

Noise Calculation Worksheets

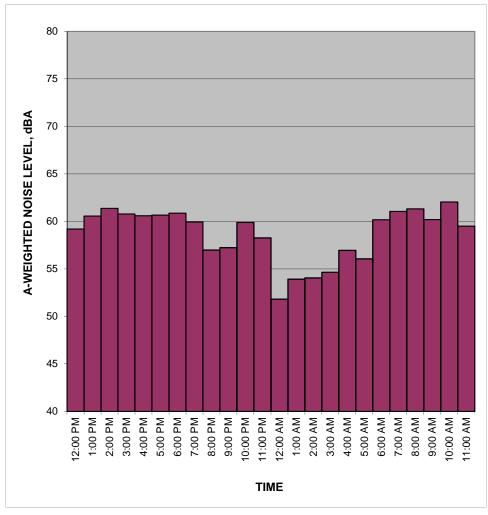
2143 Violet Project

Noise Calculations Worksheets

Provided by Acoustical Engineering Services

Ambient Noise Measurements

Measured Ambient Noise Levels



Project: 2143 Violet Location: P1, Project Site

Sources: Ambient

Date: 10/10 - 10/11/2018

	HNL,
TIME	dB(A)
12:00 PM	59.2
1:00 PM	60.6
2:00 PM	61.4
3:00 PM	60.8
4:00 PM	60.6
5:00 PM	60.7
6:00 PM	60.9
7:00 PM	59.9
8:00 PM	57.0
9:00 PM	57.2
10:00 PM	59.9
11:00 PM	58.3
12:00 AM	51.8
1:00 AM	53.9
2:00 AM	54.1
3:00 AM	54.6
4:00 AM	57.0
5:00 AM	56.1
6:00 AM	60.2
7:00 AM	61.0
8:00 AM	61.3
9:00 AM	60.2
10:00 AM	62.0
11:00 AM	59.5
CNEL, dB(A):	64.4

NOTES:		

Date: 10/10/2018

Time	Overload	Leq	Lmax	L10	L90
12:07:09 PM I	No	54.3	57	55.7	53.1
12:08:09 PM I	No	55.9	62.5	58.1	53.6
12:09:09 PM I	No	55.9	60.1	57.1	53.3
12:10:09 PM I	No	54.3	57.3	55.7	52.6
12:11:09 PM I	No	55.6	62.5	57.4	53.4
12:12:09 PM I	No	54.4	62.8	55.9	52.3
12:13:09 PM I	No	55.6	62.1	58	52.9
12:14:09 PM I	No	54.4	58.5	56.4	52.3
12:15:09 PM I	No	53.8	59	55.9	51.7
12:16:09 PM I	No	59	66.4	62.5	53.8
12:17:09 PM I	No	61.8	73	65.9	51.9
12:18:09 PM I	No	52.8	59.9	54.9	50.6
12:19:09 PM I	No	52.3	60.5	55.1	49.9
12:20:09 PM I	No	52.4	61	54.4	49.5
12:21:09 PM I	No	59	76	54.9	49.7

56.3

Time Overload	Leq	Lmax	L10	L90
9:59:55 PM No	53.9	56.5	54.9	52.7
10:00:55 PM No	56.5	62.7	59.1	53.3
10:01:55 PM No	54.2	56.1	55.2	53.1
10:02:55 PM No	53.5	56.5	54.8	52.3
10:03:55 PM No	55.2	58.6	56.9	52.6
10:04:55 PM No	53.7	56.4	54.8	52.4
10:05:55 PM No	53.9	56.3	54.7	52.8
10:06:55 PM No	54.9	59.6	56.4	53.7
10:07:55 PM No	54.2	56.8	55.5	53.1
10:08:55 PM No	54.1	57.2	55	53.2
10:09:55 PM No	54.8	62.5	56.2	53.5
10:10:55 PM No	55.6	64.5	56	53.1
10:11:55 PM No	53.6	57.3	54.6	52.4
10:12:55 PM No	60.6	68.2	65.9	53
10:13:55 PM No	53.7	60.1	55.3	52.2

Date: 10/10/2018

Time	Overload	Leq	Lmax	L10	L90
12:24:58 PM No)	68.1	76.6	72	63.3
12:25:58 PM No)	74.1	81.7	77.5	69.3
12:26:58 PM No)	75.9	86.9	79.7	66.8
12:27:58 PM No)	69.4	74.7	72.1	64.7
12:28:58 PM No)	66.9	75.8	69.8	60.8
12:29:58 PM No)	71.8	83.3	74.9	61.6
12:30:58 PM No)	68.4	77	70.7	64.9
12:31:58 PM No)	74.4	83.7	77.4	66.8
12:32:58 PM No)	74.2	81.2	78.5	67.6
12:33:58 PM No)	66.7	72.3	70.2	61.4
12:34:58 PM No)	71.1	77.2	75.1	65
12:35:58 PM No)	68	74	71.1	58.8
12:36:58 PM No)	70.5	76.7	74.5	64.8
12:37:58 PM No)	73.8	81.2	76.8	67.3
12:38:58 PM No)	68	73.5	70.7	64.6
		71.8			
Time	Overload	Lea	lmay	110	190

Lea	Lmax	L10	L90
64.4	73.7	69.8	52.4
64.2	70.1	68.2	55.7
63.6	70.5	67.4	56.5
67.7	74.9	71	56.1
65.6	69.5	68.1	60.7
67.7	73.7	71.1	60.4
64	71.4	67.8	55.6
65.7	72	69.9	57.3
63.1	72.4	68.1	53
66.4	73.8	70.2	58.8
67.7	75.1	72	60.6
69.2	80.2	72.6	57.5
61.9	70.1	65.7	55.6
66	74.3	69.6	54.6
64.3	71.1	68.2	56.7
	64.2 63.6 67.7 65.6 67.7 64 65.7 63.1 66.4 67.7 69.2 61.9	64.4 73.7 64.2 70.1 63.6 70.5 67.7 74.9 65.6 69.5 67.7 73.7 64 71.4 65.7 72 63.1 72.4 66.4 73.8 67.7 75.1 69.2 80.2 61.9 70.1 66 74.3	64.4 73.7 69.8 64.2 70.1 68.2 63.6 70.5 67.4 67.7 74.9 71 65.6 69.5 68.1 67.7 73.7 71.1 64 71.4 67.8 65.7 72 69.9 63.1 72.4 68.1 66.4 73.8 70.2 67.7 75.1 72 69.2 80.2 72.6 61.9 70.1 65.7 66 74.3 69.6

Date: 10/10/2018

Time	Overload	Leq	Lmax	L10	L90
12:41:42 PM	No	58.7	66.1	62.2	55.7
12:42:42 PM	No	73	79.9	77.4	60.1
12:43:42 PM	No	69.6	78.4	75.4	60.2
12:44:42 PM	No	58.9	63.9	61.3	56.5
12:45:42 PM	No	61.6	69.3	65.6	56.9
12:46:42 PM	No	57.7	62.6	59.7	55.3
12:47:42 PM	No	58.4	64.5	61	55
12:48:42 PM	No	61	67.1	63.4	57.2
12:49:42 PM	No	60.5	67.3	62.7	57.1
12:50:42 PM	No	61.9	70.9	65	58.5
12:51:42 PM	No	59.5	66.6	62.5	54.8
12:52:42 PM	No	58.4	62.6	61	55.2
12:53:42 PM	No	58.4	65.2	62.1	54.9
12:54:42 PM	No	61	67.8	65.5	56
12:55:42 PM	No	62.8	68.3	66.4	56.5
		64.5			
Time	Overload	Leq	Lmax	L10	L90
10:33:36 PM	No	58.5	62.7	60	56.5
10:34:36 PM	No	59.6	65.9	63.2	55.4
10:35:36 PM	No	58.2	62.7	59.5	56.3
10:36:36 PM	No	57.7	60.7	59.2	56.3
10:37:36 PM	No	56.9	61.2	59	54.2
10:38:36 PM	No	59.3	66.2	61.9	56.6
10:39:36 PM	No	58.2	62.7	59.7	56.3
10:40:36 PM	No	56.8	61.5	58	55.1
10:41:36 PM	No	57.1	60.1	58.5	56
10:42:36 PM	No	58	63.2	59.2	56.5
10:43:36 PM	No	58.6	67.4	59.8	56.3
10:44:36 PM	No	58.6	61.2	59.6	57.1
10:45:36 PM	No	60.8	70.5	61.7	58.2
10:46:36 PM	No	59.9	61.7	61.2	58.6
10:47:36 PM	No	60.8	66.8	63.5	57.9

Date: 10/10/2018

Time Overlo	oad Leq	Lmax	L10	L90
1:03:34 PM No	61.7	66.1	62.8	60.4
1:04:34 PM No	61.2	67.8	63.3	58.9
1:05:34 PM No	61	68.6	63.3	57.9
1:06:34 PM No	62.4	67.3	65.6	56.7
1:07:34 PM No	57.2	65.4	59.1	53.2
1:08:34 PM No	60	63.9	62.3	56.8
1:09:34 PM No	56.7	63.6	58.6	54.1
1:10:34 PM No	62.9	67.9	65.6	58.1
1:11:34 PM No	59.6	65.3	62.4	56.9
1:12:34 PM No	61	65.4	63.5	57.9
1:13:34 PM No	58.5	63.3	60.2	56.5
1:14:34 PM No	58.9	64	60.5	57
1:15:34 PM No	58.7	64.3	61.7	53.8
1:16:34 PM No	59.1	67.4	60.3	57.2
1:17:34 PM No	58.1	67.8	60.6	52.6
	60.2			
Time Overlo	oad Leq	Lmax	L10	L90
10:54:20 PM No	52.2	56.8	54.1	50
	52.2	50.0	54.1	50
10:55:20 PM No	51.4	59.1	55.1	47.9
10:55:20 PM No 10:56:20 PM No				
	51.4	59.1	55.1	47.9
10:56:20 PM No	51.4 49.8	59.1 54.1	55.1 52.1	47.9 48
10:56:20 PM No 10:57:20 PM No	51.4 49.8 60.9	59.1 54.1 66.4	55.1 52.1 64.7	47.9 48 49.1
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No	51.4 49.8 60.9 51.8	59.1 54.1 66.4 60.1	55.1 52.1 64.7 54.7	47.9 48 49.1 48.1
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No	51.4 49.8 60.9 51.8 48.6	59.1 54.1 66.4 60.1 53.9	55.1 52.1 64.7 54.7 50.3	47.9 48 49.1 48.1 47
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9	59.1 54.1 66.4 60.1 53.9 62.2	55.1 52.1 64.7 54.7 50.3 54.9	47.9 48 49.1 48.1 47
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No 11:01:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9 52.2	59.1 54.1 66.4 60.1 53.9 62.2 57.7	55.1 52.1 64.7 54.7 50.3 54.9 55.6	47.9 48 49.1 48.1 47 47.8 48.5
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No 11:01:20 PM No 11:02:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9 52.2 50.2	59.1 54.1 66.4 60.1 53.9 62.2 57.7 57.6	55.1 52.1 64.7 54.7 50.3 54.9 55.6 52.2	47.9 48 49.1 48.1 47 47.8 48.5 48.2
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No 11:01:20 PM No 11:02:20 PM No 11:03:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9 52.2 50.2 57.4	59.1 54.1 66.4 60.1 53.9 62.2 57.7 57.6 65.9	55.1 52.1 64.7 54.7 50.3 54.9 55.6 52.2 61.6	47.9 48 49.1 48.1 47 47.8 48.5 48.2 50.1
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No 11:01:20 PM No 11:02:20 PM No 11:03:20 PM No 11:04:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9 52.2 50.2 57.4 51.1	59.1 54.1 66.4 60.1 53.9 62.2 57.7 57.6 65.9 56.4	55.1 52.1 64.7 54.7 50.3 54.9 55.6 52.2 61.6 53.7	47.9 48 49.1 48.1 47 47.8 48.5 48.2 50.1 48.6
10:56:20 PM No 10:57:20 PM No 10:58:20 PM No 10:59:20 PM No 11:00:20 PM No 11:01:20 PM No 11:02:20 PM No 11:03:20 PM No 11:04:20 PM No 11:05:20 PM No	51.4 49.8 60.9 51.8 48.6 52.9 52.2 50.2 57.4 51.1 52.6	59.1 54.1 66.4 60.1 53.9 62.2 57.7 57.6 65.9 56.4 62.6	55.1 52.1 64.7 54.7 50.3 54.9 55.6 52.2 61.6 53.7 56.2	47.9 48 49.1 48.1 47 47.8 48.5 48.2 50.1 48.6 48.6

Construction Noise & Vibration Calculations

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	50	0
Rubber Tired Dozer	1	82	40%	50	0
Rubber Tired Loader	1	79	40%	70	0
Tractor/Loader/Backhoe	1	84	40%	70	0
Air Compressor	1	78	40%	95	0
Tractor/Loader/Backhoe	1	84	40%	95	0

6

Receptor: R1

Results:

1-hour Leq: 85.6

Construction Phase: Grading

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	50	0
Excavator	1	81	40%	50	0
Forklift	1	75	20%	70	0
Welders	1	74	40%	70	0
Tractor/Loader/Backhoe	1	84	40%	95	0
Rubber Tired Dozer	1	82	40%	95	0
Rubber Tired Loader	1	79	40%	120	0
Bore/Drill Rig	1	84	20%	120	0
Excavator	1	81	40%	145	0
Welders	2	74	40%	145	0
Tractor/Loader/Backhoe	1	84	40%	170	0
Rubber Tired Dozer	1	82	40%	170	0
Rubber Tired Loader	1	79	40%	170	0

14

Receptor: R1

Results:

1-hour Leq: 82.9

Construction Phase: Mat Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Pump	1	81	20%	50	0
Concrete Pump	1	81	20%	50	0
Concrete Pump	1	81	20%	70	0
Concrete Pump	1	81	20%	70	0
Concrete Pump	1	81	20%	95	0
Concrete Pump	1	81	20%	95	0

6

Receptor: R1

Results:

1-hour Leq: 79.5

Construction Phase: Concrete

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	50	0
Crane	1	81	16%	50	0
Fork Lift	1	75	20%	70	0
Concrete Pump	1	81	20%	70	0
Generator Set	1	81	50%	95	0
Fork Lift	1	75	20%	95	0
Concrete Pump	1	81	20%	120	0

Receptor: R1

Results:

1-hour Leq: 84.1

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	50	0
Crane	1	81	16%	50	0
Concrete Pump	1	81	20%	70	0
Aerial Lift	1	75	20%	70	0
Fork Lift	1	75	20%	95	0
Generator Set	1	81	50%	95	0
Welders	1	74	40%	120	0
Concrete Saw	1	90	20%	120	0
Concrete Pump	1	81	20%	145	0
Aerial Lift	1	75	20%	145	0
Fork Lift	1	75	20%	170	0
Generator Set	1	81	50%	170	0

12

Receptor: R1

Results:

1-hour Leq: 84.8

Construction Phase: Paving/Landscaping

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Cement and Mortar Mixer	1	80	50%	50	0
Pavers	1	77	50%	70	0
Plate Compator	1	83	20%	70	0
Tractor/Loader/Backhoe	1	84	40%	90	0

4

Receptor: R1

Results:

1-hour Leq: 80.6

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	200	15
Rubber Tired Dozer	1	82	40%	200	15
Rubber Tired Loader	1	79	40%	220	15
Tractor/Loader/Backhoe	1	84	40%	220	15
Air Compressor	1	78	40%	245	15
Tractor/Loader/Backhoe	1	84	40%	245	15

6

Receptor: R2

Results:

1-hour Leq: 59.6

Construction Phase: Grading

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	200	15
Excavator	1	81	40%	200	15
Forklift	1	75	20%	220	15
Welders	1	74	40%	220	15
Tractor/Loader/Backhoe	1	84	40%	245	15
Rubber Tired Dozer	1	82	40%	245	15
Rubber Tired Loader	1	79	40%	270	15
Bore/Drill Rig	1	84	20%	270	15
Excavator	1	81	40%	295	15
Welders	2	74	40%	295	15
Tractor/Loader/Backhoe	1	84	40%	320	15
Rubber Tired Dozer	1	82	40%	320	15
Rubber Tired Loader	1	79	40%	320	15

14

Receptor: R2

Results:

1-hour Leq: 58.7

Construction Phase: Mat Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Pump	1	81	20%	200	15
Concrete Pump	1	81	20%	200	15
Concrete Pump	1	81	20%	220	15
Concrete Pump	1	81	20%	220	15
Concrete Pump	1	81	20%	245	15
Concrete Pump	1	81	20%	245	15

6

Receptor: R2

Results:

1-hour Leq: 53.9

Construction Phase: Concrete

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	200	15
Crane	1	81	16%	200	15
Fork Lift	1	75	20%	220	15
Concrete Pump	1	81	20%	220	15
Generator Set	1	81	50%	245	15
Fork Lift	1	75	20%	245	15
Concrete Pump	1	81	20%	270	15

Receptor: R2

Results:

1-hour Leq: 57.8

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	200	15
Crane	1	81	16%	200	15
Concrete Pump	1	81	20%	220	15
Aerial Lift	1	75	20%	220	15
Fork Lift	1	75	20%	245	15
Generator Set	1	81	50%	245	15
Welders	1	74	40%	270	15
Concrete Saw	1	90	20%	270	15
Concrete Pump	1	81	20%	295	15
Aerial Lift	1	75	20%	295	15
Fork Lift	1	75	20%	320	15
Generator Set	1	81	50%	320	15

12

Receptor: R2

Results:

1-hour Leq: 59.5

Construction Phase: Paving/Landscaping

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Cement and Mortar Mixer	1	80	50%	200	15
Pavers	1	77	50%	200	15
Plate Compator	1	83	20%	220	15
Tractor/Loader/Backhoe	1	84	40%	220	15

4

Receptor: R2

Results:

1-hour Leq: 55.8

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	140	10
Rubber Tired Dozer	1	82	40%	140	10
Rubber Tired Loader	1	79	40%	160	10
Tractor/Loader/Backhoe	1	84	40%	160	10
Air Compressor	1	78	40%	180	10
Tractor/Loader/Backhoe	1	84	40%	180	10

6

Receptor: R3

Results:

1-hour Leq: 67.5

Construction Phase: Grading

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	140	10
Excavator	1	81	40%	140	10
Forklift	1	75	20%	160	10
Welders	1	74	40%	160	10
Tractor/Loader/Backhoe	1	84	40%	180	10
Rubber Tired Dozer	1	82	40%	180	10
Rubber Tired Loader	1	79	40%	200	10
Bore/Drill Rig	1	84	20%	200	10
Excavator	1	81	40%	220	10
Welders	2	74	40%	220	10
Tractor/Loader/Backhoe	1	84	40%	240	10
Rubber Tired Dozer	1	82	40%	240	10
Rubber Tired Loader	1	79	40%	240	10

14

Receptor: R3

Results:

1-hour Leq: 66.5

Construction Phase: Mat Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Pump	1	81	20%	140	10
Concrete Pump	1	81	20%	140	10
Concrete Pump	1	81	20%	160	10
Concrete Pump	1	81	20%	160	10
Concrete Pump	1	81	20%	180	10
Concrete Pump	1	81	20%	180	10

6

Receptor: R3

Results:

1-hour Leq: 61.8

Construction Phase: Concrete

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	140	10
Crane	1	81	16%	140	10
Fork Lift	1	75	20%	160	10
Concrete Pump	1	81	20%	160	10
Generator Set	1	81	50%	180	10
Fork Lift	1	75	20%	180	10
Concrete Pump	1	81	20%	200	10

Receptor: R3

Results:

1-hour Leq: 65.8

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	140	10
Crane	1	81	16%	140	10
Concrete Pump	1	81	20%	160	10
Aerial Lift	1	75	20%	160	10
Fork Lift	1	75	20%	180	10
Generator Set	1	81	50%	180	10
Welders	1	74	40%	200	10
Concrete Saw	1	90	20%	200	10
Concrete Pump	1	81	20%	220	10
Aerial Lift	1	75	20%	220	10
Fork Lift	1	75	20%	240	10
Generator Set	1	81	50%	240	10

12

Receptor: R3

Results:

1-hour Leq: 67.3

Construction Phase: Paving/Landscaping

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Cement and Mortar Mixer	1	80	50%	140	10
Pavers	1	77	50%	140	10
Plate Compator	1	83	20%	160	10
Tractor/Loader/Backhoe	1	84	40%	160	10

4

Receptor: R3

Results:

1-hour Leq: 63.7

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	410	15
Rubber Tired Dozer	1	82	40%	410	15
Rubber Tired Loader	1	79	40%	430	15
Tractor/Loader/Backhoe	1	84	40%	430	15
Air Compressor	1	78	40%	450	15
Tractor/Loader/Backhoe	1	84	40%	450	15

6

Receptor: R4

Results:

1-hour Leq: 53.6

Construction Phase: Grading

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	410	15
Excavator	1	81	40%	410	15
Forklift	1	75	20%	430	15
Welders	1	74	40%	430	15
Tractor/Loader/Backhoe	1	84	40%	450	15
Rubber Tired Dozer	1	82	40%	450	15
Rubber Tired Loader	1	79	40%	470	15
Bore/Drill Rig	1	84	20%	470	15
Excavator	1	81	40%	490	15
Welders	2	74	40%	490	15
Tractor/Loader/Backhoe	1	84	40%	510	15
Rubber Tired Dozer	1	82	40%	510	15
Rubber Tired Loader	1	79	40%	530	15

14

Receptor: R4

Results:

1-hour Leq: 53.6

Construction Phase: Mat Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Pump	1	81	20%	410	15
Concrete Pump	1	81	20%	410	15
Concrete Pump	1	81	20%	430	15
Concrete Pump	1	81	20%	430	15
Concrete Pump	1	81	20%	450	15
Concrete Pump	1	81	20%	450	15

6

Receptor: R4

Results:

1-hour Leq: 48.1

Construction Phase: Concrete

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	410	15
Crane	1	81	16%	410	15
Fork Lift	1	75	20%	430	15
Concrete Pump	1	81	20%	430	15
Generator Set	1	81	50%	450	15
Fork Lift	1	75	20%	450	15
Concrete Pump	1	81	20%	470	15

Receptor: R4

Results:

1-hour Leq: 51.8

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	410	15
Crane	1	81	16%	410	15
Concrete Pump	1	81	20%	430	15
Aerial Lift	1	75	20%	430	15
Fork Lift	1	75	20%	450	15
Generator Set	1	81	50%	450	15
Welders	1	74	40%	470	15
Concrete Saw	1	90	20%	470	15
Concrete Pump	1	81	20%	490	15
Aerial Lift	1	75	20%	490	15
Fork Lift	1	75	20%	510	15
Generator Set	1	81	50%	510	15

12

Receptor: R4

Results:

1-hour Leq: 54.0

Construction Phase: Paving/Landscaping

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Cement and Mortar Mixer	1	80	50%	410	15
Pavers	1	77	50%	410	15
Plate Compator	1	83	20%	430	15
Tractor/Loader/Backhoe	1	84	40%	430	15

4

Receptor: R4

Results:

1-hour Leq: 49.8

INPUT: ROADWAYS 2143 Violet Project Eyestone Environmental 24 October 2018 **TNM 2.5** Sean Bui Average pavement type shall be used unless INPUT: ROADWAYS PROJECT/CONTRACT: 2143 Violet Project a State highway agency substantiates the use **Construction Trucks - Demo Phase** RUN: of a different type with the approval of FHWA Roadway **Points** Name Width Name No. Coordinates (pavement) Flow Control Segment Z X Speed Control Percent Pvmt On Device Constraint **Vehicles** Struct? Type Affected ft ft ft mph 12.0 point1 0.00 Signal Haul Route 1 0.0 0.0 0.00 Average 100 2 1,000.0 0.0 0.00 point2

1

INPUT: TRAFFIC FOR LAeq1h Volumes	П					2	143 Viole	t Proje	ct			
Eyestone Environmental				24 Oc	tober 201	8						
Sean Bui				TNM 2			I					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	2143 Violet	Project	·									
RUN:	Constructi	on Trucks	s - Demo	Phase								
Roadway	Points											=
Name	Name	No.	Segme	ent								
			Autos		MTruck	s	HTrucks	5	Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1	7 35	6 0	0	5	35		0 0	0) (
	point2		2									

INPUT: RECEIVERS								2143 Viol	let Proje	ect		
Eyestone Environmental						24 Octobe	er 2018					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project									
RUN:	Cons	truction	Trucks - Der	no Phase								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Cr	iteria	1	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	i	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	(Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL		1 1	250.0	30.0	0.00	4.92	2 0.00	7	1	5.0	0.0	Υ
At 40 feet from Roadway CL		8 1	250.0	40.0	0.00	4.92	2 0.00	6	6	10.0	8.0	Υ

RESULTS: SOUND LEVELS			T.				2143 Violet	Project					
Eyestone Environmental							24 Octobe	r 2018					
Sean Bui							TNM 2.5						
							Calculated	d with TNI	M 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		2143 Vi	olet Projec	t									
RUN:		Constru	uction Truc	ks - Demo	Phase								
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	shall be use	d unles	s	
								a State h	ighway agenc	y substantiate	s the u	se	
ATMOSPHERICS:		68 deg	F, 50% RH	ĺ				of a diffe	rent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
At 30 feet from Roadway CL	1	1	0.0	60	.5 7	1 60.5	5 5		60.5	0.0)	0	0.0
At 40 feet from Roadway CL	8	3 1	0.0	59	.1 6	6 59.1	10		59.1	0.0)	8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		2	0.0	0	.0 0.	0							
All Impacted		0	0.0	0	.0 0.	0							
All that meet NR Goal		1	0.0	0	.0 0.	0							

INPUT: ROADWAYS							2143	Violet Project			
Eyestone Environmental					18 July 2019))					
Sean Bui					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	S
PROJECT/CONTRACT:	2143 Vio	let Project					a State h	ighway agend	y substant	iates the u	se
RUN:	tion Truck	ks - Gradi	ing Phase			of a diffe	rent type with	the approv	al of FHW	A	
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)	·	Flow Cor	ntrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.00	Signal	0.00	100	Average	
		point2	2	1,000.0	0.0	0.00					

INPUT: TRAFFIC FOR LAeq1h Volumes	П				1	2	143 Viole	t Proje	ct			
Eyestone Environmental				18 Jul	y 2019							
Sean Bui				TNM 2	2.5		I					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	2143 Violet	Project										
RUN:	Construction	on Trucks	s - Gradir	ng Phas	e							
Roadway	Points											
Name	Name	No.	Segme	nt								
			Autos		MTruck	S	HTrucks	5	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 8	35	5 (0	29	35		0 0) (0
	point2		2									

INPUT: RECEIVERS								2143 Vio	let Proje	ect		
Eyestone Environmental						18 July 20	019					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project									
RUN:	Cons	truction	n Trucks - Gra	ding Phase								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Cr	iteria	/	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	i	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	(Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL		1 1	250.0	30.0	0.00	4.92	0.00	7	'1	5.0	0.0	Υ
At 40 feet from Roadway CL		8 1	250.0	40.0	0.00	4.92	2 0.00	6	6	10.0	8.0	Υ

RESULTS: SOUND LEVELS							2143 Viole	t Project				
Eyestone Environmental							18 July 20	 19				
Sean Bui							TNM 2.5					
							Calculated	d with TNM	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		2143 Vi	iolet Projec	t								
RUN:		Constr	uction Truc	ks - Grading	Phase							
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	pavement type	shall be use	d unless	
								a State hig	ghway agenc	y substantiate	s the use	•
ATMOSPHERICS:		68 deg	F, 50% RH	l				of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
At 30 feet from Roadway CL	1	1	0.0	68.	0 7	1 68.0	5		68.0	0.0		0
At 40 feet from Roadway CL	8	3 1	0.0	66.	5 6	66.5	10	Snd Lvl	66.5	0.0		8 -
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		2	2 0.0	0.	0.0	0						

0.0

0.0

0.0

All that meet NR Goal

INPUT: ROADWAYS 2143 Violet Project **Eyestone Environmental** 24 October 2018 **TNM 2.5** Sean Bui Average pavement type shall be used unless INPUT: ROADWAYS PROJECT/CONTRACT: 2143 Violet Project a State highway agency substantiates the use **Construction Trucks - Mat Foundation** RUN: of a different type with the approval of FHWA Roadway **Points** Name Width Name No. Coordinates (pavement) Flow Control Segment Z X Speed Control Percent Pvmt On Device Constraint **Vehicles** Struct? Type Affected ft ft ft mph

0.0

1,000.0

1

2

0.0

0.0

0.00 Signal

0.00

0.00

100

Average

12.0 point1

point2

Haul Route

INPUT: TRAFFIC FOR LAeq1h Volumes	П		1		1	2	143 Viole	et Proje	ct				
Eyestone Environmental				24 Oct	tober 201	18							
Sean Bui				TNM 2	2.5		ı						
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT:	2143 Violet	Project											
RUN:	Construction	on Trucks	s - Mat Fo	undatio	on								
Roadway	Points												
Name	Name	No.	Segmer	nt									
			Autos		MTruck	S	HTruck	S	Buses		Motorc	ycles	
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	
Haul Route	point1		1 60	35	5 0) (39	35		0 0) /	0	(
	point2	2	2										

INPUT: RECEIVERS								2143 Viol	et Projec	t		
Eyestone Environmental						24 Octobe	er 2018					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project		1							
RUN:	Const	truction	n Trucks - Mat	Foundation								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Crite	eria		Active
			X	Υ	Z	above	Existing	Impact Cı	riteria	NR		in
						Ground	LAeq1h	LAeq1h	Sub'I	Goal		Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL	1	1	250.0	30.0	0.00	4.92	0.00	71	1	5.0	0.0	Y
At 40 feet from Roadway CL	8	3 1	250.0	40.0	0.00	4.92	0.00	66	3 1	0.0	8.0	Υ

0.0

0.0

0.0

0.0

0.0

0.0

All Impacted

All that meet NR Goal

INPUT: ROADWAYS 2143 Violet Project Eyestone Environmental 24 October 2018 **TNM 2.5** Sean Bui Average pavement type shall be used unless INPUT: ROADWAYS PROJECT/CONTRACT: 2143 Violet Project a State highway agency substantiates the use **Construction Trucks - Concrete Phase** RUN: of a different type with the approval of FHWA Roadway **Points** Name Width Name No. Coordinates (pavement) Flow Control Segment Z X Speed Control Percent Pvmt On Device Constraint **Vehicles** Struct? Type

ft

0.0

1,000.0

ft

0.0

0.0

0.00 Signal

0.00

ft

1

2

12.0 point1

point2

Haul Route

1

Affected

100

Average

mph

0.00

INPUT: TRAFFIC FOR LAeq1h Volumes						2	2143 Viol	et Proje	ct			
Eyestone Environmental				24 Oc	lober 20	18						
Sean Bui				TNM 2	2.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	2143 Violet	Project										
RUN:	Construction	on Trucks	s - Concre	ete Pha	se							
Roadway	Points											
Name	Name	No.	Segmen	nt								
			Autos		MTruck	s	HTruck	s	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 200	35	5 () () 5	5 35		0 0) (0
	point2		2									

INPUT: RECEIVERS								2143 Viol	et Projec	t		
Eyestone Environmental						24 Octobe	er 2018					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project		'							
RUN:	Const	truction	n Trucks - Cor	ncrete Phase								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Crit	eria		Active
			X	Υ	Z	above	Existing	Impact Cı	riteria	NR		in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal		Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL	1	1	250.0	30.0	0.00	4.92	0.00	71	1	5.0	0.0	Υ
At 40 feet from Roadway CL	8	3 1	250.0	40.0	0.00	4.92	0.00	66	3 1	0.0	8.0	Υ

0.0

0.0

0.0

0.0

All Impacted

All that meet NR Goal

INPUT: ROADWAYS 2143 Violet Project Eyestone Environmental 24 October 2018 **TNM 2.5** Sean Bui Average pavement type shall be used unless INPUT: ROADWAYS PROJECT/CONTRACT: 2143 Violet Project a State highway agency substantiates the use **Construction Trucks - Building Constructi** RUN: of a different type with the approval of FHWA Roadway **Points** Name Width Name No. Coordinates (pavement) Flow Control Segment Z X Speed Control Percent Pvmt On Device Constraint **Vehicles** Struct? Type Affected ft ft ft mph 12.0 point1 0.00 Signal Haul Route 1 0.0 0.0 0.00 Average 100 2 1,000.0 0.0 0.00 point2

INPUT: TRAFFIC FOR LAeq1h Volumes						2	143 Viole	t Proje	ct			
Eyestone Environmental				24 Oc	│ tober 201	8						
Sean Bui				TNM 2	2.5		l					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	2143 Violet	Project	·									
RUN:	Constructi	on Trucks	s - Buildi	ing Cons	structi							
Roadway	Points											-
Name	Name	No.	Segme	nt								
			Autos		MTruck	s	HTrucks	5	Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 20	0 35	5 C	0	34	35	(0 0	0) /
	point2		2									

INPUT: RECEIVERS								2143 Vio	let Proje	ect		
Eyestone Environmental						24 Octobe	er 2018					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project									
RUN:	Cons	truction	n Trucks - Bui	Iding Constru	ucti							
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Cr	iteria	1	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	i	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	(Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL		1 1	250.0	30.0	0.00	4.92	2 0.00	7	1	5.0	0.0	Υ
At 40 feet from Roadway CL		8 1	250.0	40.0	0.00	4.92	2 0.00	6	6	10.0	8.0	Υ

RESULTS: SOUND LEVELS							2143 Violet	t Project				
Eyestone Environmental							24 Octobe	 er 2018				
Sean Bui							TNM 2.5					
							Calculated	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:	2143 V	iolet Projec	t									
RUN:	Constr	uction Truc	ks - Buildi	ng Constr	ucti							
BARRIER DESIGN:	INPUT	HEIGHTS		_				Average p	pavement type	shall be use	d unless	
									ghway agenc			
ATMOSPHERICS:	68 deg	F, 50% RH	ĺ						ent type with			
Receiver												
Name No.	#DUs	Existing	No Barrie						With Barrier			
		LAeq1h	LAeq1h		ı	Increase over	existing	Туре	Calculated	Noise Reduc	tion	
			Calculated	l Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
		dBA	dBA	dBA	c	dB	dB		dBA	dB	dB	dB
At 30 feet from Roadway CL	1 1	0.0	6	9.6	71	69.6	5		69.6	0.0	(0.0
At 40 feet from Roadway CL	8 ′	0.0	6	3.2	66	68.2	10	Snd Lvl	68.2	0.0		-8.0
Dwelling Units	# DUs	Noise Re	duction									
		Min	Avg	Max								
		dB	dB	dB								
				0.0	0.0							
All Selected	2	0.0	().0	0.0							
All Selected All Impacted	2	0.0			0.0							

INPUT: ROADWAYS 2143 Violet Project Eyestone Environmental 24 October 2018 **TNM 2.5** Sean Bui Average pavement type shall be used unless INPUT: ROADWAYS PROJECT/CONTRACT: 2143 Violet Project a State highway agency substantiates the use **Construction Trucks - Paving Phase** RUN: of a different type with the approval of FHWA Roadway **Points** Name Width Name No. Coordinates (pavement) Flow Control Segment Z X Speed Control Percent Pvmt On Device Constraint **Vehicles** Struct? Type Affected ft ft ft mph 12.0 point1 0.00 Signal Haul Route 1 0.0 0.0 0.00 Average 100 2 1,000.0 0.0 0.00 point2

INPUT: TRAFFIC FOR LAeq1h Volumes							2143 Violet Project						
Eyestone Environmental				24 Oc	│ tober 201	18							
Sean Bui				TNM 2			I						
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT:	2143 Violet	Project	·										
RUN:	Constructi	on Trucks	s - Pavin	g Phase	•								
Roadway	Points												
Name	Name	No.	Segme	nt									
			Autos		MTruck	s	HTrucks	S	Buses		Motorcy	ycles	
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	
Haul Route	point1		1 2	0 35	5 C) C) 3	35	;	0 0) C)	
	point2		2										

INPUT: RECEIVERS								2143 Viol	let Proje	ect		
Eyestone Environmental						24 Octobe	er 2018					
Sean Bui						TNM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	2143	Violet F	Project									
RUN:	Cons	truction	Trucks - Pav	ing Phase								
Receiver												
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Cr	iteria	1	Active
			X	Υ	Z	above	Existing	Impact C	riteria	NR	i	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	(Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB		
At 30 feet from Roadway CL		1 1	250.0	30.0	0.00	4.92	2 0.00	7	1	5.0	0.0	Υ
At 40 feet from Roadway CL		8 1	250.0	40.0	0.00	4.92	2 0.00	6	6	10.0	8.0	Υ

RESULTS: SOUND LEVELS 2						2143 Viole	t Project	Ţ.			Ţ
Eyestone Environmental						24 Octobe	er 2018				
Sean Bui						TNM 2.5					
						Calculated	d with TN	M 2.5			
RESULTS: SOUND LEVELS											
PROJECT/CONTRACT:	2143 V	olet Projec	t								
RUN:	Constr	uction Truc	ks - Paving	Phase							
BARRIER DESIGN:	INPUT	HEIGHTS				Average pavement type shall be used unless				3	
							a State h	ighway agenc	y substantiat	s the us	se
ATMOSPHERICS:	68 deg	F, 50% RH	ĺ				of a diffe	erent type with	approval of F	HWA.	
Receiver											
Name No.	#DUs	Existing	No Barrier					With Barrier			
		LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Reduc	tion	
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
At 30 feet from Roadway CL	1 1	0.0	59	.1	71 59.	1 5		59.1	0.0		0
At 40 feet from Roadway CL	8 1	0.0	57	.8	66 57.	8 10		57.8	0.0		8 -
Dwelling Units	# DUs	Noise Red	duction								
		Min	Avg	Max							
		dB	dB	dB							
All Selected	2	0.0	0	.0 0	0.0						
All Impacted	C	0.0	0	.0	0.0						
All that meet NR Goal	1	0.0	0	.0 0	0.0						

Project: 2143 Violet Project EIR

Construction Vibration Impacts

Reference Levels at 25 feet are based on FTA, 2006 (Transit Noise and Vibration Impact Assessment)

Calculations using FTA procedure with n= 1.5 (for receptors 25 feet or greater)

n= **1.1** (for receptors less than 25 feet, per Caltrans procedure)

ON-SITE CONSTRUCTION ACTIVITIES

Table 1: Construction Equipment Vibration Levels (PPV) - Building Damages

		Estimat	ed Vibration Le	evels at neare:	st off-site build	ing structures	(distance in fe	et), PPV
	Reference Vibration Levels at	Building to the North	Building the South	Building to the west	Engine Co. 17 Building	Ford Motor Co. Factory Building	Historic Building at 2035 Bay Street	On-site historic Building C at 2140 7th Place
Equipment	25 ft., PPV	50	60	20	225	220	450	5
Large Bulldozer	0.089	0.032	0.024	0.114	0.003	0.003	0.001	0.523
Caisson Drilling	0.089	0.032	0.024	0.114	0.003	0.003	0.001	0.523
Loaded Trucks	0.076	0.027	0.020	0.097	0.003	0.003	0.001	0.446
Jackhammer	0.035	0.012	0.009	0.045	0.001	0.001	0.001	0.206
Small bulldozer	0.003	0.001	0.001	0.004	0.000	0.000	0.000	0.018
Signif	cance Threshold, PPV	0.3	0.2	0.3	0.12	0.12	0.12	0.12

Table 2: Construction Equipment Vibration Levels (VdB) - Human Annoyance

Table 2. Constitution Equipm		•	•								
	Reference		Estimated Vibration Levels at Off-Site Receptors (at note distance in feet), VdB								
Farriage	Vibration Levels at	R1	R2	R3	R4						
Equipment	25 ft., VdB	50	200	100	410						
Large Bulldozer	87	78	60	69	51						
Caisson Drilling	87	78	60	69	51						
Loaded Trucks	86	77	59	68	50						
Jackhammer	79	70	52	61	43						
Small bulldozer	58	49	31	40	22						
Sign	nificance Threshold, VdB	72	72	65	72						

OFF-SITE CONSTRUCTION HAUL TRUCKS

Table 3: Off-Site Haul Trucks - Building Damage

	Reference		Estimated Vibration Levels at noted distance in feet, PPV										
Equipment	Vibration Levels at 50 ft., PPV	20											
Typical road surface	0.00565	0.022											
Signi	ficance Threshold, PPV	0.12											

Ref. Levels based on FTA Figure 7-3 (converted from VdB to PPV)

Table 4: Off-Site Haul Trucks - Human Annoyance

	Reference		Estima	ted Vibration I	evels at noted	l distance in fe	et, VdB	
Equipment	Vibration Levels at 50 ft., VdB	30	160					
Typical road surface	63	70	48					
Signific	cance Threshold, VdB	72	65					

Ref. Levels based on FTA Figure 7-3

Operation Noise Calculations

Project Composite Noise Calculations (CNEL)Project: 2143 Violet Project

							Project	Ambient +	
Receptor	Ambient	Traffic ^a	Mechanical	Parking	Loading	Outdoor	Composite	Project	Increase
R1	60.2	47.9	48.1	20.3	29.9	57.4	58.3	62.4	2.2
R2	72.5	62.7	51.8	15.9	33.9	55.7	63.8	73.0	0.5
R3	65.3	50.5	48.3	16.3	39.1	50.0	54.6	65.7	0.4
R4	60.9	54.6	49.5	26.3	49.5	54.9	58.9	63.0	2.1

^a - Project traffic noise levels at each receptor is based on the traffic noise analysis for the roadway segment in front of the receptor. Project traffic noise level is equal to "Baseline+Project" minus "Baseline" traffic noise levels, as provided in the table below.

		Traffic Noise Levels, CNEL							distance to	
			Existing +	Project	distance to		Baseline +		Center	adj. for
Receptor	Roadway Segment	Existing	Project	Only	roadway, ft	Baseline	Project	barrier	Line	distance
R1	Santa Fe	55.4	56.1	47.9	315	70.3	71.0	5	35	-9.9
R2	Santa Fe	70.3	71.0	62.7	10	70.3	71.0	0	35	0.0
R3	Santa Fe	58.1	58.8	50.5	160	70.3	71.0	5	35	-7.2
R4	Santa Fe	64.8	65.2	54.6	100	70.3	70.7	0	35	-5.5

Outdoor Mechanical Equipment Noise Calculations Project: 2143 Violet Project

Project:

Hours of Operations

	Estimated No	oise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to
	Leq from SC	UNDPLAN	7pm)	10pm)	7am)
Receptor	Leq	CNEL	12	3	9
R1	41.4	48.1	41.4	41.4	41.4
R2	45.1	51.8	45.1	45.1	45.1
R3	41.6	48.3	41.6	41.6	41.6
R4	42.8	49.5	42.8	42.8	42.8

		Ambient +			
	Ambient	Project	Increase		Ambient +
Receptor	CNEL	(CNEL)	(CNEL)	ambient (Leq)	Project (Leq)
R1	60.2	60.5	0.3	55.3	55.5
R2	72.5	72.5	0.0	65.9	65.9
R3	65.3	65.4	0.1	58.8	58.9
R4	60.9	61.2	0.3	54.4	54.7

Parking Structure Noise Calculations

Project: 2143 Violet Project

Hours of Operations

	Estimated I	Noise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to
	Leq from S	OUNDPLAN	7pm)	10pm)	7am)
Receptor	Leq	CNEL	12	3	9
R1	13.6	20.3	13.6	13.6	13.6
R2	9.2	15.9	9.2	9.2	9.2
R3	9.6	16.3	9.6	9.6	9.6
R4	19.6	26.3	19.6	19.6	19.6

		Ambient +		nighttime	Ambient +	
	Ambient	Project	Increase	ambient	Project	Increase
Receptor	CNEL	(CNEL)	(CNEL)	(Leq)	(Leq)	(Leq)
R1	60.2	60.2	0.0	55.3	55.3	0.0
R2	72.5	72.5	0.0	65.9	65.9	0.0
R3	65.3	65.3	0.0	58.8	58.8	0.0
R4	60.9	60.9	0.0	54.4	54.4	0.0

Outdoor Noise Calculations

Project: 2143 Violet Project

ALL LEVEL Hours of Operations

					Ld (7am to	Le (7pm to	Ln (10pm to
	Estimated nois	7pm)	10pm)	7am)			
Receptor	Sound System	Occupants	Total, Leq	CNEL	12	3	0
R1	55.7	53.9	57.9	57.4	57.9	57.9	0.0
R2	56.0	42.0	56.2	55.7	56.2	56.2	0.0
R3	50.1	40.4	50.5	50.0	50.5	50.5	0.0
R4	55.2	41.6	55.4	54.9	55.4	55.4	0.0

NOT USED Hours of Operations

					Ld (7am to	Le (7pm to	Ln (10pm to
	Estimated nois	7pm)	10pm)	7am)			
Receptor	Sound System	Occupants	Total, Leq	CNEL	0	0	0
R1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R4	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TOTAL COMBINED

			Ambient +		Project		
		Ambient	Project	Increase	Noise,	Ambient	Ambient +
Receptor	Project (CNEL)	(CNEL)	(CNEL)	(CNEL)	(Leq)	(Leq)	Project (Leq)
R1	57.4	60.2	62.0	1.8	57.9	55.3	59.8
R2	55.7	72.5	72.6	0.1	56.2	65.9	66.3
R3	50.0	65.3	65.4	0.1	50.5	58.8	59.4
R4	54.9	60.9	61.9	1.0	55.4	54.4	57.9

Loading and Trash Compactor Noise Calculations Project: 2143 Violet Project

Project:

LOADING

	Estimated Levels, Le SOUND	eq from	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
Receptor	Leq	CNEL	3	3	o
R1	32.7	29.9	26.7	32.7	0.0
R2	36.7	33.9	30.7	36.7	0.0
R3	41.9	39.1	35.9	41.9	0.0
R4	52.3	49.5	46.3	52.3	0.0

TOTAL COMBINED

			Ambient +				Ambient +
	Project	Ambient	Project	Increase	Project		Project
Receptor	CNEL	CNEL	(CNEL)	(CNEL)	Noise, (Leq)	Ambient (Leq)	(Leq)
R1	29.9	60.2	60.2	0.0	32.7	56.3	56.3
R2	33.9	72.5	72.5	0.0	36.7	71.8	71.8
R3	39.1	65.3	65.3	0.0	41.9	64.5	64.5
R4	49.5	60.9	61.2	0.3	52.3	60.2	60.9

Source type												
dB(A)	ame	Source type	Lw	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
mmercial Loading Point 101.9 68.9 78.9 85.9 91.9 94.9 95.9 95.9 93.9 sidential Loading Dock 1 Point 101.9 68.9 78.9 85.9 91.9 94.9 95.9 95.9 93.9												
ommercial Loading Point 101.9 68.9 78.9 85.9 91.9 94.9 95.9 95.9 93.9 esidential Loading Dock 1 Point 101.9 68.9 78.9 85.9 91.9 94.9 95.9 95.9 93.9			dB(A)									
					78.9				95.9			
seidential Loading Dook 2 Point 101.9 68.9 78.9 85.9 91.9 94.9 95.9 95.9 93.9												
	esidential Loading Dock 2	Point	101.9	68.9	78.9	85.9	91.9	94.9	95.9	95.9	93.9	

2143 Violet Assessed contribution level - Loading

9

Source	Ld	
	dB(A)	
Receiver R1 Ld 32.7 dB(A)		
Commercial Loading	27.1	
Residential Loading Dock 1	27.9	
Residential Loading Dock 2	28.7	
Receiver R2 Ld 36.7 dB(A)		
Commercial Loading	24.1	
Residential Loading Dock 1	34.9	
Residential Loading Dock 2	31.1	
Receiver R3 Ld 41.9 dB(A)		
Commercial Loading	26.1	
Residential Loading Dock 1	41.2	
Residential Loading Dock 2	32.3	
Receiver R4 Ld 52.3 dB(A)		
Commercial Loading	32.9	
Residential Loading Dock 1	50.3	
Residential Loading Dock 2	47.8	

2143 Violet Octave spectra of the sources in dB(A) - Mechanical

Name	Source type	Lw	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
		dB(A)									
Mechanical Office 1	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 2	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 3	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 4	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 5	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 6	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 7	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 8	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 9	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Office 10	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 1	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 2	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 3	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 4	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 5	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 6	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 7	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 8	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 9	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 10	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 11	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	
Mechanical Residential 12	Point	95.0	78.1	83.1	87.2	88.3	88.9	87.2	84.8	80.8	

2143 Violet Assessed contribution level - Mechanical

(0
4	J

Source	Ld	
	dB(A)	
Receiver R1 Ld 41.4 dB(A)	<u> </u>	
Mechanical Office 1	25.9	
Mechanical Office 2	25.9 26.9	
Mechanical Office 3	28.0	
Mechanical Office 4	32.5	
Mechanical Office 5	32.5	
Mechanical Office 6	32.5	
Mechanical Office 7	32.5	
Mechanical Office 8	28.1	
Mechanical Office 9	26.9	
Mechanical Office 10	26.0	
Mechanical Residential 1	24.7	
Mechanical Residential 2	23.0	
Mechanical Residential 3	22.2	
Mechanical Residential 4	21.7	
Mechanical Residential 5	21.4	
Mechanical Residential 6	26.8	
Mechanical Residential 7	26.4	
Mechanical Residential 8	26.1	
Mechanical Residential 9	25.9	
Mechanical Residential 10	25.7	
Mechanical Residential 11	25.4	
Mechanical Residential 12	22.4	
Receiver R2 Ld 45.1 dB(A)		
Mechanical Office 1	38.7	
Mechanical Office 2	35.5	
Mechanical Office 3	36.1	
Mechanical Office 4	37.5	
Mechanical Office 5	34.7	
Mechanical Office 6	32.0	
Mechanical Office 7	29.9	
Mechanical Office 8	29.3	
Mechanical Office 9	30.3	
Mechanical Office 10	27.8	
Mechanical Residential 1	26.4	
Mechanical Residential 2	25.7	
Mechanical Residential 3	25.4	
Mechanical Residential 4	25.2	
Mechanical Residential 5	25.0	
Mechanical Residential 6	25.0	
	· 	

2143 Violet Assessed contribution level - Mechanical

(0
4	J

Source	Ld					
	dB(A)					
Mechanical Residential 7	23.3					
Mechanical Residential 8	22.5					
Mechanical Residential 9	21.9					
Mechanical Residential 10	21.6					
Mechanical Residential 11	25.0					
Mechanical Residential 12	22.1					
Receiver R3 Ld 41.6 dB(A)						
Mechanical Office 1	33.0					
Mechanical Office 2	30.5					
Mechanical Office 3	31.2					
Mechanical Office 4	33.2					
Mechanical Office 5	30.3					
Mechanical Office 6	28.4					
Mechanical Office 7	27.0					
Mechanical Office 8	26.6					
Mechanical Office 9	25.9					
Mechanical Office 10	25.7					
Mechanical Residential 1	26.7					
Mechanical Residential 2	25.8					
Mechanical Residential 3	25.4					
Mechanical Residential 4	25.1					
Mechanical Residential 5	24.9					
Mechanical Residential 6	27.4					
Mechanical Residential 7	26.2					
Mechanical Residential 8	25.7					
Mechanical Residential 9	25.2					
Mechanical Residential 10	22.9					
Mechanical Residential 11	27.2					
Mechanical Residential 12	23.2					
Receiver R4 Ld 42.8 dB(A)						
Mechanical Office 1	36.1					
Mechanical Office 2	32.5					
Mechanical Office 3	30.6					
Mechanical Office 4	31.9					
Mechanical Office 5	28.6					
Mechanical Office 6	28.4					
Mechanical Office 7	28.3					
Mechanical Office 8	29.7					
Mechanical Office 9	31.7					
Mechanical Office 10	35.6					

2143 Violet Assessed contribution level - Mechanical

9

Source	Ld	
	dB(A)	
Mechanical Residential 1	22.3	
Mechanical Residential 2	22.6	
Mechanical Residential 3	23.1	
Mechanical Residential 4	23.8	
Mechanical Residential 5	25.4	
Mechanical Residential 6	21.0	
Mechanical Residential 7	21.5	
Mechanical Residential 8	22.2	
Mechanical Residential 9	23.2	
Mechanical Residential 10	24.9	
Mechanical Residential 11	20.8	
Mechanical Residential 12	24.5	

2143 Violet Emission calculation road - Parking

16

Road	ADT	Pavement type	
	Veh/24h		
Residential Driveway		PCC (Portland cement concrete)	
Office Driveway		PCC (Portland cement concrete)	
- Ciliad Elitatia	2000	ir ee (r emana coment consists)	

2143 Violet Assessed contribution level - Parking

9

Source	Ld			
	dB(A)			
Receiver R1 Ld 13.6 dB(A)				
Residential Driveway	4.4			
Office Driveway	13.1			
Receiver R2 Ld 9.2 dB(A)				
Residential Driveway	5.1			
Office Driveway	7.0			
Receiver R3 Ld 9.6 dB(A)				
Residential Driveway	5.3			
Office Driveway	7.6			
Receiver R4 Ld 19.6 dB(A)				
Residential Driveway	3.6			
Office Driveway	19.5			

Name	Source type	Lw	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
		dB(A)									
Outdoor People	Area	97.9	51.0	61.1	77.8	92.9	94.1	90.6	85.9	75.4	
People - Level 4 Deck	Area	92.5	45.6	55.7	72.4	87.5	88.7	85.2	80.5	70.0	
People - Level 8 Deck	Area	101.5	54.6	64.7	81.4	96.5	97.7	94.2	89.5	79.0	

2143 Violet Assessed contribution level - People

9

Source	Ld	
	dB(A)	
Receiver R1 Ld 53.9 dB(A)		
Outdoor People	53.6	
People - Level 4 Deck	39.8	
People - Level 8 Deck	38.9	
Receiver R2 Ld 42.0 dB(A)		
Outdoor People	34.5	
People - Level 4 Deck	36.4	
People - Level 8 Deck	39.4	
Receiver R3 Ld 40.4 dB(A)		
Outdoor People	38.5	
People - Level 4 Deck	27.6	
People - Level 8 Deck	35.3	
Receiver R4 Ld 41.6 dB(A)		
Outdoor People	38.8	
People - Level 4 Deck	10.8	
People - Level 8 Deck	38.4	

2143 Violet Octave spectra of the sources in dB(A) - Speakers

Name	Source type	Lw	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
		dB(A)								
Speakers - Level 1 Paseo 1	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 2	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 3	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 4	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 5	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 6	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 7	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 8	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers - Level 1 Paseo 9	Point	99.2	68.4	78.0	86.2	91.3	93.5	93.3	93.2	
Speakers Level 4 Deck 1	Point	108.6	77.8	87.4	95.6	100.7	102.9	102.7	102.6	
Speakers Level 4 Deck 2	Point	108.6	77.8	87.4	95.6	100.7	102.9	102.7	102.6	
Speakers Level 4 Deck 3	Point	108.6	77.8	87.4	95.6	100.7	102.9	102.7	102.6	
Speakers Level 4 Deck 4	Point	108.6	77.8	87.4	95.6	100.7	102.9	102.7	102.6	
Speakers Level 4 Deck 5	Point	108.6	77.8	87.4	95.6	100.7	102.9	102.7	102.6	
Speakers Level 8 Deck 1	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 2	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 3	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 4	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 5	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 6	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 7	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	
Speakers Level 8 Deck 8	Point	118.6	87.8	97.4	105.6	110.7	112.9	112.7	112.6	

2143 Violet Assessed contribution level - Speakers

9

Source	Ld	
	dB(A)	
Receiver R1 Ld 55.7 dB(A)	u2(, i)	
Speakers - Level 1 Paseo 1	24.6	
Speakers - Level 1 Paseo 2	15.8	
Speakers - Level 1 Paseo 3	24.9	
Speakers - Level 1 Paseo 4	18.3	
Speakers - Level 1 Paseo 5	35.3	
Speakers - Level 1 Paseo 6	45.6	
Speakers - Level 1 Paseo 7	25.3	
Speakers - Level 1 Paseo 8	23.1	
Speakers - Level 1 Paseo 9	3.6	
Speakers Level 4 Deck 5	47.1	
Speakers Level 4 Deck 4	41.6	
Speakers Level 4 Deck 2	47.2	
Speakers Level 4 Deck 3	39.7	
Speakers Level 4 Deck 1	32.3	
Speakers Level 8 Deck 1	49.4	
Speakers Level 8 Deck 2	50.4	
Speakers Level 8 Deck 3	31.6	
Speakers Level 8 Deck 4	29.7	
Speakers Level 8 Deck 5	24.7	
Speakers Level 8 Deck 6	25.1	
Speakers Level 8 Deck 7	29.0	
Speakers Level 8 Deck 8	30.2	
Receiver R2 Ld 56.0 dB(A)		
Speakers - Level 1 Paseo 1	24.0	
Speakers - Level 1 Paseo 2	23.7	
Speakers - Level 1 Paseo 3	23.5	
Speakers - Level 1 Paseo 4	24.4	
Speakers - Level 1 Paseo 5	22.5	
Speakers - Level 1 Paseo 6	27.9	
Speakers - Level 1 Paseo 7	23.4	
Speakers - Level 1 Paseo 8	22.9	
Speakers - Level 1 Paseo 9	2.8	
Speakers Level 4 Deck 5	36.3	
Speakers Level 4 Deck 4	40.8	
Speakers Level 4 Deck 2	48.7	
Speakers Level 4 Deck 3	45.7	
Speakers Level 4 Deck 1	21.8	
Speakers Level 8 Deck 1	47.7	
Speakers Level 8 Deck 2	41.9	

2143 Violet Assessed contribution level - Speakers

9

Source	Ld	
	dB(A)	
Speakers Level 8 Deck 3	26.0	
Speakers Level 8 Deck 4	24.9	
Speakers Level 8 Deck 5	28.7	
Speakers Level 8 Deck 6	29.5	
Speakers Level 8 Deck 7	50.1	
Speakers Level 8 Deck 8	49.3	
Receiver R3 Ld 50.1 dB(A)	10.0	
Speakers - Level 1 Paseo 1	23.9	
Speakers - Level 1 Paseo 2	26.9	
Speakers - Level 1 Paseo 3	25.5	
Speakers - Level 1 Paseo 4	27.1	
Speakers - Level 1 Paseo 5	24.4	
Speakers - Level 1 Paseo 6	31.6	
Speakers - Level 1 Paseo 7	33.4	
Speakers - Level 1 Paseo 8	35.6	
Speakers - Level 1 Paseo 9	23.8	
Speakers Level 4 Deck 5	28.1	
Speakers Level 4 Deck 4	29.4	
Speakers Level 4 Deck 2	37.6	
Speakers Level 4 Deck 3	34.5	
Speakers Level 4 Deck 1	20.8	
Speakers Level 8 Deck 1	41.8	
Speakers Level 8 Deck 2	37.5	
Speakers Level 8 Deck 3	26.9	
Speakers Level 8 Deck 4	26.6	
Speakers Level 8 Deck 5	26.5	
Speakers Level 8 Deck 6	31.5	
Speakers Level 8 Deck 7	46.1	
Speakers Level 8 Deck 8	42.8	
Receiver R4 Ld 55.2 dB(A)		
Speakers - Level 1 Paseo 1	21.7	
Speakers - Level 1 Paseo 2	7.5	
Speakers - Level 1 Paseo 3	16.5	
Speakers - Level 1 Paseo 4	20.6	
Speakers - Level 1 Paseo 5	14.2	
Speakers - Level 1 Paseo 6	8.1	
Speakers - Level 1 Paseo 7	19.9	
Speakers - Level 1 Paseo 8	20.3	
Speakers - Level 1 Paseo 9	45.2	
Speakers Level 4 Deck 5	8.6	

2143 Violet Assessed contribution level - Speakers

9

Source	Ld	
	dB(A)	
Speakers Level 4 Deck 4	7.9	
Speakers Level 4 Deck 2	15.3	
Speakers Level 4 Deck 3	16.0	
Speakers Level 4 Deck 1	8.2	
Speakers Level 8 Deck 1	24.6	
Speakers Level 8 Deck 2	23.9	
Speakers Level 8 Deck 3	27.7	
Speakers Level 8 Deck 4	27.4	
Speakers Level 8 Deck 5	50.5	
Speakers Level 8 Deck 6	51.4	
Speakers Level 8 Deck 7	44.6	
Speakers Level 8 Deck 8	42.5	

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

EXISTING CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street										
- Between 6th St. and 7th St.	40	10	30	25	659	6,590	10%	0	0	68.4
- Between 7th St. and Violet St.	40	10	30	25	844	8,440	10%	0	0	69.5
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	766	7,660	10%	0	0	68.2
- Between 7th St. and Violet St.	50	10	35	30	1,239	12,390	10%	0	0	70.3
- Between Violet St. and 8th St.	50	10	35	30	1,246	12,460	10%	0	0	70.3
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	1,749	17,490	10%	0	0	71.8
- Between Mateo St. and Santa Fe Ave.	50	10	35	30	1,881	18,810	10%	0	0	72.1
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	2,489	24,890	10%	0	0	73.3
Violet Street										
- Between Mateo St. and Santa Fe Ave.	40	10	30	25	84	840	10%	0	0	59.5
- East of Santa Fe Ave.	40	10	30	25	36	360	10%	0	0	55.8

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street										
- Between 6th St. and 7th St.	40	10	30	25	677	6,770	10%	0	0	68.6
- Between 7th St. and Violet St.	40	10	30	25	870	8,700	10%	0	0	69.7
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	810	8,100	10%	0	0	68.4
- Between 7th St. and Violet St.	50	10	35	30	1,474	14,740	10%	0	0	71.0
- Between Violet St. and 8th St.	50	10	35	30	1,364	13,640	10%	0	0	70.7
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	1,836	18,360	10%	0	0	72.0
- Between Mateo St. and Santa Fe Ave.	50	10	35	30	1,948	19,480	10%	0	0	72.3
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	2,582	25,820	10%	0	0	73.5
Violet Street										
- Between Mateo St. and Santa Fe Ave.	40	10	30	25	114	1,140	10%	0	0	60.8
- East of Santa Fe Ave.	40	10	30	25	426	4,260	10%	0	0	66.5

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

BASELINE NO PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street										
- Between 6th St. and 7th St.	40	10	30	25	670	6,700	10%	0	0	68.5
 Between 7th St. and Violet St. 	40	10	30	25	871	8,710	10%	0	0	69.7
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	766	7,660	10%	0	0	68.2
- Between 7th St. and Violet St.	50	10	35	30	1,239	12,390	10%	0	0	70.3
- Between Violet St. and 8th St.	50	10	35	30	1,246	12,460	10%	0	0	70.3
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	1,607	16,070	10%	0	0	71.4
- Between Mateo St. and Santa Fe Ave.	50	10	35	30	1,716	17,160	10%	0	0	71.7
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	2,323	23,230	10%	0	0	73.0
Violet Street										
- Between Mateo St. and Santa Fe Ave.	40	10	30	25	84	840	10%	0	0	59.5
- East of Santa Fe Ave.	40	10	30	25	36	360	10%	0	0	55.8

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

BASELINE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street										
- Between 6th St. and 7th St.	40	10	30	25	688	6,880	10%	0	0	68.6
- Between 7th St. and Violet St.	40	10	30	25	897	8,970	10%	0	0	69.8
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	810	8,100	10%	0	0	68.4
- Between 7th St. and Violet St.	50	10	35	30	1,474	14,740	10%	0	0	71.0
- Between Violet St. and 8th St.	50	10	35	30	1,364	13,640	10%	0	0	70.7
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	1,694	16,940	10%	0	0	71.6
- Between Mateo St. and Santa Fe Ave.	50	10	35	30	1,783	17,830	10%	0	0	71.9
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	2,416	24,160	10%	0	0	73.2
Violet Street										
- Between Mateo St. and Santa Fe Ave.	40	10	30	25	114	1,140	10%	0	0	60.8
- East of Santa Fe Ave.	40	10	30	25	426	4,260	10%	0	0	66.5

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

FUTURE NO PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street	,	,	,							
- Between 6th St. and 7th St.	40	10	30	25	1,381	13,810	10%	0	0	71.7
- Between 7th St. and Violet St.	40	10	30	25	1,419	14,190	10%	0	0	71.8
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	1,549	15,490	10%	0	0	71.3
- Between 7th St. and Violet St.	50	10	35	30	2,411	24,110	10%	0	0	73.2
- Between Violet St. and 8th St.	50	10	35	30	2,281	22,810	10%	0	0	72.9
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	2,987	29,870	10%	0	0	74.1
 Between Mateo St. and Santa Fe Ave. 	50	10	35	30	2,809	28,090	10%	0	0	73.8
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	3,620	36,200	10%	0	0	74.9
Violet Street										
 Between Mateo St. and Santa Fe Ave. 	40	10	30	25	93	930	10%	0	0	59.9
- East of Santa Fe Ave.	40	10	30	25	197	1,970	10%	0	0	63.2

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Project: 2143 Violet Project

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Mateo Street										
- Between 6th St. and 7th St.	40	10	30	25	1,399	13,990	10%	0	0	71.7
- Between 7th St. and Violet St.	40	10	30	25	1,445	14,450	10%	0	0	71.9
Santa Fe Avenue										
- Between 6th St. and 7th St.	50	10	35	30	1,593	15,930	10%	0	0	71.4
- Between 7th St. and Violet St.	50	10	35	30	2,646	26,460	10%	0	0	73.6
- Between Violet St. and 8th St.	50	10	35	30	2,405	24,050	10%	0	0	73.2
7th Street										
- Between Alameda St. and Mateo St.	50	10	35	30	3,074	30,740	10%	0	0	74.2
- Between Mateo St. and Santa Fe Ave.	50	10	35	30	2,888	28,880	10%	0	0	74.0
- Between Santa Fe Ave. and Boyle Ave.	50	10	35	30	3,713	37,130	10%	0	0	75.1
Violet Street										
- Between Mateo St. and Santa Fe Ave.	40	10	30	25	123	1,230	10%	0	0	61.2
- East of Santa Fe Ave.	40	10	30	25	587	5,870	10%	0	0	67.9

^{*} Estimated based on Google Earth map.

^{**} Calculated using FHWA's TNM Version 2.5 Computer Noise Model.