / Lab Manager

Min Zhang, Ph.D., P.E. Senior Staff Engineer



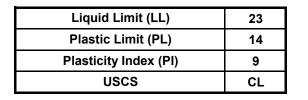


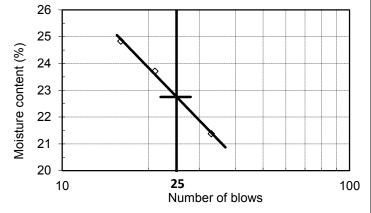
C.314.84.00

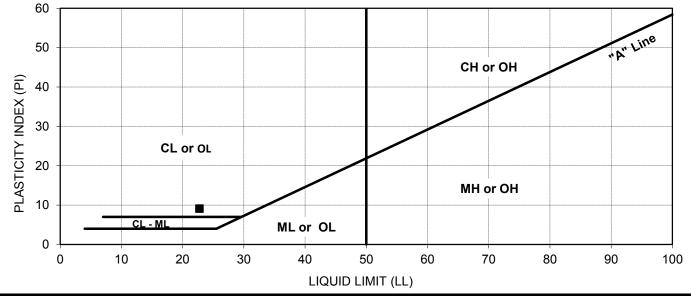
C.314.84.00

ATTERBERG LIMITS ASTM D 4318

Client: Project Name: Project No.: Boring No.: Sample No.: Soil Description:


Geobase **KP HesPeria Mob** C.314.84.00 B-3 SPT @ 10-11.5'


HAI Project No.: Tested by: Checked by: Date:


GBA-17-002 KL MJ/MZ 8/9/2017

Brown, Clayey Sand (SC), (Less than 50% passing # 200 sieve)

Test		LL	LL	LL	PL	PL
Tare No.		3	7	11	Н	32
No. of blows		33	21	16		
Wt. of wet soil + tare	(g)	22.59	24.20	23.86	10.76	10.21
Wt. of dry soil + tare	(g)	20.57	21.67	21.25	9.59	9.13
Wt. of tare	(g)	11.12	11.00	10.74	1.12	1.13
Water content	(%)	21.4	23.7	24.8	13.8	13.5

EXPANSION INDEX

ASTM D4829

Client:	Geobase
Project Name:	KP Hesperia Mob
Project Number:	C.314.84.00
Boring No.:	B-1
Sample No.:	Bulk
Depth (ft):	0-5

Soil Description: Brown, Silty Sand (SM)

INITIAL SPECIM	EN INFO	
Wt. of wet soil + cont.	227.77	g
Wt. of dry soil + cont.	214.65	g
Wt. of container	21.64	g
Wt. of water	13.12	g
Wt. of dry soil	193.01	g
Moisture Content	6.80	%
Wt. of wet soil + ring	637.02	g
Wt. of ring	206.92	g
Wt. of wet soil	430.10	g
Wet density of soil	130.3	pcf
Dry density of soil	122.0	pcf
Specific gravity of soil	2.68	-
Specific gravity of soil		_

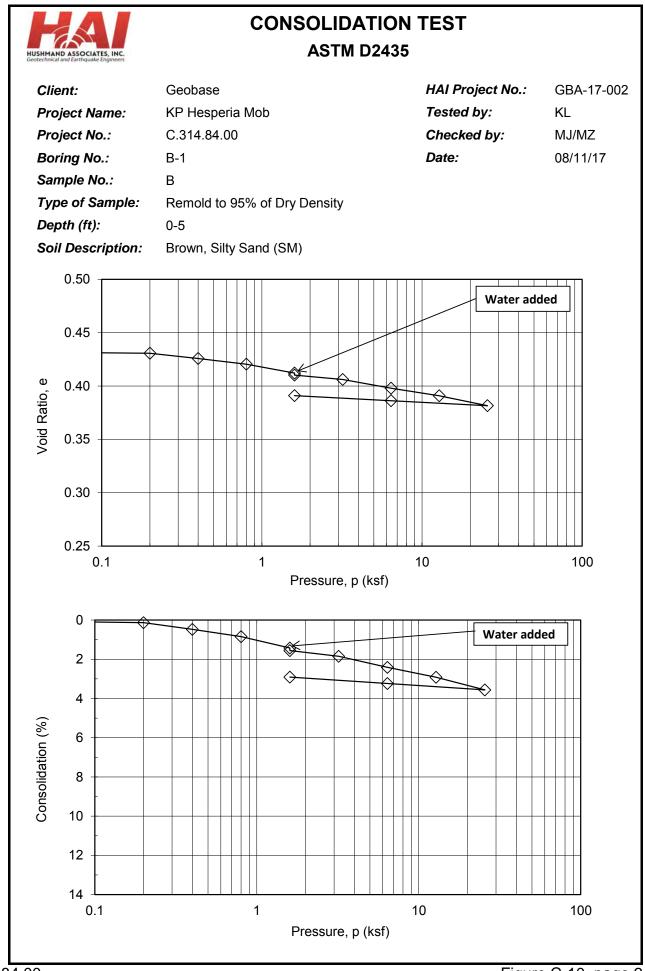
HAI Project No.:	GBA-17-002
Tested by:	KL
Checked by:	MJ/MZ
Date:	8/2/2017

Apparatus #: 1

F	INAL SPE	ECIMEN IN	NFO			
Wt. of wet soil +		653.58	g			
Wt. of dry soil + o	cont.		608.61	g		
Wt. of container			206.92	g		
Wt. of water			44.97	g		
Wt. of dry soil			401.69	g		
Moisture Conter	11.2	%				
Date & time	∆h, Exp	ansion				
8/2/2017 9:23	0	0	-			
8/2/2017 9:33	10	-0.0008	-			
Add	distilled	water to s	ample			
			0.0000			
8/3/2017 9:23	1440	-0.0008	0.00	000		

Expansion Index =

0

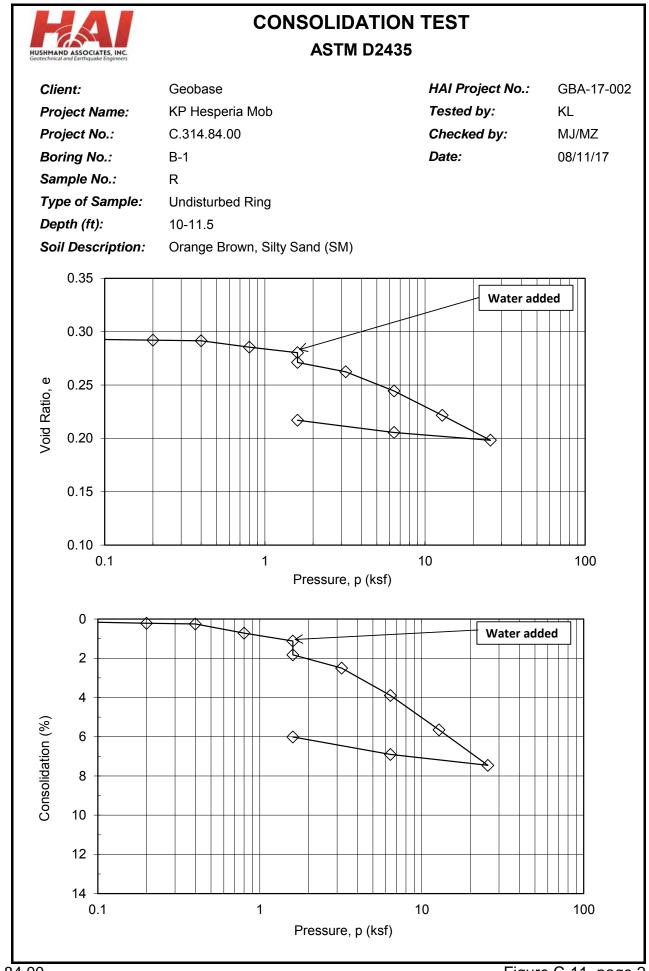


Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.00
Boring No.:	B-1
Sample No.:	В
Type of Sample:	Remold to 95% of Dry Density
Depth (ft):	0-5
Soil Description:	Brown, Silty Sand (SM)

HAI Project No.:	G
Tested by:	K
Checked by:	Ν
Date:	8

GBA-17-002 KL MJ/MZ 8/11/2017

					al Weight		al Weight		ry Weight
				(g) (g) 159.85 164.36			(g)		
						14	148.97		
				Init	tial Conditio	ons	F	inal Condit	ions
Height		Н	(in)		1.060			1.029	
Height of S	olids	Hs	(in)		0.740			0.740	
Height of W	/ater	Hw	(in)		0.145			0.205	
Height of A	ir	На	(in)		0.175			0.084	
Dry Densit	у		(pcf)		116.7			120.2	
Nater Con	tent		(%)		7.3			10.3	
Saturation			(%)		45.2			70.8	
* Saturatior	n is calcualte	d based on (Gs=2.68	-			•		
Load	δH	Н	Voids		Con	sol.	a _v	Mv	Comment
(ksf)	(in)	(in)	(in)	е	(%	6)	(ksf⁻¹)	(ksf ⁻¹)	
0.01		1.0600	0.320	0.433	()			
0.2	0.0014	1.0586	0.319	0.431	0.	.1	1.0E-02	7.0E-03	
0.4	0.0050	1.0550	0.315	0.426	0.	.5	2.4E-02	1.7E-02	
0.8	0.0089	1.0511	0.311	0.421	0.	.8	1.3E-02	9.4E-03	
1.6	0.0151	1.0449	0.305	0.412	1.	.4	1.0E-02	7.4E-03	
1.6	0.0165	1.0435	0.304	0.410	1.	.6			Water Adde
3.2	0.0196	1.0405	0.301	0.406	1.	.8	2.6E-03	1.8E-03	
6.4	0.0256	1.0344	0.294	0.398	2.	.4	2.6E-03	1.8E-03	
12.8	0.0309	1.0291	0.289	0.391	2.	.9	1.1E-03	8.0E-04	
25.6	0.0378	1.0223	0.282	0.382	3.	.6	7.2E-04	5.2E-04	
6.4	0.0343	1.0257	0.286	0.386	3.	.2			Unloaded
1.6	0.0308	1.0292	0.289	0.391	2.	.9			

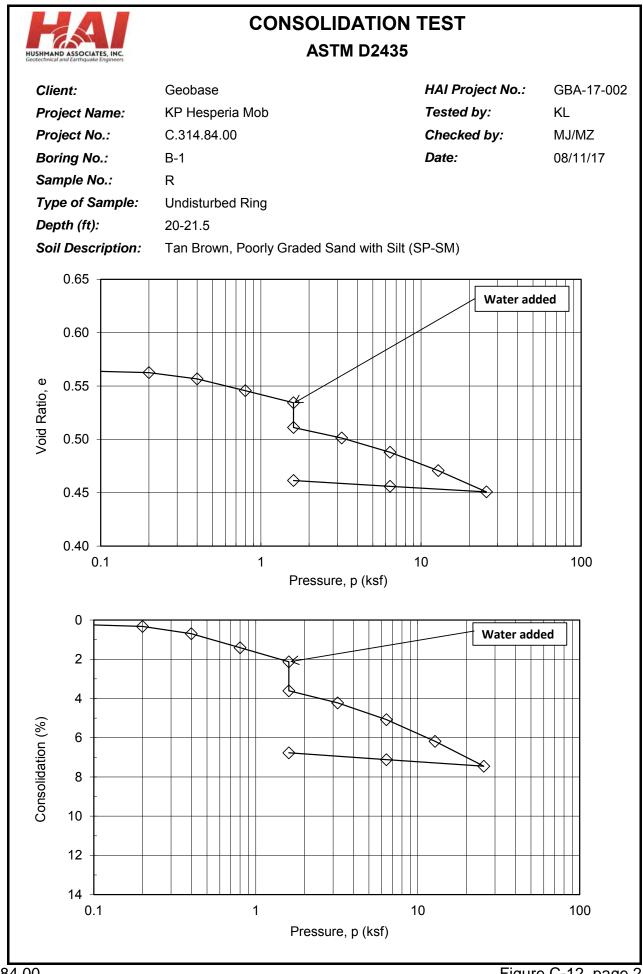


Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.00
Boring No.:	B-1
Sample No.:	R
Type of Sample:	Undisturbed Ring
Depth (ft):	10-11.5
Soil Description:	Orange Brown, Silty Sand (SM)

HAI Project No.:	G
Tested by:	KL
Checked by:	M
Date:	8/

GBA-17-002 KL MJ/MZ 8/11/2017

				Initial Total Weight Final Total (g) (g) 167.23 175.3			(g)			
				167	7.23	17	5.55	158.76		
				Ini	tial Conditio	ons		Unload		
Height		Н	(in)	1.021			0.960			
Height of S	olids	Hs	(in)		0.789			0.789		
Height of W	/ater	Hw	(in)		0.113			0.223		
Height of A	ir	На	(in)		0.120			0.000		
Dry Densit	ÿ		(pcf)		129.2			137.4		
Water Con	tent		(%)		5.3		10.6			
Saturation			(%)		48.5			100.0		
* Saturation	n is calcualte	d based on (Gs=2.68							
Load	δH	н	Voids	е	Con	Consol.		Mv	Comment	
(ksf)	(in)	(in)	(in)	e	(%	%)	(ksf⁻¹)	(ksf ⁻¹)	Comment	
0.01		1.0210	0.232	0.295	()				
0.2	0.0021	1.0189	0.230	0.292	0.	.2	1.4E-02	1.1E-02		
0.4	0.0026	1.0184	0.230	0.292	0.	.3	2.9E-03	2.2E-03		
0.8	0.0074	1.0137	0.225	0.285	0.	.7	1.5E-02	1.2E-02		
1.6	0.0114	1.0096	0.221	0.280	1.	.1	6.4E-03	5.0E-03		
1.6	0.0186	1.0024	0.214	0.271	1.	.8			Water Adde	
3.2	0.0256	0.9955	0.207	0.262	2.	.5	5.5E-03	4.4E-03		
6.4	0.0398	0.9813	0.193	0.244	3.	.9	5.6E-03	4.5E-03		
12.8	0.0577	0.9633	0.175	0.222	5.	.7	3.6E-03	2.9E-03		
25.6	0.0762	0.9449	0.156	0.198	7.	.5	1.8E-03	1.5E-03	ļ	
6.4	0.0705	0.9506	0.162	0.205	6.	.9			Unloaded	
1.6	0.0614	0.9596	0.171	0.217	6.	.0				
									ļ	
									ļ	

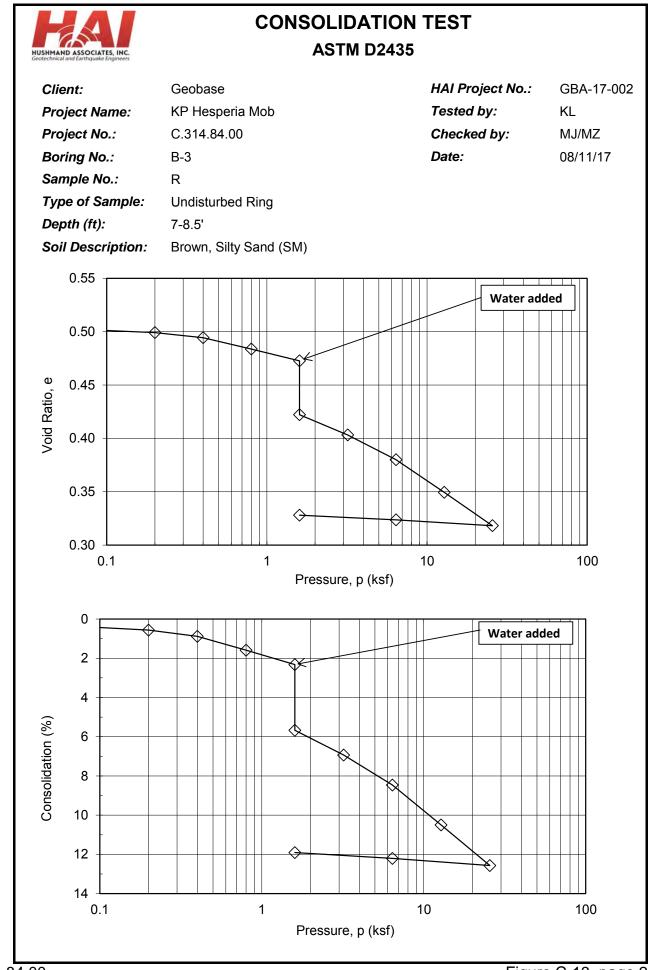

GBA-17-002

8/11/2017

KL MJ/MZ

Client :	Geobase	HAI Project No.:
Project Name:	KP Hesperia Mob	Tested by:
Project No.:	C.314.84.00	Checked by:
Boring No.:	B-1	Date:
Sample No.:	R	
Type of Sample:	Undisturbed Ring	
Depth (ft):	20-21.5	
Soil Description:	Tan Brown, Poorly Graded Sand with Silt (SP-S	M)

					al Weight	Final T	otal Weight		Dry Weight	
					g)		(g)		(g)	
				140).40	1	54.30	136.14		
				Ini	tial Conditio	ons		Unload		
Height		Н	(in)		1.060			0.988		
Height of S	olids	Hs	(in)	0.676			0.676			
Height of W	/ater	Hw	(in)		0.057			0.242		
Height of A	ir	На	(in)	0.327				0.070		
Dry Densit	y		(pcf)		106.7			115.8		
Water Con	tent		(%)		3.1			13.3		
Saturation			(%)		14.8			77.5		
* Saturatior	n is calcualte	d based on (Gs=2.68	-			1			
Load	δH	Н	Voids		Consol.		a _v	Mv	Commont	
(ksf)	(in)	(in)	(in)	е	(%	6)	(ksf⁻¹)	(ksf⁻¹)	Commen	
0.01		1.0600	0.384	0.568	()				
0.2	0.0034	1.0566	0.380	0.563	0.	.3	2.7E-02	1.7E-02		
0.4	0.0074	1.0527	0.376	0.557	0.	.7	2.9E-02	1.9E-02		
0.8	0.0149	1.0451	0.369	0.546	1.	.4	2.8E-02	1.8E-02		
1.6	0.0226	1.0375	0.361	0.534	2.	.1	1.4E-02	9.2E-03		
1.6	0.0382	1.0218	0.346	0.511	3.	.6			Water Adde	
3.2	0.0448	1.0152	0.339	0.501	4.	.2	6.1E-03	4.1E-03		
6.4	0.0539	1.0062	0.330	0.488	5.	.1	4.2E-03	2.8E-03		
12.8	0.0656	0.9945	0.318	0.471	6.	.2	2.7E-03	1.8E-03		
25.6	0.0790	0.9810	0.305	0.451	7.	.5	1.6E-03	1.1E-03		
6.4	0.0755	0.9846	0.308	0.456	7.	.1			Unloaded	
1.6	0.0718	0.9883	0.312	0.462	6	.8				



Client :	Geobase
Project Name:	KP Hesperia Mob
Project No.:	C.314.84.00
Boring No.:	B-3
Sample No.:	R
Type of Sample:	Undisturbed Ring
Depth (ft):	7-8.5'
Soil Description:	Brown, Silty Sand (SM)

HAI Project No.:	C
Tested by:	ł
Checked by:	Ν
Date:	8

GBA-17-002 KL MJ/MZ 8/11/2017

				Initial Tot	al Weight	Final To	tal Weight	Final D	ry Weight	
				(g)		(g)		(g)	
				137	7.81	14	9.85	133.41		
				Ini	tial Conditio	ons		Unload		
Height		н	(in)		1.018		0.897			
Height of S	olids	Hs	(in)	0.663			0.663			
Height of W		Hw	(in)		0.059			0.219		
Height of A		На	(in)		0.297			0.015		
Dry Densit			(pcf)		108.9			137.8		
Water Con	-		(%)		3.3		12.3			
Saturation			(%)		16.5			93.5		
	n is calcualte	d based on (<u>n</u>						
Load	δH	Н	Voids		Consol.		a _v M _v			
(ksf)	(in)	(in)	(in)	е	(%	%)	(ksf⁻¹)	(ksf⁻¹)	Comment	
0.01		1.0180	0.355	0.536	()				
0.2	0.0057	1.0123	0.350	0.528	0.6		4.6E-02	3.0E-02		
0.4	0.0090	1.0090	0.346	0.523	0.	.9	2.5E-02	1.6E-02		
0.8	0.0162	1.0019	0.339	0.512	1.	.6	2.7E-02	1.8E-02		
1.6	0.0237	0.9944	0.332	0.501	2.	.3	1.4E-02	9.4E-03		
1.6	0.0577	0.9603	0.298	0.449	5.	.7			Water Adde	
3.2	0.0706	0.9475	0.285	0.430	6.	.9	1.2E-02	8.5E-03		
6.4	0.0862	0.9319	0.269	0.406	8.	.5	7.4E-03	5.2E-03		
12.8	0.1069	0.9112	0.249	0.375	10).5	4.9E-03	3.5E-03		
25.6	0.1280	0.8901	0.227	0.343	12	2.6	2.5E-03	1.9E-03		
6.4	0.1243	0.8938	0.231	0.349	12	2.2			Unloaded	
1.6	0.1213	0.8968	0.234	0.353	11	.9				

HA					DIRE	ст s	SHE	AR T	EST				
HUSHMAND ASSOCIATES, IN Geotechnical and Earthquake Enginee						AST	M D	8080			HAI P	r No.:	GBA-17-002
Client:	Geobase										Teste	d by:	KL
Project Name:	KP Hesperia Mol	C									Chec	ked by:	MJ/MZ
Project Number:	C.314.84.00											Date:	8/9/2017
Boring No.:	B-1												
Sample No.:	R						4						
Sample type:	Undristributed Ri	ng								*****	****** 	******	*********
Depth (ft):	10-11.5					<u> </u>	3						
Soil description:	Orange Borwn, S	Silty San	id (SM)			; (kst					-		
Type of test:	CD					Shear Stress (ksf)	2	×*					
Test No. 1			2	3	lear						*********		
Symbol					•	ঠ	1						
Norma	Normal Stress (ksf)			4	6	1							
Deformat	ion Rate (in/min)		0.002	0.002	0.002	1	0	<u></u>					
						-		0	0.05	0.1 Horizontal	0.1 Deformatic		0.2 0.
Peak Shear	Stress (ksf)	0	1.68	2.94	3.65	1	4		1 1			,	1
Shear Stress @	End of Test (ksf)	Х	1.38	2.60	3.38							O X	
						(sf)	3			 	Ó		
Initial Heig	ght of Sample (in)		1.030	1.038	1.070	Shear Stress (ksf)					×		
	nple before Shear ((in)	1.0059	1.0030	1.0380	Stre	2		·····	 	 		
-	er of Sample (in)		2.416	2.416	2.416	lear			O ×				
Initial Moisture Content (%)		5.4	5.4	5.4	کر ا	1			 				
Final Mois	sture Content (%)		14.7	13.2	13.8	1							● Peak ★ End of Test
Dry [Density (pcf)		117.2	116.1	115.1	1	0						
						4		0	1 2	3		5 6	7 8
										Normal	Stress (ks	f)	

HUSHMAND ASSOCIATES, IN Geotechnical and Earthquake Engine	C.					AST	M D30	080			HAI Pr I	No.:	GBA-17	7-002
Client:	Geobase										Tested		KL	
Project Name:	KP Hesperia Mol	2									Checke	•	MJ/MZ	
Project Number:		J									Checke	Date:	8/9/201	
Boring No.:	B-1											Dale.	0/9/201	1
-	R						5 —			1				
Sample No.:		na							1					
Sample type:	Undristributed Ri	ng					4 -		 		******			
Depth (ft):	20-21.5					(sf)							****	•••
Soil description:	Tan Brown, Poor	ly Grad	ed Sand w	ith Silt (SP-	-SM)	ss (k	3 -				¦ ₩₩₩₩₩₩₩₩₩₩₩			
Type of test:	Tan Brown, Poorly Graded Sand with Silt (SP-SM) CD est No. 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							*					******	
Test No. 1 2 3						ıear	2 -							
Symbol				•	S	1 -								
Norma	al Stress (ksf)		2	4	6									
Deformat	ion Rate (in/min)		0.002	0.002	0.002		о 🖌							
			1			1	0		0.05	0.1 Horizontal	0.15 Deformation	(in)	0.2	
	Stress (ksf)	0	1.58	2.89	4.01		⁵ T		1					
Shear Stress @	End of Test (ksf)	X	1.15	2.48	3.29									
						sf)	4 +				0		 	
						s (k:	3 -	 			×	1		
	ght of Sample (in)		1.039	1.029	1.055	tres	Ŭ			O X				
Height of Sample before Shear (in)		(in)	1.0060	0.9880	1.0078	ar S	2	 			· · · · · · · · · · · · · · · · · · ·			
-	er of Sample (in)		2.416	2.416	2.416	Shear Stress (ksf)			¢					
Diamete			1.9	1.9	1.9	0,	1	 	×			·····	O Peak	
Diamete Initial Moi	sture Content (%)				474				1			1		
Diamete Initial Moi Final Mois	sture Content (%) sture Content (%) Density (pcf)		16.7 104.0	15.5 110.1	17.4 104.9								× End of	Test

HA					DIRE	ст s	SHEAF	RTEST			
HUSHMAND ASSOCIATES, IN Geotechnical and Earthquake Engine	C. ers					AST	M D3080			HAI Pr No.:	GBA-17-002
Client:	Geobase									Tested by:	KL
Project Name:	KP Hesperia Mol	C								Checked by:	MJ/MZ
Project Number:	C.314.84.00									Date:	8/9/2017
Boring No.:	B-3										
Sample No.:	R						4				
Sample type:	Undristributed Ri	ng									
Depth (ft):	7-8.5					\sim	3				
Soil description:	Orange Brown, S	ilty San	d (SM)			; (ksf				****	
Type of test:	CD					Shear Stress (ksf)	2			╼╼╼╼╼╼╼╼╼╼╼ ╎ ╎	
Test No. 1 2				3	lear						
Symbol						رم ا	1		1		
Norma	al Stress (ksf)		2	4	6		t de la companya de l				
Deformat	ion Rate (in/min)		0.002	0.002	0.002		o 🖊				
						-	0	0.05	0.1 Horizontal De	0.15 formation (in)	0.2 0.2
Peak Shear	Stress (ksf)	0	1.27	2.30	2.98	1	4 —	1 1			
Shear Stress @	End of Test (ksf)	Х	1.25	2.26	2.90						
						(sf)	3			Q	1
Initial Hei	ght of Sample (in)		1.050	1.010	1.068	Shear Stress (ksf)			Ģ	2	
	nple before Shear ((in)	1.0152	0.9499	0.9861	Stre	2				
-	er of Sample (in)		2.416	2.416	2.416	iear		Ø			
Initial Moi	sture Content (%)		2.1	2.1	2.1	ъ С	1			·····	
Final Mois	sture Content (%)		13.1	13.2	13.1	1					• Peak
	Density (pcf)		108.0	109.4	107.1	1	0				★ End of Test
				1	1	4	0	1 2	3 4	5 6	7 8

		EXPANSION PO ASTM D48								
SOIL SAMPLE LO (feet)	CATION	EXPANSI	ON INDEX	EXPANSION POTENTIAL						
B-1 at 0-5.0	C	()	Very Low						
WATER-SOLUBLE SULFATES CT 417-A										
SOIL SAMPLE LOC	ATION (feet)		SULFATES PM	DEGREE OF SULFATE						
B-4 at 5.0-	10.0	3	46	Moderate						
SOIL SAMPLE LOCATION (feet)	рН (СТ 643)	ORROSIVITY SE SOLUBLE CHLORIDE (CT 422) (PPM)	RIES TEST ELEC. RESISTI (CT 643) (OHM-CM)	VITY CORROSIVITY CATEGORY						
B-4 at 5.0-10.0	6.7	(i i i ivi) 87	6200	Moderately Corrosive						
N Boring No.	IAXIMUM DRY	DENSITY/OPTIM ASTM D15 Maximum Dry [(Pcf)		ONTENT Optimum Moisture Contents (%)						
B-1 at 0-5.0		129.4		7.1						
·	DEPARTMENT O MATERIALS / LE LOCATION (fe	AND RESEARCH T	ION, STATE OF CT EST METHOD NO	TFORNIA, . 301) JE BY EXUDATION						
	at 5.0-10.0	,		53						

ANAHEIM TEST LABORATORY

3008 ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267

TO:

GEOBASE 23362 PERALTA DRIVE, # 4&6 LAGUNA HILLS, CA. 92653 DATE: 08/02/17

P.O. NO: VERBAL

LAB NO: C-0818-1

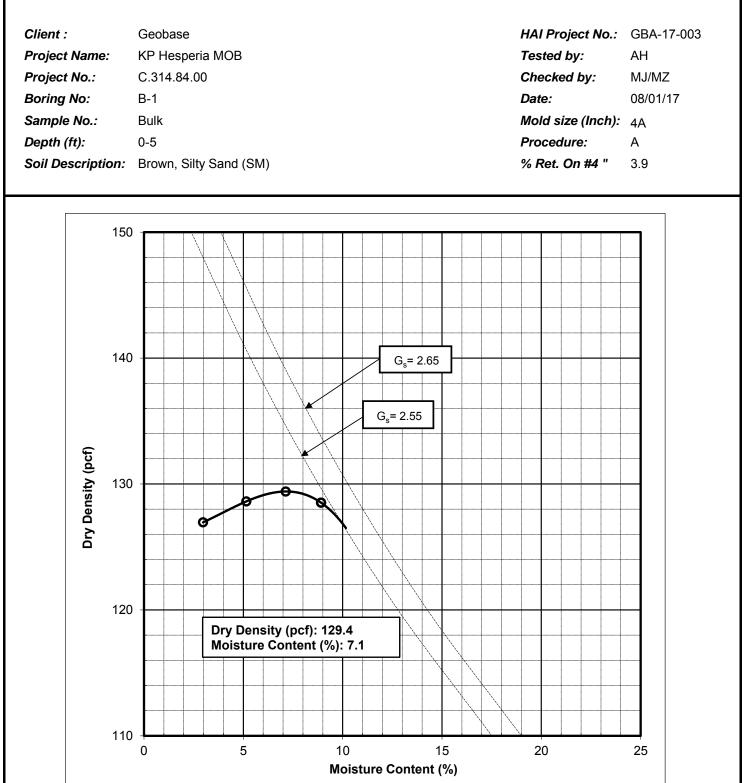
SPECIFICATION: CA-417/422/643

MATERIAL: SOIL

PROJECT #: C.314.84.00 KP Hesperia

ANALYTICAL REPORT

CORROSION SERIES SUMMARY OF DATA


	PH	SOLUBLE SULFATES per CA. 417 ppm	SOLUBLE CHLORIDES per CA. 422 ppm	MIN. RESISTIVITY per CA. 643 ohm-cm
B-4 @ 5'-10'	6.7	346	87	6,200

WES BRIDGER CHEMIST

COMPACTION CHARACTERISTICS OF SOILS ASTM D1557

ANAHEIM TEST LAB, INC

3008 ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267

TO:

GEOBASE 23362 PERALTA DRIVE, # 4&6 LAGUNA HILLS, CA. 92653 DATE: 08/02/17

P.O. NO: VERBAL

LAB NO: C-0818-2

SPECIFICATION: CT 301

MATERIAL: Brown, Silty Sand w. trace F. Gravel

PROJECT #: C.314.84.00

ANALYTICAL REPORT

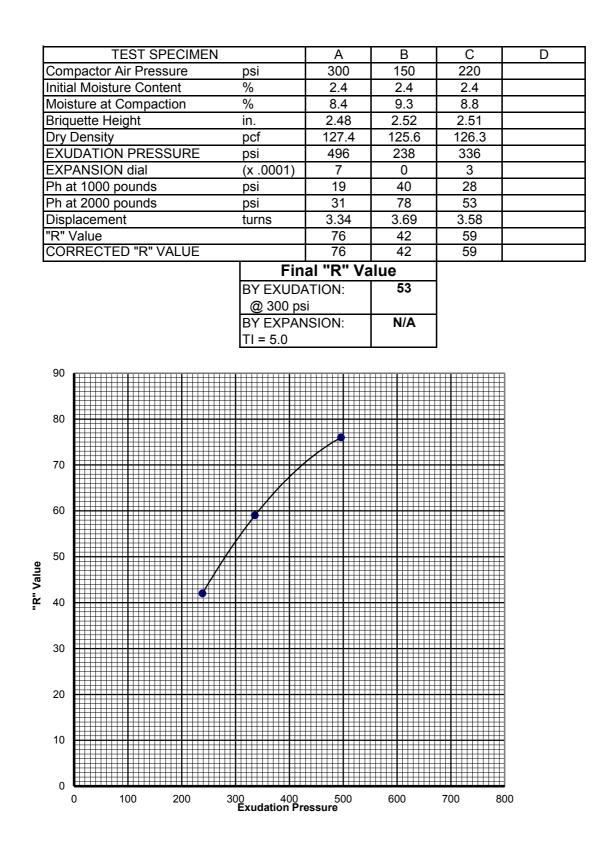
<u>"R" VALUE</u>

BY EXUDATION BY EXPANSION

B-4 @ 5'-10'0-5'

53

N/A


RESPECTFULLY SUBMITTED

WES BRIDGER CHEMIST

Client: Geobase Client Reference No.: C.314.84.00 Sample: B-4 @ 5'-10'

Soil Type: Brown, Silty Sand w. trace F. Gravel

