

Gatzke Dillon & Ballance LLP 2762 Gateway Road Carlsbad, California 92009 May 17, 2019 Project No. SD605

Attention: Mr. Michael Masterson

Subject: Limited Soil and Groundwater Investigation Along Fuel Pipeline

SDSU Mission Valley San Diego, California

Dear Mr. Masterson,

Group Delta Consultants (Group Delta) is submitting this supplemental environmental investigation report to summarize a limited soil and groundwater investigation near a known high-pressure fuel pipeline to screen for potential soil and groundwater contamination associated with any pipeline leakage in support of the proposed development at the San Diego State University (SDSU) Mission Valley campus (Site). Group Delta prepared this report per our Additional Service Request No. 1 dated April 1, 2019, and under the Agreement for Consultant Services dated January 23, 2019, and subsequent authorization dated April 17, 2019.

1.0 BACKGROUND

1.1 Site Description and Investigation Approach

The Site is the location of the SDCCU football stadium (formerly known as Qualcomm Stadium). The Site is bordered by Friars Road and San Diego Mission Road to the north, Murphy Canyon Creek and I-15 to the east, the San Diego River and I-8 to the south, and commercial development to the west. The Site location is shown in **Figure 1**. The football stadium is surrounded by extensive parking, and the grade at the Site slopes steeply from north to south. There is a trolley track and station at the southern end of the Site which connects to the SDSU campus. The trolley is operated by the San Diego Metropolitan Transit (MTS). The Kinder Morgan Mission Valley Terminal site (GeoTracker ID No. SL607392800) is located adjacent to the property in the northeast corner. Kinder Morgan Energy Partners, L.P. (Kinder Morgan) previously referred to the SDCCU stadium site as the "off-Terminal area".

The proposed redevelopment includes a new stadium, along with a campus expansion, tailgate park, hotel and conference center, student housing, and park space. The layout of the proposed redevelopment project is shown in **Figure 2**.

Kinder Morgan operates a 10-inch steel, high-pressure fuel pipeline that runs along the eastern property boundary. The pipeline depth varies between 3 and 8 feet below ground surface (bgs)

along the eastern boundary of the Site and deepens to 16 feet bgs to cross under the Murphy Canyon Creek. According to information gathered by the SDSU Mission Valley project team, impacted soil was previously encountered during installation of a transformer serving the trolley in the southeast corner of the property boundary. Although no environmental records were available to confirm it.

A previous environmental and geotechnical investigation was completed at the Site in February and March 2019 by Group Delta; however, environmental samples were not collected near the Kinder Morgan pipeline (Group Delta, 2019a). A limited supplemental environmental investigation was conducted on April 30, 2019, along and south of the pipeline to screen for potential soil and groundwater contamination associated with any leakage in support of the proposed development at the Site. The investigation extended south of the pipeline to the transformer area. The fuel pipeline and limits of the investigation is shown in **Figure 3**.

1.2 Regional Geology

The Site is located within the Peninsular Ranges geomorphic province of southern California. This province stretches from the Los Angeles basin to the tip of Baja California. It is characterized as a series of northwest trending mountain ranges separated by subparallel fault zones. The Site is located within the coastal plain transected by the west-flowing San Diego River drainage known as Mission Valley, and it is underlain at depth by Eocene-age sedimentary deposits mapped as the Friars Formation.

The Friars Formation consists of six intertonguing, depositionally time-equivalent facies ranging from deep-marine, fine-grained siltstone and claystone to the southwest; to continental, coarse-grained sandstone and conglomerate to the northeast. The Friars Formation are nonmarine and near-shore deposits of lagoonal sandstone, siltstone, and claystone. The Friars Formation is found in Mission Valley at elevations below approximately 160 feet. Regionally, the Friars Formation dips gently to the southwest between 3 and 5 degrees.

Thick deposits of poorly consolidated, mostly granular alluvium associated with the San Diego River and Murphy Creek drainages, local deposits of slopewash and colluvium, and relatively shallow fill soils associated with the original stadium construction overlies the Friars Formation.

1.3 Site Geology

Based on a previous Group Delta's geotechnical investigation conducted at the Site, the soil underlying the Site is generally composed of fine to coarse-grained silty and clayey sand with various amounts of gravel and cobbles, with thin layers of interbedded silt and lean clay down to the sample depth of approximately 15 feet bgs. Group Delta's geotechnical investigation report describes the Site geology in more detail. Boring logs with detailed lithologic descriptions are provided in the referenced report (Group Delta, 2019b).

1.4 Groundwater

Groundwater was encountered in the subsurface explorations completed during the current and previous environmental and geotechnical investigation conducted by Group Delta at the Site. In general, groundwater was encountered at elevations of 47 to 49 feet along the northern portion of the site and elevations of 37 to 40 feet in the southwest portion of the Site. The depth to groundwater varied significantly from approximately 7 to 40 feet bgs.

1.5 Prior Environmental Site Remediation Activities

The SDSU Mission Valley site is located adjacent to the Kinder Morgan Terminal property, which was a source of fuel hydrocarbons to soil and groundwater at both properties. Floating separate-phase product or light non-aqueous phase liquid (LNAPL) was observed within the northeastern portion of the SDSU Mission Valley site at one time. Dissolved benzene concentrations up to 29,000 micrograms per liter (μ g/I) were previously measured in groundwater at the site (in well R-9). The dissolved fuel hydrocarbon plume extended across the site from north to south in a hydraulically downgradient direction.

Under oversight by the San Diego Regional Water Quality Control Board (RWQCB), Kinder Morgan conducted soil and groundwater remediation at both properties. The approved remedy included groundwater and soil vapor extraction (SVE). Groundwater extraction depressed the water table, exposing fuel hydrocarbons for removal by SVE. In addition, a limited soil removal action was conducted in 2010 within the LNAPL source area using large diameter augers. Active remediation was completed at the SDSU Mission Valley site in 2014, and post-remediation monitoring of groundwater and SVE continued until August 2015. The RWQCB approved terminating post-remediation monitoring, although a No Further Action case closure letter has not yet been issued for the SDSU Mission Valley site. The monitoring and remediation wells were left in place at the site and have not yet been abandoned. In January 2019, the RWQCB also approved the shutdown of the groundwater extraction and treatment system at the Kinder Morgan Terminal. Post-remediation monitoring is ongoing at the Kinder Morgan Terminal (Geotracker Database; State Water Resources Control Board, 2019).

2.0 FIELD ACTIVITIES

The limited environmental field investigation consisted of direct-push boring advancement for collection of soil and groundwater samples along and south of the fuel pipeline. The field activities were completed between March 22 and 30, 2019. The field activities are summarized below.

2.1 Pre-Field Activities

Prior to conducting the investigation, an initial site reconnaissance was conducted to ensure accessibility and safety of the proposed sampling locations. A site-specific health and safety plan (HASP) was prepared in accordance with Occupational Safety and Health Administration (OSHA) standards for hazardous waste operations (29 CFR § 1910.120) and to establish general health and safety protocols for personnel. The site-specific HASP was made available to the field personnel and signed during tailgate meetings prior to starting the fieldwork.

A boring permit for soil and groundwater sampling was acquired from the San Diego County Department of Environmental Health (DEH). The DEH-approved boring permit is provided in **Appendix A**.

The locations of the borings were marked with white paint. Underground Service Alert (USA) of Southern California was notified at least 48 hours prior to commencement of field activities to confirm the absence of subsurface utilities at each boring location. In addition, a geophysical survey was conducted prior to drilling to identify subsurface piping, obstructions, or anomalies at the proposed boring locations and relocate as necessary. The drilling locations were accessible within the asphalt parking lot. Due to the proximity of the high-pressure jet fuel pipeline, a Kinder Morgan field representative was notified and was present on-site during sampling operations.

2.2 Field Investigation

Soil and groundwater sampling was performed on April 30, 2019, within the southeast quadrant of the Site. Five soil and groundwater sampling locations were completed including three locations at 400-foot intervals at a horizontal distance of 7 feet to the west of the existing pipeline. The investigation extended south of the south end of the pipeline at 200-foot intervals towards the MTS utility structure. The five borings were named as FP-1 through FP-5. Soil and groundwater sampling boring locations are presented in Figure 3.

Group Delta retained Millennium Environmental, Inc. (Millennium) of Anaheim, California to advance the five boring locations. Millennium used a direct-push drill rig with a percussion hammer to drive a 3-inch-diameter hollow steel rod lined with a plastic acetate sleeve into the ground. As the rod was advanced into the ground, soil filled the acetate sleeve for sample collection. A new acetate liner was used at each boring location. The borings were advanced to the total depths ranging from 10 to 15 feet bgs depending on the depth to groundwater. One soil sample was collected from each boring location at depths ranging from 7 to 10 feet bgs.

Lithology was logged using soil samples collected during drilling per the Unified Soil Classification System (USCS). A calibrated photoionization detector (PID) was used to collect headspace readings from the soil samples. The soil samples were screened for evidence of contamination including PID readings, hydrocarbon odor, and staining. A summary of the observations and

general soil conditions for each boring were recorded. The soil samples were transferred to sampling containers provided by the laboratory. Terra Cores® were used for volatile organic compounds (VOCs) sample collection. Samples were properly labeled and placed on ice within a box cooler.

Groundwater samples were collected by driving a Hydropunch™ sampling device approximately 5 feet below the water table. The groundwater was encountered at depths ranging between 8 and 13 feet bgs. At depth, the rods were pulled up approximately 4 feet, which retracted the outer protective sleeve of the Hydropunch™ sampler, exposing a disposable polyvinyl chloride (PVC) screen 4 ft in length. The screen was allowed to fill with water until equilibration was achieved. A peristaltic pump with dedicated tubing was used to collect grab groundwater samples using the laboratory-supplied containers. Samples were labeled with the well ID, time, and date of sample collection and placed on ice in the box cooler. One laboratory-prepared trip blank sample was transported with the box cooler. Chain-of-custody forms were completed and samples were transported on ice to the environmental testing laboratory. Upon completion of sampling, the sampler was removed and borings were backfilled with hydrated bentonite and patched with cement mixture matching the existing surface.

2.3 Investigation Derived Waste

Investigation derived waste (IDW) including drilling spoils and decontamination water were stored in labeled Department of Transportation (DOT)-approved 55-gallon drums at a secure location at the Site. The minimal amount of waste derived from the field investigations will be disposed at an appropriate waste disposal facility in accordance with State and Federal regulations.

3.0 LABORATORY ANALYSIS

The soil and groundwater samples were transported to Eurofins Calscience in Garden Grove, California, a laboratory certified by the State Water Resources Control Board's (SWRCB) Environmental Laboratory Accreditation Program (ELAP) for analysis.

3.1 Laboratory Methods

Soil and groundwater samples were analyzed for the following constituents:

- Total petroleum hydrocarbon (TPH) carbon chain analysis for gasoline range organics (GRO) and diesel range organics (DRO) by Environmental Protection Agency (EPA) Test Method 8015B Modified, and;
- VOCs by EPA Test Method 8260B.

The TPH carbon chain analysis included hydrocarbon ranges broader than typically found in jet fuel. Laboratory analytical results are included as **Appendix B**. Soil analytical results are summarized in **Tables 1 and 2**. Groundwater analytical results are summarized in **Tables 3 and 4**.

3.2 Quality Assurance/Quality Control

To assess for potential cross-contamination of soil and groundwater samples during collection, handling, preparation, packing, and/or analyses, and thereby ensure reliability of the analytical data, quality assurance/quality control (QA/QC) procedures were implemented. Trip blank sampling procedures were followed in the field during groundwater sampling as described in Section 2.2. A data quality analysis for soil and groundwater analytical data is provided in Section 5.3. Eurofins Calscience analyzed the soil and groundwater samples following QA/QC requirements prescribed in each method including initial and continuing calibration verification, QC reference standards, method blanks, laboratory control samples (LCS), laboratory control sample duplicates (LCSD), matrix spike (MS) samples, and matrix spike duplicates (MSD).

4.0 RESULTS & DISCUSSION

The following section provides a summary of the field and analytical results associated with the jet fuel pipeline investigation.

4.1 Field Observations

4.1.1 Headspace Measurements and Field Evidence of Impacted Soils

VOC concentrations in the soil were screened using a calibrated MiniRAE® 2000 hand-held PID. Headspace measurements were obtained by placing homogenized soil samples into plastic sealable bags. The bags were allowed to sit in the sun for a minimum of ten minutes to allow volatilization of VOCs if present. VOC concentrations were measured in the headspace of the plastic bag and recorded in the field notes. The headspace measurements recorded in the field were 0.0 parts per million (ppm) from ground surface to the total depth between 10 and 16 feet bgs for Borings FP1 through FP5. In addition, no field evidence of VOC-impacted soils was observed based on hydrocarbon odor or staining.

5.1 Soil Analytical Results

A total of five soil samples collected between 7 and 10 feet bgs were analyzed for TPH by EPA Method 8015B Modified and VOCs by EPA Method 8260B. TPH and VOCs results for the soil samples are provided in Tables 1 and 2, respectively.

Detected chemical concentrations were compared against residential soil screening levels established by the California Department of Toxic Substances Control (DTSC) and EPA. DTSC soil screening levels (SLs) are identified in HHRA Note 3, which was last update in April 2019 (DTSC,

2019). EPA soil regional screening levels (RSLs) were last updated in November 2018 (EPA, 2018). Detected chemical concentrations were compared against the lower of the DTSC and EPA residential soil screening levels as a conservative approach for protection of human health at the site.

5.1.1 **TPH**

A total of five soil samples were analyzed for TPH-GRO by EPA Method 8015B Modified as shown in Table 1 including a hydrocarbon range of C4-C12. TPH-GRO was not detected in any of the soil samples.

A total of five soil samples were analyzed for TPH-DRO by EPA Method 8015B Modified as shown in Table 1 including a hydrocarbon range of C13-C22. TPH-DRO was detected in three of the five soil samples (60% frequency) at concentrations ranging from 1.4 to 4.8 milligrams per kilogram (mg/kg). Although not included in the TPH-DRO concentration reported by the laboratory, some fuel hydrocarbons between C23 and C28 were additionally detected in one of the five soil samples (20% frequency) as shown in Table 1.

There are no residential screening levels specifically for TPH-GRO and DRO. However, EPA has residential RSLs for TPH aromatics and aliphatics. TPH-GRO and DRO hydrocarbon ranges will contain low to medium range aromatics and aliphatics, which have RSLs ranging from 82 to 520 mg/kg. The detected TPH-DRO concentrations in soil at the site are below the entire range of EPA RSLs for low to medium aromatic and aliphatic hydrocarbons. The detected TPH-DRO concentrations are additionally below the 100 mg/kg threshold referenced in the State Water Resources Control Board (SWRCB) Low Threat Underground Storage Tank Case Closure Policy (SWRCB, 2012).

5.1.2 **VOCs**

A total of five soil samples were analyzed for 71 VOCs and fuel oxygenates by EPA Method 8260B as shown in Table 2. Acetone was the only VOC detection in one of five soil samples (20% frequency) at a concentration of 0.046 mg/kg, which is below the EPA residential RSL of 61,000 mg/kg. No other VOCs were detected in the soil samples.

5.2 **Groundwater Analytical Results**

Groundwater was gauged and sampled at the five boring locations. The groundwater samples were analyzed for TPH by EPA Method 8015B Modified and VOCs by EPA Method 8260B. TPH and VOCs results for the groundwater samples are provided in Tables 3 and 4, respectively, along with the depth to groundwater.

5.2.1 **Groundwater Levels**

The depth to groundwater ranged from approximately 8 to 13 feet bgs. The depth to groundwater was consistent with historical ranges previously reported at the Site near the Murphy Canyon Creek.

5.2.2 **TPH**

A total of five groundwater samples were analyzed for TPH-GRO by EPA Method 8015B Modified as shown in Table 3 including a hydrocarbon range of C4-C12. TPH-GRO was detected in one of the five groundwater samples (20% frequency) at a concentration of 26J micrograms per liter (μ g/I); j-flagged results are greater than or equal to the method detection limit but less than the reporting limit.

A total of five groundwater samples were analyzed for TPH-DRO by EPA Method 8015B Modified as shown in Table 3 including a hydrocarbon range of C13-C22. TPH-DRO was detected in two of the five groundwater samples (40% frequency) at concentrations of 79 and 130 μ g/l. Although not included in the TPH-DRO concentration reported by the laboratory, some fuel hydrocarbons between C23 and C28 were additionally detected in one of the five groundwater samples (20% frequency) as shown in Table 3. There are no State or Federal maximum contaminant levels (MCLs) for TPH (SWRCB, 2018).

5.2.3 **VOCs**

No VOCs or fuel oxygenates were detected above the laboratory detection limits in any of the five groundwater samples as shown in Table 4. The laboratory detection limits were equal to or below the Federal and State MCLs.

5.3 Data Quality Analysis

Laboratory QA/QC measures included method blanks, surrogates, MS/MSDs, and LCS/LCSDs. A review of the laboratory QA/QC results indicates satisfactory data reporting, and the data are of sufficient quality for the purposes of this investigation. There were no detections in any of the method blanks, and none of the other QA/QC performance criteria exceeded the laboratory acceptance limits.

One trip blank was submitted along with the groundwater samples and analyzed for VOCs and fuel oxygenates by EPA Method 8260B. No VOCs or fuel oxygenates were detected in the trip blank sample, indicating no cross-contamination of the groundwater samples during transport to the laboratory.

6.0 CONCLUSIONS

A limited supplemental environmental investigation was conducted along an 800-foot section of the Kinder Morgan fuel pipeline within the eastern property line to screen for potential soil and groundwater contamination in support of the proposed development at the Site. The investigation extended approximately 400 feet south of the pipeline to the MTS transformer area. During the investigation, five borings were advanced at depths ranging from 10 to 15 feet bgs. Five soil samples were collected between 7 and 10 feet bgs along the Kinder Morgan pipeline and near the MTS utility structure. The depth to groundwater ranged from approximately 8 to 13 feet bgs, and five grab groundwater samples were collected.

No field evidence of VOC-impacted soils based on PID, hydrocarbon odor, and stanning was observed during the investigation. Although some low residual TPH concentrations were detected in the soil and groundwater samples, none of the concentrations exceeded applicable screening levels. No VOCs were detected in soil or groundwater samples except for acetone in one soil sample at a low concentration significantly below the residential screening level. Residual TPH and VOC detections were consistent with a previous investigation conducted at the Site in February and March 2019. Based on the limited supplemental investigation results, no evidence of a fuel pipeline leak was observed along the eastern boundary of the Site.

7.0 CLOSING

We appreciate your selection of Group Delta for this project and look forward to assisting you further on this and other projects. If you have any questions, please do not hesitate to contact us.

Sincerely,

GROUP DELTA CONSULTANTS, INC.

Brian Dean

Associate Environmental Engineer

Alex Santini, P.E.

Project Environmental Engineer

Attachments:

Figure 1 – Site Location

Figure 2 – Proposed Development

Figure 3 – Site Plan

Table 1 – TPH in Soil Analytical Results

Table 2 – VOCs in Soil Analytical Results

Table 3 – TPH in Groundwater Analytical Results

Table 4 – VOCs in Groundwater Analytical Results

Appendix A – Boring Construction Permit Appendix B – Laboratory Analytical Report

References:

California Department of Toxic Substances Control (2019). Human and Ecological Risk Office (HERO), Human Health Risk Assessment (HHRA) Note 3, DTSC-modified Screening Levels, April.

Group Delta Consultants, Inc. (2019a). Report of Environmental Investigation, SDSU Mission Valley, San Diego, California," April 5.

Group Delta Consultants, Inc. (2019b). Report of Geotechnical Investigation, Aztec Stadium, SDSU Mission Valley, San Diego, California," April 5.

State Water Resources Control Board (2012). Low-Threat Underground Storage Tank Case Closure Policy, November.

State Water Resource Control Board (2018). *Maximum Contamination Levels and Regulatory Dates for Drinking Water*, October.

State Water Resources Control Board (2019). *Geotracker Database, Mission Valley Terminal* (SL607392800) accessed May https://geotracker.waterboards.ca.gov/profile report.asp?global id=SL607392800

United States Environmental Protection Agency (2018), Regional Screening Levels (RSLs) updated November. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

REFERENCE: MAP PROVIDED BY RICK ENGINEERING COMPANY, DATED 2/12/2019

SDSU MISSION VALLEY SAN DIEGO, CALIFORNIA

PROPOSED **DEVELOPMENT**

PROJECT NUMBER: SD605

FIGURE NUMBER:

Table 1 TPH in Soil Analytical Results Jet Fuel Pipeline Investigation San Diego State University- Mission Valley San Diego, California

Boring Number	Sample Depth (feet bgs)	Sample Date	C4-C5	C6	С7	C8	C9-C10	C11-C12	TPH-GRO Total	C13-C14	C15-C16	C17-C18	C19-C20	C21-C22	TPH-DRO Total	C23-C24	C25-C26	C27-C28
FP1	10.0	4/30/2019	<0.099	<0.099	<0.099	<0.099	<0.099	<0.099	<0.099	2.8 J	<5.0	<5.0	<5.0	<5.0	2.8	<5.0	<5.0	<5.0
FP2	8.0	4/30/2019	< 0.095	<0.095	< 0.095	< 0.095	<0.095	<0.095	<0.095	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
FP3	9.0	4/30/2019	<0.091	<0.091	<0.091	<0.091	<0.091	<0.091	<0.091	<5.0	<5.0	<5.0	<5.0	1.4 J	1.4	<5.0	<5.0	<5.0
FP4	7.0	4/30/2019	<0.097	<0.097	<0.097	<0.097	<0.097	<0.097	<0.097	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
FP5	8.0	4/30/2019	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	1.7 J	<5.0	<5.0	<5.0	3.0 J	4.8	6.5	11	22

Notes:

bgs below ground surface

TPH Total Petroleum Hydrocarbons

GRO Gasoline Range Organics

DRO Diesel Range Organics

results greater than or equal to method detection limit, but less than reporting limit

Bold indicates detected concentration

< 0.0 not detected above the indicated reporting limit

All analyses completed using US EPA Test Method 8015B.

All results shown in milligrams per kilogram (mg/kg).

Table 2

VOCs in Soil Analytical Results

Jet Fuel Pipeline Investigation

San Diego State University- Mission Valley

San Diego, California

Boring Number	Sample Depth (feet bgs)	Sample Date	Acetone	Benzene	Ethylbenzene	Methyl-t- Butyl Ether	Tert-Butyl Alcohol	Toluene	p/m- Xylene	o-Xylene
FP1	10.0	4/30/2019	<46	<0.92	<0.92	<1.8	<18	<0.92	<1.8	<0.92
FP2	8.0	4/30/2019	<60	<1.2	<1.2	<2.4	<24	<1.2	<2.4	<1.2
FP3	9.0	4/30/2019	<46	<0.93	<0.93	<1.9	<19	<0.93	<1.9	<0.93
FP4	7.0	4/30/2019	46	<0.85	<0.85	<1.7	<17	<0.85	<1.7	<0.85
FP5	8.0	4/30/2019	<43	<0.87	<0.87	<1.7	<17	<0.87	<1.7	<0.87

Notes:

bgs below ground surface

Bold indicates detected concentration

< 0.0 not detected above the indicated reporting limit

All analyses completed using US EPA Test Method 8260B.

All results shown in micrograms per kilogram ($\mu g/kg$).

Table 3

TPH in Groundwater Analytical Results Jet Fuel Pipeline Investigation San Diego State University- Mission Valley San Diego, California

Boring Number	Groundwater Depth (feet bgs)	Sample Date	C4-C5	C6	С7	C8	C9-C10	C11-C12	TPH-GRO Total	C13-C14	C15-C16	C17-C18	C19-C20	C21-C22	TPH-DRO Total	C23-C24	C25-C26	C27-C28
FP1	13.0	4/30/2019	<50	<50	<50	<50	<50	<50	26 J	30 J	34 J	15 J	<46	<46	79	<46	<46	<46
FP2	10.0	4/30/2019	<50	<50	<50	<50	<50	<50	<50	27 J	49	21 J	16 J	16 J	130	<45	<45	<45
FP3	10.0	4/30/2019	<50	<50	<50	<50	<50	<50	<50	<45	<45	<45	<45	<45	<50	<45	16 J	16 J
FP4	8.0	4/30/2019	<50	<50	<50	<50	<50	<50	<50	<46	<46	<46	<46	<46	<50	<46	<46	<46
FP5	9.0	4/30/2019	<50	<50	<50	<50	<50	<50	<50	<45	<45	<45	<45	<45	<50	<45	<45	<45

Notes:

bgs below ground surface

TPH Total Petroleum Hydrocarbons GRO Gasoline Range Organics

DRO Diesel Range Organics

results greater than or equal to method detection limit, but less than reporting limit

Bold indicates detected concentration

< 0.0 not detected above the indicated reporting limit

All analyses completed using US EPA Test Method 8015B.

All results shown in micrograms per liter ($\mu g/L$).

Table 4

VOCs in Groundwater Analytical Results

Jet Fuel Pipeline Investigation

San Diego State University- Mission Valley

San Diego, California

Boring Number	Groundwater Depth (feet bgs)	Sample Date	Acetone	Benzene	Ethylbenzene	Methyl-t- Butyl Ether	Tert-Butyl Alcohol	Toluene	p/m- Xylene	o-Xylene
FP1	13.0	4/30/2019	<20	<1.0	<1.0	<1.0	<10	<1.0	<2.0	<1.0
FP2	10.0	4/30/2019	<20	<1.0	<1.0	<1.0	<10	<1.0	<2.0	<1.0
FP3	10.0	4/30/2019	<20	<1.0	<1.0	<1.0	<10	<1.0	<2.0	<1.0
FP4	8.0	4/30/2019	<20	<1.0	<1.0	<1.0	<10	<1.0	<2.0	<1.0
FP5	9.0	4/30/2019	<20	<1.0	<1.0	<1.0	<10	<1.0	<2.0	<1.0

Notes:

bgs below ground surface

Bold indicates detected concentration

<0.0 not detected above the indicated reporting limit

All analyses completed using US EPA Test Method 8260B.

All results shown in micrograms per liter (µg/L).

APPENDIX A BORING CONSTRUCTION PERMIT

PERMIT #: LMWP-003944 A.P.N. #: 433-250-13, 16

EST #: None

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER QUALITY DIVISION MONITORING WELL PROGRAM

BORING CONSTRUCTION PERMIT

SITE NAME: SDCCU STADIUM

SITE ADDRESS: 9449 FRIARS ROAD, SAN DIEGO 92108

PERMIT FOR: CONSTRUCTION OF SOIL BORINGS (5)

PERMIT APPROVAL DATE: 4/23/2019

PERMIT EXPIRES ON: 8/21/2019

RESPONSIBLE PARTY: CITY OF SAN DIEGO

PERMIT CONDITIONS:

- 1. All borings must be sealed from the bottom of the boring to the ground surface with an approved sealing material as specified in California Well Standards Bulletin 74-90, Part III, Section 19.D. **Drill cuttings are not an acceptable fill material. Bentonite slurries are not an acceptable fill material in the unsaturated zone.**
- 2. All borings must be properly destroyed within 24 hours of drilling.
- 3. Placement of any sealing material at a depth greater than 30 feet must be done using the tremie method.
- 4. This work is not connected to any known unauthorized release of hazardous substances. Any contamination found in the course of drilling and sampling must be reported to DEH. All water and soil resulting from the activities covered by this permit must be managed, stored and disposed of as specified in the SAM Manual in Section 5, II, D-4. In addition, drill cuttings must be properly handled and disposed in compliance with the Stormwater Best Management Practices of the local jurisdiction.
- 5. Within 60 days of completing work, submit a well construction report, including all well and/or boring logs and laboratory data to the Well Permit Desk. This report must include all items required by the SAM Manual, Section 5, Pages 6 & 7.
- 6. This office must be given 24-hour notice of any drilling activity on this site and advanced notification of drilling cancellation. Please contact the Well Permit Desk at (858) 505-6688.

NOTE: This permit does not constitute approval of a work plan as defined in Section 2722 of Article 11 of C.C.R., Title 23. Work plans are required for all unauthorized release investigations in San Diego County.

APPROVED BY:	Jon Senaha	DATE: 4/23/2019
	Jon Senaha	

PERMIT APPLICATION GROUNDWATER AND VADOSE MONITORING WELLS AND EXPLORATORY OR TEST BORINGS

A. RESPONSIBLE PARTYCity of (The person, persons, or company response	San Diego	E-mail T	hompsonC@sandiego.gov
Mailing Address 1200 Third Ave		: 이 시민들이 아니라 이번 그 이 나라 아이가 가장하는 것	보험 전에 대무를 만드러 가는 것이 가는 사람이 되었다.
Contact Person Cybele L. Thon			
Contact Person_Cybele L. Thom	ipson	_ 14lone(010) 200 0110	
B. SITE ASSESSMENT PROJECT	NUMBER – IF APPLICAL	BLE#	
C. CONSULTING FIRM Group De			
Mailing Address 9245 Activity R	Road. Suite 103	City San Diego	_State <u>CA</u> _Zip _92126
Registered Professional Alexand	dre Santini Phone 31	0-310-5686Registration # C	83963 (RCE, CEG, PG)
E-mail alexandres@groupdelta.	com		Circle if applicable
Contact Person_Alexandre Santi	ini Phone 31	0-310-5686 Ext. E	mail <u>alexandres@groupdelta.con</u>
D. DRILLING COMPANY Millenniu			
Contact Name Andrew Gerardo		E-mail agerardo@	millennium-env.com
Mailing Address 2936 East Cor	onado Street	City Anaheim	State CA Zip 92806
Phone (714) 238-1122	2 Ext		
E. CONSTRUCTION INFORMATIO	N		
TYPE OF WELLS/ BORINGS TO BE CONSTRUCTED #	MATERIALS CASING	S TO BE USED SEAL/BORING BACKFILL	PROPOSED CONSTRUCTION Estimated Groundwater Depth: 9 to 12 ft.
☐ Groundwater ☐ Vadose ☒ Boring ☐ Soil Vapor	Not Applicable X Type Gauge Diameter Well Screen Size	✓ Cement & Bentonite☐ Sand-Cement✓ Bentonite	Estimated Depth of Boring: 15 ft. Concrete Seal: 0 to 3 Annular Seal: 3 to 15
Other		Borehole diameter 3"	Filter Pack:to
NUMBER OF WELLS TO BE		ng Method	Perforation:to
DESTROYED Destruction	☐ Auger ☑ Direct Push ☐ Other	☐ Air Rotary	NOTE: Attach a well construction diagram
I agree to comply with the requireme laws of the County of San Diego and DRILLER'S SIGNATURE			
Within 60 days of completion, I will full will certify the design and construction		vell/borings in accordance wi	th the permit application.
PG/RCE/CEG SIGNATURE	lus	DATE	4/16/19

1.	ASSESSO	R'S PARCEL NUIV	IBER 433-250-16-	00 & 433-250-1	3-00				
		SDCCU Stadium							
		CONTRACTOR OF THE PARTY	oad				_Zip _	92108	
			2000						
		Y OWNER City o		.6	673	(0.40) 000			_
	F-15/17/17	THE THE STREET	A		The state of the s				0046
	Mailing Add	iress 1200 Inird	Avenue, Suite 1700	City_	San Diego	State	CA	Zip	9210
	NUMBER	OF WELLS 5	TYPE OF WELL	S Soil borings	s with Hydropund	h (direct p	ush)		
2	ASSESSO	D'S DADCEL NUM	IBER						
۷.			IDEN						
	NUMBER	OF WELLS	TYPE OF WELL	s	7.5.				
su	NUMBER JESTIONNA ipportive do What is the	OF WELLS	TYPE OF WELL	e questions on?	completely <i>and</i>	l submit	any	require	d
su	NUMBER JESTIONNA	OF WELLS	TYPE OF WELL	e questions on?	completely and	d submit	any e	require	d
su	NUMBER JESTIONNA ipportive do What is the	OF WELLS	TYPE OF WELL nswer all applicabled in the state of the s	e questions on?	completely and	d submit	any e	require	d
su	NUMBER JESTIONNA ipportive do What is the	OF WELLS AIRE: Please are ocumentation. The purpose of the well are purpose	TYPE OF WELL nswer all applicabled in the state of the s	e questions on? case in which a pulator is the lea	government regard agency and the	d submit	any e	require	d
su	NUMBER JESTIONNA JESTIONNA What is the	OF WELLS	TYPE OF WELL swer all applicabled in the street of the st	e questions on? case in which a pulator is the lead	government region and agency and the DT:	d submit	any e	require	d
su	NUMBER JESTIONNA Ipportive do What is the a.	OF WELLS AIRE: Please are ocumentation. The purpose of the well are purpose	TYPE OF WELL aswer all applicabled in the street of the s	e questions of a gulator is the lead construction	government region and agency and the DT:	d submit	any e	require	d
su 1.	NUMBER DESTIONNA Ipportive do What is the a. b. c. d.	OF WELLS AIRE: Please are ocumentation. The purpose of the well part of an ongoing figures, indicate very part of a Phase Geotechnical in Other: Due dill	TYPE OF WELL aswer all applicabled by the street of the s	e questions of a quality is the least operty ownershipsed construction investigation.	government regrad agency and the DTS	d submit	any e	require	d
1.	NUMBER DESTIONNA Ipportive do What is the a. b. c. d.	OF WELLS AIRE: Please are ocumentation. The purpose of the well part of an ongoing figures, indicate very part of a Phase Geotechnical in Other: Due dill	TYPE OF WELL Iswer all applicabled by the street of the s	e questions of a quality is the least operty ownershipsed construction investigation.	government regrad agency and the DTS	d submit	any e	require	d
su	NUMBER JESTIONNA JES	Part of a Phase Geotechnical in Other: Due dilicate to be destroyed, proposing a variation, Vadose and/or G	TYPE OF WELL Iswer all applicabled by the street of the s	e questions of a gulator is the lease apperty ownershipsed construction investigation. Manual Require and Wells? If year	government regard agency and the DTS p transfer. n or land stabilizations or land stabilization NA	ulator is the case nur	e lead mber.	agency estruction	d an

ACTIVITY	FEE SCHEDULE	AMOUN	т .
Permit for Well Installations Only	\$351.00 for the first monitoring well	\$351.00	
(Groundwater Monitoring Wells, Vapor Extraction Wells)	\$224.00 for each additional well installation	x \$224.00	
Permit for Borings Only	\$235.00 for the first boring	\$235.00	\$235.00
(CPT's, Hydropunch, Geoprobes, Temporary Well Points, etc.)	\$62.00 for each additional boring	4 x \$ 62.00	\$248.00
Permit for	\$235.00 for the first destruction	\$235.00	
Well Destructions Only	\$143.00 for each additional destruction	x \$143.00	
Permit for any Combination of Well Installations, Borings, & Destructions (Except Enhanced Leak Detection	First Activity: \$351.00 (if monitoring wells will be installed) OR \$235.00 (for borings and destructions only)	\$351.00 OR \$235.00	
& Soil Vapor Survey)	\$224,00 for each additional well	x \$224.00	
	\$62.00 for each additional boring	x \$ 62.00	
	\$143.00 for each additional well destruction	x \$143.00	
Permit for Soil Vapor Survey (Vadose Monitoring Wells)	\$388.00 (flat fee per site)	\$388.00	
Permit for Enhanced Leak Detection	\$368.00 (flat fee per site)	\$368.00	
	TOTAL COST OF PERMIT		\$ \$483.00

County of San Diego

ELISE ROTHCHILD
DIRECTOR

DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER QUALITY DIVISION P.O. BOX 129261, SAN DIEGO, CA 92112-9261 (858)505-6688 www.sdcdeh.org

AMY HARBERT
ASSISTANT DIRECTOR

PROPERTY OWNER CONSENT

Proposed locations for subsurface work: Property Address:	Assessor's Parcel Number (APN):
9449 Friars Road, San Diego, California 92108-17	718 <u>433-250-16-00 & 433-250-13-00</u>
I, Cybele L. Thompson	owner of the property/properties listed above, give my permission to
up Delta Consultants/Millenniun Environmental(consultanted above.	lting company, contractor) to conduct the following work at the locations
☐ Install monitoring wells	Destroy monitoring wells
authorized signer for Millennium Environmental Department of Environmental Health in which they h of the current SAM Manual, all ordinances and law well/boring construction and destruction. I have a	professional) of Group Delta Consultants (consulting company) and are (drilling company) have submitted a signed application to the lave agreed to complete the above-stated work according the requirements was of the County of San Diego and the State of California pertaining to arranged with the Responsible Party, the person who causes to have destroyed on this property, to ensure proper closure of the monitoring Date:
Print Name: Cybele L. Thompson	Title: Director of Real Estate Assests
Company: City of San Diego	
Mailing Address: 1200 Third Avenue, Suite 1700	0, San Diego, CA 92101

APPENDIX B LABORATORY ANALYTICAL REPORT

Calscience

WORK ORDER NUMBER: 19-04-2362

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Group Delta Consultants, Inc.

Client Project Name: SDSU Mission Valley / SD605

Attention: Alex Santini

370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243

Vikas Patel

Approved for release on 05/08/2019 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	SDSU Mission Valley / SD605
----------------------	-----------------------------

Work Order Number: 19-04-2362

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	6 9 12 15 18 39
5	Quality Control Sample Data	60 60 62
6	Sample Analysis Summary	71
7	Glossary of Terms and Qualifiers	72
8	Chain-of-Custody/Sample Receipt Form	73

Work Order Narrative

Work Order: 19-04-2362 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/30/19. They were assigned to Work Order 19-04-2362.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client: Group Delta Consultants, Inc.

370 Amapola Avenue, Suite 212

Torrance, CA 90501-7243

Work Order: Project Name:

PO Number:

Date/Time Received:

Number of Containers: 19-04-2362

SDSU Mission Valley / SD605

SD605.05

04/30/19 17:00

67

Alex Santini Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
TB-043019	19-04-2362-1	04/30/19 08:00	2	Aqueous
FP1-ENV-10	19-04-2362-2	04/30/19 08:30	7	Solid
FP1-ENV-GW	19-04-2362-3	04/30/19 08:40	6	Aqueous
FP2-ENV-8	19-04-2362-4	04/30/19 09:30	7	Solid
FP2-ENV-GW	19-04-2362-5	04/30/19 09:45	6	Aqueous
FP3-ENV-9	19-04-2362-6	04/30/19 10:15	7	Solid
FP3-ENV-GW	19-04-2362-7	04/30/19 10:20	6	Aqueous
FP4-ENV-7	19-04-2362-8	04/30/19 10:45	7	Solid
FP4-ENV-GW	19-04-2362-9	04/30/19 10:50	6	Aqueous
FP5-ENV-8	19-04-2362-10	04/30/19 11:15	7	Solid
FP5-ENV-GW	19-04-2362-11	04/30/19 11:30	6	Aqueous

Detections Summary

Client: Group Delta Consultants, Inc.

370 Amapola Avenue, Suite 212

Torrance, CA 90501-7243

Work Order: 19-04-2362

Project Name: SDSU Mission Valley / SD605

Received: 04/30/19

Attn: Alex Santini Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
FP1-ENV-10 (19-04-2362-2)						
C13-C14	2.8	J	1.2*	mg/kg	EPA 8015B (M)	EPA 3550B
C13-C22 TPH Diesel Range	2.8		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
FP1-ENV-GW (19-04-2362-3)						
C13-C14	30	J	15*	ug/L	EPA 8015B (M)	EPA 3510C
C15-C16	34	J	15*	ug/L	EPA 8015B (M)	EPA 3510C
C17-C18	15	J	15*	ug/L	EPA 8015B (M)	EPA 3510C
C13-C22 TPH Diesel Range	79		50	ug/L	EPA 8015B (M)	EPA 3510C
GRO (C4-C12) Total	26	J	18*	ug/L	EPA 8015B (M)	EPA 5030C
FP2-ENV-GW (19-04-2362-5)						
C13-C14	27	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
C15-C16	49		45	ug/L	EPA 8015B (M)	EPA 3510C
C17-C18	21	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
C19-C20	16	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
C21-C22	16	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
C13-C22 TPH Diesel Range	130		50	ug/L	EPA 8015B (M)	EPA 3510C
FP3-ENV-9 (19-04-2362-6)						
C21-C22	1.4	J	1.3*	mg/kg	EPA 8015B (M)	EPA 3550B
C13-C22 TPH Diesel Range	1.4		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
FP3-ENV-GW (19-04-2362-7)						
C25-C26	16	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
C27-C28	16	J	14*	ug/L	EPA 8015B (M)	EPA 3510C
FP4-ENV-7 (19-04-2362-8)						
Acetone	46		42	ug/kg	EPA 8260B	EPA 5035
FP5-ENV-8 (19-04-2362-10)						
C13-C14	1.7	J	1.2*	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	3.0	J	1.2*	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	6.5		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C26	11		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C27-C28	22		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C13-C22 TPH Diesel Range	4.8		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
•					, ,	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Analytical Report

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-GW	19-04-2362-3-F	04/30/19 08:40	Aqueous	GC 47	05/02/19	05/03/19 14:23	190502B01B
Comment(s): - Results were evaluated t	to the MDL (DL), cond	centrations >= to	o the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u> <u>i</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
C13-C14	30	4	46	15	1.00	J	
C15-C16	34	4	46	15	1.00	J	
C17-C18	15	4	46	15	1.00	J	
C19-C20	ND	4	46	15	1.00		
C21-C22	ND	4	46	15	1.00		
C23-C24	ND	4	46	15	1.00		
C25-C26	ND	4	46	15	1.00		
C27-C28	ND	4	46	15	1.00		
C13-C22 TPH Diesel Range	79	Ę	50	16	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
n-Octacosane	70	6	68-140				

FP2-ENV-GW			4/30/19 A 9:45	queous GC 47	05/02/19	05/03/19 190502B 14:44	801B
Comment(s):	- Results were evaluated to	the MDL (DL), concent	trations >= to the	MDL (DL) but < RL	(LOQ), if found, are	qualified with a "J" flag.	
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
C13-C14		27	45	14	1.00	J	
C15-C16		49	45	14	1.00		
C17-C18		21	45	14	1.00	J	
C19-C20		16	45	14	1.00	J	
C21-C22		16	45	14	1.00	J	
C23-C24		ND	45	14	1.00		
C25-C26		ND	45	14	1.00		
C27-C28		ND	45	14	1.00		
C13-C22 TPH D	iesel Range	130	50	16	1.00		
Surrogate		Rec. (%)	<u>Cont</u>	rol Limits Qualif	<u>iers</u>		
n-Octacosane		102	68-14	40			

Analytical Report

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP3-ENV-GW	19-04-2362-7-F	04/30/19 10:20	Aqueous	GC 47	05/02/19	05/03/19 18:38	190502B01B
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= t	to the MDL (DL	but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C13-C14	ND		45	14	1.00		
C15-C16	ND		45	14	1.00		
C17-C18	ND		45	14	1.00		
C19-C20	ND		45	14	1.00		
C21-C22	ND		45	14	1.00		
C23-C24	ND		45	14	1.00		
C25-C26	16		45	14	1.00	J	
C27-C28	16		45	14	1.00	J	
C13-C22 TPH Diesel Range	ND		50	16	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers			
n-Octacosane	86		68-140				

FP4-ENV-GW	19-04-2		04/30/19 0:50	Aqueous (GC 47	05/02/19	05/03/19 15:27	190502B01B
Comment(s):	- Results were evaluated to the MDL	. (DL), concen	trations >= to the	ne MDL (DL) I	but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>		<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
C13-C14		ND	46		15	1.00		
C15-C16		ND	46		15	1.00		
C17-C18		ND	46		15	1.00		
C19-C20		ND	46		15	1.00		
C21-C22		ND	46		15	1.00		
C23-C24		ND	46		15	1.00		
C25-C26		ND	46		15	1.00		
C27-C28		ND	46		15	1.00		
C13-C22 TPH D	iesel Range	ND	50		16	1.00		
<u>Surrogate</u>		Rec. (%)	<u>) Co</u>	ntrol Limits	Qualifiers			
n-Octacosane		102	68-	140				

Analytical Report

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 3510C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-GW	19-04-2362-11-F	04/30/19 11:30	Aqueous	GC 47	05/02/19	05/03/19 15:48	190502B01B
Comment(s): - Results were evaluated	to the MDL (DL), con-	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C13-C14	ND		45	14	1.00		
C15-C16	ND		45	14	1.00		
C17-C18	ND		45	14	1.00		
C19-C20	ND		45	14	1.00		
C21-C22	ND		45	14	1.00		
C23-C24	ND		45	14	1.00		
C25-C26	ND		45	14	1.00		
C27-C28	ND		45	14	1.00		
C13-C22 TPH Diesel Range	ND		50	16	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
n-Octacosane	103		68-140				

Method Blank		099-15-542-401	N/A	Aqueous	GC 47	05/02/19	05/02/19 12:16	190502B01B
Comment(s):	- Results were evaluated to t	he MDL (DL), conce	entrations >= to the	ne MDL (DL)	but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
C13-C14		ND	50		16	1.00		
C15-C16		ND	50		16	1.00		
C17-C18		ND	50		16	1.00		
C19-C20		ND	50		16	1.00		
C21-C22		ND	50		16	1.00		
C23-C24		ND	50		16	1.00		
C25-C26		ND	50		16	1.00		
C27-C28		ND	50		16	1.00		
C13-C22 TPH Die	esel Range	ND	50		16	1.00		
<u>Surrogate</u>		Rec. (<u>%)</u> <u>Co</u>	ntrol Limits	Qualifiers			
n-Octacosane		89	68-	140				

Page 1 of 3

Analytical Report

Group Delta Consultants, Inc.

Date Received:

Work Order:

19-04-2362

Torrance, CA 90501-7243

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units: mg/kg

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-10	19-04-2362-2-A	04/30/19 08:30	Solid	GC 50	05/03/19	05/03/19 21:44	190503B08C
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C13-C14	2.8		5.0	1.2	1.00	J	
C15-C16	ND		5.0	1.2	1.00		
C17-C18	ND		5.0	1.2	1.00		
C19-C20	ND		5.0	1.2	1.00		
C21-C22	ND		5.0	1.2	1.00		
C23-C24	ND		5.0	1.2	1.00		
C25-C26	ND		5.0	1.2	1.00		
C27-C28	ND		5.0	1.2	1.00		
C13-C22 TPH Diesel Range	2.8		5.0	1.3	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	į		
n-Octacosane	99		68-140				

FP2-ENV-8		19-04-2362-4-A	04/30/19 09:30	Solid GC 50	05/03/19	05/03/19 22:04	190503B08C
Comment(s):	- Results were evaluated to	the MDL (DL), conce	entrations >= to the	ne MDL (DL) but < R	RL (LOQ), if found, are	qualified with	n a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	MD	<u>L</u> <u>DF</u>		<u>Qualifiers</u>
C13-C14		ND	5.0	1.3	1.00		
C15-C16		ND	5.0	1.3	1.00		
C17-C18		ND	5.0	1.3	1.00		
C19-C20		ND	5.0	1.3	1.00		
C21-C22		ND	5.0	1.3	1.00		
C23-C24		ND	5.0	1.3	1.00		
C25-C26		ND	5.0	1.3	1.00		
C27-C28		ND	5.0	1.3	1.00		
C13-C22 TPH D	iesel Range	ND	5.0	1.3	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>%)</u> <u>Co</u>	ntrol Limits Qua	alifiers		
n-Octacosane		93	68-	140			

Page 2 of 3

Analytical Report

Group Delta Consultants, Inc.

Date Received:

Work Order:

19-04-2362

Torrance, CA 90501-7243

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units: mg/kg

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP3-ENV-9	19-04-2362-6-A	04/30/19 10:15	Solid	GC 50	05/03/19	05/03/19 22:24	190503B08C
Comment(s): - Results were evaluated	I to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C13-C14	ND		5.0	1.3	1.00		
C15-C16	ND		5.0	1.3	1.00		
C17-C18	ND		5.0	1.3	1.00		
C19-C20	ND		5.0	1.3	1.00		
C21-C22	1.4		5.0	1.3	1.00	J	
C23-C24	ND		5.0	1.3	1.00		
C25-C26	ND		5.0	1.3	1.00		
C27-C28	ND		5.0	1.3	1.00		
C13-C22 TPH Diesel Range	1.4		5.0	1.3	1.00		
Surrogate	Rec.	(%)	Control Limits	s Qualifiers	1		
n-Octacosane	100	- \ /	68-140		•		

FP4-ENV-7		19-04-2362-8-A	04/30/19 10:45	Solid GC 50	05/03/19	05/03/19 22:43	190503B08C
Comment(s):	- Results were evaluated	to the MDL (DL), cond	entrations >= to t	the MDL (DL) but < f	RL (LOQ), if found, are	e qualified with	n a "J" flag.
<u>Parameter</u>		Resu	<u>t</u> RL	<u>M</u> E	<u>DF</u>		<u>Qualifiers</u>
C13-C14		ND	5.0) 1.2	1.00		
C15-C16		ND	5.0) 1.2	1.00		
C17-C18		ND	5.0) 1.2	1.00		
C19-C20		ND	5.0) 1.2	1.00		
C21-C22		ND	5.0) 1.2	1.00		
C23-C24		ND	5.0) 1.2	1.00		
C25-C26		ND	5.0) 1.2	1.00		
C27-C28		ND	5.0) 1.2	1.00		
C13-C22 TPH D	Diesel Range	ND	5.0	1.3	1.00		
<u>Surrogate</u>		Rec.	(<u>%)</u> <u>Co</u>	ntrol Limits Qu	alifiers		
n-Octacosane		100	68-	-140			

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: SDSU Mission Valley / SD605 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-8	19-04-2362-10-A	04/30/19 11:15	Solid	GC 50	05/03/19	05/03/19 23:24	190503B08C
Comment(s): - Results were evalua	ted to the MDL (DL), cond	centrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C13-C14	1.7		5.0	1.2	1.00	J	
C15-C16	ND		5.0	1.2	1.00		
C17-C18	ND		5.0	1.2	1.00		
C19-C20	ND		5.0	1.2	1.00		
C21-C22	3.0		5.0	1.2	1.00	J	
C23-C24	6.5		5.0	1.2	1.00		
C25-C26	11		5.0	1.2	1.00		
C27-C28	22		5.0	1.2	1.00		
C13-C22 TPH Diesel Range	4.8		5.0	1.3	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers	i		
n-Octacosane	111		68-140		•		

Method Blank		099-15-582-569	N/A S	Solid GC 50	05/03/19	05/03/19 16:23	190503B08C
Comment(s):	- Results were evaluated to	the MDL (DL), conce	entrations >= to th	e MDL (DL) but < RI	L (LOQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
C13-C14		ND	5.0	1.3	1.00		
C15-C16		ND	5.0	1.3	1.00		
C17-C18		ND	5.0	1.3	1.00		
C19-C20		ND	5.0	1.3	1.00		
C21-C22		ND	5.0	1.3	1.00		
C23-C24		ND	5.0	1.3	1.00		
C25-C26		ND	5.0	1.3	1.00		
C27-C28		ND	5.0	1.3	1.00		
C13-C22 TPH D	Diesel Range	ND	5.0	1.3	1.00		
<u>Surrogate</u>		Rec. (9	<u>%)</u> <u>Con</u>	trol Limits Qua	<u>lifiers</u>		
n-Octacosane		98	68-1	140			

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: SDSU Mission Valley / SD605 Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-10	19-04-2362-2-F	04/30/19 08:30	Solid	GC 4	04/30/19	05/01/19 17:13	190501L024
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>llt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C4-C5	ND		0.099	0.057	1.00		
C6	ND		0.099	0.030	1.00		
C7	ND		0.099	0.032	1.00		
C8	ND		0.099	0.033	1.00		
C9-C10	ND		0.099	0.036	1.00		
C11-C12	ND		0.099	0.031	1.00		
GRO (C4-C12) Total	ND		0.099	0.057	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	112		60-126				

FP2-ENV-8	19-04-2362-4-F	04/30/19 09:30	Solid	GC 4	04/30/19	05/01/19 17:46	190501L024
Comment(s): - Results were evaluated to	to the MDL (DL), cond	centrations >	= to the MDL (D	DL) but < RL (LC	DQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
C4-C5	ND		0.095	0.055	1.00		
C6	ND		0.095	0.029	1.00		
C7	ND		0.095	0.030	1.00		
C8	ND		0.095	0.031	1.00		
C9-C10	ND		0.095	0.034	1.00		
C11-C12	ND		0.095	0.030	1.00		
GRO (C4-C12) Total	ND		0.095	0.055	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifier</u>	<u>S</u>		
1,4-Bromofluorobenzene	107		60-126				

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: SDSU Mission Valley / SD605 Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP3-ENV-9	19-04-2362-6-F	04/30/19 10:15	Solid	GC 4	04/30/19	05/01/19 18:20	190501L024
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C4-C5	ND		0.091	0.052	1.00		
C6	ND		0.091	0.027	1.00		
C7	ND		0.091	0.029	1.00		
C8	ND		0.091	0.030	1.00		
C9-C10	ND		0.091	0.033	1.00		
C11-C12	ND		0.091	0.029	1.00		
GRO (C4-C12) Total	ND		0.091	0.052	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	111		60-126				

FP4-ENV-7	19-04-2362-8-F	04/30/19 10:45	Solid	GC 4	04/30/19	05/01/19 18:54	190501L024
Comment(s): - Results were evaluated to	to the MDL (DL), cond	centrations >:	= to the MDL (D	DL) but < RL (LC	Q), if found, are	qualified with	n a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
C4-C5	ND		0.097	0.056	1.00		
C6	ND		0.097	0.029	1.00		
C7	ND		0.097	0.031	1.00		
C8	ND		0.097	0.032	1.00		
C9-C10	ND		0.097	0.035	1.00		
C11-C12	ND		0.097	0.030	1.00		
GRO (C4-C12) Total	ND		0.097	0.056	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>	<u>s</u>		
1,4-Bromofluorobenzene	105		60-126				

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: SDSU Mission Valley / SD605 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-8	19-04-2362-10-F	04/30/19 11:15	Solid	GC 4	04/30/19	05/01/19 19:28	190501L024
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>tualifiers</u>
C4-C5	ND		0.10	0.059	1.00		
C6	ND		0.10	0.031	1.00		
C7	ND		0.10	0.032	1.00		
C8	ND		0.10	0.034	1.00		
C9-C10	ND		0.10	0.037	1.00		
C11-C12	ND		0.10	0.032	1.00		
GRO (C4-C12) Total	ND		0.10	0.059	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	110		60-126				

Method Blank	099-13-043-	·922 N/A	Solid	GC 4	05/01/19	05/01/19 16:05	190501L024
Comment(s): - R	esults were evaluated to the MDL (DL	.), concentrations	s >= to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
C4-C5		ND	0.10	0.058	1.00		
C6		ND	0.10	0.030	1.00		
C7		ND	0.10	0.032	1.00		
C8		ND	0.10	0.033	1.00		
C9-C10		ND	0.10	0.036	1.00		
C11-C12		ND	0.10	0.032	1.00		
GRO (C4-C12) Total		ND	0.10	0.058	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenz	zene	100	60-126				

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-GW	19-04-2362-3-D	04/30/19 08:40	Aqueous	GC 25	05/01/19	05/01/19 17:43	190501L047
Comment(s): - Results were evaluated t	o the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>lualifiers</u>
C4-C5	ND		50	15	1.00		
C6	ND		50	14	1.00		
C7	ND		50	15	1.00		
C8	ND		50	15	1.00		
C9-C10	ND		50	15	1.00		
C11-C12	ND		50	18	1.00		
GRO (C4-C12) Total	26		50	18	1.00	J	
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	75		38-134				

FP2-ENV-GW		04/30/19 09:45	Aqueous GC 25	05/01/19	05/01/19 190501L04 18:17	47
Comment(s): - Results were evaluate	d to the MDL (DL), concer	ntrations >= to th	ne MDL (DL) but < RI	(LOQ), if found, are	qualified with a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
C4-C5	ND	50	15	1.00		
C6	ND	50	14	1.00		
C7	ND	50	15	1.00		
C8	ND	50	15	1.00		
C9-C10	ND	50	15	1.00		
C11-C12	ND	50	18	1.00		
GRO (C4-C12) Total	ND	50	18	1.00		
Surrogate	<u>Rec. (%</u>	<u>(6)</u> <u>Cor</u>	ntrol Limits Qua	<u>lifiers</u>		
1,4-Bromofluorobenzene	72	38-	134			

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP3-ENV-GW	19-04-2362-7-D	04/30/19 10:20	Aqueous	GC 25	05/01/19	05/01/19 18:50	190501L047
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C4-C5	ND	:	50	15	1.00		
C6	ND	:	50	14	1.00		
C7	ND	:	50	15	1.00		
C8	ND	:	50	15	1.00		
C9-C10	ND	:	50	15	1.00		
C11-C12	ND	:	50	18	1.00		
GRO (C4-C12) Total	ND	:	50	18	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	68	;	38-134				

FP4-ENV-GW	19-04-2362-9-D	04/30/19 10:50	Aqueous GC 25	05/01/19	05/01/19 1905 19:24	501L047
Comment(s): - Results were evaluated	uated to the MDL (DL), cond	entrations >= to t	he MDL (DL) but < R	L (LOQ), if found, are	qualified with a "J" flag	J.
<u>Parameter</u>	Resul	<u>t RL</u>	<u>MDI</u>	<u>DF</u>	<u>Qualifier</u>	<u>s</u>
C4-C5	ND	50	15	1.00		
C6	ND	50	14	1.00		
C7	ND	50	15	1.00		
C8	ND	50	15	1.00		
C9-C10	ND	50	15	1.00		
C11-C12	ND	50	18	1.00		
GRO (C4-C12) Total	ND	50	18	1.00		
Surrogate	Rec.	(<u>%)</u> <u>Co</u>	ntrol Limits Qua	<u>llifiers</u>		
1,4-Bromofluorobenzene	72	38-	134			

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-GW	19-04-2362-11-D	04/30/19 11:30	Aqueous	GC 25	05/01/19	05/01/19 19:57	190501L047
Comment(s): - Results were evaluated t	to the MDL (DL), cond	centrations >=	to the MDL (DI) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
C4-C5	ND		50	15	1.00		
C6	ND		50	14	1.00		
C7	ND		50	15	1.00		
C8	ND		50	15	1.00		
C9-C10	ND		50	15	1.00		
C11-C12	ND		50	18	1.00		
GRO (C4-C12) Total	ND		50	18	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	i		
1,4-Bromofluorobenzene	72		38-134				

Method Blank	099-13-047-756 N/A	Aqueous	GC 25	05/01/19	05/01/19 190501L047 13:47
Comment(s): - Results were evaluated	to the MDL (DL), concentrations >	= to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
C4-C5	ND	50	15	1.00	
C6	ND	50	14	1.00	
C7	ND	50	15	1.00	
C8	ND	50	15	1.00	
C9-C10	ND	50	15	1.00	
C11-C12	ND	50	18	1.00	
GRO (C4-C12) Total	ND	50	18	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	74	38-134			

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

Units:

ug/L Page 1 of 21

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
TB-043019	19-04-2362-1-A	04/30/19 08:00	Aqueous	GC/MS PP	05/04/19	05/04/19 22:27	190504L016
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	60	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	60	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 2 of 21

			. age = e. = .
<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
ND	1.0	1.00	
ND	0.50	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	10	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	0.50	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	100	1.00	
Rec. (%)	Control Limits	Qualifiers	
95	77-120		
	ND N	ND 1.0 ND 0.50 ND 0.50 ND 1.0 ND 10 ND 1.0 ND 10 ND 10 ND 10 ND 1.0 N	ND 1.0 1.00 ND 0.50 1.00 ND 0.50 1.00 ND 1.0 1.00 ND 10 1.00 ND 1.0 1.00 ND 1.0 1.00 ND 10 1.00 ND 10 1.00 ND 10 1.00 ND 1.0 1.00

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 3 of 21

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	80-128	
1,2-Dichloroethane-d4	100	80-129	
Toluene-d8	97	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

Units:

ug/L

Project: SDSU Mission Valley / SD605

Page 4 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-GW	19-04-2362-3-A	04/30/19 08:40	Aqueous	GC/MS PP	05/04/19	05/05/19 03:10	190504L016
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0		1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
2,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: SDSU Mission Valley / SD605
 Page 5 of 21

Project. 3D30 Mission Valley / 3D603				Page 5 01 21
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	10	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	96	77-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 6 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	102	80-128	
1,2-Dichloroethane-d4	97	80-129	
Toluene-d8	98	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

Units:

ug/L Page 7 of 21

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP2-ENV-GW	19-04-2362-5-A	04/30/19 09:45	Aqueous	GC/MS PP	05/04/19	05/05/19 03:42	190504L016
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	60	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 8 of 21

				. age e e
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	10	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	95	77-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 9 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	100	80-128	
1,2-Dichloroethane-d4	99	80-129	
Toluene-d8	97	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

Units:

ug/L

Project: SDSU Mission Valley / SD605

Page 10 of 21

No. No.	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Acetone ND 20 1.00 Benzene ND 1.0 1.00 Bromochicomethane ND 1.0 1.00 Bromochicomethane ND 2.0 1.00 Bromoform ND 1.0 1.00 Bromomethane ND 5.0 1.00 Bromomethane ND 50 1.00 2-Butanone ND 50 1.00 2-Butanone ND 1.0 1.00 2-Butanone ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-Butylbenzene ND 1.0 1.00 2-B	FP3-ENV-GW	19-04-2362-7-A		Aqueous	GC/MS PP	05/04/19	05/05/19 04:13	190504L016
Benzane ND 1.0 1.00 Bromobelorzene ND 1.0 1.00 Bromodichoromethane ND 2.0 1.00 Bromodichoromethane ND 1.0 1.00 Bromodichoromethane ND 5.0 1.00 Bromomethane ND 5.0 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 see-Butylbenzene ND 1.0 1.00 see-Butylbenzene ND 1.0 1.00 carbon Tetrachloride ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorocethane ND 1.0 <t< td=""><td><u>Parameter</u></td><td></td><td>Result</td><td><u>RL</u></td><td></td><td><u>DF</u></td><td>Qua</td><td><u>alifiers</u></td></t<>	<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Bromobenzene ND 1.0 1.00 Bromochloromethane ND 2.0 1.00 Bromochloromethane ND 1.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 50 1.00 2-Butanone ND 20 1.00 Bromochine ND 1.0 1.00 Bec-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 0.50 1.00 Carbon Disulfide ND 0.50 1.00 Chlorocharzene ND 1.0 1.00	Acetone		ND	20		1.00		
Bromochloromethane ND 2.0 1.00 Bromodichloromethane ND 1.0 1.00 Bromoform ND 5.0 1.00 Bromomethane ND 50 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tetri-Butylbenzene ND 1.0 1.00 carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 0.50 1.00 Chlorobenzene ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND	Benzene		ND	1.0		1.00		
Bromodichloromethane ND 1.0 1.00 Bromodichloromethane ND 5.0 1.00 Bromomethane ND 50 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 see-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Eertachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorotelurene ND 1.0 1.00 Chlorotelurene ND 1.0 1.00 Chlorotelurene ND 1.0 1.00 4-Chlorotelurene ND 1.0 1.00 4-Chlorotelurene ND 1.0 1.00 1-2-Dibromo-3-Chloropropane ND 5.0 1.00 1-2-Dibromo-3-Chloropropane ND 1.0 1.00 1-2-Dichlorobenzene ND	Bromobenzene		ND	1.0		1.00		
Bromoform ND 5.0 1.00 Bromomethane ND 50 1.00 2-Butanone ND 20 1.00 nButylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 Letr-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorosthane ND 1.0 1.00 Chlorosthane ND 1.0 1.00 Chlorostoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibriorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.0	Bromochloromethane		ND	2.0		1.00		
Bromomethane ND 50 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotorm ND 5.0 1.00 Chlorotormethane ND 1.0 1.00 Chlorototluene ND 1.0 1.00 Chlorototluene ND 1.0 1.00 Chlorototluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0	Bromodichloromethane		ND	1.0		1.00		
2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotethane ND 1.0 1.00 Chlorotethane ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0	Bromoform		ND	5.0		1.00		
n-Butylbenzene	Bromomethane		ND	50		1.00		
sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chlorofothane ND 1.0 1.00 Chlorofothane ND 1.0 1.00 Chlorofothane ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 4-Chlorofoluene ND 1.0 1.00 1-2-Dibromo-S-Chloropropane ND 1.0 1.00 1-2-Dibromo-S-Chloropropane ND 1.0 1.00 1-2-Dibromoethane ND 1.0 1.00 1-2-Dibromoethane ND 1.0 1.00 1-3-Dichloropethane ND	2-Butanone		ND	20		1.00		
tert-Buylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorodhane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chlorodhane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorotobanzene ND 1.0 1.00 1,4-Dichlorotobanzene ND 1.0 1.00 1,4-Dichlorotobanzene ND 1.0 1.00 1,1-Dichlorothane ND <th< td=""><td>n-Butylbenzene</td><td></td><td>ND</td><td>1.0</td><td></td><td>1.00</td><td></td><td></td></th<>	n-Butylbenzene		ND	1.0		1.00		
Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chlorochtane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene	sec-Butylbenzene		ND	1.0		1.00		
Carbon Tetrachloride ND 0.50 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane	tert-Butylbenzene		ND	1.0		1.00		
Chlorobenzene ND 1.0 1.00 Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene <th< td=""><td>Carbon Disulfide</td><td></td><td>ND</td><td>10</td><td></td><td>1.00</td><td></td><td></td></th<>	Carbon Disulfide		ND	10		1.00		
Chloroethane ND 5.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dich	Carbon Tetrachloride		ND	0.5	0	1.00		
Chloroform ND 1.0 1.00 Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroptopane ND 1.0 1.00 1,3-Dichloropropane <td>Chlorobenzene</td> <td></td> <td>ND</td> <td>1.0</td> <td></td> <td>1.00</td> <td></td> <td></td>	Chlorobenzene		ND	1.0		1.00		
Chloromethane ND 10 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00	Chloroethane		ND	5.0		1.00		
2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Chloroform		ND	1.0		1.00		
4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Chloromethane		ND	10		1.00		
Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropthene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	2-Chlorotoluene		ND	1.0		1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	4-Chlorotoluene		ND	1.0		1.00		
1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromochloromethane		ND	2.0		1.00		
Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromo-3-Chloropropane		ND	5.0		1.00		
1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dibromoethane		ND	1.0		1.00		
1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dibromomethane		ND	1.0		1.00		
1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichlorobenzene		ND	1.0		1.00		
Dichlorodifluoromethane ND 5.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,3-Dichlorobenzene		ND	1.0		1.00		
1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,4-Dichlorobenzene		ND	1.0		1.00		
1,2-Dichloroethane ND 0.50 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethane		ND	1.0		1.00		
c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloroethane		ND	0.5	0	1.00		
t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	1,1-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00	c-1,2-Dichloroethene		ND	1.0		1.00		
1,3-Dichloropropane ND 1.0 1.00	t-1,2-Dichloroethene		ND			1.00		
1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane ND 1.0 1.00	1,3-Dichloropropane					1.00		
	2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 11 of 21

			. ago o. = .
<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	1.00	
ND	0.50	1.00	
ND	0.50	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	10	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	0.50	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	100	1.00	
Rec. (%)	Control Limits	Qualifiers	
95	77-120		
	ND N	ND 1.0 ND 0.50 ND 0.50 ND 1.0 ND 10 ND 1.0 ND 10 ND 10 ND 1.0 ND 1.0	ND 1.0 1.00 ND 0.50 1.00 ND 0.50 1.00 ND 1.0 1.00 ND 10 1.00 ND 1.0 1.00 ND 1.0 1.00 ND 10 1.00 ND 10 1.00 ND 10 1.00 ND 1.0 1.00

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 12 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	102	80-128	
1,2-Dichloroethane-d4	99	80-129	
Toluene-d8	97	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

Units:

ug/L

04/30/19

Project: SDSU Mission Valley / SD605

Page 13 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP4-ENV-GW	19-04-2362-9-A	04/30/19 10:50	Aqueous	GC/MS PP	05/04/19	05/05/19 04:45	190504L016
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	1.0		1.00		
Bromobenzene		ND	1.0		1.00		
Bromochloromethane		ND	2.0		1.00		
Bromodichloromethane		ND	1.0		1.00		
Bromoform		ND	5.0		1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0		1.00		
sec-Butylbenzene		ND	1.0		1.00		
tert-Butylbenzene		ND	1.0		1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	0	1.00		
Chlorobenzene		ND	1.0		1.00		
Chloroethane		ND	5.0		1.00		
Chloroform		ND	1.0		1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0		1.00		
4-Chlorotoluene		ND	1.0		1.00		
Dibromochloromethane		ND	2.0		1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0		1.00		
1,2-Dibromoethane		ND	1.0		1.00		
Dibromomethane		ND	1.0		1.00		
1,2-Dichlorobenzene		ND	1.0		1.00		
1,3-Dichlorobenzene		ND	1.0		1.00		
1,4-Dichlorobenzene		ND	1.0		1.00		
Dichlorodifluoromethane		ND	5.0		1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	0.5	0	1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 14 of 21

Troject. Oboo Wission Valley / Oboos				1 agc 14 01 21
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	10	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	95	77-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 15 of 21

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	100	80-128	
1,2-Dichloroethane-d4	98	80-129	
Toluene-d8	98	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received:
Work Order:
Preparation:
Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

Units:

ug/L Page 16 of 21

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-GW	19-04-2362-11-A	04/30/19 11:30	Aqueous	GC/MS PP	05/04/19	05/05/19 05:16	190504L016
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	50	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	60	1.00		
1,1-Dichloroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 17 of 21

				: age :: e: =:
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	10	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	1.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	2.0	1.00	
1,1,2,2-Tetrachloroethane	ND	10	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	1.0	1.00	
1,2,4-Trichlorobenzene	ND	1.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
Trichloroethene	ND	1.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	5.0	1.00	
1,2,4-Trimethylbenzene	ND	1.0	1.00	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	10	1.00	
Diisopropyl Ether (DIPE)	ND	2.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.00	
Ethanol	ND	100	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	94	77-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 18 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	80-128	
1,2-Dichloroethane-d4	98	80-129	
Toluene-d8	97	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8260B

04/30/19

ug/L

Units:

Page 19 of 21

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-28690	N/A	Aqueous	GC/MS PP	05/04/19	05/04/19 21:56	190504L016
<u>Parameter</u>	·	Result	RL		DF	Qua	alifiers
Acetone		ND	20		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	50		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	0.5	0	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	5.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	10		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	5.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	60	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

1,3-Dichloropropane2,2-Dichloropropane

1.0

1.0

1.00

1.00

ND

ND

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: SDSU Mission Valley / SD605 Page 20 of 21

Result ND	RL 1.0 0.50 0.50 1.0	DF 1.00 1.00 1.00 1.00	<u>Qualifiers</u>
ND ND ND ND ND	0.50 0.50 1.0 10	1.00 1.00 1.00	
ND ND ND ND	0.50 1.0 10	1.00 1.00	
ND ND ND	1.0 10	1.00	
ND ND	10		
ND		1.00	
	4.0	1.00	
ND	1.0	1.00	
	1.0	1.00	
ND	10	1.00	
ND	10	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	2.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	5.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	0.50	1.00	
ND	2.0	1.00	
ND	1.0	1.00	
ND	1.0	1.00	
ND	10	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	2.0	1.00	
ND	100	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
96	77-120		
	ND N	ND 1.0 ND 1.0 ND 10 ND 10 ND 10 ND 1.0 ND 2.0 ND	ND 1.0 1.00 ND 1.0 1.00 ND 10 1.00 ND 10 1.00 ND 10 1.00 ND 1.0 1.00<

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: SDSU Mission Valley / SD605		Page 21 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	80-128	
1,2-Dichloroethane-d4	97	80-129	
Toluene-d8	97	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

Units:

19-04-2362 EPA 5035 EPA 8260B

Page 1 of 21

04/30/19

ug/kg

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP1-ENV-10	19-04-2362-2-C	04/30/19 08:30	Solid	GC/MS QQ	04/30/19	05/03/19 19:35	190503L015
<u>Parameter</u>		Result	1	RL	<u>DF</u>	Qua	<u>lifiers</u>
Acetone		ND	4	46	1.00		
Benzene		ND	(0.92	1.00		
Bromobenzene		ND	(0.92	1.00		
Bromochloromethane		ND	•	1.8	1.00		
Bromodichloromethane		ND	(0.92	1.00		
Bromoform		ND	4	4.6	1.00		
Bromomethane		ND	•	18	1.00		
2-Butanone		ND		18	1.00		
n-Butylbenzene		ND	(0.92	1.00		
sec-Butylbenzene		ND	(0.92	1.00		
tert-Butylbenzene		ND	(0.92	1.00		
Carbon Disulfide		ND	9	9.2	1.00		
Carbon Tetrachloride		ND	(0.92	1.00		
Chlorobenzene		ND	(0.92	1.00		
Chloroethane		ND		1.8	1.00		
Chloroform		ND	(0.92	1.00		
Chloromethane		ND		18	1.00		
2-Chlorotoluene		ND	(0.92	1.00		
4-Chlorotoluene		ND	(0.92	1.00		
Dibromochloromethane		ND		1.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	4.6	1.00		
1,2-Dibromoethane		ND	(0.92	1.00		
Dibromomethane		ND	(0.92	1.00		
1,2-Dichlorobenzene		ND	(0.92	1.00		
1,3-Dichlorobenzene		ND	(0.92	1.00		
1,4-Dichlorobenzene		ND	(0.92	1.00		
Dichlorodifluoromethane		ND		1.8	1.00		
1,1-Dichloroethane		ND	(0.92	1.00		
1,2-Dichloroethane		ND	(0.92	1.00		
1,1-Dichloroethene		ND	(0.92	1.00		
c-1,2-Dichloroethene		ND	(0.92	1.00		
t-1,2-Dichloroethene		ND	(0.92	1.00		
1,2-Dichloropropane		ND	(0.92	1.00		
1,3-Dichloropropane		ND	(0.92	1.00		
2,2-Dichloropropane		ND	4	4.6	1.00		

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 2 of 21

<u> </u>				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.92	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.92	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.92	1.00	
p-Isopropyltoluene	ND	0.92	1.00	
Methylene Chloride	ND	9.2	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	9.2	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.92	1.00	
1,1,1,2-Tetrachloroethane	ND	0.92	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.92	1.00	
Toluene	ND	0.92	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.92	1.00	
1,1,2-Trichloroethane	ND	0.92	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.2	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	9.2	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	9.2	1.00	
Vinyl Chloride	ND	0.92	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.92	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.92	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.92	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.92	1.00	
Ethanol	ND	460	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 3 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	105	79-133	
1,2-Dichloroethane-d4	118	71-155	
Toluene-d8	102	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

Units:

19-04-2362 EPA 5035 EPA 8260B ug/kg

04/30/19

Project: SDSU Mission Valley / SD605

Page 4 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP2-ENV-8	19-04-2362-4-C	04/30/19 09:30	Solid	GC/MS QQ	04/30/19	05/03/19 20:04	190503L015
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
Acetone		ND	60		1.00		
Benzene		ND	1.2	2	1.00		
Bromobenzene		ND	1.2	2	1.00		
Bromochloromethane		ND	2.4	4	1.00		
Bromodichloromethane		ND	1.2	2	1.00		
Bromoform		ND	6.0)	1.00		
Bromomethane		ND	24		1.00		
2-Butanone		ND	24		1.00		
n-Butylbenzene		ND	1.2	2	1.00		
sec-Butylbenzene		ND	1.2	2	1.00		
tert-Butylbenzene		ND	1.2	2	1.00		
Carbon Disulfide		ND	12		1.00		
Carbon Tetrachloride		ND	1.2	2	1.00		
Chlorobenzene		ND	1.2	2	1.00		
Chloroethane		ND	2.4	4	1.00		
Chloroform		ND	1.2	2	1.00		
Chloromethane		ND	24		1.00		
2-Chlorotoluene		ND	1.2	2	1.00		
4-Chlorotoluene		ND	1.2	2	1.00		
Dibromochloromethane		ND	2.4	4	1.00		
1,2-Dibromo-3-Chloropropane		ND	6.0)	1.00		
1,2-Dibromoethane		ND	1.2	2	1.00		
Dibromomethane		ND	1.2	2	1.00		
1,2-Dichlorobenzene		ND	1.2	2	1.00		
1,3-Dichlorobenzene		ND	1.2	2	1.00		
1,4-Dichlorobenzene		ND	1.2	2	1.00		
Dichlorodifluoromethane		ND	2.4	4	1.00		
1,1-Dichloroethane		ND	1.2	2	1.00		
1,2-Dichloroethane		ND	1.2	2	1.00		
1,1-Dichloroethene		ND	1.2	2	1.00		
c-1,2-Dichloroethene		ND	1.2		1.00		
t-1,2-Dichloroethene		ND	1.2		1.00		
1,2-Dichloropropane		ND	1.2		1.00		
1,3-Dichloropropane		ND	1.2		1.00		
2,2-Dichloropropane		ND	6.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 5 of 21

1 Toject. Oboo Mission Valley / Oboos				1 age 3 of 21
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	2.4	1.00	
c-1,3-Dichloropropene	ND	1.2	1.00	
t-1,3-Dichloropropene	ND	2.4	1.00	
Ethylbenzene	ND	1.2	1.00	
2-Hexanone	ND	24	1.00	
Isopropylbenzene	ND	1.2	1.00	
p-Isopropyltoluene	ND	1.2	1.00	
Methylene Chloride	ND	12	1.00	
4-Methyl-2-Pentanone	ND	24	1.00	
Naphthalene	ND	12	1.00	
n-Propylbenzene	ND	2.4	1.00	
Styrene	ND	1.2	1.00	
1,1,1,2-Tetrachloroethane	ND	1.2	1.00	
1,1,2,2-Tetrachloroethane	ND	2.4	1.00	
Tetrachloroethene	ND	1.2	1.00	
Toluene	ND	1.2	1.00	
1,2,3-Trichlorobenzene	ND	2.4	1.00	
1,2,4-Trichlorobenzene	ND	2.4	1.00	
1,1,1-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.00	
Trichloroethene	ND	2.4	1.00	
Trichlorofluoromethane	ND	12	1.00	
1,2,3-Trichloropropane	ND	2.4	1.00	
1,2,4-Trimethylbenzene	ND	2.4	1.00	
1,3,5-Trimethylbenzene	ND	2.4	1.00	
Vinyl Acetate	ND	12	1.00	
Vinyl Chloride	ND	1.2	1.00	
p/m-Xylene	ND	2.4	1.00	
o-Xylene	ND	1.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.4	1.00	
Tert-Butyl Alcohol (TBA)	ND	24	1.00	
Diisopropyl Ether (DIPE)	ND	1.2	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.2	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.2	1.00	
Ethanol	ND	600	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	98	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 6 of 21

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	108	79-133	
1,2-Dichloroethane-d4	120	71-155	
Toluene-d8	101	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5035 EPA 8260B

04/30/19

Units:

ug/kg Page 7 of 21

Project: SDSU Mission Valley / SD605

ime QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP3-ENV-9	19-04-2362-6-C	04/30/19 10:15	Solid	GC/MS QQ	04/30/19	05/03/19 20:33	190503L015
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	4	16	1.00		
Benzene		ND	().93	1.00		
Bromobenzene		ND	(0.93	1.00		
Bromochloromethane		ND	1	1.9	1.00		
Bromodichloromethane		ND	().93	1.00		
Bromoform		ND	2	1.6	1.00		
Bromomethane		ND	1	19	1.00		
2-Butanone		ND	1	19	1.00		
n-Butylbenzene		ND	().93	1.00		
sec-Butylbenzene		ND	().93	1.00		
tert-Butylbenzene		ND	().93	1.00		
Carbon Disulfide		ND	9	9.3	1.00		
Carbon Tetrachloride		ND	().93	1.00		
Chlorobenzene		ND	().93	1.00		
Chloroethane		ND	1	1.9	1.00		
Chloroform		ND	().93	1.00		
Chloromethane		ND	1	19	1.00		
2-Chlorotoluene		ND	().93	1.00		
4-Chlorotoluene		ND	().93	1.00		
Dibromochloromethane		ND	1	1.9	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	1.6	1.00		
1,2-Dibromoethane		ND	().93	1.00		
Dibromomethane		ND	().93	1.00		
1,2-Dichlorobenzene		ND	().93	1.00		
1,3-Dichlorobenzene		ND	().93	1.00		
1,4-Dichlorobenzene		ND	().93	1.00		
Dichlorodifluoromethane		ND	1	1.9	1.00		
1,1-Dichloroethane		ND	(0.93	1.00		
1,2-Dichloroethane		ND	().93	1.00		
1,1-Dichloroethene		ND	().93	1.00		
c-1,2-Dichloroethene		ND	(0.93	1.00		
t-1,2-Dichloroethene		ND	().93	1.00		
1,2-Dichloropropane		ND	().93	1.00		
1,3-Dichloropropane		ND	(0.93	1.00		
2,2-Dichloropropane		ND	2	1.6	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 8 of 21

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.9	1.00	
c-1,3-Dichloropropene	ND	0.93	1.00	
t-1,3-Dichloropropene	ND	1.9	1.00	
Ethylbenzene	ND	0.93	1.00	
2-Hexanone	ND	19	1.00	
Isopropylbenzene	ND	0.93	1.00	
p-Isopropyltoluene	ND	0.93	1.00	
Methylene Chloride	ND	9.3	1.00	
4-Methyl-2-Pentanone	ND	19	1.00	
Naphthalene	ND	9.3	1.00	
n-Propylbenzene	ND	1.9	1.00	
Styrene	ND	0.93	1.00	
1,1,1,2-Tetrachloroethane	ND	0.93	1.00	
1,1,2,2-Tetrachloroethane	ND	1.9	1.00	
Tetrachloroethene	ND	0.93	1.00	
Toluene	ND	0.93	1.00	
1,2,3-Trichlorobenzene	ND	1.9	1.00	
1,2,4-Trichlorobenzene	ND	1.9	1.00	
1,1,1-Trichloroethane	ND	0.93	1.00	
1,1,2-Trichloroethane	ND	0.93	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.3	1.00	
Trichloroethene	ND	1.9	1.00	
Trichlorofluoromethane	ND	9.3	1.00	
1,2,3-Trichloropropane	ND	1.9	1.00	
1,2,4-Trimethylbenzene	ND	1.9	1.00	
1,3,5-Trimethylbenzene	ND	1.9	1.00	
Vinyl Acetate	ND	9.3	1.00	
Vinyl Chloride	ND	0.93	1.00	
p/m-Xylene	ND	1.9	1.00	
o-Xylene	ND	0.93	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.9	1.00	
Tert-Butyl Alcohol (TBA)	ND	19	1.00	
Diisopropyl Ether (DIPE)	ND	0.93	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.93	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.93	1.00	
Ethanol	ND	460	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 9 of 21

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	109	79-133	
1,2-Dichloroethane-d4	119	71-155	
Toluene-d8	101	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5035 EPA 8260B

04/30/19

Units:

ug/kg

Project: SDSU Mission Valley / SD605

Page 10 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP4-ENV-7	19-04-2362-8-C	04/30/19 10:45	Solid	GC/MS QQ	04/30/19	05/06/19 14:16	190506L015
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		46	4.	2	1.00		
Benzene		ND	0	.85	1.00		
Bromobenzene		ND	0	.85	1.00		
Bromochloromethane		ND	1	.7	1.00		
Bromodichloromethane		ND	0	.85	1.00		
Bromoform		ND	4	.2	1.00		
Bromomethane		ND	1	7	1.00		
2-Butanone		ND	1	7	1.00		
n-Butylbenzene		ND	0	.85	1.00		
sec-Butylbenzene		ND	0	.85	1.00		
tert-Butylbenzene		ND	0	.85	1.00		
Carbon Disulfide		ND	8	.5	1.00		
Carbon Tetrachloride		ND	0	.85	1.00		
Chlorobenzene		ND	0	.85	1.00		
Chloroethane		ND	1	.7	1.00		
Chloroform		ND	0	.85	1.00		
Chloromethane		ND	1	7	1.00		
2-Chlorotoluene		ND	0	.85	1.00		
4-Chlorotoluene		ND	0	.85	1.00		
Dibromochloromethane		ND	1	.7	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	.2	1.00		
1,2-Dibromoethane		ND	0	.85	1.00		
Dibromomethane		ND	0	.85	1.00		
1,2-Dichlorobenzene		ND	0	.85	1.00		
1,3-Dichlorobenzene		ND	0	.85	1.00		
1,4-Dichlorobenzene		ND	0	.85	1.00		
Dichlorodifluoromethane		ND	1	.7	1.00		
1,1-Dichloroethane		ND	0	.85	1.00		
1,2-Dichloroethane		ND	0	.85	1.00		
1,1-Dichloroethene		ND		.85	1.00		
c-1,2-Dichloroethene		ND	0	.85	1.00		
t-1,2-Dichloroethene		ND		.85	1.00		
1,2-Dichloropropane		ND		.85	1.00		
1,3-Dichloropropane		ND		.85	1.00		
2,2-Dichloropropane		ND	4	.2	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 11 of 21

Project. 3D30 Mission Valley / 3D605				Page 11 01 21
Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.7	1.00	
c-1,3-Dichloropropene	ND	0.85	1.00	
t-1,3-Dichloropropene	ND	1.7	1.00	
Ethylbenzene	ND	0.85	1.00	
2-Hexanone	ND	17	1.00	
Isopropylbenzene	ND	0.85	1.00	
p-Isopropyltoluene	ND	0.85	1.00	
Methylene Chloride	ND	8.5	1.00	
4-Methyl-2-Pentanone	ND	17	1.00	
Naphthalene	ND	8.5	1.00	
n-Propylbenzene	ND	1.7	1.00	
Styrene	ND	0.85	1.00	
1,1,1,2-Tetrachloroethane	ND	0.85	1.00	
1,1,2,2-Tetrachloroethane	ND	1.7	1.00	
Tetrachloroethene	ND	0.85	1.00	
Toluene	ND	0.85	1.00	
1,2,3-Trichlorobenzene	ND	1.7	1.00	
1,2,4-Trichlorobenzene	ND	1.7	1.00	
1,1,1-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloroethane	ND	0.85	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.5	1.00	
Trichloroethene	ND	1.7	1.00	
Trichlorofluoromethane	ND	8.5	1.00	
1,2,3-Trichloropropane	ND	1.7	1.00	
1,2,4-Trimethylbenzene	ND	1.7	1.00	
1,3,5-Trimethylbenzene	ND	1.7	1.00	
Vinyl Acetate	ND	8.5	1.00	
Vinyl Chloride	ND	0.85	1.00	
p/m-Xylene	ND	1.7	1.00	
o-Xylene	ND	0.85	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.7	1.00	
Tert-Butyl Alcohol (TBA)	ND	17	1.00	
Diisopropyl Ether (DIPE)	ND	0.85	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.85	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.85	1.00	
Ethanol	ND	420	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 12 of 21

Surrogate	Rec. (%)	Control Limits	Qualifiers
Dibromofluoromethane	105	79-133	
1,2-Dichloroethane-d4	115	71-155	
Toluene-d8	101	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

Units:

19-04-2362 EPA 5035 EPA 8260B ug/kg

04/30/19

Project: SDSU Mission Valley / SD605

Page 13 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
FP5-ENV-8	19-04-2362-10-C	04/30/19 11:15	Solid	GC/MS QQ	04/30/19	05/06/19 14:44	190506L015
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Acetone		ND	4	3	1.00		
Benzene		ND	0	.87	1.00		
Bromobenzene		ND	0	.87	1.00		
Bromochloromethane		ND	1	.7	1.00		
Bromodichloromethane		ND	0	.87	1.00		
Bromoform		ND	4	.3	1.00		
Bromomethane		ND	1	7	1.00		
2-Butanone		ND	1	7	1.00		
n-Butylbenzene		ND	0	.87	1.00		
sec-Butylbenzene		ND	0	.87	1.00		
tert-Butylbenzene		ND	0	.87	1.00		
Carbon Disulfide		ND	8	.7	1.00		
Carbon Tetrachloride		ND	0	.87	1.00		
Chlorobenzene		ND	0	.87	1.00		
Chloroethane		ND	1	.7	1.00		
Chloroform		ND	0	.87	1.00		
Chloromethane		ND	1	7	1.00		
2-Chlorotoluene		ND	0	.87	1.00		
4-Chlorotoluene		ND	0	.87	1.00		
Dibromochloromethane		ND	1	.7	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	.3	1.00		
1,2-Dibromoethane		ND	0	.87	1.00		
Dibromomethane		ND	0	.87	1.00		
1,2-Dichlorobenzene		ND	0	.87	1.00		
1,3-Dichlorobenzene		ND	0	.87	1.00		
1,4-Dichlorobenzene		ND	0	.87	1.00		
Dichlorodifluoromethane		ND	1	.7	1.00		
1,1-Dichloroethane		ND	0	.87	1.00		
1,2-Dichloroethane		ND	0	.87	1.00		
1,1-Dichloroethene		ND	0	.87	1.00		
c-1,2-Dichloroethene		ND	0	.87	1.00		
t-1,2-Dichloroethene		ND		.87	1.00		
1,2-Dichloropropane		ND		.87	1.00		
1,3-Dichloropropane		ND		.87	1.00		
2,2-Dichloropropane		ND	4	.3	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 14 of 21

Project. 3D30 Mission Valley / 3D603				Page 14 01 21
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1,1-Dichloropropene	ND	1.7	1.00	
c-1,3-Dichloropropene	ND	0.87	1.00	
t-1,3-Dichloropropene	ND	1.7	1.00	
Ethylbenzene	ND	0.87	1.00	
2-Hexanone	ND	17	1.00	
Isopropylbenzene	ND	0.87	1.00	
p-Isopropyltoluene	ND	0.87	1.00	
Methylene Chloride	ND	8.7	1.00	
4-Methyl-2-Pentanone	ND	17	1.00	
Naphthalene	ND	8.7	1.00	
n-Propylbenzene	ND	1.7	1.00	
Styrene	ND	0.87	1.00	
1,1,1,2-Tetrachloroethane	ND	0.87	1.00	
1,1,2,2-Tetrachloroethane	ND	1.7	1.00	
Tetrachloroethene	ND	0.87	1.00	
Toluene	ND	0.87	1.00	
1,2,3-Trichlorobenzene	ND	1.7	1.00	
1,2,4-Trichlorobenzene	ND	1.7	1.00	
1,1,1-Trichloroethane	ND	0.87	1.00	
1,1,2-Trichloroethane	ND	0.87	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.7	1.00	
Trichloroethene	ND	1.7	1.00	
Trichlorofluoromethane	ND	8.7	1.00	
1,2,3-Trichloropropane	ND	1.7	1.00	
1,2,4-Trimethylbenzene	ND	1.7	1.00	
1,3,5-Trimethylbenzene	ND	1.7	1.00	
Vinyl Acetate	ND	8.7	1.00	
Vinyl Chloride	ND	0.87	1.00	
p/m-Xylene	ND	1.7	1.00	
o-Xylene	ND	0.87	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.7	1.00	
Tert-Butyl Alcohol (TBA)	ND	17	1.00	
Diisopropyl Ether (DIPE)	ND	0.87	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.87	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.87	1.00	
Ethanol	ND	430	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	99	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 15 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	107	79-133	
1,2-Dichloroethane-d4	116	71-155	
Toluene-d8	100	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5035 EPA 8260B

04/30/19

Units:

ug/kg Page 16 of 21

Project: SDSU Mission Valley / SD605

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-025-31009	N/A	Solid	GC/MS QQ	05/03/19	05/03/19 11:53	190503L015
<u>Parameter</u>		Result	RI	=	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	50)	1.00		
Benzene		ND	1.0	0	1.00		
Bromobenzene		ND	1.0	0	1.00		
Bromochloromethane		ND	2.0	0	1.00		
Bromodichloromethane		ND	1.0	0	1.00		
Bromoform		ND	5.0	0	1.00		
Bromomethane		ND	20)	1.00		
2-Butanone		ND	20)	1.00		
n-Butylbenzene		ND	1.0	0	1.00		
sec-Butylbenzene		ND	1.0	0	1.00		
tert-Butylbenzene		ND	1.0	0	1.00		
Carbon Disulfide		ND	10)	1.00		
Carbon Tetrachloride		ND	1.0	0	1.00		
Chlorobenzene		ND	1.0	0	1.00		
Chloroethane		ND	2.0	0	1.00		
Chloroform		ND	1.0	0	1.00		
Chloromethane		ND	20)	1.00		
2-Chlorotoluene		ND	1.0	0	1.00		
4-Chlorotoluene		ND	1.0	0	1.00		
Dibromochloromethane		ND	2.0	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0	0	1.00		
1,2-Dibromoethane		ND	1.0	0	1.00		
Dibromomethane		ND	1.0	0	1.00		
1,2-Dichlorobenzene		ND	1.0	0	1.00		
1,3-Dichlorobenzene		ND	1.0	0	1.00		
1,4-Dichlorobenzene		ND	1.0	0	1.00		
Dichlorodifluoromethane		ND	2.0	0	1.00		
1,1-Dichloroethane		ND	1.0	0	1.00		
1,2-Dichloroethane		ND	1.0	0	1.00		
1,1-Dichloroethene		ND	1.0	0	1.00		
c-1,2-Dichloroethene		ND	1.0	0	1.00		
t-1,2-Dichloroethene		ND	1.0	0	1.00		
1,2-Dichloropropane		ND	1.0	0	1.00		
1,3-Dichloropropane		ND	1.0	0	1.00		
2,2-Dichloropropane		ND	5.0	0	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 17 of 21

Project. 3D30 Mission Valley / 3D605				Page 17 01 21
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	20	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	500	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	98	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 18 of 21

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	101	79-133	
1,2-Dichloroethane-d4	104	71-155	
Toluene-d8	101	80-120	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5035 EPA 8260B

04/30/19

Units:

ug/kg

Project: SDSU Mission Valley / SD605

Page 19 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-025-31015	N/A	Solid	GC/MS QQ	05/06/19	05/06/19 11:52	190506L015
<u>Parameter</u>		Result	<u>RI</u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Acetone		ND	50)	1.00		
Benzene		ND	1.	0	1.00		
Bromobenzene		ND	1.	0	1.00		
Bromochloromethane		ND	2.	0	1.00		
Bromodichloromethane		ND	1.	0	1.00		
Bromoform		ND	5.	0	1.00		
Bromomethane		ND	20)	1.00		
2-Butanone		ND	20)	1.00		
n-Butylbenzene		ND	1.	0	1.00		
sec-Butylbenzene		ND	1.	0	1.00		
tert-Butylbenzene		ND	1.	0	1.00		
Carbon Disulfide		ND	10)	1.00		
Carbon Tetrachloride		ND	1.	0	1.00		
Chlorobenzene		ND	1.	0	1.00		
Chloroethane		ND	2.	0	1.00		
Chloroform		ND	1.	0	1.00		
Chloromethane		ND	20)	1.00		
2-Chlorotoluene		ND	1.	0	1.00		
4-Chlorotoluene		ND	1.	0	1.00		
Dibromochloromethane		ND	2.	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.	0	1.00		
1,2-Dibromoethane		ND	1.	0	1.00		
Dibromomethane		ND	1.	0	1.00		
1,2-Dichlorobenzene		ND	1.	0	1.00		
1,3-Dichlorobenzene		ND	1.	0	1.00		
1,4-Dichlorobenzene		ND	1.	0	1.00		
Dichlorodifluoromethane		ND	2.	0	1.00		
1,1-Dichloroethane		ND	1.	0	1.00		
1,2-Dichloroethane		ND	1.	0	1.00		
1,1-Dichloroethene		ND	1.	0	1.00		
c-1,2-Dichloroethene		ND	1.	0	1.00		
t-1,2-Dichloroethene		ND	1.	0	1.00		
1,2-Dichloropropane		ND	1.	0	1.00		
1,3-Dichloropropane		ND	1.	0	1.00		
2,2-Dichloropropane		ND	5.	0	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Group Delta Consultants, Inc.
 Date Received:
 04/30/19

 370 Amapola Avenue, Suite 212
 Work Order:
 19-04-2362

 Torrance, CA 90501-7243
 Preparation:
 EPA 5035

 Method:
 EPA 8260B

 Units:
 ug/kg

 Project: SDSU Mission Valley / SD605
 Page 20 of 21

<u> </u>				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	20	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	500	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	100	80-120		

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5035
	Method:	EPA 8260B
	Units:	ug/kg
Project: SDSU Mission Valley / SD605		Page 21 of 21

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
Dibromofluoromethane	102	79-133	
1,2-Dichloroethane-d4	106	71-155	
Toluene-d8	100	80-120	

Quality Control - Spike/Spike Duplicate

Group Delta Consultants, Inc.

Date Received:

Work Order:

19-04-2362

Torrance, CA 90501-7243

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Project: SDSU Mission Valley / SD605 Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
19-05-0206-1	Sample		Solid	GC	50	05/03/19	05/03/19	17:44	190503S08	
19-05-0206-1	Matrix Spike		Solid	GC	50	05/03/19	05/03/19	17:02	190503S08	
19-05-0206-1	Matrix Spike I	Duplicate	Solid	GC	50	05/03/19	05/03/19	17:22	190503S08	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	366.7	92	369.7	92	64-130	1	0-15	

Quality Control - Spike/Spike Duplicate

Group Delta Consultants, Inc.

370 Amapola Avenue, Suite 212

Torrance, CA 90501-7243

Preparation:

Method:

Date Received:

04/30/19

04/30/19

19-04-2362

Preparation:

EPA 5030C

EPA 8015B (M)

Project: SDSU Mission Valley / SD605 Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
19-04-2219-1	Sample	Aqueous	GC 25	05/01/19	05/01/19 14:21	190501S020
19-04-2219-1	Matrix Spike	Aqueous	GC 25	05/01/19	05/01/19 14:54	190501S020
19-04-2219-1	Matrix Spike Duplic	ate Aqueous	GC 25	05/01/19	05/01/19 15:28	190501S020
Parameter	<u>Sample</u> <u>Spik</u> <u>Conc.</u> <u>Add</u>	e <u>MS</u> ed <u>Conc.</u>	MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
GRO (C4-C12) Total	ND 200	2224	111 2238	112	68-122 1	0-25

04/30/19

19-04-2362

EPA 3510C

Quality Control - LCS/LCSD

Group Delta Consultants, Inc.

370 Amapola Avenue, Suite 212

Torrance, CA 90501-7243

Date Received:

Work Order:

Preparation:

Method: EPA 8015B (M)
Page 1 of 9

Project: SDSU Mission Valley / SD605

Quality Control Sample ID	Туре	Matr	ix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-15-542-401	LCS	Aqu	eous	GC 47	05/02/19	05/0	2/19 12:36	190502B01B	
099-15-542-401	LCSD	Aqu	eous	GC 47	05/02/19	05/0	2/19 12:58	190502B01B	
Parameter	Spike Added LCS	Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000 215	0	107	2069	103	69-123	4	0-30	

Quality Control - LCS

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 3550B EPA 8015B (M)

04/30/19

Project: SDSU Mission Valley / SD605

Page 2 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-582-569	LCS	Solid	GC 50	05/03/19	05/03/19 16:42	190503B08C
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	371.1	93	75-11	7

RPD: Relative Percent Difference. CL: Control Limits

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation:

19-04-2362 EPA 5035

04/30/19

Method:

EPA 8015B (M)

Project: SDSU Mission Valley / SD605

Page 3 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	ared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-13-043-922	LCS	Sol	id	GC 4	05/01/19	05/0	1/19 14:24	190501L024	
099-13-043-922	LCSD	Sol	id	GC 4	05/01/19	05/0	1/19 14:57	190501L024	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
GRO (C4-C12) Total	2.000	1.764	88	1.596	80	55-139	10	0-25	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method:

19-04-2362 EPA 5030C EPA 8015B (M)

04/30/19

Project: SDSU Mission Valley / SD605

Page 4 of 9

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-13-047-756	LCS	Aqı	leous	GC 25	05/01/19	05/0	1/19 12:07	190501L047	
099-13-047-756	LCSD	Aqı	ueous	GC 25	05/01/19	05/0	1/19 12:40	190501L047	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
GRO (C4-C12) Total	2000	2232	112	2223	111	78-120	0	0-25	

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method: 04/30/19 19-04-2362 EPA 5030C EPA 8260B

Project: SDSU Mission Valley / SD605

Page 5 of 9

Dep-14-001-28890 LCS	Quality Control Sample ID	Туре		Matrix	1	nstrument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
Parameter	099-14-001-28690	LCS		Aqueous	s (GC/MS PP	05/04/19	05/04/	19 19:50	190504L016	
Acetome Addded W. Rec. Conc. W. Rec. So. 3-137 39-151 6 0-21 Bernene 50.00 49.64 99 51.89 104 79-121 72-128 4 0-20 Bromochoreane 50.00 53.63 107 56.03 112 80-120 73-127 4 0-20 Bromochichoromethane 50.00 53.41 107 56.93 110 80-122 73-131 3 0-20 Bromochichioromethane 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromomethane 50.00 42.60 85 42.79 86 60-152 64-136 4 0-20 2-Butanone 50.00 49.91 100 52.80 106 77-138 61-149 6 0-20 sec-Butylbenzene 50.00 48.06 96 51.47 103 77-131 81 0-20 tetr-Butylbenzene 50.00 51	099-14-001-28690	LCSD		Aqueous	s (GC/MS PP	05/04/19	05/04/	19 20:21	190504L016	
Benzene 50.00 49.64 99 51.89 104 79-121 72-128 4 0-20 Bromochorene 50.00 53.63 107 56.03 112 80-120 73-127 4 0-20 Bromochichoromethane 50.00 53.41 107 54.93 110 80-124 73-131 3 0-20 Bromochichoromethane 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromomethane 50.00 49.91 100 52.80 106 72-138 61-149 3 0-20 2-Butanone 50.00 49.91 100 52.80 106 72-138 61-149 0 0-20 se-Butybbenzene 50.00 48.06 96 51-47 103 77-131 86-140 7 0-20 tert-Butybbenzene 50.00 51.14 102 53.31 107 50-150 33-167 4 0-20 carbon Tisulfide<	Parameter		LCS Conc.				%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Bromobenzene 50.00 53.63 107 56.03 112 80-120 73-127 4 0-20 Bromochloromethane 50.00 53.49 108 54.78 110 80-122 73-129 1 0-20 Bromochromethane 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromochromethane 50.00 49.56 89 51.67 103 73-127 64-136 4 0-20 Bromochromethane 50.00 49.91 100 52.80 106 60-126 89-13 0 0 0 20 -Butyloenzene 50.00 48.96 96 51.47 103 77-131 88-10 7 0-20 1etr-Butylbenzene 50.00 51.14 102 53.31 107 50-150 33-167 4 0-20 Carbon Disulfide 50.00 48.60 97 50.57 101 65-143 92-166 4 0-20	Acetone	50.00	40.14	80	42.43	85	53-137	39-151	6	0-21	
Bromochloromethane 50.00 54.09 108 54.78 110 80-122 73-129 1 0-20 Bromoform 50.00 53.41 107 54.93 110 80-124 73-131 3 0-20 Bromoform 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromofemhane 50.00 41.97 84 43.27 87 50-150 33-167 3 0-26 2-Butanone 50.00 49.91 100 52.80 106 67-27 88 61-126 49-137 0 0-20 sec-Butylbenzene 50.00 48.06 96 51.47 103 77-131 68-140 7 0-20 tert-Butylbenzene 50.00 52.26 105 56.83 114 80-125 72-132 8 0-20 Carbon Tetrachloride 50.00 50.70 101 52.53 101 65-148 51.69 4 0-20	Benzene	50.00	49.64	99	51.89	104	79-121	72-128	4	0-20	
Bromodichloromethane 50.00 53.41 107 54.93 110 80-124 73-131 3 0-20 Bromoform 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromomethane 50.00 41.97 84 43.27 87 50-150 33-167 3 0-26 2-Butanone 50.00 49.91 100 52.80 106 72-138 61-149 6 0-20 sec-Butylbenzene 50.00 48.06 96 51.47 103 77-1731 68-140 7 0-20 terr-Butylbenzene 50.00 52.26 105 56.83 114 80-125 72-132 8 0-20 Carbon Disulfide 50.00 51.14 102 53.31 107 50-150 33-167 4 0-22 Carbon Disulfide 50.00 50.70 101 52.54 106 80-120 73-127 4 0-20 Chlorocethane<	Bromobenzene	50.00	53.63	107	56.03	112	80-120	73-127	4	0-20	
Bromoform 50.00 49.56 99 51.67 103 73-127 64-136 4 0-20 Bromomethane 50.00 41.97 84 43.27 87 50-150 33-167 3 0-26 2-Butanone 50.00 42.60 85 42.79 86 60-126 49-137 0 0-20 Beutylbenzene 50.00 48.96 96 51.47 103 77-131 68-140 7 0-20 sec-Butylbenzene 50.00 52.26 105 56.83 114 80-125 72-132 8 0-20 Carbon Distifide 50.00 51.14 102 53.31 107 50-15 21.33 33-167 4 0-20 Chlorobenzene 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 50.70 101 52.45 105 80-122 73-127 4 0-20 Chlororoth	Bromochloromethane	50.00	54.09	108	54.78	110	80-122	73-129	1	0-20	
Bromomethane 50.00	Bromodichloromethane	50.00	53.41	107	54.93	110	80-124	73-131	3	0-20	
2-Butanone 50.00 42.60 85 42.79 86 60-126 49-137 0 0-20 n-Butylbenzene 50.00 48.91 100 52.80 106 72-138 61-149 6 0-20 sec-Butylbenzene 50.00 48.06 96 51.47 103 77-131 68-140 7 0-20 Carbon Disulfide 50.00 51.14 102 53.31 107 50-150 33-167 4 0-22 Carbon Disulfide 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 46.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloroform 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 Chloroformethane	Bromoform	50.00	49.56	99	51.67	103	73-127	64-136	4	0-20	
n-Butylbenzene 50.00 49.91 100 52.80 106 72-138 61-149 6 0-20 sec-Butylbenzene 50.00 48.06 96 51.47 103 77-131 68-140 7 0-20 carbon Disulfide 50.00 51.14 102 53.31 107 50-150 33-167 4 0-22 Carbon Disulfide 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 48.06 97 50.57 101 65-143 52-156 4 0-20 Chlorobethane 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chlorobrofulore 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chlorotoluene 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 Dibromochlorometha	Bromomethane	50.00	41.97	84	43.27	87	50-150	33-167	3	0-26	
sec-Butylbenzene 50.00 48.06 96 51.47 103 77-131 68-140 7 0-20 tert-Butylbenzene 50.00 52.26 105 56.83 114 80-125 72-132 8 0-20 Carbon Disulfide 50.00 51.14 102 53.31 107 50-150 33-167 4 0-22 Chlorobar 50.00 50.70 101 52.54 105 80-120 73-127 4 0-20 Chloroberbane 50.00 50.79 101 52.54 105 80-120 73-127 4 0-20 Chloroberbane 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chlorobromethane 50.00 42.19 84 43.83 8 43-133 28-148 4 0-20 Chlorobrotluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochlorometh	2-Butanone	50.00	42.60	85	42.79	86	60-126	49-137	0	0-20	
tert-Bulylbenzene 50.00 52.26 105 56.83 114 80-125 72-132 8 0-20 Carbon Disulfide 50.00 51.14 102 53.31 107 50-160 33-167 4 0-22 Carbon Tetrachloride 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloroform 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chloroform 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 Chlorotoluene 50.00 52.48 106 55.33 111 80-120 73-127 5 0-20 4-Chlorotoluene 50.00 52.45 105 54.15 108 80-120 73-127 5 0-20 Horomochloromethan	n-Butylbenzene	50.00	49.91	100	52.80	106	72-138	61-149	6	0-20	
Carbon Disulfide 50.00 51.14 102 53.31 107 50-150 33-167 4 0-22 Carbon Tetrachloride 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 50.70 101 52.54 105 80-120 73-127 4 0-20 Chlorobenzene 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloromethane 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 Chlorotoluene 50.00 52.83 106 55.33 111 80-121 73-128 5 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromo-3-Chloropropane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibro	sec-Butylbenzene	50.00	48.06	96	51.47	103	77-131	68-140	7	0-20	
Carbon Tetrachloride 50.00 48.60 97 50.57 101 65-143 52-156 4 0-20 Chlorobenzene 50.00 50.70 101 52.54 105 80-120 73-127 4 0-20 Chloroethane 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloroform 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chloroform 50.00 42.19 84 43.83 8 43-133 28-148 4 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 4-Chlorotoluene 50.00 48.72 99 52.18 104 80-120 73-127 5 0-20 1/2-Dibromo-Shoromethane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1/2-Dibromo-Shorom	tert-Butylbenzene	50.00	52.26	105	56.83	114	80-125	72-132	8	0-20	
Chlorobenzene 50.00 50.70 101 52.54 105 80-120 73-127 4 0-20 Chloroethane 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloroform 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chloromethane 50.00 42.19 84 43.83 88 43.133 28-148 4 0-20 2-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Ubromochloromethane 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 1/2-Dibromoethane 50.00 52.45 105 54.15 108 80-123 73-127 2 0-20 1/2-Dibromoethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1/2-Diblorobenzen	Carbon Disulfide	50.00	51.14	102	53.31	107	50-150	33-167	4	0-22	
Chloroethane 50.00 46.04 92 48.14 96 62-128 51-139 4 0-20 Chloroform 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chloromethane 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 2-Chlorotoluene 50.00 52.83 106 55.33 111 80-121 73-128 5 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochloromethane 50.00 52.45 105 54.15 108 80-120 73-127 5 0-20 1,2-Dibromochloropane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dic	Carbon Tetrachloride	50.00	48.60	97	50.57	101	65-143	52-156	4	0-20	
Chloroform 50.00 50.19 100 51.79 104 80-120 73-127 3 0-20 Chloromethane 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 2-Chlorotoluene 50.00 52.83 106 55.33 111 80-121 73-128 5 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochloromethane 50.00 52.45 105 54.15 108 80-120 73-127 5 0-20 1,2-Dibromochloromethane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20	Chlorobenzene	50.00	50.70	101	52.54	105	80-120	73-127	4	0-20	
Chloromethane 50.00 42.19 84 43.83 88 43-133 28-148 4 0-20 2-Chlorotoluene 50.00 52.83 106 55.33 111 80-121 73-128 5 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochloromethane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 1,2-Dibromoethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 <t< td=""><td>Chloroethane</td><td>50.00</td><td>46.04</td><td>92</td><td>48.14</td><td>96</td><td>62-128</td><td>51-139</td><td>4</td><td>0-20</td><td></td></t<>	Chloroethane	50.00	46.04	92	48.14	96	62-128	51-139	4	0-20	
2-Chlorotoluene 50.00 52.83 106 55.33 111 80-121 73-128 5 0-20 4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochloromethane 50.00 52.45 105 54.15 108 80-123 73-130 3 0-20 1,2-Dibromochloropropane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 50.79 102 51.35 103 80-120 73-127 2 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 47.81 96 50.93 102 50-150 33-167 6 0-20 <	Chloroform	50.00	50.19	100	51.79	104	80-120	73-127	3	0-20	
4-Chlorotoluene 50.00 49.72 99 52.18 104 80-120 73-127 5 0-20 Dibromochloromethane 50.00 52.45 105 54.15 108 80-123 73-130 3 0-20 1,2-Dibromo-3-Chloropropane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 Dibromomethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30	Chloromethane	50.00	42.19	84	43.83	88	43-133	28-148	4	0-20	
Dibromochloromethane 50.00 52.45 105 54.15 108 80-123 73-130 3 0-20 1,2-Dibromo-3-Chloropropane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 Dibromomethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 1,4-Dichloroethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30	2-Chlorotoluene	50.00	52.83	106	55.33	111	80-121	73-128	5	0-20	
1,2-Dibromo-3-Chloropropane 50.00 46.56 93 48.43 97 66-126 56-136 4 0-20 1,2-Dibromoethane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 Dibromomethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 1,4-Dichlorothane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichlorothane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20	4-Chlorotoluene	50.00	49.72	99	52.18	104	80-120	73-127	5	0-20	
1,2-Dibromoethane 50.00 53.11 106 54.32 109 80-120 73-127 2 0-20 Dibromomethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 52.21 110 57.33 115 76-120 69-127 4 0-20 <t< td=""><td>Dibromochloromethane</td><td>50.00</td><td>52.45</td><td>105</td><td>54.15</td><td>108</td><td>80-123</td><td>73-130</td><td>3</td><td>0-20</td><td></td></t<>	Dibromochloromethane	50.00	52.45	105	54.15	108	80-123	73-130	3	0-20	
Dibromomethane 50.00 50.79 102 51.35 103 80-120 73-127 1 0-20 1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 <	1,2-Dibromo-3-Chloropropane	50.00	46.56	93	48.43	97	66-126	56-136	4	0-20	
1,2-Dichlorobenzene 50.00 50.48 101 52.45 105 80-120 73-127 4 0-20 1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 t-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-2,Dichloropropane 50.00 48.75 98 50.55 101	1,2-Dibromoethane	50.00	53.11	106	54.32	109	80-120	73-127	2	0-20	
1,3-Dichlorobenzene 50.00 49.39 99 52.45 105 80-120 73-127 6 0-20 1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloropropane 50.00 48.75 98 50.55 105 66-132 55-143 3 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101	Dibromomethane	50.00	50.79	102	51.35	103	80-120	73-127	1	0-20	
1,4-Dichlorobenzene 50.00 48.33 97 51.29 103 80-120 73-127 6 0-20 Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 53.69 107 54.77 110	1,2-Dichlorobenzene	50.00	50.48	101	52.45	105	80-120	73-127	4	0-20	
Dichlorodifluoromethane 50.00 47.81 96 50.93 102 50-150 33-167 6 0-30 1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 <td>1,3-Dichlorobenzene</td> <td>50.00</td> <td>49.39</td> <td>99</td> <td>52.45</td> <td>105</td> <td>80-120</td> <td>73-127</td> <td>6</td> <td>0-20</td> <td></td>	1,3-Dichlorobenzene	50.00	49.39	99	52.45	105	80-120	73-127	6	0-20	
1,1-Dichloroethane 50.00 43.25 86 44.82 90 72-126 63-135 4 0-20 1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	1,4-Dichlorobenzene	50.00	48.33	97	51.29	103	80-120	73-127	6	0-20	
1,2-Dichloroethane 50.00 55.22 110 57.33 115 76-120 69-127 4 0-20 1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	Dichlorodifluoromethane	50.00	47.81	96	50.93	102	50-150	33-167	6	0-30	
1,1-Dichloroethene 50.00 52.71 105 54.87 110 66-132 55-143 4 0-20 c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	1,1-Dichloroethane	50.00	43.25	86	44.82	90	72-126	63-135	4	0-20	
c-1,2-Dichloroethene 50.00 53.75 107 55.25 110 78-120 71-127 3 0-20 t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	1,2-Dichloroethane	50.00	55.22	110	57.33	115	76-120	69-127	4	0-20	
t-1,2-Dichloroethene 50.00 50.84 102 52.55 105 66-132 55-143 3 0-20 1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	1,1-Dichloroethene	50.00	52.71	105	54.87	110	66-132	55-143	4	0-20	
1,2-Dichloropropane 50.00 48.75 98 50.55 101 80-120 73-127 4 0-20 1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	c-1,2-Dichloroethene	50.00	53.75	107	55.25	110	78-120	71-127	3	0-20	
1,3-Dichloropropane 50.00 49.37 99 50.61 101 80-120 73-127 2 0-20 2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	t-1,2-Dichloroethene	50.00	50.84	102	52.55	105	66-132	55-143	3	0-20	
2,2-Dichloropropane 50.00 53.69 107 54.77 110 50-150 33-167 2 0-20	1,2-Dichloropropane	50.00	48.75	98	50.55	101	80-120	73-127	4	0-20	
	1,3-Dichloropropane	50.00	49.37	99	50.61	101	80-120	73-127	2	0-20	
1,1-Dichloropropene 50.00 49.33 99 51.06 102 75-123 67-131 3 0-20	2,2-Dichloropropane	50.00	53.69	107	54.77	110	50-150	33-167	2	0-20	
	1,1-Dichloropropene	50.00	49.33	99	51.06	102	75-123	67-131	3	0-20	

RPD: Relative Percent Difference. C

CL: Control Limits

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method: 04/30/19 19-04-2362 EPA 5030C EPA 8260B

Project: SDSU Mission Valley / SD605

Page 6 of 9

<u>Parameter</u>	Spike Added	LCS Cond	c. <u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
c-1,3-Dichloropropene	50.00	50.02	100	51.61	103	77-131	68-140	3	0-20	
t-1,3-Dichloropropene	50.00	47.69	95	48.25	96	76-136	66-146	1	0-20	
Ethylbenzene	50.00	51.78	104	54.31	109	80-120	73-127	5	0-20	
2-Hexanone	50.00	45.44	91	46.59	93	63-123	53-133	2	0-20	
Isopropylbenzene	50.00	52.24	104	55.19	110	80-128	72-136	5	0-20	
p-Isopropyltoluene	50.00	50.61	101	54.03	108	73-133	63-143	7	0-20	
Methylene Chloride	50.00	48.68	97	50.01	100	61-133	49-145	3	0-27	
4-Methyl-2-Pentanone	50.00	45.24	90	47.67	95	65-125	55-135	5	0-20	
Naphthalene	50.00	44.63	89	45.95	92	69-129	59-139	3	0-20	
n-Propylbenzene	50.00	52.66	105	55.90	112	80-128	72-136	6	0-20	
Styrene	50.00	54.18	108	57.03	114	80-126	72-134	5	0-20	
1,1,1,2-Tetrachloroethane	50.00	54.55	109	55.94	112	80-129	72-137	3	0-20	
1,1,2,2-Tetrachloroethane	50.00	46.02	92	47.82	96	74-122	66-130	4	0-20	
Tetrachloroethene	50.00	38.63	77	35.44	71	55-139	41-153	9	0-23	
Toluene	50.00	49.93	100	52.96	106	80-120	73-127	6	0-20	
1,2,3-Trichlorobenzene	50.00	46.57	93	47.97	96	72-132	62-142	3	0-20	
1,2,4-Trichlorobenzene	50.00	48.81	98	51.24	102	74-134	64-144	5	0-20	
1,1,1-Trichloroethane	50.00	50.91	102	52.89	106	76-124	68-132	4	0-20	
1,1,2-Trichloro-1,2,2- Trifluoroethane	50.00	56.18	112	58.61	117	54-150	38-166	4	0-30	
1,1,2-Trichloroethane	50.00	51.18	102	52.41	105	80-120	73-127	2	0-20	
Trichloroethene	50.00	52.51	105	55.47	111	79-121	72-128	5	0-20	
Trichlorofluoromethane	50.00	53.64	107	55.48	111	72-132	62-142	3	0-20	
1,2,3-Trichloropropane	50.00	50.72	101	51.68	103	75-123	67-131	2	0-20	
1,2,4-Trimethylbenzene	50.00	48.99	98	51.87	104	74-128	65-137	6	0-20	
1,3,5-Trimethylbenzene	50.00	52.92	106	54.98	110	77-131	68-140	4	0-20	
Vinyl Acetate	50.00	62.68	125	64.74	129	50-150	33-167	3	0-20	
Vinyl Chloride	50.00	44.09	88	45.57	91	63-129	52-140	3	0-20	
p/m-Xylene	100.0	103.7	104	108.4	108	80-122	73-129	4	0-20	
o-Xylene	50.00	52.20	104	55.12	110	80-128	72-136	5	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	40.69	81	41.22	82	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	250.0	259.6	104	260.3	104	80-124	73-131	0	0-20	
Diisopropyl Ether (DIPE)	50.00	47.29	95	48.51	97	79-121	72-128	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	41.77	84	42.88	86	71-125	62-134	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	46.49	93	48.00	96	70-124	61-133	3	0-20	
Ethanol	500.0	580.3	116	532.3	106	53-149	37-165	9	0-24	

Total number of LCS compounds: 71 Total number of ME compounds: 0

RPD: Relative Percent Difference. CL: Control Limits

Group Delta Consultants, Inc.	Date Received:	04/30/19
370 Amapola Avenue, Suite 212	Work Order:	19-04-2362
Torrance, CA 90501-7243	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: SDSU Mission Valley / SD605		Page 7 of 9

Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method: 04/30/19 19-04-2362 EPA 5035 EPA 8260B

Project: SDSU Mission Valley / SD605

Page 8 of 9

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-31009	LCS		Solid	GC/I	MS QQ	05/03/19	05/03/1	9 10:18	190503L015	
095-01-025-31009	LCSD		Solid	GC/I	MS QQ	05/03/19	05/03/1	9 10:47	190503L015	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	50.00	50.50	101	49.73	99	80-120	73-127	2	0-20	
Carbon Tetrachloride	50.00	54.28	109	52.43	105	65-137	53-149	3	0-20	
Chlorobenzene	50.00	50.08	100	49.26	99	80-120	73-127	2	0-20	
1,2-Dibromoethane	50.00	51.35	103	51.64	103	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	50.00	51.48	103	51.17	102	80-120	73-127	1	0-20	
1,2-Dichloroethane	50.00	51.45	103	50.82	102	80-120	73-127	1	0-20	
1,1-Dichloroethene	50.00	53.05	106	52.63	105	68-128	58-138	1	0-20	
Ethylbenzene	50.00	53.54	107	52.30	105	80-120	73-127	2	0-20	
Toluene	50.00	51.18	102	50.18	100	80-120	73-127	2	0-20	
Trichloroethene	50.00	49.86	100	48.99	98	80-120	73-127	2	0-20	
Vinyl Chloride	50.00	46.57	93	45.24	90	67-127	57-137	3	0-20	
p/m-Xylene	100.0	110.8	111	108.2	108	75-125	67-133	2	0-25	
o-Xylene	50.00	52.51	105	51.49	103	75-125	67-133	2	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	43.68	87	43.85	88	70-124	61-133	0	0-20	
Tert-Butyl Alcohol (TBA)	250.0	258.3	103	248.5	99	73-121	65-129	4	0-20	
Diisopropyl Ether (DIPE)	50.00	50.69	101	50.44	101	69-129	59-139	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	47.40	95	47.72	95	70-124	61-133	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	51.47	103	51.98	104	74-122	66-130	1	0-20	
Ethanol	500.0	559.0	112	515.2	103	51-135	37-149	8	0-27	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Group Delta Consultants, Inc. 370 Amapola Avenue, Suite 212 Torrance, CA 90501-7243 Date Received: Work Order: Preparation: Method: 04/30/19 19-04-2362 EPA 5035 EPA 8260B

Project: SDSU Mission Valley / SD605

Page 9 of 9

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-31015	LCS		Solid	GC/I	MS QQ	05/06/19	05/06/1	9 10:15	190506L015	
095-01-025-31015	LCSD		Solid	GC/I	MS QQ	05/06/19	05/06/1	9 10:44	190506L015	
Parameter	Spike Added	LCS Conc	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	50.00	48.21	96	49.38	99	80-120	73-127	2	0-20	
Carbon Tetrachloride	50.00	51.78	104	52.95	106	65-137	53-149	2	0-20	
Chlorobenzene	50.00	47.15	94	48.98	98	80-120	73-127	4	0-20	
1,2-Dibromoethane	50.00	47.99	96	50.76	102	80-120	73-127	6	0-20	
1,2-Dichlorobenzene	50.00	48.22	96	50.55	101	80-120	73-127	5	0-20	
1,2-Dichloroethane	50.00	48.21	96	49.00	98	80-120	73-127	2	0-20	
1,1-Dichloroethene	50.00	51.51	103	53.15	106	68-128	58-138	3	0-20	
Ethylbenzene	50.00	50.47	101	52.22	104	80-120	73-127	3	0-20	
Toluene	50.00	48.96	98	50.31	101	80-120	73-127	3	0-20	
Trichloroethene	50.00	47.62	95	49.09	98	80-120	73-127	3	0-20	
Vinyl Chloride	50.00	49.24	98	48.33	97	67-127	57-137	2	0-20	
p/m-Xylene	100.0	104.5	105	107.7	108	75-125	67-133	3	0-25	
o-Xylene	50.00	49.61	99	51.56	103	75-125	67-133	4	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	42.56	85	44.23	88	70-124	61-133	4	0-20	
Tert-Butyl Alcohol (TBA)	250.0	234.2	94	238.7	95	73-121	65-129	2	0-20	
Diisopropyl Ether (DIPE)	50.00	49.17	98	51.17	102	69-129	59-139	4	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	45.86	92	47.73	95	70-124	61-133	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	49.20	98	51.67	103	74-122	66-130	5	0-20	
Ethanol	500.0	487.5	98	462.0	92	51-135	37-149	5	0-27	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Sample Analysis Summary Report

Work Order: 19-04-2362				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 8015B (M)	EPA 5035	607	GC 4	2
EPA 8015B (M)	EPA 3510C	972	GC 47	1
EPA 8015B (M)	EPA 3550B	972	GC 50	1
EPA 8015B (M)	EPA 5030C	1161	GC 25	2
EPA 8260B	EPA 5035	486	GC/MS QQ	2
EPA 8260B	EPA 5030C	1191	GC/MS PP	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 19-04-2362 Page 1 of 1

Qualifiers	Definition
<u>Quaimers</u> *	See applicable analysis comment.
_	Less than the indicated value.
<	
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

% Recovery and/or RPD out-of-range.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Χ

SG

Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

> Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

> Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Contents

Vikas Patel

From: Allison Bieda <allisonb@groupdelta.com>
Sent: Wednesday, May 01, 2019 9:50 AM
To: Erick Ovalle; Alexandre Santini

Cc: Vikas Patel

Subject: Re: SDSU Mission Valley / SD605.05 - 19-04-2362 - Sample Receipt Confirmation &

COC Document

Hi Eric,

Solid samples are correct for those samples. I mismarked the COC and wrote H2O for all samples which is incorrect. Thank you.

-Allison

Get Outlook for iOS

From: Erick Ovalle < erickovalle@eurofinsus.com>

Sent: Wednesday, May 1, 2019 9:48 AM **To:** Alexandre Santini; Allison Bieda

Cc: Vikas Patel

Subject: SDSU Mission Valley / SD605.05 - 19-04-2362 - Sample Receipt Confirmation & COC Document

Mimecast Attachment Protection has deemed this file to be safe, but always exercise caution when opening files.

Sample receipt confirmation attached. Please review and advise of any changes required.

Sample 2,4,6,8,10: We received solid samples instead of water samples as listed on the COC.

Please call with any questions or concerns.

Best Regards, Erick Ovalle Project Manager Assistant

Eurofins Calscience 7440 Lincoln Way Garden Grove, CA 92841-1427 USA

Phone: +1 (714) 895-5494

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

fins
0
3

	eurofins														SH	N)FC	UST	CHAIN OF CUSTODY RECORD	REC	ORD
•		Calscience	ice S					wo	WO#/LABUSE ONLY	SE ONLY				DATE:			412	4/30/1	61		
40 Linc	40 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494	1-1427 • (714) 8	95-5494						Ż		¥			PAGE	ا			P.		7	
r couri	r courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.	ation, contact us2	6_sales@eurofi	insus.com or	r call us.				NT PROJ	CLIENT PROJECT NAME / NUMBER	/NUMBE	٠				l	P.O. NO.:				
		Group Delta Consultants, Inc.							SU Mis	SDSU Mission Valley)el						SD605	6	b		
DDRESS	ss: 9245 Activity Rd, Suite 103	03						PRO	PROJECT CONTACT	NTACT:							SAMPLER(S): (PRINT)	(S): (PRI	(F		
Ë.,	San Diego			STATE:	CA ZIP:	92126		Ť	Alex Santini	Ē							A. Bieda	Sied	۲		
<u>الل</u>	858-536-1000	E-MAIL: alex	alexandres@groupdelta.com	roupdelta	a.com								EQU	REQUESTED ANALYSES	D AN	ALYS	ES				
URNA	URNAROUND TIME (Rush surcharges may apply to any TAT not "STANDARD");	ply to any TAT not 'S									Please	check bo	x or fill	Please check box or fill in blank as needed	ss need	Ď.				-	
SA		□ 48 HR □ 7	072HR 08	☐ 5 DAYS	X STANI	ANDARD								e				· ·			
	COELT EDF GLOBAL ID:					LOG CODE	ODE:							ria Core			.72/060				
PECIA	SPECIAL INSTRUCTIONS:							Γ		1				leT							
<i>&\\\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	BROTHING AND BACK CONDAING TO RETRE COMMITTAIN BY CANAGES TO THE COMMITTAIN BY CANAGES TO THE THE COMMITTAIN BY COMMITTAIN BY CANAGES TO THE COMITTAIN BY CANAGES TO THE COMMITTAIN BY CANA	200	Secondaria de la constanta de	an exceleds	BURBLE	pevid		tered GRO 🗆 (g	QHQ [] (P	ho-80] Drgeo-80	MTBE [] 8260 []	3560)	(0928) sets	35) ☐ En Core ☐ (8270)	(†808) se	(280)	AIS 0728 🗆 0728 I	X747/0109			
BA.		SAMPLING	LING		. NO.	seac	AJƏS			_) sე				3) s8			•		
USE	SAMPLEID	DATE	TIME	MATHIX	CONT.	Ju∩			•		ют та	ОΛ				ЮЧ					
_	P10840-87	41301A 0800	0800	420	7		メ					X									
14	FDI-ENY- 10		0630		٦	¥	X	X	X	×		X									
n	12-EN-GW		<i>2h80</i>		٩	7	X	X	X	X		Х							, vice		
7	FP2-ENV-8		0430	-	٢	X	×	7	Ϋ́	×		K									
5	FPZ-BNY-GW		5460		<u>م</u>	X	X	X	X	×		X									
V	FP3-ENV 9		1015		۲	X	X	X	X	X		X									
7	FP3-ENI-GNA		1020		و	7	X	7	X	X		X							-		
8	L-MA-hdd		1045		_	٧.	×	<i>x</i>	×	X		X		. :					`		
6	PPY-ENY-GW		1050		و	Ÿ	X	X	×	X		X									
ő		→	115	>	٦	X	×	<u>イ</u>	×	$\overline{\times}$		X									Р

Return to Contents

06/02/14 Revision

D

B

Received (Signature Affiliation)

•
ns
Ţ
0
7
3
O
•

eurofins													Ċ	AN	OF C	UST	ODY	REC	CHAIN OF CUSTODY RECORD
	Calscience					×	#/LAB(WO#/LAB USE ONLY	-	/ -		DATE	 ننږ		4130/19	611			
7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courier service / sample drop off information. contact us26 sales@eurofinsus.com or call us.	11-1427 ◆ (714) 895-549 ation, contact us26_sales	4 S@eurofinsus.cor	n or call us.				7	ă	1	182-ba-b1	7	PAGE:	<u> </u>	T		P		2	
LABORATORY CLIENT: Group Delta C.	Group Delta Consultants, Inc.					ਹ "	ENT PRO	CLIENT PROJECT NAME / NUMBER SDS1 I Mission Vallay	IE/NUMB	ER:					P.O. NO.:		.		
ADDRESS: 9245 Activity Rd, Suite 103	03) [£	PROJECT CONTACT:	NTACT:	and a						SAMPLE	SAMPLER(S): (PRINT)	€		
спт: San Diego		STATE	₹	ZIP: 92126		∢ 	Alex Santini	Ë							Ä	A. Bieda	8		
TEL: 858-536-1000	E-MAIL: alexandr	alexandres@groupdelta.com	elta.com								REO	UEST	REQUESTED ANALYSES	A K	SES				
TURNAROUND TIME (Rush surcharges may apply to any TAT not 'STANDARD'):	r apply to any TAT not "STANDAF	RD"):	/LS/XI	CAPCINA					Pleas	Please check box or fill in blank as needed	ox or fi	l in blan	as nee	- ged					
GLOBAL ID:	1	1			LOG CODE:							na Core			AZVZ/000				
SPECIAL INSTRUCTIONS: CARACIAL INSTRUCTIONS: CARACIAL INSTRUCTIONS: CARACIAL INSTRUCTION OF THE CONTROL OF T	Proprieta	Antra Con 62-6	26- G-E					9-C44	LI 05			neT 🗆 end					,		
					р	OHO □ (194 60-9			tes (8260)	92) 🗖 Eu Co			728 🗆 0728	61.2 🗖 961.2 	, -		
LAB SAMPLE ID ONLY	SAMPLING DATE TII	MATRIX	IX OF	Unpresei	Preserve	MiT blei7		o ⊵ Ņ an	H9T 	AOCs (82	Oxygena		SVOCs (i	08) s80d					
11 FPS-ENV-GW	08)1 61/08/h	10 H20		X	×			×		_		-	1	+-					
												+	+						
												\dagger	_						
									-										
					4														Pa
quished by: (Signature)	Man Rido			Received by		ure/Affiliation)	(lion)			1			B	Pate		19	Time:	320	ge 75 Q
Refinitional by: (Signature)	,			Received by	eu(Sig)	$f^{ ext{(Sighature/Affiliation)}} \mathcal{O}_{MWY}$	July (nuc	び	R				Date:	. ~	119	Time	Time: 17:00	
Relinduished by: (Signature)				Received by: (Signature/Affiliation)	/: (Signa	ure/Affilis	tion)	0						Date:	, 1		Time	·	

06/02/14 Revision

Calscience

WORK ORDER NUMBER: 19904019236ン

MPLE RECEIPT	CHECKLIST	COOLER	OF _'_
		DATE 04/20	12040

CLIENT: CROUP PECIAF DAT	E: <u>04 /</u>	<u> 30 2</u>	<u> </u>	
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: -0.2°C); Temperature (w/o CF):	☑ Blank	□ Sa	mple	
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier			71	
Ambient Temperature: Air Filter	Checked	i by: <u></u>	<u>' </u>	
CUSTODY SEAL:				
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked	l bv: 🕜	\mathcal{I}	
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked	- 1	11.	
Sample(s) Diffesent and intact. Diffesent but Not intact. 2 Not Fresent. DIVA	Checked	Dy		
SAMPLE CONDITION:	Yes	No	N/A	
Chain-of-Custody (COC) document(s) received with samples	. 🗷			
COC document(s) received complete				
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	-			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time)			
Sampler's name indicated on COC	/			
Sample container label(s) consistent with COC		7		
Sample container(s) intact and in good condition	1			
Proper containers for analyses requested	~ /			
Sufficient volume/mass for analyses requested	. /			
Samples received within holding time	. /			
Aqueous samples for certain analyses received within 15-minute holding time	•			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	. 🗖		Z	
Proper preservation chemical(s) noted on COC and/or sample container				
Unpreserved aqueous sample(s) received for certain analyses				
□ Volatile Organics □ Total Metals □ Dissolved Metals				
Acid/base preserved samples - pH within acceptable range	🗖			
Container(s) for certain analysis free of headspace	_			
✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)				
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)				
Tedlar™ bag(s) free of condensation	. 🗆		Ø	
		122A	٠,	
CONTAINER TYPE: (Trip Blank Lot Number Aqueous: ☐ VOA ☑ VOAn ☐ VOAna₂ ☐ 100PJ ☐ 100PJna₂ ☐ 125AGB ☐ 125AGBh ☐ 125AGBp ☐ 125AGBp ☐ 125AGBp			/	
Aqueous: □ VOA 2 VOAn □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125A	-р ш izor: Gle/pH 2	> ZIIIIa (PF	1 <u> </u>	
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □				
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve (P) EnCores® () DerraCores® (6)				
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □				
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res				
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na}_2 = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labeled/Checked by:				
s = H2SO4, $u = ultra-pure$, $x = Na2SO3+NaHSO4.H2O, znna = Zn (CH3CO2)2 + NaOH Reviewed by: 8nb$				

WORK ORDER NUMBER: 19-04-236⊋

SAMPLE ANOMALY REPORT

DATE: 04/30 / 2019

SAMPLES, CONTAINERS, AND LABELS:	Comments			
☐ Sample(s) NOT RECEIVED but listed on COC				
☐ Sample(s) received but NOT LISTED on COC				
☐ Holding time expired (list client or ECI sample ID and analysis)				
☐ Insufficient sample amount for requested analysis (list analysis)				
☐ Improper container(s) used (list analysis)				
☐ Improper preservative used (list analysis)	442			
☐ pH outside acceptable range (list analysis)				
☐ No preservative noted on COC or label (list analysis and notify lab)				
☐ Sample container(s) not labeled				
☐ Client sample label(s) illegible (list container type and analysis)				
☐ Client sample label(s) do not match COC (comment)				
☐ Project information				
☐ Client sample ID				
☐ Sampling date and/or time				
☐ Number of container(s)	,			
☐ Requested analysis				
☐ Sample container(s) compromised (comment)				
☐ Broken				
☐ Water present in sample container				
☐ Air sample container(s) compromised (comment)				
□ Flat				
□ Very low in volume				
□ Leaking (not transferred; duplicate bag submitted) \\ \(\frac{\((-4), (-6), (-8), (-10) Matrix IS Solid \).}{\(\frac{\((-2), (-4), (-6), (-8), (-10) Matrix IS Solid \).}{\((-2), (-4), (-6), (-8), (-10) Matrix IS Solid \).				
□ Leaking (transferred into ECI Tedlar™ bags*)				
☐ Leaking (transferred into client's Tedlar™ bags*)				
* Transferred at client's request.				
MISCELLANEOUS: (Describe)	Comments			
HEADSPACE:				
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)	(Containers with bubble for other analysis)			
ECI ECI Total ECI ECI Total Sample ID Container ID Number** Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis			
Complete Com				
Comments: ** Matrix				
Reported by:				
Reported by:				
notice the total number of containers from male of section for the anostes estimple.	-			