TRAFFIC STUDY FOR THE MISSION VIEW MIXED-USE DEVELOPMENT PROJECT

SOUTH PASADENA, CALIFORNIA

JANUARY 2017

PREPARED FOR
MISSION BELL PROPERTIES, LLC

DRAFT

TRAFFIC STUDY FOR THE MISSION VIEW MIXED-USE DEVELOPMENT PROJECT SOUTH PASADENA, CALIFORNIA

January 2017

Prepared for:
MISSION BELL PROPERTIES, LLC

Prepared by:
(213) 683-0088

Ref: J1520

Table of Contents

1. Introduction 1
Project Location 1
Project Description 1
Study Scope and Analysis Conditions 2
Organization of Report 5
2. Existing Conditions 9
Study Area 9
Existing Street System 10
Existing Transit System 11
Bicycle and Pedestrian Network 12
Existing Traffic Volumes and Levels of Service 13
3. Future without Project Conditions 19
CEQA Guidelines Regarding Future Traffic Conditions 19
Ambient Traffic Growth 20
Related Projects 20
Future Improvements 22
Future without Project Intersection Levels of Service 23
4. Project Traffic 29
Project Description 29
Project Trip Generation 29
Project Trip Distribution 30
Project Trip Assignment 31
5. Existing with Project Conditions 35
Existing with Project Traffic Volumes 35
Existing with Project Intersection Levels of Service 35
6. Future with Project Conditions 40
Future with Project Traffic Volumes 40
Future with Project Levels of Service 40
7. Traffic Impact Analysis 45
Existing with Project Conditions 45
Future with Project Conditions 46
Mission Street \& Meridian Avenue Rail Crossing 46
Vehicle Miles Traveled 47
8. Traffic Mitigation 49
9. Site Access and Internal Circulation 50
Project Site Access and Circulation 50

Table of Contents, cont.
10. Parking 56
Parking Supply 56
11. Summary and Conclusions 59
References
Appendix A: Traffic Counts
Appendix B: Intersection Capacity Utilization (ICU) Worksheets
Appendix C: Highway Capacity Manual (HCM) Worksheets

List of Figures

NO.

1 Site Plan 6
2 Study Area 15
3 Existing Conditions Peak Hour and Average Daily Traffic Volumes 16
4 Related Project Peak Hour and Average Daily Traffic Volumes 24
$5 \quad$ Future without Project Conditions Peak Hour and Average Daily Traffic Volumes 25
6 Trip Distribution 32
7 Project-Only Peak Hour and Average Daily Traffic Volumes 33
8 Existing with Project Conditions Peak Hour and Average Daily Traffic Volumes 37
9 Future with Project Conditions Peak Hour and Average Daily Traffic Volumes 42
List of Tables
NO.
1 Level of Service Definitions for Intersections 7
2 Daily Roadway Capacity Volumes City of South Pasadena 8
3 Existing Conditions Intersection Levels of Service 17
4 Existing Conditions Roadway Segment Levels of Service 18
5 Related Projects 26
$6 \quad$ Future with Project Conditions Intersection Levels of Service 27
$7 \quad$ Future Conditions Roadway Segment Levels of Service 28
8 Project Trip Generation Estimates 34
9 Existing with Project Conditions Intersection Significant Impact Analysis 38
10 Existing with Project Conditions Roadway Segment Significant Impact Analysis 39
11 Future with Project Conditions Intersection Significant Impact Analysis 43
12 Future with Project Conditions Roadway Segment Significant Impact Analysis 44
13 Summary of Future Conditions Intersection Queuing Due to Train Crossing 48
14 Future with Project Conditions Driveway Operation. 54
15 Future with Project Conditions (Altered Circulation) Intersection Significant Impact Analysis 55
16 Summary of Municipal Code Parking (Assumes Multi-Tenant Retail Site) 57
17 Summary of Municipal Code Parking (Assumes Individual Land Use Densities) 58

Chapter 1
 Introduction

This study presents the traffic impact analysis for the proposed Mission View Mixed-Use Development Project (Project) in the City of South Pasadena, California (City). The methodology and base assumptions used in the analysis were established in accordance with City procedures.

PROJECT LOCATION

The Project Site is located at 1101 Mission Street at the southeast corner of Mission Street \& Fairview Avenue. The Project Site is primarily bounded by commercial development (offices, specialty retail) and is located within the City's Mission Street Specific Plan area.

The Project Site is currently occupied with retail, restaurant, and residential uses and is located approximately 0.5 miles south of access to the Harbor Freeway (SR 110). The Project Site is primarily served by Fairview Avenue from Mission Street, with a single driveway located on Fairview Avenue.

PROJECT DESCRIPTION

The Project proposes a mixed-use development consisting of the following densities:

- 36 apartment units
- 2,325 square feet (sf) specialty retail
- 2,142 sf high-turnover restaurant
- 797 sf café-style restaurant
- Renovation of an historic building (retaining one apartment unit included in 36 total)

The Project will replace the following densities of existing development:

- 7,704 sf specialty retail
- 1,776 sf high-turnover restaurant

The Project will provide 112 parking spaces on-site within the underground parking structure accessed from Fairview Avenue.

The Project site plan is shown in Figure 1.

STUDY SCOPE AND ANALYSIS CONDITIONS

The scope of analysis for this study was developed by reviewing City procedures and sample traffic analyses provided by City Planning staff. The base assumptions and technical methodologies (i.e., trip generation, study locations, analysis methodology, etc.) were identified through discussions with City Planning staff and our experience in the circulation corridor.

The study analyzed the potential Project-generated traffic impacts on the street system in the vicinity of the Project Site as compared to existing conditions and projected future conditions at the time the Project is expected to be completed (Year 2020). Potential intersection impacts were evaluated for typical weekday morning (7:00 AM to 10:00 AM) and afternoon (3:00 PM to 6:00 PM) peak periods.

A total of four intersections in the vicinity of the Project Site within the City were selected for detailed traffic analysis.

The following traffic conditions were developed and analyzed as part of this study:

- Existing Conditions (Year 2017) - The analysis of existing traffic conditions provides a basis for the assessment of future traffic conditions. The Existing Conditions analysis includes a description of key area streets, traffic volumes and current operating conditions, in the Study Area. Intersection turning movement counts at the study intersections were collected in December 2016 while schools were still in session.
- Existing with Project Conditions (Year 2017) - This scenario analyzes the potential intersection operating conditions that could be expected if the Project were built under existing conditions. In this scenario, the Project-generated traffic is added to the Existing Conditions.
- Future without Project Conditions (Year 2020) - This scenario analyzes the potential intersection operating conditions that could be expected as a result of regional growth and related project traffic in the Study Area by Year 2020. This analysis provides the baseline conditions by which the Project impacts are evaluated in the future at full buildout.
- Future with Project Conditions (Year 2020) - This scenario analyzes the potential intersection operating conditions that could be expected if the Project were built in the projected buildout year. In this scenario, the Project-generated traffic is added to Future without Project Conditions.

Intersection Analysis Methodology

Intersection capacity has been analyzed using the Intersection Capacity Utilization (ICU) methodology required by the City for peak hour operation at signalized locations. The ICU method determines the volume-to-capacity (V/C) ratio on a critical lane basis and determines the level of service (LOS) associated with each critical V/C ratio at the intersection.

Intersection LOS is characterized on a scale of LOS A to LOS F, where LOS A is a free-flowing traffic condition, while LOS F is severe congestion.

Table 1 summarizes the LOS V/C thresholds when using the ICU methodology.

Roadway Segment Methodology

Roadway segments are analyzed by comparing the Average Daily Traffic (ADT) demand over a 24 -hour period against the capacity of the roadway. The output results are presented as V/C with LOS defined as shown on Table 2.

Significant Impact Criteria

Based on 2010 Congestion Management Program for Los Angeles County (Los Angeles County Metropolitan Transportation Authority, 2010) (CMP), the City has established the following traffic thresholds of significance to determine whether a project has a traffic impact at a signalized study intersection and may require mitigation:

- A significant project-related impact would occur at a signalized study intersection if the addition of project-generated trips reduces the peak hour LOS of the study intersection from an acceptable operation (LOS A, B, C or D) to a deficient operation (LOS E or F); or
- A significant project-related impact would occur at a signalized study intersection already operating at a deficiency (LOS E or F) prior to project traffic if the addition of project traffic increases the demand at the intersection by two percent of capacity (V/C greater or equal to 0.02).

To determine whether the addition of project-related traffic would have an impact on a particular roadway segment, the City has established the following thresholds of significance:

- A significant project-related impact would occur on a roadway segment if the addition of project-generated trips reduces the peak hour LOS of the study intersection from an acceptable operation (LOS A, B, C) to a deficient operation (LOS D, E or F); or
- A significant project-related impact would occur on a roadway segment already operating at a deficiency (LOS D, E or F) prior to project traffic if the addition of project traffic increases the demand at the intersection by two percent of capacity (V/C greater or equal to 0.02).

State of California Senate Bill No. 743

Senate Bill 743 (Steinberg, 2013) (SB 743) requires the Governor's Office of Planning and Research to change the California Environmental Quality Act (CEQA) guidelines regarding the analysis of transportation impacts. Under SB 743, the focus of transportation analysis will shift from driver delay to vehicle miles traveled (VMT), reduction of greenhouse gas emissions, creation of multimodal networks and promotion of mixed-use developments. Although originally scheduled to be fully implemented in City guidelines by January 1, 2016, an extension has allowed cities more time to establish an analysis methodology. Therefore, at this time, quantitative analysis cannot be conducted until such time a consensus between agencies is made relative to
implementing a technical analyses protocol that will accurately portray VMT attributable to redevelopment projects.

ORGANIZATION OF REPORT

This report is divided into 11 chapters, including this introduction. Chapter 2 describes the existing circulation system, traffic volumes, and traffic conditions in the Study Area. Chapter 3 describes the development of the Future without Project Conditions. Chapter 4 describes the forecast Project traffic volumes and distribution through the Study Area. Chapter 5 presents the Existing with Project Conditions and associated analysis. Chapter 6 presents the Future with Project Conditions and associated analysis. Chapter 7 assesses the potentially significant traffic impacts associated with the Project compared to the Existing and Future Conditions. Chapter 8 describes the recommended transportation measures to reduce the impacts created by the Project. Chapter 9 describes site access and internal circulation. Chapter 10 summarizes the parking provided for the Project. Chapter 11 summarizes the analyses and study conclusions. The appendices contain supporting documentation and additional details of the technical analyses.
©ibson

TABLE 1
LEVEL OF SERVICE DEFINITIONS FOR INTERSECTIONS

TABLE 2
DAILY ROADWAY CAPACITY VOLUMES
CITY OF SOUTH PASADENA

Street Classification	LOS with ADT 1					
	A	B	C	D	E	
6-Lane (divided)	33,900	39,400	45,000	50,600	56,300	
4-Lane (divided)	22,500	26,300	30,000	33,800	37,500	
4-Lane (undivided)	15,000	17,500	20,000	22,500	25,000	
2-Lane (divided)	10,000	11,700	13,300	15,000	16,600	
2-Lane (undivided)	7,500	8,800	10,000	11,300	12,500	
Local Road	3,000	3,500	4,000	4,500	5,000	

Chapter 2

Existing Conditions

A data collection effort was undertaken to develop a description of existing conditions in the Project Study Area. The Existing Conditions analysis includes an assessment of the existing street systems, an analysis of traffic volumes and current operating conditions (traffic counts collected in December 2016), and a description of the existing public transit service and pedestrian and bicycle circulation.

STUDY AREA

The traffic analysis Study Area is generally bounded by Mission Street on the north, commercial properties to the south and east, and Fairview Avenue on the west. Figure 2 shows the study area and selected intersections.

A traffic analysis study area generally comprises those intersections with the greatest potential to experience significant traffic impacts due to the project as defined by the City, including intersections that are:

1. Immediately adjacent or in close proximity to the project site
2. In the vicinity of the project site that are documented to have current or projected future adverse operational issues
3. In the vicinity of the project site that are forecast to experience a relatively greater percentage of project-related vehicular turning movements (e.g., at freeway ramp intersections)

The Project Study Area was established based on the above criteria, as well as peak hour Project trip generation, the anticipated distribution of Project traffic, and the existing intersections/corridor operations. It includes those intersections with the greatest potential to experience significant traffic impacts due to the Project.

As described in Chapter 1, a total of four signalized intersections located within the City were identified for detailed analysis of the above conditions and are also shown on Figure 2.

Other intersections were considered but were not selected for analysis as they did not meet the criteria outlined above, since they (1) are located a great distance from the Project Site, (2) have relatively lower traffic volumes on the side street and minor approach to the intersection, and/or (3) accommodate little, if any, Project-related traffic volumes/vehicular turning movements, eliminating the possibility of a significant Project traffic impact.

Study Area Validation

The results of the traffic impact analysis detailed in this Traffic Study were reviewed to ensure that all potentially significantly impacted intersections, prior to any mitigation, were analyzed, and that the boundary of the Study Area was extended, as necessary, to confirm that there were no significant impacts at or beyond the Study Area periphery. As detailed later in this traffic study, the study intersections on the Study Area periphery are not anticipated to be significantly impacted by the Project and no additional significant impacts are anticipated to occur beyond the Study Area.

EXISTING STREET SYSTEM

The existing street system in the Study Area consists of a regional roadway system including freeways, primary and secondary arterials, and collector and local streets that provide regional, sub-regional, or local access and circulation within the Study Area. These transportation facilities generally provide two to six travel lanes and usually allow parking on either side of the street. Typically, the speed limits range between 25 and 35 miles per hour (mph) on the streets and between 55 and 65 mph on freeways.

Due to the relatively small size of this Project, the analysis of Project-generated traffic is provided for the circulation system serving the Project site.

Roadways

- Mission Street - Mission Street is a four-lane undivided roadway that travels in the eastwest direction and borders the Project on the north side. East of Fair Oaks Avenue, Mission Street becomes a two-lane undivided roadway. On-street parking is typically permitted on both sides of the street, with a two-hour limit from 7:00 AM to 7:00 PM, and the posted speed limit is 30 mph . The Circulation \& Accessibility Element of City of South Pasadena General Plan (City of South Pasadena, February 2001) (General Plan) classifies Mission Street as a minor arterial. It is designated as a truck route from Pasadena Avenue to Fair Oaks Avenue.
- Fairview Avenue - Fairview Avenue is a two-lane undivided, north-south local road that provides access to the Project. From El Centro Street south to Oxley Street, Fairview Avenue is a one-way southbound road. This configuration allows for a one-way, clockwise loop toward Diamond Avenue around the Public Library. Restricted two-hour parking is allowed on both sides of Fairview Avenue near the Project's proposed driveway from 7:00 AM to 7:00 PM.
- El Centro Street - El Centro Street is a two-way undivided, east-west street. On-street parking is permitted with a two-hour limit from 7:00 AM to 7:00 PM. El Centro Street is classified as a collector street in the General Plan.
- Fair Oaks Avenue - Fair Oaks Avenue is a four-lane divided roadway that travels northsouth. South of Monterey Road, Fair Oaks Avenue is a six-lane divided roadway and terminates south of Huntington Drive. Fair Oaks Avenue is posted at 30 and 35 mph . On-street parking is permitted with various limited parking restrictions (one to two hours during typical daytime hours). Fair Oaks Avenue is classified as a major arterial street in the General Plan and also a truck route from the northern City limits to Huntington Drive.
- Fremont Avenue - Fremont Avenue is a north-south two-lane roadway with a continuous left-turn lane in the vicinity of the Project. North of Hope Street, Fremont Avenue transitions to a two-lane undivided road. Unrestricted on-street parking is permitted and the posted speed limit is 30 mph . Fremont Avenue is classified as a minor arterial street in the General Plan.

EXISTING TRANSIT SYSTEM

The Project Study Area is served by bus lines operated by the Los Angeles County Metropolitan Transit Authority (Metro), as well as Metro Gold Line (fixed rail) service.

- Metro Local 176 - Route 176 is a local line that travels from The Shops at Montebello (in Montebello) to Figueroa/York (in Highland Park), with average headways of approximately 45 minutes during the weekday. In the Project Study Area, Route 176 travels east-west on Mission Street with a stop at Fremont Avenue.
- Metro Local 260 - Route 260 is a local line that travels from Gateway Towne Center (in Compton) to Loma Alta Drive (in Altadena), with average headways of approximately 15 minutes during peak hours on a weekday. In the Project Study Area, Route 260 travels north-south on Fair Oaks Avenue with a stop at Mission Street.

Approximately 600 feet west of the Project Site (at Mission Street \& Meridian Avenue) is the Metro Gold Line South Pasadena station. The Gold Line provides service between Azusa and East Los Angeles, connecting to the Metro Red Line and Purple Line, Metrolink, Amtrak and other public transit at Union Station. The Gold Line provides peak hour service with seven-minute headways and off-peak service with 15-minute headways.

BICYCLE AND PEDESTRIAN NETWORK

Existing Bicycle System

The City currently has two existing bikeways comprising less than two miles of roadway. The designated Class II Bike Lanes exist on Raymondale Avenue and Marengo Avenue, outside of the Project Study Area.

Existing Pedestrian Facilities

The walkability of existing facilities is based on the availability of pedestrian routes necessary to accomplish daily tasks without the use of an automobile; these attributes are quantified by WalkScore.com and assigned a score out of 100 points. Located near mass transit, and with the various commercial businesses and cultural facilities adjacent to residential neighborhoods, the walkability of the area is approximately 93 points ${ }^{1}$; this means this location is a "Walker's Paradise" so daily errands do not rely on an automobile.

The sidewalks that serve as routes to the Project Site provide proper connectivity and adequate widths for a comfortable and safe pedestrian environment. The sidewalks are linked to pedestrian crossings at study intersections. Many unsignalized crossings of Mission Street are

[^0]marked with zebra-stripes for higher visibility. Generally, signalized intersections are equipped with pedestrian crossing phases (walk/don't walk). Pedestrian ramps are provided at the majority of intersection crossings; however, an assessment of whether they all conform to the latest Americans with Disabilities Act (ADA) standards was not performed for this study.

Sidewalk and curb ramp improvements which are redeveloped by the Project must meet the specifications of the ADA as well as the governing General Plan cross-sections.

EXISTING TRAFFIC VOLUMES AND LEVELS OF SERVICE

This section presents the existing daily and peak hour turning movement traffic volumes for the intersections analyzed in the study, describes the methodology used to assess the traffic conditions at each intersection, and analyzes the resulting operating conditions at each intersection indicating V/C ratios or delay and LOS.

Existing Traffic Volumes

Intersection daily traffic on street segments and peak hour turning movement counts at the study intersections were collected in December 2016. Local schools were in session when all traffic counts were conducted and the weather conditions were typical. The existing intersection peak hour traffic volumes are illustrated in Figure 3. The traffic count worksheets are provided in Appendix A.

Existing Intersection Levels of Service

Table 3 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under Existing Conditions. As shown, three of the study intersections operate acceptably (LOS D or better), while the following intersection shows an existing deficiency:

- Fair Oaks Avenue \& Mission Street (LOS F - AM Peak hour)

The LOS calculation worksheets are provided in Appendix B.

Existing Roadway Segment Levels of Service

Table 4 summarizes the street segment operation on Mission Street over a 24 -hour period. As shown in Table 4, Mission Street currently operates at an acceptable LOS A.

TABLE 3
EXISTING CONDITIONS
INTERSECTION LEVELS OF SERVICE

No.	Intersection	Peak Hour	Existing Conditions	
			VIC	LOS
1.	Meridian Avenue Mission Street	$\begin{aligned} & \hline \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \hline 0.331 \\ & 0.369 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
2.	Freemont Avenue Mission Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.719 \\ & 0.727 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
3.	Fair Oaks Ave Mission Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.045 \\ & 0.811 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{D} \\ & \hline \end{aligned}$
4.	Fair Oaks Ave El Centro Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.773 \\ & 0.668 \end{aligned}$	c

TABLE 4

EXISTING CONDITIONS

ROADWAY SEGMENT LEVELS OF SERVICE

No.	Roadway Segment	LOS E Capacity	Existing Conditions		
			ADT	VIC	Los
1.	Mission Street (Meridian to Freemont)	25,000	11,613	0.465	A
2.	Mission Street (Freemont to Fair Oaks)	25,000	11,085	0.443	A

Chapter 3

Future without Project Conditions

Estimates of future traffic conditions both with and without the Project, representing the Project's buildout conditions, were developed to evaluate the potential impacts of the Project on the local street system. This discussion details the assumptions used to develop the Future without Project Conditions in year 2020, which corresponds to the Project's estimated buildout year.

The existing traffic volumes were factored by an annual ambient growth rate of 1% per year, compounded, to approximate regional growth and development, which is slightly higher than the trending data. In addition to the ambient growth, for purposes of providing a conservative analysis of potential cumulative traffic impacts, the traffic generated by related projects was also added to estimate the Future without Project traffic conditions.

CEQA GUIDELINES REGARDING FUTURE TRAFFIC CONDITIONS

The forecast of Future without Project Conditions was prepared in accordance with procedures outlined in Section 15130 of Guidelines for Implementation of the California Environmental Quality Act, Chapter 3, Title 14, California Code of Regulations (California Natural Resources Agency, amended July 27, 2007) (Guidelines). Specifically, Guidelines provides two options for developing the cumulative traffic volume forecast:
"(A) A list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the [lead] agency, or
"(B) A summary of projections contained in an adopted local, regional or statewide plan, or related planning document, that describes or evaluates conditions contributing to the cumulative effect. Such plans may include: a general plan, regional transportation plan, or plans for the reduction of greenhouse gas emissions. A summary of projections may also be contained in an adopted or certified prior environmental document for such a plan. Such projections may be supplemented with additional information such as a regional modeling program.

Any such planning document shall be referenced and made available to the public at a location specified by the lead agency."

As described in detail below, this analysis includes traffic growth both from future projects (option "A" above, the "Related Projects") and from regional growth projections (option "B" above, or ambient growth). Given that the ambient growth factor discussed below likely includes some traffic growth resulting from the Related Projects, the traffic analysis provides a conservative estimate of Future without Project traffic volumes.

AMBIENT TRAFFIC GROWTH

Existing traffic is expected to increase as a result of regional growth and development outside the Study Area. An ambient growth factor of 1% per year compounded annually was used to adjust the existing traffic volumes to reflect the effects of the regional growth and development by year 2020, which is slightly higher than the historic trends of 0.83 per year. The total adjustment applied over the three-year period was approximately 3.06%. This growth factor accounts for increases in traffic due to potential projects not yet proposed or projects outside the Study Area.

RELATED PROJECTS

In accordance with the CEQA requirements in Guidelines, this study also considers the effects of the Project in relation to the Related Projects. The list of Related Projects is based on information provided by City Planning, and includes two projects:

1. 820 Mission Street (residential and office)
2. South Pasadena Downtown Revitalization Project (various uses within corridor)

Using these assumptions for increasing background traffic, the potential traffic impacts of the Project were evaluated. The development of estimated traffic volumes added to the Study Area as a result of Related Projects involves the use of a three-step process: trip generation, trip distribution, and trip assignment.

Trip Generation

Trip generation estimates for the Related Projects were provided by previous study findings and the trip generation rates contained in Trip Generation, $9^{\text {th }}$ Edition (Institute of Transportation Engineers, 2012). The Related Projects' trip generation potential is provided in Table 5.

Trip Distribution

The geographic distribution of the traffic generated by the Related Projects is dependent on several factors. These include the type and density of the proposed land uses, the geographic distribution of the population from which the employees/residents and potential patrons of the proposed developments are drawn, and the location of these projects in relation to the surrounding street system. These factors are considered along with logical travel routes through the street system to develop a reasonable pattern of trip distribution.

For the Related Projects included in Table 5, existing traffic studies were available to determine the patterns attributable for each project to remain consistent with those results.

Trip Assignment

The trip generation estimates for the Related Projects were assigned to the local street system using the trip distribution pattern described above. Figure 4 shows the peak hour traffic volumes associated with these Related Projects at the study intersections. These volumes were then added to the existing traffic volumes after adjustment for ambient growth through the projected buildout year of 2020. These volumes represent the Future without Project Conditions (i.e., existing traffic volumes added to ambient traffic growth and Related Project traffic growth) and are shown in Figure 5.

FUTURE IMPROVEMENTS

No intersection or street segment improvements were identified for inclusion in the future analysis. Therefore, the analysis was conducted on the existing circulation geometrics at study intersections and along roadway segments.

Future Bicycle System

Cycle South Pasadena: Bicycle Master Plan Update (City of South Pasadena, Leslie Scott Consulting and MJB Consulting, August 17, 2011) proposes a comprehensive network of bikeways comprised of approximately 22.8 miles of facilities, including a mix of Class I, Class II and Class III routes.

In the Project Study Area, Mission Street from Grand Avenue to Fair Oaks Avenue (0.7 miles) is scheduled as a "Green Lane" Class III bicycle facility, in which bicycles share the road with vehicles. The Green Lane will include painted pavement treatment (five-foot width) within the curb lane and signed as a Bike Route. The Green Lane designation provides enhanced visibility to increase safety between bicycles and vehicles on high activity corridors.

Additionally, bike boxes (a waiting area for bicycles) will be installed to allow bicycles to make left turns at intersections. Provisions for bicycle-only signal phasing are expected to be included at signalized intersections to allow bicycles to make left turns from the designated bike box.

While bicycle signal phases are not specifically addressed using the ICU methodology, it is expected that the increased phasing would have some effect on the overall intersection capacity. However, it is difficult to assess the severity of that impact as bicycles will not likely trigger a signal phase event every traffic cycle; rather they will arrive intermittently over a peak hour. This intermittent bicycle phasing should accrue a penalty on the overall intersection capacity.

Therefore, to account for the impact of bicycles crossing through a separate signal phase, the capacity of the left turn lanes was reduced from 1600 vehicles per hour to 1550 vehicles per
hour along Mission Street (a 3.5\% reduction in left-turn capacity to account for slower moving bicycles). With reduced lane capacity, the effect of bicycles may be reflected in the ICU output.

Similarly, since bicycles will share the curb lane with vehicles, reduced capacity of the roadway segments is expected. To demonstrate this potential, the roadway capacity of Mission Street was reduced from 25,000 daily vehicles to 24,000 daily vehicles for the Future Conditions analyses.

FUTURE WITHOUT PROJECT INTERSECTION LEVELS OF SERVICE

Intersection Levels of Service

Table 6 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under Future without Project Conditions. As shown, three of the study intersections are projected to operate acceptably (LOS D or better), while the following intersection shows a deficiency:

- Fair Oaks Avenue \& Mission Street (LOS F - AM Peak hour)

The LOS calculation worksheets are provided in Appendix B.

Roadway Segment Levels of Service

Table 7 summarizes street segment operation on Mission Street over a 24 -hour period. As shown in Table 7, Mission Street is projected to operate at an acceptable LOS A.

The LOS calculation worksheets are provided in Appendix B.

[1] Source: Mission Place Mixed-Use Project TIA, Arch Beach Consulting (December 31, 2015, Table 1)

TABLE 6
FUTURE WITHOUT PROJECT CONDITIONS INTERSECTION LEVELS OF SERVICE

No.	Intersection	Peak Hour	Future without Project	
			VIC	LOS
1.	Meridian Avenue Mission Street	AM PM	$\begin{aligned} & \hline 0.340 \\ & 0.381 \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
2.	Freemont Avenue Mission Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.746 \\ & 0.759 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
3.	Fair Oaks Ave Mission Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.080 \\ & 0.844 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{D} \end{aligned}$
4.	Fair Oaks Ave El Centro Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.799 \\ & 0.696 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$

TABLE 7
FUTURE CONDITIONS
ROADWAY SEGMENT LEVEL OF SERVICE

No.	Roadway Segment	Los E Capacity [1]	Future without Project		
			ADT	vIC	Los
1.	Mission Street (Meridian to Freemont)	24,000	12,451	0.519	A
2.	Mission Street (Freemont to Fair Oaks)	24,000	11,903	0.496	A

Chapter 4
 Project Traffic

This chapter describes the assumptions and methodology used in developing the traffic volumes associated with the proposed Project within the Study Area.

PROJECT DESCRIPTION

As described in Chapter 1, the Project proposes to replace $7,704 \mathrm{sf}$ specialty retail and $1,776 \mathrm{sf}$ high-turnover restaurant with a mixed-use development consisting of the following densities:

- 36 apartment units
- 2,325 square feet (sf) specialty retail
- 2,142 sf high-turnover restaurant
- 797 sf café-style restaurant
- Renovation of an historic building (retaining one apartment unit included in 36 total)

A single driveway into an underground parking garage is proposed on Fairview Avenue between Mission Street and El Centro Street.

PROJECT TRIP GENERATION

The number of trips expected to be generated by the Project was estimated using rates published for specific land uses defined in Trip Generation, $9^{\text {th }}$ Edition (Institute of Transportation Engineers, 2012). These rates are based on surveys of similar land uses at sites around the country and are provided as both daily rates and morning and afternoon peak hour rates. They relate the number of vehicle trips traveling to and from the Project Site to the size of development of each land use.

Trip generation credits are also applicable due to the existing operational land uses on site, which currently generate traffic and would, therefore, already be on the circulation network during data collection.

A 5\% transit/walk-in reduction was applied to the residential and commercial land uses, which reflects a conservative estimate since this area of South Pasadena is highly walkable and in close proximity to fixed-rail mass transit (less than a quarter-mile). The same reduction was applied to existing uses to provide a fair comparison for trip credits.

To retain the conservative analysis, no internal mixed-use credits were applied.

As shown in Table 8, after accounting for the adjustments above, the Project is expected to generate 504 net new daily trips on a typical weekday, including 65 net new morning peak hour trips (30 inbound, 35 outbound) and 52 net new afternoon peak hour trips (30 inbound, 22 outbound).

PROJECT TRIP DISTRIBUTION

Similar to the trip distribution of traffic for the Related Projects described in Chapter 3, the geographic distribution of trips generated by the Project is dependent on the location of employment and residential centers from which residents and patrons of the Project would be drawn, characteristics of the street system serving the Project Site, the level of accessibility of the routes to and from the Project Site, existing intersection traffic volumes, and the location of the proposed driveway.

Access to the Project Site would be provided on Fairview Avenue. The driveway would provide full access (i.e., right-turn and left-turn ingress and egress movements). Based on these considerations, traffic entering and exiting the Project was assigned to the surrounding street system. The intersection-level trip distribution patterns for the Project are shown in Figure 6.

PROJECT TRIP ASSIGNMENT

The Project trip generation estimates summarized in Table 8 and the trip distribution patterns shown in Figure 6 were used to assign the Project-generated traffic through the study intersections. Figure 7 illustrates the Project-only traffic volumes at the study intersections during typical weekday morning and afternoon peak hours.
© ©ibson

TRIP DISTRIBUTION

TABLE 8
PROJECT TRIP GENERATION ESTIMATES

TRIP GENERATION RATES [a]									
Land Use	ITE Land Use	Rate	Daily	A.M. Peak Hour			P.M. Peak Hour		
				In	Out	Total	In	Out	Total
Apartments	220	per unit	6.65	20\%	80\%	0.51	65\%	35\%	0.62
Specialty Retail	826	per ksf	44.32	48\%	52\%	6.84	56\%	44\%	5.02
High Turnover (Sit-Down) Restaurant	932	per ksf	127.15	55\%	45\%	10.81	60\%	40\%	9.85
Café	936	per ksf	180.00	50\%	50\%	38.60	49\%	51\%	18.99

TRIP GENERATION ESTIMATES									
Land Use	ITE Land Use	Size	Daily	A.M. Peak Hour			P.M. Peak Hour		
				In	Out	Total	In	Out	Total
Proposed Project									
Apartments Transit/Walk-In Reduction - 5\%	220	36 unit	$\begin{aligned} & 239 \\ & (12) \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 14 \\ & (1) \end{aligned}$	$\begin{aligned} & 18 \\ & (1) \end{aligned}$	14 (1)	8 0	22 (1)
Specialty Retail	826	2.325 ksf	103	8	8	16	7	5	12
Transit/Walk-In Reduction-5\%			(5)	0	0	0	0	0	0
High Turnover (Sit-Down) Restaurant	932	2.142 ksf	272	13	10	23	13	8	21
Transit/Walk-In Reduction-5\%			(14)	(1)	(1)	(2)	(1)	0	(1)
Café	936	0.797 ksf	143	16	15	31	7	8	15
Transit/Walk-In Reduction-5\%			(7)	(1)	(1)	(2)	0	0	0
Proposed Project Subtotal			719	39	44	83	39	29	68
Existing to be Removed									
Specialty Retail		7.704 ksf	341	25	28	53	22	17	39
Transit/Walk-In Reduction - 5\%			(17)	(1)	(1)	(2)	(1)	(1)	(2)
High Turnover (Sit-Down) Restaurant		1.776 ksf	226	10	9	19	10	7	17
Transit/Walk-In Reduction - 5\%			(11)	(1)	0	(1)	(1)	0	(1)
Existing Use Subtotal			215	9	9	18	9	7	16
NET TOTAL PROJECT TRIPS			504	30	35	65	30	22	52

Notes

Dwelling Unit = DU
1,000 square feet = ksf
[a] Source: Trip Generation, 9th Edition, Institute of Transportation Engineers, 2012.

Chapter 5

Existing with Project Conditions

This chapter describes the results of the analysis of intersection operating conditions associated with the Project when compared to Existing Conditions. The analysis corresponds with the Existing Conditions data and analysis presented in Chapter 2. The Existing with Project Conditions are defined by the existing traffic volumes with the inclusion of Project traffic.

EXISTING WITH PROJECT TRAFFIC VOLUMES

The Project-only daily and peak hour traffic volumes described in Chapter 4 and shown in Figure 7 were added to the existing morning and afternoon peak hour traffic volumes shown in Figure 3. The resulting volumes are illustrated in Figure 8 and represent Existing with Project Conditions after development of the Project under Existing Conditions.

EXISTING WITH PROJECT INTERSECTION LEVELS OF SERVICE

Intersection Levels of Service

Table 9 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under the Existing with Project Conditions. As shown, three of the study intersections are expected to operate acceptably (LOS D or better) with the addition of the Project, while the following intersection shows a deficiency:

- Fair Oaks Avenue \& Mission Street (LOS F - AM Peak hour)

The LOS calculation worksheets are provided in Appendix B.

Roadway Segment Levels of Service

Table 10 summarizes street segment operation on Mission Street over a 24 -hour period. As shown in Table 10, Mission Street is projected to operate at an acceptable LOS A with the addition of the Project.

The LOS calculation worksheets are provided in Appendix B.

TABLE 9
EXISTING WITH PROJECT CONDITIONS INTERSECTION SIGNIFICANT IMPACT ANALYSIS

No.	Intersection	Peak Hour	Existing Conditions		Existing with Project Conditions			
			V/C	LOS	V/C	LOS	Change in VIC	Significant Impact
1.	Meridian Avenue	AM	0.331	A	0.337	A	0.006	NO
	Mission Street	PM	0.369	A	0.375	A	0.006	NO
2.	Freemont Avenue	AM	0.719	C	0.722	C	0.003	NO
	Mission Street	PM	0.727	C	0.729	C	0.002	NO
3.	Fair Oaks Ave	AM	1.045	F	1.051	F	0.006	NO
	Mission Street	PM	0.811	D	0.819	D	0.008	NO
4.	Fair Oaks Ave	AM	0.773	C	0.777	C	0.004	NO
	El Centro Street	PM	0.668	B	0.672	B	0.004	NO

TABLE 10
EXISTING WITH PROJECT CONDITIONS ROADWAY SEGMENT SIGNIFICANT IMPACT ANALYSIS

No.	Roadway Segment	LOS E Capacity	Existing Conditions			Existing with Project Conditions			Change in VIC	Signif Impact?
			ADT	VIC	LOS	ADT	VIC	LOS		
1.	Mission Street (Meridian to Freemont)	25,000	11,613	0.465	A	11,789	0.472	A	0.007	NO
2.	Mission Street (Freemont to Fair Oaks)	25,000	11,085	0.443	A	11,261	0.450	A	0.007	NO

Notes
ADT = Average Daily Traffic (24 hour)
V/C = Volume to capacity ratio
LOS = Level of Service

Chapter 6
 Future with Project Conditions

This chapter describes the results of the analysis of intersection operating conditions associated with the Project when compared to Future without Project Conditions. The analysis year of 2020 corresponds to the buildout year of the Project and to the Future without Project data and analysis developed in Chapter 3. All future background traffic growth and any transportation infrastructure improvements described in Chapter 3 are incorporated into this analysis (including the effect of bicycles on Mission Street).

FUTURE WITH PROJECT TRAFFIC VOLUMES

The Project-only morning and afternoon peak hour traffic volumes described in Chapter 4 and shown in Figure 7 were added to the Future without Project morning and afternoon peak hour traffic volumes shown in Figure 5. The resulting volumes are illustrated in Figure 9 and represent Future with Project Conditions after development of the Project in Year 2020.

FUTURE WITH PROJECT LEVELS OF SERVICE

Intersection Levels of Service

Table 11 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under Future without Project Conditions. As shown, three of the study intersections are projected to operate acceptably (LOS D or better), while the following intersection shows a deficiency:

- Fair Oaks Avenue \& Mission Street (LOS F - AM Peak hour)

The LOS calculation worksheets are provided in Appendix B.

Roadway Segment Levels of Service

Table 12 summarizes street segment operation on Mission Street over a 24 -hour period. As shown in Table 7, Mission Street is expected to operate at an acceptable LOS A with the addition of the Project.

The LOS calculation worksheets are provided in Appendix B.

TABLE 11
FUTURE WITH PROJECT CONDITIONS intersection significant impact analysis

No.	Intersection	Peak Hour	Future Conditions		Future with Project Conditions			
			VIC	LOS	VIC	LOS	Change in VIC	Significant Impact
1.	Meridian Avenue	AM	0.340	A	0.345	A	0.005	NO
	Mission Street	PM	0.381	A	0.385	A	0.004	NO
2.	Freemont Avenue	AM	0.746	C	0.750	C	0.004	NO
	Mission Street	PM	0.759	C	0.761	C	0.002	NO
3.	Fair Oaks Ave	AM	1.080	F	1.086	F	0.006	NO
	Mission Street	PM	0.844	D	0.852	D	0.008	NO
4.	Fair Oaks Ave	AM	0.799	C	0.804	D	0.005	NO
	El Centro Street	PM	0.696	B	0.701	C	0.005	NO

Notes

TABLE 12
FUTURE WITH PROJECT CONDITIONS
ROADWAY SEGMENT SIGNIFICANT IMPACT ANALYSIS

No.	Roadway Segment	LOS E Capacity [1]	Future Conditions			Future with Project Conditions			Change in VIC	Signif Impact?
			ADT	VIC	LOS	ADT	VIC	LOS		
1.	Mission Street (Meridian to Freemont)	24,000	12,451	0.519	A	12,627	0.526	A	0.007	NO
2.	Mission Street (Freemont to Fair Oaks)	24,000	11,903	0.496	A	12,080	0.503	A	0.007	NO

Notes
ADT = Average Daily Traffic (24 hour)
V/C $=$ Volume to capacity ratio
LOS = Level of Service
[1] Capacity reduced for shared bicycle lane

Chapter 7

Traffic Impact Analysis

This chapter describes the results of the intersection impact analysis for the proposed Project under Existing and Future Conditions. The analyses measured significant intersection impacts according to the impact criteria specified by the City.

The relative impact of adding Project traffic volume during the peak hours was evaluated based on a comparative analysis of the operating conditions without the Project at the study intersections and roadway segments. The previously discussed significance criteria and thresholds outlined in Chapter 1 were used to determine the significance of a traffic impact caused by the Project on the study intersections.

EXISTING WITH PROJECT CONDITIONS

As detailed in Table 9, when measuring the Existing with Project Conditions against the Existing Conditions, the incremental increases in the V/C ratios resulting from Project traffic do not exceed the significance thresholds to generate a traffic impact at intersections.

As shown in Table 10, the Project does not meet significance criteria for establishing traffic impacts on roadway segments along Mission Street.

Based on this analysis, the Project does not meet intersection or street segment thresholds for significant traffic impacts for the Existing with Project Conditions and is not required to provide off-site traffic mitigation.

FUTURE WITH PROJECT CONDITIONS

As detailed in Table 11, when measuring the Future with Project Conditions against the Future Conditions, the incremental increases in the V/C ratios resulting from Project traffic do not exceed the significance thresholds to generate a traffic impact at intersections.

As shown in Table 12, the Project does not meet significance criteria for establishing traffic impacts on roadway segments along Mission Street.

Based on this analysis, the Project does not meet intersection or street segment thresholds for significant traffic impacts for the Future with Project Conditions and is not required to provide off-site traffic mitigation.

MISSION STREET \& MERIDIAN AVENUE RAIL CROSSING

The Metro Gold Line station is located on the southwest corner of Mission Street \& Meridian Avenue with peak hour service at seven-minute headways. The effects of train crossings at a signalized intersection cannot be fully quantified using the ICU methodology.

Instead, based on observations of train crossing frequency during the peak hours, an assessment of queuing at the intersection may be analyzed to determine if the Project would generate traffic to significantly extend queues at crossings.

Trains at this location come from both eastbound and westbound directions and were observed to often arrive during the same signal cycle. During the morning peak hour, nine eastbound trains and eight westbound trains were present. In the evening peak hour, nine trains were present from each direction.

Gate times, including gap clearances, were approximately 90 seconds where all vehicular movements would be stopped at a red phase. Using the Synchro software, a 2010 Highway Capacity Manual (Transportation Research Board, 2010) (HCM) based methodology, and incorporating the 90 -second gate time, the intersection of Mission Street \& Meridian Avenue
was reanalyzed to determine queuing for all directions both with and without the Project traffic for the Future Conditions.

Table 13 summarizes the queue length for the intersection. The Project's worst case trafficrelated impact extends the eastbound queue in the morning peak hour by 10 feet, the equivalent of less than one vehicle (typically a vehicle is estimated at 22 feet when queued with other vehicles and includes the gap between vehicles). The worst case queue impact during the evening peak is the eastbound direction at 23 feet, or approximately the length of one vehicle, which is not considered significant.

VEHICLE MILES TRAVELED (VMT)

Caltrans' Strategic Management Plan 2015-2020 (approved September 2, 2016) seeks to reduce a project's overall VMT by 15% when compared to a similarly sized Project. Although there is currently not an industry consensus on how this reduction may be calculated and quantified, the Project includes components that would qualify for decreased VMT:

- Locating a mixed-use development in close proximity (less than a quarter-mile) of a fixed-rail station will reduce a dependency on vehicular travel, thereby reducing overall VMT. Neighboring jurisdictions (City of Los Angeles) estimate that this reduction may be as much as 25% from comparable sites that are not proximal to mass transit. (For this Traffic Study, reductions for proximity to transit were maintained conservatively at 5\%.)
- The Project consists of mixed-use components including residential, retail, and restaurant, which reduce external vehicular activity when compared to typical origin/destination trips now consolidated at a single site. Neighboring agencies allow a reduction between 10% and 20% for internal capture trips, dependent on the land use element. (For this Traffic Study, no reductions were applied for a mixed-use development to remain conservative.)

Therefore, the Project, when compared to a similar sized development that is non-proximal to rail transit, could reduce overall VMT between 25-45\%.

TABLE 13
SUMMARY OF FUTURE CONDITIONS INTERSECTION QUEUING DUE TO TRAIN CROSSING

Intersection	Direction	Queue Distance		
		No Project (feet)	Project (feet)	Increase (feet)
AM PEAK HOUR				
Mission Street/Meridian Avenue	EAST	285	295	10
	WEST	265	274	9
	NORTH	287	291	4
	SOUTH	152	154	2
PM PEAK HOUR				
Mission Street/Meridian Avenue	EAST	407	430	23
	WEST	281	286	5
	NORTH	215	217	2
	SOUTH	237	238	1

Queues are shown as 95th Percentile (measured in feet) per SYNCHRO
Passenger car equates to approximately 22 feet, including gap between vehicles

Chapter 8

Traffic Mitigation

The Project does not demonstrate significant traffic impacts within the study area at intersections or roadway segments and is therefore not required to provide off-site traffic impacts.

The Project will be required to maintain and/or construct all sidewalks and curb ramps along the Project frontage in accordance with ADA standards.

The Project will be required to provide half-width street dedications along Project frontages in accordance with the General Plan roadway classifications, including allowances for future bicycle network implementation.

Chapter 9

Site Access and Internal Circulation

This chapter summarizes site access and internal circulation of the Project Site.

PROJECT SITE ACCESS AND CIRCULATION

Vehicles

Vehicular access to the Project Site would be provided at a single driveway on Fairview Avenue. This driveway to the two-level underground parking garage is proposed for a single exit lane (left/right turns are shared in the same lane), with no additional widening on Fairview Avenue required (southbound and northbound turns will share the through lane).

The driveway was analyzed using the HCM methodology, which can determine the LOS for stop-controlled intersections (the ICU methodology is appropriate for signalized intersections). The HCM methodology also reports a queuing distance to determine if any back-up or stacking will occur at the driveway.

The HCM analysis determined that the driveway will operate at LOS A for both peak periods during the worst case Future with Project scenario, as shown in Table 14.

According to the analysis worksheets, due to the low volume of traffic approaching this driveway southbound on Fairview Avenue, the worst case stacking entering the site would be approximately one vehicle. The worst case stacking for vehicles exiting the site would be approximately one vehicle.

Worksheets for the driveway analysis are provided in Appendix C.

Circulation

Vehicles will enter from Fairview Avenue and circulate to the first underground level, which consists generally of a circular loop with 24 -foot drive aisles. The first parking floor consists of a mix of commercial spaces and tandem spaces configured in a 90-degree angle from the drive aisle.

No circulation concerns are evident on the plan in terms of design widths or accessibility. However, it will be important to have a plan to manage the tandem spaces, either through employee agreements or a valet-type service to ensure vehicles are not trapped.

The second underground floor consists of the same circulation pattern as the first floor, with designated spaces for residential use, including a mix of solo and tandem spaces. Tandem spaces in residential areas are easier to manage than commercial spaces and will likely be assigned to the same apartment lease. It is assumed that the residential floor will be reserved for tenants and accessed through a gate or keycard. Since the residential parking is on the bottom floor, no stacking concerns are presented for gate entry as these vehicles will be fully inside the building and will not interfere with circulation on the City street.

West of the Project Site, at Meridian Avenue south of Mission Street, there is an open-air public Farmers Market on Thursdays from 4:00 PM to 8:00 PM. The segment of Meridian Avenue between Mission Street and El Centro Street is closed during this time. One of the parking areas designated for the Farmers Market is located opposite the Project on Fairview Avenue and attracts a large number of vehicles during this temporary event.

Although field observations did show moderate stacking on Fairview Avenue during this event, based on the low volume of Project related traffic, the Farmers Market traffic is not expected to significantly interfere with the Project's proposed access on Fairview Avenue.

This weekly event does alter the circulation somewhat around the Project site as Meridian Avenue is blocked; however, as with all such events, there will be added congestion and inconvenience in the area, but it is not the result of the presence of this Project, which is already generating traffic to Fairview Avenue and will continue in the future with only nominal increases over the current conditions.

Altered Circulation

In discussions with City Planning staff, a circulation alternative is being analyzed in the corridor. This alternative would create a one-way loop on Fairview Avenue from Mission Street southbound to Oxley Street, and northbound on Diamond Avenue back to Mission Street (currently the one-way loop begins at El Centro Street).

Extending the one-way loop to Mission Avenue would have a direct consequence on Project traffic in that vehicles could only enter the site via southbound Fairview Avenue and exit the site to continue traveling southbound. This altered change in travel behavior would, therefore, circulate traffic toward adjacent intersections.

To demonstrate the effect this circulation loop would have on the Project's impact at intersections, the traffic volumes at adjacent intersections were adjusted for the one-way loop flow and reanalyzed for the Future Conditions.

As shown in Table 15, with a redistribution of flow, the intersections continue to operate at similar LOS when compared to the pre-flow changes, and the Project would not have significant impacts at off-site locations. Increases in the V/C demonstrated with this shift are typically attributable to increasing critical movement demand (i.e., conflicting left turns).

Pedestrians and Bicycles

As identified previously, this area of the City is determined to be highly walkable. To support the pedestrian and bicycle paths, the site plan is configured to allow easy access to both pedestrians and bicyclists, by providing fully improved pedestrian corridors on all sides of the Project, as well as internally. Public access is provided on both Mission Street and Fairview Avenue. Passenger lifts and stairs are located on all levels, convenient to parking areas, and free of obstacles. The Mission Street frontage is proposed to have outdoor public seating to help activate the north side of the Project.

External to the site, the City is currently planning to install pedestrian in-roadway warning lights (IRWL) at the intersections of Mission Street \& Diamond Avenue (west of the Project), Mission

Street \& Fairview Avenue (at the Project), and Fremont Avenue \& Lyndon Street (southeast of the Project). The IRWL will improve pedestrian safety at these unsignalized crossings of Mission Avenue and Fremont Avenue by intensifying visibility through lighted crosswalk treatments. The IRWL treatments are expected to be installed in 2017. Since one of these crossings is immediately adjacent to the Project site, the Project should work with the City to ensure that all necessary hardware (including cabinets and underground cable) is identified to avoid conflicts during design and construction.

Any increase in pedestrian traffic due to this Project, related projects, or other future influx of walking patrons will benefit from the safety enhancements and increased visibility provided with IRWL technology.

TABLE 14
FUTURE WITH PROJECT CONDITIONS DRIVEWAY OPERATION

No.	Driveway Analysis		Future with Project Conditions			
		AM Delay	AM LOS	PM Delay	PM	
1.	Fairview Avenue Project Driveway	9.4	A	9.3	A	

TABLE 15
FUTURE WITH PROJECT CONDITIONS (ALTERED CIRCULATION)
INTERSECTION SIGNIFICANT IMPACT ANALYSIS

No.	Intersection	Peak Hour	Future Conditions		Future with Project Conditions			
			VIC	LOS	V/C	LOS	Change in VIC	Significant Impact
1.	Meridian Avenue	AM	0.358	A	0.372	A	0.014	NO
	Mission Street	PM	0.381	A	0.385	A	0.004	NO
2.	Freemont Avenue	AM	0.746	C	0.750	C	0.004	NO
	Mission Street	PM	0.759	C	0.761	C	0.002	NO
3.	Fair Oaks Ave	AM	1.080	F	1.086	F	0.006	NO
	Mission Street	PM	0.844	D	0.852	D	0.008	NO
4.	Fair Oaks Ave	AM	0.799	C	0.807	D	0.008	NO
	El Centro Street	PM	0.696	B	0.698	B	0.002	NO

Notes

Chapter 10

Parking

PARKING SUPPLY

The current site plan for the Project identifies a total of 112 spaces provided on site, split between two underground parking levels (56 on each level). A portion of these spaces are configured as tandem.

This Traffic Study did not analyze parking feasibility or other special requirements, which is typically vetted through the site plan approval process as minor changes to site plan densities and/or density bonuses may change during final map design.

Table 16 provides the parking requirements per the current South Pasadena Municipal Code, (City of South Pasadena, November 16, 2016) based on the current site plan densities. The Code requires a total of 93 parking spaces, with the assumption the Project qualifies as a "multitenant retail site."

If the Project does not qualify as a multi-tenant retail site, individual land use parking requirements would apply. Table 17 shows the parking requirements if each building were to require separate calculations. As shown, the parking requirement for this condition would be 111 spaces.

TABLE 16
SUMMARY OF CITY MUNICIPAL CODE PARKING (ASSUMES MULTI-TENANT RETAIL SITE)

Land Use	Rate	Spaces Required
18 one-bedroom units	1 per unit [1]	18
16 two-bedroom units	2 per unit [1]	32
2 three-bedroom units	2 per unit[1]	4
Sub-total Residential		54
5,264 square feet of commercial use	4 per 1000 square feet	22
16,675 square feet of bonus area	1 per 1000 square feet	17
Sub-total Commercial		39
Total Code Required Parking	(with Multi-Tenant Retail Site)	93

[1] The Mission Street Specific Plan (MSSP) does not require guest parking for residential uses

TABLE 17
SUMMARY OF CITY MUNICIPAL CODE PARKING (ASSUMES INDIVIDUAL LAND USE DENSITIES)

Land Use	Rate	Spaces Required
18 one-bedroom units 16 two-bedroom units 2 three-bedroom units	$\begin{aligned} & \hline 1 \text { per unit [1] } \\ & 2 \text { per unit [1] } \\ & 2 \text { per unit [1] } \end{aligned}$	$\begin{gathered} \hline \hline 18 \\ 32 \\ 4 \end{gathered}$
Sub-total Residential		54
2,325 square feet of retail 2,939 square feet of restaurant 16,675 square feet of bonus area	4 per 1000 square feet 10 per 1000 square feet 1 per 1000 square feet	$\begin{aligned} & 10 \\ & 30 \\ & 17 \end{aligned}$
Sub-total Commercial		57
Total Code Required Parking	(with individual land uses)	111

[1] The Mission Street Specific Plan (MSSP) does not require guest parking for residential uses

Chapter 11
 Summary and Conclusions

This study was undertaken to analyze the potential traffic impacts of the Project on the local street system. The following summarizes the results of this analysis:

- The Project proposes a mixed-use development consisting of 36 apartment units, 2,325 sf specialty retail, 2,142 sf high-turnover restaurant, 797 sf café-style restaurant, and renovation of an historic building (retaining one apartment unit included in 36 total).
- The Project will replace 7,704 sf specialty retail and 1,776 sf high-turnover restaurant.
- The Project will provide 112 parking spaces on-site within the underground parking structure accessed from Fairview Avenue.
- After accounting for existing use credits, the Project is expected to generate 504 net new daily trips on a typical weekday, including 65 net new morning peak hour trips (30 inbound, 35 outbound) and 52 net new afternoon peak hour trips (30 inbound, 22 outbound).
- The Project traffic was added to the existing circulation system to develop the Existing with Project traffic conditions. Based on City significance criteria, the Project does not have impacts for this condition and is not required to provide mitigation.
- The future roadway network was adjusted to account for bicycle lanes and bicycle boxes, with flow rate penalties to account for these changes.
- The Project traffic was added to the future circulation system to develop the Future with Project traffic conditions. Based on City significance criteria, the Project does not have impacts for this condition and is not required to provide mitigation.
- Future traffic conditions were also analyzed assuming that the one-way loop on Fairview Avenue was extended to Mission Street. With this circulation configuration, the Project would not have impacts for this condition and would not be required to provide mitigation.
- The Project extends the queue length on eastbound Mission Street at Meridian Avenue by approximately one vehicle during a train crossing phase.
- The Project may be considered to have a reduction in VMT when compared to similar projects that are not proximal to mass transit.
- Internal circulation to the Project is adequate throughout the parking areas; some of the parking spaces are tandem, which may require a management plan.
- The Project's driveway will operate acceptably with a stop-control and single-lane exit without stacking vehicles into the public streets.
- Parking for the Project is provided within two underground levels for a total of 112 spaces. Parking requirements were not analyzed as part of this study, but would be reviewed as part of the site plan approval process.

References

2010 Highway Capacity Manual, Transportation Research Board, 2010.
2010 Los Angeles County Congestion Management Program, Los Angeles County Metropolitan Transportation Authority, 2010.

City of South Pasadena General Plan, City of South Pasadena, February 2001.
Cycle South Pasadena: Bicycle Master Plan Update, City of South Pasadena, Leslie Scott Consulting and MJB Consulting, August 17, 2011.

Guidelines for Implementation of the California Environmental Quality Act, Chapter 3, Title 14, California Code of Regulations, California Natural Resources Agency, amended July 27, 2007.

Mission Place Mixed-Use Project TIA, Arch Beach Consulting, December 31, 2015.
Mission Street Specific Plan, City of South Pasadena, April 1996.
South Pasadena Municipal Code, City of South Pasadena, November 16, 2016.
State of California Senate Bill No. 743, Steinberg, 2013.
Strategic Management Plan 2015-2020, California Department of Transportation, September 2, 2016.

Trip Generation, 9 ${ }^{\text {th }}$ Edition, Institute of Transportation Engineers, 2012.

Appendix A
Traffic Counts

Turning Movement Count Report AM

Location ID: North/South: East/West:	1												
	Meridian Avenue 12/06/16												
	Mission Street City: South Pasadena,												
	Southbound			Westbound			Northbound			Eastbound			
	1	2	3	4	5	6	7	8	9	10	11	12	Totals:
Movements:	R	T	L	R	T	L	R	T	L	R	T	L	
7:00	3	15	2	0	33	2	3	13	5	3	15	1	95
7:15	0	13	0	7	37	1	1	17	4	6	40	0	126
7:30	1	20	5	9	72	1	2	26	16	10	56	1	219
7:45	0	20	2	13	69	0	2	29	18	15	71	0	239
8:00	1	13	5	5	89	0	4	19	15	17	76	1	245
8:15	1	14	0	10	69	4	3	24	12	14	91	3	245
8:30	3	30	3	13	53	2	3	23	23	7	60	2	222
8:45	1	19	1	8	64	0	1	25	9	17	68	1	214
9:00	1	22	3	12	65	2	6	29	10	15	70	1	236
9:15	0	11	4	8	49	0	5	10	7	7	61	0	162
9:30	3	7	5	5	37	1	5	16	3	3	68	0	153
9:45	1	5	4	5	42	3	4	17	2	3	60	0	146
Total Volume:	15	189	34	95	679	16	39	248	124	117	736	10	2302
Approach \%	6\%	79\%	14\%	12\%	86\%	2\%	9\%	60\%	30\%	14\%	85\%	1\%	
Peak Hr Begin:	7:45												
PHV	5	77	10	41	280	6	12	95	68	53	298	6	951
PHF	0.639			0.870			0.893			0.826			0.970

Turning Movement Count Report PM

Pedestrian/Bicycle Count Report

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$7: 00$	2	0	5	0	11	1	10	0
$7: 15$	4	0	6	0	13	0	13	0
$7: 30$	4	1	4	0	23	0	8	0
$7: 45$	1	0	5	1	30	1	15	0
$8: 00$	4	0	9	0	19	1	11	0
$8: 15$	2	0	6	0	16	0	17	1
$8: 30$	6	0	6	0	13	1	6	0
$8: 45$	17	0	13	0	17	1	14	0
$9: 00$	4	0	10	0	15	2	11	0
$9: 15$	10	0	5	0	11	0	6	0
$9: 30$	2	0	3	0	11	0	5	0
$9: 45$	4	0	4	0	11	0	4	0

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$15: 00$	13	0	12	0	18	0	0	0
$15: 15$	8	0	16	0	30	0	6	0
$15: 30$	5	0	13	0	24	0	2	0
$15: 45$	6	0	6	0	13	0	5	0
$16: 00$	3	0	10	0	15	0	8	0
$16: 15$	4	0	15	0	24	0	6	0
$16: 30$	6	0	6	0	25	1	6	0
$16: 45$	4	0	12	0	35	1	7	0
$17: 00$	5	0	11	0	28	1	4	0
$17: 15$	1	0	4	0	30	0	7	0
$17: 30$	4	0	9	0	24	0	1	0
$17: 45$	4	0	9	0	35	0	7	0

Turning Movement Count Report AM

[^1]
Turning Movement Count Report PM

[^2]Pedestrian/Bicycle Count Report

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$7: 00$	4	0	3	1	1	0	2	0
$7: 15$	3	0	4	1	2	0	0	0
$7: 30$	1	0	15	0	1	0	3	1
$7: 45$	1	0	4	2	2	0	2	0
$8: 00$	1	1	2	0	5	0	0	0
$8: 15$	6	0	3	0	4	1	3	0
$8: 30$	8	0	9	0	4	0	4	0
$8: 45$	8	0	9	1	2	1	4	0
$9: 00$	5	0	8	0	4	0	2	0
$9: 15$	5	0	4	0	5	0	2	0
$9: 30$	6	0	6	0	2	0	2	0
$9: 45$	2	0	5	0	0	0	3	0

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$15: 00$	11	0	21	4	3	0	7	1
$15: 15$	13	0	43	0	17	0	5	0
$15: 30$	10	0	24	2	14	0	6	0
$15: 45$	2	0	3	1	15	2	8	0
$16: 00$	10	0	8	0	4	2	7	0
$16: 15$	7	0	22	0	2	0	2	0
$16: 30$	4	0	18	0	11	0	2	0
$16: 45$	4	0	9	0	1	1	12	0
$17: 00$	4	0	9	0	5	0	2	0
$17: 15$	5	0	10	2	10	3	4	0
$17: 30$	10	0	8	1	7	2	4	0
$17: 45$	4	0	12	2	9	3	7	0

Turning Movement Count Report AM

[^3]
Turning Movement Count Report PM

[^4]Pedestrian/Bicycle Count Report

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$7: 00$	1	0	1	0	8	0	0	0
$7: 15$	4	0	2	0	8	0	0	0
$7: 30$	5	1	4	0	13	2	2	0
$7: 45$	5	1	0	0	10	0	0	0
$8: 00$	10	0	3	0	11	0	0	0
$8: 15$	0	0	2	0	9	0	0	0
$8: 30$	9	0	3	0	5	0	2	0
$8: 45$	9	0	3	0	6	0	1	0
$9: 00$	10	0	6	0	9	0	5	0
$9: 15$	4	0	0	0	0	0	0	0
$9: 30$	4	0	2	0	8	0	0	0
$9: 45$	4	0	3	0	2	0	0	0

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$15: 00$	16	0	9	0	3	0	2	0
$15: 15$	10	0	14	0	19	0	6	0
$15: 30$	9	0	5	0	14	0	2	1
$15: 45$	5	0	2	0	5	1	3	0
$16: 00$	7	1	0	0	6	0	2	0
$16: 15$	20	0	9	2	13	0	4	1
$16: 30$	5	0	3	0	9	0	2	0
$16: 45$	11	0	6	0	17	0	1	0
$17: 00$	3	0	4	0	20	0	2	0
$17: 15$	8	0	4	0	6	0	0	0
$17: 30$	9	0	6	0	19	0	1	0
$17: 45$	9	0	6	0	12	0	0	0

Turning Movement Count Report AM

Location ID: North/South: East/West:	4												
	Fair Oaks Avenue 12/06/16												
	El Centro Street City: South Pasadena, CA												
	Southbound			Westbound			Northbound			Eastbound			
	1	2	3	4	5	6	7	8	9	10	11	12	Totals:
Movements:	R	T	L	R	T	L	R	T	L	R	T	L	
7:00	9	196	4	2	3	0	5	235	3	5	4	4	470
7:15	0	174	5	1	3	2	4	279	11	2	4	4	489
7:30	10	239	1	4	8	4	5	256	13	12	8	2	562
7:45	2	265	4	1	19	0	1	198	15	18	12	6	541
8:00	5	225	2	5	22	4	6	212	12	12	12	1	518
8:15	7	182	10	4	10	0	7	212	14	12	14	3	475
8:30	6	194	10	4	11	2	4	199	12	3	10	5	460
8:45	5	211	12	6	11	3	3	189	9	6	12	3	470
9:00	10	221	12	4	7	0	5	251	17	11	8	8	554
9:15	8	149	6	4	11	1	10	224	12	8	9	11	453
9:30	10	184	7	7	7	2	8	197	11	8	6	14	461
9:45	6	177	4	8	5	2	6	207	19	18	12	4	468
Total Volume:	78	2417	77	50	117	20	64	2659	148	115	111	65	5921
Approach \%	3\%	94\%	3\%	27\%	63\%	11\%	2\%	93\%	5\%	40\%	38\%	22\%	
Peak Hr Begin:	7:15												
PHV	17	903	12	11	52	10	16	945	51	44	36	13	2110
PHF	0.860			0.589			0.861			0.646			0.939

Turning Movement Count Report PM

[^5]Pedestrian/Bicycle Count Report

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$7: 00$	1	0	0	3	4	1	0	0
$7: 15$	2	0	0	0	4	1	0	0
$7: 30$	2	0	1	1	15	1	1	0
$7: 45$	2	0	2	0	9	0	0	0
$8: 00$	1	0	0	0	4	0	0	0
$8: 15$	0	0	6	0	10	0	0	0
$8: 30$	2	0	5	0	11	1	0	0
$8: 45$	7	1	2	0	10	0	0	0
$9: 00$	1	1	4	0	7	0	0	0
$9: 15$	4	1	0	0	8	1	0	0
$9: 30$	1	0	4	0	4	0	0	0
$9: 45$	6	0	4	0	10	0	0	0

	North		East		South		West	
Leg:	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle	Peds	Bicycle
$15: 00$	7	0	9	0	38	2	0	0
$15: 15$	5	0	4	0	27	0	0	0
$15: 30$	5	2	5	0	26	0	0	0
$15: 45$	3	1	8	0	16	0	0	0
$16: 00$	2	0	6	0	18	3	0	0
$16: 15$	2	0	2	3	12	2	0	0
$16: 30$	6	1	9	0	11	0	0	0
$16: 45$	1	0	6	0	9	0	0	0
$17: 00$	0	0	2	1	3	0	0	0
$17: 15$	0	0	1	0	6	0	0	0
$17: 30$	0	0	0	0	10	0	0	0
$17: 45$	0	0	0	0	3	0	0	0

Appendix B
Intersection Capacity Utilization (ICU) Worksheets

Mission View Mixed Use

Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.115^{*}
	Through	1.00	1,600	77	0.058	N/S 2:	0.101
	Left	0.00	1,600	10	0.006 *	E/W 1:	0.116 *
Westbound	Right	0.00	0	41	0.000	E/W 2:	0.106
	Through	2.00	3,200	280	0.102		
	Left	0.00	1,600	6	0.004 *	V/C Ratio:	0.231
Northbound	Right	0.00	0	12	0.000	Loss Time:	0.100
	Through	1.00	1,600	95	0.109 *	ITS:	0.000
	Left	0.00	1,600	68	0.043		
Eastbound	Right	0.00	0	53	0.000	ICU:	0.331
	Through	2.00	3,200	298	0.112 *		
	Left	0.00	1,600	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.103
	Through	1.00	1,600	107	0.092 *	N/S 2:	0.115 *
	Left	0.00	1,600	30	0.019	E/W 1:	0.154 *
Westbound	Right	0.00	0	28	0.000	E/W 2:	0.108
	Through	2.00	3,200	309	0.107		
	Left	0.00	1,600	5	0.003 *	V/C Ratio:	0.269
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	82	0.084	ITS:	0.000
	Left	0.00	1,600	37	0.023 *		
Eastbound	Right	0.00	0	50	0.000	ICU:	0.369
	Through	2.00	3,200	433	0.151 *		
	Left	0.00	1,600	1	0.001	LOS:	A

[^6]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	24	0.002	N/S 1:	0.472 *
	Through	1.00	1,600	454	0.284	N/S 2:	0.328
	Left	1.00	1,600	61	0.038 *	E/W 1:	0.111
Westbound	Right	0.00	0	95	0.000	E/W 2:	0.147 *
	Through	2.00	3,200	291	0.121 *		
	Left	1.00	1,600	36	0.023	V/C Ratio: Loss Time:	0.619
Northbound	Right	0.00	0	24	0.000		0.100
	Through	1.00	1,600	670	0.434 *	ITS:	0.000
	Left	1.00	1,600	71	0.044		
Eastbound	Right	0.00	0	72	0.000	ICU:	0.719
	Through	2.00	3,200	208	0.088		
	Left	1.00	1,600	41	0.026 *	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	33	0.004	N/S 1:	0.467 *
	Through	1.00	1,600	589	0.368	N/S 2:	0.426
	Left	1.00	1,600	117	0.073 *	E/W 1:	0.160 *
Westbound	Right	0.00	0	67	0.000	E/W 2:	0.139
	Through	2.00	3,200	273	0.106		
	Left	1.00	1,600	48	0.030 *	V/C Ratio:	0.627
Northbound	Right	1.00	1,600	23	0.000	Loss Time:	0.100
	Through	1.00	1,600	631	0.394^{*}	ITS:	0.000
	Left	1.00	1,600	93	0.058		
Eastbound	Right	0.00	0	111	0.000	ICU:	0.727
	Through	2.00	3,200	305	0.130 *		
	Left	1.00	1,600	53	0.033	LOS:	C

[^7]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	43	0.000	N/S 1:	0.625 *
	Through	2.00	3,200	870	0.285	N/S 2:	0.320
	Left	1.00	1,600	86	0.054 *	E/W 1:	0.136
Westbound	Right	0.00	0	190	0.000	E/W 2:	0.320 *
	Through	1.00	1,600	280	0.294 *		
	Left	1.00	1,600	13	0.008	V/C Ratio:	0.945
Northbound	Right	0.00	0	13	0.000	Loss Time:ITS:	0.100
	Through	1.00	1,600	901	0.571 *		0.000
	Left	1.00	1,600	56	0.035		
Eastbound	Right	0.00	0	48	0.000	ICU:	1.045
	Through	1.00	1,600	156	0.128		
	Left	1.00	1,600	42	0.026 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	69	0.000	N/S 1:	0.344
	Through	2.00	3,200	1,183	0.391 *	N/S 2:	0.444 *
	Left	1.00	1,600	127	0.079	E/W 1:	0.240
Westbound	Right	0.00	0	113	0.000	E/W 2:	0.267^{*}
	Through	1.00	1,600	203	0.198 *		
	Left	1.00	1,600	46	0.029	V/C Ratio:	0.711
Northbound	Right	0.00	0	42	0.000	Loss Time:	0.100
	Through	2.00	3,200	807	0.265	ITS:	0.000
	Left	1.00	1,600	85	0.053 *		
Eastbound	Right	0.00	0	95	0.000	ICU:	0.811
	Through	1.00	1,600	242	0.211		
	Left	1.00	1,600	111	0.069 *	LOS:	D

[^8]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	17	0.000	N/S 1:	0.609 *
	Through	2.00	3,200	903	0.288	N/S 2:	0.320
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.064 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.054
	Through	1.00	1,600	52	0.046		
	Left	0.00	1,600	10	0.006 *	V/C Ratio:	0.673
Northbound	Right	0.00	0	16	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	945	0.601 *		0.000
	Left	1.00	1,600	51	0.032		
Eastbound	Right	0.00	0	44	0.000	ICU:	0.773
	Through	1.00	1,600	36	0.058 *		
	Left	0.00	1,600	13	0.008	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	41	0.000	N/S 1:	0.321
	Through	2.00	3,200	1,196	0.387 *	N/S 2:	0.426 *
	Left	1.00	1,600	40	0.025	E/W 1:	0.142 *
Westbound	Right	0.00	0	18	0.000	E/W 2:	0.077
	Through	1.00	1,600	38	0.049		
	Left	0.00	1,600	23	0.014 *	V/C Ratio:	0.568
Northbound	Right	0.00	0	45	0.000	Loss Time:	0.100
	Through	2.00	3,200	902	0.296	ITS:	0.000
	Left	1.00	1,600	62	0.039 *		
Eastbound	Right	0.00	0	72	0.000	ICU:	0.668
	Through	1.00	1,600	88	0.128 *		
	Left	0.00	1,600	44	0.028	LOS:	B

[^9]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.118 *
	Through	1.00	1,600	77	0.058	N/S 2:	0.102
	Left	0.00	1,600	11	0.007^{*}	E/W 1:	0.119 *
Westbound	Right	0.00	0	42	0.000	E/W 2:	0.110
	Through	2.00	3,200	292	0.106		
	Left	0.00	1,600	6	0.004^{*}	V/C Ratio:	0.237
Northbound	Right	0.00	0	12	0.000	Loss Time:	0.100
	Through	1.00	1,600	95	0.111 *	ITS:	0.000
	Left	0.00	1,600	70	0.044		
Eastbound	Right	0.00	0	55	0.000	ICU:	0.337
	Through	2.00	3,200	308	0.115 *		
	Left	0.00	1,600	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.104
	Through	1.00	1,600	107	0.093 *	N/S 2:	0.117 *
	Left	0.00	1,600	31	0.019	E/W 1:	0.158 *
Westbound	Right	0.00	0	28	0.000	E/W 2:	0.110
	Through	2.00	3,200	316	0.109		
	Left	0.00	1,600	5	0.003 *	V/C Ratio:	0.275
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	82	0.085	ITS:	0.000
	Left	0.00	1,600	38	0.024 *		
Eastbound	Right	0.00	0	52	0.000	ICU:	0.375
	Through	2.00	3,200	443	0.155^{*}		
	Left	0.00	1,600	1	0.001	LOS:	A

[^10]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	26	0.003	N/S 1:	0.472 *
	Through	1.00	1,600	454	0.284	N/S 2:	0.328
	Left	1.00	1,600	61	0.038 *	E/W 1:	0.114
Westbound	Right	0.00	0	95	0.000	E/W 2:	0.150 *
	Through	2.00	3,200	300	0.123 *		
	Left	1.00	1,600	36	0.023	$\text { V/C Ratio: } 0.622$	
Northbound	Right	0.00	0	24	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	670	0.434 *		0.000
	Left	1.00	1,600	71	0.044		
Eastbound	Right	0.00	0	72	0.000	ICU:	0.722
	Through	2.00	3,200	219	0.091		
	Left	1.00	1,600	43	0.027 *	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	35	0.005	N/S 1:	0.467 *
	Through	1.00	1,600	589	0.368	N/S 2:	0.426
	Left	1.00	1,600	117	0.073 *	E/W 1:	0.162 *
Westbound	Right	0.00	0	67	0.000	E/W 2:	0.143
	Through	2.00	3,200	282	0.109		
	Left	1.00	1,600	48	0.030 *	V/C Ratio:	0.629
Northbound	Right	1.00	1,600	23	0.000	Loss Time:	0.100
	Through	1.00	1,600	631	0.394^{*}	ITS:	0.000
	Left	1.00	1,600	93	0.058		
Eastbound	Right	0.00	0	111	0.000	ICU:	0.729
	Through	2.00	3,200	312	0.132 *		
	Left	1.00	1,600	54	0.034	LOS:	C

[^11]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	51	0.000	N/S 1:	0.625 *
	Through	2.00	3,200	870	0.288	N/S 2:	0.324
	Left	1.00	1,600	86	0.054 *	E/W 1:	0.137
Westbound	Right	0.00	0	190	0.000	E/W 2:	0.326 *
	Through	1.00	1,600	280	0.294 *		
	Left	1.00	1,600	13	0.008	V/C Ratio:	0.951
Northbound	Right	0.00	0	13	0.000	Loss Time:	0.100
	Through	1.00	1,600	901	0.571 *	ITS:	0.000
	Left	1.00	1,600	58	0.036		
Eastbound	Right	0.00	0	50	0.000	ICU:	1.051
	Through	1.00	1,600	156	0.129		
	Left	1.00	1,600	51	0.032 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	77	0.000	N/S 1:	0.344
	Through	2.00	3,200	1,183	0.394 *	N/S 2:	0.448 *
	Left	1.00	1,600	127	0.079	E/W 1:	0.240
Westbound	Right	0.00	0	113	0.000	E/W 2:	0.271 *
	Through	1.00	1,600	203	0.198 *		
	Left	1.00	1,600	46	0.029	V/C Ratio:	0.719
Northbound	Right	0.00	0	42	0.000	Loss Time:	0.100
	Through	2.00	3,200	807	0.265	ITS:	0.000
	Left	1.00	1,600	87	0.054 *		
Eastbound	Right	0.00	0	96	0.000	ICU:	0.819
	Through	1.00	1,600	242	0.211		
	Left	1.00	1,600	117	0.073 *	LOS:	D

[^12]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	17	0.000	N/S 1:	0.610 *
	Through	2.00	3,200	905	0.288	N/S 2:	0.323
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.067 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.054
	Through	1.00	1,600	52	0.046		
	Left	0.00	1,600	10	0.006 *	V/C Ratio:	0.677
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	947	0.602 *	ITS:	0.000
	Left	1.00	1,600	56	0.035		
Eastbound	Right	0.00	0	49	0.000	ICU:	0.777
	Through	1.00	1,600	36	0.061 *		
	Left	0.00	1,600	13	0.008	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	41	0.000	N/S 1:	0.322
	Through	2.00	3,200	1,197	0.387^{*}	N/S 2:	0.429 *
	Left	1.00	1,600	40	0.025	E/W 1:	0.143 *
Westbound	Right	0.00	0	18	0.000	E/W 2:	0.077
	Through	1.00	1,600	38	0.049		
	Left	0.00	1,600	23	0.014 *	V/C Ratio:	0.572
Northbound	Right	0.00	0	45	0.000	Loss Time:	0.100
	Through	2.00	3,200	904	0.297	ITS:	0.000
	Left	1.00	1,600	67	0.042 *		
Eastbound	Right	0.00	0	75	0.000	ICU:	0.672
	Through	1.00	1,600	88	0.129 *		
	Left	0.00	1,600	44	0.028	LOS:	B

[^13]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.119 *
	Through	1.00	1,600	79	0.059	N/S 2:	0.103
	Left	0.00	1,600	10	0.006 *	E/W 1:	0.121 *
Westbound	Right	0.00	0	42	0.000	E/W 2:	0.112
	Through	2.00	3,200	297	0.108		
	Left	0.00	1,550	6	0.004 *	V/C Ratio:	0.240
Northbound	Right	0.00	0	12	0.000	Loss Time:	0.100
	Through	1.00	1,600	98	0.113 *	ITS:	0.000
	Left	0.00	1,600	70	0.044		
Eastbound	Right	0.00	0	55	0.000	ICU:	0.340
	Through	2.00	3,200	312	0.117 *		
	Left	0.00	1,550	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.105
	Through	1.00	1,600	110	0.094 *	N/S 2:	0.118 *
	Left	0.00	1,600	31	0.019	E/W 1:	0.163 *
Westbound	Right	0.00	0	29	0.000	E/W 2:	0.114
	Through	2.00	3,200	328	0.113		
	Left	0.00	1,550	5	0.003 *	V/C Ratio:	0.281
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	84	0.086	ITS:	0.000
	Left	0.00	1,600	38	0.024 *		
Eastbound	Right	0.00	0	52	0.000	ICU:	0.381
	Through	2.00	3,200	458	0.160 *		
	Left	0.00	1,550	1	0.001	LOS:	A

[^14]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	25	0.002	N/S 1:	0.491 *
	Through	1.00	1,600	472	0.295	N/S 2:	0.341
	Left	1.00	1,600	65	0.041 *	E/W 1:	0.117
Westbound	Right	0.00	0	100	0.000	E/W 2:	0.155 *
	Through	2.00	3,200	309	0.128 *		
	Left	1.00	1,550	38	0.025	V/C Ratio: Loss Time:	0.646
Northbound	Right	0.00	0	26	0.000		0.100
	Through	1.00	1,600	694	0.450 *	ITS:	0.000
	Left	1.00	1,600	73	0.046		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.746
	Through	2.00	3,200	219	0.092		
	Left	1.00	1,550	42	0.027 *	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	34	0.004	N/S 1:	0.489 *
	Through	1.00	1,600	615	0.384	N/S 2:	0.444
	Left	1.00	1,600	124	0.078 *	E/W 1:	0.170 *
Westbound	Right	0.00	0	72	0.000	E/W 2:	0.148
	Through	2.00	3,200	291	0.113		
	Left	1.00	1,550	50	0.032 *	V/C Ratio:	0.659
Northbound	Right	1.00	1,600	26	0.000	Loss Time:	0.100
	Through	1.00	1,600	657	0.411 *	ITS:	0.000
	Left	1.00	1,600	96	0.060		
Eastbound	Right	0.00	0	114	0.000	ICU:	0.759
	Through	2.00	3,200	326	0.138 *		
	Left	1.00	1,550	55	0.035	LOS:	C

[^15]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	45	0.000	N/S 1:	0.644 *
	Through	2.00	3,200	896	0.294	N/S 2:	0.331
	Left	1.00	1,600	89	0.056 *	E/W 1:	0.144
Westbound	Right	0.00	0	196	0.000	E/W 2:	0.336 *
	Through	1.00	1,600	297	0.308 *		
	Left	1.00	1,550	13	0.008	V/C Ratio:	0.980
Northbound	Right	0.00	0	13	0.000	Loss Time:ITS:	0.100
	Through	1.00	1,600	928	0.588 *		0.000
	Left	1.00	1,600	59	0.037		
Eastbound	Right	0.00	0	49	0.000	ICU:	1.080
	Through	1.00	1,600	168	0.136		
	Left	1.00	1,550	43	0.028 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	72	0.000	N/S 1:	0.355
	Through	2.00	3,200	1,219	0.403 *	N/S 2:	0.459 *
	Left	1.00	1,600	131	0.082	E/W 1:	0.256
Westbound	Right	0.00	0	116	0.000	E/W 2:	0.285 *
	Through	1.00	1,600	222	0.211 *		
	Left	1.00	1,550	47	0.030	V/C Ratio:	0.744
Northbound	Right	0.00	0	43	0.000	Loss Time:	0.100
	Through	2.00	3,200	831	0.273	ITS:	0.000
	Left	1.00	1,600	89	0.056 *		
Eastbound	Right	0.00	0	99	0.000	ICU:	0.844
	Through	1.00	1,600	263	0.226		
	Left	1.00	1,550	115	0.074 *	LOS:	D

[^16]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	18	0.000	N/S 1:	0.627^{*}
	Through	2.00	3,200	930	0.296	N/S 2:	0.329
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.072 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.061
	Through	1.00	1,600	64	0.053		
	Left	0.00	1,600	10	0.006 *	V/C Ratio:	0.699
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	975	0.619 *	ITS:	0.000
	Left	1.00	1,600	53	0.033		
Eastbound	Right	0.00	0	45	0.000	ICU:	0.799
	Through	1.00	1,600	47	0.066 *		
	Left	0.00	1,600	13	0.008	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	42	0.000	N/S 1:	0.331
	Through	2.00	3,200	1,233	0.398 *	N/S 2:	0.438 *
	Left	1.00	1,600	41	0.026	E/W 1:	0.158 *
Westbound	Right	0.00	0	19	0.000	E/W 2:	0.090
	Through	1.00	1,600	56	0.062		
	Left	0.00	1,600	24	0.015 *	V/C Ratio:	0.596
Northbound	Right	0.00	0	46	0.000	Loss Time:	0.100
	Through	2.00	3,200	930	0.305	ITS:	0.000
	Left	1.00	1,600	64	0.040 *		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.696
	Through	1.00	1,600	109	0.143 *		
	Left	0.00	1,600	45	0.028	LOS:	B

[^17]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.121 *
	Through	1.00	1,600	79	0.059	N/S 2:	0.104
	Left	0.00	1,600	11	0.007 *	E/W 1:	0.124 *
Westbound	Right	0.00	0	43	0.000	E/W 2:	0.116
	Through	2.00	3,200	309	0.112		
	Left	0.00	1,550	6	0.004 *	V/C Ratio:	0.245
Northbound	Right	0.00	0	12	0.000	Loss Time:	0.100
	Through	1.00	1,600	98	0.114 *	ITS:	0.000
	Left	0.00	1,600	72	0.045		
Eastbound	Right	0.00	0	57	0.000	ICU:	0.345
	Through	2.00	3,200	322	0.120 *		
	Left	0.00	1,550	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.107
	Through	1.00	1,600	110	0.095 *	N/S 2:	0.119 *
	Left	0.00	1,600	32	0.020	E/W 1:	0.166 *
Westbound	Right	0.00	0	29	0.000	E/W 2:	0.116
	Through	2.00	3,200	335	0.115		
	Left	0.00	1,550	5	0.003 *	V/C Ratio:	0.285
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	84	0.087	ITS:	0.000
	Left	0.00	1,600	39	0.024 *		
Eastbound	Right	0.00	0	54	0.000	ICU:	0.385
	Through	2.00	3,200	468	0.163 *		
	Left	0.00	1,550	1	0.001	LOS:	A

[^18]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	27	0.003	N/S 1:	0.491 *
	Through	1.00	1,600	472	0.295	N/S 2 :	0.341
	Left	1.00	1,600	65	0.041 *	E/W 1:	0.120
Westbound	Right	0.00	0	100	0.000	E/W 2:	0.159 *
	Through	2.00	3,200	318	0.131 *		
	Left	1.00	1,550	38	0.025	V/C Ratio: Loss Time:	0.650
Northbound	Right	0.00	0	26	0.000		0.100
	Through	1.00	1,600	694	0.450 *	ITS:	0.000
	Left	1.00	1,600	73	0.046		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.750
	Through	2.00	3,200	230	0.095		
	Left	1.00	1,550	44	0.028 *	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	36	0.004	N/S 1:	0.489 *
	Through	1.00	1,600	615	0.384	N/S 2:	0.444
	Left	1.00	1,600	124	0.078 *	E/W 1:	0.172 *
Westbound	Right	0.00	0	72	0.000	E/W 2:	0.152
	Through	2.00	3,200	300	0.116		
	Left	1.00	1,550	50	0.032 *	V/C Ratio:	0.661
Northbound	Right	1.00	1,600	26	0.000	Loss Time:	0.100
	Through	1.00	1,600	657	0.411 *	ITS:	0.000
	Left	1.00	1,600	96	0.060		
Eastbound	Right	0.00	0	114	0.000	ICU:	0.761
	Through	2.00	3,200	333	0.140 *		
	Left	1.00	1,550	56	0.036	LOS:	C

[^19]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	53	0.000	N/S 1:	0.644 *
	Through	2.00	3,200	896	0.297	N/S 2:	0.335
	Left	1.00	1,600	89	0.056 *	E/W 1:	0.145
Westbound	Right	0.00	0	196	0.000	E/W 2:	0.342 *
	Through	1.00	1,600	297	0.308 *		
	Left	1.00	1,550	13	0.008	V/C Ratio:	0.986
Northbound	Right	0.00	0	13	0.000	Loss Time:	0.100
	Through	1.00	1,600	928	0.588 *	ITS:	0.000
	Left	1.00	1,600	61	0.038		
Eastbound	Right	0.00	0	51	0.000	ICU:	1.086
	Through	1.00	1,600	168	0.137		
	Left	1.00	1,550	52	0.034 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	80	0.000	N/S 1:	0.355
	Through	2.00	3,200	1,219	0.406 *	N/S 2:	0.463 *
	Left	1.00	1,600	131	0.082	E/W 1:	0.257
Westbound	Right	0.00	0	116	0.000	E/W 2:	0.289 *
	Through	1.00	1,600	222	0.211 *		
	Left	1.00	1,550	47	0.030	V/C Ratio:	0.752
Northbound	Right	0.00	0	43	0.000	Loss Time:	0.100
	Through	2.00	3,200	831	0.273	ITS:	0.000
	Left	1.00	1,600	91	0.057 *		
Eastbound	Right	0.00	0	100	0.000	ICU:	0.852
	Through	1.00	1,600	263	0.227		
	Left	1.00	1,550	121	0.078 *	LOS:	D

[^20]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	18	0.000	N/S 1:	0.629 *
	Through	2.00	3,200	932	0.297	N/S 2:	0.333
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.075 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.061
	Through	1.00	1,600	64	0.053		
	Left	0.00	1,600	10	0.006 *	V/C Ratio:	0.704
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	977	0.621 *	ITS:	0.000
	Left	1.00	1,600	58	0.036		
Eastbound	Right	0.00	0	50	0.000	ICU:	0.804
	Through	1.00	1,600	47	0.069 *		
	Left	0.00	1,600	13	0.008	LOS:	D

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	42	0.000	N/S 1:	0.332
	Through	2.00	3,200	1,234	0.399 *	N/S 2:	0.442 *
	Left	1.00	1,600	41	0.026	E/W 1:	0.159 *
Westbound	Right	0.00	0	19	0.000	E/W 2:	0.090
	Through	1.00	1,600	56	0.062		
	Left	0.00	1,600	24	0.015 *	V/C Ratio:	0.601
Northbound	Right	0.00	0	46	0.000	Loss Time:	0.100
	Through	2.00	3,200	932	0.306	ITS:	0.000
	Left	1.00	1,600	69	0.043 *		
Eastbound	Right	0.00	0	77	0.000	ICU:	0.701
	Through	1.00	1,600	109	0.144 *		
	Left	0.00	1,600	45	0.028	LOS:	C

[^21]
Mission View Mixed Use
 Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.137 *
	Through	1.00	1,600	79	0.059	N/S 2:	0.121
	Left	0.00	1,600	10	0.006 *	E/W 1:	0.121 *
Westbound	Right	0.00	0	42	0.000	E/W 2:	0.103
	Through	2.00	3,200	269	0.099		
	Left	0.00	1,550	6	0.004^{*}	V/C Ratio:	0.258
Northbound	Right	0.00	0	12	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	98	0.131 *		0.000
	Left	0.00	1,600	99	0.062		
Eastbound	Right	0.00	0	55	0.000	ICU:	0.358
	Through	2.00	3,200	312	0.117 *		
	Left	0.00	1,550	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.125
	Through	1.00	1,600	110	0.094 *	N/S 2:	0.138 *
	Left	0.00	1,600	31	0.019	E/W 1:	0.163 *
Westbound	Right	0.00	0	29	0.000	E/W 2:	0.104
	Through	2.00	3,200	297	0.103		
	Left	0.00	1,550	5	0.003 *	V/C Ratio:	0.301
Northbound	Right	0.00	0	16	0.000	Loss Time:	0.100
	Through	1.00	1,600	84	0.106	ITS:	0.000
	Left	0.00	1,600	70	0.044 *		
Eastbound	Right	0.00	0	52	0.000	ICU:	0.401
	Through	2.00	3,200	458	0.160 *		
	Left	0.00	1,550	1	0.001	LOS:	A

[^22]
Mission View Mixed Use
 Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	25	0.002	N/S 1:	0.504 *
	Through	1.00	1,600	472	0.295	N/S 2:	0.341
	Left	1.00	1,600	65	0.041 *	E/W 1:	0.110
Westbound	Right	0.00	0	100	0.000	E/W 2:	0.155 *
	Through	2.00	3,200	309	0.128 *		
	Left	1.00	1,550	38	0.025	V/C Ratio: Loss Time:	0.659
Northbound	Right	0.00	0	47	0.000		0.100
	Through	1.00	1,600	694	0.463 *	ITS:	0.000
	Left	1.00	1,600	73	0.046		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.759
	Through	2.00	3,200	198	0.085		
	Left	1.00	1,550	42	0.027^{*}	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	34	0.004	N/S 1:	0.489 *
	Through	1.00	1,600	615	0.384	N/S 2:	0.444
	Left	1.00	1,600	124	0.078 *	E/W 1:	0.160 *
Westbound	Right	0.00	0	72	0.000	E/W 2:	0.148
	Through	2.00	3,200	291	0.113		
	Left	1.00	1,550	50	0.032 *	V/C Ratio:	0.649
Northbound	Right	1.00	1,600	57	0.019	Loss Time:	0.100
	Through	1.00	1,600	657	0.411 *	ITS:	0.000
	Left	1.00	1,600	96	0.060		
Eastbound	Right	0.00	0	114	0.000	ICU:	0.749
	Through	2.00	3,200	295	0.128 *		
	Left	1.00	1,550	55	0.035	LOS:	C

[^23]
Mission View Mixed Use
 Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	45	0.000	N/S 1:	0.644 *
	Through	2.00	3,200	896	0.294	N/S 2:	0.331
	Left	1.00	1,600	89	0.056 *	E/W 1:	0.144
Westbound	Right	0.00	0	196	0.000	E/W 2:	0.336 *
	Through	1.00	1,600	297	0.308 *		
	Left	1.00	1,550	13	0.008	V/C Ratio: Loss Time:	0.980
Northbound	Right	0.00	0	13	0.000		0.100
	Through	1.00	1,600	928	0.588 *	ITS:	0.000
	Left	1.00	1,600	59	0.037		
Eastbound	Right	0.00	0	49	0.000	ICU:	1.080
	Through	1.00	1,600	168	0.136		
	Left	1.00	1,550	43	0.028 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	72	0.000	N/S 1:	0.355
	Through	2.00	3,200	1,219	0.403 *	N/S 2:	0.459 *
	Left	1.00	1,600	131	0.082	E/W 1:	0.256
Westbound	Right	0.00	0	116	0.000	E/W 2:	0.285 *
	Through	1.00	1,600	222	0.211 *		
	Left	1.00	1,550	47	0.030	V/C Ratio:	0.744
Northbound	Right	0.00	0	43	0.000	Loss Time:	0.100
	Through	2.00	3,200	831	0.273	ITS:	0.000
	Left	1.00	1,600	89	0.056 *		
Eastbound	Right	0.00	0	99	0.000	ICU:	0.844
	Through	1.00	1,600	263	0.226		
	Left	1.00	1,550	115	0.074 *	LOS:	D

[^24]
Mission View Mixed Use
 Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	18	0.000	N/S 1:	0.627 *
	Through	2.00	3,200	930	0.296	N/S 2:	0.329
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.072 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.061
	Through	1.00	1,600	64	0.053		
	Left	0.00	1,600	10	0.006 *	V/C Ratio:	0.699
Northbound	Right	0.00	0	16	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	975	0.619 *		0.000
	Left	1.00	1,600	53	0.033		
Eastbound	Right	0.00	0	45	0.000	ICU:	0.799
	Through	1.00	1,600	47	0.066 *		
	Left	0.00	1,600	13	0.008	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	42	0.000	N/S 1:	0.331
	Through	2.00	3,200	1,233	0.398 *	N/S 2:	0.438 *
	Left	1.00	1,600	41	0.026	E/W 1:	0.158 *
Westbound	Right	0.00	0	19	0.000	E/W 2:	0.090
	Through	1.00	1,600	56	0.062		
	Left	0.00	1,600	24	0.015 *	V/C Ratio:	0.596
Northbound	Right	0.00	0	46	0.000	Loss Time:	0.100
	Through	2.00	3,200	930	0.305	ITS:	0.000
	Left	1.00	1,600	64	0.040 *		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.696
	Through	1.00	1,600	109	0.143 *		
	Left	0.00	1,600	45	0.028	LOS:	B

[^25]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

1. MERIDIAN AVE \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	5	0.000	N/S 1:	0.148 *
	Through	1.00	1,600	79	0.059	N/S 2:	0.129
	Left	0.00	1,600	11	0.007 *	E/W 1:	0.124 *
Westbound	Right	0.00	0	42	0.000	E/W 2:	0.103
	Through	2.00	3,200	269	0.099		
	Left	0.00	1,550	6	0.004 *	V/C Ratio:	0.272
Northbound	Right	0.00	0	14	0.000	Loss Time:	0.100
	Through	1.00	1,600	99	0.141 *	ITS:	0.000
	Left	0.00	1,600	112	0.070		
Eastbound	Right	0.00	0	55	0.000	ICU:	0.372
	Through	2.00	3,200	323	0.120 *		
	Left	0.00	1,550	6	0.004	LOS:	A

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	10	0.000	N/S 1:	0.133
	Through	1.00	1,600	110	0.095 *	N/S 2:	0.144 *
	Left	0.00	1,600	32	0.020	E/W 1:	0.166 *
Westbound	Right	0.00	0	29	0.000	E/W 2:	0.104
	Through	2.00	3,200	297	0.103		
	Left	0.00	1,550	5	0.003 *	V/C Ratio:	0.310
Northbound	Right	0.00	0	18	0.000	Loss Time:	0.100
	Through	1.00	1,600	84	0.113	ITS:	0.000
	Left	0.00	1,600	78	0.049 *		
Eastbound	Right	0.00	0	52	0.000	ICU:	0.410
	Through	2.00	3,200	469	0.163 *		
	Left	0.00	1,550	1	0.001	LOS:	A

[^26]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

2. FREEMONT \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	27	0.003	N/S 1:	0.511 *
	Through	1.00	1,600	472	0.295	N/S 2:	0.342
	Left	1.00	1,600	65	0.041 *	E/W 1:	0.110
Westbound	Right	0.00	0	100	0.000	E/W 2:	0.159 *
	Through	2.00	3,200	323	0.132 *		
	Left	1.00	1,550	38	0.025	V/C Ratio: 0.670	
Northbound	Right	0.00	0	56	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	696	0.470 *		0.000
	Left	1.00	1,600	75	0.047		
Eastbound	Right	0.00	0	74	0.000	ICU:	0.770
	Through	2.00	3,200	198	0.085		
	Left	1.00	1,550	42	0.027 *	LOS:	C

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	1.00	1,600	36	0.005	N/S 1:	0.489 *
	Through	1.00	1,600	615	0.384	N/S 2:	0.445
	Left	1.00	1,600	124	0.078 *	E/W 1:	0.160 *
Westbound	Right	0.00	0	72	0.000	E/W 2:	0.153
	Through	2.00	3,200	305	0.118		
	Left	1.00	1,550	50	0.032 *	V/C Ratio:	0.649
Northbound	Right	1.00	1,600	63	0.023	Loss Time:	0.100
	Through	1.00	1,600	658	0.411 *	ITS:	0.000
	Left	1.00	1,600	98	0.061		
Eastbound	Right	0.00	0	114	0.000	ICU:	0.749
	Through	2.00	3,200	295	0.128 *		
	Left	1.00	1,550	55	0.035	LOS:	C

[^27]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

3. FAIR OAKS \& MISSION ST

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1550 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%

Overlapping Right Turn:

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	53	0.000	N/S 1:	0.644 *
	Through	2.00	3,200	896	0.297	N/S 2:	0.338
	Left	1.00	1,600	89	0.056 *	E/W 1:	0.144
Westbound	Right	0.00	0	196	0.000	E/W 2:	0.342 *
	Through	1.00	1,600	297	0.308 *		
	Left	1.00	1,550	13	0.008	V/C Ratio: 0.986	
Northbound	Right	0.00	0	13	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	928	0.588 *		0.000
	Left	1.00	1,600	65	0.041		
Eastbound	Right	0.00	0	49	0.000	ICU:	1.086
	Through	1.00	1,600	168	0.136		
	Left	1.00	1,550	52	0.034 *	LOS:	F

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	80	0.000	N/S 1:	0.355
	Through	2.00	3,200	1,219	0.406 *	N/S 2:	0.465 *
	Left	1.00	1,600	131	0.082	E/W 1:	0.256
Westbound	Right	0.00	0	116	0.000	E/W 2:	0.289 *
	Through	1.00	1,600	222	0.211 *		
	Left	1.00	1,550	47	0.030	V/C Ratio:	0.754
Northbound	Right	0.00	0	43	0.000	Loss Time:	0.100
	Through	2.00	3,200	831	0.273	ITS:	0.000
	Left	1.00	1,600	95	0.059 *		
Eastbound	Right	0.00	0	99	0.000	ICU:	0.854
	Through	1.00	1,600	263	0.226		
	Left	1.00	1,550	121	0.078 *	LOS:	D

[^28]
Mission View Mixed Use

Intersection Capacity Utilization Analysis

4. FAIR OAKS \& EL CENTRO

Through Lane Capacity:	1600 vph	North/South Split Phase:	N
Left-Turn Lane Capacity:	1600 vph	E/W Split Phase:	N
Double-Left Penalty:	20%	Loss Time \% per Cycle:	10%
Right-Turn on Red:	50%	ITS Percentage:	0%
Overlapping Right Turn:			

WEEKDAY A.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	18	0.000	N/S 1:	0.631 *
	Through	2.00	3,200	930	0.296	N/S 2:	0.329
	Left	1.00	1,600	12	0.008 *	E/W 1:	0.076 *
Westbound	Right	0.00	0	11	0.000	E/W 2:	0.061
	Through	1.00	1,600	64	0.053		
	Left	0.00	1,600	10	0.006 *	$\text { V/C Ratio: } 0.707$	
Northbound	Right	0.00	0	16	0.000	Loss Time: ITS:	0.100
	Through	1.00	1,600	981	0.623 *		0.000
	Left	1.00	1,600	53	0.033		
Eastbound	Right	0.00	0	52	0.000	ICU:	0.807
	Through	1.00	1,600	47	0.070 *		
	Left	0.00	1,600	13	0.008	LOS:	D

WEEKDAY P.M. PEAK HOUR

Approach	Movement	Lanes	Capacity	Volume	V/C	ICU Analysis	
Southbound	Right	0.00	0	42	0.000	N/S 1:	0.333
	Through	2.00	3,200	1,233	0.398 *	N/S 2:	0.438 *
	Left	1.00	1,600	41	0.026	E/W 1:	0.160 *
Westbound	Right	0.00	0	19	0.000	E/W 2:	0.090
	Through	1.00	1,600	56	0.062		
	Left	0.00	1,600	24	0.015 *	V/C Ratio:	0.598
Northbound	Right	0.00	0	46	0.000	Loss Time:	0.100
	Through	2.00	3,200	936	0.307	ITS:	0.000
	Left	1.00	1,600	64	0.040 *		
Eastbound	Right	0.00	0	78	0.000	ICU:	0.698
	Through	1.00	1,600	109	0.145 *		
	Left	0.00	1,600	45	0.028	LOS:	B

[^29]Appendix C
Highway Capacity Manual (HCM) Worksheets

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad
Analyst: GIBSON/bh
Agency/Co.:
Date Performed: 1/2017
Analysis Time Period: AM
Intersection: Fairview/Driveway
Jurisdiction: South Pasadena
Units: U. S. Customary
Analysis Year: Future + Project
Project ID: MISSION VIEW MXD
East/West Street: Driveway
North/South Street: Fairview
Intersection Orientation: NS Study period (hrs): 0.25

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad
Analyst: GIBSON/bh
Agency/Co.:
Date Performed: 1/2017
Analysis Time Period: PM
Intersection: Fairview/Driveway
Jurisdiction: South Pasadena
Units: U. S. Customary
Analysis Year: Future + Project
Project ID: MISSION VIEW MXD
East/West Street: Driveway
North/South Street: Fairview
Intersection Orientation: NS Study period (hrs): 0.25

Major Street: $\begin{gathered}\text { Approach } \\ \text { Movement }\end{gathered}$	1 Northbound			Southbound			
				4	5	6	
	L	T	R	L	T	R	
Volume		100	12	27	100		
Peak-Hour Factor, PHF		1.00	1.00	1.00	1.0		
Hourly Flow Rate, HFR		100	12	27	100		
Percent Heavy Vehicles		--	--	0	- -	--	
Median Type/Storage Un		ded		1			
RT Channelized?							
Lanes		1		0	1		
Configuration							
Upstream Signal?		No			No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	9		20				
Peak Hour Factor, PHF	1.0		1.00				
Hourly Flow Rate, HFR	9		20				
Percent Heavy Vehicles	0		0				
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Stor			No	1			1
Lanes							
Configuration		LR					

Approach	NB	SB		Westbound		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		27		29				
$\mathrm{C}(\mathrm{m})$ (vph)		1490		867				
v/c		0.02		0.03				
95\% queue length		0.06		0.10				
Control Delay		7.5		9.3				
LOS		A		A				
Approach Delay				9.3				
Approach LOS				A				

	\rightarrow	-	\dagger	\dagger
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	406	376	196	102
v/c Ratio	0.63	0.58	0.54	0.23
Control Delay	68.1	66.8	63.1	54.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	68.1	66.8	63.1	54.0
Queue Length 50th (ft)	222	204	196	94
Queue Length 95th (ft)	285	265	287	152
Internal Link Dist (ft)	722	708	805	653
Turn Bay Length (ft)				
Base Capacity (vph)	644	644	365	438
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.63	0.58	0.54	0.23

[^30]| | \rightarrow | \leftarrow | \dagger | \downarrow |
| :---: | :---: | :---: | :---: | :---: |
| Lane Group | EBT | WBT | NBT | SBT |
| Lane Group Flow (vph) | 556 | 394 | 149 | 165 |
| v/c Ratio | 0.85 | 0.63 | 0.38 | 0.40 |
| Control Delay | 80.7 | 69.2 | 56.9 | 57.9 |
| Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 |
| Total Delay | 80.7 | 69.2 | 56.9 | 57.9 |
| Queue Length 50th (tt) | 325 | 218 | 140 | 158 |
| Queue Length 95th (t) | \#407 | 281 | 215 | 237 |
| Internal Link Dist (tt) | 722 | 708 | 805 | 653 |
| Turn Bay Length (t) | | | | |
| Base Capacity (vph) | 652 | 622 | 388 | 416 |
| Starvation Cap Reductn | 0 | 0 | 0 | 0 |
| Spillback Cap Reductn | 0 | 0 | 0 | 0 |
| Storage Cap Reductn | 0 | 0 | 0 | 0 |
| Reduced v/c Ratio | 0.85 | 0.63 | 0.38 | 0.40 |
| Intersection Summary | | | | |
| \# 95th percentile volume exceeds capacity, queue may be longerQueue shown is maximum after two cycles. | | | | |
| | | | | |

	\rightarrow	\leftarrow	\dagger	\downarrow
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	569	401	150	166
v/c Ratio	0.87	0.65	0.39	0.40
Control Delay	82.7	70.0	57.5	58.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	82.7	70.0	57.5	58.0
Queue Length 50th (ft)	334	223	142	159
Queue Length 95th (ft)	\#430	286	217	238
Internal Link Dist (tt)	722	708	805	653
Turn Bay Length (t)				
Base Capacity (vph)	651	614	385	414
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.87	0.65	0.39	0.40
Intersection Summary				
\# 95th percentile volume exceeds capacity, queue may be longerQueue shown is maximum after two cycles.				

			EBT	WBT
	NBT	SBT		
Lane Group	419	390	198	103
Lane Group Flow (vph)	0.65	0.61	0.55	0.24
v/c Ratio	68.8	67.6	63.5	54.1
Control Delay	0.0	0.0	0.0	0.0
Queue Delay	68.8	67.6	63.5	54.1
Total Delay	231	213	198	95
Queue Length 50th (ft)	295	274	291	154
Queue Length 95th (ft)	722	708	805	653
Internal Link Dist (ft)				
Turn Bay Length (ft)	644	644	362	437
Base Capacity (vph)	0	0	0	0
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0.65	0.61	0.55	0.24
Reduced v/c Ratio				
Intersection Summary				

[^0]: ${ }^{1}$ WalkScore.com rates the Project site with a score of 93 of 100 possible points (scores accessed on January 2017 for 1101 Mission Street).

[^1]: Prepared by City Count, LLC. (www.citycount.com)

[^2]: Prepared by City Count, LLC. (www.citycount.com)

[^3]: Prepared by City Count, LLC. (www.citycount.com)

[^4]: Prepared by City Count, LLC. (www.citycount.com)

[^5]: Prepared by City Count, LLC. (www.citycount.com)

[^6]: * Critical Movement

[^7]: * Critical Movement

[^8]: * Critical Movement

[^9]: * Critical Movement

[^10]: * Critical Movement

[^11]: * Critical Movement

[^12]: * Critical Movement

[^13]: * Critical Movement

[^14]: * Critical Movement

[^15]: * Critical Movement

[^16]: * Critical Movement

[^17]: * Critical Movement

[^18]: * Critical Movement

[^19]: * Critical Movement

[^20]: * Critical Movement

[^21]: * Critical Movement

[^22]: * Critical Movement

[^23]: * Critical Movement

[^24]: * Critical Movement

[^25]: * Critical Movement

[^26]: * Critical Movement

[^27]: * Critical Movement

[^28]: * Critical Movement

[^29]: * Critical Movement

[^30]: Intersection Summary

