# Appendix H

Hydrology and Water Quality Report

# Hydrology Report for Sand Canyon Country Club

## **VOLUME 1**

**County of Los Angeles** 

## Hunsaker Project No: 0261-001-001 Revised September 26, 2018

**Prepared for:** 

Sand Canyon Country Club 27734 Sand Canyon Road Santa Clarita, California 91387

**Prepared by:** 



Gregory Keldjian Hunsaker and Associates, LA Inc. 26074 Avenue Hall, Suite 23 Valencia, CA 91355 Telephone: (661) 294-2211 Fax: (661) 294-9890

Under the supervision of:

Jason H. Fukumitsu RCE 40695

Exp. 3/31/19

## **TABLE OF CONTENTS**

| 1. |    | INTRODUCTION1                                        |
|----|----|------------------------------------------------------|
|    |    | 1.1 Report Summary                                   |
|    |    | 1.2 Project Description                              |
| 2. |    | METHODOLOGY                                          |
| 3. |    | DESIGN CRITERIA                                      |
| 4. |    | RATIONAL METHOD HYDROLOGY WATERSHEDS5                |
| 5. |    | WATER QUALITY                                        |
| 6. |    | CONCLUSION AND RECOMMENDATIONS                       |
| 7. |    | REFERENCES                                           |
| 8. |    | APPENDICES                                           |
|    | A. | Rational Method Hydrology                            |
|    |    | 1. Existing Hydrologic Results for 50-yr Storm Event |
|    |    | 2. Proposed Hydrologic Results for 50-yr Storm Event |
|    |    | 3. LID Hydrologic Results                            |
|    |    | 4. Existing Debris Production Calculation            |
|    |    | 5. Proposed Debris Production Calculation            |
|    |    | 6. Existing Bulk Flow Calculation                    |
|    |    | 7. Proposed Bulk Flow Calculation                    |
|    | B. | Hydrological Maps                                    |
|    |    | 1. Existing Hydrology Map                            |
|    |    | 2. Proposed Hydrology Map                            |
|    |    | 3. Water Quality LID Exhibit                         |

- C. Hydrologic Reference Graphs & Table
  - 1. 50-Year, 24-Hour Isohyet (LACDPW)
  - 2. Runoff Coefficient Curves for Soil Types 20 and 99
  - 3. Los Angeles County Proportion Impervious Data Table
  - 4. Los Angeles County Debris Production Rates for Santa Clara Basin
  - 5. Los Angeles County Peak Bulking Factors for Santa Clara Basin

## D. Reference Plans:

1. L.A.C.D.P.W. PD0484

## 1.0 INTRODUCTION

## 1.1 **REPORT SUMMARY**

The purpose of this report is to present the Final Hydrology Design for Sand Canyon Country Club Tr. 52004. The report analyzes existing and proposed rough graded conditions for the 25, 50-year, and 50-year Capital Storm.

A 24-Hour storm analysis based upon the Los Angeles County Rational and Modified Rational Methods of Hydrology was used for clear, burned, and burned and bulked conditions for the watershed(s).

This report is divided into several sections. Section 1 contains the introduction; Section 2 discusses the methodology used in the hydrologic analysis; Section 3 summarizes the design criteria used; Section 4 is a description the hydrologic model and brief description of each watershed and its land uses; Section 5 includes the conclusions and recommendations of this report, and Section 6 includes a list of the references used in the preparation of this report.

## **1.2 PROJECT DESCRIPTION**

Sand Canyon Country Club consists of 75.5 acres and is located within a 1,634 square-mile Santa Clara River Basin. Tract 52004 includes the project site as well as existing residential and golf course areas. This hydrology study outlines the pre and post-development drainage for the site. This report addresses drainage from the upper limits of the project's drainage areas to the southerly edge of the Santa Clara River. The proposed project is composed of a park area, residential development, resort, hotel and golf course. It will also contain an existing pond. The site receives offsite water from a stream running roughly parallel to Live Oak Springs Canyon Road. The stream originates southeast of the project site in the Magic Mountain Wilderness Area. This brings the total acreage covered by this hydrology to approximately 750-acres.

The topography of the site contains moderate to steep sided ridges and some incised canyons. The project site drains mostly north or west. Flows ultimately drain into the Santa Clara River.

Land use within the watershed will contain developed and undeveloped areas. The development will consist of single and multi-family residential units, commercial (hotel and resort), as well as recreational facilities (tennis courts and golf course).

The proposed drainage watersheds generally follow the natural drainage courses. For this tract, debris control facilities have been located where natural terrain drains onto proposed development. Post-development storm water runoff from the site draining into existing offsite facilities will remain the same or higher compared to existing conditions during the capital storm event. Areas where the post-development runoff increases are located within the project site. Because overall post-development storm flows increase compared to pre-development flows, proposed on-site drainage facilities will be designed to accommodate storm flows from upstream areas and convey it to an acceptable outlet. Where runoff is conveyed to existing offsite drainage facilities, pre and post-development runoff rates and volumes are compared and are included in this report.

## 2. <u>METHODOLOGY</u>

The project site has been divided into four (4) watersheds in the existing and proposed conditions for analysis purposes. The total area of these watersheds including some offsite areas is approximately 175 acres. Each watershed was delineated using the proposed site grading for developed area and existing topography for undeveloped areas. The proposed drainage watersheds generally follow natural drainage courses. Each of the main watersheds was delineated into subareas of less than 40 acres, for the hydrology analysis. The Rational Method was used for drainage analysis; this method is found in the Los Angeles County 2006 Hydrology Manual.

The time of concentration  $(T_c)$  for each subarea was computed using the Los Angeles County approved Time of Concentration calculator. The calculator evaluates several hydrologic parameters such as soil type, land use, imperviousness, storm frequency, length and slope of each area to calculate a time of concentration. The data was used with the Los Angeles County HydroCalc software application, to determine peak flow rates for all storm events.

Using the times of concentrations for each subarea (acquired from the Time of Concentration calculator), the Rational Method was used to calculate the 50-Year 24-Hour peak runoff flow for each subarea. The undeveloped tributary areas were analyzed using a burned coefficient to calculate peak runoff rates. Unburned coefficients were used for all developed conditions as well as undeveloped conditions for storms other than the 50-year Capital Storm event. Existing golf course areas are considered developed and would require unburned coefficients.

The system is designed for the proposed condition as well as future conditions. The hydrological model only includes the existing offsite conditions.

The project's land use and imperviousness were determined from the Land Use and Imperviousness Table provided in the Los Angeles County Hydrology Manual. Soil types and rainfall corresponding to each subarea were obtained from the Hydrologic Maps in the Los Angeles County Hydrology Manual, Map: 1-H1.45.

The project site is located in two debris potential areas within the Santa Clara Basin, DPA-8 and DPA-9. Within the Santa Clara Watershed, DPA-8 and DPA-9 have bulking factors of 1.36 and 1.27 per square mile, for areas less than or equal to 0.1 mi<sup>2</sup>. The burned and bulked peak runoff rates were calculated by factoring the peak burned runoff rates by the appropriate bulking factor.

Two water quality/detention basins will be constructed, basin #1 will be south of Robinson Ranch and basin #2 near the intersection of "H" Drive and "I" Drive. Refer to proposed hydrology map in Appendix B. The debris production rate for Debris Potential Zones DPA-8 and DPA-9 are 35,000 cy / mi<sup>2</sup> and 16,500 cy / mi<sup>2</sup> respectively, for areas less than or equal to 0.1 mi<sup>2</sup>.

## 3. <u>DESIGN CRITERIA</u>

Los Angeles County requires that several design criteria's be followed when using the Rational and Modified Rational Method to determine capital flood flow.

The 50-year and 24-hour rainfall isohyets used in the hydrologic calculations were obtained from the Los Angeles County Hydrology Manual's Hydrologic Maps. This ranged between 5.8" to 6.0". Other storm events were determined by factoring the 50-year isohyets.

The soil types within the project site were also determined from the hydrologic maps as 20 and 99.

The project was assumed to have 55% imperviousness in residential and commercial areas and 3% for golf course areas. Undeveloped areas within the project were assumed to have 3% imperviousness. Road areas within the project were assumed to have 99% imperviousness.

The project lies in two main debris potential areas in the Santa Clara Basin, DPA-8 and DPA-9. The respective debris and bulking factors are 35,000 cy /  $mi^2$ , 1.36 /  $mi^2$ ; and 16,500 cy /  $mi^2$ , 1.27 /  $mi^2$ .

The design criteria used is summarized below:

| Hydrology Method:            | Los Angeles County Flood Control District Rational Method.                              |
|------------------------------|-----------------------------------------------------------------------------------------|
| Hydrology Modeling Software  | HydroCalc 0.3.1-beta                                                                    |
| Design Storm:                | SUSMP, 25, 50-Year (burned), Capital                                                    |
| 50-Year Isohyet:             | 5.9"                                                                                    |
| Soil Types:                  | 20 and 99                                                                               |
| Land Use and Imperviousness: | Golf course (3%)                                                                        |
|                              | Duplexes, triplexes and 2-or 3-unit condominiums and<br>townhouses (55%)<br>Roads (99%) |
| Debris Potential Zone:       | townhouses (55%)                                                                        |

## 4. <u>RATIONAL METHOD HYDROLOGY WATERSHEDS</u>

The hydrology analysis was based on the Los Angeles design criteria for the Rational Method. Drainage areas were determined and the corresponding sub-areas delineated based on the existing topography and proposed grading for the project site.

Following is a brief description of the existing and proposed watersheds. The results of the hydrologic modeling can be found in this report on Appendix A.

## PROPOSED PROJECT

## Existing Condition

The project was delineated into four (4) existing watersheds as described below.

#### Watershed 100 (East of the Intersection of Sand Canyon Road and Robinson Ranch Road)

Watershed 100 drains approximately 91-acres to the west into an existing Los Angeles County Department of Public Works debris basin per PD048476.

## Watershed 200 (Southwest of the Intersection of Oak Springs Canyon Road and Pashley Street)

Watershed 200 is located southwest of the intersection of Oak Springs Canyon Road and Pashley Street and consists of 15-acres of natural area, which drains north into the Santa Clara River.

#### Watershed 300 (Southeast of the Intersection of Oak Springs Canyon Road and Pashley Street)

Watershed 300 is located southeast of the intersection of Oak Springs Canyon Road and Pashley Street and consists of 26-acres of natural area, which drains north toward Santa Clara River.

#### Watershed 400 (West and South of the existing Sand Canyon Country Club parking lot)

Watershed 400 is located west and south of an existing parking lot belonging to Sand Canyon Country Club. This watershed drains approximately 14-acres into the Santa Clara River.

#### **Proposed Condition**

In the proposed condition, the project was delineated into four (4) main watersheds. All undeveloped area runoff was calculated with burned runoff coefficients for the 50-year, 24-hour design storm.

## Watershed 100 (East of the Intersection of Sand Canyon Road and Robinson Ranch Road)

The proposed watershed 100 includes approximately 103-acres of tributary area that will be draining toward to the existing Los Angeles County Public Works Department debris basin PD048476. This watershed consists of approximately 43-acres of offsite area and approximately 40-acres of onsite commercial and mufti-family development. One water quality basin and one water quality/detention basin will be constructed in this watershed.

## Watershed 200 (Southwest of the Intersection of Oak Springs Canyon Road and Pashley Street)

Similar to existing watershed 200, the 11-acres tributary area drains toward the Santa Clara River.

## Watershed 300 (Southeast of the Intersection of Oak Springs Canyon Road and Pashley Street)

Similar to existing watersheds 300, the 17-acres tributary area drains toward the Santa Clara River.

## Watershed 400 (West and South of existing Sand Canyon Country Club parking lot)

Watershed 400 drains to existing ponds and will ultimately drain north. The tributary area is approximately 16 acres. The ponds in watershed 400 will be privately maintained.

## 5. <u>WATER QUALITY</u>

L.A.C.D.P.W. is responsible for the planning and operation of roads, building safety, flood control, and sewage. It is required by L.A.C.D.P.W. to quantify how much impact the proposed condition will have on the existing condition.

In the proposed condition, two water quality/detention basins will be constructed in watershed 100. Water quality /detention basin #2 will detain flow from a small oak tree preserve (1.6 ac). It will then go to the debris basin found in PD048475 which is maintained by L.A.C.D.P.W. Water quality/detention basin #1 will also be constructed in proposed watershed 100. Over time water will build up in basin #1 and overflow towards the same existing debris basin from PD048475. Water quality/detention basin #1 will also pick up offsite water from the south. An existing stream goes through this water quality/detention basin #1 is 3.44 ac-ft. These facilities are shown in proposed hydrology map in Appendix B. Flows ultimately travel to the Santa Clarita River, but pass through the existing debris basin first.

## 6. <u>CONCLUSIONS & RECOMMENDATIONS</u>

Based upon the hydrologic analysis performed, the developed project condition will result in onsite and offsite impacts. There are increases in runoff to the existing debris basin per PD048476.

See a summary of the results for runoff rates on Table 1. Detailed calculations can be found in the Appendix A. Existing and proposed hydrology maps can be found in Appendix B.

| t of the<br>Canyon<br>Ranch                                                   |           |                 |            | 50<br>year | Capital | Debris<br>Volume<br>(c.y.) |
|-------------------------------------------------------------------------------|-----------|-----------------|------------|------------|---------|----------------------------|
| Eas                                                                           | Existing  | (100 Watershed) | Q (cfs)    | 146.7      | 156.3   | 804                        |
| l 100 (Eas<br>n of Sand<br>Robinson<br>Road)                                  | Area (ac) | 90.6            | q (cfs/ac) | 1.6        |         |                            |
| Ro Ro Ro                                                                      | Proposed  | (100 Watershed) | Q (cfs)    | 187.0      | 195.6   | 611                        |
| cshec<br>section<br>and                                                       | Area (ac) | 103.5           | q (cfs/ac) | 1.8        |         |                            |
| Watershed 100 (East<br>Intersection of Sand C<br>Road and Robinson I<br>Road) |           | Delta           | Q (cfs)    | 40.3       | 39.3    |                            |
| Int<br>Rc                                                                     | Area (ac) | 12.9            | q (cfs/ac) | 0.2        |         |                            |

## Table 1 - Runoff Summary

| Watershed 200 (Southwest of<br>the Intersection of Oak<br>Springs Canyon Road and<br>Pashley Street) |           |                 |            | 50<br>year | Capital | Debris<br>Volume<br>(c.y.) |
|------------------------------------------------------------------------------------------------------|-----------|-----------------|------------|------------|---------|----------------------------|
| (South<br>tion of (<br>on Roa<br>Street)                                                             | Existing  | (200 Watershed) | Q (cfs)    | 31.9       | 43.4    | 788                        |
| 0 (S<br>ctioi<br>yon<br>Zti                                                                          | Area (ac) | 15.0            | q (cfs/ac) | 2.1        |         |                            |
| ed 200 (So<br>tersection<br>Canyon F<br>shley Stre                                                   | Proposed  | (200 Watershed) | Q (cfs)    | 26.5       | 34.9    | 265                        |
| shed<br>Inte<br>1gs (<br>Pas                                                                         | Area (ac) | 11.4            | q (cfs/ac) | 2.3        |         |                            |
| Vatershed 200<br>the Intersect<br>Springs Cany<br>Pashley                                            |           | Delta           | Q (cfs)    | -5.4       | -8.5    |                            |
| SJ                                                                                                   | Area (ac) | -3.6            | q (cfs/ac) | 0.2        |         |                            |

| 300 (Southeast of<br>section of Oak<br>anyon Road and<br>dey Street) |           |                 |            | 50<br>year | Capital | Debris<br>Volume<br>(c.y.) |
|----------------------------------------------------------------------|-----------|-----------------|------------|------------|---------|----------------------------|
| (Southe<br>ion of O<br>on Road<br>Street)                            | Existing  | (300 Watershed) | Q (cfs)    | 46.6       | 59.6    | 1335                       |
| 0 (So<br>ction<br>yon H<br>y Str                                     | Area (ac) | 26.3            | q (cfs/ac) | 1.8        |         |                            |
| ersect<br>canyo<br>shley                                             | Proposed  | (300 Watershed) | Q (cfs)    | 33.4       | 44.6    | 425                        |
| Watershed<br>the Inter<br>Springs C:<br>Pash                         | Area (ac) | 17.0            | q (cfs/ac) | 2.0        |         |                            |
| ater<br>the<br>prin                                                  |           | Delta           | Q (cfs)    | -13.2      | -15.0   |                            |
| W:<br>SI                                                             | Area (ac) | -9.3            | q (cfs/ac) | 0.2        |         |                            |

## Table 1 - Runoff Summary (Cont,)

| st and<br>g Sand<br>Club                                                             |           |                 |            | 50<br>year | Capital | Debris<br>Volume<br>(c.y.) |
|--------------------------------------------------------------------------------------|-----------|-----------------|------------|------------|---------|----------------------------|
| ot) ve                                                                               | Existing  | (400 Watershed) | Q (cfs)    | 47.2       | 48.0    | 21                         |
| 400 (West<br>existing {<br>ountry Cl<br>ing lot)                                     | Area (ac) | 17.4            | q (cfs/ac) | 2.7        |         |                            |
| shed 400<br>of the exi<br>yon Coun<br>parking                                        | Proposed  | (400 Watershed) | Q (cfs)    | 46.4       | 47.2    | 21                         |
| /atershe<br>outh of tj<br>Canyon<br>pai                                              | Area (ac) | 16.4            | q (cfs/ac) | 2.8        |         |                            |
| Watershed 400 (West<br>South of the existing S<br>Canyon Country Clı<br>parking lot) |           | Delta           | Q (cfs)    | -0.8       | -0.8    |                            |
| ă ă                                                                                  | Area (ac) | -1.0            | q (cfs/ac) | 0.1        |         |                            |

## Table 2 – Water Quality/Detention Summary

#### Basin #1

|                                                      | Ac-ft |
|------------------------------------------------------|-------|
| LID Req Volume                                       | 1.67  |
| Biofiltration Req Volume<br>(150% of LID Red Volume) | 2.51  |
| Detention (Subarae 101-104)                          | 0.27  |
| Total Req. Volume<br>(Biofiltration Vol + Detention) | 2.78  |
| Provided Volume                                      | 4.21  |

#### Basin #2

|                                                      | Ac-ft |
|------------------------------------------------------|-------|
| LID Req Volume                                       | 0.21  |
| Biofiltration Req Volume<br>(150% of LID Red Volume) | 0.32  |
| Detention (Subarea 106)                              | 0.01  |
| Total Req. Volume<br>(Biofiltration Vol + Detention) | 0.33  |
| Provided Volume                                      | 0.39  |

## Existing Debris Basin Per PD 048475

|         | Tributary Area |           |
|---------|----------------|-----------|
| Subarea | (ac)           | Qpm (cfs) |
| 105A    | 0.3            | 0.1       |
| 105B    | 1.1            | 0.2       |

## 7. **<u>REFERENCES</u>**

- i. Los Angeles County Department of Public Works Hydrology Manual, January 2006
- ii. Los Angeles County Department of Public Works Sedimentation Manual, March 2006

A. Rational Method Hydrology

1. Existing Hydrologic Results for 50-yr Storm Event

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Existing Hyodology Calc/Existing Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 101 Area (ac) 26.5 Flow Path Length (ft) 1830.0 Flow Path Slope (vft/hft) 0.1 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.4301 Undeveloped Runoff Coefficient (Cu) 0.8057 Developed Runoff Coefficient (Cd) 0.8085 Time of Concentration (min) 11.0 Clear Peak Flow Rate (cfs) 52.0656 Burned Peak Flow Rate (cfs) 53.6656 24-Hr Clear Runoff Volume (ac-ft) 3.415 24-Hr Clear Runoff Volume (cu-ft) 148757.6328 Hydrograph (Sand Canyon: 101) 60 50 40 Flow (cfs) 30 20 10 0 1000 1200 0 200 400 600 800 1400 1600 Time (minutes)

| Input Parameters                    |                |
|-------------------------------------|----------------|
| Project Name                        | Sand Canyon    |
| Subarea ID                          | 102            |
| Area (ac)                           | 12.8           |
| Flow Path Length (ft)               | 962.0          |
| Flow Path Slope (vft/hft)           | 0.07           |
| 50-yr Rainfall Depth (in)           | 5.9            |
| Percent Impervious                  | 0.03           |
| Soil Type                           | 20             |
| Design Storm Frequency              |                |
| Design Storm Frequency              | 50-yr          |
| Fire Factor                         | 0.34           |
| LID                                 | False          |
| Output Results                      |                |
| Modeled (50-yr) Rainfall Depth (in) | 5.9            |
| Peak Intensity (in/hr)              | 2.5414         |
| Undeveloped Runoff Coefficient (Cu) | 0.5651         |
| Developed Runoff Coefficient (Cd)   | 0.5751         |
| Time of Concentration (min)         | 10.0           |
| Time of Concentration (min)         |                |
| Clear Peak Flow Rate (cfs)          | 18.7086        |
| Burned Peak Flow Rate (cfs)         | 20.5151        |
| 24-Hr Clear Runoff Volume (ac-ft)   | 1.1675         |
| 24-Hr Clear Runoff Volume (cu-ft)   | 50857.3535     |
| 20 Hydrograph (San                  | d Canyon: 102) |
| 15 -<br>(st) Mol<br>H<br>5 -        |                |
| 0 200 400 600 800<br>Time (mi       |                |

| Input Parameters                                                                                                                                                             |                      |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|
| Project Name                                                                                                                                                                 | Sand Canyon          |    |
| Subarea ID                                                                                                                                                                   | 103                  |    |
| Area (ac)                                                                                                                                                                    | 20.7                 |    |
| Flow Path Length (ft)                                                                                                                                                        | 1653.0               |    |
| Flow Path Slope (vft/hft)                                                                                                                                                    | 0.12                 |    |
| Flow Path Slope (vft/hft)<br>50-yr Rainfall Depth (in)                                                                                                                       | 5.9                  |    |
| Percent Impervious                                                                                                                                                           | 0.03                 |    |
| Soil Type                                                                                                                                                                    | 99                   |    |
| Design Storm Frequency                                                                                                                                                       | 50-yr                |    |
| Fire Factor                                                                                                                                                                  | 0.34                 |    |
| LID                                                                                                                                                                          | False                |    |
|                                                                                                                                                                              | Faise                |    |
| Output Results                                                                                                                                                               |                      |    |
| Modeled (50-yr) Rainfall Depth (in)                                                                                                                                          | 5.9                  |    |
| Peak Intensity (in/hr)                                                                                                                                                       | 2.5414               |    |
| Indeveloped Rupoff Coofficient (Cu)                                                                                                                                          | 0.8116               |    |
| Undeveloped Runoff Coefficient (Cu)<br>Developed Runoff Coefficient (Cd)                                                                                                     |                      |    |
| Time of Concentration (min)                                                                                                                                                  | 0.8143               |    |
| Time of Concentration (min)                                                                                                                                                  | 10.0                 |    |
| Clear Peak Flow Rate (cfs)<br>Burned Peak Flow Rate (cfs)                                                                                                                    | 42.8358              |    |
| Burned Peak Flow Rate (CIS)                                                                                                                                                  | 44.1129              |    |
|                                                                                                                                                                              |                      |    |
| 24-Hr Clear Runoff Volume (ac-ft)                                                                                                                                            | 2.6684               |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)                                                                                                       | 2.6684<br>116235.583 |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>Hydrograph (Sand                                                                                   | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)                                                                                                       | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>Hydrograph (Sand                                                                                   | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45 Hydrograph (Sand                                                                                | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40                                                                                           | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45 Hydrograph (Sand                                                                                | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35                                                                                     | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40                                                                                           | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35                                                                                     | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>-                                                                          | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>-                                                                          | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>-                                                                          | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>-                                                                          | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>-<br>30<br>-<br>(g) 25<br>-<br>(g) 25<br>-<br>20<br>-                            | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>-                                                                          | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>-<br>30<br>-<br>(g) 25<br>-<br>(g) 25<br>-<br>20<br>-                            | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>-<br>30<br>-<br>(g) 25<br>-<br>(g) 25<br>-<br>20<br>-                            | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>40<br>-<br>30<br>-<br>30<br>-<br>30<br>-<br>30<br>-<br>15<br>-                   | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>15<br>10<br>10 | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>40<br>-<br>30<br>-<br>30<br>-<br>30<br>-<br>30<br>-<br>15<br>-                   | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>30<br>(g)<br>25<br>30<br>15<br>10<br>5<br>-                                | 116235.583           |    |
| 24-Hr Clear Runoff Volume (ac-ft)<br>24-Hr Clear Runoff Volume (cu-ft)<br>45<br>40<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>15<br>10<br>10 | 116235.583           | 00 |

| Input Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sand Canyon         |
| Subarea ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104                 |
| Area (ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.6                |
| Flow Path Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1884.0              |
| Flow Path Slope (vft/hft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08                |
| 50-yr Rainfall Depth (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.9                 |
| Percent Impervious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                |
| Soil Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                  |
| Design Storm Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50-yr               |
| Fire Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                |
| LID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | False               |
| Output Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Modeled (50-yr) Rainfall Depth (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9                 |
| Peak Intensity (in/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0377              |
| Undeveloped Runoff Coefficient (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5195              |
| Developed Runoff Coefficient (Cd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5309              |
| Time of Concentration (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.0                |
| Clear Peak Flow Rate (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.104              |
| Burned Peak Flow Rate (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.7876             |
| 24-Hr Clear Runoff Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7734              |
| 24-Hr Clear Runoff Volume (cu-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120807.9883         |
| Hydrograph (Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Canyon: 104)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 30 -<br>25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 30 -<br>25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 30 -<br>25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 30 -<br>25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 30<br>30<br>25<br>-<br>( <u>s</u> ; 20<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 30<br>30<br>25<br>( <u>s</u> ; 20<br><u>MO</u><br><u>I</u> 15<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 30<br>30<br>25<br>-<br>( <u>s</u> ; 20<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 30<br>30<br>25<br>( <u>s</u> ; 20<br><u>MO</u><br><u>I</u> 15<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 30<br>30<br>25<br>-<br>(s; 5)<br>20<br>-<br>15<br>-<br>10<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 30<br>30<br>25<br>( <u>s</u> p) 20<br><u>U</u><br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 33<br>30 -<br>25 -<br>30 -<br>30 -<br>25 -<br>30 - |                     |
| 30<br>30<br>25<br>-<br>(g) 20<br>-<br>15<br>-<br>10<br>-<br>5<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 33<br>30<br>25<br>-<br>(s)<br>20<br>-<br>(s)<br>20<br>-<br>15<br>-<br>10<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000 1200 1400 1600 |

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Existing Hyodology Calc/Existing Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 201 Area (ac) 15.0 Flow Path Length (ft) 1504.0 Flow Path Slope (vft/hft) 0.1 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.01 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.5414 Undeveloped Runoff Coefficient (Cu) 0.8116 Developed Runoff Coefficient (Cd) 0.8125 Time of Concentration (min) 10.0 Clear Peak Flow Rate (cfs) 30.973 Burned Peak Flow Rate (cfs) 31.9073 24-Hr Clear Runoff Volume (ac-ft) 1.8378 24-Hr Clear Runoff Volume (cu-ft) 80053.1848 Hydrograph (Sand Canyon: 201) 35 30 25 20 Flow (cfs) 15 10 5 0 1000 1200 0 200 400 600 800 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Existing Hyodology Calc/Existing Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 301 Area (ac) 26.3 Flow Path Length (ft) 2145.0 Flow Path Slope (vft/hft) 0.05 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.01 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.1697 Undeveloped Runoff Coefficient (Cu) 0.7895 Developed Runoff Coefficient (Cd) 0.7906 Time of Concentration (min) 14.0 Clear Peak Flow Rate (cfs) 45.1111 Burned Peak Flow Rate (cfs) 46.6325 24-Hr Clear Runoff Volume (ac-ft) 3.2186 24-Hr Clear Runoff Volume (cu-ft) 140201.0194 Hydrograph (Sand Canyon: 301) 50 40 30 Flow (cfs) 20 10 0 1000 1200 0 200 400 600 800 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Existing Hyodology Calc/Existing Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 401 Area (ac) 9.3 Flow Path Length (ft) 683.0 Flow Path Slope (vft/hft) 0.08 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 3.231 Undeveloped Runoff Coefficient (Cu) 0.8377 Developed Runoff Coefficient (Cd) 0.8396 Time of Concentration (min) 6.0 Clear Peak Flow Rate (cfs) 25.2283 Burned Peak Flow Rate (cfs) 25.8827 24-Hr Clear Runoff Volume (ac-ft) 1.1996 24-Hr Clear Runoff Volume (cu-ft) 52253.8561 Hydrograph (Sand Canyon: 401) 30 25 20 Flow (cfs) 15 10 5 0 1000 0 200 400 600 800 1200 1400 1600 Time (minutes)

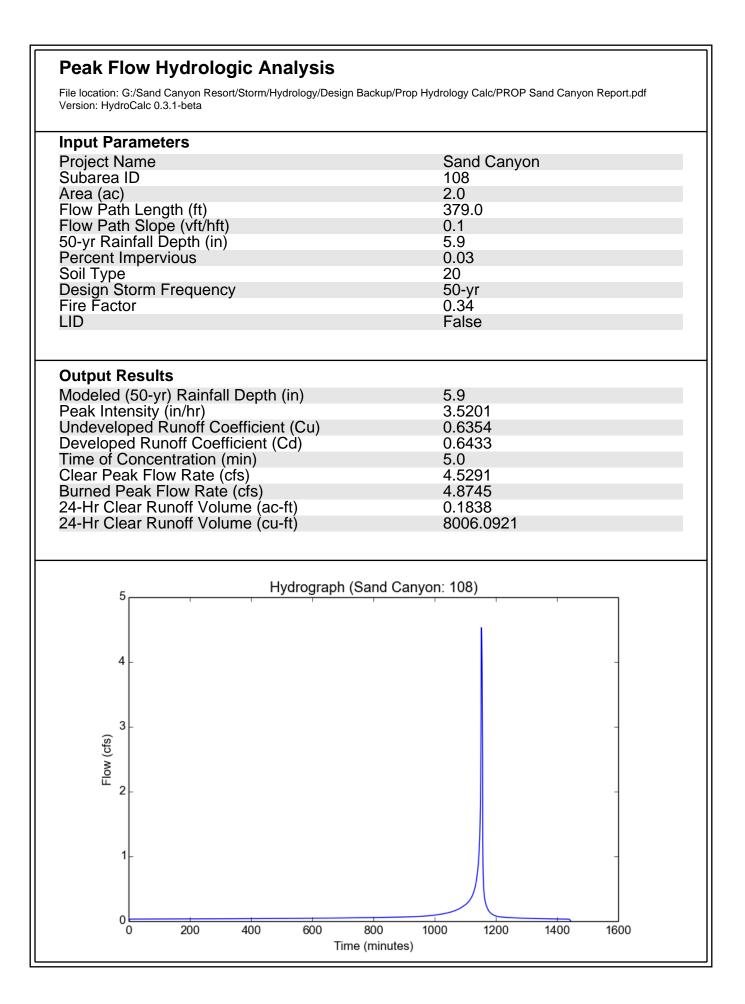
| Input Parameters                    |              |
|-------------------------------------|--------------|
| Project Name                        | Sand Canyon  |
| Subarea ID                          | 402          |
| Area (ac)                           | 8.1          |
| Flow Þath Length (ft)               | 572.0        |
| Flow Path Slope (vft/hft)           | 0.06         |
| 50-yr Rainfall Depth (in)           | 5.9          |
| Percent Impervious                  | 0.03         |
| Soil Type                           | 99           |
| Design Storm Frequency              | 50-yr        |
| Fire Factor                         | 0.34         |
| LID                                 | False        |
|                                     | 1 0.00       |
| Output Results                      |              |
| Modeled (50-yr) Rainfall Depth (in) | 5.9          |
| Peak Intensity (in/hr)              | 3.231        |
| Undeveloped Runoff Coefficient (Cu) | 0.8377       |
| Developed Runoff Coefficient (Cd)   | 0.8396       |
| Time of Concentration (min)         | 6.0          |
| Clear Peak Flow Rate (cfs)          | 21.973       |
| Burned Peak Flow Rate (cfs)         | 22.543       |
| 24-Hr Clear Runoff Volume (ac-ft)   | 1.0448       |
| 24-Hr Clear Runoff Volume (cu-ft)   | 45511.423    |
|                                     | 40011.420    |
| 25 Hydrograph (Sand (               | Canyon: 402) |
|                                     |              |
| 20 -                                |              |
| 20 -                                |              |
| 20 -                                |              |
| 20 -                                | _            |
| 20 -<br>15 -                        |              |
| 15 -                                | -            |
| 15 -                                |              |
| 15 -                                |              |
|                                     |              |
| 15 -<br>(sj)<br>Mol                 |              |
| 15 -<br>(sj)<br>Mol                 |              |
| 15 -<br>(sj)<br>Mol                 |              |
| 15 -<br>(sj)<br>Mol-<br>10 -        |              |
| 15 -<br>(sj)<br>Mol                 |              |
| 15 -<br>(sj)<br>Mol-<br>10 -        |              |
| 15 -<br>(sj)<br>Mol-<br>10 -        |              |
|                                     |              |
| 15 -<br>(sj)<br>Mol-<br>10 -        |              |

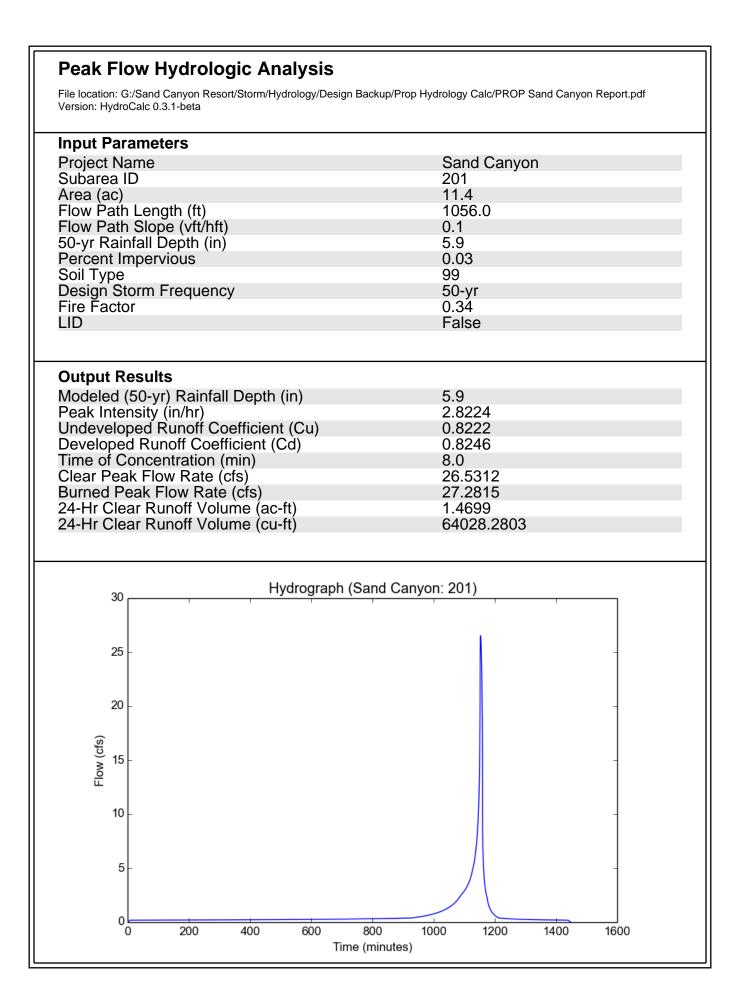
2. Proposed Hydrologic Results for 50-yr Storm Event

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 101 Area (ac) 16.1 Flow Path Length (ft) 871.0 Flow Path Slope (vft/hft) 0.02 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.55 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.6704 Undeveloped Runoff Coefficient (Cu) 0.8165 Developed Runoff Coefficient (Cd) 0.8624 Time of Concentration (min) 9.0 Clear Peak Flow Rate (cfs) 37.0786 Burned Peak Flow Rate (cfs) 37.858 24-Hr Clear Runoff Volume (ac-ft) 4.7506 24-Hr Clear Runoff Volume (cu-ft) 206934.9914 Hydrograph (Sand Canyon: 101) 40 35 30 25 Flow (cfs) 20 15 10 5 0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 102 Area (ac) 16.4 Flow Path Length (ft) 1232.0 Flow Path Slope (vft/hft) 0.07 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.55 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.6704 Undeveloped Runoff Coefficient (Cu) 0.8165 Developed Runoff Coefficient (Cd) 0.8624 Time of Concentration (min) 9.0 Clear Peak Flow Rate (cfs) 37.7695 Burned Peak Flow Rate (cfs) 38.5634 24-Hr Clear Runoff Volume (ac-ft) 4.8391 24-Hr Clear Runoff Volume (cu-ft) 210790.9229 Hydrograph (Sand Canyon: 102) 40 35 30 25 Flow (cfs) 20 15 10 5 0 400 600 800 1000 1200 0 200 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 103 Area (ac) 4.07 Flow Path Length (ft) 1971.0 Flow Path Slope (vft/hft) 0.08 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.9 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.3327 Undeveloped Runoff Coefficient (Cu) 0.7996 Developed Runoff Coefficient (Cd) 0.89 Time of Concentration (min) 12.0 Clear Peak Flow Rate (cfs) 8.4493 Burned Peak Flow Rate (cfs) 8.584 24-Hr Clear Runoff Volume (ac-ft) 1.656 24-Hr Clear Runoff Volume (cu-ft) 72136.0716 Hydrograph (Sand Canyon: 103) 9 8 7 6 Flow (cfs) 5 3 2 1 0 200 400 600 800 1000 1200 0 1400 1600


Time (minutes)


#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 104 Area (ac) 12.8 Flow Path Length (ft) 962.0 Flow Path Slope (vft/hft) 0.07 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 20 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.5414 Undeveloped Runoff Coefficient (Cu) 0.5651 Developed Runoff Coefficient (Cd) 0.5751 Time of Concentration (min) 10.0 Clear Peak Flow Rate (cfs) 18.7086 Burned Peak Flow Rate (cfs) 20.5151 24-Hr Clear Runoff Volume (ac-ft) 1.1675 24-Hr Clear Runoff Volume (cu-ft) 50857.3535 Hydrograph (Sand Canyon: 104) 20 15 Flow (cfs) 10 5 0 800 1000 1200 0 200 400 600 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 105 Area (ac) 1.05 Flow Path Length (ft) 670.0 Flow Path Slope (vft/hft) 0.02 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.9 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 3.0052 Undeveloped Runoff Coefficient (Cu) 0.8292 Developed Runoff Coefficient (Cd) 0.8929 Time of Concentration (min) 7.0 Clear Peak Flow Rate (cfs) 2.8176 Burned Peak Flow Rate (cfs) 2.8629 24-Hr Clear Runoff Volume (ac-ft) 0.4272 24-Hr Clear Runoff Volume (cu-ft) 18610.6108 Hydrograph (Sand Canyon: 105) 3.0 2.5 2.0 Flow (cfs) 1.5 1.0 0.5 0.0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 106 Area (ac) 20.4 Flow Path Length (ft) 1592.0 Flow Path Slope (vft/hft) 0.11 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.55 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.5414 Undeveloped Runoff Coefficient (Cu) 0.8116 Developed Runoff Coefficient (Cd) 0.8602 Time of Concentration (min) 10.0 Clear Peak Flow Rate (cfs) 44.5978 Burned Peak Flow Rate (cfs) 45.545 24-Hr Clear Runoff Volume (ac-ft) 6.0192 24-Hr Clear Runoff Volume (cu-ft) 262196.6366 Hydrograph (Sand Canyon: 106) 45 40 35 30 25 Flow (cfs) 20 15 10 5 0 200 400 600 800 1000 1200 0 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 107 Area (ac) 30.6 Flow Path Length (ft) 1884.0 Flow Path Slope (vft/hft) 0.08 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 20 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.0377 Undeveloped Runoff Coefficient (Cu) 0.5195 Developed Runoff Coefficient (Cd) 0.5309 Time of Concentration (min) 16.0 Clear Peak Flow Rate (cfs) 33.104 Burned Peak Flow Rate (cfs) 36.7876 24-Hr Clear Runoff Volume (ac-ft) 2.7734 24-Hr Clear Runoff Volume (cu-ft) 120807.9883 Hydrograph (Sand Canyon: 107) 35 30 25 20 Flow (cfs) 15 10 5 0 400 600 800 1000 1200 0 200 1400 1600 Time (minutes)





#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 301 Area (ac) 17.0 Flow Path Length (ft) 1513.0 Flow Path Slope (vft/hft) 0.07 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 2.4301 Undeveloped Runoff Coefficient (Cu) 0.8057 Developed Runoff Coefficient (Cd) 0.8085 Time of Concentration (min) 11.0 Clear Peak Flow Rate (cfs) 33.4006 Burned Peak Flow Rate (cfs) 34.427 24-Hr Clear Runoff Volume (ac-ft) 2.1908 24-Hr Clear Runoff Volume (cu-ft) 95429.4248 Hydrograph (Sand Canyon: 301) 35 30 25 20 Flow (cfs) 15 10 5 0 0 1000 1200 200 400 600 800 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 401 Area (ac) 9.3 Flow Path Length (ft) 683.0 Flow Path Slope (vft/hft) 0.08 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 3.231 Undeveloped Runoff Coefficient (Cu) 0.8377 Developed Runoff Coefficient (Cd) 0.8396 Time of Concentration (min) 6.0 Clear Peak Flow Rate (cfs) 25.2283 Burned Peak Flow Rate (cfs) 25.8827 24-Hr Clear Runoff Volume (ac-ft) 1.1996 24-Hr Clear Runoff Volume (cu-ft) 52253.8561 Hydrograph (Sand Canyon: 401) 30 25 20 Flow (cfs) 15 10 5 0 0 1000 1200 200 400 600 800 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Prop Hydrology Calc/PROP Sand Canyon Report.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 402 Area (ac) 7.1 Flow Path Length (ft) 515.0 Flow Path Slope (vft/hft) 0.07 50-yr Rainfall Depth (in) 5.9 Percent Impervious 0.03 Soil Type 99 **Design Storm Frequency** 50-yr Fire Factor 0.34 LID False **Output Results** Modeled (50-yr) Rainfall Depth (in) 5.9 Peak Intensity (in/hr) 3.5201 Undeveloped Runoff Coefficient (Cu) 0.8483 Developed Runoff Coefficient (Cd) 0.8499 Time of Concentration (min) 5.0 Clear Peak Flow Rate (cfs) 21.2401 Burned Peak Flow Rate (cfs) 21.7563 24-Hr Clear Runoff Volume (ac-ft) 0.9162 24-Hr Clear Runoff Volume (cu-ft) 39907.6035 Hydrograph (Sand Canyon: 402) 25 20 15 Flow (cfs) 10 5 0 1000 1200 0 200 400 600 800 1400 1600 Time (minutes)

# 3. LID Hydrologic Results

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 101 Area (ac) 16.1 Flow Path Length (ft) 871.0 Flow Path Slope (vft/hft) 0.02 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.55 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.1997 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.54 Time of Concentration (min) 44.0 Clear Peak Flow Rate (cfs) 1.7358 Burned Peak Flow Rate (cfs) 1.7358 24-Hr Clear Runoff Volume (ac-ft) 0.6682 24-Hr Clear Runoff Volume (cu-ft) 29108.2375 Hydrograph (Sand Canyon: 101) 1.8 1.6 1.4 1.2 0.1 (cfs) 8.0 (cfs) 0.6 0.4 0.2 0.0 200 400 600 800 1000 1200 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 102 Area (ac) 16.4 Flow Path Length (ft) 1232.0 Flow Path Slope (vft/hft) 0.07 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.55 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.1997 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.54 Time of Concentration (min) 44.0 Clear Peak Flow Rate (cfs) 1.7681 Burned Peak Flow Rate (cfs) 1.7681 24-Hr Clear Runoff Volume (ac-ft) 0.6807 24-Hr Clear Runoff Volume (cu-ft) 29650.627 Hydrograph (Sand Canyon: 102) 1.8 1.6 1.4 1.2 0.1 (cfs) 8.0 (cfs) 0.6 0.4 0.2 0.0 200 400 600 800 1000 1200 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 103 Area (ac) 4.07 Flow Path Length (ft) 1971.0 Flow Path Slope (vft/hft) 0.08 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.9 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.2018 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.82 Time of Concentration (min) 43.0 Clear Peak Flow Rate (cfs) 0.6736 Burned Peak Flow Rate (cfs) 0.6736 24-Hr Clear Runoff Volume (ac-ft) 0.2565 24-Hr Clear Runoff Volume (cu-ft) 11173.881 Hydrograph (Sand Canyon: 103) 0.7 0.6 0.5 0.4 0.4 (cts) 0.3 0.2 0.1 0.0 200 400 600 800 1000 1200 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 104 Area (ac) 6.6 Flow Path Length (ft) 962.0 Flow Path Slope (vft/hft) 0.07 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.03 Soil Type 20 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.1339 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.124 Time of Concentration (min) 103.0 Clear Peak Flow Rate (cfs) 0.1096 Burned Peak Flow Rate (cfs) 0.1096 24-Hr Clear Runoff Volume (ac-ft) 0.0629 24-Hr Clear Runoff Volume (cu-ft) 2740.3926 Hydrograph (Sand Canyon: 104) 0.12 0.10 0.08 Flow (cfs) 0.06 0.04 0.02 0.00 400 600 800 1000 1200 200 1400 1600 0 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 105A Area (ac) 0.3 Flow Path Length (ft) 320.0 Flow Path Slope (vft/hft) 0.05 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.9 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.3311 Undeveloped Runoff Coefficient (Cu) 0.1772 Developed Runoff Coefficient (Cd) 0.8277 Time of Concentration (min) 15.0 Clear Peak Flow Rate (cfs) 0.0822 Burned Peak Flow Rate (cfs) 0.0822 24-Hr Clear Runoff Volume (ac-ft) 0.0189 24-Hr Clear Runoff Volume (cu-ft) 823.9652 Hydrograph (Sand Canyon: 105A) 0.09 0.08 0.07 0.06 0.05 Flow (cfs) 0.04 0.03 0.02 0.01 0.00 200 400 600 800 1000 1200 1400 1600 0 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 105B Area (ac) 1.1 Flow Path Length (ft) 670.0 Flow Path Slope (vft/hft) 0.02 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.9 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.2469 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.82 Time of Concentration (min) 28.0 Clear Peak Flow Rate (cfs) 0.2227 Burned Peak Flow Rate (cfs) 0.2227 24-Hr Clear Runoff Volume (ac-ft) 0.0693 24-Hr Clear Runoff Volume (cu-ft) 3019.9262 Hydrograph (Sand Canyon: 105B) 0.25 0.20 0.15 Flow (cfs) 0.10 0.05 0.00 200 400 600 800 1000 1200 1400 1600 Time (minutes)

#### **Peak Flow Hydrologic Analysis** File location: G:/Sand Canyon Resort/Storm/Hydrology/Design Backup/Water Quality/WQ Sand Canyon Report\_ LID.pdf Version: HydroCalc 0.3.1-beta **Input Parameters Project Name** Sand Canyon Subarea ID 106 Area (ac) 5.0 Flow Path Length (ft) 472.0 Flow Path Slope (vft/hft) 0.04 85th Percentile Rainfall Depth (in) 0.93 **Percent Impervious** 0.55 Soil Type 99 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.93 Peak Intensity (in/hr) 0.2557 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.54 Time of Concentration (min) 26.0 Clear Peak Flow Rate (cfs) 0.6903 Burned Peak Flow Rate (cfs) 0.6903 24-Hr Clear Runoff Volume (ac-ft) 0.2075 24-Hr Clear Runoff Volume (cu-ft) 9039.6778 Hydrograph (Sand Canyon: 106) 0.7 0.6 0.5 0.4 0.4 (cts) 0.3 0.2 0.1 0.0 200 400 600 800 1000 1200 1400 1600 Time (minutes)

4. Existing Debris Production Calculation

| EXISTING WATERSHED DEBRIS PRODUCTION CALCULATION                     |                                                    |                             |                                     |                                                |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-------------------------------------|------------------------------------------------|--|--|--|--|--|
| EXISTING WATERSHED 100                                               |                                                    |                             |                                     |                                                |  |  |  |  |  |
| Using eq 3.3.5 of sedimentation r                                    |                                                    |                             |                                     |                                                |  |  |  |  |  |
| $DP = DPR_{1(A_1+A_2)} (A_1 - A_{d_1}) \left(\frac{A_1}{A_1}\right)$ | $\left(\frac{A_1 - A_{d_1}}{A_1 + A_2}\right) + D$ | $PR_{1(A_{1}-A_{d_{1}})}$ ( | $(A_1 - A_{d_1})$                   | $\frac{A_2 + A_{d_1}}{A_1 + A_2} +$            |  |  |  |  |  |
| $DPR_{2(A_1+A_2)} (A_2 - A_{d_2}) \left(\frac{4}{4}\right)$          | $\left(\frac{A_2 - A_{d_2}}{A_1 + A_2}\right) + C$ | )PR <sub>2(A2-Ad2</sub> )   | (A <sub>2</sub> - A <sub>d2</sub> ) | $\left(\frac{A_1 + A_{d_2}}{A_1 + A_2}\right)$ |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     | (74 742)                                       |  |  |  |  |  |
| AREA OF DPA 8<br>AREA OF DPA 9                                       | _                                                  | SQ MI<br>SQ MI              |                                     |                                                |  |  |  |  |  |
| AREA OF DEVELOPED DPA 8                                              | -                                                  | SQ MI                       |                                     |                                                |  |  |  |  |  |
| AREA OF DEVELOPED DPA 9                                              | -                                                  | SQ MI                       |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
| DPA <sub>8(A8+A9)</sub>                                              | 30000                                              | C.Y./SQ MI                  |                                     |                                                |  |  |  |  |  |
| DPA <sub>8(A8-Ad8)</sub>                                             | 35000                                              | C.Y./SQ MI                  |                                     |                                                |  |  |  |  |  |
| DPA <sub>9(A8+A9)</sub>                                              | 14000                                              | C.Y./SQ MI                  |                                     |                                                |  |  |  |  |  |
| DPA <sub>9(A9-Ad9)</sub>                                             | 16500                                              | C.Y./SQ MI                  |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
| DEBRIS PRODUCTION                                                    | 804                                                | C.Y.                        |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
| EXISTING WATERSHED 200                                               |                                                    | ab 2000)                    |                                     |                                                |  |  |  |  |  |
| Using eq 3.3.1 of sedimentation r                                    | nanuai (iviar                                      | cn 2006)                    |                                     |                                                |  |  |  |  |  |
| $DP = DPR(A) \times A$                                               |                                                    |                             |                                     |                                                |  |  |  |  |  |
| AREA 201                                                             | 0.02                                               | SQ MI                       |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
| DPR OF WATERSHED 200                                                 | 35000                                              | C.Y./SQ MI                  |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
| DEBRIS PRODUCTION                                                    | 788                                                | C.Y.                        |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |
|                                                                      |                                                    |                             |                                     |                                                |  |  |  |  |  |

| EXISTING V                     | VATERSHED                                | 300         |                                                |            |  |  |  |
|--------------------------------|------------------------------------------|-------------|------------------------------------------------|------------|--|--|--|
| Using eq 3.                    | 3.3 of sedin                             | nentation m | nanual (Mar                                    | ch 2006)   |  |  |  |
| DP = DPI                       | $R_{(A)} X A_u \left(\frac{A}{A}\right)$ |             | $A_{u} X A_{u} \left(\frac{A_{u}}{A}\right)$   | <u>a</u> ) |  |  |  |
| AREA 301                       |                                          |             | 0.04                                           | SQ MI      |  |  |  |
| Dev AREA 3                     | -                                        |             |                                                | SQ MI      |  |  |  |
| Undev area                     | a 301                                    |             | 0.038                                          | SQ MI      |  |  |  |
| DPR OF WA                      | ATERSHED 3                               | 00          | 35000                                          | C.Y./SQ MI |  |  |  |
| DEBRIS PRO                     | DUCTION                                  |             | 1335                                           | C.Y.       |  |  |  |
|                                |                                          |             |                                                |            |  |  |  |
| EXISTING V                     | VATERSHED                                | 400         |                                                |            |  |  |  |
| Using eq 3.                    | 3.3 of sedin                             | nentation m | nanual (Mar                                    | ch 2006)   |  |  |  |
| DP = DP                        | $R_{(A)} X A_u \left(\frac{A}{A}\right)$ |             | $(u_{u}) X A_{u} \left(\frac{A_{u}}{A}\right)$ | <u>-</u> ) |  |  |  |
| AREA 400                       |                                          |             | 0.03                                           | SQ MI      |  |  |  |
|                                | 100                                      |             | 0.025                                          | SO MI      |  |  |  |
| Dev AREA 400<br>Undev area 400 |                                          |             | SQ MI<br>SQ MI                                 |            |  |  |  |
|                                |                                          |             |                                                |            |  |  |  |
| DPR OF WA                      | ATERSHED 4                               | 00          | 16500                                          | C.Y./SQ MI |  |  |  |
| DEBRIS PRO                     | DUCTION                                  |             | 21                                             | C.Y.       |  |  |  |

5. Proposed Debris Production Calculation

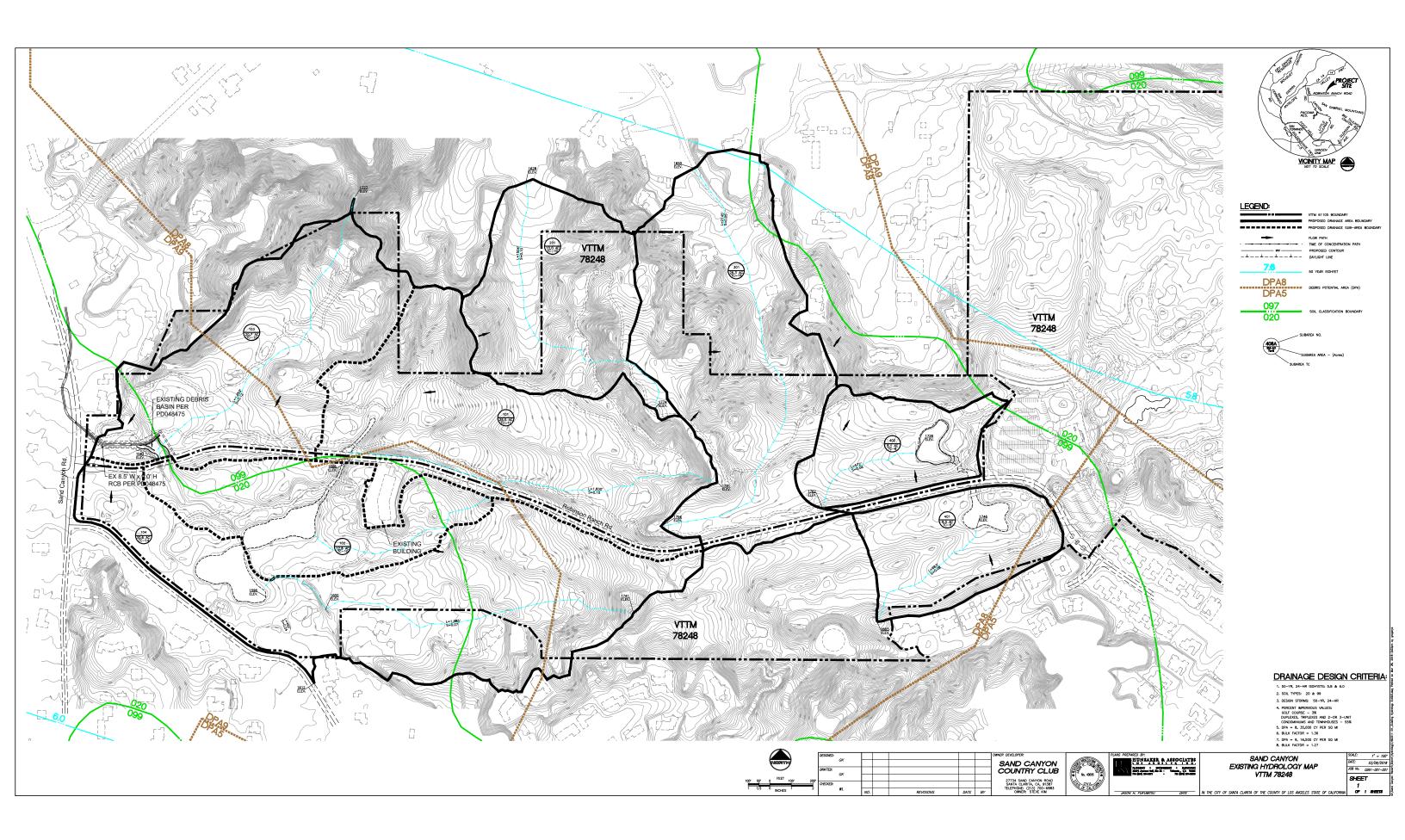
| PROPOS                                                                           | ED WATER                                                 | SHED DEBRI                  |                                                | TION CALCU                                     | JLATION |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|------------------------------------------------|------------------------------------------------|---------|--|
| PROPOSED WATERSHED 100                                                           |                                                          |                             |                                                |                                                |         |  |
| $DP = DPR_{1(A_{1}+A_{2})} (A_{1} - A_{d_{1}}) \left(\frac{A_{1}}{A_{1}}\right)$ | $\left(\frac{-A_{d_1}}{+A_2}\right) + DP$                | 'R <sub>1(A1-Ad1</sub> ) (/ | $A_1 - A_{d_1} \left( \frac{A_1}{A_1} \right)$ | $\frac{A_2 + A_{d_1}}{A_1 + A_2} +$            |         |  |
| $DPR_{2(A_1 + A_2)} (A_2 - A_{d_2}) \left(\frac{A_2}{A_1}\right)$                | $\left(\frac{-A_{d_2}}{+A_2}\right) + DI$                | $PR_{2(A_2-A_{d_2})}$ (     | $(A_2 - A_{d_2})$                              | $\left(\frac{A_1 + A_{d_2}}{A_1 + A_2}\right)$ |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
| AREA OF DPA 8                                                                    | 0.08                                                     | SQ MI                       |                                                |                                                |         |  |
| AREA OF DPA 9                                                                    |                                                          | SQ MI                       |                                                |                                                |         |  |
| AREA OF DEVELOPED DPA 8                                                          |                                                          | SQ MI                       |                                                |                                                |         |  |
| AREA OF DEVELOPED DPA 9                                                          |                                                          | SQ MI                       |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
| DPA <sub>8(A8+A9)</sub>                                                          | 28000                                                    | C.Y./SQ MI                  |                                                |                                                |         |  |
| DPA <sub>8(A8-Ad8)</sub>                                                         | 35000                                                    | C.Y./SQ MI                  |                                                |                                                |         |  |
| DPA <sub>9(A8+A9)</sub>                                                          | 13000                                                    | C.Y./SQ MI                  |                                                |                                                |         |  |
| DPA <sub>9(A9-Ad9)</sub>                                                         | 16500                                                    | C.Y./SQ MI                  |                                                |                                                |         |  |
| DEBRIS PRODUCTION                                                                | 611                                                      | C.Y.                        |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
| PROPOSED WATERSHED 200                                                           |                                                          |                             |                                                |                                                |         |  |
| Using eq 3.3.3 of sedimentation m                                                | anual (Mar                                               | ch 2006)                    |                                                |                                                |         |  |
|                                                                                  |                                                          | -                           |                                                |                                                |         |  |
| $DP = DPR_{(A)} X A_u \left(\frac{A_u}{A}\right) + DPR_{(A)}$                    | $_{u}$ ) X Au $\left(\frac{\Lambda_{u}}{\Lambda}\right)$ | .)                          |                                                |                                                |         |  |
| AREA 201                                                                         | 0.02                                                     | SQ MI                       |                                                |                                                |         |  |
|                                                                                  | 0.02                                                     | 50,111                      |                                                |                                                |         |  |
| Dev AREA 201                                                                     | 0.0023                                                   | SQ MI                       |                                                |                                                |         |  |
| Undev area 201                                                                   | 0.0154                                                   | SQ MI                       |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
| DPR OF WATERSHED 200                                                             | 16500                                                    | C.Y./SQ MI                  |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
| DEBRIS PRODUCTION                                                                | 265                                                      | C.Y.                        |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |
|                                                                                  |                                                          |                             |                                                |                                                |         |  |

| PROPOSED WATERSHED 300                                         |                                               |            |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------|------------|--|--|--|
| Using eq 3.3.3 of sedimentation r                              | nanual (Mar                                   | ch 2006)   |  |  |  |
| $DP = DPR_{(A)} X A_u \left(\frac{A_u}{A}\right) + DPR_{(A)} $ | $A_{u}$ X $A_{u}\left(\frac{A_{u}}{A}\right)$ | <u>+</u> ) |  |  |  |
| AREA 301                                                       | 0.03                                          | SQ MI      |  |  |  |
|                                                                |                                               |            |  |  |  |
| Dev AREA 301                                                   | 0.0019                                        | SQ MI      |  |  |  |
| Undev area 301                                                 | 0.0248                                        | SQ MI      |  |  |  |
| DPR OF WATERSHED 300                                           | 16500                                         | C.Y./SQ MI |  |  |  |
| DEBRIS PRODUCTION                                              | 425                                           | CV         |  |  |  |
|                                                                | 425                                           | C.1.       |  |  |  |
|                                                                |                                               |            |  |  |  |
|                                                                |                                               |            |  |  |  |
| PROPOSED WATERSHED 400                                         |                                               |            |  |  |  |
| Using eq 3.3.3 of sedimentation r                              | nanual (Mar                                   | ch 2006)   |  |  |  |
| $DP = DPR_{(A)} X A_u \left(\frac{A_u}{A}\right) + DPR_{(A)} $ | $A_{u}$ X $A_{u}\left(\frac{A_{u}}{A}\right)$ | <u>a</u> ) |  |  |  |
| AREA 400                                                       | 0.03                                          | SQ MI      |  |  |  |
|                                                                |                                               |            |  |  |  |
| Dev AREA 400                                                   | 0.0243                                        | SQ MI      |  |  |  |
| Undev area 400                                                 | 0.0013                                        | SQ MI      |  |  |  |
| DPR OF WATERSHED 400                                           | 16500                                         | C.Y./SQ MI |  |  |  |
| DEBRIS PRODUCTION                                              | 21                                            | C.Y.       |  |  |  |

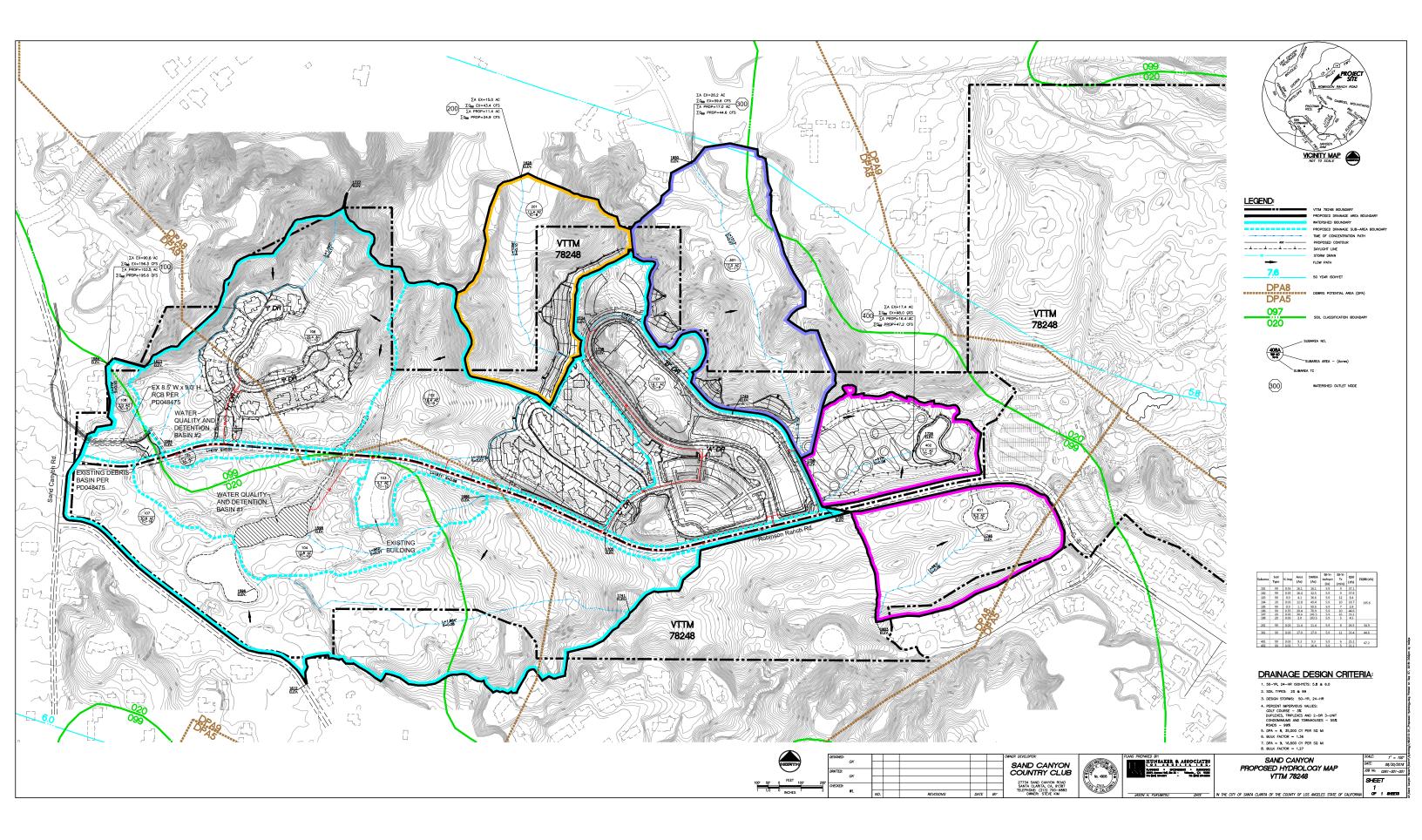
6. Existing Bulk Flow Calculations

| EXIS                                                                                  | STING WATER                                                 | RSHED CAP                                                     | PITAL FLOW               | / CALCULAT     | ION      |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------|----------------|----------|--|
| EXISTING WATERSHED 100                                                                |                                                             |                                                               |                          |                |          |  |
| REFER TO EQUATION 3.4.5 IN SED                                                        | IMENTATION                                                  | MANUAL                                                        | 2nd EDITIC               | DN MARCH       | 2006     |  |
| $Q_{B} = BF_{1(A_{1}+A_{2})} \left( \frac{Q (A_{1} - A_{d1})}{A_{1} + A_{2}} \right)$ | $\left(\frac{A_1 - A_{d1}}{A_1 + A_2}\right)$               | +                                                             |                          |                |          |  |
| $BF_{1(A_{1}-A_{d1})}\left(\frac{Q_{1}(A_{1}-A_{d1})}{A_{1}+A_{2}}\right)$            | $\left(\frac{A_2 + A_{d_1}}{A_1 + A_2}\right)$              | $+\left(\frac{Q}{A_1+A_1}\right)$                             | d1)<br>A2)+              |                |          |  |
| $BF_{2(A_{1}+A_{2})}\left(\frac{Q\ (A_{2}-A_{d2})}{A_{1}+A_{2}}\right)$               | $\left(\frac{A_2 - A_{d_2}}{A_1 + A_2}\right)$              | )+                                                            |                          |                |          |  |
| $BF_{2(A_2-A_{d2})}\left(\frac{Q(A_2-A_{d2})}{A_1+A_2}\right)$                        | $\frac{1}{2}\left(\frac{(A_1 + A_{d_2})}{A_1 + A_2}\right)$ | $\left(\frac{Q}{A_{1}}\right) + \left(\frac{Q}{A_{1}}\right)$ | $\frac{(A_{d_2})}{+A_2}$ |                |          |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
| Q=CLEAR DISCHARGE                                                                     |                                                             |                                                               |                          | 146.71         | CFS      |  |
| BF FOR A <sub>t</sub> ON LINE DPA 8                                                   |                                                             |                                                               |                          | 1.34           | unitless |  |
| BF FOR A <sub>u8</sub> ON LINE DPA 8                                                  |                                                             |                                                               |                          | 1.36           | unitless |  |
| BF FOR A <sub>t</sub> ON LINE DPA 9                                                   |                                                             |                                                               |                          | 1.25           | unitless |  |
| BF FOR A <sub>u9</sub> ON LINE DPA 9                                                  |                                                             |                                                               |                          | 1.27           | unitless |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
| AREA DPA 8, A <sub>8</sub>                                                            |                                                             |                                                               |                          | 0.06           | SQ MI    |  |
| AREA DPA 9, A <sub>9</sub>                                                            |                                                             |                                                               |                          | 0.07           | SQ MI    |  |
| SUM OF WATERSHED 100, A <sub>t</sub>                                                  |                                                             |                                                               |                          | 0.14           | SQ MI    |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
| Dev AREA DPA 8                                                                        |                                                             |                                                               |                          | -              | SQ MI    |  |
| Dev AREA DPA 9                                                                        |                                                             |                                                               |                          | 0.07           | SQ MI    |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
|                                                                                       |                                                             |                                                               | Q=                       | 156.3          | CFS      |  |
| EXISTING WATERSHED 200                                                                |                                                             |                                                               |                          |                |          |  |
| REFER TO EQUATION 3.4.1 IN SED                                                        | IMENTATION                                                  | MANUAL                                                        | 2nd FDITIC               | )<br>N MARCH ( | 2006     |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
| 0 - RE ×0                                                                             |                                                             |                                                               |                          |                |          |  |
| $Q_B = BF_{(A)} \times Q_{(A)}$                                                       |                                                             |                                                               |                          |                |          |  |
|                                                                                       |                                                             |                                                               |                          |                | 050      |  |
| Q=BURNED DISCHARGE                                                                    |                                                             |                                                               |                          | 31.91          | CFS      |  |
| BF 201=the bulking factor for suba                                                    | area 201.                                                   |                                                               |                          | 1.36           | unitless |  |
| AREA 201 15                                                                           | AC                                                          |                                                               |                          | 0.02           | SQ MI    |  |
|                                                                                       |                                                             |                                                               |                          | 0.02           |          |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
|                                                                                       |                                                             |                                                               | Q=                       | 43.4           | CFS      |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |
|                                                                                       |                                                             |                                                               |                          |                |          |  |

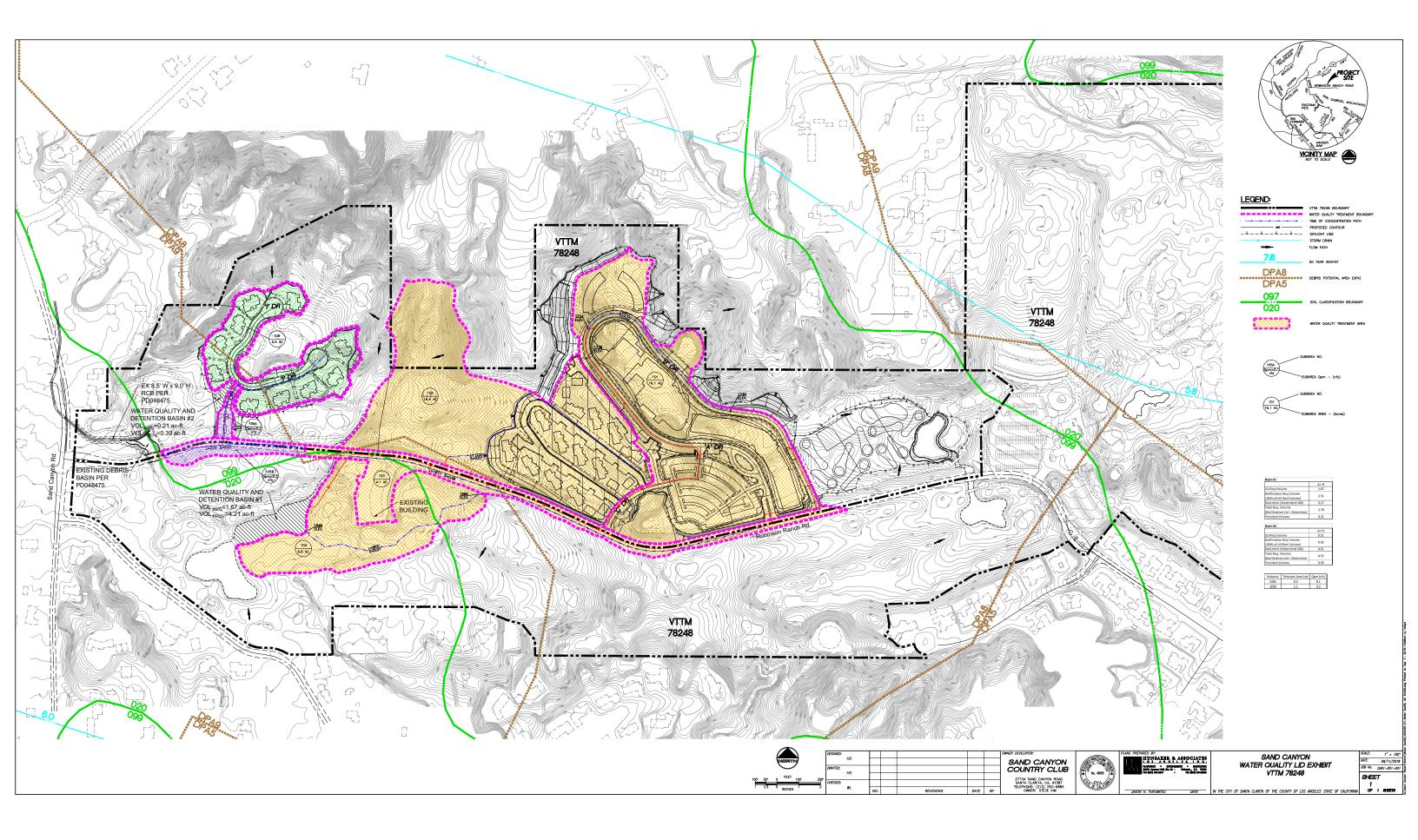
| EXISTING V                         | VATERSHED                         | 300                                                       |                                                |                                                                |                                                                 |                                                            |          |  |
|------------------------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|----------|--|
| REFER TO E                         | QUATION 3                         | 3.4.3 IN SED                                              | IMENTATIO                                      | N MANUAL                                                       | -2nd EDITIC                                                     | N MARCH 2                                                  | 2006     |  |
|                                    |                                   |                                                           |                                                |                                                                |                                                                 |                                                            |          |  |
| Q <sub>B</sub> = BF <sub>(A)</sub> | $x\left(\frac{Q_{(A)}}{A}\right)$ | $\left(\frac{A_u}{A}\right) \left(\frac{A_u}{A}\right) +$ | BF <sub>(Au)</sub> x                           | $\left(\frac{A_{(A)}}{A}\right)\left(\frac{A_{(A)}}{A}\right)$ | $\left(\frac{A_{d}}{A}\right) + \left(\frac{Q_{(A)}}{A}\right)$ | $\left( \begin{array}{c} A_{d} \\ A \end{array} \right) =$ |          |  |
| Q=BURNED                           | DISCHARG                          | E                                                         |                                                |                                                                |                                                                 | 46.63                                                      | CFS      |  |
|                                    |                                   |                                                           |                                                |                                                                |                                                                 |                                                            |          |  |
| BF 301=the                         | bulking fac                       | tor for suba                                              | area 301.                                      |                                                                |                                                                 | 1.36                                                       | unitless |  |
| AREA 301                           |                                   | 26.3                                                      | AC                                             |                                                                |                                                                 | 0.04                                                       | SQ MI    |  |
| Dev AREA 3                         |                                   |                                                           |                                                |                                                                |                                                                 | 0.0013                                                     |          |  |
| Undev area                         | 301                               |                                                           |                                                |                                                                |                                                                 | 0.0387                                                     | SQ MI    |  |
|                                    |                                   |                                                           |                                                |                                                                | Q=                                                              | 59.6                                                       | CFS      |  |
| EXISTING V                         | VATERSHED                         | 0 400                                                     |                                                |                                                                |                                                                 |                                                            |          |  |
| REFER TO E                         | QUATION 3                         | 3.4.3 IN SED                                              | IMENTATIO                                      | N MANUAL                                                       | -2nd EDITIC                                                     | N MARCH 2                                                  | 2006     |  |
| Q <sub>B</sub> = BF <sub>(A)</sub> | $x\left(\frac{Q_{(A)}}{A}\right)$ | $\left(\frac{A_u}{A}\right) \left(\frac{A_u}{A}\right) +$ | $BF_{(A_u)} \times \left( \frac{C}{C} \right)$ | $\left(\frac{A_{(A)}}{A}\right)\left(\frac{A_{(A)}}{A}\right)$ | $\left(\frac{A_{d}}{A}\right) + \left(\frac{Q_{(A)}}{A}\right)$ | Ad Ad                                                      |          |  |
| Q=CLEAR D                          | ISCHARGE                          |                                                           |                                                |                                                                |                                                                 | 47.20                                                      | CFS      |  |
|                                    |                                   |                                                           |                                                |                                                                |                                                                 |                                                            |          |  |
| BF 400=the                         | bulking fac                       | tor for suba                                              | area 401 & 4                                   | 402.                                                           |                                                                 | 1.36                                                       | unitless |  |
| AREA 400                           |                                   | 17.4                                                      | AC                                             |                                                                |                                                                 | 0.03                                                       | SQ MI    |  |
| Dev AREA 4                         | 100                               |                                                           |                                                |                                                                |                                                                 | 0.0259                                                     | SQ MI    |  |
| Undev area 400                     |                                   |                                                           |                                                | 0.0013                                                         | SQ MI                                                           |                                                            |          |  |
|                                    |                                   |                                                           |                                                |                                                                |                                                                 |                                                            |          |  |
|                                    |                                   |                                                           |                                                |                                                                | Q=                                                              | 48.0                                                       | CFS      |  |


7. Proposed Bulk Flow Calculations

| PRO                                                              |                                                                                                                                                                                                                                          | ERSHED CA                                                       | PITAL FLO                                                       | N CALCULA                               | TION      |          |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------|----------|--|--|--|
| PROPOSED WATERSH                                                 | <u>ED 100</u>                                                                                                                                                                                                                            |                                                                 |                                                                 |                                         |           |          |  |  |  |
| REFER TO EQUATION 3                                              | .4.5 IN SED                                                                                                                                                                                                                              | MENTATIO                                                        | N MANUAL                                                        | -2nd EDITIO                             | N MARCH 2 | 006      |  |  |  |
| $Q_{B} = BF_{1(A_{1}+A_{2})} \left(\frac{Q}{A_{1}+A_{2}}\right)$ | $\frac{A_1 - A_{d1}}{A_1 + A_2}$                                                                                                                                                                                                         | $\left(\frac{A_1 - A_2}{A_1 + A_2}\right)$                      | <u>11</u><br>2)+                                                |                                         |           |          |  |  |  |
| BF <sub>1(A1-Ad1</sub> )                                         | $\frac{A_1 - A_d}{A_1 + A_2}$                                                                                                                                                                                                            | $\left(\frac{A_2 + A_2}{A_1 + A_2}\right)$                      | $\left(\frac{d_{d_1}}{d_2}\right) + \left(\frac{Q}{A_1}\right)$ | $\left(\frac{(A_{d_1})}{+A_2}\right)$ + |           |          |  |  |  |
| BF <sub>2(A1+A2)</sub>                                           | //////2                                                                                                                                                                                                                                  | / (Ni /                                                         | 12 /                                                            |                                         |           |          |  |  |  |
| BF <sub>2(A2-Ag2</sub> )                                         | $\frac{Q}{A_1 + A_2}$                                                                                                                                                                                                                    | $\frac{(A_1 + A_1)}{A_1 + A_1} = \frac{(A_1 + A_1)}{A_1 + A_1}$ | $\left(\frac{A_{d_2}}{A_2}\right) + \left(\frac{C}{A_2}\right)$ | $\left(\frac{A_{d2}}{A_1 + A_2}\right)$ |           |          |  |  |  |
| Q=BURNED DISCHARG                                                | E                                                                                                                                                                                                                                        |                                                                 |                                                                 |                                         | 187.00    | CFS      |  |  |  |
| BF FOR A <sub>t</sub> ON LINE DPA                                | 8                                                                                                                                                                                                                                        |                                                                 |                                                                 |                                         | 1.34      | unitless |  |  |  |
| BF FOR A <sub>u8</sub> ON LINE DI                                | PA 8                                                                                                                                                                                                                                     |                                                                 |                                                                 |                                         | 1.36      | unitless |  |  |  |
| BF FOR A <sub>t</sub> ON LINE DPA                                | 9                                                                                                                                                                                                                                        |                                                                 |                                                                 |                                         | 1.25      | unitless |  |  |  |
| BF FOR A <sub>u9</sub> ON LINE DP                                | PA 9                                                                                                                                                                                                                                     |                                                                 |                                                                 |                                         | 1.27      | unitless |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           |          |  |  |  |
| AREA DPA 8, A <sub>8</sub>                                       |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 0.08      | SQ MI    |  |  |  |
| AREA DPA 9, A <sub>9</sub>                                       |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 0.07      | SQ MI    |  |  |  |
| SUM OF WATERSHED 1                                               | 100, A <sub>t</sub>                                                                                                                                                                                                                      |                                                                 |                                                                 |                                         | 0.15      | SQ MI    |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           |          |  |  |  |
| Dev AREA DPA 8                                                   |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           | SQ MI    |  |  |  |
| Dev AREA DPA 9                                                   |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 0.07      | SQ MI    |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 | Q=                                      | 195.6     | CFS      |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           |          |  |  |  |
| PROPOSED WATERSHI                                                |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           | 000      |  |  |  |
| REFER TO EQUATION 3                                              | .4.3 IN SED                                                                                                                                                                                                                              | IMENTATIO                                                       | N MANUAL                                                        | -2nd EDITIO                             | N MARCH 2 | 006      |  |  |  |
| -                                                                |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           |          |  |  |  |
| $Q_{B} = BF_{(A)} x \left(\frac{Q_{(A)}}{A}\right)$              | $Q_{B} = BF_{(A)} \times \left(\frac{Q_{(A)} A_{u}}{A}\right) \left(\frac{A_{u}}{A}\right) + BF_{(A_{u})} \times \left(\frac{Q_{(A)} A_{u}}{A}\right) \left(\frac{A_{d}}{A}\right) + \left(\frac{Q_{(A)} A_{d}}{A}\right) = \frac{1}{2}$ |                                                                 |                                                                 |                                         |           |          |  |  |  |
| Q=CLEAR DISCHARGE                                                |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 26.50     | CES      |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 20.50     |          |  |  |  |
| BF 201=the bulking fac                                           | tor for suba                                                                                                                                                                                                                             | irea 201.                                                       |                                                                 |                                         | 1.36      | unitless |  |  |  |
| AREA 201                                                         | 11.3                                                                                                                                                                                                                                     | AC                                                              |                                                                 |                                         | 0.02      | SQ MI    |  |  |  |
|                                                                  | 11.5                                                                                                                                                                                                                                     |                                                                 |                                                                 |                                         | 0.02      | -~       |  |  |  |
| Dev AREA 201                                                     |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 0.0023    | SQ MI    |  |  |  |
| Undev area 201                                                   |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         | 0.0154    | SQ MI    |  |  |  |
|                                                                  |                                                                                                                                                                                                                                          |                                                                 |                                                                 |                                         |           |          |  |  |  |

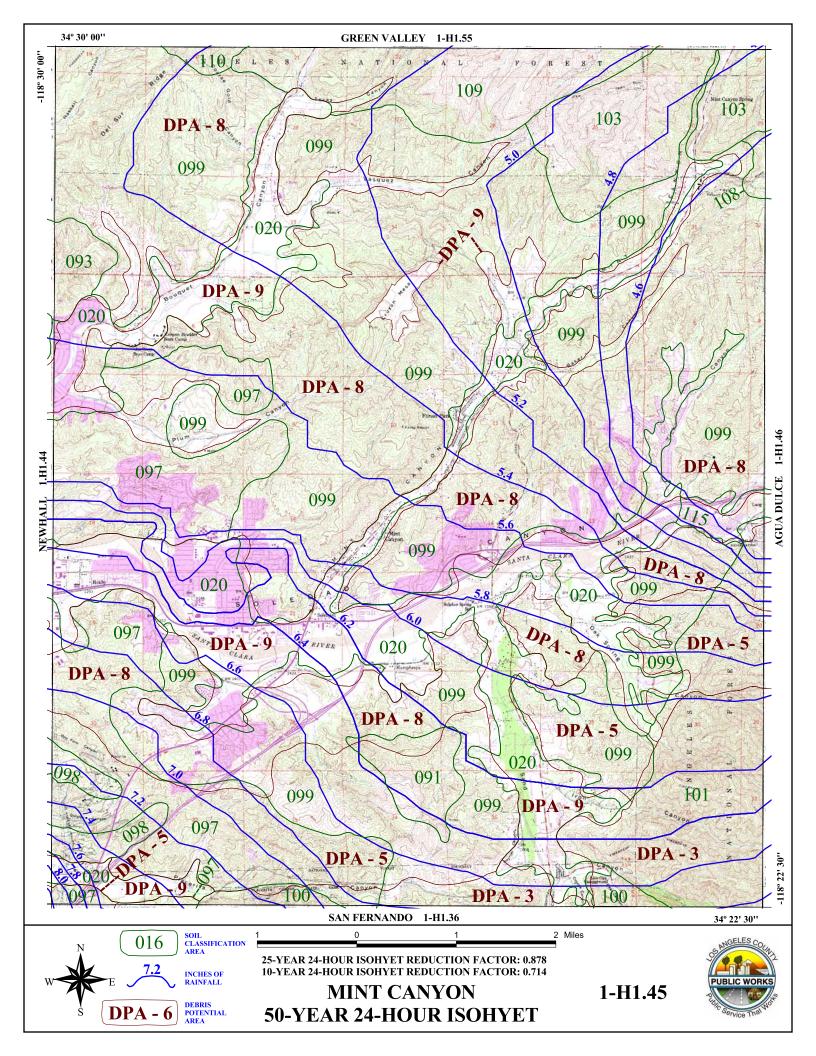

|                  |                                                                        |                                                |                            |          | Q=                                                        | 34.9         | CFS             |  |  |  |  |  |
|------------------|------------------------------------------------------------------------|------------------------------------------------|----------------------------|----------|-----------------------------------------------------------|--------------|-----------------|--|--|--|--|--|
| PROPOSED         | WATERSHI                                                               | ED 300                                         |                            |          |                                                           |              |                 |  |  |  |  |  |
| REFER TO E       | REFER TO EQUATION 3.4.3 IN SEDIMENTATION MANUAL-2nd EDITION MARCH 2006 |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           | ·            |                 |  |  |  |  |  |
|                  | (Qa)                                                                   | Au)(A)                                         | (                          |          | A.) (Q.                                                   | . A.         |                 |  |  |  |  |  |
| $Q_B = BF_{(A)}$ | $\int_{A} x \left( \frac{Q_{(A)}}{A} \right)$                          | $\frac{1}{A} \left[ \frac{\pi_0}{A} \right]^+$ | • BF <sub>(Au)</sub> x [ - | A        | A)+(                                                      |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| Q=CLEAR D        | ISCHARGE                                                               |                                                |                            |          |                                                           | 33.40        | CFS             |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| BF 301=the       | bulking fac                                                            | tor for suba                                   | rea 301.                   |          |                                                           | 1.36         | unitless        |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| AREA 301         |                                                                        | 17.1                                           | AC                         |          |                                                           | 0.03         | SQ MI           |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| Dev AREA         | 301                                                                    |                                                |                            |          |                                                           | 0.0019       |                 |  |  |  |  |  |
| Undev area       | a 301                                                                  |                                                |                            |          |                                                           | 0.0248       | SQ MI           |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          | Q=                                                        | 44.6         | CFS             |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
|                  | WATERSHI                                                               |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| REFER TO E       | QUATION 3                                                              | 3.4.3 IN SED                                   | IMENTATIO                  | N MANUAL | -2nd EDITIO                                               | N MARCH 2    | 006             |  |  |  |  |  |
| _                | I                                                                      | I                                              | l                          | I        | l                                                         |              |                 |  |  |  |  |  |
| _                | (0                                                                     | A)(A)                                          | (                          |          | ( )                                                       | <b>(</b> ) - |                 |  |  |  |  |  |
| $Q_B = BF_0$     | $_{(A)} \times \left(\frac{Q_{(A)}}{A}\right)$                         | <u> </u>                                       | +BF <sub>(Au)</sub> X      |          | $\left \frac{A_{d}}{A}\right  + \left \frac{Q}{A}\right $ |              |                 |  |  |  |  |  |
| _                |                                                                        | )(A)                                           | (                          | ~ )      |                                                           | <u> </u>     |                 |  |  |  |  |  |
|                  | 1                                                                      |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| Q=CLEAR D        | ISCHARGE                                                               |                                                |                            |          |                                                           | 46.40        | CFS             |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          |                                                           |              |                 |  |  |  |  |  |
| BF 400=the       | e bulking fac                                                          | tor for suba                                   | area 401 & 4               | 402.     |                                                           | 1.36         | unitless        |  |  |  |  |  |
|                  |                                                                        |                                                | • •                        |          |                                                           |              | 6 <b>0</b> • 61 |  |  |  |  |  |
| AREA 400         |                                                                        | 16.4                                           | AC                         |          |                                                           | 0.03         | SQ MI           |  |  |  |  |  |
| D. 4054          |                                                                        |                                                |                            |          |                                                           | 0.0040       | 60 M.           |  |  |  |  |  |
| Dev AREA 400     |                                                                        |                                                |                            |          |                                                           | 0.0243       |                 |  |  |  |  |  |
| Undev area       | a 400                                                                  |                                                |                            |          |                                                           | 0.0013       | SQ MI           |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          | 0                                                         |              | 050             |  |  |  |  |  |
|                  |                                                                        |                                                |                            |          | Q=                                                        | 47.2         | CFS             |  |  |  |  |  |

## B. Hydrological Maps

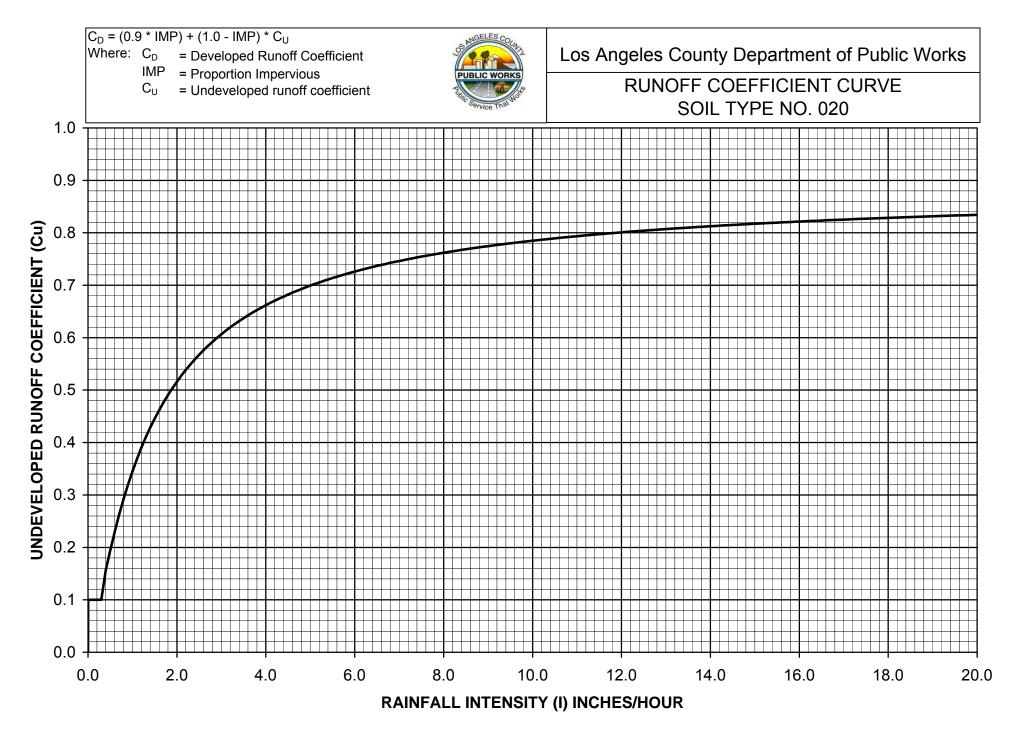

1. Existing Hydrology Map

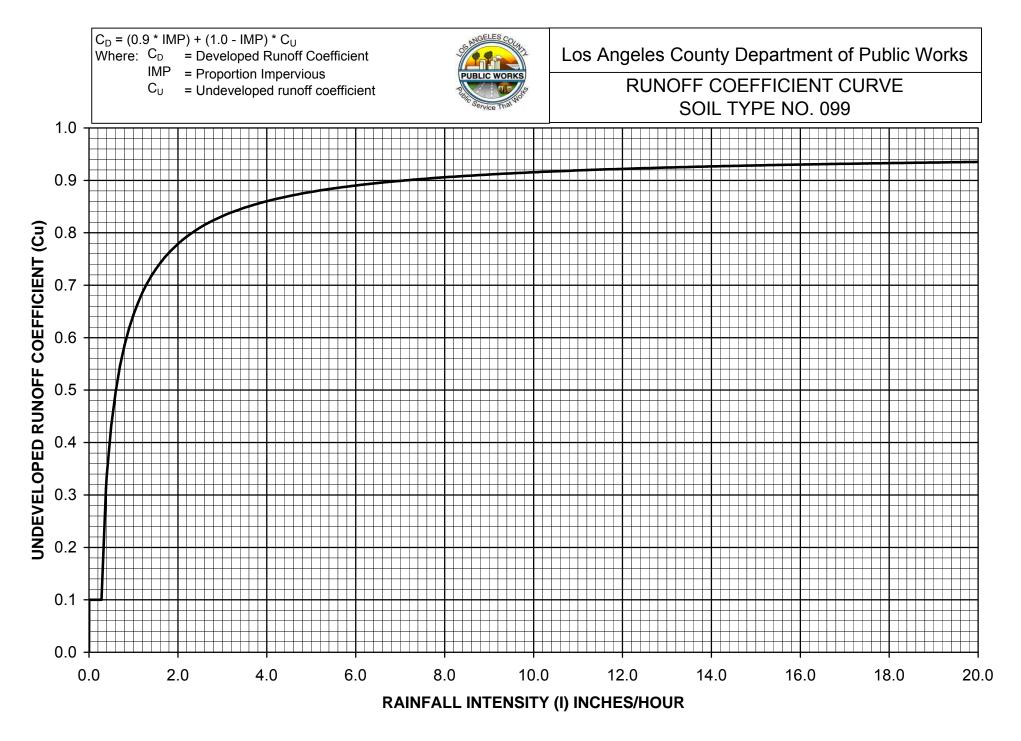


### 2. Proposed Hydrology Map




3. Water Quality LID Exhibit





C. Hydrologic Reference Graphs & Table

1. 50-Year, 24-Hour Isohyet (LACDPW)



2. Runoff Coefficient Curves for Soil Types 20 and 99



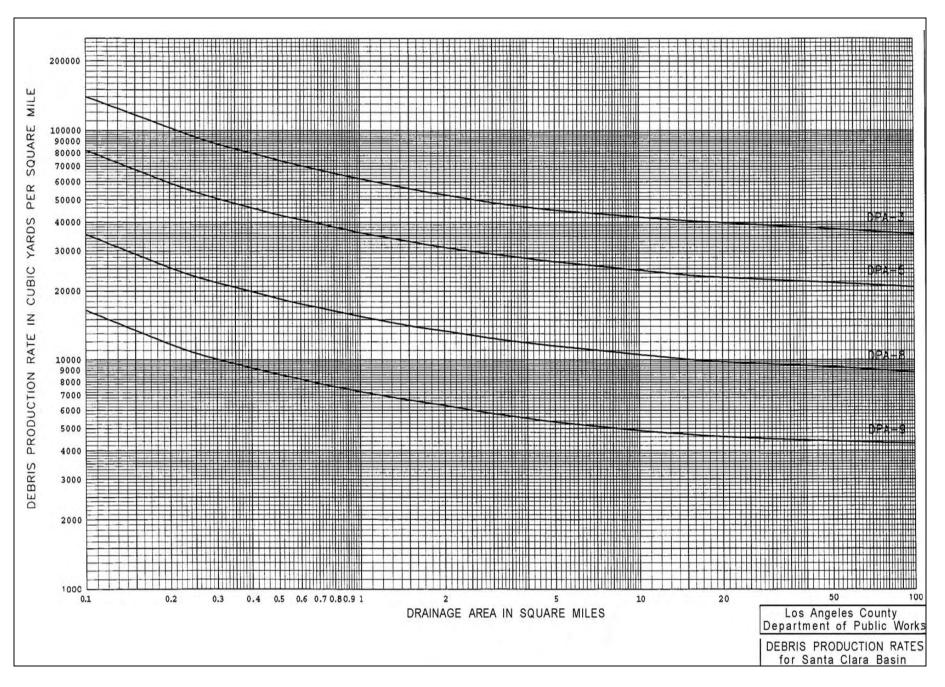


3. Los Angeles County Proportion Impervious Data Table

# Proportion Impervious Data

| Code | Land Use Description                                                | % Impervious |
|------|---------------------------------------------------------------------|--------------|
| 1111 | High-Density Single Family Residential                              | 42           |
| 1112 | Low-Density Single Family Residential                               | 21           |
| 1121 | Mixed Multi-Family Residential                                      | 74           |
| 1122 | Duplexes, Triplexes and 2-or 3-Unit Condominiums and Townhouses     | 55           |
| 1123 | Low-Rise Apartments, Condominiums, and Townhouses                   | 86           |
| 1124 | Medium-Rise Apartments and Condominiums                             | 86           |
| 1125 | High-Rise Apartments and Condominiums                               | 90           |
| 1131 | Trailer Parks and Mobile Home Courts, High-Density                  | 91           |
| 1132 | Mobile Home Courts and Subdivisions, Low-Density                    | 42           |
| 1140 | Mixed Residential                                                   | 59           |
| 1151 | Rural Residential, High-Density                                     | 15           |
| 1152 | Rural Residential, Low-Density                                      | 10           |
| 1211 | Low- and Medium-Rise Major Office Use                               | 91           |
| 1212 | High-Rise Major Office Use                                          | 91           |
| 1213 | Skyscrapers                                                         | 91           |
| 1221 | Regional Shopping Center                                            | 95           |
| 1222 | Retail Centers (Non-Strip With Contiguous Interconnected Off-Street | 96           |
| 1223 | Modern Strip Development                                            | 96           |
| 1224 | Older Strip Development                                             | 97           |
| 1231 | Commercial Storage                                                  | 90           |
| 1232 | Commercial Recreation                                               | 90           |
| 1233 | Hotels and Motels                                                   | 96           |
| 1234 | Attended Pay Public Parking Facilities                              | 91           |
| 1241 | Government Offices                                                  | 91           |
| 1242 | Police and Sheriff Stations                                         | 91           |
| 1243 | Fire Stations                                                       | 91           |
| 1244 | Major Medical Health Care Facilities                                | 74           |
| 1245 | Religious Facilities                                                | 82           |
| 1246 | Other Public Facilities                                             | 91           |
| 1247 | Non-Attended Public Parking Facilities                              | 91           |
| 1251 | Correctional Facilities                                             | 91           |
| 1252 | Special Care Facilities                                             | 74           |
| 1253 | Other Special Use Facilities                                        | 86           |
| 1261 | Pre-Schools/Day Care Centers                                        | 68           |
| 1262 | Elementary Schools                                                  | 82           |
| 1263 | Junior or Intermediate High Schools                                 | 82           |
| 1264 | Senior High Schools                                                 | 82           |
| 1265 | Colleges and Universities                                           | 47           |
| 1266 | Trade Schools and Professional Training Facilities                  | 91           |
| 1271 | Base (Built-up Area)                                                | 65           |
|      | Base High-Density Single Family Residential                         | 42           |
|      | Base Duplexes, Triplexes and 2-or 3-Unit Condominiums and T         | 55           |

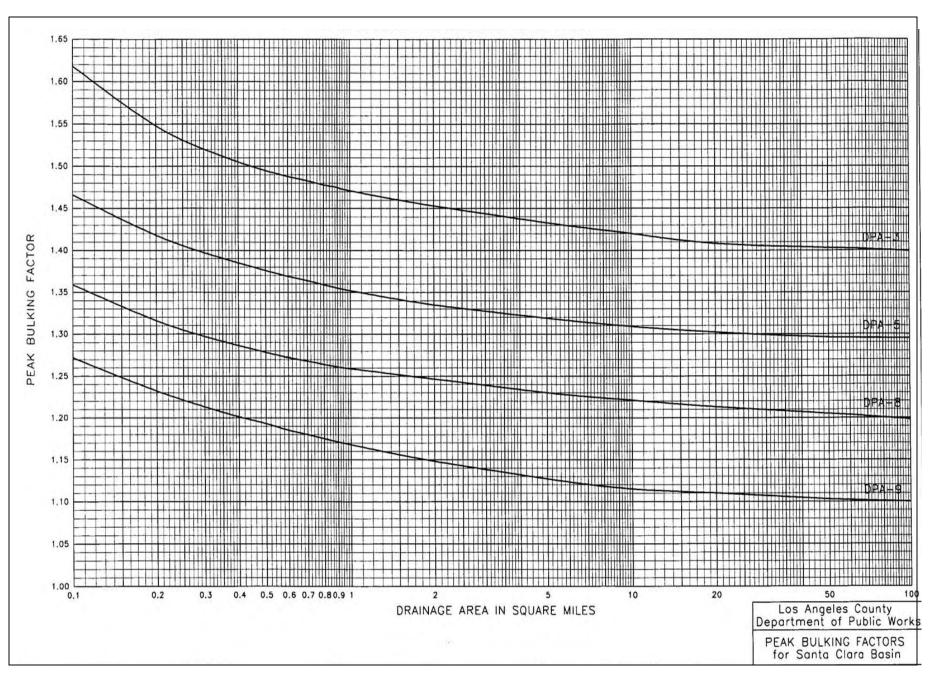
| Code    | Land Use Description                                       | % Impervious |
|---------|------------------------------------------------------------|--------------|
| 1271.03 | Base Government Offices                                    | 91           |
| 1271.04 | Base Fire Stations                                         | 91           |
| 1271.05 | Base Non-Attended Public Parking Facilities                | 91           |
| 1271.06 | Base Air Field                                             | 45           |
| 1271.07 | Base Petroleum Refining and Processing                     | 91           |
| 1271.08 | Base Mineral Extraction - Oil and Gas                      | 10           |
| 1271.09 | Base Harbor Facilities                                     | 91           |
| 1271.10 | Base Navigation Aids                                       | 47           |
| 1271.11 | Base Developed Local Parks and Recreation                  | 10           |
| 1271.12 | Base Vacant Undifferentiated                               | 1            |
| 1272    | Vacant Area                                                | 2            |
| 1273    | Air Field                                                  | 45           |
| 1274    | Former Base (Built-up Area)                                | 65           |
| 1275    | Former Base Vacant Area                                    | 2            |
| 1276    | Former Base Air Field                                      | 91           |
| 1311    | Manufacturing, Assembly, and Industrial Services           | 91           |
|         | Motion Picture and Television Studio Lots                  | 82           |
| 1313    | Packing Houses and Grain Elevators                         | 96           |
|         | Research and Development                                   | 91           |
|         | Manufacturing                                              | 91           |
|         | Petroleum Refining and Processing                          | 91           |
|         | Open Storage                                               | 66           |
|         | Major Metal Processing                                     | 91           |
|         | Chemical Processing                                        | 91           |
|         | Mineral Extraction - Other Than Oil and Gas                | 10           |
| 1332    | Mineral Extraction - Oil and Gas                           | 10           |
| 1340    | Wholesaling and Warehousing                                | 91           |
|         | Airports                                                   | 91           |
| 1411.01 | Airstrip                                                   | 10           |
|         | Railroads                                                  | 15           |
| 1412.01 | Railroads-Attended Pay Public Parking Facilities           | 91           |
|         | Railroads-Non-Attended Public Parking Facilities           | 91           |
|         | Railroads-Manufacturing, Assembly, and Industrial Services | 91           |
|         | Railroads-Petroleum Refining and Processing                | 91           |
|         | Railroads-Open Storage                                     | 66           |
|         | Railroads-Truck Terminals                                  | 91           |
|         | Freeways and Major Roads                                   | 91           |
|         | Park-and-Ride Lots                                         | 91           |
|         | Bus Terminals and Yards                                    | 91           |
| 1416    | Truck Terminals                                            | 91           |
|         | Harbor Facilities                                          | 91           |
|         | Navigation Aids                                            | 47           |
| 1420    | Communication Facilities                                   | 82           |
|         | Communication Facilities-Antenna                           | 2            |


| Code    | Land Use Description                                                        | % Impervious |
|---------|-----------------------------------------------------------------------------|--------------|
| 1431    | Electrical Power Facilities                                                 | 47           |
| 1431.01 | Electrical Power Facilities-Powerlines (Urban)                              | 2            |
| 1431.02 | Electrical Power Facilities-Powerlines (Rural)                              | 1            |
| 1432    | Solid Waste Disposal Facilities                                             | 15           |
| 1433    | Liquid Waste Disposal Facilities                                            | 96           |
| 1434    | Water Storage Facilities                                                    | 91           |
| 1435    | Natural Gas and Petroleum Facilities                                        | 91           |
| 1435.01 | Natural Gas and Petroleum Facilities-Manufacturing, Assembly, and In        | 91           |
| 1435.02 | Natural Gas and Petroleum Facilities-Petroleum Refining and Processing      | 91           |
| 1435.03 | Natural Gas and Petroleum Facilities-Mineral Extraction – Oil and Gas       | 10           |
| 1435.04 | Natural Gas and Petroleum Facilities-Vacant Undifferentiated                | 1            |
| 1436    | Water Transfer Facilities                                                   | 96           |
| 1437    | Improved Flood Waterways and Structures                                     | 100          |
| 1440    | Maintenance Yards                                                           | 91           |
| 1450    | Mixed Transportation                                                        | 90           |
| 1460    | Mixed Transportation and Utility                                            | 91           |
|         | Mixed Utility and Transportation-Improved Flood Waterways and<br>Structures | 100          |
| 1460.02 | Mixed Utility and Transportation-Railroads                                  | 15           |
|         | Mixed Utility and Transportation-Freeways and Major Roads                   | 91           |
|         | Mixed Commercial and Industrial                                             | 91           |
| 1600    | Mixed Urban                                                                 | 89           |
| 1700    | Under Construction (Use appropriate value)                                  | 91           |
|         | Golf Courses                                                                | 3            |
| 1821    | Developed Local Parks and Recreation                                        | 10           |
| 1822    | Undeveloped Local Parks and Recreation                                      | 2            |
| 1831    | Developed Regional Parks and Recreation                                     | 2            |
| 1832    | Undeveloped Regional Parks and Recreation                                   | 1            |
| 1840    | Cemeteries                                                                  | 10           |
| 1850    | Wildlife Preserves and Sanctuaries                                          | 2            |
| 1850.01 | Wildlife-Commercial Recreation                                              | 90           |
| 1850.02 | Wildlife-Other Special Use Facilities                                       | 86           |
| 1850.03 | Wildlife-Developed Local Parks and Recreation                               | 10           |
| 1860    | Specimen Gardens and Arboreta                                               | 15           |
| 1870    | Beach Parks                                                                 | 10           |
| 1880    | Other Open Space and Recreation                                             | 10           |
| 2110    | Irrigated Cropland and Improved Pasture Land                                | 2            |
| 2120    | Non-Irrigated Cropland and Improved Pasture Land                            | 2            |
| 2200    | Orchards and Vineyards                                                      | 2            |
| 2300    | Nurseries                                                                   | 15           |
| 2400    | Dairy, Intensive Livestock, and Associated Facilities                       | 42           |
|         | Poultry Operations                                                          | 62           |
| 2600    | Other Agriculture                                                           | 42           |
|         | Horse Ranches                                                               | 42           |

| Code | Land Use Description                                     | % Impervious |  |  |
|------|----------------------------------------------------------|--------------|--|--|
| 3100 | Vacant Undifferentiated                                  | 1            |  |  |
| 3200 | Abandoned Orchards and Vineyards                         | 2            |  |  |
| 3300 | Vacant With Limited Improvements (Use appropriate value) | 42           |  |  |
| 3400 | Beaches (Vacant)                                         | 1            |  |  |
| 4100 | Water, Undifferentiated                                  | 100          |  |  |
| 4200 | Harbor Water Facilities                                  | 100          |  |  |
| 4300 | Marina Water Facilities                                  | 100          |  |  |
| 4400 | Water Within a Military Installation                     | 100          |  |  |

4. Los Angeles County Debris Production Rates for Santa Clara Basin

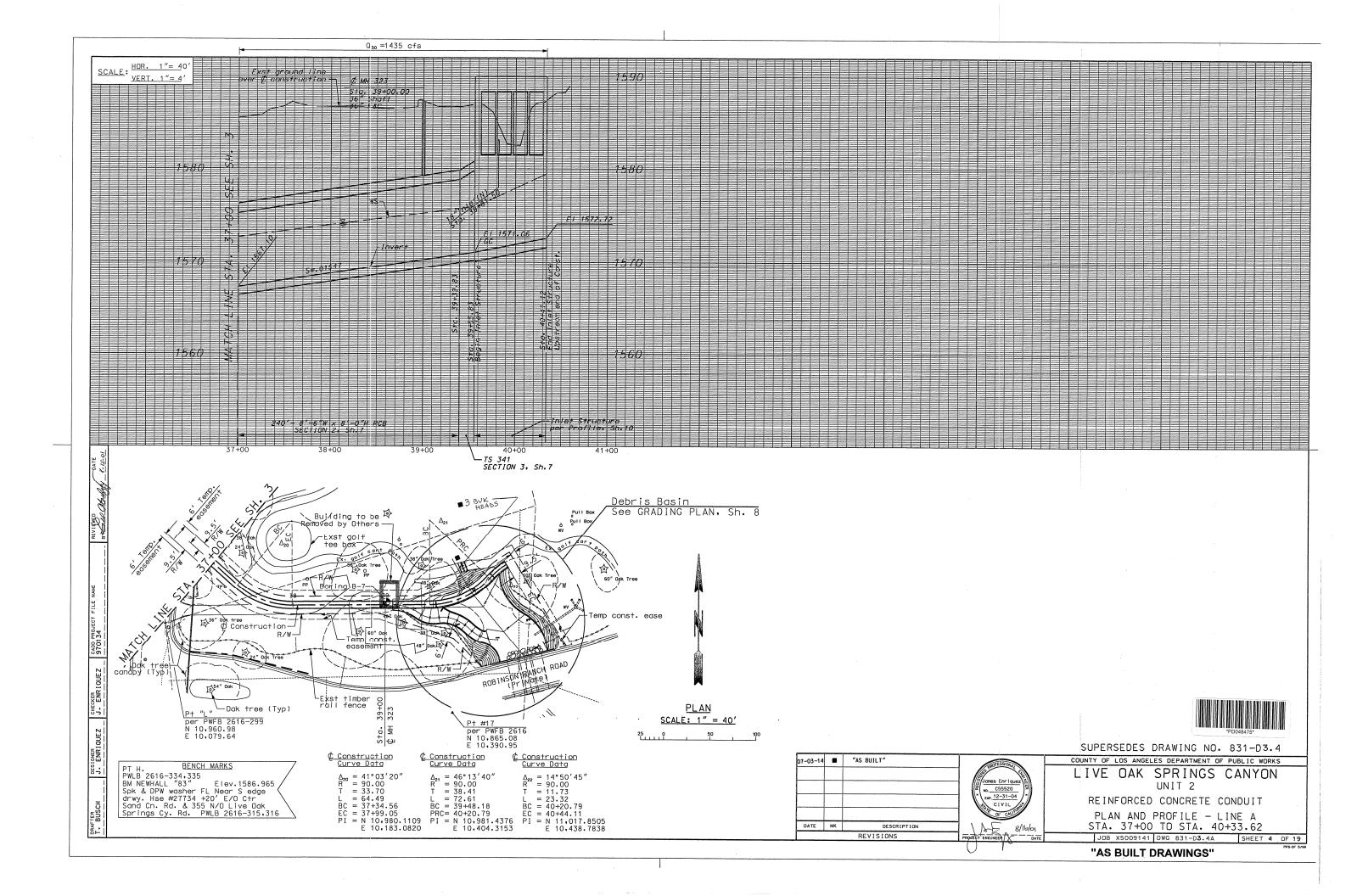
•






В-2

5. Los Angeles County Peak Bulking Factors for Santa Clara Basin






ው ሪካ

## D. Reference Plans

1. L.A.C.D.P.W. PD048475





May 14, 2019

Sand Canyon Country Club 27734 Sand Canyon Road Santa Clarita, California 91387

Job No. 2017-006-021

Attention: Mr. Steve Kim

Subject:

Report of Infiltration Study Water Quality Detention Basin Sand Canyon Country Club 27734 Sand Canyon Road Santa Clarita, California

Dear Mr. Kim,

This report presents the results of our geotechnical infiltration study that was performed within proposed water quality detention basin area for the Sand Canyon Country Club at the subject site. The proposed basin is located within the general footprint of an existing water feature in the southwestern portion of the site. The work was performed in consideration of the Los Angeles County Department of Public Works (LACDPW), Administrative Manual GS 200.2, Guidelines for Geotechnical Investigation and Reporting, Low Impact Development (LID) Storm Water Infiltration," dated June 30,2017 (LACDPW, 2017).

R.T. Frankian & Associates (RTF&A) previously performed a geotechnical investigation on the existing country club property, which has been summarized in our report Geotechnical Plan Review; dated September 20, 2018 (RTF&A, 2018). Subsurface data presented within our previous investigation report was utilized in developing the conclusions presented within this report.

We have been provided with an exhibit that indicates the location of the water quality detention basin, untitled, prepared by Hunsaker & Associates, undated; copy attached. We are also

in receipt of the project plans for the country club, titled "Major Land Division, Vesting Tentative Tract Map No. 78248," indicating the existing grades of the surrounding areas. A section of the vesting tentative tract map was used as the basis for the attached Geotechnical Map.

Included with and completing this report are a List of References, the exhibit showing the location of the proposed water quality detention basin (Figure 1), a Geotechnical Map (Figure 2), Test Pit Logs (Appendix A) and Groundwater Data (Appendix B).

#### SITE DESCRIPTION

The proposed water quality detention basin is located within the general footprint of an existing water feature in the southwestern corner of the existing country club property near the intersection of Robinson Ranch and Sand Canyon Roads. In discussions with Mr. Paul Ortega of Hunsaker & Associates, the proposed basin is approximately 60,000 square-feet in area with a proposed depth of approximately 8-feet; the proposed bottom elevation varies from elevation 1590 to 1591. Vegetation within the area of the basin includes native weeds and planted ornamental materials.

#### SUBSURFACE EXPLORATION

The area of the water quality detention basin was explored on April 16, 2019, with a series of backhoe excavated exploratory test pits (Test Pits TP-1 through TP-3). The test pits were excavated to depths that varied from approximately 7 to 13-feet below the existing ground surface. The test pits were originally intended to facilitate large-scale infiltration testing; however, infiltration testing was not conducted due to the presence of saturated artificial fill soils at depths below the invert elevation of the proposed basin which created heavy caving below a depth of about 2-feet. In addition, a 20-mil geosynthetic membrane was encountered within the bottom of Test Pit TP-3 at a depth of approximately 11-feet below the existing surface which corresponds to an approximate elevation of 1585. The logs of the excavated test pits are presented in Appendix A.



#### GROUNDWATER

Water well records from the Los Angeles County Department of Public Works (LACDPW) indicate that there are no water wells monitored by LACDPW within the project site; however, one active LACDPW water well is located approximately 500 feet west-southwest of the western property boundary. This well is designated as Well No. 7188A (State Well ID 4N15W23Q02). Water levels in Well No. 7188A were measured from April 1974 through November 2011. During that period, the highest measured water level was 3.8 feet below ground surface, corresponding to a water surface elevation of 1583.2 feet above mean sea level (msl). This water level was recorded on November 27, 1978. The last measurement recorded in this well was 35.9 feet below ground surface (water surface elevation of 1551.1 feet msl) recorded on November 14, 2011. The groundwater measurements from Well No. 7188A have been included within Appendix B – Goundwater Data.

The State of California Seismic Hazard Maps for the Mint Canyon Quadrangle (CDMG, 1998) indicates that the historic high groundwater ranges from 0 to 10 feet below ground surface near the southeastern corner of Sand Canyon Road and Robinson Ranch Road in the vicinity of the proposed water quality detention basin. The Historically Highest Groundwater Contour Map from the Seismic Hazard Maps for the Mint Canyon Quadrangle has been included within Appendix B – Goundwater Data.

#### **INFILTRATION EVALUATION**

As previously mentioned, the exploratory test pits (Test Pits TP-1 through TP-3) were originally intended to facilitate large-scale infiltration testing; however, infiltration testing was not conducted due to the presence of saturated artificial fill soils at depths below the invert elevation of the proposed basin and heavy caving within the saturated soils below a depth of 2-feet. In addition, a 20-mil geosynthetic membrane was encountered within the bottom of Test Pit TP-3 at a depth of approximately 11-feet below the existing surface which corresponds to an approximate elevation of 1585. We did not encounter the geomembrane liner in the other test pits, but we



suspect that the liner, if present, was deeper than we were able to excavate. The liner, where encountered, was approximately 5 to 6-feet below proposed basin invert elevation. The geosynthetic membrane mantels the native soils that would be considered the elevation of infiltration which is within 10-feet of historic high groundwater.

#### **CONCLUSIONS AND RECOMMENDATIONS**

It is our understanding that consideration is being given to infiltrating collected storm water as part of the proposed industrial building development at the subject site. It is our opinion that the site is not a candidate for the infiltration of water for the reasons specified below.

Due to the depth of the artificial fill soils that do not have favorable infiltration characteristics, the elevation of the geosynthetic membrane that mantels the native infiltration soils (approximate elevation 1585 msl), and the historic high groundwater elevation (approximate elevation 1583 msl), there is not sufficient vertical distance between the proposed infiltration invert elevation and historic high groundwater as required by Los Angeles County Department of Public Works (LACDPW), Administrative Manual GS 200.2, Guidelines for Geotechnical Investigation and Reporting, Low Impact Development (LID) Storm Water Infiltration," dated June 30,2017 (LACDPW, 2017).

Due to the potential for shallow historically high groundwater, infiltration of stormwater into the subsurface soils is not recommended at the subject site. It is our opinion that methods other than infiltration into subsurface soils at the subject site be considered for the disposal of collected storm water.

#### LIMITATIONS

Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has been prepared for Sand Canyon Country



Club and their design consultants, to be used solely for planning and design of the water quality detention basin and associated grading. The report has not been prepared for use by other parties and may not contain sufficient information for purposes of other parties or other uses.

#### -000-

We appreciate the opportunity to be of service. Please call if you have questions or would like to discuss this report in more detail.

The following are attached and complete this report.

- List of References
- Exhibit Figure 1
- Geotechnical Map Figure 2
- Appendix A Test Pit Logs
- Appendix B Groundwater Data

Respectfully submitted,



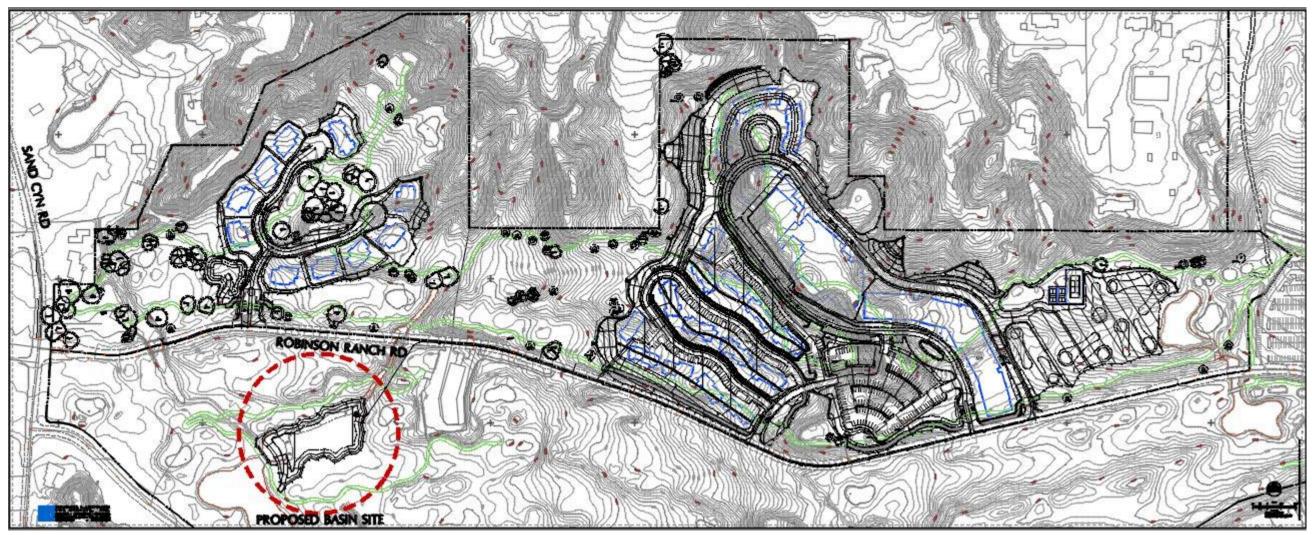
R. T. FRANKIAN & ASSOCIATES

Alan W. Rasplicka

Principal Geotechnical Engineer

SDR/AWR//jh

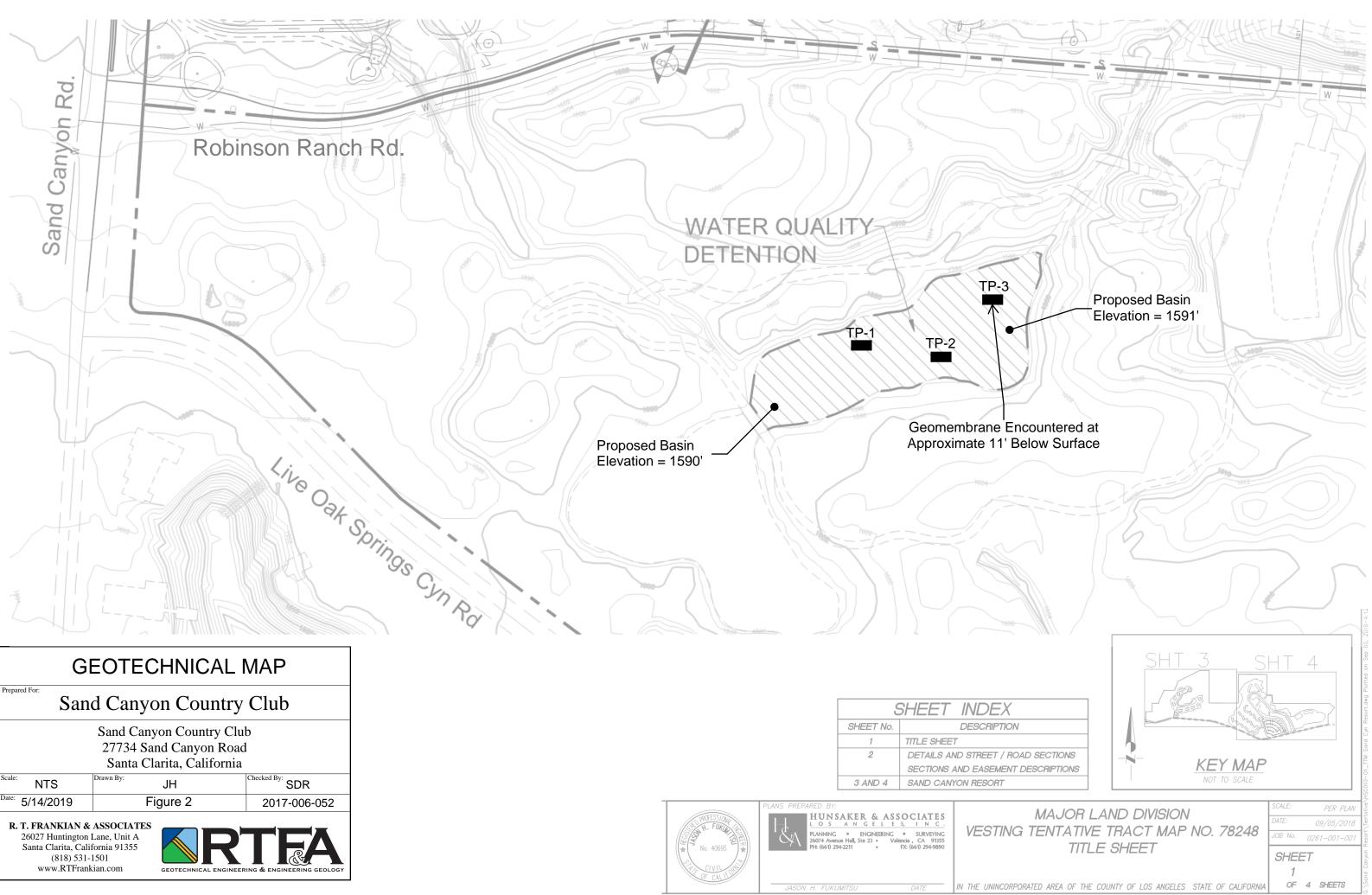
PDF Distribution via Email:


- Sand Canyon Country Club Mr. Steve Kim
- Hunsaker & Associates Mr. Paul Ortega, Ms. Wai Lan Lee



#### REFERENCES

- California Division of Mines and Geology, 1998, "Seismic Hazard Zone Report for the Mint Canyon 7.5-minute Quadrangle, Los Angeles County, California," Seismic Hazard Zone Report 018.
- Frankian, R. T., & Associates, 2018, "Geotechnical Plan Review, Vesting Tentative Tract Map No. 78248, Planning Area OF 1-8, Santa Clarita, California," for Sand Canyon Country Club, <u>dated September 20, 2018</u>, Job No. 2017-006-021
- Los Angeles County Department of Public Works, Geotechnical and Materials Engineering Division, 2011, "Low Impact Development Best Management Practice Guideline for Design, Investigation, and Reporting," <u>dated June 1, 2011</u>, GS200.1.
- Los Angeles County Department of Public Works, Geotechnical and Materials Engineering Division, 2014, "Guidelines for Design, Investigation, and Reporting Low Impact Development Stormwater Infiltration," <u>dated December 31, 2014</u>, GS200.1.





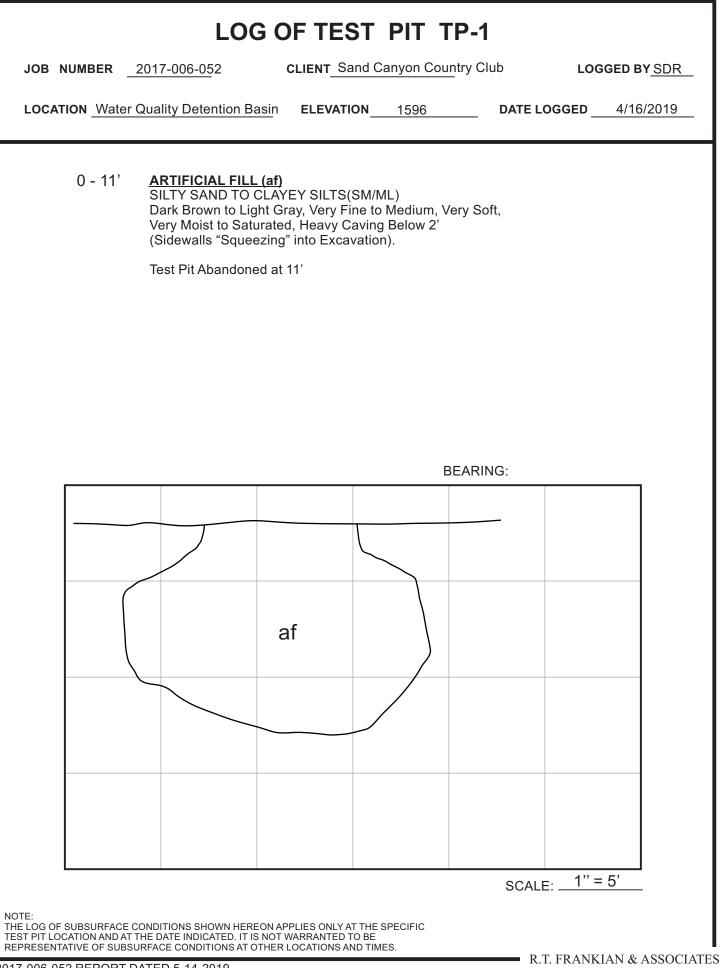


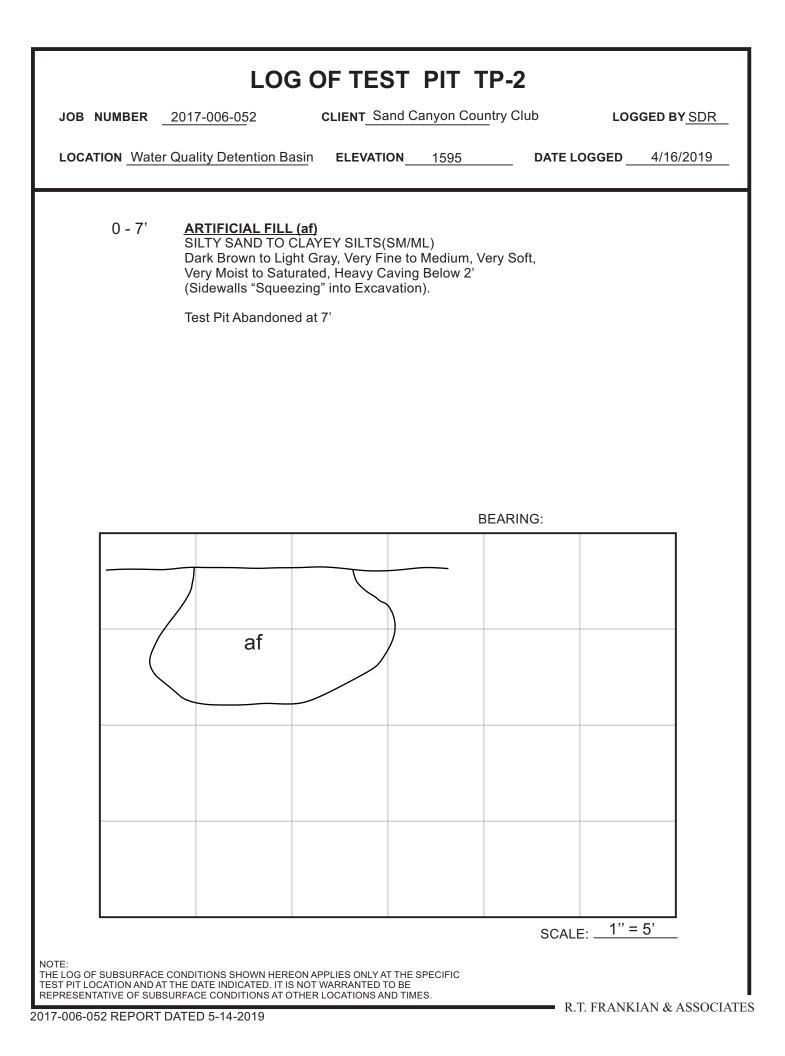

Provided by Hunsaker & Associates, Inc.

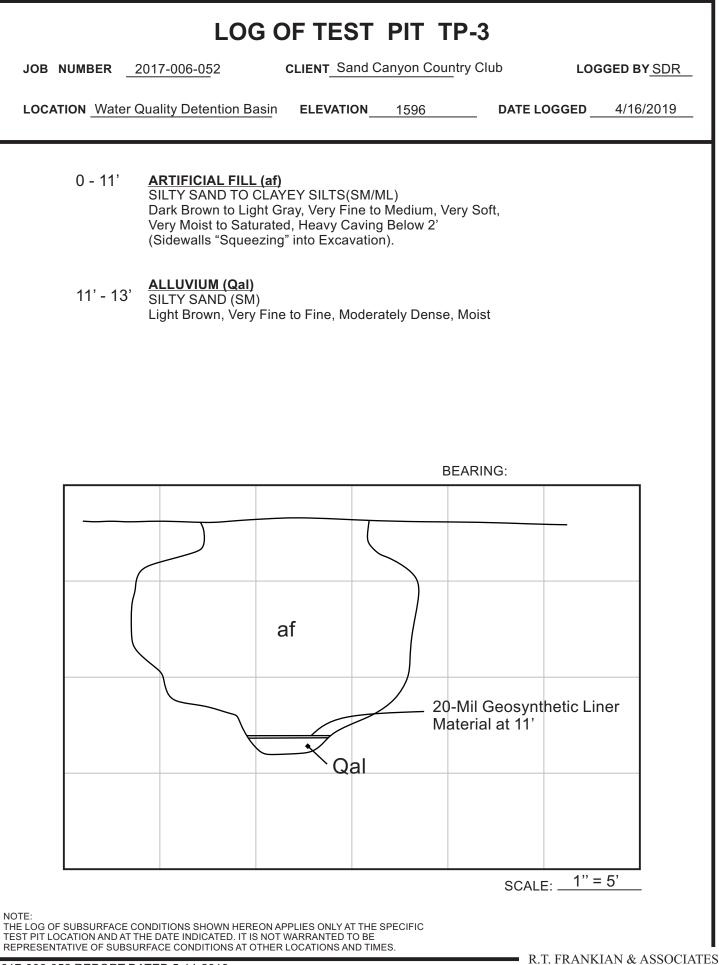




| G                                                                                    | EOTE                                      | CHNICAL                                                  | MAP             |
|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|-----------------|
| Prepared For: Sat                                                                    | nd Cany                                   | on Country                                               | / Club          |
|                                                                                      | 27734 S                                   | nyon Country Cl<br>and Canyon Roa<br>Clarita, California | d               |
| <sup>Scale:</sup> NTS                                                                | Drawn By:                                 | JH                                                       | Checked By: SDR |
| Date: 5/14/2019                                                                      |                                           | Figure 2                                                 | 2017-006-052    |
| R. T. FRANKIAN &<br>26027 Huntington<br>Santa Clarita, Ca<br>(818) 531<br>www.RTFrai | n Lane, Unit A<br>lifornia 91355<br>-1501 | <b>R</b>                                                 |                 |


| 3         | SHEET INDEX            |
|-----------|------------------------|
| SHEET No. | DESCRIPTIC             |
| 1         | TITLE SHEET            |
| 2         | DETAILS AND STREET / F |
|           | SECTIONS AND EASEMEN   |
| 3 AND 4   | SAND CANYON RESORT     |
|           |                        |


|           | PLANS PREP. | ARED BY:          |                                                            |    |     |        |
|-----------|-------------|-------------------|------------------------------------------------------------|----|-----|--------|
| No. 40695 | Η.          | PLANNING = ENGINE | L E S, I N C .<br>ERING = SURVEYING<br>Valencia , CA 91355 | 1  | /E  | STIN   |
|           | JASON       | H. FUKUMITSU      | DATE                                                       | IN | THE | UNINCO |


# APPENDIX A

# **TEST PIT LOGS**









# **APPENDIX B**

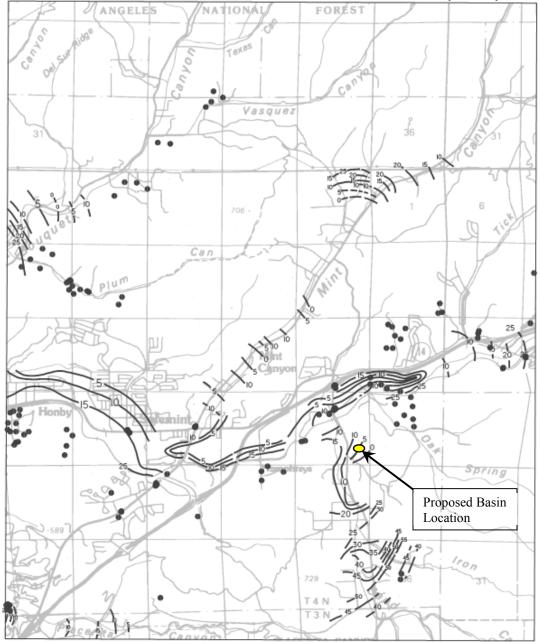
# **GROUNDWATER DATA**



### LOS ANGELES COUNTY WATER WELL DATA

Well Identification 7188A (https://dpw.lacounty.gov/general/wells/#)

| WELL<br>ID | MEASURE<br>DATE | RP TO<br>WS | GS<br>ELEV | RP<br>ELEV | GS TO<br>WS | WATER<br>SURFACE<br>ELEVATION |
|------------|-----------------|-------------|------------|------------|-------------|-------------------------------|
| 7188A      | 11/14/11        | 36.9        | 1587       | 1588       |             | 1551.1                        |
| 7188A      | 05/26/11        | 44.8        | 1587       | 1588       |             | 1543.2                        |
| 7188A      | 05/18/09        |             | 1587       | 1588       |             |                               |
| 7188A      | 05/21/08        |             | 1587       | 1588       |             |                               |
| 7188A      | 11/08/06        |             | 1587       | 1588       |             |                               |
| 7188A      | 05/16/06        | 18.3        | 1587       | 1588       | 17.3        | 1569.7                        |
| 7188A      | 11/30/05        | 11.7        | 1587       | 1588       | 10.7        | 1576.3                        |
| 7188A      | 05/18/04        | 62.9        | 1587       | 1588       | 61.9        | 1525.1                        |
| 7188A      | 07/02/03        |             | 1587       | 1588       |             |                               |
| 7188A      | 12/02/02        | 76.9        | 1587       | 1588       | 75.9        | 1511.1                        |
| 7188A      | 05/08/02        | 62.2        | 1587       | 1588       | 61.2        | 1525.8                        |
| 7188A      | 11/13/01        | 60.2        | 1587       | 1588       | 59.2        | 1527.8                        |
| 7188A      | 04/17/01        | 56.4        | 1587       | 1588       | 55.4        | 1531.6                        |
| 7188A      | 11/27/00        | 58.9        | 1587       | 1588       | 57.9        | 1529.1                        |
| 7188A      | 06/01/00        | 48.2        | 1587       | 1588       | 47.2        | 1539.8                        |
| 7188A      | 11/29/99        | 37.8        | 1587       | 1588       | 36.8        | 1550.2                        |
| 7188A      | 05/26/99        | 19.7        | 1587       | 1588       | 18.7        | 1568.3                        |
| 7188A      | 11/17/98        | 8           | 1587       | 1588       | 7.0         | 1580                          |
| 7188A      | 10/30/97        | 54          | 1587       | 1588       | 53.0        | 1534                          |
| 7188A      | 05/19/97        | 47.2        | 1587       | 1588       | 46.2        | 1540.8                        |
| 7188A      | 11/25/96        | 38.9        | 1587       | 1588       | 37.9        | 1549.1                        |
| 7188A      | 05/22/96        | 24.8        | 1587       | 1588       | 23.8        | 1563.2                        |
| 7188A      | 10/30/95        | 16.3        | 1587       | 1588       | 15.3        | 1571.7                        |
| 7188A      | 05/23/95        | 21          | 1587       | 1588       | 20.0        | 1567                          |
| 7188A      | 10/26/94        | 33.7        | 1587       | 1588       | 32.7        | 1554.3                        |
| 7188A      | 04/11/94        | 15.9        | 1587       | 1588       | 14.9        | 1572.1                        |
| 7188A      | 12/08/93        | 7.5         | 1587       | 1588       | 6.5         | 1580.5                        |
| 7188A      | 05/04/93        | 8.2         | 1587       | 1588       | 7.2         | 1579.8                        |
| 7188A      | 04/20/92        | 55.4        | 1587       | 1588       | 54.4        | 1532.6                        |
| 7188A      | 11/13/91        |             | 1587       | 1588       |             |                               |
| 7188A      | 10/17/90        |             | 1587       | 1588       |             |                               |




### LOS ANGELES COUNTY WATER WELL DATA

Well Identification 7188A (https://dpw.lacounty.gov/general/wells/#)

| WELL<br>ID | MEASURE<br>DATE | RP TO<br>WS | GS<br>ELEV | RP<br>ELEV | GS TO<br>WS | WATER<br>SURFACE<br>ELEVATION |
|------------|-----------------|-------------|------------|------------|-------------|-------------------------------|
| 7188A      | 10/25/89        | 84.3        | 1587       | 1588       | 83.3        | 1503.7                        |
| 7188A      | 05/10/89        | 73.1        | 1587       | 1588       | 72.1        | 1514.9                        |
| 7188A      | 11/07/88        |             | 1587       | 1588       |             |                               |
| 7188A      | 04/27/88        | 89          | 1587       | 1588       | 88.0        | 1499                          |
| 7188A      | 05/13/87        | 56          | 1587       | 1588       | 55.0        | 1532                          |
| 7188A      | 04/15/86        | 63.5        | 1587       | 1588       | 62.5        | 1524.5                        |
| 7188A      | 11/21/85        | 61          | 1587       | 1588       | 60.0        | 1527                          |
| 7188A      | 05/07/85        | 45.9        | 1587       | 1588       | 44.9        | 1542.1                        |
| 7188A      | 11/07/84        | 33.5        | 1587       | 1588       | 32.5        | 1554.5                        |
| 7188A      | 04/18/84        | 16          | 1587       | 1588       | 15.0        | 1572                          |
| 7188A      | 12/07/83        | 6.8         | 1587       | 1588       | 5.8         | 1581.2                        |
| 7188A      | 04/15/83        | 34          | 1587       | 1588       | 33.0        | 1554                          |
| 7188A      | 11/05/82        | 57.1        | 1587       | 1588       | 56.1        | 1530.9                        |
| 7188A      | 05/05/82        | 48.2        | 1587       | 1588       | 47.2        | 1539.8                        |
| 7188A      | 11/16/81        | 40.1        | 1587       | 1588       | 39.1        | 1547.9                        |
| 7188A      | 04/13/81        | 20.8        | 1587       | 1588       | 19.8        | 1567.2                        |
| 7188A      | 11/13/80        | 11.6        | 1587       | 1588       | 10.6        | 1576.4                        |
| 7188A      | 05/27/80        | 11.2        | 1587       | 1588       | 10.2        | 1576.8                        |
| 7188A      | 11/13/79        | 14.3        | 1587       | 1588       | 13.3        | 1573.7                        |
| 7188A      | 04/23/79        | 8.8         | 1587       | 1588       | 7.8         | 1579.2                        |
| 7188A      | 11/27/78        | 4.8         | 1587       | 1588       | 3.8         | 1583.2                        |
| 7188A      | 04/21/78        | 44.5        | 1587       | 1588       | 43.5        | 1543.5                        |
| 7188A      | 11/08/77        | 91.1        | 1587       | 1588       | 90.1        | 1496.9                        |
| 7188A      | 04/15/77        | 85.9        | 1587       | 1588       | 84.9        | 1502.1                        |
| 7188A      | 11/02/76        | 83.4        | 1587       | 1588       | 82.4        | 1504.6                        |
| 7188A      | 04/09/76        | 70.5        | 1587       | 1588       | 69.5        | 1517.5                        |
| 7188A      | 11/19/75        | 70.7        | 1587       | 1588       | 69.7        | 1517.3                        |
| 7188A      | 04/21/75        | 54          | 1587       | 1588       | 53.0        | 1534                          |
| 7188A      | 11/19/74        | 48          | 1587       | 1588       | 47.0        | 1540                          |
| 7188A      | 04/04/74        | 45.1        | 1587       | 1588       | 44.1        | 1542.9                        |





### HISTORICALLY HIGHEST GROUNDWATER CONTOURS (CDMG, 1998)

adios danim-06 x 05 \$46-30 mothorgality and

Plate 1.2 Historically Highest Ground Water Contours and Borehole Log Data Locations, Mint Canyon Quadrangle.

Borehole Site \_\_\_\_\_\_ 30 \_\_\_\_ Depth to ground water in feet

